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Abstract

On-chip inductors and transformers play a crucial role in radio frequency integrated

circuits (RFICs). For gigahertz circuitry, these components are usually realized using

bond-wires or planar on-chip spirals. Although bond wires exhibit higher quality

factors (Q) than on-chip spirals, their use is constrained by the limited range of

realizable inductances, large production 
uctuations and large parasitic (bondpad)

capacitances. On the other hand, spiral inductors exhibit good matching and are

therefore attractive for commonly used di�erential architectures. Furthermore, they

permit a large range of inductances to be realized. However, they possess smaller Q

values and are more di�cult to model.

In this dissertation, we develop a current sheet theory based on fundamental

electromagnetic principles that yields simple, accurate inductance expressions for a

variety of geometries, including planar spirals that are square, hexagonal, octagonal

or circular. When compared to �eld solver simulations and measurements over a wide

design space, these expressions exhibit typical errors of 2� 3%, making them ideal

for use in circuit synthesis and optimization. When combined with a commonly used

lumped � model, these expressions allow the engineer to explore trade-o�s quickly

and easily.

These current sheet based expressions eliminate the need for using segmented

summation methods (such as the Greenhouse approach) to evaluate the inductance

of spirals. Thus, the design and optimization of on-chip spiral inductors and trans-

formers can now be performed in a standard circuit design environment (such as

SPICE ). Field solvers (which are di�cult to integrate into a circuit design environ-

ment) are now only needed to verify the �nal design.
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Using these newly developed inductance expressions, this thesis explores how

on-chip inductors should be optimized for various circuit applications. In particular,

a new design methodology is presented for enhancing the bandwidth of broadband

ampli�ers using optimized area e�cient, on-chip spirals. This method is applied

in the implementation of a CMOS gigabit ethernet transimpedance preampli�er to

boost the bandwidth by � 40%.

This dissertation also develops a general methodology for computing the mutual

inductance and mutual coupling coe�cient of various on-chip spiral transformers.

Furthermore, this work provides lumped, analytical transformer models that show

good agreement with measurements.
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Chapter 1

Introduction

T
HE explosive growth in commercial wireless and wired communication markets

has generated tremendous interest in inexpensive radio-frequency integrated

circuits (RFICs). Traditionally, RFICs have been mostly used in military applica-

tions and have been fabricated in expensive GaAs and silicon bipolar technologies.

However the quest for low cost solutions in the commercial market has spurred a

desire to implement RFICs in standard CMOS technology. The performance of stan-

dard CMOS technologies, thanks to the impetus of the microprocessor and memory

markets, has improved constantly and consistently. In fact, submicron CMOS tech-

nologies now exhibit su�cient performance for radio frequency applications in the

1� 5GHz range, making them ideal for commercial applications. An additional ad-

vantage of these CMOS processes is that they permit the integration of the analog

and digital components, the holy grail for \system-on-chip" solutions.

The advantages of integrating radio frequency circuits are compelling. The fewer

the external components, the smaller the size of the circuit board and perhaps the

smaller the power consumption. These two advantages are especially signi�cant in

the rapidly expanding personal communication services market where portability

and long battery life are essential. Furthermore, integration enhances the reliability

and robustness of the end product as it minimizes the number of external connec-

tions that require soldering. Component matching is also easier thereby o�ering the

designer more 
exibility to choose high performance architectures. Finally testing

1
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time and cost, two key issues in the communications area where time to market is

paramount, are reduced as the level of integration increases.

Among the common circuit elements, transistors, diodes, capacitors and resistors

are easily integrated on chip, thanks to the research done for microprocessor and

memory chips over the last thirty years. Although on-chip inductors and transform-

ers have traditionally not been used in microprocessors or memories, they are �nding

increasing use in radio frequency circuits. All major components in a narrowband

front-end system need inductors and transformers. These components include low-

noise ampli�ers (LNAs), oscillators, �lters, baluns, matching networks and mixers.

Thus, inductors and transformers account for a large fraction of the area (and cost)

of RFICs [1, 2, 3, 4, 5, 6]. Consequently, the past decade has seen increased activity

in their design, modeling and optimization.

Most of this modeling work has centered around the development of �eld solvers

to predict the behavior of on-chip inductors and transformers. While accurate, these

�eld solvers are time consuming, computationally intensive and require experience

on the part of the user. These �eld solvers also do not provide any insight into the

engineering trade-o�s involved in the design of these on-chip inductors and trans-

formers. Although the better �eld solvers are excellent for veri�cation, they are

inconvenient at the initial design and optimization stages.

To facilitate the design of inductor circuits, signi�cant work has been done on

modeling on-chip inductors using lumped circuit models [7, 8, 9, 10]. These lumped

models are attractive as they are easily incorporated into a standard circuit design

environment (such as SPICE ). Furthermore, most of the parasitic capacitance and

resistances in these models have simple, physically intuitive, analytical expressions.

However, the inductance itself lacks a simple formula and therefore needs to be

computed using a complicated segmented summation method. The lack of a sim-

ple, accurate inductance expression remains as a major impediment to using these

lumped models for quick design and optimization.

In this thesis, we develop a theory based on fundamental electromagnetic princi-

ples that yields simple, accurate inductance expressions for on-chip spiral inductors

of various geometries. We also use these expressions and concepts to develop a
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lumped circuit model for on-chip spiral transformers. The work presented in this

thesis forms a basis for using lumped circuit models to facilitate the design and

optimization of inductor and transformer circuits.

1.1 Organization

Chapter 2 reviews the current state-of-the-art in modeling on-chip spiral inductors.

After presenting the major modeling approaches, it elaborates on a popular lumped

circuit model and highlights the lack of simple, accurate inductance expressions.

Chapter 3 introduces and develops a general theory based on current sheet ap-

proximations that permits the self and mutual inductances of a variety of geometries

to be quickly calculated. The accuracy of the current sheet approximation is studied

for key geometries and appropriate correction terms are presented to improve the ac-

curacy of the inductance expressions. Particular attention is paid to geometries that

approximate a square and circular spiral, permitting simple, accurate expressions to

be developed for them.

Chapter 4 presents several simple accurate expressions for calculating induc-

tances of on-chip spirals. First, the expressions derived from the theory described

in chapter 3 are discussed. Second, special type of data-�tted expressions (called

monomials) are described. These monomials can be used in special types of opti-

mization routines called geometric programs, for which extremely fast solutions have

been developed. Then, a third set of expressions, based on a modi�cation of a sim-

ple expression developed by Wheeler are presented. These new expressions, as well

as expressions reported previously in the literature, are compared to comprehensive

�eld solver simulations spanning a wide design space. Finally, all these expressions

are compared to measurement results. The accuracy of the new expressions show

an order of magnitude improvement over previously published expressions, making

them ideal for circuit design and optimization.

Chapter 5 treats the design and modeling of on-chip transformers. Several on-

chip transformer realizations are described and compared with one another. Then,

a general approach for modeling these realizations using a lumped circuit model is
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presented. Finally, this approach is illustrated with several examples that show good

agreement with measurements.

Chapter 6 illustrates how the simple, analytical inductance expressions can be

used within a lumped circuit model of a spiral inductor to easily explore engineering

trade-o�s and to compare the performance of various geometries. It also investi-

gates how on-chip inductors can be used as shunt-peaking elements to enhance the

bandwidth of broadband ampli�ers.

Chapter 7 studies how magnetic coupling to the substrate can degrade the per-

formance of on-chip spirals. The current sheet approach discussed in chapter 3 is

applied to obtain a simple expression that provides insight into the dominant pa-

rameters that degrade performance.

Chapter 8 summarizes the major contributions of this thesis and suggests areas

that merit further work.



Chapter 2

Models and Inductance

Expressions for On-Chip Spirals

In this chapter, we review on-chip inductor realizations and see how they are mod-

eled. Section 2.1 discusses commonly used spiral geometries and identi�es the lateral

and vertical parameters that determine performance. Section 2.2 describes the com-

mon approaches used to model on-chip spirals. Section 2.3 examines the analytical

expressions that exist for the elements in a commonly used lumped circuit model

for on-chip inductors. Section 2.4 highlights the insu�cient accuracy of previously

published inductance expressions and underscores the need for developing simple, ac-

curate inductance expressions that can be incorporated in the lumped circuit model.

2.1 On-chip Inductor Realizations

On-chip inductor implementations entail a myriad of trade-o�s. In order to under-

stand these trade-o�s, we need to consider both the vertical and lateral geometries

of the layout. Figure 2.1 shows a three dimensional view of a square spiral with 1:75

turns. Square spirals are popular because of the ease of their layout. Squares are

generated easily even with simple Manhattan-style layout tools (such as MAGIC).

However, other polygonal spirals have also been used in circuit design. Some design-

ers prefer polygons with more than four sides to improve performance. Among these,

5
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Figure 2.1: 3-D view of square spiral with 1:75 turns.

hexagonal and octagonal inductors are used widely. If desired, a circular spiral may

be approximated by polygons with many more sides. Figures 2.2, 2.3, 2.4 and 2.5

show the layout for square, hexagonal, octagonal and circular spirals respectively.

Some CAD tools such as ASITIC generate such layouts automatically [11].

The lateral parameters of a spiral are completely speci�ed by the following:

1. number of turns, n

2. metal width, w

3. edge-to-edge spacing between adjacent turns, s

4. any one of the following: the outer diameter dout, the inner diameter din,

the average diameter davg = 0:5(dout + din), or the �ll ratio, de�ned as � =

(dout � din)=(dout + din). Note that dout = davg + n(w + s) � s and that � =

(n(w + s)� s)=davg.

5. number of sides, N

While the inductance of an on-chip spiral is determined primarily by its lateral

dimensions, its parasitic capacitances and resistances are determined by both the
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Figure 2.3: Hexagonal spiral.
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Figure 2.6: Vertical cross section of a square spiral with 1:75 turns.

lateral and vertical dimensions. The vertical cross section of a typical square spiral

is illustrated in �gure 2.6. Usually, the planar spiral is realized on the top metal

layer to reduce the spiral-to-substrate oxide capacitance. In submicron CMOS tech-

nologies, the top metal layer has the largest thickness, thereby minimizing the DC

series resistance of the inductor. The inner end of the spiral is connected by an

underpass on a lower metal layer. Although the inductance and series resistance

of this underpass is not signi�cant in practical on-chip realizations, the feedthrough

capacitance between the spiral and the underpass has a noticeable, but second order,

e�ect on the overall performance.

Several variations on the spiral geometry exist. The spiral may be realized by

strapping two or more metal layers together to reduce its series resistance. However
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this reduction in resistance trades o� with increased spiral-to-substrate capacitance.

Furthermore, for GHz applications, the skin e�ect reduces the e�ective thickness

of the conductors, thereby limiting the improvement o�ered by shunting metal lay-

ers [12].

Alternatively, multi-level series connected spirals may be used. Such implemen-

tations are useful when high inductance densities are desired or when magnetic

coupling to the substrate needs to be minimized. The drawback with this approach

is the low self resonant frequency stemming from the large feedthrough capacitance

between the layers.

The optimal lateral and vertical parameters of a spiral are determined by the

speci�cations of the circuit of which it is a part. The parasitic elements of an on-

chip spiral entail important engineering trade-o�s. Thus, these spirals need to be

modeled properly to permit the designer to choose the optimal inductor for a given

application. The next section discusses the relative merits of di�erent modeling

approaches.

2.2 On-Chip Inductor Modeling

The modeling of on-chip inductors can be classi�ed into three major groups. In

decreasing order of complexity, they are:

1. Field solvers

2. Segmented circuit models

3. Compact, scalable, lumped circuit models

The following subsections will examine these approaches.

2.2.1 Field Solvers

The most accurate approach to modeling any distributed electrical system is to

solve Maxwell's equations subject to boundary conditions. Several general purpose
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3-D electromagnetic simulators operate by solving Maxwell's equations numerically.

Maxwell, EM-Sonnet and MagNet are examples of such tools ( [13, 14]). Although

accurate, these simulators are slow and are computationally intensive, both in mem-

ory and time. Thus, while these �eld solvers are suitable for accurately simulating

simple structures, they are not suitable for simulating large three dimensional struc-

tures with multiple segments. On-chip spirals require long simulation times, access

to fast processors and availability of substantial memory, factors that are aggravated

by commonly encountered situations where the spacing between conductors is small

compared to their width. Even the `much faster' 2-D simulation of spiral inductors

takes 10� 15 minutes per inductor [4]. Furthermore, since these simulators require

both the lateral and vertical geometries to be speci�ed, considerable experience is

required on the part of the user to simulate on-chip inductors. For the reasons noted

above, full 
edged �eld solvers are not a practical option for on-chip inductor design.

To alleviate some of these issues custom �eld solvers, geared speci�cally for the

simulation of on-chip spiral inductors and transformers, have been developed. These

tools achieve faster simulation speeds by ignoring retardation e�ects so that mag-

netostatic and electrostatic approximations may used to quickly solve the �eld ma-

trices. Some popular spiral inductor and transformer simulators are SPIRAL and

ASITIC [11].

Although faster than the general purpose �eld solvers, these tools also su�er

from several drawbacks. The use of these tools complicates the interface between

the inductor model and the circuit simulator (such as SPICE ). The best way to

incorporate these �eld solvers in the design 
ow is to use them �rst to generate

a library of inductors that span a wide design space and then link that library to

the circuit simulator. Unfortunately, this requires new libraries to be generated for

every process or, worse, an existing library to be updated even if only a few process

parameters are changed. Another disadvantage is that several iterations (each in-

volving the transfer of simulation data from the �eld solver to the circuit simulator)

may be required to achieve the optimum design. Furthermore, this approach o�ers

no design insight about engineering trade-o�s. Thus �eld solvers are best suited to

verify rather than design and optimize inductor circuits.
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2.2.2 Segmented Circuit Models

A simpler approach entails the use of separate lumped � models for each segment

of an inductor [6]. For example, a square inductor with n turns will have 4n seg-

ments, each with its own lumped model. Some additional terms are needed to model

coupling between the segments and any associated bends.

Figure 2.7 illustrates this approach for a single turn of a square spiral. Each

segment contains the conductor's self inductance, series resistance and the associ-

ated capacitances. A dependent current source is used to account for the mutual

inductance between segments. The values of the resistances and capacitances are

determined from process constants and frequency information. The self and mutual

inductances are computed using the approach outlined by Greenhouse (in fact, the

segment based approach was �rst proposed by Greenhouse to compute the total in-

ductance of planar spirals) [15]. Although simpler than a �eld solver, the segmented

model is very bulky and complicated. Thus, although it may be integrated into a

circuit simulator environment, the complexity of the inductor model could easily

surpass that of the remainder of the circuit, thereby compromising the speed of the

circuit simulation. Furthermore, since the number of segments is determined by the

product of the number of turns and the number of sides per turn, optimization of

the complete circuit requires a script that can dynamically add or remove segments

to the model. These considerations make the segmented model more cumbersome

than a fast spiral inductor simulator such as ASITIC.

2.2.3 Compact, Lumped Models

The disadvantages of 3-D simulators and segmented models indicate the need for

a compact, lumped inductor model that can be conveniently incorporated into a

circuit simulator. Signi�cant work has gone into modeling spiral inductors using

such lumped circuit models [7, 8, 9, 10]. In these models, the spiral is represented

by an equivalent � circuit with the inductance and series resistance in the series

branch and the spiral-to-substrate capacitances and the substrate parasitics in the

shunt branches.
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Figure 2.7: Segmented model for one turn of a square spiral.
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As in the modeling of any distributed system, the accuracy of the lumped circuit

approximation breaks down at higher frequencies [6]. However, the lumped models

exhibit su�cient accuracy up to the self-resonant frequency of the spiral, which is

the frequency range of interest as it represents the region where the spiral acts as an

inductor. The speed, convenience and compactness of these lumped models make

them ideal candidates for use in circuit design and optimization. The next section

will describe how most elements in a popular lumped model may be represented by

simple, analytical expressions.

2.3 Analytical Expressions for Elements in the

Lumped Model

substrate

Cs

RsL

terminal 2

RsiCsi

Cox

Rsi Csi

Cox

terminal 1

Figure 2.8: � circuit model of a spiral inductor.

A popular lumped model for a spiral inductor is shown in �gure 2.8 [7]. The

model includes the series inductance (L), the series resistance (R
s
), the feedforward
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capacitance (C
s
), the spiral-substrate oxide capacitance (C

ox
), the substrate capac-

itance (C
si
) and the substrate spreading resistance (R

si
). Although the parasitic

resistors and capacitors in this model have simple, physically intuitive expressions,

the inductance value itself lacks an accurate formula. We will now present analytical

expressions for the parasitic elements. In these expressions, the term, l, refers to the

length of the spiral, which is very well approximated as l = ndavgN tan(�=N).

� Rs: The series resistance of the spiral is given by

Rs �
l

�w�(1� e(
�t

�
))
; (2.1)

where � is the conductivity, and t is the turn thickness and �, the skin length,

is given by � =
q

2
!�o�

, where ! is the frequency, and � is the magnetic

permeability of free space (� = 4�10�7H=m). This expression models the

increase in resistance with frequency due to the skin e�ect.

� Cox: The spiral-substrate oxide capacitance accounts for most of the inductor's

parasitic capacitance. It is well approximated by:

Cox �
1

2

�ox

tox
lw; (2.2)

where �ox is the oxide permitivity (�ox = 3:4510�13F=cm) and tox is the oxide

thickness between the spiral and the substrate.

� C
s
: This capacitance is mainly due to the capacitance between the spiral and

the metal underpass required to connect the inner end of the spiral inductor

to external circuitry. It is modeled by:

Cs �
�ox

tox;M1�M2

nw2; (2.3)

where tox;M1�M2 is the oxide thickness between the the spiral and the underpass.
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� C
si
: The substrate capacitance is given by,

Csi �
1

2
Csublw; (2.4)

where Csub is the substrate capacitance per unit area. Since the substrate

impedance is di�cult to model, Csub is generally treated as a �tting parameter.

� Rsi: The substrate resistance can be expressed as

Rsi �
2

Gsublw
; (2.5)

where Gsub is the substrate conductance per unit area. Since the substrate

impedance is di�cult to model, Rsub is generally treated as a �tting parameter.

2.3.1 Patterned Ground Shield (PGS)

Among the parasitics elements discussed so far, the substrate capacitance and re-

sistance are di�cult to evaluate as their computation requires knowledge of the

substrate doping. The placement of a patterned ground shield (PGS) beneath the

spiral inductor eliminates this modeling uncertainty (except, of course, for the cou-

pled magnetic loss) and may improve the inductor's performance. Figure 2.9 il-

lustrates a typical PGS. The polysilicon ground shield is broken to prevent eddy

currents from 
owing in it. The outer edges of this broken shield are connected to

ground thereby forcing most of the electric �eld to be terminated at the polysili-

con boundary, thereby eliminating Csi and Rsi. The trade-o� is an increase in Cox

because of the reduction in e�ective oxide thickness:

Cox �
1

2

�ox

tox;po
lw; (2.6)

where tox;po is the oxide thickness between the spiral and the polysilicon layer. The

expressions for Ls,Rs and Cs are not altered by the PGS.
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Metal-poly contact Poly

Figure 2.9: Patterned Ground Shield (PGS).
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2.3.2 Limitations of the Compact, Lumped Model

Although the compact, lumped model captures the dominant parasitics, it has some

drawbacks. The expression for the series resistance does not include the increase in

resistance due to the proximity e�ect. The proximity e�ect arises because the cur-

rent distribution within a spiral's conductor is in
uenced by the magnetic �elds from

the adjacent conductors. These �elds reduce the e�ective cross sectional area of the

conductor thereby increasing the series resistance. For practical spirals, the proxim-

ity e�ect is usually not signi�cant compared to the skin e�ect and may therefore be

ignored.

The lumped model accounts for the resistive and capacitive coupling to the sub-

strate by incorporating the elements Rsi and Csi. Energy in the spiral may also be

coupled to the substrate by inductive means. In this case, the current in the spiral

causes eddy currents to 
ow in the substrate, causing a mutual inductance between

the spiral and the substrate. This mutual inductance increases with frequency as

the skin depth of the substrate reduces and therefore results in increased energy

being coupled to the substrate. This energy loss translates to an e�ective increase in

the series resistance of the inductor. Thus, inductive coupling to the substrate can

signi�cantly degrade the performance of spiral inductors implemented in CMOS epi

processes where the substrate has high conductivity. Chapter 7 treats this topic in

more detail.

The biggest limitation of this compact, lumped model is in the calculation of

the inductance itself. Unlike the other elements which have simple expressions, the

inductance of the spiral is usually calculated using the Greenhouse method [7, 16, 15],

which is based on a segmented summation approach. The number of segments in

the spiral is determined by the product of the number of sides per turn and the

number of turns. The self inductance of each of these segments and the mutual

inductance between each of them is then evaluated and summed together to give

the total inductance. The complexity of this summation increases as the square

of the number of segments and therefore lacks a simple expression. Although the

Greenhouse method o�ers su�cient accuracy and adequate speed, it cannot provide
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an inductor design directly from speci�cations. Thus the absence of a simple accurate

expression for the inductance diminishes the versatility of the lumped model and

makes it inconvenient for circuit design and optimization.

The next section discusses simple expressions that have been reported in the

literature for square spirals.

2.4 Previously Reported Inductance Expressions

In this section we describe some previously published formulas for square planar

inductors. The simplest formula was proposed by Voorman [17]:

Lvoo = 10�3n2davg; (2.7)

where the inductance is in nH, and davg is in �m. (We will use these units throughout

the paper.) H. Dill [18] also published a formula similar to Voorman's formula,

Ldil = 8:5 � 10�4n5=3davg: (2.8)

These simple formulas use only the average diameter and the number of turns, and

so not surprisingly exhibit typical errors of 40%, and in some cases errors as large

as 80%.

H. Bryan [19] published an empirical formula for printed-circuit square inductors,

Lbry = 2:41 � 10�3n5=3davg log(4=�); (2.9)

where � is the �ll ratio de�ned as � = (dout � din)=(dout + din). This formula gives

a small improvement over Voorman's formula. Another formula with a similar im-

provement was obtained by H. Ronkanien et. al [20], who proposed a semi-empirical

expression for the inductance,

Lron = 1:5�0n
2e�3:7(n�1)(w+s)=dout (dout=w)

0:1
: (2.10)
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Recently, J. Crols [8] published another empirical formula:

Lcro = 1:3 � 10�4(d3out=w
2)�5=3

a
�1=4
w

where �
a
is the ratio of wire area to total area, and �

w
is the ratio of wire width to

turns pitch, i.e., �
w
= w=(w + s). In terms of our previously de�ned variables we

can express Crols' formula as

Lcro = 1:3 � 10�3d1:67avg d
�0:33
out w�0:083n1:67(w + s)�0:25: (2.11)

All of the expressions described above have signi�cant systematic o�set errors,

i.e., they tend to over- or underestimate inductance on average. However, even

if the expressions are scaled to zero mean error (by multiplying each by a constant

correction factor or adding a �xed o�set) the errors are still typically around 15{20%,

and in some cases larger. Therefore none of these expressions is good enough for use

in a lumped circuit model that may be used for circuit design and optimization.

2.5 Summary

Although a compact, lumped model exists for spiral inductors, the absence of a

simple, accurate expression for the inductance remains a major obstacle to its use in

quick circuit optimization. The thrust of this thesis is to generate simple, accurate

expressions for on-chip spirals. Chapter 3 develops a current sheet based theory that

yields accurate expressions for a variety of spiral geometries. When combined with

the lumped, circuit model discussed in this chapter, these new expressions provide

a basis for optimizing inductor circuits quickly and easily.



Chapter 3

The Current Sheet Approach to

Calculating Inductances

3.1 Introduction

Chapter 2 emphasized the lack of simple accurate expressions for spiral inductors

as the major impediment to the optimization of circuits with on-chip inductors.

In this chapter, we introduce a current sheet based approach that provides simple

expressions for a variety of geometries. The purpose of this chapter is to generate

accurate expressions for geometries that approximate square and circular spirals.

The expressions developed here will be used in chapter 4 to calculate the inductance

of on-chip spirals with an acceptable degree of accuracy.

In section 3.2 we consider line �laments. The treatment begins with the deriva-

tion of the mutual inductance between straight, parallel line �laments using the

Neumann integral. We then present approximate expressions for some special cases

that are valuable for engineers. Particular attention is paid to an approximate ex-

pression for the mutual inductance between two parallel lines of equal length (placed

so that a line through their centers is orthogonal to the lines). This approximate

expression contains a constant factor and three terms which are functions of the

distance of separation between the two lines. The �rst term is proportional to the

natural logarithm of this distance, the second is a proportional to this distance and

21
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the third is proportional to the square of this distance. In section 3.3, we will see

how a well de�ned transformation of this expression provides the basis for deriving

simple (and accurate) expressions for the self and mutual inductances of conductors

with uniform �nite cross sections. This transformation is achieved by replacing the

terms involving the distance of separation by functions of the mean distances of the

�nite cross sections. In particular, the natural logarithm term now becomes a func-

tion of the geometric mean distance (GMD); the linear term becomes a function of

the arithmetic mean distance (AMD); and the quadratic term becomes a function

of the arithmetic mean square distance (AMSD).

In section 3.4 we use the GMD, AMD and AMSD concepts to derive the self

and mutual inductance of current sheets of various geometries. In keeping with the

theme of obtaining expressions for on-chip spirals, the geometries considered serve

as good approximations to the sides of a square spiral. Rectangular current sheets

are considered �rst because of their simplicity. Then, trapezoidal current sheets are

considered as they serve as more realistic approximation. In section 3.5 we expand

our treatment to conductors with rectangular cross sections. Once again the GMD,

AMD and AMSD serve as the bases for generating expressions for self and mutual

inductances.

In section 3.6 we explore how the total inductance of a system of conductors can

be computed by summation of the individual segments. Noting that the sides of

on-chip spirals are made up of parallel (horizontal) conductors with identical cross

sections and uniform spacing, we pay special attention to the computation of the

total inductance of such an arrangement. In section 3.7 we use a current sheet

approximation to obtain a simple expression for the total inductance of identical

parallel conductors. We compare the more exact summation based method to our

simple expression over a broad design space and identify the major correction terms

that are needed to provide more accurate expressions. We do this by considering

the GMD, AMD and AMSD segments of the expression and obtaining the most

signi�cant corrections in each of these segments for non-zero spacing and �nite con-

ductor thickness. We then compare our corrected expression to both the summation
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Figure 3.1: Two parallel lines

method and current sheet based approximation. In section 3.8 we extend our treat-

ment to a system of parallel conductors with identical cross sections but unequal

length. This con�guration is chosen as it serves as an excellent representation of one

side of a square spiral. In section 3.9, we consider a system of concentric, parallel,

four-sided conductors that approximates all four sides of a square spiral.

In section 3.10, we complete our treatment by examining circular geometries.

We start by considering concentric circular �laments and proceed to circular current

sheets before looking at a system of concentric circular conductors with rectangular

cross sections. The simple expressions that we obtain are useful in bounding the

inductances of spirals made up of polygons with a large number of sides.

In section 3.11 we summarize our �ndings.

3.2 Line Filaments

For line �laments, the mutual inductance terms are evaluated using the Neumann

double integral [21]:

M =
�

4�

I I
1

R
dl1:dl2; (3.1)
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where dl
1
and dl

2
are the vector current elements and R is the distance between

the elements. Thus, the mutual inductance is proportional to the inner product

of the vector current elements and is inversely proportional to the distance between

them. The vector dot product quanti�es the well known observation that the mutual

inductance between two elements is a maximum when the current elements are

parallel to one another and the current 
ow is in the same direction. When the

current 
ow is in opposite directions, the mutual inductance is a minimum (and

negative). When the current elements are in orthogonal directions, the mutual

inductance is zero.

Equation 3.1 has analytical solutions for many cases of interest. Our treatment

is limited to parallel lines that exhibit one or more axes of symmetry.

3.2.1 Parallel Line Filaments

We wish to compute the mutual inductance between two parallel lines for the case

illustrated in �gure 3.1. The lines are unequal in length and positioned so that a line

through their centers is orthogonal to the two lines. For this case, the integral in

equation 3.1 has a closed form solution. The expression for the mutual inductance

evaluates to:

M
line

=
�

2�

2
4� l1 + l2

2

�
ln

0
@
s�

l1 + l2

2R

�2

+ 1 +

�
l1 + l2

2R

�1A�
s�

l1 + l2

2

�2

+R2

3
5

�
�

2�

2
4���� l1 � l2

2

���� ln
0
@
s�

l1 � l2

2R

�2

+ 1 +

���� l1 � l2

2R

����
1
A�

s�
l1 � l2

2

�2

+R2

3
5 :
(3.2)

For lines of equal length, l, this expression simpli�es to:

M
line

=
�

2�

2
4l ln

0
@
vuut � l

R

�2

+ 1

!
+

l

R

1
A�p(l2 +R2) +R

3
5 : (3.3)
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Figure 3.2: Accuracy of approximate mutual inductance expression for parallel line
segments of equal length

As one may expect, the mutual inductance increases as the length increases and the

distance of separation decreases. When R � l, we may simplify this expression by

using a series expansion in terms of the quantity (R
l

). For our purposes, only terms

up to the quadratic one are needed:

M
line

�
�l

2�

�
ln(2l)� ln(R)� 1 +

R

l
�

R2

4l2

�
: (3.4)

Figure 3.2 compares equation 3.4 to the exact one for R

l

< 1. The solid line is a �rst
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order approximation which omits the quadratic term in equation 3.4. The dashed

line represents equation 3.4. While the �rst order approximation is good to within

5% for R

l

< 0:4, the second order approximation exhibits much better accuracy with

errors within 5% for R

l

< 1.

3.3 Extension to Conductors with Finite Cross

Sections

Although valid strictly only for parallel line �laments, equation 3.4 forms the basis

for deriving simple expressions for the self and mutual inductances of systems of

conductors with �nite cross sections.

We begin by noting that equation 3.4 contains three terms that are functions

of the distance between the two lines, R. Among these three terms, the dominant

one is proportional to lnR. This term is followed in order of importance by �rst

the linear term and then the quadratic one. In the case of parallel line �laments,

the distance R is a constant. When equation 3.4 is extended to cases of �nite

conductor cross sections, the total inductance is now the weighted average of the

mutual inductance between parallel line �laments separated by a distance R, where

R is now a continuous variable that spans distances between all possible combination

of points in the cross section [22]. Therefore, each of the three terms involving R is

transformed to a mean distance that represents the weighted average of that term

over all possible values of R.

By de�nition, the mean of the lnR term is replaced by the natural logarithm

of the geometric mean distance (GMD), while R and R2 terms are replaced by the

arithmetic mean distance (AMD) and the arithmetic mean square distance (AMSD),

yielding the following general approximate expression [22]:

Mgen �
�l

2�

�
ln(2l)� ln(GMD)� 1 +

AMD

l
�

AMSD2

4l2

�
: (3.5)
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Since equation 3.5 is a weighted average of equation 3.4, its accuracy is also de-

termined by the ratio of the separation distance to the conductor length. Since

equation 3.4 is accurate to within 5% for R

l

< 1, equation 3.5 will also be accurate

to within 5% as long as the maximum distance between two points on a cross section

is smaller than the conductor's length.

The following subsections will examine the GMD, AMD and AMSD de�nitions

in detail.

3.3.1 GMD

The geometric mean distance (GMD) of distances, d1 and d2 is given by the well

known expression:

GMD =
p
d1d2: (3.6)

An equivalent representation is obtained by taking the natural logarithm of both

sides so that

ln(GMD) =
1

2
[ln(d1) + ln(d2)] : (3.7)

An extension of this concept to n distances is straightforward and is given by:

ln(GMD) =
1

n
[ln(d1) + ln(d2) � � �+ ln(dn)] : (3.8)

The GMD may also be used for multiple variables. Thus the GMD between p points

on one set and q points on another set is:

ln(GMD) =
1

pq

"
pX

i=1

qX
j=1

ln(di;j)

#
; (3.9)

where di;j refers to the distance between point i (on the �rst set) and point j (on the

second set). Note that the base of the logarithm is irrelevant; we use the natural

logarithm for consistency with earlier work.
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The GMD may also be de�ned for distances involving continuous variables. As

before, the logarithm of the GMD is simply the mean of the logarithm of the variable

distances. The summations now become integrals. In fact, for purposes of calculating

self and mutual inductances, the GMD is most useful in the integral form because

practical cross sections are continuous rather than discrete.

The continous equivalent of equation 3.9 was �rst introduced as an aid in induc-

tance calculations by Maxwell (see article 691 of [23]). Maxwell discussed the value

of the GMD for cross sections that span two dimensions as well as one dimension. In

particular, he highlighted that the sensible observations that the GMD of straight

lines is useful in determining inductances of current sheets, whereas the GMD of

rectangles is useful in determining inductances of conductors with rectangular cross

sections.

He de�ned the GMD between two conductors with �xed cross sections of areas

A1 and A2 as that value that satis�es the following relation:

A1A2 ln(GMD) =

ZZZZ
ln(r) dx dy dx

0

dy
0

; (3.10)

where \dxdy is the element of area of the �rst conductor's cross- section, dx
0

dy
0

is

the element of area of the second conductor's cross-section, r is the distance between

these elements, the integration being extended �rst over every element of the �rst

section and then over every element of the second." In article 692, Maxwell goes

on to list the values of GMD for several geometries and points out that the GMD

de�nition is also valid for a single conductor: \It is not necessary that the two �gures

should be di�erent, for we may �nd the geometrical mean of the distance between

every pair of points in the same �gure." Similarly, in [22], Rosa de�ned the GMD of

a line from itself as the \nth root of the product of the n distances between all the

various pairs of points in the line, n being increased to in�nity." For line �laments,

the area integrals become line integrals and the quadruple integrals reduce to double

integrals:

l1l2 ln(GMD) =

ZZ
ln(r) dx dx

0

: (3.11)
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Figure 3.3: Two equal length straight lines on the same axis

Here l1 and l2 are the lengths of the two lines and dx and dx
0

are the elements of

line of the �rst and second lines.

In general, the evaluation of the multiple integrals can be tedious! Even when

closed form solutions exist, the results can be bulky and inconvenient. Fortunately,

the GMD of geometries common to practical inductance calculations have simple

forms. Maxwell, Rosa and Grover have already provided many useful relations for

the GMDs of rectangular and circular geometries. In this section, we will illustrate

the computation of the GMD for some very simple cases. We will consider the GMD

between two equal, parallel straight lines as well as the GMD of a straight line from

itself. We will then describe how these results may be extended using very good

approximations to rectangular cross sections. All of these results will be used in the

derivation of simple inductance expressions for spiral geometries.

Figure 3.3 illustrates two equal straight line segments of length, w, that lie on

the same line and are separated by center to center distance, d. The GMD is given

by appropriate substitution into equation 3.11:

ln(GMD) =

R 0:5w
�0:5w

R 0:5w
�0:5w

ln jd� x1 � x2jdx1dx2R 0:5w
�0:5w

R 0:5w
�0:5w

dx1dx2
: (3.12)

Although this integral has a closed form solution, the result does not provide much

insight (see [24] for details). Instead, a series expansion of the result in terms of w

d

yields a more useful result:

ln(GMD2lines) � ln(d)�
w2

12d2
�

w4

60d4
: : : (3.13)
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This result is widely used in calculations of the mutual inductance between straight

parallel conductors. As expected, the GMD is smaller than the center-to-center

distance, d. The di�erence between the natural logarithms of the GMD and d

becomes more negative as w=d increases, implying that the ratio GMD=d decreases

as w=d approaches its maximum value of one. For most cases, only the quadratic

correction term is needed. Even when w=d = 1, the exact value of GMD=d deviates

from the estimate using only the quadratic correction term by less than 3%.

In the same manner that the GMD between two distinct cross sections is used

in mutual inductance calculations, the GMD of a single cross section is used in self

inductance calculations. For example, the GMD of a straight line of length, w, is

used in the calculation of the self inductance of current sheets. The result is:

ln(GMD1line) =

R 0:5w
�0:5w

R 0:5w
�0:5w

ln jx1 + x2jdx1dx2R 0:5w
�0:5w

R 0:5w
�0:5w

dx1dx2

= ln(w)� 1:5:

(3.14)

The procedure for calculating the GMD of a rectangular cross section of width, w,

and thickness, t, is more tedious. Although a closed form expression does exist [23],

the exact result does not provide any insight. Fortunately, this expression may be

approximated to an accuracy better than 0:5% by replacing w in 3.14 by (w+t) [22]:

ln(GMD1rect) �= ln(w + t)� 1:5 (3.15)

An accurate evaluation of the inductance requires the use of the AMD and AMSD

in addition to GMD. In the two subsections we will examine the AMD and AMSD.
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3.3.2 AMD

As we did for the GMD, we will �rst de�ne the AMD for a single discrete variable

and then extend the concept to multiple continuous variables. The arithmetic mean

distance (AMD) of n distances is simply the mean of those distances:

AMD =
1

n
[d1 + d2 � � �+ dn] : (3.16)

The AMD may also be de�ned for multiple variables. Thus the AMD between p

points on one set and q points on another set is:

AMD =
1

pq

"
pX

i=1

qX
j=1

di;j

#
; (3.17)

where di;j refers to the distance between point i (on the �rst set) and point j (on

the second set). This idea may be extended to cases where the distances involve

continuous variables. Once again, the AMD is the mean of the variable distances.

The AMD between two conductors with �xed cross sections of areas A1 and A2

is that value which satis�es the following relation:

A1A2AMD =

ZZZZ
r dx dy dx

0

dy
0

; (3.18)

where dxdy is the element of area of the �rst conductor's cross- section, dx
0

dy
0

is the

element of area of the second conductor's cross-section and r is the distance between

these elements, the integration being carried out over all the elements of each cross

section. For geometries involving lines, the area integrals become line integrals and

the quadruple integrals reduce to double integrals:

l1l2AMD =

ZZ
r dx dx

0

: (3.19)

Lengths l1 and l2 are those of the two lines and dx and dx
0

are the elements of line

of the �rst and second lines.
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The AMD of a straight line often arises in many inductance calculations. The

AMD of a straight line of length, w, is::

AMD =

R 0:5w
�0:5w

R 0:5w
�0:5w

jx1 + x2jdx1dx2R 0:5w
�0:5w

R 0:5w
�0:5w

dx1dx2

=
w

3
:

(3.20)

The calculation of the AMD of a rectangle of length, w, and thickness, t is more com-

plicated, leading to a complex closed form expression. However, an approximation

(good to 2%) is given by:

AMD1rect
�=

p
w2 + t2 + 0:46tw

3
: (3.21)

As expected the expression is symmetric in w and t. For w� t, the AMD converges

to w

3
and for w� t, the result converges to t

3
, both of which are consistent with the

observation that the AMD for a rectangle should approach that of a line as one of

the dimensions vanishes.

3.3.3 AMSD

The arithmetic mean square distance, AMSD, between two conductors with �xed

cross sectional areas A1 and A2 is the value that satis�es the following relation:

A1A2AMSD2 =

ZZZZ
r2 dx dy dx

0

dy
0

; (3.22)

where dxdy is the element of area of the �rst conductor's cross- section, dx
0

dy
0

is the

element of area of the second conductor's cross-section and r is the distance between

these elements, the integration being carried out over all the elements of each cross

section. For geometries involving lines, the area integrals become line integrals and

the quadruple integrals reduce to double integrals:

l1l2AMSD2 =

ZZ
r2 dx dx

0

: (3.23)
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Lengths l1 and l2 are those of the two lines and dx and dx
0

are the elements of the

two lines.

The AMSD of a straight line is used in several inductance calculations. The

AMSD of a straight line of length, w, is:

AMSD2 =

R 0:5w
�0:5w

R 0:5w
�0:5w

jx1 + x2j2dx1dx2R 0:5w
�0:5w

R 0:5w
�0:5w

dx1dx2

AMSD =
w
p
6
:

(3.24)

Similarly, the result for the AMSD of a rectangle of length, w, and thickness, t, is:

AMSD =

p
w2 + t2
p
6

(3.25)

3.3.4 Applications of GMD, AMD and AMSD

In the previous subsections, we obtained simple expressions for the GMD, AMD and

AMSD of straight lines and rectangles. For some simple self inductance calculations,

the GMD, AMD and AMSD of these cross sections may be substituted directly in

equation 3.5 to obtain a simple accurate expression for the inductance. However,

for mutual inductance calculations and for conductors with nonuniform cross sec-

tions, some variable transformation may be needed to elicit a simple expression. In

particular, while the GMD between two cross sections will be used in many mutual

inductance calculations, the corresponding AMD and AMSD will rarely be needed.

The variable transformation usually results in the terms being condensed to some

constants plus or minus the AMD and AMSD of a single cross section.

Greenhouse, in his often cited paper [15], de�nes the GMD between two conduc-

tors as \the distance between two in�nitely thin imaginary �laments whose mutual

inductance is equal to the mutual inductance between the two original conductors."

Furthermore, he de�nes the GMD of a conductor's cross section as \the distance be-

tween two imaginary �laments normal to the cross section, whose mutual inductance

is equal to the self inductance of the conductor." However, in an earlier paragraph
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in the same paper, he presents the expression for the self inductance of a straight

conductor in terms of both the GMD and the AMD! Clearly, these de�nitions are

inconsistent. These de�nitions do not match the general mathematical de�nition of

GMD, which was the form in which Maxwell introduced it in inductance calcula-

tions. The GMD is useful in calculating the mutual inductances between conductors

only because computing the mean of the natural logarithm of the distances is part

of the total solution.

In the following sections, we will use these results to derive inductance expressions

for various current sheets and conductors with rectangular cross sections.

3.4 Current Sheets

The term current sheet refers to a conductive sheet with �nite width and in�nitesimal

thickness. Although not realisable in practice, the current sheet concept serves as

an adequate approximation for geometries where the conductor thickness is dwarfed

by the length and width. The inductance of current sheets was �rst investigated

by Rosa and Nagaoka in the early 1900s and was studied by various authors up to

1950 [22, 25]. However, as computers and numerical electromagnetic �eld solvers

were developed, less attention was paid to current sheet based approximations.

In this section, we revisit current sheets and explore how current sheet approx-

imations of various geometries can substantially simplify the computation of their

inductance and yield simple, accurate expressions. First, we derive simple expres-

sions for the self and mutual inductance of current sheets of various geometries.

We illustrate the use of GMD, AMD and AMSD in inductance calculations by con-

sidering rectangular current sheets. We then consider self and mutual inductances

involving trapezoidally shaped current sheets that approximate the sides of a square

spiral. Later, we consider a four sided square current sheet that approximates an

entire square spiral. We also study circular current sheets which serve as excellent

approximations for polygonal spirals with more than four sides.
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Figure 3.4: Rectangular current sheet

3.4.1 Self Inductance of a Rectangular Current Sheet

Figure 3.4 shows a rectangular current sheet of length, l, and width, w with w < l.

The self inductance of this current sheet is obtained by substituting the GMD, AMD

and the AMSD of the conductor's cross section in equation 3.5 [22] (see appendix A

for a detailed derivation). In this case, the conductor cross section is a straight line

of length, w. Hence:

GMD = we�1:5; (3.26)

AMD =
w

3
; (3.27)

and

AMSD =
w
p
6
: (3.28)

Thus the self inductance of a current sheet is:

Lrectsheet =
�l

2�

�
ln

�
2l

w

�
+ 0:5 +

w

3l
�

w2

24l2

�
: (3.29)
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Figure 3.5: Parallel rectangular current sheets

3.4.2 Parallel Rectangular Current Sheets

Next, we compute the mutual inductance between two identical, parallel rectangular

sheets of length, l, and width, w. The geometry is illustrated in �gure 3.5. The

sheets are separated by a center-to-center distance that is equal to the length of each

sheet, l. This geometry provides a quick estimate of the mutual inductance between

opposite sides of a square spiral. Thus the �gure shows the two sheets carrying the

same current in opposite directions. Since the center-to-center distance is equal to

the length, w < l, we carry out a series expansion in terms of w

l

. The calculation

entails the GMD between two straight lines (of length, w) and the AMSD of a straight

line (also of length, w). Details of the derivation are presented in appendix A. As

the currents in the two sheets 
ow in opposite directions, the mutual inductance is

negative:

M2rectsheets � �
�l

2�

"
ln(1 +

p
2) + 1�

p
2 +

w2
p
2

24l2

#
(3.30)
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Figure 3.6: Trapezoidal current sheet

3.4.3 Self Inductance of a Trapezoidal Current Sheet

We now turn our attention to current sheets that approximate the sides of a square

spiral. First we consider the self inductance of one side. To do so, we study the

geometry illustrated in �gure 3.6. Note that each of the non-parallel sides is at �=4

radians to the two parallel sides. This trapezoidal current sheet is fully characterized

by its average length, l, and width, w so that the shorter of the parallel sides is of

length l � w and the longer l + w.

Once again, w < l, permitting an accurate series expansion in terms of w

l

. Once

again, the GMD, AMD and AMSD of a straight line are used. However, the com-

putation is modi�ed by correction terms that account for the variation in length.

Details of the derivation are presented in appendix A. The result is:

Ltrapsheet �
�l

2�

�
ln

�
2l

w

�
+ 0:5 +

w

3l

�p
2� ln(1 +

p
2)
�
+

w2

24l2

�
: (3.31)

Note that the �rst two terms are identical to the corresponding ones for a rectangular

current sheet. The latter two (less signi�cant) terms are similar in 
avor.
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Figure 3.7: Parallel rectangular current sheets

3.4.4 Parallel Trapezoidal Current Sheets

We now consider a geometry that approximates the mutual inductance between two

opposite sides of a square spiral. As one may expect, the geometry now entails two of

the trapezoidal current sheets considered in the previous subsection. As illustrated

in �gure 3.7, the two parallel trapezoidal current sheets are identical and are fully

characterized by the average length, l, and width, w. They are separated by a center-

to-center distance that is equal to the average length, l. Note that the currents are

equal and opposite. Once again, w < l, permitting an accurate series expansion

in terms of w

l

. Although the variation in length complicates the derivation (see

appendix A for full details), the result is similar to the one derived for two parallel

rectangular current sheets:

Mtrapsheet � �
�l

2�

�
ln(1 +

p
2) + 1�

p
2�

w2

12l2

�
: (3.32)
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Figure 3.8: Four-sided square current sheet

The constant term is the same for both cases but the quadratic term has di�erent

signs. For the parallel rectangular current sheets, the mutual inductance increases as

w=l increases because the distance between the inner edges of the sheets decreases.

However, for trapezoidal sheets, the length of the inner edges decreases, while the

length of the outer edges increases, causing a reduction in mutual inductance.

3.4.5 Four-Sided Square Current Sheet

Figure 3.18 shows a four sided current sheet. Each side is a trapezoidal current sheet

similar to the ones considered in the previous two subsections, and is characterized by

the average length, l, and width, w. Each side is perpendicular to its adjacent sides

so that the mutual inductance between adjacent sides is zero. The total inductance

of this geometry is easily calculated using the results for the self inductance of a

trapezoidal current sheet and the mutual inductance between parallel trapezoidal

current sheets. By symmetry, the total inductance is:

Lsq � 4(Ltrapsheet +Mtrapsheet): (3.33)
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Figure 3.9: Rectangular conductor

Substituting from equations 3.31 and 3.32 we obtain:

Lsq =
�l

�

�
2 ln

�
2:067l

w

�
+ 0:36

w

l
+ 0:25

w2

l2

�
(3.34)

This expression will be used to generate a simple expression for the inductance of

on-chip square, planar spirals in chapter 4.

3.5 Straight Conductors with Rectangular Cross

Sections

On-chip spiral inductors are made up of several straight conductors with rectangular

cross sections, and thus calculating their values requires a good understanding of

such conductors. In this section we develop expressions for the self and mutual

inductance of conductors with rectangular cross sections. Once again the GMD,

AMD and AMSD concepts serve as the basis for the inductance expressions.

3.5.1 Straight Conductor with Rectangular Cross Section

Figure 3.9 shows a straight conductor of length, l, with rectangular cross section

of width, w, and thickness, t. We assume that the length exceeds the maximum

distance of the cross section so that l >
p
w2 + t2. The self inductance of this
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Figure 3.10: Parallel rectangular conductors

conductor is obtained by substituting the GMD, AMD and AMSD of a rectangle in

equation 3.5. We use the results from section 3.3 :

GMDrect = (w + t) exp�1:5; (3.35)

AMDrect
�=

p
w2 + t2 + 0:46tw

3
; (3.36)

and

AMSDrect =

p
w2 + t2
p
6

: (3.37)

Hence, the self inductance of this straight rectangular conductor is:

Lrect =
�l

2�

"
ln

�
2l

w + t

�
+ 0:5 +

 p
w2 + t2 + 0:46tw

3l

!
�
�
w2 + t2

24l2

�#
: (3.38)

3.5.2 Mutual Inductance between Two Identical Straight,

Parallel Conductors of Rectangular Cross Section

We wish to compute the mutual inductance for the geometry illustrated in Fig-

ure 3.10. Two identical conductors of length, l, and rectangular cross section of

width, w, and thickness, t, are placed parallel to one another. They are separated
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by a center-to-center distance d. The edge-to-edge spacing is s so that d = w + s.

In this case, the exact computation of the mutual inductance is tedious. However,

by noting that w < d and by assuming that t < d, we can obtain a very accurate

expression:

M2rects �
�l

2�

"
ln

 p
(l2 + d2) + l

d

!
�

p
(l2 + d2)

l
+
d

l

#

+
�l

2�

�
w2l

12d2
p
l2 + d2

�
t2l

12d2(d+
p
l2 + d2)

�
:

(3.39)

The �rst line of this expression is simply the mutual inductance between two line

�laments that are placed at the center of each conductor. The second line includes

the correction terms for the �nite width and thickness. As one may expect, these

terms are most important when w=d and t=d approach one. Note that when t = 0,

the expression reduces to the one describing the mutual inductance between two

identical, parallel current sheets (equation 3.30).

Equation 3.39 di�ers from the corresponding expression given by Greenhouse:

M2rects =
�

2�

"
l ln

 
l +
p
l2 +GMD2

GMD

!
�
p
l2 +GMD2 +GMD

#
: (3.40)

Greenhouse obtains his expression by replacing the distance of separation parame-

ter in the expression for the mutual inductance between equal length, parallel line

�laments by the GMD. Greenhouse assumes that the thicknesses are negligible and

uses the GMD between two lines:

ln(GMD2lines) = ln(d)�
w2

12d2
�

w4

60d4
: : : (3.41)

Although the Greenhouse approach violates the de�nition of GMD, the �nal result

is good enough for most engineering purposes. However the computation is unnec-

essarily complicated and lacks insight. Furthermore the use of more terms in the

series expansion for the GMD is useless as the accuracy of equation 3.40 is limited

by the incorrect use of the GMD. On the other hand, our approach is more accurate,
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less complex and clearly shows the e�ect of the conductor's width and thickness on

the mutual inductance.

3.6 Total Inductance of a System of Conductors

In this section, we examine a system of conductors and understand how the total

inductance of the system may be evaluated. We consider the general problem of n

conductors, each carrying the same current. The total inductance is given by:

L
T
= �L

i
+ �M (3.42)

where �L
i
denotes the sum of self inductances of the conductors and �M denotes

the sum of all the mutual inductances. Hence, the problem boils down to computing

n self inductance terms and (n2 � n) mutual inductance terms:

LT =

nX
i=1

L
i
+

nX
i=1

nX
j=1;j 6=i

M
i;j
; (3.43)

where L
i
denotes the self inductance terms, andM+;ij denotes the mutual inductance

terms. A matrix representation allows one to visualize the terms better. Since

reciprocity holds (M
i;j

= M
j;i
), we obtain a symmetric matrix implying that we

only need to compute half of the (n2 � n) mutual inductance terms:

M
gen;i;j

=

2
66666664

L1 M1;2 : : : M1;(n�1) M1;n

M1;2 L2 : : : M2;(n�1) M2;n

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

M1;(n�1) M2;(n�1) : : : L(n�1) M
n;(n�1)

M1;n M2;n : : : M
n;(n�1) L

n
:

3
77777775

(3.44)

The general problem of computing these self and mutual inductance terms can be

very di�cult. Even if one were to assume n straight, parallel conductors with uniform

cross sections and uniform current densities, the overall computation has complexity
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Figure 3.11: Equally spaced parallel rectangular conductors

of order n2. In the next section, we will consider a simpli�ed version of this problem

that is more relevant to the evaluation of inductances of on-chip spirals. The sim-

pli�cations will yield a system with complexity of order n and enable us to gain an

appreciation for the issues at hand.

3.6.1 Parallel Conductors with Identical Dimensions

We simplify the general problem by assuming that all n conductors are identical,

with length, l, and rectangular cross section of width, w, and thickness, t. We

will also assume that the conductors are parallel to one another and that they are

uniformly spaced with edge-to-edge spacing, s. This con�guration is illustrated in

�gure 3.11. We assume that each conductor carries the same current and that this

current is uniformly distributed over the entire cross section. Since the conductors

are identical, their self inductances are all equal. Furthermore, the uniform spacing

of the conductors indicates that only (n� 1) di�erent spacings exist, implying that
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only (n� 1) mutual inductance terms need to be computed. The inductance matrix

may be simpli�ed accordingly:

M
eq;i;j

=

2
66666664

L1 M1;2 : : : M1;(n�1) M1;n

M1;2 L1 : : : M1;(n�2) M1;(n�1)

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

M1;(n�1) M1;(n�2) : : : L1 M1;2

M1;n M1;(n�1) : : : M1;2 L1

3
77777775

(3.45)

The self inductance of one conductor can be calculated using equation 3.38. The

mutual inductance between two conductors can be evaluated using equation 3.39

There are n self inductances, each of value L1, 2(n � 1) mutual inductances with

d = (w + s), 2(n � 2) mutual inductances with d = 2(w + s), and so on up to 2

mutual inductances with d = (n� 1)(w + s). The total inductance reduces to:

LT = nL1 + 2

n�1X
i=1

(n� i)M
i;j
(d = i(w + s)): (3.46)

Despite the simpli�cations made to reduce the complexity to order n, we still lack

a simple expression for the total inductance. In the next section we will see how a

current sheet approximation of this problem leads to a simple solution.

3.7 Current Sheet Approximation

Figure 3.12 shows how we convert a problem with n identical parallel, uniformly

spaced straight conductors into one of a single equivalent current sheet. In order to

obtain a simple expression for the equivalent current sheet we must assume that its

total width, (nw + (n � 1)s), is less than its length, l. This assumption, which is

valid in the context of on-chip spirals, allows us to use equation 3.29 to evaluate the
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Figure 3.12: Equivalent current sheet representation

total inductance. First, we simplify notation by introducing the variable �, which is

the ratio of the width of the current sheet to its length:

� =
nw + (n� 1)s

l
: (3.47)

The resulting current sheet expression is:

Lnrectsheet �
�n2l

2�

�
ln

�
2

�

�
+ 0:5 +

�

3
�

�2

24
:

�
(3.48)

This result is identical to equation 3.29 except for the n2 factor in the numerator.

This n2 factor arises because the equivalent current sheet approximates n parallel

conductors, each carrying an equal current. Note that the equivalent current sheet

representation is exact only when the edge-to-edge spacing between the conductors,

s, is zero and the conductor thickness is negligible. In the next subsection, we will

compare the accuracy of this approximate expression to the more accurate summa-

tion method discussed in subsection 3.6.1.
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3.7.1 Comparison to Summation Method

In order to compare the approximate expression to the more accurate summation

method, we �rst generate systems of conductors that span a wide design space. We

impose the following constraints on the design space:

� 0:1 < � < 0:9

� 0:01l < s < 0:8�l

� (w + s)min = max[0:01l; (0:04�l + s)]

� nmax =

oor(�l+s)

(w+s)min

� 1 < n < nmax

� 0:02l < t < 0:01l

Since the approximate expressions as well as the summation method expressions

scale with conductor length, the constraints are de�ned in units normalized to the

length. We begin an evaluation of these expressions by �rst generating over 30; 000

distinct conductor systems that span the design space de�ned by these constraints.

Of the 30; 000 systems, we choose ones consistent with the overall goal of using

our results for the evaluation of the inductance of spirals. This is done by limiting

the maximum permissible s=w ratio. We consider only systems with s=w ratios less

than 3. Although most on-chip inductors use s=w ratios less than 1, we choose 3 as

the maximum to accommodate inductor geometries used in interleaved transformers

(see chapter 5). Approximately 27; 000 systems have s=w less than 3, of which

� 20; 000 have s=w less than 1. In the remainder of this chapter, we will consider

the accuracy of the approximate expressions over both these sets.

We compute the total inductance for each of these systems using both the compu-

tationally intensive summation method and our equivalent current sheet expression.

Figure 3.13 summarizes the results of these simulations. We plot the percentage

error of the approximate expression (when compared to the summation method) vs

the s=w ratio. We can see that the errors worsen as s=w increases. However, even
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the worst case errors are within �13% and +5%. Note that for s=w < 1, the worst

case errors are within 5%. As expected, the worst errors are obtained when n = 2
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Figure 3.13: Error distribution for the current sheet approximation versus s

w

ratio.

for large values of s=w. Such a geometry exhibits a lot of free space between the

conductors. Thus, a (continuous) current sheet approximation is poor.

Another source of error for conductors with small widths is the nonzero conductor

thickness. This becomes more signi�cant as t=w becomes larger. In practice, this

ratio rarely exceeds 1 and in most cases is less than 0:02. Thus, nonzero conductor

thickness is not as signi�cant as nonzero spacing.

In the next subsections, we will explore how correction terms may be included

in the current sheet approximation to account for nonzero spacing and �nite con-

ductor thickness. We will see that the corrected current sheet expression exhibits

substantially improved accuracy.
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3.7.2 Correction for Nonzero Spacing

A thorough examination of the terms involving the spacing shows three correction

terms. In order of importance, these terms are corrections to the GMD, AMD and

AMSD of the equivalent current sheet.

The GMD correction term is obtained by comparing the current sheet expres-

sion's n2 � ln (nw + (n� 1)s) term to the corresponding terms obtained in the sum-

mation method (i.e. the addition of the self inductance terms (n � lnw) and the

mutual inductance terms ((n2 � n) � ln (w + s)). A series expansion with terms

normalized to (nw + (n� 1)s) indicates that the �rst order terms cancel, leaving a

second order term that is dominant:

Lscor;GMD �
�n2l

2�

�
0:5(n� 1)s2

(nw + (n� 1)s)2

�
(3.49)

This term is most important when n = 2 and when s=w is large.

The AMD correction term comes from a comparison of the the AMD components

of the current sheet expression and those of the summation method. This comparison

is straightforward and yields:

Lscor;AMD �
�n2l

2�

�
(n� 1)s

3nl

�
(3.50)

Like the GMD correction term, this term is most important when n = 2 and when

s=w is large.

The corresponding AMSD correction term is insigni�cant compared to the GMD

and AMD correction terms. For completeness, we include it here:

Lscor;AMSD � �
�n2l

2�

�
(n� 1)s(s+ w)

12l2

�
(3.51)

3.7.3 Correction for Nonzero Conductor Thickness

A careful examination of the terms involving the thickness shows that the GMD cor-

rection term dominates the rest. This correction term is easily obtained by noting
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that the current sheet expression approximates the natural logarithm terms of the

self inductances of the n conductors as n ln (w) instead of n ln (w + t). The intro-

duction of this correction term substantially reduces the error attributable to �nite

conductor thickness:

Ltcor;GMD � �
�nl

2�

�
ln

�
w + t

w

��
: (3.52)

This term becomes important only when the conductor thickness is comparable to

the width. In modern semiconductor processes, the metal thickness rarely exceeds

3�m, implying that this term will only be important for inductors with conductor

widths less than � 5�m, a rare case in monolithic inductor design. Also, the e�ect

of conductor thickness becomes less important as the number of turns increases.

This is because the thickness has a signi�cant impact only on the self inductance,

and as n increases, the mutual inductance terms go up as n2 � n, whereas the self

inductance terms go up only as n.

3.7.4 Corrected Current Sheet Expressions

We combine the correction terms (from equations 3.49, 3.50, and 3.52) with the

original current sheet equation( 3.48) to arrive at our �nal corrected expression:

Lnrect;cor =
�n2l

2�

�
ln

�
2

�

�
+ 0:5 +

�

3
�

�2

24

�

+
�n2l

2�

�
0:5(n� 1)s2

(�l)2
+
(n� 1)s

3nl
�

1

n
ln

�
w + t

w

�� (3.53)

We now compare the corrected and original current sheet expressions with the more

exact summation method over the two design spaces de�ned in subsection 3.7.1.

The results are summarized in Table 3.1 and Table 3.2 for maximum s=w ratios of

one and three respectively. For comparison, we have also included the inductance

computed by summing the self inductances and mutual inductances according to

the Greenhouse expressions. As one expects, the Greenhouse method, with its full

blown segmented summation approach, achieves the best accuracy. The worst case
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error of the Greenhouse method is � 2% and is due mainly to its incorrect use

of the GMD discussed earlier. For s=w ratios less than one, the simple current

sheet expression, although not as good as the Greenhouse method, exhibits worst

case errors less than 4%, indicating that it is good enough over this limited (but

practical) design space. In fact, over this range, the simple current sheet expression

has a smaller deviation than the corrected expression. This is not surprising as

the correction terms introduced in the previous section are chosen to reduce the

worst case percentage error and not the standard deviation. Thus, the corrected

expression does exhibit a smaller worst case error than the simple expression. The

utility of the corrected current sheet expression becomes obvious when one considers

a broader design space (with s=w ratios up to three), where its worst case errors

are less than 4% (compared to 12% for the simple current sheet expression). We

also note that the worst case errors of the corrected expression and Greenhouse's

method are comparable over this range, suggesting that the corrected expression is

good enough for most purposes.

Computation Method Min Max Mean Median StD

Greenhouse summation -0.17 2.33 0.33 0.04 0.58
Current sheet approximation -2.83 3.93 0.88 0.83 0.67

Current sheet with corrections -0.05 3.47 0.78 0.73 0.82

Table 3.1: Error statistics (in %) for the total inductance of identical parallel con-

ductors with rectangular cross section with max s/w ratio of 1 (19526 simulations)

Computation Method Min Max Mean Median StD

Greenhouse summation -0.17 2.33 0.24 0.02 0.52

Current sheet approximation -12.14 3.96 0.08 0.64 2.05
Current sheet with corrections -0.36 3.56 0.93 0.88 0.86

Table 3.2: Error statistics (in %) for the total inductance of identical parallel con-

ductors with rectangular cross section with max s/w ratio of 3 (27001 simulations)

Figure 3.14 shows the error distributions of these expressions. The horizontal

axis is the absolute percentage error of these expressions referenced to the summa-

tion method. The vertical axis shows the fraction of simulations (out of our family
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of 27,001) with errors exceeding the speci�ed level. We de�ne the absolute percent-

age error of the approximation L̂ of an inductance L as 100jL̂ � Lj=L. Roughly

speaking, the closer the error distribution curve to the y-axis, the more accurate

the expression. We can determine several important statistics from the curves. By

following the horizontal line at the 50% level, we can read o� the median error for

each approximation. By following a vertical line at some level of error we can �nd

the fraction of inductors for which the approximation was at least that accurate.

The maximum error is given by the point where the curve hits the x-axis. Clearly,

the maximum error of the corrected expression is much smaller than the maximum

error of the current sheet approximation. However, we note that the current sheet

approximation exhibits errors less than 2% for 80% of the inductors, indicating that

even this simple expression may be good enough for most cases.

3.8 Approximation for One Side of a Square Spiral

Section 3.7 focused on identical parallel conductors with uniform spacing. While this

case was convenient for highlighting our approach, it is not useful for evaluating the

inductance of on-chip spirals. In this section, we will consider a system of parallel

conductors of unequal, but systematically varying lengths that approximate one side

of a square spiral. All conductors still have identical rectangular cross sections and

are uniformly spaced. As before, we assume a uniform current distribution within

each conductor.

The geometry is depicted in �gure 3.15 along with the equivalent current sheet

approximation. The parameters that de�ne this geometry are the number of con-

ductors, n, the average length, l, the width, w, the edge-to-edge spacing, s, and

thickness, t. The corresponding current sheet expression is obtained using equa-

tion 3.31. Once again we introduce the variable � = nw+(n�1)s

l

, which is now the
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Figure 3.14: Error distribution for the current sheet approximation versus s

w

ratio.

ratio of the width of the current sheet to its average length. The simple current

sheet approximation is:

Lntrapsheet �
�n2l

2�

�
ln

�
2

�

�
+ 0:5 +

�

3

�p
2� ln(1 +

p
2)
�
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24

�

�
�n2l

2�

�
ln

�
2

�

�
+ 0:5 + 0:178�+ 0:0416�2

�
:

(3.54)

The correction terms are obtained by considering the e�ects of �nite spacing and

�nite thickness on the GMD, AMD and AMSD terms. Once again, the GMD cor-

rection terms dominate the rest. The AMSD terms are not signi�cant and may be
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Figure 3.15: Rectangular conductors with trapezoidal variation in length and the

equivalent current sheet representation
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ignored. Among the AMD correction terms, only the one for �nite spacing needs to

be included. The complete expression including the signi�cant correction terms is:
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The corrected and original current sheet expressions are compared with the more

exact summation method over a design space identical to the one described in sub-

section 3.7.1. Thus, we perform � 27; 000 simulations in which the s=w ratio varies

from 0 � 3. The results are summarized in Table 3.3 and Table 3.4 for maximum

s=w ratios of 1 and 3 respectively. Once again, we have included the inductance

calculated using the Greenhouse method for comparison. While the simple current

sheet expression exhibits errors within 4% for s=w ratios less than one, its worst case

error approaches �15% for s=w values close to 3. However, the corrected current

sheet expression exhibits errors within 3% over this entire range. It is interesting

to note that the Greenhouse method also exhibits errors as large as 7%. Such a

large error is the result of the Greenhouse method not accounting for the tapered

nature of trapezoidally shaped conductors. Consequently, a large discrepancy occurs

while computing the self inductance of such conductors when their width becomes

comparable to the length. In fact, the corrected current sheet expression's error

exhibits a smaller standard deviation than that of the inductance computed using

the Greenhouse method. These observations are con�rmed by Figure 3.16.
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Computation Method Min Max Mean Median StD

Greenhouse summation 0.01 7.38 1.63 0.45 2.16

Current sheet approximation -3.65 4.00 0.92 0.88 0.71

Current sheet with corrections -0.03 1.95 0.67 0.68 0.66

Table 3.3: Error statistics (in %) for conductors with rectangular cross section and

trapezoidally varying length with max s/w ratio of 1 (� 20; 000 simulations)

Computation Method Min Max Mean Median StD

Greenhouse summation 0.01 7.38 1.24 0.23 1.95

Current sheet approximation -14.30 4.02 0.09 0.69 2.19

Current sheet with corrections -2.25 1.95 0.68 0.70 0.67

Table 3.4: Error statistics (in %) for conductors with rectangular cross section and
trapezoidally varying length with max s/w ratio of 3 (� 2700 simulations)

3.9 Approximation for a Square Spiral

We are now ready to examine a regular, symmetric geometry that approximates

all four sides of a planar square spiral. Figure 3.17 illustrates the system under

consideration. There are n parallel, concentric, four-sided conductors with identical

rectangular cross section of width, w, and thickness, t. The average length of each

side of the square shaped system is l. The conductors are separated by an edge-to-

edge spacing s so that the total width of one side of the system is nw+(n�1)s = �l,

where � is the ratio of the width of one side to the average conductor length. Thus,

the system's outer diameter is (1+�)l and the inner diameter is (1��)l where � < 1.

3.9.1 Summation Method

The total inductance of this system may be calculated using the summation method

outlined in section 3.6,

L
T
= �L

i
+ �M; (3.56)
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Figure 3.16: Comparison of error distribution of inductances evaluated for parallel
inductors with trapezoidally varying length

where �L
i
denotes the sum of self inductances of the segments and �M denotes

the sum of all the mutual inductances. Each conductor contains 4 straight line

segments. Thus our square system of n conductors has 4n segments, 2n of which are

orthogonal to the other 2n segments. Of the 2n parallel segments, n have current


ow in the opposite direction to the other n. Using symmetry and noting that

segments perpendicular to one another have zero mutual inductance, we may write

the total inductance as [15]:

LT = 4

 
nX
i=1

L
i
+

nX
i=1

nX
j=1;j 6=i

M+;ij �
nX
i=1

2nX
j=n+1

M�;ij

!
(3.57)
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Figure 3.17: System of parallel, concentric, square conductors
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Figure 3.18: Square geometry and equivalent current sheet

where L
i
denotes the self inductance terms, M+;ij denotes the positive mutual in-

ductance terms and M�;ij denotes the negative mutual inductance terms. The self

and mutual inductances may be calculated using the expressions that we derived

in section 3.5, or by using the Greenhouse equations [15]. However, the complexity

of the system has order n2, making such an approach unacceptable for obtaining a

simple, accurate inductance expression. Thus, we will pursue an approach similar to

that outlined in sections 3.7 and 3.8 and explore how a current sheet approximation

combined with the dominant correction terms can render an expression that exhibits

very good accuracy.
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3.9.2 Current Sheet Approximation of Concentric, Parallel

Conductors with Four Sides

Once again we introduce the variable � =
nw+(n�1)s

l

, which is now the ratio of the

width of the current sheet to the average length of one side of the current sheet.

The simple current sheet approximation is obtained from equation 3.34:

Lnsqsheet =
2�n2l

�

�
ln

�
2:067

�

�
+ 0:178�+ 0:125�2

�
: (3.58)

The correction terms are obtained by considering the e�ect on �nite spacing and

�nite thickness on the GMD, AMD and AMSD terms. Once again, the GMD cor-

rection terms dominate. Among the AMD correction terms, only the one associated

with �nite spacing is signi�cant. The AMSD terms associated with the positive

mutual inductance terms may be ignored, although the correction terms involving

the negative mutual inductance terms must be included. The complete expression

including the signi�cant correction terms is:

Lnsq;cor =
2�n2l

�

�
ln

�
2:067

�

�
+ 0:178�+ 0:125�2 + 0:5

(n� 1)s2

(�l)2

�

+
2�n2l

�

�
0:178

(n� 1)s

nl
+ 0:0833

(n� 1)s(s+ w)

l2
�

1

n
ln

�
w + t

w

��
:

(3.59)

The corrected and original current sheet expressions are compared with the more ex-

act summation method over a design space identical to the one used in the previous

sections. The results are summarized in Table 3.5 and Table 3.6 for maximum s=w

ratios of 1 and 3 respectively. Once again, we have included the inductance calcu-

lated using the Greenhouse method for comparison. While the simple current sheet

expression exhibits errors as large as �7% for s=w ratios less than 1, the corrected

current sheet expression exhibits errors only within 3% for s=w ratios up to 3. Note

that the corrected current sheet expression's error exhibits a smaller standard devia-

tion (but a somewhat larger mean error) than that computed using the Greenhouse
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method. Figure 3.19 compares the absolute error of the three expressions. Table 3.5

Table 3.6 Figure 3.19

Computation Method Min Max Mean Median StD

Greenhouse summation -1.81 2.76 0.76 0.17 1.06

Current sheet approximation -7.59 4.63 0.95 0.99 1.10

Current sheet with corrections -0.04 2.50 0.81 0.78 0.81

Table 3.5: Error statistics (in %) for conductors with rectangular cross section mak-

ing a square inductor with max s/w ratio of 1 (� 20; 000 simulations)

Computation Method Min Max Mean Median StD

Greenhouse summation -1.81 2.76 0.58 0.11 0.95
Current sheet approximation -22.36 4.65 -0.29 0.74 3.32

Current sheet with corrections -3.44 2.50 0.80 0.82 0.85

Table 3.6: Error statistics (in %) for conductors with rectangular cross section mak-
ing a square inductor with max s/w ratio of 3 (� 27; 000 simulations)

3.10 Circular Geometries

In this section, we will look at the self and mutual inductances of some circular ge-

ometries. Although not often used in practice, the results of circular geometries are

useful for bounding the inductances of polygonal spirals possessing a large number

of sides. Such bounds are of particular interest for on-chip spiral inductors, where

hexagonal, octagonal and other polygonal spirals are candidates for replacing square

spirals. In the previous sections, we have provided a comprehensive treatment of

straight, trapezoidal and square geometries. Now, we will provide a similar treat-

ment for circular geometries. We will see that these two extremes yield inductance

expressions that are similar in form. In many cases, the terms have the same 
avor

and retain the same order of importance.
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Figure 3.19: Comparison of error distribution of inductances evaluated for a four-
sided square sheet

3.10.1 Concentric Circular Filaments

First, we consider the mutual inductance between two concentric circular �laments

of radii r1 and r1 as illustrated in �gure 3.20. An approach similar to the one adopted

for straight parallel lines yields an expression that involves elliptic integrals. We use

the average diameter, d = (r1 + r2), and the ratio of the separation to the average

diameter, � = (r1�r2)

d

, as the two variables to obtain the following exact expression:

(see appendix B for details):

Mcirc�l =
�d

2
[(2�m)K(m)� 2E(m)] : (3.60)
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Figure 3.20: Mutual inductance between concentric planar circular �laments

In this equation, K(m) is the complete elliptic integral of the �rst kind and E(m)

is the complete elliptic integral of the second kind, with argument m = (1 � �2).

A simpler expression may be obtained via series expansion in terms of �. This

approach yields an expression that resembles the approximate expression obtained

for the mutual inductance between two straight, parallel lines:

Mcirc�l �
�d

2

�
ln

�
1

�

�
� 0:6 + 0:7�2

�
: (3.61)

This expression is accurate to within 5% for � < 0:6 and is good enough for most

practical cases.

3.10.2 Self Inductance of a Circular Sheet

Figure 3.21 shows a circular current sheet of average diameter, d, and width, w. The

self inductance of this sheet may be obtained by using equation 3.61 and then taking

the mean value of the terms. Once again, the GMD and AMSD concepts are used
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Figure 3.21: Circular current sheet

(note that the AMD is not needed because the series expansion does not contain a

term linear in �). The result is (see appendix B for details): :

Lcircsheet �
�d

2

�
ln

�
d

w

�
+ 0:9 + 0:2

w2

d2

�
: (3.62)

3.10.3 Mutual Inductance between Two Concentric Circular

Current Sheets

Figure B.3 shows two circular concentric current sheets of average diameters d1 and

d2. The sheets have equal width, w, and are separated by a center to center distance,

�d, where d is the mean of the two average diameters (d = 0:5(d1 + d2)). Note that

�d = w+ s. The mutual inductance between the sheets is given by (see appendix B

for details):

Mcirc2sheets =
�d

2

�
(2�m)K(m)� 2E(m) +

�
0:2 +

1

12�2

�
w2

d2

�
; (3.63)
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Figure 3.22: Mutual inductance between circular �laments

where the argument for the complete elliptic integrals is again given by m = (1��2).

An approximate series expansion of this expression, using techniques similar to the

ones used in straight and square geometries, yields:

Mcirc2sheets �
�d

2

�
ln

�
1

�

�
� 0:6 + 0:7�2 +

�
0:2 +

1

12�2

�
w2

d2

�
: (3.64)

3.10.4 Parallel Concentric Circular Conductors

Figure 3.23 shows n circular concentric conductors each of width, w, and thickness,

t. The edge-to-edge spacing is s. The equivalent current sheet approximation is also

shown in the �gure. This equivalent current sheet has the same average diameter, d,

as the system of n conductors. The width of the current sheet is �d = nw+(n�1)s.

The current sheet expression for the system is simply the self inductance of the

equivalent current sheet:

Lncircsheet �
�n2d

2

�
ln

�
d

w

�
+ 0:9 + 0:2

w2

d2

�
: (3.65)



66 Chapter 3: The Current Sheet Approach to Calculating Inductances

...

I

I

I

www

s

dd
nI

�d = nw + (n� 1)s
1 2 n

Figure 3.23: Concentric circular conductors with rectangular cross sections

A more accurate expression may be obtained by considering the �nite spacing be-

tween the conductors as well as the thickness of the conductors. Just as in the case of

the straight, parallel conductors, the dominant correction terms are the GMD ones.

No AMD correction term is needed as there is no AMD term in the approximate

expression. Among the AMSD correction terms, only the one for �nite spacing is

signi�cant. The corrected expression is:

Lncirc;cor �
�n2d

2

�
ln

�
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w
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�
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d2
�

1

n
ln
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w + t

w

�� (3.66)

Table 3.7 and Table 3.8 summarize the accuracy of these expressions for s=w ratios up

to 1 and 3 respectively. While the simple current sheet approximation is good enough

for s=w ratios up to 1, the corrected current sheet expression is more appropriate for

a larger design space. The corrected expression exhibits errors within 3% for s=w

ratios up to 3. Figure 3.24 compares the absolute errors of the two expressions.
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Computation Method Min Max Mean Median StD

Current sheet approximation -7.94 3.78 0.08 0.37 1.28

Current sheet with corrections -3.35 2.00 -0.06 - 0.00 0.75

Table 3.7: Error statistics (in %) for circular concentric conductors with rectangular

cross section with max s/w ratio of 1 (� 20; 000 simulations)

Computation Method Min Max Mean Median StD

Current sheet approximation -21.90 3.94 -0.92 0.11 3.04
Current sheet with corrections -3.35 2.08 0.13 -0.00 0.82

Table 3.8: Error statistics (in %) for circular concentric conductors with rectangular

cross section with max s/w ratio of 3 (27; 000 simulations)

3.11 Summary

In this chapter, we have shown how a current sheet based approach can provide

simple, accurate expressions for the self and mutual inductances of a variety of

geometries. These approximate expressions have been compared to those obtained

from more exact (but more complicated) summation methods. The errors of the

approximate expressions are within � 4% for s=w ratios less than 1. We have

shown how the inclusion of some correction terms can enhance the accuracy of

these expressions over a wide design space, yielding errors within � 4% of the more

accurate summation method for s=w ratios as large as 3.

As emphasized in chapter 2, the expressions that we derived here are intended for

exploring trade-o�s, obtaining design insight and optimizing circuits with on-chip

inductors. In chapter 4, we will see how the approach developed in this chapter can

be easily extended to obtain simple accurate expressions for square, hexagonal and

octagonal spiral inductors.
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Chapter 4

Simple Accurate Expressions for

the Inductance of Planar Spirals

I
N this chapter, we describe three new simple expressions for the inductance of

square, hexagonal, octagonal and circular planar inductors. The �rst expression

is obtained from the current sheet approach described in chapter 3; the second is a

monomial expression derived from �tting to a large database of inductors generated

by a �eld solver; and the third is based on a modi�cation of an expression developed

by Wheeler [26]. These expressions are presented in section 4.1. The accuracy of

these new expressions (as well as the previously published expressions reported in

chapter 2) are compared to �eld solver simulations over a wide design space (spanning

more than 19; 000 inductors) in section 4.2 and then compared to measurement

results in section 4.3. All three expressions are accurate, with typical errors of 2{

3%, about an order of magnitude better than the previously published expressions,

which have typical errors around 20% (or more). Furthermore, these new expressions

are simple and are therefore excellent candidates for use in design and optimization.

4.1 Simple, Accurate Expressions

This section presents several accurate expressions for the inductance of square,

hexagonal, octagonal and circular spirals.

69
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s

w
dout

nI

davg

�davg

4.1.1 Expressions Based on Current Sheet Approximations

Simple and accurate expressions for the inductance of a planar spirals can be ob-

tained by approximating the sides of the spirals by symmetrical current sheets of

equivalent current densities. For example, as illustrated in �gure 4.1.1, in the case

of the square, we obtain four identical current sheets: the current sheets on opposite

sides are parallel to one another, whereas the adjacent ones are orthogonal. Using

symmetry and the fact that sheets with orthogonal current sheets have zero mutual

inductance, the computation of the inductance is now reduced to evaluating the self

inductance of one sheet and the mutual inductance between opposite current sheets.

These self and mutual inductances are evaluated using the concepts of GMD, AMD

and AMSD. The resulting expression is:

Lcursh =
�n2davgc1

2

�
ln(c2=�) + c3� + c4�

2
�
; (4.1)

where the coe�cients c
i
are layout dependent and are shown in Table 4.1. The

derivations of the expressions for a square and circular spiral were discussed in detail

in the previous chapter. The expressions for the hexagonal and octagonal spirals

(and for that matter a polygonal spiral with an arbitrary number of sides) are also

obtained using the same concepts, but require more work. In general, an N sided
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Layout c1 c2 c3 c4

Square 1.27 2.07 0.18 0.13

Hexagonal 1.09 2.23 0.00 0.17

Octagonal 1.07 2.29 0.00 0.19

Circle 1.00 2.46 0.00 0.20

Table 4.1: Coe�cients for current sheet expression.

polygonal spiral can be approximated by an N sided regular polygonal current sheet.

The calculation of the inductance of this regular polygonal current sheet involves

the calculation of N

2
distinct terms. Thus, as N becomes large, the computation

of the coe�cients c
i
becomes increasingly tedious, albeit signi�cantly less complex

than calculating the inductance of a spiral using a segmented summation method

(such as the one proposed by Greenhouse).

For su�ciently large values N , the polygonal current sheet is well approximated

by a circular sheet, signi�cantly simplifying the inductance calculation. For practical

spiral geometries, the circular sheet approximation is within 3% of the polygonal

current sheet approximation for N > 12. In fact, most of the coe�cients tabulated

in 4.1 can be well approximated by those obtained from corrections to an equivalent

circular current sheet. For example, c1 is roughly the ratio of the area of a polygon

to that of a circle for a �xed diameter so that:

c1 �
N

�
tan
� �
N

�
: (4.2)

It can be easily veri�ed that c1 approaches unity as N becomes large. Similarly, the

GMD and ASMD coe�cients c2 and c4 also exhibit monotonic transitions from the

square to the circular current sheet. One would expect a similar transition for the

AMD coe�cent c3. However, the magnitude of c3 decays rapidly as a function of

N and is signi�cant only for the square case. The reason for this rapid decay can

be attributed to the fact that the AMD term only appears in the self inductance

calculation of one side of a spiral: as N increases (while keeping the average diameter

davg �xed), not only does the length of a side decrease, but also the relative weight

of self inductance terms goes down as 1
N

.
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4.1.2 Data Fitted Monomial Expression

Our second expression is based on a data �tting technique, and has the form:

Lmon = �d�1outw
�2d�3avgn

�4s�5 ; (4.3)

where the coe�cients � and �
i
are layout dependent, and given in Table 4.2. The

Layout � �1 (dout) �2 (w) �3 (davg) �4 (n) �5 (s)

Square 1:62 � 10�3 -1.21 -0.147 2.40 1.78 -0.030

Hexagonal 1:28 � 10�3 -1.24 -0.174 2.47 1.77 -0.049
Octagonal 1:33 � 10�3 -1.21 -0.163 2.43 1.75 -0.049

Table 4.2: Coe�cients for data-�tted monomial expression.

expression in (4.3) is called a monomial in the variables dout, w, davg, n, and s. The

coe�cients are obtained as follows. We �rst change variables to use the logarithms

of the variables:

x1 = log dout; x2 = logw; x3 = log davg; x4 = logn; x5 = log s:

Taking the logarithm of the inductance as well we can express the monomial rela-

tion (4.3) as

y = logL = �0 + �1x1 + �2x2 + �3x3 + �4x4 + �5x5

where �0 = log�. This is a linear-plus-constant model of y as as function of x, and

is easily �t by various regression or data-�tting techniques. To develop our models

we use a simple least-squares �t: we chose �
i
to minimize

NX
k=1

�
y(k) � �0 � �1x

(k)
1 � �2x

(k)
2 � �3x

(k)
3 � �4x

(k)
4 � �5x

(k)
5

�2
;
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where the sum is over our family of inductors (so N � 19; 000). It is also possible to

use more sophisticated data-�tting techniques, e.g., one which minimizes the maxi-

mum error of the �t, or one in which the coe�cients must satisfy given inequalities

or bounds.

For all three cases tabulated in table 4.2, the exponents of the variables with the

dimension of length (dout, w, davg and s) sum to unity, which is consistent with the

expectation that the inductance scales linearly with the size of a spiral.

Since the monomial expression Lmon is developed from our library of inductors,

it is important to check that it has predictive ability as well, by checking its error

on inductors not in the library. Such tests reveal that the �t for such inductors is

as good as the �t for the ones in the family from which the model was developed.

This is hardly surprising since the �tting method compresses 19; 000 numbers (i.e.,

the inductances) to 6 (i.e., the monomial coe�cients), and so is not prone to `over-

�tting'.

The monomial expression is useful since, like the other expressions, it is very

accurate and very simple. Its real use, however, is that it can be used for optimal

design of inductors and circuits containing inductors, using geometric programming,

which is a type of optimization method that uses monomial models [27, 28, 29].

4.1.3 Modi�ed Wheeler formula

H. Wheeler [26] presented several formulas for planar spiral inductors, which were

intended for discrete inductors. We have found that a simple modi�cation of the

original Wheeler formula allows us to obtain an expression that is valid for planar

spiral integrated inductors:

Lmw = K1�0
n2davg

1 +K2�
(4.4)

where � is the �ll ratio de�ned previously. The coe�cients K1 and K2 are layout

dependent and are shown in Table 4.3. The ratio � represents how hollow the

inductor is: for small � we have a hollow inductor (dout � din) and for a large � we
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Layout K1 K2

Square 2.34 2.75

Hexagonal 2.33 3.82

Octagonal 2.25 3.55

Table 4.3: Coe�cients for modi�ed Wheeler expression.

have a full inductor (dout � din). Two inductors with the same average diameter but

di�erent �ll ratios will, of course, have di�erent inductance values: The full one has

a smaller inductance because its inner turns are closer to the center of the spiral, and

so contribute less positive mutual inductance and more negative mutual inductance.

4.2 Comparison to �eld solvers

In this section we analyze the error distributions of previously published expressions

as well as our expressions by comparing them to the inductance computed using the

�eld solver ASITIC.

Figure 4.1 shows the absolute error distributions of previously published expres-

sions for square inductors presented in chapter 2. Figure 4.2 shows the absolute error

distributions of our expressions for the same set of square inductors. The compari-

son is carried out for � 19; 000 inductors spanning a wide design space. Table 4.4

summarizes the extent of the design space.

While the previously published expressions do predict the correct order of mag-

nitude of the inductance, typical errors are 20% or more, which is unacceptable for

circuit design and optimization. On the other hand all of the new expressions exhibit

substantially better accuracies, with typical errors of � 2� 3%.

Table 4.5 summarizes the error statistics of our expressions for this design space.

The current sheet expression exhibits the best performance with worst case errors

less than 9%. The monomial expression exhibits a worst case error of 12% whereas

the modi�ed Wheeler expression has errors as large as 22% for a few inductors. The

mean errors of all the expressions are less than 1% and the standard deviations are

� 2�3% indicating that all three expressions give good accuracy for most inductors.
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Figure 4.1: Error distribution for previously published expressions for square induc-

tors, compared to �eld solver simulations.

Min Max

L(nH) 0:1 71
OD(�m) 100 400

n 1 20

s=w 0:02 3
� 0:03 0:95

Table 4.4: Design space used for simulating square inductors
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Figure 4.2: Error distribution for the new expressions for square inductors, compared

to �eld solver simulations (Note change of x-axis scale relative to �gure 4.1).

Computation Method Min Max Mean Median StD

Current sheet -8.75 5.84 -0.85 -0.47 2.35

Monomial �t -12.46 14.34 -0.16 -0.01 3.04

Modi�ed wheeler -22.90 7.21 -0.33 0.14 3.25

Table 4.5: Error statistics (in %) of expressions for square inductors (� 19; 000

simulations)
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Figure 4.3: Error distribution for the new expressions for hexagonal inductors, com-

pared to �eld solver simulations (� 8; 000).

Figure 4.3 shows the absolute error distributions of our expressions for hexag-

onal inductors. The comparison is carried out for � 8; 000 inductors spanning a

wide design space. Table 4.6 summarizes the extent of the design space. Table 4.7

summarizes the error statistics of our expressions for this design space. Once again,

the current sheet expression exhibits the best performance with worst case errors

less than 9%.

Figure 4.4 shows the absolute error distributions of our expressions for octag-

onal inductors. The comparison is carried out for � 12; 000 inductors spanning a

wide design space. Table 4.8 summarizes the extent of the design space. Table 4.9
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Min Max

L(nH) 0:1 48

OD(�m) 90 350

n 1 20

s=w 0:03 3
� 0:01 0:90

Table 4.6: Design space used for simulating hexagonal inductors

Computation Method Min Max Mean Median StD

Current sheet -9.62 7.25 -0.28 -0.26 2.88
Monomial �t -11.38 12.08 0.24 0.71 3.68
Modi�ed wheeler -29.84 8.11 -0.39 0.44 4.43

Table 4.7: Error statistics (in %) of expressions for hexagonal inductors (� 8; 000

simulations)

summarizes the error statistics of our expressions for this design space. The current

sheet expression exhibits the best performance with worst case errors less than 9%.

4.3 Measurement Results

In this section, we compare the inductance values predicted by previously published

expressions as well as new expressions to measurement results. We use both our own

measurements as well as previously published measurements.

Figure 4.5 shows the measurement setup. The raw S parameters of the device

under test (DUT) are used to extract the low frequency inductance, L, as follows:

Min Max

L(nH) 0:1 57

OD(�m) 100 360

n 1 20

s=w 0:03 3
� 0:01 0:90

Table 4.8: Design space used for simulating octagonal inductors
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Figure 4.4: Error distribution for the new expressions for octagonal inductors, com-

pared to �eld solver simulations (� 12; 000).

Computation Method Min Max Mean Median StD

Current sheet -9.77 4.98 -0.72 -0.09 2.78

Monomial �t -12.88 10.18 -0.00 0.60 3.51

Modi�ed wheeler -28.59 6.84 -0.28 0.76 3.87

Table 4.9: Error statistics (in %) of expressions for octagonal inductors (� 12; 000

simulations)
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S parameters

DUT

Coplanar GSG probes

HP8720B

network analyzer

50
 environment

port 1 port 2

Figure 4.5: Experimental set up for measuring inductance

port 1 port 2

Y11 � Y12
Y22 � Y12

Y12

Figure 4.6: Y parameter extraction
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1. DUT : S-to-Y (YDUT)

2. Open calibration: S-to-Y (YO)

3. YCor = YDUT � YO

4. YCor to equivalent � model as illustrated in �gure 4.6

5. L = 1
!

IMAG( 1
Y12

)

Figure 4.7 compares the experimental values to the inductances predicted by

previously published expressions, while Figure 4.8 compares the experimental values

to the inductance predicted by our formulas as well as ASITIC. Once again, it is

clear that our expressions exhibit much smaller errors compared to the previous

ones. It is also interesting to note how well the predictions of ASITIC compare to

our expressions. This is particularly of interest in those few cases where the errors

between experiment and our expressions approach 20%, which suggests substantial

measurement errors, either in calibration or parameter extraction. More important,

it is clear that our expressions perform as well as a �eld solver.

In Table 4.10 we compare the measured inductance values with those predicted

by the various expressions. The �rst �fteen inductors shown in Table 4.10 were

fabricated using the top metal level (of thickness 0:9�m) of a 0:35�m CMOS process.

The data for the remaining inductors were obtained from previously published work.

The �rst column in Table 4.10 gives the inductor number; the second column shows

the source of the inductor data; the third column shows the number of sides; the

fourth is the number of turns (n); the �fth, sixth and seventh columns are the outer

diameter (dout)turn width (w) and spacing (s) in �m; the eighth column shows the

measured or reported value of the inductance (Lmeas) in nH. In the ninth column

we give the percent relative error between Lmeas and (Lasi predicted by ASITIC ),

which we de�ne as emeas = 100 (Lmeas � Lasi) =Lmeas. In the �nal three columns

we give the corresponding relative errors ewhe, egmd and emon for our inductance

expressions (4.4), (4.1) and (4.3) respectively.

We observe close agreement between our expressions and the measured data,

with larger errors for the smaller inductors. The reason, as explained in [5], is that
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Figure 4.7: Error distribution of previous formulas, compared to measurements.
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Figure 4.8: Error distribution of new expressions, compared to measurements.
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the parasitic inductance inherent in the measurement setup results in large apparent

relative errors for low inductance values.

We can also put the accuracy of our formulas in the context of other variations

and uncertainties in a spiral inductor. A major limitation in the design, modeling

and simulation of spirals is the uncertainty in the oxide thickness due to process

variations. Process variations can cause the parasitic capacitances in the inductor

model to vary by around 5{10%. These variations translate to an uncertainty in

the impedance of the spiral that is of the same order of magnitude as the errors

introduced by our expressions. This limitation suggests that inductance expressions

with better accuracies than what we have achieved are not necessary and that our

expressions are acceptable for use in circuit design and optimization.

4.4 Summary

In this chapter, we have presented three simple, approximate expressions for spiral

inductors of square, hexagonal and octagonal geometries. The �rst expression is

derived from electromagnetic principles by approximating the sides of the spiral by

current sheets with uniform current distribution. This expression is intuitive and

similar in form to inductance expressions for more conventional elements such as

coaxial transmission lines and parallel wire transmission lines. The second expression

is obtained by data-�tting the coe�cients with a monomial expression. Although it

lacks the physically intuitive derivation of the �rst expression, it is very well suited

for optimization of circuits using geometric programming. The �nal expression,

called the modi�ed Wheeler expression, is obtained by modifying an expression that

Wheeler obtained for discrete inductors.

All three expressions match �eld solver simulations well, with typical errors of 2{

3%, and most errors smaller than around 8%. This represents a great improvement

over previously published expressions, which have typical errors of around 20% or

more. When compared to experimental data, the errors of our three expressions are

comparable to those of a �eld solver, which suggests that the errors may be due, at

least in part, to measurement error. The simplicity, versatility and robustness of our
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Inductor # Source sides n dout w s Lmeas easi ewhe egmd emon

1 1 4 2.75 344 29.7 1.9 3.20 3.1 5.2 6.4 3.6

2 1 4 3.75 292 13.0 1.9 6.00 -1.7 -1.2 -0.7 -0.4

3 1 4 6.50 217 5.4 1.9 12.50 2.4 1.4 2.3 4.9

4 1 4 2.75 279 18.3 1.9 3.10 0.0 2.1 2.8 1.4

5 1 4 4.75 206 7.8 1.9 6.10 0.0 -0.7 0.3 2.0

6 1 4 7.50 166 3.2 1.9 12.40 4.0 2.2 3.2 5.5

7 1 4 9.50 153 1.8 1.9 18.20 2.7 0.8 1.9 2.7

8 1 4 2.75 277 18.3 0.8 3.10 0.0 0.8 1.3 -2.0

9 1 4 2.75 307 18.3 18.0 2.90 10.3 13.5 14.6 12.4

10 1 4 3.75 321 16.5 1.9 6.10 0.0 0.2 1.1 0.7

11 1 4 7.75 225 4.4 1.9 18.10 0.6 -0.9 0.0 2.9

12 1 4 3.75 193 9.1 1.9 4.00 7.5 6.6 7.5 8.4

13 1 4 5.00 171 5.4 1.9 6.10 4.9 3.0 3.8 5.8

14 1 4 3.25 400 31.6 1.9 4.90 4.1 7.2 8.3 5.9

15 1 4 5.75 339 10.0 1.9 16.20 3.7 2.0 2.7 4.5

16 1 4 12.00 180 3.2 2.1 20.50 2.0 -1.0 -0.4 3.9

17 1 4 7.00 300 13.0 7.0 8.00 5.0 5.6 4.0 9.1

18 [7] 4 6.00 400 24.0 7.0 8.00 8.8 9.2 7.6 12.6

19 [7] 4 8.00 300 5.0 4.0 22.10 -6.3 -9.6 -8.3 -7.6

20 [7] 4 4.00 300 5.0 4.0 9.20 -5.4 -3.3 -7.2 -6.4

21 [9] 4 9.00 210 6.5 5.5 7.70 2.6 8.0 4.5 11.8

22 [9] 4 8.00 226 6.0 6.0 9.00 -1.1 -1.0 -1.4 0.7

23 [16] 4 11.00 300 9.0 4.0 15.50 -11.6 -9.7 -12.4 -3.2

24 [16] 4 8.00 300 14.0 4.0 8.30 -8.4 -6.7 -9.5 -0.9

25 [16] 4 6.00 300 19.0 4.0 5.10 -7.8 -7.2 -9.1 -2.8

26 [16] 4 3.00 300 19.0 4.0 3.30 -6.1 -7.2 -6.1 -6.5

27 [16] 4 5.00 300 24.0 4.0 3.50 -5.7 -5.2 -7.3 -1.6

28 [16] 4 9.00 230 6.5 5.5 9.70 1.0 2.3 0.6 5.6

29 [16] 4 16.00 300 5.0 4.0 34.00 -7.6 -4.2 -6.9 1.6

30 [16] 4 6.00 300 9.0 4.0 11.70 -5.1 -7.8 -6.5 -4.9

31 [16] 4 3.00 300 9.0 4.0 5.50 5.5 6.3 3.7 4.8

32 [16] 4 4.00 300 14.0 4.0 5.80 -1.7 -4.4 -3.2 -2.6

33 [16] 4 2.00 300 14.0 4.0 2.90 17.2 18.0 15.0 15.5

34 [16] 4 2.00 300 19.0 4.0 2.50 16.0 16.0 15.0 14.5

35 [16] 4 3.00 300 24.0 4.0 3.10 9.7 5.9 7.1 6.5

36 [30] 4 5.00 154 7.0 5.0 3.00 6.7 3.9 4.3 5.8

37 [30] 4 9.00 250 7.0 5.0 12.00 -0.8 0.2 -0.5 3.7

38 [6] 4 6.00 285 15.0 3.0 6.70 -7.5 -9.4 -9.1 -5.6

39 [6] 4 3.50 255 10.0 1.5 5.00 -4.0 -4.5 -5.2 -4.4

40 [6] 4 4.50 216 10.0 1.5 5.00 -6.0 -7.8 -6.6 -5.4

41 [6] 4 5.50 199 10.0 1.5 5.00 -6.0 -9.3 -8.2 -5.8

42 [6] 4 6.50 191 10.0 1.5 5.00 -6.0 -8.1 -8.1 -3.6

43 [20] 4 7.50 190 10.0 1.5 5.00 -10.0 -8.5 -10.4 -2.8

44 [31] 4 9.25 145 5.2 2.0 6.00 -3.3 -5.2 -7.0 1.3

45 [31] 4 6.75 290 13.0 7.0 7.10 1.4 3.5 2.0 7.0

46 [31] 4 2.50 290 13.0 7.0 3.00 -3.3 -2.5 -3.3 -3.4

47 [32] 4 3.25 340 25.0 6.0 3.30 -9.1 -12.1 -10.8 -11.0

48 [32] 4 4.50 300 23.0 6.0 3.40 -2.9 -4.3 -5.1 -1.4

49 [32] 4 3.00 300 18.0 6.0 3.30 -3.0 -5.9 -4.7 -5.0

50 [32] 4 5.75 190 9.5 6.0 3.40 0.0 2.5 1.1 5.6

51 [32] 4 3.00 700 90.0 6.0 3.70 -5.4 -4.9 -5.4 -6.7

52 [33] 4 4.00 262 16.0 10.0 2.60 -19.2 -19.9 -19.5 -18.5

53 [33] 4 6.00 392 16.0 10.0 8.80 -11.4 -12.6 -12.4 -10.5

54 [33] 4 8.00 532 16.0 10.0 20.40 -16.7 -17.3 -17.1 -14.6

55 [?] 8 4.00 346 18.0 2.0 5.90 0.0 -1.1 -1.6 -3.6

56 [?] 8 5.00 346 18.0 2.0 7.50 2.7 2.7 0.7 0.3

57 [?] 8 4.00 326 8.0 12.0 5.60 -7.1 -7.7 -7.8 -11.8

58 [?] 8 5.00 326 8.0 12.0 7.20 -2.5 -1.0 -2.8 -5.6

59 [11] 12 6.75 197 8.2 3.0 5.45 1.8 - 1.5 -

60 [11] 12 8.00 198 7.5 3.0 6.30 -0.5 - -1.8 -

61 [11] 12 7.75 198 6.5 3.0 7.30 -1.9 - -2.2 -

Table 4.10: Comparison of measured inductance values with �eld solver inductance

values and the various approximate expressions.
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expressions make them good candidates for circuit design. They can be included in

a physical, scalable lumped-circuit model for spiral inductors where, in addition to

providing design insight, they allow e�cient optimization schemes to be employed.



Chapter 5

Modeling and Characterization of

On-Chip Transformers

This chapter discusses the modeling of on-chip transformers. Section 5.1 introduces

the main elements of an ideal transformer and then considers the parasitics present

in practical transformer realizations. Section 5.2 compares the advantages and dis-

advantages of various on-chip transformer realizations. Section 5.3 expands upon the

lumped inductor model presented in chapter 2 to model on-chip transformers. A key

element in these transformer models is the mutual inductance between the primary

and secondary. Sections 5.3.1 and 5.3.2 describe how the current sheet approach

developed in chapter 3 and inductance expressions developed in chapter 4 can be

used to obtain simple expressions for the mutual inductance and mutual coupling

coe�cient (k) of a variety of on-chip transformer realizations. Section 5.4 provides

expressions for the parasitic resistances and capacitances in the transformer models.

Section 5.5 illustrates, with examples, how the concepts developed in the preceding

sections may be applied to obtain on-chip transformer models. The predictions of

these models are compared to experimental results in section 5.6.

5.1 Transformer Fundamentals

An ideal transformer, as illustrated in �gure 5.1 contains three components:

87
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i1 i2

v1 v2

+ +

� �
L1 L2

M

Figure 5.1: Ideal transformer

1. The self inductance of the primary (L1).

2. The self inductance of the secondary (L2).

3. The mutual inductance between the primary and the secondary (M).

The terminal voltages and currents of an ideal transformer are speci�ed by equa-

tion 5.1:

v1 = L1

@i1

@t
+M

@i2

@t

v2 = L2

@i2

@t
+M

@i1

@t
:

(5.1)

The mutual inductance, M , is related to the self inductances, L1 and L2, by the

mutual coupling coe�cient, k:

k =
M

p
L1L2

: (5.2)

In general, jkj � 1 because the transformer is a passive device. While k = 1 for an

ideal transformer, most practical on-chip transformers exhibit k values between 0:3�

0:9. In addition to reduced k, practical transformers su�er from several nonidealities.

Figure 5.2 illustrates the important parasitic resistances and capacitances present

in practical transformers. Resistances R1 and R2 model the series resistances of

the primary and secondary spirals respectively. The �gure also shows the various
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Figure 5.2: Nonideal transformer
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elements used to model the spiral-to-substrate oxide capacitances (Cox;1a, Cox;1b,

Cox;2a and Cox;2b), the terminal-to-terminal oxide capacitances (Cs;11, Cs;22, Cs;12 and

Cs;21) and the resistive and capacitive coupling to the substrate (Rsi;1a, Csi;1a, Rsi;1b,

Csi;1b, Rsi;2a, Csi;2a, Rsi;2b and Csi;2b).

A transformer may be con�gured as a three or four terminal device. Further-

more, one or more terminals may be connected to incremental ground. The self

inductances, series resistances and mutual inductances are independent of the con-

�guration of the transformer. However, some of the capacitive elements may be

shorted out. This situation is analogous to that a spiral inductor being used as

either a single or dual terminal device.

5.2 Monolithic Transformer Realizations

The relative importance of the parasitic elements varies among di�erent transformer

realizations and con�gurations. This section discusses various on-chip transformer

realizations and highlights the dominant non-idealities.

5.2.1 Tapped Transformer

The tapped transformer, illustrated in �gure 5.3 is best suited for three-terminal

applications. Although not symmetric, it permits a variety of tapping ratios to be

realized. This transformer relies only on lateral magnetic coupling. All windings can

be implemented with the top metal layer, thereby minimizing terminal-to-substrate

capacitances. Since the two inductors occupy separate regions, the self-inductance is

maximized while the terminal-to-terminal capacitance is minimized. Unfortunately,

this spatial separation also leads to low mutual coupling (k � 0:3� 0:5).

5.2.2 Interleaved Transformer

The interleaved transformer, illustrated in �gure 5.4 is best suited for four-terminal

applications that demand symmetry. Once again, capacitances can be minimized by

implementation on top level metal so that high resonant frequencies may be realized.
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Figure 5.3: Tapped transformer
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Figure 5.4: Interleaved transformer
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Top View

Side View

top spiral

bottom spiral

Figure 5.5: Stacked transformer

The interleaving of the two inductances permit moderate coupling (k � 0:7) to be

achieved at the cost of reduced self-inductance. This coupling may be increased at

the cost of higher series resistance by reducing the turn width, w, and spacing, s.

5.2.3 Stacked Transformer

The stacked transformer, illustrated in �gure 5.4 uses multiple metal layers and ex-

ploits both vertical and lateral magnetic coupling to provide the best area e�ciency,

the highest self-inductance and highest coupling (k � 0:9). This con�guration is

suitable for both three and four terminal con�gurations. The main drawback is
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Bottom spiral Top spiral

xs

Figure 5.6: Stacked transformer with top and bottom spiral laterally shifted

the high terminal-to-terminal capacitance, or equivalently a low self-resonance fre-

quency. In some cases, such as narrowband transformers, this capacitance may be

incorporated as part of the resonant circuit. Also, in modern multilevel processes,

the capacitance can be reduced by increasing the oxide thickness between spirals.

For example, in a �ve metal process, 50 � 70% reductions in terminal-to-terminal

capacitance can be achieved by implementing the spirals on layers �ve and three

instead of �ve and four. The increased vertical separation reduces k by less than

5%.

5.2.4 Variations on the Stacked Transformer

As illustrated in �gures 5.6 and 5.7, one can trade o� reduced k for reduced terminal-

to-terminal capacitance by displacing the centers of the stacked inductors either

laterally or diagonally.
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ys
ds

xs

Figure 5.7: Stacked transformer with top and bottom spiral diagonally shifted

5.2.5 Stacked InterleavedTransformer

One potential drawback of the stacked transformer and its variations discussed so far

is that these realizations are not symmetric. A symmetric transformer that achieves

the area e�ciency of a stacked transformer may be obtained by stacking two inter-

leaved transformers on top of one another. Figure 5.8 illustrates the details of such a

stacked interleaved transformer. Unlike the stacked transformer where the primary

and secondary occupy distinct metal layers, the stacked interleaved transformer has

the primary and secondary spirals interleaved on both layers, thereby achieving a

symmetrical layout.

In this case, the primary spirals are stacked on top of one another (except of

course for the crossover points required to keep the same current orientation in the

top and bottom spirals) and so are the secondary spirals. This implementation

minimizes the primary-to-secondary capacitance at the cost of increased primary-

to-primary and secondary-to-secondary capacitance. In tuned circuit applications,

the primary-to-primary and secondary-to-secondary capacitances are more easily
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incorporated into the tuning network than the primary-to-secondary capacitance.

Therefore, this transformer is ideal for those narrowband applications that require

symmetry.

The mutual coupling coe�cient of the stacked interleaved transformer is com-

parable to that of the interleaved transformer. However, the stacking of multiple

layers enables an increase in the overall inductance density by a factor of � 3:5�3:9.

The self inductances of the primary and secondary are larger than the correspond-

ing stacked transformer implementation. However, the mutual inductance is lower,

which is consistent with the observation that the total inductance densities of a

stacked transformer and the corresponding stacked interleaved transformer should

be approximately the same.

5.2.6 Comparison of Transformer Realizations

The di�erent realizations o�er varying trade-o�s among the self inductance and

series resistance of each terminal, the mutual coupling coe�cient, the terminal-to-

terminal and terminal-to-substrate capacitances, resonance frequencies, symmetry

and area. Table 5.1 summarizes the attributes of the main on-chip transformer

realizations. The characteristics desired for a transformer are application dependent.

For example, in single-sided to di�erential conversion, the transformer might be

used as a four terminal narrowband device. In this case, a high mutual coupling

coe�cient and high self-inductance are desired along with low series resistance. On

the other hand, for bandwidth extension in broadband circuits, the transformer is

used as a three terminal device. In this case, a small mutual coupling coe�cient

(k � 0:3� 0:4) and high series resistance are acceptable while all capacitances need

to be minimized [34].

Accurate, lumped transformer models are needed to select the best transformer

realization for a given application. The following sections of this chapter develop a

general approach to modeling on-chip transformers with lumped circuit elements.
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5.3 Analytical Transformer Models

The modeling approach discussed in this chapter is based on �nding analytical ex-

pressions for the circuit elements of �gure 5.2. The model is realized by representing

the primary and secondary spirals by their equivalent lumped � models (in essence

by treating them as individual spiral inductors) and then adding in the mutual in-

ductance and primary-to-secondary coupling capacitances. The self inductances, L1

and L2, may be computed using the inductance expressions that were presented

in chapter 4. The mutual inductance can be calculated with the aid of these in-

ductance expressions as will be outlined in sections 5.3.1 and 5.3.2. The parasitic

capacitances and resistances can be estimated by techniques similar to those used in

the lumped circuit modeling of on-chip inductors. While �gure 5.2 shows a complete

lumped model of a non-ideal transformer, a particular realization and con�guration

of a practical on-chip transformer usually contains a smaller subset of the para-

sitic capacitances. Furthermore, symmetry considerations can reduce the number of

computations.

As in the modeling of any distributed system, the lumped circuit approach breaks

down at higher frequencies. The model is typically accurate up to the self-resonance

frequencies of the primary and secondary inductors, which is the useful frequency

range of the transformer. The advantage of these lumped, analytical models is

that they enable the designer to explore trade-o�s, to obtain design insight and to

identify the most appropriate transformer for a given application. These models

also permit the designer to quickly optimize a transformer circuit and to narrow

the search region in a design space. Thus, time consuming and computationally

intensive �eld solvers are now needed only at the �nal design and veri�cation stage

at most, thereby signi�cantly reducing the required resources and time.

5.3.1 Inductances of Tapped and Interleaved Transformers

Figure 5.9 illustrates how the inductance expressions developed in chapter 4 can

be used to calculate the mutual inductance between the primary and secondary for
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Figure 5.9: Calculation of mutual inductance for tapped and interleaved transform-

ers
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Figure 5.10: Current sheet approximation for estimating k for stacked transformers

a tapped or interleaved transformer. First the self inductance of a single spiral,

LT, containing all the segments of the primary and secondary spirals, is evaluated

using the inductance expression. Then, the self inductances of the primary and

secondary spirals, L1 and L2, are calculated using the same inductance expressions.

The mutual inductance,M , is related to the self inductances and the total inductance

by LT = L1 + L2 + 2M . M is the only unknown in this equality and can therefore

be computed as M = (LT � L1 � L2) =2.

5.3.2 Inductances of Stacked Transformers

Figure 5.10 illustrates how the two spirals of a stacked transformer can be approx-

imated by equivalent current sheets. This approximation substantially reduces the

complexity of calculating the mutual inductance between the spirals. The current

sheet approach described in chapter 3 can be applied to obtain an approximate

expression for k. For the sake of simplicity, we restrict this discussion to stacked

transformers whose top and bottom spirals have identical lateral geometries and

therefore approximately equal inductances since the inductances are only weakly

dependent on the conductor thickness. The approach may be extended to stacked
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spirals with di�ering dimensions. The current sheet approximation suggests that k

may be approximated by:

k � 0:9�
ds

davg
; (5.3)

where ds is the center-to-center spiral distance and davg is the average diameter of the

spirals. As one expects, k is maximum when the top and bottom spirals completely

overlap one another (ds = 0). As the overlap is reduced, k decreases linearly with

increasing ds. Using equation 5.3 to calculate k, and using our inductance expression

to calculating the inductance of one spiral (Lt), the mutual inductance of a stacked

transformer may be calculated from M = kLt.

This approximate expression for k is valid to within 5% for k > 0:2. Since

most transformer applications seek k > 0:3, this approximation is good enough for

typical design purposes. The thicknesses of the top and bottom metal layers and

the thickness of the oxide between them has only a second order e�ect on k. This

is because the lateral dimensions are much larger than the vertical dimensions for

practical on-chip transformers. Thus, variations in the vertical dimension result in k

changing by less than 5% and can therefore be neglected at the initial design stage.

As ds increases beyond 0:7davg, the mutual coupling coe�cient becomes harder

to model with a current sheet approximation. However, this approach is still useful

for estimating the order of magnitude of k for large ds. Around ds � davg, k crosses

zero and reaches a minimum value of � �0:1 . As ds increases further, k asymp-

totically approaches zero. At ds � 2AD, k � �0:02, indicating that the magnetic

coupling between closely spaced spirals is negligible. This insight is valuable because

it indicates that one may generally pack many spirals on a chip with impunity.



5.4: Calculation of Parasitic Elements 101

5.4 Calculation of Parasitic Elements

The series resistances of the primary and secondary spirals of any transformer may

be easily calculated using the expression developed for the series resistance of an

on-chip inductor. Thus, for the series resistance of the primary, R1:

R1 =
� � l1

� � w1 �
�
1� e

�
t1

�1

� ; (5.4)

where l1 is the length of the primary spiral, w1 is its conductor width, t1 is its

conductor thickness and �1 is the corresponding skin depth. The series resistance

of the secondary may be computed similarly. Note that the model accounts for the

increase in series resistance with frequency due to skin e�ect.

The calculation of the transformer's parasitic capacitances is, at least in prin-

ciple, similar to the calculation of an inductor's parasitic capacitance. However,

the increased number of capacitances requires more work, especially in the case of

stacked transformers with partial overlap. Nevertheless, all dominant capacitances

may be modeled using parallel plate capacitance approximations.

For single layer transformer implementations (such as the tapped and interleaved

transformers illustrated in �gures 5.3 and 5.4) the dominant capacitances are the

spiral-to-substrate oxide capacitances of the primary and the secondary. These

spiral-to-substrate capacitances are easily calculated using the parallel plate approx-

imation. In the lumped circuit model, each one of these capacitances is represented

by two capacitances at the terminals of the corresponding terminal. For example,

the primary's spiral-to-substrate oxide capacitances are represented by Cox;1a and

Cox;1b in �gure 5.2. The values of these capacitances are:

Cox;1a = Cox;1b =
�ox

2tox
� l1 � w1; (5.5)

where l1 is the length of the primary spiral, w1 is its conductor width, and tox is

the thickness of the oxide from the spiral to the substrate. Similarly, terminal-

to-terminal oxide capacitances, which are determined by the spiral-to-underpass



102 Chapter 5: Modeling and Characterization of On-Chip Transformers

capacitances can be computed using the expression obtained for the feedthrough

capacitance of a spiral inductor (see �gure 5.11 and table 5.2 for an example that

provides detailed expressions for the elements of a tapped transformer).

The parasitic capacitance calculations for stacked transformers requires more

scrutiny. First, we consider the capacitances of a stacked transformer (made of two

spirals with identical lateral dimensions) with maximum overlap so that ds = 0.

In this case, the dominant capacitances are the primary-to-secondary capacitances

(which correspond to Cs;12 and Cs;21 in �gure 5.2 with Cs;21 = Cs;12) and the spiral-to-

substrate capacitance of the bottom spiral, both of which may be computed using

the parallel plate approximation. As one of the spirals is laterally or diagonally

shifted with respect to the other, ds increases. Consequently, the spiral-to-substrate

oxide capacitances of the top spiral increase while the primary-to-secondary capac-

itances decrease. As one may expect, the spiral-to-substrate oxide capacitances of

the bottom spiral remains unchanged. These capacitances may be quanti�ed by con-

sidering the ratio of the overlap area between the spirals to the area of one spiral.

Figure 5.12 and table 5.3 illustrate this computation with an example.

The process for evaluating the resistive and capacitive coupling to the substrate

is identical to the one used for spiral inductors, and therefore requires prior knowl-

edge of the substrate conductivity, which can vary over a large range with process

variations and silicon depth. The use of a patterned ground shield (PGS) eliminates

these terms from the model and is therefore valuable when the substrate doping pro-

�le is not known. However, the magnetic coupling to the substrate is not eliminated

by the PGS. Another drawback is that since the PGS is typically implemented in

polysilicon, the oxide capacitance from spiral to ground is increased.

5.5 Examples of Transformer Models

This section illustrates the concepts developed in the last section by providing com-

plete models (except for magnetic coupling to the substrate) for transformers built

in particular con�gurations. These con�gurations were chosen to permit easy com-

parison to measurements made using a two terminal network analyzer. Thus, the
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models are presented for transformers in a three terminal con�guration, with one of

these terminals connected to ground or being left as an open. Consequently, when

compared to the full model illustrated in �gure 5.2, these models have fewer ele-

ments as some of the capacitive elements have been shorted out. Furthermore, the

substrate coupling elements are not included on the premise that a patterned ground

shield is implemented in polysilicon and placed beneath the transformer (once again,

with the limitation that the magnetic coupling term is not properly accommodated).

Figure 5.11 presents the analytical model for a tapped transformer implemented

with square spirals (see �gure 5.3). In this case, the inner end of the inner spiral is

connected to ground, while the outer end of the outer spiral is connected to terminal

1 and the inner end of the outer spiral (which is also the outer end of the inner

spiral) is connected to terminal 2. Table 5.2 tabulates the corresponding element

values (Subscript `o' refers to the outer spiral, `i' to the inner spiral and `T' to the

whole spiral)

Figure 5.12 presents the analytical model for a three terminal stacked transformer

implemented with square spirals (see �gures 5.5, 5.6 and 5.7). Table 5.3 tabulates

the corresponding element values (Subscript `t' refers to the top spiral and `b' to the

bottom spiral).

5.6 Experimental Veri�cation

The measurements were conducted on structures designed for operation as three

terminal devices. One of the terminals was grounded while the other two terminals

were terminated in the 50
 environment of the test equipment. Two-terminal S-

parameter measurements were obtained using an HP8720B network analyzer and

coplanar ground-signal-ground probes. Figure 5.13 shows the measurement setup.

5.6.1 Veri�cation of k for Stacked Transformers

The expression provided for the k of stacked transformers (equation 5.3) is veri�ed in

the experiment tabulated in table 5.4. Two 20nH inductors are stacked with various
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Transformer Area Coupling Self- Self-resonant

type coe�cient, k inductance frequency

Tapped High Low Mid High

Interleaved High Mid Low High

Stacked Low High High Low

Table 5.1: Comparison of transformer realizations.
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Figure 5.11: Tapped transformer model
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Element Expression
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� (lo + li) � w

Cov;o
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tox;t�b
� (no � 1) � w2

Table 5.2: Expressions for elements in tapped transformer model (�=DC metal resis-

tivity, �=skin depth, tox=oxide thickness from top metal to substrate, tox;t�b=oxide

thickness from top level metal to bottom level metal, k= mutual coupling coef-

�cient, n=number of turns, davg=average diameter, l=length of spiral � 4ndavg,

w=turn width, t=metal thickness)
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Figure 5.12: Stacked transformer model
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Element Expression
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�ox
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Table 5.3: Expressions for elements in the stacked transformer model (�=DC

metal resistivity, �=skin depth, tox;t=oxide thickness from top metal to substrate,
tox;b=oxide thickness from bottom metal to substrate, tox;t�b=oxide thickness from

top level metal to bottom level metal, k=mutual coupling coe�cient, n=number of
turns, davg=average diameter, l=length of spiral � 4ndavg, w=turn width, t=metal

thickness, A=area, Aov=overlapped area of top and bottom spirals, ds=center-to-

center spiral distance)
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Figure 5.13: Experimental set up for measuring inductance

xs ys ds = dnorm = kpredict = kmeas

(�m) (�m)
p
xs2 + ys2 (

ds

AD
) (0:9� dnorm)

A 0 0 0 0 0.9 0.88

B 8 8 11 0.09 0.81 0.79

C 42 0 42 0.35 0.55 0.57

D 57 0 57 0.48 0.42 0.45

E 50 50 71 0.59 0.31 0.28

Table 5.4: Comparison of transformer realizations.
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Figure 5.14: Coupling coe�cient (k) versus normalized shift (dnorm)

shifts. The stacked transformers are fabricated on the third and second layers of

a triple-metal 0:5�m CMOS epi-process with the patterned ground shields (PGS)

being implemented on the polysilicon layer. Each spiral has the following lateral

dimensions: dout = 180�m, w = 3:2�m, s = 2:1�m and n = 11:75. Figure 5.14 plots

the coupling coe�cient as a function of shift. Good agreement between measured

and modeled values of k is observed.

5.6.2 Veri�cation of Transformer Models

The measured S parameters of the device under test (DUT) are compared to the S

parameters predicted by our analytical model by the following procedure:

1. DUT : S-to-Y (YDUT)

2. Open calibration: S-to-Y (YO)

3. YCor = YDUT � YO
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4. YCor to Smeas

5. Compare Smeas to Scalc

The predictions of the analytical models were compared with measurements for a

variety of transformers.

Figure 5.15 compares the real and imaginary components of the measured S

parameters to those predicted by the analytical model for a tapped transformer.

This transformer was fabricated on a quartz substrate, and was designed to have

Lo = 3nH, Li = 2nH and k = 0:35. The �gure shows very good agreement between

simulated and measured results.

Fig. 5.16- 5.18 show good agreement for stacked transformers (Lt=20nH, Lb=20nH)

with various shifts (k=0.9, k=0.55, k=0.3). The stacked transformers are fabricated

on the third and second layers of a triple-metal 0:5�m CMOS epi-process with the

patterned ground shields (PGS) being implemented on the polysilicon layer. These

transformers correspond to the entries labeled A, C and E in table 5.4. Figure 5.16

compares the real and imaginary components of the measured S parameters to those

predicted by the analytical model for a stacked transformer with maximum overlap

(entry A). Figure 5.17 compares the same for a stacked transformer with top and

bottom spirals laterally shifted (entry C), while �gure 5.18 compares a stacked trans-

former with top and bottom spirals diagonally shifted (entry E). In every case, good

agreement is obtained between measurements and predictions of the model.

5.7 Summary

This chapter has explored how on-chip transformers may be modeled by lumped

circuit models whose elements have analytical expressions. The predictions of these

models compare well with measurement results.
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� Tapped transformer on

quartz substrate

� dout;o = 290�m, no = 2:5

� dout;i = 190�m, ni = 4:25

� w = 13�m, s = 7�m
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Figure 5.15: Comparison of predicted and measured S parameters for a tapped

transformer
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� Stacked transformer with top

spiral overlapping bottom one

� dout = 180�m, n = 11:75,

w = 3:2�m, s = 2:1�m

� xs = 0�m, ys = 0�m,

ds = 0�m
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Figure 5.16: Comparison of predicted and measured S parameters for stacked trans-

former with top spiral overlapping bottom one
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� Stacked transformer with top and

bottom spirals laterally shifted

� dout = 180�m, n = 11:75,

w = 3:2�m, s = 2:1�m

� xs = 42�m, ys = 0�m,

ds = 42�m
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Figure 5.17: Comparison of predicted and measured S parameters for stacked trans-

former with top and bottom spirals laterally shifted
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� Stacked transformer with top and

bottom spirals diagonally shifted

� dout = 180�m, n = 11:75,

w = 3:2�m, s = 2:1�m

� xs = 50�m, ys = 50�m,

ds = 71�m
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Figure 5.18: Comparison of predicted and measured S parameters for stacked trans-

former with top and bottom spirals diagonally shifted



Chapter 6

Design and Optimization of

Inductor Circuits

This chapter discusses the design and optimization of inductor circuits. Section 6.1

introduces common performance measures used to characterize on-chip inductors.

Particular attention is paid to various quality factor de�nitions and the conditions

under which a particular de�nition is relevant. Section 6.2 compares the optimum

performance achieved by square, hexagonal, octagonal and circular inductors. Sec-

tion 6.3 explores how inductors can enhance the bandwidth of broadband circuits

and presents a design methodology for optimizing on-chip inductors for such ap-

plications. Section 6.4 introduces geometric programming as a means of globally

optimizing inductor circuits quickly and e�ciently.

6.1 Parameters of Interest

This section describes the common performance parameters used to evaluate on-chip

inductors. Analytical expressions for these parameters can be obtained using the ele-

ments of the lumped circuit model described in chapter 2. However, these expressions

vary, depending on whether the inductor is used in a one terminal or two terminal

con�guration and on whether a patterned ground shield (PGS) is placed beneath the

115
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inductor to eliminate the resistive and capacitive coupling to the substrate. This sec-

tion provides expressions for the performance parameters of an inductor with PGS

in a one terminal con�guration. This con�guration was chosen as most RF circuit

blocks (such as low noise ampli�ers and oscillators) use inductors as one terminal

devices, with the second terminal connected to a node that is at incremental ground.

Figure 6.1 shows the equivalent lumped circuit for this con�guration.

Cox + Cs

Rs

Ls

Figure 6.1: Lumped model for one terminal con�guration with PGS.

The most commonly quoted performance parameter is the quality factor, Q. The

de�nition of Q depends on the application. For most narrowband applications, it

is su�cient to de�ne the inductor quality factor, QL, and the tank quality factor,

Qtank.

� Inductor quality factor (QL) is de�ned as:

QL(!) = 2�
[peak magnetic energy � peak electric energy]

energy loss in one oscillation cycle
: (6.1)

An equivalent de�nition for QL is:

QL(!) =
[Imaginary component of impedance:]

Real component of impedance
: (6.2)
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For the one-terminal inductor shown in �gure 6.1, the inductor quality factor

is given by:

QL(!) =
!Ls

Rs(!)

�
1�

R2
s (!)(Cox + Cs)

Ls

� !2Ls(Cox + Cs)

�
(6.3)

QL is used in applications where the inductor's parasitic resistances as well

as capacitances degrade the circuit performance. An example where QL is

relevant is when an inductor is used as the source degeneration element in

narrowband low-noise ampli�ers [35, 2, 36]. QL is also pertinent in some �lter

applications.

� Tank quality factor (Qtank) is de�ned as:

Qtank(!) = 2�
peak magnetic energy

energy loss in one oscillation cycle
(6.4)

For the one-terminal inductor shown in �gure 6.1, the tank quality factor is

given by:

Qtank(!) =
!Ls

Rs(!)
(6.5)

This de�nition is appropriate when only the inductor's parasitic resistances

degrade the overall circuit performance. In such cases, the parasitic capaci-

tance of the inductor is incorporated as part of the resonance network. This

de�nition applies in every case where the on-chip inductor is used as part of

a resonant tank circuit (hence the term Qtank). The best examples of such

circuits are resonators and oscillators where the resonance tank occurs at the

drain of MOSFET (or equivalently, the collector of a BJT) [37, 2, 37, 4].
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� Self-resonant frequency (!res) is de�ned the frequency at which QL = 0.

Beyond this frequency, the inductor exhibits a negative reactance thereby ren-

dering it useless as an inductive tuning element. In most on-chip spiral induc-

tors, QL reaches a maximum at around half the self-resonant frequency. On

the other hand, Qtank typically reaches a maximum close to !res.

6.2 Comparison of Inductor Geometries

This section compares the optimum one terminal QL achieved using square, hexago-

nal, octagonal and circular spirals for a �xed inductance at a given frequency. Note

that degradation due to magnetic coupling to the substrate is not considered in this

treatment. This issue is discussed in 7.

6.2.1 Example: Maximum QL @ 2GHz for L = 8nH

Figure 6.2 compares the maximum QL achieved at 2GHz by the various spiral ge-

ometries for a 8nH inductor. The same process parameters are used for all the

polygonal spirals so that the vertical parameters of the spiral are held constant. The

lateral geometrical parameters (w, s, n and dout) are optimized to yield a �xed series

inductance, L of 8nH with maximum QL at 2GHz.

Table 6.2.1 summarizes the outer diameter and area of the optimum spirals. For

polygons with more than four sides, the inductor area is less than the e�ective chip

area. The e�ective chip area is de�ned as the area of the smallest square within

which the polygonal spiral may be inscribed. For example, for a circular spiral with

an outer diamter of dout, the inductor area is 0:25�d2out whereas the e�ective chip

area is d2out. In general, the e�ective chip area is the more relevant metric as it is a

measure of how much area is dedicated on-chip to a spiral inductor. For example,

if one considers an octagonal spiral, the di�erence between its inductor area and its

e�ective area is the sum of the four triangular areas which lie outside its four sides

that are at an angle of pi=4 radians to the sides of the square within which the spiral

is inscribed. In most circuit layouts, these four triangular areas are not used for any
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Figure 6.2: Comparison of maximum QL @ 2GHz for L = 8nH
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other purpose and therefore must be included in the area dedicated to the spiral.

Thus, the e�ective chip area is best de�ned as the smallest square area within which

a given spiral �ts.

Layout Outer Inductor E�ective

diameter area chip area
(�m) mm2 mm2

Square 287 0.082 0.082
Hexagonal 308 0.082 0.095

Octagonal 309 0.079 0.095

Circular 314 0.077 0.099

Table 6.1: Outer diameter and area of inductors with maximum QL @ 2GHz for
L = 8nH

Using the e�ective area as a reference, it is clear that the square spiral is most

area e�cient whereas the circular spiral is least area e�cient. However, the circular

spiral achieves the best QL. In general, circular spirals consume around 20% more

chip area than square spirals and achieve QL values that are � 15� 20% better.

As expected, the performance of hexagonal and octagonal geometries is between

that of square and circular ones. The plot suggests that an octagonal spiral achieves

QL values that are within � 3� 5% of that of a circular one with a corresponding

� 3 � 5% reduction in the e�ective chip area. This suggests that polygons with

more than eight sides are not needed for most applications, thereby minimizing the

layout complexity.

6.2.2 Example: Maximum QL @ 3GHz for L = 5nH

Figure 6.3 compares the maximum QL achieved at 2GHz by the various spiral ge-

ometries for a 8nH inductor. Table 6.2 summarizes the outer diameter and area

of the optimum spirals. Once again, QL and the e�ective chip area increase with

the number of sides of the spiral. There is a striking resemblance between the per-

formance comparison of the previous example and this one. Since the frequency
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Figure 6.3: Comparison of maximum QL @ 3GHz for L = 5nH
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Layout Outer Inductor E�ective
diameter area chip area

(�m) mm2 mm2

Square 288 0.083 0.083
Hexagonal 309 0.083 0.095

Octagonal 310 0.080 0.096

Circular 315 0.078 0.099

Table 6.2: Outer diameter and area of inductors with maximum QL @ 3GHz for

L = 5nH

is higher and the speci�ed inductance lower, the optimal QL is higher for a given

geometry when compared to the previous example.

6.2.3 Maximum QL for L = 5nH with dout = 300�m

Figure 6.4 compares the maximum QL achieved at the various spiral geometries

for a 5nH subject to the constraint that the maximum outer diamter be 300�m.

Table 6.3 summarizes the dimensions of the optimum spirals. The addition of the

Layout dout davg w s n �

(�m) (�m) (�m) (�m) n �

Square 300 229 17.6 2 3.75 0.31

Hexagonal 300 229 16.2 2 4.00 0.31

Octagonal 300 230 16.1 2 4.00 0.31

Circular 300 232 15.5 2 4.00 0.29

Table 6.3: Dimensions of inductors with maximum QL for L = 5nH with dout =

300�m

area constraint permits us to compare the maximum QL achievable by the various

geometries for a �xed e�ective chip area. Now, the QL of the circular spiral is

larger than the square spiral by � 10% at the (�xed) frequency of interest. Note

however, that the circular spiral reaches its maximum QL at a higher frequency than
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Figure 6.4: Comparison of maximum QL for L = 5nH with dout = 300�m
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the square one. This observation is consistent with the results of the previous two

examples.

6.3 Bandwidth Extension in Broadband Circuits

Although inductors are commonly associated with narrowband circuits, they are

useful in broadband circuits as well. In this section we examine how an inductor

can be used to enhance the bandwidth of a simple ampli�er. We then study how

an on-chip inductor can be designed to optimize the performance of this broadband

ampli�er.

6.3.1 Shunt-peaked Ampli�cation

We illustrate the use of inductors for extending the bandwidth of broadband circuits

by considering the simple common source ampli�er illustrated in �gure 6.5(a). For

simplicity, we assume that the small signal frequency response of this ampli�er is

dominated by the output pole whose value is determined solely by load resistance,

R, and the load capacitance, C (�gure 6.5(b)):

vout

vin
(!) =

gmR

1 + j!RC
: (6.6)

The introduction of an inductance, L, in series with the load resistance alters

the frequency response of the ampli�er (�gure 6.5(c)). This technique, called shunt-

peaking, enhances the bandwidth of the ampli�er by transforming the frequency

response from that of a single pole to one with two poles and a zero ( �gure 6.5(d))):

vout

vin
(!) =

gm(R + j!L)

1 + j!RC � !2LC
(6.7)

The poles may or may not be complex (although, they are complex for practical cases

of bandwidth extension). The zero is determined solely by the L=R time constant,

and is primarily responsible for the bandwidth enhancement.
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Figure 6.5: Shunt-peaking in a common source ampli�er. (a) Simple common source

ampli�er, and (b) its equivalent small signal model. (c) Common source ampli�er

with shunt peaking and (d) its equivalent small signal model.
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Factor (m) Normalized !3dB Response

0 1:00 No shunt peaking

0:32 1:60 Optimum group delay

0:41 1:72 Maximally 
at

0:71 1:85 Maximum bandwidth

Table 6.4: Benchmarks for shunt peaking

The frequency response of the shunt peaked ampli�er is characterized by the ratio

of the L=R and RC time constants. This ratio is denoted by m where L = mR2C.

Figure 6.6 illustrates the frequency response of the shunt peaked ampli�er for various

values of m. The frequency and magnitude axes have been normalized so that the

low frequency gain is unity and so that the 3dB bandwidth for the case with no

shunt peaking (m = 0) is unity (RC = 1). The frequency response is plotted for the

values of m listed in table 6.4 [34]. As expected, the 3dB bandwidth increases as m

increases. The maximum bandwidth is obtained when m = 0:71 and yields an 85%

improvement in bandwidth. However, as can be clearly seen in the magnitude plot,

this comes at the cost of signi�cant gain peaking. A maximally 
at response may

be obtained for m = 0:41 with a still impressive bandwidth improvement of 72%.

Another interesting case occurs when m = 0:32. As seen in the phase plot, this

best approximates a linear phase response up to the 3dB bandwidth, which is 60%

higher than the case without shunt peaking. This case is called the `optimum group

delay case' and is desirable for optimizing pulse �delity in broadband systems that

transmit digital signals.

The next section will explore how on-chip inductors can be optimized for use in

shunt-peaked ampli�ers.

6.3.2 On-Chip Shunt-Peaking

The non-idealities of on-chip inductors present several challenges for implementing

shunt-peaked ampli�ers on-chip. The biggest issue is the reduction in bandwidth
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Figure 6.6: Frequency response of shunt-peaked cases tabulated in table 6.4.
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Figure 6.7: Shunt-peaking with optimized on-chip inductor
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improvement because of the additional parasitic capacitance introduced by the in-

ductor. Figure 6.7 illustrates how this capacitance can be minimized by paritioning

the total load resistance, R, between the inductor's series resistance (Rs) and the

external resistance, which now takes on the value of (R � Rs). Since the series

resistance is now part of the load resistance, the quality factor of the inductor is

largely irrelevant and therefore the inductor's turn width, w, can be made small to

permit the desired inductance to be realized while minimizing the spiral area and

capacitance. In this case, the minimum w is determined in part by current density

limitations as the transistor current also 
ows through the inductor. The minimum

turn spacing, s, is usually set by lithography limitations.

The desired inductance is now a function of both the transistor's and inductor's

parasitics as well as the load capacitance and external resistance. Thus the opti-

mization of on-chip shunt-peaking requires the simultaneous optimization of passive

and active components. This scenario accentuates the limitations of using a �eld

solver for modeling the inductor. Even if the �eld solver contains a general purpose

optimization routine, it serves no use as the performance parameters of the inductor

alone (such as QL) cannot specify the optimization goal. Therefore, several itera-

tions would be needed (each requiring an interface between the �eld solver and the

circuit simulator), before an acceptable design could be obtained.

On the other hand, a lumped circuit model (with analytical expressions for all

the elements in terms of the spiral's geometrical parameters and process parameters)

can be easily incorporated into a circuit simulator and thereby provide a way for the

designer to optimize the entire circuit. Thus the inductance expressions discussed

in chapter 4 serve as a valuable design tool when combined with the lumped circuit

model described in chapter 2.

The use of on-chip shunt peaking is attractive for a variety of broadband ap-

plications as it gives better performance with no additional power dissipation. Ap-

pendix C illustrates how optimized on-chip spiral inductors can be used as shunt-

peaking elements to increase the transimpedance of a preampli�er intended as the

front-end of a gigabit optical receiver.
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6.4 Optimization via Geometric Programming

Although the availability of simple inductance expressions and lumped models al-

lows engineers to design and optimize inductor circuits in a circuit environment

such as SPICE, this process can be time consuming. The main reason is that CAD

tools built around circuit solvers employ general purpose optimization tools that are

slow. Furthermore, these tools can usually identify only local optima. Typically,

most designers do variable sweeps over multiple dimensions (guided by prior design

knowledge and insight) to arrive at an acceptable design. In such cases, the number

of iterations increases exponentially with the number of variables. Considering that

a planar spiral inductor has four geometrical parameters, it is clear that the simul-

taneous optimization of active and passive components can only be carried out for

circuits with a couple of transistors and inductors.

This section introduces an e�cient method for the optimal design and synthesis

of RF CMOS inductor circuits. The method is based on geometric programming.

This method is attractive as it quickly generates a design that is globally optimal

for a given set of speci�cations and constraints. Moreover, when no solution exists

for a problem, this method unambiguously declares infeasibility.

6.4.1 Geometric Programming

Let f be a real-valued function of n real, positive variables x1; x2; : : : ; xn. It is called

a posynomial function if it has the form

f(x1; : : : ; xn) =

tX
k=1

c
k
x�1k1 x�2k2 � � �x�nk

n

where c
j
� 0 and �

ij
2 R. When t = 1, f is called a monomial function. Thus,

for example, 0:7 + 2x1=x
2
3 + x0:32 is posynomial and 2:3(x1=x2)

1:5 is a monomial.

Posynomials are closed under sums, products, and nonnegative scaling.
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A geometric program (GP) ) has the form

minimize f0(x)

subject to f
i
(x) � 1; i = 1; 2; : : : ; m;

g
i
(x) = 1; i = 1; 2; : : : ; p;

x
i
> 0; i = 1; 2; : : : ; n;

(6.8)

where f
i
are posynomial functions and g

i
are monomial functions. If f is a posyn-

omial and g is a monomial, then the constraint f(x) � g(x) can be expressed as

f(x)=g(x) � 1 (since f=g is posynomial). From closure under non-negativity, con-

straints of the form f(x) � a, where a > 0 can also be used. Similarly, if g1 and

g2 are both monomial functions, the constraint g1(x) = g2(x) can be expressed as

g1(x)=g2(x) = 1 (since g1=g2 is monomial).

The key to solving GPs is a change of variables that converts the posynomial

objective and constraint functions into convex functions of the new variables. We

de�ne new variables y
i
= logx

i
, and take the logarithm of a posynomial f to get

h(y) = log (f (ey1 ; : : : ; eyn)) = log

 
tX
k

ea
T

k
y+bk

!

where aT
k
= [�1k � � ��nk

] and b
k
= log c

k
. It can be shown that h is a convex function

of y. This transformation converts the standard geometric program (6.8) into the

convex optimization program:

minimize log f0(e
y1; : : : ; eyn)

subject to log f
i
(ey1 ; : : : ; eyn) � 0; i = 1; : : : ; m

log g
i
(ey1 ; : : : ; eyn) = 0; i = 1; : : : ; p;

(6.9)

which is called the convex form of the geometric program. Even though this problem

is highly nonlinear, it can be solved globally and very e�ciently by recently developed

interior-point methods [39].

For our purposes, the most important feature of geometric programs is that they

can be globally solved with great e�ciency. Such solution algorithms also determine
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whether the problem is infeasible. Also, the starting point for the optimization

algorithm does not have any e�ect on the �nal solution; indeed, an initial starting

point or design is completely unnecessary.

Many circuit problems may be posed as geometric programs [28, 40]. In particu-

lar, the design speci�cations of inductor circuits can be formulated in a way suitable

for geometric programming [41, 42]. The application of geometric programming in

analog circuit design is discussed in detail in the Ph.D. thesis of Maria del Mar

Hershenson [40].

6.5 Summary

This chapter described how inductors can be optimally designed for use in inductor

circuits. Section 6.1 introduces common performance measures used to characterize

on-chip inductors. Various quality factor de�nitions were presented and the appro-

priate conditions for their use was identi�ed. The optimum performance achieved by

square, hexagonal, octagonal and circular inductors were compared. Techniques for

extending the bandwidth of broadband circuits using inductors as shunt-peaking el-

ements were presented. Particular attention was paid to the optimization of on-chip

inductors used for shunt-peaking. Finally, a new and e�cient method for optimizing

inductors, based on geometric programming was introduced.



Chapter 7

Magnetic Coupling from Spiral to

Substrate

The performance of an on-chip spiral inductor is degraded by resistive, capacitive

and inductive coupling to a conductive substrate. The resistive and capacitive cou-

pling mechanisms have been well understood and modeled as discussed in chapter 2.

Furthermore, the patterned ground shield (PGS) can be used to eliminate these ef-

fects. On the other hand, the magnetic coupling to the substrate has not been well

understood. Although this mechanism is known to limit the performance of induc-

tors built on the high conductivity substrate processes typical of modern CMOS, no

simple models exist to provide design guidance.

In this chapter, we will study how magnetic coupling from an on-chip spiral to

the silicon substrate a�ects the performance of an inductor. Section 7.1 develops a

current sheet based approach for modeling the magnetic coupling to the substrate.

This model provides valuable design insight and quanti�es the degradation in induc-

tor performance as a function of frequency, substrate conductivity, and the spiral

and process parameters. The predictions of this model agree well with experimental

results as demonstrated in section 7.2.
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Rs

Ls

Msub

Rsub

Lsub

Figure 7.1: Circuit model of inductor with substrate magnetic coupling

7.1 Modeling of Substrate Magnetic Coupling

The e�ect of substrate magnetic coupling on an inductor is modeled with a trans-

former as indicated in Figure 7.1. Rs and Ls are the series resistance and inductance

of the spiral inductor, Msub is the mutual inductance between the spiral and sub-

strate, and Rsub and Lsub are the substrate resistance and inductance associated

with eddy current 
ow. Thus, the equivalent impedance between the two ports of

the inductance is Z(!) where

Z(!) = Rs + j!Ls +

�
!2M2

sub

Rsub + j!Lsub

�
: (7.1)

The substrate coupling is therefore re
ected at the terminals of the inductor as

an increase in the series resistance and a decrease in the inductance, both of which

degrade performance. Figure 7.1 shows the equivalent one-port model. The e�ective

resistance, Re� , and e�ective inductance, Le� , are:

Re� = Rs +Rsub

�
!2M2

sub

R2
sub + !2L2

sub

�
(7.2)
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Re� = Rs + Rsub

�
!
2
M

2
sub

R
2
sub+!

2
L
2
sub

�
Le� = Ls � Lsub

�
!
2
M

2
sub

R
2
sub+!

2
L
2
sub

�

Figure 7.2: Equivalent circuit model

Le� = Ls � Lsub

�
!2M2

sub

R2
sub + !2L2

sub

�
(7.3)

Thus, magnetic coupling to the substrate reduces the inductance and increases the

series resistance.

7.1.1 Simplifying Approximations

Clearly, a small Msub, large Rsub and large Lsub are desired to minimize the adverse

e�ects of magnetic coupling to the substrate. Unfortunately, the distributed, three

dimensional nature of the substrate makes it di�cult to accurately modelMsub, Rsub

and Lsub. This di�culty is exacerbated by the fact that the substrate conductiv-

ity can change by a factor of 2-3 or more from process variations and with depth.

Furthermore, temperature variations can change the substrate conductivity by al-

most an order of magnitude. This section �rst presents a qualitative overview of the

variables and then simpli�es the problem by using approximations that are valid for

current silicon substrates.

As one may expect, Msub and Rsub are dependent on the skin depth of the

substrate as well as the parameters of the spiral. The toughest parameter to model

is Lsub. Since the maximum substrate conductivity is � 104Sm�1, and therefore

three orders of magnitude smaller than that of metals, it is safe to assume that
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the resistive term (Rsub) associated with the eddy currents completely dominates

the corresponding inductive term (Lsub) for frequencies up to 10GHz. Since these

terms are in series, the denominator of equation 7.1 may be approximated by Rsub+

j!Lsub � Rsub, yielding simpler expressions for the elements in �gure 7.2:

Re� � Rs +

�
!2M2

sub

Rsub

�
(7.4)

Le� � Ls (7.5)

Thus the primary e�ect of magnetic substrate coupling is an increase in the series

resistance. The following sections develop approximate expressions for Msub and

Rsub permitting Re� to be quanti�ed.

7.1.2 E�ective Substrate Skin Depth

The skin depth of the substrate, �sub, decreases as the frequency and substrate

conductivity increase:

�sub =

r
2

�!�sub
: (7.6)

Equation 7.6 de�nes the skin depth of an in�nitely thick substrate. For a substrate

with �nite thickness, tsub, the e�ective skin depth, dsub, is given by:

dsub = �sub

�
1� e

(
�tsub

�
sub

)

�
: (7.7)

The e�ective depth approaches �
sub

when the skin depth is much smaller than the

substrate thickness. This is the typical operating regime at gigahertz frequencies

for epi-processes, as typical silicon substrate thicknesses range from 300 � 700�m.

For example, modern epitaxial processes have conductivities of 104Sm�1 giving a

�sub of 160�m at 1GHz and 70�m at 5GHz. For a substrate thickness of 300�m,

the corresponding e�ective skin depth is 135�m at 1GHz and 69�m at 5GHz. Since
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Msub and Rsub become signi�cant as dsub becomes small, we may safely assume that

dsub � �sub in the region of interest.

For bulk processes, the substrate conductivity is typically very low (� 10Sm�1)

and therefore the e�ective skin depth must be used. However in this case, the

magnetic coupling to the substrate can be neglected precisely because of this low

conductivity.

The next section will consider how Msub and Rsub can be estimated for an epi-

process.

7.1.3 Computation of Msub and Rsub

Figure 7.3 illustrates the cross section of a spiral inductor on an epi-process. The

epi-layer is typically 3� 10�m thick and has very low conductivity (10� 100Sm�1)

and therefore negligible eddy current 
ow. The substrate layer is highly conductive

(103 � 104Sm�1) and can support large eddy currents.

The exact computation of the eddy current density is di�cult. We simplify

the problem by treating the spiral inductor as an equivalent current sheet and by

assuming that the substrate eddy currents 
ow in a current block directly below the

current sheet. Figure 7.4 illustrates this approximation. The current density in the

substrate block decreases with increasing depth because of two e�ects:

1. the skin e�ect in the substrate causes the induced current density to roll o�

exponentially with increasing depth

2. the induced currents depend on the magnetic �eld of the spiral inductor. This

magnetic �eld decays as the distance from the spiral increases

We assume that the eddy current density at a given depth is proportional to the

product of:

1. the exponential decay due to the substrate skin e�ect so that:

Isub;fact1(zsub) /
1

�sub
exp

�
�zsub
�sub

�
(7.8)
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Figure 7.3: Cross section of an epi-process
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Figure 7.4: Current sheet and current block approximations
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and

2. the mutual inductance between the spiral's equivalent current sheet and an

equivalent current sheet placed at depth zsub:

Isub;fact12(zsub) /Msubsheet(zsub): (7.9)

The factor Msubsheet(zsub) is calculated using the theory developed for current

sheets in chapter 3. Note that Msubsheet(zsub) is dependent on the parameters of the

spiral inductor (which for the current sheet approximation are the number of turns,

n, the average diameter, davg and the �ll factor, �) as well as the total distance

of separation, which is equal to (tm + tox + tepi + zsub). The total e�ective mutual

inductance between the spiral and the substrate, Msub, is obtained by taking a

weighted average of Msubsheet(zsub) over all values of zsub:

Msub �

R
tsub

0
Msubsheet(zsub)Isub;fact1(zsub)Isub;fact2(zsub)dzR

tsub

0
Isub;fact1(zsub)Isub;fact2(zsub)dz

: (7.10)

Msub increases as tm,tox,tepi, �sub and � decrease and as davg and n increase. An ap-

proximate expression forMsub is obtained by evaluating the integrals in equation 7.10

over a wide design space and data-�tting:

Msub �
�ndavg

2�
��0:2z�0:3n;insz

�0:2
n;sub: (7.11)

In this expression, zn;ins = (tm + tox + tepi)=davg and zn;sub = �sub=davg. Thus, zn;ins

is the ratio of the total thickness of the insulating layers to the spiral's average

diameter and zn;sub is the ratio of the substrate skin depth to the spiral's average

diameter. This expression has a worst case of error of 10% with respect to the value

predicted by equation 7.10.

The resistance Rsub is dependent on the e�ective length, width and thickness of

the substrate as well as the conductivity of the substrate. The e�ective length and

width for the current block approximation are 4davg and �davg, respectively. The

e�ective thickness is obtained from considering the current density distribution as
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a function of depth. Applying the same assumption used in the calculation of Msub

(namely that the current distribution is proportional to Isub;fact1(zsub)Isub;fact2(zsub)),

we obtain an approximate expression for the e�ective thickness:

tsub;e� � e�1davg�
0:1z0:05n;insz

0:5
n;sub: (7.12)

Thus, Rsub evaluates to:

Rsub �
lengthsub;e�

�subwsub;e�tsub;e�
�

4e

�subdavg
��1:1z�0:05n;ins z

�0:5
n;sub: (7.13)

As one expects, the e�ective resistance of the substrate decreases as the �, zn;ins and

zn;sub increases and as davg decreases.

7.1.4 Increase in Resistance Due to Magnetic Coupling to

the Substrate

The equivalent re
ected resistance due to magnetic coupling to the substrate is

obtained by combining equations 7.11 and 7.13:

Req;re
sub �
�
!2M2

sub

Rsub

�
�

�sub

4e

�!�n
2�

�2
d3avg�

0:7z�0:55n;ins z
0:1
n;sub: (7.14)

Since this expression is obtained using several approximations, its accuracy is lim-

ited. Nevertheless, the expression provides valuable design insight as it identi�es

the relative e�ect of inductor and process parameters on the energy coupled to the

substrate. In particular, note that the re
ected resistance is proportional to the

cube of the average diameter, the square of the frequency and to the square of the

number of turns. We pointed out earlier that magnetic coupling from the substrate

to the spiral can be thought of as a transformer with the spiral in the primary, the

substrate resistance, Rsub, as the load of the secondary and the substrate-to-spiral

mutual inductance, Msub, as the mutual inductance between the primary and the

secondary. This suggests that the load of the secondary, when re
ected to the pri-

mary, looks like a resistance, Req;re
sub, that is equal to the square of the impedance
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of Msub divided by Rsub. Since the impedance of Msub is simply !Msub, we expect

Req;re
sub to be proportional to !
2. Furthermore, since the mutual inductance Msub,

just like the spiral's self inductance, is proportional to the spiral's average diame-

ter, davg, and the substrate resistance is inversely proportional to davg, the re
ected

impedance Req;re
sub is proportional to the cube of davg.

7.2 Measurements

The predictions of the substrate model were compared to measurement results for a

0:5�m CMOS epi-process with a 7�m epi layer with a conductivity of 33Sm�1 and a

bulk conductivity of 104Sm�1. The spirals were designed for use in a GPS receiver

so that the frequency of interest was centered at 1:575GHz. A PGS was placed

beneath each spiral so that only magnetic coupling to the substrate would degrade

the e�ective resistance. The results are displayed for four spirals in �gures 7.5- 7.8.

In each case, the top �gure plots Rs, Req;re
sub and Re� versus frequency. The

resistance plots clearly show that the e�ective series resistance is dominated by the

magnetic coupling to the substrate at high frequencies.

The lower �gure compares the measured and predicted inductor quality factor

(QL) when only Rs and Re� are individually considered. The predictions based on

Re� show better agreement with measurements (compared to the predictions based

on Rs) for all four spirals con�rming the importance of modeling magnetic coupling

to the substrate.

7.3 Summary

This chapter studied the e�ect of magnetic coupling from an on-chip spiral to the

substrate. A simple model was developed to estimate this e�ect's impact on per-

formance. While the inductance is not a�ected signi�cantly, this e�ect dominates

the e�ective series resistance at high frequencies for modern CMOS-epi processes

whose bulk substrate conductivities are 103�104Sm�1. Measurements indicate that

the simple model correctly estimates the increase in the e�ective series resistance
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to within 20%. More important, the model provides design insight on how a spi-

ral could be optimized so as to minimize degradation to magnetic coupling to the

substrate.

As higlighted during the discussion of equation 7.14, the resistive loss term arising

from magnetic coupling to the substrate is proportional the cube of the average

diameter, davg. Clearly, minimizing the average diameter is paramount. However,

this reduction in davg should not a�ect the value of the inductance nor the series

resistance of the spiral's conductor. One possible solution is to use a series connected

stack of spirals to achieve a higher inductance density thanks to the boost provided

by the mutual inductance between the stacked spirals. Chapter 5 discussed stacked

spiral con�gurations and pointed out that the maximum achievable mutual coupling

coe�cient, k, is around 0:9. This corresponds to an increase in inductance density of

2(1+k) = 3:6 if one uses two stacked spirals with maximum overlap. Assuming that

the two spirals are built on metal layers of equal conductivities, this would result in

a factor of two increase in the interconnect's series resistance. For a �xed inductance

and interconnect series resistance, the area of the stacked spiral is a factor of � 1:9

smaller than that of a single layer implementation. Therefore its davg is a factor of

�
p
1:9 smaller than that of a single layer spiral. This suggests that the increase in

resistance due to magnetic coupling to the substrate can be reduced by a factor of

� 2�3 by using two layer stacked spirals, implying signi�cant Q boosts are possible.

The drawback of the stacked spiral is the reduction in the self-resonant frequency

due to the increase in parasitic capacitance. While the dominant capacitance of a

single layer implementation is the spiral-to-substrate capacitance, the stacked spiral's

capacitance is typically dominated by the capacitance between the stacked spirals.

Furthermore, the capacitance density from the spiral-to-substrate increases because

the use of multiple layers reduces the distance between the spiral and the substrate.

This increase in capacitance density is partially o�set by the reduction in the area

of a stacked spiral. It is this reduction in self-resonant frequency that limits the

optimum number of stacked spirals to two or three. More work is needed to quantify

and compare the performance improvement a�orded by stacked spirals.



148 Chapter 7: Magnetic Coupling from Spiral to Substrate



Chapter 8

Conclusion

This thesis has investigated the design and modeling of on-chip spiral inductors and

transformers. This chapter summarizes the major contributions of this work and

identi�es areas that merit future study.

8.1 Contributions

� A current sheet approach was developed that permits simple, accurate expres-

sions to be derived for the inductance of commonly used conductor geometries.

� Simple, accurate expressions were derived for the inductance of on-chip planar

spirals. These expressions, which exhibit typical errors of� 2�4% with respect

to simulations of �eld solvers and measured data, are easily incorporated into

existing lumped circuit inductor models.

� Techniques for calculating the mutual inductance and the mutual coupling

coe�cient of single layer and two-layer planar on-chip transformers were pre-

sented. These techniques, based on the current sheet approach and the induc-

tance expressions mentioned above, yield simple, accurate, analytical expres-

sions for the mutual inductance and mutual coupling coe�cient.

149
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� A general approach to modeling planar, on-chip transformers using a scalable,

lumped circuit model was studied for both single layer and multiple layer imple-

mentations. The predictions of these models agree well with measurements.

The lumped circuit transformer models provide valuable design insight and

can easily be incorporated into a standard circuit design environment (such as

SPICE )

� The simple inductance expressions were applied in circuit design problems to

quickly and easily evaluate the optimum inductor designs. The availability

of these expressions allows the user to simultaneously optimize both passive

and active components, thereby facilitating the design of a variety inductor

circuits including low-noise ampli�ers (LNAs), oscillators, matching networks

and �lters.

� An area and power e�cient technique was developed for extending the band-

width of broadband ampli�ers by using optimized on-chip inductors as shunt-

peaking elements. This technique was applied to the implementation of a

transimpedance preampli�er designed as the front-end of a gigabit optical com-

munication system. This preampli�er is the �rst CMOS implementation that

uses planar spiral inductors as shunt-peaking elements.

� Magnetic coupling between a planar spiral inductor and the substrate was

studied. A simpli�ed current sheet based approximation yielded valuable in-

sight on the nature of this interaction and identi�ed the critical geometrical

and process parameters associated with this coupling. A simple, approximate

expression was developed to provide design guidelines. This work serves as a

good foundation for incorporating magnetic coupling to the substrate into a

lumped circuit inductor model.

While the current sheet approach forms the theoretical basis for this thesis, the

accurate inductance expressions and transformer models presented are valuable de-

sign tools for any practicing circuit designer. All in all, the contributions of this work
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substantially reduce the time required to optimize monolithic inductor circuits, by

eliminating the need for a �eld solver during the initial design stages.

8.2 Future Work

This sections identi�es topics covered in this thesis which merit more detailed study.

8.2.1 Magnetic Coupling to the Substrate

Chapter 7 investigated the e�ect of magnetic coupling between a spiral inductor and

a lossy substrate. This study provided valuable design insight and identi�ed the

major design parameters that in
uence the severity of this coupling. Simple expres-

sions for estimating the mutual inductance between the spiral and substrate, the

eddy current resistance of the substrate and the associated increase in the e�ective

series resistance of the spiral were obtained through this treatment.

Magnetic coupling to substrate is a serious concern in modern sub-micron CMOS

epitaxial processes which use high conductivity bulk substrates. The robust opti-

mization of inductor circuits in such processes can be accomplished only if a lumped

inductor model accounts for magnetic substrate coupling. The work in this thesis

suggests that this e�ect can be accounted for by an additional term in the series re-

sistance of lumped circuit model. However, more work is needed to obtain a simple

accurate expression that quanti�es this additional term.

8.2.2 Nonuniform Current Distributions

The current sheet approach assumes that the current density in all the conductors

is uniform. This assumption does not hold at high frequencies for a system of

conductors. First, the skin e�ect causes more current to 
ow close to the surface of

the conductors. Second, the proximity e�ect produces an uneven current distribution

in multiple closely-spaced parallel conductors.

Although nonuniform current distributions have only a second-order e�ect on the

inductance of planar spirals, they have a �rst order impact on the series resistance.
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The lumped circuit model described in chapter 2 uses a very simple expression to

model the skin e�ect. The proximity e�ect is not modeled at all. Further study is

required to understand the impact of these mechanisms, especially in the presence

of a conductive substrate.

8.3 Summary

This thesis has contributed to a better understanding of on-chip spiral inductors

and transformers. This work has provided accurate expressions, new models and

engineering insight, all of which facilitate the design and optimization of monolithic

inductor and transformer circuits.



Appendix A

Inductances of Current Sheets

In this appendix, we derive simple expressions for the self and mutual inductances

of various current sheet geometries. These geometries, in addition to being useful in

their own light, also serve as good approximations to more complicated structures

such as square spirals.

A.1 Rectangular Current Sheet

We wish to compute the self inductance of a rectangular current sheet of length,

l, and width, w, with w < l. We approach this problem by considering two line

�laments that are spaced at distances x1 and x2 from the center of the sheet as

illustrated in Figure A.1. Hence, x1 and x2 are variables that can take any values

between �w

2
and w

2
. We start o� with the simpli�ed equation (accurate to within

5% for R < l) that was introduced in chapter 3 for the mutual inductance between

parallel straight line �laments of equal length:

M �
�l

2�

�
ln(2l)� ln(R)� 1 +

R

l
�

R2

4l2

�
; (A.1)
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Figure A.1: Rectangular current sheet

where l is the length of each line, and R is the distance between the two lines. In

our case, R = x1 + x2 so that:

M �
�l

2�

�
ln(2l)� ln jx1 + x2j � 1 +

jx1 + x2j
l

�
(x1 + x2)

2

4l2

�
: (A.2)

The self inductance of the current sheet is obtained by obtaining the mean values of

the terms involving the variables x1 and x2 The term involving the natural logarithm

may be replaced by the GMD of a straight line of length, w:

ln jx1 + x2j = lnGMDline

= lnw � 1:5:

(A.3)

The linear term may be replaced by the AMD of a straight line of length, w:

jx1 + x2j = AMDline

=
w

3
:

(A.4)

The quadratic term may be replaced by the AMSD of a straight line of length, w:

(x1 + x2)2 = AMSDline
2

=
w2

6

(A.5)
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Figure A.2: Parallel rectangular current sheets

Hence, the self inductance of the the rectangular current sheet is:

Lrectsheet �
�l

2�

�
ln

�
2l

w

�
+ 0:5 +

w

3l
�

w2

24l2

�
: (A.6)

A.2 Parallel Rectangular Current Sheets

We wish to compute the mutual inductance between two identical parallel rectangu-

lar current sheets, each of length, l, and width, w. The two sheets are separated by

a center-to-center distance that is the same as each sheet's length, l. We approach

this problem by considering two line �laments that are spaced at distances x1 and

x2 from the centers of each sheet (see �gure A.2). Hence, x1 and x2 are variables

that can take any values between �w

2
and w

2
. Since w < l, x1 and x2 are restricted

to values less than l

2
. We begin with the exact expression for the mutual inductance
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between parallel straight lines of equal length:

M =
�

2�

2
4l ln

0
@
vuut � l

R

�2

+ 1

!
+
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where l is the length of each line, and R is the distance between the two lines so

that R = l + x1 + x2. We note that (x1 + x2) < l and write the mutual inductance

in terms of the quantity (x1+x2)

l

:

M �
�l

2�

h
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p
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(A.8)

The mutual inductance between the current sheets is derived by obtaining the mean

values of the terms involving the variables x1 and x2. The term involving the natural

logarithm may be replaced by the GMD between two equal lines of length, w:

ln jl + x1 + x2j = lnGMDline

� ln l �
w2

12l2
:

(A.9)

The linear term evaluates to zero as both x1 and x2 are zero mean variables:

x1 + x2 = 0: (A.10)

The mean of the quadratic term may be evaluated by noting that the calculation

matches the de�nition for the AMSD of a line of length, w, so that:

(x1 + x2)2 = AMSDline
2

=
w2

6
:

(A.11)
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Hence, the mutual inductance between the two rectangular current sheet is:
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A.3 Trapezoidal Current Sheet

We wish to calculate the self inductance of the trapezoidal current sheet illustrated

in �gure A.3. This current sheet is completely speci�ed by the average length, l,

and width, w, with w < l. As shown in the �gure, we approach this problem by

considering two line �laments that are spaced at distances x1 and x2 from the center

of the sheet. The variables x1 and x2 can take any values between �w

2
and w

2
.

Noting that the lengths of the �lament are not equal, we begin with expressions for

the mutual inductance between two parallel straight lines of unequal length:

M =
�
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2
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(A.13)

For the geometry under consideration l1 = l + 2x1, l2 = l + 2x2 and R = x1 � x2.

Hence (l1+l2)

2
= (l + x1 + x2) and R = jl1�l2j

2
= jx1 � x2j. Once again, (x1 � x2) < l,

allowing us to write the expression for the mutual inductance as a series expansion

in terms of (x1+x2)

l

and (x1�x2)

l

:
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The self inductance of the current sheet is obtained by evaluating the mean values

of the terms involving the variables (x1 + x2) and jx1 + x2j. The term involving the

natural logarithm may be replaced by the GMD of a straight line of length w:

ln jx1 � x2j = GMDline

= lnw � 1:5:

(A.15)

The linear term may be replaced by the AMD of a straight line of length w:

jx1 + x2j = AMDline

=
w

3
:

(A.16)

Both quadratic terms may be replaced by the AMSD of a straight line of length w:

(x1 + x2)2 = (x1 � x2)2 = AMSDline
2

=
w2

6
:

(A.17)
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Hence, the self inductance of the trapezoidal current sheet is:
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A.4 Parallel Trapezoidal Current Sheets

Figure A.4 shows two identical parallel trapezoidal current sheets of average length,

l, and width, w that are separated by center-to-center distance, l. As shown in the

�gure, we approach this problem by considering two line �laments that are spaced

at distances x1 and x2 from each of the centers of the sheets. The variables x1 and

x2 can take any values between �w

2
and w

2
. Once again we use the expression for

the mutual inductance between two parallel straight lines of unequal length:
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For the geometry under consideration, l1 = l+2x1, l2 = l+2x2 and R = l+x1+x2.

Hence (l1+l2)

2
= R = (l + x1 + x2) and

jl1�l2j

2
= jx1 � x2j. Noting that (x1 � x2) < l,

we write the expression for the mutual inductance as a series expansion in terms of
(x1+x2)

l

and (x1�x2)

l

:

M �
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Figure A.4: Parallel trapezoidal current sheets

The mutual inductance between the current sheets is obtained by determining the

mean values of the terms involving the variables (x1 + x2) and jx1 + x2j. The linear

term evaluates to zero as both x1 and x2 are zero mean variables:

x1 + x2 = 0: (A.21)

The mean of the quadratic term may be evaluated by noting that the calculation

matches the de�nition of the AMSD of a straight line of length, w, so that:

(x1 � x2)2 = AMSDrectsheet
2

=
w2

6
:

(A.22)
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Hence, the mutual inductance between the two trapezoidal current sheets is:
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Appendix B

Inductances of Planar Circular

Geometries

In this appendix, we will derive simple expressions for the self and mutual induc-

tances for circular �laments, circular current sheets and circular rings.

B.1 Planar Concentric Circular Filaments

Let us consider the mutual inductance between two concentric circular �laments of

radii r1 and r1 as illustrated in �gure B.1. We begin with the Neumann double

integral for the mutual inductance between two current elements:

M =
�

4�

I I
1

R
dl1:dl2; (B.1)

where dl
1
and dl

2
are the vector current elements and R is the distance between

the elements. The distance between the two elements on the circles is given by:

R =

q
r21 + r22 � 2r1r2 cos �: (B.2)
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Figure B.1: Mutual inductance between circular �laments
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By circular symmetry, the expression for the mutual inductance reduces to a single

integral:

M =
�

4

Z 2�

0

2r1r2 cos �p
r21 + r22 � 2r1r2 cos �

d�: (B.3)

This may be rewritten as:
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(B.4)

Using the average diameter, d = (r1 + r2), and the ratio of the separation to the

average diameter, � = (r1�r2)

d

, we recast this integral as:

M =
�d

2
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1� (1� �2) sin2 �

d�

#
� �d

"Z
�=2

0

q
1� (1� �2) sin2 � d�

#
:

(B.5)

Noting that the integrals are complete elliptic integrals of the �rst and second kind,

we obtain:

Mcirc�l =
�d

2
[(2�m)K(m)� 2E(m)] ; (B.6)

where K(m) is the complete elliptic integral of the �rst kind and E(m) is the com-

plete elliptic integral of the second kind, with argument m = (1 � �2). A simpler,

more insightful expression may be obtained via series expansion in terms of �. This

approach yields an expression that resembles the approximate expression obtained

for the mutual inductance between two straight, parallel lines:

Mcirc�l �
�d

2

�
ln

�
1

�

�
� 0:6 + 0:7�2

�
: (B.7)
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Figure B.2: Mutual inductance between circular �laments

This expression is accurate to within 5% for � < 0:6 and is good enough for most

practical cases.

B.2 Self Inductance of a Circular Sheet

Figure B.2 shows a circular current sheet of average diameter, d, and width, w. We

approach this problem by considering the mutual inductance between two circular

�laments of diameters (d+2x1) and (d� 2x2). The spacing between these �laments

is jx1 + x2j. The variables x1 and x2 may each take values ranging from �w=2 to
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w=2. We use the approximate expression (equation B.7) for circular �laments that

was derived in section B.1:

M �
�(d+ x1 � x2)

2

"
ln

�
(d+ x1 � x2)

jx1 + x2j

�
� 0:6 + 0:7

�
jx1 + x2j

(d+ x1 � x2)

�2
#
: (B.8)

The self inductance of the current sheet is obtained by determining the mean val-

ues of the terms involving the variables (d + x1 � x2) and jx1 + x2j. This task is

simpli�ed by using series approximations of the quantities jx1 + x2j and jx1 � x2j.

Such expansions are valid as both these quantities are always less than the average

diameter, d. For our purposes, we only need terms up to the second order:

(d+ x1 � x2) ln (d+ x1 � x2) � d lnd+
w2

12d
: (B.9)

(d+ x1 + x2) ln jx1 � x2j � d(lnw � 1:5): (B.10)

�
jx1 + x2j2

jd+ x1 � x2j

�
�

w2

6d
: (B.11)

The �nal expression is:

Lcircsheet �
�d

2

�
ln

�
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w

�
+ 0:9 + 0:2

w2

d2

�
: (B.12)

B.3 Planar Concentric Current Sheets

Figure B.3 shows two circular concentric current sheets of average diameters d1 and

d2. The sheets have equal width, w, and are separated by a center to center distance,

�d, where d is the mean of the two average diameters (d = 0:5(d1 + d2)). Note that

�d = w + s. Once again, we approach this problem by considering the mutual

inductance between two circular �laments of diameters (d1 + 2x1) and (d2 + 2x2).
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The spacing between these �laments is (�d+ x1� x2). The variables x1 and x2 may

each take values ranging from �w=2 to w=2. Applying equation B.6, we obtain:

Mcirc2sheets =
�(d+ x1 + x2)

2
[(2�m)K(m)� 2E(m)]; (B.13)

where m is a variable in terms of x1 and x2:

m = 1�
(�d+ x1 � x2)

2

(d+ x1 + x2)2
: (B.14)

The overall mutual inductance is computed by using the GMD and AMSD concepts

to estimate the mean value over all values of x1 and x2:

Mcirc2sheets �
�d

2

�
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�
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�
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In this case, the parameter, m, is a constant and is simply given by m = (1 � �2).

An approximate series expansion of this expression, using techniques similar to the

ones used in section B.1, yields:
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Appendix C

Bandwidth Extension using

Optimized On-Chip Inductors

This appendix discusses the design of a monolithic ampli�er that uses on-chip spi-

rals as shunt peaking elements to achieve better performance. The bandwidth

extension technique discussed in chapter 6 is applied in the implementation of a

2:125Gbaud preampli�er that employs a common-gate input stage followed by a

cascoded common-source stage. On-chip shunt-peaking is introduced at the domi-

nant pole to improve the overall system performance, including a 40% increase in

the transimpedance (alternatively, one could state that the bandwidth increase is

around 40% while keeping the transimpedance �xed). This implementation achieves

a 1:6k
 transimpedance and a 0:6�A input referred current noise, while operating

with a photodiode capacitance of 0:6pF. A fully di�erential topology ensures good

substrate and supply noise immunity. The ampli�er, implemented in a triple metal,

single poly, 14GHz fTmax
, 0:5�m CMOS process, dissipates 225mW of which 110mW

is consumed by the 50
 output driver stage. The optimized on-chip inductors con-

sume only 15% of the total area of 0:6mm2.

Section C.1 discusses some system considerations for the application. Section C.2

outlines fundamental limits on the performance of traditional transimpedance am-

pli�er architectures. Section C.3 proposes a topology for circumventing these limits.

Section C.4 discusses the design methodology for incorporating shunt-peaking into

171
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Figure C.1: System overview

transimpedance ampli�ers. Section C.5 discusses the di�erential prototype that was

implemented while section C.6 addresses sensitivity issues. Layout details and exper-

imental measurements are presented in section C.7 which is followed by a summary

in section C.8.

C.1 System Overview

This section illustrates how optimized on-chip spiral inductors can improve the per-

formance of a preampli�er intended for the front-end of a gigabit optical system.

Figure C.1 shows the block diagram of a typical optical communication receiver.

The key performance parameters of such a front-end are bandwidth, sensitivity, sta-

bility and dynamic range. The system's bandwidth and sensitivity are determined

largely by the preampli�er [43, 44, 45, 46]. While a high bandwidth demands a small

input resistance, good sensitivity requires the resistors in the signal path to be large

in order to minimize thermal noise. Thus, the preampli�er is typically implemented

using a transimpedance architecture as it provides a large bandwidth by synthesizing

a small input resistance using a much larger feedback resistor.
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C.2 Transimpedance Limit

Figure C.2 illustrates the main elements of a transimpedance preampli�er. Assuming

that the bandwidth of the ampli�er is set by the input pole, we obtain:

!3dB =
1

RinCin

; (C.1)

where !3dB is the 3dB bandwidth of the circuit, Rin is the input resistance and Cin

is total input capacitance.

The input resistance Rin is given by:

Rin =
Rf

A+ 1
�

Rf

A
(C.2)

where Rf is the feedback resistance and A is the open loop gain of the ampli�er.

The approximate expression is valid when A >> 1.
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The input capacitance Cin is given by :

Cin = Cg + CD; (C.3)

where Cg is the input gate capacitance of the ampli�er and CD is the sum of the

capacitances of the active area of the photodiode as well as associated parasitic

capacitances (arising from bondpads etc.). In GaAs implementations, CD can be

kept small by integrating the photodiode and the preampli�er on the same die. In

such technologies, CD as small as 50fF are common [47]. Silicon bipolar and CMOS

implementations are not so fortunate: a CD of � 300� 600fF is typical.

The gain bandwidth product determines the maximum available gain for a given

bandwidth. Denoting the transition frequency as !T, we relate the gain, A, to the

3dB bandwidth !3dB:

A �
!T

!3dB
: (C.4)

Substituting equations C.2-C.4 in to equation C.1, we obtain a maximum achievable

transimpedance, Rf;max:

Rf;max �
!T

!2
3dB(Cg + CD)

(C.5)

Noting that the transconductance, gm, of the input stage is related to Cg by gm �

!TCg, and that for optimum sensitivity, Cg � CD, we conclude that the maximum

achievable transimpedance is determined by the system bandwidth speci�cation, the

total input capacitance and the process constant, !T.

C.3 Circumventing the Transimpedance Limit

Figure C.3 illustrates a modi�ed preampli�er architecture that circumvents the tran-

simpedance limit. The transimpedance stage is decoupled from the photodiode by a

common-gate stage and the gain-bandwidth product of the transimpedance stage is

enhanced by shunt-peaking. Now, the sensitive feedback node of the transimpedance
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stage is more robust as its poles are not determined by any o�-chip components.

Furthermore, the common-gate stage permits the transistors of the transimpedance

stage to be sized smaller enabling a higher transimpedance to be achieved.

Note that the common-gate stage is not necessary to obtain the bene�ts of shunt-

peaking. If desired, one could connect the photodiode directly to a shunt-peaked

transimpedance stage, an implementation that is particularly attractive for appli-

cations that demand the best achievable sensitivity for a given power. However,

such an approach requires the parasitic impedance of the photodiode to be known

so that the transimpedance stage can be sized for optimal performance [46]. The

introduction of the common-gate stage o�ers an additional degree of 
exibility for

the designer and permits stable operation over a wider range of photo diode capaci-

tances. This is valuable in cases (such as our prototype) where the capacitance of the

photodiode structure is not known in advance. The drawback of the common-gate

source is the degradation in the high frequency noise performance due to the source

junction capacitance of the common-gate transistor, an issue that will be addressed

more in section C.6.
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C.4 Shunt-peaked Transimpedance Stage

Figure C.4 illustrates the shunt-peaked transimpedance stage. The cascode elimi-

nates the bandwidth degradation due to the Miller capacitance of the common-source

stage's gate-drain capacitance. This degradation is particularly signi�cant in CMOS

circuits, where the gate-drain capacitance can be as high as one-third of the gate-

source capacitance. The cascode also enhances the overall gain by increasing the

stage's output impedance.

The dominant pole in the ampli�er occurs at the drain of the cascode transistor.

The bandwidth of the ampli�er is improved by applying shunt-peaking at this node.

The inductor, resistors and transistors are sized for optimum group delay over the

signal bandwidth. The design methodology can be summarized as follows:

1. Design and optimize transimpedance stage for desired signal bandwidth with-

out shunt peaking.

2. Use transistor current and interconnect current density speci�cation to deter-

mine inductor's turn width, w.

3. Determine minimum turn spacing, s, from process speci�cations.

4. Choose number of turns, n, and outer diameter dout to realize optimum L while

minimizing parasitic capacitance and area.

5. Increase the transimpedance resistance, Rf , and the total load resistance, R.

The availability of a lumped inductor model (with analytical expressions for all

elements including the inductance) and the use of geometric programming allows

this entire design and optimization process to be automated so that no iteration is

needed on the part of the designer (see chapter 6 for more details and references).

In this case, the 20nH peaking inductor has an outer diameter of only 180�m. This

inductor has 11:75 turns, a width of 3:2�m, a spacing of 2:1�m, implemented on

the third (top) metal layer with thickness 2:1�m. The shuntpeaking yields a 40%

increase in the transimpedance of this stage (for a �xed signal bandwidth) with no
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additional power dissipation. Alternatively, the shunt peaking could have been used

to increase the signal bandwidth (by � 40% with respect to the unpeaked case) for

a �xed transimpedance.

C.5 Di�erential Implementation

Compared to di�erential architectures, single-ended architectures consume less power,

take up less die area, and exhibit better noise performance (when power consumption

is �xed). However at high frequencies they are susceptible to supply noise and are

plagued by stability problems stemming from parasitic feedback paths. By providing

good common-mode rejection, di�erential architectures circumvent these disadvan-

tages, and are therefore preferred in systems where integration of the analog and

digital functions is the ultimate goal. In keeping with this premise, the architecture

described here is fully di�erential and provides complementary outputs, which is a

necessity given that high-speed digital and clocking circuitry operate in di�erential

mode.

Figure C.5 shows the schematic of the complete prototype preampli�er. The

common-gate (CG) stage is followed by the common-source (CS) transimpedance

stage, whose output feeds a source follower that bu�ers the output driver. The

output driver is only needed for testing purposes and is neither needed nor desired

in a system where the analog and digital components of a receiver are integrated.

The chip consumes a total of 225mW, of which the 50
 output driver consumes

110mW. For optimum sensitivity, the total power consumption of the common-gate

and common-source stages is roughly proportional to the photodiode capacitance.

This preampli�er has been designed to operate with an external capacitance as large

as 600fF. The need to support such a large capacitance arises because the photo-

diodes are external to the chip with correspondingly large bondpad capacitances.

Recent research has explored 
ip-chip bonding techniques for reducing the capac-

itance loading of the front-end to less than 100fF. Such a low input capacitance

would permit a higher input impedance and therefore allow smaller devices to be
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Figure C.5: Simpli�ed circuit diagram
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used throughout the preampli�er, resulting in a substantial power saving, while re-

taining the same bandwidth and improving sensitivity. Alternatively, the reduced

capacitance would allow the design of preampli�ers with increased bandwidth sup-

porting faster baud rates.

C.6 Noise Considerations

The sensitivity of the preampli�er is usually expressed as the equivalent integrated

input-referred current noise density. Much literature exists concerning the minimum

noise conditions for conventional optical preampli�ers [43, 48]. Some studies have

also investigated how inductors can increase the sensitivity of optical preampli�ers

implemented in GaAs [44].

The noise performance of the common-gate (CG) input stage followed by the

common-source (CG) transimpedance stage has been studied in GaAs HBT and

BiCMOS processes [49]. Although a simulation involving a single-ended CMOS ver-

sion was reported, it ignored the e�ects of the source and drain junction capacitances

and did not consider the impact of short-channel e�ects on small signal behavior and

noise [50].

Junction capacitances in submicron CMOS processes are comparable to the gate

capacitances and therefore signi�cantly in
uence both noise behavior and band-

width. A rigorous analysis that includes the impact of the junction capacitances

and short-channel behavior yields two conditions for a noise optimum. First, the

saturation mode gate capacitance of the common-source stage must equal the satu-

ration mode drain capacitance of the common-gate stage so that Cgs;CS + Cgd;CS =

Cgd;CG+Cdb;CG. Second, the saturation mode input capacitance of the common-gate

stage (which is the gate-source capacitance, Cgs;CG, plus the source-substrate capac-

itance Csb;CG) must equal �Cext
, where � � 0:8�1. The factor � is a function of !T,

the coe�cients of channel thermal noise (
), and the ratios of junction capacitance

to gate capacitance, all of which are bias dependent. For a typical CMOS device in

saturation, (Cgs + Csb) is around 3-4 times as big as (Cgd + Cdb) and therefore the

common-source stage can now be sized smaller, allowing a corresponding increase
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in the feedback resistance and a dramatic decrease in power consumption, while re-

taining the same device f
T
. The bu�er stage that follows the common-source stage

can also be sized smaller, as can the width of all the interconnects, resulting in a

smaller die area. The transconductance of the common-gate stage only needs to

be large enough to ensure that the input pole is non-dominant, enabling the power

consumption of the �rst stage to be small.

The introduction of the common-gate stage introduces three new noise sources:

the thermal noise of the source resistor, the thermal noise of the drain resistor, and

the thermal channel noise of the common-gate transistor. Of these terms, careful

design ensures that the resistors are made large enough so as not to signi�cantly

a�ect the noise performance. The thermal channel noises of the common-gate and

common-source devices are re
ected at the input by equivalent current noise spec-

tral densities proportional to the square of the frequency. When integrated over

frequency, these terms dominate, a behavior typical of short-channel CMOS pro-

cesses, where carrier velocity saturation conditions cause thermal channel noise to

increase due to excess noise stemming from hot electron e�ects [35, 51]. Balanc-

ing that degradation is the higher f
T
delivered by the continuing reduction in gate

length, thereby improving noise performance. However, carrier velocity saturation

causes the small signal transconductance (and f
T
) to be smaller than that predicted

by long channel (square-law) approximations.

C.7 Layout and Experimental Details

As shown in the die photo (�gure C.6), the chip area is dominated by the passive

components, which is typical of RFICs. However, the two inductors combined occupy

less than 15% of the total area, thanks to the optimized shunt-peaking technique

described in the earlier sections. A patterned ground shield is used beneath the

inductors to reduce substrate coupling [52]. Di�erential symmetry and cross quad

layout are used to ensure maximum matching, thereby reducing common-mode noise

and systematic o�set. On chip capacitance of 16pF is used to provide supply de-

coupling. Several substrate contacts, placed around the transistors, minimize source
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Figure C.6: Preampli�er die photo
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Figure C.7: Inductor test structure

inductance. The 
oor plan keeps the sensitive input bond pads as far away from the

other pads as possible.

Figure C.7 shows the test structure of the spiral inductor used for shunt-peaking.

The S-parameters of the inductor were measured using coplanar ground-signal-

ground (GSG) probes and an open calibration structure. The inductance and the

one-terminal impedance (which is the relevant measure in our ampli�er) were ex-

tracted from these measurements. As shown in �gure C.8, good agreement between

the prediction of the lumped circuit inductor model and measured data is obtained

for the equivalent one-terminal impedance of the spiral inductor used for shunt-

peaking. In particular, we note that the measured inductance of 20:5nH matches
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Figure C.8: Simulated and measured one-terminal impedance of the spiral inductor

used for shunt-peaking: dout = 180�m, n = 11:75 turns, w = 3:2�m, s = 2:1�m and
t = 2:1�m with L = 20nH
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Figure C.9: Simulated transimpedance vs. frequency

the 20:3nH value predicted by our simple inductance expressions to within a 1%

error.

Figure C.9 shows the preampli�er's simulated transimpedance versus frequency

for photodiode capacitances varying from 100fF to 700fF. As can be seen, the

3dB bandwidth is around 1:2GHz and is only weakly dependent on the photodiode

capacitance. Maximum gain peaking is 1dB. These simulations are run with the

output driving a 50
 resistance and 1pF capacitance.

Figure C.10 illustrates the preampli�er's simulated equivalent input referred cur-

rent noise spectral density for a photodiode capacitance of 600fF. The coe�cient of
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Figure C.10: Input referred current noise density

channel thermal noise (
) is varied from 2=3, the long-channel value, to 2, to dis-

cern the degradation in sensitivity due to excess noise in short channel devices. The

worst case value of 2 predicts an input referred current noise of 0:6�A, a signi�cant

degradation from the 0:4�A predicted by long-channel estimates.

Figure C.11(a) and Figure C.11(b) display the measured single-sided output eye

diagrams for operation at 2.1 and 1.6 Gbaud respectively. An open eye is obtained for

single-sided output voltages extending from 4mV to 500mV. Table C.1 summarizes

the performance of the prototype chip.
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Figure C.11: Measured output eye diagrams (a) at 2.1Gbaud, and (b) at 1.6Gbaud.
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Transimpedance (small-signal) 1600
 (di�erential)

800
 (single-ended)

Bandwidth (3dB) 1:2GHz

Max. photodiode capacitance 0:6pF

Max. input current 1:0mA

Simulated input noise current 0:6�A

Max. output voltage swing 1:0Vpp (di�erential)

(50
 load at each output) 0:5Vpp (single-ended)

Power consumption 115mW (core)

110mW (50
 driver)

Die area 0:6mm2

Technology 0:5�m CMOS

Table C.1: Performance summary

C.8 Summary

This appendix presented an area and power e�cient technique for boosting the band-

width of broadband systems using optimized on-chip inductors as shunt-peaking ele-

ments. These bandwidth extension and circuit optimization techniques were applied

in the implementation of a 2:125Gbaud, 1:6k
 di�erential transimpedance pream-

pli�er with an equivalent input current noise of 0:6�A. The chip has a die area

of 0:6mm2, of which less than 15% is consumed by the two inductors. Designed

in a triple metal, single poly, 0.5�m CMOS process, this chip was intended as a

test vehicle to demonstrate how on-chip bandwidth extension techniques can push

the limits of low-cost CMOS processes. To the best of our knowledge, this chip is

the �rst CMOS implementation that uses planar spiral inductors as shunt-peaking

elements.
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