

ffirs.indd iffirs.indd i 03-12-2013 12:14:1203-12-2013 12:14:12

PROFESSIONAL
EMBEDDED ARM DEVELOPMENT

INTRODUCTION . xxi

 ➤ PART I ARM SYSTEMS AND DEVELOPMENT

CHAPTER 1 The History of ARM . 3

CHAPTER 2 ARM Embedded Systems . 13

CHAPTER 3 ARM Architecture . 29

CHAPTER 4 ARM Assembly Language . 53

CHAPTER 5 First Steps . 73

CHAPTER 6 Thumb Instruction Set . 107

CHAPTER 7 Assembly Instructions . 121

CHAPTER 8 NEON . 145

CHAPTER 9 Debugging . 159

CHAPTER 10 Writing Optimized C . 175

 ➤ PART II REFERENCE

APPENDIX A Terminology . 193

APPENDIX B ARM Architecture Versions . 199

APPENDIX C ARM Core Versions . 205

APPENDIX D NEON Intrinsics and Instructions . 215

APPENDIX E Assembly Instructions . 221

INDEX . 247

ffirs.indd iffirs.indd i 03-12-2013 12:14:1203-12-2013 12:14:12

ffirs.indd iiffirs.indd ii 03-12-2013 12:14:1203-12-2013 12:14:12

PROFESSIONAL

Embedded ARM Development

ffirs.indd iiiffirs.indd iii 03-12-2013 12:14:1203-12-2013 12:14:12

ffirs.indd ivffirs.indd iv 03-12-2013 12:14:1203-12-2013 12:14:12

PROFESSIONAL

Embedded ARM Development

James A. Langbridge

ffirs.indd vffirs.indd v 03-12-2013 12:14:1303-12-2013 12:14:13

Professional Embedded ARM Development

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2014 by John Wiley & Sons, Inc., Indianapolis, Indiana

ISBN: 978-1-118-78894-3
ISBN: 978-1-118-78901-8 (ebk)
ISBN: 978-1-118-88782-0 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,
fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect
to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including without
limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or promotional
materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the
understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional
assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author
shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses the information the
organization or Web site may provide or recommendations it may make. Further, readers should be aware that Internet Web
sites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material
at http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Trademarks: Wiley, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress are trademarks or
registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other countries, and may
not be used without written permission. All other trademarks are the property of their respective owners. John Wiley &
Sons, Inc., is not associated with any product or vendor mentioned in this book.

ACQUISITIONS EDITOR
Mary James

PROJECT EDITOR
Christina Haviland

TECHNICAL EDITORS
Jean-Michel Hautbois
Chris Shore

PRODUCTION EDITOR
Christine Mugnolo

COPY EDITOR
San Dee Phillips

EDITORIAL MANAGER
Mary Beth Wakefi eld

FREELANCER EDITORIAL
MANAGER
Rosemarie Graham

ASSOCIATE DIRECTOR
OF MARKETING
David Mayhew

MARKETING MANAGER
Ashley Zurcher

BUSINESS MANAGER
Amy Knies

VICE PRESIDENT AND
EXECUTIVE GROUP
PUBLISHER
Richard Swadley

ASSOCIATE PUBLISHER
Jim Minatel

PROJECT
COORDINATOR, COVER
Patrick Redmond

PROOFREADER
Nancy Carrasco

TECHNICAL PROOFREADER
Stephan Cadene

INDEXER
Robert Swanson

COVER DESIGNER
Ryan Sneed

COVER IMAGE
Background: PhotoAlto
Images/Fotosearch

ffirs.indd viffirs.indd vi 03-12-2013 12:14:1403-12-2013 12:14:14

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

For my loving girlfriend, Anne-Laure, who put up

with entire weekends spent on my PC (while she spent

her weekend on her laptop, sending me encouraging

electronic messages). Thank you for supporting me

when I should have been paying attention to you.

For my wonderful daughter, Eléna. Thank you for

letting daddy work when I really should have spent

more time playing with you, and despite what I might

have said at the time, thank you for unplugging my

computer when I ignored you for too long. Your smiles

and fi rst words are what powered me through the late

nights and tight deadlines.

ffirs.indd viiffirs.indd vii 03-12-2013 12:14:1403-12-2013 12:14:14

ABOUT THE AUTHOR

JAMES A. LANGBRIDGE does not like talking about himself in the third person, but he will try
anyway. James was born in Singapore, and followed his parents to several countries before settling
down in Nantes, France, where he lives with his partner and their daughter.

James is an embedded systems consultant and has worked for more than 15 years on industrial,
military, mobile telephony, and aviation security systems. He works primarily on low-level
development, creating bootloaders or optimizing routines in assembly, making the most of small
processors. When not on contract, James trains engineers on embedded systems, or he makes new
gizmos, much to the dismay of his partner.

James wrote his fi rst computer program at age six and has never stopped tinkering since. He began
using Apple IIs, ZX80s and ZX81s, before moving on to BBC Micros and the Amiga, before fi nally
having no other option but to use PCs.

ABOUT THE TECHNICAL EDITORS

CHRIS SHORE is the Training and Education Manager at ARM Ltd, based in Cambridge, UK. He
has been responsible for training ARM’s global customer base for over 13 years, delivering nearly
200 training courses per year on everything from chip design to software optimization. Chris has
taught classes on every continent except Antarctica — opportunities there are limited, but surely it’s
only a matter of time! He is a regular speaker at industry conferences.

Following graduation with his degree in Computer Science from Cambridge University, Chris worked
as a software consultant for over 15 years, primarily in embedded real-time systems, before moving
to ARM in 1999. He is a Chartered Engineer and Member of the Institute of Engineering and
Technology, and he sits on the Industry Advisory Board of Queen Mary College, London. In his free
time he keeps bees, tries to play the guitar, and is always looking for ways to visit new countries.

JEAN-MICHEL HAUTBOIS lives in France and has been developing software professionally, or as
a hobbyist, for more than 15 years. He is currently employed as an embedded Linux consultant
with Vodalys, and is the architect of his company’s main video product which was developed on
an ARM-based SoC. He is involved in the decision-making process when a new hardware product
needs to be created and performance is critical. In his free time Jean-Michel likes to travel, and he
enjoys spending time with his wife and newborn son.

ffirs.indd viiiffirs.indd viii 03-12-2013 12:14:1403-12-2013 12:14:14

ACKNOWLEDGMENTS

I CAN’T FIND THE WORDS to thank everyone who has helped me with this project. It all started with
the questions of junior developers; I hope I’ve answered your questions. The LinkedIn ARM group
has been an excellent source of information, both by the questions asked and the quality of the
answers. I would like to thank everyone at ARM who has helped me. My thanks especially to my
two technical editors, Chris Shore and Jean-Michel Hautbois; without your help, this book would
not have been possible. My thanks also to Philippe Lançon for your support, to Atmel and Silicon
Labs for your boards and your time, and to all my friends and family who helped me with this
project. And, of course, the Wiley team, who helped me every time I had a question or a doubt, and
who put up with me. To Christina Haviland, Mary James, San Dee Phillips, and everyone else who
helped me — thank you.

ffirs.indd ixffirs.indd ix 03-12-2013 12:14:1403-12-2013 12:14:14

ffirs.indd xffirs.indd x 03-12-2013 12:14:1403-12-2013 12:14:14

CONTENTS

INTRODUCTION xxi

PART I: ARM SYSTEMS AND DEVELOPMENT

CHAPTER 1: THE HISTORY OF ARM 3

The Origin of ARM 3
Why Acorn Decided to Create a New Processor 5
Why Acorn Became ARM 5
Why ARM Doesn’t Actually Produce Microprocessors 6

ARM Naming Conventions 7
How to Tell What Processor You Are Dealing With 8
Differences between ARM7TDMI and ARM926EJ-S 9
Differences between ARM7 and ARMv7 10
Differences between Cortex-M and Cortex-A 11

Manufacturer Documentation 11
What Is ARM Doing Today? 11
Summary 12

CHAPTER 2: ARM EMBEDDED SYSTEMS 13

ARM Embedded Systems Defi ned 15
What Is a System on Chip? 15
What’s the Difference between Embedded Systems
 and System Programming? 16
Why Is Optimization So Important? 17
What Is the Advantage of a RISC Architecture? 19

Choosing the Right Processor 21
What Should You Start With? 22

What Boards Are Available? 23
What Operating Systems Exist? 24
Which Compiler Is Best Suited to My Purpose? 25
Getting Ready for Debugging 26
Are There Any Complete Development Environments? 26
Is There Anything Else I Need to Know? 27

Summary 28

ftoc.indd xiftoc.indd xi 03-12-2013 12:16:1803-12-2013 12:16:18

xii

CONTENTS

CHAPTER 3: ARM ARCHITECTURE 29

Understanding the Basics 29
Register 30
Stack 31
Internal RAM 31
Cache 31

Getting to Know the Different ARM Subsystems 33
Presenting the Processor Registers 33
Presenting the CPSR 35
Calculation Unit 37
Pipeline 37
Tightly Coupled Memory 39
Coprocessors 39

Understanding the Different Concepts 40
What Is an Exception? 40
Handling Different Exceptions 42
Modes of Operation 43
Vector Table 44
Memory Management 45

Presenting Different Technologies 47
JTAG Debug (D) 47
Enhanced DSP (E) 47
Vector Floating Point (F) 48
EmbeddedICE (I) 48
Jazelle (J) 48
Long Multiply (M) 48
Thumb (T) 49
Synthesizable (S) 49
TrustZone 49
NEON 50
big.LITTLE 50

Summary 51

CHAPTER 4: ARM ASSEMBLY LANGUAGE 53

Introduction to Assembly Language 53
Talking to a Computer 54
Why Learn Assembly? 55

Speed 55
Size 56
Fun! 57
Compilers Aren’t Perfect 57

ftoc.indd xiiftoc.indd xii 03-12-2013 12:16:1803-12-2013 12:16:18

xiii

CONTENTS

Understanding Computer Science through Assembly 58
Shouldn’t You Just Write in Assembly? 58

Uses of Assembly 59
Writing Bootloaders 59
Reverse Engineering 59
Optimization 60

ARM Assembly Language 60
Layout 61
Instruction Format 61
Condition Codes 62
Updating Condition Flags 65
Addressing Modes 66

ARM Assembly Primer 69
Loading and Storing 69
Setting Values 69
Branching 69
Mathematics 70
Understanding an Example Program 70

Summary 71

CHAPTER 5: FIRST STEPS 73

Hello World! 74
Taking the World Apart 77
Hello World, for Real This Time! 79
Software Implementation 81
Memory Mapping 83
Real World Examples 85

Silicon Labs STK3800 85
Silicon Labs STK3200 89
Atmel D20 Xplained Pro 95

Case Study: U-Boot 102
Machine Study: Raspberry Pi 103

Boot Procedure 103
Compiling Programs for the Raspberry Pi 104
What’s Next? 105

Summary 105

CHAPTER 6: THUMB INSTRUCTION SET 107

Thumb 108
Thumb-2 Technology 109
How Thumb Is Executed 109

ftoc.indd xiiiftoc.indd xiii 03-12-2013 12:16:1803-12-2013 12:16:18

xiv

CONTENTS

Advantages of Using Thumb 110
Cores Using Thumb 111
ARM-Thumb Interworking 113
Introduction to Thumb-1 113

Register Availability 114
Removed Instructions 114
No Conditionals 114
Set Flags 114
No Barrel Shifter 115
Reduced Immediates 115
Stack Operations 115

Introduction to Thumb-2 115
New Instructions 116
Coprocessor 117
DSP 118
FPU 118

Writing for Thumb 118
Summary 119

CHAPTER 7: ASSEMBLY INSTRUCTIONS 121

Movement 122
MOV 122
MVN 122
MOVW 123
MOVT 123
NEG 123
Example: Loading a 32-Bit Constant from
the Instruction Stream 123

Arithmetic 125
ADD 125
ADC 126
SUB 126
SBC 126
RSB 126
RSC 127
Example: Basic Math 127

Saturating Arithmetic 127
QADD 128
QSUB 128
QDADD 128
QDSUB 129

ftoc.indd xivftoc.indd xiv 03-12-2013 12:16:1803-12-2013 12:16:18

xv

CONTENTS

Data Transfer 129
LDR 129
STR 130
Example: memcpy 130

Logical 130
AND 131
EOR 131
ORR 131
BIC 131
CLZ 131

Compare 131
CMP 132
CMN 132
TST 132
TEQ 132

Branch 132
B 133
BL 133
BX 133
BLX 134
Example: Counting to Zero 134
Example: Thumb Interworking 134
What Is MOV pc, lr? 135

Multiply 135
MUL 135
MLA 135
UMULL 136
UMLAL 136
SMULL 136
SMLAL 136

Divide 136
SDIV 137
UDIV 137

Multiple Register Data Transfer 137
STM 138
LDM 139

Barrel Shifter 139
LSL 139
LSR 140
ASR 140

ftoc.indd xvftoc.indd xv 03-12-2013 12:16:1803-12-2013 12:16:18

xvi

CONTENTS

ROR 140
RRX 140

Stack Operations 140
PUSH 141
POP 141
Example: Returning from a Subroutine 141

Coprocessor Instructions 141
MRC 141
MCR 142

Miscellaneous Instructions 142
SVC 142
NOP 143
MRS 143
MSR 143

Summary 143

CHAPTER 8: NEON 145

What Are the Advantages to NEON? 145
What Data Types Does NEON Support? 147
Using NEON in Assembly 147

Presenting the Registers 147
Loading and Storing Data 148
Optimized memcpy 152
NEON Instructions 152

Using NEON in C 153
Presenting Intrinsics 154
Using NEON Intrinsics 155
Converting an Image to Grayscale 156

Summary 158

CHAPTER 9: DEBUGGING 159

What Is a Debugger? 159
What Can a Debugger Do? 160
ARM Debugging Capabilities 160

Types of Debugging 162
Loops 162
Routines 163
Interrupt Controllers 163
Bootloaders 163

ftoc.indd xviftoc.indd xvi 03-12-2013 12:16:1803-12-2013 12:16:18

xvii

CONTENTS

Debuggers 163
GNU Debugger 163
J-Link GDB Debugger 165

Example Debugging 165
Infi nite Loop 165
Unknown Exception 167
Dividing by Zero 168

In-Depth Analysis 169
Data Abort 169
Corrupted Serial Line 170
64-Bit Calculations 172
A Timely Response 173

Summary 174

CHAPTER 10: WRITING OPTIMIZED C 175

Rules for Optimized Code 175
Don’t Start with Optimization 176
Know Your Compiler 176
Know Your Code 176

Profi ling 176
Profi ling Inside an Operating System 177
Profi ling on a Bare Metal System 178

C Optimizations 180
Basic Example 180
Count Down, Not Up 182
Integers 183
Division 183
Don’t Use Too Many Parameters 184
Pointers, Not Objects 185
Don’t Frequently Update System Memory 185
Alignment 185

Assembly Optimizations 186
Specialized Routines 186
Handling Interrupts 186

Hardware Confi guration Optimizations 187
Frequency Scaling 187
Confi guring Cache 188

Summary 190

ftoc.indd xviiftoc.indd xvii 03-12-2013 12:16:1803-12-2013 12:16:18

xviii

CONTENTS

PART II: REFERENCE

APPENDIX A: TERMINOLOGY 193

Branch Prediction 193
Cache 193
Coprocessors 194
CP10 195
CP11 195
CP14 195
CP15 195
Cycle 195
Exception 195
Interrupt 196
Jazelle 196
JTAG 196
MIPS 196
NEON 196
Out-of-Order Execution 197
Pipeline 197
Register 197
SIMD 197
SOC 197
Synthesizable 197
TrustZone 198
Vector Tables 198

APPENDIX B: ARM ARCHITECTURE VERSIONS 199

ARMv1 200
ARMv2 200
ARMv3 200
ARMv4 201
ARMv5 201
ARMv6 202
ARMv6-M 202
ARMv7-A/R 203
ARMv7-M 203
ARMv8 203

APPENDIX C: ARM CORE VERSIONS 205

ARM6 205
ARM7 205

ftoc.indd xviiiftoc.indd xviii 03-12-2013 12:16:1803-12-2013 12:16:18

xix

CONTENTS

ARM7TDMI 206
ARM8 206
StrongARM 206
ARM9TDMI 207
ARM9E 207
ARM10 207
XScale 208
ARM11 208
Cortex 208

APPENDIX D: NEON INTRINSICS AND INSTRUCTIONS 215

Data Types 215
Lane Types 216
Assembly Instructions 216
Intrinsic Naming Conventions 220

APPENDIX E: ASSEMBLY INSTRUCTIONS 221

ARM Instructions 221
Thumb Instructions on Cortex-M Cores 234

INDEX 247

ftoc.indd xixftoc.indd xix 03-12-2013 12:16:1903-12-2013 12:16:19

ftoc.indd xxftoc.indd xx 03-12-2013 12:16:1903-12-2013 12:16:19

INTRODUCTION

IN THE WORLD OF EMBEDDED SYSTEMS, you can’t work for long without working on an ARM
CPU. ARM CPUs are known for their low electric power consumption, making them ideal for
mobile embedded systems. Since 2012, virtually all PDAs and smartphones contain ARM CPUs,
and ARMs account for 75 percent of all 32-bit embedded systems and 90 percent of embedded RISC
systems. In 2005, 98 percent of more than one billion mobile phones sold used at least one ARM
processor. You can fi nd ARM processors in mobile phones, tablets, MP3 players, handheld games
consoles, calculators, and even computer peripherals such as Bluetooth chips and hard disk drives.

With more than 1 billion ARM processors shipped every 2 months, it is surprising to know that
ARM does not actually make processors, but rather designs the core, and ARM partners use those
designs to make their own processors, adding external devices and peripherals or modifying the core
for speed or power consumption benefi ts. By working closely with manufacturers, ARM has created
a huge ecosystem. The result is an amazing range of processors, used for all types of devices in all
classes of devices, and all running using a common architecture, enabling developers to switch easily
from one processor to another.

ARM processors are by no means tiny processors with limited performance; they range from micro-
controller devices used in the smallest of systems all the way to 64-bit processors used in servers.

This book introduces you to embedded ARM systems, how to get them up and running, how to
develop for this platform, and some of the devices available in this huge ecosystem.

WHO THIS BOOK IS FOR

This book is primarily for developers who want to start in the embedded fi eld. A basic understand-
ing of C is required for most examples, but no assembly knowledge is required.

This book is also for developers who want better knowledge of the internals of a processor and to
understand what goes on deep inside the core.

WHAT THIS BOOK COVERS

This book covers the advances in technology for ARM processors and focuses on the more recent
ARMv7 architecture, for Cortex-A, Cortex-R, and Cortex-M devices. If you use the Cortex range of
processors, you will feel at home, but if you use ARM Classic cores, you can also fi nd information
and a listing of the differences between architectures and platforms.

flast.indd xxiflast.indd xxi 03-12-2013 12:14:5603-12-2013 12:14:56

xxii

INTRODUCTION

HOW THIS BOOK IS STRUCTURED

This book is designed to give as much information as possible to someone who does not have work-
ing experience with ARM processors. To understand ARM’s philosophy, it is necessary to under-
stand where ARM came from and how the ARM processor was born. This book then covers all
aspects of an embedded project: understanding the processor and the extensions, understanding
assembler, creating your fi rst program using a more familiar C, and then continuing to debugging
and optimization.

Chapter 1, “The History of ARM,” gives an outline of the fascinating history of ARM; where it
came from and why it is where it is today.

Chapter 2, “ARM Embedded Systems,” gives an explanation on what an embedded system is and a
presentation of the strong points of an ARM system.

Chapter 3, “ARM Architecture,” lists the different elements that compose an ARM processor and
how to use them effectively.

Chapter 4, “ARM Assembly Language,” gives an introduction to ARM assembly and explains why
understanding assembly is so important.

Chapter 5, “First Steps,” presents some simulators and real-world cards to write programs, both to
get an ARM processor started and to use as a basis for more complex programs. This chapter also
presents some real-world scenario projects.

Chapter 6, “Thumb Instruction Set,” presents the Thumb mode and also the Thumb-2 extension.
Cortex-M processors use only Thumb mode, but Thumb can also be used on every modern proces-
sor where code density is important.

Chapter 7, “Assembly Instructions,” presents a list of assembly instructions in ARM’s Unifi ed
Assembly Language, and explains their use with easy-to-follow programs.

Chapter 8, “NEON,” presents NEON, ARM’s advanced Single Instruction Multiple Data processor
and shows how you can use it to accelerate mathematically intensive routines.

Chapter 9, “Debugging,” describes debugging, what is required to debug a program, and what you
can achieve. It uses several real-world examples.

Chapter 10, “Writing Optimized C,” describes the fi nal part of any application—optimization.
With some simple examples, you will learn how to write optimized code, and understand what hap-
pens deep inside the processor to implement further optimization.

Appendix A, “Terminology,” explains some of the words and terms you will encounter when work-
ing on embedded systems, and more specifi cally, ARM embedded systems.

Appendix B, “ARM Architecture Versions,” lists the different ARM Architectures that exist, and
explain what each version brought in terms of technological advancement, but also which processor
belongs to which architecture.

flast.indd xxiiflast.indd xxii 03-12-2013 12:14:5603-12-2013 12:14:56

xxiii

INTRODUCTION

Appendix C, “ARM Core Versions,” looks closer at the ARM cores, and presents the changes in
each processor. Discussing briefl y each processor from ARM6 onwards, it goes into more detail for
modern Cortex-class processors.

Appendix D, “Neon Intrinsics and Instructions,” lists the different instructions available for ARM’s
NEON engine, and also presents the intrinsics used to perform NEON calculation in an optimized
way, using C.

Appendix E, “Assembly Instructions,” lists the different assembly instructions used in UAL, with
a description of each, as well as a list of Thumb instructions used on different Cortex-M class
processors.

WHAT YOU NEED TO USE THIS BOOK

Most people imagine an embedded system surrounded with costly electronics and expensive soft-
ware licenses, but the truth is that you can start embedded development with little investment.
To start, you need a development computer. Examples are given for Linux, but you can also use
Windows and MacOS. Royalty-free compilers are proposed, and you can use a free ARM simulator
for your fi rst programs, but later, a small ARM system is advisable: either an evaluation board from
a manufacturer (two are presented), or you can use an inexpensive small-factor computer, such as a
Raspberry Pi or an Arduino Due.

To run the samples in the book, you need the following:

 ➤ Linux development computer

 ➤ Mentor Graphics compiler suite

 ➤ Atmel SAM D20 Xplained Pro evaluation board

 ➤ Silicon Lab’s STK3200 and STK3800 evaluation boards

 ➤ Raspberry Pi

The source code for the samples is available for download from the Wrox website at:

www.wiley.com/go/profembeddedarmdev

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

NOTE Notes indicate notes, tips, hints, tricks, and asides to the current
discussion.

flast.indd xxiiiflast.indd xxiii 03-12-2013 12:14:5603-12-2013 12:14:56

http://www.wiley.com/go/profembeddedarmdev

xxiv

INTRODUCTION

As for styles in the text:

 ➤ We highlight new terms and important words when we introduce them.

 ➤ We show keyboard strokes like this: Ctrl+A.

 ➤ We show fi lenames, URLs, and code within the text like so: persistence.properties.

 ➤ We present code in this way:

We use a monofont type with no highlighting for most code examples.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code man-
ually or to use the source code fi les that accompany the book. All the source code used in this book
is available for download at www.wrox.com. Specifi cally for this book, the code download is on the
Download Code tab at:

www.wrox.com/go/profembeddedarmdev

You can also search for the book at www.wrox.com by ISBN (the ISBN for this book is 978-1-118-
78894-3) to fi nd the code. And a complete list of code downloads for all current Wrox books is
available at www.wrox.com/dynamic/books/download.aspx.

At the beginning of Chapter 5, you will fi nd a list of the major code fi les for the chapter. Throughout
the chapter, you will also fi nd references to the names of code fi les available for download.

Most of the code on www.wrox.com is compressed in a .ZIP, .RAR archive, or similar archive format
appropriate to the platform.

After you download the code, decompress it with your favorite compression tool. Alternatively, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx
to see the code available for this book and all other Wrox books.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you fi nd an error in one of our books, like a spelling mistake
or faulty piece of code, we would be grateful for your feedback. By sending in errata, you may save
another reader hours of frustration, and at the same time, you can help us provide higher quality
information.

To fi nd the errata page for this book, go to:

www.wrox.com/go/profembeddedarmdev

Then click the Errata link. On this page you can view all errata that has been submitted for this
book and posted by Wrox editors.

flast.indd xxivflast.indd xxiv 03-12-2013 12:14:5703-12-2013 12:14:57

http://www.wrox.com
http://www.wrox.com/go/profembeddedarmdev
http://www.wrox.com
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com/go/profembeddedarmdev

xxv

INTRODUCTION

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fi x the problem in subsequent edi-
tions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at http://p2p.wrox.com. The forums are a
web-based system for you to post messages relating to Wrox books and related technologies and
interact with other readers and technology users. The forums offer a subscription feature to e-mail
you topics of interest of your choosing when new posts are made to the forums. Wrox authors, edi-
tors, other industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com, you will fi nd a number of different forums that will help you, not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

 1. Go to http://p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join, as well as any optional information you want to
provide, and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

NOTE You can read messages in the forums without joining P2P, but to post
your own messages, you must join.

After you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specifi c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

flast.indd xxvflast.indd xxv 03-12-2013 12:14:5703-12-2013 12:14:57

http://www.wrox.com/contact/techsupport.shtml
http://p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com
http://www.wrox.com/contact/techsupport.shtml

flast.indd xxviflast.indd xxvi 03-12-2013 12:14:5703-12-2013 12:14:57

PART I
ARM Systems and Development

 ➤ CHAPTER 1: The History of ARM

 ➤ CHAPTER 2: ARM Embedded Systems

 ➤ CHAPTER 3: ARM Architecture

 ➤ CHAPTER 4: ARM Assembly Language

 ➤ CHAPTER 5: First Steps

 ➤ CHAPTER 6: Thumb Instruction Set

 ➤ CHAPTER 7: Assembly Instructions

 ➤ CHAPTER 8: NEON

 ➤ CHAPTER 9: Debugging

 ➤ CHAPTER 10: Writing Optimized C

c01.indd 1c01.indd 1 03-12-2013 12:04:3403-12-2013 12:04:34

c01.indd 2c01.indd 2 03-12-2013 12:04:3903-12-2013 12:04:39

1
The Histo ry of ARM

WHAT’S IN THIS CHAPTER?

 ➤ The beginnings of Acorn

 ➤ How Acorn became ARM

 ➤ ARM naming conventions

 ➤ ARM processor architecture

In the late 1970s, the computer industry was going through a period of huge change and
substantial growth. Up until that time, computers were the size of a room and took dozens
of people to operate. The ENIAC weighed 30 tons, took up a surface of 1,800 square feet
(167 square meters), and required 150 kilowatts of energy. Huge technological advances
were being made, and people started talking about the possibility of creating a computer that
didn’t weigh more than 2 tons. Then, the transistor revolution happened. Suddenly, all the
power held in a room full of electronics (some would say electrics) could be put into a single
microchip, just a few centimeters squared. Businesses could afford to have multiple systems;
schools bought computers for research and education; and even families could fi nally enjoy
personal computing. The 1970s saw the birth of some of the major players in computers:
Apple Computer, Atari, Commodore, and Acorn, to name but a few. It would take only a few
years to see some of the mythical names in personal computing: The Amiga, the Atari ST, and
the Commodore 64, for example — gift-giving hasn’t been the same since.

THE ORIGIN OF ARM

In late 1978, Hermann Hauser and Chris Curry founded Acorn Computers, Ltd. in Cambridge,
UK. Initially working as a consultancy group, Hauser and Curry obtained a contract from Ace
Coin Equipment to develop a microprocessor-based fruit machine. After an initial research
and development phase, Hauser and Curry chose a MOS Technology 6502 processor for the

c01.indd 3c01.indd 3 03-12-2013 12:04:3903-12-2013 12:04:39

4 ❘ CHAPTER 1 THE HISTORY OF ARM

job. The 6502 was produced in 1974 and was one of the most reliable processors available at that
time, which would soon revolutionize the computer industry.

The 6502 was an 8-bit microprocessor that was by far the cheapest microprocessor at the time,
while still remaining comparable to competing designs. The 6502 was easy to program, and its
overall speed was good. The 6502 was also well known for its low interrupt latency, making it
good at handling interrupt-driven events. The 6502 had a simplistic design; it had “only” 3,510
transistors. (Intel’s 8085 had 6,500, the Zilog Z80 had 8,500, and the Motorola 6800 had 4,100.) It
also had comparatively few registers, requiring frequent RAM access.

The 6502 went on to power some of the most famous names in computing history: the Apple II
series, the Atari 2600, and the Commodore VIC-20, among others.

Acorn Computers won multiple contracts and continued to use the 6502 for its projects, capitalizing
on its knowledge of this microprocessor.

With its experience with the 6502, Acorn went on to develop the Acorn System 1. It was designed
by Sophie Wilson and was based on the 6502. It was a small system (for the time) and was launched
into the semi-professional market. With a $96.43 (£65) price tag, it was accessible not only to
professionals in laboratories, but also to enthusiasts. It consisted of two simple boards: the top
one holding a hex keypad and a small seven-segment LED display standing on a ribbon cable, the
bottom one carrying the processor and support circuitry. The simple ROM monitor enabled memory
to be edited and software to be stored on cassette tapes. Most were sold as self-assembly kits. With
each success, Acorn launched a new System, up to the System 5 in 1983, still featuring a 6502, but
rack-mounted, including a disk controller, video card, and RAM adapters.

Acorn then released the Acorn Atom — a personal computer that still used the 6502. By now,
Acorn had an excellent knowledge of the 6502, allowing it to push the processor to its limits and
sometimes even beyond. Acorn’s experience with the 6502 was legendary. However, the 6502 was
becoming an old processor, and technological advancements meant that faster processors were
available.

From here, Acorn shifted slightly; internal discussions debated on which market to pursue. Curry
wanted to target the consumer market, while many other factions did not believe in the consumer
market and wanted to target a more professional target, namely laboratories. Several research
projects were launched, including the possibility of a 16-bit computer, but Hauser suggested a
compromise, an improved 6502-based machine with more expansion capabilities: the Proton.

At the time, the British Broadcasting Corporation, the BBC, took an interest in the microcomputer
market and began the BBC Computer Literacy Project. Television episodes on microelectronics and
the predicted impact of computers in industry were designed to be made available to students, who
had no time to design their own computer system. The BBC wanted a computer to go with their
television series and started to look for candidate systems.

The BBC had a long list of subjects that it wanted to demonstrate in its series; graphics capabilities,
sound and music, teletext, external I/O, and networking were all requirements. Several companies
competed for the contract, and the Proton project was an ideal candidate. The only problem was
the Proton didn’t actually exist. It was only in the design stage; it wasn’t prototyped. Acorn had

c01.indd 4c01.indd 4 03-12-2013 12:04:4703-12-2013 12:04:47

The Origin of ARM ❘ 5

little time, only 4 days, and spent those 4 days working night and day, prototyping the design, and
getting the Proton ready to show to the BBC Finally, only hours before the meeting with the
BBC, the Proton was ready. All the hard work done during that week paid off; not only was the
Proton the only machine to meet the BBC’s specifi cations, it also exceeded them. Acorn was
awarded the contact, and the project’s name was changed. The BBC Micro was born.

The BBC Micro sold so well that Acorn’s profi ts rose from a little more than $4,800 (£3000) to
more than $13.6 million (£8.5 million) in July 1983. Acorn anticipated the total sales of the BBC
Micro to be approximately 12,000 units, but after 12 years, more than 1.5 million units were sold.
By 1984, Acorn claimed sales of 85 percent of the computers in British schools, with deliveries of
40,000 units a month. The BBC Micro was extremely well designed for its use; a robust keyboard
that could withstand anything children could throw at it (literally), a carefully designed interface,
and the right machine at exactly the right time.

Why Ac orn Decided to Create a New Processor
Acorn was now faced with a major problem; almost all its projects had been done on a 6502, so it
knew the hardware well. When seeking a new processor to replace the aging 6502, it found that
other processors just weren’t up to the job. Graphics systems were emerging, and it was clear
that the 6502 couldn’t keep up in the graphics fi eld. The Motorola 68000 was a 16/32-bit
microprocessor that was used in many family and business computers, but slow interrupt response
times meant that it couldn’t keep up with a communication protocol that the 6502 had no problem
running.. Numerous processors were studied and excluded. One by one, the processors on the
market were studied, analyzed, and rejected. Finally, the list ran out, and Acorn was left with no
choice; if it wanted to do things its way, it had to make its own processor.

Creating processors wasn’t necessarily something new; it was the golden age of multipurpose CPUs,
and several companies were designing CPUs, using little more than transparent fi lm and pens, but
what Acorn was about to do went well beyond simply designing a new CPU with 4000 transistors;
ARM set out to create a 32-bit processor.

The project was started in October 1983, with Sophie Wilson designing the instruction set and Steve
Furber doing the hardware design using BBC Micros to model and develop the chip, and on April
26, 1985, the fi rst Acorn RISC Machine processor was born, the ARM1. It also worked perfectly
the fi rst time, which was rather exceptional for a processor that was basically designed by hand.

The primary application of the ARM1 was to be a coprocessor on BBC Micros and to help create
the ARM2. Subsequent chips were sold as specialized coprocessors, or as development boards
linked onto BBC Masters. It was in 1987 when the fi rst ARM-based computer was sold, the Acorn
Archimedes.

Why Aco rn Became ARM
With the education market starting to fall off, Acorn’s priority was to open new markets and to
promote its processor design. VLSI, Acorn’s partner, had been tasked with fi nding new applications
for ARM processors, and Hauser had a separate company, Active Book, that was developing a
mobile system based on an ARM2 CPU. Apple Computer’s Advanced Technology Group (ATG)

c01.indd 5c01.indd 5 03-12-2013 12:04:4803-12-2013 12:04:48

6 ❘ CHAPTER 1 THE HISTORY OF ARM

contacted Acorn and started to study ARM processors. Apple’s ATG objective was to create an
Apple II-like computer, but the project was abandoned for fear of creating too much confusion
with Macintosh systems. However, the fi nal report stated that ARM processors were extremely
interesting — both their initial design and their power usage and processing power ratio.

Later, Apple Computers again studied the ARM processor. Apple had set strict requirements for its
Newton project; requiring a processor that had specifi c power consumption, performance, and cost,
but also a processor that could be completely stopped at any given moment by freezing the system
clock. Acorn’s design came closest to Apple’s requirements but didn’t quite fi ll them. A number of
changes were required, but Acorn lacked the resources necessary to make the changes. Apple helped
Acorn develop the missing requirements, and after a short collaboration, it was decided that the best
move would be to create a new, separate company. In November 1990, with funding from VLSI,
Acorn, and Apple, ARM was founded.

Why ARM Doesn’t Actually Produce Microprocessors
ARM’s original mission wasn’t to create a processor but to create an architecture. The subtle
difference is that the strategy was not to deliver a CPU with written specifi cations to a client
but more to become a partner, providing a solution to clients who would build their own chips
incorporating that solution.

Typical processor designers also manufacture their own processors and let others design systems
using their processors and other external components. In some cases, the processor designer also
includes peripherals, allowing for a more embedded approach, but it means that a choice must be
made between all the processors available.

ARM has a different approach. Although ARM processors are one of the best sellers
worldwide, ARM doesn’t actually make its own chips; it licenses its intellectual property to other
companies. Some of the major players in the fi eld create their own ARM chips: Intel, Nvidia,
STMicroelectronics, Texas Instruments and Samsung, to name but a few. This is one of the strong
points for ARM; a multitude of ARM-powered processors exist, and they vary greatly in their
use and operation. Small ARM-powered processors exist with limited options (few I/O ports,
small memory sizes, and so on) and can be found on small systems (ARM-powered processors
are common on Bluetooth adapters, for example). And complete systems exist, too, containing
everything needed for a small computer. Freescale’s i.MX6 processors, for example, contain a DDR
controller, ATA controller, Ethernet, fl ash memory, USB and video controllers, all on one chip,
greatly reducing the need for external components.

Another example can be found with Apple Computer, Inc. Apple had clear requirements for the
processor that would power the iPhone and iPad but weren’t convinced by what was available at the
time. Apple knew that it needed an ARM core for the excellent power-to-energy ratio, but existing
solutions either had too many peripherals or too few. Apple’s sense of perfection is legendary, so it
settled for a different option; it made its own core. By becoming an ARM licensee, it was given the
tools necessary to make a custom core; not just by the peripherals surrounding the core, but also
with custom cache sizes optimized for speed or power-saving. The result is the A4 processor and
subsequent generations.

c01.indd 6c01.indd 6 03-12-2013 12:04:4803-12-2013 12:04:48

ARM Naming Conventions ❘ 7

Just like with Apple, you can create your own ARM-powered chip. ARM technology can be
licensed in two formats: synthesizable or hard macro. In hard macro format the cell is provided,
and external components can be added around the existing cell. In synthesizable format ARM IP is
delivered electronically and can be integrated into an ASIC chip using different parameters: cache
size, optimizations, or debug options. There is more work to be done, but it also enables greater
creativity and differentiation.

Today, the amount of chip manufacturers proposing (or using) ARM-powered systems is
overwhelming. Most of the major manufacturers are ARM licensees. Samsung makes the Exynos
line of CPUs, and Nvidia makes the Tegra line of chips. You can fi nd both of these in high-end
tablets, and the Exynos is even used in a Chromebook. NEC, Panasonic, NXP, Freescale, and
STMicroelectronics are but a few to license ARM cores. Currently, 273 companies have licensed the
ARM9 core, and more than 100 have a license to the latest Cortex-A technology.

ARM’s strategy to not produce processors but to sell IP means that it can concentrate on what it
does best: developing extremely power effi cient performance processors. ARM spends almost all its
R&D creating processor cores, and because the costs are spread across a number of licensees, ARM
core licenses are cost-effective. The end result for engineers is a market full of low-power processors
with excellent compatibility. Do you want a processor that can run a small Linux distribution for an
embedded project? Well, the choice is yours. There are dozens of processors and System On a Chip
(SoC) designs available, and the hardest part will not be to fi nd a processor that fi ts your project; the
hard part will be choosing which one you will go with.

ARM NAMING C ONVENTIONS

ARM processors have had a relatively consistent naming convention since their start, but the
naming convention can be a little confusing. You must understand the difference between a
processor and an architecture.

An architecture is a design. It is the combination of years of research that forms a base technology.
An architecture can defi ne the programmer’s model, covering all aspects of the design. The
programmer’s model defi nes registers, addressing, memory architecture, basic operation, and indeed
all aspects of the processor, as well as modifi cations from previous architectures.

A processor is a device. It depends on an architecture but also adds other features that may not be
common to all devices using a particular architecture. The most common example is the processor
pipeline; all processors in the same architecture version can use the same instructions (because they
are defi ned in the architecture), but the pipeline may well be different for each processor; it is not
specifi ed in the architecture reference.

An architecture has several processors, all of them using the same basic features, but each processor
has a slightly different confi guration. An architecture reference says whether a cache system is
defi ned, but each processor may have different cache sizes or confi gurations. In all cases, the use of
cache, the general layout, and anything necessary for its use are defi ned by the architecture. When
studying a processor, it is essential to know two details: which processor family this device belongs
to and which architecture the processor is based on.

c01.indd 7c01.indd 7 03-12-2013 12:04:4803-12-2013 12:04:48

8 ❘ CHAPTER 1 THE HISTORY OF ARM

How to Tell What Processor You Are Dealing With
Although processor names may vary, all ARM cores share a common naming convention, and
there have been two main naming conventions during the lifetime of the architecture. Classic ARM
cores have the name ARM{x}{labels}, with later variants adopting a name of the form ARM{x}{y}{z}
{labels}. Since 2004, all ARM cores have been released under the Cortex brand and have names in
the form Cortex-{x}{y}.

The fi rst cores, known as classic processors, use the naming conventions listed in Table 1-1. The fi rst
number (x) corresponds to the core version. The second and third numbers (y and z) correspond to
the cache/MMU/MPU information and cache size, respectively.

TABLE 1-1: ARM Processor Numbering

X Y Z DESCRIPTION EXAMPLE

7 ARM7 core version ARM7

9 ARM9 core version ARM9

10 ARM10 core version ARM10

11 ARM11 core version ARM11

1 Cache, write buffer and MMU ARM710

2 Cache, write buffer and MMU, Process ID
support

ARM920

3 Physically mapped cache and MMU ARM1136

4 Cache, write buffer and MPU ARM940

5 Cache, write buffer and MPU, error correcting
memory

ARM1156

6 No cache, write buffer ARM966

7 AXI bus, physically mapped cache and MMU ARM1176

0 Standard cache size ARM920

2 Reduced cache ARM1022

6 Tightly Coupled Memory ARM1156

8 As for ARM966 ARM968

The letters after a processor name are called the label and indicate what optional extensions are
available on the processor, as shown in Table 1-2.

c01.indd 8c01.indd 8 03-12-2013 12:04:4803-12-2013 12:04:48

ARM Naming Conventions ❘ 9

TABLE 1-2: ARM Label Attributes

ATTRIBUTE DESCRIPTION

D Supports debugging via the JTAG interface. Automatic for ARMv5 and above.

E Supports Enhanced DSP instructions. Automatic for ARMv6 and above.

F Supports hardware fl oating point via the VFP coprocessor.

I Supports hardware breakpoints and watchpoints. Automatic for ARMv5 and above.

J Supports the Jazelle Java acceleration technology.

M Supports long multiply instructions. Automatic for ARMv5 and above.

T Supports Thumb instruction set. Automatic for ARMv5 and above.

-S This processor uses a synthesizable hardware design.

For newer cores, known as Cortex, the naming convention is different, and easier to follow. There
are three Cortex families: Cortex-A, Cortex-R, and Cortex-M.

The Cortex-A family is the computer family; the Application processors. They are designed as fully
functional computers, capable of running complex operating systems directly. They are used in
mobile telephones, tablets, and laptops.

The Cortex-R family is the fast reacting family, the Real-time processor series. They are often
less powerful than the Cortex-A series, but are much more reactive to external stimuli. They
adapt better to demanding situations, having lower interrupt latency and more deterministic real-
time response, and are often used in critical systems where data interpretation is essential. They
are found in medical devices, car systems, and low-level device controllers, such as hard drive
controllers.

The Cortex-M family is the ultra-low-powered, small form-factor family, the Micro-controller
series. It generally operates at a lower performance point than the A or R series but can run well
over 100 MHz. It is usually built into microcontrollers with multiple input and output lines and is
designed for small factor systems that rely on heavy digital input and output. The Cortex-M family
is found in robotic systems and small consumer electronics and has even been found embedded in
data transfer cables. It is often used as support processors in larger devices, for instance, it is not
uncommon to fi nd a Cortex-M processor handling power management in a larger application-class
device.

 Differences between ARM7TDMI and ARM926EJ-S
Traditional naming is useful to know exactly what is available on a processor core. In this case, it
serves to compare an ARM7TDMI to an ARM926EJ-S. The ARM926EJ-S was one of the most-
used cores, but how does it vary to an ARM7TDMI, or even an ARM1136J-S? How can you tell?

By using the previous tables, you can get a better understanding of the two processors. The
ARM7TDMI is an ARM7 core, and because it does not have the {y} or {z} numbering, that means

c01.indd 9c01.indd 9 03-12-2013 12:04:4803-12-2013 12:04:48

10 ❘ CHAPTER 1 THE HISTORY OF ARM

that it does not have any cache or write buffer. For example, the ARM710 core does have cache,
because it has {y} numbering.

Also onboard the ARM7TDMI are four architectural options: T, D, M, and I. T indicates that this
core supports the Thumb instruction set; D indicates that this core enables for enhanced debugging
via a JTAG port; M indicates that this core supports long multiplication; and fi nally, I means that
this core supports advanced breakpoints and watchpoints.

Also of interest is that the ARM7TDMI belongs to the ARMv4T architecture.

In summary, the ARM7TDMI enables easy debugging and includes some advanced features.
However, it does not have any cache or buffering, which might be a problem for some applications,
but not all. It also does not have an MMU. The ARM7TDMI powered most of Apple’s iPod series,
dozens of mobile telephones (especially from Nokia), the Game Boy Advance, most Samsung
micro-SD cards, and numerous embedded projects.

The ARM926EJ-S, one of the most popular classic cores along with the ARM7TDMI, belongs to
the ARM9 family. Because {y} is 2 and {z} is 6, you know that this processor includes cache and an
MMU, and also includes Tightly Coupled Memory. The 926EJ-S also has two options: E meaning
that this core includes enhanced DSP instructions, and J meaning that it includes Jazelle Java
acceleration technology. The -S at the end of the processor name means that it is delivered as VHDL
source code, which is compiled and synthesized by the licensee.

The ARM926EJ-S belongs to the ARMv5TE architecture. Because ARMv5TE includes the Thumb
instruction set, this processor also includes Thumb. It is not necessary to specify the extension
at the end of the processor name. Because it belongs to the ARMv5 architecture, it also
automatically supports JTAG debugging, breakpoints, and long multiplication. In short, the
ARM926EJ-S supports all the options that the ARM7TDMI had. The ARM926EJ-S went on to
power an entire line of mobile telephones, home and business network devices, and some graphing
calculators.

The ARM926EJ-S was a great choice when upgrading from ARM7TDMI systems. They were
binary compatible, but the ARM926EJ-S had even better energy effi ciency and much higher
performance. However, some projects encountered a small problem when comparing the two
processors; at equivalent clock rate with all caches disabled on the ARM926EJ-S, the ARM9 was
noticeably slower than the ARM7TDMI. The ARM926EJ-S was designed with cache in mind,
and it is extremely important to run the ARM926EJ-S with cache enabled, as specifi ed in the
Programmer’s Model.

Differences between ARM7 and ARMv7
This is a common question — and a common mistake. There is no comparison possible; the ARM7
is a core, whereas ARMv7 is an architecture.

The ARM7 is a generation of processor designs; some of the most famous cores include the ARM7,
ARM7TDMI, and ARM7EJ. The fact that the core name contains the number 7 does not mean that
it belongs to the seventh architecture, far from it. Indeed, all three belong to different architectures:
the ARM7 belongs to the ARMv3 architecture, the ARM7TDMI belongs to ARMv4T, and the
more recent ARM7EJ belongs to ARMv5TE.

More recent cores from ARM use the Cortex naming convention and are easier to categorize.

c01.indd 10c01.indd 10 03-12-2013 12:04:4803-12-2013 12:04:48

What Is ARM Doing Today? ❘ 11

Differences between Cortex-M and Cortex-A
Using the new naming convention from ARM, it is easier to immediately tell what a core is designed
for. There are three branches in the Cortex family: the Cortex-A, the Cortex-R, and the Cortex-M.
Bonus points are awarded to anyone noticing that, again, ARM managed to use the same three letters.

A Cortex-A, for Application, is probably connected to a large amount of memory and runs at a
relatively high clock speed. It is designed to handle large amounts of applications, while running a
complete operating system. It can be used as the primary processor on mobile devices that require
fast computational power, while using little power. You can fi nd the Cortex-A in mobile phones,
tablets, digital cameras, and just about any consumer mobile device.

A Cortex-M, on the other hand, designed for the microcontroller world, has much less memory,
runs at a slower clock speed but requires far less energy to run and is much smaller. It is often used
to control hardware devices or to be an interface between hardware and another processor. (Most
Bluetooth USB keys have a Cortex-M processor inside.)

These two cores can be used for separate functions, but often they are used together. A smaller
Cortex-M could take some of the work of a larger Cortex-A by handling device connection, data
output, or power supply regulation.

M ANUFACTURER DOCUMENTATION

There are two things to know about the processor that you use:

 ➤ Processor family

 ➤ Architecture version

ARM provides two documents: the processor manual, called the Technical Reference Manual, and
the architecture, called the Architecture Reference Manual.

The Architecture Reference Manual lists all the features common to an architecture version,
including, but not limited to, assembly instructions, processor modes, memory management
systems, and other subsystems. The Technical Reference Manual gives more detailed information
about the options and internal information about the current CPU but does not go into architecture
details.

For a system on a chip device, the manufacturer normally has extensive documentation. The SoC
will be based on an ARM core and ARM architecture, so ARM’s documentation will be necessary,
but the manufacturer will also produce a document listing all the electrical characteristics and input/
output information, together with any custom or proprietary peripherals that have been included.

 WHAT IS ARM DOING TODAY?

Today, you are in the middle of a mobile revolution. You are no longer tied to cables, in some
cases even for recharging mobile devices. The amount of mobile devices has exploded, and with
those fi gures, the amount of processors. Today, with the phenomenal amount of ARM licensees,
companies are building bigger and better chips. The Samsung Exynos Octa serves as an example of

c01.indd 11c01.indd 11 03-12-2013 12:04:4803-12-2013 12:04:48

12 ❘ CHAPTER 1 THE HISTORY OF ARM

previously unheard of designs. On one single chip, there are two clusters of processors, a quad-core
Cortex-A7 and a quad-core Cortex-A15, for a total of eight cores, and also a graphics processor, as
well as numerous peripherals.

CPUs are not the only technology that ARM licenses. One of its concerns when moving away from
the 6502 was the chip’s inability to provide good graphics (for the time). Although some embedded
systems do not have a screen, others depend heavily on one. A tablet today is only as good as the
CPU inside the tablet, but also only as good as the graphics chip. Having a fast CPU isn’t everything;
if the web page isn’t displayed fl uidly, the system is considered to be useless. ARM develops and
licenses Mali graphics processors, achieving more graphics power than some desktop-based graphics
cards, while using ultra-low power.

ARM is also heavily focused on its new architecture: ARMv8. ARMv8 is a huge step forward
because it introduces 64-bit capability to the ARM ecosystem, while maintaining 32-bit support.
ARMv8 will open a new market for ARM. Although the low power Cortex-A57 processor could be
integrated into a mobile telephone or a tablet, it can also be used on servers, with multiple vendors
already working on solutions using ARM technology. A typical server room presents one of the
biggest IT costs of any company; the amount of electricity used by servers is phenomenal. Server
processors are power hungry, but they also create a lot of heat that has to be evacuated quickly;
estimates say that 25 percent of the electricity used is for cooling. Because ARM processors are low-
powered and run cool, they are the ideal candidate.

SUMMARY

In this chapter, I have explained the beginnings of Acorn, how the company became ARM, and
what prompted ARM to create a new processor. After years of developing processors, ARM created
two different naming conventions, and they have been explained, as well as the architecture system
that different processors belong to. It is also important to explain the changes between the different
processors, and the processor attributes.

In the next chapter, I will go deeper into what an ARM embedded system is, what makes them
different from other systems, and what you will need to know before beginning a new project.

c01.indd 12c01.indd 12 03-12-2013 12:04:4903-12-2013 12:04:49

2
ARM Embedded Systems

WHAT’S IN THIS CHAPTER?

 ➤ Understanding the concept of an embedded system

 ➤ Understanding why ARM processors are used in embedded
systems

 ➤ Choosing the right processor for the job

 ➤ Getting the necessary tools

 ➤ Knowing the different products used for embedded development

Imagine you’re scheduled for a big project, one of the company’s strategic sales. You’ve just
fi nished a project, and you take the weekend off to relax. On your way home, you go to the
store to pick up one of the latest computer games you’ve heard about. On the box, you see
the system requirements — a guide to what is needed to play the game in optimal conditions.
Looks like your home computer is up to it, so you buy the game and go home. Sure enough,
the game does run, but on the box it says that the game requires 4 gigabytes of memory,
but 8 is recommended. You have only 4, and you can feel that it is a little slow from time to
time. Never mind, the shop is only 5 minutes away! You return and buy another 4 gigabytes
of memory. When you return, you open up the computer, install the memory, and turn the
computer back on. The system beeps, the screen fl ickers, and within a few seconds, the screen
tells you that you now have 8 gigabytes of memory. The operating system fi res up, and after
a few seconds, you can run your game. And yes, it is much faster; you have no excuse not
getting past the fi rst level!

A lot has happened here. A few months ago, a team of developers were creating this game.
Someone, somewhere, had to make a choice. Out of all the possible combinations, how did
you decide what the minimum requirements should be? The company probably has statistics
from previous games to know what their users use. It might have done a survey to know what

c02.indd 13c02.indd 13 03-12-2013 12:05:2303-12-2013 12:05:23

14 ❘ CHAPTER 2 ARM EMBEDDED SYSTEMS

most people use. It might even have boldly said, “Everyone should have x amount of memory.” It
has all happened before. On most systems, this isn’t a problem because memory can be swapped
out, and more can be added. This is also mostly true for the CPU, the graphics card, or the hard
disk, some of the other things that are normally noted on a system requirement sheet. In this case,
you decided to add some memory, effectively doubling what you had.

Monday morning, and with a good dose of caffeine, it is time to go to the offi ce to learn more about
this new project. It is an aeronautic project; a major company wants to outsource one of its sensors
on a new drone. Your bosses believe that your team is up for the job. This is a system that will be
attached to an existing drone to monitor air quality coming from different sensors and to record
it. You need input from air sensors, temperature sensors, a GPS unit to record where samples came
from, and possibly a few other sources that will be added during the project. (This is the sort of
phrase that can send shivers down your spine.) Your company hasn’t yet won the contract; this is
only a research and development product. You are in competition with at least two other companies,
so how do you win the contract? You will be judged on several factors:

 ➤ Cost of the system — Naturally, it wants the cheapest solution possible. Using expensive
components can result in beautifully fast products, but it all comes at a price. The question
here is, “What is really needed?”

 ➤ Size of the fi nished product — This product will go onto a drone that has only limited
space.

 ➤ Weight — Again, a drone can hold only a certain amount of weight.

 ➤ Power Consumption — The less it uses, the more is available for other systems. The drone is
also probably electric; although you don’t know that for sure. Making a system that uses the
last amount of power possible could give you the winning edge.

 ➤ Speed — You will be taking measurements, and the more measurements you can take, the
better the system can perform.

With that in mind, the company has made some strategic decisions. There was probably a great
deal of talk in meetings as to what was actually needed. What factor do you concentrate on? What
is needed, and what factor can give you the edge, if you concentrate on it? Remember, most of the
hardware will be decided at the start of the project. As a developer, you should know what to work
on from the start. A few changes will probably be made (it is rare that hardware isn’t changed
slightly during development), but you already know what you will use.

The specifi cations are simple: one ARM processor, 2 MB of RAM, and 2 MB of ROM, 16 digital
input lines, 8 digital output lines. You will also use an SD card for data storage, but the CPU you
chose doesn’t have a native SD controller; you must make your own. This isn’t actually a problem. It
does mean more work for the developers, but the chips that came with an SD controller were more
expensive and much larger. You can use some of your digital outputs and inputs for this task.

That’s it! Your team is ready to go. Now be careful how you program; the system has 2 MB of RAM
and 2 MB of ROM, and that cannot change. Adding more memory would mean adding more chips,
increasing size, weight, cost, and electrical use. Don’t worry; on this sort of system, 2 MB is more
than enough and can even enable you to put extended features in. The same goes for the amount of
input and output lines that were made available. In theory you need only half, but it is a good thing

c02.indd 14c02.indd 14 03-12-2013 12:05:2503-12-2013 12:05:25

ARM Embedded Systems Defi ned ❘ 15

that you have more available because the client asked for a new feature halfway through the project.
The data was to be sent by Wi-Fi to a receiving station when the drone fl ew over it. One of your
competitors didn’t have enough input and output lines planned ahead and couldn’t continue the
project without changing its hardware, and preferred to cancel the project.

The ideal processor does not exist; if it did, everyone would use it. The ideal processor would have
an astronomical amount of calculation power, running on battery power for months, with little or
no heat being produced. Unfortunately, that will not be happening any time soon. The embedded
world is all about trade-offs. By sacrifi cing one characteristic, you can augment another.

ARM EMBE DDED SYSTEMS DEFINED

There are various defi nitions of what an embedded system is. Some people talk about small factor
systems; others talk about a system stripped of all the unwanted options. An intelligent water meter
is an embedded system; it is lightweight and has only what is needed. It controls a larger system.
More specifi cally, it does only one thing, and it does it well. This brings the question, “Is a mobile
telephone an embedded system?” Engineers will argue over this. Some would say “yes” because the
device is custom designed and made (no two mobile telephones have the same factor mainboard), and
it has a specifi c task in mind: to place and receive telephone calls. Some would argue “no” because
these devices have become so powerful, are like personal computers, and have complete operating
systems, and end users can install software that places them in a new category: mobile devices.

Luckily for developers, the defi nition is much simpler. Unlike working on standard computer
applications, the developer knows exactly what the application will run on.

An ARM-embedded system is an electronic system with an ARM-powered core, with fi xed
hardware specifi cations. The processor could be a standalone ARM-powered processor or possibly
a system on chip. In both cases, the system is designed with a single task in mind, regardless of the
electronic components used.

What Is a System on Chip?
Some embedded systems are as small as possible, containing only the absolutely essential
components for the application. The advantage of such a system is often cost and often power
conservation. For other designs, you can use a system on a chip (SoC); a single chip contains a
processor and almost all the components needed for an entire system — and often much more than
is required. Both are available, and both have their advantages. A few years ago, SoC systems were
prohibitively expensive, but with today’s market and the amount of processors made, some SoC
chips can be made relatively cheaply, and in some cases, cheaper than having a simple processor and
adding hardware to meet your needs. The amount of research and development needed to create a
printed circuit board with all the necessary components often outweighs the advantage of having
a single chip (coupled with some memory). However, SoC chips mean more transistors, so greater
power requirements. They also mean little R&D cost because large semi-conductor companies
invest heavily in these chips; therefore, they also invest heavily in making software. Most SoC
systems have complete support for at least one full operating system, often several. Installing an
operating system onto a working board can often be done in little more than minutes.

c02.indd 15c02.indd 15 03-12-2013 12:05:2503-12-2013 12:05:25

16 ❘ CHAPTER 2 ARM EMBEDDED SYSTEMS

ARM’s fi rst attempt at SoC was the ARM250, based on the ARMv2a architecture. The ARM250
was used in budget versions of the Archimedes A3000 and A4000 computers. It did not have
any cache, but it did contain the ARM core, a memory controller, a video controller, and an
I/O controller integrated directly into one piece of silicon. The use of ARM250 meant that
the mainboard was less complex, but initial supply problems meant that early machines had a
mezzanine board above the CPU, essentially simulating an SoC.

Today, things are different. ARM still licenses cores, but the licensees often create amazing SoC
systems, including literally everything needed for a single-board computer. Freescale’s iMX 6 series
processor contains a DDR controller, four USB2.0 ports, gigabit Ethernet, PCI Express, a GPU, and
much more, alongside a quad-core Cortex A9, all on one single chip. The Chinese device-maker
Hiapad has created the Hi-802, a tiny complete system only just larger than a USB key, connecting
directly to the HDMI port of a television or monitor, which has USB to plug in a keyboard and
mouse and integrates Bluetooth, an SD slot, and Wi-Fi. Of course, there are also cheaper versions;
a device called the U2 has been selling for as little as $20US, containing a 1.5 GHz Cortex A8,
containing again a wireless network card, HDMI interface, USB, ports, and SD-card support.

Manufacturers often have different philosophies concerning SoC chips, and care must be taken
when deciding which system to use. Freescale has always been known to make energy-effi cient
systems, at the cost of slightly degraded processing power. Nvidia, with its Tegra series, have always
made multimedia its priority. Samsung makes some of the fastest SoC chips with its Exynos series.
Each product range has its advantage, and time must be taken to analyze the best choice possible.

Another term that is sometimes employed is SiP, short for System in Package. SiP often includes
several chips in one; combining the processor, random access memory, and fl ash memory.

If your project requires specifi c hardware and you cannot fi nd a suitable solution on the market,
there is always another solution. FPGA SoCs are chips that have an integrated ARM core and
enough logic cells to complete your design. The advantage of this sort of platform is the ability to
have as much logic as possible on a single chip and entirely adapted to your solution.

What’s the D ifference between Embedded Systems
and System Programming?

There is a big difference between the two previous systems. When creating a PC application, it is
rarely known on what system it will be used. Perhaps this is a server application, and the client has
given all the systems details of its servers, but nothing guarantees that this won’t change in time.
Perhaps it is a desktop application for cataloging a fi lm collection. It could be installed on anything,
from an entry-level netbook to a high-end system. Or perhaps it is a game, requiring a fast system,
but some clients won’t have the required confi guration for it to run optimally. What should be
considered to be the minimum?

Embedded systems are often different. They are defi ned beforehand and cannot be changed.
Developers usually know exactly what processor will be used, the amount of memory that will be
available, and all the external systems that will be connected. There will not be a memory upgrade;
there will not be a processor change. Your computer system will probably change over time; a new
graphics card might be added, or the processor might be upgraded. On the other hand, your mobile
telephone will stay the same until the day you decide to change it. The only option you may have

c02.indd 16c02.indd 16 03-12-2013 12:05:2503-12-2013 12:05:25

ARM Embedded Systems Defi ned ❘ 17

is to put in a bigger fl ash card, but that will change only the external storage amount and will not
change the system itself. Your intelligent water meter will probably never change; it will have to do
its job for decades.

An embedded system is designed with a particular use in mind, whereas a system is designed to
be fl exible and to meet a wide range of end-user needs. When designing a personal computer, it is
impossible to know exactly what it will be used for, and therefore expansion possibilities must be
designed. System programming is often less rigid, with fewer constraints. Embedded systems are
different, since all the constraints are known right from the start.

Why Is Optimiza tion So Important?
One of the main design criterion for an embedded system is its price. You can spend hundreds, if
not thousands, of dollars for a computer system that will enable you to do everything you need
today, and part of what you need tomorrow, but the tiny embedded computer inside your microwave
will often be designed to be as cheap as possible, to the cent. To achieve this, studies are done to
estimate the minimum amount of system resources necessary. Typically, you will not need the
fastest processor, you will not need the fastest memory, and you will not need the largest amount of
memory available.

During a job interview, I asked candidates some trick questions. Imagine that I wanted to design
a space vehicle that could get me into orbit and land me safely again. What would you suggest?
Most suggested medium- to high-end processors for their power and speed; with a decent amount
of system memory. 500 MHz and 512 Mb were a common answer. Then I told them that the only
computer system I had available was a 1 mega-hertz processor, with 512KB of memory. Any chance
of getting into orbit? Most candidates shifted uneasily in their chairs, one or two laughed. No, it
isn’t possible. The system specifi cations are far too low. The system would be horribly slow, and
there just isn’t enough memory to keep all the calculations.

Ironically, the specifi cations that I gave are higher than the IBM AP-101, the fl ight computer used
by the B-52 bomber and NASA’s space shuttle program. When you hear the word computer today,
you immediately imagine a large system, with numerous expansion cards and subsystems. On the
contrary, embedded systems should be as simple as possible, including only the hardware required
to complete its task, and nothing more. Having a smaller program also means there is less to go
wrong. We’ve all had to reboot our work computer because of a problem, but with a fl ight control
computer, this isn’t an option. Put simply, it must work. To do more with less, you have to be careful
and optimize.

A processor is all about crunching numbers — anything a processor does, such as reading input,
decoding audio, encoding video, and copying memory. Everything is just a lot of numbers. Contrary
to what you were told in school, some numbers are faster than others.

Modern CPUs can deal with a lot of different numbers. The most common is the unsigned integer.
Integers can also be signed, but that changes the maximum and minimum values.

Other formats exist, like fl oating point numbers, but while some processors provide acceleration for
fl oating-point numbers, some implement this entirely in software; you must either create your own
libraries, or use existing libraries.

c02.indd 17c02.indd 17 03-12-2013 12:05:2603-12-2013 12:05:26

18 ❘ CHAPTER 2 ARM EMBEDDED SYSTEMS

In embedded systems, it is vitally important to know exactly what type of number to use and what
range you need. When dealing with a system designed to handle monetary transactions, you might
be tempted to use fl oating-point numbers to deal with the decimal point, but this is overkill just to
print $12.46. Also, surprisingly, fl oating-point numbers don’t necessarily have the precision required
for reliable monetary transactions. In this case, you might prefer to use integer numbers for their
speed and precision, and instead of counting pounds/euros/dollars, you can prefer to count pennies/
cents. $12.46 will become 1246, and the name of the variable should refl ect that.

This happens often; some sensors will return an integer: a digital representation of the loudest sound
recorded from a microphone, or a pressure sensor that will return atmospheric pressure. In both
cases, these devices will return data within a certain range, using integers instead of fl oating-point
numbers. If the device has to output a fl oating-point number (for example, the atmospheric pressure
in millibars), the programmer will have to specifi cally convert the sensor output.

Also, think about the size you need. An unsigned 32-bit integer’s maximum size is 4,294,967,295,
but if you are making a vending machine, then $40 million is quite a lot of money for a chocolate
bar and a soda. You could put the value into an unsigned 16-bit integer, with a maximum value
of 65535, or maybe even an unsigned 8-bit integer uint8 for micro-transactions, with a maximum
value of 255. However, this presents another problem: access. ARMs are good at reading in 32-bit
values since the ALU is also 32-bits wide; reading 8-bits of data, involves masking and shifting to
deal with overfl ow and maintain the correct sign, which can slow down the calculation. Although
perfectly feasible, this comes at a small price. It is up to you what you need and what the technical
constraints are.

Doing calculations on integers is extremely fast; in most cases, all operations are done in a single
cycle. Integers cannot be used for everything, so for more precise mathematics, fl oating point
numbers were also introduced.

Y2K
In the 1950s, compu ters were used widely for banking and statistics. Banking was simply creating
a list of transactions: a date and the amount. Memory was extremely expensive at the time, and no
one could have imagined a single SD card that could hold more data than any single bank possessed.
It might even have contained all the data of a country and still leave some room. Terabytes wasn’t
even in the realm of dreams; most companies were using standard IBM punch cards, containing a
staggering 80 characters. Having more memory on a card wasn’t an option; the IBM punch card
became an industry standard, and at the time there was no need for anything bigger. Memory itself
was expensive, and one of the machines used to read them, the IBM 1401, shipped in 1959 with a
standard 2 K of RAM. 16 K versions were available, and few systems were upgraded to 32 K. Those
that were upgraded were done so by special request only. The low-end 1401 shipped with 1 k of
memory.

To maximize memory effi ciency, repetitive numbers were omitted. One of the fi rst numbers to
disappear was the “19” in every date. Instead of writing 1960, operators would just write
60. Who would have thought that by doing this, they were creating a major international problem
40 years later?

c02.indd 18c02.indd 18 03-12-2013 12:05:2603-12-2013 12:05:26

ARM Embedded Systems Defi ned ❘ 19

In 1958, Bob Bemer, from IBM, tried to alert some major companies about this programming error
and spent 20 years attempting to change the situation. No one listened. In the 1970s, people started
talking about a future problem, but we had to wait until the mid-1990s to actually hear about it.
Suddenly people started realizing that in a few years’ time, we would be in 2000, not in 1900.
Computers, still presuming that the fi rst two fi gures were 19 would switch back to 1900, or possibly
19100? A general panic ensued, with some people thinking that airplanes would fall out of the sky,
that electrical generators would shut down (possibly exploding just before), and that life as we knew
it would stop. In the end, nothing happened, apart from some humorous messages on the Internet,
with clocks showing “Welcome! We are the 1st January, 1900.” Operating systems managed to
cheat a little; computer vendors sold more computers than ever before; and today, in a world in
which memory costs a fraction of the cost that it used to, we calculate dates using a different system.
That doesn’t mean that we are safe. In 2038 we will be confronted by a different problem with more
or less the same origins, but we won’t make the same mistake twice. Systems and programs will be
changed long before.

What Is the Advantage of a R ISC Architecture?
This is one of the most common debates, and one that has forced major companies in separate
directions. What should you use? Reduced Instruction Set Computing (RISC) or Complex
Instruction Set Computing (CISC)?

In the 1960s, computers weren’t what they are today. Academics and students rarely approached
a computer; at the time it took armies of technicians to keep a computer the size of a room up
and running. Academics would hand punch cards to computer operators and wait for the results,
sometimes hours or days later. Punch cards could contain up to 80 characters, the equivalent of one
line of code. For multiple lines of code, the academic would hand over multiple cards. The system
operator would then feed these cards into the computer, wait for the result, and then return the
results to the academic. The processor speed wasn’t an important factor; compared to the time
it took to collect the cards, feed them into the system, get the results and return them to
the programmer, execution time was a mere fraction.

When punch cards were replaced with other means such as fl oppy disks, more memory, or more
hard drives, then the computer spent more time calculating, and suddenly the easiest way to
increase the speed of a computer was to increase the speed of the processor or its capacity to execute
instructions. Two philosophies were competing: one was to increase the number of instructions by
adding more specialized instructions, and the other was to decrease processor complexity, therefore
allowing it to run faster.

A common misunderstanding of the term “reduced instruction set computer” is the mistaken
idea that the processor has a smaller set of instructions. Today, some RISC processors have larger
instruction sets than their CISC counterparts. The term “reduced” was intended to describe the fact
that the amount of work any single instruction accomplishes is reduced (typically one data element
per cycle), compared to the “complex instructions” of CISC CPUs where instructions may take
dozens of data memory cycles to complete a single instruction.

RISC processors will typically have fewer transistors dedicated to core logic, allowing designers
more space to increase the size of the register set, and to increase internal parallelism. In 1982, the
Berkeley RISC project delivered their fi rst RISC-I processor. At 44,420 transistors (compared to

c02.indd 19c02.indd 19 03-12-2013 12:05:2603-12-2013 12:05:26

20 ❘ CHAPTER 2 ARM EMBEDDED SYSTEMS

over 100,000 for CISC counterparts) and 32 instructions, it outperformed any single-chip design at
the time.

 The trend continued, with more and more specialized instructions being added to processors. A
single instruction could now handle extremely complex calculations and also specifi c calculations.
In the 1990s, personal computers were used for just about anything. Complete systems were sold
with TV acquisition cards, complex audio creation systems, 3-D graphics, and power calculations.
A specifi c system may have targeted either the consumer market, the business market, or the server
market, but the CPU inside remained mostly the same. Processors had to adapt to just about any
situation, so more and more complex instructions were added. This created a rather interesting case;
some systems never used some of the instructions. Adding instructions to a processor means adding
transistors, making the processor more complicated, and therefore more expensive. The original
Intel 8086 processor was the beginning of the modern PC era; it was released in 1978 and contained
29,000 transistors. Just more than 10 years later, in 1989, Intel released the 80486, with a total of
1,180,000 transistors. In 2000, Intel released the Pentium 4, containing 42,000,000 transistors. In
2011, Intel’s six-core Core i7 processor packed a whopping 2,270,000,000 transistors. However,
these fi gures can be eclipsed by other systems. In 2011, AMD’s Tahiti graphics processor was
comp0sed of 4,300,000,000 transistors, and in the same year, Xilinx’s Virtex-7 FPGA contained
6,800,000,000 transistors. Although the cost of fabricating processors has gone down drastically,
the time needed to create such chips, the amount of waste created by defective silicon, and the time
needed to rigorously test all the processor’s functions means that prices are still high. At the same
time, a single Core i7 processor today has more calculation power than most countries in the 1960s.

Enter ARM, with its Reduced Instruction Set Computing (RISC) technology and philosophy. RISC
may be seen as a step backward from the days when CISC helped, but the same criteria do not exist
today. In the 1960s, DEC sold 12-kilobyte memory modules for $4,600, roughly $35,000 in 2012.
With that amount of money, today you could have close to 7 terabytes of memory, if you could fi nd
a system that could support that much RAM.

ARM’s philosophy is radically diff erent. ARM believes that having fewer instructions is better. Just
like Lego, you can make some amazing things by using the simplest of building blocks. So, instead
of highly specialized instructions, RISC systems have few instructions. Reducing the silicon on the
chip means lower costs, but especially lower power consumption. So, if the constraints that were
pr esent in 1960 are no longer present, why is CISC still used? Well, one of the reasons is backward
compatibility. No one expected the PC architecture to expand the way it did, and on today’s high-
end Core i7 CPUs, you still have a heritage from the original 8086. It would take far too much
engineering to suddenly re-create all the software available for PC computers and suddenly change
them to a new architecture. There are, of course, exceptions. Apple Computer Inc. had machines
running under the PowerPC architecture and switched to x86. Linux has packages for just about
any MMU-enabled chip. The rest of the world will stick to the x86 architecture because it has
served it well. The x86 architecture doesn’t face the same challenges as ARM does. For power
consumption, you aren’t faced with the same challenges. Today, ultrabooks can boast 8 hours of
battery life, which is normally more than enough for most uses. On a 14-hour fl ight, you probably
won’t use a laptop for more than 4 hours and prefer to watch a fi lm and try to catch up on some
sleep. On that same fl ight, there is an Emergency Locator Transmitter (ELT). If something happens
to the fl ight, the ELT can broadcast a distress message containing the coordinates, for several weeks,
and it has to work right the fi rst time. Power consumption is critical for this sort of application, and
the code goes through rigorous testing.

c02.indd 20c02.indd 20 03-12-2013 12:05:2603-12-2013 12:05:26

Choosing the Right Processor ❘ 21

Today, both RISC and CISC exist, and continue to grow. RISC dominates the embedded fi eld
(especially where power consumption is a major factor). CISC continues to dominate the desktop
fi eld. However, that trend seems to be changing. Intel is working on an x86 chip for the mobile
phone sector, and several OEMs have expressed interest in an ARM-based server.

CHOOSING THE RIGHT PROCESSOR

On embedde d systems, it is critically important to know what your processing needs are. On mobile
systems, it is just as important but sometimes even more diffi cult to establish.

For embedded systems, too much processing power is often as bad as too little. If your processor
isn’t powerful enough, you can have a hard time getting your software to run. In the best case, you
can spend a long time optimizing. In the worst case, it won’t run. Using a faster processor means
more power consumption, more heat, and most likely, a more expensive solution.

Choosing a processor for a mobile device is often much harder. Some users are still locked into the
“gigahertz syndrome,” wanting the fastest processors, but only judging them on their clock speed.
Most consumers probably prefer a 1.6 GHz device over a 1.4 GHz device, even if some of them will
never use a program that takes full advantage of the speed difference.

In today’s world, mobile devices are more and more present. How many people can spend a day
without a mobile phone, or spend a long-haul fl ight without a tablet? The advances in CPUs over
the last 40 years have been incredible. In 1971, the Intel 4004, the world’s fi rst general-purpose
microprocessor, ran at 108 kHz and was estimated at 0.06 MIPS. In 2011, Intel’s i7 3960X had
a total of 177,730 MIPS, almost 3 million times that of the 4004. Of course, MIPS alone cannot
accurately judge a microprocessor, but it shows just how much the technology has advanced.
Unfortunately, battery technology has advanced, but not in line with processors.

The fi rst line of mobiles phones was bulky. The fi rst use of a mobile phone was in 1973, using a
prototype that weighed more than a kilogram, which had only 30 minutes of talk time, after which
a recharge of 10 hours was required. Although suffi cient for that time (where most “mobile” phones
were in fact car phones), it didn’t take long for users to need much better battery life and lighter
batteries. Today, a consumer judges a mobile device by lots of criteria, including battery life. Few
people want to buy a high-end tablet with a high-end CPU, lots of RAM, and a terabyte of storage
if it lasts only 1 hour. CPUs, being the heart of modern systems, have also made great progress
in power consumption. An Intel Pentium at 75 MHz consumes 8 Watts of power, about the same
amount as an Intel Atom N550, a dual-core processor clocked at 2GHz. Of course, the Atom has
far less processor power than an i7, but the processor was designed specifi cally for low-powered
devices and has made it into an entire generation of netbooks. To achieve low power consumption,
Intel invested heavily, reducing the thickness of the silicon wafers for all of its microprocessors,
and also by changing the core design. An Atom is still compatible with previous x86 processors, so
there is no software change needed. However, the core was heavily changed. Atom processors, like
many other x86 processors, actually convert x86 instructions into micro-ops, effectively RISC-style
instructions.

ARM processors, from the start, were designed to be simple. They were made to be simple, and the
number of transistors in a single CPU has always been signifi cantly lower than other comparable
CPUs on the market. Fewer transistors means less power. They were also designed with mobility in

c02.indd 21c02.indd 21 03-12-2013 12:05:2603-12-2013 12:05:26

22 ❘ CHAPTER 2 ARM EMBEDDED SYSTEMS

mind, and that paid off because ARM6 was used on the Apple Newton Messagepad. Over the years,
ARM has made improvements to maximize MIPS per watt and also to lower heat production.

There are several ways to reduce power on a system. One of the most used is frequency scaling;
when a processor is not used at 100 percent, it can scale back its frequency and therefore use less
energy. On the same lines, some device makers underclock their processors, setting their frequency
lower to what they are supposed to run on. ARM also has a rather unique solution, using its big
.LITTLE technology. This solution contains two separate processors, both binary-compatible. One
core is power-effi cient but slower than the second processor, which is designed to handle more
complex and demanding programs at the cost of increased power usage.

WHAT SHOULD YOU START WITH?

To begin developm ent on an ARM system, you need relatively few things, all of which are readily
available.

From a hardware point of view, there are a few questions that need to be asked. Will you need specifi c
hardware, or does a system already exist? There are several all-in-one ARM systems on the market,
ranging from tiny systems running at just a few dozen megahertz to large systems that can run a full
OS running at more than a gigahertz. If none of these fi t your requirements, or if your production is
large enough, you can create your own board with a processor or a SoC of your choice.

Evaluation boards are a great way to start a project, and there are hundreds available for just about
any size or requirement. ARM provides several boards suited for several types of applications.
Starter boards are a great way to get to know a system and to prototype your project. They offer
great debugging features, and a huge amount of documentation is available. When you are ready,
you can make your own system or look for an existing system.

ARM provides several evaluation boards. The ARM Versatile Express boards provide excellent
training for the Cortex A cores or soft-core Cortex-M. The Versatile range was previously used for
Classic processors — from the ARM7TDMI processor up to the ARM1176. The KEIL series are
more oriented toward the micro-controller domain and also includes some classic cores.

As well as ARM-based evaluation boards, almost all chip makers have their own evaluation boards.
Freescale has some excellent evaluation boards for its iMX line of SoCs, complete with just about
every type of connector you can think of. Infi neon has a range of clever modular systems, and Texas
Instruments has some small-factor systems.

Evaluation systems are useful, but they will not be used for long. They have numerous outputs that
will not be used later and tend to take up more space than is required. When you fi nish evaluating
a board, you now need to decide if you want to create your own board, or if you will use a pre-
existing system. There are multiple ARM-based systems that are not evaluation boards. Moxa
creates an impressive amount of industrial systems, and one of my previous clients had a stock of
Moxa 7420 systems and builds its software around those systems. The Moxa 7420 is an XScale
board running at 533 MHz and has eight serial ports, two Ethernet ports, USB connectivity and
CompactFlash storage, along with 128 Mb of RAM and 32 Mb of ROM. With this impressive
system, the client reacted quickly to market needs by developing software and a hardware solution
for industrial systems on a platform that it knew well.

c02.indd 22c02.indd 22 03-12-2013 12:05:2603-12-2013 12:05:26

What Should You Start With? ❘ 23

As explained previously, you need to think carefully about your project and know in advance what
is required. Do you need a video controller? How about a SATA controller? An industrial system
might not need either but would have a more specifi c requirement, for example, a CAN bus.

What Boards Are Available?
Probably the most i mportant part of a project is the board. There are several ways to go depending
on your project or requirements. Evaluation boards are an excellent way to start if you decide to use
one particular processor, but there are some good general purpose boards available. Following is a
list of just a few boards available.

Although it is impossible to list them all, there are a number of places to look for such information.
ARM has an impressive line of evaluation boards, and more information can be found on their
website here:

http://www.arm.com/products/tools/development-boards/index.php

Keil, ARM’s tool company, also makes numerous development boards that fi t in well with its line of
development tools, found here:

http://www.keil.com/boards/

Arduino Due
Arduino boards are mostly known for their 8-bit single-board computers and are an excellent way
to get into the fi elds of electronics and embedded development. The Arduino family comes with a
complete range of shields, ranging from I/O ports to SD-card storage. Arduinos have been used for
a huge amount of projects, from aquarium control to robotics to automated lawnmowers.

Although an entire generation of Arduinos has been using 8-bit PIC microcontrollers, the Arduino
Due uses a Cortex-M microcontroller. These boards are not designed for processing power, even
if the ARM CPU is clocked at 84 MHz, but they are designed for electronic projects based on I/O.
They have 54 digital I/O ports, which can each be programmed as input or output. They have 12
analog inputs and 2 analog outputs.

You can fi nd Arduinos in a lot of projects based on robotics or sensors, simply because the processor
is so heavily based on I/O. It is also hugely popular because it is based on a Cortex-M and is
therefore energy-effi cient. It is not uncommon to see an Arduino Due run on battery power, and it
has been used on mobile robotics, or even autopilot systems for remote controlled planes.

Raspberry Pi
In 2012, the Raspberry Pi Foundati on released the Raspberry Pi, a credit card-sized single-board
computer designed for teaching computer science. Two versions currently exist; Model-A and
Model-B, which could possibly be a cultural reference to the BBC Micro, the computer ARM
originally designed for school computer science. Thirty years later, ARM-based systems were back
in British schools, and indeed schools around the world, teaching children the basics of computer
science.

The revolution didn’t stop there. Raspberry Pis were such a success that it was diffi cult to get hold
of them in the beginning. People were buying them as a general-purpose computer, for tinkering, for

c02.indd 23c02.indd 23 03-12-2013 12:05:2603-12-2013 12:05:26

http://www.arm.com/products/tools/development-boards/index.php
http://www.keil.com/boards/

24 ❘ CHAPTER 2 ARM EMBEDDED SYSTEMS

use as DIY NAS boxes, or just about anything. They have been used for home automation by using
an I2C bus, for home media players using the hugely popular XBMC, or for play. Mojang ported the
hugely popular game Minecraft to the Raspberry Pi.

Raspberry Pi is a basic computer with all the functionality required for basic systems. It has either
256 Mb or 512 Mb of RAM, one or two USB ports, video output via RCA, HDMI or DSI, audio
output, 10/100 Ethernet for the Model B, and an SD slot for the fi lesystem. There is no on-board
storage; the operating system has to be placed onto an SD card. The system is based on an
ARM1176JZF-S running at 700MHz with overclocking possibilities.

Raspberry Pi lacks the I/O possibilities of Arduino, but that was never its intention. Raspberry Pi
has enough hardware to boot a Linux system and teach computer science. However, that does not
mean that it has no I/O; it does have two I/O ports with GPIO lines. However, of all the GPIO
lines available on the processor, one-third are not connected, and some are reserved for the SD
card reader and an SPI port. There are numerous projects using the IO lines, but most of these are
educational boards mainly focused on turning LEDs on and off.

Beagleboard
The Beagleboard is a large system co mpared to the Raspberry Pi and the Arduino. It is based on
a Cortex-A8 and has more system functionality than the Raspberry Pi. It has complete video out
capabilities, four USB ports, Ethernet, Micro-SD, a camera port, and an expansion port. Although
mainly designed for software projects, it does have some I/O capability. The Beagleboard is the
computer of the ARM-based development boards. If you are looking for raw processing power
above all, this is the system to use.

Beaglebone
The Beaglebone is a light version of the Beagleboard. It still has the crunching power and speed
of a Beagleboard but is slightly more I/O-oriented. It has more output pins and lacks an HDMI
connector.

Just like the Arduino, the Beaglebone has capes — add-on cards that extend I/O capabilities or add
system functionality. There are LCD touch-screen capes, battery capes, and wireless and extended
I/O capes. There are also breakout boards, which enable you to create your own circuits.

What Operating Systems Exist?
If a CPU is the hea rt of a hardware embedded system, an operating system is the brain. An
operating system enables you to concentrate on your program by abstracting the hardware details.
You can concentrate on building your application while letting the operating system handle the
hardware technicalities. Memory confi guration, networking, and peripheral I/O can be handled
directly by the operating system. Multiple choices exist, each with their strong points.

Linux
Linux has been ported to just about any MMU -enabled processor that exists and has been used on
ARM systems for decades. Linux has a huge user base, and the possibility of compiling a home-
kernel is a major advantage for embedded systems. You can leave out large sections of the kernel for

c02.indd 24c02.indd 24 03-12-2013 12:05:2603-12-2013 12:05:26

What Should You Start With? ❘ 25

hardware that you do not need and leave in only the strict minimum. When adding new hardware,
there are lots of resources necessary for adding drivers, and it is possible that in the open-source
community someone has already developed such a driver.

VxWorks
VxWorks is a real-time operating system d esigned and developed by Wind River. It has a
multitasking kernel and has multiprocessor support. It is used in a lot of mission-critical systems,
where reliability is premium. It powers the on-board computers for the Airbus A400 and powers
the radar warning system for the F/A-18 Hornet. VxWorks power numerous space projects. One
of the most famous uses is in the Mars Curiosity rover, where VxWorks was considered to be the
only system reliable enough to be placed onto a rover that was sent 350 million miles away, in an
environment where nobody can ever perform a hardware update.

Android
Android is a Linux-based operating system , designed initially by Android Inc. and later bought
by Google. Most Android development is done for a Java runtime environment, but the Android
operating system is open source and freely available. However, before the JVM is launched, there
are multiple applications written in C, and of course the Linux kernel, with lots of work needed on
low-level systems.

iOS
Apple fans will be slightly disappointed. iOS does run on Apple-specifi c, ARM-powered processors
with Apple extensions; however, the operating system is proprietary, meaning that you cannot have
access to boot-time code. Apple iOS applications are written in Objective-C; however, you can write
in assembly in iOS applications, either by writing inline code, or even by adding an assembly S fi le.
This allows for some highly optimized applications.

Which Compiler Is Best Suited to My Purpose?
Agai n, several solutions exist. The GNU compiler does an excellent job and is readily available on
just about every platform. ARM also has a compiler. Although not free, it has the advantage of
having all ARM’s knowledge in a single executable fi le and can heavily optimize your project.

GNU Compiler Collection
The GNU compiler is the en try level C/C++ compiler. GCC was originally a C compiler, named the
GNU C Compiler and was released in 1987. Since then, it has been renamed the GNU Compiler
Collection because it now supports many more languages, including different forms of C (C++,
Objective-C, and Objective-C++) as well as other languages (Fortran, Ada, Go, and so on).
Today, GCC has been released for Linux, Windows, MacOS, and even RiscOS. Some companies
consider GCC to be essential to the success of their platform.

GCC naturally supports ARM architectures and has support for different ARM processors and
architectures. Instead of compiling for generic ARM, it can be fi ne-tuned for different architectures,
either using or omitting technology as needed. It has full support for the entire ARM Classic

c02.indd 25c02.indd 25 03-12-2013 12:05:2603-12-2013 12:05:26

26 ❘ CHAPTER 2 ARM EMBEDDED SYSTEMS

collection, the Cortex series, and even the more recent 64-bit Cortex-A53. If you are curious, you
can write a small program and see how it would be compiled for an ARM2.

Sourcery CodeBench
Sourcery CodeBench is a complet e environment with an IDE, debugger, libraries, and support.
The Lite Edition, however, has only the command-line tools, namely a custom version of the GCC.
Changes are fi rst made in Sourcery CodeBench before being returned to GCC.

Sourcery CodeBench Lite is a complete toolchain, including the compiler, linker, debugger, and just
about any tool required to compile C, C++, and assembly.

ARM Compiler
Nobody knows ARM processors better th an ARM and it has also released the ARM Compiler,
the result of more than 20 years of knowledge. This compiler is designed specifi cally for ARM
processors and includes some of the most advanced optimization techniques available. Although this
is a professional solution that requires a license, it has exceptional optimization techniques that far
surpass GCC.

Getting Ready for Debugging
Debug solutions exist for ARM cores or for ARM-based chips. One of the references in the ARM
world is Lauterbach, with its Trace32 solution. Different modules exist enabling assembly-level
debugging and displaying internal and external peripherals, hardware breakpoints, and trace
solutions. It is possible to debug with only a serial line, and in some cases that is exactly what
you have to do. However, more professional solutions can leverage the work load considerably by
increasing bandwidth and adding advanced trace functionality.

Lauterbach Trace32
Lauterbach produces some extrem ely good hardware debuggers, notably the PowerDebug and
PowerTrace series. These devices can effectively debug in assembly or higher languages such as C
and C++. The interface has excellent support for watching variables and displaying memory
contents and traces. It has full MMU support, enabling the full display of entries and registers. All
the CPU registers and attached peripherals can be controlled directly. Some of the biggest names
in the embedded fi eld use Lauterbach devices in their engineering departments.

Are There Any Complete Development Environments?
Y es, there are complete solutions that exist, including an IDE, compiler toolchain, and debug tools,
all in one package.

ARM DS-5
ARM has its own complete development envi ronment: the ARM Development Studio. At the time
of writing, the current version is DS-5.

c02.indd 26c02.indd 26 03-12-2013 12:05:2603-12-2013 12:05:26

What Should You Start With? ❘ 27

The DS-5 environment is a professional solution with the Eclipse IDE as a central point and
excellent debugging tools, all coupled with the ARM compiler. When coupled with a DSTREAM
hardware debugger, it becomes a capable solution with a huge trace buffer that enables long-time
traces to be run, even on fast targets. If hardware is not yet available, software emulation is possible
with a specialized emulator.

The ARM DS-5 solution also has an option for power monitoring with a device that can read
voltage and current, and link capture data with other captures so that you can know when and why
a device changes its power settings, and know what portion of code uses the most battery.

The DS-5 solution is a professional solution aimed at engineering teams that work on bleeding-
edge applications that must have the upper-hand in code effi ciency. Solutions of this quality are not
cheap, but ARM has managed to make the price extremely reasonable, and everything you need is
contained in a single package.

You can fi nd more information at http://www.arm.com/products/tools/software-tools/ds-5/
index.php.

ARM DS-5 Community Edition
Compared to the profess ional DS-5 solution, this version is also managed by ARM but has some
limitations and does not come with the ARM compiler. It does, however, come with function
profi ling, process tracing, and a limited set of performance counters. Debugging is done with
software because there is no hardware debugger included, but GDB is a powerful tool, and the DS-5
CE completes that beautifully.

DS-5 CE is maintained by ARM and has the same quality as the professional build, but with open
source tools and limited functionality. It is a great platform to begin working on to get used to the
DS-5 environment The ARM forums are the place to look for information and to ask questions.

Is There Anything Else I Need to Know?
Some systems, such as the Raspberry Pi, come with everything needed to get a working ARM
system up and running in seconds. Other systems, such as evaluation boards, may require more
specialized electronics but are normally acquired by laboratories containing specialized equipment.

There are two devices that are more or less considered to be essential: a serial port and a digital
voltmeter.

Modern systems can communicate either by Ethernet or USB, but embedded systems almost always
have a serial port. Using a serial port is much easier than using any other device such as I2C or
CAN. With a serial device, you put bytes into a specifi c register, and that is just about it. For this
reason, and because there is little software needed to make it function, almost all embedded devices
have a serial terminal.

A digital voltmeter is often useful for verifi cation reasons to verify if an output is set to the right
level or if an input is set to logic level 1. It is useful for debugging but not for analysis; other devices
exist for that.

c02.indd 27c02.indd 27 03-12-2013 12:05:2603-12-2013 12:05:26

http://www.arm.com/products/tools/software-tools/ds-5/index.php
http://www.arm.com/products/tools/software-tools/ds-5/index.php

28 ❘ CHAPTER 2 ARM EMBEDDED SYSTEMS

Depending on your budget, an oscilloscope can be extremely valuable to a project. Looking at a
signal and not just reading the output from a voltmeter enables some advanced debugging. A power
supply can also be useful, but because most modern boards use a USB power supply, it is only useful
when adding electronics on a breadboard or for homemade designs.

SUMMARY

In this chapter, I have presented embedded systems and shown how ARM processors can be
suited for a wide range of projects, from the smallest project to the most powerful project. In an
example project, I demonstrated how important it is to plan ahead and to select the right processor.
I presented some of the tools required for an embedded project, such as the operating system,
compiler, and debugger, and also showed just some of the ARM-powered boards that are available
on the market.

In the next chapter, I will talk more about an ARM processor — the internal systems that must be
understood, the different operation modes, memory management, and the start-up sequence of an
ARM processor.

c02.indd 28c02.indd 28 03-12-2013 12:05:2603-12-2013 12:05:26

ARM Architecture
WHAT’S IN THIS CHAPTER?

 ➤ Understanding the basic terms

 ➤ Understanding a processor

 ➤ ARM processor internals

 ➤ Understanding program fl ow and interruption

 ➤ The different technologies

It doesn’t matter if you are talking about an ARM processor, a 68k or even an x86 processor;
they all have some common subsystems. There are slight differences in the way some
subsystems are accessed, or the amount of subsystems present, but all processors retain the
same basic principle, no matter what architecture. Following is a brief explanation of the core
technology found in all modern processors, before going deeper into the specifi c details that
make ARM processors what they are.

UN DERSTANDING THE BASICS

Everything in a computer is a number — text, images, sounds — everything is written down
as a collection of numbers. A computer’s job is to take some data and run operations on it; put
simply, take some numbers, and do some mathematical computations.

The Colossus was the fi rst programmable digital electronic computer, used in Britain during
World War II to help in the cryptanalysis of the Lorenz cipher code, a cryptocode used by the
German High Command to communicate with its armies. Colossus didn’t actually completely
decrypt messages; it was used to break Lorenz key settings using specialized code. Colossus
could outperform humans both in terms of speed and reliability, and by the end of the war ten
Colossus computers were in service.

3

c03.indd 29c03.indd 29 03-12-2013 12:06:1403-12-2013 12:06:14

30 ❘ CHAPTER 3 ARM ARCHITECTURE

While the Colossus was programmable, it was not a general purpose computer. It was designed
with a specifi c task in mind and could not be programmed for another task, only programmed for
different calculations on the same cipher. Programming was accomplished by setting up plugs and
switches before reading in a cipher.

In America, the ENIAC was announced in 1946 and was used mainly to calculate ballistic
trajectory, but was also used as a calculator for the hydrogen bomb project. What made it unique
was its capacity of branching, or executing computer code depending on a previous result. Instead
of a calculator simply adding numbers together, a computer could conditionally execute; take this
number and multiply it by 2. Is the result less than 0? If it isn’t, then subtract 20; otherwise, add 10.
For ballistics, a computer could be told to continue calculating the speed, distance, and height of the
projectile and to continue as long as the height is above sea level.

To function, a computer needs several things:

 ➤ A processor, on which all the work will be done

 ➤ Memory, to store information

 ➤ Input and output, to get information and to return it to the user (or activate outputs
depending on certain conditions)

The processor is the ARM core. It might be an ARM Classic processor, such as an ARM11, or a
Cortex, for example a Cortex-A8.

The memory might be more complicated. There are often several types of memory on an embedded
system. There might be large amounts of DDR storage available, but DDR requires an initialization
sequence, and therefore, memory. ARM systems often come with a small amount of internal
memory (enough to start the system and to initialize any external systems) such as DDR memory, or
possibly fl ash memory to read the operating system from.

Input and output can be almost anything and are either directly on the processor or SoC, or specifi c
components mapped to external addresses.

 Register
A CPU register is a small amount of fast memory that is built directly into the CPU and is used to
manipulate data. ARM CPUs are load/store architecture, meaning that all calculation done on a
CPU is done directly onto registers. First, the CPU reads from main memory into a register before
making calculations, and possibly writing the value out into main memory. No instructions operate
directly onto values in main memory. This might sound ineffi cient, but in practice it isn’t; it saves
having to write to main memory after each operation. It also signifi cantly simplifi es the pipeline
architecture, something that is crucial for RISC processors.

At fi rst glance, it might be surprising that there are so few registers on a system, but with a bit of
careful work, most routines can be created using few registers. ARM processors actually have more
registers than some.

c03.indd 30c03.indd 30 03-12-2013 12:06:1603-12-2013 12:06:16

Understanding the Basics ❘ 31

S tack
The stack is a memory location in which temporary data is put and retrieved when needed. It is
a LIFO: Last In, First Out. Some card games use a stack; a place in which cards can be put and
retrieved but only in a specifi c order; the last card placed is the fi rst one out. To get to a specifi c
card, you must fi rst remove all the other cards above it. The stack works in the same way.

The stack is primarily used when executing subroutines. When entering a subroutine, care must be
taken to ensure that some registers retain their initial value, and to do that, their contents are placed
onto the stack. So long as care is taken to take back the same amount of elements as was put into
the stack, then the same values will always be read back.

The stack can fi ll up quickly, depending on the situation. During complicated calculations, variables
must be pushed onto the stack to make room for new data. When calling a subroutine with complex
arguments, they are often pushed onto the stack, and in the case of an object, the entire object is
pushed onto the stack. This can result in huge increases in the stack size, so care must be taken to
ensure that the stack does not overfl ow.

I nternal RAM
N ot all processors have internal RAM, but most do. It is often small compared to system memory,
but it serves its purpose. On a typical system, there might be as much as 512 megabytes of
external DDR memory, but DDR memory takes time to initialize. You need to do lots of steps to get
DDR memory up and running, and in the meantime you cannot do your job with registers alone.
Therefore, most ARM processors have a minimal amount of internal RAM, where you can transfer
a program and run it, therefore setting up critical systems before switching to DDR memory.
Internal RAM is also usually much faster than external RAM.

C ache
Early CPUs read instructions directly from the system memory, but when considering the time it
takes to read data from the system memory compared to a processor cycle time, it was clear that
a large portion of the CPUs’ time was spent waiting for data to arrive. Writing data to the system
memory was often even worse. Something had to be done, and so cache memory was developed.

CPU technology advancements mean that the speed of CPUs has grown many times in comparison
to the access speed of main memory. If every instruction on a CPU required a memory access, the
maximum speed of a CPU would be the maximum speed of the system memory. This problem is
known as the memory bottleneck.

Cache memory is made from a special sort of memory, SRAM. SRAM, or Static RAM, has a speed
advantage over DRAM, or Dynamic RAM. Unlike DRAM, SRAM does not need to be refreshed
and can hold data indefi nitely provided that it remains powered. SRAM provides high speed, but
the cost is prohibitively high, so only a small amount of SRAM is available; main system memory is
rarely SRAM.

Cache memory is used to store information recently accessed by a processor. Several layers of cache
may be implemented: Cache (Level 1) is the closest to the CPU and the fastest. It is often relatively

c03.indd 31c03.indd 31 03-12-2013 12:06:1603-12-2013 12:06:16

32 ❘ CHAPTER 3 ARM ARCHITECTURE

small, varying between 4 KB and 64 KB in size. L2 cache (Level 2) is often slightly slower than L1
but also much larger. L2 cache can be in the range of 128 KB all the way to 4 MB or more.

There are two distinct cache architectures: Von Neumann (or unifi ed) and Harvard. Unifi ed cache
is a single memory cache used for all memory zones. Harvard cache separates instruction cache
and data cache. The separate caches are often referred to as D-cache (data cache) and I-cache
(instruction cache). Harvard architectures have physically separate signals for storage for code and
data memory, and Von Neumann architectures have shared signals and memory for code and data.

On boot, caches are disabled but not necessarily invalidated; they must be specifi cally set up and
confi gured to function.

Read Cache Strategy
Cache memory is designed to avoid lengthy reads and writes, by reading in sections of memory
into cache upon fi rst use in the hope that future reads can then read from cache. If the processor
requests some data, it fi rst checks the cache. If it fi nds the data available, it is called a cache hit, and
the data will be available immediately without having to read data from external RAM. If the data
is not available, it is a cache miss, and the relevant data must be read from the system memory into
the cache. Instead of reading in a single value, a cache line is read in.

Although this can be useful for some portions of the system memory, there are locations in which
you do not want cache to operate at all. Caching the serial port could be disastrous; instead of
reading from the serial register, you would constantly be reading the cache and presuming that no
data is available. That is where memory management comes in — you can program specifi c memory
zones to be cacheable or non-cacheable.

Memory management is done by the Memory Management Unit (MMU) or, for some systems,
the Memory Protection Unit (MPU). For some Cortex-M systems, neither MMU nor MPU is
available, and the cacheable attributes or memory regions are part of the fi xed architectural map.

Of course, using this strategy, you are soon presented with a problem. When a cache-miss is
encountered and the cache is full, what happens? In this case, one of the cache entries has to be
evicted, leaving place for a new entry. But which one? This is one of the subjects on optimization;
the trick is to know which cache entries will be used in the future. Because it is extremely diffi cult
to know what will be used and what won’t, one of the cache eviction strategies is LRU, or
Least-Recently Used. By using this technique, the most recently accessed cache will remain, and
older entries will be deleted. Careful planning can help optimize systems by defi ning which sections
of memory are cacheable and which ones aren’t.

Writ e Cache Strategy
Write-cache strategy is comparable to read-cache strategy, but there is a difference. Writing to cache
can effectively speed up operation, but sooner or later the external memory needs to be updated,
and you must fi rst think about how to do that. There are two possible policies: write-through and
write-back.

When writing data with the write-through policy, data is written to the cache, and at the same
time written to system memory. Subsequent reads will read from the cache. Write-back cache is

c03.indd 32c03.indd 32 03-12-2013 12:06:1603-12-2013 12:06:16

Getting to Know the Different ARM Subsystems ❘ 33

slightly different from write-through. Initially, writing is done only to the cache; writing to external
memory is postponed until the cache blocks are to be replaced or updated with new content. Cache
lines that have been modifi ed are marked as dirty. Write-back does have speed advantages but is
more complex to implement and also has a drawback. A read miss in a write-back cache (requiring
a block to be replaced by a data read) often requires two memory accesses: one to write the dirty
cache line to system data and one to read system data into a new cache line.

GETT ING TO KNOW THE DIFFERENT ARM SUBSYSTEMS

After having shown the basics, I will now show some of the subsystems on ARM processors. They
are the components that make up an ARM processor, and are essential components to an ARM core.

Pres enting the Processor Registers
An ARM core can be thought of as having 16 32-bit general registers; named r0 to r15. In reality,
however, there are several more because some registers are mode-specifi c. They are known as
banked registers. Registers r0 to r7 are the same across all CPU modes; they are never banked.
Registers r8 to r12 are the same across all CPU modes, except for FIQ. r13, r14, and r15 are
unique to each mode and do not need to be saved.

As you can see in Figure 3-1, when switching from User Mode to Fast Interrupt Mode, you
still have the same registers r0 to r7. That means that the values that were in r0 to r7 are still
there, and when returning from Fast Interrupt, you return to where you were before the interrupt,
and that portion of code expects to fi nd the same values. However, r8 to r14 are “banked,”
meaning that these registers are used only inside your current mode of operation. The original r8 to
r14 are still there and will be visible after you exit the fast interrupt. The advantage of this is speed;
on returning, the registers must be set to their original values.

In normal programming, the user can freely access and write registers r0 to r12. r13, r14, and
r15 are reserved for special purposes. The ARM coding conventions (the AAPCS, Procedure Call
Standard for the ARM Architecture) state that when calling a subroutine, the arguments are passed
in the fi rst four registers (r0 to r3), and return values are also passed in r0 to r3. A subroutine must
preserve the contents of the registers r4-r11. It is up to the subroutine to see if it necessary to push
registers to the stack, or if it is possible to make required calculations on the fi rst four registers.
Whatever the decision, on returning, the caller function must have the result in r1, and the contents
of r4 to r12 must be preserved.

r0 t o r3
Normally, the fi rst four registers, r0 to r3, are used to pass arguments to a function. After these
four registers have been used, any further arguments must be placed onto the stack. This can be
confi gured with a compiler option. r0 is also used as the return value of a function. If the return
value is more than 32-bits wide, r1 is also used. A program must assume that any function call will
corrupt r0 to r3.

c03.indd 33c03.indd 33 03-12-2013 12:06:1603-12-2013 12:06:16

34 ❘ CHAPTER 3 ARM ARCHITECTURE

r4 t o r11
r4 to r11 are general purpose registers and can be used for any calculation, but they must be
preserved by a function if their values are changed.

r12
 r12 is sometimes known as the IP register and can be used as an interprocess scratch register.
The exact use depends heavily on the system being used, and in some cases, it is used as a general
purpose register. If you use an operating system, refer to the operating system guide as to the usage
of r12. If you are creating a bare metal system, you can use r12 as you see fi t.

The AAPCS states that r12 may be corrupted by any function call, so programs must assume that it
will not be preserved across a call.

r13: The Stack Pointer
The stack pointer is an important register. r13 has a special function; it is the stack pointer. Just like
the other registers, it is possible to read and write to this register, but most dedicated instructions
will change the stack pointer as required. It is necessary to set up this register by writing the correct

User

r0

r10

r15

r14

r13

r12

r11

r9

r8

r7

r5

r6

r4

r3

r2

r1

r0

r10 FIQ

r15

r14 FIQ

r13 FIQ

r12 FIQ

r11 FIQ

r9 FIQ

r8 FIQ

r7

r5

r6

r4

r3

r2

r1

r0

r10

r15

r14 IRQ

r13 IRQ

r12

r11

r9

r8

r7

r5

r6

r4

r3

r2

r1

r0

r10

r15

r14 und

r13 und

r12

r11

r9

r8

r7

r5

r6

r4

r3

r2

r1

r0

r10

r15

r14 abt

r13 abt

r12

r11

r9

r8

r7

r5

r6

r4

r3

r2

r1

r0

r10

r15

r14 SCV

r12

r11

r9

r8

r7

r5

r6

r4

r3

r2

r1

Supervisor Abort Undefined IRQ FIQ

r13 SCV

FIGURE 3-1: ARM Registers in different modes

c03.indd 34c03.indd 34 03-12-2013 12:06:1603-12-2013 12:06:16

Getting to Know the Different ARM Subsystems ❘ 35

address, but after that, it is no longer necessary to directly change this register. Thumb even forbids
changing the stack pointer, with the exception of add and subtract.

When entering a function, r4 to r11 need to be returned to their initial values before leaving. To do
that, use the PUSH and POP instructions, both of which modify the SP as required. Of course, it is
not effi cient to automatically PUSH and POP all the registers; therefore, the compiler will look and
see what is to be done and will operate only on the registers that need to be saved, for example:

subroutine PUSH {r0-r3,r12,lr} ; Push working registers and the link register
 BL my_function
 ; my_function will return here
 POP {r0-r3,r12,pc} ; Pop working registers, r12 and the PC

r14: The Link Register
r14 holds the value of the Link Register, the memory address of an instruction to be run when a
subroutine has been completed. Effectively, it contains the memory address to return to after you
fi nish your task. When the processor encounters a branch with link instruction, a BL, r14 is loaded
with the address of the next instruction. When the routine fi nishes, executing BX returns to where
the program was.

Here is an example:

AREA subrout, CODE, READONLY ; Name this block of code
ENTRY ; Mark first instruction to execute
start MOV r0, #10 ; Set up parameters
 MOV r1, #3
 BL doadd ; Call subroutine

[...]

doadd ADD r0, r0, r1 ; Subroutine code
 BX lr; Return from subroutine

 END ; Mark end of file

r15: The Program Counter
r15 holds the value of the Program Counter, the memory address of the next instruction to be
fetched from memory. It is a read/write register; it can be written to, as is sometimes the case when
returning from a branch instruction, modifying the address of the next instruction to be executed.

There is, however, a trick. Although technically the PC holds the address of the next instruction to
be loaded, in reality it holds the location of the next instruction to be loaded into the pipeline, which
is the address of the currently executing instruction plus two instructions. In ARM state, this is 8
bytes ahead, and in Thumb state it is 4 bytes. Most debuggers will hide this from you and show you
the PC value as the address of the currently executing instruction, but some don’t. If, during your
debugging session, the PC points to something that doesn’t seem related, check the documentation
to see what the PC is supposed to show.

Presen ting the CPSR
The CP SR is technically a register but not like the registers r0 to r15. The CPSR, short for Current
Program Status Register, is a critical register that holds the status of the running program and

c03.indd 35c03.indd 35 03-12-2013 12:06:1603-12-2013 12:06:16

36 ❘ CHAPTER 3 ARM ARCHITECTURE

is updated continuously. It contains condition code fl ags, which may be updated when an ALU
operation occurs. Compare instructions automatically update the CPSR. Most other instructions
do not automatically update the CPSR but can be forced to by adding the S directive after the
instruction.

The ARM core uses the CPSR to monitor and control internal operations. The CPSR holds the
following, among others:

 ➤ Current processor mode

 ➤ Interrupt disable fl ags

 ➤ Current processor state (ARM, Thumb, Jazelle, and so on)

 ➤ Data memory endianness (for ARMv6 and later)

 ➤ Condition fl ags

CPSR specifi cations may vary slightly from one architecture to another as ARM implements new
features.

If the CPSR is the Current PSR, the SPSR is the Saved PSR. When an ARM processor responds to
an event that generates an exception, the CPSR is saved into the SPSR. Each mode can have its own
CPSR, and when the exception has been handled, the SPSR is restored into the CPSR, and
program execution can continue. This also has the advantage of returning the processor to its exact
previous state.

Understanding Condition Flags
The ALU is connected directly to the CPSR and can update the CPSR registers directly depending
on the result of a calculation (or comparison).

N – Negative
T his bit is set if the result of a data processing instruction was negative.

Z – Zero
Th is bit is set if the result was zero.

C – Carry
Thi s bit is set if the result of an operation was greater than 32 bits.

V – Overfl ow
This bit is set if the result of an operation was greater than 31 bits, indicating possible corruption of
the signed bit in signed numbers.

In 2’s complement notation, the largest signed 32-bit number a register can hold is 0x7fffffff, so
if you add 0x7fffffff and 0x7fffffff, you can generate an overfl ow because the result is larger
than a signed 32-bit number, but the Carry (C) is not set because you do not overfl ow an unsigned
32-bit number.

c03.indd 36c03.indd 36 03-12-2013 12:06:1703-12-2013 12:06:17

Getting to Know the Different ARM Subsystems ❘ 37

Inter rupt Masks
Interrupt masks are used to stop (or allow) specifi c interrupt requests from interrupting the processor.
It is often useful to disable interrupts for specifi c tasks before re-enabling them. When servicing an
IRQ, further IRQs are disabled and FIQs are not modifi ed. When servicing a fast interrupt, FIQs
and IRQs are disabled; that way, critical code cannot be interrupted. When the interrupt operation
is over, the SPSR is restored and the processor is returned to its previous state (with the previous
settings for interrupts).

On some cores, there is a special interrupt that cannot be disabled — NMI, or Non-maskable
Interrupt.

Calcul ation Unit
The calculation unit, as shown in Figure 3-2, is the heart of an ARM processor.

FIGURE 3-2: ARM Calculation Unit

ALU
Result

Register bank Barrel shifter

CPSR

Op2Op1

Rn

Rm

Rd

The Arithmetic Logic Unit (ALU) has two 32-bit inputs. The fi rst comes directly from the register
bank, and the second one comes from the shifter. The ALU is connected to the CPSR and can
shape the calculation output depending on the CPSR contents and also update CPSR contents
according to the results of a calculation. For example, if a mathematical operation overfl ows, the
ALU can update the CPSR directly.

You must understand that ARM cores in ARM mode do not actually need shift instructions,
contrary to many other processors. Instead, the barrel shifter can perform a shift during an
instruction by specifying a shift on the second operator directly inside an instruction. In Thumb
mode, the instructions are simplifi ed and shift instructions do exist.

Pipeli ne
The pipeline is a technique used in the design of ARM processors (and others) to increase
instruction throughput. Instead of having to fetch an instruction, decode the instruction, and then
execute it, you can do all three at the same time but not on the same instruction.

c03.indd 37c03.indd 37 03-12-2013 12:06:1703-12-2013 12:06:17

38 ❘ CHAPTER 3 ARM ARCHITECTURE

Imagine a factory. Imagine a worker inside the factory making a family computer. He fi rst gets the
mainboard and puts it inside the chassis. Then he takes the processor and puts it on the mainboard.
Then he installs the RAM, and fi nally, he installs the graphics card. One worker has made the
entire computer; one person is responsible for the entire chain. That isn’t how they are made, though;
computer manufacturers rely on assembly lines. One person will put the mainboard inside the
chassis, and instead of continuing to the next task, he will repeat the process. The next worker on the
assembly line will take the work of the fi rst person and install the processor onto the mainboard, and
again, the next task will be performed by someone else. The advantage is that each task is simplifi ed,
and the process can be greatly accelerated. Since each task is simple it can be easily duplicated,
making several lines, parallelizing fabrication, and doubling the output.

Although making a desktop PC might seem relatively simple, imagine the complexity of a laptop
computer, a fl at-screen TV, or a car. Each task, although simple compared to the entire product, is
still complex.

A CPU pipeline works in the same way. For example, one part of the processor constantly fetches
the next instruction, another part “decodes” the instruction that has been fetched, and fi nally,
another part executes that instruction. CPUs are driven by a clock; by doing more things on each
clock pulse, you can increase the throughput of the CPU, and since each operation is made simpler,
it becomes easier to increase the clock speed, further increasing throughput.

The advantage is, or course, speed. However, there are disadvantages of a pipelined system, notably
stalls. A stall occurs when a pipeline cannot continue doing work as normal. For example,
Figure 3-3 shows a typical six-stage pipeline.

FIGURE 3-3: ARM six stage pipeline

Branch
predict Fetch

Decode
Co-pro

Register read
Decode

Shift
Multiply

Fetch Issue Decode Execute Memory
Memory

Write
Reg write

Stage 3 accesses any operands that may be required from the register bank. After the calculation is
done, in stage 6, you can write the results back into the register bank. Now suppose you have this:

MOV r5, #20
MOV r8, [r9]
ADD r0, r1, r2
SUB r0, r0, r3
MOV r4, r6
MVN r7, r10

Each instruction is run sequentially. The fi rst Move instruction moves the value 20 into r5. The
second Move instruction requires a fetch from memory, and assuming that this data is not located in
cache, it can take some time. However, the data will be written into r8, and the instructions behind
it do not require r8, so they would be stalled, waiting for an instruction to fi nish without even
requiring the result.

c03.indd 38c03.indd 38 03-12-2013 12:06:1703-12-2013 12:06:17

Getting to Know the Different ARM Subsystems ❘ 39

There are different techniques to avoid stalls. One of the main reasons for stalls are branches. When
a branch occurs, the pipeline needs to be fi lled with new instructions, which are probably in a
different memory location. Therefore, the processor needs to fetch a new memory location, place the
fi rst instruction at the beginning of the pipeline, and then begin working on the instruction. In the
meantime, the “execution” phase has to wait for instructions to arrive. To avoid this, some ARM
processors have branch prediction hardware, effectively “guessing” the outcome of a conditional
jump. The branch predictor then fi lls in the pipeline with the predicted outcome. If it is correct, a
stall is avoided because instructions are already present in the pipeline. Some branch predictors have
been reported to be 95 percent correct. More recent branch predictors even manage a 100 percent
mark by speculatively fetching both possible execution paths, and discarding one of them once the
outcome of the branch is known.

There are several cases where the order of instructions can cause stalls. In the previous example,
the result of a memory fetch wasn’t required, but what would happen if the instruction immediately
afterwards required that result? Pipeline optimization would not be able to counter the stall, and the
pipeline might stall for a signifi cant amount of time. The answer to this is “instruction scheduling,”
which rearranges the order of instructions to avoid stalls. If a memory fetch might stall a pipeline, a
compiler may place the instruction earlier, thus giving the pipeline a little more time.

Another technique used on some processors is known as out-of-order execution. Instead of the
compiler rearranging instructions, the ARM core can sometimes rearrange instructions itself.

Tightly Coupled Memory
Cache can greatly increase speed, but it also adds problems. Sometimes, you need data to be stored
in memory that isn’t cacheable to be certain of the contents. Sometimes, you also want data to be
“always available” and to have the speed of something in cache but without using up all the system
cache. When reading data, if you have a cache hit, the data is immediately available, but if you have
a cache miss, that data must be read from the system memory, often slowing down the system, in
some cases considerably. You want critical interrupt handler code to be “always available,” interrupt
stacks, or mathematical data if the calculations require vast amounts of raw data.

Tightly Coupled Memory (TCM) is available on some processors. When available, TCM exists in
parallel to the L1 caches and is extremely fast (typically one or two cycles’ access time). The TCM is
consequently not cacheable, leaving the cache free for other instructions and data.

TCM is like internal RAM, only confi gurable. By setting registers in the CP15, you can select separate
instruction-side and data-side memory, either instruction or data-side memory, or complete deactivation
of the TCM. It can be placed anywhere in the address map, as long as it is suitably aligned.

Coprocesso rs
ARM processors have an elegant way to extend their instruction set. ARM processors have support
for coprocessors; secondary units that can handle instructions while the processor continues
doing work.

The coprocessor space is divided into 16 coprocessors, numbered 0 to 15. Coprocessor 15 (CP15) is
reserved for control functions, used mainly for managing caches and confi guring the MMU. CP14 is
reserved for debug, and CP 10 and 11 are reserved for NEON and VFP.

c03.indd 39c03.indd 39 03-12-2013 12:06:1703-12-2013 12:06:17

40 ❘ CHAPTER 3 ARM ARCHITECTURE

For classic processors, when a processor encounters an unknown instruction, it offers that
instruction to any coprocessor present. Each coprocessor decodes the instruction to see if it can
handle the instruction and signals back to the processor. If a coprocessor accepts the instruction,
it takes the instruction and executes it using its own registers. If no coprocessor can handle the
instruction, the processor initiates an undefi ned instruction exception. This is an elegant solution
because some software enables “soft” coprocessors. If a coprocessor is not present, the instruction
is caught during an exception and executed in software. Although the result is naturally slower
than if the coprocessor was present, it does mean that the same code can be run, regardless of the
availability of a specifi c coprocessor.

This system no longer exists; Cortex processors do not have a coprocessor interface, and instead,
the instructions have been implemented into the core pipeline. Coprocessor instructions still exist
and documents will still talk about the CP15 or other coprocessors; however, in order to simplify
the core, the older coprocessor structure has been removed, but the instructions became valid ARM
instructions. The coprocessor interface bus has 224 signals in it, so simplifying the coprocessor
design was an important step to making processors simpler and faster.

CP15: The System Coprocessor
CP15 is a coprocessor interface developed by ARM and present on almost all processors except for
the Cortex-M range.

The CP15’s role is to handle system confi guration: data cache, tightly coupled memory, MMU/
MPU, and system performance monitoring. They are confi gured using the MRC/MCR instructions
and can be accessed only in privileged modes. The registers are processor-specifi c; refer to your
manual for more detailed information.

CP14: The Debug Coprocessor
The CP14 provides status information about the state of the debug system, confi guration of certain
aspects of the debug system, vector catching, and breakpoint and watchpoint confi guration.

UNDERSTANDI NG THE DIFFERENT CONCEPTS

Before using an ARM processor, you need to know a few concepts. These concepts are the basis of
ARM systems; some are related to the embedded systems world; others are purely ARM.

What Is an Exception?
Microprocessors can respond to an asynchronous event with a context switch. Typically, an external
hardware device activates a specifi c input line. A serial driver might create an interrupt to tell the
CPU that data is ready to be read in, or maybe a timer that sends signals periodically. It is the
hardware’s way of saying, “I have something I need done.” This makes the processor do something
that is called a context switch; the processor stops what it was doing and responds to the interrupt.
Imagine working at your desk, when the phone rings. This forces you into a context switch. You
make a mental note of what you were doing, you acknowledge that the phone is ringing, and now
you are free to choose what to do next. You could answer it, and what you were doing before has
to wait. You could send the call to someone else or even ignore the call. Whatever you choose,

c03.indd 40c03.indd 40 03-12-2013 12:06:1703-12-2013 12:06:17

Understanding the Different Concepts ❘ 41

you return to your previous task where you left off. For a processor, it is the same thing. When an
interrupt arrives, you initiate a context switch. Registers can change, the current status is updated,
and the current memory address is saved so that you can return later.

During its life cycle, a processor runs a program. Anything that disturbs that operation is called
an exception. A software or hardware interrupt, a data abort, and an illegal instruction change the
normal execution of a processor and are all exceptions. Even a reset is called an exception. When an
exception occurs, the PC is placed onto the vector table at the corresponding entry, ready to execute
a series of instructions before returning to what the processor was doing before (except for the reset
exception). Several exceptions are available with different priorities.

Reset
A Rese t exception has the highest priority because this is an external action that will put the
processor in Reset state. When a CPU is powered on, it is considered to be in a Reset state. From
here, you probably need to initialize all the hardware. When starting in Reset state, the core is in
Supervisor mode, with all interrupts disabled.

Data Abort
A Data Abort happens when a data memory read or write fails. This can be for several reasons, but
mostly it occurs when reading from or writing to an invalid address. When a Data Abort happens,
the CPU is put into Abort mode, IRQ is disabled, FIQ remains unchanged, and r14 contains the
address of the aborted instruction, plus 8.

IRQ Interrup t
An IRQ interrupt occurs when an external peripheral sets the IRQ pin. It is used for peripherals to
indicate that they are awaiting service and need the CPU to do something. Some examples are an
input device indicating that the user has entered data, a network controller indicating that data has
arrived, or possibly a communication device indicating that it is awaiting data. Frequently, IRQs are
also used by a timer, periodically sending an interrupt every few milliseconds, or microseconds. This
is known as a tick.

FIQ Interrup t
An FIQ is a special type of interrupt designed to be extremely fast. It is mainly for real-time routines
that need to be handled quickly. It has a higher priority than an IRQ. When entering FIQ mode,
the processor disables IRQ and FIQ, effectively making the code uninterruptable (except by a data
abort or reset event) until you manually reactivate the interrupts. These are designed to be fast, very
fast, meaning that they are normally coded directly in assembly language. Also, FIQ is located at
the end of the vector table, so it is possible (and common) to start the routine right there, instead of
branching, saving a few instructions.

Prefetch Abo rt
The Prefetch Abort exception occurs when the processor attempts to execute code at an invalid
memory address. This could happen for several reasons: The memory location might be protected
and memory management has specifi cally denied access to this memory, or maybe the memory itself
is not mapped (if no peripherals are available at that address).

c03.indd 41c03.indd 41 03-12-2013 12:06:1703-12-2013 12:06:17

42 ❘ CHAPTER 3 ARM ARCHITECTURE

SVC
A Supervisor Call (SVC) is a special software instruction that generates an exception. It is often used
by programs running inside an operating system when requesting access to protected data. A
non-privileged application can request a privileged operation or access to specifi c system resources.
An SVC has a number embedded inside, and an SVC handler can get the number through one
of two methods, depending on the core. Most processors embed the SVC number inside the
instruction, and some Cortex-M processors will push the SVC number to the stack.

Undefi ned Instruction
An Undefi ned Instruction occurs when the ARM core reads an instruction from memory, and the
recovered data does not correspond to an instruction that the ARM core can execute. Either the
memory read does not contain instructions, or it is indeed an instruction that the ARM core cannot
handle. Some Classic processors used this technique for fl oating point instructions; if the processor
could execute the instruction, it would use hardware-accelerated routines, but if the processor
did not support hardware fl oating point, an exception would occur and the processor would use
software fl oating-point.

Handling Different Exceptions
Exceptions exist not only to warn the processor, but also to perform different actions. When
handling an interrupt exception, you need to do some work before returning to the main
application, but when handling a Data abort, you might think that all is lost. This isn’t always
the case, and the exception actually exists to avoid everything grinding to a halt. Every Linux
developer has, sooner or later, been confronted with the dreaded Segmentation Fault. A segfault
is, generally, an attempt to access a memory address that the program does not have the right to
access, or memory that the CPU cannot physically access. The exception is “trapped”; the operating
system takes control and stabilizes the system. This sometimes means that the offending program is
terminated, but more often it is just the program’s way of telling the operating system that it requires
more resources. An application may overfl ow its stack, in which case the operating system can
choose to allocate it some more, or if an application runs off the end of the current code page, the
operating system will load and map the next page.

When the operating system fi nishes handling the exception, it returns control to the application, and
the system keeps going.

When an exception occurs, the core copies the CPSR into SPSR_<mode> and then sets the
appropriate CPSR bits. It then disables interrupt fl ags if this is appropriate, stores the “return
address” into LR_<mode>, and then sets the PC to the vector address. Note that if the CPU is
in Thumb state, it may be returned to ARM state. Most Classic processors could only handle
exceptions in ARM state, but the ARM1156 and all Cortex processors can be confi gured to
handle exceptions in ARM or in Thumb state.

To return from an exception, the exception handler must fi rst restore the CPSR from SPSR_<mode>
and then restore the PC from LR_<mode>.

c03.indd 42c03.indd 42 03-12-2013 12:06:1803-12-2013 12:06:18

Understanding the Different Concepts ❘ 43

Modes of Opera tion
An ARM core has up to eight modes of operation. Most applications run in User mode, and the
application cannot change modes, other than by causing an exception to occur. The modes other
than User mode are known as privileged modes. They have full access to system resources and can
change modes freely. Five of them are known as exception modes; they are entered when specifi c
exceptions occur. Each of them has some additional registers to avoid corrupting User mode state
when the exception occurs. They are FIQ, IRQ, Supervisor, Abort, and Undefi ned mode. Some cores
also have a further mode — Monitor mode — that enables debugging a system without stopping the
core entirely.

User Mode
Normal ly a program runs in User mode. In this mode, the memory is protected (if the CPU has
an MMU or an MPU). This is the standard mode for applications, and indeed, most applications
can run entirely in User mode. The only way a program running in User mode can change modes
directly is to initiate an SVC. External events (such as interrupts) can also change modes.

System Mode
Syst em mode is a mode that can be entered only via an instruction that specifi cally writes to the
mode bits of the CPSR. System mode uses the User mode registers and is used to run tasks that
require privileged access to memory and coprocessors, without limitation on which exceptions can
occur during the task. It is often used for handling nested exceptions, and also by operating systems
to avoid problems with nested SVC calls.

Supervisor Mode
 Supervisor mode is a privileged mode that is entered whenever the CPU is reset or when a SVC
instruction is executed. Kernels will start in Supervisor mode, confi guring devices that require a
privileged state, before running applications that do not require privileges. Some bare metal systems
run almost entirely in Supervisor mode.

Abort Mode
Abort mode is a privileged mode that is entered whenever a Prefetch Abort or Data Abort exception
occurs. This means that the processor could not access some memory for whatever reason.

Undefi ned Mode
U ndefi ned mode is a privileged mode that is entered whenever an Undefi ned Instruction exception
occurs. This normally happens when the ARM core is looking for instructions in the wrong place
(corrupted PC), or if the memory itself is corrupted. It can also happen if the ARM core does not
support a specifi c instruction, for example when executing a VFP instruction on a core where VFP
was not available. The undefi ned instruction was trapped and then executed in software, therefore
emulating VFP.

Undefi ned mode can also occur on coprocessor faults — the coprocessor is present but not enabled;
it is confi gured for privileged access, but access is attempted in User mode; or it rejected an
instruction.

c03.indd 43c03.indd 43 03-12-2013 12:06:1803-12-2013 12:06:18

44 ❘ CHAPTER 3 ARM ARCHITECTURE

IRQ Mode
IRQ mode is a privileged mode entered whenever the processor accepts an IRQ interrupt.

FIQ Mode
FIQ mode is a privileged mode entered whenever the processor handles an FIQ interrupt. In this
mode, registers r8 to r12 are banked, meaning that they are available for use without having to
save their contents. Upon returning to the previous mode, the banked registers are restored to their
original state.

Having private registers reduces the need for register saving and minimizes the overhead of context
switching.

Hyp Mode
Hyp mode is a hypervisor mode introduced in ARMv7-A for the Cortex-A15 processor (and later)
for providing hardware virtualization support.

Monitor Mode
Moni tor mode is a special mode used for debugging, but with the advantage of not stopping the core
entirely. The major advantage is the possibility for other modes to be called — in monitor mode, the
core can be interrogated by the debugger but still respond to critical interrupt routines.

Vector Table
A vector table is a part of reserved memory where the processor looks for information when it enters
a specifi c mode. The classic model is used in pre-Cortex chips and current Cortex-A/R chips. In
it, the memory at 0 contains several exception handlers. A typical vector table looks something
like this:

00000000 LDR PC, =Reset
00000004 LDR PC, =Undef
00000008 LDR PC, =SVC
0000000C LDR PC, =PrefAbort
00000010 LDR PC, =DataAbort
00000014 NOP
00000018 LDR PC, =IRQ
0000001C LDR PC, =FIQ

Upon entering an exception, the corresponding instruction is executed. Typically, in this part of the
code, there will be jump instructions, with the possible exception of the FIQ exception. Because FIQ
is at the end of the table, it is possible to put instructions here, avoiding the need for a jump and
speeding up execution.

There is also an option called high vectors. Available on all ARM processors from ARM720T
onwards, this option allows the vector table to be placed at 0xffff0000, and can be confi gured by
software control to relocate the table at any time.

The table is usually called a vector table, but that isn’t always true. The vector table can contain one
ARM instruction per entry, so they are generally jump instructions. However, it can also contain
one 32-bit Thumb instruction, or two 16-bit Thumb instructions.

c03.indd 44c03.indd 44 03-12-2013 12:06:1803-12-2013 12:06:18

Understanding the Different Concepts ❘ 45

On Cortex-M chips, this is different. The vector table actually does contain vectors and not instructions.
The fi rst entries in a typical vector table on a Cortex-M chip might look something like this:

__Vectors DCD __initial_sp ; Top of Stack
 DCD Reset_Handler ; Reset Handler
 DCD NMI_Handler ; NMI Handler
 DCD HardFault_Handler ; Hard Fault Handler
 DCD MemManage_Handler ; MPU Fault Handler
 DCD BusFault_Handler ; Bus Fault Handler
 DCD UsageFault_Handler ; Usage Fault Handler

This means that a Cortex-M can address the entire memory space, not just the memory space
limited by branch commands.

Memory Management
M emory management is done through the Memory Management Unit (MMU), which enables you
to control virtual-to-physical memory address mapping, enabling the processor to transparently
access different parts of the system memory. An address generated by an ARM processor is called
a virtual address. The MMU then maps this address to a physical address, enabling the processor
to have access to the memory. The memory might be mapped “fl at,” in which the virtual address is
equal to the physical address.

Another function of the MMU is to defi ne and police memory access permissions. This control
specifi es whether a program has access to a specifi ed memory zone, and also if that zone is read-only
or read-write. When access to the memory zone is not permitted, a memory abort is performed by
the processor. This can be essential for protecting code because a privileged application should not
read system memory, and especially not modify it. It also enables several applications to run in the
same virtual memory space. This requires a little more explanation.

The operating system allocates a certain amount of processor time for each running application.
Before switching to the application, the operating system sets up the MMU for that particular
application. The application happily runs until it is interrupted by the operating system, and during
this time, it believes that it is running at a certain memory location. However, with the mapping
of virtual addresses and physical addresses, a program might think it is running at, for example,
0x4000, whereas the operating system has allocated it at 0x8000 in physical memory. When the
operating system interrupts the application to enable some processor time to another application,
it again reconfi gures the MMU. Another program is then run, again thinking that it is running at
0x4000, but the operating system might have allocated it at 0x9000, and so on. It also means that
one application cannot access the memory location of another application.

There are many uses for this that have been used throughout computer history. It can be used to
relocate the system kernel and has been done on most large operating systems. It can also be used to
access more than the physically available memory, by carefully switching memory and writing some
memory to disk, fl ash, or some other form of mass storage.

ARM systems also have a distinct use for memory management. ARM CPUs boot from memory
location 0x00000000 (or 0xffff0000 if high vectors are enabled), but this presents a problem.
0x00000000 must be located in ROM on fi rst boot, but it is often useful, if not required, to change
the vector table later, meaning that it must be located in RAM. In this case, MMUs can be used

c03.indd 45c03.indd 45 03-12-2013 12:06:1803-12-2013 12:06:18

46 ❘ CHAPTER 3 ARM ARCHITECTURE

to remap the memory; to place the boot ROM
elsewhere in memory, and to map fast memory to
the position of the vector table. This is illustrated in
Figure 3-4.

What Is Virtual Mem ory?
Every address generated by the processor is a virtual
address. When the MMU is not enabled, either
in reset state or because it was never confi gured,
the memory is fl at mapped between virtual and
physical. When the MMU is confi gured and
enabled, the processor requests are “translated” by
the MMU without the processor actually knowing
about the modifi cation. The CPU might think that it is retrieving memory from the DDR2 chip at
location 0x2080f080, but the MMU might have changed the request to 0x9080f080.

How Does the MMU Wo rk?
The MMU needs information about the different translations, and to do that, it needs a set of
translation tables. This is a zone in memory that contains information about the translations,
separated into different sizes.

ARM MMUs support entries in the translation tables that can represent a 1 MB Section, a 64 KB
Large page, a 4 KB Small page, or a 1 KB tiny page.

The fi rst part of the table is known as the fi rst-level table. It divides the full 4 GB address space into
4096 1 MB Sections, the largest size available. At the least, an MMU page table should contain
these 4096 Section descriptors.

Each entry is called a fi rst-level descriptor and can be one of four different items:

 ➤ A 1 MB Section translation entry, mapping a 1 MB region to a 1 MB physical region

 ➤ An entry to a second-level table for more precision

 ➤ Part of a 16 Mb Supersection

 ➤ A fault entry that’s a 1 MB Section of unreadable data

Each of the 4096 entries describes memory access for a 1 MB Section. Of course, sometimes it is
necessary to have a much smaller zone, for example, to have a 1 KB zone at the end of the stack to
cause an exception if the stack grows too much, instead of potentially overwriting code or data.
That is why a fi rst-level descriptor can point to another memory location, containing a second-level
table.

All this data is stored in system memory, but the MMU contains a small cache, the Translation
Lookaside Buffer (TLB). When the MMU receives a memory request, it fi rst looks in the TLB and
resorts to reading in descriptors only from the tables in main memory if no match is found in the
TLB. Reading from main memory often has an impact on performance, so fast access to some
translations can become critical. A real-time system may need to access data in a specifi c region

FIGURE 3-4: Memory remapping example

0×0

0×ffff ffff
I/O I/O

SRAM

SRAM

DRAM

DRAM

Boot ROM

Boot ROM

c03.indd 46c03.indd 46 03-12-2013 12:06:1803-12-2013 12:06:18

Presenting Different Technologies ❘ 47

quickly but not often. In the normal case, when a TLB entry is not used, it is replaced by another
line that is used often. To react as quickly as possible, therefore, some TLB entries can be locked,
meaning that they will always be present and never replaced.

P RESENTING DIFFERENT TECHNOLOGIES

The term technology refers to technological advances integrated as default over time. For example,
when ARM introduced the Thumb technology, it was an option for the ARM7 processor (used in
the ARM7TDMI). Thumb is now included by default in the ARMv5T architecture and all later
versions.

J TAG Debug (D)
The Joint Test Action Group (JTAG) was an industry group formed in 1985 and whose aim was to
develop a method to test circuit boards after manufacture. At that time, multilayer printed circuit
boards were becoming the norm, and testing was extremely complicated because most pathways
were not available to probes. JTAG promised to be a way to test a circuit board to detect faulty
connections.

In 1990, Intel released the 80486, with integrated JTAG support, which led to the industry quickly
adopting the technology. Although JTAG was originally designed just to test a card, new uses were
studied, especially debugging. JTAG can access memory and is frequently used to fl ash fi rmware.
Coupled with the EmbeddedICE debugging attribute, it provides a powerful interface.

E nhanced DSP (E)
As ARM-powered devices were used for more and more digital media applications, it was necessary
to boost the ARM instruction set by adding DSP instructions, as well as SIMD instructions.

Digital signal processing (DSP) is the mathematical manipulation of information to modify or
improve it in some way. The goal of DSP is usually to measure, fi lter, and/or compress/decompress
real-world analog signals. For example, DSP is used for music players, not only converting a
compressed digital fi le into analog music, but beforehand by converting an analog sound, recorded
in a studio, into a digital format. Typical applications are audio compression, digital image
processing, speech processing, or general digital communications. The use of SIMD instructions can
lead to increased performance of up to 75 percent.

DSP can be done on just about any processor, but the routines are extremely repetitive and time-
consuming. By adding specialized instructions, more calculations can be done with less processing
power. Some of the early mp3 players used ARM7EJ-S, with enhanced DSP instructions. The DSP
instructions enabled mp3 decoding at low speeds with little battery usage, ideal for mobile devices.
ARM released a highly optimized mp3 software library, but enhanced DSP works for almost all
digital information signals. The DIGIC processor is Canon’s processor for its line of digital cameras.
The Canon EOS 5D Mark III is a professional 22 megapixel camera, and by using a DIGIC 5, it
can take 6 photos a second, apply noise reduction routines, save each image in raw output, and also
convert it into JPEG, while keeping enough processor power available to keep the camera’s functions
running, notably the auto-focus based on the analysis of 63 points.

c03.indd 47c03.indd 47 03-12-2013 12:06:1803-12-2013 12:06:18

48 ❘ CHAPTER 3 ARM ARCHITECTURE

On Cortex-A class processors, this has been enhanced with NEON, optionally present on Cortex-A
processors.

Vec tor Floating Point (F)
Vector Floating Point was introduced enabling hardware support for half-, single-, and double-
precision fl oating points. It was called Vector Floating Point because it was developed primarily for
vector operations used in motion control systems or automotive control applications.

Originally developed as VFPv1, it was rapidly replaced by VFPv2 for ARMv5TE, ARMv5TEJ, and
ARMv6 architectures. VFPv3 is optionally available in ARMv7-A and ARMv7-R architectures,
using either the ARM instruction set or Thumb and ThumbEE. A synthesizable version was made
available, the VFP9-S, as a soft coprocessor for the ARM9E family.

Emb eddedICE (I)
EmbeddedICE is a powerful debug environment, and cores supporting the EmbeddedICE
technology have a macrocell included inside the ARM core for enhanced debugging.

The EmbeddedICE macrocell contains two real-time watchpoint units that can halt the execution of
instructions by the core. The watchpoint units can be programmed to break under certain conditions,
when values match the address bus, the data bus, or various signals. The watchpoints units can also
be programmed to activate on data access (watchpoint) or instruction fetches (breakpoint).

Jaz elle (J)
The Jazelle DBX (Direct Bytecode eXecution) was a technique that enabled Java bytecode to be
executed directly on an ARM processor. With the advances in processor technology, it was no
longer required to have specifi c Java bytecode acceleration, and this technology is now deprecated.

The fi rst implementation of this technology was in the ARMv5TEJ architecture, with the fi rst
processor being the ARM 926EJ-S. At the time, ARM processors dominated the mobile phone
sector, as it still does today. Mobile phones were becoming more and more advanced, and users were
demanding more and more features. New programs and games could be installed onto a mobile
phone, enhancing the user experience. These applications were mainly written in Java ME, a special
form of Java designed for embedded systems.

Lon g Multiply (M)
M variants of ARM cores contain extended multiplication hardware. This provides three
enhancements over the previous methods:

 ➤ An 8-bit Booth’s Algorithm was used, meaning that multiplications were carried out faster,
a maximum of 5 cycles.

 ➤ The early termination method was improved, meaning that some multiplications could
fi nish faster under specifi c conditions.

 ➤ 64-bit multiplication from two 32-bit operands was made possible by putting the result into
a pair of registers.

c03.indd 48c03.indd 48 03-12-2013 12:06:1803-12-2013 12:06:18

Presenting Different Technologies ❘ 49

This technology was made standard for ARM cores using architecture ARMv4 and above, and
ARM9 introduced a faster 2-cycle multiplier.

 Thumb (T)
Thumb is a second instruction set generated by re-encoding a subset of the ARM instruction set in
16-bit format. Because it is an extension of ARM, it was logical to call it Thumb.

Thumb introduced 16-bit codes, increasing code density. On some systems, the memory was 16-bits
wide, so it made sense to use 16-bit instructions. Reducing instructions to 16 bit also meant making
sacrifi ces, so only branch instructions can be conditional, and only registers r0 to r7 are available to
most instructions. The fi rst processor to include Thumb was the ARM7TDMI. This chip went
on to power devices like the Apple iPod, the Nintendo Game Boy Advance, and most of Nokia’s
mobile phone range at the time. All ARM9 processors and above include Thumb by default.

Thumb-2 technology was introduced in the ARM1156T2-S core and extends the limited 16-bit
instruction set by adding 32-bit instructions. Thumb with Thumb-2 is a “complete” instruction set
in the sense that it is possible to access all machine features, including exception handling, without
recourse to the ARM instruction set.

S ynthesizable (S)
ARM licenses their IP, and it is normally delivered in a hard-macro format. Some are synthesizable
cores and are delivered to clients in source code form. Synthesizable cores can be fl ashed onto an
FPGA component, and users can add their peripherals to the ARM core before fl ashing and testing.
This can be extremely useful for prototyping and to create small series of processors, since some
manufacturers provide FPGA chips with an embedded ARM core and enough programmable
logic to add a large range of peripherals. Changes can be tested, and when the logic development
is complete, the FPGA chips can be fl ashed with a fi nal confi guration — a custom design without
buying an ARM license.

Soft-cores enable greater fl exibility but often come at the price of speed. Soft-cores are normally
clocked at a slower speed than hard-core variants but have signifi cant advantages.

Today, an ASIC may integrate an entire processor, RAM, ROM, and several peripherals all on one
chip and are all user defi nable. ARM synthesizable cores allow companies to make optimized ARM
cores based on the design goal of the company. The core can be optimized for power consumption,
performance, cache size — almost all processor parameters can be customized. The fl exibility
provided by this solution can be seen in the huge ARM ecosystem, where a large number of products
exist with different characteristics, but all based on the ARM core.

Synthesizable cores started with the ARM7TDMI-S and exist for some ARM9, ARM10, ARM11,
and Cortex cores. Today, almost all ARM cores are delivered in synthesizable forms to ARM
licensees.

Tru stZone
TrustZone is a security technology implemented by ARM on the ARM1176JZ-S and now an
integral part of every Cortex-A class processor.

c03.indd 49c03.indd 49 03-12-2013 12:06:1803-12-2013 12:06:18

50 ❘ CHAPTER 3 ARM ARCHITECTURE

TrustZone is an approach to security by creating a second environment protected from the main
operating system. Trusted applications run in a Trusted Execution Environment and are isolated
by hardware. Designed for mobile applications, TrustZone enables users to run unsafe code, while
protecting the core functionality.

For example, mobile telephone manufacturers often require this sort of functionality. On a mobile
phone, it is quite possible to have two operating systems that run simultaneously. One of them is
the “main” operating system, the system that is visually present on the screen, and enables you to
download and install programs from the Internet. This environment is not secure; it is possible
to download malware despite best intentions. A second operating system, this time a real-time OS,
is responsible for the hardware side of the telephone, the modem. Both systems are separated for
several reasons: partly because of the operating system (for example, Android can’t be compiled for
every modem on the market); and secondly for security, the operating system must not have access
to core systems. Mobile telephone manufacturers don’t like it when you fl ash a new version of the
operating system or have access to factory settings. This is one of the fi elds where this technology
can be useful.

NEON
 NEON is ARM’s wide Single Instruction Multiple Data (SIMD) instruction set. Historically,
computers have always been running one single task at a time. An application may require millions
of calculations, and each calculation will be done one at a time. In normal circumstances, this works
fi ne. When working on multimedia fi les, this proved to be slow and in need of some optimization.
Now say, for example, you want to turn a graphics image into a black-and-white image. You might
look at each pixel, take the red, green, and blue components, take the weighted average, and then
write back the data. For a 320×256 pixel image, you would have to do this 81,920 times. That
isn’t too bad. When working on a Full HD image, you are working on a 1920×1080 pixel image,
meaning 2 million calculations. This is beginning to become huge. A 22-megapixel camera will
output fi les in the range of 5760×3840 — 22 megapixels, so 22 million calculations. Suddenly, this
becomes painfully slow. By using NEON instructions, operations can be done on multiple values
packed into registers in a single cycle, allowing for higher performance.

big.LITT LE
ARM big.LITTLE processing is ARM’s answer to mobile devices’ energy consumption. Today’s
always-on mobile devices are diffi cult to predict, sometimes requiring little processing power and
sometimes requiring enormous amounts of power. Take the example of a tablet with an estimated
8 hours of battery life. On standby, even if the screen is off, the device is still running in the
background, connecting to Wi-Fi every so often to fetch e-mails, allowing some programs to run in
the background, and especially, running an alarm clock that will go off in 10 minutes to wake you
up. And it does. The screen turns on, an alarm sounds, and the device says good morning the best it
can. Up until now, you haven’t done anything actually CPU-intensive; a low-powered CPU could do
the job just fi ne. One hour later, you are on a fl ight on the way to your vacation destination, and to
kill time, you start playing a game. Now things start to change. The CPU is being used intensively,
and power consumption goes up. The processor adapts by increasing the clock rate, and you get
the most out of your tablet. One hour later, you still aren’t past the last level, but they start serving

c03.indd 50c03.indd 50 03-12-2013 12:06:1803-12-2013 12:06:18

Summary ❘ 51

drinks, so you put your tablet down. The operating system detects that you no longer need as much
processing power as you did before, and it scales down the frequency, therefore using less power.
The problem with this is simple: More powerful processors use more energy, no matter what the
clock frequency is. Even when doing “nothing,” there is still more silicon to power, and each clock
cycle does more and more things, costing energy. Running your application on a Cortex-A7 will cost
less energy than a Cortex A-15, meaning more battery life, but the Cortex-A15 is more powerful
than a Cortex-A7, meaning better applications. The ideal solution would be to have a Cortex-A15
that has the battery life of a Cortex-A7, but that isn’t possible. It is, however, possible to have a
Cortex-A15 and a Cortex-A7 in the same chip. Enter ARM’s big.LITTLE technology.

ARM’s big.LITTLE works on the principle that both processors are architecturally identical.
Because both processors have the same architecture, they can also have the same applications that
can, if needed, switch from one processor to another. Processes switch between the two processors,
depending on what is needed and depending on instructions issued by the kernel. When using
background applications, applications are run on the low-powered CPU, and when the system is
under load, the processes are run on the faster CPU. ARM estimates that by using this technology,
substantial energy savings can be achieved. In ARM’s tests, web browsing used 50 percent less
power, and background tasks, such as mp3 playing, used 70 percent less energy. All this is achieved
transparently for applications; software changes are made only in the operating system’s kernel
scheduler. Software doesn’t even need to know if it is running on a big.LITTLE enabled processor.

SUMMARY

In this chapter, I have explained the different subsystems of an ARM processor, and provided
an explanation of the different options available on select processors. I have presented how the
processor starts, what the vector table is, and how it is used for exceptions, I have explained the
different registers and which ones are reserved, before presenting some service registers, and fi nally,
basic memory management.

In the next chapter, I will give a brief introduction to assembly language, with an explanation of
what it is used for and how it is still essential to know assembly for embedded systems. I will also go
through an example assembly program, but please don’t run away! Assembly isn’t that diffi cult, and
it can even be fun.

c03.indd 51c03.indd 51 03-12-2013 12:06:1803-12-2013 12:06:18

c03.indd 52c03.indd 52 03-12-2013 12:06:1803-12-2013 12:06:18

4
ARM Assembly Language

WHAT’S IN THIS CHAPTER?

 ➤ Introduction to ARM assembly

 ➤ Use of assembly

 ➤ Understanding condition codes

 ➤ Understanding addressing modes

 ➤ Understanding your fi rst ARM assembly program

Assembly language is the most basic programming language available for any processor. It is a
collection of commands, or instructions, that the processor can execute. A program is a list of
instructions in a specifi c order telling the computer what to do. Just like a calculator, you can
tell a processor to take a number, to multiply it by 2, and to give you the answer. However,
you need to supply some more information; you need to tell the processor where to get the
number and what to do with it afterward.

I NTRODUCTION TO ASSEMBLY LANGUAGE

A processor runs machine code, and machine code can be specifi c from one processor to
another. Machine code written for a 6502 cannot, and will not, run on a 68000. Machine
code is a list of numbers that make no sense whatsoever to (most) humans. To make the
programmer’s life a little more bearable, Assembly language was invented. Assembly language
consists of words and numbers, and although it isn’t as easy to understand as the English
language, it is much easier to understand than reading numbers or punch cards.

Assembly language enables programmers to write computer programs, telling the processor
exactly what it must do.

c04.indd 53c04.indd 53 03-12-2013 12:07:1203-12-2013 12:07:12

54 ❘ CHAPTER 4 ARM ASSEMBLY LANGUAGE

TAL KING TO A COMPUTER

Talking to a computer isn’t as easy as you would think. Hollywood has made a good job of making
you think that computers are highly intelligent, but they aren’t. A computer can follow instructions,
no matter how badly written they are. To write good instructions, you need to know exactly how a
computer works. You learned about the memory and about input and output, but now here’s a little
more about the processor and what it contains.

All processors use registers, internal memory used for specifi c reasons. ARM processors have 16
registers, named r0 to r15. But what exactly is a register?

A register is, put simply, a memory location that can contain one number. Remember when you were
at school, and you had a written test in front of you. “How much is 5 times 3?” Instinctively, today,
you would write down 15. The habit over the years makes you forget about what actually goes on,
but try to think of it through a child’s perspective. This is an operation that he does not immediately
know the answer to, so he takes it step by step. Take the fi rst number, 5, and put it into your
memory. Then take the next number, 3, and put that into your memory, too. Then do the operation.
Now that you have the answer, write that down onto the paper. This is illustrated in Figure 4-1.

FIGURE 4-1: An example of mental calculation

1

2

4

3

5 X 3 =15

5 X 3 =?

15

A+

A processor does the same thing. An ARM
processor cannot do mathematical operations
straight to and from memory, only registers. In
this example, take the number 5 and load it into
a register, let’s say r0. Now, take the number 3,
and load it into r1. Next, issue an instruction to
multiply the value stored in r0 by the value stored
in r1, and put the result in r2. Finally, write the
value stored in r2 into the system memory. This is
illustrated in Figure 4-2. FIGURE 4-2: A calculation on an ARM processor

1

2

4

3

0x ...

0x ...

0x ...

r0

r1

r2

5

3

x

c04.indd 54c04.indd 54 03-12-2013 12:07:1303-12-2013 12:07:13

Why Learn Assembly? ❘ 55

The question remains: Why do you need registers? Couldn’t you do your operations directly into
memory? The reason is simple, speed. By designing this functionality into the processor, it also
makes the processor simpler, and reduces the amount of transistors required. This is one of the key
factors in Reduced Instruction Set Computer processors.

WHY LEARN ASSEMBLY?

Assembly has been around since, quite literally, the beginning of processors. It is the lowest-level
instruction set that a processor can use, and each processor has its own instruction set. Initially,
everyone had to write computer programs in assembly. In today’s world you have a choice of more
than 100 programming languages, each with its strong points and weak points. Most low-level
development today is done in C, a language that can be easily ported from one processor to another.
It is easier to read than assembly and has many advantages over assembly. There is also another
reason — portability. As seen previously, an assembly program written for one type of processor
will not function for another type. Not all processors have the same instructions, or the same way
of handling data. It is the C compiler’s job to convert the C fi les into machine code for the correct
processor. This might not seem important, since you may already know exactly what processor you
will be using, but the C compiler knows about some of the optional features of the processor and
can create optimized programs. Also, an external library might be designed to be used on a wide
variety of processors, not just one specifi c processor.

So why would anyone need to learn assembly? Although languages such as C might present huge
advantages, what you see is most certainly not what you get. It doesn’t matter what language you
choose — C, Python, Java, etc. — in the end, the only language a processor can use is assembly.
When writing a program in C, the code is eventually compiled into assembly language. Although
most programmers might not be concerned by assembly, embedded engineers will, sooner or later,
be confronted by assembly code.

Embedded systems have two constraints that might not be as important for larger computer systems:
speed, and size. Embedded systems often have to be as fast as possible and are usually heavily
limited in terms of memory.

Speed
The Airbu s A320 relies on a 68000 processor for the ELAC, the Elevator and Aileron Control. The
68000 was introduced in 1979, and although it is considered to be an “old” processor, it is also one
of the most reliable. It is for this reason that it is used in mission-critical systems, but it comes at a
price. It is not one of the fastest processors available, so all instructions must be carefully written
and optimized to make sure that the chip runs as fast as possible.

This brings a question, one that sometimes surprises newcomers. Doesn’t the compiler always create
the most optimized code possible? The answer is no. They normally do a good job, but once in a
while, they surprise you, or they won’t quite understand exactly what it is you want to do. They can
never be any better than you are. Imagine a shopping list. You have friends visiting, and you want
to cook something for them, such as Chicken Basquaise. So, you start your list; you need a pound of
tomatoes, a chicken (or six chicken breasts), four red peppers, three onions, some white wine, some
thyme, and some basmati rice. And off you go with your recipe list. The list contains everything you

c04.indd 55c04.indd 55 03-12-2013 12:07:1403-12-2013 12:07:14

56 ❘ CHAPTER 4 ARM ASSEMBLY LANGUAGE

need. (Although you might add a few more ingredients here and there.) You have several choices as
to what to do. You can get the ingredients as they appear on the list; start with the tomatoes, then
get the chicken, and then go back to where the tomatoes were to get the peppers. Depending on
the size of the supermarket, you can lose a lot of time. If you plan ahead, you could have at least
grouped everything together. So this time, get the tomatoes, the red peppers, and the onions because
they are in the same place. You don’t need to backtrack to get something that was close to you. You
have just optimized. The result is exactly the same, but it is quicker. But can you do anything else?
Yes, you can; you can go even further. In the supermarket close by, there are two entries. Thinking
cleverly about this, start with the tomatoes because they are close to the south entry. A few feet
later, you can fi nd the red peppers. From there, get the chicken. Going right, two lanes later, you
fi nd the white wine. Then continue your list getting the ingredients in the order that they appear
while making your way to the north entry. Making the list would probably take much longer, but
you now have the optimal list, one that takes you the shortest time possible. How much time would
you spend on your shopping list? And how much time would you save with your new optimized
path? Well, that depends. You won’t spend an hour making a list if it saves only 8 minutes in the
supermarket. If it can save 5 minutes, you will probably take 2 minutes to group the ingredients
together. But what would happen if you had lots of friends and invited them over every weekend?
Assuming that your friends wouldn’t mind eating only Basquaise chicken, you could theoretically
save 8 minutes each time, about 50 times a year? That 2-hour shopping list would have saved you a
total of 6 hours in the supermarket.

Although this example is ridiculous, it serves a point. On an embedded system, there are parts of
the program that you will run thousands, if not millions of times. A few milliseconds here and there
could save you a lot of time later. It could also mean using a cheaper chip because you might not
need the expensive 40MHz version since you were clever and managed to optimize everything so
that the 20-MHz version would work.

Code from C and C++ can be compiled into machine language, and although the compilers normally
do a good job, sometimes you have to write heavily optimized routines in assembly, or correct what
the compiler is outputting. Also, some start-up routines cannot be written in C; to activate memory
controllers or cache systems, you have to write some assembly code.

Rear Admiral Grace Hopper was one of the fi rst programmers of the Harvard Mark I computer,
an electro-mechanical computer built in 1944. She became obsessed with well-written code and
often lectured on the subject. She became famous for her representation of a microsecond and a
nanosecond, producing lengths of wire corresponding to the maximum distance that light could
travel in that amount of time. When talking about a nanosecond, she produced a series of wires
that were 11.8 inches long (29.97 cm). In comparison, she produced a wire corresponding to the
maximum distance traveled by light in one microsecond, a total of 984 feet long (just under 300
meters). Producing a wire that long, she went on to say: “Here’s a microsecond. Nine hundred and
eighty-four feet. I sometimes think we ought to hang one over every programmer’s desk, or around
their neck, so they know what they’re throwing away when they throw away a microsecond.”

Size
A while ago, I was working on a bootloader for a mobile phone. A bootloader is the fi rst piece
of code that is run on an embedded system; its job was to test to see if a program existed on the

c04.indd 56c04.indd 56 03-12-2013 12:07:1403-12-2013 12:07:14

Why Learn Assembly? ❘ 57

telephone. If such a program existed, there were cryptography checks to make sure that this was an
offi cial program. If the tests failed, or if no program was present, it put itself into a special mode,
enabling a technician to download a new fi rmware via USB. To do that, we had to initialize the
DDR memory, activate the different caches available on our CPU (in this case, an ARM926EJ-S),
and activate the MMU. We also had to protect the bootloader; its job was to fl ash a new fi rmware
but not give access to protected systems (the baseband, or confi dential user information). We had
to do all this in 16 Kb of NAND fl ash memories. Of course, in the beginning, there were huge
ambitions; we could add a nice logo, a smooth menu interface, a diagnostics check, and so on. The
list went on. When we released our initial binary, we were four times over the size limit. With a little
optimization, we were three times over the limit. By getting rid of the fancy image, and the fancy
menu, we were at 32 Kb. We started optimizing our C code, getting rid of a few functions here and
there, and we came up with a binary just above 17 Kb. Several people tried to modify the C code,
but we just couldn’t get it below 16 Kb; we had to dig deeper, so we looked at the assembly code.

We soon realized that there were a few things that we could do, but we would shave off only a few
bytes here and there. By changing how the program jumped to different functions, by modifying a
few loops, and by repeating the process, we slowly made our way down to 16 Kb. In the end, we not
only made the 16 Kb, but we also reduced the code further, allowing a few routines to be added.

Code compilers normally do a good job, but they aren’t perfect. Sometimes they need a little bit of
help from the developer.

Fun!
Writing in assembly can even be fun. No, seriously! In 1984, a new game called Core War was
developed. It simulated the inside of a small computer. Two programs are inserted at random
locations into the virtual memory, and in turn, each program executes one instruction. The aim of
the game was to overwrite the other program and to control the machine.

In Core War, a dedicated language was used, called Redcode. However, it was rapidly “ported” to
other systems, including ARM-based systems, as a fun way to learn programming. Battles were
waged for entire evenings, with people testing their code. It wasn’t that simple. Code couldn’t be
too large; otherwise, it might be damaged by the adversary. Different strategies were developed, and
soon several “classes” became known, some often highly specialized in defeating another specifi c
class. It was also an excellent way of teaching people what would happen if code was badly written.

Compilers Aren’t Perfect
Fr om time to time, you will be faced with a situation in which your product does not function as it
should, but for some reason the code looks perfectly good.

On one occasion, I was confronted by a problem on an embedded system. We needed to read in a
number from a sensor and to do a few calculations on that number to output a chart. There were
three ways we could access the information, but one of them wouldn’t work. We got a completely
incoherent value, every time. The other two worked fi ne, so we knew that the sensor was working
correctly, but these two ways were not available everywhere in our code. In one particular place,
we had no choice but to use the third way. It didn’t take us long to use a debugger, a Lauterbach
Trace32. We were confi dent that we could fi nd the problem immediately, using step by step, but

c04.indd 57c04.indd 57 03-12-2013 12:07:1403-12-2013 12:07:14

58 ❘ CHAPTER 4 ARM ASSEMBLY LANGUAGE

this just confused us more. The code was perfect, everything looked fi ne, but on one particular
instruction, the output was meaningless. We had no choice but to dig deeper and look at the
assembly code. It didn’t take us long to realize that there was an alignment problem; instead of
reading in one 32-bit integer from memory, the processor had to read in 4 bytes and do a quick
calculation on all 4 to create a 32-bit integer, but the compiler failed to do this correctly, resulting in
a corrupt value. Realigning the data fi xed the problem immediately.

On another occasion, a basic routine didn’t work as we wanted it to. We needed to loop 16 times
and do a calculation each time. For some reason, we never managed to. The code was simple:

for (i = 0; i < 16; i++)
 DoAction();

Except it didn’t work as intended. We checked: i was an integer, correctly defi ned. It worked before
and afterward. Bringing up the assembly listing, we saw that it did indeed loop, but the variable was
never initialized; the value of i was never set to 0. To this day, we use the same code, but just before,
we set i to zero, and there is a comment explaining that the line must never be removed.

Understanding Computer Science th rough Assembly
Computers are a mystery to most people and embedded systems even more so. When talking to
engineers, most understand the system, some understand what happens on lower layers, but today,
relatively few understand what actually happens deep inside the mainboard. A good way to learn
about what happens deep inside a CPU is to learn assembly. With Assembly language, you are at the
lowest level possible and can understand what happens when you run a program.

Shouldn’t You Just Write in Assem bly?
Sooner or later, everyone asks, “Shouldn’t I just write in Assembly? It’s fast! It’s lightweight!” Yes,
but don’t. There are very, very few projects that are written in assembly. Your time is valuable;
don’t start in assembly. Writing in C is much faster, and the compilers normally do an excellent
job. If they don’t, or if you need a routine that is highly optimized, carry on writing the code in C,
and then look at what the compiler generates. You can save time doing this, and even if the
end result is not 100 percent what you expect, the compiler probably does all the structuring
that you want.

Writing in assembly does not automatically mean fast and elegant code, on the contrary. Just like
with any language, it all depends on the quality of what you write; it is possible to make something
in assembly that is slower than in C. Assembly is useful to know; you may face it several times in a
single project, but with years of development, higher-level languages do make more sense.

Most experts agree; start by completing a project before looking to optimize it. Numerous tools
exist to analyze code, and see what portions are called, and which portions take the most time to
execute. It is always possible to return to some code and try to optimize, but working with highly
optimized code from the start can be a nightmare. When you know where your CPU spends most of
its time, then you can replace some parts with assembly.

c04.indd 58c04.indd 58 03-12-2013 12:07:1403-12-2013 12:07:14

Uses of Assembly ❘ 59

USES OF ASSEMBLY

Few projects will be wr itten entirely in assembly; using higher-level languages such as C just
makes sense. They are quicker to develop and easier to maintain, and compilers do a good job in
translating C to assembly. So, what exactly are the uses of assembly?

There are several reasons why assembly is still used, from bootloading the fi rst steps of a project all
the way to debugging a fi nished project.

Writing Bootloaders
You’ve almost certai nly seen a lot of programs written in C, but the fi rst instructions of a
bootloader are generally written in assembly. Some routines, like setting up the vector tables, cache,
and interrupt handling cannot easily be done in C. Also, some bootloaders need highly specialized
code, either for size or speed, where assembly is needed.

Much of the processor’s low-level confi guration cannot be done in C; changing registers in a
coprocessor requires assembly, and it cannot be done by writing memory. The fi rst instructions of
the Linux kernel are in assembly for this reason.

Reverse Engineering
Reverse engineering ha s been used from the beginning of the computer era, for good and for bad
reasons. Sometimes it is necessary to see how a peripheral is initialized, and only the assembly code
is available. Many drivers have been created this way, supporting devices made by companies that
no longer exist, where no source code is available.

The Gaming Industry, Building a Better Mou setrap
As soon as the fi rst computers became reasonably small, games have been available. People have
always been fascinated with computer games, and today it is one of the biggest industries. The fi rst
medium for games was the good old cassette; an analog media that the new generation will probably
never know. A standard tape player could be plugged into a computer to load programs directly.
After a few minutes of watching colored bars on a screen, you were ready to play! And ever since the
fi rst games, software piracy has existed.

Copying tapes was ridiculously easy. High-end tape players could simply copy the audio from one
tape to another, possibly degrading quality, but still allowing almost anyone to play a copy.

Game developers fought back. New systems were invented; questions were asked during the game.
Upon reaching the doors to the city, a guard would ask, “What is the second word of the third
paragraph on page 20 of your game manual?” Giving a wrong answer would mean never allowing
you into the city, effectively stopping your game. Although it was possible to photocopy a manual,
it did make things considerably more diffi cult for software pirates and also for people who actually
did own the game.

Disk protection was also added. By directly modifying data on a disk’s surface, a game could easily
detect if the disk was an original. The disk copy program from the operating system would refuse
to copy a sector that it thought to be in error, stopping disk copying. Again, systems were made that
enabled disk copying, but it stopped most cases.

c04.indd 59c04.indd 59 03-12-2013 12:07:1403-12-2013 12:07:14

60 ❘ CHAPTER 4 ARM ASSEMBLY LANGUAGE

Hardware dongles were considered to be the “ultimate” protection. An application would look at
the hardware on the computer, most often on the serial port, and ask a question. The dongle would
provide an answer, and the program was effectively authenticated. Copying a dongle was very, very
complicated. Most often, custom hardware chips were used, and the cost of creating a copy vastly
outweighed the cost of a software license.

Software pirates changed their strategy. Instead of using hardware to make copies, they turned
to software. Buried deep inside the application was a few lines of code of particular interest.
Somewhere in the code, the application would look at something particular, receive an answer,
compare that answer, and then either continue if the answer was correct, or stop if the answer
was wrong. It didn’t matter what language the program was initially written in; it all came down
to assembly. By reading the assembly code, and fi nding out where the program looked for this
particular piece of information, pirates could either force the answer to always be correct, or skip
the question completely. Although this might sound easy, a program can be millions of lines of code
long, and the portion that checks for copy protection might be as little as 10 lines. Also, the original
code might have comments explaining what the developer was doing, or variables with useful and
meaningful names, but not in assembly. There were certain techniques for helping pirates; serial
ports mostly use the same address, so it was possible to analyze code looking for a specifi c address
and then fi nd out which of the results looked like the copy protection.

Software developers fought back. Copy protection was added into several parts of the code, making
reverse engineering more diffi cult. Secondary routines checked to see if the primary routines hadn’t
been changed. False copy protection routines were added as a lure. Techniques became more and
more sophisticated, but still someone came up with something to disable the copy protection features.
Some do it for Internet fame, some do it to play the latest games, but some do it simply as a challenge.

Optimization
Most compilers do a good job at taking C fi les and converting them to assembly instructions. With
a few command-line options, compilers can be told to optimize for speed or for size (or a mixture of
both), but there are times when a compiler cannot correctly do its job and delivers functional code,
but far from optimized.

ARM’s weakness is division. More recent Cortex-A cores can do integer division, but previous cores
had to do division in software — something that could take a lot of cycles to complete. When a
function does one division, it isn’t always necessary to optimize, but when a function does repeated
calculations, sometimes several thousand times, it is often worthwhile to spend a little bit of extra
time to see what can be done. Maybe a routine will divide only by 10, in which case a new function
can be created, with tailor-made assembly instructions to get the job done as fast as possible.

ARM ASSEMBLY LANGUAGE

The ARM Assembly language is a well-designed language that, despite fi rst impressions, can
actually be easy to read. Where possible, it has been designed so that it can be easily read by a
human, for example:

ADD r0, r1, r2

c04.indd 60c04.indd 60 03-12-2013 12:07:1403-12-2013 12:07:14

ARM Assembly Language ❘ 61

This instruction can look a little frightening at fi rst, but it is easy. ADD is the shorthand for a
mathematical addition. The three subsequent registers defi ne the operation, but in what order? Well,
a human would write the operation as r0 = r1 + r2, and that is exactly what is written here; ADD
result = value 1 + value 2. The processor adds the value contained inside r1 and the value contained
inside r2, and puts the result into r0.

Layout
An assembly program source fi le is a tex t fi le and consists of a sequence of statements, one per line.
Each statement has the following format:

label: instruction ;comment

Each of the components is optional.

 ➤ Label — A convenient way to refer to a memory location. The label can be used for branch
instructions. The name can consist of alphanumeric characters, the underscore, and the
dollar sign.

 ➤ Comment — All characters after an @ are considered comments and are there only to make
the source code clearer.

 ➤ Instruction — Either an ARM instruction or an assembler directive

 .text
start:
 MOV r1, #20 ;Puts the value 20 into register r1
 MOV r2, #22 ;Puts the value 22 into register r2 ADD r0, r1, r2 ;Adds r1 and
 r2, r0 now contains 42
end:
 b end ;Infinite loop, always jump back to "end"

I nstruction Format
This is the standard layout used in ARM assembly:

<op>{cond}{flags} Rd, Rn, Operand2

For example, the following code is used to add two registers together:

ADD R0, R1, R2

 ➤ <op> — Three-letter mnemonic, called the operand

 ➤ {cond} — Optional two-letter condition code

 ➤ {flags} — Optional additional fl ag

 ➤ Rd — Destination register

 ➤ Rn — First register

 ➤ Operand2 — Second register or second operand

c04.indd 61c04.indd 61 03-12-2013 12:07:1403-12-2013 12:07:14

62 ❘ CHAPTER 4 ARM ASSEMBLY LANGUAGE

C ondition Codes
You can add a two-letter condition code to the end of the mnemonic, allowing the instruction to be
executed under certain conditions. For example, you can jump to some other code if the answer is
equal to zero and continue otherwise. In the same way, you can branch to some new code if there is
an overfl ow. This is mainly used when branching but can sometimes be used for other instructions.
For example, you can tell the processor to load a register with a particular value if and only if a
certain condition has been met. You see the command MOV later on, but put simply, MOV changes the
value of a register. You can specify that you want the register to be changed, with a MOV command.
However, you can also specify that you want the register to be changed if and only if the carry bit
was set, with MOVCS, or if a previous compare was lower or the same, with MOVLS.

Condition codes look at the N, Z, C, and V fl ags on the CPSR (the CPSR is presented in Chapter 3).
These fl ags can be updated with arithmetic and logical operations.

A L — Always
An instruction with this suffi x is always executed. The majority of instructions are nonconditional;
therefore AL is not required and may be omitted (and indeed should be omitted). For example, ADD
and ADDAL are identical; they are both run unconditionally.

NV — Never
The opposite of AL, instructions with NV are never executed. Instructions with this condition are
ignored. This code is now deprecated and shouldn’t be used. It originally provided an analog for the
AL condition code but was rarely used.

EQ — Equal
The instruction is executed if the result fl ag Z is set. If the Z fl ag is cleared, this instruction is ignored:

MOV r0, #42 ;Write the value 42 into the register r0
MOV r1, #41 ;Write the value 41 into the register r1
CMP r0, r1 ;Compare the registers r0 and r1, update CPSR register
BEQ label ;This command will not be run, since Z = 0
MOV r1, #42 ;Write the value 42 into the register r1
CMP r0, r1 ;Compare r0 and r1, update the CPSR
BEQ label ;This command will be run, since Z = 1

NE — Not Equal
The opposite of EQ, this instruction is executed if the Z fl ag is cleared. If the Z fl ag is set, this
instruction is ignored:

MOV r0, #42 ;Write the value 42 into the register r0
MOV r1, #42 ;Write the value 42 into the register r1
CMP r0, r1 ;Compare the registers r0 and r1, update CPSR register
BNE label ;This command will not be run, since Z = 1
MOV r1, #41 ;Write the value 42 into the register r1
CMP r0, r1 ;Compare r0 and r1, update the CPSR
BNE label ;This command will be run, since Z = 0

c04.indd 62c04.indd 62 03-12-2013 12:07:1403-12-2013 12:07:14

ARM Assembly Language ❘ 63

VS — O verfl ow Set
This condition is true if the Overfl ow (V) bit is set, resulting in a mathematical operation that was
bigger than the signed container (for example, adding together two 32-bit signed numbers that result
in a 33-bit signed result).

VC — Ov erfl ow Clear
This condition is true if the Overfl ow (V) bit is clear. It is the opposite of VS and triggers only if
the result of a mathematical operation was small enough to be held in its container. (For example,
adding together two 32-bit signed numbers together resulted in a signed number that could be
placed into a 32-bit signed container without data loss.)

MI — Min us
This condition is true if the Negative (N) bit is set:

MOV r0, #40
MOV r1, #42
SUBS r2, r0, r1 ; 40 – 42, the result is negative
BMI destination
; this portion of code is never executed

PL — Plus
 This condition is true if the Negative (N) bit is cleared. This happens when a mathematical
operation results in a positive number, but also when the result is zero. (Zero is considered positive.)

CS — Carry Set
The Carry Set fl ag is set when an operation on an unsigned 32-bit overfl ows the 32-bit boundary.

CC — Carry C lear
The instruction is executed if the Carry Flag (C) is cleared.

HI — Higher
T he instruction is executed if the Carry Flag (C) bit is set and if the result is not Zero (Z).

LS — Lower or Same
The instruction is executed if the Carry Flag (C) bit is cleared or if the result is Zero (Z).

GE — Greater Th an or Equal
Greater than or equal works on signed numbers and is executed if the Negative (N) bit is the same
as the Overfl ow (V) bit.

c04.indd 63c04.indd 63 03-12-2013 12:07:1403-12-2013 12:07:14

64 ❘ CHAPTER 4 ARM ASSEMBLY LANGUAGE

LT — Less Than
L ess than works on signed numbers and is executed if the Negative (N) bit is different from the
Overfl ow (V) bit.

GT — Greater Than
Greater than works on signed numbers and is equivalent to GE (Greater Than or Equal) and is
executed if the Negative (N) bit is the same as the Overfl ow (V) bit, but also only if the Zero (Z)
fl ag is not set.

LE — Less Than or Equal
Like LT (Less Than), this condition is executed if the Negative (N) bit is different from the Overfl ow
(V) bit, or if the Zero (Z) fl ag is set.

Comparison of the Different Conditions
Table 4.1 lists the different condition codes and shows exactly which condition fl ags are used.

TABLE 4.1: Condition Codes

CODE MEANING FLAGS

EQ Equal equals zero Z

NE Not equal !Z

VS Overfl ow V

VC No overfl ow !V

MI Minus/negative N

PL Plus/positive or zero !N

CS Carry set/unsigned higher or same C

CC Carry clear/unsigned lower !C

HI Unsigned higher C and !Z

LS Unsigned lower or same !C or Z

GE Signed greater than or equal N == V

LT Signed less than N != V

GT Signed greater than !Z and (N == V)

LE Signed less than or equal Z or (N != V)

AL Always (default) Any

c04.indd 64c04.indd 64 03-12-2013 12:07:1403-12-2013 12:07:14

ARM Assembly Language ❘ 65

Updating Condition Flags
By default, data processing instructions do not update the condition fl ags. Instructions update
the condition fl ag only when the S fl ag is set (ADDS, SBCS, and so on). The exception to this rule is
comparison operations, which automatically update the condition fl ags without the need to specify S.

Consider this code:

MOV r0, #0x8000000F
MOV r1, r0, LSL #1

In the fi rst instruction, you can put the value 0x8000000F into the register r0. In the second
instruction, you can move that value to r1, after having performed a left shift by 1 bit. This
operation is shown in Figure 4-3.

FIGURE 4-3: Result of a barrel shift

Carry

MOV r0, # 80 00 00 0F r0 00 0 0 0 0 0 0I I I II

MOV r1, r0, LSL #1 r1 00 0 0 0 0 0 00 I III

By performing a left shift, the value held in r0 was read in, and then its value was changed by the
barrel shifter to 0x1E. Bit 31 was shifted left, effectively leaving the scope of a 32-bit number and
was discarded. Bits 4, 3, 2, and 1 were shifted to bits 5, 4, 3, and 2, and a new bit 1 was inserted,
or “padded” as a 0, as specifi ed by the LSL instruction. You didn’t ask for a status update, so you
didn’t get one. The condition fl ags in the CPSR remain unchanged. Now look at what would have
happened if you had specifi ed the S fl ag:

MOV r0, 0x8000000F
MOVS r1, r0, LSL #1

Just like before, you insert the value 0x8000000F into r0 and then use the barrel shifter. Just
like before, bit 31 leaves the 32-bit scope. Because you are currently working in unsigned 32-bit
numbers, the result is considered to be a Carry; the C fl ag of the CPSR is updated.

By performing manual updates to the CPSR condition fl ags, you can now execute conditional
instructions. You can also execute several conditional instructions if you take care not to modify the
CPSR again. After this calculation, you could, for example, have branch instructions depending on
several factors. Was your value zero? This is equivalent to a BEQ. No, your result was not equal to
zero, so this would not result in a branch. Maybe afterward you would do some quick calculations,
and so long as you don’t specify the S fl ag (or you don’t execute a compare operation), the CPSR
condition fl ags remain unchanged. However, on the next line, you could have a Branch if Carry
Set, or BCS, and this time you would branch. Because the CPSR hasn’t been modifi ed since your last
MOVS, you can still use the results many lines of code later. This is one of the strong points of ARM;
a single calculation can be tested several times.

c04.indd 65c04.indd 65 03-12-2013 12:07:1503-12-2013 12:07:15

66 ❘ CHAPTER 4 ARM ASSEMBLY LANGUAGE

Now look at a more complete example:

MVN r0, #0
MOV r1, #1
ADDS r2, r0, r1

The fi rst instruction, MVN, is a special instruction that moves a negated number to the specifi ed
register. By writing the inverse of 0, you are actually writing 0xFFFFFFFF to the register. The
reasons for this will be explained later. For now, don’t worry about the instruction; just remember
that r0 contains 0xFFFFFFFF.

The second instruction moves the value 1 into r1.

The fi nal instruction is an ADD instruction; it simply ADDs the content of r0 and r1, and puts the
result into r2. By specifying S, you can specify that you want to update the CPSR condition fl ags. Now
add 0xFFFFFFFF and 0x1, resulting in 0x100000000. A 32-bit register cannot contain this number;
you have gone further than is possible. The logical addition result is held in r2; the result is 0x0.

The result is 0, which is considered to be positive, and so the N (negative) bit is set to 0. Because the
result is exactly 0, the Z (zero) bit is set. Now you need to set the correct values for the C and V bits,
and this is where things get tricky.

If you are talking about unsigned 32-bit numbers, then the result exceeded 32 bits, so you lost some
data. Therefore the C (carry) bit is set.

If you are talking about signed 32-bit numbers, then you essentially did a –1 + 1 operation, and
the result is zero. So even though the answer exceeded the 32-bit boundary, the answer did not
overfl ow (meaning the answer did not exceed a signed 32-bit value), and therefore the V (oVerfl ow)
fl ag is not set.

It is essential to know exactly what sort of result you are expecting. Carry and Overfl ow do not
show the same thing, and the condition codes you specify need to be precise.

Addressing Modes
In ARM assembly, you invariably need to fetch data from one place and put data in another. Your
system could just take a set of predefi ned numbers and do some calculation on them, but that would
have severely limited use. Instead, a typical system is constantly fetching data from memory, or from
external components (a pressure sensor, a keyboard, or a touch screen, for example).

In assembly, you have several ways of specifying where you want your data to come from. Don’t
worry too much about the actual instructions yet, more detail will be given in Chapter 7, “Assembly
Instructions,” but for now, concentrate on two instructions. MOV moves data from one register to
another, and LDR loads data from a specifi c place in memory to a register.

One of the most common things that you can do is to put a value into a register. You can do this
with an immediate value. An immediate value is an integer but only one of a certain type. For this
example, use a simple value, one that is an immediate value. To specify an immediate value, put a
hash sign in front of the number, like this:

MOV r1, #42

c04.indd 66c04.indd 66 03-12-2013 12:07:1503-12-2013 12:07:15

ARM Assembly Language ❘ 67

In this case, tell the processor to put the value 42 into r1.

In some cases, you want to move data from one register to another. This is a simple case and can be
specifi ed like this:

MOV r1, r0

This command “moves” the contents of r0 into r1. Converted to C, this is the equivalent of
r1 = (int)r0. Technically it is a copy and not a move because the source is preserved, but you look
at that more closely later in the chapter. By specifying two registers, you simply copy the value from
one to another. However, in some cases, you want to do something called a shift. Shift operations
are done by the barrel shifter; more information is available in Chapter 7, “Assembly Instructions.”
A shift takes a binary number and “shifts” the bits to the left or to the right.

Shifting is a quick way to multiply or divide by powers of 2 or sometimes to read
in only a portion of a number. It takes the binary value and “pushes” the numbers
in one direction or another, increasing or decreasing by a power of two. This
is illustrated in Figure 4-4, where 0100 in binary (4 in decimal) is shifted left,
becoming 1000 in binary, or 8 in decimal.

To MOV a register after performing a shift, use the LSL or LSR operand.

MOV r1, r0, lsl #2

Like the previous instruction, this command takes the value in r0, and puts it into r1; however
before doing that, it performs a left shift of the number by 2 bits. In C, this translate to
r1 = (int)(r1 << 2). It is also possible to shift a number to the right:

MOV r1, r0, lsr #4

This is the power of ARM assembly, and one of the reasons why ARM systems are so powerful.
Now have a close look at what you have done. You have read in a value from a register, performed a
shift, and then put the result into another register. This was all done in one instruction.

LSL and LSR are not the only instructions that you can use; for a complete list, please see the “Barrel
Shifter” section in Chapter 7, “Assembly Instructions.”

What happens if you don’t know exactly how much you need to shift? ARM assembly again comes
to the rescue; you can specify the contents of a register to perform your shift:

MOV r1, r0, lsr r2

By specifying a register for your shift, r0 can be shifted by the value contained in r2.

So now you know how to specify registers and how to put arbitrary values into registers, but it
doesn’t stop there. However, MOV can put values only from registers or from immediate values into
registers, so for the rest of this section, you will have to use another instruction, LDR. LDR reads data
from the system memory and puts the result into a register:

LDR r1, [r0]

FIGURE 4-4:
Binary shift left

Shift left
0 0 0I

00 0I

c04.indd 67c04.indd 67 03-12-2013 12:07:1503-12-2013 12:07:15

68 ❘ CHAPTER 4 ARM ASSEMBLY LANGUAGE

By putting r0 in square brackets, you tell the compiler
that you want to get the value of the memory
address stored in r0. For example, r0 might contain
0x101E4000, which is the GPIO1 interface on an ARM
Versatile board. Executing this instruction can make
the processor look at the memory pointed by r0 and put
the result into r1. This is illustrated in Figure 4-5.

To get the memory contents stored at the address in
r0 with an offset, add a number, for example:

LDR r1, [r 0, #4]

This works in the same way as your previous
example, except now the processor fetches the
memory location r0 + 4, or in C, r1 = *(r0 + 1)
because you read in 32 bits. This is illustrated in
Figure 4-6.

Of course, just like before, you can also specify an offset not only as an immediate value, but also as
the contents of a register:

LDR r1, [r0, r2]

This instruction fetches the memory location r0, plus the offset r2. Shifts can also be used directly
in the instruction, like this:

LDR r1, [r0, r2, lsl #2]

This loads r1 with the memory located at r0, plus the value in r2, divided by 2. The equivalent in C
is r1 = *(r0 + ((r2 << 2) /4)). This gives you the possibility to read, for example, a string of
characters from memory, using r0 as the base address and r2 as an offset. Of course, after that, you
would have to increase the offset register, but there are ways of doing that automatically:

LDR r1, [r0], #4

Just like in a previous example, this instruction takes the data held in the memory location pointed by
r0 and places it in r1. However, the immediate value 4 is then added to r0. Consider this example:

MOV r0, #200 ; Put 200 into r0
LDR r1, [r0], #4 ; Reads in memory location 200, then r0 = 204
LDR r1, [r0], #4 ; Reads in memory location 204, then r0 = 208

This is known as post-index addressing because you have your index, and after having used it,
you increment the value. Pre-index addressing works on the same principle and is designated by an
exclamation mark:

LDR r1, [r0, #4]!

FIGURE 4-5: Loading a register from pointer

r001 42 01 000x 10 IE 40 00 : 10 1E 40 00

r1

LDB r1, [r0]

FIGURE 4-6: Loading a register from pointer
with offset

r001 42 01 000x 10 IE 40 00 :

00 00 01 540x 10 IE 40 04 :

10 1E 40 00

r1

LDB r1, [r0,4]

c04.indd 68c04.indd 68 03-12-2013 12:07:1503-12-2013 12:07:15

ARM Assembly Primer ❘ 69

This increases r0 by 4 before fetching the memory. Let’s look at another example:

MOV r0, #200 ; Put 200 into r0
LDR r1, [r0, #4]! ; r0 = 204, then reads in memory location
LDR r1, [r0, #4]! ; r0 = 208, then reads in memory location

ARM ASSEMBL Y PRIMER

Like any programming language, Assembly can be a little confusing when starting, and like just
about any programming language, there are different dialects, or different ways of writing the same
thing. The current standard is known as Unifi ed Assembler Language (UAL) and is a common
syntax for both ARM and Thumb (which is discussed in Chapter 7, “Assembly Instructions”).

Loading and Storing
Essential to any calculation, data must fi rst be loaded into one or several registers before you use it.
ARM cores use a load/store architecture, meaning that the processor cannot change data directly
in system memory; all values for an operand need to be loaded from memory and be present in
registers to be used by instructions.

There are only two basic instructions used to load and store data: LDR loads a register, and STR saves
a register.

Setting Values
Frequently, you need to update a register with a particular value, not something located in memory.
This is useful when comparing data. Is the value of the register r0 equal to 42? You can also use it
when writing specifi c data into a device register; for example, place the data 0x27F39320 into the
DDR-II control register to activate system memory.

Branching
B ranching is the power of any processor; the capacity of running segments of code depend on a
result. It is a break in the sequential fl ow of instructions that the processor executes.

There are two types of branches possible: relative and absolute. A relative branch calculates
the destination based on the value of the PC. Relative branches can be in the range of +/– 32 M
(24 bits x 4 bytes) for ARM, and +/– 4 M for Thumb. Because branch instructions are PC-relative,
the code generated is known as relocatable; it can be inserted and run at any address.

Absolute branching works differently. Absolute branches always jump to the specifi ed address and
are not limited to the +/– 32 M barrier. They use a full 32-bit register, so this value needs to be
entered before, costing cycles, but the advantage is that you can access the full 32-bit address range.

Conditional branching is the basis of every system. A computer is not a computer if it cannot be
told to do one thing or another, depending on a previous result. Understanding branching is vitally
important.

c04.indd 69c04.indd 69 03-12-2013 12:07:1503-12-2013 12:07:15

70 ❘ CHAPTER 4 ARM ASSEMBLY LANGUAGE

Branching can be done by linking, thereby saving the next instruction address, allowing the
program to return to the exact same location after executing a subroutine. Branching can also be
done without saving the link register, which is often used during loop instructions.

All processors can branch, but ARM systems take this a step further. ARM cores can execute either
ARM assembly instructions, or Thumb instructions, and switching between the two is as easy as
issuing a branch and exchange instruction.

All the jump instructions are detailed later in Chapter 7, “Assembly Instructions.”

Mathematics
Because every value inside a processor is a number, everything that is done to that number is in some
way mathematical. A graphical user interface consists of lines and rectangles, and resizing windows
often involves manipulating numbers. Listening to digital music often involves heavy and repetitive
mathematics. ARM cores contain a complete instruction set that can handle just about any calculation
required for low-end microcontrollers all the way to advanced application processors.

Assembly instructions attempt to be readable; MUL is short for multiplication, SUB subtracts, and SBC
subtracts with carry, and in all cases, the variables are in human-readable format.

Understanding an Example Program
Now look at an example program, without having had a look at all the instructions available. This
is a mystery routine, and all that is known is that it accepts a single parameter: r0.

sum
 MOV r1,#0
sum_loop
 ADD r1,r1,r0
 SUBS r0,r0,#1
 BNE sum_loop
sum_rtn
 MOV r0,r1
 MOV pc,lr

At a glance, this is an easy routine, but it doesn’t make much sense. Now break that down into
several sections:

sum
 MOV r1,#0

This portion of code “moves” the value 0 into r1. Presumably, you use r1 during a calculation, and
this is just to set the parameter. In C code, it would be the equivalent of int x = 0.

sum_loop
 ADD r1,r1,r0 ; set sum = sum+n
 SUBS r0,r0,#1 ; set n = n-1
 BNE sum_loop

c04.indd 70c04.indd 70 03-12-2013 12:07:1603-12-2013 12:07:16

Summary ❘ 71

The fi rst instruction adds together the values held in r1 and r0 and puts the result in r0. The second
line is a subtract instruction, SUB, but because the S is present at the end of the instruction, it also
updates the condition fl ags of the CPSR. The instruction takes the value 1 from the value held in r0
and puts the result back into r0. So, r0 = r0 – 1, or, in C, r0--. The third instruction is a branch
operation, making the execution “jump” to a specifi c location, but only if the NE condition is met.
So, this instruction jumps back to the beginning of the code if r0 is not equal to zero.

So, r0 holds a value, and r1 equals r1 plus the value held in r0. Then, subtract 1 from r0, and
repeat the process while r0 isn’t equal to 1. If you started off with the value 5, the operation would
have been 5 + 4 + 3 + 2 + 1, before continuing. In other words, this routine takes a number n and
returns the result of 1 + 2 + 3 + … + n:

sum_rtn
 MOV r0,r1
 MOV pc,lr

So, what happens here? In the fi rst instruction, the register r1 is “moved” into r0. In the second
instruction, the Link Register is “moved” into the Program Counter, but why? ARM functions
return their result in r0 so that is why the temporary register, r1, must be fi rst copied into r0;
otherwise the result would be lost. As for the Link Register, it is a way for returning from a Branch
with Link, or a specifi c way of calling a subroutine. This program was a subroutine, and now it
returns back to the main program after completing its task.

Congratulations; you have just survived your fi rst ARM assembly program!

SUMMARY

In this chapter, I have given a brief introduction to ARM Assembly, its uses and applications, and
a brief introduction to some of the instructions and options that make ARM assembly unique. You
have considered the different condition codes that make most ARM instructions conditional, and
I explained what makes this so powerful. I have also shown an example program in assembly, and
you’ve seen that it isn’t too diffi cult to understand assembly.

In the next chapter, I will give a few example applications, from the simplest emulated program to
two real-world programs using evaluation boards.

c04.indd 71c04.indd 71 03-12-2013 12:07:1603-12-2013 12:07:16

c04.indd 72c04.indd 72 03-12-2013 12:07:1603-12-2013 12:07:16

First Steps
WHAT’S IN THIS CHAPTER?

 ➤ Setting up a cross-compile environment

 ➤ Your fi rst ARM program

 ➤ Running an ARM program in a simulator

 ➤ Presenting some evaluation boards

 ➤ Running a program on an evaluation board

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/
profembeddedarmdev on the Download Code tab. The code for this chapter is divided into the
following major examples:

 ➤ hw-code.zip

 ➤ hw2-code.zip

The time has come to start working. The fi rst task consists of installing everything needed
to compile for an ARM processor. By default, a development computer can compile code for
itself; for example, a Linux i7 PC can compile code that runs on an x86 Linux system. You
probably need something different; a cross compiler. A cross compiler is a compiler that can
create executable code for a platform other than the one on which the compiler is run. My
personal development machine is an i7, so to compile code for an ARM system, I needed to
install a cross compiler.

5

c05.indd 73c05.indd 73 03-12-2013 12:09:0003-12-2013 12:09:00

http://www.wrox.com/go/profembeddedarmdev
http://www.wrox.com/go/profembeddedarmdev
http://www.wrox.com

74 ❘ CHAPTER 5 FIRST STEPS

Sourcery CodeBench Lite is a free cross compiler available from its website. Download the
Embedded Application Binary Interface (EABI) version, and install it on your development PC. The
Lite versions are available at http://www.mentor.com/embedded-software/sourcery-tools/
sourcery-codebench/evaluations/.

Sourcery CodeBench Lite comes with a multitude of programs; most starting with arm-eabi. Don’t
be frightened by all the programs; you will use a few, but not all of them. It also comes with a
complete documentation explaining their use.

For the fi rst steps, you will be compiling code for an ARM926EJ-S, which used to be a reference for
embedded ARM platforms. You could, of course, have chosen just about any ARM core available,
but the ARM9 core is a good choice for the tools available, since qemu has support for an entire
board, called the Versatile. Newer projects should not use Classic ARM processors; they should use
the newer Cortex processors. However, the Versatile board is an excellent resource for learning. The
previous Versatile board has been superseded by the newer Versatile Express boards.

You can also compile these examples for other processors.

H ELLO WORLD!

Traditionally, the fi rst program anyone writes in a new language or on a new computer is Hello,
world!, which is a program that outputs “Hello, world” onto a display device. Because it is typically
one of the simplest programs possible in most programming languages, it is by tradition often used
to illustrate to beginners the most basic syntax of a programming language, or to verify that a
language or system is operating correctly. In embedded systems, this is sometimes tricky because
you do not necessarily have a display, but there are other means. You can write out your text onto a
serial port, but remember that when a system fi rst starts, there are no drivers. To write any text onto
a serial port, you must fi rst initialize the device and create a driver, which is out of the scope of
this book.

This example creates a barebones system using the absolute minimum. This system will not require
any interrupt handlers or cache management, and therefore it will not be used. It is a basic program
that you can add to later. The basic C routine looks like the following and is called hw-entry.c
(code fi le: hw-code.zip):

int entry(void)
{
 return 0;
}

The routine isn’t called “main” by choice because when writing a program using “main,” you can
presume that most of the hardware is initialized, which is not the case here. Some hardware might
be initialized in assembly, but other components will be initialized in C. This is one possible use of
the entry function, an entry point from assembly to C.

Now compile that, like you would with any C routine. You need to cross compile your program;
by using traditional tools, you can build a binary that would work on your current development
platform: probably an x86. You want to compile your routine for an ARM processor and
specifi cally an ARM926EJ-S.

c05.indd 74c05.indd 74 03-12-2013 12:09:0203-12-2013 12:09:02

http://www.mentor.com/embedded-software/sourcery-tools/sourcery-codebench/evaluations/
http://www.mentor.com/embedded-software/sourcery-tools/sourcery-codebench/evaluations/

Hello World! ❘ 75

arm-none-eabi-gcc -c -mcpu=arm926ej-s entry.c -o entry.o

This command compiles entry.c into entry.o, using ARM instructions. You aren’t done
here — far from it. As explained previously, this is not a program that will be run inside an
operating system, but this is a program run directly onto a processor with nothing else running. It is
a bare metal application, meaning that you need to set everything up in assembly.

Of course, your C routine will be called from assembly, and before running your routine, you need
to set some things up, notably the vector table. This is what the assembly fi le, called hw-startup.s
(code fi le: hw-code.zip), will look like:

.section INTERRUPT_VECTOR, "x"

.global _Reset
_Reset:
 B Reset_Handler /* Reset */
 B . /* Undefined */
 B . /* SWI */
 B . /* Prefetch Abort */
 B . /* Data Abort */
 B . /* reserved */
 B . /* IRQ */
 B . /* FIQ */

Reset_Handler:
 LDR sp, =stack_top
 BL entry
 B .

Specify that the section is called INTERRUPT_VECTOR, and that it contains executable code. The
vector table is called _Reset; you need this later to specify exactly where you want this code.
Because you need the vector table to be at location 0x0, you can specify that later.

The vector table contains jump instructions, and in this case, you have specifi ed only one. The
function Reset_Handler will be called whenever a Reset exception occurs. All other exception
vectors point to themselves; you don’t need them yet. Even if you aren’t using them, it is always good
practice to write the entire table. The reset handler sets up only the stack pointer and then calls your
C routine. When the C routine returns, the fi nal branch instruction branches to itself, putting the
processor into a state of limbo.

Now assemble the assembly fi le.

arm-none-eabi-as -mcpu=arm926ej-s hw-startup.s -o hw-startup.o

Again, you aren’t quite fi nished. You now have compiled parts of your program, but when creating
a bare metal program, there are other things you need to specify. You need to tell your linker where
everything will go in memory. Of course, your vector table has to go to a specifi c memory address,
and to do that, you need to create an LD fi le. The LD fi le, or linker fi le, is a text fi le containing the
memory architecture. You can specify where certain parts of the code are to be placed. You can
reserve space and then set another memory location. That is exactly what you need to do. Put the
reset vector at 0x0, reserve 4 kilobytes of memory for the .data section, the .bss section. and the
stack. Finally, it then initializes the stack pointer. This is the content of the fi le hw-boot.ld.

c05.indd 75c05.indd 75 03-12-2013 12:09:0203-12-2013 12:09:02

76 ❘ CHAPTER 5 FIRST STEPS

ENTRY(_Reset)
SECTIONS
{
 . = 0x0;
 .text : {
 hw-startup.o (INTERRUPT_VECTOR)
 *(.text)
 }
 .data : { *(.data) }
 .bss : { *(.bss COMMON) }
 . = ALIGN(8);
 . = . + 0x1000; /* 4kB of stack memory */
 stack_top = .;
}

Now that you have created your fi le, you can tell your linker to mix all those fi les together.

arm-none-eabi-ld -T hw-boot.ld hw-entry.o hw-startup.o -o hw-boot.elf

This goes and creates an ELF fi le, but you aren’t fi nished yet. You go more into ELF in the next
section, but in short, ELF contains much more than simple binary; it contains memory positions,
possible debug names, and sections. When you run a Linux binary, you are actually loading an
ELF into RAM, where the header contains important information about how to load the binary,
where to place it, how much memory you will require, and so on. A bare metal system has no such
requirements because you will be specifying everything. Also, you do not yet have an operating
system that could parse the information; you need a real binary. To obtain a binary from an ELF
fi le, you need to use objcopy. And specify that you want a binary output, with the –O option. This
command strips all the ELF information and leaves you with the bare minimum, exactly what you
need for your system.

arm-none-eabi-objcopy -O binary hw-boot.elf hw-boot.bin

This creates a fi le for you: boot.bin. Congratulations, you have just created your fi rst ARM
executable! And not just any program; this is a program that correctly sets up a vector table and
an entry point. This is the basis for every embedded application on ARM. The next step will be to
initialize hardware or to run an application, but fi rst it is time to see exactly what has been done.

Each source fi le has been “compiled,” that is to say it has been transformed into an object fi le. A
linker combines one or more object fi les into an executable fi le, optionally reading in a fi le that
defi nes memory locations. Finally, objcopy “strips” the ELF headers, converting the program into a
binary fi le that can be run directly on the processor. This is illustrated in Figure 5-1.

All of these source fi les are available in the ZIP fi le called hw-code.zip.

FIGURE 5-1: Compiling and Linking

hw-entry.c hw-entry.o

hw-boot.Id

hw-boot.elf hw-boot.binLinker objcopy

gcc

hw-startup.s hw-startup.oas

c05.indd 76c05.indd 76 03-12-2013 12:09:0203-12-2013 12:09:02

Taking the World Apart ❘ 77

TAKING THE WORLD APART

So what exactly have you done? The compiler and linker have done their magic and created a fi le,
but it is diffi cult to know exactly what they have done. What you have actually done is created an
ELF fi le. An ELF fi le, short for Executable and Linkable Format, is a fi le that contains more than
just the bare metal program. It also contains debugging information, and you can use this to
peek inside.

Now check to see what you have built. By “dumping” the information held in the ELF fi le, you can
verify what you have done. The application readelf is a program available on most development
systems, and CodeSourcery supplies a version if none are available on your system. ARM also
supplies a series of excellent tools, and their version is called fromelf.

The -A option prints out architecture specifi c details.

readelf -A hw-boot.elf
Attribute Section: aeabi
File Attributes
 Tag_CPU_name: "ARM926EJ-S"
 Tag_CPU_arch: v5TEJ
 Tag_ARM_ISA_use: Yes
 Tag_THUMB_ISA_use: Thumb-1
 Tag_ABI_PCS_wchar_t: 4
 Tag_ABI_FP_denormal: Needed
 Tag_ABI_FP_exceptions: Needed
 Tag_ABI_FP_number_model: IEEE 754
 Tag_ABI_align_needed: 8-byte
 Tag_ABI_enum_size: small

The Tag_CPU_name fi eld tells you that this ELF fi le has been compiled for an ARM926EJ-S
processor, exactly what you wanted. The following information also tells you exactly why it
was important to specify the processor — and not just try to compile for a generic ARM. This
is important for optimizations, and it also lets the compiler verify that everything you write is
supported on this processor. The Tag_CPU_arch is v5TEJ. This means the target processor is a v5
architecture. “T” means that this processor supports the Thumb instruction set; “E” means that
this processor contains Enhanced DSP instructions; and “J” means that the processor also supports
Jazelle DBX. For more information, see the ARM Naming Convention section in Chapter 1.

The vector table needs to be at the address 0x0, so look at the binary that you just created. By
“dumping” your ELF fi le, you can disassemble the fi le and take a closer look. This is where objdump
comes in. The command from the CodeSourcery suite is called arm-none-eabi-objdump. Specify
that you want to disassemble with the -d option.

This is what my output looks like this:

hw- boot.elf: file format elf32-littlearm

Disassembly of section .text:

00000000 <_Reset>:
 0: ea000006 b 20 <Reset_Handler>
 4: eafffffe b 4 <_Reset+0x4>
 8: eafffffe b 8 <_Reset+0x8>

c05.indd 77c05.indd 77 03-12-2013 12:09:0203-12-2013 12:09:02

78 ❘ CHAPTER 5 FIRST STEPS

 c: eafffffe b c <_Reset+0xc>
 10: eafffffe b 10 <_Reset+0x10>
 14: eafffffe b 14 <_Reset+0x14>
 18: eafffffe b 18 <_Reset+0x18>
 1c: eafffffe b 1c <_Reset+0x1c>

00000020 <Reset_Handler>:
 20: e59fd004 ldr sp, [pc, #4] ; 2c <Reset_Handler+0xc>
 24: eb000001 bl 30 <entry>
 28: eafffffe b 28 <Reset_Handler+0x8>
 2c: 00001050 .word 0x00001050

00000030 <entry>:
 30: e52db004 push {fp} ; (str fp, [sp, #-4]!)
 34: e28db000 add fp, sp, #0
 38: e3a03000 mov r3, #0
 3c: e1a00003 mov r0, r3
 40: e28bd000 add sp, fp, #0
 44: e8bd0800 ldmfd sp!, {fp}
 48: e12fff1e bx lr

In this example, you can clearly see that the vector table has been placed at 0x00000000, called
_Reset. Now look at the fi rst line.

 0: ea000006 b 20 <Reset_Handler>

This is the instruction at address 0x0. ea000006 is the hexadecimal dump; it is what you would
fi nd if you took a hex dump of the memory. Fortunately, you don’t have to decode that by hand; the
disassembler does it for you. The instruction is B, or branch. It branches to the address 0x20, which
as you can see later in the code, is the address of Reset_Handler. To help you, the disassembler also
writes the name of the address, or the closest name possible with an offset. For the next instruction,
the Undefi ned Instruction vector, the branch address is Reset_Handler + 0x4, which in this
case is 0x4.

So, the table has been set up, but there is one problem. How do you put this on to your system? And
what happens when you turn the power off and then back on? It would be extremely complicated
to be forced to manually refl ash your device every time you turn on your TV or telephone, but
the chances are that they use ARM processors, so the same boot sequence applies. Well, that all
depends on your system.

Normally, the fi rst few kilobytes of memory are located in read-only memory, or ROM. Sometimes,
this is programmable ROM, sometimes not; it all depends on your needs. So when your system
starts, it reads in the vector table from ROM and then probably runs some code from the ROM.
This is known as a bootloader, and its job is to make sure that your main application (or system)
can boot. Your application, or fi rmware, might be on another type of ROM, or maybe even on an
external SD. The bootloader will do everything necessary to load that code into memory before
executing it.

Bootloaders sometimes have a second function, known as recovery. In the case of a bad software
update, the bootloader might detect a faulty fi rmware, or at least be forced into a special mode to
refl ash the fi rmware. This is often the case with mobiles phones; in the case of a faulty upgrade,

c05.indd 78c05.indd 78 03-12-2013 12:09:0303-12-2013 12:09:03

Hello World, for Real This Time! ❘ 79

the mobile telephone will no longer boot. By pressing a special (often hidden) key sequence, the
fi rmware opens a serial connection and waits for a new fi rmware.

HELLO WORLD, FOR REAL THIS TIME!

Unless you have an ARM system ready, the previous example will be diffi cult to use. Fortunately,
there are alternatives. However, they do have drawbacks. Qemu is an excellent open source program
that emulates several systems, including several ARM systems. However, it is mainly used for
running kernels, not fully embedded systems. When running qemu with the –kernel option, qemu
loads a binary but places it at position 0x10000, not 0x0. The vector table still exists, but you cannot
load a binary image into 0x0.

On a normal computer system, the kernel is loaded fairly “late.” On a desktop or laptop computer
system, when you fi rst turn it on, some implementation of BIOS runs. The BIOS checks basic
confi guration: system memory, sets some timers, initializes PCI express devices, and so on. The list
of things to do is rather long. When that is done, it then looks for a suitable boot medium. It might
be a hard drive, a USB disk, a CD-ROM, to name but a few. If it fi nds valid code, it loads that code
into memory before executing it. This code, often called a bootloader, is responsible for low-level
checks and initialization before running a kernel. On PC systems, GRUB2 and LILO are examples
of boot loaders. For embedded systems, U-Boot is well known.

Qemu has its own bootloader, one that you cannot change. It does most of the hardware
initialization and then expects you to supply a kernel, one that will be loaded into address 0x10000.
From here on, you have two options. One is to simply ignore the vector table and load the binary
straight into 0x10000. The other is to keep the vector table but to load it into 0x10000. Because the
fi rst entry of the vector table is a jump instruction, this should be transparent.

Qemu can emulate several systems, including the Versatile Platform Baseboard. The Versatile/PB is
a complete system, based on an ARM926EJ-S core and also includes four UART ports. You can use
this functionality to test a binary and to fi nally see your Hello, world!

From the Versatile/PB documentation, you can see the UART0 address is 0x101f1000. Qemu
can be run with an option to display the output of UART0 directly as a terminal. The Qemu
implementation of the Versatile/PB system automatically initializes some of the hardware, including
the serial port. However, not all systems will do this, and indeed it is good practice to fully initialize
hardware before attempting to use it. Your code will be minimal, but only for this system. For a real
embedded system, you would need more code to initialize the baud rate, set some registers, and also
to check that the output buffer is not full. On this simplifi ed system, you don’t need to, and you will
take advantage of that.

The hw2-entry.c fi le looks like this (code fi le: hw2-code.zip):

volatile unsigned char * const UART0_PTR = (unsigned char *)0x101f1000;

void print_uart0(const char *string)
{
 while (*string != '\0')
 {
 *UART0_PTR = *string;

c05.indd 79c05.indd 79 03-12-2013 12:09:0303-12-2013 12:09:03

80 ❘ CHAPTER 5 FIRST STEPS

 string++;
 }
}

int entry(void)
{
 print_uart0("Hello, world!\n");
 return 0;
}

You have added two things here. First, the address of your serial port register used to send data.
Second, you have added a routine that outputs your string to a serial device, character by character.
Yes, UART devices are that simple. That’s why they are so often used for debugging. Modern PCs
might be trying to get rid of “legacy” components such as serial ports, but embedded systems
laboratories are full of them.

Now compile your C fi le. Use the ARM version of GCC.

arm-none-eabi-gcc -g -c -mcpu=arm926ej-s hw2-entry.c -o hw2-entry.o

By using the ARM GCC compiler, you can compile your C program into ARM assembly code.

Also, because your start address will be 0x10000, and because you will not be putting your binary
directly into the vector table, you will not use a vector table. You change your assembly fi le to call
your C routine directly. You can always add to that later, changing the vector table as needed. This
brings a question; because you don’t need a vector table, why do you go through all the effort of
creating a memory map? Why can’t you just compile a fi le and let the system load it? There are
several reasons. When you create a program for an operating system, for example Linux, Windows,
or MacOS, you don’t need to specify the memory location of the application. This is because the
compiler looks for a specifi c function, main, and automatically compiles a program to start at a
specifi c address. The operating system handles all the tasks involved: virtual memory, clearing
memory space, and loading a program into a specifi c address before handing control over to the new
program. However, on a bare metal system, there is no operating system present capable of doing
the work; you have to do it. Because you know that Qemu expects a binary fi le present at 0x10000,
you have to specify to your program that it will start at that address.

There is another reason for this. When the processor executes a jump instruction, you are telling
the processor to change the PC to a specifi c address. Although you can use relative addresses, it is
often much easier just to specify a specifi c memory location. If you compiled your program for a
different memory address, on your fi rst jump, the PC would have an incorrect value, and the rest of
the program would be unpredictable.

In the meantime, start with a basic fi le. This is what your qemuboot.ld fi le will look like:

ENTRY(_MyApp)
SECTIONS
{
 . = 0x10000;
 .startup . : { startup.o(.text) }
 .text : { *(.text) }
 .data : { *(.data) }
 .bss : { *(.bss COMMON) }

c05.indd 80c05.indd 80 03-12-2013 12:09:0303-12-2013 12:09:03

Software Implementation ❘ 81

 . = ALIGN(8);
 . = . + 0x1000; /* 4kB of stack memory */
 stack_top = .;
}

By using this fi le, you place the contents of startup.o at memory location 0x10000, where Qemu
will be waiting for a binary fi le. After your program, you will reserve some space for the .data
section, the .bss section, and some stack space.

Now for the startup.s fi le:

.global _MyApp
_MyApp:
 LDR sp, =stack_top
 BL entry
 B .

Assemble this with an ARM assembler.

arm-none-eabi-as -g -mcpu=arm926ej-s startup.s -o startup.o

Now that you have assembled your code, you need to link the two fi les together using the memory
map.

arm-none-eabi-ld -T qemuboot.ld entry.o startup.o -o qemuboot.elf

Just as before, this creates an ELF fi le, but you need to strip the ELF contents.

arm-none-eabi-objcopy -O binary qemuboot.elf qemuboot.bin

For the fi nal part: You have compiled your bare metal program, and now you can run it inside
Qemu. Confi gure Qemu to use the Versatile board, and ignore any graphics. All you want is the
serial output.

qemu-system-arm -M versatilepb -nographic -kernel qemuboot.bin

There may be some warnings about different hardware problems that you can ignore. Qemu doesn’t
emulate only a simple ARM board; you can run entire operating systems on it, complete with sound
and video. According to your system, there might be different warnings about initializing sound
systems. You can ignore these.

If all goes well, Qemu displays your “Hello, world!” on the screen.

SOFTWARE IMPLEMENTA TION

Depending on the ARM core, some will implement hardware units for certain functions, others will
rely on software. For example: division. In any project, sooner or later, the code will have to divide.
The only problem is that some previous ARM cores cannot perform hardware division.

Consider the following simple helper routine:

int mydiv(int a, int b)
{
 return a/b;
}

c05.indd 81c05.indd 81 03-12-2013 12:09:0303-12-2013 12:09:03

82 ❘ CHAPTER 5 FIRST STEPS

This is an extremely simple routine, and it isn’t something that is normally coded, but it serves as
an example. The compiler doesn’t know what a and b will be, so it will have to create a routine that
can divide any signed integer. To compile it, you can use the following:

arm-none-eabi-gcc -c -mcpu=arm926ej-s ./div.c
arm-none-eabi-objdump -S div.o

This is the output on my development computer:

Disassembly of section .text:

00000000 <intdiv>:
 0: e92d4800 push {fp, lr}
 4: e28db004 add fp, sp, #4
 8: e24dd008 sub sp, sp, #8
 c: e50b0008 str r0, [fp, #-8]
 10: e50b100c str r1, [fp, #-12]
 14: e51b0008 ldr r0, [fp, #-8]
 18: e51b100c ldr r1, [fp, #-12]
 1c: ebfffffe bl 0 <__aeabi_idiv>
 20: e1a03000 mov r3, r0
 24: e1a00003 mov r0, r3
 28: e24bd004 sub sp, fp, #4
 2c: e8bd8800 pop {fp, pc}

The compiler did indeed compile the code, but not quite as expected. What is this mysterious
__aeabi_idiv? It isn’t part of the project; it is a helper class available in the GNU Compiler
Collection and also from ARM directly for users of the ARM compiler. Even though this code isn’t
a complete project, and it will print out a warning, it is still compilable. Well, almost.

arm-none-eabi-ld div.o -o div.elf
arm-none-eabi-ld: warning: cannot find entry symbol _start; defaulting to 00008000
div.o: In function 'intdiv':
div.c:(.text+0x1c): undefined reference to '__aeabi_idiv'

The fi rst warning is normal. This isn’t a project; you don’t have an entry point. The compiler is
doing the best it can, but it can’t do everything. The second warning is slightly more worrying. The
compiler can’t fi nd the function '__aeabi_idiv' and therefore cannot continue. The problem is,
you didn’t want a function called '__aeabi_idiv', you just wanted to make a simple division. The
short answer is, you can’t. This particular ARM core does not support hardware division.

This is where libraries come in. Because this core cannot natively divide, it makes use of software
libraries. More recent cores do support hardware division, and a library call would have been
replaced by a simple SDIV assembly instruction. For example, compile the same code for a
Cortex-A15:

arm-none-eabi-gcc -c -mcpu=cortex-a15 ./div.c
arm-none-eabi-objdump -S div.o
00000000 <intdiv>:
 0: e52db004 push {fp} ; (str fp, [sp, #-4]!)
 4: e28db000 add fp, sp, #0
 8: e24dd00c sub sp, sp, #12
 c: e50b0008 str r0, [fp, #-8]
 10: e50b100c str r1, [fp, #-12]
 14: e51b2008 ldr r2, [fp, #-8]
 18: e51b300c ldr r3, [fp, #-12]

c05.indd 82c05.indd 82 03-12-2013 12:09:0303-12-2013 12:09:03

Memory Mapping ❘ 83

 1c: e713f312 sdiv r3, r2, r3
 20: e1a00003 mov r0, r3
 24: e28bd000 add sp, fp, #0
 28: e8bd0800 ldmfd sp!, {fp}
 2c: e12fff1e bx lr

MEMORY MAPPING

Upon RESET, an ARM core automatically deactivates the MMU, if present. Any memory fetches
will directly fetch that portion of memory. That might sound strange, but there are cases in which
this isn’t practical.

More advanced processors come with a specifi c bootloader, a small application that runs on
RESET. The bootloaders generally come directly from the manufacturer and cannot be modifi ed
or deactivated. They normally enable basic tasks, like uploading a new binary in case of fl ash
corruption or security checks to see if a valid binary is present before executing it.

For example, the reset vectors are often placed in ROM, not in RAM. Also, from a hardware point
of view, RAM is not always located in the same place. A system may require placing the DDR2
controller at 0x90000000, but your software actually wants memory to start at 0x20000000. On
some systems, there may be two DDR2 chips, and their memory locations might not be adjacent. To
simplify this, the MMU must be confi gured.

The Memory Management Unit (MMU) is embedded into some ARM cores, and its primary job
is to translate virtual memory to physical memory. Physical memory is what is actually physically
present on the memory bus, and virtual memory is what the processor sees. When accessing memory,
the processor requests a certain memory access. This access is sent to the MMU, which analyzes the
request. The processor has requested memory at 0x2000F080, thinking that it is talking to DDR
memory, but what it actually wants is the memory location at 0x9000F080, so give that to it instead.
The processor has no idea of the change that has been done; as far as it is concerned, it has fetched the
memory at 0x2000F080. Figure 5-2 shows the MMU on an ARM system. The ARM processor makes
a request for a memory address, and the MMU receives the request, looks at the Translation Table,
and if required, translates the memory address. The result is fed straight back to the processor.

FIGURE 5-2: MMU and memory requests

CPU Cache
Mem

Controller

Memory

TLB

MMU

c05.indd 83c05.indd 83 03-12-2013 12:09:0303-12-2013 12:09:03

84 ❘ CHAPTER 5 FIRST STEPS

MMUs do not map only memory; they can also police access rights. An MMU can be programmed
to refuse access to a certain portion of memory and can confi gure which portions of memory
are cached.

Without going into too much detail about the different uses for virtual memory, one of the most
common starting memory maps is the fl at map, where virtual memory is the same as physical
memory. It is a good starting point; it enables setting up memory access rights and cache.

The fi rst thing to do is to know where to put the translation tables. A translation table is a zone in
physical memory that contains the different translations. A translation table contains translation
entries, and for this example, the only entry that will be used is the L1 entry.

To load the address, you need to program the CP15.

LDR r0, tlb_l1_base
MCR p15, 0, r0, c2, c0, 0

The variable tlb_l1_base can be defi ned as follows:

tlb_l1_base:
 .word 0x00008000

By writing this, you defi ne tlb_l1_base as a 32-bit value. The instruction mcr is short for Move
to Coprocessor from ARM Register. Coprocessor instructions cannot use variables or fi xed values;
they can transfer only to and from ARM registers.

The fi rst part has been done; the MMU now knows where the page data will be stored, but of
course, the page data still has to be populated. That will be the next part of the program.

The Translation Table is full of Translation Entries, and as said earlier, for simplicity, I will use only
L1 tables. The mapping will be fl at; virtual memory = physical memory. Because L1 entries defi ne
1 megabyte of memory, and because ARM processors can access 4096 megabytes of memory, you
need 4096 section entries. Table 5.1 defi nes a section entry.

TABLE 5.1: Section Entry Layout

BITS DESCRIPTION

31:20 Section base address

11:10 Access permissions

8:5 Domain

3:2 Cacheable/Bufferable

1:0 0b10 for section page table entry

Undefi ned bits should be left as zero. The part that will interest you the most is the Section base
address. For fl at mapping, you will defi ne that 0x000xxxxx will map to 0x000xxxxx, all the way to
0xfffxxxxx that will map to 0xfffxxxxx. So that is exactly what your loop is going to do. As for
the other bits, the Access permissions will be 0x11; meaning that both supervisor and user code can
access the memory.

c05.indd 84c05.indd 84 03-12-2013 12:09:0303-12-2013 12:09:03

Real World Examples ❘ 85

 LDR r0,=tlb_l1_base
 MOVT r1, #0x0000
 MOVW r1, #0x0C02 ; Full access, domain 0, no cache, page table entry
 MOV r2, #4095 ; The number of entries to do, minus one
mmuloop:
 STR r1, [r0] ; Store the contents of r1 into the translation table
 ADD r0, #4 ; Next entry
 ADD r1, #0x00100000 ; Next page
 SUBS r2, #1
 BNE mmuloop
done:

This small program starts by loading the address of the translation table into r0. The fi rst page table
entry is loaded into r1, and kept, because all pages will use the same parameters for now. Then, r2
is loaded with the value 4096, or the amount of entries to load into the translation table.

The mmuloop section is easy to understand. First, the value held in r1 is saved into the memory
location pointed to by the value in r0 — the fi rst table entry. The register r0 is then incremented by
4 because section entries are 32 bits long. It now contains the next address in the table. The register
r1 is then incremented by 0x00100000, or the size of a section. Finally, r2 is decreased by 1, and the
routine loops if the value of r2 is not equal to zero. If it is equal to zero, then the program continues.

The MMU now knows about the base address, and the table has been populated, but there is still
one more thing left to do — activate the MMU. The following code does just that:

MRC p15, 0, r0, c1, c0, 0
ORR r0, r0, #0x1
MCR p15, 0, r0, c1, c0, 0

Just like the previous coprocessor example, this small portion of code updates the MMU registers,
but it fi rst reads from the coprocessor. MRC will read a coprocessor register into an ARM register.
Next, a logical OR is performed, setting the fi rst bit to one. Then, the updated register is put back
into the coprocessor.

Congratulations, the MMU is now activated!

REAL WORLD EXAMPLES

Theory can be fun, but the real fun is in trying applications on real-world systems. Some people are
often frightened about purchasing an ARM system, mainly because of the price. Indeed, some high-
end evaluation boards can be expensive, but they are often used for specifi c tasks: prototyping a
next-gen telephone, or for testing multicore environments. Most people don’t know that a complete
ARM system can be purchased for less than $50, together with all the tools needed to start a project.

This section presents three evaluation boards: Silicon Labs’ STK3800 and STK3200, and Atmel’s
SAM D20 Xplained Pro.

Silicon Labs STK3800
ARM cores are not born equal. Because ARM licenses the technology, customers are allowed a
certain degree of liberty, greatly enhancing the ARM ecosystem. Some clients modify the core to

c05.indd 85c05.indd 85 03-12-2013 12:09:0303-12-2013 12:09:03

86 ❘ CHAPTER 5 FIRST STEPS

integrate more or less cache, others to be faster. Silicon Labs specializes in low-power devices and
creates some of the most energy-effi cient Cortex-M chips available on the market.

The Cortex-M series has always been well known for its exceptionally low power usage, but there
are some cases in which a Cortex-M will consume just a little bit more energy, especially in high
temperature environments. Silicon Labs has spent a lot of time and energy perfecting an already
impressive design, and the result is the Gecko series.

Silicon Labs’ line of Gecko chips also come with exceptionally well-designed evaluation boards,
equipped with numerous sensors that enable the end user to experiment freely. When the time has
come to do a little more experimentation with external components, the board is equipped with
solder points so that users can incorporate their own inputs and outputs. Also of note, these boards
have a built-in hardware debugger, allowing developers to debug, to fl ash, and to profi le code.

The Wonder Gecko STK3800 board integrates a Cortex-M4 with a Floating Point Unit (FPU),
and two user buttons, one light sensor, one metal detector, a full-size LCD screen with numerous
information displays, and something that is not found often on boards, a touch-sensitive sensor.
All this comes with all the cables needed to function, two USB ports (one for debugging and one
available as I/O), as well as a CD containing some interesting applications to fl ash test programs and
to also show real-time power consumption. The board is shown in Figure 5-3.

FIGURE 5-3: Silicon Lab’s STK3800 Evaluation Board

To show just a fraction of what this board can do, I’ll create a desk clock. The STK3800 board
comes with a battery connector, allowing the board to be powered by a single CR2032 battery.
Therefore, the board can be mobile, and the battery lasts longer than you’d fi rst think. When the
battery does run out, the EFM32 has yet another trick up its sleeve; the STK3800 has a super
capacitor that can not only keep critical sections of the processor powered, but it also allows the
board to keep RTC time; in this application it can keep time for up to 8 hours.

The clock will be event-driven, meaning that the Wonder Gecko will spend most of its time sleeping,
therefore saving energy. The Wonder Gecko will wake up and respond to interrupts, but which
ones exactly? I’ll create a program that shows only hours and minutes, so in theory that means only
one interrupt a minute, but what about screen animation? The LCD display comes with a circular

c05.indd 86c05.indd 86 03-12-2013 12:09:0303-12-2013 12:09:03

Real World Examples ❘ 87

widget, something that would be ideal to tell the user that the system is still working. Again,
the Wonder Gecko series has another trick; the LCD controller can actually do basic animations
without help from the MCU.

The entire program will be separated into several stages: fi rst, basic system initialization. For
debugging, the application also initializes trace output. This can be removed later in the
production stage.

After the basics have been set up, the application needs to do further confi guration; core frequency,
the LCD controller, and the real-time clock all need to be set up. After that is done, the GPIO will
be confi gured for interrupts.

After all the initialization and confi guration is done, it is time to run the real code; the clock itself.

Initialization
Initialization is a work that can frighten a lot of people. In theory, it means low-level system
confi guration: setting up the cache, preparing any system devices before entering your application.
Remember that Cortex-M chips are designed to be “simple,” both architecturally and for
developers. Cortex-M programs can be designed entirely in C, but Silicon Labs makes it even easier.
The time has come to initialize the processor.

/* Chip errata */
CHIP_Init();

And that’s it. No, really. Due to some differences between chips, Silicon Labs created the CHIP_Init()
function to set all the reset registers to the latest version of documentation. This keeps things nice and
simple. Now that the chip itself is initialized, the power and code profi ler can optionally be activated.

/* Enable the profiler */
BSP_TraceProfilerSetup();

Now, values can be read from the debug port, indicating power usage, a listing of which interrupts
cause a change of state and the time they took. Next, you ensure that the core frequency has been
updated.

/* Ensure core frequency has been updated */
SystemCoreClockUpdate();

For a clock application, you must initialize the LCD display.

/* Initialize LCD display with no voltage boost */
SegmentLCD_Init(false);

With four simple lines in C, the EFM32 is set up and ready to go.

Confi guration
You want to save as much energy as possible, and for that, the processor must spend most of its
time in a low power state. Instead of looping continuously, you will program the RTC to wake the
processor every minute to update the LCD screen. After the processor awakens, you update a few
variables and then go back to sleep. First, you need to confi gure the RTC.

c05.indd 87c05.indd 87 03-12-2013 12:09:0703-12-2013 12:09:07

88 ❘ CHAPTER 5 FIRST STEPS

1 void rtc_setup(void)
2 {
3 RTC_Init_TypeDef rtcInit = RTC_INIT_DEFAULT;
4 CMU_ClockEnable(cmuClock_CORELE, true);
5 CMU_ClockSelectSet(cmuClock_LFA, cmuSelect_LFXO);
6 CMU_ClockDivSet(cmuClock_RTC, cmuClkDiv_32);
7 CMU_ClockEnable(cmuClock_RTC, true);
8 rtcInit.enable = false;
9 rtcInit.debugRun = false;
10 rtcInit.comp0top = true;
11 RTC_Init(&rtcInit);
12 /* Schedule an interrupt every minute */
13 RTC_CompareSet(0, ((RTC_FREQ / 32) * 60) - 1;
14 /* Enable Interrupts */
15 NVIC_EnableIRQ(RTC_IRQn);
16 RTC_IntEnable(RTC_IEN_COMP0);
17 /* Enable the RTC */
18 RTC_Enable(true);
19 }

This merits a little bit of explanation. First, on line 3, you create a default RTC structure. Then, the
Clock Management Unit is set to use a clock divider of 32, to save power, before activating
the CMU.

Now you are ready to confi gure the RTC. Set it so that it is not enabled by default, and also so that
it is halted on debug, making it easier for you if you need to run the application step by step.

The RTC_CompareSet instruction on line 13 is where a comparison register is set up. You will set it
up for exactly 60 seconds, so every minute it will trigger an interrupt, which is what is confi gured in
the next lines. Finally, when everything is set up, the RTC is enabled.

In just a few lines of code, the RTC and the CMU have been confi gured, and your application is
almost ready. When an interrupt triggers, it will call a function called RTC_IRQHandler. This is
what the source will look like:

1 void RTC_IRQHandler(void)
2 {
3 RTC_IntClear(RTC_IFC_COMP0); /* Clear the interrupt source */
4 minutes++; /* Increment minutes by one */
5 if (minutes > 59)
6 {
7 minutes = 0;
8 hours++;
9 if (hours > 23)
10 {
11 hours = 0;
12 }
13 }
14 }

When an interrupt occurs, fi rst, you need to clear the interrupt source. Then the minutes variable is
incremented, incrementing the hours as needed.

c05.indd 88c05.indd 88 03-12-2013 12:09:0703-12-2013 12:09:07

Real World Examples ❘ 89

Main Application
The main application will be incredibly simple. A small loop will keep running in a while(1)
structure, update the LCD screen, and then return to sleep mode.

while(1)
{
 SegmentLCD_Number(hours * 100 + minutes);
 EMU_EnterEM2(true);
}

The SegmentLCD_Number routine simply updates the LCD screen with the requested number; in this
case, the time. Then, the processor is put into Energy Mode 2.

EFM32 chips have fi ve energy modes, from 0 to 4. In Mode 2, the ARM core is powered down, and
certain low power devices are still powered, including the LCD display and the RTC. Energy Modes
3 and 4 provide even more energy conservation but disable the RTC, which would need external
support. Energy Mode 0 is normal operation, and this is the state to which the processor returns
when an interrupt occurs.

Because the processor is put into sleep mode as soon as the LCD is updated, the LCD update
routine is run only once per minute, meaning the processor spends almost all its time sleeping,
conserving energy.

If the result is so energy effi cient, just how long would that last? Well, Silicon Labs has a solution
for that, too. They provide an application that inputs data from the different states. You will be
spending approximately 1 minute in EM2, and just to be on the safe side, you can say that you
will be spending 1 millisecond in EM0. In reality, the few routines present execute much faster
than that, but it is always worth considering the worst-case scenario. If your clients have to change
batteries every 2 weeks, they are not going to like your product. Running this in the Silicon Labs
energyAware Battery software indicates that the problem is actually going to be the opposite; you
had better make battery replacement easy, not because it is going to last just a few weeks, but
because it will last for years on a simple CR2032 battery. My simulator predicts that my setup will
last for more than 8 years, so our clients will probably have lost the instructions by then.

What Now?
Silicon Labs provides a more complete version of this clock as an example program. My version has
no way of setting the current time, but that is easy to accomplish using the two push buttons on the
evaluation board. Using the same techniques, by listening to an interrupt on the GPIO, the processor
can increment hours and minutes.

The clock application is a basic application, and lots of functionality can be added. For example, the
LCD isn’t back lit, and the STK3800 comes with a light sensor; why not turn the LCD screen off
when the light falls below a certain level? Maybe even add an alarm clock feature. It wouldn’t take
much to add a simple buzzer onto the board, but with a little bit of tweaking, it is also possible to
set up the board to turn on a coffee machine, by enabling another GPIO.

Silicon Labs STK3200
The Wonder Gecko is a Cortex-M4 with an FPU, but for a clock application, this is often too
powerful. While the Wonder Gecko is very energy effi cient, there is an even better solution. The

c05.indd 89c05.indd 89 03-12-2013 12:09:0703-12-2013 12:09:07

90 ❘ CHAPTER 5 FIRST STEPS

Cortex-M0+ is ARM’s most energy effi cient microcontroller, and Silicon Labs has developed the
Zero Gecko, based on the Cortex-M0+.

The STK3200 evaluation board is similar to the STK3800 board mentioned previously, but the
major difference is that this board does not have a segment LCD. Instead, it has a Memory LCD
screen, allowing for graphics while remaining very energy effi cient. The 128 x 128 display is crisp
and fast, and would be an excellent choice of screen for a smart watch. The STK-3200 is shown in
Figure 5-4.

FIGURE 5-4: Silicon Lab’s STK3200 Evaluation Board

Of course, the board still has input devices; it has two push buttons and two touch-sensitive
buttons, and has the same extension header as the STK3800. It has a USB input for debugging, and
also a CR2032 battery slot.

In this application, you will again be making a clock. Since the STK3200 has a 128 x 128 Memory
LCD, you will be using that to display an analogue clock. It will have an hour hand, a minute hand,
and also a second hand. Once again, you will be using the power saving modes available on the
Zero Gecko, to keep the application running as long as possible on battery power.

Initialization
Initializing the Zero Gecko is exactly the same as the Wonder Gecko. One single function does the
entire low-level initialization.

CHIP_Init();

This function sets up the clocks and some of the low-level drivers, setting up registers to a stable
state. Once the initialization state is done, you can move on to confi guration.

c05.indd 90c05.indd 90 03-12-2013 12:09:0703-12-2013 12:09:07

Real World Examples ❘ 91

Confi guration
Next, the GPIO must be confi gured. There are four buttons on the STK3800 — two push buttons,
and two touch-sensitive pads. For this application, you will only be using the push buttons. PB1 will
be confi gured to advance time by one minute, PB0 to advance time by one hour. The two buttons
are connected to the GPIO, which must be confi gured. Like the previous clock application, the CPU
will spend most of its time sleeping, so the buttons must be confi gured to create an interrupt.

The documentation states that for the STK3200 board, PB0 is connected to PC8, and PB1 is
connected to PC9. Before confi guring these inputs, the GPIO clock needs to be confi gured so that
the GPIO can react to inputs. Then, each pin is confi gured as an input, and confi gured to issue an
interrupt when triggered. Finally, IRQs are enabled.

1 static void GpioSetup(void)
2 {
3 /* Enable GPIO clock */
4 CMU_ClockEnable(cmuClock_GPIO, true);
5
6 /* Configure PC8 as input and enable interrupt */
7 GPIO_PinModeSet(gpioPortC, 8, gpioModeInputPull, 1);
8 GPIO_IntConfig(gpioPortC, 8, false, true, true);
9
10 NVIC_ClearPendingIRQ(GPIO_EVEN_IRQn);
11 NVIC_EnableIRQ(GPIO_EVEN_IRQn);
12
13 /* Configure PC9 as input and enable interrupt */
14 GPIO_PinModeSet(gpioPortC, 9, gpioModeInputPull, 1);
15 GPIO_IntConfig(gpioPortC, 9, false, true, true);
16
17 NVIC_ClearPendingIRQ(GPIO_ODD_IRQn);
18 NVIC_EnableIRQ(GPIO_ODD_IRQn);
19 }

The STK3200 does not have a segment LCD display, but rather a Memory LCD. Confi guration is
done differently, but once again, software abstraction makes it extremely easy to do. Rather than
specifi cally confi guring a device, you initialize the display driver, which correctly confi gures the
device that is present on that microcontroller.

DISPLAY_Init();

From here on, you can use instructions to write geometric shapes and text directly onto the display.

There is one more thing required before you are ready to start. In the previous example, the system
spent most of its time in low power mode, using the RTC to wake up the device every minute to
refresh the time. This application will be similar, but since this evaluation board has an impressive
Memory LCD screen, you will be writing an application that shows analog time, and with a second
hand. Therefore, the RTC has to be confi gured, but this time, instead of waking the system every
minute, the RTC will be programmed to wake the system every second. The STK3800 had an
intelligent Segment LCD controller that could perform basic animations on its own, but that isn’t
possible on a Memory LCD. Instead, every second, the screen will be updated with a graphical
second hand.

c05.indd 91c05.indd 91 03-12-2013 12:09:0803-12-2013 12:09:08

92 ❘ CHAPTER 5 FIRST STEPS

First things fi rst; programming the RTC. The RTC confi guration looks very much like the
confi guration for the STK3800, the only differences being the interrupt confi guration and the
divider. Since the RTC is counting a relatively small lapse of time, there is no need for a divider. The
code will look like this:

1 void RtcInit(void)
2 {
3 RTC_Init_TypeDef rtcInit = RTC_INIT_DEFAULT;
4 /* Enable LE domain registers */
5 CMU_ClockEnable(cmuClock_CORELE, true);
6 /* Enable LFXO as LFACLK in CMU. This will also start LFXO */
7 CMU_ClockSelectSet(cmuClock_LFA, cmuSelect_LFXO);
8 /* Enable RTC clock */
9 CMU_ClockEnable(cmuClock_RTC, true);
10 /* Initialize RTC */
11 rtcInit.enable = false; /* Do not start RTC after initialization */
12 rtcInit.debugRun = false; /* Halt RTC when debugging. */
13 rtcInit.comp0Top = true; /* Wrap around on COMP0 match. */
14 RTC_Init(&rtcInit);
15 /* Interrupt at specified frequency. */
16 RTC_CompareSet(0, (CMU_ClockFreqGet(cmuClock_RTC) / RTC_FREQUENCY) - 1);
17 /* Enable interrupt */
18 NVIC_EnableIRQ(RTC_IRQn);
19 RTC_IntEnable(RTC_IEN_COMP0);
20 /* Start counter */
21 RTC_Enable(true);
22 }

On line 3, the RTC structure is created, and it is fi lled in on lines 11 to 13. Finally, the RTC is
initialized on line 14, but not enabled (line 11). At line 16, the interrupt is set to every second, and
interrupts are enabled on lines 18 and 19. Finally, the RTC is enabled, and the function returns.

Main Application
First, the application will need to know the current time. It will use a structure that only needs to be
used inside the main function:

struct tm *time = localtime((time_t const*)&curTime);

A routine will need to be created that sets the graphics background and prints the background
image. To save space and time, you could create an entire background image in Flash — a constant
table 128 bits by 128 bits. To copy this table to the framebuffer, a simple command is used:

 status = GLIB_drawBitmap(&glibContext,
 0, 0, BACKGROUND_WIDTH, BACKGROUND_HEIGHT,
 (uint8_t*)background);

This routine will start in one corner (0, 0), and fi nish in the opposite corner (BACKGROUND_WIDTH,
BACKGROUND_HEIGHT), and fi ll in the image with the table found at background. For this example,
the background width and height are set to the resolution of the Memory LCD:

#define BACKGROUND_WIDTH (128)
#define BACKGROUND_HEIGHT (128)

c05.indd 92c05.indd 92 03-12-2013 12:09:0803-12-2013 12:09:08

Real World Examples ❘ 93

The interesting part of Memory LCD screens is that only the pixels that need updating are actually
updated. Each pixel has its own one-bit memory, providing an always-on image, and using very
little current. Memory LCD screens are fast enough to display animations, and the Cortex-M0+
has fast I/O capability that is more than able to keep up with animations. Therefore, displaying the
background before displaying the hands is an acceptable solution. Only the pixels that have changed
since the last screen refresh are updated (where the hands used to be), so there is no screen tearing.

Once the background has been transferred to the Memory LCD memory, it is time for a little
bit of arithmetic. The “hands” are digital — a graphical line from the center of the screen to the
exterior of a circle, depending on the time. This will be done with some trigonometry. You will be
calculating the sine and cosine of the current time to produce coordinates for lines. This brings up
a question: This processor will be calculating sines and cosines; wouldn’t a Cortex-M4 with an FPU
be a better choice? The answer is no. While it is true that a Cortex-M4 with an FPU would have
better precision and be faster, the Cortex-M0+ is more than capable. Firstly, even though you will
be calculating trigonometry, there is no need for lots of precision. The result of a calculation
will be used to display a line, and then immediately be discarded. In the very worst case, a lack
of precision means that a hand might be off by one pixel, something that the end user will never
notice. The application does not need that much precision. Secondly, what the application requires is
a low-powered processor. The Cortex-M4F might be slightly faster for this type of calculation, but
the processor will only be calculating a few sines and cosines per second before returning to a low-
power mode. The Cortex-M0+ is the best candidate for this situation.

First, the minute hand. The minute hand will be a line, starting from the center of the clock, and
it will have a length of 45 pixels. Imagine a circle, the center of which is the middle of the Memory
LCD, and with a radius of 45 pixels. The minute hand will be a line from the center to a point on
this circle, depending on the amount of minutes. You need to defi ne a few variables before starting.

#define BACKGROUND_WIDTH (128)
#define BACKGROUND_HEIGHT (128)
#define CENTER_X (BACKGROUND_WIDTH/2)
#define CENTER_Y (BACKGROUND_HEIGHT/2)
#define MIN_START 0
#define MIN_END 45

Now, you will need to create a function to calculate the start and end of the line. For the minute
hand, the line will start at the center, so this is easy, only the end coordinates will be calculated.

void MinuteHandDraw(int minute)
{
 double a = (double)minute / 30.0 * PI;

 GLIB_drawLine(&glibContext,
 CENTER_X, /* start x */
 CENTER_Y, /* start y */
 CENTER_X + (int)(MIN_END * sin(a)), /* end x */
 CENTER_Y - (int)(MIN_END * cos(a))); /* end y */
}

This function calculates the end coordinates, and then performs the drawing via the function
GLIB_drawLine. Now you will do the hour hand. The hour hand will be a little different from the
minute hand. The angle will be calculated as a mixture of the hours and the minutes. Hour hands
are also shorter, so make this one 30 pixels long.

c05.indd 93c05.indd 93 03-12-2013 12:09:0903-12-2013 12:09:09

94 ❘ CHAPTER 5 FIRST STEPS

#define HOUR_START 0
#define HOUR_END 30

Now, create an HourHandDraw function.

void HourHandDraw(int hour, int minute)
{
 int position = hour * 5 + minute / 12;
 double a = (double)position / 30.0 * PI;

 GLIB_drawLine(&glibContext,
 CENTER_X, /* start x */
 CENTER_Y, /* start y */
 CENTER_X + (int)(HOUR_END * sin(a)), /* end x */
 CENTER_Y - (int)(HOUR_END * cos(a))); /* end y */
}

The code is almost identical to the previous function, except that a slight adjustment is made
for the current amount of minutes. As the minute hand advances towards 12, the hour hand will
also slowly advance towards the next hour, just like a real clock.

If you require very low power operation, it is possible to stop here and to program the RTC to create
an interrupt every minute. That way the screen will be updated by the microcontroller every minute.
However, for this application, the requirement is to have a second hand, and the RTC has already
been programmed to interrupt every second.

The second hand is slightly shorter, but also, for aesthetics, it will not start at the center, but slightly
off, at a radius of 10 pixels.

#define SEC_START 10
#define SEC_END 35

Since the beginning coordinate will not start at the center of the screen, you must calculate both the
start and the fi nish coordinates.

void SecondHandDraw(int second)
{
 double a = (double)second / 30.0 * PI;

 GLIB_drawLine(&glibContext,
 CENTER_X + (int)(SEC_START * sin(a)), /* start x */
 CENTER_Y - (int)(SEC_START * cos(a)), /* start y */
 CENTER_X + (int)(SEC_END * sin(a)), /* end x */
 CENTER_Y - (int)(SEC_END * cos(a))); /* end y */
}

You can now display the background image and the three hands of the clock. All that remains to be
done is to create a main loop.

void main(void)
{
 while(1)
 {
 time = localtime((time_t const*)&curTime);
 GLIB_drawBitmap(&glibContext,
 0, 0, BACKGROUND_WIDTH, BACKGROUND_HEIGHT,

c05.indd 94c05.indd 94 03-12-2013 12:09:0903-12-2013 12:09:09

Real World Examples ❘ 95

 (uint8_t*)background);
 HourHandDraw(time->tm_hour % 12, t->tm_min);
 MinuteHandDraw(time->tm_min);
 SecondHandDraw(time->tm_sec);

 /* Enter low-power mode */
 EMU_EnterEM2(false);
 }
}

The main loop simply gets the current time before updating the background image and displaying
the three hands. Finally, the microcontroller is put into low-power mode, stopping program
execution but retaining RAM. The microcontroller will stay in that state until it receives an
interrupt, continuing program execution.

What Now?
Silicon Labs provides a more complete version of this application with their evaluation kit. It only
briefl y shows some of the functions, but the complete version has support, not only for an analog
clock, but also a digital interface and functions for setting the time.

Using the same principle, it would be interesting to create a stopwatch and some other functions
found commonly on wristwatches; showing the current date, for example. Once again, the
STK3200 has excellent I/O capacity, and this card can be programmed to activate GPIOs depending
on the time, for example a buzzer, useful for an alarm clock function.

Atmel D20 Xplained Pro
Atmel was founded in 1984, and ever since then, it has been close to hobbyists and makers, while
also being a world-class supplier of next-gen logic circuits.

In 1995, Atmel did something unique; it developed a processor with integrated fl ash memory: a
Flash Micro. It was based on the Intel 8051 and was a huge success with the simplifi ed programming
mechanism; the processor itself was programmed and no longer required external ROM.

In 1996, Atmel developed the AVR, an 8-bit RISC microcontroller that was also a Flash Micro.
All other microcontrollers at the time used PROM or EEPROM, making modifi cations diffi cult,
sometimes even impossible. Although the integrated fl ash memory was comparable to Atmel’s
version of the Intel 8051, the design itself was radically different. The AVR was designed to be used
with high-level programming languages such as C and was an effi cient RISC core.

The AVR line was an instant hit and was loved by electronics enthusiasts everywhere. Some amazing
projects have been created, but they were still 8-bit microcontrollers. Recently, Atmel developed
AVR microcontrollers based on 32-bit cores, but also created a new line of products, using an ARM
Cortex-M core, delivering a unique combination of power effi ciency, fl exibility, and performance.
However, Atmel hasn’t simply taken an ARM core and put its logo on it; the Peripheral Event
System is something that was loved by AVR enthusiasts and enables peripherals to interact with each
other without using CPU resources. This technology is still available in Atmel’s AVR line, in
both Atmel’s 8- and 32-bit versions, and Atmel has also created something very similar for their
ARM-powered line of devices.

c05.indd 95c05.indd 95 03-12-2013 12:09:0903-12-2013 12:09:09

96 ❘ CHAPTER 5 FIRST STEPS

Atmel’s D20 microcontroller line is based on a Cortex-M0+ core and comes with an evaluation
board, the SAM D20 Xplained Pro (see Figure 5-5). Although other boards may have different
sensors or LCD screens, the D20 Xplained Pro has one user button and one LED. It doesn’t have an
LCD screen, and it doesn’t have a light sensor, but what it does have is three extension headers; all
three are the same electronically.

FIGURE 5-5: Atmel’s SAM D20 Evaluation Board

The Xplained Pro series isn’t just based on the SAM D20; other processors use the same interfaces.
Atmel therefore also created an interesting line of external peripherals, or “wings” as they are
sometimes called. The I/O1 board provides a light sensor, temperature sensor, and micro-SD reader.
The OLED1 board provides a 128 x 32 OLED display, as well as three buttons and three LEDs. The
QT1 board contains touch sensors used with Atmel’s Peripheral Touch Controller. If none of these
boards contains what you need, the PROTO1 board provides a bread-boarding area where you can
use your own components. All of these boards use a common connector — the Xplained Pro header.

Atmel Studio integrates Atmel Software Framework (ASF), a large library with thousands of project
examples and code extracts.

All of these boards are supported by Atmel’s SDK, and ASF provides primitives and examples for
each of the different components. You won’t spend any time developing your own drivers for these
devices; Atmel Studio allows you to import the modules you require directly into your application.

Test Application
The SAM D20 Xpl ained Pro board does not have some of the peripherals found on other boards,
like a segment LCD, for example. That does not stop it from being able to test simple applications.
It does have a user LED, and a user button. Using these two devices, it is very easy to create a test
application. In just a few lines of code, it is possible to create an application that turns the LED on if
the button is pressed, or turns it off otherwise. The application will look like this:

c05.indd 96c05.indd 96 03-12-2013 12:09:0903-12-2013 12:09:09

Real World Examples ❘ 97

int main(void)
{
 system_init();

 while(1)
 {
 if (port_pin_get_input_level(BUTTON_0_PIN) == BUTTON_0_ACTIVE)
 {
 port_pin_set_output_level(LED_0_PIN, LED_0_ACTIVE)
 }
 else
 {
 port_pin_set_output_level(LED_0_PIN, !LED_0_ACTIVE)
 }
 }
}

The function system_init() quickly sets up the board. Then the application loops, and scans the
state of the user button, BUTTON_0. If BUTTON_0 is active, the LED output is set to high; otherwise,
it is set to low. This is the default program that is generated when creating a new project, and is an
excellent way to test that the board is functioning.

With the click of a button, Atmel Studio compiles the project. All project dependencies are compiled,
and a binary is generated. Another click later, and the binary is fl ashed onto the Xplained Pro board.
The SAM D20 comes with a hardware debugger built directly onto the board, and Atmel Studio
makes the most of this to automatically fl ash an application and to perform debug operations.

Weather Station
As stated previously, Atmel also makes a large set of extension boards, notably the I/O1 board and
the OLED1 board. The I/O1 board has a temperature sensor, and the OLED1 board has a 128 x 32
OLED display. With these two boards, it is possible to create a digital thermometer, reading the
temperature from one board and displaying it on the other. The temperature will be precise to one
tenth of a degree.

Atmel provides a training document for the SAM D20 series, to get to know the processor as well
as Atmel’s development environment — Atmel Studio. This document shows how to set up Atmel
Studio 6, which is beyond the scope of this book. In this section, I will concentrate on the code,
not Atmel Studio. Atmel has excellent documentation that comes with Xplained Pro boards; please
consult that documentation for information on how to use their interface.

Initialization
The SAM D20 requires some initialization before being able to run an application. This includes
setting up the system clocks and some hardware confi guration, but thanks to Atmel’s SDK, this is a
simple task. When creating a blank project, several fi les are generated. One of them, conf_clocks.h,
contains default clock settings, and can be used without any modifi cation. As seen in the previous
example, a single line of code is suffi cient:

system_init();

This function takes the information in conf_clocks.h and performs low-level system initialization.
Once this is done, you are now ready to perform confi guration.

c05.indd 97c05.indd 97 03-12-2013 12:09:0903-12-2013 12:09:09

98 ❘ CHAPTER 5 FIRST STEPS

Confi guring the Temperature Sensor
Atmel produces a wing that is perfect for this application, the
I/O1. The I/O1 is a relatively small circuit board, but packed
with peripherals. It contains a light sensor, temperature sensor,
an SD card reader, and even a free GPIO connector. The I/O1
board is shown in Figure 5-6.

The temperature sensor on the I/O1 wing is an Atmel
AT30TSE758, a lightweight component which is interfaced with
I2C. Atmel provides a driver for this component, and including
the driver is as simple as importing an ASF driver from
Atmel Studio. This imports a new fi le, conf_at30tse75x.h,
containing the driver confi guration options. Most of Atmel’s
drivers exist in two formats: polled, or callback. For this application, all operations will be polled.

Once the driver has been imported, all of the necessary calls are added to the project. Initializing the
temperature sensor is as easy as calling a single function:

at30tse_init();

For this application, a sensor resolution of 12 bits will be used. This can be set with another
function, at30tse_write_config_register. To keep all the confi guration routines together, a
new routine will be created:

static void temp_sensor_setup(void)
{
 /* Init and enable temperature sensor */
 at30tse_init();

 /* Set 12-bit resolution */
 at30tse_write_config_register(
 AT30TSE_CONFIG_RES(AT30TSE_CONFIG_RES_12_bit));
}

Reading from the temperature sensor is once again a simple command; at30tse_read_
temperature returns a double, containing temperature information. However, before reading the
temperature, you must confi gure the output device on which the temperature will be written.

Confi guring the OLED Display
Atmel’s OLED1 wing contains a bright 128 x 32 OLED display, three buttons and three LEDs, and
also connects to an Xplained Pro extension header. It is illustrated in Figure 5-7. This is an excellent
way of viewing the current temperature.

Once again, adding the OLED display to your project is as simple as importing a driver. An entire
library has been created, not only to access the display, but also graphical functions for writing text
and for graphical primitives. In order to import the driver, you must add the “GFX Monochrome -
System Font” service. This not only imports the display driver, but also the communication method
(SPI), graphical primitives, and the framebuffer device. Adding this ASF adds two header fi les:

conf_ssd1306.h and conf_sysfont.h.

FIGURE 5-6: Atmel’s I/O1 Wing

c05.indd 98c05.indd 98 03-12-2013 12:09:0903-12-2013 12:09:09

Real World Examples ❘ 99

Once again, a C function is required to initiate the graphics device. This is done in a single
statement:

gfx_mono_init();

Putting It All Together
The two components used on this project have been imported, and one confi guration routine has
been created, for the temperature sensor. The graphics device only requires one line, so there is no
need to create a function.

What is needed now is to add the device confi guration. Add the confi guration to the main function.
Also, add a variable to hold the temperature value. The main function will look like this:

int main(void)
{

 double temp_result;

 /* Low-level initialization */
 system_init();

 /* Setup the graphics */

FIGURE 5-7: Atmel’s OLED1 Wing

c05.indd 99c05.indd 99 03-12-2013 12:09:0903-12-2013 12:09:09

100 ❘ CHAPTER 5 FIRST STEPS

 gfx_mono_init();

 /* Setup the temperature sensor */
 temp_sensor_setup();
 /* Get a first reading */
 temp_result = at30tse_read_temperature();

}

The application is beginning to take shape, but it doesn’t yet tell the user what the temperature is.
Luckily, the OLED can be used as a terminal device; printing text is as simple as snprintf.

There are three things that must be declared before continuing. First, the maximum size of a string
to be printed out — 20 should be more than enough.

#define APP_STRING_LENGTH 20

Secondly, the application must know where to print the text, in XY coordinates.

#define APP_POSITION_X 0
#define APP_POSITION_Y 0

Now, add a variable to hold the text.

char temp_string[APP_STRING_LENGTH];

This application needs to convert the temperature data into a string that can be displayed, and to do
that the standard library must be imported.

#include <stdio.h>

Now, time to display the temperature. The temperature is held in the variable temp_result, which
has been defi ned as a double. The standard library does not support many fl oating-point conversions
due to size constraints, and especially the %f formatting specifi er is not included. Therefore a bit of
calculation is required.

 ➤ For the decimal number, casting temp_result to int will discard the fractional part.

 ➤ For the fractional part, the fi rst digit after the decimal point will be used. To obtain this,
temp_result will be multiplied by 10, before casting to an int to remove the remaining
fraction. Finally, taking the modulo 10 will obtain the digit in the ones’ place.

This can be expressed by the following instructions:

snprintf(temp_string,
 APP_STRING_LENGTH,
 "Temp: %d.%dC\n",
 (int)temp_result",
 ((int)(temp_result * 10)) % 10);

gfx_mono_draw_string(temp_string,
 APP_POSITION_X, APP_POSITION_Y, &sysfont);

Now all that remains to be done is to add a loop, continuously read the temperature, and print the
result. The fi nal application will look like this:

c05.indd 100c05.indd 100 03-12-2013 12:09:1003-12-2013 12:09:10

Real World Examples ❘ 101

#include <stdio.h>

#define APP_POSITION_X 0
#define APP_POSITION_Y 0
#define APP_STRING_LENGTH 20

int main(void)
{

 double temp_result;
 char temp_string[APP_STRING_LENGTH];

 /* Low-level initialization */
 system_init();

 /* Setup the graphics */
 gfx_mono_init();

 /* Setup the temperature sensor */
 temp_sensor_setup();

 /* Keep looping */
 while (true)
 {
 /* Get a first reading */
 temp_result = at30tse_read_temperature();

 /* Print the temperature */
 snprintf(temp_string,
 APP_STRING_LENGTH,
 "Temp: %d.%dC\n",
 (int)temp_result",
 ((int)(temp_result * 10)) % 10);

 gfx_mono_draw_string(temp_string,
 APP_POSITION_X, APP_POSITION_Y, &sysfont);

 }

}

What Now?
With only a few lines of code, and without having knowledge of the electronic components on
the wings, you have created a fully functional application. It is, of course, possible to add to this
application. On the same wing as the temperature sensor is a light sensor and also an SD card
reader. It is possible to create an application that not only records the temperature, but also the
light levels, and to store them on an SD card. An entire Xplained Pro header is still available, so
it is perfectly possible to add even more components; you could place a barometer or possibly a
tachometer for measuring wind speed. With a small battery (Atmel also provides a battery case,
the ATBATTERY-CASE-4AAA), this weather station could sit in a garden for weeks and record the
weather for statistical data. You could even add a low-power Bluetooth device to automatically
upload data when you connect, so you don’t have to take out the SD card. With the SAM D20
Xplained Pro board and accessories, anything is possible.

c05.indd 101c05.indd 101 03-12-2013 12:09:1003-12-2013 12:09:10

102 ❘ CHAPTER 5 FIRST STEPS

CASE STUDY: U-BOOT

When a computer is turned on, most people think that the fi rst program to run is the operating
system. When turning on a computer, you are greeted by a Windows logo, a MacOS background, or
a Linux penguin. Most people tend to be unaware of the BIOS, which is actually a program in itself.
Linux users who dual boot often see another application: either LILO or GRUB during the boot
process. These two applications are known as boot loaders; their job is to provide the processor
with a kernel to load. When they have loaded a kernel into RAM, they give full control to the kernel
and are subsequently deleted from memory.

U-Boot from Denx Software is a well-known bootloader for embedded systems. Not only is it used
extensively on development boards for its ease of use, it is also open source and can therefore be
used to study bootloader operation and low-level programming.

U-Boot doesn’t just load a kernel into memory, it does far more. It can open a serial port and
accept commands. It can use serial protocols to upload new binaries; it can output board and fl ash
information; and it can also load kernels from specifi c locations, including from an Ethernet adapter.
U-Boot has an impressive list of commands, which can be augmented with some development.

Inside the examples folder are a few programs that show you the power of this application. For
example, the hello_world.c program can be compiled and copied to the target system using serial:

=> loads
Ready for S-Record download ...
~>examples/hello_world.srec
1 2 3 4 5 6 7 8 9 10 11 ...
[file transfer complete]
[connected]
Start Addr = 0x00040004

=> go 40004 Hello World! This is a test.
Starting application at 0x00040004 ...
Hello World
argc = 7
argv[0] = "40004"
argv[1] = "Hello"
argv[2] = "World!"
argv[3] = "This"
argv[4] = "is"
argv[5] = "a"
argv[6] = "test."
argv[7] = ""
Hit any key to exit ...

Application terminated, rc = 0x0

U-Boot can be used on almost any system because it supports most processor families, including
ARM processors. It natively supports some fi lesystems, including common fi lesystems such as FAT
and EXT2, as well as embedded fi lesystems such as JFFS2.

It is common to see development boards running U-Boot for fl exibility and to have a suite of test
applications written for U-Boot. With this bootloader, engineers can simulate events that are hard
to reproduce; a program might corrupt specifi c areas of NAND fl ash to see how a backup partition

c05.indd 102c05.indd 102 03-12-2013 12:09:1003-12-2013 12:09:10

Machine Study: Raspberry Pi ❘ 103

reacts, or hardware might be set to a specifi c state before system boot. Some applications are also
geared toward performance, running benchmarking applications independently of hardware to
know the true throughput of a device bus, for example, and then comparing it to what is achieved
running an operating system.

MAC HINE STUDY: RASPBERRY PI

In 1981, Acorn released the BBC Micro, a computer system designed to be used in schools. Acorn
designed a processor that was spun out into ARM, and in 2012, those processors were again back in
schools with the Raspberry Pi, a credit-card sized single-board computer designed by the Raspberry
Pi Foundation based on an ARM core: an ARM1176JZF-S.

The original intention of the Raspberry Pi Foundation was to create a computer for schools, perfect
for teaching computer literacy. The low-cost design makes it easy to buy one computer per child,
and with no internal hard drive, it is rugged and is not easy to break. Also of interest, because all
the fi rmware resides on the SD card, it is almost impossible to get a Raspberry Pi into a state in
which it cannot boot. There is no BIOS to fl ash, and there is no way of corrupting the bootloader
image. This makes it perfect for learning ARM programming.

The Raspberry Pi boots from an SD card, so switching operating systems is as simple as swapping
SD cards. Several operating systems are available: Debian and Arch Linux distributions are
available, and a Fedora remix is also available. Also of interest is RISC OS, an operating system
originally designed by Acorn and bundled with all Acorn Archimedes machines.

Although the Raspberry Pi was originally designed for schools, it has made a huge impact on the
Maker community, a community of electronics and programming enthusiasts that dream of new
contraptions, or simply identify a need and create a solution, and multiple projects have been created
for this small-factor computer. It has been used for robotics systems, home automation, security,
and just about anywhere that a user has identifi ed a need. It is an excellent tool to learn about ARM
systems, and a great way of having fun. When you have fi nished writing ARM binaries, you can
swap the SD card and relax while playing a special version of Minecraft for the Raspberry Pi, or
watching your favorite fi lm directly on your television through some excellent video programs.

The Raspberry Pi is an entire computer system; it has video capabilities, USB, Ethernet, and enough
system resources to run a full Linux system, so why is this considered to be embedded? Well, that
all depends on your defi nition of embedded. It is a small factor computer, with everything on-board,
and compared to a desktop computer, it has limited resources. What is interesting about this system
is its versatility; by studying the boot procedure, it is possible to have a full Linux system, or to
create a bare metal application, without all the fuss of fl ashing via specialized tools. The Raspberry
Pi is an excellent low-cost starter platform.

Boot Procedure
The Raspberry Pi has an interesting boot procedure. On power on, the ARM core is held in a
reset state, while the GPU takes control of the system. The GPU has some internal fi rmware that is
responsible for the fi rst boot steps, including reading from the fi rst partition of the SD card. For the
Raspberry Pi to boot, the fi rst partition must be formatted to FAT32 and must contain several fi les.

c05.indd 103c05.indd 103 03-12-2013 12:09:1003-12-2013 12:09:10

104 ❘ CHAPTER 5 FIRST STEPS

bootcode.bin
This is the fi rst fi le to be loaded from the SD card by the GPU. It is loaded into the L2 cache, and its
role is to enable the SDRAM memory and to confi gure a few system settings. It then loads the next
bootloader stage.

loader.bin
This fi le contains the binary routines necessary to load and execute ELF binaries, and looks for
start.elf on the SD card.

start.elf
This is the fi nal bootloader stage and where the magic starts. This fi le can load a fi le called
kernel.img and place it at memory location 0x8000 (from the ARM core’s point of view). The
start.elf fi le can also use an external fi le called config.txt that contains different parameters to
fi ne-tune the ARM core (overclocking and overvoltage, for example). After kernel.img has been
loaded into system memory, start.elf releases the reset state on the ARM core and gives it control.

kernel.img
This fi le is an ARM executable fi le, more often than not a Linux kernel. This can also be a bare
metal application that you can design.

Compiling Programs for the Raspberry Pi
The interesting thing about the Raspberry Pi is that it comes with a complete Linux distribution and
is fast enough to have its own compiler to compile binaries for itself. If you have another computer
next to it, it is also possible to test out a cross-compiler environment, for both Linux binaries or for
barebones applications because the Raspberry Pi can do both.

As seen previously, the GCC compiler needs to know a little bit more about the target processor
before compiling. The Raspberry Pi uses an ARM1176JSF-S, which is an ARMv6 core, and has an
FPU. So, the GCC command-line options should look like this:

-Ofast -mfpu=vfp -mfloat-abi=hard -march=armv6zk -mtune=arm1176jzf-s

In all the previous examples, you had to confi gure the vector table, but because start.elf places
the binary at 0x8000, you don’t have to do that. Of course, if you need interrupts or if you want to
handle exceptions, then you will have to confi gure that, but for basic barebones applications, you
can ignore that.

Now try a simple program.

void main(void)
{
 while(1)
 {

 }
}

c05.indd 104c05.indd 104 03-12-2013 12:09:1003-12-2013 12:09:10

Summary ❘ 105

Save this as kernel.c. This program doesn’t do anything, but it serves to show how the compilation
works. So now compile that application.

arm-none-eabi-gcc -O2 -mfpu=vfp -mfloat-abi=hard -march=armv6zk \
 -mtune=arm1176jzf-s -nostartfiles kernel.c -o kernel.elf

The -nostartfiles option tells the compiler to avoid all the code used to start programs in an
operating system environment; it especially avoids adding exit() functions, something that you do
not need here. The binary is compiled as an ELF, so it needs to be transformed into a binary before
you proceed.

arm-none-eabi-objcopy kernel.elf -O binary kernel.img

You can output this program to the fi lename kernel.img because that is what is expected on the SD
card. Now that everything is compiled, you can copy kernel.img to your SD card along with the
other fi les (provided by the Raspberry Pi Foundation, available on its website), and you are good to
go. More information can be found at http://www.raspberrypi.org/downloads.

What’s Next?
This simple program does nothing except put the processor into an infi nite loop, but the Raspberry
Pi also has other output devices. There is a serial port for writing a possible “Hello, World!” line.
It has a GPIO header, and expansion boards are available, so you can create electronic projects to
automate your home (example projects of a door lock are available), but there is also an HDMI
output if you want to create graphic output and maybe even animation.

SUMMARY

This chapter gives a few example programs and techniques on both emulated and real-world boards.
They have been in a mixture of assembly and C, some require specifi c hardware initialization, and
some are close to systems programming. Now that you have followed these examples, you have
two desktop clocks and a weather station, all made using readily available boards and
programming tools.

The next chapter will present the Thumb extension, a versatile language created for high-density
applications and microcontroller profi les. You will see the different instructions, and how to
generate effi cient Thumb code.

c05.indd 105c05.indd 105 03-12-2013 12:09:1003-12-2013 12:09:10

http://www.raspberrypi.org/downloads

c05.indd 106c05.indd 106 03-12-2013 12:09:1003-12-2013 12:09:10

Thumb Instruction Set
WHAT’S IN THIS CHAPTER?

 ➤ Presenting Thumb

 ➤ What is Thumb used for?

 ➤ What cores run Thumb?

 ➤ What are the advantages of Thumb?

 ➤ How to switch between ARM and Thumb

 ➤ Writing for Thumb

Many of the most popular 32-bit processors for mobile devices use Reduced Instruction Set
Computer (RISC) technology. Unlike Complete Instruction Set Computer processors (CISC),
Reduced Instruction Set Computer engines generally execute each instruction in a single cycle,
often resulting in faster program execution using the same clock speed.

Increased performance, however, comes at a price: a RISC processor typically needs more
memory than a CISC does to store the same program. To achieve the same results as a single
CISC instruction, RISC engines often require two, three, or more simpler instructions. For
most embedded devices, memory constraints are more important than execution speed, so
reducing code size is important.

In 1995, ARM released the Thumb instruction set, used for the fi rst time on the ARM7TDMI
core. Thumb instructions are denser than their ARM counterparts, being 16-bits long in the
original Thumb extension. All Thumb instructions map directly to ARM instructions, but to
save space, the instructions were simplifi ed.

Thumb was introduced not only for the denser code, but also for devices that did not have
full 32-bit wide memory access. One of the fi rst devices to use Thumb, the Game Boy
Advance, had little memory that was accessible in 32-bits; most of the memory was 16-bits
wide. Accessing a 32-bit instruction meant accessing the fi rst 16-bits and then waiting for the

6

c06.indd 107c06.indd 107 03-12-2013 12:09:3903-12-2013 12:09:39

108 ❘ CHAPTER 6 THUMB INSTRUCTION SET

next 16-bits, which was very slow. By using Thumb, the Game Boy Advance could keep the game
instructions to 16-bits long and avoid the slowdown of accessing 32-bits.

Although using Thumb codes is often slightly slower to the ARM counterpart due to simplifi cation,
accessing 16-bit memory meant that the ARM7TDMI outperformed full 32-bit processors with
16-bit wide data channels.

Performance, energy effi ciency, and memory footprint are the most important considerations for
designers of embedded systems, and Thumb effectively addresses each requirement, making it
perfect for mobile applications.

Thumb-2 technology was introduced in the ARM1156T2-S core in 2003. It extended the
original Thumb instruction set by including 32-bit instructions, therefore making the instruction
set variable-length. This addition made Thumb-2 on average 26 percent denser than the ARM
instruction set, while providing a 25 percent performance boost over original Thumb code.

ThumbEE was introduced in 2005 and was marketed as Jazelle Runtime Compilation Target (RCT).
By making small changes to the Thumb-2 instruction set, it was designed to target languages such
as Python, Java, and Perl. ARM deprecated the use of ThumbEE with revision C of its ARMv7
architecture. ThumbEE was an addition to, not a replacement of, Thumb-2. New cores continue to
support Thumb-2.

Of course, reducing a 32-bit instruction to 16-bits means making sacrifi ces, and 16-bit Thumb
opcodes have less functionality. The condition codes were removed for everything except branching.
Also, most of the opcodes can no longer access all the registers, but only the lower half. However,
because Thumb instructions are mapped to ARM instructions in hardware, the result is an
execution speed that is identical to ARM execution speed. However, only accessing one-half of the
registers implies some slowdowns.

Because Thumb is designed as a target for C compilers, it is not designed to be used directly; rather,
developers should use a higher language such as C. You must understand the principles behind the
instruction set to write optimized code, but unlike the ARM ISA, almost all optimization should be
done directly in C.

THUMB

Thumb was released in 1995 in the ARM7TDMI, one of the most versatile ARM cores produced.
Most application code written in C can be compiled directly in Thumb; however, some driver code
may need to be written in ARM code. For the Game Boy Advance, lower memory was 32-bit, in
which ARM instructions could be run without degrading performance, and all the driver code was
located in this portion of memory. The upper memory was 16-bits wide, and this is where Thumb
code was located: the game code. The problem was how to switch between the two.

Originally created for the ARM7TDMI, Thumb is a “state,” and developers can switch between
ARM state and Thumb state. In ARM state, executing a Thumb instruction results in an undefi ned
instruction exception. The processor needs to be told that the following instructions are Thumb,
and the best place for that is the Branch instruction.

c06.indd 108c06.indd 108 03-12-2013 12:09:4103-12-2013 12:09:41

How Thumb Is Executed ❘ 109

The original Thumb ISA by itself isn’t enough for all core components of a bare-bones system.
Although perfectly suited for applications, it does not have all the required instructions to handle a
complete system. (For example, it has no way of interacting with a coprocessor.)

THUMB-2 TECHNOLOGY

Thumb-2 technology is a major enhancement to the already popular Thumb extension. It provides
32-bit instructions that can be intermixed with the existing 16-bit instructions, making the Thumb
extension variable length. The ARM core automatically detects the length of the next instruction
and fetches the entire instruction.

By adding 32-bit instructions, almost all the ARM ISA functionality is now covered and adds
DSP functionality. Because Cortex-M processors support only the Thumb ISA and cannot use the
ARM ISA, Thumb-2 added major functionality, including the possibility of performing advanced
calculation on a microcontroller architecture.

Thumb-2 didn’t only introduce 32-bit instructions; there are also new 16-bit instructions, adding
enhanced energy effi ciency and making the instruction set closer to C. Thumb-2 also makes it
possible to create an entire system, not just an application, using only the Thumb ISA.

HOW THUMB IS EXECUTED

The question that most people ask is, “Why does
the ARM core have two separate instruction sets?”
In reality, it has only one; Thumb can be considered
shorthand for the ARM instruction set. Thumb was
originally developed by looking at the most-used
ARM instructions and creating 16-bit counterparts.
Therefore, the Thumb instruction ADD r0, #1 is
automatically “translated” in hardware to the ARM
instruction ADDS r0, r0, #1, incurring no penalty to
execution time. This is illustrated in Figure 6-1.

Originally, the ARM7TDMI had separate
decompressor logic, but with the ARM9TDMI
onwards, this was integrated into the pipeline’s decoder
logic. This is illustrated in Figure 6-2. Its function
remains the same — all Thumb instructions are
mapped to an ARM instruction, only the logic has
been moved to the pipeline to simplify the processor’s
design and to increase effi ciency.

FIGURE 6-1: Thumb Decompressor

ADD r0, #1 ⇒ ⇒ ADDS r0, r0, #1

D
E
C
O
M
P
R
E
S
S
O
R

c06.indd 109c06.indd 109 03-12-2013 12:09:4103-12-2013 12:09:41

110 ❘ CHAPTER 6 THUMB INSTRUCTION SET

ADVANTAGES OF USING THUMB

There are two major advantages to using Thumb ISA over ARM ISA. Thumb instructions are
16-bits wide, and Thumb-2 adds a mixture of 16 bit and 32 bits. Because more instructions can
be written per word of memory, Thumb is denser. This is useful for systems with limited memory;
although writing in Thumb sometimes means a few more instructions, the end result is often 40
percent denser than code written for the ARM ISA, meaning less memory requirements.

Another major advantage of using Thumb is also due to the instruction size. Since Thumb
instructions are denser, the cache can contain more Thumb instructions than ARM instructions, so
Thumb applications often cache better than their ARM equivalent.

Take, for instance, a simple division program. This program takes a number in r0 and divides
it by the number provided in r1. It returns the quotient in r0 and the remainder in r1. In this
unoptimized code, it simply subtracts r1 from r0 as many times as possible and returns the amount
of times it can do so. In ARM, such a routine could be written like this:

 MOV r3, #0
loop
 SUBS r0, r0, r1
 ADDGE r3, r3, #1
 BGE loop
 ADD r2, r0, r1
 MOV r0, r3
 MOV r1, r2

This code is 7 instructions long, and each instruction is 4 bytes long, so the code is 28 bytes long.
This is a short subroutine, but it is a perfect example to show how Thumb can take up less space.
In Thumb, taking into account the various subtleties of the instruction set, this could be written:

 MOV r3, #0
loop
 ADD r3, #1
 SUB r0, r1
 BGE loop

FIGURE 6-2: 3-stage pipeline with Thumb decoder

Instruction
Stream

Fetch Stage Decode Stage Execute Stage

Execution Unit

Thumb

ARM

c06.indd 110c06.indd 110 03-12-2013 12:09:4203-12-2013 12:09:42

Cores Using Thumb ❘ 111

 SUB r3, #1
 ADD r2, r0, r1
 MOV r0, r3
 MOV r1, r2

There are more instructions in Thumb, and developers that are used to the ARM instruction set
might be surprised at the way in which this code was written. The changes between Thumb and
ARM are explained later in this chapter, in the section “Introduction to Thumb.”

This routine in Thumb is 8 instructions long, but because each instruction is only 2 bytes long, that
means that the entire code is only 16 bytes long, whereas the ARM code was 28 bytes long.

One of the worries about using Thumb ISA is that Thumb is slower than ARM. Although it is
sometimes slightly slower than ARM code, it isn’t for the reasons that you might fi rst think. Thumb
code is often slightly longer than ARM code, so more cycles might be necessary to obtain the same
result. Also, fewer registers are readily available, which might impact some routines. However,
the benefi ts outweigh the inconvenience. Since the code is denser, it uses less memory, meaning an
embedded system can contain less memory, making them more cost effi cient and power effi cient. More
instructions can fi t into the same cache size, meaning that Thumb applications can out-perform ARM
equivalent programs. To prove Thumb’s power, an entire family of ARM cores, the Cortex-M, relies
solely on Thumb code to obtain powerful microcontrollers with incredibly low power consumption.

Thumb was also designed with rapid development in mind. Thumb was developed as a compiler
target, meaning that all development can be done in a higher language such as C. Although
Cortex-A and Cortex-R cores need at least some development in assembler for boot code, Cortex-M
cores that use only the Thumb ISA can be developed entirely in C.

CORES USING THUMB

The Thumb ISA was introduced in the ARM7TDMI design. All ARM9 and later chips support the
Thumb instruction set.

Thumb-2 technology was introduced in the ARM1156T2-S and extends the Thumb ISA. All
ARMv7 cores and later include Thumb-2.

The Cortex-A and Cortex-R families, supporting the ARMv7 and later architecture, both support
Thumb and Thumb-2. These processors use the ARM ISA but can switch to the Thumb ISA when
needed.

Cortex-M processors are a little different. They do not support the ARM ISA and support only
the Thumb/Thumb-2 ISA. The Cortex-M3 and Cortex-M4 cores belong to the ARMV7-M and
ARMV7E-M architectures, respectively, and support the full subset of Thumb and Thumb-2.

The Cortex-M0, M0+, and M1 belong to the ARMv6-Marchitecture and have more restrictions.
They support the Thumb ISA but do not implement three instructions: CBZ, CBNZ, or IT. They do
however support Thumb-2, but only a limited subset: BL, DMB, DSB, ISB, MRS, and MSR. Table 6-1
shows the different instructions supported by the different versions of Cortex-M cores. Instructions
are listed according to their availability in Cortex-M cores, as well as the instruction length. All
instructions available in one Cortex-M core are always available in later cores. For example, all of
the instructions available in the Cortex-M0 core are available in the Cortex-M3.

c06.indd 111c06.indd 111 03-12-2013 12:09:4203-12-2013 12:09:42

TABLE 6-1: Cortex-M Core Instructions

M0 M0+ M1 M3 M4 SIZE INSTRUCTIONS

Yes Yes Yes Yes Yes 16 ADC, ADD, ADR, AND, ASR, B, BIC, BKPT, BLX, BX, CMN, CMP, CPS, EOR, LDM, LDR,
LDRB, LDRH, LDRSB, LDRSH, LSL, LSR, MOV, MUL, MVN, NOP, ORR, POP, PUSH, REV,
REV16, REVSH, ROR, RSB, SBC, SEV, STM, STR, STRB, STRH, SUB, SVC, SXTB, SXTH, TST,
UXTB, UXTH, WFE, WFI, YIELD

Yes Yes Yes Yes Yes 32 BL, DMB, DSB, ISB, MRS, MSR

No No No Yes Yes 16 CBNZ, CBZ, IT

No No No Yes Yes 32 ADC, ADD, ADR, AND, ASR, B, BFC, BFI, BIC, CDP, CLREX, CLZ, CMN, CMP, DBG, EOR,
LDC, LDMA, LDMDB, LDR, LDRB, LDRBT, LDRD, LDREX, LDREXB, LDREXH, LDRH,
LDRHT, LDRSB, LDRSBT, LDRSHT, LDRSH, LDRT, MCR, LSL, LSR, MLS, MCRR, MLA, MOV,
MOVT, MRC, MRRC, MUL, MVN, NOP, ORN, ORR, PLD, PLDW, PLI, POP, PUSH, RBIT, REV,
REV16, REVSH, ROR, RRX, RSB, SBC, SBFX, SDIV, SEV, SMLAL, SMULL, SSAT, STC, STMIA,
STMDB, STR, STRB, STRBT, STRD, STREX, STREXB, STREXH, STRH, STRHT, STRT, SUB,
SXTB, SXTH, TBB, TBH, TEQ, TST, UBFX, UDIV, UMLAL, UMULL, USAT, UXTB, UXTH, WFE,
WFI, YIELD

No No No No Yes 32 PKH, QADD, QADD16, QADD8, QASX, QDADD, QDSUB, QSAX, QSUB, QSUB16, QSUB8,
SADD16, SADD8, SASX, SEL, SHADD16, SHADD8, SHASX, SHSAX, SHSUB16, SHSUB8,
SMLABB, SMLABT, SMLATB, SMLATT, SMLAD, SMLALBB, SMLALBT, SMLALTB, SMLALTT,
SMLALD, SMLAWB, SMLAWT, SMLSD, SMLSLD, SMMLA, SMMLS, SMMUL, SMUAD,
SMULBB, SMULBT, SMULTT, SMULTB, SMULWT, SMULWB, SMUSD, SSAT16, SSAX,
SSUB16, SSUB8, SXTAB, SXTAB16, SXTAH, SXTB16, UADD16, UADD8, UASX, UHADD16,
UHADD8, UHASX, UHSAX, UHSUB16, UHSUB8, UMAAL, UQADD16, UQADD8, UQASX,
UQSAX, UQSUB16, UQSUB8, USAD8, USADA8, USAT16, USAX, USUB16, USUB8, UXTAB,
UXTAB16, UXTAH, UXTB16

c06.indd 112c06.indd 112 03-12-2013 12:09:4203-12-2013 12:09:42

Introduction to Thumb-1 ❘ 113

Some Cortex-M4 cores have an optional Floating Point Unit, allowing for more advanced
calculations to be done with hardware optimization.

Due to the differences between the ARMv6-M and ARMv7-M architectures, you must know both
Thumb and the Thumb-2 extension. Although you might be tempted to start a new project directly
with a Cortex-M4 to have access to the entire Thumb and Thumb-2 ISA, the Cortex-M0+ is still
an excellent microcontroller core, in active production, and has advantages over the more recent
Cortex-M4 core.

 ARM-THUMB INTERWORKING

On processors supporting both the ARM and Thumb ISA, you can switch from one state to
another, which is known as interworking. Changing state is a simple process that you can do
without any penalty compared to a basic branch instruction.

When a Cortex-A/R or Classic ARM core is turned on (when it enters the RESET state), it
automatically starts in ARM state. A specifi c instruction must be issued for the core to switch to
Thumb state.

Cortex-M cores are different. Because these cores do not support the ARM ISA, the core is
automatically in Thumb state.

With the exception of the Cortex-M, the core must be told to switch to Thumb state; it does not do
it automatically. Attempting to execute Thumb instructions while in ARM state most often results
in an illegal instruction.

To enter Thumb state from ARM state (or vice versa), use the BX/BLX instruction: Branch and
Exchange Instruction (with possible link). ARM processors are natively aligned; they must have
instructions on a certain boundary. Typically, the processor looks for instructions aligned on 32
bits, or in the case of Thumb, 16 bits. In either case, the last address bit is not used and should
always be 0. Thumb-capable cores make use of this by using the least signifi cant address bit of the
branch destination to indicate the instruction set state. By setting the LSB to 1, instead of looking
for an impossible address, this tells the core that the next instruction will be a Thumb instruction
and that the core should change to Thumb state.

Note that when a non-Cortex-M core handles an exception, the processor is automatically returned
to ARM mode, or on select processor, whatever state was confi gured in the SCTRL register. When
returning to the previous code, the CPSR is restored and the state of the processor is contained in
the CPSR, returning the processor to its original state.

INTRODUCTION TO THUMB-1

Thumb was created after an analysis of the most-used ARM instructions in compiled C code. To
have a complete 16-bit instruction set, several sacrifi ces were made. Thumb instructions cannot
access all registers; they cannot access status or coprocessor registers; and some functionality
that might have been done in one instruction in ARM state can take two or three in Thumb
state. However, Thumb is not an entirely new language; an ARM core does not have two

c06.indd 113c06.indd 113 03-12-2013 12:09:4203-12-2013 12:09:42

114 ❘ CHAPTER 6 THUMB INSTRUCTION SET

distinct languages embedded into silicon. Thumb instructions are mapped directly to ARM-state
counterparts, expanding 16-bit instructions to 32-bit equivalents.

Writing effi cient code for Thumb is a little more challenging, and for those who already know the ARM
ISA, Thumb is easy to learn. It isn’t a question of what can be done, but rather what can’t be done in
Thumb. That doesn’t mean that Thumb is limited, it means that Thumb is designed differently.

Register Availability
The biggest change is in the register access. When operating in
Thumb state, the application encounters a slightly different set of
registers. As stated previously, most Thumb instructions can access
only r0 to r7 (known as the low registers), not the entire set of
registers. However, the SP, LR, and PC registers are still available,
as shown in Figure 6-3.

Three instructions enable access to the high registers: MOV, ADD, and
CMP. The reason for this is the shortening of instructions from 32
bits. One of 16 registers can be expressed as a 4-bit number, and
one register in 8 can be expressed as a 3-bit number; therefore,
saving 1 bit. For instructions that require multiple registers as
arguments, this saves lots of space.

Removed Instructions
Some instructions had to be removed to create Thumb ISA. Because
Thumb was originally designed for application-level code and not
system code, no instructions exist to access coprocessors. Swap
instructions were removed because they were not used often enough
to merit a specifi c opcode. Reverse subtractions were also removed
(RSB and RSC) and of all the different multiplications that exist, only
MUL remains.

For those developing full applications on a Cortex-M0+, or other
cores belonging to the ARMv6-M specifi cation, these cores support
a small subset of the Thumb-2 ISA, including MUL/MLA instructions.

No Conditionals
Conditional execution has been removed from almost all instructions; only branch instructions still
have condition fl ags. This makes code more in line with C code; different sections of code are now
separated, and the C instruction if (a == b) now becomes a compare instruction and a conditional
branch.

Set Flags
With Thumb, almost every operation automatically executes an Update Status Register, effectively
adding the S suffi x to every instruction. ADD now becomes ADDS, without having to add the S to the

FIGURE 6-3: Comparison
between ARM and Thumb
register availability

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13(SP)

R14(LR)

R15(PC)

R0

ARM Thumb

R1

R2

R3

R4

R5

R6

R7

SP

LR

PC

c06.indd 114c06.indd 114 03-12-2013 12:09:4203-12-2013 12:09:42

Introduction to Thumb-2 ❘ 115

end of the opcode. This is a major change from the ARM ISA where the status fl ags were updated
only on request, and multiple conditional instructions could be executed. In Thumb, this is no
longer possible because sacrifi ces had to be made to keep instructions 16-bits long, but it does make
the assembly code more in line with C.

No Barrel Shifter
Barrel shift operations can no longer be used directly inside instructions. The barrel shifter still
exists, of course, and can still be used, but in Thumb, specifi c instructions now exist to perform
shifts. Thumb therefore introduced some new instructions: ASR, LSL, LSR, and ROR now become
instructions instead of operators on operands. What used to be done in a single instruction now
takes two; a single shift instruction followed by another instruction.

Some decompilers will still show these instructions even in ARM, since they are Unifi ed Assembly
language instructions. However, in its true ARM form, these instructions are MOV instructions with
a barrel shift used as a second operand. Unifi ed Assembly Language will be discussed in the next
chapter.

Reduced Immediates
With the ARM ISA, most instructions allowed for a second operand, which was either an immediate
value or a (shifted) register. In Thumb, this is no longer the case because the instructions have been
simplifi ed and now resemble C assignment operators (for example, += and |=).

As with most rules, there are exceptions. ADD, SUB, MOV, and CMP can have both immediate values
and second operands, making their usage close to the ARM ISA.

Stack Operations
Stack access has been greatly simplifi ed; where ARM instructions could specify pre- or post-
indexing and specify if the stack is ascending or descending, Thumb simplifi es this with two simple
instructions: PUSH and POP. These instructions, just like all Thumb instructions, are mapped to
ARM instructions, and in this case they are mapped to STMDB and LDMIA.They do not specify a
register; they assume that the stack pointer is r13 and update the SP automatically.

Stack operations work on the lower registers (r0 to r7) but also on the link register and program
counter. The PUSH register list can also include the link register (LR), and POP can include the
Program Counter (PC). Using this, you can return from a subroutine with the following sequence:

PUSH {r1, lr}
; subroutine
POP {r1, pc}

INTRODUCTION TO THUMB-2

Thumb-2 does not replace the original Thumb ISA; it enhances it. Code written in Thumb remains
compatible in a Thumb-2 environment.

c06.indd 115c06.indd 115 03-12-2013 12:09:4203-12-2013 12:09:42

116 ❘ CHAPTER 6 THUMB INSTRUCTION SET

Thumb-2 adds both 16-bit and 32-bit instructions to the instruction set, making Thumb-2 a
variable width instruction set. Some instructions have 16-bit and 32-bit versions, depending on the
way they are implemented.

32-bit instructions were added to the Thumb ISA to provide support for exception handling in the
Thumb state, as well as access to coprocessors and the addition of DSP instructions. This is a huge
advantage to Cortex-M cores, adding processing power to an energy-effi cient design. Cortex-M
processors belonging to the ARMv7-M architecture support the entire Thumb-2 subset, and the
Cortex-M4F also supports Thumb DSP instructions.

Thumb-2 also supports conditional execution, albeit in the form of a new instruction, IT, short
for If-Then. Thumb-2 offers the best of both worlds: the performance of ARM and the memory
footprint of Thumb.

New Instructions
Thumb-2 introduced a large amount of instructions to make Thumb-2 almost as complete as the
ARM ISA and to enable Cortex-M cores to have full access to most of the ARM functionality. The
following is a non-exhaustive list of instructions added to Thumb ISA in Thumb-2.

If Then
One of the new instructions is the IT instruction, short for If-Then. Just like the C equivalent, IT
conditionally executes one portion of code or another but avoids the need for jumping. The benefi t is
that this avoids the penalty for taking a branch due to the nature of the pipeline.

The instruction is defi ned as follows:

IT<x><y><z> <cond>

The cond variable is any of the condition codes available in the ARM ISA: EQ, GT, LT, NE, and so on.

The variables x, y, and z are optional and are either T (for Then) or E (for Else). Depending on the
amount of Ts and Es (including the fi rst T in IT), the processor conditionally executes code. This
can sound confusing, so here’s an example.

The easiest form is the IT instruction itself:

CMP r0, r1 ; r0 == r1?
IT EQ ; was the result EQ?
MOVEQ r0, r4 ; If r0 == r1, execute this instruction

This is the most basic form and can execute the MOV instruction if r0 equals r1. Note that inside an
IT block, all instructions must have condition codes.

Up to four instructions can be linked to the IT command, in any order. For example, a typical C If/
Then section could look like this:

CMP r0, r1 ; r0 == r1?
ITE EQ ; was the result EQ?
MOVEQ r0, r4 ; If r0 == r1, execute this instruction
MOVNE r0, r5 ; Else execute this instruction

c06.indd 116c06.indd 116 03-12-2013 12:09:4203-12-2013 12:09:42

Introduction to Thumb-2 ❘ 117

Or for a more complete example, use this:

CMP r0, r1 ; r0 == r1?
ITEET EQ ; was the result EQ? Then / Else / Else / Then
MOVEQ r0, r4 ; If r0 == r1, execute this instruction
MOVNE r0, r5 ; Else execute this instruction
SUBNE r0, #1 ; Else execute this instruction too
BEQ label ; If r0 == r1, branch

People are often surprised at the instruction layout; you can specify a Then instruction, followed by
an Else instruction, and then another Then instruction, something that isn’t possible in C. This is
actually a clever design from ARM. IT code blocks have restrictions; each instruction inside the IT
block must have condition codes. Also, it is not allowed to branch into an IT block unless returning
from an exception. Branching from inside an IT block is allowed only if it is the last instruction
inside the block, which is the case in this example.

Compare and Branch
Thumb-2 introduced two new branch methods: CBZ and CBNZ. CBZ, short for Compare and Branch
if Zero, compares a register with zero, and branches to a label if the comparison EQ is true. CBNZ is
the opposite and branches if the comparison NE is true.

CBZ and CBNZ have the advantage of not updating the condition code fl ags, potentially reducing
code size. In ARM, or in Thumb, this portion of code compares a register and breaks if it
equals zero:

CMP r0, #0
BEQ label

In Thumb-2, this is reduced to a single 2-byte instruction (with the difference that it does not update
the condition fl ags).

CBZ r0, label

In C, this is the equivalent of: if x == 0 { function }.

Bitfi eld Operations
Bitfi eld instructions were added to Thumb-2, enabling the copy of portions of a register to another,
or clearing and inserting portions of a register. The BFC and BFI instructions enable clearing and
inserting data at a variable offset, whereas SBFX and UBFX enable signed and unsigned bitfi eld
extraction.

Coprocessor
System coprocessor instructions can be executed in Thumb, using the MCR and MRC instructions. On
Cortex-A/R cores, CP15 instructions can also be executed directly from Thumb-2.

c06.indd 117c06.indd 117 03-12-2013 12:09:4303-12-2013 12:09:43

118 ❘ CHAPTER 6 THUMB INSTRUCTION SET

DSP
Thumb-2 also introduced 32-bit Digital signal processing instructions, giving Thumb the calculation
power that until now was reserved for ARM code, either enabling Thumb applications to access
advanced calculation routines, or enabling more powerful Cortex-M cores. The Thumb-2 DSP
instructions were added to the Cortex-M4.

FPU
Floating-point instructions were added to Thumb-2 and are supported by the optional Floating
Point Unit in the Cortex-M4. Floating-point operations can now be done directly in hardware by
the ARM core, in Thumb state. FPU extensions enable Thumb-2 to be used in intensive calculations
such as audio compression and decompression, and automotive applications.

WRITING FOR THUMB

By default, a compiler automatically compiles for the ARM ISA. It needs to be told about the target
CPU and what instruction set it will use.

Start with a basic program:

int myfunc(int a)
{
 a = a + 7;
 return a / 2;
}

This is a basic program that doesn’t access any system registers and could be written in both ARM
and Thumb. Now, compile this for a Cortex-A8 processor, using default settings:

arm-none-eabi-gcc -c -mcpu=cortex-a8 test.c -o testarm.o

What exactly has the compiler made of this?

arm-none-eabi-objdump -S testarm.o

This is just a few lines of output:

 28: e1a030c3 asr r3, r3, #1
 2c: e1a00003 mov r0, r3
 30: e28bd000 add sp, fp, #0
 34: e8bd0800 ldmfd sp!, {fp}
 38: e12fff1e bx lr

Those fi ve instructions are all 32-bits long, and what is that LDMFD instruction? LDMFD can be used
on the Cortex-M3 and Cortex-M4; however, fp is a high register, so this can’t be Thumb code.
This code has been compiled for the ARM ISA. So how do you compile for Thumb? By telling the
compiler:

c06.indd 118c06.indd 118 03-12-2013 12:09:4303-12-2013 12:09:43

Summary ❘ 119

arm-none-eabi-gcc -c -mcpu=cortex-a8 -mthumb test.c -o testthumb.o

By specifying the -mthumb option in the CodeSourcery compiler, the compiler now knows that it
needs to compile in Thumb. Time to have a look at that fi le:

arm-none-eabi-objdump -S testthumb.o

Again, these are just a few lines of output:

 1c: 4618 mov r0, r3
 1e: f107 070c add.w r7, r7, #12
 22: 46bd mov sp, r7
 24: bc80 pop {r7}
 26: 4770 bx lr

The fi rst thing that can be seen is the instruction length: both 16-bits and 32-bits. After all, the
Cortex-A8 supports both Thumb and the Thumb-2 extension, so why not make the most of it?

As for Thumb Interworking, the compiler and linker handle this transparently. Any ARM code
calling the myfunc subroutine automatically results in a BLX instruction, telling the core to switch to
Thumb mode. If called from Thumb code, the compiler makes no changes.

SUMMARY

The Thumb instruction set is designed to be a compiler target, and as such, it is advised to use
a higher language, such as C or C++. Some of the changes made in Thumb, compared to ARM
systems, make the code different. Porting code from ARM to Thumb at assembly level is often
diffi cult because ARM code relies heavily on conditional execution.

Instructions in the original Thumb extension are 16-bits wide and can be used to reduce the
memory footprint of an application and can potentially allow the data bus path to be reduced to
16-bits without a major performance penalty. Thumb-2 is an extension to Thumb, adding both
32-bit instructions and 16-bit instructions, and adding instructions for both DSP and fl oating-point
calculations.

With this background, the chapter showed how to compile source code for the Thumb ISA by telling
the compiler to use a specifi c instruction set.

In the next chapter, I will talk more about ARM Assembly Language, including the Unifi ed
Assembly Language that allows developers to write programs for both Thumb and ARM modes. I
will talk more about each category of instruction, and give examples for some of the most common
instructions.

c06.indd 119c06.indd 119 03-12-2013 12:09:4303-12-2013 12:09:43

c06.indd 120c06.indd 120 03-12-2013 12:09:4303-12-2013 12:09:43

Assembly Instructions
WHAT’S IN THIS CHAPTER?

 ➤ Different assembly instructions

 ➤ Assembly arithmetic

 ➤ Different branch instructions

 ➤ Use of assembly instructions

Assembly is just like any other computer language; you must fi rst know the basics: the syntax
of the language. After you know how to speak assembly, then comes the interesting
part — vocabulary.

ARM cores follow a Reduced Instruction Set Computing (RISC) design philosophy. They
have fewer instructions than CISC counterparts, but each individual instruction, being
simpler, is also faster. Just like a box of Legos, it is possible to make amazing sculptures
with simple pieces. Learning ARM Assembly is the same; after you grasp the power of each
simple instruction, it becomes easy to read and write programs.

Because most ARM cores now support two instruction sets, ARM and Thumb, ARM created
the Unifi ed Assembler Language (UAL) to write programs for both languages. The following
chapter is written in UAL, and as such, the instruction format should be supported by all the
modern compilers and environments.

ARM assembly instructions have gone through different versions, as architectures have added
more and more instructions. Some cores may have more instructions due to its architecture;
for more information, consult the manufacturer’s documentation. This documentation will
contain the ARM Architecture version. ARM’s documentation will list all the instructions
available.

7

c07.indd 121c07.indd 121 03-12-2013 12:10:2603-12-2013 12:10:26

122 ❘ CHAPTER 7 ASSEMBLY INSTRUCTIONS

MOVE MENT

Movement instructions are used to transfer data into registers, either the data from another register
(copying from one register to another), or by loading static data in the form of an immediate value.

The following sections discuss the instructions used for movement.

MOV
 MOV{<cond>}{S} Rd, Rs

MOV (Move) copies data into a register. The source can either be a register or static information. The
destination is always a register. When using static data, MOV can only use immediate value.

Contrary to most Thumb instructions, MOV can access low registers and high registers. The ARM
implementation can access any register.

To move static data into a register, specify the source after the destination:

MOV r0, #42

which moves the constant 42 into register r0.

Then use:

MOV r1, r2

which moves the contents of r2 into r1, leaving r2 untouched.

Use this:

MOV r0, r0

to move the contents of r0 into r0, equivalent to a NOP (no operation). While alone it has no use, it
can be used for padding, to keep data aligned.

MVN
 MVN{<cond>}{S} Rd, Rs

MVN (Move Negated) copies a negated value into a register (destination = NOT(source)). This
is useful for storing some numbers that MOV cannot handle, numbers that cannot be expressed as an
immediate value, and for bitmaps that are mainly composed of 1s.

For example, due to the nature of immediate values, MOV cannot store 0xFF00FFFF, but this result
can be achieved by issuing a MVN command with 0x00FF0000. Because MVN will negate the number,
and because 0x00FF0000 can be expressed as an immediate value, it can be achieved in a single
instruction.

MOV r0, #42
MVN r1, r0

This copies an inverse of r0 into r1. r1 now contains –43. 42 in binary is 0000 0000 0010 1010,
and the inverse is 1111 1111 1101 0101, or –43 in decimal.

c07.indd 122c07.indd 122 03-12-2013 12:10:2803-12-2013 12:10:28

Movement ❘ 123

MOVW
M OVW (Move Wide) copies a 16-bit constant into a register while zeroing the top 16 bits of the target
register. This is available in ARMv7 cores and higher. MOVW can use any value that can be expressed
as a 16-bit number.

MOVW i s unavailable in the original Thumb technology and was introduced in the Thumb-2
extension.

When using:

MOVW r0, #0x1234

r0 now contains the value 0x00001234, no matter what was there before.

MOVT
M OVT (Move Top) copies a 16-bit constant into the top part of a register, leaving the bottom half
untouched. This is available on ARMv7 cores and later.

MOVT is unavailable in the original Thumb technology and was introduced in the Thumb-2
extension. In the following example, the fi rst instruction clears the top half of r0, setting the bottom
half to 0x0000face. The second instruction sets the top half of the register, leaving the second half
untouched. The result will be 0xfeedface.

MOVW r0, #0xface
MOVT r0, #0xfeed

NEG
When using:

NEG{<cond>}{S} Rd, Rs

NEG (Negate) takes the value in Rs and performs a multiplication by –1 before placing the result
into Rd.

Example: Loading a 32-Bit Constant from
the Instruction Stream

This is one of the pitfalls of embedded programming. Say you want r0 to contain 0xdeadbeef. An
immediate thought is to use MOV:

MOV r0, 0xdeadbeef

Technically, this isn’t possible. Some assemblers might accept this, but it isn’t exactly what you
are doing, and the assembler will make modifi cations. If the assembler fails, there will be cryptic
messages about what went wrong. But what did go wrong?

Remember, all ARM instructions are 32-bit wide. In these 32 bits, there is the instruction itself, and
in the case of MOV, the destination register information and the destination value. Therefore, quite
logically, it is not possible to encode an arbitrary 32-bit value in a 32-bit instruction — or at least
not always.

c07.indd 123c07.indd 123 03-12-2013 12:10:2803-12-2013 12:10:28

124 ❘ CHAPTER 7 ASSEMBLY INSTRUCTIONS

When using an immediate value for an operation, the processor uses an 8-bit number and a rotation
factor. Using this scheme, you can express immediate constants such as 0x000000FF, 0x00000FF0,
0xFF000000, or 0xF000000F. In this case, an 8-bit number, 0xFF, is used and rotated as needed.
0x000001FF is not possible because 0x1FF is not an 8-bit number. 0xF000F000 is not possible either
because there is no rotation possible allowing such a number. So you can load a 32-bit integer into
a register, as long as it can be expressed as an immediate value in this format. The reason for this
is simple. In C, constants tend to be small. When they are not small, they tend to be bitmasks. This
system provides a reasonable compromise between constant coverage and encoding space.

When the integer is a complete 32-bit number that cannot be expressed as an immediate value,
there are three choices. Either the value is fetched from memory, or it is loaded in two different
instructions or in four instructions.

When fetching the values from memory, you need to make sure that the value is in the instruction
memory, close to the instruction, as follows:

loaddata
 ldr r0, [pc, #0] @ Remember PC is 8 bytes ahead
 bx lr
 .word 0xdeadbeef

Because you know where your data is, you can simply tell the CPU to fetch it and to load it using an
LDR instruction. Remember that with an ARM pipeline, the PC is always two instructions ahead of
your current instruction. The compiler automatically does this for you.

Another solution available on ARMv7 cores and higher is to load the data in two steps. MOVW
and MOVT can help to do this, by loading two 16-bit values into a register. These instructions are
specially designed to accept a 16-bit argument. MOVW can move a 16-bit constant into a register,
implicitly zeroing the top 16 bits of the target register. MOVT can move a 16-bit constant into the
top half of a given register without altering the bottom 16 bits. Now moving an arbitrary 32-bit
constant is as simple as this:

MOVW r0, #0xbeef @ r0 = 0x0000beef
MOVT r0, #0xdead @ r0 = 0xdeadbeef

Both of these examples take up the same amount of code. The second approach has the advantage of
not requiring a memory read because the values are encoded directly into the instructions.

It can be confusing to have two 16-bit variables. It is much easier to have a single 32-bit variable,
exactly what will be loaded into a register. MOVW and MOVT work only with 16-bit values. To simplify
this, the GNU assembler enables some fl exibility, with the :upper16: and :lower16: prefi xes, as
shown in this example:

.equ label, 0xdeadbeef
MOVW r0, #:lower16:label
MOVT r0, #:upper16:label

Now everything becomes more readable and safer.

In the case in which you cannot use ARMv7 code, and you don’t want to read the data from RAM,
there is a third option, which takes up four instructions. First, you can load part of the register using
an immediate value and then repeat an ORR instruction.

c07.indd 124c07.indd 124 03-12-2013 12:10:2803-12-2013 12:10:28

Arithmetic ❘ 125

MOV r0, #0xde000000 @ r0 = 0xde000000
ORR r0, r0, #0x00ad0000 @ r0 = 0xdead0000
ORR r0, r0, #0x0000be00 @ r0 = 0xdeadbe00
ORR r0, r0, #0x000000ef @ r0 = 0xdeadbeef

This is not the most memory-effi cient but is most often faster than reading the value from RAM.

In some rare cases, you can load a large 32-bit integer into a register in one instruction on the
condition that its inverse can be expressed as an immediate. For example, you want to put the
value 0xFFFFFAFF into a register, which looks suspiciously like a bit mask. You cannot express this
number as an immediate value, so you cannot load it with a simple MOV. You can still use MOV and
ORR, or MOVW and MOVT, but in this case, there is another option. The inverse of 0xFFFFFAFF, or
NOT(0xFFFFFAFF) is 0x00000500, which can be expressed as an immediate value. Now, you can use
Move Not, or MVN, to load your register.

MVN r0, #0x500

ARITHMETIC

 Arithmetic instructions are the basis of any central processing unit (CPU). Arithmetic instructions
can do most of the basic mathematical instructions, but there are a few exceptions. ARM cores can
add, subtract, and multiply. Some ARM cores do not have hardware division, but there are, of
course ways to do that.

All the arithmetic instructions work directly to and from registers only; they cannot read from the
main memory or even the cache memory. To make calculations, the data must previously be read
into registers.

Arithmetic instructions can work directly on both signed and unsigned numbers because of the
two’s complement notations.

The following is a discussion of some of the mathematical instructions included on many ARM
cores.

ADD
ADD adds together two registers and places the result into a register, such as:

ADD{cond}{S} Rd, Rm, Rs
MOV r1, #24
MOV r2, #18
ADD r0, r1, r2

This adds Rm and Rs and puts the result into Rd. In this example, r0 now contains 42.

ADDS r0, r1, r2

This adds r1 and r2 and puts the result into r0. If the result exceeds the register width, it updates
the Carry fl ag in the CPSR. This can be useful on 32-bit CPUs to add 64-bit numbers together
using ADC.

c07.indd 125c07.indd 125 03-12-2013 12:10:2903-12-2013 12:10:29

126 ❘ CHAPTER 7 ASSEMBLY INSTRUCTIONS

ADC
ADC (Add with carry) adds two numbers together and also uses the carry fl ag. For example, if you
want to add two 64-bit numbers on a 32-bit CPU, you would do the following. r2 and r3 contain
the fi rst number; r4 and r5 contain the second number. You can put the result in r0 and r1.

ADDS r0, r2, r4 ; Adds the low words, update status
ADCS r1, r3, r5 ; Add the high words, using carry, update status

This example fi rst adds the low words, storing the result in r0, and updates the status. If the end
result is larger than 32-bits, the carry fl ag is set. When you ADC the result, you add both r3 and r5,
and also add the carry bit if previously set. If the carry bit is not set, this command is equivalent
to ADD. However, the fi rst command is always ADD because you don’t want a previous carry bit to
interfere. Also, remember to update the status register.

SUB
SUB subtr acts one number from another, placing the result in a register.

SUB{cond}{S} Rd, Rm, Rs

For example:

SUB r0, r1, #42

This instruction takes the value in r1, and subtracts the value in the second operand (in this
example, 42) and places the result in r0.

SBC
SBC (Subt ract with carry) is like the SUB instruction. SBC subtracts two numbers, but if the carry
fl ag is set, it further reduces the result by one. Using a mixture between SUB and SBC, you can
perform 64-bit calculations:

SUBS r0, r0, r2 ; Subtract the lower words, setting carry bit if needed
SBC r1, r1, r3 ; Subtract upper words, using borrow

RSB
RSB (Reve rse subtract) is like SUB; RSB subtracts the value of two registers but reverses the order of
the operation. This can be useful with the barrel shifter, effectively allowing the barrel shifter to be
used on the fi rst operand during subtraction. For example:

MOV r2, #42
MOV r3, #84
SUB r0, r2, r3 ; r0 = r2 - r3
RSB r1, r2, r3 ; r1 = r3 - r2

In this example, the SUB instruction takes the value in r2, subtracts the value in r3, and puts the
result into r0. Using the same variables, RSB takes the value in r3, and subtracts the value in r2
before placing the result into r1. It can save instructions when the barrel shifter is required, for
example:

c07.indd 126c07.indd 126 03-12-2013 12:10:2903-12-2013 12:10:29

Saturating Arithmetic ❘ 127

MOV r2, #42
MOV r3, #84
MOV r4, r2, LSL #1 ; Multiply r2 by two
SUB r0, r4, r3 ; r0 = (r2 * 2) - r3

In this example, r2 needs to be multiplied by two before continuing. Then the subtract instruction
takes r4 (which is r2 multiplied by two), and subtracts the value of r3, before placing the result in
r0. This can be written in another way using RSB:

MOV r2, #42
MOV r3, #84
RSB r1, r2, r3, LSL #1 ; r1 = (r3 * 2) - r2

It can also be used for quick multiplications by some values that are not powers of two:

RSB r0, r1, r1, LSL #4 ; r0 = (r1 << 4) – r1 = r1 * 15

RSC
RSC (Rever se subtract with carry) is like RSB. It inverses the order of operation, but because it uses
carry, it can further reduce the result by one if the Carry bit is set.

Example: Basic Math
When using basic math, you frequently see fairly large calculations on a single line of code. This is
an example of a common function in C:

r0 = (r1 + r2) – r3;

The same can be written in assembly as follows:

ADD r0, r1, r2 ; compute a + b
SUB r0, r0, r3 ; Complete Computation of x

It is also useful to understand how Arithmetic functions work, since they are one of the keys to
optimization. As stated previously, it is often quicker to rotate a number when multiplying or
dividing by a power of two. When multiplying or dividing by a number that is a power of two plus
or minus one, arithmetic can provide an optimized solution, as shown in the following example:

ADD r0, r1, r1, LSL #3 ; r0 = r1 + (r1 * 8) = r1 * 9
RSB r0, r1, r1, LSL #4 ; r0 = (r1 * 16) – r1 = r1 * 15

SATURATING ARITHMETIC

Normal mathematical operations are prone to overfl ow. If the result of a mathematical operation
is bigger than the container, then overfl ow will occur, sometimes with surprising results. For
example, the largest number possible in an unsigned byte is 255. When adding 128 and 128
together, the result is 256, or in binary 1 0000 0000. Put into a byte, this result is zero. An overfl ow
has occurred, and precision has been lost. More surprising, the result gives no indication that the
number was large.

Saturating arithmetic is a version of arithmetic in which all operations are limited to a fi xed range.
In this case, the limit of an operation is the size of the container; an unsigned byte will never go
above 255. In the previous example, 128 plus 128 would give something mathematically wrong;

c07.indd 127c07.indd 127 03-12-2013 12:10:2903-12-2013 12:10:29

128 ❘ CHAPTER 7 ASSEMBLY INSTRUCTIONS

it would attempt to go above 255 and would not go any further. To signal that an overfl ow has
occurred, the Q fl ag is set in the CPSR.

ARM Saturating instructions work on signed 32-bit boundaries (meaning that the largest number
possible is 231 – 1, and the smallest number possible is –231), unsigned 32-bit boundaries (ranging
from 0 to 232), and 16-bit signed and unsigned boundaries.

Contrary to the other ARM status fl ags, the Q bit is a sticky fl ag. Saturating arithmetic instructions
can set the fl ag, but cannot clear it. In the event of several saturating instructions, if one of the
instructions overfl ows, the Q bit is set. Subsequent instruction will not clear the fl ag, even if the
result does not saturate. In this situation, it is not always possible to know which instruction
saturated, but it is possible to know if saturating occurred somewhere during the algorithm.

The following is a discussion of some of the saturating instructions and their uses.

QADD
QADD{cond} Rd, Rm, Rn

QADD executes a saturating add on two numbers, Rm and Rn, placing the saturated result in Rd. The
result will not overfl ow a signed 32-bit value. It is used in the same way as the ADD instruction, but
does not update condition codes.

QSUB
QSUB{cond} Rd, Rm, Rn

QSUB executes a saturating subtraction, subtracting the value in Rn from the value in Rm. The result
is placed in Rd.

QDADD
QDADD{cond} Rd, Rm, Rn

QDADD (Saturating Double Add) is an instruction that does two things. It calculates the result of a
saturating multiply of Rn by two, before performing a saturating addition of the result with Rm. In
short, this operation calculates SAT(Rm + SAT(Rn * 2)).

Saturation can occur on the doubling, on the addition, or possibly both. In all cases, the Q fl ag is
set. If saturation occurs on the doubling but not on the addition, the Q fl ag is set, but the fi nal result
is unsaturated.

MOV r1, #1 ; r2 contains 1
MOV r2, #0xFF ; r1 contains 255
QDADD r0, r1, r2 ; r0 contains 1 + (255 * 2)

In this example, there is no overfl ow, and no saturation. The Q bit is not set. In the next example,
you see what happens during an overfl ow.

MOV r1, #-1 ; r1 contains -1
MVN r2, #0x7f000000 ; r2 contains a very large number
QDADD r0, r1, r2 ; r0 contains 231 – 1

In this example, the value in r2 was multiplied by 2, but that value was bigger than a signed 32-bit
value (0x7F 00 00 00 x 2 = FE 00 00 00, higher than the maximum 7F FF FF FF), so the result

c07.indd 128c07.indd 128 03-12-2013 12:10:2903-12-2013 12:10:29

Data Transfer ❘ 129

was saturated to 231 – 1. Because the multiplication saturated, the Q bit was set. Now the saturated
result is added to the value in r1; in this case, minus one. The end result is 231 – 2, which is not a
saturated number, but because the Q bit was set, you can tell that the multiplication saturated, and
the addition did not.

QDSUB
QDADD{cond} Rd, Rm, Rn

QDSUB (Saturating Double Subtraction) calculates Rm minus two times Rn. In short, it calculates
SAT(Rm – SAT(Rn * 2)). Just like QDADD, saturation can occur on the doubling, or the subtraction,
or both.

MOV r1, #1 ; r2 contains 1
MOV r2, #0xFF ; r1 contains 255
QDSUB r0, r1, r2 ; r0 contains 1 - (255 * 2)

DATA TRANSFER

ARM proc essors use a load-and-store architecture; they cannot do raw calculations directly from
system memory. You must fi rst load data from the system memory into one or several registers
before performing any calculation.

In architectures before ARMv6, data loaded from or saved to system memory had to be aligned;
32-bit words must be 4-byte aligned, and 16-bit half-words must be 2-byte aligned. Bytes have no
restriction. In ARMv6, this restriction was relaxed.

The following is a dis cussion of some of the data transfer instructions and their uses.

LDR
LDR{<cond>}{B|H} Rd, addressing

LDR (Load) is an instruction used for moving a single data element from system memory into a
register. It supports signed and unsigned words (32 bit), half-words (16 bit), and bytes.

LDRB, short for LDR Byte, is used to load a byte into a register from system memory. LDRH works the
same way with a half-word. Signed versions are also available where LDRSB loads a signed byte and
LDRSH loads a signed half-word.

To load r0 with the contents of the memory pointed to by the register r1, use the following:

LDR r0, [r1]

After calculations have been done, the data can be written back out into system memory using STR:

STR r0, [r1]

Reading in bytes and half-words is just as easy. For example, in the event of a C structure containing
bytes and half-words, it is possible to use a pre-index offset to load parts of the structure, using the
base address of the structure itself:

LDRH r2, [r1, #4]
LDRB r3, [r1, #6]

c07.indd 129c07.indd 129 03-12-2013 12:10:2903-12-2013 12:10:29

130 ❘ CHAPTER 7 ASSEMBLY INSTRUCTIONS

NOTE Pre-index addressing is explained in Chapter 4, “ARM Assembly
Language.”

STR
STR{<cond>}{B|H} R d, addressing

STR is the store command. It takes a register and places the 32-bit value into system memory. It
supports the same indexing as LDR. Just like LDR, STR also has byte and half-word variants — STRB
for bytes, and STRH for half-words.

LDR r0, [r1, #20] ; load memory from the address in r1, plus 20 bytes
ADD r0, r0, #1 ; add one to r0
STR r0, [r2, #20] ; save r0 to system memory, in r2 + 20 bytes

Example: memcpy
The memcpy routine is one of the most widely studied and optimized routines. The idea is extremely
simple; move a portion of memory from one location to another. This happens often in embedded
systems, so fi ne-tuning memcpy is often essential.

You can copy 1 byte at a time, and although the result might not be optimal, it does get the job
done. For example, this routine is called wordcopy. The source address goes into r0, and the
destination address goes into r1. The amount of words to copy is placed in r2.

wordcopy
 LDR r3, [r0], #4 ; load a word from the source and
 STR r3, [r1], #4 ; store it to the destination
 SUBS r2, r2, #1 ; decrement the counter
 BNE wordcopy ; ... copy more

On the fi rst line, the memory location of the word to read is held in r0. The routine loads the
memory location at the location held by r0, and then increments r0 by 4, known as post-indexing.
The value read is located in r3.

After the value has been read and stored into a register, it is time to write it back out into memory.
This is done in the second instruction, STR. Just like the previous line, it writes out the contents of
r3 into main memory to the memory address located in r1. When the procedure is complete, SUBS
subtracts one from r2 and places the result back into r2, updating the CPSR. Finally, BNE breaks
the program and returns to the start only if the Zero fl ag is set. When r2 reaches zero, the program
continues.

An optimized routine would read in several words at a time. You see this later in the “Multiple
Register Data Transfer” section.

LOGICAL

Logical operato rs perform bit-wise operations on two numbers. There are four logical operations:
AND, NOT, OR, and EOR. In theory, logical operators can be done on multiple inputs, but with assembly
these instructions accept exactly two inputs and produce one output. They can be thought of as:

c07.indd 130c07.indd 130 03-12-2013 12:10:2903-12-2013 12:10:29

Compare ❘ 131

 ➤ AND outputs true only if both inputs are true.

 ➤ OR outputs true if at least one input is true.

 ➤ EOR outputs true if exactly one input is true.

 ➤ NOT inverses the input; it will return true if the input is false.

AND is used extensively for “masking”; AND-ing a number with one produces the original output,
whereas AND-ing with zero produces zero. Similarly, OR-ing a bit with one produces one as the
output, whereas OR-ing a bit with zero produces the original output.

The following is a list of logical instructions used on ARM processors.

 AND
AND performs a logical AND between the two operands, placing the result in the destination register.

AND r0, r0, #3 ; Keeps bits 0 and 1 of r0, discard the rest

 EOR
EOR (Exclusive-OR) is a useful instruction when programming bitwise operations. EOR effectively
“switches” bits.

MOV r0, #0xF ; Put binary 1111 into r0
EOR r0, #2 ; 1111 EOR 0010 = 1101
EOR r0, #2 ; 1101 EOR 0010 = 1111

 ORR
ORR produces the logical OR between two registers and writes back the result.

MOV r1, #42 ; r1 contains b0010 1010
MOV r2, #54 ; r2 contains b0011 0110
ORR r0, r1, r2 ; r0 now contains b0011 1110

 BIC
BIC is the equivalent of AND NOT; in C, it is equivalent to operand1 & (!operand2).

BIC r0, r0, #3 ; clear bits zero and one of r0

CLZ
CLZ{cond} Rd, Rm

CLZ (Count Leading Zeros) is an instruction that takes the register Rm, counts the number of leading
zeros, and places the result in Rm. For example, if Rd equals zero, then CLZ returns 32 (because there
are 32 zeros). If bit 31 is set, then CLZ returns zero.

 COMPARE

Compare instructions are instructions that do not return any results, but set condition codes. They
are extremely useful, as they allow the programmer to make comparisons without using a new
register, but the CPSR Condition fl ags are updated. The CPSR is updated automatically; there is no

c07.indd 131c07.indd 131 03-12-2013 12:10:2903-12-2013 12:10:29

132 ❘ CHAPTER 7 ASSEMBLY INSTRUCTIONS

need to specify the S option. There are four instructions, all performing a logical ADD, SUB, OR, and
AND.

The following is a list of comparison instructions used on ARM processors.

 CMP
The CMP instruction is used to compare two numbers. It does this by subtracting one from the other,
and updating the status fl ags according to the result.

MOV r0, #42
MOV r1, #42
CMP r0, r1 ; Compares r0 and r1,

 CMN
CMN compares two values, updating the CPSR. It is the equivalent to operand1 + operand2.

 TST
TST is a test instruction that tests either if one or more bits of a register are clear, or at least one bit
is set. There is no output for this instruction; instead, the CPSR condition fl ags are updated. This is
the equivalent of operand1 and operand2.

LDR r0, [r1] ; Load the memory pointed by r1 into r0
TEQ r0, 0x80; Is bit 7 of r0 set?
BEQ another_routine ; If so, branch

Another way of writing this sequence is:

TST r0, #(1<<7) ; is bit 7 set?
BEQ another_routine

 TEQ
TEQ compares operand1 and operand2 using a bitwise exclusive OR, and tests for equality, updating
the CPSR. It is the equivalent to an EORS instruction, except that the result is discarded. This is
especially useful when comparing a register and a value, returning zero when the registers are
identical, and returning 1 for each bit that is different.

LDR r0, [r1] ; Load the memory pointed by r1 into r0
TEQ r0, 0x23 ; Is r0 equal to b0010 0011?
BEQ another_routine ; If so, branch

 BRANCH

Branch instructions are the core of any microprocessor, providing the possibility to execute portions
of code depending on a result. Branch operations are used not only to branch to other routines, but
also to do iterations on the current code.

Most assemblers hide the details of a branch instruction by using labels, a convenient way of
marking memory locations. Labels are placed at the beginning of a line and are used to mark an
address that can be used later by the assembler to calculate the branch offset.

c07.indd 132c07.indd 132 03-12-2013 12:10:2903-12-2013 12:10:29

Branch ❘ 133

The following is a list of branch instructions used on ARM processors.

 B
B (Branch) tells the current program counter that the next instruction will be at the address specifi ed
by setting PC to <address>. This is a permanent branch; no return is possible. It is used mainly in
loops or to give control to another part of the program.

 [...]
 B fwd
 MOV r0, r0 ; This command is never run
fwd
 [...]

In this example, the MOV command is never run because of the unconditional break before it.

Branching is also used to branch backward, creating a simple loop structure, for example:

back
 [...]
 B back

Of course, this is especially useful when using condition codes. For example, to loop some
instructions waiting for a result to be equal to 42, this code could be used:

back
 [..]
 CMP r0, 42
 BNE back

 BL
BL (Branch with Link) branches in the same way as the B instruction. The PC will be changed with
the address specifi ed, but the address just after BL will be put into r14. This allows the program to
return where it was when the subroutine has fi nished.

 [...]
 [...]
 BL calc
 [...] ; next instruction
 [...]
calc
 ADD r0, r1, r2
 BX lr ; Return to where we were

In this example, during the main application, you branch with link to calc. After the calculation is
done, you can return to the main program via a BX instruction.

BX
BX (Branch and Exchange) is an instruction that enables the program to switch between ARM
state and Thumb state, for cores supporting both ARM and Thumb states. This enables seamless
integration of ARM and Thumb code because the change is done in a single instruction.

c07.indd 133c07.indd 133 03-12-2013 12:10:2903-12-2013 12:10:29

134 ❘ CHAPTER 7 ASSEMBLY INSTRUCTIONS

The link logic is held in the destination address. Because ARM cores require instructions to be
naturally aligned, the lower address bits are not used for instruction fetches. By using this, the BX
instruction can know if the destination code is Thumb or ARM. If bit 0 of the destination address
is set, then the T fl ag of the CPSR is set, and the destination code is interpreted as Thumb. If bit 0
of the destination address is clear, then the T fl ag of the CPSR is cleared, and the destination code is
interpreted as ARM.

BLX
BLX (Branch with Link and Exchange) is like the BX instruction. This instruction also changes to and
from the Thumb state, but also updates the Link register, allowing to return to the current location.

Example: Counting to Zero
By using the condition Branch if Not Equal, you can create a small loop. In C, this is the
equivalent of for (i = 16; i != 0; i--).

 MOV r0, #16
countdown:
 SUB r0, r0, #1
 BNE countdown
Rest of program

Example: Thumb Interworking
Switching between Thumb code and ARM code is known as interworking and is a critical part
of any program that uses both ARM and Thumb. In C, this is perfectly transparent because the
compiler and linker automatically handle the state transitions. However, when writing assembly
code by hand, or when debugging, you must know how to handle interworking.

Compilers and linkers work together in interlinking, since the compiler does not know if the
destination of a branch is in ARM mode or Thumb mode. The compiler will use BX to return, and
the linker will look closely at the destination and change the BX instruction to BLX if required, or by
inserting veneers.

 ; *****
 ; arm.s
 ; *****

 PRESERVE8
 AREA Arm,CODE,READONLY ; Name this block of code.
 IMPORT ThumbProg
 ENTRY ; Mark 1st instruction to call.
ARMProg
 MOV R0,#1 ; Set R0 to show in ARM code.
 BLX ThumbProg ; Call Thumb subroutine.
 MOV R2,#3 ; Set R2 to show returned to ARM.
 END

 ; *******
 ; thumb.s

c07.indd 134c07.indd 134 03-12-2013 12:10:2903-12-2013 12:10:29

Multiply ❘ 135

 ; *******

 AREA Thumb,CODE,READONLY ; Name this block of code.
 THUMB ; Subsequent instructions are Thumb.
 EXPORT ThumbProg
ThumbProg
 MOVS R1, #2 ; Set R1 to show reached Thumb code.
 BX lr ; Return to the ARM function.
 END ; Mark end of this file.

What Is MOV pc, lr?
In some legacy code, functions return using MOV pc, lr. This effectively returns the data in the link
register to the program counter, which sounds like it would work perfectly, but it doesn’t always.
ARM deprecated this return method in 1995. The reason is simple: When returning in this fashion,
the processor does not change state. If the MOV function was coded for Thumb, and the return code
was in ARM, then the processor would not make the switch between the two states, resulting in
an exception. While it is possible to return using a MOV pc, lr, it isn’t context safe, and it is much
safer to always use the BX instruction, even when not changing states.

MU LTIPLY

These commands multiply 32-bit numbers into a 32-bit or 64-bit number. ARM cores use a fast
hardware multiplier; most multiplication instructions are executed in three cycles or less.

MUL
Multiply two numbers together, where Rd = Rm * Rs.

MUL{cond}{S} Rd, Rm, Rs
MOV r1, #42
MOV r2, #4
MUL r0, r1, r2 ; r0 now contains 4 x 42, 168

On ARMv5 or earlier architectures, multiplication must never be done using the same register for
both values. The results are UNPREDICTABLE, meaning that the result of an instruction cannot be
relied upon.

To calculate the square of a number on ARMv5, two registers were necessary:

MOV r1, #42
MOV r2, r1
MUL r0, r1, r2
This restriction was relaxed in ARMv6MOV r1, #42
MUL r0, r1, r1

ML A
Multiply two numbers together with accumulate. MLA is used to multiply registers to create a 32-bit
result, which is then added to another value, producing the fi nal result.

c07.indd 135c07.indd 135 03-12-2013 12:10:3003-12-2013 12:10:30

136 ❘ CHAPTER 7 ASSEMBLY INSTRUCTIONS

MLA{cond}{S} Rd, Rm, Rs, Rn

It is the equivalent to Rd = (Rm * Rs) + Rn.

MOV r1, #4
MOV r2, #10
MOV r3, #2
MLA r0, r1, r2, r3 ; r0 = (r1 x r2) + r3, in this case, 42

You cannot use r15 for any calculations.

UM ULL
UMULL (Unsigned Multiply Long) multiplies two unsigned 32-bit numbers to a 64-bit number, stored
in two registers, where RdHi, RdLo = Rm * Rs.

UMULL{cond}{S} RdLo, RdHi, Rm, Rs

UM LAL
UMLAL (Unsigned Multiply with Accumulate Long) multiplies two 32-bit numbers to a 64-bit
number with accumulation, where RdHi, RdLo = RdHi, RdLo + (Rm * Rs).

UMLAL{cond}{S} RdLo, RdHi, Rm, Rs

SM ULL
SMULL (Signed Multiply Long) multiplies two signed 32-bit numbers to a 64-bit number, stored in
two registers, where RdHi, RdLo = Rm * Rs:

SMULL{cond}{S} RdLo, RdHi, Rm, Rs

SM LAL
SMLAL (Signed Multiply with Accumulate Long) multiplies two signed 32-bit numbers to a 64-bit
number with accumulation, where RdHi, RdLo = RdHi, RdLo + (Rm * Rs).

DI VIDE

In the early days of ARM, some legacy processors did not have hardware division. A design decision
traded silicon area against functionality at a time where the speed of division was not critical.
It is for this reason that some cores did not have hardware division, and for the same reason,
division was done in software. Dividing by powers of two was simple, since it involves shifting, but
otherwise, highly optimized software was developed. Today things have changed, and ARM has
introduced hardware division on several processors, but not all of them.

In the absence of a hardware divide instruction, division in machine code is exactly the same as
division by any other method; it is simply a matter of repeated subtraction. When you divide 42
by 7, what you really want to know is how many times the number 7 fi ts into the number 42, or
in other words, how many times you can subtract the smaller number from the bigger number

c07.indd 136c07.indd 136 03-12-2013 12:10:3003-12-2013 12:10:30

Multiple Register Data Transfer ❘ 137

until the bigger number reaches zero. The answer in this case is, of course, 6. There are several
ways to divide, and C libraries contain a lot of information on that subject, but if you need to
optimize heavily, you may need to create your own routines in assembly for particular divisions (for
example, when a routine will divide a number only by 7, and no other number). For general purpose
optimization, standard libraries have gone through years of optimization.

Later cores do support hardware division, namely the Cortex-M3 and Cortex-M4, the Cortex-R4
and the Cortex-R5, and the Cortex-A15 with its sister processor, the Cortex-A7.

You can divide by some numbers using shifts, and the compiler chooses to optimize in this way
where it can, but it cannot always simplify. Sometimes you need to be explicit in your code. By using
shifts, you can divide by powers of 2.

MOV r0, r0, LSR #1 ; Divide r0 by 2

SDIV
SDIV{cond} {Rd,} Rn, Rm

SDIV (Signed Divide) performs a signed integer division of the value in Rn by the value in Rm. If Rd is
omitted, the destination register is Rn. Operations on SP and LR are prohibited.

SDIV r0, r1, r2 ; r0 = r1/r2
SDIV r3, r4 ; r3 = r3 / r4

UDIV
UDIV{cond} {Rd,} Rn, Rm

UDIV, or Unsigned divide, uses the same syntax as SDIV. UDIV performs integer division on unsigned
numbers.

MU LTIPLE REGISTER DATA TRANSFER

There are instructions to load and to save a single register to and from memory, but in most
applications using several variables, it is often impractical to save a single register each time.
Fortunately, ARM has a system to save several registers to memory, and to take into account
endianness and memory location.

Before presenting the instructions, you must understand that unlike most instructions, these
instructions have a <mode> parameter. These instructions can be programmed to increment or to
decrement before or after each transfer. Therefore, when transferring several registers, subsequent
registers can either go up in memory space or down. The register used to point to the memory
location (the base register) can either be increased or decreased before, or after, each read/write.
In short hand, they are written IA, IB, DA, or DB. This is illustrated in the following table. The
base register Rn determines the source or destination for the Load/Store Multiple instruction. This
register can optionally be updated following the transfer by including an exclamation mark after the
register, similar to the single-register load/store command.

c07.indd 137c07.indd 137 03-12-2013 12:10:3003-12-2013 12:10:30

138 ❘ CHAPTER 7 ASSEMBLY INSTRUCTIONS

ADDRESSING MODE DESCRIPTION START ADDRESS END ADDRESS RN!

IA Increment After Rn Rn + 4*N -4 Rn + R*N

IB Increment Before Rn + 4 Rn + 4*N Rn + 4*N

DA Decrement After Rn – 4*N + 4 Rn Rn – 4*N

DB Decrement Before Rn – 4*N Rn -4 Rn – 4*?

The easiest way to understand the differences between the modes is by an image. Figure 7-1 shows
the result of four store operations, all using a base register of 0x8000.

FIGURE 7-1: Load/Store Multiple results

r0

r1

r2

r3

r5

r6

Old →

SP →

r0

r1

r2

r3

r5

r6Old →

SP →

r0

r1

r2

r3

r5

r6

r0

r1

r2

r3

r5

r6

Old →

SP → SP →

0 × 801c

0 × 8000

0 × 7FE4

STMDB STMDA STMIB STMIA

Old →

With these options, the program has entire control over the direction of the memory reads/writes
and also the resulting stack pointer.

STM
STM{addr_mode}{cond} Rn{!}, reglist{^}

STM is the “store multiple” instruction. STM takes one or several registers and places them in a block
of memory pointed by the base register. The initial registers remain untouched. If the optional “!” is
specifi ed, the base register is updated according to the mode.

c07.indd 138c07.indd 138 03-12-2013 12:10:3003-12-2013 12:10:30

Barrel Shifter ❘ 139

When encoded into the instruction, the registers are expressed as bits, meaning that any
combination (or all the available registers) can be used. The registers are then read in logical order
(r0 – r15), not the order expressed on the instruction line.

STMFD r9!, {r0-r4, r6, r8} ; Stores the registers in Full Descending mode

LDM
LDM is the “load multiple” instruction. Just like STM, LDM takes a list of registers and loads them from
memory. The original memory location remains untouched.

LDMFD r9!, {r0-r4, r6, r8} ; Loads the registers in Full Descending mode

BAR REL SHIFTER

The Barrel Shifter is a functional unit that can be used in a number of different circumstances.
These commands are not ARM instructions but are added to operand2. They enable complex
calculations, still using only one assembly command. They are, however, separate Thumb
instructions and cannot be added to the end of an instruction.

Shift operations, basically, move the bits in a register to the left or to the right, fi lling in vacant bits
with 0s or 1s. This is the equivalent to multiplying or dividing by powers of 2. This brings you to the
question, “Why aren’t shift and rotate operations real instructions, instead of just using the barrel
shifter?” Surely this will just complicate things? In reality, it is quite the opposite. A shift or a rotate
can be performed at the same time as any ARM-state data processing instruction, increasing speed
considerably and providing denser code.

LSL
LSL (Logical Shift Left) is a multiplication by 2n, equivalent to << in C. It can be used to do simple
multiplications but also more complicated calculations. It shifts the value left by the specifi ed
amount, padding with zeros. This is illustrated in Figure 7-2, where a binary number is shifted
“left” by one.

FIGURE 7-2: Binary shift left by one

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0I I I II

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 00 I IIII

MOV r0, r0, #1 ; Multiply r0 by 2

LSL also enables you to do more complicated multiplications, which would take up more time using
other instructions:

ADD r0, r0, r0, #3 ; Multiply r0 by 9 (r0 = r0 + r0 * 8)
RSB r1, r1, r1, #4 ; Multiply r1 by 15 (r1 = r1 * 16 – r1)

Another trick is to use shifts to create a number that cannot be expressed as an immediate number:

MOV r0, #0
MOV r1, #0x80000004
MOVS r0, r1, LSL #1

c07.indd 139c07.indd 139 03-12-2013 12:10:3003-12-2013 12:10:30

140 ❘ CHAPTER 7 ASSEMBLY INSTRUCTIONS

This command “moves” the value of r1 into r0, after performing a left shift on the value of r1. The
value of r1 is still 0x80000004, but the ARM CPU read in the value of r1 shifted it left one space
(the value now being 0x00000008), set the carry bit, and put the result into r0.

LSR
L SR (Logical Shift Right) is just like LSL. LSR is a shift operation and is equivalent to dividing by 2n.
It is the equivalent to >> in C. It shifts the value right by the specifi ed amount, padding with zeros.

MOV r0, r0, LSR #2 ; Divide r0 by 4

ASR
A SR (Arithmetic Shift Right) is just like LSR: it shifts a number right, the equivalent of dividing by
2n, but without rounding. The difference with LSR is that ASR keeps the signed bit, the fi rst bit of a
32-bit number, and pads the result. If the number starts with a binary 0, it is padded with 0s. If it
starts with a binary 1, the result is padded with 1s.

MVN r0, #0 ; r0 = 0xFFFFFFFF
MOV r1, r0, asr #16 ; r1 = 0xFFFFFFFF
MOV r2, r0, lsr #16 ; r2 = 0x0000FFFF

ROR
R OR (Rotate Right) rotates a number. Bits moved out of the right end of the register are rotated back
into the left end.

MOV r0, r0, ROR #16 ; Swap the top and bottom halves of a 32-bit number

RRX
R RX (Rotate Right Extended) is just like ROR but with a crucial difference. ROR works with a register
but also with the Carry fl ag. In essence, it performs a shift on a 33-bit number; the C fl ag is copied
into the result before continuing the shift operation.

STACK OPERATIONS

Stack operations are essential for any program that calls subroutines or any program that deals with
large amounts of data. Stack operations are like movement instructions but with added functionality
that makes them extremely easy to use.

Traditionally, a stack grows down in memory, meaning that the last “pushed” value will be at the
lowest address. ARM also supports ascending stacks using LDM and STM, meaning that the stack
structure grows up through memory.

PUSH and POP operations are synonyms for STMBD and LDMIA , respectively, with the base register
fi xed as r13. However, because LDM and STM are not stack-specifi c, it is necessary to specify the stack
pointer.

In ARM state, the core uses LDM and STM for stack operations. See the “Multiple Register Data
Transfer” for more information.

c07.indd 140c07.indd 140 03-12-2013 12:10:3003-12-2013 12:10:30

Coprocessor Instructions ❘ 141

PUSH
The PUSH instruction is actually a synonym for STMDB, using SP as the base register. This means that
the stack pointer is decreased by 4 and is updated before the push operation occurs.

POP
Just like PUSH, POP is actually a synonym, this time for the LDMIA instruction. The stack pointer is
again used automatically and is incremented by 4 after the pop operation.

In Thumb state, PUSH and POP are the only stack operations available.

Example: Returning from a Subroutine
subroutine PUSH {r5-r7,lr} ; Push work registers and lr
 ; code
 BL somewhere_else
 ; code
 POP {r5-r7,pc} ; Pop work registers and pc

COPROCESSOR INSTRUCTIONS

The CP15 coprocessor is a powerful tool, one that can help you greatly in your work. The CP15
can be programmed to confi gure cache, tightly coupled memory, system performance monitoring,
and other systems. Architecturally, the CP15, and indeed any and all coprocessors available on
the system, are not directly accessible; there are specifi c instructions to read and to write from
coprocessors. If no coprocessors can execute a coprocessor instruction, an undefi ned instruction
abort is generated.

Coprocessor instructions are complicated and require specifi c documentation from ARM (if using
the CP15) or from the manufacturer if using another coprocessor. Do not be worried by their
complexity; it is not necessary to know every opcode by heart, but it is important to understand
what the instruction intends to do.

Physical coprocessor support was removed from ARM processors n ARMv7. The ARM11 family
were the last cores to support external coprocessors. In order to maintain binary compatibility,
coprocessor instructions still exist but are mapped directly to system instructions.

The original Thumb instruction set cannot access coprocessors, and therefore, these instructions
do not work in Thumb state on processors which do not support Thumb-2. Thumb-2 added
coprocessor support.

MRC
MRC (Move to ARM Registers from Coprocessor) has this structure:

MRC[condition] coproc, opcode1, dest, cpsource, cpreg[, opcode2]

c07.indd 141c07.indd 141 03-12-2013 12:10:3003-12-2013 12:10:30

142 ❘ CHAPTER 7 ASSEMBLY INSTRUCTIONS

This structure is slightly different from other ARM instructions:

 ➤ condition is one of the 16 condition codes.

 ➤ coproc is the name of the coprocessor (p0 to p15).

 ➤ opcode1 is a coprocessor-specifi c opcode.

 ➤ dest is the destination register.

 ➤ cpsource is the source coprocessor register.

 ➤ cpreg is the additional coprocessor register.

 ➤ cpopcode2 is an optional coprocessor cpname operation.

For example:

MRC p15, 0, r0, c0, c0, 0

In this example, the instruction takes a register from CP15 (p15) and places the result into r0. It
requests information from CP15’s c0 register, and the opcode2 specifi es the subregister. This sounds
complicated, and indeed it is complicated to read, but this specifi c instruction comes straight from
ARM’s website on CP15. It is the instruction required to read the Main ID Register from CP15.

MCR
MCR (Move to Coprocessor from ARM Registers) has this structure:

MRC[condition] coproc, opcode1, dest, cpsource, cpreg[, opcode2]

MRC uses the same format at MCR, only the memory transfer direction changes. For example:

MCR p15, 0, r0, c13, c0, 3; Write Thread ID Registers

This example is, again, cryptic. This particular instruction is copying the value of r0 into the CP15
(p15), into c13. c13 on an ARM11 core is the thread ID register. By issuing this instruction, the
ARM core will be given the thread ID for a particular thread, and the opcode2 tells the core that
the thread ID number is user readable but needs privileged access to write a new value.

MI SCELLANEOUS INSTRUCTIONS

The following are a few instructions that do not belong in any of the previous categories, but are in
their own category.

SVC
SVC{cond} #immed

SVC (Supervisor Call) is an instruction that causes an exception. By issuing this instruction, the
processor switches to supervisor mode, the CPSR is saved, and the execution branches to the SVC
vector.

SVC can also take an immediate value but is not used by the processor. Instead, an SVC handler can
be programmed to recover the value hard-coded into the instruction. In ARM state, this value is a
24-bit immediate value; in Thumb, it is an 8-bit immediate.

c07.indd 142c07.indd 142 03-12-2013 12:10:3003-12-2013 12:10:30

Summary ❘ 143

SVC used to be called SWI. Some compilers and decompilers still use the SWI name, but newer
versions should use SVC.

NOP
NOP{cond}

NOP is short for No Operation, and put simply, it does nothing. It can be used to make an empty
instruction before padding further instructions to a 64-bit boundary, or in some cases used as a
handy point to put a breakpoint. In the past, NOP was sometimes used to force the processor to wait
for one cycle, but with modern pipelines, this is no longer the case.

MRS
MRS{cond} Rd, psr

MRS (Move to ARM Register from System coprocessor) moves the content of a PSR to a general
purpose register. This instruction is especially useful with saturated arithmetic because it is not
possible to get the status of the Q fl ag directly. By using this instruction, you can get all fl ags and
know if an instruction saturated.

MSR
MSR{cond} APSR_flags, Rm

MSR (Move to System coprocessor register from ARM Register) loads an immediate value, or the
contents of a register, into the specifi ed fi elds of the Program Status Register (PSR).

SUMMARY

This chapter presented a few of the most common ARM assembly instructions written in UAL, and
how they are used. You learned about assembly and understanding instructions when decompiling
and debugging. However, this is not a complete list of instructions since every core may have
additional instructions added by the manufacturer.

Chapter 5, “First Steps”, explains debugging, shows several debugging examples, and discusses just
how important it is to read basic assembly.

In the next chapter, you see the NEON processors, which is ARM’s advanced single instruction
multiple data engine, capable of complex instructions for Digital signal processing and number
crunching.

c07.indd 143c07.indd 143 03-12-2013 12:10:3003-12-2013 12:10:30

c07.indd 144c07.indd 144 03-12-2013 12:10:3003-12-2013 12:10:30

NEON
WHAT’S IN THIS CHAPTER?

 ➤ Presenting NEON

 ➤ Understanding NEON’s registers

 ➤ Introducing some NEON instructions

 ➤ Writing a NEON application in assembly

 ➤ Using NEON intrinsics in C

 ➤ Writing a NEON application in C

When ARM fi rst released its original SIMD extensions, it was a huge success. Finally, single
instructions worked on multiple data values accelerating multimedia applications, and
enabling ARM cores access to a whole range of multimedia devices. Single instructions operat-
ing on multiple data values packed into registers meant that ARM cores could be used in DSP
applications, or simply to obtain better performance. Mobile telephones could decode MP3
music using even less power, meaning longer battery life.

NEON is an extension of the original SIMD instruction set and is often referred to as the
Advanced SIMD Extensions. It extends the SIMD concept by adding instructions that work
on 64-bit registers (D for double word) and 128-bit registers (Q for quad word).

NEON instructions are executed as part of the ARM instruction stream, simplifying develop-
ment and debugging.

WHAT ARE THE ADVANTAGES OF NEON?

NEON isn’t just about having huge amount of registers. The advantage of SIMD instructions is
to execute an operation on several data values packed into a single register in a single instruc-
tion, but the data must fi rst be correctly placed into the registers. How exactly is that done?

8

c08.indd 145c08.indd 145 03-12-2013 12:10:5203-12-2013 12:10:52

146 ❘ CHAPTER 8 NEON

For example, consider a 24-bit image. There are three channels comprising a total of 24-bits per pixel:
8-bits for red, 8-bits for green, and 8-bits for blue. This is a repetitive structure, one such 24-bit
structure per pixel and some digital cameras can make a lot of pixels.

Before doing anything interesting to the image, the data must fi rst be loaded into registers. Without
NEON, the operation would possibly have been to load the red component into r5, the blue compo-
nent into r6, and the green component into r7, after which a fi lter would be applied, and the three
registers would be written back with three reads, at least three operations, and fi nally three writes,
for only one pixel. NEON has a different approach.

NEON registers are 64-bits wide, but you can load several 8-bit values into one register. Presume
that the address of the fi rst byte of data is held in r0. Using a NEON instruction, you can load 8
pixels into memory, using one instruction:

vld1.8 {d0, d1, d2}, [r0]

VLD is the NEON instruction to load data. VLD1.8 means that the processor will be loading 8-bit
values, without interleaving. Three registers are also specifi ed, so these three registers will be fi lled
with 8-bit values. Finally, the address of
the fi rst byte is taken from a register; in this case,
r0. Figure 8-1 shows the result of this operation.

In one single instruction, 8 pixels have been
loaded into three registers. However, any
calculation might be complicated because the
different colors have been loaded directly, or
linearly. This is where interleaving comes in; the
exact order of the data can be specifi ed. By using
an interleave of 3, the processor knows that each element is to be loaded, and the fi rst will be placed
into the fi rst register, the second into the second, and the third into the third. When reading the
fourth element, it will “loop,” putting it into the next free space in the fi rst register, and repeating
the process.

By rewriting the instruction and specifying an interleave of 3, Figure 8-2 shows the result.

vld3.8 {d0, d1, d2}, [r0]

The data has now been loaded but this time into a format that is much easier to work with. No more
shifting or masking to get the data you want; each color is put directly into one register. Of course,
if the data were read in a certain way, the proces-
sor can also write data out in the same way.

This brings a question: Because there is now a
64-bit register fi lled with 8-bit values, how is it
possible to do any calculation? The answer is
NEON’s lanes. A lane is a segment of a register,
so one instruction can work on multiple values
packed into a standard register. In this case, a lane
could be 8-bits wide; therefore any calculation

FIGURE 8-1: Loading RGB data with a linear load

G2 R2 B1 G1 R1 B0 G0 R0

R5 B4 G4 R4 B3 G3 R3 B2

B7 G7 R7 B6 G6 R6 B5 G5

d0

d1

d2

...

G0

B0

R1

G1

B1

R00×8000

FIGURE 8-2: Loading RGB data with a
structured load

R7 R6 R5 R4 R3 R2 R1 R0

G7 G6 G5 G4 G3 G2 G1 G0

B7 B6 B5 B4 B3 B2 B1 B0

d0

d1

d2

...

G0

B0

R1

G1

B1

R00×8000

c08.indd 146c08.indd 146 03-12-2013 12:10:5403-12-2013 12:10:54

Using NEON in Assembly ❘ 147

wouldn’t be done on the entire contents of the register but a
series of 8-bit values. Figure 8-3 shows lane calculation on
two D registers.

From here, virtually anything is possible. With one single
instruction, you can swap two colors. You can do a weighted
average of the three colors to create a fourth; effectively
grayscaling the image. And when everything is fi nished, you
can also use NEON to accelerate JPEG compression.

WHAT DATA TYPES DOES NEON
SUPPORT?

NEON instructions support 8-bit, 16-bit, 32-bit, and 64-bit signed and unsigned integers; the same
data can be found inside any ARM program. NEON also supports 32-bit single precision fl oating
point numbers, and 8-bit and 16-bit polynomials.

Data types are specifi ed by a letter, and any of the following are supported:

 ➤ U for unsigned integer

 ➤ S for signed integer

 ➤ I for integer of unspecifi ed type

 ➤ F for single-precision fl oating-point number

 ➤ P for polynomial

USING NEON IN ASSEMBLY

Before using NEON in higher level languages like C, you must understand the internals; how
NEON reads in data, what sort of data, the instructions that can be used, and how NEON writes
the data out to system memory.

Presenting the Registers
NEON has a huge amount of registers: 32 64-bit registers named d0 to d31. They also have another
name; they can be seen as 16 128-bit registers named q0 to q15. Actually, they are the same regis-
ters; two D (double-word) registers map to one Q (quad-word) register. Figure 8-4 shows the relation
between a Q register and two D registers.

The registers are also shared with the VFP if one is present.

FIGURE 8-3: Lane operation on
NEON registers

d0 45

d1 65

d2 110

16

57

73

88

12

100

73

LSB

42

115

FIGURE 8-4: Q registers and D registers

q2q15 q1 q0

d4d5d30d31 d2d3 d0d1

c08.indd 147c08.indd 147 03-12-2013 12:10:5403-12-2013 12:10:54

148 ❘ CHAPTER 8 NEON

Why Are the Q and D Registers the Same?
A Q register is effectively two D registers, and fi lling a Q register overwrites the data in the two D
registers. There are several reasons why both names exist, and one of them is that NEON instruc-
tions can widen the size of lanes. For example, when multiplying a 16-bit number by another 16-bit
number, it is often useful to store the result in a 32-bit number. By using two D-registers to hold
16-bit values, there will be four lanes, or four 16-bit elements. When outputting four 32-bit
numbers, the result must be placed into a Q-register, capable of four 32-bit lanes.

The inverse is also true; some NEON instructions can reduce the size of a result, in which case the
operands is in a Q register, and the result is placed in a D register.

Loading and Storing Data
Just like the rest of an ARM core, NEON uses a load and store architecture. Data must be loaded
into registers before doing any calculation.

There is only one instruction for loading data into NEON registers, and one instruction to save
NEON registers back into memory, but the syntax enables a huge amount of customization.

The syntax of the instruction follows:

Vopn{cond}. datatype list, [rn]{!}
Vopn{cond}. datatype list, [rn], Rm

The structure consists of fi ve parts:

 ➤ The instruction mnemonic, either VLD for loads or VST for stores

 ➤ The interleave pattern, the gap between elements

 ➤ The number of bits of accessed data

 ➤ A set of NEON registers to load/save data

 ➤ An ARM register containing the memory location

Understanding the Different Interleaves
The interleave pattern specifi es the separation of the data to be either read or written. Interleave 1
(for example, VLD1) is the simplest form. Data is handled sequentially, each element being placed one
after another. This is used for loading one-dimensional arrays. Figure 8-5 presents an example of
Interleave 1.

With interleave 2, (VLD2), the data is separated into two parts. For example, it can be used on an
audio stream, separating data from the left and right channels. Figure 8-6 presents an example of
Interleave 2.

Interleave 3 uses three registers and can be used for three-dimensional arrays, for example, loading
a graphics image coded in RGB. Figure 8-7 presents an example of Interleave 3.

c08.indd 148c08.indd 148 03-12-2013 12:10:5403-12-2013 12:10:54

Using NEON in Assembly ❘ 149

FIGURE 8-5: Interleave 1 example

GH

B

C

D

E

F

G

H

I

J

A

0×1

0×2

0×3

0×4

0×5

0×6

0×7

0×8

0×9

0×0 EF C B A d0D

FIGURE 8-6: Interleave 2 example

......

B

C

D

E

F

G

H

I

J

...

...

...

A

0×1

0×2

0×3

0×4

0×5

0×6

0×7

0×8

0×9

0×0 I... E C A d0G

...... J... F D B d1H

FIGURE 8-7: Interleave 3 example

B

C

D

E

F

G

H

I

J

...

...

...

A G D A d0

H E B d1

I F C d2

c08.indd 149c08.indd 149 03-12-2013 12:10:5503-12-2013 12:10:55

150 ❘ CHAPTER 8 NEON

Interleave 4 uses four registers and can be used for four-dimensional arrays, much like the data
found in ARGB images. Figure 8-8 presents an example of Interleave 4.

FIGURE 8-8: Interleave 4 example

B

C

D

E

F

G

H

I

J

...

...

...

A I E A d0

J F B d1

K G C d2

L H D d3

Selecting the Data Size
You must specify the size of each data element. For a 24-bit graphics fi le, each pixel color must be
coded in 8 bits. By specifying 8 bits in the instruction, the NEON engine knows to interleave on the
next occurrence of that data size, effectively separating the pixel data.

Valid data sizes are 8-bits, 16-bits, or 32-bits.

To read 8-bit data with interleave 3, the instruction would be VLD3.8. To save 16-bit data with inter-
leave 4, the instruction would be VST4.16. Lane size can increase or decrease with several opera-
tions, and you must take care to specify the correct width.

Defi ning the NEON Registers
You can defi ne up to four registers depending on the interleave selected. For interleave 4, you must
specify four registers because data will be separated into four different registers. For interleave 3,
only specify three registers because data will be separated into three groups. For interleave 2, you
can specify either two or four registers, depending on the length of the data to be read. For inter-
leave 1, you can specify up to four registers.

Using default values, the ARM core can fi ll in all the register, using as many elements as possible. It
is, however, possible to fi ll in a single element into one specifi c lane or to load a single element into
all lanes. To do this, the lane must be specifi ed after the register, in brackets. In the previous exam-
ple, to load a single element into all lanes, use the following:

VLD3.8 {d0[2], d1[2], d2[2]}, [r0]

c08.indd 150c08.indd 150 03-12-2013 12:10:5503-12-2013 12:10:55

Using NEON in Assembly ❘ 151

By issuing this instruction, the ARM core loads three 8-bit elements into lane 2 of d0, d1, and d2,
effectively loading a single pixel into a specifi c location, as shown in Figure 8-9.

You can also load in a single element into every lane, by leaving out the lane parameter, for example:

VLD3.8 {d0[], d1[], d2[]}, [r0]

In Figure 8-10, the same 8-bit elements are loaded into all lanes of the registers.

FIGURE 8-9: Inserting a single element
into NEON registers

R

G

B

d0

d1

d2

FIGURE 8-10: Duplicating a single
element into NEON registers

R R RRRRRR

G G GGGGGG

B B BBBBBB

d0

d1

d2

Vector Sizes
D registers are 64-bits wide, and Q registers are 128-bits wide, but what happens if the data inside
the register is too small? In the previous example, eight 8-bit values were loaded into a D register,
but what happens if only 6 values are available?

NEON can perform only full register operations, and with the exception of loading a single value
into a lane or a register, all instructions execute the same operation on all lanes, including load and
save operations. In most cases, this will be transparent; the fi nal two results would give corrupted
data because there was no valid input. So long as there is enough system memory free when the
write operation occurs, this should not impact your program.

Effective Addressing
You can specify the address for operations in several ways. The simplest form is to specify the
address of the memory in an ARM register, without any options. In this case, the data is read in (or
written out), and the ARM register is not updated. You can use this on a system where a portion of
memory is frequently updated.

Where data is written sequentially over large memory portions, you can use post-increment
addressing. Just like on standard ARM instructions, the value of the ARM register can be updated
after the memory operation by the amount of memory used, effectively updating the contents of the
ARM register to point to the next portion of memory to be read/written. In the example of a
graphics image, this would allow the processor to read in all the data sequentially.

VLD3.8 {d0-d2}, [r0]! ; update r0 after the data read

This doesn’t always suffi ce. The previous example shows how to read in data sequentially, but some-
times more complicated instructions are required. Sometimes, data will not be read in sequentially,
but in blocks, for example, a program that will not read in each pixel of a line, but rather the fi rst 8
pixels of each line. In this case, the program would need to read in 8 pixels, and then “jump” to the

c08.indd 151c08.indd 151 03-12-2013 12:10:5503-12-2013 12:10:55

152 ❘ CHAPTER 8 NEON

next line. This is where post-indexing comes in. After memory access, the pointer is incremented by
a specifi c value held in an ARM register.

VLD3.8 {d0-d2}, [r0], #40 ; Increase r0 by 40 after the data read

Optimized memcpy
Embedded systems often spend a considerable amount of time copying memory from one location to
another. With cost constraints, it’s not surprising that the system memory on an embedded system is
often not the fastest available. Therefore, it is important to develop a fast method for memcpy.

The memcpy routine can change greatly between two systems, but for an ARM embedded system
where NEON is present, it is often more effective to use NEON.

Here is a short example of using NEON to replace memcpy:

NEONcpy:
VLDM r1!, {d0-d7}
VSTM r0!, {d0-d7}
SUBS r2, r2, #0x40
BGE NEONcpy

In this example, r0 holds the source address, r1 holds the destination address, and r2 holds the
amount of bytes to copy. Surprisingly, this does not create the speed boost that you would expect. It
does, however, have a few advantages. For one, it can be done with minimal instructions and does
not overwrite any of the ARM registers; no PUSH and POP required. Secondly, some cores can be
confi gured so that NEON instructions allocate only level-2 cache, therefore not overwriting any-
thing present in level-1 cache. This example is easy to optimize. By adding a simple preload instruc-
tion before the reads, the code becomes the following:

NEONcpy:
PLD [r1, #0xC0]
VLDM r1!, {d0-d7}
VSTM r0!, {d0-d7}
SUBS r2, r2, #0x40
BGE NEONcpy

In this instruction, the preload instruction prompts the processor to attempt to fi ll in a cache line
with the data at the address in r0, but only if the system has the required bandwidth. It does not
guarantee that cache lines will be fi lled, but if they are, subsequent VLDM instructions will result in
a cache hit, greatly increasing speed. In tests, this technique showed greatly improved throughput
without modifying level one cache lines or ARM registers.

NEON Instructions
NEON instructions can be divided into different categories: arithmetic, logical operations,
conversion, shifting, and other advanced features.

Arithmetic
ARM assembly instructions have multiple instructions for arithmetic, for example, adding two num-
bers, adding with accumulate, and so on. NEON goes a step further, introducing new and advanced
instructions. NEON can simply add or subtract, but also add and narrow the high half of an integer,
add two numbers dividing the result by two, or execute a pair-wise add, to name but a few.

c08.indd 152c08.indd 152 03-12-2013 12:10:5503-12-2013 12:10:55

Using NEON in C ❘ 153

Multiplication has also been revisited, and new commands exist to automatically double the results
of a multiplication or Vector Fused Multiply and Accumulate.

Comparison
NEON benefi ts from multiple comparison instructions, and the comparison can be a simple bitwise
comparison, comparing with another register, extracting maximum/minimum values from a pair of
registers, and so on.

General Data Processing
General data processing routines include the possibility to change from one data type to another.
For example, it is possible to convert fl oating-point numbers into integer, and vice versa. NEON
also has something called vector extraction (Figure 8-11), extracting 8-bit elements from the bottom
end of the second operand vector and the top end of the fi rst, concatenating them, and placing them
in the destination vector.

FIGURE 8-11: Vector extract

d0d1

NEON can also reverse the order of 8, 16, or 32-bit elements within a vector, using the VREV
instructions. This can be used to change endianness, or to rearrange components or channels of
stream data.

NEON also proposes something that is missing from ARM assembly, the possibility to swap two
registers without needing a third register as a temporary store.

NOTE This is only a small list of NEON data processing instructions. More
instructions are listed in Appendix D.

USING NEON IN C

Just like with ARM Assembly, NEON assembly can make some heavily optimized code at the cost
of spending more time writing code. Writing code in C means faster development time and more
maintainable code, and compilers normally do a good job of optimizing code. Sometimes, it is nec-
essary to turn to assembly for fi nely tuned performance, but in most cases, the use of C gives good
performance, noticeably better than hand coding using ARM instructions (which are already fast).

c08.indd 153c08.indd 153 03-12-2013 12:10:5603-12-2013 12:10:56

154 ❘ CHAPTER 8 NEON

A compiler cannot take standard code and use NEON instructions, even if there are many loops, or
in cases in which NEON could accelerate code. The compiler has to be specifi cally told to use the
NEON engine. There are several ways to do this as described here.

Presenting Intrinsics
Intrinsic functions and data types, or intrinsics, provide a direct link to assembly, while maintaining
higher level functions such as type checking and automatic register allocation. This enables elegant
C functions, maintaining the readability and maintainability of C, without the need to write direct
assembly instructions. To use NEON intrinsics, include the header fi le arm_neon.h.

Vector Data Types
C intrinsics enables defi ning any sort of data type accepted by NEON. NEON data types are names
according to this pattern:

<type><size>x<number of lanes>_t

The type can be an int, uint, float, or poly. The size is the size of each lane, and the number
of lanes defi nes how many lanes will be loaded, and therefore the type of register used (D or Q).
To load a series of pixels into a 64-bit D register, each pixel being an 8-bit unsigned value, choose
uint8x8_t. The entire list of supported datatypes is presented in Appendix D, “NEON Intrinsics
and Instructions.”

Loading a Single Vector from Memory
To load data into a NEON register, intrinsics have been made that resemble assembly, but add data
types to help compiler checking. They return the data type that the register(s) can hold. To load a
single vector, an intrinsic is used that uses the memory address as an argument and returns the data
type contained in the register.

// VLD1.8 {d0, d1}, [r0]
uint8x16_t vld1q_u8(__transfersize(16) uint8_t const * ptr);
// VLD1.16 {d0, d1}, [r0]
uint16x8_t vld1q_u16(__transfersize(8) uint16_t const * ptr);
// VLD1.32 {d0, d1}, [r0]
uint32x4_t vld1q_u32(__transfersize(4) uint32_t const * ptr);
// VLD1.64 {d0, d1}, [r0]
uint64x2_t vld1q_u64(__transfersize(2) uint64_t const * ptr);
// VLD1.8 {d0, d1}, [r0]
int8x16_t vld1q_s8(__transfersize(16) int8_t const * ptr);
// VLD1.16 {d0, d1}, [r0]
int16x8_t vld1q_s16(__transfersize(8) int16_t const * ptr);
// VLD1.32 {d0, d1}, [r0]
int32x4_t vld1q_s32(__transfersize(4) int32_t const * ptr);
// VLD1.64 {d0, d1}, [r0]
int64x2_t vld1q_s64(__transfersize(2) int64_t const * ptr);
// VLD1.16 {d0, d1}, [r0]
float16x8_t vld1q_f16(__transfersize(8) __fp16 const * ptr);
// VLD1.32 {d0, d1}, [r0]
float32x4_t vld1q_f32(__transfersize(4) float32_t const * ptr);
// VLD1.8 {d0, d1}, [r0]

c08.indd 154c08.indd 154 03-12-2013 12:10:5603-12-2013 12:10:56

Using NEON in C ❘ 155

poly8x16_t vld1q_p8(__transfersize(16) poly8_t const * ptr);
// VLD1.16 {d0, d1}, [r0]
poly16x8_t vld1q_p16(__transfersize(8) poly16_t const * ptr);
// VLD1.8 {d0}, [r0]
uint8x8_t vld1_u8(__transfersize(8) uint8_t const * ptr);
// VLD1.16 {d0}, [r0]
uint16x4_t vld1_u16(__transfersize(4) uint16_t const * ptr);
// VLD1.32 {d0}, [r0]
uint32x2_t vld1_u32(__transfersize(2) uint32_t const * ptr);
// VLD1.64 {d0}, [r0]
uint64x1_t vld1_u64(__transfersize(1) uint64_t const * ptr);
// VLD1.8 {d0}, [r0]
int8x8_t vld1_s8(__transfersize(8) int8_t const * ptr);
// VLD1.16 {d0}, [r0]
int16x4_t vld1_s16(__transfersize(4) int16_t const * ptr);
// VLD1.32 {d0}, [r0]
int32x2_t vld1_s32(__transfersize(2) int32_t const * ptr);
// VLD1.64 {d0}, [r0]
int64x1_t vld1_s64(__transfersize(1) int64_t const * ptr);
// VLD1.16 {d0}, [r0]
float16x4_t vld1_f16(__transfersize(4) __fp16 const * ptr);
// VLD1.32 {d0}, [r0]
float32x2_t vld1_f32(__transfersize(2) float32_t const * ptr);
// VLD1.8 {d0}, [r0]
poly8x8_t vld1_p8(__transfersize(8) poly8_t const * ptr);
// VLD1.16 {d0}, [r0]
poly16x4_t vld1_p16(__transfersize(4) poly16_t const * ptr);

Loading Multiple Vectors from Memory
Loading multiple vectors from memory is just like loading a single vector, except that the interleave
must be specifi ed. The instructions are almost identical to single instructions; the memory pointer
is passed as an argument, and the resulting data type is returned. The interleave is defi ned in the
instruction.

uint8x8_t data vld1_u8(src); //Loads one d-word register
uint8x8x2_t data2 vld2_u8(src); //Loads two d-word registers, using interleave 2
uint8x8x3_t data2 vld3_u8(src); //Loads three d-word registers, interleave 3

In each case, the instruction resembles the assembly layout.

Using NEON Intrinsics
NEON intrinsics are well designed; they are easily accessible from C without any major change.
So long as the logical procedure is respected, read in data using intrinsics, execute NEON instruc-
tions, and then write data out, again using intrinsics. Then the routine can benefi t from NEON
optimization.

It is possible to mix ARM and NEON instructions, but there is sometimes a penalty in doing so;
NEON can only use NEON registers, just as ARM can only use ARM instructions. Registers will
need to be transferred to and from the NEON engine, costing a slight overhead.

You can also create portions of code that execute only if a NEON engine is present (and defi ned), by
using #ifdef sections.

c08.indd 155c08.indd 155 03-12-2013 12:10:5603-12-2013 12:10:56

156 ❘ CHAPTER 8 NEON

#ifdef __ARM_NEON__
// NEON code
#else
// ARM code
#endif

By using this system, you can generate source code that is easily portable from one processor design
to another using standard C.

Converting an Image to Grayscale
On almost any modern digital camera, there is an option to convert images to grayscale. This opera-
tion is simple; it takes the red, green, and blue components, calculates a weighted average, and then
writes the result to a new pixel. This is the sort of repetitive calculation that NEON is well suited
for. To do that, following is an example application.

First, a little understanding about the way our eyes see the world. Human eyes are more adapted to
seeing green than any other color, so when changing an image to grayscale, simply adding the red,
green, and blue component, and then dividing by three is not enough. For clear grayscale images, a
certain amount of weight is added to each color. This is known as the luminosity method. It is com-
mon to multiply the red channel by 77, the green channel by 151 and the blue channel by 28. The
sum of these three numbers is 256, making division simple.

To do that, the program can fi ll three registers with specifi c values, the weight ratio. The application
must read in a series of pixels, separating the red, green, and blue components into separate registers
using interleaving. Next, each color component is multiplied by the weight ratio, and the result is
placed into another register. Finally, the new registers are added into a single register, divided, and
then written back out into memory. The end result is ((rx) + (gy) + (bz)) / (x + y + z).

First, three registers need to be fi lled with 8-bit values, the ratio values. There are three registers:
one for the red components, one for the green, and one for the blue. To take one 8-bit value and to
repeat that value over the NEON register, the VDUP instruction is used.

uint8x8_t r_ratio = vdup_n_u8(77);
uint8x8_t g ratio = vdup_n_u8(151);
uint8x8_t b ratio = vdup_n_u8(28);

Note that in C, it is not necessary to specify a register; the compiler can do this automatically and
keep track of which variable is held in which register. Now, the data has to be read in, using inter-
leave 3. The variable rgb is defi ned as a uint8x8x3_t because it uses three registers.

uint8x8x3_t rgb = vld3_u8(src);

vld3_u8 does a vector load of unsigned 8-bit values, using interleave 3. Again, you do not need to
specify the registers. Now comes the tricky part. Each pixel is 8 bits in size, but you must multiply
each one, and add the results of three multiplications together. It isn’t possible to do this in an 8-bit
lane because there will almost certainly be a data loss. The reason why this example uses only a
64-bit register instead of a 128-bit register is for this reason: The program must widen the lanes
from 8-bit to 16-bit and therefore use a larger output register.

Therefore, a temporary register is defi ned as such:

uint16x8_t temp;

c08.indd 156c08.indd 156 03-12-2013 12:10:5603-12-2013 12:10:56

Using NEON in C ❘ 157

This reserves a Q register for a total of 8 16-bit
variables. Now, multiply the R component by
the ratio, and save it into the temporary register.

temp = vmull_u8(rgb.val[0], r_ratio);

This instruction is a Vector Multiply, which tells
NEON to multiply each lane in rgb.val[0]
(the red component of each pixel) by r_ratio
(the weight ratio) and to put the results into
temp. Because the instruction is VMULL with two
L’s, it also widens the lane from 8 bits to 16 bits.
An example can be seen in Figure 8-12.

The variable temp now contains each red
component of the 8 pixels, multiplied by the red weight. You can do the same thing with
the green and blue components: Multiply them into separate registers and then add the results.
However, NEON has a more elegant solution: Multiply and Accumulate.

temp = vmlal_u8(temp, rgb.val[1], g_ratio);

Vector Multiply and Accumulate Long (VMLAL) is the same as Vector Multiply, except it enables
adding a value to the result of the multiplication. In this case, VMLAL can multiply the green compo-
nent of each pixel by the green weight ratio and then add the existing values in temp before writing
the data back into temp. Now the variable temp contains the weighted red components plus the
weighted green components. All that is left to do is to do the same action with the blue components.

temp = vmlal_u8(temp, rgb.val[2], b_ratio);

Now temp contains the weighted value of each component of the pixel, multiplied by 256. The value
256 wasn’t chosen randomly. The value was chosen because it is a power of 2 and can be shifted
to perform a fast division. Also, the largest value possible in an 8-bit value is 256, and the largest
possible value of all the weighted values times the pixel components is 65536, the maximum size of
a 16-bit value; so there will never be any data loss, even for the highest values possible. Now each
weighted pixel must be divided by 256 by shifting and then output the results into 8-bit values. This
is a job for VSHRN.

result = vshrn_n_u16(temp, 8);

Vector Shift Right, Narrow (VSHRN) is an instruction that can take a quad-word register, perform
a division by a power of 2, and then output the results into a double-word register, narrowing the
lanes. Now you have to write the results back out into memory.

vst1_u8(dest, result);

And that’s it! A simple C function that loops for each 8 pixels of an image and automatically con-
verts RGB pixels into grayscale. The entire C routine looks like this:

void neon_grayscale(uint8_t * dest, uint8_t * src, int num)
{
int i;
uint8x8_t r_ratio = vdup_n_u8(#77);
uint8x8_t g_ratio = vdup_n_u8(#151);
uint8x8_t b_ratio = vdup_n_u8(#28);

FIGURE 8-12: VMULL multiplying 8-bit values into
a 16-bit value

12

77

rgb.vol[0]

r-ratio

temp7,23819,635924

255

77

94

77

c08.indd 157c08.indd 157 03-12-2013 12:10:5603-12-2013 12:10:56

158 ❘ CHAPTER 8 NEON

num/=8; //NEON will work on 8 pixels a time

for (i=0; i<n; i++)
{
uint16x8_t temp;
uint8x8x3_t rgb = vld3_u8(src);
uint8x8_t result;

temp = vmull_u8(rgb.val[0], r_ratio);
temp = vmlal_u8(temp,rgb.val[1], g_ratio);
temp = vmlal_u8(temp,rgb.val[2], b_ratio);
result = vshrn_n_u16(temp, 8);
vst1_u8(dest, result);
src += 8*3; // 3 x 8 pixels in RGB format
dest += 8; // One single 8-bit value per pixel
}

SUMMARY

In this chapter, you have seen an overview of the NEON architecture and how it augments ARM’s
original SIMD instructions. You have seen how to load data into NEON registers, and the different
interleave options available. I have shown an example NEON program written directly in C, using
NEON intrinsics, and just how easy it is to use the NEON engine from C.

In the next chapter, I will talk about debugging, and software and hardware debuggers, and present
some of the techniques available to debug programs and low-level code.

c08.indd 158c08.indd 158 03-12-2013 12:10:5703-12-2013 12:10:57

Debugging
WHAT’S IN THIS CHAPTER?

 ➤ What a debugger can do

 ➤ The difference between a software debugger and hardware
debugger

 ➤ Debugger terminology

 ➤ A few software and hardware debuggers

 ➤ Debugging techniques

 ➤ When to use a debugger

 ➤ Effective debugging

A program that works the “fi rst time” is a myth. There will invariably be little problems that
need to be fi xed: Some of them will be easy; some of them will be hard. Be careful, though;
sometimes the easiest problems are the hardest to spot.

There are various techniques for solving problems, but unfortunately, there is no general rule.
This is something that is acquired over the years, and it sometimes boils down to instinct.

ARM processors have advanced features that enable developers to easily debug applications or
kernels, whatever solution the developer takes.

WHAT IS A DEBUGGER?

For anyone in systems programming, a debugger is a software application that can run a
program, line by line and show various pieces of data, such as variables and memory contents.
You can use debuggers primarily to follow, step by step, the execution of a program and to
understand why portions of that program do not function as wanted. Debuggers normally

9

c09.indd 159c09.indd 159 03-12-2013 12:11:2203-12-2013 12:11:22

160 ❘ CHAPTER 9 DEBUGGING

require an operating system to run and to have a method of communication externally: a serial line,
Ethernet, monitor, and so on.

For embedded systems, this is often a problem because most do not have outputs, and some do
not have an operating system. Even on systems that do have an operating system, sometimes you
must look closer at the operating system, something that a normal debugger cannot do. For this,
embedded systems use In-Circuit Emulators (ICEs).

ICEs are hardware devices that connect to the embedded system through a special port. ARM
processors, and indeed most processors, have a specialized way for debuggers to connect to the
heart of the system to enable external devices to take control. Historically, ICEs had their own
processor, one that was closer to the debugging computer, which had input and output to
the target system. The target CPU was deactivated, and most of the calculation was done on the
emulator. Today, this is no longer the case, but these devices tend to keep their historical name
of emulators, even if they are debuggers. All calculations are made on the target system, and the ICE
communicates only between the processor and the debugging computer.

Some devices are known as In-Circuit Debuggers (ICDs), which is technically a more correct name.

Other ICEs exist, that actually are emulators, but these are designed primarily for the simulation of
silicon before making a processor and are out of the scope of this book.

What Can a Debugger Do?
A software debugger, as previously described, can take a binary program and run it exactly as if it
were running normally on an operating system. It can pause program executing, perform step-by-
step execution and have a look deep into a program.

Hardware debuggers are often a window to embedded systems. Not only can they help debug,
but because they have direct access to hardware, they also can upload programs to memory, fl ash
nonvolatile memory, and confi gure hardware devices.

Hardware debuggers aren’t just about debugging software. They can also debug a lot of the
hardware, by looking at all the registers on a system, not just the processors. If the serial line isn’t
giving correct data, checking the serial registers is often a great way of checking without adding any
additional code. On some processors, a watchdog is set to automatically reset the processor if the
watchdog doesn’t hear from the program within a set amount of time. On a Freescale iMX51, it
can’t be deactivated when activated, except if using a hardware debugger, which is rather useful for
long testing sessions.

ARM Debugging Capabilities
ARM processors have excellent debugging capabilities because of integrated hardware. JTAG was
originally designed to perform boundary scans to test interconnections on printed circuit boards.
Since, JTAG has been used for much more, including debugging. Some classic ARM cores have a
hardware macrocell called EmbeddedICE, hardware that can receive debugging instructions, and
a small window to the processor and external devices. These devices have hardware support for
adding breakpoints and taking control of the processor when a break occurs.

c09.indd 160c09.indd 160 03-12-2013 12:11:2503-12-2013 12:11:25

What Is a Debugger? ❘ 161

During the development of ARMv6, EmbeddedICE was replaced with CoreSight, an improved
debug interface. No longer based on JTAG, this device communicates using Serial Wire Debug
(SWD), a low pin count, high-speed alternative to JTAG. Requiring only two pins instead of JTAG’s
fi ve, this enables debugging for severely pin limited packages, enabling the debugger to take control
of even the smallest chips.

CoreSight enables users to have more hardware breakpoints and also enables hardware traces,
enabling debuggers to know which routines are used when and for how long. Traces are mainly used
for optimization and are explained in the next chapter.

When using debuggers, a lot of technical words might not have any meaning immediately but need
to be known to fully use a debugger.

Breakpoint
A breakpoint is a location in instruction code in which the processor halts and gives control to the
debugger. In software, this halts the program at the specifi ed location, letting the user decide what
to do. In hardware, this actually freezes the CPU, so nothing continues in the background.

A breakpoint is triggered when the Program Counter is equal to the address, or when the instruction
is about to be executed. ARM cores with on-board debug hardware can have hardware breakpoints,
enabling a program to run at full speed before being stopped at a particular memory location. The
amount of breakpoints available depends on the core and the architecture; ARM9 cores have two
hardware breakpoints, but the Cortex-M0 has four, the Cortex-M3 has eight, and ARMv7A/R cores
have six.

Watchpoint
A watchpoint is slightly different from a breakpoint, and the two are sometimes confused. Although
a breakpoint can halt the processor when a specifi c instruction is about to be executed, a watchpoint
can trigger at a memory location and can be set to trigger on read or write. It is extremely useful
to know which part of a program updates a specifi c portion of memory. What updates that system
register? Set a watchpoint on data write, and if the program reads the register, the watchpoint is
ignored, but as soon as the program updates the memory, the system halts at the instruction.

Again, ARM cores provide hardware debugging capabilities but usually less than breakpoints.
Cortex A/R chips have two watchpoints, the Cortex-M0 also has two, and the Cortex-M3 has four.

Stepping
Stepping is an important feature that enables the debugger to go through code, step by step. When
a breakpoint is set, the next instruction becomes visible and waits for the user before continuing.
Although you can then have a look at variables before continuing the application, it is sometimes
useful to watch the result of each instruction. Stepping does this for you.

Running an application step by step means that each line of code is executed before waiting for user
input before performing the next. In a loop, you can watch as each line executes and have variables
displayed. Updated variables are often color-coded to show the developer which variables have
changed since the last instruction. Most debuggers enable stepping in the native language and in
assembly.

c09.indd 161c09.indd 161 03-12-2013 12:11:2503-12-2013 12:11:25

162 ❘ CHAPTER 9 DEBUGGING

Stepping isn’t just step by step; the debugger can be ordered to continue execution until it leaves the
current routine via a return, to step over a function (after all, you want to debug your own code, not
the entire C library) or to specifi cally step into a function.

Vector Catch
Vector catch is a mechanism used to trap processor exceptions. It is often used early on, before
exception handlers are used. Essentially, this technique watches the vector table and interrupts
execution when the ARM core enters an exception state.

Stack Frames
Sometimes, the routine that generates the problem won’t have a software bug. Routines that
normally function perfectly well can have some strange effects if the wrong parameters are sent.
This happens often: a division by zero or a string that doesn’t contain what was expected. With the
stack, you can see the chain of calls; the last function on the list might be creating an exception by
printing out the wrong value, but who called this
function in the fi rst place? Debuggers can help by
printing the entire stack frame.

An example is provided in Figure 9-1. In this
example, printf, one of the most used and most
reliable routines, generates an exception. It is
extremely unlikely that printf itself is the cause,
but the problem might be one of the functions
calling printf. This example shows the stack frame
for this application.

TYPES OF DEBUGGING

Debugging is used to correct code. Errors can be of several types; routines can give wrong results
or possibly not be called. In embedded systems, there can be more critical errors: An application
(or kernel) might be generating exceptions, which need to be debugged and corrected. Exception
handlers must sometimes be debugged and can be tricky. Sometimes, a tricky situation requires the
use of an external debugger to understand what is happening electronically.

Loops
Loops are the most common elements that go wrong and are also some of the most complicated to
read. Nested loops can be tricky, and in some cases, it is almost impossible to write elegant code
that is easily readable. When optimized, they can be tricky to read.

Some of the most common mistakes involve variables that are incorrectly initialized, off-by-one
errors, and loops that either loop an infi nite amount of times or loops that iterate zero number
of times.

When debugging loops, it isn’t always practical to follow every loop. It is often advisable to debut
the fi rst two loops and the last two. Knowing how the loop starts is essential, but often it isn’t

FIGURE 9-1: Example stack frame

main

get-data

Calculate-rpm

output-text

printf

c09.indd 162c09.indd 162 03-12-2013 12:11:2503-12-2013 12:11:25

Debuggers ❘ 163

necessary to see every loop. If the fi rst two start off well, you can begin by presuming that the others
will work well. If the fi rst two work, concentrate on the last two to understand how the program
exits the loop. Is the loop being terminated too early? Or on the contrary, is the loop being run too
many times? By debugging the variables used in the loop, you can often see where errors are
coming from.

Be careful checking for equality inside loops. Having a loop depend on an equality to quit is often
used, but with fl oating point numbers especially, a tiny difference can cause the loop to iterate
infi nitely. Where possible, add a second possibility for leaving a loop. For example, continue until
variable a is equal, or greater than, variable b. A simple equality might have surprising effects if a
variable no longer has the value 2, but possibly 2.00001.

Routines
Routines are one of the most common elements to debug, and luckily, one of the easiest. Typically,
routines need to be debugged when a return code is erroneous and an inner loop doesn’t quite react
as it should. This can sometimes be debugged by adding simple serial output text or by using a
debugger to follow step by step and analyze variables.

Interrupt Controllers
Interrupt controllers are tricky to debug because they are critical portions of code that need
to be executed quickly. There are two ways of debugging them: either by running a simulated
environment in which an interrupt can be fed to the controller at will, allowing for step-by-step
debugging or in real time. The problem with real time is that it severely limits any interaction;
simply printing a line on the console using printf can have unexpected results and can change the
way the handler works.

Bootloaders
Debugging a bootloader is exceptionally hard with anything else but a hardware debugger. Because
this is a portion of code that is at an extremely low level and requires a lot of system calls and/or
assembly, it is rarely possible to do this entirely in software except on emulated systems.

DEBUGGERS

Because ARM cores can be used for so many different applications, there are several ways of
debugging. Application developers will be at ease on cores running a full operating system because
applications such as gdb can be used to debug an application directly on the hardware. On micro-
controller applications, external hardware may be required to access the ARM debugging features.

GNU Debugger
The GNU Debugger, or gdb for short, is an excellent piece of software that allows the user to take
control of a program; start and stop a program, insert breakpoints, evaluate variables, and a few
other important features. It can debug programs written in C, C++ as well as an impressive number
of other languages.

c09.indd 163c09.indd 163 03-12-2013 12:11:2603-12-2013 12:11:26

164 ❘ CHAPTER 9 DEBUGGING

There are two ways of running gdb; either running gdb on the target, and
confi guring gdb to run a target application. The GNU debugger is used regularly
to debug PC applications, by running on the same system, but this method is
rarely used for embedded systems, simply because running gdb can require
too many resources for an embedded system. An example of gdb running an
application is illustrated in Figure 9-2. In this instance, gdb is running, and has
full control over an application, running on the same system. The application is
not separate; it is actually run and controlled by gdb.

When the previous example is not possible, the GNU Debugger can be used in a
master/slave fashion. In this instance, the GNU Debugger works in two stages.
First, the gdb server, named gdbserver, must fi rst be compiled for that system, and
then be copied onto the target platform. It requires a method of communication
to the host compiler computer. This means that the target must have either a working network
confi guration or a UART connection. Second, on the debugging PC, gdb must be run and then
connect to gdbserver. Once again, a specifi c version of gdb should be used; an ARM version of gdb
must be used.

While gdbserver is often software, some hardware implementations exist, and are connected directly
to the USB port of the development system. Also, some operating systems allow users to take
control via gdb. For example, VxWorks allows users to spawn tasks using gdb, and to take control
of tasks spawned from the shell.

Figure 9-3 illustrates an example debugging session on an embedded system, controlled from a
development system.

Application

GDB

FIGURE 9-2:
Running gdb
and application
on a system

FIGURE 9-3: Running gdb on an embedded system

Application

GDB

PC Embedded System

GDB Server

RS 232, Ethernet

Running the gdb server is easy; simply defi ne a connection method. For the serial output, you must
defi ne the serial port:

gdbserver /dev/ttyS0

For a networked device, only the port is required:

gdbserver :2345

The gdb server will start and wait for an incoming connection before continuing.

c09.indd 164c09.indd 164 03-12-2013 12:11:2603-12-2013 12:11:26

Example Debugging ❘ 165

On the development computer, the GNU Debugger “client,” or simply gdb, is required. The GNU
Debugger is a command-line program used to communicate with a gdb server. All the calculation
will be done by the client, leaving the server to run the program with minimal interference. This has
the advantage of having a good debugging capacity on a system with limited RAM or power.

To launch the program using gdb, you must fi rst launch the client and connect to the server.

arm-none-eabi-gdb
(gdb) target 192.168.0.2:2345
(gdb) run

The GNU Debugger can be confi gured with multiple parameters; it can be given a program to run
or attach to an existing program. By default it quits when the target application exits, but it can be
programmed to remain in memory to rerun the binary fi le.

J-Link GDB Debugger
Using the GNU Debugger often requires an operating system; the network must be active, or
the system must report the running processes, and so on. Although in some cases this might be
practical, in others, it is impossible. Microcontroller systems, especially, do not have the resources,
and in the worst case, the embedded system will not have network capabilities, and might not have a
serial line available. In this case, another approach is required.

Silicon Lab’s STK3800 evaluation board, fi rst presented in Chapter 5, “First Steps,” comes with
a J-Link debugger directly on the board. J-Link has a software solution enabling gdb to access a
specialized gdbserver, effectively turning the debugging chip into a kernel. This enables the
developer to debug a barebones application without the need for any other confi guration; there is no
need to copy a binary, and there is no need to have an operating system confi gure a serial port. The
J-Link effectively “translates” between the GNU Debugger and the hardware debugger.

EXAMPLE DEBUGGING

The following is a short list of some of the common problems encountered, and some of the ways
to detect them and to correct them. They are situations that you may have already faced, either in
embedded systems or in systems programming, followed by a brief explanation on how they were
solved.

Infi nite Loop
An infi nite loop is created when a program doesn’t run the way it is expected; either because of
an unforeseen situation or simply because of a portion of code that wasn’t written quite the way it
should have been.

This example, contains a portion of code that can run on any machine, not just an embedded ARM
system. This code is from the gdb tutorial and explains beautifully how to analyze infi nite loops.
You can compile this code on an ARM system or on a desktop.

c09.indd 165c09.indd 165 03-12-2013 12:11:2603-12-2013 12:11:26

166 ❘ CHAPTER 9 DEBUGGING

#include <stdio.h>
#include <ctype.h>

int main(int argc, char **argv)
{
 char c;

 c = fgetc(stdin);
 while (c != EOF)
 {
 if(isalnum(c))
 printf("%c", c);
 else
 c = fgetc(stdin);
 }
 return 1;
}

By looking quickly at the code, it looks obvious that this routine will look at the standard input, and
if the char read is alphanumerical, it will be printed to the standard output; otherwise, it waits
for another char to restart the loop. However, there is a hidden problem. Running the program
gives a hint.

> a.out
Hello, world!
HHHHHHHHHHHHHHHHHHHHHHHHH [...]

This is not what was expected. The program continues to print out the fi rst letter, and you have
to quit the program. Take a closer look at this program. You can add some printf traces inside
the loop, but it is often easier to not modify the program and use a debugger—in this example, the
GNU Debugger.

To debug easily, the program must be compiled with the debug fl ag, -g. By adding this fl ag,
supplemental information is added inside the program, notably the symbol table. It also adds fi le
names and line numbers from where the symbols came from, making it easy to fi nd the exact
location of a problem.

gcc -g infinite.c

Next, this program needs to be run with gdb. Start the program exactly as before; only this time
break into it.

(gdb) run
Starting program: /local/a.out
Hello
HHHHHHHHHHHHHHHHH
Program received signal SIGINT, Interrupt.

Next, it is time to see where the program is exactly. By issuing the backtrace command, the stack is
analyzed.

(gdb) backtrace
#0 0x400d8dc4 in write () from /lib/libc.so.6
#1 0x40124bf4 in __check_rhosts_file () from /lib/libc.so.6
#2 0x40086ee8 in _IO_do_write () from /lib/libc.so.6
#3 0x40086e46 in _IO_do_write () from /lib/libc.so.6

c09.indd 166c09.indd 166 03-12-2013 12:11:2603-12-2013 12:11:26

Example Debugging ❘ 167

#4 0x40087113 in _IO_file_overflow () from /lib/libc.so.6
#5 0x40087de5 in __overflow () from /lib/libc.so.6
#6 0x40069696 in vfprintf () from /lib/libc.so.6
#7 0x40070d76 in printf () from /lib/libc.so.6
#8 0x80484c2 in main (argc=1, argv=0xbffffaf4) at inf.c:12
#9 0x40037f5c in __libc_start_main () from /lib/libc.so.6

The frame that you are interested in is number 8, the “main” routine, your program.

(gdb) frame 8

Next, you can watch the code, line by line, by using the next command, or “n” for short.

(gdb) n
11 if(isalnum(c))
(gdb)
12 printf("%c", c);
(gdb)
15 }
(gdb)
11 if(isalnum(c))
(gdb)
12 printf("%c", c);
(gdb) n
15 }
(gdb)
11 if(isalnum(c))
(gdb)
12 printf("%c", c);

There is a pattern here, and one that isn’t what was originally intended. If the char c is an
alphanumeric, which it is, it is printed out and then repeated forever. The program never gets the
next char from the input. By using the debugger for less than a minute, you now know exactly
where the problem lies.

11: if(isalnum(c))
12: printf("%c", c);
13: else
14: c = fgetc(stdin);

The culprit is line 13; the else statement shouldn’t be used. By removing the else statement, the
loop works as intended.

The GNU debugger is a powerful tool, even if the learning curve can be a bit steep. Time should be
taken to have a closer look and run a few examples. This short example barely scratches the surface
of what this powerful debugger can do, but even so, you solved an infi nite loop.

Unknown Exception
An exception is one of the more diffi cult debug situations because there are only a certain number
of exceptions available and a lot of situations in which an exception can be made. Using the DS-5
debugger, it can be extremely easy to know exactly what happened.

The DS-5’s advanced interface makes debugging easy. On some debuggers, you would place a
breakpoint on the vector table, on each element that you are interested in. In the DS-5 interface,

c09.indd 167c09.indd 167 03-12-2013 12:11:2603-12-2013 12:11:26

168 ❘ CHAPTER 9 DEBUGGING

this is called Vector Catch and can be confi gured directly to print a message and to pause program
execution. For example, imagine that this portion of code gives an error:

void bubble(int *p, int N)
{
 int i, j, t;
 for (i = N-1; i >= 0; i--)
 {
 for (j = 1; j <= i; j++)
 {
 if (compare(&p[j-1], &p[j]))
 {
 t = p[j-1];
 p[j-1] = p[j];
 p[j] = t;
 }
 }
 }
}

The vector catch informs you that the exception occurs on line 8:

if (compare(&p[j-1], &p[j]))

So what went wrong? Was it the compare function? The compare function is simple:

int compare(int *m, int *n)
{
 return (*m > *n);
}

When an exception occurs, the current Program Counter is saved, and DS-5 can trace this. By
looking at the process stack, you can see the address that triggers the exception, a Data Access
Memory Abort. By clicking this address, the DS-5 environment jumps to the line of code at that
address: the compare function. Something went wrong inside this line of code.

In the variables window, you can show the values of each variable in the current section of code,
including m and n. In this case, it also shows the memory location. By dragging this variable to the
Memory window, you should see what the memory contents at that location are. Except you can’t.
The memory at that address is defi ned as invalid; the MMU refuses access, and it looks like your
program is attempting to do just that. So it looks like the compare function is the function that is
creating the abort, but only because someone is feeding it with wrong information.

Dividing by Zero
Processors are exceptionally well designed for working with integers: real numbers. When working
with fl oating numbers, although still good, they become a little less optimal, and when working
with specialized numbers such as imaginary numbers or fractions, operations have to be done in
software to emulate these numbers.

Dividing by zero is the software killer; when it crops up, it can crash the sturdiest machines. The
mathematics behind this is that dividing a number is equivalent to multiplying by a number’s
multiplicative inverse; dividing by 2 is the same as multiplying by 1 over 2, or 0.5. The product

c09.indd 168c09.indd 168 03-12-2013 12:11:2603-12-2013 12:11:26

In-Depth Analysis ❘ 169

of a number and its multiplicative inverse is always 1. Two times 1 over 2 is 1. The problem when
dividing by zero is that zero doesn’t have a multiplicative inverse. The answer is something that
therefore cannot be expressed as an integer and something that the processor cannot do. In the face
of such an impossibility, it prefers to throw an exception and refuses to continue without a helping
hand. Division by zero in a system application is a sure way to crash the entire application, but on
an embedded device without an operating system, the results can be disastrous.

The catch in division by zero is that it is not always the instruction that generates the exception
that is at fault. It can often occur in a C library, only because the main application passed zero as
an argument. Because the C library might not have error checking to see if the user passed zero, as
that would cause more cycles to be spent, most libraries rather accept any argument, and specify
that zero should never be used. In this case, using a debugger to catch the exception, and then
looking at the application stack to see when and how the routine was called, often gives a good
indication.

Of course, sometimes the exception is in a line of calculation, and in this case, it is easy to debug.
The offending line is the one generating the exception, and after using a debugger to locate the
problem, the developer can then correct the offending code.

IN-DEPTH ANALYSIS

Debugging is often considered to be an art, acquired after several in-depth debugging sessions.
Many problems can arise during development, and sometimes a bug will be a combination of several
problems. So far in this chapter I have listed some of the most common problems. Now I will show
a few real-world examples where debugging was required, and where the root cause was not always
what it was thought to be.

Data Abort
Situation: A project uses a special R&D-only bootloader to refl ash the system in case of corruption.
This is a bootloader executed at a privileged level, and all interrupts are disabled. Data is received
on a serial line using polling. A watchdog has to be serviced every 60 seconds, or the system reboots.
A fl ash driver has been developed to write the data received; a serial driver has been developed to
write standard debug info and to receive a new fi rmware. Other than that, no systems are needed.

When running the software, the client can connect to the bootloader, send commands, and upload
a new fl ash binary, but the transfer fails and the system freezes. A reconnection isn’t possible
immediately but is often possible 10 seconds later, so the initial analysis is that it is not a problem
with the watchdog. Something is probably wrong with the serial driver.

For this analysis, the development team looked at the C code and initially couldn’t fi nd anything
wrong. Debug lines were added but to no avail.

On this particular setup, a JTAG debugger was available, and a binary was created and fl ashed onto
the target. Step by step took too long to be of any use, so breakpoints were inserted into the code.
Out of habit, a watch was put on the exception vectors, including Data Abort. And indeed, the
ARM processor did go into a Data Abort exception.

c09.indd 169c09.indd 169 03-12-2013 12:11:2603-12-2013 12:11:26

170 ❘ CHAPTER 9 DEBUGGING

Data Abort means that the application was trying to read or write an illegal memory location.
r14 held the value 0x1FFE7208, and by subtracting 8 from that value (to take into account the
instruction queue), the address 0x1FFE7200 resulted. This is the address that caused the data abort.
Looking to the C code, it was the macro used to write a specifi c value into the watchdog register.
Nothing looked wrong with the C code, so we went deeper, into the assembly code.

Here is an extract of that code:

 MOVW r0, #0x8002
 MOVT r0, #0x73F9
 MOVW r1, 0x5555
 STR r1, [r0]

Running step by step, we saw that r0 was constructed as 0x73F98002 and r1 contained 0x5555.
The processor documentation stated that to clear the watchdog timer, we fi rst had to send 0x5555
and then 0xaaaa to a register, a 16-bit register located at 0x73F98002. The problem with this is that
0x73F98002 is not aligned on a 4-byte boundary. What’s more, STR attempted to write a 32-bit
number. When this happened, the processor went into a Data Abort exception, and because we
didn’t handle exceptions, it looped back and forth until the watchdog kicked in.

This was somewhere between a compiler problem and a development problem. The compiler didn’t
know that we wanted to pass a 16-bit number and so happily tried to write a 32-bit variable into
a non-aligned zone. If it had been aligned, the problem would have been different. We would have
written a 32-bit variable onto a 16-bit register, plus another register behind it, potentially creating
strange side effects. In this case, the short routine was written in assembly to test if the problem had
been found, replacing STR with STRH (store half-word), and the program worked perfectly.

Corrupted Serial Line
Situation: A home appliance device using a Cortex-A has a homemade bootloader. This bootloader
is designed to enable a user to upload a new fl ash image in case of fl ash corruption or in case of a
failed fi rmware upgrade. When testing the fi rmware upload process, the CPU generates undefi ned
instruction exceptions.

When the fi rmware is detected as faulty, or when a specifi c button is pressed to power on, the
bootloader waits for data on a UART serial line. When the data has been received, it is fl ashed
into NAND fl ash, and the system reboots. During tests, we were surprised to see the undefi ned
instruction exception occurring, not every time, but about one in fi ve downloads.

For this problem, we immediately used a hardware debugger. We placed a breakpoint on the
Undefi ned Instruction vector and waited. A few minutes later, we got what we wanted. In RAM, at
the exact location, was an instruction that didn’t look right.

NAND fl ash memory is a special soft of memory that requires a bit of software to run. Unlike
conventional memory, it cannot be used to run programs directly. NAND memory is fragile and can
become worn out over time. To avoid problems, each memory location stores other data, including
CRC data. Therefore, software has to be written to extract data from NAND and placed into
internal RAM before executing it. Could it be that this routine was somehow wrong?

c09.indd 170c09.indd 170 03-12-2013 12:11:2603-12-2013 12:11:26

In-Depth Analysis ❘ 171

A hardware debugger gave us access to a lot of information, including the contents of the NAND
memory. The hardware debugger “dumped” the contents to a fi le. Because the contents were copied
to memory, at location 0x20000000, we also told the debugger to dump the contents of the RAM.
We did a binary compare of the two fi les, and they were identical up until the last byte of the
fi rmware. Reading from NAND wasn’t the problem, so maybe we put bad data into NAND?

The bootloader was designed to receive data from a serial line. It would open a connection and wait
for data. When data arrived, it was copied into RAM. An end of fi le was indicated by two distinct
32-bit values. When the bootloader received those two values, it then copied the fi rmware stored in
RAM into the NAND fl ash before giving control to the fi rst instruction of the fi rmware.

The breakpoints were changed, and the system was programmed to break on 0x20000000, the
fi rst instruction of the fi rmware, just after being written to NAND. Again, the contents of RAM
and NAND were dumped and compared. And again, they were identical. The NAND routines
looked like they were working exactly as intended; so what could be the cause? If the data written
to NAND were correct, does that mean that the data received on the serial line was somehow
corrupted? We already had the data from RAM, which was supposed to be the exact fi rmware
binary, so we did a comparison. There was indeed a difference; what the processor received was not
what we had sent.

The communication method used was RS-232. It needs to be confi gured with the baud rate, the
speed at which data can travel. It is possible to confi gure the port to detect parity errors, but in
standard practice, it isn’t used. It was confi gured for 8N1: 8 bits of data, no parity, and one stop bit.
Data was sent as small “packets,” resulting in bursts of communication and then a small period of
silence. UART devices have small buffers, so we thought that maybe the communications were going
too fast and that the buffer fi lled up, resulting in corrupted data. Again, the debugger helped us to
see what was going on. This particular processor had on-board serial ports, and each port had close
to a dozen registers to help confi gure and to read the status. One of the registers contained some
valuable information, the amount of buffer overruns, or the amount of times that data was received
and the buffer hadn’t been emptied. Zero. That wasn’t the culprit.

The serial port is used later in the application for debugging output, and we had never seen the
slightest problem, so maybe there was a difference in the way it was confi gured? We noted the
contents of all the UART registers and then removed all the breakpoints. We rebooted the system
again, reloading a fi rmware and hoping it wouldn’t generate any exceptions. It didn’t, and after a
few seconds, debugging information was available on the UART port. We then froze the application
with the debugger and looked at the contents of the registers. One of them wasn’t identical. It was
the register that controls speed.

When confi guring in software, we normally give the speed directly as bauds, an integer of the
amount of bits sent and received in a second. 115200 is a common number. In hardware, however,
it is often much more diffi cult; the baud rate has to be calculated from the system clock and then a
calculation, a frequency division. By looking at the values we had in the bootloader, we calculated
that we were close to the limits of transmission, and by changing the values slightly, we could no
longer upload a binary at all. By changing the values again in the opposite direction, the problem no
longer occurred.

c09.indd 171c09.indd 171 03-12-2013 12:11:2603-12-2013 12:11:26

172 ❘ CHAPTER 9 DEBUGGING

The analysis used to fi nd the root of the problem is called why-because analysis and is used
frequently in accident analysis. It sometimes applies well to software debugging when the root
cause isn’t known. It is called why-because because that is exactly the question we ask over and
over, why? Why did the exceptions occur? Because the instructions in RAM were corrupted. Why
were they corrupted? Because they were incorrectly received. Why were they incorrectly received?
Because the serial port confi guration wasn’t correctly defi ned, and the speed was unstable, resulting
in some packets being transferred incorrectly. There was no security, no checksum, nor even a
length verifi cation. When the problem was analyzed, the port speed was set to the one in the main
application, and the bootloader was enhanced with some security features.

64-Bit Calculations
Situation: An app lication was developed that used 64-bit numbers. The 64-bit number was the
current time, the number of microseconds since January 1, 1970. This number was derived from
two 32-bit registers; one containing the amount of seconds since the January 1, 1970, and the
second register the amount of nanoseconds since the last time pulse, sent by some specialized
equipment. We were looking for precision time.

It worked perfectly. And one day, it stopped working. Instead of giving us the current time, it gave
some strange results; time seemed to slow down. So we were called in to have a look at the code.

uint32 secondsU32, usecondsU32
uint64 utctimeU64
[...]
utctimeU64 = (secondsU32 * 1000) + (usecondsU32 / 4);

The code is simple enough. UTC Time is the current amount of seconds times 1000, to turn them
into milliseconds, and then we add the amount of milliseconds read from another register with a
small calculation. Nothing too tricky. So why did it stop working so suddenly? Unit tests were done
previous to this, and everything worked fi ne. We plugged in a debugger to have a closer look. We
stepped through the C code, and utctimeU64 did not contain the right value. We stepped through
assembly, and we came across this:

MOV r3, [r0 + 0x20]
MOV r4, 0x3E8
MUL r4, r4, r3

This part caught our attention. The code was easy enough to spot because 0x3E8 in hexadecimal
gives 1000 in decimal. What was presumed to be secondsU32 is loaded into r3 and then 1000
into r4. The fi nal calculation, the contents of r3 × r4, is placed into r4. There is one problem
with that; when looking at the value of r3, it was clear that any operation on it would immediately
overfl ow the resulting register, and data would be lost. It isn’t just a little bit of data that is lost but
a full 9 bits of data. What intrigued us was the use of MUL, where UMULL or SMULL would have been
appropriate.

The real reason was faulty code. By running step by step in C, the problem wasn’t clearly visible. By
stepping in assembly, we saw it immediately. The line in C was:

utctimeU64 = (secondsU32 * 1000) + (usecondsU32 / 4);

c09.indd 172c09.indd 172 03-12-2013 12:11:2603-12-2013 12:11:26

In-Depth Analysis ❘ 173

That reasoning, although sound, just isn’t correctly written. The compiler will take secondsU32,
and multiply it by 1000. In other words, it takes the register containing secondsU32 and multiplies
that value by 1000, which could possibly result in an overfl ow, and it did. To correct the code, we
copied secondsU32 into a 64-bit value before performing the multiplication, therefore eliminating
any possibility of an overfl ow. The fact that it worked previously was just luck; this was a problem
that had been created a few years previously and hadn’t an overfl ow problem until a specifi c point in
time. Unit testing was added to make the test more extreme.

A Timely Response
Situation: An ARM1176 is used in a real-time application in a laser laboratory. Usually used for
calculation, the processor use is at approximately 90 percent capacity. Rarely, when a crossbeam
is fi red, a fast interrupt is issued, and an operation must be executed immediately. The window
of operation is only a few nanoseconds wide, but technically, the core should handle it without a
problem. However, the core misses the target every time.

When the crossbeam is fi red, a drop of fuel is evaporated, and the resonance must be registered. It
is not possible to warn the ARM1176 a few nanoseconds before the beam is fi red, so it must react
immediately.

When this happens, a fast interrupt is issued. The fast interrupt was chosen especially for the speed
at which it can be executed and its priority over all other operations. The FIQ code was optimized,
helping to shave off a few nanoseconds when starting, but the code was working well; the only
problem was the time taken to start the code.

This processor was chosen specifi cally for the task. The ARM1176 is used in real-time applications,
using little energy and clocked at speeds up to 1 GHz. The ARM1176 was chosen over an
ARM1156, more suited to real-time applications, because of its computational power and low
energy consumption. By using less power than other CPUs, it could be placed next to (or inside)
the experiment, and the low heat radiation meant that it could run without interfering. However, it
looked like the processor wasn’t doing what it was supposed to do, and some staff wanted to return
to the ARM1156.

An external team was brought in to see if anything could be done. After some analysis with a
debugger, the verdict came back. The vector table and the MMU had not been used correctly.

The MMU did not have a lot of confi guration. The memory was mapped according to a layout, but
it used only L1 page tables, so only 4096 entries. The SDRAM was mapped to different locations.

When analyzing the vector table, one thing became immediately apparent. The fast interrupt vector
was a branch instruction, branching into main memory. The Fast Interrupt vector is placed at the
end of the vector table, one of the reasons that code can be placed immediately after the table,
saving a branch. Even worse, this branch was sent into SDRAM memory when the ARM1176 has
tightly coupled memory.

No code was changed in this project, but the memory layout was slightly changed. The interrupt
handler was placed at the end of the vector table and was placed inside tightly coupled memory. This
shaved off a few nanoseconds, enough for the interrupt handler to respond as required.

c09.indd 173c09.indd 173 03-12-2013 12:11:2603-12-2013 12:11:26

174 ❘ CHAPTER 9 DEBUGGING

This last example is between two worlds. It required a debugger to look at the system, especially
the vectors, but the problem wasn’t necessarily the code. The problem came from something known
as optimization; the code works, but the code or system needs to be tweaked to obtain satisfactory
results. This brings us to the next chapter that discusses optimization.

SUMMARY

This chapter shows different debugger solutions, ranging from software to hardware. Each system
has its advantages, and often, a mix of both hardware and software is required. In the next chapter,
you see what happens after the debugging phase fi nishes and another potential use for debuggers:
optimization.

c09.indd 174c09.indd 174 03-12-2013 12:11:2603-12-2013 12:11:26

10
Writing Optimized C

WHAT’S IN THIS CHAPTER?

 ➤ Knowing when to optimize

 ➤ Knowing what to optimize

 ➤ C optimization techniques

 ➤ Assembly optimization techniques

 ➤ Hardware optimization

Optimization is the fi nal part of any project, and it is vitally important to understand. Some
developers write optimized code from the start, and on most projects, that is a bad idea. The
reason is simple: Optimized code is often diffi cult to read or to understand, and during the
development phase, changes have to be made, often from different people, and in some cases,
different departments. It is often best to start with readable, maintainable code before starting
the optimization process. In addition, spending an extra two hours on optimizing a section of
code might not be worth it; maybe this function will be called only once, or maybe the entire
fi le will be replaced when changes occur in the project.

When the project is fi nished, when all the functionality has been added and all the bugs have
been corrected, now it’s time to start optimizing. The problem is, where do you start?

RULES FOR OPTIMIZED CODE

The term rules are used, but the truth is there are no set rules. You do not need to follow every
rule here, indeed, for some applications; some of these rules might be impractical. You are the
only judge as to what should be used and what shouldn’t. The previous code used 32-bit integers,
but in some cases, you would prefer (or need) to have two 16-bit numbers because space could
be critical, and the need for space-saving techniques supersedes the need to optimize for speed.

c10.indd 175c10.indd 175 03-12-2013 12:13:4703-12-2013 12:13:47

176 ❘ CHAPTER 10 WRITING OPTIMIZED C

Don’t Start with Optimization
This might sound like a contradiction, but it is also one of the most important unwritten rules.
Optimized code of course makes an application or system run faster, but it can make the code
less readable. It is also easier to make mistakes in optimized code, simply because the code, being
written specifi cally for a processor, is sometimes written in a less logical manner for humans. Also,
is the code that you write going to be used often? It is suggested for most code to write clean code,
not necessarily writing heavy optimizations or wasting cycles. The most important part of a project
is to get the foundations ready and to get the basic structure. After the project works, then comes
the time for optimization.

Like most rules, there are exceptions. One of them concerns interrupt handlers. Interrupts can play
a critical role in development and need to be taken care of quickly. On a device that handles multiple
interrupts, even during the development phase, handlers need to be at least slightly optimized, and
any code that runs in an interrupt context needs to be fast.

Know Your Compiler
The fi rst rule: Know your compiler. A compiler, without any instructions, normally creates a binary that
can be used for debugging, but rarely anything optimized. To get the compiler to optimize for speed or
size, normally you have to add compiler options. A compiler can be confi gured to optimize for size, or for
speed, or a mixture of both. It can also be confi gured to not optimize at all, which is useful for debugging.

This is far beyond the scope of this book (and is a subject large enough to merit a book of its
own). If your project requires optimized code, you should look closely at ARM’s compiler. ARM’s
compiler contains some of the most advanced optimization routines available, designed by the
people who designed the core.

Know Your Code
Again, this sounds like a contradiction. Of course, you know the code; after all, you wrote it, but
how many times is your function actually called? How long does this routine take to execute?
Knowing the answer to these two questions can also answer another question. What should you
optimize? Shaving off 200 milliseconds might be a good optimization, but if that portion of code is
run only once, the time spent optimizing might have been wasted. Saving a single millisecond on a
routine that is called thousands of times, on the other hand, might have a huge impact.

PROFILING

In software engineering, profi ling is a form of dynamic program analysis that measures, for
example, the amount of memory used or the time a program takes to complete the usage of
particular instructions or the frequency and duration of function calls. Using a profi ler, you can
get a good idea of what your code is doing, which portions of code are called frequently, and most
important, the amount of times that certain routines take.

The trouble with embedded systems is that they are so different. What might work well on one
embedded system might not work on another. Some systems will have an operating system, others
will be bare-metal.

c10.indd 176c10.indd 176 03-12-2013 12:13:5003-12-2013 12:13:50

Profi ling ❘ 177

Profi ling Inside an Operating System
Profi ling on an embedded system with an operating system (especially the Cortex-A line) is relatively
easy. For example, on Linux-based systems, GNU’s gprof is an excellent tool to use, but using such
a tool requires several things to be present (disk space, for one).

To prepare a program to be profi led via gprof, it must be compiled with a special option, telling the
compiler to add little bits of code to your own. To compile for profi ling, simply add the -pg option:

arm-none-linux-gcc -o myprog myprog.c utils.c -g -pg

By adding this option, calls are added to monitor functions before each function call. This is used
for creating statistical data about which function was run, how many times, and the amount of time
spent.

After the program is compiled for profi ling, it must be run to generate the information that gprof
needs. Simply run the program as you would normally, using the same command-line options,
and the program will run and create the necessary data fi les. The program will run slightly slower
because debug routines have been added, but it shouldn’t be noticeable.

When the program has completed, it’s time to use gprof, which requires two fi les: the output fi le
that was created, and the executable fi le itself. If you omit the executable fi lename, the fi le a.out is
used. If you give no profi le data fi lename, the fi le gmon.out is used. If any fi le is not in the proper
format, or if the profi le data fi le does not appear to belong to the executable fi le, an error message
prints.

Gprof can output statistical data to an output fi le for analysis.

Flat profile:

Each sample counts as 0.001 seconds.
 % cumulative self self total
time seconds seconds calls ms/call ms/call name
80.24 5.84 5.120 4000 1.28 1.28 calcfreq
20.26 1.45 1.280 4000 0.32 0.32 getio
00.00 0.01 0.009 1 8.96 8.96 precalc

This example printout shows a program that was run with the GNU profi ler. This program is
designed to get data from a GPIO and then calculate the frequency of the input signal. There are
three functions: calcfreq, getio, and precalc. calcfreq takes (on average) 1.28 ms to execute
and getio only 0.32, but precalc takes a whopping 8.96 ms. At fi rst, it is tempting to optimize
the function that takes the most time, but have a closer look. precalc is called only once, but
calcfreq, which takes only one-eighth of the time to run, is called 4,000 times. If optimization
is required, this is the function to optimize because saving even one-tenth of a millisecond in this
function results in a savings of more than the precalc function itself.

Profi lers like this work by analyzing the program’s program counter at regular intervals. It requires
operating system interrupts, and as such, cannot be used on barebones systems. It also gets its data
by statistical approximation, so the results are not accurate, but they are precise enough to give you
a general idea.

For Linux systems, oprofi le is an excellent tool. This tool, released under the GNU GPL, leverages
the hardware performance counters of the CPU to enable profi ling for a wide variety of statistics.

c10.indd 177c10.indd 177 03-12-2013 12:13:5003-12-2013 12:13:50

178 ❘ CHAPTER 10 WRITING OPTIMIZED C

No special recompilations are required, and even debug symbols are not always necessary. It can be
used to profi le a single application, or it can be used to profi le the entire system.

Profi ling on a Bare Metal System
Profi ling on a bare metal system is slightly more complicated because often there isn’t an operating
system running that enables OS interrupts. There are, however, other options.

Hardware Profi ler
As shown in the previous chapter, you can connect hardware devices to development boards for
debugging. Some of these devices use the same interface for more advanced functions, including
profi ling.

Hardware profi lers are more accurate than software profi lers and have the advantage of not
modifying code. The company Segger (http://www.segger.com) develops JTAG emulators for
ARM systems, called the J-Link, which can be used to profi le applications. Lauterbach Trace32
systems also have advanced profi ling solutions. The DS-5 debugger from ARM is also a professional
solution, offering advanced features.

Some manufacturers provide debugging interfaces directly onto evaluation boards, something that is
important for the fi rst steps of development.

For example, Silicon Labs provides evaluation boards equipped with J-Link technology. These
boards not only give information about the routines being run, but they also correlate the amount
of energy that each routine uses. Because Silicon Labs EFM32 series are heavily focused on energy
effi ciency, its tools also show some advanced statistics on energy usage. For example, when profi ling
an application, you can tell not only how often a particular routine is called, but also the amount of
energy that it uses. This greatly helps specifi c profi ling; optimization will not only be for the amount
of time a routine takes, but also the amount of energy, which is an embedded engineer’s biggest
dilemma. This solution provides the tools required to fully understand what portions of code require
optimization, and what type.

Silicon Labs energyAware Profi ler shows a real-time graph of power consumption, and with all the
points of interest. It is possible to see that IRQ awoke the microcontroller, the event that returned it
to sleep mode, the functions run, and the amount of CPU time for each routine. Of course, there is
also an external debug port if you want to use your own tools.

GPIO Output
Another technique that you can use to profi le specifi c functions is an available GPIO line. With the
help of an oscilloscope, it is easy to see exactly how much time a routine takes.

For example, imagine an interrupt function on a Cortex-M microcontroller. Some Cortex-M devices
have fast I/O capable of switching in two cycles or less. This is perfect for such a routine. At the
beginning of the interrupt, set the I/O to a logical 1. At the end of the routine, switch the I/O back
to a logical 0. On the oscilloscope, set a trigger on the output, and you can see exactly how long
each routine or each specifi c event takes. You aren’t tied to an entire routine, but just about any
section of code.

c10.indd 178c10.indd 178 03-12-2013 12:13:5003-12-2013 12:13:50

http://www.segger.com

Profi ling ❘ 179

Cycle Counter
Some ARM cores have a Performance Monitor Unit, a small unit that can be programmed to gather
statistics on the operation of the processor and memory system. In this case, you can use it to
calculate the number of cycles a portion of code takes.

You can access the Performance Monitor Unit through the CP15 coprocessor, which is available
on select cores. Because you access it through CP15, it requires system privileges, and thus can be
programmed only by the kernel or through privileged code. By default, the counters are disabled.
First, user-mode access to the performance counter must be enabled.

 /* enable user-mode access to the performance counter*/
 asm ("MCR p15, 0, %0, C9, C14, 0\n\t" :: "r"(1));

When this command is issued, the cycle counter starts incrementing. The cycle counter can then be
read in user space, with a simple command:

static inline unsigned int get_cyclecount (void)
{
 unsigned int cycles;
 // Read CCNT Register
 asm volatile ("MRC p15, 0, %0, c9, c13, 0\t\n": "=r"(cycles));
 return cycles;
}

You can use this counter by comparing the number of cycles before and after the code section, or
reset it as required. Also, for long routines, it has a divider, which can increment once every 64
cycles.

static inline void init_perfcounters (int32_t do_reset, int32_t enable_divider)
{
 // in general enable all counters (including cycle counter)
 int32_t value = 1;

 // peform reset:
 if (do_reset)
 {
 value |= 2; // reset all counters to zero.
 value |= 4; // reset cycle counter to zero.
 }

 if (enable_divider)
 value |= 8; // enable "by 64" divider for CCNT.

 value |= 16;

 // program the performance-counter control-register:
 asm volatile ("MCR p15, 0, %0, c9, c12, 0\t\n" :: "r"(value));

 // enable all counters:
 asm volatile ("MCR p15, 0, %0, c9, c12, 1\t\n" :: "r"(0x8000000f));

 // clear overflows:
 asm volatile ("MCR p15, 0, %0, c9, c12, 3\t\n" :: "r"(0x8000000f));
}

c10.indd 179c10.indd 179 03-12-2013 12:13:5003-12-2013 12:13:50

180 ❘ CHAPTER 10 WRITING OPTIMIZED C

C OPTIMIZATIONS

Although assembly language gives you full control over the processor, it isn’t practical to write large
portions of software in assembly. For embedded projects, most engineers prefer C. C is portable,
is much easier to write and maintain than assembly, and yet can still make highly optimized code.
However, again, there is a difference between application development and embedded development.
There are a few rules to follow, and to fully understand what is going on, you need to know about
what the compiler is doing and the assembly it generates.

Basic Example
Sta rt with a simple program.

void loopit(void)
{
 u16 i; //Internal variable
 iGlobal = 0; //Global variable

 //16 bit index incrementation
 for (i = 0; i < 16: i++)
 {
 iGlobal++;
 }
}

This is an extremely simple program; it creates a loop that runs 16 times, each time incrementing
a global variable. The code was compiled, transferred, and then run with a debugger capable
of advanced performance monitoring. The application code comes in at 24 bytes, and on an
ARM926EJ-S evaluation board, it runs in 138 μs. Most people would think that is great, but
embedded engineers go pale with this. There is nothing strictly wrong with the code; it is perfectly
good C code, highly maintainable, but there are things that can be done to make it run faster. ARM
systems, and indeed a lot of systems, actually do better when they count down to zero. The reason
is simple; every time the processor makes a calculation, the processor automatically compares it to
zero and sets a processor fl ag. On this platform, the bit in question is Z in the CPSR register. At
the end of each loop, i is compared to an integer. If you decreased to zero, you could add a jump
condition if Z is true, saving cycles. So, make a quick change, and count down to zero:

void loopit(void)
{
 u16 i; //Internal variable

 //16 bit index decrementation

 for (i = 16; i != 0: i--)
 {
 iGlobal++;
 }
}

The size of the code remains unchanged; you are still at 24 bytes, but the execution time is faster,
124 μs. That is a bit of a speed gain, but there is still a lot you can do. The code uses a variable that

c10.indd 180c10.indd 180 03-12-2013 12:13:5003-12-2013 12:13:50

C Optimizations ❘ 181

is 16 bits long, presumably to save space. The loop can loop only 16 times, so why bother having
a 32-bit variable? 16 should do. Actually, it does, but it isn’t always a good idea. This particular
ARM core is 32-bit native, and using 16-bit values takes up valuable processor power because the
processor has to convert a 16-bit variable to 32 bits, work with it, and then retransform it to 16 bits.
Working with the native size can help. So turn that into a 32-bit variable:

void loopit(void)
{
 u32 i; //Internal variable
 iGlobal = 0; //Global variable

 //32 bit index decrementation
 for (i = 16; i != 0: i--)
 {
 iGlobal++;
 }
}

Now, when debugging, you notice something. The size has gone down to 20 bytes because there are
fewer instructions needed. Execution time has also gone down to 115 μs, again, because there are
fewer instructions to execute. The joys of optimizing! But you aren’t done yet. That global variable
is a nightmare; every time you loop, the processor needs to access the RAM to change a variable,
and that uses up valuable time. So, now defi ne a variable, keep it local, and at the end of the loop,
copy it back to the global variable:

void loopit(void)
{
 u32 i; //Internal variable
 u32 j;
 iGlobal = 0; //Global variable

 //32 bit index decrementation
 for (i = 16; i != 0: i--)
 {
 j++;
 }
 iGlobal = j; //Copy the local variable's value to the global variable
}

You haven’t done a lot here; all you have done is to declare a new variable and use that for the loop
instead. Again, there is no size change; there are new codes for accessing a register, but you don’t
have the codes to access RAM. Because the variable is now in a register, it is a considerable speed
boost; the execution time is now down to 52 μs. But you can still do better. The loop creates a lot of
overhead, and where possible, unrolling a loop can help:

void loopit(void)
{
 u32 i; //Internal variable
 u32 j;
 iGlobal = 0; //Global variable

 //32 bit index decrementation
 for (i = 4; i != 0: i--)

c10.indd 181c10.indd 181 03-12-2013 12:13:5003-12-2013 12:13:50

182 ❘ CHAPTER 10 WRITING OPTIMIZED C

 {
 j++; j++; j++; j++;
 }
 iGlobal = j; //Copy the local variable's value to the global variable
}

This time, you loop only 4 times, instead of 12, and doing 4 times the work inside the loop. This
might sound strange, but this saves considerable overhead time; looping and forking take up
valuable cycles. With this new routine, the size has gone up slightly to 22 bytes, but the execution
time is down to 26 μs. There wasn’t anything wrong with the code, but there are always ways to
optimize, and time should be taken for code optimization, especially on embedded systems. That
isn’t an excuse for not being careful on powerful platforms; just because processors go faster and
faster, it isn’t a reason to use up valuable cycles.

In total, optimization saved 112μs, a reduction of 81 percent. However, to achieve this result,
several optimization cycles were performed. The code was profi led, then optimized, and then
tested, repeating the cycle. Optimization can be a long procedure, testing multiple theories, possibly
keeping the results, or reverting to the previous confi guration. The cycle is illustrated in Figure 10-1.

FIGURE 10-1: Optimization cycle

Optimize?
Optimize

Code

for (i=0; i<16; i++)
 {
 ...
 }
 ...

Test Profile

keep?

Count Down, Not Up
It’s common to see code counting up, but as far as the processor is concerned, it is faster to count
down to zero. To fully understand why, you need to look at the assembly code.

When you start the for loop, you initialize one of the registers to zero. Then you do the calculation,
or break to another portion of code. At this point, increment the register. Compare the register to
another number, and this takes up one cycle. If the result is lower, return to the beginning of the loop.

c10.indd 182c10.indd 182 03-12-2013 12:13:5003-12-2013 12:13:50

C Optimizations ❘ 183

 MOV r0, 0 @The amount of loops we have done
loop:

 [...]

 ADD r0, r0, #1 @ Add one
 CMP r0, #15
 BLE loop

If you start at a certain number and count down to zero, things are slightly different. Initialize one
of the registers to the number you want. Then, again, do the calculation or break to another portion
of code. Here, you can decrement the register and force a status update. In the previous code, you
would have compared the register to another number, but you don’t need to here. The CPSR would
have been updated, so instead of comparing, you can simply Branch if Not Equal.

 MOV r0, 16 @The amount of loops left to do
loop:

 [...]

 SUBS r0, r0, #1 @ Subtract one
 BNE loop

As you can see, you no longer have the CMP instruction. You have just saved a cycle per iteration.
Not the most drastic speed-up possible, but if a routine has to loop thousands of times, it starts to
build up.

Integers
Integers are a vi tal part of any development. Processors were designed to handle integers, not
fl oating point or any other type of numeral. Ever since their introduction, special instructions or
coprocessors for handling fl oating point numbers have been added on select cores, but despite
optimization and engineering, they take longer to execute than integer arithmetic. You invariably
use integers for standard calculation.

Most integer operations can be done in just a few cycles, with one notable exception, division,
discussed in the next section. Generally, always use integers that are the same width as the system
bus to avoid unwanted calculations later. Although a u16 might be all you need to hold in the data,
if the variable is heavily used on a 32-bit system, making it a u32 can speed things up. When reading
in a u16, the processor invariably reads in a u32 and then does some operations to transform it into
a u16, which costs cycles.

Also, if you know that your variable can handle only positive numbers, make it unsigned. Most
processors can handle unsigned integer arithmetic considerably faster than signed. (This is also good
practice and helps make for self-documenting code.) Always try to make your code use integers. If
you need two decimal places, multiply your fi gures by 100 instead of using a fl oating point.

Division
In the early days of ARM processors, ARM studied the needs for their processor carefully, and
made a choice to not integrate a hardware division unit. This made the processor simpler, cheaper,

c10.indd 183c10.indd 183 03-12-2013 12:13:5003-12-2013 12:13:50

184 ❘ CHAPTER 10 WRITING OPTIMIZED C

and faster. Divisions were not all too common, and the divisions that were required could still be
performed in software using highly optimized routines.

Division is complicated and requires a substantial number of transistors to be performed quickly.
Some ARM processors have hardware division integrated, but some do not. Hardware division
(present on Cortex-M3, Cortex-M4, and Cortex-A15/Cortex-A7 cores to name but a few) takes
between 2 and 12 cycles.

General rule: If you can avoid dividing, avoid it. A 32-bit division in software can take up to (and in
some cases more than) 120 cycles.

Sometimes you can get away with multiplying instead of dividing, especially when comparing.
(a / b) > c can sometimes be rewritten as a > (c * b).

You can use shifting, although not technically dividing, as division. Where possible, the compiler
attempts to shift rather than divide, but that works only for few cases. If the compiler cannot shift,
it falls back to software routines for division.

Knowing what is required is essential to optimization. For example, if a program often divides by
10, you can write a small function that multiplies a number by 3277 and then divides the result by
32768.

add r1, r0, r0, lsl #1
add r0, r0, r1, lsl #2
add r0, r0, r1, lsl #6
add r0, r0, r1, lsl #10
mov r0, r0, lsr #15

This function does have a limited range, and care must be taken to ensure that the multiplication
does not overfl ow. In some cases this can also be an approximation, not an exact result, but it is an
example of what you can do by carefully rethinking routines to change them into shifts. In certain
circumstances, when the maximum value of a variable is known, dividing in this fashion can save
cycles.

Don’t Use Too Many Paramet ers
When writing C code, some developers are tempted to use large functions with multiple parameters.
Some coding conventions call for small routines to be used, no longer than a printed page in length,
but go into little detail about the parameters.

When you call a function in C, generally this is translated as a branch in assembly. The standard
ARM calling convention dictates that parameters are passed by placing the parameter values into
registers r0 through r3 before calling the subroutine. This means that a C routine typically uses
up to four 32-bit integers as parameters, and any other parameters will be put onto the stack.
You could just use higher registers, putting parameters into r4, r5, and so on, but at some point,
something must be decided, and ARM chose this to be its calling convention. If you design a small
assembly program, you can do anything you want, but a compiler sticks to the rules to simplify
things.

Compilers can be confi gured to use a certain number of registers before pushing further variables
onto the stack.

c10.indd 184c10.indd 184 03-12-2013 12:13:5003-12-2013 12:13:50

C Optimizations ❘ 185

The ARM calling convention states that r0 to r3 are used as parameters for functions (r0 is also
used as a return variable), and r4 to r12 are caller-save, meaning that a subroutine must not modify
the value on return. A subroutine may of course modify any registers, but on return, the contents
must have been restored. To do this, the subroutines must push the registers it needs to the stack and
then pop them on return.

Pointers, Not Objects
When a subroutine is called, the fi rst four parameters are passed as registers; all the others
are pushed onto the stack. If a parameter is too big, it is also pushed onto the stack. Calling a
subroutine by giving it a table of 64 integers can create considerably more overhead than giving it
one parameter, the address of the table. By giving our subroutine the address of the object, you no
longer need to push anything onto the stack, saving time and memory. The routine can then fetch
the data with the memory address, and it is quite possible that only a few elements are required, not
the entire table.

Don’t Frequently Update Sys tem Memory
In the previous example, you updated a global variable. When updating a global variable, or any
variable that is not enclosed in your subroutine, the processor must write that variable out to system
memory, waiting for the pipeline. In the best case, you get a cache hit, and the information will be
written fairly quickly, but some zones are non-cacheable, so the information needs to be written
out to system memory. Keeping a local variable in your subroutine means that in the best case, you
update a register, keeping things extremely fast. After your routine fi nishes, you can write that value
back out to system memory, incurring a pipeline delay only once.

Be careful when doing this, however, to make sure that you can keep a local copy in register
memory. Remember that an interrupt breaks the current process, and your interrupt might need the
real value. Also, in threaded applications, another thread may need the variable, in which case the
data needs to be protected before writing (and frequently before reading, too).

This is one of the optimizations that can drastically improve performance, but great care must be
taken.

Alignment
Alignment is vitally important in ARM-based systems. All ARM instructions must be aligned on a
32-bit boundary. NEON instructions are also 32-bits long, and must be aligned similarly. Thumb
instructions are different and can be aligned on a 16-bit boundary. If instructions are to be injected
from an external source (data cartridge, memory card, and so on), great care must be taken to put
the data in the right location, since misaligned instructions will be interpreted as an undefi ned
instruction.

Data alignment is a little different. Although it is advisable to use data that has the same width as
the system bus, sometimes this isn’t possible. Sometimes, data needs to be packed, such as hardware
addresses, network packets, and so on. ARM cores are good at fetching 32-bit values, but in a
packet structure, an integer could be on a boundary between two double words. In the best case,
this requires multiple instructions to fetch the memory and by using shifts, get the fi nal result. In the

c10.indd 185c10.indd 185 03-12-2013 12:13:5103-12-2013 12:13:51

186 ❘ CHAPTER 10 WRITING OPTIMIZED C

worst case, it can result in an alignment trap, when the CPU tries to perform a memory access on an
unaligned address.

ASSEMBLY OPTIMIZATIONS

When C optimizations are not enough, sometimes it is necessary to go a step further and look at
assembly. Normally the compiler will do an excellent job in translating C to assembly, but it cannot
know exactly what you want to do, and the scope of the action requested. Sometimes the compiler
needs a hand, and sometimes you have to write short routines.

Specialized Routines
C compilers have to take your functions and translate them into assembly, without knowing all
the possible use cases. For example, a multiplication routine might have to automatically take any
number (16-bit, 32-bit, or maybe even 64-bit) and multiply that with any other combination. The
list is endless. In most cases, there will be only a few use cases. For example, in an accounting
program, maybe the only division possible will be dividing by 100, converting a number in cents to
a number in dollars.

In embedded systems, it is often useful to create highly optimized routines for specifi c functions,
mainly mathematical operations. For example, a quick routine for multiplying a number by 10 could
be written as follows, taking only two cycles to complete.

MOV r1, r0, asl #3 ; Multiply r0 by 8
ADD r0, r1, r0, asl #1 ; Add r0 times 2 to the result

Don’t hesitate to create several routines like this in a helper fi le. In some cases, optimized libraries
are available for use.

Handling Interrupts
Interrupts are events that force the processor to stop its normal operation and respond to another
event. Interrupt handlers should be designed to be as fast as possible, signaling the interrupt to
the main program through a fl ag or system variable before returning to the main application. The
kernel (if available) can reschedule the applications to take into account an interrupt; if an interrupt
handler is given the task of calculation, or any other routine that takes a long time, other interrupts
might have to wait for the fi rst interrupt to fi nish, resulting in surprising results.

For critical interrupts, FIQ is available. FIQ has a higher priority than IRQ, and on ARMv7A/R
cores, the FIQ vector is at the end of the vector table, meaning that it is not necessary to jump to
another portion of memory. The advantage is that this saves a branch instruction and also saves a
potential memory reread. On most systems, the memory located at 0x00000000 is internal memory
and doesn’t suffer from the same latency as external memory.

Interrupt Handling Schemes
There are several ways to handle interrupt, all depending on the project. Each has its own advantage
and disadvantage, and choosing the right scheme is important for any project.

c10.indd 186c10.indd 186 03-12-2013 12:13:5103-12-2013 12:13:51

Hardware Confi guration Optimizations ❘ 187

 ➤ A non-nested interrupt handler handles interrupts sequentially.

 ➤ A nested interrupt handler handles multiple interrupts, last in fi rst out.

 ➤ A re-entrant interrupt handler handles multiple interrupts and prioritizes them.

On a system with few interrupts, a non-nested handler is often enough and can be easily made to be
extremely fast. Other projects handling lots of interrupts may need a nested handler, and projects
with interrupts coming from multiple sources might require a re-entrant interrupt handler.

Non-Nested Interrupt Handler
The simplest interrupt handler is the non-nested interrupt handler. When entering this handler, all
interrupts are disabled, and then the interrupt handler handles the incoming request. When the
interrupt handler has completed its task, interrupts are re-enabled, and control is returned to the
main application.

Nested Interrupt Handler
The nested interrupt handler is an improvement over the non-nested handler; it re-enables interrupts
before the handler has fully serviced the current interrupt. Mainly used on real-time systems, this
handler adds complexity to a project but also increases performance. The downside is that the
complexity of this handler can introduce timing problems that can be diffi cult to trace, but with
careful planning and by protection context restoration, this handler can handle a large amount of
interrupts.

Re-Entrant Interrupt Handler
The main difference between a re-entrant interrupt handler and a nested interrupt handler is that
interrupts are re-enabled early on, reducing interrupt latency. This type of handler requires extra
care because all the code will be executed in a specifi c mode (usually SVC). The advantage of using a
different mode is that the interrupt stack is not used and, therefore, will not overfl ow.

A re-entrant interrupt handler must save the IRQ state, switch processor modes, and save the state
for the new processor mode before branching.

HARDWARE CONFIGURATION OPTIMIZATIONS

Far from the software side of a project, it is often important to confi gure the processor at the lowest
level. These optimizations do not make the most out of coding rules or clever software techniques,
but rather confi gure the processor to make the most out of the hardware.

Frequency Scaling
In situations in which intensive calculation is required from time to time, frequency scaling routines
can be added to the software. When the processor needs to run at full speed, a system call can be made
to let the processor run at maximum speed, therefore accelerating executes speed at the expense of

c10.indd 187c10.indd 187 03-12-2013 12:13:5103-12-2013 12:13:51

188 ❘ CHAPTER 10 WRITING OPTIMIZED C

consuming more energy. When the calculation fi nishes, it can be put back to a slower speed, saving
energy while waiting for the next calculation.

Confi guring Cache
Cache can be one of the biggest boosts available on any processor. Before the invention of cache
memory, computer systems were simple. The processor asked for data in system memory and wrote
data to the system memory. When processors became faster and faster, more and more cycles were
wasted, waiting for system memory to respond to be able to continue, so a buffer was created
between the processor and the system memory. Embedded systems especially, with price constraints,
can often have slow system memory.

Cache, put simply, is a buffer between the processor and the external memory. Memory fetches can
take a long time, so processors can take advantage of cache to read in sections of system memory
into cache, where data access is quicker.

Cache isn’t simply about buffering memory between the system memory and the processor; it is
sometimes the other way around, buffering between the processor and the system memory. This
is where things become complicated. Sooner or later, that data must be written back to system
memory, but when? There are two write policies: write-though and write-back. In a write-through
cache, every write to the cache results in a write to main memory. In write-back, the cache is kept
but marked as “dirty”; it will be written out to system memory when the processor is available,
when the cache is evicted, or when the data memory is again read. For this reason, write-back can
result in two system memory accesses: one to write the data to system memory and another one to
reread the system memory.

Cache is separated into cache lines, blocks of data. Each block of data has a fi xed size, and each
cache has a certain amount of cache lines available. The time taken to fetch one cache line from
memory (read latency) matters because the CPU will run out of things to do while waiting for
the cache line. When a CPU reaches this state, it is called a stall. The proportion of accesses that
result in a cache hit is known as the hit rate and can be a measure of the effectiveness of the cache
for a given program or algorithm. Read misses delay execution because they require data to be
transferred from memory much more slowly than the cache itself. Write misses may occur without
such penalty because the processor can continue execution while data is copied to the main memory
in the background.

Instruction Cache
On modern ARM-cores with cache, instructions and memory are separated into two channels.
Because data memory might be changed frequently, and instruction memory should never be
changed, it simplifi es things if the two are separated. By activating instruction cache, the next time
the core fetches an instruction, the cache interface can fetch several instructions and make them
available in cache memory.

Setting the I-Cache is done via the CP15 system coprocessor and should be active for most projects.

mrc p15, 0, r0, c1, c0, 0
orr r0, r0, #0x00001000 @ set bit 12 (I) I-cache
mcr p15, 0, r0, c1, c0, 0

c10.indd 188c10.indd 188 03-12-2013 12:13:5103-12-2013 12:13:51

Hardware Confi guration Optimizations ❘ 189

Data Cache
Data cache is slightly more complicated. Data access may be accesses to read-sensitive or write-
sensitive peripherals, or to system components that change the system in some way. It isn’t safe
to enable global data cache because caching some of these devices could result in disastrous side
effects.

When the MMU is confi gured, it can be programmed to allow or deny access to specifi c regions of
memory; for example, it might be programmed to deny read accesses to a section of memory just
after a stack, resulting in an exception if there is a stack overfl ow.

For the D-Cache to be active, a table must be written to system memory, known as the translation
table. This table “describes” sections of memory and can tell the MMU which regions of memory
are to be accessible—and if they are accessible, what cache strategy should be put in place.

The ARM MMU supports entries in the translation tables, which can represent either an entire
1 MB (section), 64 KB (large page), 4 KB (small page), or 1 KB (tiny page) of virtual memory.
To provide fl exibility the translation tables are multilevel; there is a single top-level table that
divides the address space into 1 MB sections, and each entry in that table can either describe a
corresponding area of physical memory or provide a pointer to a second level table.

The ARM MMU design is well designed because it enables mixing of page sizes. It isn’t necessary
to divide the system memory into 1-KB blocks; otherwise, the table would be massive. Instead, it
is possible to divide memory only when required, and it is indeed possible to use only sections if
required.

The translation table enables some system optimization, but care must be taken with the translation
table. When the hardware performs a translation table walk, it has to access physical memory,
which can be slow. Fortunately, the MMU has its own dedicated cache, known as the translation
lookaside buffer (TLB). However, this cache can contain only a certain amount of lines before
having to reread system memory. If the translation table is complicated, it is sometimes worth
putting this table into internal memory (if space is available).

Locking Cache Lines
You can make a few tweaks to cache confi gurations to optimize system performance.

Consider an application where IRQ latency is critical. When an IRQ arrives, it must be dealt with as
soon as possible. If the IRQ handler is no longer present in cache memory, it is necessary to reread a
cache line containing the IRQ handler before executing, something that can take a certain amount
of cycles to complete. It is possible to “lock” a cache line, to tell the hardware to never replace that
cache line, and to always keep it ready if needed. For an IRQ handler, this might be an option if no
faster system memory is available, but it comes at a price; by doing so, there is less cache available
for the rest of the application.

Use Thumb
As seen in Chapter 6, Thumb instructions are 16-bits long. Thumb-2 adds some 32-bit instructions,
but even with those instructions Thumb instruction density is higher than with ARM instructions.

c10.indd 189c10.indd 189 03-12-2013 12:13:5103-12-2013 12:13:51

190 ❘ CHAPTER 10 WRITING OPTIMIZED C

For this reason, if a portion of code needs to remain in cache, it is sometimes worth coding in
Thumb. Because Thumb code is denser, more instructions can be placed in the same cache size,
which makes Thumb code often more cache effi cient.

SUMMARY

In this chapter, you realized the importance of profi ling your code to see which portions of
code require optimization, and some of the different techniques used. You also saw some of the
possibilities for optimizing code, both in C and in assembly, and just a few techniques to boost the
processing capacities with software and hardware techniques.

c10.indd 190c10.indd 190 03-12-2013 12:13:5103-12-2013 12:13:51

PART II
Reference

 ➤ APPENDIX A: Terminology

 ➤ APPENDIX B: ARM Architecture Versions

 ➤ APPENDIX C: ARM Core Versions

 ➤ APPENDIX D: NEON Intrinsics and Instructions

 ➤ APPENDIX E: Assembly Instructions

bapp01.indd 191bapp01.indd 191 03-12-2013 11:55:5703-12-2013 11:55:57

bapp01.indd 192bapp01.indd 192 03-12-2013 11:55:5903-12-2013 11:55:59

Terminology
When studying embedded systems, and reading through technical documentation, there are a
lot of terms that, at fi rst, make no sense. A processor might be capable of obtaining a certain
amount of MIPS, or maybe it supports JTAG debugging, or even support SIMD, but what
exactly does that mean? In this appendix, you will see some of the most common terms and an
explanation of each.

BRANCH PREDICTION

During a branch operation, when branching to a new portion of code, there can be a
 performance hit while the processor gets new instructions from another portion of memory.
To reduce this performance hit, branch prediction hardware is included in some ARM
 implementations, fetching instructions from memory according to what the branch predictor
thinks will be the result. Newer branch prediction hardware can obtain 95 percent accuracy,
greatly increasing branch performance. Some branch prediction hardware can obtain a 100
percent accuracy by speculatively executing both branch results, and discarding one of the
two when the result is known.

 CACHE

When memory became cheaper and systems started using more of it, it became clear that too
much time was spent fetching data from the memory or putting data back into the memory.
Analysis showed that most of the time the system would read in data from the spatial locality;
in essence, if an access is made to a particular location in memory, there is a high probability
that other accesses will be made to either that or neighboring locations within the lifetime of a
program. To speed up the process, a cache was put in place.

A CPU cache is a faster form of memory used to reduce the average time to access memory.
The cache is much smaller, but much faster than the system memory, and can store copies

A

bapp01.indd 193bapp01.indd 193 03-12-2013 11:55:5903-12-2013 11:55:59

194 ❘ APPENDIX A TERMINOLOGY

of the system memory. When the CPU requests data, if it is present in the cache, the CPU fetches
it directly from cache, resulting in much faster access times. Modifi ed cache, known as Dirty
Data, is written back to memory when the cache space is required for new data, or during explicit
 maintenance operations.

All application-class ARM processors since ARM9 have had a Harvard cache architecture, where
instruction cache and data cache are separated. Most Cortex-A processors support a two-level cache
architecture in which the most common confi guration is a pair of separate L1 caches, backed by a
unifi ed L2 cache.

Cache Hit
Memory was requested from the processor and found in cache. This is known as a cache hit, and
access to system memory is not required.

Cache Line
Instead of reading single words from memory, data is transferred between memory and cache in
blocks of fi xed sizes, called cache lines. The requested memory is written or read, including some
memory located surrounding the requested memory block, because it is highly likely that data
located near this location will be used in the near future.

Cache Miss
Memory was requested from the processor and was not found in cache. This is known as a cache
miss — the processor must now access system memory before the operation can be completed.

C OPROCESSORS

In the early days of ARM, cores supported a coprocessor architecture. Although ARM processors
do not have any instructions similar to Intel’s x86 CPUID commands, ARM chips enable up to
16 coprocessors to be connected to a core. The ARM architecture provided an elegant way to
extend the instruction set using “coprocessors” — a command that is not recognized by the ARM
core is sent to each coprocessor until one of them accepts the instruction. Coprocessors are a way
for designers to add extended functionality without the need to heavily modify an ARM core. By
 keeping the power and the simplicity of an ARM core, a designer can add a coprocessor to handle
things that the ARM core was not designed to do. For example, Xscale processors have a DSP
coprocessor and advanced interrupt handling functions directly on a coprocessor, and virtually any
integrator could integrate an HD video decoder.

The last ARM core to support the coprocessor architecture was the ARM1176. Today, the ARM
architecture still defi nes the coprocessor instruction set, and uses “coprocessor instructions,”
but the coprocessor architecture no longer exists. Confi guration, debug, trace, VFP, and NEON
 instructions still exist, but they do not have any external hardware associated with what they
do — all the functions are now internal.

bapp01.indd 194bapp01.indd 194 03-12-2013 11:56:0003-12-2013 11:56:00

Exception ❘ 195

CP10

CP10 defi nes coprocessor instructions for Vector Floating Point (VFP).

CP11

CP11 defi nes coprocessor instructions for NEON. NEON is an extension of the original SIMD
instruction set, and is often referred to as the Advanced SIMD Extensions.

CP14

CP14 defi nes coprocessor instructions for the debug unit. These features assist the development of
application software, operating systems, systems, and hardware. It enables stopping program execu-
tion, examining and altering processor and coprocessor states, altering memory and peripheral
state, and restarting the processor core.

CP15

CP15 is a special coprocessor, designed for memory and cache management, designated as the sys-
tem control coprocessor. CP15 is used to confi gure the MMU, TCM, cache, cache debug access,
and system performance data. Each ARM processor can have up to 16 coprocessors, named CP0 to
CP15, and CP15 is reserved by ARM.

CYCL E

Each CPU has a frequency, in Hertz. The Hertz is a unit of frequency, defi ned as the number of
cycles per second of a periodic phenomenon. A processor’s clock is, basically, a repeating signal
from a logical 0 to a logical 1, and then back again to a logical 0, millions of times a second. A
“cycle” is activated every time the signal goes from a logical 0 to a logical 1. In an 800 MHz pro-
cessor, or a processor running at 800,000,000 Hz, there are 800 million cycles a second. Different
operations require a different number of cycles to complete. Although some instructions may take
only one cycle to complete, access to memory subsystems can sometimes take thousands — if not
tens of thousands — of cycles. Also, some processors can do several things in one cycle; although
one part of the CPU is busy executing an instruction, another is already busy fetching the next
instruction.

EXCEPTION

An exception is a condition that is triggered when normal program fl ow is interrupted, either by an
internal or external event. It can be caused by attempting to read protected memory (or a memory
section that does not exist) or when dividing by zero. When an exception occurs, normal execution
is halted, and the Program Counter is placed onto the relevant exception handler for execution.

bapp01.indd 195bapp01.indd 195 03-12-2013 11:56:0003-12-2013 11:56:00

196 ❘ APPENDIX A TERMINOLOGY

INTERRUPT

An interrupt is an internal or external signal to the application, informing the processor that some-
thing requires its attention. There are several types of interrupts: normal interrupts, fast interrupts,
and software interrupts. They are called interrupts because of their impact on the processor, which
has to “interrupt” its execution sequence to service the interrupt. This is done by an interrupt
handler.

JAZELLE

Jazelle was originally designed to enable Java bytecode execution directly by the processor, imple-
mented as a third execution state alongside ARM and Thumb-mode. Support for Jazelle is indi-
cated by the letter J in the processor name (for example, the ARM926EJ-S), and is a requirement
for ARMv6; however, newer devices include only a trivial implementation. With the advances in
processor speeds and performance, Jazelle has been deprecated and should not be used for new
applications.

JTAG

Short for Joint Test Action Group, it is the common name for the IEEE 1149.1 test access port and
boundary scan architecture. Although originally devised by electronic engineers as a way of testing
printed circuit boards using boundary scans, today it is used to debug embedded systems. Several
JTAG probes exist, enabling programmers to take control of processors and to help debugging and
performance checking.

MIPS

Sh ort for Million Instructions per Second, MIPS was an early attempt at benchmarking. A one
Megahertz processor, executing one instruction per clock, is a 1 MIPS processor. However, not
every instruction is executed in a single clock, far from it. The Intel 4004, the fi rst single-chip CPU,
was benchmarked at 0.07 MIPS.

MIPS was a popular benchmarking method until processors arrived at a speed of more than 1 GHz,
where MIPS no longer had any real meaning. Because single instructions carry out varying amounts
of work, the idea of comparing computers by numbers of instructions became obsolete. Today, the
Dhrystone benchmark, while dated, is often quoted in benchmark results. To accurately estimate a
processor’s speed, a variety of benchmarks are used.

NEON

NEON is an extension of the original SIMD instruction set, and is often referred to as the Advanced
SIMD Extensions. It extends the SIMD concept by adding instructions that work on 64-bit registers
(D for double word) and 128-bit registers (Q for quad word).

bapp01.indd 196bapp01.indd 196 03-12-2013 11:56:0003-12-2013 11:56:00

Synthesizable ❘ 197

OUT-OF-ORDER EXECUTION

Processors with out-of-order Execution can reorganize the order of instructions inside the pipeline
to optimize effi ciency, avoiding pipeline stalls. When an instruction creates a stall situation, the
pipeline may attempt to execute another instruction that does not depend on an imminent result,
even if it is later on in the pipeline.

PIPELINE

To accelerate instruction throughput, pipelines were introduced. Instead of the processor working
on a single instruction, fetching, and writing data as required, these steps are part of a pipeline. A
pipeline is composed of several stages, and each stage is responsible for one specifi c action: fetch,
decode, execute, data write, and so on. An instruction makes its way through the pipeline, passing
through each stage. On each clock cycle, each stage is run; while one instruction is being decoded,
another is being executed, and so on.

REGISTER

A register is a small amount of storage available directly inside the CPU. When doing calculations,
operations are done directly into registers only; an ARM CPU will not write results directly into sys-
tem memory. To complete an operation, memory must be read into a register. Then after the calcula-
tion is completed, the register will be written back to system memory.

Registers are the fastest of all memories, capable of being read and written in a processor single cycle.

SIMD

Short for Single Instruction Multiple Data, these instructions can operate on several items packed
into registers, which is useful for multimedia applications where the same mathematical operations
must be performed on large data segments. This has since been augmented by NEON.

SOC

System on a Chip designates a computer chip containing a processor core and all the required exter-
nal devices embedded directly onto the same microchip. They tend to have built-in memory, input
and output peripherals, and sometimes graphics engines, but often require external devices to be
effective (especially fl ash and memory).

SYNTHESIZABLE

ARM cores are available in two formats: hard die, where the physical layout of the ARM core
is defi ned, and peripherals are added to the existing form, or as synthesizable, where the ARM
core is delivered as a Verilog program. In this form, device manufacturers can perform custom

bapp01.indd 197bapp01.indd 197 03-12-2013 11:56:0003-12-2013 11:56:00

198 ❘ APPENDIX A TERMINOLOGY

modifi cations, tweaking the design to obtain higher clock speeds, optimizations for size, or low
power consumption.

TRUSTZONE

TrustZone is a security extension for select ARM processors, providing two virtual processors
backed by hardware-based access control. The application core can switch between the two states
(referred to as worlds), to prevent data being leaked from one world to another. TrustZone is typi-
cally used to run a rich operating system in a less trusted world, and more specialized security code
(for example, DRM management) in the more trusted world.

VECTOR T ABLES

A vector table is a place in memory containing responses to exceptions. On ARMv7-AR, it is eight
words long, containing simple jump instructions. On ARMv7-M, it is much larger and doesn’t con-
tain instructions, only memory locations. Put simply, it contains pointers to where the real code lies.
For example, when an ARMv7-AR CPU receives an interrupt, an exception is made, setting the PC
to a specifi c location, somewhere in the vector table. This instruction makes the processor jump to
the area of code that is responsible for handling that particular exception. It is your job to correctly
populate the vector table and to make sure that the vectors are correct.

bapp01.indd 198bapp01.indd 198 03-12-2013 11:56:0003-12-2013 11:56:00

ARM Architecture Versions
ARM architecture versions are often a source of confusion. ARM architecture versions
(designs) are written as ARMv, whereas ARM cores (the CPU) are written as ARM. Also,
ARM cores do not always have the same fi rst number as their architecture. The ARM940T
is based on the ARMv4 architecture, whereas the ARM926EJ-S is based on the ARMv5
architecture. The following table lists the different ARM Architectures and their associated
families.

ARCHITECTURE FAMILY

ARMv1 ARM1

ARMv2 ARM2, ARM3

ARMv3 ARM6, ARM7

ARMv4 StrongARM, ARM7TDMI, ARM8, ARM9TDMI

ARMv5 ARM7EJ, ARM9E, ARM10E, XScale

ARMv6 ARM11

ARMv6-M Cortex-M0, Cortex-M0+, Cortex-M1

ARMv7-A Cortex-A5, Cortex-A7, Cortex-A8, Cortex-A9, Cortex-A12, Cortex-A15

ARMv7-R Cortex-R4, Cortex-R5, Cortex-R7

ARMv7-M Cortex-M3

ARMv7E-M Cortex-M4

ARMv8-A Cortex-A53, Cortex-A57

B

bapp02.indd 199bapp02.indd 199 03-12-2013 11:56:2703-12-2013 11:56:27

200 ❘ APPENDIX B ARM ARCHITECTURE VERSIONS

ARMV1

The fi rst ARM processor was created April 26, 1985. It was targeted as a coprocessor for the BBC
Micro, one of Acorn’s best-selling computers. Only a few hundred were ever made. It was originally
designed to help Acorn work on the ARM2 processor but was sold to third-party developers to
accustom them to the new architecture. You can imagine the thrill of using an 8-bit CPU running
with a 32-bit coprocessor.

The ARM1 was a revolution for its time; it was a fully functional 32-bit processor with 26-bit
addressing. It had 16 general-purpose 32-bit registers, all instructions were 32-bit, and the instruc-
tion set was orthogonal, meaning that the instructions were not tied to any particular register. This
was contrary to the 6502, which had LDA and LDX instructions and loaded only one particular
register. Acorn’s philosophy, from the start, was simplicity.

AR MV2

Following on the success of the ARM1, Acorn started work on the ARM2. Less than a year after
the release of ARM1, ARM2 became the fi rst commercially available RISC processor. The ARM2
was also based on the second version of the ARM architecture, called ARMv2.

The major weak point for ARM1 was the lack of hardware multiplication support. Multiplication
was done in software using shifts and additions, but the general effect was considered to be
“horribly slow.” ARMv2 fi xed this, adding two instructions: MUL and MLA.

Another weakness of the ARMv1 structure was the lack of fl oating-point hardware. Acorn decided
to address this problem by adding hardware support for coprocessors and intended to develop and
deliver a fl oating-point coprocessor at a later date.

Another change was in the Fast Interrupt controller. Two new registers were added. Instead of
 banking registers R10 to R15, R8 and R9 were added to the list, increasing performance by
 reducing memory access to the stack.

ARM3, still based on the ARMv2 architecture, was released in 1989. The clock speed was increased
to 25MHz, giving a performance of approximately 13 MIPS (compared to the 4 MIPS of ARM2). It
contained approximately 300,000 transistors.

The ARM3 was the fi rst ARM processor to use cache. ARM elected to use a fairly simple caching
model: a 64-way set-associative cache with random write through a replacement method and
128-bit cache lines. Alterations were made to the coprocessor interface to support this, and the
cache system was designated coprocessor zero.

AR MV3

This was the period where ARM spun itself away from Acorn. Thus, for some reason, there was no
ARM4 or ARM5.

ARM6 introduced 32-bit addressing support, while still retaining compatibility to the previous
26-bit mode. Two new processor modes were added for handling memory fetch errors and undefi ned

bapp02.indd 200bapp02.indd 200 03-12-2013 11:56:2903-12-2013 11:56:29

ARMv5 ❘ 201

instructions, and two new registers were added: the Current Processor State Register (CPSR) and
the Stored Processor State Register (SPSR). This now enabled ARM cores to use virtual memory
without the need for previous, tedious tasks.

ARM6 was clocked at 20, 30, and 33 MHz and produced approximately 17, 26, and 28 MIPS aver-
age, respectively. It was also power-effi cient, enabling a low (for the time) 3.3 v core voltage. This
was the beginning for mobile embedded systems because the fi rst product to use an ARM6 was the
Apple Newton MessagePad.

ARM7 continued on the success of ARM6. The company, ARM Limited, was a huge success and
added more features as the wider market requested them.

ARM7 doubled the size of the cache to 8 k and also doubled the size of the translation look-aside
buffer. These changes increased performance over ARM6 by 40 percent.

ARM7 also introduced an extended instruction set which, quite logically for an ARM extension,
has been named Thumb. Thumb is a second 16-bit instruction set, allowing (theoretically) programs
to be one-half of their memory size. However, by using only eight registers, and a lack of conditional
execution support, it ran slower but was a response to other embedded 8-bit and 16-bit processors.

ARM7 also introduced hardware debugging. Previously, engineers had to rely on the software
ARMulator for debugging, but with the ARM7, on-chip debugging was possible. The target system
can be run as normal, but with external hardware and software, the developer can set breakpoints,
step through code, and examine registers and memory.

ARM7 also included advanced multiplication; it included both 32-bit and 64-bit multiplication
and multiplication/accumulation, enabling ARM processors to be used in applications where DSPs
were more traditionally used. The advanced multiplication core was so successful that it was used in
ARM8, ARM9, and StrongARM processor cores.

AR MV4

ARM7-TDMI (Thumb + Debug + Multiplier + ICE) is an improvement of the original ARM7 core,
based on the ARMv4T architecture. It is capable of 130 MIPS and was one of the most widely used
cores for embedded systems. They were used on Apple iPods, Nintendo’s Game Boy Advance, and
most of the major mobile telephones.

ARM9-TDMI is a successor to the popular ARM7-TDMI, still using the ARMv4T architecture.
They have reduced heat production and clock frequency improvements, both at the cost of adding
more transistors. A lot of work was done on the ARM9, the pipeline was greatly improved, and
most instructions were executed in only one clock cycle.

ARM V5

The ARMv5 architecture, used in ARM9 and ARM10, introduced Jazelle DBX, or Direct Bytecode
Execution, enabling execution of Java bytecode in hardware. Aimed mainly at the mobile phone
market, Jazelle enabled Java ME applications and games to run faster by converting recognized
bytecodes into native ARM instructions. ARM claims that approximately 95 percent of bytecode in
typical programs ends up being directly processed in hardware.

bapp02.indd 201bapp02.indd 201 03-12-2013 11:56:2903-12-2013 11:56:29

202 ❘ APPENDIX B ARM ARCHITECTURE VERSIONS

The ARMv5 introduced saturating arithmetic instructions, enabling more intense calculations
without the risk of overfl ow. With four dedicated instructions, calculations can be made that,
when exceeding the maximum size of a 32-bit integer, set the overfl ow bit but return the maximum
allowed value (–231 or 231 –1).

The ARM926EJ-S, one of the most popular ARM cores, is based on the ARMv5 architecture.

ARMV6

In 2002, ARM started licensing the ARMv6 core, namely, the ARM11 family. The ARMv6
 architecture implemented Single Instruction, Multiple Data instructions (SIMD), heavily used in
the mobile telephone market for MPEG-4. The addition of SIMD instructions effectively doubled
MPEG-4 processing speed.

ARMv6 also solved some of the problems faced with data alignment; from then on, unaligned data
access and mixed-endian data access was supported.

The core pipeline was increased from a fi ve-stage pipeline to an eight-stage pipeline, increasing clock
speeds with expected speeds at 1 GHz.

ARMV6 -M

The ARMv6 architecture addressed the most demanding applications, but ARM was faced with a
problem. With more and more clients requiring higher clock speeds and more data crunching power,
it was clear that ARM was giving its customers everything they needed. However, some clients were
no longer interested in such a complex architecture and were looking for something more light-
weight, while still retaining all the advantages of ARM’s technological research. The ARMv6-M
architecture was created.

The ARMv6-M architecture introduced the Cortex-M core, designed for Microcontroller applica-
tions, and uses the Thumb subset. This microcontroller was much smaller than previous processors,
and addressed clients that needed ultralow-powered devices with a small footprint. NXP’s UM10415,
based on the Cortex M0, ran at 48 MHz and had 32 Kb of fl ash memory and 8 Kb of RAM. With 25
GPIO lines, a UART port, SPI and I2C controllers, it was designed for ultramobility. Its footprint was
7 mm by 7 mm.

The ARMv6-M architecture was designed for simplicity. Simplicity for the developer, who could
develop an entire embedded system from C without even touching assembly, but also simplicity
from an electronics point of view, vastly reducing power and heat. It no longer included the ARM
instruction set; it relied solely on Thumb-1 and Thumb-2 instructions. The pipeline was reduced to
a two-stage pipeline, slightly decreasing performance, but vastly decreasing power usage. Although
performance is lower on an ARMv6-M compared to an ARMv5, target devices did not need the
processing power delivered by ARM11 processors. Cortex M processors are designed for microcon-
troller applications, with advanced I/O capability, but reduced processing power.

bapp02.indd 202bapp02.indd 202 03-12-2013 11:56:2903-12-2013 11:56:29

ARMv8 ❘ 203

ARMV7-A /R

With the success of the ARMv6, and with the introduction of the new Cortex line, ARM introduced
the ARMv7. This subset of the architecture is used for Cortex-A and Cortex-R processors.
Cortex-M uses its own architecture subset.

ARMv7 includes optional virtualization technology, and for the processors that include this
(Cortex-A7 and Cortex-A15), hardware division is also supported.

ARMV7-M

The ARMv7-M architecture is derived from the ARMv7-AR but excludes all the functions that
the Cortex-M cannot use; it does not contain the ARM assembly language, but only Thumb and
Thumb-2. The ARMv6-M architecture was a huge success, and the v7-M architecture extended
the architecture to enable the full subset of Thumb and Thumb-2 to be used. It also added some-
thing that was missing: divide instructions. Processors based on the ARMv7-M architecture (the
Cortex-M3 and Cortex-M4) support hardware division, saturated math, and an accelerated hard-
ware multiplier.

ARMV8

T he ARMv8 architecture is a switch to 64-bit computing. Featuring the new A64 instruction
set, these 64-bit processors remain binary-compatible with 32-bit versions and can run 32-bit
 applications inside a 64-bit operating system. They also retain full compatibility with Thumb and
Thumb-2, easing new development.

Capable of addressing 64-bits of memory, they also have advanced features for cache management
and SIMD instructions, making them the ideal processors for demanding mobile applications, like
video editing and extreme multimedia. ARMv8 is also an excellent processor for server applications,
and numerous manufacturers are looking closely at this design to solve some of the age old problems
of server farms—heat, power consumption, and space requirements.

Today, there are two processor designs in ARMv8; the Cortex-A53 and the Cortex-A57. Both of
these designs can be used together using ARM’s big.LITTLE technology, and support up to 16 cores.

bapp02.indd 203bapp02.indd 203 03-12-2013 11:56:3003-12-2013 11:56:30

bapp02.indd 204bapp02.indd 204 03-12-2013 11:56:3003-12-2013 11:56:30

ARM Core Versions

Everything started with the ARM1, and ARM2 quickly fi xed or improved any weak points of
the ARM1. ARM3 was once again an internal chip, and no major projects used these chips.
ARM’s commercial success started with the ARM6 chip.

A RM6

ARM6 was based on the ARMv3 architecture and was the fi rst core to have full 32-bit
memory address space (previous cores were 26-bit). It ran at 5V and had 33,500 transistors.
The ARM60 was capable of 10 MIPS running at 12 MHz, but the later ARM600 was
capable of 28 MIPS running at 33 MHz. The ARM600 also included 4 KB of unifi ed
cache, something that was previously developed for the ARM3. A cheaper version was soon
delivered: the ARM610. Like its predecessor, it had 4 KB of cache but had no coprocessor bus
and was slightly less powerful (17 MIPS at 20 MHz).

Panasonic introduced the 3DO Interactive Multiplayer, a games console based on the ARM60
in 1993. The Apple Newton 100 series were powered with an ARM610 core, one of the fi rst
mobile devices using ARM cores.

A RM7

In 1993, ARM introduced the ARM700 processor, using the ARMv3 core. It doubled the
ARM6’s cache, to a full 8 KB of unifi ed cache. It was also the fi rst processor that could be
powered by a 3.3V supply. Its performance improvement was between 50 and 100 percent,
and the 3.3V version also used one-half the power of a 5V ARM6. ARM worked hard on the
power consumption of the ARM7, using 0.8μm CMOS technology instead of 1μm CMOS
technology. ARM7 was ARM’s push into the mobile sector and was extremely well received.

C

bapp03.indd 205bapp03.indd 205 03-12-2013 11:57:0303-12-2013 11:57:03

206 ❘ APPENDIX C ARM CORE VERSIONS

ARM 7TDMI

The ARM7TDMI was the fi rst ARM core to use the new ARMv4T architecture and introduced
the Thumb extension. It ran at a clock speed of 70 MHz but did not include any cache. ARM710T
and ARM720T versions included cache and MMUs but ran at lower clock speeds. The ARM740T
included a cache and an MPU.

ARM7TDMI is one of ARM’s great success stories, being used in hundreds of devices where low
power and good performance need to go hand in hand. It was used in the Apple iPod, the Lego
Mindstorms NXT, the Game Boy Advance, and a huge range of mobile phones from Nokia.
Samsung also used them directly inside its line of microSD cards.

ARM8

The ARM810 core used the previous ARMv4 architecture but included branch prediction and
double-bandwidth memory, vastly improving performance. For most applications, ARM8 doubled
performance compared to an ARM710 processor. It introduced a fi ve-stage pipeline, whereas
ARM7 had only three. At the cost of a little silicon, processor speeds could be roughly doubled by
still using the same silicon fabrication process.

A few companies licensed the ARM8 core, but the arrival of StrongARM changed everything, being
theoretically more than four times as powerful.

STRO NGARM

The StrongARM project was a collaborative project between ARM and Digital Equipment
Corporation to create a faster ARM core. The StrongARM was designed to address the needs of
the high-end, low-power embedded market, where users needed more performance than ARM
processors could deliver. Target devices were PDAs and set-top boxes.

To develop StrongARM, DEC became ARM’s fi rst architecture licensee. This entitled it to design an
ARM-compatible processor without using one of ARM’s own implementations as a starting point.
DEC used its own in-house tools and processes to develop an effi cient implementation.

In early 1996, the SA-110 was born. The fi rst versions operated at 100, 160, and 200 MHz, with
faster 166 and 233 MHz versions appearing at the end of 1996. The SA-110 was designed to be
used with slow memory, and therefore it featured separate instruction cache and data cache, and
each had a generous capacity of 16 Kb. It powered the Apple MessagePad 2000, contributing to its
success.

In 1997, DEC announced the SA-1100. The SA-1100 was more specialized for mobile applications
and added an integrated memory controller, a PCMCIA controller, and an LCD controller. These
controllers came at a price; the data cache was reduced from 16 Kb to 8 Kb. The SA-1100 powered
the Psion Series 7 subnotebook family.

In 1997, DEC agreed to sell its StrongARM group to Intel, as a lawsuit settlement. Intel took over
the StrongARM project, using it to replace its line of RISC processors — the i860 and i960.

bapp03.indd 206bapp03.indd 206 03-12-2013 11:57:0403-12-2013 11:57:04

ARM10 ❘ 207

The SA-1110 was Intel’s derivative of the SA-110 targeted at the mobile sector. It added support for
66 MHz and 103 MHz SDRAM modules. A companion chip was available, the SA-1111, providing
additional support for peripherals. It was used in part of the Compaq iPaq series, a hugely successful
PocketPC range.

The SA-1500 was a derivative of the SA-110 project, created by DEC, but was never put into
production by Intel. Intel replaced the StrongARM series by another family, the XScale.

ARM9TDMI

Even before the StrongARM was released, ARM was already busy developing the ARM9T.

With the ARM9, ARM moved from the classic von Neumann architecture to a modifi ed Harvard
architecture, separating instruction and data cache. At the cost of added silicon, this modifi cation
alone greatly improved speed. By separating instructions from data, instruction fetches and
data accesses could occur simultaneously. ARM9 also used the fi ve5-stage pipeline introduced by
the ARM8 core version.

ARM9TDMI was a replacement for the hugely popular ARM7TDMI. Applications designed for
ARM7TDMI were roughly 30 percent faster on an ARM9TDMI.

ARM9E

AR M9E implemented the ARM9TDMI pipeline but added support for the ARMv5TE architecture,
adding some DSP instructions. The multiplier unit width was also doubled, halving the time
required for most multiplication operations.

ARM10

Th e ARM10 was a highly anticipated successor to the ARM9 family and was announced in
October 1998. ARM10’s aim was to double ARM9’s performance by using optimization and
advanced fabrication. To increase performance, ARM worked on two main aspects of the processor:
pipeline optimization and instruction execution speed.

The pipeline in ARM9 processors was already advanced, but a pipeline is only as fast as its slowest
element. Several optimizations were proposed, but most were rejected because they added too much
complexity to the pipeline, which increased power consumption or overall price. A weak point was
identifi ed in the Decode stage. To increase pipeline speed, the original Decode section was split
into two parts, Issue and Decode, where Issue partially decodes the instruction, and Decode reads
registers with the rest of the decode sequence.

Further optimizations came from instruction optimization. The ARM10 came with a new
multiplication core, a fast 16 × 32 hardware multiplier. This enabled the ARM10 processor to
perform one 32-bit multiply and accumulate operation every clock cycle, a vast improvement from
the previous 3–5 cycles on ARM9.

bapp03.indd 207bapp03.indd 207 03-12-2013 11:57:0403-12-2013 11:57:04

208 ❘ APPENDIX C ARM CORE VERSIONS

The ARM10 also supported Hit-Under-Miss in the data cache and included a static branch
prediction scheme to offset the effect of a longer pipeline.

XSCALE

The XScale processor from Intel was the continuation of the StrongARM series. Following Intel’s
acquisition of the StrongARM, XScale replaced Intel’s RISC systems and also powered an entire
generation of hand-held devices.

In the mid-1990s, the PC sector was going mobile. Hewlett-Packard’s HP200LX computer was
a palm top, a complete system held in a hand, and although far less powerful than a portable
computer, it could be put into a pocket. Users could fi nally keep their agenda, notes, and contacts
in a small-factor computer, available at any time. The HP200LX was based on an Intel CISC-
compatible 80186 and contained an entire version of Windows. Boot-up times were relatively fast,
but although the general idea was there, the technology wasn’t quite available. In 1996, Microsoft
created Windows CE 1.0, which was the start of the Pocket PC era. It was a change of technology;
it was no longer based on x86 processors that were fast but power hungry. The logical choice was to
look at RISC processors, and the name Pocket PC was a marketing choice by Microsoft. Pocket PC
referred to a specifi c set of hardware based on an ARMv4T-compatible CPU.

ARM11

ARM1136 i ntroduced the ARMv6 architecture, adding SIMD instructions, multiprocessor
support, TrustZone, and Thumb-2. It had a signifi cantly improved pipeline, now comprised of 8
stages (though the ARM1156 pipeline architecture was slightly different, having limited dual-issue
capability). It included dynamic branch prediction, reducing the risk of stalling the pipeline.

ARM11 also supported limited out-of-order completion, allowing the pipeline to continue execution
if the result of a previous instruction is not needed by the following instructions. By giving the
pipeline some time for memory reads and writes, it is possible to increase performance by avoiding
pipeline stalls.

With the advanced pipeline, the ARM11 ran at speeds up to 1 GHz.

The ARM11 also had SIMD instructions, meaning single-instruction-multiple-data. Much like
Intel’s MMX instruction set, these instructions are designed to perform repetitive instructions on
multiple data sets, heavily used in audio and video codecs.

CORTEX

ARM11 wa s a huge success, and ARM processors were becoming more and more powerful, but also
larger, and more expensive. Companies who had specifi c projects were having a hard time choosing
which processor to use; either a powerful, latest generation ARM, or for smaller devices, an older
ARM, without the recent advantages. ARM processors were being used for more and more devices,
and not all of them required a fast CPU; some systems required slower processors, or even very

bapp03.indd 208bapp03.indd 208 03-12-2013 11:57:0403-12-2013 11:57:04

Cortex ❘ 209

small factor systems. Some ARM systems are so small that they are located inside an SD card, or
even directly inside a cable. ARM rearranged their line of processors to target specifi c fi elds, and in
2004, the Cortex family was announced, beginning with the Cortex-M3.

The Cortex family has 3 classes of processors; the Cortex-A, the Cortex-R and the Cortex-M.
ARM’s mastery of those three letters became almost obsessional. Cortex-A processors were
designed for Application designs, where an entire multitasking operating system would be run.
Cortex-R was designed for real-time applications, where very fast reaction times were required.
Cortex-M was designed for ultra-low power microprocessor applications.

The very fi rst Cortex processor was announced in 2004, with the Cortex-M3. The next year, the
fi rst Cortex-A design was announced, the Cortex-A8. The Cortex-R family was announced in 2011.
Figure C-1 shows a timeline of the Cortex family, as well as some milestones from ARM.

FIGURE C-1: Cortex family timeline

ARM’s 20th
Birthday

2004

Cortex-M3

Cortex-A8

Cortex-M1

Cortex-A9

5 Billionth
Processor shipped

ARM Develops
2 GHz Cortex-A9 big. LITTLE

Cortex-M0 Cortex-M0+

Cortex-R7
Cortex-R5
Cortex-R4

Cortex-A7 Cortex-A12

2005 2006 2007 2008 2009 2010 2011 2012 2013

Cortex-A15Cortex-A5

Cortex-M4

Cortex-A
The Cor tex-A processor is designed for Application systems. Application processors are the
powerhouse chips, running complete operating systems, high-performance multimedia codecs, and
demanding applications.

The Cortex-A series includes everything needed for devices hosting a rich operating system. They
are suffi ciently powerful and come with an MMU. By adding a few external components, it is
possible to create advanced platforms. They are targeted at mobile devices that require advanced
calculations or graphics. Smartphones, tablets, digital TVs, and infotainment systems are powered
by a Cortex-A, and even laptops have been developed running on multi-core Cortex-A cores.

The fi rst Cortex-A core was announced in 2005, and development has continued since. Cortex-A
processors can include an optional NEON engine and FPU logic.

bapp03.indd 209bapp03.indd 209 03-12-2013 11:57:0503-12-2013 11:57:05

210 ❘ APPENDIX C ARM CORE VERSIONS

Cortex-A5
The Co rtex-A5 was announced in 2007. It is designed to be used on entry-level smartphones, some
feature phones, and digital multimedia devices. The Cortex-A5 was proposed as a replacement for 2
hugely popular CPUs; the ARM-926EJ-S and the ARM1176JZ-S. The Cortex-A5 is more powerful
than an ARM1176JZ-S, while using about as much power as the ARM926EJ-S.

The Cortex-A5 is an in-order processor, meaning it has a simplifi ed instruction prefetcher and
decoder, meaning more power effi cient, but more prone to processor stalls, and therefore not as
advanced or as fast as other designs. The Cortex-A5 remains a budget processor.

Cortex-A7
The Cortex-A7 was announced a year after the Cortex-A15. It is architecturally identical to the
Cortex-A15, as it contains the same technologies. Binary applications that run on a Cortex-A15 will
run on the Cortex-A7. Heralded at the time as ARM’s most power-effi cient application processor, it
provided 50 percent greater performance than the Cortex-A8.

While the performance of the Cortex-A7 is overshadowed by the more powerful Cortex-A15, ARM
also announced their big.LITTLE technology, linking both processors together. The Cortex-A15
is available as stand-alone, as is the Cortex-A7, but the Cortex-A7 can become a companion CPU
to the Cortex-A15. Inside an operating system, the kernel can decide which processor to run an
application on. Low-powered applications (like background applications, alarm clocks, and e-mail
reading) can run on the energy effi cient Cortex-A7, and demanding applications can run on the
more powerful Cortex-15. By migrating applications from one processor to another, the kernel
can also turn off one processor or the other when no processes are assigned to it, further reducing
energy consumption.

The A7 itself is an in-order processor, with an 8-stage pipeline. To be binary compatible with the
A15, it also supports LPAE, allowing it to address one terabyte of address space. It also includes
Virtualization extensions.

Cortex-A8
The Cor tex-A8 was the fi rst Cortex-A processor. Using a superscalar design, it achieves roughly
twice as many instructions executed per clock cycle as previous designs, and is binary compatible to
the ARM926, ARM1136 and ARM1176 processors. It also integrates advanced branch prediction,
with ARM claiming up to 95 percent accuracy. The Cortex A8 is designed to be run up to
frequencies of 1 GHz.

Cortex-A9
The Cor tex-A9 is a more advanced version of the Cortex-A8, capable of higher clock speeds (up to 2
GHz), and with a multi-core architecture, allowing up to four processors in a single coherent cluster.

The Cortex-A9 is a speculative issue superscalar processor. By using advanced techniques, the
processor executes code that might not actually be needed. For example, in branch code, both
results might be calculated. If it turns out that some work was not needed, the results are discarded.
The philosophy is to do work before knowing if it is needed, then discarding where appropriate,
rather than creating a stall when new work is requested. If the execution was not required, then

bapp03.indd 210bapp03.indd 210 03-12-2013 11:57:0503-12-2013 11:57:05

Cortex ❘ 211

the changes are reverted. If the execution is required, then the changes are “committed,” effectively
eliminating any processor stalls due to branch prediction, memory prefeteches or pipeline execution.
This technology is especially useful in processors that handle databases, where lots of speculative
execution is required.

Cortex-A12
The Cortex-A12 is a newcomer in the Cortex-A family. Released in 2013, it is designed as the
successor to the Cortex-A9. It is an out-of-order speculative issue superscalar processor, providing
more performance per watt than the Cortex-A9. Like the Cortex-A9, it can be confi gured with up to
4 cores. It has the NEON SIMD instruction set extension, includes TrustZone security extensions,
and 40-bit Large Physical Address extensions, allowing the Cortex-A12 to address up to one
terabyte of memory space.

This core targets mid-range devices, offering advanced functionality while retaining backwards
compatibility with Cortex-A15, Cortex-A7, and Cortex-A9 processors, but offers 40 percent more
performance than the Cortex-A9.

Cortex-A15
The Co rtex-A15 processor is the most advanced processor of the 32-bit Cortex-A series. ARM has
confi rmed that the Cortex-A15 is 40 percent faster than the Cortex-A9, at an equivalent number of
cores and clock speed. The Cortex-A15 is an out-of-order superscalar multi-core design, running at
up to 2.5 GHz.

The Cortex-A15 can have four cores per coherent cluster, and can use the Cortex-A7 processor as a
companion CPU, using ARM’s big.LITTLE technology.

With ultra-high powered applications in mind, it became clear that the 4 gigabyte memory limit
imposed by the 32-bit design, a limit that seemed unobtainable a few years ago, was about to be
broken, and would be a limitation. To counter this, the Cortex-A15 has 40-bit Large Physical
Address Extensions (LPAE), allowing for a total addressable space of one terabyte.

The Cortex-A15 itself is an out-of-order speculative issue superscalar processor, using some of
ARM’s most advanced technology to make this ARM’s fastest 32-bit processor.

Cortex-A50 Series
The Cortex-A50 series is the latest range of processors based on the 64-bit ARMv8 architecture. It
supports the new AArch64, an execution state that runs alongside an enhanced version of ARM’s
existing 32-bit instruction set. The Cortex-A53 and Cortex-A57 are only the beginning of the 64-bit
revolution; more processors will follow soon.

Cortex-R
The Cortex-R profi le is for real-time applications — for critical systems where reliability is crucial
and speed is decisive. Real-time systems are designed to handle fast-changing data, and to be
suffi ciently responsive to handle the data throughput without slowing down. For this reason,
Cortex-R processors are found in hard drives, network equipment, and embedded into critical
systems, such as car brake assistance.

bapp03.indd 211bapp03.indd 211 03-12-2013 11:57:0503-12-2013 11:57:05

212 ❘ APPENDIX C ARM CORE VERSIONS

In the multi-core design, up to 4 cores can be used on the same chip, and a single-core version is also
available.

In order to maximize reactivity, Cortex-R chips can contain tightly-coupled memory, but do not
have a full MMU, instead they rely on memory protection units.

Cortex-R4
The fi rst i n the Cortex-R line, the Cortex-R4 is based on the ARMv7-R architecture, and was
launched in May 2006. It is available in a synthesizable form. It slightly outperforms an ARM1156
at the same clock speed, and with a 40nm production, can obtain clock frequencies of almost
1 GHz. It includes branch prediction and instruction pre-fetch, allowing for fast reaction times.

For safety-critical applications, the Cortex-R4 has optional parity and ECC checks on all RAM
interfaces, and the optional TCM can be completely confi gured as a separate instruction/data, or
unifi ed memory. It is equipped with a Memory Protection Unit, capable of handling 12 regions.
Cortex-R4 supports dual-core lockstep confi guration for safety-critical applications.

Cortex-R5
The Cortex- R5 was released in 2010, 4 years after the Cortex-R4, and complements the Cortex-R4
with an enriched feature set. It remains binary compatible with the Cortex-R4. Cortex-R5 provides
improved support for multi-processing in a dual-core confi guration.

Cortex-R7
The Cortex- R7 increased the pipeline length from 8 to 11, and allows for out-of-order execution.
The Memory Protection Unit was also changed from previous models, now allowing for up to 16
regions. Cortex-R7 provides full support for SMP/AMP multi-processing in a fully-coherent dual-
core confi guration.

Cortex-M
The Cortex-M processor is designed for microcontroller applications. These applications typically
require little processing power, but need lots of input and output lines, very small form factor,
deterministic interrupt response and exceptionally low power consumption. Cortex-M chips
are used heavily in Bluetooth devices, touchscreen controllers, remote control devices and even
embedded directly into some cables. Some devices using Cortex-M boast a battery life of years, not
just hours.

The Cortex-M package footprint is often extremely small, in some cases, just a few millimeters
squared (NXP’s LPC1102 chips are 2.17 × 2.32mm, containing 32 kbytes of fl ash and 8 kbytes or
RAM).

Cortex-M chips are designed for rapid development, since the entire application, including the vector
tables, can be written in C.

Cortex-M0
The Cortex-M 0 design uses the ARMv6-M architecture. It uses only Thumb instructions with the
Thumb-2 technology, allowing both 16-bit and 32-bit instructions. However, not all instructions are

bapp03.indd 212bapp03.indd 212 03-12-2013 11:57:0503-12-2013 11:57:05

Cortex ❘ 213

available. The entire 16-bit Thumb subset can be used, with the exception of CBZ, CBNZ, and IT.
Of the 32-bit instructions, only BL, DMB, DSB, ISB, MRS and MSR can be used.

The Cortex-M0 has a 3-stage pipeline without branch prediction. It handles one non-maskable
interrupt and up to 32 physical interrupts, with an interrupt latency of 16 cycles. It also implements
some advanced sleep functions, including deep sleep.

Cortex-M0+
The Cortex- M0+ design is an augmented version of the Cortex-M0. It is more power effi cient, and
uses the same instruction set as the M0. It has some features from the Cortex-M3 and Cortex-M4,
such as the Memory Protection Unit and the relocatable vector table, but also adds its own features,
such as the Micro Trace Buffer and single-cycle I/O interface. The pipeline was decreased from 3 to
2, improving power usage.

Cortex-M1
The Cortex-M 1 design is an optimized core that was created specifi cally to be loaded into FPGA
chips. It supports all the instructions supported by the Cortex-M0, and the only difference is a very
slightly degraded 32-bit hardware multiply unit. Where the Cortex-M0 could do multiplications in
either 1 or 32 cycles, the Cortex-M1 executes the same instruction in either 3 or 33 cycles.

Cortex-M3
The Cortex-M 3 is the fi rst Cortex to use the new ARMv7-M architecture. It uses a 3-stage pipeline,
and also includes branch speculation, attempting to increase speed by guessing the output of a
branch, and pre-loading instructions into the pipeline.

The Cortex-M3 has 240 prioritizable interrupts, and non-maskable interrupt. Interrupt latency was
reduced to 12 cycles.

Compared to the Cortex-M0, the Cortex-M3 uses slightly more power, but has a huge advantage;
it uses the entire Thumb instruction set. While the Cortex-M0, Cortex-M0+, and Cortex-M1 could
only use very few 32-bit instructions, a much larger set of 32-bit instructions can be used, including
division instructions. Finally, an ARM processor was able to use hardware division.

The Cortex-M3 also has a memory protection unit, allowing read-write access or prevention for up
to 8 memory regions.

Cortex-M4
The Cortex-M 4 is almost identical to a Cortex-M3, but with the addition of DSP instructions for
more mathematical intense applications in binary data. It is also slightly faster than the Cortex-M3,
since its pipeline includes advanced branch speculation. The Cortex-M4 supports an optional
Floating Point Unit.

bapp03.indd 213bapp03.indd 213 03-12-2013 11:57:0503-12-2013 11:57:05

bapp03.indd 214bapp03.indd 214 03-12-2013 11:57:0503-12-2013 11:57:05

NEON Intrinsics and Instructions
This appendix contains information on, and a list of instructions used with, the NEON
engine. Data types, lane types, and intrinsics are listed.

 DATA TYPES

Table D-1 lists the different data types supported on the NEON engine, and the corresponding
C data types.

TABLE D-1: NEON Data Types

DATA TYPE D-REGISTER (64 BITS) Q-REGISTER (128 BITS)

Signed integers int8x8_t int8x16_t

int16x4_t int16x8_t

int32x2_t int32x4_t

int64x1_t int64x2_t

Unsigned integers uint8x8_t uint8x16_t

uint16x4_t uint16x8_t

uint32x2_t uint32x4_t

uint64x1_t uint64x2_t

Floating-point fl oat16x4_t fl oat16x8_t

fl oat32x2_t fl oat32x4_t

Polynomial poly8x8_t poly8x16_t

poly16x4_t poly16x8_t

D

bapp04.indd 215bapp04.indd 215 03-12-2013 11:54:3003-12-2013 11:54:30

216 ❘ APPENDIX D NEON INTRINSICS AND INSTRUCTIONS

LANE TYPES

Table D-2 lists the different lane types per class, and the amount of possible types for each class.

TABLE D-2: Data Lane Types

CLASS COUNT TYPES

int 6 int8, int16, int32, uint8, uint16, uint32

int/64 8 int8, int16, int32, int64, uint8, uint16, uint32, uint64

sint 3 int8, int16, int32

sint16/32 2 int16, int32

int32 2 int32, uint32

8-bit 3 int8, uint8, poly8

int/poly8 7 int8, int16, int32, uint8, uint16, uint32, poly8

int/64/poly 10 int8, int16, int32, int64, uint8, uint16, uint32, uint64, poly8, poly16

arith 7 int8, int16, int32, uint8, uint16, uint32, fl oat32

arith/64 9 int8, int16, int32, int64, uint8, uint16, uint32, uint64, fl oat32

arith/poly8 8 int8, int16, int32, uint8, uint16, uint32, poly8, fl oat32

fl oating 1 fl oat32

any 11 int8, int16, int32, int64, uint8, uint16, uint32, uint64, poly8, poly16, fl oat32

ASSEMBLY INSTRUCTIONS

Table D-3 contains a list of NEON instructions, as well as a brief description of each instruction.

TABLE D-3: NEON Instructions

INSTRUCTION DESCRIPTION

VABA Absolute difference and Accumulate

VABD Absolute difference

VABS Absolute Value

VACGE Absolute Compare Greater Than or Equal

VACGT Absolute Compare Greater Than

VACLE Absolute Compare Less Than or Equal

bapp04.indd 216bapp04.indd 216 03-12-2013 11:54:3103-12-2013 11:54:31

Assembly Instructions ❘ 217

INSTRUCTION DESCRIPTION

VACLT Absolute Compare Less Than

VADD Add

VADDHN Add, Select High Half

VAND Logical AND

VBIC Bitwise Bit Clear

VBIF Bitwise Insert if False

VBIT Bitwise Insert if True

VBSL Bitwise Select

VCEQ Compare Equal

VCGE Compare Greater Than or Equal

VCGT Compare Greater Than

VCLE Compare Less Than or Equal

VCLS Count Leading Sign bits

VCLT Compare Less Than

VCLZ Count Leading Zeroes

VCNT Count set bits

VCVT Convert between different number formats

VDUP Duplicate scalar to all lanes of vector

VEOR Bitwise Exclusive OR

VEXT Extract

VFMA Fused Multiply and Accumulate

VFMS Fused Multiply and Subtract

VHADD Halving Add

VHSUB Halving Subtract

VLD Vector Load

VMAX Maximum

VMIN Minimum

VMLA Multiply and Accumulate

VMLS Multiply and Subtract

continues

bapp04.indd 217bapp04.indd 217 03-12-2013 11:54:3203-12-2013 11:54:32

218 ❘ APPENDIX D NEON INTRINSICS AND INSTRUCTIONS

INSTRUCTION DESCRIPTION

VMOV Move

VMOVL Move Long

VMOVN Move Narrow

VMUL Multiply

VMVN Move Negative

VNEG Negate

VORN Bitwise OR NOT

VORR Bitwise OR

VPADAL Pairwise Add and Accumulate

VPADD Pairwise Add

VPMAX Pairwise Maximum

VPMIN Pairwise Minimum

VQABS Absolute Value, Saturate

VQADD Add, Saturate

VQDMLAL Saturating Double Multiply Accumulate

VQDMLSL Saturating Double Multiply and Subtract

VQDMUL Saturating Double Multiply

VQDMULH Saturating Double Multiply returning High half

VQMOVN Saturating Move

VQNEG Negate, Saturate

VQRDMULH Saturating Double Multiply returning High half

VQRSHL Shift left, Round, Saturate

VQRSHR Shift Right, Round, Saturate

VQSHL Shift Left, Saturate

VQSHR Shift Right, Saturate

VQSUB Subtract, Saturate

TABLE D-3 (continued)

bapp04.indd 218bapp04.indd 218 03-12-2013 11:54:3203-12-2013 11:54:32

Assembly Instructions ❘ 219

INSTRUCTION DESCRIPTION

VRADDH Add, Select High Half, Round

VRECPE Reciprocal Estimate

VRECPS Reciprocal Step

VREV Reverse Elements

VRHADD Halving Add, Round

VRSHR Shift Right and Round

VRSQRTE Reciprocal Square Root Estimate

VRSQRTS Reciprocal Square Root Step

VRSRA Shift Right, Round and Accumulate

VRSUBH Subtract, select High half, Round

VSHL Shift Left

VSHR Shift Right

VSLI Shift Left and Insert

VSRA Shift Right, Accumulate

VSRI Shift Right and Insert

VST Vector Store

VSUB Subtract

VSUBH Subtract, Select High half

VSWP Swap Vectors

VTBL Vector Table Lookup

VTBX Vector Table Extension

VTRN Vector Transpose

VTST Test Bits

VUZP Vector Unzip

VZIP Vector Zip

bapp04.indd 219bapp04.indd 219 03-12-2013 11:54:3203-12-2013 11:54:32

220 ❘ APPENDIX D NEON INTRINSICS AND INSTRUCTIONS

INTRINSIC NAMING CONVENTIONS

Intrinsics provide an elegant way to write NEON instructions using C. NEON intrinsics are created
using the following structure:

v[q][r]name[u][n][q][_lane][_n][_result]_type

where:

 ➤ q indicates a saturating operation.

 ➤ r indicates a rounding operation.

 ➤ name is the descriptive name of the operation.

 ➤ u indicates signed-to-unsigned saturation.

 ➤ n indicates a narrowing operation.

 ➤ q indicates an operation on 128-bit vectors.

 ➤ _n indicates a scalar operand supplied as an argument.

 ➤ _lane indicates a scalar operand taken from the lane of a vector.

 ➤ result is the result type in short form.

For example, vmul_s16 multiplies two vectors of signed 16-bit values and is equivalent to VMUL.
I16. Some examples in C include:

uint32x4_t vec128 = vld1q_u32(i); // Load 4 32-bit values
uint8x8_t vadd_u8 (uint8x8_t,
 uint8x8_t); //Add two lanes
int8x16_t vaddq_s8 (int8x16_t, int8x16_t); //Saturating add two lanes

bapp04.indd 220bapp04.indd 220 03-12-2013 11:54:3203-12-2013 11:54:32

Assembly Instructions
This appendix lists the different assembly instructions used on ARM cores, and what
 architecture each instruction introduced.

ARM INSTRUCTIONS

The following is a list of ARM-state instructions, separated into various categories.

Arithmetic Instructions
Arithmetic instructions do basic mathematical calculations: addition, subtraction, multipli-
cation, and division. These instructions are listed in Table E-1, as well as the architecture in
which they were introduced.

E

bapp05.indd 221bapp05.indd 221 03-12-2013 11:57:3403-12-2013 11:57:34

222 ❘ APPENDIX E ASSEMBLY INSTRUCTIONS

TABLE E-1: List of Arithmetic Instructions

MNEMONIC FUNCTION ARCHITECTURE ASSEMBLER ACTION

ADD Add 4 ADD{S}{cond}
{S}{cond} Rd, Rn,
<Operand2>

Rd := Rn + Operand2

ADC Add with Carry 4 ADC{S}{cond} Rd,
Rn, <Operand2>

Rd := Rn + Operand2 +
Carry

QADD Add Saturating 5TE QADD{cond} Rd,
Rm, Rn

Rd := SAT(Rm + Rn)

QDADD Add Double
Saturating

5TE QDADD{cond} Rd,
Rm, Rn

Rd := SAT(Rm + SAT(Rn
* 2))

SUB Subtract 4 SUB{S}{cond} Rd, Rn,
<Operand2>

Rd := Rn - Operand2

SBC Subtract with
Carry

4 SBC{S}{cond} Rd, Rn,
<Operand2>

Rd := Rn – Operand2
- NOT(Carry)

RSB Reverse Subtract 4 RSB{S}{cond} Rd, Rn,
<Operand2>

Rd := Operand2 - Rn

RSC Reverse Subtract
with Carry

4 RSC{S}{cond} Rd, Rn,
<Operand2>

Rd := Operand2 – Rn
- NOT(Carry)

QSUB Saturating
Subtract

5TE QSUB{cond} Rd, Rm,
Rn

Rd := SAT(Rm - Rn)

QDSUB Saturating Double
Subtract

5TE QDSUB{cond} Rd,
Rm, Rn

Rd := SAT(Rm – SAT(Rn
* 2))

MUL Multiply 4 MUL{S}{cond} Rd,
Rm, Rs

Rd := (Rm * Rs)[31:0]

MLA Multiply and
Accumulate

4 MLA{S}{cond} Rd,
Rm, Rs, Rn

Rd := ((Rm * Rs) + Rn)
[31:0]

UMULL Unsigned Multiply
Long

4 UMULL{S}{cond}
RdLo, RdHi, Rm, Rs

RdHi,RdLo :=
unsigned(Rm * Rs)

UMLAL Unsigned Multiply
and Accumulate
Long

4 UMLAL{S}{cond}
RdLo, RdHi, Rm, Rs

RdHi,RdLo :=
unsigned(RdHi,RdLo +
Rm * Rs)

UMAAL Unsigned
Multiply Double
Accumulate Long

6 UMAAL{cond} RdLo,
RdHi, Rm, Rs

RdHi,RdLo :=
unsigned(RdHi + RdLo +
Rm * Rs)

bapp05.indd 222bapp05.indd 222 03-12-2013 11:57:3603-12-2013 11:57:36

ARM Instructions ❘ 223

SMULL Signed Multiply
Long

4 SMULL{S}{cond}
RdLo, RdHi, Rm, Rs

RdHi,RdLo := signed(Rm
* Rs)

SMLAL Signed Multiply
Long and
Accumulate

4 SMLAL{S}{cond}
RdLo, RdHi, Rm, Rs

RdHi,RdLo :=
signed(RdHi,RdLo + Rm
* Rs)

SMUL Signed Multiply
16 x 16 Bits

5TE SMULxy{cond} Rd,
Rm, Rs

Rd := Rm[x] * Rs[y]

SMULW Signed Multiply
32 x 16 Bits

5TE SMULWy{cond} Rd,
Rm, Rs

Rd := (Rm * Rs[y])[47:16]

SMLA Signed Multiply
16 x 16 Bits and
Accumulate

5TE SMLAxy{cond} Rd,
Rm, Rs, Rn

Rd := Rn + Rm[x] * Rs[y]

SMLAW Signed Multiply
32 x 16 Bits and
Accumulate

5TE SMLAWy{cond} Rd,
Rm, Rs, Rn

Rd := Rn + (Rm * Rs[y])
[47:16]

SMLAL Signed Multiply
16 x 16 Bits and
Accumulate Long

5TE SMLALxy{cond}
RdLo, RdHi, Rm, Rs

RdHi,RdLo := RdHi,RdLo
+ Rm[x] * Rs[y]

SMUAD Dual Signed
Multiply, Add

6 SMUAD{X}{cond} Rd,
Rm, Rs

Rd := Rm[15:0] *
RsX[15:0] + Rm[31:16] *
RsX[31:16]

SMLAD Dual Signed
Multiply, Add and
Accumulate

6 SMLAD{X}{cond} Rd,
Rm, Rs, Rn

Rd := Rn + Rm[15:0] *
RsX[15:0] + Rm[31:16] *
RsX[31:16]

SMLALD Dual Signed
Multiply, Add and
Accumulate Long

6 SMLALD{X}{cond}
RdHi, RdLo, Rm, Rs

RdHi,RdLo := RdHi,RdLo
+ Rm[15:0] * RsX[15:0] +
Rm[31:16] * RsX[31:16]

SMUSD Dual Signed
Multiply, Subtract

6 SMUSD{X}{cond} Rd,
Rm, Rs

Rd := Rm[15:0] *
RsX[15:0] – Rm[31:16] *
RsX[31:16]

SMLSD Dual Signed
Multiply, Subtract
and Accumulate

6 SMLSD{X}{cond} Rd,
Rm, Rs, Rn

Rd := Rn + Rm[15:0] *
RsX[15:0] – Rm[31:16] *
RsX[31:16]

SMLSLD Dual Signed
Multiply, Subtract
and Accumulate
Long

6 SMLSLD{X}{cond}
RdHi, RdLo, Rm, Rs

RdHi,RdLo := RdHi,RdLo
+ Rm[15:0] * RsX[15:0] –
Rm[31:16] * RsX[31:16]

continues

bapp05.indd 223bapp05.indd 223 03-12-2013 11:57:3603-12-2013 11:57:36

224 ❘ APPENDIX E ASSEMBLY INSTRUCTIONS

MNEMONIC FUNCTION ARCHITECTURE ASSEMBLER ACTION

SMMUL Signed Most
Signifi cant Word
Multiply

6 SMMUL{R}{cond} Rd,
Rm, Rs

Rd := (Rm * Rs)[63:32]

SMMLA Signed Most
Signifi cant Word
Multiply and
Accumulate

6 SMMLA{R}{cond} Rd,
Rm, Rs, Rn

Rd := Rn + (Rm * Rs)
[63:32]

SMMLS Signed Most
Signifi cant Word
Multiply and
Subtract

6 SMMLS{R}{cond} Rd,
Rm, Rs, Rn

Rd := Rn – (Rm * Rs)
[63:32]

CLZ Count Leading
Zeroes

5 CLZ{cond} Rd, Rm Rd := number of leading
zeroes in Rm

TABLE E-1 (continued)

Parallel Arithmetic
Parallel arithmetic instructions are instructions that work on two or more values packed into 32-bit
data. Parallel arithmetic instructions use prefi xes, listed in Table E-2.

TABLE E-2: Parallel Arithmetic Prefi xes

PREFIX FUNCTION

S Signed arithmetic modulo 28 or 216. Sets APSR GE fl ags

Q Signed saturating arithmetic

SH Signed arithmetic, halving the results

U Unsigned arithmetic modulo 28 or 216. Sets APSR GE fl ags

UQ Unsigned saturating arithmetic

UH Unsigned arithmetic, halving the results

Table E-3 lists parallel arithmetic instructions, their usage, and their effect.

bapp05.indd 224bapp05.indd 224 03-12-2013 11:57:3603-12-2013 11:57:36

ARM Instructions ❘ 225

TABLE E-3: Parallel Arithmetic Instructions

MNEMONIC FUNCTION ARCHITECTURE ASSEMBLER ACTION

ADD16 Halfword-Wise
Addition

6 <prefi x>ADD16{cond} Rd,
Rn, Rm

Rd[31:16] := Rn[31:16] +
Rm[31:16], Rd[15:0] :=
Rn[15:0] + Rm[15:0]

SUB16 Halfword-Wise
Subtraction

6 <prefi x>SUB16{cond} Rd,
Rn, Rm

Rd[31:16] := Rn[31:16] –
Rm[31:16], Rd[15:0] :=
Rn[15:0] – Rm[15:0]

ADD8 Byte-Wise
Addition

6 <prefi x>ADD8{cond} Rd,
Rn, Rm

Rd[31:24] := Rn[31:24] +
Rm[31:24], Rd[23:16] :=
Rn[23:16] + Rm[23:16],
Rd[15:8] := Rn[15:8] +
Rm[15:8], Rd[7:0] :=
Rn[7:0] + Rm[7:0]

SUB8 Byte-Wise
Subtraction

6 <prefi x>SUB8{cond} Rd,
Rn, Rm

 Rd[31:24] := Rn[31:24] –
Rm[31:24], Rd[23:16] :=
Rn[23:16] – Rm[23:16],
Rd[15:8] := Rn[15:8] –
Rm[15:8], Rd[7:0] :=
Rn[7:0] – Rm[7:0]

ASX Halfword-Wise
Exchange, Add,
Subtract

6 <prefi x>ADDSUBX
{cond} Rd, Rn, Rm

Rd[31:16] := Rn[31:16]
+ Rm[15:0], Rd[15:0] :=
Rn[15:0] – Rm[31:16]

SAX Halfword-Wise
Exchange,
Subtract, Add

6 <prefi x>SUBADDX
{cond} Rd, Rn, Rm

Rd[31:16] := Rn[31:16]
– Rm[15:0], Rd[15:0] :=
Rn[15:0] + Rm[31:16]

USAD8 Unsigned Sum
of Absolute
Differences

6 USAD8{cond} Rd, Rm, Rs Rd := Abs(Rm[31:24]
– Rs[31:24]) +
Abs(Rm[23:16] –
Rs[23:16]) + Abs(Rm[15:8]
– Rs[15:8]) + Abs(Rm[7:0]
– Rs[7:0])

USADA8 Unsigned Sum
of Absolute
Differences and
Accumulate

6 USADA8{cond} Rd, Rm,
Rs, Rn

Rd := Rn + Abs(Rm[31:24]
– Rs[31:24])
+ Abs(Rm[23:16]
– Rs[23:16])
+ Abs(Rm[15:8] –
Rs[15:8]) + Abs(Rm[7:0] –
Rs[7:0])

bapp05.indd 225bapp05.indd 225 03-12-2013 11:57:3703-12-2013 11:57:37

226 ❘ APPENDIX E ASSEMBLY INSTRUCTIONS

Movement
Movement instructions take data from one register before moving it to a second register, option-
ally negating the data fi rst. Movement instructions can also place data into registers from operands.
These instructions are listed in Table E-4.

TABLE E-4: Movement Instructions

MNEMONIC FUNCTION ARCHITECTURE ASSEMBLER ACTION

MOV Move 4 MOV{S}{cond} Rd,
<Operand2>

Rd := Operand2

MVN Move Negated 4 MVN{S}{cond} Rd,
<Operand2>

Rd := 0xFFFFFFFF
EOR Operand2

MRS Move PSR to
Register

4 MRS{cond} Rd,
<PSR>

Rd := PSR

MSR Move Register to
PSR

4 MSR{cond}
<PSR>_<fi elds>, Rm

PSR := Rm (selected
bytes only)

MSR Move Immediate
to PSR

4 MSR{cond}
<PSR>_<fi elds>,
#<immed_8r>

PSR := immed_8r
(selected bytes only)

CPY Copy 6 CPY{cond} Rd,
<Operand2>

Rd := Operand2, does
not update fl ags

The MSR instruction uses a fi eld parameter that specifi es the SPSR or CPSR fi elds to be moved. They
are listed in Table E-5.

TABLE E-5: MSR Fields Parameters

FIELD DESCRIPTION

C Control fi eld mask byte, PSR[7:0]

X Extension fi eld mask byte, PSR[15:8]

S Status fi eld mask byte, PSR[23:16]

F Flags fi eld mask byte, PSR[31:24]

Load
Load instructions take memory addresses and put the contents of those locations into registers.
They are listed in Table E-6.

bapp05.indd 226bapp05.indd 226 03-12-2013 11:57:3703-12-2013 11:57:37

ARM Instructions ❘ 227

TABLE E-6: Load Instructions.

MNEMONIC FUNCTION ARCHITECTURE ASSEMBLER ACTION

LDR Load Word All LDR{cond} Rd,
<a_mode2>

Rd := [address]

LDRT Load Word, User
Mode Privilege

All LDR T {cond} Rd,
<a_mode2P>

Rd := [address]

LDRB Load Byte All LDR B {cond} Rd,
<a_mode2>

Rd :=
ZeroExtend[byte
from address]

LDRBT Load Byte, User
Mode Privilege

All LDR BT {cond} Rd,
<a_mode2P>

Rd :=
ZeroExtend[byte
from address]

LDRSB Load Signed Byte 4 LDR SB {cond} Rd,
<a_mode3>

Rd :=
SignExtend[byte from
address]

LDRH Load Halfword 4 LDR H {cond} Rd,
<a_mode3>

Rd :=
ZeroExtend[halfword
from address]

LDRSH Load Signed
Halfword

4 LDR SH {cond} Rd,
<a_mode3>

d :=
SignExtend[halfword
from address]

LDRD Load Doubleword 5TE LDR D {cond} Rd,
<a_mode3>

Rd := [address],
R(d+1) := [address
+ 4]

LDM Load Multiple All LDM{cond}<a_
mode4L> Rn{!},
<reglist-PC>

Load list of registers
from [Rn]

LDM Load Multiple,
Return and
Exchange

All LDM{cond}<a_
mode4L> Rn{!},
<reglist+PC>

Load registers, R15 :=
[address][31:1]

(5T: Change to
Thumb if [address]
[0] is 1)

LDM Load Multiple,
Return and
Exchange, Restore
CPSR

All LDM{cond}<a_
mode4L> Rn{!},
<reglist+PC>^

Load registers,
branch (5T: and
exchange), CPSR :=
SPSR

continues

bapp05.indd 227bapp05.indd 227 03-12-2013 11:57:3703-12-2013 11:57:37

228 ❘ APPENDIX E ASSEMBLY INSTRUCTIONS

MNEMONIC FUNCTION ARCHITECTURE ASSEMBLER ACTION

PLD Preload Data
(Memory System
Hint)

5TE PLD <a_mode2> Memory may prepare
to load from address

PLDW Preload Data with
Intention to Write
(Memory System
Hint)

7 PLDW<a_mode2> Memory may prepare
to load from address

LDREX Load Exclusive 6 LDREX{cond} Rd, [Rn] Rd := [Rn], tag
address as exclusive
access

Outstanding tag set
if not shared address

Store
Store instructions place memory from registers into system memory. The data size can vary, and
multiple registers can be stored to memory in a single instruction. Store instructions are listed in
Table E-7.

TABLE E-7: Store Instructions

MNEMONIC FUNCTION ARCHITECTURE ASSEMBLER ACTION

STR Store Word All STR{cond} Rd,
<a_mode2>

[address] := Rd

STRT Store Word, User
Mode Privilege

All STR T {cond} Rd,
<a_mode2P>

[address] := Rd

STRB Store Byte All STR B {cond} Rd,
<a_mode2>

[address][7:0] := Rd[7:0]

STRBT Store Byte, User
Mode Privilege

All STR BT {cond} Rd,
<a_mode2P>

[address][7:0] := Rd[7:0]

STRH Store Halfword 4 STR H {cond} Rd,
<a_mode3>

[address][15:0] :=
Rd[15:0]

STRD Store Doubleword 5TE STR D {cond} Rd,
<a_mode3>

[address] := Rd, [address
+ 4] := R(d+1)

STM Store Multiple All STM{cond}<a_
mode4S> Rn{!},
<reglist>

Store list of registers
to [Rn]

TABLE E-6 (continued)

bapp05.indd 228bapp05.indd 228 03-12-2013 11:57:3703-12-2013 11:57:37

ARM Instructions ❘ 229

STM Store Multiple,
User Mode
Registers

All STM{cond}<a_
mode4S> Rn{!},
<reglist>^

Store list of User mode
registers to [Rn]

STREX Store Exclusive 6 STREX{cond} Rd, Rm,
[Rn]

[Rn] := Rm if allowed,

Rd := 0 if successful,
else 1

Logical
Logical instructions perform logical bit-wise operations on registers. They are listed in Table E-8.

TABLE E-8: Logical Instructions

MNEMONIC FUNCTION ARCHITECTURE ASSEMBLER ACTION

AND AND All AND{S}{cond} Rd, Rn, <Operand2> Rd := Rn AND
Operand2

EOR EOR All EOR{S}{cond} Rd, Rn, <Operand2> Rd := Rn EOR
Operand2

ORR ORR All ORR{S}{cond} Rd, Rn, <Operand2> Rd := Rn OR
Operand2

BIC Bit Clear All BIC{S}{cond} Rd, Rn, <Operand2> Rd := Rn AND
NOT Operand2

Comparison
Comparison instructions compare a register to another register, or to static data, and test bitwise
data. The instructions are listed in Table E-9.

TABLE E-9: Comparison Instructions

MNEMONIC FUNCTION ARCHITECTURE ASSEMBLER ACTION

TST Test All TST{cond} Rn,
<Operand2>

Update CPSR fl ags on Rn AND
Operand2

TEQ Test Equivalence All TEQ{cond} Rn,
<Operand2>

Update CPSR fl ags on Rn EOR
Operand2

CMP Compare All CMP{cond} Rn,
<Operand2>

Update CPSR fl ags on Rn
– Operand2

CMN Compare
Negative

All CMN{cond} Rn,
<Operand2>

Update CPSR fl ags on Rn +
Operand2

bapp05.indd 229bapp05.indd 229 03-12-2013 11:57:3703-12-2013 11:57:37

230 ❘ APPENDIX E ASSEMBLY INSTRUCTIONS

Saturate
Saturating instructions are arithmetic instructions that saturate; they will not overfl ow their con-
tainers, and will return the maximum or minimum value possible when an overfl ow would occur.
They are listed in Table E-10.

TABLE E-10: Saturating Arithmetic Instructions

MNEMONIC FUNCTION ARCHITECTURE ASSEMBLER ACTION

SSAT Signed
Saturate Word

6 SSAT{cond} Rd,
#<sat>, Rm{, ASR
<sh>}

SSAT{cond} Rd,
#<sat>, Rm{, LSL
<sh>}

Rd := SignedSat((Rm ASR sh),
sat). <sat> range 0-31, <sh>
range 1-32.

Rd := SignedSat((Rm LSL sh),
sat). <sat> range 0-31, <sh>
range 0-31.

SSAT16 Signed
Saturate Two
Halfwords

6 SSAT16{cond} Rd,
#<sat>, Rm

Rd[31:16] :=
SignedSat(Rm[31:16], sat),

Rd[15:0] :=
SignedSat(Rm[15:0], sat).
<sat> range 0-15.

USAT Unsigned
Saturate Word

6 USAT{cond} Rd,
#<sat>, Rm{, ASR
<sh>}

USAT{cond} Rd,
#<sat>, Rm{, LSL
<sh>}

Rd := UnsignedSat((Rm ASR
sh), sat). <sat> range 0-31,
<sh> range 1-32.

Rd := UnsignedSat((Rm LSL
sh), sat). <sat> range 0-31,
<sh> range 0-31.

USAT16 Unsigned
Saturate Two
Halfwords

6 USAT16{cond} Rd,
#<sat>, Rm

Rd[31:16] :=
UnsignedSat(Rm[31:16], sat),

Rd[15:0] :=
UnsignedSat(Rm[15:0], sat).
<sat> range 0-15.

Branch
Branch instructions order the processor or microcontroller to execute code elsewhere, conditionally
or unconditionally. Branching instructions can link, and can change processor modes if required.
They are listed in Table E-11.

bapp05.indd 230bapp05.indd 230 03-12-2013 11:57:3703-12-2013 11:57:37

ARM Instructions ❘ 231

TABLE E-11: Branch Instructions

MNEMONIC FUNCTION ARCHITECTURE ASSEMBLER ACTION

B Branch All B{cond} label R15 := label (+/-32M)

BL Branch with Link All BL{cond} label R14 := address of next
instruction, R15 := label
(+/-32M)

BX Branch and Exchange 4T, 5T BX{cond} Rm R15 := Rm, Change to
Thumb if Rm[0] is 1

BLX Branch with Link and
Exchange

5T BLX label R14 := address of next
instruction, R15 := label,
Change to Thumb

5T BLX{cond} Rm R14 := address of next
instruction, R15 := Rm[31:1]

Change to Thumb if Rm[0]
is 1

BXJ Branch and Change
to Java State

5TEJ, 6 BXJ{cond} Rm Change to Java state

TBB Table Branch Byte 6 TBB Rn, Rm PC-relative forward branch
of base Rn, index Rm

TBH Table Branch
Halfword

6 TBH Rn, Rm,
LSL #1

PC-relative forward branch
of base Rn, index Rm

CBZ Compare and Branch
on Zero

6 CBZ Rn, Label Branch to Label if Rn = 0,
no status fl ag update

CBNZ Compare and Branch
on Non-Zero

6 CBNZ Rn,
Label

Branch to Label if Rn != 0,
no status fl ag update

Extend
Extend instructions change a value’s size, for example, extending a 16-bit signed or unsigned value
to 32-bits. They are listed in Table E-12.

bapp05.indd 231bapp05.indd 231 03-12-2013 11:57:3703-12-2013 11:57:37

232 ❘ APPENDIX E ASSEMBLY INSTRUCTIONS

TABLE E-12: Extend Instructions

MNEMONIC FUNCTION ARCHITECTURE ASSEMBLER ACTION

SXTH Signed Extend
Halfword to Word

6 SXTH{cond} Rd,
Rm{, ROR #<sh>}

Rd[31:0] :=
SignExtend((Rm ROR (8 *
sh))[15:0]). sh 0-3.

SXTB16 Signed Extend 2
Bytes to Halfword

6 SXTB16{cond} Rd,
Rm{, ROR #<sh>}

Rd[31:16] :=
SignExtend((Rm ROR (8 *
sh))[23:16]),

Rd[15:0] :=
SignExtend((Rm ROR (8 *
sh))[7:0]). sh 0-3.

SXTB Signed Extend
Byte to Word

6 SXTB{cond} Rd,
Rm{, ROR #<sh>}

Rd[31:0] :=
SignExtend((Rm ROR (8 *
sh))[7:0]). sh 0-3.

UXTH Unsigned Extend
Halfword to Word

6 UXTH{cond} Rd,
Rm{, ROR #<sh>}

Rd[31:0] :=
ZeroExtend((Rm ROR (8 *
sh))[15:0]). sh 0-3.

UXTB16 Unsigned Extend 2
Bytes to Halfwords

6 UXTB16{cond} Rd,
Rm{, ROR #<sh>}

Rd[31:16] :=
ZeroExtend((Rm ROR (8 *
sh))[23:16]),

Rd[15:0] :=
ZeroExtend((Rm ROR (8 *
sh))[7:0]). sh 0-3

UXTB Unsigned Extend
Byte to Word

6 UXTB{cond} Rd,
Rm{, ROR #<sh>}

Rd[31:0] :=
ZeroExtend((Rm ROR (8 *
sh))[7:0]). sh 0-3

SXTAH Signed Extend
Halfword to Word,
Add

6 SXTAH{cond} Rd,
Rn, Rm{, ROR
#<sh>}

Rd[31:0] := Rn[31:0] +
SignExtend((Rm ROR (8 *
sh))[15:0]). sh 0-3

SXTAB16 Signed Extend 2
Bytes to Halfword,
Add

6 SXTAB16{cond}
Rd, Rn, Rm{, ROR
#<sh>}

Rd[31:16] := Rn[31:16] +
SignExtend((Rm ROR (8 *
sh))[23:16]),

Rd[15:0] := Rn[15:0] +
SignExtend((Rm ROR (8 *
sh))[7:0]). sh 0-3

SXTAB Signed Extend
Byte to Word, Add

6 SXTAB{cond} Rd,
Rn, Rm{, ROR
#<sh>}

Rd[31:0] := Rn[31:0] +
SignExtend((Rm ROR (8 *
sh))[7:0]). sh 0-3.

bapp05.indd 232bapp05.indd 232 03-12-2013 11:57:3703-12-2013 11:57:37

ARM Instructions ❘ 233

UXTAH Unsigned Extend
Halfword to Word,
Add

6 UXTAH{cond}
Rd, Rn, Rm{, ROR
#<sh>}

Rd[31:0] := Rn[31:0] +
ZeroExtend((Rm ROR (8 *
sh))[15:0]). sh 0-3.

UXTAB16 Unsigned Extend 2
Bytes to Halfword,
Add

6 UXTAB16{cond}
Rd, Rn, Rm{, ROR
#<sh>}

Rd[31:16] := Rn[31:16] +
ZeroExtend((Rm ROR (8 *
sh))[23:16]),

Rd[15:0] := Rn[15:0] +
ZeroExtend((Rm ROR (8 *
sh))[7:0]). sh 0-3

UXTAB Unsigned Extend
Byte to Word, Add

6 UXTAB{cond}
Rd, Rn, Rm{, ROR
#<sh>}

Rd[31:0] := Rn[31:0] +
ZeroExtend((Rm ROR (8 *
sh))[7:0]). sh 0-3

Miscellaneous
These are instructions that do not belong to any previous category. They are listed in Table E-13.

TABLE E-13: Miscellaneous Instructions

MNEMONIC FUNCTION ARCHITECTURE ASSEMBLER ACTION

PKHBT Pack Halfword
Bottom + Top

6 PKHBT{cond} Rd, Rn,
Rm{, LSL #<sh>}

R15 := label (+/-32M)
Rd[15:0] := Rn[15:0],
Rd[31:16] := (Rm LSL
sh)[31:16]. sh 0-31

PKHTB Pack Halfword Top
+ Bottom

6 PKHTB{cond} Rd, Rn,
Rm{, ASR #<sh>}

Rd[31:16] := Rn[31:16],
Rd[15:0] := (Rm ASR
sh)[15:0]. sh 1-32.

REV Reverse Bytes in
Word

6 REV{cond} Rd, Rm Rd[31:24] := Rm[7:0],
Rd[23:16] := Rm[15:8],

Rd[15:8] := Rm[23:16],
Rd[7:0] := Rm[31:24]

REV16 Reverse Bytes in
Both Halfwords

6 REV16{cond} Rd, Rm Rd[15:8] := Rm[7:0],
Rd[7:0] := Rm[15:8],

Rd[31:24] := Rm[23:16],
Rd[23:16] := Rm[31:24]

REVSH Reverse Bytes in
Low Halfword, Sign
Extend

6 REVSH{cond} Rd, Rm Rd[15:8] := Rm[7:0],
Rd[7:0] := Rm[15:8],

Rd[31:16] := Rm[7] *
&FFFF

continues

bapp05.indd 233bapp05.indd 233 03-12-2013 11:57:3703-12-2013 11:57:37

234 ❘ APPENDIX E ASSEMBLY INSTRUCTIONS

MNEMONIC FUNCTION ARCHITECTURE ASSEMBLER ACTION

SEL Select Bytes 6 SEL{cond} Rd, Rn, Rm Rd[7:0] := Rn[7:0] if
GE[0] = 1, else Rd[7:0]
:= Rm[7:0]

Bits[15:8], [23:16],
[31:24] selected simi-
larly by GE[1], GE[2],
GE[3]

CPSID Change Processor
State, Disable
Interrupts

6 CPSID <ifl ags> {,
#<p_mode>}

Disable specifi ed
interrups, optional
change mode

CPSIE Change Processor
State, Enable
Interrupts

6 CPSIE <ifl ags> {,
#<p_mode>}

Enable specifi ed
 interrups, optional
change mode

CPS Change Processor
Mode

6 CPS #<p_mode> Set processor mode
to p_mode

SETEND Set Endianness 6 SETEND
<endianness>

Sets endianness for
loads and saves.
<endianness> can be
BE (Big Endian) or LE
(Little Endian).

SRS Store Return State 6 SRS<a_mode4S>
#<p_mode>{!}

[R13m] := R14, [R13m +
4] := CPSR

RFE Return from
Exception

6 RFE<a_mode4L>
Rn{!}

PC := [Rn], CPSR :=
[Rn + 4]

BKPT Breakpoint 5T BKPT <immed_16> Prefetch abort

or

enter debug state

SVC Supervisor Call
(Previously SWI)

All SVC{cond}
<immed_24>

Supervisor Call (SVC)
exception

NOP No Operation 6 NOP Does nothing. Timing
not guaranteed.

THUMB INSTRUCTIONS ON CORTEX-M CORES

Cortex-M cores support only a subset of Thumb instructions, or the entire Thumb instruction set,
depending on the core. Table E-14 lists the different Cortex-M cores, and the supported instructions.

TABLE E-13 (continued)

bapp05.indd 234bapp05.indd 234 03-12-2013 11:57:3703-12-2013 11:57:37

Thumb Instructions on Cortex-M Cores ❘ 235

TABLE E-14: Thumb Instructions on Cortex-M Cores

MNEMONIC FUNCTION SIZE M0/M0+/M1 M3 M4 M4F

ADC Add with Carry 16 Yes Yes Yes Yes

ADC Add with Carry 32 No Yes Yes Yes

ADD Add 16 Yes Yes Yes Yes

ADD Add 32 No Yes Yes Yes

ADR Load Address to Register 16 Yes Yes Yes Yes

ADR Load Address to Register 32 No Yes Yes Yes

AND Logical AND 16 Yes Yes Yes Yes

AND Logical AND 32 No Yes Yes Yes

ASR Arithmetic Shift Right 16 Yes Yes Yes Yes

ASR Arithmetic Shift Right 32 No Yes Yes Yes

B Branch 16 Yes Yes Yes Yes

B Branch 32 No Yes Yes Yes

BFC Bit Field Clear 32 No Yes Yes Yes

BFI Bit Field Insert 32 No Yes Yes Yes

BIC Logical AND NOT 16 Yes Yes Yes Yes

BIC Logical AND NOT 32 No Yes Yes Yes

BKPT Breakpoint 16 Yes Yes Yes Yes

BL Branch and Link 32 Yes Yes Yes Yes

BLX Branch with Link and Exchange 16 Yes Yes Yes Yes

BX Branch and Exchange 16 Yes Yes Yes Yes

CBNZ Compare and Branch on Not Zero 16 No Yes Yes Yes

CBZ Compare and Branch on Zero 16 No Yes Yes Yes

CDP Coprocessor Data Operation 32 No Yes Yes Yes

CLREX Clear Exclusive 32 No Yes Yes Yes

CLZ Count Leading Zeroes 32 No Yes Yes Yes

CMN Compare Negative 16 Yes Yes Yes Yes

CMN Compare Negative 32 No Yes Yes Yes

continues

bapp05.indd 235bapp05.indd 235 03-12-2013 11:57:3803-12-2013 11:57:38

236 ❘ APPENDIX E ASSEMBLY INSTRUCTIONS

MNEMONIC FUNCTION SIZE M0/M0+/M1 M3 M4 M4F

CMP Compare 16 Yes Yes Yes Yes

CMP Compare 32 No Yes Yes Yes

CPS Change Processor State 16 Yes Yes Yes Yes

DBG Debug Hint 32 No Yes Yes Yes

DMB Data Memory Barrier 32 Yes Yes Yes Yes

DSB Data Synchronization Barrier 32 Yes Yes Yes Yes

EOR Logical Exclusive OR 16 Yes Yes Yes Yes

EOR Logical Exclusive OR 32 No Yes Yes Yes

ISB Instruction Synchronization Barrier 32 Yes Yes Yes Yes

IT If Then 16 No Yes Yes Yes

LDC Load Coprocessor 32 No Yes Yes Yes

LDM Load Multiple Registers 16 Yes Yes Yes Yes

LDMIA Load Multiple Registers, Increment
After

32 No Yes Yes Yes

LDMDB Load Multiple Registers, Decrement
Before

32 No Yes Yes Yes

LDR Load Register 16 Yes Yes Yes Yes

LDR Load Register 32 No Yes Yes Yes

LDRB Load Register from Byte 16 Yes Yes Yes Yes

LDRB Load Register from Byte 32 No Yes Yes Yes

LDRBT Load Register from Byte Unprivileged 32 No Yes Yes Yes

LDRD Load Register Dual 32 No Yes Yes Yes

LDREX Load Register Exclusive 32 No Yes Yes Yes

LDREXB Load Register Exclusive from Byte 32 No Yes Yes Yes

LDREXH Load Register Exclusive from Halfword 32 No Yes Yes Yes

LDRH Load Register from Halfword 16 Yes Yes Yes Yes

LDRH Load Register from Halfword 32 No Yes Yes Yes

LDRHT Load Register from Halfword
Unprivileged

32 No Yes Yes Yes

TABLE E-14 (continued)

bapp05.indd 236bapp05.indd 236 03-12-2013 11:57:3803-12-2013 11:57:38

Thumb Instructions on Cortex-M Cores ❘ 237

LDRSB Load Register from Signed Byte 16 Yes Yes Yes Yes

LDRSB Load Register from Signed Byte 32 No Yes Yes Yes

LDRSBT Load Register from Signed Byte
Unprivileged

32 No Yes Yes Yes

LDRSH Load Register from Signed Halfword 16 Yes Yes Yes Yes

LDRSH Load Register from Signed Halfword 32 No Yes Yes Yes

LDRSHT Load Register from Signed Halfword
Unprivileged

32 No Yes Yes Yes

LDRT Load Register Unprivileged 32 No Yes Yes Yes

LSL Logical Shift Left 16 Yes Yes Yes Yes

LSL Logical Shift Left 32 No Yes Yes Yes

LSR Logical Shift Right 16 Yes Yes Yes Yes

LSR Logical Shift Right 32 No Yes Yes Yes

MCR Move to Coprocessor from ARM
Register

32 No Yes Yes Yes

MCRR Move to Coprocessor from ARM
Register

32 No Yes Yes Yes

MLA Multiply and Accumulate 32 No Yes Yes Yes

MLS Multiply-Subtract 32 No Yes Yes Yes

MOV Move 16 Yes Yes Yes Yes

MOV Move 32 No Yes Yes Yes

MOVT Move to Top 32 No Yes Yes Yes

MRC Move to ARM Register from
Coprocessor

32 No Yes Yes Yes

MRRC Move to ARM Register from
Coprocessor

32 No Yes Yes Yes

MRS Move from ARM Register to Status
Register

32 Yes Yes Yes Yes

MSR Move from Status Register to ARM
Register

32 Yes Yes Yes Yes

MUL Multiply 16 Yes Yes Yes Yes

continues

bapp05.indd 237bapp05.indd 237 03-12-2013 11:57:3803-12-2013 11:57:38

238 ❘ APPENDIX E ASSEMBLY INSTRUCTIONS

MNEMONIC FUNCTION SIZE M0/M0+/M1 M3 M4 M4F

MUL Multiply 32 No Yes Yes Yes

MVN Move Negated 16 Yes Yes Yes Yes

MVN Move Negated 32 No Yes Yes Yes

NOP No Operation 16 Yes Yes Yes Yes

NOP No Operation 32 No Yes Yes Yes

ORN Logical OR NOT 32 No Yes Yes Yes

ORR Logical OR 16 Yes Yes Yes Yes

ORR Logical OR 32 No Yes Yes Yes

PKH Pack Halfword 32 No No Yes Yes

PLD Preload Data 32 No Yes Yes Yes

PLDW Preload Data 32 No Yes Yes Yes

PLI Preload Instruction 32 No Yes Yes Yes

POP Pop Register(s) 16 Yes Yes Yes Yes

POP Pop Register(s) 32 No Yes Yes Yes

PUSH Push Register(s) 16 Yes Yes Yes Yes

PUSH Push Register(s) 32 No Yes Yes Yes

QADD Saturating Add 32 No No Yes Yes

QADD16 Saturating Two 16-Bit Integer Addition 32 No No Yes Yes

QADD8 Saturating Four 8-Bit Integer Addition 32 No No Yes Yes

QASX Saturating Add and Subtract with
Exchange

32 No No Yes Yes

QDADD Saturating Double and Add 32 No No Yes Yes

QDSUB Saturating Double and Subtract 32 No No Yes Yes

QSAX Saturating Subtract and Add with
Exchange

32 No No Yes Yes

QSUB Saturating Subtract 32 No No Yes Yes

QSUB16 Saturating Two 16-Bit Integer
Subtraction

32 No No Yes Yes

TABLE E-14 (continued)

bapp05.indd 238bapp05.indd 238 03-12-2013 11:57:3803-12-2013 11:57:38

Thumb Instructions on Cortex-M Cores ❘ 239

QSUB8 Saturating Four 8-Bit Integer
Subtraction

32 No No Yes Yes

RBIT Reverse Bit Order 32 No Yes Yes Yes

REV Reverse Byte Order 16 Yes Yes Yes Yes

REV Reverse Byte Order 32 No Yes Yes Yes

REV16 Reverse Byte Order in Halfword 16 Yes Yes Yes Yes

REV16 Reverse Byte Order in Halfword 32 No Yes Yes Yes

REVSH Reverse Byte Order in Bottom Halfword 16 Yes Yes Yes Yes

REVSH Reverse byte Order in Bottom Halfword 32 No Yes Yes Yes

ROR Rotate Right 16 Yes Yes Yes Yes

ROR Rotate Right 32 No Yes Yes Yes

RRX Rotate Right with Extend 32 No Yes Yes Yes

RSB Reverse Subtract 16 Yes Yes Yes Yes

RSB Reverse Subtract 32 No Yes Yes Yes

SADD16 Signed Add 16 Bits 32 No No Yes Yes

SADD8 Signed Add 8 Bits 32 No No Yes Yes

SASX Signed Add and Subtract with
Exchange

32 No No Yes Yes

SBC Subtract with Carry 16 Yes Yes Yes Yes

SBC Subtract with Carry 32 No Yes Yes Yes

SBFX Signed Bit-Field Exchange 32 No Yes Yes Yes

SDIV Signed Division 32 No Yes Yes Yes

SEL Select Bytes 32 No No Yes Yes

SEV Send Event 16 Yes Yes Yes Yes

SEV Send Event 32 No Yes Yes Yes

SHADD16 Signed Halving Add 16 32 No No Yes Yes

SHADD8 Signed Halving Add 8 32 No No Yes Yes

SHASX Signed Halving Add and Subtract with
Exchange

32 No No Yes Yes

continues

bapp05.indd 239bapp05.indd 239 03-12-2013 11:57:3803-12-2013 11:57:38

240 ❘ APPENDIX E ASSEMBLY INSTRUCTIONS

MNEMONIC FUNCTION SIZE M0/M0+/M1 M3 M4 M4F

SHSAX Signed Halving Subtract and Add with
Exchange

32 No No Yes Yes

SHSUB16 Signed Halving Subtract 16 32 No No Yes Yes

SHSUB8 Signed Halving Subtract 8 32 No No Yes Yes

SMLABB Signed Multiply Accumulate – Bottom
Bottom

32 No No Yes Yes

SMLABT Signed Multiply Accumulate – Bottom
Top

32 No No Yes Yes

SMLAD Signed Multiply Accumulate Dual 32 No No Yes Yes

SMLAL Signed Multiply Accumulate Long 32 No Yes Yes Yes

SMLALBB Signed Multiply Accumulate
Long – Bottom Bottom

32 No No Yes Yes

SMLALBT Signed Multiply Accumulate
Long – Bottom Top

32 No No Yes Yes

SMLALD Signed Multiply Accumulate Long Dual 32 No No Yes Yes

SMLALTB Signed Multiply Accumulate Long – Top
Bottom

32 No No Yes Yes

SMLALTT Signed Multiply Accumulate Long – Top
Top

32 No No Yes Yes

SMLATB Signed Multiply Accumulate – Top
Bottom

32 No No Yes Yes

SMLATT Signed Multiply Accumulate – Top Top 32 No No Yes Yes

SMLAWB Signed Multiply Accumulate Word,
Bottom

32 No No Yes Yes

SMLAWT Signed Multiply Accumulate Word, Top 32 No No Yes Yes

SMLSD Signed Multiply with Subtraction Dual 32 No No Yes Yes

SMLSLD Signed Multiply with Subtraction
Acculumation Dual

32 No No Yes Yes

SMMLA Signed Most Signifi cant Word Multiply
Accumulate

32 No No Yes Yes

SMMLS Signed Most Signifi cant Word Subtract
Accumulate

32 No No Yes Yes

TABLE E-14 (continued)

bapp05.indd 240bapp05.indd 240 03-12-2013 11:57:3903-12-2013 11:57:39

Thumb Instructions on Cortex-M Cores ❘ 241

SMMUL Signed Most Signifi cant Word Multiply 32 No No Yes Yes

SMUAD Signed Dual Multiply Add 32 No No Yes Yes

SMULBB Signed Multiply – Bottom Bottom 32 No No Yes Yes

SMULBT Signed Multiply – Bottom Top 32 No No Yes Yes

SMULL Signed Long Multiply 32 No Yes Yes Yes

SMULTB Signed Long Multiply – Top Bottom 32 No No Yes Yes

SMULTT Signed Long Multiply – Top Top 32 No No Yes Yes

SMULWB Signed Multiply by Word – Bottom 32 No No Yes Yes

SMULWT Signed Multiply by Word – Top 32 No No Yes Yes

SMUSD Signed Dual Multiply Subtract 32 No No Yes Yes

SSAT Signed Saturate 32 No Yes Yes Yes

SSAT16 Signed Saturate 16 Bits 32 No No Yes Yes

SSAX Signed Subtract and Add with
Exchange

32 No No Yes Yes

SSUB16 Signed Subtract 16 Bits 32 No No Yes Yes

SSUB8 Signed Subtract 8 Bits 32 No No Yes Yes

STC Store Coprocessor 32 No Yes Yes Yes

STM Store Multiple Registers 16 Yes Yes Yes Yes

STMDB Store Multiple Registers, Decrement
Before

32 No Yes Yes Yes

STMIA Store Multiple Registers, Increment
After

32 No Yes Yes Yes

STR Store 16 Yes Yes Yes Yes

STR Store 32 No Yes Yes Yes

STRB Store Byte 16 Yes Yes Yes Yes

STRB Store Byte 32 No Yes Yes Yes

STRBT Store Byte Unprivileged 32 No Yes Yes Yes

STRD Store Register Dual 32 No Yes Yes Yes

STREX Store Register Exclusive 32 No Yes Yes Yes

STREXB Store Register Exclusive Byte 32 No Yes Yes Yes

continues

bapp05.indd 241bapp05.indd 241 03-12-2013 11:57:3903-12-2013 11:57:39

242 ❘ APPENDIX E ASSEMBLY INSTRUCTIONS

MNEMONIC FUNCTION SIZE M0/M0+/M1 M3 M4 M4F

STREXH Store Register Exclusive Halfword 32 No Yes Yes Yes

STRH Store Halfword 16 Yes Yes Yes Yes

STRH Store Halfword 32 No Yes Yes Yes

STRHT Store Halfword Unprivileged 32 No Yes Yes Yes

STRT Store Register Unprivileged 32 No Yes Yes Yes

SUB Subtract 16 Yes Yes Yes Yes

SUB Subtract 32 No Yes Yes Yes

SVC Supervisor Call 16 Yes Yes Yes Yes

SXTAB Sign and Extend Byte 32 No No Yes Yes

SXTAB16 Sign and Extend to Bytes 32 No No Yes Yes

SXTAH Sign and Extend Halfword 32 No No Yes Yes

SXTB Sign Extend Byte 16 Yes Yes Yes Yes

SXTB Sign Extend Byte 32 No Yes Yes Yes

SXTB16 Sign Extend Two Bytes 32 No No Yes Yes

SXTH Sign Extend Halfword 16 Yes Yes Yes Yes

SXTH Sign Extend Halfword 32 No Yes Yes Yes

TBB Table Branch Byte 32 No Yes Yes Yes

TBH Table Branch Halfword 32 No Yes Yes Yes

TEQ Test Equivalence 32 No Yes Yes Yes

TST Test 16 Yes Yes Yes Yes

TST Test 32 No Yes Yes Yes

UADD16 Unsigned Add 16 32 No No Yes Yes

UADD8 Unsigned Add 8 32 No No Yes Yes

UASX Add and Subtract with Exchange 32 No No Yes Yes

UBFX Unsigned Bit-Field Extract 32 No Yes Yes Yes

UDIV Unsigned Division 32 No Yes Yes Yes

UHADD16 Unsigned Halving Add 16 32 No No Yes Yes

TABLE E-14 (continued)

bapp05.indd 242bapp05.indd 242 03-12-2013 11:57:3903-12-2013 11:57:39

Thumb Instructions on Cortex-M Cores ❘ 243

UHADD8 Unsigned Halving Add 8 32 No No Yes Yes

UHASX Unsigned Halving Add and Subtract
with Exchange

32 No No Yes Yes

UHSAX Unsigned Halving Subtract and Add
with Exchange

32 No No Yes Yes

UHSUB16 Unsigned Halving Subtract 16 32 No No Yes Yes

UHSUB8 Unsigned Halving Subtract 8 32 No No Yes Yes

UMAAL Unsigned Multiply Accumulate
Accumulate Long

32 No No Yes Yes

UMLAL Unsigned Long Multiply and
Accumulate

32 No Yes Yes Yes

UMULL Unsigned Long Multiply 32 No Yes Yes Yes

UQADD16 Unsigned Saturating Add 16 32 No No Yes Yes

UQADD8 Unsigned Saturating Add 8 32 No No Yes Yes

UQASX Unsigned Saturating Add and Subtract
with Exchange

32 No No Yes Yes

UQSAX Unsigned Saturating Subtract and Add
with Exchange

32 No No Yes Yes

UQSUB16 Unsigned Saturating Subtract 16 32 No No Yes Yes

UQSUB8 Unsigned Saturating Subtract 8 32 No No Yes Yes

USAD8 Unsigned Sum of Absolute
Differences 8

32 No No Yes Yes

USADA8 Unsigned Sum of Absolute
Differences 8 and Accumulate

32 No No Yes Yes

USAT Unsigned Saturate 32 No Yes Yes Yes

USAT16 Unsigned Saturate 16 32 No No Yes Yes

USAX Subtract and Add with Exchange 32 No No Yes Yes

USUB16 Unsigned Subtract 16 32 No No Yes Yes

USUB8 Unsigned Subtract 8 32 No No Yes Yes

UXTAB Zero Extend and Add Byte 32 No No Yes Yes

UXTAB16 Zero Extend and Add 2 Bytes 32 No No Yes Yes

continues

bapp05.indd 243bapp05.indd 243 03-12-2013 11:57:3903-12-2013 11:57:39

244 ❘ APPENDIX E ASSEMBLY INSTRUCTIONS

MNEMONIC FUNCTION SIZE M0/M0+/M1 M3 M4 M4F

UXTAH Zero Extend and Add Halfword 32 No No Yes Yes

UXTB Zero Extend Byte 16 Yes Yes Yes Yes

UXTB Zero Extend Byte 32 No Yes Yes Yes

UXTB16 Zero Extend 2 Bytes 32 No No Yes Yes

UXTH Zero Extend Halfword 16 Yes Yes Yes Yes

UXTH Zero Extend Halfword 32 No Yes Yes Yes

VABS Floating-Point Absolute Value 32 No No No Yes

VADD Floating-Point Add 32 No No No Yes

VCMP Floating-Point Compare 32 No No No Yes

VCMPE Floating-Point Compare with Invalid
Operation Check

32 No No No Yes

VCVT Vector Convert 32 No No No Yes

VCVTR Vector Convert with Rounding 32 No No No Yes

VDIV Floating-Point Divide 32 No No No Yes

VLDM Extension Register Load Multiple 32 No No No Yes

VLDR Extension Register Load Register 32 No No No Yes

VMLA Floating-Point Multiply and Accumulate 32 No No No Yes

VMLS Floating-Point Multiply and Subtract 32 No No No Yes

VMOV Extension Register Move 32 No No No Yes

VMRS Move to ARM Core Register from
Floating-Point System Register

32 No No No Yes

VMSR Move to Floating-Point System Register
from ARM Core Register

32 No No No Yes

VMUL Floating-Point Multiply 32 No No No Yes

VNEG Floating-Point Negate 32 No No No Yes

VNMLA Floating-Point Negated Multiply and
Accumulate

32 No No No Yes

VNMLS Floating-Point Negated Multiply and
Subtract

32 No No No Yes

TABLE E-14 (continued)

bapp05.indd 244bapp05.indd 244 03-12-2013 11:57:4003-12-2013 11:57:40

Thumb Instructions on Cortex-M Cores ❘ 245

VNMUL Floating-Point Negated Multiply 32 No No No Yes

VPOP Extension Register Pop 32 No No No Yes

VPUSH Extension Register Push 32 No No No Yes

VSQRT Floating-Point Square Root 32 No No No Yes

VSTM Extension Register Store Multiple 32 No No No Yes

VSTR Extension Register Store Register 32 No No No Yes

VSUB Floating-Point Subtract 32 No No No Yes

WFE Wait For Event 16 Yes Yes Yes Yes

WFE Wait For Event 32 No Yes Yes Yes

WFI Wait For Interrupt 16 Yes Yes Yes Yes

WFI Wait For Interrupt 32 No Yes Yes Yes

YIELD Yield 16 Yes Yes Yes Yes

YIELD Yield 32 No Yes Yes Yes

bapp05.indd 245bapp05.indd 245 03-12-2013 11:57:4003-12-2013 11:57:40

bapp05.indd 246bapp05.indd 246 03-12-2013 11:57:4003-12-2013 11:57:40

INDEX

Symbols

@ (at sign), comments, 61
! (exclamation mark), pre-index addressing, 68
[] (square brackets), compiler, 68

A

Abort mode, 43
absolute branches, 69
Acorn, 3–6, 5, 23, 103, 200
Active Book, 5
ADC, 126, 222
ADD, 61, 66, 114–115, 125, 222
ADD8, 225
ADD16, 225
addressing

assembly language, 66–69
NEON, 151–152
physical address, 45
post-index, 68, 130
pre-index, 68, 129
virtual address, 45

Advanced Technology Group (ATG), 5–6
aeabi_idiv, 82
AL, 62
alignment, C optimization, 185–186
ALU. See Arithmetic Logic Unit
AMD, 20
AND, 131, 229
Android, 25
Apple Computer, 5–6, 20, 25
architecture, 7, 29–51

cache, 31–33
calculation unit, 37

coprocessor, 39–40
CPU

pipeline, 37–39
register, 30

exceptions, 40–43
GCC, 25
internal RAM, 31
load and store, 30, 148
MMU, 32, 45–47
multiplication, 48–49
processor register, 33–35
stack, 31
subsystems, 33–40
TCM, 39
technologies, 47–50
Thumb, 49
TrustZone, 49–50
Vector Floating Point, 48
vector tables, 44–45
versions, 199–203

Architecture Reference Manual, 11
Arduino Due, 23
arithmetic instructions, 125–127, 152–153, 202,

221–224
parallel, 224–225
saturating, 127–129, 230

Arithmetic Logic Unit (ALU), 18, 36, 37
ARM6, 22, 200–201, 205
ARM7, 10, 47, 205
ARM7EJ-S, 47
ARM7TDMI, 22, 201, 206

ARM926EJ-S, 9–10
16-bit, 108
Thumb, 49

instructions, 107, 108

bindex.indd 247bindex.indd 247 03-12-2013 12:01:1703-12-2013 12:01:17

248

ARM8 – BLX

ARM8, 201, 206
ARM9, 7, 49, 111, 194, 201
ARM9E, 48, 207
ARM9TDMI, 207
ARM10, 49, 207–208
ARM11, 30, 49, 208
ARM250, 16
ARM926EJ-S, 9–10, 79, 202
ARM1156T2-S, 49, 111
ARM1176, 22, 173
ARM1176JZF-S, 24, 102
arm-non-eabi-objdump, 77
ARMv1, 200
ARMv2, 200
ARMv2a, 16
ARMv3, 200–201
ARMv4, 49, 201
ARMv5, 10, 135, 201–202
ARMv5T, 47
ARMv5TEJ, 48
ARMv6, 36, 111, 196, 202, 208
ARMv6-M, 113, 203, 212
ARMv7, 10, 124
ARMv7-A/R, 198, 203
ARMv7-M, 113, 203
ARMv8, 12, 203
ASF. See Atmel Software Framework
ASIC, 49
ASR, 140, 235
assembly instructions, 121–143, 221–245

barrel shifter, 139–140
branch instructions, 132–135
compare instructions, 131–132
coprocessor, 141–142
data transfer, 129–130
division, 136–137
logical operators, 130–131
mathematics, 125–127
multiple register data transfer, 137–139
multiplication, 135–136
NEON, 152–153, 216–219
RISC, 121
saturating arithmetic, 127–129
stack, 140–141
32-bit, 123–125

assembly language, 53–71
addressing modes, 66–69
bootloader, 59
branching, 69–70
comments, 61
compiler, 57–58
condition codes, 62–66
GCC, 80
instructions, 61
label, 61
loading and storing, 69
mathematics, 70
optimization, 60
reverse engineering, 59–60
setting values, 69
size, 56–57
speed, 55–56

ASX, 225
ATG. See Advanced Technology Group
Atmel, D20 Xplained Pro, 95–101
Atmel Software Framework (ASF), 96
Atom N550, 21
AVR, 95

B

B, 133, 231
BACKGROUND_HEIGHT, 92
BACKGROUND_WIDTH, 92
backtrace, 166–167
banked register, 33, 44
bare metal system, 178–179
barrel shifter, 67, 115, 139–140
BBC. See British Broadcasting Corporation
BBC Micro, 5, 23, 103, 200
Beagleboard, 24
Beaglebone, 24
Bemer, Bob, 19
BIC, 131, 229
big.LITTLE, 50–51, 203
BIOS, 79
bitfi eld instructions, 117
BKPT, 234
BL, 110, 133, 231
BLX, 134, 231

bindex.indd 248bindex.indd 248 03-12-2013 12:01:1903-12-2013 12:01:19

249

bootcode.bin – conditional branches

bootcode.bin, 104
Booth’s Algorithm, 48
bootloader, 56–57, 170, 171. See also U-Boot

assembly language, 59
debugging, 163
recovery, 78–79

branch instructions, 132–135, 231
branch prediction, 39, 193
branching, 114

assembly language, 69–70
Thumb-2, 117

breakout boards, 24
breakpoints, 161, 170, 171
British Broadcasting Corporation (BBC), 4–5
BUTTON_0, 97
BX, 133–134, 231
BXJ, 231

C

Data Abort, 170
NEON, 153–158, 220

C optimization, 175–190
alignment, 185–186
cache, 188–190
compiler, 176, 186
D-cache, 189
division, 183–184
example, 180–182
frequency scaling, 187–188
hardware, 187–190
integers, 183
interrupt handlers, 186–187
parameters, 184–185
profi ling, 176–179
rules, 175–176
subroutines, 185

cache, 10, 193–194
architecture, 31–33
coprocessor, 39
instructions, 188
Thumb, 189–190

cache hit, 39, 194
cache lines, 188, 189, 194
cache miss, 32, 39, 194

calcfreq, 177
calculation unit, 37
cameras, 47, 50
capes, 24
CBNZ, 110, 117, 231
CBZ, 110, 117, 231
CC, 63
central processing unit (CPU), 6–7

Acorn, 5
alignment, 186
Apple Computer, 6
arithmetic instructions, 125–127
cache, 31
fl oating point numbers, 17
frequency, 195
heat, 12
licenses, 12
MMU, 45–47
mobile devices, 21
mobile phones, 21
pipeline, architecture, 37–39
register, architecture, 30
Technical Reference Manual, 11
unsigned integers, 17

char, 166
CHIP_Init(), 90
CISC. See Complex Instruction Set Computing
CLZ, 131, 224
CMN, 132, 230
CMP, 114, 132, 230
CodeSourcery suite, 77, 119
Colossus, 29–30
comments, 61
Community Edition, DS-5, 27
comparison instructions, 131–132, 153, 229–230
compiler, 27, 68, 77, 104–105, 119

assembly language, 57–58
C optimization, 176, 186
embedded systems, 25–26

Complex Instruction Set Computing (CISC),
19–21

cond, 116
condition codes, assembly language, 62–66
condition fl ags, CPSR, 36
conditional branches, 69, 114

bindex.indd 249bindex.indd 249 03-12-2013 12:01:2003-12-2013 12:01:20

250

conf_ssd1306.h – debugging

conf_ssd1306.h, 98
conf_sysfont.h, 98
context switch, 40
coprocessor, 39–40, 194–195

assembly instructions, 141–142
Thumb-2, 117

copy protection, 60
Core i7, 20
Core War, 57
Cortex series, 25–26, 30, 40, 49,

208–213
Cortex-A, 9, 11, 22, 48, 209–211

bootloader, 170
Thumb, 111

Cortex-A5, 210
Cortex-A7, 210
Cortex-A8, 24, 30, 210
Cortex-A9, 210–211
Cortex-A12, 211
Cortex-A15, 211
Cortex-A50, 211
Cortex-A53, 25–26, 203, 211
Cortex-M, 9, 11, 93, 118, 178, 212–213

Arduino Due, 23
ARMv6-M, 202
Atmel, 96
cache, 32
exceptions, 113
initialization, 87
multiplication hardware, 48–49
Silicon Labs, 86
Thumb, 111–113

instructions, 234–245
Thumb-2, 116
vector tables, 45
Versatile Express, 22

Cortex-M0, 90, 111, 212–213
Cortex-M0+, 90, 93, 96, 111, 213
Cortex-M1, 213
Cortex-M3, 213
Cortex-M4, 213
Cortex-R, 9, 211–212
Cortex-R4, 137, 212
Cortex-R5, 137, 212

Cortex-R7, 212
CP10, 195
CP11, 195
CP14, 29, 40, 195
CP15, 40, 179, 195
CPSID, 234
CPSIE, 234
CPSR. See Current Program Status Register
CPU. See central processing unit
CPY, 226
CS, 63
Current Program Status Register (CPSR),

35–37, 42, 43, 65, 183
Curry, Chris, 3
cycle counter, 179

D

D register, 147–148
D20 Xplained Pro, 95–101
Data Abort exception, 41, 43, 169–170
data cache (D-cache), 32, 189
data types, NEON, 147, 154–155, 215
DBX. See Direct Bytecode eXecution
D-cache. See data cache
DDR memory, 30, 57, 83
debugging, 10, 159–174

ARM1176, 173
bootloaders, 163
breakpoints, 161, 170, 171
coprocessor, 39, 40
CP14, 29, 40, 195
Data Abort exception, 169–170
division by zero, 168–169
DS-5, 27, 167–168

profi lers, 178
ELF, 77
embedded systems, 26
EmbeddedICE, 160–161
examples, 165–169
infi nite loop, 165–167
interrupt controllers, 163
JTAG, 47, 160–161
Lauterbach Trace32, 26

bindex.indd 250bindex.indd 250 03-12-2013 12:01:2003-12-2013 12:01:20

251

Denx Software – exceptions

loops, 162–163
MMU, 174
Monitor mode, 44
optimization, 174
routines, 163
serial line, 170–172
64-bit, 172–173
stack frames, 162
stepping, 161–162
types, 162–163
unknown exceptions, 167–168
vector catch, 162
vector tables, 173
watchpoints, 161

Denx Software, 79, 102–103
Development Studio 5 (DS-5), 26–27,

167–168, 178
DIGIC, DSP, 47
digital signal processing (DSP), 47–48,

109, 118
Direct Bytecode eXecution (DBX),

48, 201
dirty cache, 33, 188
DISPLAY_Init(), 91
division

assembly instructions, 136–137
C optimization, 183–184
by zero, debugging, 168–169

DIY NAS boxes, 24
DMB, 110, 213
DS-5. See Development Studio 5
DSB, 110, 213
DSP. See digital signal processing

E

early termination, 48
Eclipse IDE, 27
EFM32, 87, 89, 178
ELF. See Executable and Linkable Format
else, 167
ELT. See Emergency Locator Transmitter
embedded systems, 13–28

Android, 25

bootloader, 56–57
CISC, 19–21
Compiler, 26
compiler, 25–26
debugging, 26
defi nition, 15
development environments, 26–27
evaluation boards, 23–24
fl oating point numbers, 18
GCC, 25–26
Linux, 24–25
operating system, 24–25
optimization, 17–19
processor, choosing, 21–22
RISC, 19–21
SoC, 15–16
Sourcery CodeBench, 26
system programming, 16–17
Versatile Platform Baseboard, 79
Y2K, 18–19

EmbeddedICE, 47, 48, 160–161
Emergency Locator Transmitter (ELT), 20
energy effi ciency

ARM926EJ-S, 10
big.LITTLE, 50–51
Cortex-M, 11
EFM32, 89
SoC, 16

Energy Micro, 178
energyAware Profi ler, 178
ENIAC, 30
EOR, 131, 229
EQ, 62, 116
evaluation boards, 22, 23–24, 90
exception modes, 43
exceptions, 195

architecture, 40–43
Cortex-M, 113
Data Abort, 41, 43, 169–170
MMU, 168
PC, 168
Prefetch Abort, 41, 43
Reset, 41
Thumb-2, 116

bindex.indd 251bindex.indd 251 03-12-2013 12:01:2003-12-2013 12:01:20

252

exceptions – In-Circuit emulators (ICEs)

exceptions (Continued)
Undefi ned Instruction, 43
unknown, 167–168

Executable and Linkable Format (ELF),
77–79, 81, 105

EXT2, 102
extend instructions, 231–233
Exynos Octa, 11–12

F

FAT, 102
FAT32, 103
FIQ, 37, 41, 44, 186
fi rmware, 79, 170
fl ash memory, 170–172
Flash Micro, 95
fl oating point numbers, 9, 17, 18, 48
Floating Point Unit (FPU), 86, 93, 118
for, 182–183
FPGA, 16, 49, 213
FPU. See Floating Point Unit
Freescale, 6, 16, 22, 160
frequency, CPU, 195
frequency scaling, 22, 187–188

G

Game Boy Advance, 107–108
games, reverse engineering, 59–60
GCC. See GNU C Compiler
GDB Debugger, 165
GE, 63
Gecko, 86
getio, 177
GFX Monochrome - System Font, 98
gigahertz syndrome, 21
GLIB_drawLine, 93
global variables, 185
GNU C Compiler (GCC), 25–26, 80,

104–105
GNU Debugger, 163–165
GPIO, 24, 87, 91, 178
gprof, 177

GPU, 16, 103
grayscale, NEON, 156–158
GRUB2, 79
GT, 64, 116

H

hard macro license, 7
hardware

branch prediction, 39
C optimization, 187–190
Cortex-M, 11
fl oating point numbers, 9
initialization, 74
mobile phones, 50
multiplication, 200, 207
optimization, 113
profi ler, 178
Vector Floating Point, 39

Harvard cache, 32
Harvard Mark I, 56
Hauser, Hermann, 3
heat, 12, 22
Hello, world!, 74–76, 79–81
Hertz, 195
hexadecimal dump, 78
HI, 63
Hiapad Hi-802, 16
high vectors, 44
hit rate, 188
Hopper, Grace, 56
Hyp mode, 44

I

I-cache. See instructional cache
ICEs. See In-Circuit emulators
#ifdef, 155
If-Then, 116–117
immediate values, 66, 115, 124
iMX 6, 16
iMX SoC, 22
iMX51, 160
In-Circuit emulators (ICEs), 47, 48, 160–161

bindex.indd 252bindex.indd 252 03-12-2013 12:01:2003-12-2013 12:01:20

253

industrial systems – LE

industrial systems, 22
infi nite loop, 165–167
initialization

Atmel, 97
Cortex-M, 87
DDR, 57
hardware, 74
STK3200, 90
STK3800, 87

instructional cache (I-cache), 188
instructions. See also assembly instructions;

Reduced Instruction Set Computing; Single
Instruction Multiple Data

arithmetic, 125–127, 152–153, 202,
221–224

assembly language, 61
bitfi eld, 117
branch, 132–135, 231
cache, 188
CISC, 19–21
comparison, 131–132, 153, 229–230
extend, 231–233
jump, 80
load, 227–228
logical, 130–131, 229
MIPS, 22, 196
movement, 122–125, 226
NEON, 215–219
parallel arithmetic, 224–225
saturating arithmetic, 127–129, 230
store, 228–229
Thumb, 107–109, 189–190, 234–245
Undefi ned Instruction, 42

integers, 168
C optimization, 183
signed, 215
unsigned, 17, 18, 147, 215

Intel, 20, 21, 47
interleaves, NEON, 148–150
internal RAM, 31
interrupt controllers, 163
interrupt handlers, 39, 74, 174, 186–187, 196
interrupt masks, 37
interrupts, 40, 88, 196

interworking, Thumb, 113, 134–135
intrinsics, NEON, 154–156, 220
I/O, 23, 24, 93, 178, 202
iOS, 25
IP, 7, 34
IRQ, 37, 41, 44, 91, 189
ISB, 110
IT, 110

J

Java runtime, 25
Jazelle, 48, 108, 196, 201
JFFS2, 102
J-Link, 165, 178
Joint Test Action Group (JTAG), 10, 47,

160–161, 196
jump instruction, 80

K

Keil series, 22
kernel.c, 105
kernel.img, 104

L

label, 8–9, 61
lanes, NEON, 146–147, 216
Last In, First Out (LIFO), 31
Lauterbach, 26, 57, 178
LDM, 139, 227, 228
LDMFD, 118
LDMIA, 115, 141
LDR, 66, 69, 124, 129, 227
LDRB, 129, 227
LDRBT, 227
LDRD, 227
LDREX, 228
LDRH, 129, 227
LDRSB, 129, 227
LDRSH, 227
LDRT, 227
LE, 64

bindex.indd 253bindex.indd 253 03-12-2013 12:01:2003-12-2013 12:01:20

254

licenses – NAND fl ash memory

licenses, 85–86
CPUs, 12
SoC, 16
synthesizable, 7, 49, 197–198

LIFO. See Last In, First Out
LILO, 79
link register (LR), 35, 70, 115
Linux, 20, 24–25, 103
load and store architecture, 30, 148
load instructions, 227–228
loader.bin, 104
logical instructions, 130–131, 229
loops

debugging, 162–163
infi nite, 165–167
register, 182–183

Lorenz cipher code, 29
LR. See link register
LR_<mode>, 42
LS, 63
LSL, 67, 139–140
LSR, 67, 140
LT, 64, 116

M

machine code, 53
main, 99
Mali graphics processor, 12
manufacturer documentation, 11
mathematics, 70, 125–127
MCR, 84, 142
memcpy, 130, 152
memory, 30. See also cache; specifi c types

Cortex-M, 11
mapping, 83–85
NEON, vectors, 154–155
RISC, 107
stack, 31
Thumb, 110
vector tables, 44–45
Y2K, 18

memory bottleneck, 31
Memory LCD, 90–93

Memory Management Unit (MMU), 10, 20, 24,
26, 43, 83–85

architecture, 32, 45–47
assembly language, 57
coprocessor, 39, 40
D-cache, 189
debugging, 174
exceptions, 168

Memory Protection Unit (MPU), 32, 40, 43
MI, 63
Million Instructions per Second (MIPS), 22, 196
Minecraft, 24, 103
MIPS. See Million Instructions per Second
MLA, 135–136, 222
MMU. See Memory Management Unit
mmuloop, 85
mobile devices, 11–12, 21, 107
mobile phones, 21, 50, 56–57, 78–79
Mojang, 24
Monitor mode, 44
MOV, 66, 67, 114, 226

assembly instructions, 122, 125
Thumb-2, 116

MOV pc, lr, 135
movement instructions, 122–125, 226
MOVT, 123, 125
MOVW, 123, 125
Moxa, 22
MPU. See Memory Protection Unit
MRC, 40, 85, 141–142
MRS, 110, 142–143, 226
MSR, 110, 142–143, 226
-mthumb, 119
MUL, 135, 222
multiplication, 48–49, 200, 207

assembly instructions, 135–136
NEON, 153, 157

MVN, 66, 122, 226
myfunc, 119

N

naming conventions, 7–11
NAND fl ash memory, 170–172

bindex.indd 254bindex.indd 254 03-12-2013 12:01:2003-12-2013 12:01:20

255

NE – processor

NE, 62, 116
NEG, 123
NEON, 145–158

addressing, 151–152
alignment, 185
arithmetic instructions, 152–153
assembly instructions, 152–153, 216–219
C, 153–158, 220
comparison instructions, 153
coprocessor, 39
CP11, 195
data loading and storing, 148–152
data types, 147, 215
DSP, 48
grayscale, 156–158
instructions, 215–219
interleaves, 148–150
intrinsics, 154–156, 220
lanes, 146–147, 216
load and store architecture, 148
memcpy, 152
multiplication, 153, 157
register

64-bit, 146
128-bit, 147–148, 196

SIMD, 50, 145, 195, 196
VLD, 146

nested interrupt handler, 187
non-tested interrupt handler, 187
NOP, 142–143, 234
-nostartfiles, 105
NV, 62

O

Objective-C, iOS, 25
OLED display, 98–99
128-bit, 92, 200

NEON, 147–148, 196
<op>, 61
operating system, 24–25, 50, 177–178
optimization. See also C optimization

assembly language, 60
debugging, 174

embedded systems, 17–19
hardware, 113

ORR, 124, 125, 131, 229
out-of-order execution, 39, 197
output buffer, 79
overclocking, 24, 104

P

parallel arithmetic instructions, 224–225
parameters, C optimization, 184–185
PC. See Program Counter
Pentium, 20
performance

ARM926EJ-S, 10
RISC, 107

Performance Monitor Unit, 179
Peripheral Event System, 95
Peripheral Touch Controller, 96
physical address, 45
pipelines, 37–39, 197
PKHBT, 233
PKHTB, 233
PL, 63
PLD, 228
PLDW, 228
POP, 35, 115, 141
post-index addressing, 68, 130
power. See also energy effi ciency

DS-5, 27
frequency scaling, 22
transistors, 21

PowerDebug, 26
PowerPC, 20
PowerTrace, 26
precalc.calcfreq, 177
Prefetch Abort exception, 41, 43
pre-index addressing, 68, 129
printf, 166
privileged modes, 40, 42–43, 45, 142, 169
processor, 7, 30. See also central processing unit;

coprocessor
determining, 8–9
embedded systems, 21–22

bindex.indd 255bindex.indd 255 03-12-2013 12:01:2003-12-2013 12:01:20

256

processor – RTC

processor (Conitnued)
GCC, 25
integers, 168
interrupts, 40
jump instruction, 80
labels, 8–9
MMU, 45–47
numbering, 8
register, 54

architecture, 33–35
Thumb, 113
U-Boot, 102

profi ling
bare metal system, 178–179
C optimization, 176–179
Cortex-M, 178
cycle counter, 179
GPIO, 178
operating system, 177–178

Program Counter (PC), 35, 115, 168
Programmer’s Model, ARM926EJ-S, 10
PROTO1, 96
PSR, 142–143
PUSH, 35, 115, 141

Q

Q register, 147–148
QADD, 128, 222
QDADD, 128–129, 222
QDSUB, 129, 222
Qemu, 79, 80
QSUB, 128, 222

R

r0 to r15 register, 33–34
RAM, 21

assembly instructions, 124–125
Cortex-R4, 212
internal, 31

Raspberry Pi, 23–24, 103–105
RCT. See Runtime Compilation Target
recovery, bootloader, 78–79

Redcode, 57
Reduced Instruction Set Computing (RISC)

assembly instructions, 121
embedded systems, 19–21
memory, 107

re-entrant interrupt handler, 187
register, 197

addressing modes, 66–68
banked, 33, 44
CPSR, 35–37, 42, 43, 65, 183
CPU, architecture, 30
D, 147–148
IP, 34
Lauterbach Trace32, 26
loops, 182–183
LR, 35, 70, 115
MMU, 85
MOV, 67
NEON

64-bit, 146
128-bit, 147–148

processor, 54
Q, 147–148
r0 to r15, 33–34
SCTRL, 113
subroutines, 185
Thumb-1, 114
Update Status Register, 114–115

relative branches, 69
RESET, 83, 113
Reset exception, 41
REV, 233
REV16, 233
reverse engineering, games, 59–60
REVSH, 233
RFE, 234
RISC. See Reduced Instruction Set Computing
ROR, 140, 239
routines, debugging, 163
RRX, 140, 239
RS-232, 171
RSB, 126–127, 222
RSC, 127, 222
RTC, 87–88, 92

bindex.indd 256bindex.indd 256 03-12-2013 12:01:2003-12-2013 12:01:20

257

RTC_CompareSet – SUB8

RTC_CompareSet, 88
RTC_IRQHandler, 88
Runtime Compilation Target (RCT), 108

S

Samsung, 11–12
saturating arithmetic instructions, 127–129, 230
SAX, 225
SBC, 126, 222
SBFX, 117
SCTRL register, 113
SDIV, 82, 137, 239
segfault, 42
Segger, 178
SegmentLCD_Number, 89
SEL, 234
serial line, debugging, 170–172
SETEND, 234
7420 system, 22
signed integers, 215
Silicon Labs

Gecko, 86
STK3200, 89–95
STK3800, 85–89
Wonder Gecko, 86–87, 89–90

Single Instruction Multiple Data (SIMD), 197
ARMv6, 202
DSP, 47
NEON, 50, 145, 195, 196

SiP. See System in Package
16-bit

ARM7TDMI, 108
Thumb, 49, 107–108, 116

64-bit
ARMv8, 12, 203
debugging, 172–173
multiplication hardware, 48
NEON register, 146

SMALD, 223
SMLA, 223
SMLAD, 223, 240
SMLAL, 136, 223, 240
SMLAW, 223

SMLSD, 223, 240
SMLSLD, 223, 240
SMMLA, 224, 240
SMMLS, 224, 241
SMMUL, 224, 241
SMULL, 136, 172, 223, 241
SMULW, 223
SMUSD, 223
snprintf, 100
SoC. See System on a chip
Sourcery CodeBench, 26
SPSR_<mode>, 42
SRAM, 31
SRS, 234
SSAT, 230
SSAT16, 230
stack

architecture, 31
assembly instructions, 140–141
backtrace, 166–167
subroutines, 185
Thumb-1, 115

stack frames, 162
stack pointer, 34–35
stalls, 39, 188
start.elf, 104
startup.o, 81
status fl ags, 114–115
stepping, 161–162
STK3200, 89–95
STK3800, 85–89
STM, 138–139, 229
STMDB, 115
store instructions, 228–229
STR, 69, 130, 170, 228
STRB, 130, 228
STRBT, 228
STRD, 228
STREX, 229
STRH, 130, 170, 228
StrongARM, 201, 206–207
STRT, 228
SUB, 126, 222
SUB8, 225

bindex.indd 257bindex.indd 257 03-12-2013 12:01:2003-12-2013 12:01:20

258

SUB16 – unifi ed cache

SUB16, 225
subroutines, 31, 119, 141, 185
subsystems, 33–40
Supervisor Call (SVC), 42, 43
Supervisor mode, 43
SVC. See Supervisor Call
SVC, 142–143, 234
SXTAB, 232
SXTAB16, 232
SXTAH, 232
SXTB, 232
SXTB16, 232
SXTH, 232
synthesizable license, 7, 49, 197–198
System in Package (SiP), 16
System mode, 43
System on a chip (SoC), 11, 15–16, 22, 197
system_init(), 97

T

Tag_CPU, 77
Tahiti, 20
TBB, 231, 242
TBH, 231, 242
TCM. See Tightly Coupled Memory
Technical Reference Manual, 11
technologies, 47–50
TEQ, 132, 229
Texas Instruments, 22
32-bit, 12, 18, 37

alignment, 185
assembly instructions, 123–125
processor register, 33
Thumb, 49, 107–108, 116, 189
vector tables, 44

Thumb
architecture, 49
ARM7, 47
ARM7DMI, 10
cache, 189–190
calculation unit, 37
compiler, 119
Cortex-A, 111

Cortex-M, 111–113
exceptions, 42
instructions, 107–109, 189–190, 234–245
interworking, 113

branch instructions, 134–135
memory, 110
processor, 113
RESET, 113
16-bit, 107–108
32-bit, 107–108, 189
vector tables, 44
writing for, 118–119

Thumb-1, 113–115
ARMv6-M, 202

Thumb-2, 108, 109, 115–118
ARM1156T2-S, 111
ARMv6-M, 202

ThumbEE, 108
tick, 41
Tightly Coupled Memory (TCM), 39
TLB. See Translation Lookaside Buffer
Trace32, 26, 57, 178
transistors, 19, 21
Translation Lookaside Buffer (TLB),

46–47, 189
translation tables, 46, 83, 84
TrustZone, 49–50, 198
TST, 132, 229

U

UAL. See Unifi ed Assembler Language
UART, 171–172
UBFX, 117
U-Boot, 79, 102–103
UDIV, 137
UMAAL, 222, 243
UMLAL, 136, 222
UMULL, 136, 172, 222
Undefi ned Instruction, 42
Undefi ned Instruction exception, 43
Undefi ned mode, 43
Unifi ed Assembler Language (UAL), 121
unifi ed cache, 32

bindex.indd 258bindex.indd 258 03-12-2013 12:01:2003-12-2013 12:01:20

259

unknown exceptions – Y2K

unknown exceptions, 167–168
unsigned integers, 17, 18, 147, 215
Update Status Register, 114–115
USAD8, 225
USADA8, 225
USAT, 230
USAT16, 230
User mode, 43
UXTAB, 233
UXTAB16, 233
UXTAH, 233
UXTB, 232
UXTB16, 232
UXTH, 232

V

VAR embedded systems, 25
VC, 63
vector catch, 162, 168
Vector Floating Point, 48
vector tables, 44–45, 173, 198
vectors, NEON, 151, 154–155
Versatile Express boards, 22
Versatile Platform Baseboard, 79
VFP, 39, 195
VHDL, 10
Virtex-7, 20
virtual address, 45

virtual memory, 46
VLD, 146
VLSI, 5
Von Neumann cache, 32
VREV, 153
VS, 63
VSHRN, 157
VxWorks, 25

W

watchpoints, 161
Wilson, Sophie, 4
Wind River, 25
Wonder Gecko, 86–87, 89–90
write-back cache, 32–33, 188
write-cache strategy, 32–33
write-through cache, 32–33, 188

X

x86, 20, 21
XBMC, 24
Xilinx, 20
XScale, 22, 208

Y

Y2K, 18–19

bindex.indd 259bindex.indd 259 03-12-2013 12:01:2003-12-2013 12:01:20

ffirs.indd iffirs.indd i 03-12-2013 12:14:1203-12-2013 12:14:12

	Professional Embedded ARM Development
	Copyright
	About the Author
	About the Technical Editors
	Acknowledgments
	Contents
	Introduction
	Who This Book Is For
	What This Book Covers
	How This Book Is Structured
	What You Need to Use This Book
	Conventions
	Source Code
	Errata
	P2P.Wrox.Com

	Part 1: Arm Systems and Development
	Chapter 1: The History of ARM
	The Origin of ARM
	Why Acorn Decided to Create a New Processor
	Why Acorn Became ARM
	Why ARM Doesn’t Actually Produce Microprocessors

	ARM Naming Conventions
	How to Tell What Processor You Are Dealing With
	Differences between ARM7TDMI and ARM926EJ-S
	Differences between ARM7 and ARMv7
	Differences between Cortex-M and Cortex-A

	Manufacturer Documentation
	What Is ARM Doing Today?
	Summary

	Chapter 2: ARM Embedded Systems
	ARM Embedded Systems Defined
	What Is a System on Chip?
	What’s the Difference between Embedded Systems and System Programming?
	Why Is Optimization So Important?
	What Is the Advantage of a R ISC Architecture?

	Choosing the Right Processor
	What Should You Start With?
	What Boards Are Available?
	What Operating Systems Exist?
	Which Compiler Is Best Suited to My Purpose?
	Getting Ready for Debugging
	Are There Any Complete Development Environments?
	Is There Anything Else I Need to Know?

	Summary

	Chapter 3: ARM Architecture
	Understanding the Basics
	Register
	Stack
	Internal RAM
	Cache

	Getting to Know the Different ARM Subsystems
	Presenting the Processor Registers
	Presenting the CPSR
	Calculation Unit
	Pipeline
	Tightly Coupled Memory
	Coprocessors

	Understanding the Different Concepts
	What Is an Exception?
	Handling Different Exceptions
	Modes of Operation
	Vector Table
	Memory Management

	Presenting Different Technologies
	JTAG Debug (D)
	Enhanced DSP (E)
	Vector Floating Point (F)
	EmbeddedICE (I)
	Jazelle (J)
	Long Multiply (M)
	Thumb (T)
	Synthesizable (S)
	TrustZone
	NEON
	big.LITTLE

	Summary

	Chapter 4: ARM Assembly Language
	Introduction to Assembly Language
	Talking to a Computer
	Why Learn Assembly?
	Speed
	Size
	Fun!
	Compilers Aren’t Perfect
	Understanding Computer Science through Assembly
	Shouldn’t You Just Write in Assembly?

	Uses of Assembly
	Writing Bootloaders
	Reverse Engineering
	Optimization

	ARM Assembly Language
	Layout
	Instruction Format
	Condition Codes
	Updating Condition Flags
	Addressing Modes

	ARM Assembly Primer
	Loading and Storing
	Setting Values
	Branching
	Mathematics
	Understanding an Example Program

	Summary

	Chapter 5: First Steps
	Hello World!
	Taking the World Apart
	Hello World, for Real This Time!
	Software Implementation
	Memory Mapping
	Real World Examples
	Silicon Labs STK3800
	Silicon Labs STK3200
	Atmel D20 Xplained Pro

	Case Study: U-Boot
	Machine Study: Raspberry Pi
	Boot Procedure
	Compiling Programs for the Raspberry Pi
	What’s Next?

	Summary

	Chapter 6: Thumb Instruction Set
	Thumb
	Thumb-2 Technology
	How Thumb Is Executed
	Advantages of Using Thumb
	Cores Using Thumb
	ARM-Thumb Interworking
	Introduction to Thumb-1
	Register Availability
	Removed Instructions
	No Conditionals
	Set Flags
	No Barrel Shifter
	Reduced Immediates
	Stack Operations

	Introduction to Thumb-2
	New Instructions
	Coprocessor
	DSP
	FPU

	Writing for Thumb
	Summary

	Chapter 7: Assembly Instructions
	Movement
	MOV
	MVN
	MOVW
	MOVT
	NEG
	Example: Loading a 32-Bit Constant from the Instruction Stream

	Arithmetic
	ADD
	ADC
	SUB
	SBC
	RSB
	RSC
	Example: Basic Math

	Saturating Arithmetic
	QADD
	QSUB
	QDADD
	QDSUB

	Data Transfer
	LDR
	STR
	Example: memcpy

	Logical
	AND
	EOR
	ORR
	BIC
	CLZ

	Compare
	CMP
	CMN
	TST
	TEQ

	Branch
	B
	BL
	BX
	BLX
	Example: Counting to Zero
	Example: Thumb Interworking
	What Is MOV pc, lr?

	Multiply
	MUL
	MLA
	UMULL
	UMLAL
	SMULL
	SMLAL

	Divide
	SDIV
	UDIV

	Multiple Register Data Transfer
	STM
	LDM

	Barrel Shifter
	LSL
	LSR
	ASR
	ROR
	RRX

	Stack Operations
	PUSH
	POP
	Example: Returning from a Subroutine

	Coprocessor Instructions
	MRC
	MCR

	Miscellaneous Instructions
	SVC
	NOP
	MRS
	MSR

	Summary

	Chapter 8: NEON
	What Are the Advantages of NEON?
	What Data Types Does NEON Support?
	Using NEON in Assembly
	Presenting the Registers
	Loading and Storing Data
	Optimized memcpy
	NEON Instructions

	Using NEON in C
	Presenting Intrinsics
	Using NEON Intrinsics
	Converting an Image to Grayscale

	Summary

	Chapter 9: Debugging
	What Is a Debugger?
	What Can a Debugger Do?
	ARM Debugging Capabilities

	Types of Debugging
	Loops
	Routines
	Interrupt Controllers
	Bootloaders

	Debuggers
	GNU Debugger
	J-Link GDB Debugger

	Example Debugging
	Infinite Loop
	Unknown Exception
	Dividing by Zero

	In-Depth Analysis
	Data Abort
	Corrupted Serial Line
	64-Bit Calculations
	A Timely Response

	Summary

	Chapter 10: Writing Optimized C
	Rules for Optimized Code
	Don’t Start with Optimization
	Know Your Compiler

	Profiling
	Profiling Inside an Operating System
	Profiling on a Bare Metal System

	C Optimizations
	Basic Example
	Count Down, Not Up
	Integers
	Division
	Don’t Use Too Many Parameters
	Pointers, Not Objects
	Don’t Frequently Update System Memory
	Alignment

	Assembly Optimizations
	Specialized Routines
	Handling Interrupts

	Hardware Configuration Optimizations
	Frequency Scaling
	Configuring Cache

	Summary

	Part 2: Reference
	Appendix A: Terminology
	Branch Prediction
	Cache
	Cache Hit
	Cache Line
	Cache Miss

	Coprocessors
	CP10
	CP11
	CP14
	CP15
	Cycle
	Exception
	Interrupt
	Jazelle
	JTAG
	MIPS
	NEON
	Out-of-Order Execution
	Pipeline
	Register
	SIMD
	SOC
	Synthesizable
	Trustzone
	Vector Tables

	Appendix B: ARM Architecture Versions
	ARMV1
	ARMV2
	ARMV3
	ARMV4
	ARMV5
	ARMV6
	ARMV6-M
	ARMV7-A/R
	ARMV7-M
	ARMV8

	Appendix C: ARM Core Versions
	ARM6
	ARM7
	ARM7TDMI
	ARM8
	StrongARM
	ARM9TDMI
	ARM9E
	ARM10
	XSCALE
	ARM11
	Cortex
	Cortex-A
	Cortex-R
	Cortex-M

	Appendix D: NEON Intrinsics and Instructions
	Data Types
	Lane Types
	Assembly Instructions
	Intrinsic Naming Conventions

	Appendix E: Assembly Instructions
	ARM Instructions
	Arithmetic Instructions
	Parallel Arithmetic
	Movement
	Load
	Store
	Logical
	Comparison
	Saturate
	Branch
	Extend
	Miscellaneous

	Thumb Instructions on Cortex-M Cores

	Index

