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Foreword

This monograph presents a method for designing MOs circuits to achieve high
speed. The method is based on a simple approximation that treats MOS circuits
as networks of resistance and capacitance. This RC model is formulated in a new
way to simplify the mathematics and to determine quickly a circuit’s maximum
possible speed and how to achieve it.

The method of logical effort is a way of thinking about delay in MOS circuits,
which introduces two new names for concepts that are not new: “logical effort”
and “electrical effort.” Logical effort describes the cost of computation due to
the circuit topology required to implement a logic function, while electrical effort
describes the cost of driving large capacitive loads. We have chosen related names
for these two ideas to invite a comparison between them, because the two forms
of effort present identical and interchangeable sources of delay. Providing new
names for these concepts leads to a formulation that simplifies circuit analysis
and allows a designer to analyze alternative circuit designs quickly.

Critics of this method observe that it achieves no more than conventional RC
analysis and that experienced designers know how to optimize circuits for speed.
Indeed, the best designers, whether by intuition or experience, design circuits that
match closely those derived by the method of logical effort. But we have seen
many instances where experienced designers devise poor circuits. They often be-
come mired in detailed circuit simulations and transistor sizing and fail to study
structural changes to a circuit that lead to greater performance improvements. Be-
cause of its simplicity, the method of logical effort bridges the gap between struc-
tural design and detailed simulation.

This monograph is intended for anyone who designs MOs integrated circuits.
It assumes a knowledge of static cMos digital circuits, elementary electronics,
and algebra. (Some of the derivations use calculus, but only algebra is required to
apply the method.) The novice designer will find simple techniques for designing
high-speed circuits. The experienced designer will find new ways to think about
old design techniques and rules of thumb that lead to high-speed circuits. He or
she will find that the techniques of logical effort help to analyze and optimize large
circuits quickly.

The method of logical effort developed in three stages. It began with research
on fast asynchronous circuits by lvan and Bob. The circuits were sufficiently large
and complex that the conventional RC model and our intuition did not lead to the
best designs. However, the symmetry of cMos circuits, and especially the forms



that occur in asynchronous designs, led us to compare them to simple inverters,
which are also symmetric: the equations of logical effort followed naturally. The
method, of course, applies more broadly; the examples in this monograph are
mostly combinational or synchronous. The research resulted in a paper on logical
effort [7] and a set of course notes that form the core of this monograph.

Years later, David faced the problem of teaching junior circuit designers and
graduate students at Stanford University how to design paths and size gates. Teach-
ing is often the best way to learn; he was forced to develop coherent explanations
for an intuitive approach to sizing. The explanations proved to be a rediscovery of
logical effort, suggesting that logical effort is a very natural way to think about de-
lays. He gradually discovered more properties of circuits, especially regarding the
logical effort of other circuit families such as domino, and applied the principles
of logical effort to design various arithmetic units. Finally he met Ivan and found
that many of the results he had obtained were already in the unpublished course
notes. Moreover, he and his students wanted a good reference text for logical
effort, so he undertook the task of polishing the course notes into this form.

There are many ways to use this text. Chapter 1 stands alone as an introduc-
tion to logical effort. A course on VLSI design may use the first four chapters to
provide examples of applying logical effort and to develop the basic theory be-
hind the method. Experienced circuit designers and students in advanced circuit
design classes will be interested in the later chapters, which apply logical effort
to common circuit design problems. The conclusion includes a concise review of
the method of logical effort and of important insights from the method.

Many people have helped us to develop the method of logical effort and to
prepare this monograph. We wish to thank five companies that sponsored the orig-
inal research: Austek Microsystems, Digital Equipment Corporation, Evans and
Sutherland Computer Corporation, Floating Point Systems, and Schlumberger.
We are grateful to Apple Computer for support for beginning to edit our course
notes. We also thank the engineers and designers from these firms who served
as students during our early attempts to teach this material and whose penetrating
questions contributed to a clearer presentation of the ideas. We thank Carnegie
Mellon University, Stanford University, and the Imperial College of London Uni-
versity for the office space, computing support, and collegial thinking they have
provided. Our colleagues lan W. Jones, Erik L. Brunvand, Bob Proebsting, Mark
Horowitz, and Peter Single contributed in several ways to the work. More recently,
we thank our students at Stanford University, HAL Computer, and Intel Corpo-
ration for bringing fresh life and interest to logical effort. Sally Harris worked
tirelessly to prepare illustrations and text. Finally, we offer special thanks to our



friends and colleagues Bob Spence and the late Charles Molnar for ideas, encour-
agement, and moral support.

Ivan E. Sutherland
Bob F. Sproull
David Harris
February 1998






Chapter 1

TheMethod of Logical Effort

Designing a circuit to achieve the greatest speed or to meet a delay constraint
presents a bewildering array of choices. Which of several circuits that produce
the same logic function will be fastest? How large should a logic gate’s transistors
be to achieve least delay? And how many stages of logic should be used to obtain
least delay? Sometimes, adding stages to a path reduces its delay!

The method of logical effort is an easy way to estimate the delay in an MmOs
circuit. By comparing delay estimates of different logic structures, the fastest
candidate can be selected. The method also specifies the proper number of logic
stages on a path and the best transistor sizes for the logic gates. Because the
method is easy to use, it is ideal for evaluating alternatives in the early stages of a
design and provides a good starting point for more intricate optimizations.

This chapter describes the method of logical effort and applies it to simple ex-
amples. Chapter 2 explores more complex examples. These two chapters together
provide all you need to know to apply the method of logical effort to a wide class
of circuits. The remainder of this monograph is devoted to derivations that show
why the method of logical effort works, to some detailed optimization techniques,
and to the analysis of special circuits such as domino logic and multiplexers.

O9Copyright (©1998, Morgan Kaufmann Publishers, Inc. This material may not be copied or
distributed without permission of the publisher.



2 CHAPTER 1. THE METHOD OF LOGICAL EFFORT

1.1 Delay in alogic gate

The method of logical effort is founded on a simple model of the delay through
a single mos logic gate.! The model describes delays caused by the capacitive
load that the logic gate drives and by the topology of the logic gate. Clearly, as the
load increases, the delay increases, but delay also depends on the logic function of
the gate. Inverters, the simplest logic gates, drive loads best and are often used as
amplifiers to drive large capacitances. Logic gates that compute other functions
require more transistors, some of which are connected in series, making them
poorer than inverters at driving current. Thus a NAND gate must have more delay
than an inverter with similar transistor sizes that drives the same load. The method
of logical effort quantifies these effects to simplify delay analysis for individual
logic gates and multi-stage logic networks.

The first step in modeling delays is to isolate the effects of a particular integrated-
circuit fabrication process by expressing all delays in terms of a basic delay unit?,
7. Thus we express absolute delay as the product of a unitless delay of the gate,
d, and the delay unit that characterizes a given process:

dabs =dr (11)

Unless otherwise indicated, we will measure all times in units of 7. 7 is about 50
ps in a typical 0.6y process.

The delay incurred by a logic gate is comprised of two components, a fixed
part called the parasitic delay, p, and a part that is proportional to the load on the
gate’s output, called the effort delay or stage effort, f. The total delay, measured
in units of 7, is the sum of the effort and parasitic delays:

d=f+p 1.2)

The effort delay depends on the load and on properties of the logic gate driving
the load. We introduce two related terms for these effects: the logical effort, g,
captures properties of the logic gate, while the electrical effort, A, characterizes
the load. The effort delay of the logic gate is the product of these two factors:

f=gh (1.3)

1The term “gate” is ambiguous in integrated-circuit design, signifying either a circuit that im-
plements a logic function such as NAND or the gate of an MOs transistor. We hope to avoid
confusion by referring to “logic gate” or “transistor gat€” unless the meaning is clear from con-
text.

2This defi nition of 7 differsfrom that used by Mead & Conway [6].
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The logical effort, g, captures the effect of the logic gate’s topology on its ability to
produce output current. Itis independent of the size of the transistors in the circuit.
The electrical effort, h, describes how the electrical environment of the logic gate
affects performance and how the size of the transistors in the gate determines its
load-driving capability. The electrical effort is defined by:

h = Cout/cin (14)

where C,,; is the capacitance that loads the logic gate and C}, is the capacitance
presented by the logic gate at one of its input terminals. Electrical effort is also
called fanout by many cmos designers.®

Combining Equations 1.2 and 1.3, we obtain the basic equation that models
the delay through a single logic gate, in units of 7:

d=gh+p (1.5)

This equation shows that logical effort ¢ and electrical effort 4 both contribute
to delay in the same way. This formulation separates =, g, h, and p, the four
contributions to delay. The process parameter 7 represents the speed of the basic
transistors. The parasitic delay, p, expresses the intrinsic delay of the gate due to
its own internal capacitance, which is largely independent of the size of the tran-
sistors in the logic gate. The electrical effort, 4, combines the effects of external
load, which establishes C,,;, with the sizes of the transistors in the logic gate,
which establish C;,,. The logical effort, g, expresses the effects of circuit topology
on the delay free of considerations of loading or transistor size. Logical effort is
useful because it depends only on circuit topology.

Logical effort values for a few cmoOs logic gates are shown in Table 1.1. Log-
ical effort is defined so that an inverter has a logical effort of one. This unitless
form means that all delays are measured relative to the delay of a simple inverter.
An inverter driving an exact copy of itself experiences an electrical effort of one.
Because the logical effort of an inverter is defined to be one, an inverter driving
an exact copy of itself will therefore have an effort delay of one, according to
Equation 1.3.

The logical effort of a logic gate tells how much worse it is at producing output
current than is an inverter, given that each of its inputs may contain only the same
input capacitance as the inverter. Reduced output current means slower operation,

3Fanout, in this context, depends on the load capacitance, not just the number of gates being
driven.
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Gate type Number of inputs

1| 2 3 4 5 n
inverter 1
NAND 4/3 15/36/3| 7/3 | (n+2)/3
NOR 5/317/319/311/3 | (2n+1)/3
multiplexer 2 2 2 2 2
XOR (parity) 4 | 12 | 32

Table 1.1: Logical effort for inputs of static CMOS gates, assuming v = 2. v
is the ratio of an inverter’s pullup transistor width to pulldown transistor width.
Chapter 4 explains how to calculate the logical effort of these and other logic
gates.

and thus the logical effort number for a logic gate tells how much more slowly
it will drive a load than an inverter would. Equivalently, logical effort is how
much more input capacitance a gate presents to deliver the same output current
as an inverter. Figure 1.1 illustrates simple gates sized for roughly equal output
currents. From the ratio of input capacitances, one can see that the NAND gate has
logical effort ¢ = 4/3 and the NOR gate has logical effort ¢ = 5/3. Chapter 4
estimates the logical effort of other gates, while Chapter 5 shows how to extract
logical effort from circuit simulations.

It is interesting but not surprising to note from Table 1.1 that more complex
logic functions have larger logical effort. Moreover, the logical effort of most logic
gates grows with the number of inputs to the gate. Larger or more complex logic
gates will thus exhibit greater delay. As we shall see later on, these properties
make it worthwhile to contrast different choices of logical structure. Designs that
minimize the number of stages of logic will require more inputs for each logic
gate and thus have larger logical effort. Designs with fewer inputs and thus less
logical effort per stage may require more stages of logic. In Section 1.3, we will
see how the method of logical effort expresses these tradeoffs.

The electrical effort, h, is just a ratio of two capacitances. The load driven by a
logic gate is the capacitance of whatever is connected to its output; any such load
will slow down the circuit. The input capacitance of the circuit is a measure of
the size of its transistors. The input capacitance term appears in the denominator
of Equation 1.4 because bigger transistors in a logic gate will drive a given load
faster. Usually most of the load on a stage of logic is the capacitance of the input
or inputs of the next stage or stages of logic that it drives. Of course, the load also
includes the stray capacitance of wires, drain regions of transistors, etc. We shall
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(@) (b) (0)

Figure 1.1: Simple gates. (a) Inverter. (b) Two-input NAND gate. (c) Two-input
NOR gate.

Gate type Parasitic delay
inverter Dinw
n-input NAND NPinv
n-input NOR NPinv
n-way multiplexer 2NDin
XOR, XNOR ADiny

Table 1.2: Estimates of parasitic delay of various logic gate types, assuming sim-
ple layout styles. A typical value of p;,,, the parasitic delay of an inverter, is
1.0.

see later how to include stray load capacitances in our calculations.

Electrical effort is usually expressed as a ratio of transistor widths rather than
actual capacitances. We know that the capacitance of a transistor gate is propor-
tional to its area; if we assume that all transistors have the same minimum length,
then the capacitance of a transistor gate is proportional to its width. Because most
logic gates drive other logic gates, we can express both C;, and C,,; in terms of
transistor widths. If the load capacitance includes stray capacitance due to wiring
or external loads, we shall convert this capacitance into an equivalent transistor
width. If you prefer, you can think of the unit of capacitance as the capacitance of
a transistor gate of minimum length and 1 unit width.

The parasitic delay of a logic gate is fixed, independent of the size of the logic
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Normalized delay: d

parasitic delay
[ [ [ [ [
1 2 3 4 5
Electrical effort: h

Figure 1.2: Plots of the delay equation for an inverter and aa two-input NAND
gate.
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Figure 1.3: A ring oscillator of N identical inverters.

gate and of the load capacitance it drives, because wider transistors have corre-
spondingly greater diffusion capacitance. This delay is a form of overhead that
accompanies any gate. The principal contribution to parasitic delay is the capac-
itance of the source/drain regions of the transistors that drive the gate’s output.
Table 1.2 presents estimates of parasitic delay for a few logic gate types; note that
parasitic delays are given as multiples of the parasitic delay of an inverter, denoted
as piny- A typical value for p,,, is 1.0 delay units?, which is used in most of the
examples in this book. Parasitic delay is covered in more detail in Chapters 3 and
5.

The delay model of a single logic gate, as represented in Equation 1.5, is a
simple linear relationship. Figure 1.2 shows this relationship graphically: delay is
plotted as a function of electrical effort for an inverter and for a 2-input NAND gate.
The slope of the line is the logical effort of the gate; its intercept is the parasitic
delay. The graph shows that we can adjust the delay by adjusting the electrical
effort or by choosing a logic gate with a different logical effort. Once we have
chosen a gate type, however, the parasitic delay is fixed, and our optimization
procedure can do nothing to reduce it.

Example 1.1 Estimate the delay of an inverter driving an identical inverter, as
in the ring oscillator shown in Figure 1.3.

Because the inverter’s output is connected to the input of an iden-
tical inverter, the load capacitance, C,,, is the same as the input
capacitance. Therefore the electrical effort is h = Cou/Cin = 1.
Because the logical effort of an inverter is 1, we have, from Equa-
tion1.5,d =gh+p =1 X1+ pjn, = 2.0. This result expresses the
delay in delay units; it can be scaled by 7 to obtain the absolute delay,
daps = 2.07. In 2 0.6 process with 7 = 50ps, dqps = 100ps.

4piny isastrong function of process-dependent diffusion capacitances, but 1.0 isrepresentative
and is convenient for hand analysis.
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e d—]

Figure 1.4: An inverter driving four identical inverters.

The ring oscillator shown in Figure 1.3 can be used to measure
the value of 7. Because NV, the number of stages in the ring, is odd,
the circuit is unstable and will oscillate. The delay of each stage of
the ring oscillator is expressed by:

ﬁ =d7 = (1 4 piny)T (1.6)
where N is the number of inverters, F' is the oscillation frequency,
and the 2 appears because a transition must pass twice around the
ring to complete a single cycle of the oscillation. If a value for p;,, is
known, this equation can be used to determine = from measurements
of the frequency of the ring oscillator. Chapter 5 shows a method in
which both 7 and p;,,,,, can be measured.

Example 1.2 Estimate the delay of a fanout-of-4 (FO4) inverter, as shown in
Figure 1.4.

Because each inverter is identical, C,,; = 4C;,, SO h = 4. The
logical effort ¢ = 1 for an inverter. Thus the FO4 delay, according
to Equation 1.5, isd = gh+p = 1 X 4+ Py = 4+ 1 = 5.
It is sometimes convenient to express times in terms of FO4 delays
because most designers know the FO4 delay in their process and can
use it to estimate the absolute performance of your circuit in their
process.

Example 1.3 A four-input NOR gate drives ten identical gates, as shown in Fig-
ure 1.5. What is the delay in the driving NOR gate?
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Figure 1.5: A four-input NOR gate driving ten identical gates.

If the capacitance of one input of each NOR gate is x, then the
driving NOR has C;,, = z and C,,; = 10z, and thus the electrical
effort is A = 10. The logical effort of the four-input NOR gate is
9/3 = 3, obtained from Table 1.1. Thus the delay isd = gh + p =
3 x 10 + 4 x 1 or 34 delay units. Note that when the load is large,
as in this example, the parasitic delay is insignificant compared to the
effort delay.

1.2 Multi-stage logic networks

The method of logical effort is applied in two ways to design fast multi-stage
logic networks. It reveals the best number of stages to use in the network and it
shows how to get least overall delay by balancing the delay among the stages. The
notions of logical and electrical effort generalize easily to multi-stage networks.

The logical effort along a path compounds by multiplying the logical efforts of
all the logic gates along the path. We use the upper-case symbol G to denote the
path logical effort, so that it is distinguished from g, the logical effort of a single
gate in the path.

G=]la (1.7)

The electrical effort along a path through a network is simply the ratio of the
capacitance that loads the last logic gate in the path to the input capacitance of the
first gate in the path. We use an upper-case symbol, H, to indicate the electrical
effort along a path.
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H = Cout/c'm (18)

In this case, C;, and C,,,; refer to the input and output capacitances of the path
as a whole, as may be inferred from context.

We need to introduce a new kind of effort, named branching effort, to account
for fanout within a network. So far we have treated fanout as a form of electrical
effort: when a logic gate drives several loads, we sum their capacitances, as in
Example 1.3, to obtain an electrical effort. Treating fanout as a form of electrical
effort is easy when the fanout occurs at the final output of a network. This method
is less suitable when the fanout occurs within a logic network because we know
that the electrical effort for the network depends only on the ratio of its output
capacitance to its input capacitance.

When fanout occurs within a logic network, some of the available drive current
is directed along the path we are analyzing, and some is directed off the path. We
define the branching effort b at the output of a logic gate to be:

h— Con—path + Coﬁ—path (19)

Co n—path

where C,,,_pas, 18 the load capacitance along the path we are analyzing and C 5 — pasn
is the capacitance of connections that lead off the path. Note that if the path does
not branch, the branching effort is one. The branching effort along an entire path,
B, is the product of the branching effort at each of the stages along the path.

B=]]b (1.10)

Armed with definitions of logical, electrical, and branching effort along a path,
we can define the path effort, . Again, we use an upper-case symbol to distin-
guish the path effort from the stage effort, f, associated with a single logic stage.
The equation that defines path effort is reminiscent of Equation 1.3, which defines
the effort for a single logic gate:

F =GBH (1.11)

Note that the path branching and electrical efforts are related to the electrical effort

of each stage:

Cout

BH = 2 [ b =] h (L.12)
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The designer knows C;,,, C,.:, and branching efforts b; from the path specification.
Sizing the path consists of choosing appropriate electrical efforts A; for each stage
to match the total BH product.

Although it is not a direct measure of delay along the path, the path effort
holds the key to minimizing the delay. Observe that the path effort depends only
on the circuit topology and loading and not upon the sizes of the transistors used
in logic gates embedded within the network. Moreover, the effort is unchanged
if inverters are added to or removed from the path, because the logical effort of
an inverter is one. The path effort is related to the minimum achievable delay
along the path, and permits us to calculate that delay easily. Only a little more
work yields the best number of stages and the proper transistor sizes to realize the
minimum delay.

The path delay, D, is the sum of the delays of each of the stages of logic in
the path. As in the expression for delay in a single stage (Equation 1.5), we shall
distinguish the path effort delay, D, and the path parasitic delay, P:

D=Yd;=Dy+P (1.13)

where the subscripts index the logic stages along the path. The path effort delay
is simply
Dy = Zgihi (1-14)
and the path parasitic delay is
P=Yp (1.15)

Optimizing the design of an V-stage logic network proceeds from a very sim-
ple principle which we will prove in Chapter 3: The path delay is least when each
stage in the path bears the same stage effort. This minimum delay is achieved
when the stage effort is

f = gihi = FN (1.16)

We use a hat over a symbol to indicate an expression that achieves minimum delay.

Combining these equations, we obtain the principal result of the method of
logical effort, which is an expression for the minimum delay achievable along a
path:

D=NF'/N4Pp (1.17)
From a simple computation of its logical, branching, and electrical efforts we can
obtain an estimate of the minimum delay of a logic network. Observe that when
N =1, this equation reduces to Equation 1.5.
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Figure 1.6: A logic network consisting of three two-input NAND gates.

To equalize the effort borne by each stage on a path, and therefore achieve the
minimum delay along the path, we must choose appropriate transistor sizes for
each stage of logic along the path. Equations 1.16 and 1.3 combine to require that
each logic stage be designed so that

hi = FYN /g, (1.18)

From this relationship, we can determine the transistor sizes of gates along a
path. Start at the end of the path and work backward, applying the capacitance
transformation:

Cout—i X gi

f
This determines the input capacitance of each gate, which can then be distributed
appropriately among the transistors connected to the input. The mechanics of this
process will become clear in the following examples.

Cin—i = (1.19)

Example 1.4 Consider the path from A to B involving three two-input NAND
gates shown in Figure 1.6. The input capacitance of the first gate is C and the
load capacitance is also C. What is the least delay of this path and how should the
transistors be sized to achieve least delay? (The next example will use the same
circuit with a different electrical effort.)

To compute the path effort, we must compute the logical, branch-
ing, and electrical efforts along the path. The path logical effort is the
product of the logical efforts of the three NAND gates, G = gog192 =
4/3x4/3x4/3 = (4/3)® = 2.37. The branching effort is B = 1, be-
cause all of the fanouts along the path are one, i.e., there is no branch-
ing. The electrical effort is H = C'/C' = 1. Hence, the path effort
is F = GBH = 2.37. Using Equation 1.17, we find the least delay
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achievable along the path to be D = 3(2.37'/3) + 3(2pin,) = 10.0
delay units.

This minimum delay can be realized if the transistor sizes in each
logic gate are chosen properly. First compute the stage effort f =
2.37/3 = 4/3. Starting with the output load C, apply the capacitance
transformation of Equation 1.19 to compute input capacitance z =
C x (4/3)/(4/3) = C. Similarly, y = z x (4/3)/(4/3) = z = C.
Hence we find that all three NAND gates should have the same input
capacitance, C. In other words, the transistor sizes in the three gates
will be the same. This is not a surprising result: all stages have the
same load and the same logical effort, and hence bear equal effort,
which is the condition for minimizing path delay.

13

Example 1.5 Using the same network as in the previous example, Figure 1.6, find
the least delay achievable along the path from A to B when the output capacitance

is 8C.

Using the result from Example 1.4 that G = (4/3)3 and the new
electrical effort H = 8C/C = 8, we compute F = GBH = (4/3)3 x
8 = 18.96, so the least path delay is D = 3(18.96)Y/3 + 3(2pin,) =
14.0 delay units. Observe that although the electrical effort in this
example is eight times the electrical effort in the earlier example, the
delay is increased by only 40%.

Now let us compute the transistor sizes that achieve minimum
delay. The stage effort f = 18.96'/3 = 8/3. Starting with the output
load 8C, apply the capacitance transformation of Equation 1.19 to
compute input capacitance z = 8C x (4/3)/(8/3) = 4C. Similarly,
y=12x(4/3)/(8/3) = z/2 = 2C. To verify the calculation, calculate
the capacitance of the first gate y x (4/3)/(8/3) = z/2 = C, matching
the design specification. Each successive logic gate has twice the
input capacitance of its predecessor. This is achieved by making the
transistors in a gate twice as wide as the corresponding transistors in
its predecessor. The wider transistors in successive stages are better
able to drive current into the larger loads.

Example 1.6 Optimize the circuit in Figure 1.7 to obtain the least delay along
the path from A to B when the electrical effort is 4.5.
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Figure 1.7: A multi-stage logic network with internal fanout.
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Figure 1.8: A multi-stage logic network with a variety of gates.

The path logical effort is G = (4/3)3. The branching effort at
the output of the first stage is (y + y)/y = 2, and at the output of
the second stage it is (2 + z + z)/z = 3. The path branching effort
is therefore B = 2 x 3 = 6. The electrical effort along the path
is specified to be H = 4.5. Thus F = GBH = 64, and D =
3(64)"/ + 3(2piny) = 18.0 delay units.

To achieve this minimum delay, we must equalize the effort in
each stage. Since the path effort is 64, the stage effort should be
(64)'/3 = 4. Starting from the output, z = 4.5C x (4/3)/4 = 1.5.
The second stage drives three copies of the third stage, so y = 3z x
(4/3)/4 = z = 1.5C. We can check the math by finding the size of
the first stage 2y x (4/3)/4 = (2/3)y = C, as given in the design
spec.

Example 1.7 Size the circuit in Figure 1.8 for minimum delay. Suppose the load
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is 20 microns of gate capacitance and that the inverter has 10 microns of gate
capacitance.

Assuming minimum length transistors, gate capacitance is pro-
portional to gate width. Hence, it is convenient to express capacitance
in terms of microns of gate width, as given in this problem.

The path has logical effort G = 1 x (5/3) x (4/3) x 1 = 20/9.
The electrical effort is H = 20/10 = 2 and the branching effort is 1.
Thus, F = GBH = 40/9, and f = (40/9)/* = 1.45.

Start from the output and work backward to compute sizes. z =
20x1/1.45 = 14. y = 14x(4/3)/1.45 = 13. x = 13x(5/3)/1.45 =
15. These input gate widths are divided among the transistors in each
gate. Notice that the inverters are assigned larger electrical efforts
than the more complex gates because they are better at driving loads.
Also note that these calculations do not have to be very precise. We
will see in Section 3.6 that sizing a gate too large or too small by
a factor of 1.5 still result in circuits within 5% of minimum delay.
Therefore, it is easy to use “back of the envelope” hand calculations
to find gate sizes to one or two significant figures.

Note that the parasitic delay does not enter into the procedure for
calculating transistor sizes to obtain minimum delay. Because the
parasitic delay is fixed, independent of the size of the logic gate, ad-
justments to the size of logic gates cannot alter parasitic delay. In fact,
we can ignore parasitic delay entirely unless we want to obtain an ac-
curate estimate of the time required for a signal to propagate through
a logic network, or if we are comparing two logic networks that con-
tain different types of logic gates or different numbers of stages and
therefore exhibit different parasitic delays.

Example 1.8 Consider three alternative circuits for driving a load 25 times the
input capacitance of the circuit. The first design uses one inverter, the second
uses three inverters in series, and the third uses five in series. All three designs
compute the same logic function. Which is best, and what is the minimum delay?

In all three cases, the path logical effort is one, the branching
effort is one, and the electrical effort is 25. Equation 1.17 gives the
path delay D = N(25)'/~ + Np;,, where N =1, 3,0r5. For N = 1,
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we have D = 26 delay units; for N = 3, D = 11.8; and for N = 5,
D = 14.5. The best choice is N = 3. In this design, each stage
will bear an effort of (25)/% = 2.9, so each inverter will be 2.9 times
larger than its predecessor. This is the familiar geometric progression
of sizes that is found in many textbooks.

This example shows that the fastest speed obtainable depends on the number
of stages in the circuit. Since the path delay varies markedly for different values
of IV, it is clear we need a method for choosing N to yield the least delay; this is
the topic of the next section.

1.3 Choosing the best number of stages

The delay equations of logical effort, such as Equation 1.17, can be solved to
determine the number of stages, IV, that achieves the minimum delay. Although
we will defer the solution technique until Chapter 3, Table 1.3 presents some
results. The table shows, for example, that a single stage is fastest only if the path
effort, F, is 5.83 or less. If the path effort lies between 5.83 and 22.3, a two-stage
design is best. If it lies between 22.3 and 82.2, three stages are best. The table
confirms that the right number of stages to use in Example 1.8, which has F' = 25,
is three. As the effort gets very large, the stage effort approaches 3.59.

If we use Table 1.3 to select the number of stages that gives the least delay,
we may find that we must add stages to a network. We can always add an even
number of stages by attaching pairs of inverters to the end of the path. Since we
can’t add an odd number of inverters without changing the logic function of the
network, we may have to settle for a somewhat slower design or alter the logic
network to accommodate an inverted signal. If a path uses a number of stages that
is not quite optimal, the overall delay is usually not increased very much; what is
disastrous is a design with half or twice the best number of stages.

The table is accurate only when we are considering increasing or decreasing
the number of stages in a path by adding or removing inverters, because the ta-
ble assumes that stages being added or removed have a parasitic delay equal to
that of an inverter. Chapter 3 explains how other similar tables can be produced.
When we are comparing logic networks that use different logic gate types or dif-
ferent numbers of stages of logic, it is necessary to evaluate the delay equations to
determine which design is best.
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Path effort | Best number | Minimum delay | Stage effort,
F of stages, N D f, range
0 1.0
1 0-538
5.83 6.8
2 24-47
22.3 11.4
3 28-44
82.2 16.0
4 3.0-4.2
300 20.7
5 3.1-41
1090 25.3
6 3.2-4.0
3920 29.8
7 3.3-39
14200 34.4
8 3.3-39
51000 39.0
9 3.3-39
184000 43.6
10 34-38
661000 48.2
11 34-38
2380000 52.8
12 3.4-38
8560000 57.4
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Table 1.3: Best number of stages to use for various path efforts. For example, for
path efforts between 3920 and 14200, 7 stages should be used; the stage effort

will lie in the range 3.3 — 3.9 delay units. The table assumes p;,, = 1.0.
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Example 1.9 A string of inverters is used to drive a signal that goes off-chip
through a pad. The capacitance of the pad and its load is 35 pF, which is equiv-
alent to about 20,000 microns of gate capacitance. Assuming the load on the
input should be a unit-sized inverter in a 0.6 process with 7.2 microns of input
capacitance, how should the inverter string be designed?

As in Example 1.8, the logical and branching efforts are both 1,
but the electrical effort is 20000/7.2 = 2777. Table 1.3 specifies a
six-stage design. The stage effort will be f = (2777)'/¢ = 3.75.
Thus the input capacitance of each inverter in the string will be 3.75
times that of its predecessor. The path delay will be D = 6 x 3.75 +
6 X piny = 28.5 delay units. This corresponds to an absolute delay of
28.57 = 1.43 ns, assuming 7 = 50 ps.

This example finds the best ratio of the sizes of succeeding stages to be 3.75.
Many texts teach us to use a ratio of e = 2.718, but the reasoning behind the
smaller value fails to account for parasitic delay. As the parasitic delay increases,
the size ratio that achieves least delay rises above e, and the best number of stages
to use decreases. Chapter 3 explores these issues further and presents a formula
for the best stage effort

In general, the best stage effort f is between 3 and 4. Targeting a stage effort
of 4 is convenient during design and gives delays within 1% of minimum delay
for typical parasitics. Thus, the number of stages N is about log, F'. We will find
that stage efforts between 2 and 8 give delays within 35% of minimum and efforts
between 2.4 and 6 give delays within 15% of minimum. Therefore, choosing the
right stage effort is not critical.

We will also see in Chapter 3 that an easy way to estimate the delay of a path is
to approximate the delay of a stage with effort of 4 as that of a fanout-of-4 (FO4)
inverter. We found in Example 1.2 that a FO4 inverter has a delay of 5 units.
Therefore, the delay of a circuit with path effort F' is about 5log, F', or about
log, F' FO4 delays. This is somewhat optimistic because it neglects the larger
parasitic delay of complex gates.

1.4 Summary

The method of logical effort is a design procedure for achieving the least de-
lay along a path of a logic network. It combines into one calculation the effort
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Term Stage expression Path expression
Logical effort g (Table 1.1) G =11y
Electrical effort h = Cou/Cin H = Cpath—out / Cpath—in
Branching effort — B =110,
Effort f=gh F=GBH=T]f;
Effort delay f Dp=%f;
minimized when f; = FY/N
Number of stages 1 N (Table 1.3)
Parasitic delay p (Table 1.2) P=3%p
Delay d=f+p D=Dp+P
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Table 1.4: Summary of terms and equations for concepts in the method of logical
effort.

required to drive large electrical loads and to perform logic functions. The proce-
dure is, in summary:

1. Compute the path effort, F = GBH, along the path of the network you are
analyzing. The path logical effort, G, is the product of the logical efforts
of the logic gates along the path; use Table 1.1 to obtain the logical effort
of each individual logic gate. The branching effort, B, is the product of the
branching effort at each stage along the path. The electrical effort, H, is
the ratio of the capacitance loading the last stage of the network to the input
capacitance of the first stage of the network.

2. Use Table 1.3 or estimate N = log, F to find out how many stages, N, will
yield the least delay.

3. Estimate the minimum delay, D = NFYN 4 > pi, using values of parasitic
delay obtained from Table 1.2. If you are comparing different architectural
approaches to a design problem, you may choose to stop the analysis here.

4. Add or remove stages to your circuit if necessary until N, the number of
stages in the path, is approximately V.

5. Compute the effort to be borne by each stage: f = F¥/N

6. Starting at the last logic stage in the path, work backward to compute tran-
sistor sizes for each of the logic gates by applying the equation C;, =
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(9:/ f )Cou for each stage. The value of C, for a stage becomes C,,; for
the previous stage, perhaps modified to account for branching effort.

This design procedure finds the circuit with the least delay, without regard to
area, power, or other limitations that may be as important as delay. In some cases,
compromises will be necessary to obtain practical designs. For example, if this
procedure is used to design drivers for a high-capacitance bus, the drivers may be
too big to be practical. You may compromise by using a larger stage delay than
the design procedure calls for, or even by making the delay in the last stage much
greater than in the other stages; both of these approaches reduce the size of the
final driver and increase delay.

The method of logical effort achieves an approximate optimum. Because it ig-
nores a number of second-order effects, such as stray capacitances between series
transistors within logic gates, a circuit designed with the procedure given above
can sometimes be improved by careful simulation with a circuit simulator and
subsequent adjustment of transistor sizes. However, we have evidence that the
method of logical effort alone obtains designs that are within 10% of the mini-
mum.

One of the strengths of the method of logical effort is that it combines into
one framework the effects on performance of capacitive load, of the complexity
of the logic function being computed, and of the number of stages in the network.
For example, if you redesign a logic network to use high fan-in logic gates in
order to reduce the number of stages, the logical effort increases, thus blunting
the improvement. Although many designers recognize that large capacitive loads
must be driven with strings of drivers that increase in size geometrically, they are
not sure what happens when logic is mixed in, as occurs often in tri-state drivers.
The method of logical effort addresses all of these design problems.

The information presented in this chapter is sufficient to attack almost any
design. The next chapter applies the method to a variety of circuits of practical
importance. Chapter 4 exposes the model behind the method and derives the equa-
tions presented in this chapter. Chapter 4 shows how to compute the logical effort
of a logic gate and exhibits a catalog of logic gate types. Chapter 5 describes how
to measure various parameters required by the method, such as p;,, and 7. The
remaining chapters explore refinements to the method and more intricate design
problems.
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Figure 1.9: Two circuits for computing the AND function of two inputs.

1.5 EXxercises

1-1 [20] Consider the circuits shown in Figure 1.9. Both have a fanout of 6, i.e.,
they must drive a load six times the capacitance of each of the inputs. What is the
path effort of each design? Which will be fastest? Compute the sizes x and y of
the logic gates required to achieve least delay.

1-2 [20] Design the fastest circuit that computes the NAND of four inputs with a
fanout of 6. Consider a 4-input NAND gate by itself, a 4-input NAND gate followed
by two additional inverters, and a tree formed by two 2-input NAND gates whose
outputs are connected to a 2-input NOR gate followed by an inverter. Estimate the
shortest delay achievable for each circuit. If the fanout were larger, would other
circuits be better?

1-3 [10] A 3-stage logic path is designed so that the effort borne by each stage is
10, 9, and 7 delay units, respectively. Can this design be improved? Why? What
is the best number of stages for this path? What changes do you recommend to
the existing design?

1-4 [10] A clock driver must drive 500 minimum-size inverters. If its input must
be a single minimum-size inverter, how many stages of amplification should be
used? If the input to the clock driver comes from outside the integrated circuit via
an input pad, could fewer stages be used? Why?

1-5 [15] A particular system design of interest will have eight levels of logic
between latches. Assuming that the most complex circuits involve 4-input NAND
gates in all eight levels of logic, estimate a useful clock period.

1-6 [20] A long metal wire carries a signal from one part of a chip to another.
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Only a single unit load may be imposed on the signal source. At its destination
the signal must drive 20 unit loads. The wire capacitance is equivalent to 100 unit
loads; assume the wire has no resistance. Design a suitable amplifier. You may
invert the signal if necessary. Should the amplifier be placed at the beginning,
middle, or end of the wire?



Chapter 2

Design Examples

This chapter presents a number of design examples worked out in detail. To sim-
plify the presentation, some of the designs are simpler than cases that are likely
to arise in practice. The last design, however, is taken from an actual problem
confronted by designers.

As you read through the examples, focus not only on how the mechanics of the
method of logical effort are applied, but also on the insights into circuit structure
that the concepts of logical effort permit. Perhaps the greatest strength of the
method of logical effort is in simplifying analysis of structural variants.

All of these examples assume we are using cMOS logic gates with p;,,, = 1.0.
Values for the logical effort and parasitic delay of logic gates are obtained from
Tables 1.1 and 1.2 respectively. The best number of stages to accommodate a
given path effort is obtained from Table 1.3.

2.1 The AND function of eight inputs

Ben Bitdiddle is developing the ALPHANOT microprocessor and needs an 8-input
AND gate. He is considering three options for the structure of the circuit shown in
Figure 2.1. Which one is best?

Before beginning the analysis of these three circuits, let us pause to introduce
a notation that we will use in this book. To describe a path through a network,
it suffices to list the logic gates that lie along the path. The circuit shown in
Figure 2.1a can be described by the path (8-NAND, inverter). Similarly, the second

O9Copyright (©1998, Morgan Kaufmann Publishers, Inc. This material may not be copied or
distributed without permission of the publisher.
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Figure 2.1: Three circuits for computing the AND of eight inputs.
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circuit is (4-NAND, 2-NOR) and the third is (2-NAND, 2-NOR, 2-NAND, inverter).
Often the networks are symmetric, so that all paths through the network have the
same description, as is the case with all three circuits in Figure 2.1.

Let us start the analysis by computing the logical effort of each of the three
alternatives. In case a, the path logical effort is the product of the logical effort
of an 8-input NAND gate, which is 10/3, and that of an inverter, which is 1, so
G = 10/3 x 1 = 3.33. In case b, the logical effort is the product of 6/3, the
logical effort of a 4-input NAND gate, and 5/3, the logical effort of a 2-input NOR
gate, for a total of 10/3 = 3.33—the same as case a. The logical effort in the
last case is computed as (4/3) x (5/3) x (4/3) x 1 = 2.96. Since we know that
logical effort is related to delay, we might conclude that the last case is the fastest
because it yields the lowest logical effort.

Logical effort is not the only aspect to consider, however, because the load to
be driven will also influence the speed of the circuit. In particular, the circuits do
not all have the same number of stages, and the method of logical effort shows
that minimum delay is obtained only when the number of stages is chosen to
accommodate the effort, both logical and electrical. So we can’t decide which
circuit will achieve the least delay until we know the electrical effort and can
determine the best number of stages.

The delay equation, Equation 1.17, tells us how the minimum delay that can
be obtained from each circuit is related to the electrical effort H the circuit bears.
These equations also include the effect of the parasitic delays, obtained by sum-
ming the parasitic delays of each of the logic gates along the path:

D= N(GBH)'™ +p
Case a D= 2(3.33H)Y2+9.0 (2.1)
Case b D= 2(3.33H)"%2+6.0 (2.2)
Case ¢ D= 4(2.96H)*+7.0 (2.3)

Let us illustrate the effect of electrical effort on circuit choice by solving two
problems, one with H = 1, and one with H = 12. Table 2.1 shows the results
of evaluating the delay equations for the three circuits with different electrical
efforts. The table shows that for H = 1, the designs with two stages (cases a and
b) have less effort delay than the design with four stages (case ¢). Of the two-stage
designs, case b is faster because it has less parasitic delay. When the electrical
effort increases to H = 12, the design with the larger number of stages is best.

These results agree with the predictions for the best number of stages to use
for a given path effort. Since the logical effort of all three circuits is approximately
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Case H=1 H=12
NFUN | P | D=NF'YN4+P| NF'/N| P |D=NFYN4+p
a 365 |9.0 12.65 12.64 | 9.0 21.64
3.65 |6.0 9.65 12.64 | 6.0 18.64
525 |7.0 12.25 9.77 | 7.0 16.77

Table 2.1: Delays for computing the AND of eight inputs for two different values
of electrical effort.

three, we find that the path effort when H = 1is FF = GBH =~ 3, while when
H =12, F ~ 36. Table 1.3 shows that when F' = 3, a one-stage design will be
best, while when F' = 36, a three-stage design will be best. Clearly, cases a and
b best approximate a one-stage design. It is not immediately obvious whether a
two-stage or four-stage path is closest to the three-stage design recommended by
the table, but usually it is better to err by one stage too many, as happens in this
example where case c is the fastest. Note that this reasoning ignores the effects of
parasitic delay when the logic gate types in the competing circuits are different,
as they are in this case. While this method yields approximate answers, a precise
answer requires comparing the delay equations for each circuit.

This example shows that the choice of circuit to use depends on the load to be
driven. Because there is a relationship between the load and the best number of
stages, one must know the size of the load capacitance in relation to the size of
the input capacitance in order to make the proper choice of circuit structure.

2.1.1 Calculating gate sizes

The different circuits for computing the AND of eight inputs can illustrate the
calculation of gate sizes along a path. Let us start with electrical effort, H, of 12,
which calls for design 2.1¢. Let us assume that the input capacitance is 4 units,
so the load capacitance is 4H = 48 units. From our earlier analysis, we know
that each stage should bear an effort f = F'/4 = (2.96 x 12)"/4 = 2.44. Let
us work backward along the path, starting with the inverter at the right. At each
gate, we apply the capacitance transformation of Equation 1.19 to find the input
capacitance given the output load.

The inverter at the right should have C;, = 48 x 1/2.44 = 19.66. This
becomes the load for the third stage, which therefore should have C;, = 19.66 x
(4/3)/2.44 = 10.73. This in turn becomes the load for the NOR in the second
stage, which should have C;,, = 10.73 x (5/3)/2.44 = 7.33. Finally, we can
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use this as the load on the NAND gate in the first stage, which should have C;, =
7.33 x (4/3)/2.44 = 4.0. This agrees with the specified input capacitance, so our
calculation checks.

If Ben Bitdiddle were building a full-custom chip, he could select transistor
sizes for each gate to match the input capacitances we have just computed. This
will be discussed further in Section 4.3. If Ben were using an existing cell library,
he could simply select the gates from the library which have input capacitances
closest to the computed values. We will see in Section 3.6 that modest deviation
from the computed sizes still gives excellent performance, so he should not be
concerned if his library does not have a cell of exactly the desired size. Even for a
full-custom design, it is necessary to adjust transistor sizes to the nearest available
size, such as an integer.

Since rounding will occur anyway and precision in sizing is not very im-
portant, experienced designers often perform logical effort calculations mentally,
keeping results to only one or two significant figures.

Now let us consider electrical effort of unity, which calls for design 2.16. We
will again assume that the input capacitance is 4 units, so now the output capac-
itance is also 4 units. To obtain the fastest operation, each stage should bear an
effort f = F1/2 = (3.33 x 1)1/2 = 1.83.

Working backward, the NOR gate in the second stage should have C;, = 4 x
(5/3)/1.83 = 3.64. This is the load on the first stage NAND gate, which must have
input capacitance of 4. Notice that the NAND has an electrical effort 3.64/4 = 0.91
less than one! This result may seem somewhat alarming at first, but it simply
means that the load on the gate’s output must be less than the load presented at its
input, in order that the gate be sufficiently lightly loaded that it can operate in the
required time. In other words, since we’re equalizing effort in each stage, a stage
with large logical effort ¢ must have small electrical effort h.

2.2 Decoder

Ben Bitdiddle is now responsible for memory design on the Motoroil 68W86, an
embedded processor targeting automotive applications. He must design a decoder
for a 16 word register file. Each register is 32 bits wide and each bit cell presents
a total load, gate and wire, equal to 3 unit-sized transistors. True and complemen-
tary versions of the four address bits are available and can each drive 10 unit-sized
transistors.

The decoder could be designed with a few stages of high fan-in gates or with
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Figure 2.2: 3-stage 4:16 decoder circuit.

many stages of simple gates. The best topology depends on the effort of the path.
Unfortunately, the path effort depends on the logical effort, which depends in turn
on the topology!

Because a decoder is a relatively simple structure, we can make an initial esti-
mate of the path effort by assuming the logical effort is unity. The electrical effort
is 32 x 3/10 = 9.6. The branching effort is 8 because the true and complementary
address inputs each control half of the outputs. Path effort is 9.6 x 8 = 76.8.
Hence, we should use about log, 76.8 = 3.1 stages. Since we neglected logical
effort, the actual number of stages will be slightly higher than the number we
have estimated. A 3-stage circuit is shown in Figure 2.2 while a 4-stage circuit is
considered in Exercise 2-3.

The circuit uses sixteen 4-input NAND gates. Since each address input must
drive eight of the NAND gates, yet can handle only a relatively small input capaci-
tance, we use an inverter to power up the signal. How do we size the decoder and
what is its delay?

Because the logical effortis 1 x 2 x 1 = 2, the actual path effort is 154 and the
stage effort is f = (154)'/% = 5.36. Working from the output, the final inverter
must have input capacitance z = (32 x 3) x 1/5.36 = 18 and the NAND gate
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Figure 2.3: 4:16 decoder with one polarity of input.

must have input capacitance y = 18 x 2/5.36 = 6.7. The delay is3f + P =
3x5.36+1+4+1=22.1. These results are summarized in Case 1 of Table 2.2.

2.2.1 Generating complementary inputs

Now suppose the inputs were available only in true polarity and that Ben must
produce his own complementary versions. To be fair, let the true signals drive a
load of 20 unit-sized transistors. The new decoder is shown in Figure 2.3.

The inverter strings used to compute true and complementary versions of the
input are called forks and are discussed further in Chapter 6. The 2-inverter and
1-inverter legs of the fork must drive the same load, a NAND gate, in the same
amount of time. Computing the best sizes for circuits that fork can require itera-
tion. Fortunately, we can make simple approximations that produce good results.

Suppose we keep all sizes the same except to choose a size v for the extra
inverter. We recall that the stage efforts of inverters » and v should be equal and
are therefore v/5.36 = 2.32 because they must together bear the same effort as the
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Case | = Y z U v |P| D
1 10 | 6.7 | 18 6 | 22.1
2 10 | 6.7| 18 || 10 | 23.2| 7 | 224
3 112198 |216(88 262 |7 |21.8

Table 2.2: Sizes and delays of decoder designs.

arbitration wiring

Unit Unit Unit Unit Unit
1 2 3 4 5
w bus

Figure 2.4: The physical arrangement of five units connected by a common bus
and arbitration circuitry. The units are sufficiently large that the wires between
them have significant stray capacitance.

one-inverter path. Therefore, we can size v = 104/5.36 = 23.2. The delay of the
decoder via the 2-inverter legisnow 2.32 x 24+5.36 x 24+ 14+1+4+1 = 22.4.
These results are summarized in Case 2 of Table 2.2. This topology is less than
2% slower than the original design, so the approximation worked well.

If we were concerned about every picosecond of delay, we could try tweaking
some of the sizes. For example, the circuit may be improved by dedicating more
than half of the address input capacitance to one leg of the fork. Also, the circuit
may be improved by choosing a stage effort for the second two stages between
the efforts used for the 1-inverter and 2-inverter legs of the fork. We found the
best sizes by writing the delay equations in a spreadsheet and letting it solve for
minimum delay. The results are summarized in Case 3 of Table 2.2. The delay
improvement is tiny and was probably not worth the effort.

Ben Bitdiddle, faced with bizillions of transistors to design, would rather not
waste time tweaking sizes for tiny speedups. How could he have found in advance
that his design was good enough? We will show in Section 3.4 that the best pos-
sible delay is plog, F' + P, where the best stage effort p is about 4. Therefore, a
lower bound on the delay of the circuit in Figure 2.2 is 4 log, 154+1+4+1 = 20.5.
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2.3 Synchronous arbitration

Ben Bitdiddle transferred yet again to the Pentagram Processor project. The Pen-
tagram has five separate function units that share a single on-chip bus mediated by
a sinister arbitration circuit that determines which function unit may use the bus
on each cycle (Figure 2.4). The operation of the bus and the arbitration circuits is
synchronous: during one clock cycle, each function unit presents to the arbitration
circuit its request signal R;, and the arbitration circuit computes a grant signal G;
indicating which function unit may use the bus on the next clock cycle. While
the bus is being used during one cycle, the arbitration circuit determines which
function unit may use the bus during the next cycle. The five function units have
fixed priority, with unit 1 having the highest priority and unit 5 the lowest.

The speed of the arbitration circuit is critical, because each unit requires a
portion of the clock cycle to compute the request signals, and the remainder of
the clock cycle must be sufficient to compute the arbitration results. Moreover,
because the function units are physically large, the capacitance of the wiring be-
tween the units will retard the circuit. The critical delay for the circuit will be
the time from the arrival of the last request signal until delivery of the last grant
signal.

This example explores the proper number of stages in the path and the effect of
fixed wire loading. It is somewhat complex and may be skipped on a first reading.

2.3.1 Theoriginal circuit

A designer proposed the circuit shown in Figure 2.5 for arbitration. It relies on a
daisy chain to compute which unit should be granted access to the bus. The signal
C; represents the chain, and is interpreted as “Cj; is true exactly when unit ; and all
higher-priority units are not requesting service.” The designer then formulated the
following boolean equations to express what each function unit must compute:

Cy = true (2.4)
C; = Ci.iANR; (2.5)
Gi = Cii AR (2.6)

The designer manipulated these equations so that only one gate would be required
for each stage of the daisy chain:

Ci = Ci.iAR; (2.7)

C; = Ci,VR (2.8)
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Unit 1 Unit 2 Unit 3

Unit 4 Unit 5
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Figure 2.5: Arbitration circuit for five units, using a daisy-chain method. Unit 1
has highest priority, and unit 5 lowest. Only the critical path is shown; additional
circuitry is required to compute grant signals for units 1 through 4.



2.3. SYNCHRONOUS ARBITRATION 33

Stage | C; Cout | h = Cout/ Cin g f=gh| p
1 10 | 190 19 1 19 1.0
2 10 | 190 19 4/3 | 25.3 2.0
3 10 | 190 19 5/3 | 31.7 2.0
4 10 | 190 19 4/3 | 25.3 2.0
5 10 | 10 1 5/3 1.7 2.0

Total delay 103 | 9.0

Table 2.3: Delay computations for the circuit in Figure 2.5.

Thus the gates on the daisy chain alternate between NAND and NOR gates, and
the daisy chain signal alternates between true and complement forms. Figure 2.5
shows all of the circuitry on the critical path from R; to G5, but omits much of the
rest. We assume that the request signals are available in true or complement form,
that the grant signal can be computed in complement form, that each R; and G;
is loaded with 10 units of capacitance, and that the daisy-chain wire leading from
one function unit to the next has a stray capacitance of 180 units.

Let us start by estimating the speed of the circuit shown in the figure. We will
analyze the stage delay d; in each of the five stages, as shown in Figure 2.5. For
each stage, we determine the electrical and logical effort, which we multiply to
obtain the effort delay. The results are shown in Table 2.3: the overall effort delay
is 103, and parasitic delay is 9, for a total delay of 112.

Table 2.3 illustrates some of the defects in the circuit design of Figure 2.5. We
know that overall delay is least when the effort delay is the same in every stage,
but in this design the delays vary between 1.7 and 32. This observation suggests
that we have used the wrong number of stages in the design.

Let us compute the effort along the path. The electrical effort is 1, because
both the input capacitance of R, and the output capacitance of G5 are 10. There
are four sites along the path at which the branching effort is (180 + 10) /10 = 19,
due to the stray capacitance of the wiring; thus the branching effort is 19%. The
logical effort is the product of the logical efforts of the gates, or 1 x (4/3) x (5/3) x
(4/3) x (5/3) = 4.94. The path effort is therefore F = GBH = 4.94x 19 x 1 =
643785. Table 1.3 shows that we should be using 10 stages, rather than the five in
the present design. This is a big error, which suggests there is room for dramatic
improvement.

A simple improvement is to enlarge the NAND gates along the daisy chain.
If the input capacitance of each gate input were 90 rather than 10, the branching
effort would be reduced to 3% and the total effort becomes F = 4.94 x 81 x 1 =
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Figure 2.6: An improved arbitration circuit, using two stages of logic for each
unit.

400. This calls for a 5-stage design, with an estimated delay of 5(400)'/°+9p;,,, =
25.6, which is a vast improvement over the estimate of 112 for the original design.
However, this change increases the load on each of the request signals, which will
add more delay as well as more area.

2.3.2 Improving the design

Because the best design would use 10 stages of logic, an improved circuit should
use two stages of logic for each function unit, rather than one. Each unit should
contain a logic gate and an inverter, which permits the daisy-chain signal to have
a constant polarity and makes all arbitration units identical. Figure 2.6 shows
the new structure: the logic in the box at the center of the figure is the logic
associated with stages 2, 3, and 4 of the arbitration. The logic of the arbitration
problem allows the first and last units to differ, because Cj is always true and Cy
IS unnecessary.

The transistor sizes shown in the figure as variables w, z, y, and z are all de-
termined by the method of logical effort. Let us start by analyzing the critical
path in the middle units, namely the path from C;_; to C;. The load capacitance



2.3. SYNCHRONOUS ARBITRATION 35

on this path is the stray capacitance, 180, plus = + z, the input capacitance of
the two NAND gates in the next unit. For the critical path, H = C,y;/Ci, =
(180 + = + z)/x. The logical effort along this path is the logical effort of the
NAND gate, which is 4/3 x 1 = 4/3. For the design to be fast, we know that we
should target a stage effort of about 4, as discussed in Section 1.3. Because we
are using a two-stage design, the two stages should bear an effort of 4 x 4 = 16.
So we have the equation:

F = GH (2.9)
16 = 4(180 +z + 2) (2.10)
3 T

To solve this equation, we will assume that z is small compared to 180 + x, and
can be neglected. Solving, we obtain z = 16.4.

We can now calculate y in two ways. The NAND gate stage should have an
effort delay of 4, so:

f = gh (2.11)
4 = (4/3)(y/=) (2.12)

Since x = 16.4, we can solve for y to obtain y = 49. Alternatively, we can
consider the delay in the inverter stage, which has electrical effort approximately
(180 + x)/y, so we obtain a delay equation 4 = (180 + z)/y. Solving for y, we
obtain a value of 49, the same answer.

Now let us turn to calculating z and w. Even though paths leading from R; or
to G; are not on the critical path of the entire arbitration chain, let us try to give
them reasonable performance as well. For the inverter to have a stage delay of 4,
we must have z/w = 4, so w = 4.1. Given the stipulation that R; offer a load of
10 units of capacitance, we must have z = 10 — w = 5.9. This will mean that
the effort delay in the generation of G; will be gh = (4/3)(10/5.9) = 2.3. Is
this delay reasonable? If it were much greater than 4, the gate would have very
slow rise/fall times and could suffer hot electron problems. If it were much less
than 4, the gate would probably be presenting too much load on its inputs. 2.3 is
acceptable, so we are done.

Let us now turn to the first and last units of the design. The last unit need only
generate G5. As a consequence, we make the NAND gate as fast as possible by
making it as large as allowed, given the constraint on the load capacitance of Rs.
The first unit needs to compute C; = Ry, but must drive a considerable load. The
load is 10 units for the connection to G;, 180 units for the wiring capacitance, and
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Unit | Number | Stage effort | Path effort | Path parasitic
of stages delay delay delay
1 3 2.8 8.4 1x3
2 2 4 8.0 2+1
3 2 4 8.0 2+1
4 2 4 8.0 2+1
5 1 1.3 1.3 2
Total delay 33.7 14

Table 2.4: Delay computations for the circuit in Figure 2.6.

x 4+ z = 22.3 units for the input capacitance of unit 2, for a total of 212. Thus
the electrical effort is H = 212/10 = 21. Since the logical effort of the inverters
is 1, the path effort F' is also 21. Table 1.3 tells us that two stages of logic are
required to bear this effort, but we need an odd number of inversions. Shall we
use one or three inverters? The effort is closer to the range for three inverters than
one, so we use three. Another way of choosing the number of stages is to compute
N =log, F' = 2.2, then rounding N to 3, the nearest odd number of stages.

The stage effort delay will be H'/V = 21.2'/3 = 2.8. We know that the input
capacitance of the first inverter is 10 units, so the input capacitance of the second
will be 10 x 2.8 = 28, and that of the third will be 10 x 2.8 x 2.8 = 78.

Now that the design is finished, let us compute the delay we expect along
the critical path from R; to Gs. This calculation is largely a matter of recalling
the stage delays used to obtain the transistor sizes. The calculation appears in
Table 2.4. The path effort delay is 33.7 and the parasitic delay is 14, for a total of
47.7. The improved circuit is better than twice as fast as the original. The designer
of the original tried to achieve speed by minimizing the number of logic gates in
the circuit, but a far faster circuit uses twice the number of gates!

Also notice that in this circuit the fixed wiring capacitance still dominates the
loading. Therefore, larger gates could have been used in the daisy chain, only
slightly increasing total loading on the C; signals while significantly reducing
stage effort. Finding exact solutions to problems with fixed loading usually re-
quires iteration, but the essential idea is to enlarge gates on the node with fixed
capacitance until their input capacitance becomes a non-negligible portion of the
node capacitance.
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Figure 2.7: Arbitration circuit using broadcast requests.
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2.3.3 Restructuring the problem

The arbitration circuit can be made even faster by changing its structure. The
weakness of the current design is the daisy chain, which bears a large stray ca-
pacitive load. The four segments of the chain are in series with logic, so that the
electrical and logical efforts compound to produce a very large path effort, which
leads to large delays.

An alternative structure is to transmit the four request signals R;,: = 1, 2,3, 4
to all units and place logic in each unit to compute the grant signals. Figure 2.7
shows this structure; note that the capacitive load on the four broadcast signals
is four times the load on each of the daisy-chain signals because the broadcast
signals are four times as long.

Let us consider the effort along the path from R; to Gs. The electrical effort
is 1, because the load on R; is 10 units and the load on G5 is also 10 units. The
logical effort is the logical effort of the 5-input NAND gate, which is 7/3. The
branching effort is (720 + 4x)/x, where z is the input capacitance of the NAND
gate. The path effort is thus ' = GBH = (7/3) x (720 + 4z)/x x 1. To obtain
least delay, we should minimize this effort by choosing x as large as possible, but
excessive values will lead to layout problems. Also as = becomes comparable to
the load capacitance it drives, there is little benefit to increasing x. Although large
x theoretically would reduce the branching effort, the delay driving the load is
already small. We will choose a modest value, z = 10, in part because R can
then drive the NAND gate directly, and in part because this is a convenient number.
Thus F' = 170.3, which from Table 1.3 suggests a 4-stage design. Since the NAND
gate represents one stage, we shall use three inverters to amplify R, for driving
the broadcast wires.

Even though we have yet to compute transistor sizes, we can estimate the delay
of this design. The effort delay in each stage will be f = F¥/N = 170.31/4 = 3.6,
for a total delay of 4 x 3.6 = 14.4. The parasitic delay will be 3 x 0.6 for the three
inverters and 5 x 0.6 for the NAND gate, for a total of 4.8. The overall delay is thus
D =14.4 + 4.8 = 19.2. This represents a further improvement over the previous
designs, at the expense of additional long wires.

2.4 Summary

The design examples in this chapter illustrate a number of points about designing
for high speed.
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e Tree structures are an attractive way to combine a great many inputs, espe-
cially when the electrical effort is large. These structures show up in adders,
decoders, comparators, etc. Chapter 11 shows further design examples of
tree structures.

e Forks are used to produce true and complementary versions of a signal.
The input capacitance is divided among the legs so that the effort delay is
equalized.

e Minimizing the number of gates is not always a good idea. The design of
Figure 2.6 uses twice as many gates in the critical path as the design of
Figure 2.5, but is substantially faster. The best number of stages depends on
the overall path effort.

e Because delay grows only as the logarithm of the capacitive load, it is almost
always wise to consolidate load in one part of the circuit rather than to
distribute it around. Thus the broadcast scheme in Figure 2.7 is better than
the daisy-chain method. Section 7.4 considers this problem further.

e When a path has a large fixed load, such as wire capacitance, the path can be
made faster by using a large receiving gate on the node because the larger
gates will provide much more current, yet only slightly increase the total
node capacitance. In other words, the larger receiver reduces the branching
effort of the path.

e While the parasitic delay is important to estimate the actual delay of a de-
sign, it rarely enters directly into our calculations. Rather, it enters indirectly
into the choice of the best number of stages and, equivalently, the best effort
borne by each stage.

2.5 Exercises

2-1 [20] Compare the delays of the three cases in Figure 2.1 by plotting three
curves on one graph, one curve for each of the delays predicted by Equations 2.1
to 2.3. The graph should show total delay as a function of electrical effort, H, up
to H = 200. Consider also a case similar to case ¢, but with two more inverters
connected to the output. Write the delay equation for this case and add its plot to
the graph. What does the graph show?
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2-2 [20] Find the network that computes the OR function of six inputs in least
time, assuming an electrical effort of 140. The network may use NAND and NOR
gates with up to four inputs, as well as inverters.

2-3 [20] Since we did not include logical effort in the estimate of the number of

decoder stages, we may have underestimated the best number of stages. Suppose
the decoder design with true and complementary inputs from Figure 2.2 were
modified to use 4 stages instead of 3 by adding another input inverter. Find the
best size for each stage and the delay of the decoder. Is it better or worse than the
3 stage design? Is the difference significant?

2-4 [15] The critical path for the middle units of the arbitration circuit in Fig-
ure 2.6 is from C;_; to C;. This suggests that the sizes of the gates associated with
R; and G; can be made as small as we wish, e.g., w = z = 1. Is this a good idea?
Why or why not?

2-5 [10] The design in Figure 2.6 uses a NAND gate in each stage. Why not use
a NOR gate?

2-6 [25] The design in Figure 2.6 uses some rather large transistors. Suppose
that the largest logic gate you may use has an input capacitance of 30 units. How
fast a design can you obtain?

2-7 [25] Using the reasoning outlined in Section 2.3.3, compute transistor sizes
for the design in Figure 2.7, without assuming that z = 10. Why is z # 10 for the
fastest design?

2-8 [30] Suppose you are told to design an arbitration circuit like the ones
described in Section 2.3, with the requirement that its overall delay be no more
than 60 units. Which structure would you choose? Show a detailed design.



Chapter 3

Deriving the Method of L ogical
Effort

The method of logical effort is a direct result of a simple model of logic gates in
which delays result from charging and discharging capacitors through resistors.
The capacitors model transistor gates and stray capacitances; the resistors model
networks of transistors connected between the power supply voltages and the out-
put of a logic gate. The derivations presented in this chapter provide a physical
basis for the following notions:

e The logical effort, electrical effort, and parasitic delay are parameters of a
linear equation that gives the delay in a logic gate.

e The least delay along a path of logic gates is obtained when each logic gate
bears the same effort.

e The number of stages to use in a path for least delay can be computed know-
ing only the effort along the path and, remarkably, the parasitic delay of an
inverter.

e The extra delay incurred by using the wrong number of stages is small un-
less the error in the number of stages is large.

These results validate the method of logical effort.

O9Copyright (©1998, Morgan Kaufmann Publishers, Inc. This material may not be copied or
distributed without permission of the publisher.
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Figure 3.1: Conceptual model of a logic gate, showing only one input. The output
is driven HIGH or Low through a resistor.

3.1 Model of a logic gate

An electrical model that approximates the behavior of a single logic gate designed
as a static circuit is shown in Figure 3.1. The figure shows an input signal loaded
by a capacitance C},,, the capacitance of the transistor gates connected to the input
terminal. The voltages on the input terminals, of which only one is shown in the
figure, determine which transistors will be switched on and which off. If the upper
switch conducts, it connects the output of the logic gate to the positive power
supply, through a pullup resistance R,; that models the resistance of the pullup
network of transistors that conduct current from the positive supply to the output
terminal. Alternatively, the bottom switch may conduct, connecting the output of
the logic gate to ground through a pulldown resistance R4;. The output of the logic
gate is loaded by two capacitances: C,;, a parasitic capacitance associated with
components of the logic gate itself, and a load capacitance C,,;, which represents
the load presented to the logic gate by the input capacitance of logic gates it drives
and by the stray capacitance of the wiring connected to the gate’s output terminal.

The logic gate is modeled by the four quantities C;,,, Ry, Raqi, and Cp;, which
are related in various ways depending on the particular logic function, the perfor-
mance of the transistors in the cMOS process used, and so on. Because we are
interested in choosing transistor sizes to obtain minimum delay, we shall view a
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Figure 3.2: A design for an inverter. The transistors are labeled with the ratio of
the width to length of the transistor.

logic gate as a scaled version of a template circuit. To obtain a particular logic
gate, we scale the widths of all transistors in the template by a factor «.. The tem-
plate will have input capacitance C, equal pullup and pulldown resistances R;,
and parasitic capacitance C,;. Thus the four quantities in the model are related to
corresponding template properties and the scale factor «:

Cp = aC, (3.1)
Ri=R, =Ry = R/ (3.2)
Cpi = aCy (3.3)

The scaling of the template increases the widths of all transistors by the factor
«, leaving the transistor lengths unchanged. As a transistor’s width is scaled,
its gate capacitance increases by the scale factor, while its resistance decreases
by the scale factor. The relationships shown in these equations also reflect an
assumption that the pullup and pulldown resistances are equal, so as to obtain
equal rise and fall times when the output of the logic gate changes. This restriction
makes circuits slightly slower overall; it will be relaxed in Chapter 9.

The model shown in Figure 3.1 relates easily to the design of an inverter, such
as the template shown in Figure 3.2. The n-type pulldown transistor, with width
W, and length L, is modeled in Figure 3.1 by the switch and resistor Ry that
form a path from the output to ground. The p-type pullup transistor, with width
W, and length L,, is modeled by the switch and resistor R,; forming a path to
the positive power supply. The input signal is loaded by the capacitance formed
by the gates of both transistors, which is proportional to the area of the transistor
gates:

Ct = I{1W”Ln + Kllprp

where k4 is a constant that depends on the fabrication process. The resistances are
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determined by:
1/Ry = kopunWy /Ly, = KopyW,/ L,

where k5 is a constant that depends on the fabrication process, and the p’s charac-
terize the relative mobilities of carriers in n and p-type transistors. Note that this
equation implies a constraint on the design of the inverter template to insure that
pullup and pulldown resistances are equal, namely p,W,,/L,, = p,W,/L,.

The model of Figure 3.1 also relates easily to logic gates other than inverters.
Each input is loaded by the capacitance of the transistor gates it drives. The circuit
of the logic gate is a network of source-to-drain connections of transistors such
that the output of the logic gate can be connected either to the power supply or
to ground, depending on the voltages present on the input signals that control
the transistors in the network. The pullup and pulldown resistances shown in the
model are the effective resistances of the network when the pullup or pulldown
path is active. We shall defer until Chapter 4 a detailed analysis of popular logic
gates and their correspondence to the model.

3.2 Delay in a logic gate

The delay in a logic gate modeled by Figure 3.1 is just the RC' delay associated
with charging and discharging the capacitance attached to the output node:

dabs = /ﬁRi(Cout + sz) (34)
= Kk(Ri/a)Cin(Cou/Cin) + k(Ri/ ) (aCly)
= (K’Rtot) (Cout/cin) + K:thpt (35)

where « is a constant characteristic of the fabrication process that relates RC' time
constants to delay. The third equation is obtained from the first by rearranging
terms and substituting values for R;, C;,, and C,,; obtained from Equations 3.1 to
3.3. Itis a characteristic of our formulation that the scale factor « is absent in the
final form; it is hidden in Cj,.

We can rewrite Equation 3.5 to obtain the key equations of logical effort:

daws = T(gh+p) (3.6)
T = /{Rinv Cinv (3 . 7)

Rim) Cinv
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_ Cout
h = ol (3.9)
thpt
= —— A

where C;,, is the input capacitance of the inverter template, and R;,,, is the resis-
tance of the pullup or pulldown transistor in the inverter template.

Equation 3.6 gives the delay of a logic gate in terms of logical effort g, electri-
cal effort h, and parasitic delay p. This equation expresses absolute delay, unlike
its counterpart, Equation 1.5, where delay is measured in delay units. Absolute
delay and delay units are related by the time, 7, that is characteristic of the fab-
rication process. It is the delay of an ideal inverter with electrical effort of 1 and
no parasitic delay. With more accurate transistor models and a reformulation of
Equation 3.4, we could develop an analytic value for 7, expressed in terms of
transistor length and width, gate oxide thickness, mobility, and other process pa-
rameters. We shall use an alternative approach, extracting the value of = from
suitable test circuits (see Section 5.1).

The logical effort, given by Equation 3.8, is determined by the circuit topology
of the template for the logic gate, and is independent of the scale factor «.. In
effect, the logical effort compares the characteristic RC' time constant of a logic
gate with that of an inverter. Note that the logical effort of an inverter is chosen to
be 1.

The electrical effort, defined by Equation 3.9, is just the ratio of the load ca-
pacitance of the logic gate to the capacitance of a particular input. This is the same
as the definition in Equation 1.4. Observe that the size of the transistors used in
the logic gate influences the electrical effort, because it determines the gate’s input
capacitance. This is the only remnant of the scale factor «.

Finally, Equation 3.10 defines the parasitic delay of the logic gate. Because
this equation is independent of the logic gate’s scale, «;, it represents a fixed delay
associated with the operation of the gate, irrespective of its size or load. Observe
that for an inverter, the parasitic delay, p is the ratio of the parasitic capacitance to
the input capacitance.

The linear relationship between delay and load expressed in Equation 3.6 is a
more general result than the formulation of our model might suggest. Although
our derivation has assumed that transistors behave like resistors, we would obtain
the same linear relationship if we had assumed that transistors are current sources.
In fact, our result is correct for any model of transistor behavior that combines a
current source and a resistor, and thus handles both the linear and saturated regions
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of transistor behavior. If we use a resistor model of transistors, their output current
follows an exponential waveform that distorts only by stretching linearly in time
for different values of capacitance and transistor width. If we use a current source
model of the transistors, their output current follows a sawtooth waveform form
that also distorts only by stretching in time for different values of capacitance and
width.

Actually, Equation 3.6 requires only that delay grow linearly with load and
diminish linearly as the widths of transistors are scaled. The exponential behavior
of the output voltage in the simple model is described by a differential equation
relating the rate of change of output voltage to the value of the output voltage. As
the output voltage approaches its final value, its rate of change decreases because
of the smaller current provided by the resistors. If any of the parameters we have
assumed to be constant vary instead with output voltage, the differential equation
becomes more complex, but its solution retains the same character. For example,
if the capacitance of the transistor gates that form the driven load depends on their
voltage, as it really does, the behavior of the output voltage will be distorted from
exponential, but it will not change its general character. Similarly, if the current
through the transistors depends on their drain to source voltage, as it really does,
the behavior of the output voltage will be distorted from exponential, but again
will not change its general character.

Some effects that the model ignores have little effect on its application to the
method of logical effort. One of the most important is the variation in output cur-
rent because of different input gate voltages, which leads to variations in the delay
of a logic gate due to different risetimes of input signals. Long input risetimes
increase the delay of the logic gate because the pullup and pulldown networks are
not switched fully on or off while the input voltage is near the switching thresh-
old. If all risetimes are equal, our simple model again holds because all logic
gates will exhibit identical charging current waveforms and thus the same output
voltage waveforms. Because the method of logical effort leads to nearly equal
risetimes by equalizing effort borne by all logic gates, we are justified in omitting
risetime effects from Equation 3.6.

Further evidence to support the model is obtained from detailed circuit simu-
lations, described in Section 5.1. Although the delay model is very simple, it is
quite accurate when it is suitably calibrated. It is, indeed, the basis of models used
by most static timing analyzers.
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Figure 3.3: Generic two stage path.

3.3 Minimizing delay along a path

The delay model for a single logic gate leads to a method for minimizing the delay
in a sequence of logic gates connected in series. The key result is that path delay
is minimized when the effort borne by each logic gate along the path is the same.

Consider the two stage path in Figure 3.3. The path’s input capacitance is C4,
the input capacitance of the first stage. Capacitance C5 loads the second stage.
According to Equation 3.6, the total delay, measured in units of 7, is:

D= (g1h1 +p1) + (92h2 +p2) (311)
While the logical efforts, g; and g,, and parasitic delays, p; and p,, in this equation
are fixed, the electrical efforts in each stage can be adjusted to minimize the delay.
The electrical efforts are constrained, however, by the input capacitance C'; and
the load capacitance C3, which are fixed:
hi = Cy/Cy
h2 C'3/612
and since the branching effort is 1
h1h2 = 03/01 == H
The path electrical effort, H, is a given constant that we cannot adjust. Substitut-
ing he = H/hy into Equation 3.11, we obtain
D = (g1hi + p1) + (92H/h1 + p2) (3.12)
To minimize D, we take the partial derivative with respect to A, set the result
equal to zero, and solve for hq:
oD
oh,

gih1 = goho (3.14)
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Thus, delay is minimized when each stage bears the same effort, which is the
product of the logical effort and the electrical effort. This result is independent of
the scale of the circuits and of the parasitic delays. It does not say that the delays
in the two stages will be equal—the delays will differ if the parasitic delays differ.
This result generalizes to paths with any number of stages (Exercise 3-3) and
to paths that include branching effort. The fastest design always equalizes effort
in each stage.
Let us now see how to compute the effort in each stage. We have for a path of
length V:
hihg---hy = BH (3.15)

where the path electrical effort H is the ratio of the load on the last stage to the
input capacitance of the first stage and the branching effort B is the product of the
branching efforts at each stage. Define the path logical effort to be:

91929y =G (3.16)
Multiplying these two equations together, we obtain the path effort, F':
(91h1)(g2h2) - - - (gvhy) = GBH = F (3.17)

To obtain minimum delay, the N factors on the left must be equal, so that each
stage bears the same effort f = gh. Thus the equation can be rewritten as:

fN=F (3.18)

or .
f=FYN (3.19)

Given G, B, H, and N for the path, we can compute F' and therefore the stage
effort, f, that achieves least delay. (Recall that our notation places a hat over a
quantity chosen to achieve least path delay.) Now we can solve for the electrical
effort h; of each stage: h; = f /gi. To calculate transistor sizes, we work backward
or forward along the path, choosing transistor sizes to obtain the required electrical
effort in each stage. This is the procedure outlined in Section 1.2.

The path delay obtained by this optimization procedure is

D =Y (gihi+p) = NF/N + P (3.20)

Although the parasitic delays do not affect the procedure for designing the path to
obtain least delay, they do affect the actual delay obtained. We will see in the next
section that parasitic delay also influences the best number of stages in a path.
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3.4 Choosing the length of a path

Although equalizing the effort borne by each stage in a path minimizes delay for
a given path, the delay can sometimes be reduced further by adjusting the number
of stages in the path. This optimization is also a straightforward result of our delay
model.

Consider a path of logic gates containing n; stages, to which we append n;
additional inverters to obtain a path with a total of N = n; 4+ n, stages. We will
assume that the original n, stages cannot be altered except by scaling because they
perform necessary logic functions, while the number of inverters can be altered if
necessary to reduce delay. Although preserving the correct logic function requires
that an even number of inverters be used, we will assume that an odd number of
inverters can be accommodated by changing the logic function as necessary. We
will assume that the path effort F = GBH is known: the logical and branching
efforts are properties of the n; logic stages that will not be altered by adding
inverters, and the electrical effort is determined by the input and load capacitances
required.

The minimum delay of the NV stages is the sum of the delay in the logic stages
and in the inverter stages:

A 71
D= NFYN (Z pi) + (N — 1) Dine (3.21)
=1

The first term is the delay obtained by distributing effort equally among the N
stages, as shown in the preceding section. The second term is the parasitic delay
of the logic stages, and the third term is the parasitic delay of the inverters. Dif-
ferentiating this expression with respect to N and setting the result to zero, we
obtain: .

oD

ON
Let us define the solution to this equation to be N, the number of stages to use to
obtain least delay. If we define p = F''/" to be the effort borne by each stage when
the number of stages is chosen to minimize delay, the solution of the equation can
be expressed as:

= —F/NIn(F'N)y + F'N 4 pi = 0 (3.22)

Pinv + p(1 —1Inp) =0 (3.23)

In other words, the fastest design is one in which each stage along a path bears an
effort equal to p, where p is a solution of Equation 3.23. Thus we call p the best
stage effort.
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0 1 2 3 4
Pinv

Figure 3.4: Best effort per stage, p, and corresponding best stage delay p + pine,
as a function of p;,,. Calculated from Equation 3.23.

It is important to understand the relationship between p and 7, both of which
appear to specify the stage effort required to achieve least delay. The expressions
for f, such as Equation 3.19, determine the best stage effort when the number of
stages, IV, is known. By contrast, the value p, which is a constant independent
of the properties of a path, represents the stage effort that will result when a path
uses the number of stages required to achieve least delay.

Equation 3.23 shows that the best effort, p, is a function of the parasitic delay
of an inverter. This result has an intuitive explanation. The stray capacitance of
the logic gates in the network is fixed—you can’t do much about it, and it simply
adds a fixed delay to the path. Adjusting the sizes of the logic gates will change
their effort delay, but not the delay contribution due to their parasitic delay. When
you add an inverter as a gain element in the hope of speeding up the circuit, you
need to know its actual delay, including parasitic contributions, to compare the
delay of the extra inverter to the improvement in delay of the rest of the circuit.
ASs p;,., grows, adding inverters becomes less advantageous because their extra
stray load blunts the improvement they might otherwise offer. Therefore, the best
number of stages diminishes.

Although Equation 3.23 has no closed-form solution, it is not hard to solve
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for values of p given values of p;,,. Figure 3.4 shows the solution as a function
of an inverter’s parasitic delay. Note that if we assume that the parasitic delay of
an inverter is zero, then p = e = 2.718; this is the familiar result when parasitic
delay is ignored [6]. Although Equation 3.23 is nonlinear, the equation:

fits it well over the range of reasonable inverter parasitics. For most of our exam-
ples, we shall assume that p;,, = 1.0 and thus that p = 3.59.

The quantity p is sometimes called the best step-up ratio, because it is the ratio
of the sizes of successive inverters in a string of inverters designed to drive a large
capacitive load. Figure 3.4 shows the stage delay obtained when the best step-up
ratio is used. From Equation 3.6, the stage delay is the sum of the effort and the
parasitic delay.

Actual designs will require us to choose a step-up ratio that differs somewhat
from p because the design must use an integral number of stages. Given the path
effort F', we must find the number of stages N that gives the least delay; this
result will have a stage delay close to p. Table 3.1 shows how to select IV, given
the effort I and several values of the parasitic delay of an inverter. The values of
F in the table satisfy N(F*/Y + pi,) = (N + 1)(FY®*D 4 p;..,). These are
the values of path effort for which the best N-stage design exhibits just as much
delay as the best (IV + 1)-stage design.

Some designs will not speed up when inverters are added. For example, if the
path effort is 10 and there are three stages of logic, the logic network already has
more stages than the optimum, which is two stages. In this case, we might try to
consolidate the three stages of logic into two; this may result in a speedup.

Equations 3.18 and 3.19 allow us to derive equations that approximate the
number of stages and delays when F' is large. Using the fact that F' = pV, we
find:

~ —— =log, F (3.25)
Inp

D ~ Np+Yp (3.26)

As the effort gets large, we see that the stage delay approaches p + p. For an
inverter chain, these two equations can be combined to read:

InF

D & 2 (p 4 i) (3.27)
np
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N | Diny = 0.0 | Piny = 0.6 | Diny = 0.8 | Piny = 1.0
0 0 0 0

1
4.0 5.13 5.48 5.83
i 11.4 17.7 20.0 22.3
’ 31.6 59.4 70.4 82.2
* 86.7 196 245 300
¥ 237 647 848 1090
’ 648 2130 2930 3920
! 1770 6980 10100 14200
’ 4820 22900 34700 51000
’ 13100 74900 120000 184000
P 35700 245000 411000 661000
- 97300 802000 1410000 2380000
. 265000 | 2620000 4860000 8560000
. 720000 | 8580000 | 16700000 | 30800000
“ 1960000 | 28000000 | 57400000 | 111000000
" 5330000 | 91700000 | 197000000 | 398000000

Table 3.1: Table of ranges of path effort, ', and the best number of stages, V.
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Figure 3.5: The relative delay compared to the best possible, as a function of the
relative error in the number of stages used, N/N. Assumes p;p, = 1.

When a stage effort of 4 is used, this reduces to D = log, F' fanout-of-4 (FO4)
inverter delays, where an FO4 delay is 57. We will see in the next section that
delay is is almost independent of stage effort for stage efforts near optimal, so
this delay formula is a good estimate of the delay of an inverter chain using any
reasonable stage effort. Moreover, it is a handy estimate of the delay of any circuit
with path effort F. Paths with more complex gates will have higher parasitics, but
to first order gate delay dominates and the estimate is useful for quickly compar-
ing different circuit topologies by computing only the path effort. Finally, FO4
delays are a useful way to express delay in a process-independent way because
most designers know the delay of a fanout-of-4 inverter in their process and can
therefore estimate how your circuit will scale to their process.
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3.5 Using the wrong number of stages

It is interesting to ask how much the delay for a properly optimized circuit is
changed by using the wrong number of stages. The answer, as shown in Fig-
ure 3.5, is that delay is quite insensitive to the number of stages, provided the
deviation from optimum is not too large.

To develop the curve in the figure, we start by assuming that the number of
stages is wrong by a factor s, i.e., the number of stages is sV, where N is the best
number to use. The delay can be expressed as a function of NV:

D(N) = N(FYN + p) (3.28)

where we assume the parasitic delay of each stage is the same. Let r be the ratio
of the delay when using sV stages to the delay when using the best number of
stages, V:

r = D(sN)/D(N) (3.29)

Since N is best, we know that F' = pN. Solving for 7, we obtain:

r = M (3.30)

p+tp
This is the relationship plotted in Figure 3.5 for p = 1 and thus p = 3.509.

As the graph shows, doubling the number of stages from optimum increases
the delay only 26%. Using half as many stages as the optimum increases the
delay 51%. Thus one should not slavishly stick to exactly the correct number of
stages, and it is slightly better to err in the direction of using more stages than the
optimum. A stage or two more or less in a design with many stages will make
little difference, provided proper transistor sizes are used. Only when very few
stages are required does a change of one or two stages make a large difference.

A designer often faces the problem of deciding whether it would be beneficial
to change the number of stages in an existing circuit. This can easily be done by
calculating the stage effort. If the effort is between 2 and 8, the design is within
35% of best delay. If the effort is between 2.4 and 6, the design is within 15% of
best delay. Therefore, there is little benefit in modifying a circuit unless the stage
effort is grossly high or low.

Targeting a stage effort of 4 is convenient because 4 is a round number and it is
easy to compute the desired number of stages mentally. For values of p;,,, between
0.7 and 2.5, a stage effort of 4 also produces delays within 2% of minimum.
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Figure 3.6: A string of inverters with a missized middle stage.

3.6 Using the wrong gate size

It is also interesting to ask how much the delay for a properly optimized circuit
is changed if some of the gates are missized. For example, a standard cell library
has only a discrete set of gate sizes so it is not always possible to use exactly the
desired size.

Consider the effect of missizing a stage in a string of inverters. The string in
Figure 3.6 has a best stage effort of 4, but the middle inverter is is missized so that
it has an actual stage effort of 4/s while the predecessor has an actual stage effort
of 4s.

Figure 3.7 plots the delay of the string relative to the best possible delay, as a
function of s. The figure shows that for values of s from 0.5 to 2, the actual delay
is within 15% of minimum and for values of s from 2/3 to 1.5 the actual delay
is within 5% of minimum. Therefore, the designer has a great deal of freedom to
select gate sizes different from those specified by the logical effort computation.
This is the reason that standard cell libraries with a limited repetoir of gate sizes
can achieve acceptable performance.

Since minor errors in gate sizes have almost no effect on overall delay, a de-
signer can save time by making “back of the envelope” calculations of sizes to
one or two significant figures [7]. With practice, most logical effort calculations
can be done mentally.

3.7 Summary

This chapter has presented all of the major results of the method of logical effort.
These are summarized as follows:

e The absolute delay in a single logic gate is modeled as

d=rT1(gh+p) (3.31)
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Figure 3.7: The relative delay compared to the best possible, as a function of s,
the size error of a stage. Assumes p;,, = 1.
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The next chapter shows how to estimate or measure the logical effort and
parasitic delay of logic gates for a particular fabrication process, and how
to measure 7.

e The least delay along a path is obtained when each logic gate bears the same
effort. This result leads to the equation for delay along a path:

D=NF'/N+3"p, (3.32)
where F' is the path effort.

e Delay along a path is least when each stage bears effort p, a quantity calcu-
lated from the parasitic delay of an inverter (Equation 3.23 and Figure 3.4).
This in turn determines the best number of stages to use, for any path effort
(Table 3.1). In practice, the stage effort deviates slightly from p because the
number of stages, NV, must be an integer.

e Select p about 4. Any value from 2 to 8 gives reasonable results and any
value from 2.4 to 6 gives nearly optimal results, so you can be sloppy and
still have a good design.

e Estimate the delay of a path from the path effort as log, F' fanout-of-4 in-
verter delays.

3.8 [Exercises
3-1 [25] Show that modeling transistors as current sources leads to the same
basic results (Equations 3.6 to 3.10).

3-2 [30] Using process parameters from your favorite CMOS process, estimate
values for x and 7.

3-3 [30] Generalize the result of Section 3.3 to show that the least delay in a path
of NV stages results when all stages bear the same effort.

3-4 [25] Redo the analysis in Section 3.4 to choose the best number of stages N
assuming we add 2-input NAND gates rather than inverters.
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3-5 [30] One impediment to scaling each stage precisely is the resolution of
widths supported by the lithographic equipment used in fabrication. Suppose the
process could support only three distinct widths of each transistor type (n and p),
but that you could choose these widths. What would you choose? How might you
get the effect of widths greater than those chosen?

3-6 [15] If a logic string must be increased in length, the inverters can be added
either before or after the logic gates, or between them. What practical considera-
tions would cause one to choose one location over the other?



Chapter 4

Calculating the L ogical Effort of
Gates

The simplicity of the theory of logical effort follows from assigning to each kind of
logic gate a number—its logical effort—that describes its drive capability relative
to that of a reference inverter. The logical effort is independent of the actual size
of the logic gate, allowing one to postpone detailed calculations of transistor sizes
until after the logical effort analysis is complete.

Each logic gate is characterized by two quantities: its logical effort and its
parasitic delay. These parameters may be determined in three ways:

e Using a few process parameters, one can estimate logical effort and parasitic
delay as described in this chapter. The results are sufficiently accurate for
most design work.

e Using test circuit simulations, the logical effort and parasitic delay can be
simulated for various logic gates. This technique is explained in Chapter 5.

e Using fabricated test structures, logical effort and parasitic delay can be
physically measured.

Before turning to methods of calculating logical effort, we present a discussion
of different definitions and interpretations of logical effort. While these are all
equivalent, in some sense, each offers a different perspective to the design task
and each leads to different intuitions.

O9Copyright (©1998, Morgan Kaufmann Publishers, Inc. This material may not be copied or
distributed without permission of the publisher.
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4.1 Definitions of logical effort

Logical effort captures enough information about a logic gate’s topology—the
network of transistors that connect the gate’s output to the power supply and to
ground—to determine the delay of the logic gate. In this section, we give three
equivalent concrete definitions of logical effort.

Definition 4.1 The logical effort of a logic gate is defined as the number of times
worse it is at delivering output current than would be an inverter with identical
input capacitance.

Any topology required to perform logic makes a logic gate less able to deliver
output current than an inverter with identical input capacitance. For one thing, a
logic gate must have more transistors than an inverter, and so to maintain equal
input capacitance, its transistors must be narrower on average and thus less able
to conduct current than those of an inverter with identical input capacitance. If its
topology requires transistors in parallel, a conservative estimate of its performance
will assume that not all of them conduct at once, and therefore that they will not
deliver as much current as could an inverter with identical input capacitance. If its
topology requires transistors in series, it cannot possibly deliver as much current
as could an inverter with identical input capacitance. Whatever the topology of
a simple logic gate, its ability to deliver output current must be worse than an
inverter with identical input capacitance. Logical effort is a measure of how much
worse.

Definition 4.2 The logical effort of a logic gate is defined as the ratio of its input
capacitance to that of an inverter that delivers equal output current.

This alternative definition is useful for computing the logical effort of a par-
ticular topology. To compute the logical effort of a logic gate, pick transistor sizes
for it that make it as good at delivering output current as a standard inverter, and
then tally up the input capacitance of each input signal. The ratio of this input
capacitance to that of the standard inverter is the logical effort of that input to the
logic gate. The logical effort of a logic gate will depend slightly on the mobilitiy
ratio in the fabrication process used to build it. These calculations are shown in
detail later in this chapter.

Definition 4.3 The logical effort of a logic gate is defined as the slope of the
gate’s delay vs. fanout curve divided by the slope of an inverter’s delay vs. fanout
curve.
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This alternative definition suggests an easy way to measure the logical effort of
any particular logic gate by experiements with real or simulated circuits of various
fanouts.

4.2 Grouping input signals

Because logical effort relates the input capacitance to the output drive current
available, a natural question arises: for a logic gate with multiple inputs, how
many of the input signals should we consider when computing logical effort? It
is useful to define several kinds of logical effort, depending on how input signals
are grouped. In each case, we define an input group to contain the input signals
that are relevant to the computation of logical effort:

e Logical effort per input, in which logical effort measures the effectiveness
of a single input in controlling output current. The input group is the single
input in question. All of the discussion in preceding chapters uses logical
effort per input.

e Logical effort of a bundle, a group of related inputs. For example, a mul-
tiplexer requires true and complement select signals; this pair might be
grouped into a bundle. Because bundles of complementary pairs of signals
occur frequently in cMOs circuits, we adopt a special notation: s stands
for a bundle containing the true signal s and the complement signal 5. The
input group of a bundle contains all the signals in the bundle.

o Total logical effort, the logical effort of all inputs taken together. The input
group contains all the input signals of the logic gate.

Terminology and context determine which kind of logical effort applies. The
adjective “total” is always used when total logical effort is meant, while the other
two cases are distinguished by the signals associated with them in context. “The
total logical effort of a 2-input NAND gate” is the logical effort of both inputs taken
together, while “the logical effort of a 2-input NAND gate” is the logical effort per
input of one of its two inputs.

The logical effort of an input group is defined analogously to the logical effort
per input, shown in the previous section. The analog of Definition 4.2 is: the
logical effort g, of an input group b is just

Ch _ 2 Ci

4.1
Cim} Cirw ( )

9y =
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where C} is the combined input capacitance of every signal in the input group b,
and Cj,, is the input capacitance of an inverter designed to have the same drive
capabilities as the logic gate whose logical effort we are calculating.

A consequence of Equation 4.1 is that the logical efforts associated with input
groups sum in a straightforward way. The total logical effort is the sum of the log-
ical effort per input of every input to the logic gate. The logical effort of a bundle
is the sum of the logical effort per input of every signal in the bundle. Thus a logic
gate can be viewed as having a certain total logical effort that can be allocated to
its inputs according to their contribution to the gate’s input capacitance.

4.3 Calculating logical effort

Definition 4.2 provides a convenient method for calculating the logical effort of a
logic gate. We have but to design a gate that has the same current drive character-
istics as a reference inverter, calculate the input capacitances of each signal, and
apply Equation 4.1 to obtain the logical effort.

Because we compute the logical effort as a ratio of capacitances, the units we
use to measure capacitance may be arbitrary. This observation simplifies the cal-
culations enormously. First, assume that all transistors are of minimum length,
so that a transistor’s size is completely captured by its width, w. The capacitance
of the transistor’s gate is proportional to w and its ability to produce output cur-
rent, or conductance, is also proportional to w. In most cMOS processes, pullup
transistors must be wider than pulldown transistors to have the same conductance.
W = tn/pyp is the ratio of PMOS to NMOS width in an inverter for equal conduc-
tance. +y is the actual ratio of PMOS to NMOS width in an inverter. For simplicity,
we will often assume that v = p = 2. Under this assumption, an inverter will
have a pulldown transistor of width w and a pullup transistor of width 2w, as
shown in Figure 4.1a, so the total input capacitance can be said to be 3w. In this
chapter, we will also find general expressions for logical effort as a function of ~.
In Chapter 9, we will consider the benefits of choosing v # p.

Let us now design a 2-input NAND gate so that it has the same drive char-
acteristics as an inverter with a pulldown of width 1 and a pullup of width 2.
Figure 4.1b shows such a NAND gate. Because the two pulldown transistors of
the NAND gate are in series, each must have twice the conductance of the inverter
pulldown transistor so that the series connection has a conductance equal to that of
the inverter pulldown transistor. Therefore, these transistors are twice as wide as
the inverter pulldown transistor. This reasoning assumes that transistors in series
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Figure 4.1: Simple gates. (a) The reference inverter. (b) A two-input NAND gate.
(c) A two-input NOR gate.

obey Ohm’s law for resistors in series. By contrast, each of the two pullup tran-
sistors in parallel need be only as large as the inverter pullup transistor to achieve
the same drive as the reference inverter. Here we assume that if either input to the
NAND gate is LOw, the output must be pulled HIGH, and so the output drive of the
NAND gate must match that of the inverter even if only one of the two pullups is
conducting.

We find the logical effort of the NAND gate in Figure 4.1b by extracting ca-
pacitances from the circuit schematic. The input capacitance of one input signal
is the sum of the width of the pulldown transistor and the pullup transistor, or
2 + 2 = 4. The input capacitance of the inverter with identical output drive is
Ciny = 1 4+ 2 = 3. According to Equation 4.1, the logical effort per input of the
2-input NAND gate is therefore g = 4/3. Observe that both inputs of the NAND
gate have identical logical efforts. Chapter 8 considers asymmetric gate designs
favoring the logical effort of one input at the expense of another.

We designed the NOR gate in Figure 4.1c in a similar way. To obtain the
same pulldown drive as the inverter, pulldown transistors one unit wide suffice.
To obtain the same pullup drive, transistors four units wide are required, since
two of them in series must be equivalent to one transistor two units wide in the
inverter. Summing the input capacitance on one input, we find that the NOR gate
has logical effort, ¢ = 5/3. This is larger than the logical effort of the NAND
gate because pullup transistors are less effective at generating output current than
pulldown transistors. Were the two types of transistors similar, i.e., v = 1, both
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Figure 4.2: Simple gates with 60 input capacitance of 60 unit-sized transistors.

NAND and NOR gates would both have a logical effort of 1.5.

All of the sizing calculations in this monograph compute the input capacitance
of gates. This capacitance is distributed among the transistors in the gate in the
same proportions as are used when computing logical effort. For example, Fig-
ure 4.2 shows an inverter, NAND, and NOR gate, each with input capacitance equal
to 60 unit-sized transistors.

When designing logic gates to produce the same output drive as the reference
inverter, we are modeling CMOS transistors as pure resistors. If the transistor is
off, the resistor has no conductance; if the transistor is on, it has a conductance
proportional to its width. To determine the conductance of a transistor network,
the conductances of the transistors are combined using the standard rules for cal-
culating the conductance of a resistor network containing series and parallel resis-
tor connections. While this model is only approximate, it characterizes logic gate
performance well enough to design fast structures. More accurate values for logi-
cal effort can be obtained by simulating or measuring test circuits, as discussed in
Chapter 5.

An important limitation of the model is that it does not account for velocity
saturation. The velocity of carriers, and hence the current of a transistor, normally
scales linearly with the electric field across the channel. When the field reaches
a critical value, carrier velocity begins to saturate and no longer increases with
field strength. The field across a single transistor is proportional to Vpp/L. In
sub-micron processes, Vpp is usually scaled with L so that an NMOS transistor
in an inverter is on the borderline of velocity saturation. PMOS transistors have
lower mobility and thus are less prone to velocity saturation. Also, series NMOS
transistors have a lower field across each transistor and therefore are less velocity
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saturated. The effect of velocity saturation to remember is that series stacks of
NMOS transistors in sub-micron processes tend to have less resistance than sug-
gested by the model. Thus, structures with series NMOS transistors have slightly
lower logical effort than our model predicts.

4.4  Asymmetric logic gates

Unlike the NAND and NOR gates, not all logic gates induce the same logical effort
per input for all inputs. Equal logical effort per input is a consequence of the
symmetries of the logic gates we have studied thus far. In this section, we will
analyze an example in which the logical effort differs for different inputs.

Figure 4.3 shows one form of and-or-invert gate with an asymmetric configu-
ration. The transistor widths in this gate have been chosen so that the output drive
matches the reference inverter in Figure 4.1a: the pulldown structure is equivalent
to a single pulldown transistor of width 1 and the pullup structure is equivalent to
a single pullup transistor of width 2. The total logical effort of the gate, computed
using Equation 4.1, is 17/3.

The logical effort of the distinct inputs of the and-or-invert gate can be calcu-
lated individually. The logical effort per input for inputs ¢ and b is 6/3 = 2. The
logical effort of the asymmetric input, ¢, is 5/3. The ¢ input has a slightly lower
logical effort than the other inputs, reflecting the fact that the ¢ input presents less
capacitive load than the other inputs. Input c is “easier to drive” than the other two
inputs.

Asymmetries in the logical effort of inputs arise in several different ways.
The and-or-invert gate is topologically asymmetric, giving rise to unequal logical
efforts of its inputs. Topologically symmetric gates, such as NAND and NOR, can
be built with unequal transistor sizes to make them asymmetric so as to reduce the
logical effort on some inputs, and thus reduce the logical effort along critical paths
in a network. Other gates, such as XOR, have both asymmetric and symmetric
forms, as discussed in Section 4.5.4. These techniques are explored further in
Chapter 8.

4.5 Catalog of logic gates

The techniques for calculating logical effort are used in this section to develop
Table 4.1. The expressions are slightly more general than those exhibited in earlier
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Figure 4.3: An asymmetric and-or-invert gate.
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Gate type Logical | Formula||n=2|n=3| n=4
effort y=2|vy=2| =2
NAND total set) 1 8r3 5 8
perinput | () 43 | 5/3 2
NOR total | 2220 | 103 [ 7 12
perinput | 2 513 | 7/3 3
multiplexer total 4n 8 12 16
d, s* 2,2 2,2 2,2 2,2
XOR, XNOR, parity total n22n—! 8 36 128
(symmetric) per bundle | n2"! 4 12 32
XOR, XNOR, parity total 8 24 48
(asymmetric) per bundle 44 16,126 | 8,16,16,8
majority total 12
(symmetric) per input 4
majority total 10
(asymmetric) per input 4,42
C-element total n? 4 9 16
per input n 2 3 4
latch total 4
(dynamic) d, ¢px 2,2
upper bounds total 7@" 32/3 | 48 512/3
per bundle | %% 16/3 | 16 128/3

Table 4.1: Summary of calculations of the logical effort of logic gates.
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sections in two ways. First, the expressions apply to logic gates with an arbitrary
number of inputs, n. Second, they use a parameter for the ratio of p-type to n-type
transistor widths, so as to permit calculation of logical effort for gates fabricated
with various cMOs processes. Whereas the reference inverter in Figure 4.1a has
a pullup-to-pulldown width ratio of 2 : 1, a ratio of v : 1 is used throughout this
section. Each logic gate will be designed to have a pulldown drive equivalent to
an n-type transistor of width 1 and a pullup drive equivalent to a p-type transistor

of width ~.
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4.5.1 NAND gate

A NAND gate with n inputs, designed to have the same output drive as the refer-
ence inverter, will have a series connection of pulldown transistors, each of width
n, and a parallel connection of pullup transistors, each of width . Using Equa-
tion 4.1, the total logical effort is:

n(n + )

o (4.2)

Gtot =
The logical effort per input is just 1 /n of this value, because the input capacitance
is equally distributed among the n inputs.

Table 4.1 includes the expressions for logical effort and calculations for several
common cases: v = 2, n = 2, 3, 4. Note from the equation that the logical effort
changes only slightly for a wide range of ~: when ~ ranges from 1 to 3, the total
logical effort for n = 2 ranges from 3 to 2.5.

4.5.2 NOR gate

The n-input NOR gate consists of a parallel connection of pulldown transistors,
each of width 1, and a series connection of pullup transistors, each of width n~y.
The total logical effort is therefore:

{1 +n7)

1+ (43)

Jtot =
Again, the logical effort per input is just 1/n times this value. Table 4.1 includes
examples of the logical effort of a NOR gate. For cCMOS processes in which v > 1,
the logical effort of a NOR gate is greater than that of a NAND gate. If the cMOS
fabrication process were perfectly symmetric, so that we could choose v = 1, then
the logical effort of NAND and NOR gates would be equal.

453 Multiplexers, tri-stateinverters

An n-way inverting multiplexer is shown schematically in Figure 4.4. There are n
data inputs, d; . . . d,, and n bundles of complementary select signals, s 1 . .. sx,.
Each data input is wired to a four-transistor select arm, which is in turn connected
to the output c¢. To select input 7, only bundle sx; is driven TRUE, which enables
current to flow through the pullup or pulldown structures in the select arm associ-
ated with d;.
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Figure 4.4. An n-way multiplexer. Each arm of the multiplexer has a data input
d; and a select bundle sx;.

The total logical effort of a multiplexer is n(4 + 4v)/(1 + ) = 4n. The
logical effort per data input is just (2 + 2-)/(1 + ) = 2, and the logical effort per
select bundle is also 2. Note that the logical effort per input of a multiplexer does
not depend on the number of inputs. Although this property suggests that large,
fast, multiplexers could be built, stray capacitance in large multiplexers limits
their growth. This problem is analyzed fully in Chapter 11. Also, increasing
the number of multiplexer inputs tends to increase the logical effort of the select
generation logic.

A single multiplexer arm is sometimes called a tri-state inverter. When a mul-
tiplexer is distributed across a bus, the individual arms are often drawn separately
as tri-state inverters. Note that the logical efforts of the s and 5 inputs may differ.

4.5.4 XOR, XNOR, and parity gates

Figure 4.5 shows an XOR gate with two inputs, a* and bx, and output c¢. The gate
has two bundled inputs; the ax bundle contains a complementary pair a and @, and
the b+ bundle contains b and b. The total logical effort of the gate is (8 +8v)/(1+
v) = 8. The logical effort per input is just 1 /4 this amount, or 2. The logical effort
per input bundle is just the sum of the logical effort per input of the two inputs in
the bundle, or 4.

The structure shown in Figure 4.5 can be generalized to compute the parity of
n inputs. As an example, Figure 4.6a shows a 3-input XOR gate. The n-input gate
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Figure 4.5: A two-input XOR gate, with input bundles ax and bx, and output c.

will have 27! pulldown chains, each with n transistors in series, each of width n.
There will be 27! pullup chains, each with n transistors in series, each of width
n~y. Thus the total logical effort will be 2" 'n(n + nvy)/(1 + v) = n?2"1. The
logical effort per input will be 1/(2n) times this figure, or n2"~2, and the logical
effort per input bundle will be 1/n times the total logical effort, or n2"~!.

For n = 3 and above, symmetric structures such as the one shown in Figure
4.6a fail to yield least logical effort. Figure 4.6b shows a way to share some of
the transistors in separate pullup and pulldown chains to reduce the logical effort.
Repeating the calculation, we see that the total logical effort is 24, which is a
substantial reduction from 36, the total logical effort of the symmetric structure
in Figure 4.6a. In the asymmetric version, bundles a* and cx have a logical effort
per bundle of 6. Bundle b* has a logical effort of 12, which is the same as in
the symmetric version because no transistors connected to b or b are shared in the
asymmetric gate.

The XOR and parity gates can be altered slightly to produce an inverted output:
simply interchange the ¢ and @ connections. Note that this transformation does
not change any of the logical effort calculations.

455 Majority gate

Figure 4.7 shows two designs for an inverting 3-input majority gate. Its output is
Low when two or more of its inputs are HIGH. The symmetric design is shown
in Figure 4.7a. The total logical effort is (12 4+ 12v)/(1 + ) = 12, distributed
evenly among the inputs. The logical effort per input is therefore 4. Figure 4.7b
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Figure 4.6: Two designs for three-input parity gates. (a) A symmetric design. (b)
An asymmetric design with reduced logical effort.
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shows an asymmetric design, which shares transistors as does the XOR design
in Figure 4.6b. The total logical effort of this design is 10, and it is unevenly
distributed among the inputs. The a input has a logical effort of 2, while the 5 and
c inputs have logical efforts of 4 each.

45.6 Adder carry chain

Figure 4.8 shows one stage of a ripple-carry chain in an adder. The stage accepts
carry Cj, and delivers a carry out in inverted form on C,,;. The inputs g and &
come from the two bits to be summed at this stage. The signal g is HIGH if this
stage generates a new carry, forcing C,,;, = 0. Similarly, & is Low if this stage
kills incomming carries, forcing C o, = 1.

The total logical effort of this gate is (5 + 5)/(1 + ) = 5. The logical effort
per input for C;,, is 2; for the g input it is (1 + 2)/(1 + «); and for the & input it
is (2+7)/(1+7).

4.5.7 Dynamic latch

Figure 4.9 shows a dynamic latch: when the clock signal ¢ is HIGH, and its com-
plement ¢ is Low, the gate output g is set to the complement of the input d. The
total logical effort of this gate is 4; the logical effort per input for d is 2, and the
logical effort of the ¢* bundle is also 2. Altering the latch to make it statically
stable increases its logical effort slightly (see Exercise 4-2).

4.5.8 Dynamic Muller C-element

Figure 4.10 shows an inverting dynamic Muller C-element with two inputs. Al-
though this gate is rarely seen in designs for synchronous systems, it is a staple of
asynchronous system design. The behavior of the gate is as follows: When both
inputs are HIGH, the output goes LOw; when both inputs go Low, the output goes
HIGH. In other conditions, the output retains its previous value—the C-element
thus retains state. The total logical effort of this gate is 4, equally divided between
the two inputs.

An n-input C-element can be formed in the obvious way, by making se-
ries pullup and pulldown chains of n transistors each. The width of a pulldown
transistor is n, and of a pullup transistor is n-y. The total logical effort is thus
n(n + nvy)/(1 4+ v) = n?, and the logical effort per input is just n.
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Figure 4.7: Two designs for three-input majority gates. (a) A symmetric design.

(b) An asymmetric design with reduced logical effort.
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Figure 4.8: A carry-propagation gate. The carry arrives on Cj, and leaves on Cout-
The g input is HIGH if a carry is generated at this stage, and the & input is Low if
a carry is killed at this stage.
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Figure 4.9: A dynamic latch with input d and output ¢g. The clock bundle is ¢x.
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Figure 4.10: A two-input inverting dynamic Muller C-element. The inputs are a
and b, and the output is c.

4.5.9 Upper boundson logical effort

It is easy to establish an upper bound for the logical effort of a gate with n inputs.
For any truth table, construct a gate with 2™ arms, each consisting of a series
connection of n transistors, each of which receives the true or complement form
of a different input. For entries in the truth table that require a LOw output, the
series transistors in the corresponding arm are all n-type pulldown transistors and
the series string bridges ground and the logic gate output. The transistor gates in
the string receive inputs in such a way that the series connection conducts current
when the input conditions for the truth table entry are met. For entries in the truth
table that require a HIGH output, the series transistors are all p-type pullups and
the series string spans the positive power supply and the logic gate output. The
transistor gates receive the complement of the appropriate input. To design such a
gate to have the same output drive as the reference inverter, each n-type transistor
must have width n, and each p-type transistor must have width yn. To compute
the worst-case logical effort, assume that v > 1 and inputs are connected only to
p-type transistors, which are larger than n-type transistors and so offer more load.
Thus the worst-case input capacitance is yn22", and the worst-case logical effort
is therefore yn?2™ /(1 + ).

This result shows that in the worst case, the logical effort of a logic gate grows
exponentially with the number of inputs. These bounds are not particularly tight,
and may perhaps be improved. Any improvement will hinge on reducing the
number of transistors in a gate by sharing.
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4.6 Estimating parasitic delay

Calculating the parasitic delay of logic gates is not as easy as calculating logical
effort. The principal contribution to the parasitic capacitance is the capacitance of
the diffused regions of transistors connected to the output signal. The capacitance
of these regions will depend on their layout geometry and on process parameters.
However, a crude approximation can be obtained by imagining that a transistor
of width w has a diffused region of capacitance equal to wC, associated with
its source and an identical region associated with its drain. The constant Cy is a
property of the fabrication process and the inverter layout.

This model allows us to compute the parasitic delay of an inverter. The output
signal is connected to two diffused regions: the one associated with the pulldown
of width 1 will have capacitance Cy, and the one associated with the pullup of
width v will have capacitance vCy. The input capacitance of the inverter is like-
wise proportional to the transistor widths, but with a different constant of propor-
tionality characteristic of transistor gate capacitance. Thus the input capacitance
is (1 + v)C,. The parasitic delay is the ratio of the parasitic capacitance to the in-
put capacitance of the inverter, which is just p;,, = Cq/C,. The two constants of
proportionality can be determined from layout geometry and process parameters
(see Exercise 4-10). We shall adopt a nominal value of p;,, = 1.0, which is rep-
resentative of inverter designs. This quantity can be measured from test circuits,
as shown in Section 5.1.

We can estimate the parasitic delay of logic gates from the inverter parameters.
The delay will be greater than that of an inverter by the ratio of the total width of
diffused regions connected to the output signal to the corresponding width of an
inverter, provided the logic gate is designed to have the same output drive as the

inverter. Thus we have
> wq
=\777 nv 4.4
p (1 n 7) p (4.4)

where wy is the width of transistors connected to the logic gate’s output. For this
estimate to apply, we assume that transistor layouts in the logic gates are similar
to those in the inverter. Note that this estimate ignores other stray capacitances in
a logic gate, such as contributions from wiring and from diffused regions that lie
between transistors that are connected in series.

This approximation can be applied to an n-input NAND gate, which has one
pulldown transistor of width n and n pullup transistors of width ~ connected to
the output signal, so p = np;,.,. An n-input NOR gate likewise has p = np;p,.
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Gate type Formula | Parasitic delay when p;,, = 1.0
n=1 ‘nz?‘nziﬂ ‘ n =4

inverter Dinw 1

NAND NPiny 2 3 4

NOR NPinv 2 3 4

multiplexer 2NPiny 4 6 8

XOR, XNOR, parity | 72" 'p;n, 4 12

majority 6Pinv 6

C-element NPiny 2 3 4

latch 2Dinw 2

Table 4.2: Estimates of the parasitic delay of logic gates.

An n-way multiplexer has n pulldowns of width 2 and » pullups of width 2+, so
P = 2npin,. Table 4.2 summarizes some of these results.

The parasitic estimation has a serious limitation in that it predicts linear scaling
of delay with number of inputs. In actuality, the parasitic delay of a series stack of
transistors increases quadratically with stack height because of internal diffusion
and gate-source capacitances. The EImore delay model [9] handles distributed RC
networks and shows that stacks of more than about four series transistors are best
broken up into multiple stages of shorter stacks. Since parasitics are so geometry-
dependent, the best way to find parasitic delay is to simulate circuits with extracted
layout data.

4.7 Properties of logical effort

The calculation of logical effort for a logic gate is a straightforward process:

e Design the logic gate, picking transistor sizes that make it as good a driver
of output current as the reference inverter.

e The logical effort per input for a particular input is the ratio of the capaci-
tance of that input to the total input capacitance of the reference inverter.

e The total logical effort of the gate is the sum of the logical efforts of all of
its inputs.

Table 4.1 reveals a number of interesting properties. The effect of circuit topol-
ogy on logical effort is generally more pronounced than the effect of fabrication
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technology. For cmos with v = 2, the total logical effort for 2-input NAND
and NOR gates is nearly, but not quite, three. If cMOS were exactly symmetric
(v = 1), the total logical effort for both NAND and NOR would be exactly three;
the asymmetry of practical CMOS processes favors NAND gates over NOR gates.

In contrast to the weak dependence on +, the logical effort of a gate depends
strongly on the number of inputs. For example, the logical effort per input of an
n-input NAND gate is (n + 7)/(1 + v), which clearly increases with n. When an
additional input is added to a NAND gate, the logical effort of each of the existing
inputs increases through no fault of its own. Thus the total logical effort of a logic
gate includes a term that increases as the square of the number of inputs; and
in the worst case, logical effort may increase exponentially with the number of
inputs. When many inputs must be combined, this non-linear behavior forces the
designer to choose carefully between single-stage logic gates with many inputs
and multiple-stage trees of logic gates with fewer inputs per gate. Surprisingly,
one logic gate escapes super-linear growth in logical effort—the multiplexer. This
property makes it attractive for high fan-in selectors, which are analyzed in greater
detail in Chapter 11.

The logical effort of gates covers a wide range. A two-input XOR gate has a
total logical effort of 8, which is very large compared to the effort of NAND and
NOR of about 3. The XOR circuit is also messy to lay out because the gates of its
transistors interconnect with a criss-cross pattern. Are the large logical effort and
the difficulty of layout related in some fundamental way? Whereas the output of
most other logic functions changes only for certain transitions of the inputs, the
XOR output changes for every input change. Is its large logical effort related in
some way to this property?

The designs for logic gates we have shown in this chapter do not exhaust the
possibilities. In Chapter 8, logic gates are designed with reduced logical effort
for certain inputs that can lower the overall delay of a particular path through a
network. In Chapter 9, we consider designs in which the rising and falling delays
of logic gates differ, which saves space in cM0Os and permits analysis of ratioed
NMOS designs with the method of logical effort.

4.8 Exercises

4-1 [20] Show that Equation 4.1 corresponds to the definition of logical effort
given in Equation 3.8.
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Figure 4.11: A static Muller C-element.

4-2 [20] Modify the latch shown in Figure 4.9 so that its output is statically
stable, even when the clock is Low. How big should the transistors be? What is
the logical effort of the new circuit?

4-3 [20] In a fashion similar to Exercise 4-2, modify the dynamic C-element
so that its output is static. How big should the transistors be? What is the logical
effort of the new circuit?

4-4 [20] Another way to construct a static C-element is shown in Figure 4.11.
What relative transistor sizes should be used? What is the logical effort of the
gate?

4-5 [20] Figure 4.8 shows an adder element that inverts the polarity of the carry
signal. A different design will be required for stages that accept a complemented
carry input and generate a true carry output. Design such a circuit and calculate
the logical effort of each input.

4-6 [10] In many cmoOs processes the ratio of pullup to pulldown conductance,
~y, is greater than 2. How high does ~ have to be before the logical effort of NOR
Is twice that of NAND?

4-7 [20] The choice of transistor sizes for the inverter of Figure 4.1 was influ-
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Figure 4.12: A two-stage XOR circulit.
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Figure 4.13: An inverting bus driver circuit, equivalent to the function of a tri-state
inverter.

enced by the value of . Express the best pullup and pulldown transistor sizes
in an inverter as a function of - to obtain minimum delay in a two-inverter pair.
Consider rising and falling delays separately.

4-8 [20] Compare the logical effort of a two-stage XOR circuit such as shown in
Figure 4.12 with that of the single stage XOR of Figure 4.4. Under what circum-
stances is each perferable?

4-9 [20] Figure 4.13 shows a design for an inverting bus driver that achieves the
same effect as a tri-state inverter. Compare the logical effort of the two circuits.
Under whiat circumstances is each perferable?

4-10 [25] Measure the gate and diffusion capacitances of your process. From
these values, estimate p;,,,,.



Chapter 5
Calibrating the M odel

One can calculate the logical effort and parasitic delay of a logic gate from simple
transistor models, as in the preceding chapter, or can obtain more accurate values
by measuring the behavior of suitable test circuits. This chapter shows how to de-
sign and measure such circuits to obtain the two parameter values. The reader who
wishes to skip this chapter may wish to glance at Table 5.1, which summarizes the
characterization of one set of test circuits.

5.1 Calibration technique

We calibrate by measuring the delay of a logic gate as a function of its load—
its electrical effort—and fiting a straight line to the results. Figure 5.1 shows
simulated data for an inverter design. Since the logical effort of an inverter is 1,
we expect from Equation 3.6 that the delay will be d = 7(h + piny). The straight
line that connects the points will have slope 7 and will intercept the h = 0 axis at
d = Tpin,. Thus the measurements yield values for 7 and p;,,, .

The measurements are an independent verification of the linear delay model
on which the method of logical effort is based. While only two measurements
are required to obtain values of 7 and p;,,, more measurements will increase the
precision of the result and increase our confidence in the linear model. The il-
lustration shows four data points at different values of electrical effort, fitting a
straight line very well.

O9Copyright (©1998, Morgan Kaufmann Publishers, Inc. This material may not be copied or
distributed without permission of the publisher.
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Figure 5.1: Simulated delay of inverters driving various loads. Results from 0.6,
3.3v process.

Figure 5.2 shows a similar set of data for a two-input NAND gate. The straight
line in this case is fitted with the equation d = 7(g2nandh + Ponana), Where the
value of 7 was determined from the inverter characterization. This figure presents
delay along the vertical axis in units of 7, using the value of 7 computed from
Figure 5.1. As a result, the slope of the fitted line will be the logical effort of the
NAND gate and the intercept will be its parasitic delay. Similar simulations will
calibrate an entire family of logic gates; some results are shown in Table 5.1.

Notice that the logical effort of NOR gates agrees fairly well with our model,
but that the logical effort of NAND gates is lower than predicted. This can be
attributed to velocity saturation, as discussed in Section 4.3.

The parasitic delay depends on layout and on the order of input switching.
These effects are discussed later in this chapter.

The values in these figures and table were obtained through simulation. The
remainder of this chapter discusses methods and pitfalls of logical effort charac-
terization.
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Figure 5.2: Simulated delay of two-input NAND gate driving various loads. Re-
sults from 0.6, 3.3v process. The vertical axis is marked in units of 7.

Gate Number Logical effort Parasitic delay
type of inputs from model from model
simulation | (Table 4.1) | simulation | (Table 4.2)

Inverter 1 1.00 1.00 1.08 1.00
NAND 2 1.18 1.33 1.36 2.00

3 1.40 1.67 2.12 3.00

4 1.66 2.00 2.39 4.00
NOR 2 1.58 1.66 1.98 2.00

3 2.18 2.33 3.02 3.00

4 2.81 3.00 3.95 4.00

Table 5.1: Values for logical effort and parasitic delay for several kinds of logic
gates for a 0.6y, 3.3v process with v = 2. From simulation, 7 = 43 ps.
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Figure 5.3: Test circuit for 2-input NAND calibration.

5.2 Designing test circuits

Designing a good test circuit is more subtle than one might initially imagine. A
reasonable first attempt would be to load a gate with a capacitor, apply a step
input, and measure the delay to the output crossing 50%. Such a circuit has two
major problems. It does not account for the input slope dependence of delay, and
it neglects the nonlinearity of MOS capacitors.

A Dbetter test circuit is shown in Figure 5.3 for a 2-input NAND. The circuit is
divided into four stages. The first two stages are responsible for shaping the input
slope. The third stage contains the gate being characterized. The final stage serves
as a load on the gate. Each stage contains a primary gate (a), a load gate (b), and
a load on the load (c)!

Gate (c) is necessary because of gate-drain overlap capacitance. If gate (c)
were removed, the output of gate (b) would switch very rapidly. Because of the
Miller effect, this would increase the effective input capacitance to gate (b). Sim-
ulation shows that this leads to an 8% overestimation of the delay of a fanout-of-4
inverter.
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5.2.1 Rising, falling, and average delays

The rising and falling delays of gates usually are not equal. Which should we use?
In Section 9.1, we show that considering only average gate delays is sufficient to
minimize the average delay of a path. Therefore, we normally define the logical
effort and parasitic delay of a gate to be the average of the values from the rising
and falling transitions.

Occasionally it is useful to do a case analysis, considering rising and falling
delays separately. The logical effort and parasitic delay for rising and falling
transitions can be found from a curve fit in just the same way as for average delay.
The results should still be normalized to the average delay of an inverter.

5.2.2 Choice of input

Designing test circuits with logic gates other than inverters requires deciding
which input signals to use to propagate signals along the circuit. Our estimates of
logical effort from Chapter 4 assumed that when transistors are in parallel exactly
one turns on, while when transistors are in series, all series transistors turn on si-
multaneously to give a resistance of R through each. In contrast, real circuits tend
to be modeled with a single latest input which arrives after all other inputs have
settled. This leads to lower effective resistance through series transistors because
the transistors with early inputs are fully turned on when the late input arrives and
thus provide more current. Which of the two or more inputs to a logic gate should
we choose as the late input? It turns out that the inputs have distinct properties,
so we could find the logical effort and parasitic delay parameters for each input
separately. The unused inputs must be wired so that the gate’s output will be con-
trolled by the single input: unused NAND inputs are wired HIGH, and unused NOR
inputs are wired LOW.

The variation of logical effort and parasitic delay with different choices of
input signal is tabulated in Table 5.2. An input signal is identified by a number
that records the largest number of transistors between the transistors controlled by
the signal and the output node of the logic gate, as shown in Figure 5.4. Signal 0
connects to two transistors that have drains connected directly to the output node.
Signal 1 connects to two transistors, one of which is connected to the output node,
but the other is one transistor away from the output node. This numbering scheme
works for NOR and NAND gates equally. Signal 0 is called the innermost signal,
while signal n — 1 is the outermost.

The parasitic delay of a gate changes greatly with choice of input, as shown in
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Number of | Input | Logical | Parasitic

inputs number | effort delay
2 0 1.18 1.36

1 1.11 1.89

3 0 1.40 2.12

1 1.32 3.06

2 1.28 3.64

4 0 1.66 2.39

1 1.58 3.89

2 1.49 5.04

3 1.48 5.59

Table 5.2: Variation of the logical effort of NAND gate inputs for different choices
of input signal. Data obtained from simulation of a 0.6, 3.3 volt process.
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Figure 5.4: Input numbering and parasitic capacitances of a 4-input NAND.
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Figure 5.4. When input 0 of a NAND gate rises, all the other NMOS transistors were
already on and had discharged diffusion capacitances C;—C'3 to ground. The gate
has little parasitic delay because only the diffusion Cy on the output node must
switch. On the other hand, when the outer input (e.g. input 3 of a 4-input NAND)
rises last, all the diffusion capacitances Cy—Cj are initially charged up to near
Vpp. Discharging this capacitance diverts some output current and increases the
parasitic delay. Indeed, parasitic delay from the outer input scales quadratically
with the number of inputs as discussed in Section 4.6. On account of parasitic
delay, it is usually best to place the latest arriving signal on input O.

Multiple-input gates also have somewhat lower logical effort than computed
in Chapter 4 because only one input is switching, as we have seen in Table 5.1.
The other transistors have already turned on and have a lower effective resistance
than the switching transistor. If inputs to series transistors arrive simultaneously,
the logical effort will be greater than these simulations have indicated.

5.2.3 Paraditic capacitance

It is essential to specify accurate diffusion capacitances to simulate realistic para-
sitic delays. Most SPICE models fail to account for diffusion capacitance unless
explicitly requested. The diffusion capacitance is specified with the AS, AD, PS,
and PD parameters corresponding to the area and perimeter of the diffusion. These
dimensions are shown in Figure 5.5. The diffusion perimeter measures only the
length of the junction between the diffusion region and the substrate; the boundary
between diffusion and channel is not counted, because the diffusion wall capac-
itance at the edge of the transistor gate is deliberately reduced by the fabrication
process.

Diffusion area and perimeter depend on layout. Diffusion nodes which contact
to metal wires are larger than diffusion areas between series transistors without
contacts. Good layouts share diffusion nodes wherever possible. Large cells can
further reduce diffusion by folding transistors. Figure 5.6 shows the diffusion
capacitances of a simple inverter, an inverter with folded transistors, and a NAND
gate.

Ideally, wire capacitance should also be included in the parasitic estimate. This
can be done by extracting parasitic values from actual cell layouts. The parasitic
delays reported in this chapter include realistic diffusion capacitances, but omit
wire capacitance.



88 CHAPTER 5. CALIBRATING THE MODEL
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Figure 5.5: Simplified transistor structure illustrating diffusion area and perimeter
for capacitance computation.
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Figure 5.6: Layout of cM0Os gates for measuring diffusion capacitance.
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Transistor | W | AS | AD | PS | PD
N1 8 |40 | 40 | 18 | 18
P1 16 | 80 | 80 | 26 | 26
N2 4 | 20| 12 | 14
N3 4 | 20| 12 | 14
P2 8 | 40 | 24 | 18
P3 8 | 40 | 24 | 18
N4 16 | 80 | 24 | 26
N5 16 | 24 | 80 | 3
P4 16 | 80 | 48 | 26
P5 16 | 80 | 48 | 26

oo B wo oo o

Table 5.3: Diffusion area and perimeter capacitances of transistors in Figure 5.6.
Reported in units of A2 and ), respectively, where ) is half of the minimum drawn
channel length. Layout according to MOSIS submicron design rules.

5.2.4 Process sensitivity

The value of 7 depends on process, voltage, and temperature. Figure 5.7 shows
how these parameters differ for a wide variety of processes and voltages at a nom-
inal temperature of 70°C.

Ideally, logical effort of a gate would be independent of process parameters,
as was found in Chapter 4. In reality, effects like velocity saturation cause logical
effort to differ slightly with process and operating conditions. Table 5.4 shows
this variation.

Similarly, parasitic capacitance differs with process and environment. Ta-
ble 5.5 shows this variation.

5.3 Other characterization methods

Simulation is usually sufficient to characterize a cell library. Sometimes, accurate
SPICE models for the library are unavailable. In such a case, logical effort can
still be estimated from vendor datasheets or measured from test chips.

Some cell libraries come with delay vs. fanout information in the data sheet,
but lack simulation models. Logical effort can easily be extracted from the delay
vs. fanout curves. Care must be taken to convert fanout to electrical effort if the
fanout is expressed in terms of unit inverters rather than C,,:/Ci,.
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Figure 5.7: 7 for various processes and voltages. Simulated using MOSIS SPICE
parameters

Process | Vpp || NAND-2 | NAND-3 | NAND-4 | NOR-2 | NOR-3 | NOR-4
2.0 5.0 1.16 1.35 1.55 1.58 2.13 2.69
1.2p 5.0 1.20 1.41 1.65 1.50 2.00 2.47
1.2p 3.3 1.24 1.48 1.74 151 2.04 2.59
0.8 5.0 1.15 1.32 1.53 151 2.00 2.55
0.8 3.3 1.17 1.36 1.58 1.50 2.07 2.60
0.6 3.3 1.18 1.40 1.66 1.58 2.18 2.81
0.6 2.5 1.17 1.42 1.68 1.55 2.13 2.78
0.35u | 3.3 1.17 1.37 1.57 1.54 2.03 2.61
0.35pn | 25 1.20 1.42 1.65 1.57 2.15 2.61

Average 1.18 1.39 1.62 1.54 2.08 2.63

Table 5.4: Logical effort of gates for different processes and voltages.
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Process | Vpp || InV | NAND-2 | NAND-3 | NAND-4 | NOR-2 | NOR-3 | NOR-4

2.0p 50 |1 094 124 1.88 2.29 1.78 2.89 3.79
1.2 50 (091 116 1.80 2.11 1.63 2.52 3.42
1.2 33 |09 | 121 1.84 2.18 1.67 2.58 3.18
0.8 5.0 || 098 | 1.27 1.86 2.16 1.77 2.89 3.99
0.8 33 |09 | 1.30 1.98 2.30 1.82 2.69 3.45
0.6p 33 || 108 | 1.36 2.12 2.39 1.98 3.02 3.95
0.6 25 | 1.07| 153 2.29 2.69 2.07 3.19 3.86
0.35p | 3.3 || 1.06 | 1.42 2.07 2.52 1.84 2.76 3.18
0.35p | 25 || 116 | 154 2.21 2.64 1.87 2.49 3.34

Average 101 | 134 2.01 2.36 1.83 2.78 3.53

Table 5.5: Parasitic delay of gates across process and voltage.

Logical effort can also be measured from fabricated chips by plotting the fre-
quency of ring oscillators. The oscillator should contain an odd number of in-
verting stages. The frequency of the ring oscillator is related to the delay of the
gate, as was discussed in Example 1.1. Oscillators with different fanouts provide
data for the delay vs. electrical effort curves and thus values for logical effort and
parasitic delay.

Care should be taken to load the load gates suitably to avoid excessive Miller
multiplication of the load capacitance. Also, fabricated chips will include wire
capacitance, which may have been neglected in simulation. Finally, the output
should be tapped off one of the load gates to avoid extra branching effort on the
ring oscillator. Unfortunately, this is not possible in rings built from fanout-of-1
gates.

5.4 Calibrating special circuit families

The calibration techniques so far work well for gates with roughly equal rise and
fall times because the output of one gate is a realistic input to the next gate. Un-
fortunately, the techniques break down for other circuit families. For instance, a
dynamic gate cannot directly drive another dynamic gate because the monotonic-
ity rule would be violated. If gates are skewed to favor a critical transition, the
edge rate of the other transition is unrealistically slow and should not be used to
set the input slope.

Dynamic gates have a very low switching threshold. Since one dynamic gate
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cannot directly drive another, there must be an inverting static gate between dy-
namic stages. Attempting to measure delay from input crossing 50% to output
crossing 50% often leads to misleading results. If the slope of the input is slow,
dynamic gates may even have a negative delay. A better approach is to character-
ize the delay of the dynamic gate and subsequent inverter as a pair. Remember
to use an electrical effort for the pair equal to the produce of the electrical ef-
forts of each stage. Initial estimates of logical effort can be used to determine the
size of the static gate such that the stage effort of the dynamic and static gate are
approximately equal.

Static gates are sometimes skewed to favor a particular transition, as will be
discussed in Section 9.2.1. For example, a high-skew gate with a larger PMOS
transistor may be used after a dynamic gate. Characterizing a chain of identical
skewed gates also leads to misleading results. We would like to characterize the
logical effort of the rising output of a high-skew gate because that is the delay
which would appear in a critical path. If a chain of such skewed gates is used,
the input slope will come from a falling transition and will be unreasonably slow.
This retards the rising output as well. To avoid this problem, characterize skewed
gates as part of a unit, just as recommended for dynamic gates.

5.5 Summary

This chapter has explored the accuracy of the method of logical effort through
circuit simulation. The results suggest that the calculation methods described in
Chapter 4 are good, but that somewhat greater accuracy and confidence can be
obtained from more detailed calibrations.

Since the logical effort and parasitic delay of gates change only slightly with
process, 7 is a powerful way to characterize the speed of a process with a single
number. Parasitic delay varies more than logical effort, but since effort delay
usually exceeds parasitic delay, the variation is a smaller portion of the overall
delay. By expressing the delay of circuits in terms of 7, or in the more widely
recognized unit of fanout-of-4 inverter (FO4) delay (1 FO4= 57), the designer
can communicate with others in a process-independent way and can easily predict
how gate performance will improve in more advanced processes.
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5.6 Exercises

5-1 [25] Determine the logical effort and parasitic delay of an inverter, 2-input
NAND, and 2-input NOR gate in your process. How well do the numbers agree
with the estimates from Chapter 4 and the measurements in this chapter?

5-2 [20] Make plots of delay vs. electrical effort for each of the three inputs
of a three-input NAND gate, using values from Tables 5.1 and 5.2. What general
advice can you extract from your plot?

5-3 [15] The two inputs of an ordinary 2-input NAND gate differ because one of
them connects to a transistor close to the output and the other to a transistor close
to a power rail. Show how to build a 2-input NAND with identical logical efforts
per input using two ordinary 2-input NAND gates with a shorted output.
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Chapter 6

Forksof Amplifi ers

The most difficult problems in applying the method of logical effort stem from
branching. When a logic signal divides within a network and flows along multi-
ple paths, we must decide how to allocate the input current. How much should
each path load the common input? In general, paths that have higher logical or
electrical effort should receive a greater share of the input signal’s drive. When
a logic signal has significant parasitic capacitance, for example when it drives a
long wire, it branches: as some of the signal is diverted to charge the parasitic
load, less drive is available to the logic path.

Optimizing networks that branch usually involves adjusting branching effort
along paths to equalize the delays in several paths through the network. Determin-
ing the branching factors adds a new element of difficulty to our design method
that can be quite tricky to handle. One of the complications is that different paths
through a network often have different numbers of stages. Branching can some-
times be straightforward, depending on the design problem. For example, branch-
ing is simple in the synchronous arbitration problem of Section 2.3.

This chapter covers a simple but common case of branching: generating the
true and complement forms of a logic signal. We call such circuits “forks,” after
the general appearance of their circuit diagrams. Forks are interesting not only for
their own utility, but also as a further exercise in applying the method of logical
effort. Many cMOs circuits require forks to produce such true and complement
signals. For example, an arm of the multiplexer circuit of Figure 4.4 is switched
on when one of its control lines, s;, is made HIGH, and the other, 5;, is made Low.
The XOR circuit shown in Figure 4.5 also requires true and complement forms of

O9Copyright (©1998, Morgan Kaufmann Publishers, Inc. This material may not be copied or
distributed without permission of the publisher.
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*\ aH

a% >O aL

Figure 6.1: General form of an amplifier fork. One leg inverts the input signal and
one does not.

its two input signals. We often use the notation z. H and z.L to indicate true and
complement forms of a signal z, respectively. The signal xz.H is HIGH and z.L is
Low when z is true; z.H is LOw and z.L is HIGH when z is false.

6.1 The fork circuit form

An amplifier fork, or simply a “fork,” consists of two strings of inverters that
share a common input, as shown in Figure 6.1. One of the strings contains an odd
number of inverters and the other contains an even number. True and complement
signals of this kind, particularly for driving multiplexers, are often required at
relatively high power levels. For example, if an entire word consisting of 64 bits is
to be multiplexed onto a bus, the true and complement signals for the entire word
must drive 64 multiplexers. As we have already learned, least delay in driving
such large loads will be obtained by including the proper number of amplifying
inverters in the drive path. The figure illustrates a notation we use when the exact
number of inverters in each path is not known: an inverter symbol with a star
inside it represents a string of an odd number of inverters, while a triangle symbol
with an embedded star but without the small circle at its output stands for an even
number of inverters. We have chosen to name forks by the number of amplifiers
in each string. A 3-2 fork, for example, has three amplifiers in one string and two
in the other. Figure 6.2 shows a 2-1 fork and a 3-2 fork.

It is useful to think of pairs of amplifier strings as a fork only when the true
and complement output signals must emerge at the same time. The driver for the
address lines in Figure 2.3 has this property; delays in either leg of the fork can
result in increased overall delay. We therefore wish to design forks so that the
delay in each leg is the same.

In this chapter we shall assume that the load driven by each leg of the fork
is the same. A fork that drives an XOR gate such as that of Figure 4.5 has this
property; both a and @, for example, drive the same load. A multiplexer like the
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Figure 6.2: A 2-1 fork and a 3-2 fork, both of which produce the same logic
signals.
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Figure 6.3: A general fork, showing notation for load capacitances.

one in Figure 4.4, however, presents unequal loads, because the pullup transistor
driven by s is wider than the pulldown transistor driven by s. We shall defer to
Chapter 7 consideration of circuits with multiple outputs driving different load
capacitance (but see Exercise 6-1).

The design of a fork starts out with a known load on the output legs and known
total input capacitance. As shown in Figure 6.3, we shall call the two output
capacitances C, and C,. The combined total load driven we will call C,,; =
C, + Cy. The total input capacitance for the fork we shall call C;;, = Ciy,, + Cin,
and can thereby describe the electrical effort for the fork as a whole to be H =
Cout/Cin. This electrical effort of the fork may differ from the electrical efforts of
the individual legs, C,/Ci,, and Cy/Cjy,, .

The input current to an optimized fork may divide unequally to drive its two
legs. Even if the load capacitances on the two legs of the fork are equal, it is not
in general true that the input capacitances to the two legs of the fork are equal.
Because the legs have a different number of amplifiers but must operate with the
same delay, their electrical efforts may differ. The leg that can support the larger
electrical effort, usually the leg with more amplifiers, will require less input cur-
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rent than the other leg, and can therefore have a smaller input capacitance. If we
call the electrical efforts of the two legs H, and H,, using the notation of Fig-
ure 6.3, then H, = C,/Cj,, and H, = Cy/C;y,. Evenif C, = Cy, H, may not
equal H, and Cj,, and C;,, may also differ.

The design of a fork is a balancing act. Either leg of the fork can be made
faster by reducing its electrical effort, which is done by giving it wider transistors
for its initial amplifier. Doing so, however, takes input current away from the other
leg of the fork and will inevitably make it slower. A fixed value of C;,, provides,
in effect, only a certain total width of transistor material to distribute between the
first stages of the two legs; putting wider transistors in one leg requires putting
narrower transistors in the other leg. The task of designing a minimum delay fork
is really the task of allocating the available transistor width set by C;, to the input
stages of the two legs.

Example 6.1 Designa 2-1 fork with input capacitance C;,, = 10 and total output
capacitance C,,; = 200. What is the total delay of the fork?

Using the notation of Figure 6.3, we have C;, = 10 and C, =
Cp, = 100. Let’s use the symbol 3 to denote the fraction of input
capacitance allocated to the 2-inverter leg, i.e., C;,, = BCi,. The
remainder is allocated to the 1-inverter leg. We want to find the value
of 3 that will equalize delays in the two legs. Applying Equation 1.17
to both legs, we have:

100\ /2 100
2 <m> + 2Piny = (m) + Pinw (6.1)

We solve this equation numerically to find that § = 0.258, so Cy,, =
108 = 2.6 and Cj,,, = 10(1 — 8) = 7.4. The second inverter in the 2-
inverter leg has input capacitance C,, = 2.6 x 1/100/2.6 = 16.1. The
delay in the one-inverter leg is Cy/Cin, + piny = 100/7.4+1 = 14.5.
The delay in the two-inverter leg is Cu2/Cing + Cy/Ca2 + 2Piny =
16.1/2.6 +100/16.1 + 2 = 14.5. Thus, the two legs have equal delay
as expected.

Example 6.2 Design a 3-2 fork with the same input and output capacitances as
in the previous example.
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Again using [ to determine the fraction of input capacitance allo-
cated to the longer leg, we have:

1/3 1/2
100 100
3| 3 3Piny =2 | =% 2Piny 6.2

(1%) o (10(1—ﬁ)> i ¢

This equation solves to 4 = 0.513, with a delay of 11.1. Note that
this delay is less than the delay we computed for the 2-1 fork with the
same input and output capacitances.

These two examples show that obtaining the least delay requires choosing the
right number of stages in the fork. This result is not surprising. In fact, we should
have anticipated that the first design could be improved because the effort of the
one-inverter leg is 13.5, very far from the best p. This result suggests that we
should develop a method to determine the best number of stages to use in a fork.
The next section turns to this problem.

6.2 How many stages should a fork use?

An optimized fork must have legs that differ in length by at most one stage. We
can see that this is true by examining in detail the relationship between total delay
and electrical effort that was discussed in Chapter 1. Figure 6.4 shows schemat-
ically a plot of delay versus electrical effort for amplifiers with N — 1, N and
N + 1 stages. The thick curve represents the fastest possible amplifier for any
given electrical effort, and so no amplifier design may lie below it. For different
electrical efforts, different numbers of stages are required to obtain this optimum
design, as the figure shows.

The task of designing a fork is specified by giving an electrical effort that the
combined activities of its two legs are to support. In Figure 6.4 such an electrical
effort is represented by the vertical line. One possible design for the fork requires
each leg to support exactly this electrical effort. Since the two legs of the fork
must produce true and complement signals, their lengths must differ by an odd
number of inverters. Thus if one leg has IV stages, its delay can be reduced to the
point labeled z in the figure, but the other leg must have either N — 1 or N + 1
stages, and its delay can be reduced only to the points labeled = and y respectively.
For the particular electrical effort we have chosen, point y is faster than point z.
Thus we have a fork with two legs that support equal electrical effort but have
unequal delay.
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Given Electrical Effort
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Figure 6.4: A plot of delay vs. electrical effort for reasoning about forks.
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We can improve such a fork by raising the electrical effort of one leg and
reducing the electrical effort of the other in such a way as to continue supporting
the required total electrical effort. In effect we slide to the right from point z, thus
increasing its delay, and the left from point y, thus decreasing its delay. We do this
by reallocating transistor width from the transistors of the first amplifier in one leg
to the transistors of the first amplifier in the other leg. Our intent, of course, is to
decrease the delay of the slower leg as much as we can, which will be until the
two legs are equal in delay.

One might think that there are two possible discontinuities in the process of
reallocating the input transistor width. From point z moving to the right we may
reach point b before the equal delay condition is met, or from point y moving to
the left we may reach point w before the equal delay condition is met. Z could not
possibly reach point b, however, because the delay at point y is already less than
that at point b. If point i reaches point w before the equal delay condition is met,
we should change it from N + 1 to NV — 1 stages and continue along the N — 1
stage curve until we reach the equal delay condition. It is not hard to see that for
any placement of the given electrical effort line, this optimization procedure will
result in a fork with legs that differ in length by a single amplifier.

One leg of a fork will always have exactly the same number of stages as would
an optimum amplifier supporting an equal electrical effort. This is easy to see from
Figure 6.4. If the given electrical effort line crosses through the dark optimum
curve in the segment where N stages are best, one arm will have N stages. The
other arm will have either N + 1 or N — 1 stages. Thus one simple way to design
nearly optimal forks is to choose the number of stages for one leg from Table 1.3,
and then use one more or one fewer stage for the other leg. The electrical effort
for the fork as a whole, H = C,,;/C;x, can be used as a guide, since the electrical
efforts of each leg will turn out to be nearly that value. Applying this technique
to Example 6.1, H = 20 would have correctly suggested a 3-2 fork as the best
design.

A more precise guide for choosing the number of stages in a fork appears in
Table 6.1. For any given electrical effort, the table shows what kind of fork to
use. Remember that the electrical effort of the fork is the total load of all the legs
divided by the total input capacitance. The break points in Table 6.1 lie between
the break points in Table 1.3. It is easy to see that this must be so. There are
certain electrical efforts, namely 5.83, 22.3, 82.2, and so on, for which strings of
amplifiers N and N + 1 long give identical delays. Obviously, for an electrical
effort of 22.3, for example, a 3-2 fork is best, because both strings of 3 amplifiers
and strings of 2 amplifiers have the same delay for this electrical effort. For an
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Electrical effort Fork

from to structure
9.68 2-1
9.68 38.7 3-2
38.7 146 4-3
146 538 5-4
538 1970 6-5
1970 | 7150 7-6

Table 6.1: Break points for forks assuming p;,, = 1.0.

electrical effort of 82.2, a 4-3 fork is best for a similar reason. In these special
cases, moreover, the input capacitance to the legs will also be identical. For some
electrical effort between 22.3 and 82.2, a 4-3 fork and a 3-2 fork will give identical
results. This is the break point recorded in Table 6.1.

It is easy to see how Table 6.1 was computed. Consider the break point where
a 3-2 fork and a 4-3 fork provide identical results. At this break point the two forks
exhibit identical delays. The three-amplifier legs in each fork must be identical.
Moreover, the amount of input current left over from the three-amplifier leg in
each fork must also be the same, and thus the input currents of the two-amplifier
leg in one fork and the four-amplifier leg in the other fork must also be the same.
Thus at the break point between 3-2 and 4-3 forks, the electrical effort of the two-
amplifier leg and of the four-amplifier leg must be the same, and they are operating
with identical delays. In terms of Figure 6.4, they must both be operating at
point w. This reasoning leads directly to equations that can be solved to find
the electrical effort of optimal forks at these break points (see Exercise 6-3).

Example 6.3 Design a path to drive the enables on a bank of 64 tri-state bus
drivers. The first stage of the path can present an input capacitance of twelve
unit-sized transistors and the tri-state drivers are each 6 times unit size. A unit
sized tri-state is shown in Figure 6.5.

The load on each of the true and complementary enable signals is
64 x 6 x 2 = 768 unit-sized transistors. Therefore the electrical effort
of the entire bundle is (768 + 768)/12 = 128. From Table 6.1, we
find that a 4-3 fork is best. Now we must divide the input capacitance
between the two legs. If the 4-inverter leg gets a fraction 3, then we
have:
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]
1

Figure 6.5: A unit-sized tri-state inverter.

768\ 768 \?
4 (m) + 4piny = 3 (m) ~+ 3Pinw (6.3)

This equation solves to 3 = 0.46. Therefore, the input capaci-
tance on the 4-fork is 12 x 0.46 = 5.5 and the input capacitance on
the 3-fork must be 12 — 4.8 = 6.5. Hence, the electrical effort of
the 4-fork is 768/5.5 = 140 and the electrical effort of the 3-fork is
768/6.5 = 118. Notice how the electrical effort of the entire bundle,
128, is unevenly distributed among the legs to improve the delay of
the slower leg at the expense of the faster until the two are equalized
at 17.7. The stage effort of the 4-fork is 140'/* = 3.44 and the stage
effort of the 3-fork is 118'/3 = 4.90. Therefore, the capacitances of
each gate can be computed, as shown in Figure 6.6.

If very large amplification is required, forks with large numbers of amplifiers
in each leg may be used. One may well ask whether to prefer an 11-10 fork to a
string of 8 amplifiers followed by a 3-2 fork. In fact, there is little to be gained
by using forks with more than 3-2 amplifiers; this is quantified in Exercise 6-4.
On the other hand, long strings of amplifiers will no doubt contain very large
transistors that will be laid out in sections anyway. Thus the layout penalty of a
long fork may be small.

Ironically, the most difficult case occurs when very small amplification is re-
quired. It is almost never advisable to use a 1-0 fork such as the one shown in
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Figure 6.6: The tri-state enable path, properly sized.
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Figure 6.7: A path ending with a 1-0 fork.
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Figure 6.7, because the delays in the two paths cannot be equalized: the delay of
the zero-stage path is guaranteed to be less than that of the one-stage path. Ex-
ercise 6-5 examines the performance penalty of 1-0 forks. Rather than use a 1-0
fork, it is better to use a 2-1 fork and, if necessary, remove a stage somewhere else
in the network.!

6.3 Summary

The forks we have designed in this chapter are a special case of more complex
circuits with branches that operate in parallel. While the general cases are more

IRather than remove a stage of the network, the stage immediately preceding the fork can be
duplicated in each of the fork’s paths, in effect moving the branch point from after this gate to
before this gate.
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difficult to solve, two of the techniques shown in this chapter apply to more com-
plex branching problems covered in the next chapter:

e The path effort of a network, measured as the total load capacitance divided
by the input capacitance, can be used to estimate the correct number of
stages to use.

e Once a network topology is selected, it’s a simple matter to write equations
that compute the delay in each path, and solve for the branching factors 3
that equalize delays in multiple paths.

In the case of amplifier forks driving equal loads, we have shown that the
number of stages in the two paths is nearly the same. However, as we shall see in
more general cases that have different efforts along different paths, the lengths of
different paths in a network may differ substantially.

6.4 [EXercises

6-1 [25] A common use of forks in cMOS designs is to drive the enable signals

of multiplexers, which present different loads to the true and complement signals.
Many multiplexers may be driven by the same logic signal, resulting in a very
large load. Modify the analysis of this chapter to apply to these forks, assuming
the load on the leg with an odd number of stages is twice the load on the leg with
an even number of stages; note that this assumption is equivalent to saying that
the higher load must be driven by a signal that is the logical complement of the
input to the fork. Build a table analogous to Table 6.1 that tells a designer what
kind of fork to use.

6-2 [20] Generalize Exercise 6-1 to guide a designer when either the true or
complement form of the input signal is available.

6-3 [25] Set up equations for computing the entries in Table 6.1. Solve them and
verify that your answers match those of the table. (You’ll want to write a computer
program or spreadsheet to find the solutions.)

6-4 [30] Suppose that for H > 38.7, rather than building a pure fork, we use a
string of inverters driving a 3-2 fork. How far does this strategy depart from the
optimum fork designs?
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Figure 6.8: Comparing these two designs illustrates the problems with 1-0 forks.

6-5 [20] Propose an improvement to the design of Figure 6.7 that uses a 2-1 fork.
If each of the load capaitances is 400 times as large as the input capacitance, what

are the delays of the original and improved designs?

6-6 [20] Consider the two designs in Figure 6.8. The first uses a 1-0 fork, while
the other avoids this structure. Compare the delays of the two designs over a range
of plausible electrical efforts. Is the first design ever preferred?



Chapter 7

Branches and | nterconnect

Logical effort is easy to use on circuits with easily computed branching efforts.
For example, circuits with a single output or a regular structure are easy to design.
Real circuits often involve more complex branching and fixed wire loads. There
is often no closed-form expression for the best design of such circuits, but this
chapter develops approximations and iterative methods that lead to good designs
in most cases.

Designing networks that branch requires not only finding the best topology for
the network, but also deciding how to divide the drive at a branch so that delays in
all paths are equalized. The previous chapter covered the special case of “forks of
amplifiers” that generate true and complemented forms of an input signal. In this
chapter, we build on the previous results to handle more general cases. We shall
consider circuits with two or more legs, where each leg may contain a different
number of stages, each leg may perform a different logic function, and each leg
may drive a different load. As one might guess, we can combine the logical and
electrical efforts associated with each leg to obtain a composite effort on which to
base our computations.

The simplicity of the forks considered in the previous chapter makes it possible
to choose their topology from a table on the basis of the overall electrical effort
imposed on the fork. In this chapter we will consider a more complex and varied
set of circuits. We will use the theory of logical effort to write equations that relate
the size of individual logic elements to their delay. By balancing the delay in the
various legs of the circuit, we will be able to reduce the delay in the worst path.

O9Copyright (©1998, Morgan Kaufmann Publishers, Inc. This material may not be copied or
distributed without permission of the publisher.
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The first section analyzes a series of examples in order to develop some in-
tuitive arguments about branching networks. These examples are generalizations
of forks of amplifiers. Next, we turn to an exclusive-or network that involves not
only branching but also recombination of signals within the network. Intercon-
nect presents new problems because the capacitance of the wire does not scale
with gate size. However, circuits with interconnect can be analyzed on a case by
case basis. We close the chapter with an outline of a general design procedure for
dealing with branching networks.

Although it is possible to formulate network design problems as a set of delay
equations and solve for a minimum, the method of logical effort often provides
simple insights that yield good designs without a lot of numerical work. If neces-
sary, these initial designs can be adjusted based on more detailed timing analysis.

7.1 Circuits that branch at a single input

This section analyzes a series of increasingly complex circuits that branch. We
will start with simple circuits that branch immediately at a single input, and post-
pone to later circuits with logic functions preceding a branch point. Such circuits
are very similar to the forks of Chapter 6, except that we shall now consider also
unequal loading on the outputs and unequal logical effort in the legs.

7.1.1 Branch pathswith equal lengths

The first example, a 2-path fork shown in Figure 7.1, will serve as a vehicle to
remind us that logical effort can make certain branching decisions very easy. The
variables C; and C, are the input capacitance for the first inverters in each path,
as shown. The electrical efforts borne by the two paths are H,; and H,, so the
total electrical effort of the circuit is H,; + H,. We can assume, without loss of
generality, that the total input capacitance is 1, and simply scale all capacitances
appropriately. Writing the delay equations for each path and setting them equal
quickly tells us that

H, H,

01 B 02
This equation holds for paths of any length, provided there are the same number
of stages in each path and that the parasitic delay of each path is equal. It shows
that the input drive should be allocated in proportion to the electrical effort borne

(7.1)
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Figure 7.1: A 2-2 fork with unequal effort.

by the path. Once we have determined how to allocate the input capacitance, we
can calculate transistor sizes for each path independently.

What happens if the paths include logic, rather than simply inverters? The
method of logical effort teaches us that logical effort and electrical effort are in-
terchangeable. So if path 1 had a total logical effort of G; and path 2 a total logical
effort of G, then Equation 7.1 becomes simply

F F

C, O
and F; = G;H; for each path. In other words, the input capacitance should be
allocated in proportion to the total effort borne by each path.

Even more importantly, the entire configuration of Figure 7.1 is equivalent to a
single string of two inverters with output capacitance Fi+ F5. The important point
is that the equivalent configuration has no branch; the effect of the branch has
been captured by summing the efforts of the two paths. This property allows us
to analyze branching networks by working backward from the outputs, replacing
branching paths with their single-path equivalents. The branching effort of the leg
is:

(7.2)

. Eeg + Fothers
Eeg

The path effort F' = G.,BH,., and stage effort f = F/N can then be calcu-
lated. This stage effort is the same for all legs of the branch. This is a powerful
technique for designing networks with branches, as illustrated in the following
example.

B (7.3)

Example 7.1 Size the circuit in Figure 7.2 for minimum delay.

The electrical effort of the top leg is H; = 144/12 = 12 and the
electrical effort of the bottom leg is H, = 192/12 = 16. The logical
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Figure 7.2: A path with different logical and electrical efforts on each leg.

effort of the top leg is G; = 5/3 x 7/3 x 1 = 3.89 and the logical
effort of the bottom leg is Go = 1 x 1 x 1 = 1. Thus, the path effort
of the top leg is F; = G'1H; = 46.7 and the path effort of the bottom
leg is F, = GoHy = 16. The overall path effort is F; + F5 = 62.7.

First consider sizing the top leg. From the perspective of the top
leg, the circuit has a branching effort of B = (F} + F»)/F; = 1.34.
Thus, the circuit can be designed as if it had only one leg with F' =
G,BH, = 62.7. The stage effort is f = 62.7/3 = 3.97. Starting at
the output and working backward, we find gate input capacitances of
36, 31, and 9 for the inverter, NOR, and NAND, respectively.

The bottom leg is now easy to size because we know the stage
effort must be the same, 3.97. Working backward, we find input ca-
pacitances of 48, 12, and 3, respectively. The total input capacitance
of the path is 3 + 9 = 12, meeting the original specification. Also,
the input capacitance is divided between the legs in a 3:1 ratio, just as
path effort isina46.7 : 16 ~ 3 : 1 ratio.

The delay of the top leg, including parasitics, is 3(3.97) +3+ 3 +
1 = 18.91. The delay of the bottom leg is 3(3.97) + 1 +1+1 =
14.91. Although we had attempted to size each leg for equal delay,
the different parasitics result in different delays. To equalize delay, a
larger portion of the input capacitance must be dedicated to the top
leg with more parasitics. Even when this is done, however, the delay
of each path is 18.28, representing only a 3% speedup.

This example illustrates a general problem: unequal parasitics damage Equa-
tion 7.1. Sometimes the difference in parasitic delays is small, and our previous
analysis is very nearly correct. Even if the difference is large, as it was in the
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example, the overall improvement from devoting more input capacitance to the
slower leg is often small.

If differences in parasitic delay are too great, we can use our analysis to find
an initial design, but to get the best design, we will need to adjust the branching
allocation. Usually, this is simply a matter of making accurate delay calculations
for each path, and modifying the branching allocation slightly. In effect, we are
finding a value of ', for which

Fl 1/N F2 1/N
D=N{— P=N P. 7.4
(@) +r=¥(g) = 09

Because parasitic delay adds considerable complexity to the algebra for analyzing
branching circuits, we will omit the effects of parasitic delay in the other exam-
ples in this chapter. In all cases, assuming zero parasitic delay leads to a pretty
good design that can then be refined by more accurate delay calculations and ad-
justments. A spreadsheet program is a handy tool for making such calculations.

7.1.2 Branch pathswith unequal lengths

The amplifier forks we studied in Chapter 6 are simple networks that have branch
paths of unequal lengths. We will revisit their analysis here to introduce the prob-
lem of designing arbitrary branching networks. As a first example, consider the
simple case of a 2-1 fork with unequal loading, as shown in Figure 7.3. We use
similar conventions as in Figure 7.1 for denoting inverter input capacitances, but
to remind us that our analysis accommodates different logical effort in each path,
we have labeled each path’s load with the effort, F;. If we want the delay in each
path to be D, the inverter in the first path will have delay D and each inverter in
the second path will have delay D/2. Recalling Equation 1.17, when P = 0, we
have F' = (D/N)" for each path:

Fy

—_—~ =D

o

F. D\?

Setting Cy + Cy = 1 yields a quadratic equation:

D?>— Fi\D —4F, = 0 (7.6)
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>0 C=F
c=1 Cy

Figure 7.3: A 2-1 fork with unequal effort.

Cl{>o C=F
c=1 ¢ C2{>O {>O C=Fp

Figure 7.4: A 3-2-1 fork with unequal effort.

that can be solved for D to obtain:

Fy 4+ /F? 4+ 16F?
D="" ! (7.7)

2

We can verify some known configurations, e.g., F; = 0 implies C; = 0, and
Fy = 0 implies C; = 0. In the special case when F; = F, = 2, we find that the
input current divides equally between the two legs, and D = 4.

The analysis generalizes easily to a fork with three paths as shown in Fig-
ure 7.4. For each path 7, we have, by analogy to Equation 7.5,

o)

Not surprisingly, solving yields a cubic equation in D:
D? — FRD? —4F,D — 27F; =0 (7.9)

As expected, when F3 = 0, this reduces to Equation 7.6.

Now it is time to step back and consider what we have done. First of all,
assuming that all three legs of the fork of Figure 7.4 must operate in the same
delay, is there any point to having one leg with a single stage and another with
three? There is not, for the same reason that it is pointless to make the two legs of
a simple fork differ in length by more than one. For any value of Fy, F3, and F3



7.1. CIRCUITS THAT BRANCH AT A SINGLE INPUT 113

we could improve the performance of the circuit of Figure 7.4 by removing one
leg. If the delay is short, because F}, Fy and F3 are small compared to C = 1,
then a simple 2-1 fork will have less maximum delay, and we should eliminate
two amplifiers from the three amplifier leg, in effect collapsing it into the first leg.
If the delay is long, because Fy, F; and Fj are large compared to C' = 1, then a
3-2 fork will have less maximum delay, and we should add two amplifiers to the
one amplifier leg, thus combining it with the three amplifier leg.

Of course, our example involves only inverters, and we want to consider cases
where each leg contains a logic function as well. When there are logic functions
involved, one might argue that the particular logic functions require the given
number of stages. That may be a valid argument for preserving the three-stage
leg, because there may be logic functions that can be done with less logical effort
in 3 stages than in a single stage. Thus if the delay is short, because F;, F5, and
F3 are small compared to 1 and the logical efforts of the legs are also small, we
may nevertheless require the three-stage leg. On the other hand, if the delay is
long, because F}, F5, and F3 are large compared to 1 or large logical efforts are
involved, we could improve the design by augmenting the single stage leg with a
pair of inverters. We will think it unusual, therefore, to find a least delay circuit
whose legs differ in length by more than one. An important exception arises when
the problem is constrained by minimum drawn device widths.

This reasoning suggests that for purposes of branch analysis, we can always
collapse N-way branches (V > 2) into 2-way branches by combining paths. This
simplifies the equations for allocating input capacitance: we will have at most two
equations like Equation 7.8. Moreover, because logical and electrical effort are
interchangeable, all these branching problems are equivalent to designing ampli-
fier forks, covered in Chapter 6. Note, however, that when we model parasitic
delay properly, collapsing paths of equal length but different parasitic delay may
introduce errors.

In summary, circuits with a single input and multiple outputs can be analyzed
as forks, except that the effective load capacitance on each output must be in-
creased by the logical effort of the leg driving it. Because the minimum delay
circuits will generally have paths of nearly the same length, a good approxima-
tion to their performance can be obtained by assuming that all paths are the same
length, summing the path efforts, and analyzing the entire network as a single
path. We learned in Section 3.5 that the performance of strings of amplifiers or
strings of logic is relatively insensitive to small changes in their length. A good
first approximation, therefore, lumps all the effort of the network for choosing a
suitable path length.
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Figure 7.5: Branching after logic.

7.2 Branches after logic

We are now ready to consider circuits with logic functions preceding a branch
point. One common form of circuit contains a logic element followed by a 2-1
fork, as shown in Figure 7.5. Such circuits have a “fan in” part followed by a
“fan out” part joined by a single connection that is the obvious place to break the
circuit for analysis. The delay in each of the inverters in the lower leg of the fork
Is d,. The delay in the logic element with logical effort g is d,. We have used
separate variables for these two delays because there is no reason to believe that
they will be equal. In fact, we expect that in designs for least overall delay, d, will
have a value somewhere between d, and 2d,; the longer leg of the fork will use
inverters operating faster than the logic element, and the shorter leg of the fork
will use inverters operating slower than the logic element.
Analyzing this case as we did the forks, we write equations for effort:

Hl/Cl - 2da
H2/02 - di
9(01 + 02) = dg

Using the first two equations to eliminate C; and C5 from the third, and writing
an equation for D, we have:

H, H,
D_dg+2d“_g<2da+d_§>+2d“ (7.10)
Taking the partial derivative of D with respect to d, and setting the result to zero,
to find a minimum, yields:

H
& - %da —gH, =0 (7.12)

Now let us choose sample values to match closely the special case of 2-1 fork
with stage delay of 2. The logical effort of the NAND gate is4/3, and H; = Hy =
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3, so the total effort is 8, considering the outputs as a bundled pair, which would
give a stage delay of 2 in a pure three-stage design. If both sides of the fork had
two stages, a per stage delay of 2 would be best, and the overall delay would be
6. One side of the fork, however, has only one stage instead of two. One might
think that because of the similarity of a single inverter with stage delay of 4 to a
pair with stage delays of 2 each substituting the single inverter for two to make
the fork would leave the stage delay unchanged. This is simply not so, as the
numbers show. Solving Equation 7.11 for the sample values, we find d, = 1.796
and d, = 2.35. In other words, a slightly faster circuit can be obtained by using
more time in the logic element and less in the fork, with an overall delay of 5.94
instead of 6. This is not entirely unreasonable because the single amplifier leg
of the fork is not as good at driving heavy loads as is the two amplifier side.
Nevertheless, in keeping with the relative insensitivity of delay to the number of
stages, the improvement of 1% may not be worth the effort of calculating how to
get it.

Consider an example with an overall effort of 20, namely ¢ = 5/3, and H; =
H, = 6. Here three stages are more obviously required. If both sides of the fork
had two stages, we would have a pure three stage design with a stage delay of
2.71, and an overall delay of 8.14. Solving Equation 7.11, we find d, = 2.54 and
d, = 3.52, we find the best we can do is D = 8.60, reflecting the fact that there is
only one amplifier in one side of the fork. As we expected, d, = 3.52 lies between
d, = 2.54 and 2d, = 5.08.

In some circuits several stages of logic or amplification precede a single branch
point that leads to a fork. For such circuits, least delay will be obtained with a
stage delay in the early circuitry that lies between the stage delay of the longer leg
of the fork and the stage delay of the shorter leg of the fork. As the number of
stages grows larger, the influence of one stage more or less on the overall delay
becomes less, as we learned in Section 3.5, and thus nearly minimal delays can be
obtained by treating the outputs as a bundle. If more accurate results are desired,
it is easy to write equations similar to those in the figures for any particular case.
The solution of such equations leads to the fastest design.

7.3 Circuits that branch and recombine

Some circuits do not fit either of the forms we have so far considered; they both
branch and recombine. Such circuits can be analyzed in the same way as we have
done with the previous examples. The simple delay model provides expressions
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Figure 7.6: The 4-NAND XOR illustrating branching and recombining.

for the input capacitance of each logic gate. Where optimization is required, these
expressions can be differentiated.

An interesting example of such a circuit is the form of XOR shown in Fig-
ure 7.6. While this circuit has only one output, its early stages branch and re-
combine in a way that requires an analysis similar to others in this chapter. The
topology of this circuit involves both some paths with three stages and some paths
with two stages. The output of the first stage recombines with direct inputs at the
second stage. Our interest in this example lies in learning how to analyze it and in
understanding the resulting delays.

We will solve this example three times. First, we shall assume that all delays
are equal and obtain the circuit with least delay that meets that condition. Second,
we shall permit the delay in the first stage, ¢, to differ from that of the other two
stages, d, and again obtain the circuit with least delay. We are interested in whether
minimum delay in this second situation requires ¢ to be longer or shorter than d,
and whether the circuit where ¢ and d differ will be faster or slower than when they
are required to be the same. Third, as a thought experiment, we shall add mythical
non-inverting amplifiers to the circuit, as indicated by the dotted symbols in the
figure. Although such amplifiers are not realizable, it will be instructive to study
the changes that they would cause to circuit performance by providing three stages
in each path.

As shown in the figure, the circuit consists of four NAND gates, which we
shall treat as having a logical effort of 4/3 per input; in order not to write 4/3 over
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and over, we shall use the symbol g for it. In order to have a particular electrical
effort to work with, we shall assume that the output loading, H, is the same as
the combined input capacitance, 2. We will also take advantage of symmetries in
the circuit to deal only with capacitances labeled x, ¥ and z. Now we can write
three delay equations for each stage of the circuit and one equation constraining
the branch

c = g(2y/x)

d = g(z/y)

d = g(H/z)
r+y =1

Eliminating z, y, z, we find an equation for ¢ in terms of d. In the special case
where we insist ¢ = d, we can solve to obtain d = 2.67,50 D = ¢+ 2d =
8. To obtain the lowest delay possible, we write an equation for D = ¢ + 2d,
substitute the expression for ¢, take the partial derivative of D with respect to d,
and set it to zero. We obtain a fourth-order equation in d, which we solve to find
d = 2.98, implying ¢ = 1.78, for an overall delay of D = 7.74. This is an
improvement over the value D = 8 obtained with ¢ = d. Notice that the delay is
distributed unequally to the three stages; the first stage operates with less delay,
and the remaining two with more delay than when all three delays were forced to
be equal. This is because NAND z must operate faster than usual to try to equal
the zero delay through the zero-stage path from the input to gates y.

Notice that the first stage operates in parallel with the direct connection from
the inputs to the second stage. Since the direct connection is not an amplifier, it
pays to provide more amplification in later stages by making them operate rela-
tively more slowly.

We have assumed in these calculations that the delay, d, in the second and
third stages should be equal. Why is this a reasonable assumption? Proving that
it is so may be an interesting exercise for the reader.

As a final exercise, let us put in the mythical non-inverting amplifiers in the po-
sitions shown as dotted symbols in Figure 7.6. This case is easy to solve, because
we want the delays in all three stages to be equal. We can easily write expressions
for the input capacitances of the two paths:

= ¢*H/d
r = 2¢°H/d
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Note how the path effort, namely the product of the branching, logical, and elec-
trical effort, enters into these expressions. Setting w + x = 1 and solving, we
find d = 2.35 and D = 7.06, an improvement over both of the other cases we
have considered. Clearly, failure to amplify the direct input signals during the
time the first stage of logic operates costs delay. The lesson to be learned from
this example is to seize every opportunity to buffer less-critical signals because
such amplification in one path can make available more source current for other
paths and thus improve overall performance. Carried to an extreme, faster paths
are buffered until all paths complete simultaneously.

7.4 Interconnect

Interconnect introduces particular problems for designing with logical effort be-
cause it has fixed capacitance. The branching effort of a gate driving a wire to
another gate load is (Cyate + Cuire)/Cgate- This branching effort changes when-
ever transistor sizes in the network are adjusted because the wiring capacitance
does not change in proportion to the transistor size changes. Therefore, our handy
rule that delay is minimized when the effort of each stage is equal breaks down;
the gate driving the wire may use higher effort, while the gate at the end of the
wire will use lower effort. This problem leads us to approximate the branching ef-
fort or to solve complex equations for the exact optimum. This section addresses
approximations for circuits with interconnect. The necessity to make such ap-
proximations is one of the most unsatisfying limitations of logical effort.

When doing designs that account for wiring capacitance, it is helpful to relate
the total capacitance of a wire to the input capacitance of logic gates. The gate
capacitance of a minimum-length transistor is approximately 2 fF/um and has
remained such over many process generations because both length and dielectric
thickness scale by about the same amount. The wire capacitance of minimum-
pitch interconnect is approximately 0.2 fF/um and also remains constant when
wire thickness, wire pitch, and dielectric thickness scale uniformly. Therefore, a
handy rule of thumb is that wire capacitance per unit distance is 1/10 that of gate
capacitance. Of course this does not apply for wider wires and depends somewhat
on the details of your process. It is very useful to know the ratio for your process
to one significant figure so that you can quickly convert wire capacitances into
equivalent amounts of gate width.
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7.4.1 Short wires

Within a functional block, most wires are short and gate delay is dominated by
gate capacitance. Moreover, actual wire lengths are very difficult to estimate until
layout is complete. What effect do such short wires have on gate sizing?

Short wires can be treated as additional parasitic capacitance. Given the aver-
age length of a wire and the average size of a gate, one can compute the average
ratio of parasitic diffusion capacitance to parasitic wire capacitance. The total par-
asitic capacitance is the sum of these two components. A best stage effort p can be
computed from this total parasitic capacitance; this effort usually is slightly over
4 for paths with reasonably short wires.

This result makes intuitive sense. As wire parasitics increase relative to gate
capacitance, it is wise to use fewer stages with greater stage effort to minimize the
number of wires to drive. Fortunately, we found in Section 3.5 that the path delay
is good for stage efforts anywhere near p. Designing with a target stage effort of
4 is sufficient for most problems.

7.4.2 Longwires

Wires between functional blocks can be hundreds or thousands of times larger
than most transistors within the functional blocks. We consider a wire to be long
when its capacitance is large compared to the gate capacitance it drives.

A path containing a long wire can therefore be split into two parts. The first
part drives the wire. The second part receives its input from the wire. The size
of the receiving gate makes little difference on the delay of the first path because
the gate capacitance is small compared to the wire capacitance. In other words,
the branching effort is a weak function of the receiving gate size. However, the
size directly affects the electrical effort and thus the delay of the second path, so
it should be made as large as possible, limited by area and power considerations.

The first path typically ends with an inverter chain to drive the large wire
capacitance. The final inverter can be very large, consuming significant area and
power. Therefore, choosing a stage effort of closer to 8 for this stage reduces the
cost and only slightly increases delay. Because it is expensive in time and area to
build the inverter chains that drive long wires, it is best to clump logic as much
as possible so a path passes through few long wires. For example, the arbitration
circuit of Section 2.3 was greatly improved by computing the function at a central
location rather than daisy-chaining the logic across multiple wires.

When wires are very long, the resistance of the wire becomes important. Since
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both wire resistance and capacitance are proportional to wire length, wire delay
scales quadratically with wire length. Therefore, it is beneficial to break long
wires into sections, each driven by an inverter or buffer called a repeater. Wires
with proper repeaters have delay that is only a linear function of length [1]. When
using repeaters, the designer must plan where the repeaters will be located on the
chip floorplan.

7.4.3 Medium wires

The most difficult sizing problems occur when interconnect capacitance is compa-
rable to the gate load capacitance. Such medium-length wires introduce branching
efforts that are a strong function of the sizes of the gates they drive.

A brute force solution to sizing paths with medium wires is to write the delay
equation as a function of the sizes of all the gates along the path and of the wire
capacitance. This leads to a polynomial function which can be differentiated with
respect to the gate sizes and solved numerically for the best sizes.

Such a solution is usually more work than is worthwhile. For most circuits,
reasonable results can be obtained by maintaining a stage effort of about 4 through
the path. Choosing the best number of stages is complicated by the fact that the
branching effort caused by the wires is initially unknown. This leads to a few
simple iterations, described in the next section.

7.5 A design approach

The examples of this chapter all illustrate common themes in the design of branch-
ing networks. The analytical treatment is intended to give insight into design
tradeoffs. In practice, however, designers are unlikely to take partial derivatives
and solve Nth order polynomial equations just to achieve a few percent improve-
ment in delay. Instead, a practical design approach uses the insight about branch-
ing networks to select a reasonable topology and make an initial guess of stage
efforts. Then the designer iterates on paths which are unacceptably slow until
the path either meets specification or it becomes clear that a better topology is
required.

Moreover, real circuits frequently contain fixed capacitances. For example,
interconnect capacitances are independent of the gate sizes, as discussed in Sec-
tion 7.4. There is a minimum size each transistor may be drawn, which limits how
small a load can be presented by a non-critical leg of a circuit. Finally, all outputs
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may not be required at the same time, and so devoting a larger portion of the in-
put capacitance to critical outputs can hasten them at the expense of non-critical
outputs.

When fixed capacitances are small compared to other capacitances on the
node, ignore them. When fixed capacitances are large compared to other capac-
itances, the fixed capacitance dominates delay. If other gates loading the node
are not fast enough, increase them in size to reduce their own delay while only
slightly increasing the total capacitance on the node. The most difficult case is
when fixed capacitances are comparable to gate capacitances. In such a case, the
designer may have iterate to achieve acceptable results.

Here we will try to summarize some of these techniques by suggesting a design
procedure.

1. Draw a network.

2. Buffer non-critical paths with minimum-sized gates to minimize their load
on the important paths. Try to make all critical paths have similar lengths.

3. Estimate the total effort along each path, e.g., by working backwards from
the outputs, combining efforts at each branch point.

4. Verify that the number of stages for the network is appropriate for the total
effort that the network bears.

5. Assign a branching ratio to each branch; work backwards from the outputs,
considering each branch you reach. Estimate a branching ratio based on the
ratio of the effort required by each path leaving the branch. You may choose
not to optimize certain paths that bear very little effort or whose speeds are
not critical for your purpose.

6. Compute accurate delays for your design, including the effects of parasitic
delay. Adjust the branching ratios to minimize these delays. You can write
algebraic equations, but it is usually easier to use repeated evaluations of
the delay equations for the competing paths, observing the effects of small
adjustments. If a path is too slow, allocate more drive to that path by using
a greater fraction of the input capacitance.

Although the general problem of optimizing a network requires a complex opti-
mization algorithm, this procedure works well for most cases.
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7.6 [EXxercises

7-1 [25] Modify Equation 7.5 to account for parasitic delay in the inverters, and
solve for D. If Equation 7.7 is used as an approximation to determine z, how
much does the resulting design differ from the optimum?

7-2 [20] In Section 7.3, we assume that the delay, d, of the second and third
stages are equal. Why is this a good assumption?

7-3 [50] Develop better heuristics for selecting topologies and chosing gate sizes
in the presence of capacitive interconnect.



Chapter 8

Asymmetric Logic Gates

Logic gates sometimes have different logical effort for different inputs. Such gates
are called asymmetric. For example, the and-or-invert gate from Section 4.4 is in-
herently asymmetric. The 3-input XOR and majority gates from Sections 4.5.4 and
4.5.5 can be built in either symmetric or asymmetric forms, but the asymmetric
forms have lower logical effort. Finally, normally symmetric gates such as NAND
or NOR can be made asymmetric by sizing transistors to reduce the logical effort
of one or more inputs at the expense of increasing the logical effort of the other
inputs. These asymmetric gates can be used to speed up critical paths in a network
by reducing the logical effort along the critical paths. This attractive property has
a price, however: the total logical effort of the logic gate increases. This chapter
discusses design issues arising from biasing a gate to favor particular inputs.

8.1 Designing asymmetric logic gates

Figure 8.1 shows a NAND gate designed so that the widths of the two pulldown
transistors are allowed to differ: input a has width 1/(1 — s), while input b has
width 1/s. The parameter s, 0 < s < 1, called the symmetry factor, determines the
amount by which the logic gate is asymmetric. If s = 1/2, the gate is symmetric,
the pulldown transistors have equal sizes, and the logical effort is the same as we
computed in Section 4.3. Values of s between 0 and 1/2 favor the a input by
making its pulldown transistor will be smaller than the pulldown transistor for b.
Values of s between 1/2 and 1 favor the b input.

O9Copyright (©1998, Morgan Kaufmann Publishers, Inc. This material may not be copied or
distributed without permission of the publisher.
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Figure 8.1: An asymmetric NAND gate.

Despite the flexibility to favor one of the two inputs, the gate still has the same
output drive as the reference inverter with a pulldown transistor of width 1 and a
pullup transistor of width . We can verify that the conductance of the pulldown

connection is 1: .
S 1 (8.1)
T/(=s) T 1/s
Using Equation 4.1, we can compute g, and g, the logical effort per input for
inputs a and b, and the total logical effort g;.:

1/(1—s)+~
g = ——> 8.2
g T+ (8.2)
1/s+ 7~
= 8.3
9o 1+~ (8.3)
1
+ 2
s(1—s) 8.4
Jtot T 14N ~ (8.4)

The logical effort of input a is minimized by choosing s as small as possible,
say 0.01. This design results in a pulldown transistor of width 1.01 for input a
and a transistor of width 100 for input 6. The logical effort of input a is then
(1.01 + v)/(1 + =), or almost exactly 1. The logical effort of input b6 becomes
(1004 v)/(1+ ), or about 34 if v = 2. The total logical effort is about 35, again
assuming vy = 2.
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Extremely asymmetric designs, such as when s = 0.01, are able to achieve a
logical effort for one input that almost matches that of an inverter, namely 1. The
price of this achievement is an enormous total logical effort, 35, as opposed to 8/3
for a symmetric design. Moreover, the huge size of the pulldown transistor will
certainly cause layout problems, and the benefit of the reduced logical effort on
input ¢ may not be worth the enormous area of this transistor.

Less extreme asymmetry is more practical. If s = 1/4, the pulldown transis-
tors will have widths 4/3 and 4, and the logical effort of input a will be (4/3+v)/(1+
v), which is 1.1 if v = 2. The logical effort of input 4 is 2, and the total logical
effort is 3.1, which is very little more than 8/3, the total logical effort of a sym-
metric design. This design achieves a logical effort for the favored input, «, that is
only 10% greater than that of an inverter, without a huge increase in total logical
effort.

Asymmetric gate designs require attention to stray capacitances. It is unwise,
for example, to use values of s > 1/2 in the NAND gate design because the smaller
pulldown transistor attached to input b not only must discharge the load capaci-
tance but also must discharge the stray capacitance of the large pulldown transistor
attached to input a. It is best to order transistors in series strings so that smaller
transistors are near the output node. In the design shown in Figure 8.1, this means
that we should use only values in the range s < 1/2, which favor the a input.

One can also approach the design of asymmetric logic gates by specifying the
desired logical effort g, of the favored input and deriving the necessary transistor
sizes. This approach allows us to calculate the logical effort of the unfavored
input, g, in terms of the logical effort of the favored input. The following equation
is derived from Equations 8.2 and 8.3 (see Exercise 8-1):

1
(9r=D(gu—1) = m (8.5)
Equation 8.5 shows the symmetric relationship between the favored and unfavored
logical efforts: the logical effort of the unfavored input will increase as the logical
effort of the favored input decreases.

Figure 8.2 presents some results that summarize the effects of varying the
symmetry factor of a two-input NAND gate. Recall that, in a single-stage design,
an effort f will result in a delay of f delay units, plus parasitic delay. To achieve
a 0.13 unit reduction in the delay of the favored input (1.33 to 1.2 units), we incur
a 0.23 unit increase in the delay of the unfavored input (1.33 to 1.56 units).

The same design techniques we have illustrated for a two-input NAND gate
apply to other logic gates as well. Rather than catalog all these designs, we shall
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Of

Figure 8.2: Relationship between favored and unfavored logical efforts for a two-
input NAND gate with v = 2.

develop and analyze asymmetric designs as the need arises. You might wish to
repeat the analysis shown here for a two-input NOR gate or for a three-input NAND
gate.

8.2 Applications of asymmetric logic gates

The principal applications of asymmetric logic gates occur where one path may
be very fast or very slow. For example, in a ripple-carry adder or counter, the
carry path must be fast. The best design uses an asymmetric circuit that speeds
the carry even though the sum output is slowed somewhat.

Paradoxically, the other principal use of asymmetric logic gates occurs when
a signal path may be unusually slow, as in a reset signal. Figure 8.3 shows a
design for a buffer amplifier whose output is forced Low when the reset signal,
reset, IS LOW. The buffer consists of two stages: a NAND gate and an inverter.
During normal operation, when reset is HIGH, the first stage has an output drive
equivalent to that of an inverter with pulldown width 6 and pullup width 12, but
the capacitive load on the in signal is 7+12 units of width. Thus the logical effort
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Figure 8.3: A buffer amplifier with reset input. When reset is Low, the output
will always be Low.

of the in input is slightly larger than that of the corresponding inverter:

7+ 12
=672 =1 (8.6)

This circuit takes advantage of the slow response allowed to changes on reset by
using the smallest pullup transistor possible. This choice reduces the area required
to lay out the gate and partially compensates for the large pulldown transistor. The
design violates the practice of designing gates that have the same drive character-
istics as the reference inverter, because the pullup and pulldown drives controlled
by reset differ from those of the standard inverter. In this case, the exception
seems justified because we are interested only in performance when reset is not
active, when the gate’s output drive is nearly identical to that of the reference
inverter.
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Figure 8.4: One arm of a multiplexer. The data input is d; and the select bundle is
s; and s;.

8.21 Multiplexers

Just as the cmos multiplexer is unique in that its logical effort per input does
not grow as the number of inputs increases, asymmetric multiplexer designs have
some peculiar properties.  An n-way multiplexer can be viewed as containing
n “arms,” each of which contains the transistors connected to one data input and
one select bundle (Figure 8.4). The unique properties of the multiplexer arise
because the individual arms do not interact, so that each arm may be designed
independently and is insensitive to the presence of other arms.!

An arm of a multiplexer may be asymmetric so as to favor the speed of the data
or select signals. Favoring the select path may be appropriate when the control
signals arrive late, such as in a carry select adder where the result is speculatively
computed for both carry = 0 and carry = 1, then selected when the carry arrives.
Values of s < 1/2 in Figure 8.4 will produce the required asymmetry.

Favoring the data input is more problematic. Choosing 1/2 < s < 1 leads
to suitable transistor sizes, but the design shown in Figure 8.4 will not tolerate
much asymmetry before the stray capacitance of the larger transistors connected
to select inputs slows the multiplexer and defeats the effort to reduce the load on
the data input. In some cases, the data and select transistors can be interchanged
in the pullup and pulldown chains to avoid loading the small transistors with large
strays. This may lead to severe charge-sharing problems, depending on the design

Thisisalfi rst-order model. When stray capacitanceisincluded in delay calculations, each arm
of amultiplexer contributes a stray capacitance that indeed affects the other arms. See Chapter 11.
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Figure 8.5: A static latch, consisting of a two-way multiplexer and an inverter.
The data input is d and the latch output is g.

of the other arms of the multiplexer.

Multiplexers can be asymmetric in another way as well, by varying the con-
ductance of different arms. Non-critical paths may use arms with lower conduc-
tance, and thus less input load. A good example of this kind of asymmetry is the
static latch. Figure 8.5a shows a circuit diagram of a static latch, and Figure 8.5b
shows a schematic representation in which each arm of the multiplexer is shown
as a separate tri-state. The objective in the design will be to minimize the propa-
gation delay through the latch when it is transparent, i.e., when e is HIGH and € is
LOW.

The left arm of the multiplexer is configured to favor the data input, which
will experience a logical effort of 1/(1 — s). The transistor sizes on this arm
are marked in terms of three parameters: s, the symmetry factor of the gate; a,
an overall scale factor; and ~, the ratio of p- to n-type transistor widths. The
right arm of the multiplexer can use minimum-size transistors because it is never
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charges or discharges its output load, but rather supplies a trickle of current to
counteract leakage.

Along the critical path from d to ¢, the logical effort of the d input to the
multiplexer is 1/(1 — s) and the logical effort of the inverter is 1, so that the
logical effort of the path is 1/(1 — s). The electrical effort is the ratio of the load
on the inverter to the capacitance of the d input. If we define C, to be the load
capacitance, C to be the input capacitance of the multiplexer on the feedback
path, and C; to be the capacitance of the d input, the electrical effort is just H =
(Cy + Cf)/Cq. Thus we have:

b= (1 i s) (ngdCf) B (1 —2(1)er ®.7)

where r = C,/(C, + Cy) is the fraction of the inverter output drive available as
useful output. It is clear from this equation that the effort is minimized for given
input and output loads by maximizing » and 1 — s. Not surprisingly, this means
minimizing the feedback capacitance, C, and biasing the multiplexer in favor of
the d input as much as practical.

Modifying the multiplexer to favor the data input has the side effect of increas-
ing the logical effort of the select bundle, ex. This need not impact speed because
favoring the data input implies that the select was non-critical. Moreover, if the
multiplexer is serves as a latch, the select is a clock signal whose delay can be
absorbed into the clock distribution network. Nevertheless, biasing the select in-
creases power consumption of the select driver, and so asymmetry should not be
unreasonably large.

8.3 Summary

The theory of logical effort shows how to design logic gates with transistor sizes
chosen so as to bias the logical effort in favor of one input at the expense of the
remaining inputs. This will have the effect of reducing the delay on the path
through the favored input, while increasing the delay on paths through the other
inputs. Although biasing a gate in this way raises the total logical effort of the
logic gate, the technique can be used to reduce the delay along critical paths.

The benefits of asymmetric designs are most evident when many asymmetric
logic gates are connected serially along a path so as to reduce the delay along the
path. Carry chains are an important application of such techniques.
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8.4 Exercises

8-1 [15] Derive Equation 8.5 from Equations 8.2 and 8.3.

8-2 [25] Show how to design an asymmetric a 3-input NAND gate using two
parameters 0 < s,t < 1 to specify the logical effort on two of the three inputs.
Derive an expression for the total logical effort in terms of s and ¢.

8-3 [20] Complete the design of the static latch shown in Figure 8.5when Cy = 9,
Cy, = 6Cy, assuming v = 2. What is the delay from d to ¢ when the latch is
transparent? The logical effort?

8-4 [20] Repeat the preceding exercise, but minimize the delay from d to g,
assuming the ¢ output is not used at all.

8-5 [20] The left-most multiplexer arm in Figure 8.5 is by itself an inverting
dynamic latch. The remaining circuits are required in order to make the latch
static. What is the “cost” in terms of logical effort for making the latch static
rather than dynamic?

8-6 [20] Suppose that the static latch of Figure 8.5 must drive a very large load,
e.g., C, = 100, while C; = 3. How would you change the design?

8-7 [25] Figure 8.6a shows a conventional set-reset latch. (a) How should you

choose symmetry factors s; and s, to obtain short and equal and set and reset de-
lays, i.e., equal delays from the falling of S or R to the change on Q? You may
need to make appropriate assumptions about the load on (). (b) Devise modifi-
cations to the circuit in Figure 8.6b so that it is statically stable and so that the
impact on logical effort is small. (c) Compare the operation and performance of
the two circuits.

8-8 [25] Which of the NAND gates in Figure 8.7 might be made asymmetric
in order to yield the fastest design? Assume that both inputs should be equally
favored. Does your answer depend on the electrical effort of the “gate”?
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Figure 8.6: A set-reset flip-flop in conventional form, (a), and dynamic cmos
form, (b).
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Figure 8.7: A network that computes the XOR function of two inputs.




Chapter 9
Unegual Rising and Falling Delays

All of our analysis of delays in cmOs logic gates has assumed that the delay of a
logic gate is the same for rising and falling output transitions. It is easy to relax this
condition and to consider the rising and falling delays separately. Allowing rise
and fall times to differ permits us to analyze a greater range of designs, including
pseudo-NMOS circuits, skewed static gates, cM0Os domino logic, and precharged
circuits of all kinds. It also allows us to design static CMOS gates with various
choices for ~, the ratio of widths of PMOS to NMOS transistors.

The principal result is that for all but the most demanding cases, the techniques
of logical effort can be used without modification to determine the best transistor
sizes even when rising and falling delays differ. When calculating the total delay
along a path, however, 7, the delay of a reference inverter, must be replaced by the
average of the unequal rising and falling delays through the reference inverter.

Most often, the analysis need concern only the average of the rising and falling
delays, because a signal flowing through a network of gates will alternately rise
and fall as it propagates through each stage. Thus the number of rising and falling
transitions differs by at most one, and the average stage delay is usually an ad-
equate measure of the network’s performance. If the speed of propagation of a
particular transition is more important than that of other combinations, skewed
static gates can reduce the logical effort of that transition at the expense of larger
effort on other transitions.

One of the interesting applications of this analysis is to find the best value of
=, the ratio of widths of pullup to pulldown transistors in static cMoOs designs. If
~ is too small, then the rising transition will be too slow, because the conductance

O9Copyright (©1998, Morgan Kaufmann Publishers, Inc. This material may not be copied or
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of the pullup transistor will be diminished. On the other hand, if -y is too large,
the rising transition will be suitably fast, but the transistor gate capacitance of the
pullup transistor will be so large that the circuit driving it will slow down. The
best value of ~ will find a compromise between these extremes. It turns out that
the value of y for least total delay leads to rising and falling delays that differ.

9.1 Analyzing delays

The analysis of delays when rising and falling delays differ is a variation of the
analysis we used in Chapter 3 when the delays are the same. In this section, we
carry out the analysis and show that the average delay is minimized using exactly
the same techniques of logical effort described earlier. In all cases, rising or falling
refers to the output transition, not the input transition.

The delay of an individual stage of logic can be modeled by one of the follow-
ing two expressions, derived using techniques similar to those in Section 3.2:

dy = (guh + pu) (9.1)
dqg = (9ah + pa) 9.2)

where the delays are measured in terms of 7. Notice that the logical efforts, para-
sitic delays, and stage delays differ for rising transitions (u) and falling transitions
(d). The efforts and parasitic delays of each transition can be extracted from a plot
of delay versus electrical effort, as discussed in Chapter 5. The electrical effort is
independent of the transition direction.

In a path containing V logic gates, we use one of two equations for the path
delay, depending whether the final output of the path rises or falls. In the equa-
tions, 7 is the distance from the last stage, ranging from 0 for the final gateto N —1
for the first gate.

D, = Z (9aihi + pai) + Z (Guihi + Pus) (9-3)
2 odd i even

Dy =Y (guihi + pui) + >, (9aihi + pas) (9.4)
2 odd 7 even

The first equation models the delay incurred when a network produces a rising
transition. In this equation, the first sum tallies the delay of falling transitions at
the output of stages whose distance from the last stage is odd, and the second the
delay of rising transitions in stages an even distance from the last stage, including
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the last stage itself. Note that every path through a network of logic gates will
experience alternating rising and falling transitions, as this sum indicates. Equa-
tion 9.4 is similar to its companion, but models the network producing a falling
transition: the falling edges occur in even stages, and rising ones occur in odd
stages. These two equations model the two separate cases we must consider.

In most cases, we want the delays experienced by launching a rising or falling
transition into a network to be similar. The delays cannot, in general, be identi-
cal, because the two cases will experience different numbers of rising and falling
delays. A reasonable goal is to minimize the average delay:

— 1 wi T 9di wi T Ddi
D = E(Du‘i‘Dd):Z((%)hz'i‘z%)

= > (ghi +pi) = X (fi +pi) (9.5)

subject to the usual constraint on the total effort, 7' = [] f;. Notice that the logical
effort g; and parasitic delay p; of a stage are the average of the rising and falling
quantities. Once again, the observation of Section 3.3 applies, and we see that
the average delay is minimized by making the total effort borne by each stage the
same, so that f; = f = FY/N. Then we have for the average delay:

D=(Nf+P)=(NFYN 4 P) (9.6)

This is the same result as we obtained for equal delays, Equation 3.20. There-
fore, we are justified in using the average value of rising and falling logical effort
and parasitic delay to minimize the average path delay, regardless of differences
between rising and falling delays. All values are normalized so that the average
logical effort of an inverter is 1.

The maximum delay through a path, however, may be different than the delay
predicted by the original theory. To find maximum delay, one must select the
worst of the delays for a rising output and for a falling output.

Example 9.1 Size the path shown in Figure 9.1 for minimum average delay, us-
ing the logical effort and parasitic delay data from Table 9.1. What is the average
and worst case delay?

Notice how the average logical effort and parasitic delays in the
table are the same as we are accustomed to, but that the rising values
are larger than the falling values.
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Cc=20

Figure 9.1: A NAND gate driving a heavy load.

Gate Logical Effort ¢ Parasitic Delay p
Rising | Falling | Average | Rising | Falling | Average
Inverter | 6/5 4/5 1 6/5 4/5 1
2-NAND | 24/15 | 16/15 4/3 12/5 8/5 2
2-NOR 6/3 4/3 5/3 12/5 8/5 2

Table 9.1: Estimated logical effort and parasitic delay of various gates designed
with v = 2 in a process with . = 3.

We size the gates along the path for minimum average delay using
average effort values. We find G = 4/3 and H = 20, so F' = 80/3.
Table 1.3 recommends N = 3, verifying our choice of two inverters
in Figure 9.1. The effort of each stage is thus p = (80/3)/® = 2.99.
Working from the output, we obtain the transistor sizes shown in Fig-
ure 9.2.

Now we can compute the delays from Equations 9.4 and 9.3:

Dy = (guih1 + pu1) + (9azh2 + pa2) + (gushz + pus)
= (24/15) x (2.25/1) + 12/5 + (4/5) x (6.72/2.25) +
4/5+ (6/5) x (20/6.72) + 6/5 = 13.96 9.7)
Dy (9a1h1 + par) + (guzha + Pu2) + (gashe + pa3)

(16/15) x (2.25/1) +8/5 + (6/5) x (6.72/2.25) +
6/5+ (4/5) x (20/6.72) +4/5 = 11.96 (9.8)

The average is 12.96, which agrees with the direct calculation using
Equation 9.6.
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Figure 9.2: The network of Figure 9.1, optimized for the average of rising and
falling delays, assuming v = 2.

9.2 Case analysis

An alternative to the previous section is to consider minimizing the delay expe-
rienced by either a rising or a falling transition propagating along a path rather
than minimizing the average delay. This problem frequently arises in precharged
circuits where precharging sets a signal HIGH and we are interested in minimizing
the propagation time of a falling transition as it travels through a network. In other
words, we may want to minimize Equation 9.4 or Equation 9.3 alone, rather than
the average of the two.

In such a case, we use the appropriate logical effort g,; and parasitic delay p,;,
where z represents u or d for stages making rising or falling transitions, respec-
tively. All of our theory of logical effort still applies. This method yields a short
delay for the prescribed transition, but increases the complementary delay, as is
shown in the following example.

Example 9.2 Repeat Example 9.1, but with the objective of minimizing the prop-
agation time of a rising transition presented at the input.

Because the input rises, the NAND gate output will fall. The next
inverter output will rise and the final inverter output will fall. There-
fore, the logical efforts of interest are (16/15), 6/5, and 4/5, respec-
tively. The logical effort of the path is (16/15)x (6/5) x (4/5) = 1.02.
The electrical effort is still H = 20/1 = 20, so the path effort is 20.5.



138 CHAPTER 9. UNEQUAL RISING AND FALLING DELAYS

a_g()
b__|

1

05
0.5 171 3.89
Cc
05 0.85 195
1
05

Figure 9.3: The network of Figure 9.1, optimized for the particular case of arising
transition entering on a. v = 2.

The stage effort

is therefore p = 20.5Y/% = 2.74. Working from the

output, the sizes are 5.84, 2.56, and 1, as shown in Figure 9.3.
Let us now analyze the delays, again using Equations 9.3 and 9.4:

Dy, = (guth1+ pu1) + (gazh2 + pa2) + (gushs + pus)
(24/15) x (2.56/1) + 12/5 + (4/5) x (5.84/2.56) +

4/5

+ (6/5) x (20/5.84) + 6/5 = 14.43 (9.9)

Dy = (garhi + par) + (guzha + pu2) + (gashe + pas)
(16/15) x (2.56/1) + 8/5 + (6/5) x (5.84/2.56) +

6/5

+ (4/5) x (20/5.84) +4/5 = 11.81 (9.10)

Notice that the case we have optimized, D, = 11.81, is indeed slightly
better than the value of 11.96 given in Equation 9.8, obtained by opti-
mizing the average delay. However, the complementary delay, 14.43,

is substantially
previous design

worse the the corresponding delay obtained for the

, 13.96. The effort delays f are all 2.74 for the criti-

cal transition, as we should expect, but are larger and unequal for the

other transition.

This example shows clearly that optimizing one of the two complementary
delays yields slightly faster circuits at the expense of a large increase in the delay

of the other transition.
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Gate Logical Effort g
Rising | Falling | Average

Normal-skew Inverter 1 1 1
Normal-skew 2-NAND | 4/3 4/3 4/3
Normal-skew 2-NOR 5/3 5/3 5/3
High-skew Inverter 5/6 5/3 5/4
High-skew 2-NAND 1 2 32
High-skew 2-NOR 32 3 9/4

Low-skew Inverter 4/3 2/3 1
Low-skew 2-NAND 2 1 3/2
Low-skew 2-NOR 2 1 3/2

Table 9.2: Estimated logical effort of skewed gates with v = 2, 4 = ~. The
important effort of each gate is bold.

9.2.1 Skewed gates

When one transition is more critical than another, it is possible to design the gate
to favor that important transition. Such gates are called skewed gates and use a
greater fraction of their input capacitance for the critical transistors. High-skew
gates favor rising output transitions, while low-skew gates favor falling output
transitions. Such gates are shown in Figure 9.4. Compare with normal-skew gates
from Figure 4.1. Do not confuse skewed and asymmetric gates; skewed gates
favor a particular transition, while asymmetric gates favor a particular input.

Skewed gates produce output current for the critical transition equal to that
of a reference inverter, while producing less output current for the non-critical
transition. Therefore, the input capacitance is less than for a gate which produces
current equal to that of the reference inverter for both transitions. Hence, the
logical effort is lower for the critical transition. The cost is greater logical effort
for the non-critical transition. The logical efforts of various skewed gates are
shown in Table 9.2, assuming v = . = 2. Usually we are concerned only about
the logical effort of the critical transition in skewed gates, not of the non-critical
or average transition.

How far should a gate be skewed? In other words, how much smaller should
the non-critical transistors be made? Extreme skews improve logical effort only
slightly on the critical transition, but severely slow the non-critical transition.
Such gates also can be difficult to lay out and may suffer hot electron reliability
problems if the non-critical edge rates become too slow. A reasonable choice is
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High-skew Gates

12

Inverter NAND NOR

Figure 9.4: High-skewed and low-skewed inverters, NAND gates, and NOR gates,
assuming vy = 2.
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to make the non-critical transistors half the size they would have been in a normal
gate, as was done in Figure 9.4.

9.2.2 Impact of v and p on logical effort

Before continuing, we will explore the effect of the shape factor v and mobility
ratio p on the logical effort of gates. When v = u, normal gates have equal rise
and fall times. In practice, p is between 2 and 3 and +y is usually less than . This
does not affect the average logical effort of a normal gate, but it does lead to larger
logical efforts for rising than for falling transitions, as was seen in Table 9.1. These
logical efforts can be calculated by comparing the output current to the average
of that of an inverter with equal input capacitance. The analysis shows that when
v > p, rising efforts of gates greater by a factor of 2u/( + ) and falling efforts
are less by a factor of 2y/(u + ) than they would be for v = p.

When v < u, skewed gates also have larger rising efforts and smaller falling
efforts. This can lead to results which at first seem counter-intuitive. For example,
a high-skew NOR gate with v = 2 is shown in Figure 9.4. If the mobility of
the process is p = 3, the rising effort will be 9/5, which is actually larger than
the average effort of a normal-skew NOR, 5/3! Does this mean that a high-skew
NOR is worse than a regular NOR gate? The key to this puzzle is that the high-
skew gate is only used for critical rising transitions and should be compared to the
rising logical effort of the normal-skew gate, which is 2. Therefore, the high-skew
gate is better than the normal gate for rising transitions, as expected.

Similarly, low-skew gates may appear to have unexpectedly low falling efforts.
Dynamic gate logical effort is also measured for the falling transition and is lower
than would be predicted assuming v = p.

9.3 Optimizing cMOS P/N ratios

Now that we no longer insist that rising and falling delays be equal, we may ask
what is the best ratio of pullup to pulldown transistor sizes in cM0Os. The designs
from Chapter 4 are simple to analyze because they have equal rising and falling
delays. However, the wide PMOS transistors contribute a large amount of input
capacitance and area. Could gates be smaller and on average faster if they use
smaller PMOS transistors, thereby reducing the input capacitance and improving
the falling delay at the expense of the rising delay? In this section, we will show
that the P/N ratio giving best average delay is the square root of the P/N ratio
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giving equal rising and falling delays. We will also see that the minimum is very
flat, so the best size is a weak function of process parameters.

Consider a gate for which the P/N ratio, i.e., the ratio of the size of PMOS
transistors to the size of NMOS transistors, is & for equal rising and falling delays.
As we can recall from Chapter 4, for an inverter, £ = 1. For a 2-input NAND gate,
k = 0.5. For a 2-input NOR gate, £ = 2. If the actual P/N ratio is r, the falling,
rising, and average gate delay are proportional to:

dd XX (1+7“)

4 o i)

ku
d o (HT;(HT) (9.11)

where the first term reflects the rising and falling currents and the second term
reflects the input capacitance. Taking the partial derivative with respect to r and
setting it to 0 shows that minimum average delay is achieved for:

r=/ku (9.12)

For typical CMOS processes, 11 = pu,/p, IS between 2 and 3, which implies that
the best P/N ratio of an inverter is between 1.4 and 1.7.

How sensitive is delay to the P/N ratio? Figure 9.5 plots delay of a fanout-
of-4 inverter as a function of -, the inverter’s P/N ratio, for three values of p.
It assumes p;n, = 1. The vertical axis has units of 7, the delay of a fanout-of-1
inverter withy = = 1.

Figure 9.5 shows that the delay curves are very flat near the best value of
~. Indeed, v values from 1.4 to 1.7 give fanout-of-4 inverter delays within 1%
of minimum for any value of 1 from 2 to 3. Moreover, the minimum delay at
v = /i is only 2-6% better than the delay at v+ = p. The minimum is so flat
that simulation-based optimization programs often do not converge to a minimum
at v = /u. However, the flat minimum is convenient because it means the -y
value can be selected with little regard to actual process parameters. v = 1.5 is a
convenient choice because it offers good performance and relatively easy layout.

The most important benefit of optimizing the P/N ratio is not average speed,
but rather reduction in area and power consumption. Remember, however, that
rising and falling delays may differ substantially. For short paths, this may cause
the worst-case delay to be significantly longer than the average delay. Also, certain
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Figure 9.5: Delay vs. ~y of fanout-of-4 inverters for u = 2, 2.5, 3.
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(@) (b) (0)

Figure 9.6: Inverter, NAND and NOR gates sized for improved area and average
delay.

circuits such as clock drivers need equal rise and fall times and should be designed
with v = p.

Other gates should use a P/N ratio of about v/ku. Typical values are 1 for
a 2-input NAND, 1.5 for an inverter or multiplexer, and 2 for a 2-input NOR, as
shown in Figure 9.6. The area and power savings are especially large for NOR
gates.

9.4 Summary

The analysis presented in this chapter shows how to apply the theory of logical
effort to designs using logic gates that introduce different delays for rising and
falling outputs. We assign different rising and falling logical efforts, normalized
such that the average logical effort of an inverter is 1. There are two ways to
design paths with unequal rise/fall delays:

e Assume that each logic stage has the average of the rising and falling delays
(Section 9.1). This method applies the techniques of logical effort without
alteration. The maximum delay through a network may be slightly greater
than the average delay.

e Use case analysis to minimize the delay of the particular transition whose
propagation through the network must be fast (Section 9.2). The propaga-
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tion delay of this transition can be reduced only at the expense of lengthen-
ing the delay of the complementary transition. Skewed logic gates can be
used to favor a critical transition even more.

The analysis of delays also leads to a calculation for the best value of ~, the
ratio of pullup transistor width to pulldown transistor width. While v = p yields
equal rising and falling delays for an inverter, v = /i yields designs whose
average delay is slightly less. Using v = 1.5 yields designs within 1% of least
delay over a wide range of processes and saves area and power relative to a circuit
with equal rising and falling delays. The different rising and falling delays lead
to slightly different logical efforts for gates. For simplicity, it is good enough to
use the values of logical effort calculated in Chapter 4. However, if more accurate
effort values are found from simulation or direct measurement, they may be used
instead.

The analysis presented in this chapter must be used cautiously. The accuracy
of our simple delay model of MOs logic gates is poor for modeling delay when
arriving input signals have different rising and falling transitions. The accuracy
would be improved by using a more accurate delay model, such as the one pro-
posed by Horowitz [3], which considers the risetime of input transitions explicitly
to predict the delay of a logic gate.

9.5 EXxercises
9-1 [15] Sketch high-skew and low-skew 3-input NAND and NOR gates. What
are logical efforts of each gate on its critical transition?

9-2 [20] Derive the rising, falling, and average logical efforts of the gates with
unequal v and g in Table 9.1.

9-3 [20] Derive the rising, falling, and average logical efforts of skewed gates
presented in Table 9.2.

9-4 [20] Derive the delay vs. v information shown in Figure 9.5.

9-5 [15] Prove Equation 9.12.
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Chapter 10

Circuit Families

So far, we have applied logical effort primarily to analyze static CMOS circuits.
High-performance integrated circuits often use other circuit families to achieve
better speed at the expense of power consumption, noise margins, or design effort.
This chapter computes the logical effort of gates in different circuit families and
shows how to optimize such circuits. We begin by examining pseudo-NMOS logic
and the closely related symmetric NOR gates. Then we delve into the design of
domino circuits. Finally, we analyze transmission gate circuits by combining the
transmission gates and driver into a single complex gate.

The method of logical effort does not apply to arbitrary transistor networks,
but only to logic gates. A logic gate has one or more inputs and one output, subject
to the following restrictions:

e The gate of each transistor is connected to an input, a power supply, or the
output; and

e Inputs are connected only to transistor gates.

The first condition rules out multiple logic gates masquerading as one, and the
second keeps inputs from being connected to transistor sources or drains, as in
transmission gates without explicit drivers.

O9Copyright (©1998, Morgan Kaufmann Publishers, Inc. This material may not be copied or
distributed without permission of the publisher.
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Figure 10.1: Pseudo-NMOS inverter, NAND and NOR gates, assuming p = 2.

10.1 Pseudo-NMOScircuits

Static cMOs gates are slowed because an input must drive both NMOs and PMOS
transistors. In any transition, either the pullup or pulldown network is activated,
meaning the input capacitance of the inactive network loads the input. Moreover,
PMOS transistors have poor mobility and must be sized larger to achieve compara-
ble rising and falling delays, further increasing input capacitance. Pseudo-NMOS
and dynamic gates offer improved speed by removing the PMOS transistors from
loading the input. This section analyzes pseudo-NMOS gates, while section 10.2
explores dynamic logic.

Pseudo-NMOS gates resemble static gates, but replace the slow PmOs pullup
stack with a single grounded PMOS transistor which acts as a pullup resistor. The
effective pullup resistance should be large enough that the NMOS transistors can
pull the output to near ground, yet low enough to rapidly pull the output high. Fig-
ure 10.1 shows several pseudo-NMOS gates ratioed such that the pulldown transis-
tors are about four times as strong as the pullup.

The analysis presented in Section 9.1 applies to pseudo-NMOS designs. The
logical effort follows from considering the output current and input capacitance
compared to the reference inverter from Figure 4.1. Sized as shown, the PMOS
transistors produce 1/3 of the current of the reference inverter and the NMOS tran-
sistor stacks produce 4/3 of the current of the reference inverter. For falling tran-
sitions, the output current is the pulldown current minus the pullup current which
is fighting the pulldown, 4/3 — 1/3 = 1. For rising transitions, the output current
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Gate type Logical Effort g
Rising | Falling | Average
2-NAND 8/3 8/9 16/9

3-NAND 4 4/3 8/3
4-NAND 16/3 16/9 32/9
n-NOR 4/3 4/9 8/9

n-mux 8/3 8/9 16/9

Table 10.1: Logical efforts of pseudo-NMOS gates.

is just the pullup current, 1/3.

The inverter and NOR gate have an input capacitance of 4/3. The falling logical
effort is the input capacitance divided by that of an inverter with the same output
current, or g4 = (4/3)/3 = 4/9. The rising logical effort is three times greater,
gu = 4/3, because the current produced on a rising transition is only one third
that of a falling transition. The average logical effortisg = (4/9+4/3)/2 = 8/9.
This is independent of the number of inputs, explaining why pseudo-NMOS is a
way to build fast wide NOR gates. Table 10.1 shows the rising, falling, and average
logical efforts of other pseudo-NMOS gates, assuming p = 2 and a 4:1 pulldown
to pullup strength ratio. Comparing this with Table 4.1 shows that pseudo-NMOS
multiplexers are slightly better than cmos multiplexers and that pseudo-NMOS
NAND gates are worse than CMOS NAND gates. Since pseudo-NMOS logic con-
sumes power even when not switching, it is best used for critical NOR functions
where it shows greatest advantage.

Similar analysis can be used to compute the logical effort of other logic tech-
nologies, such as classic NM0Os and bipolar and GaAs. The logical efforts should
be normalized so that an inverter in the particular technology has an average logi-
cal effort of 1.

10.1.1 Symmetric NOR gates

Johnson [4] proposed a novel structure for a 2-input NOR, shown in Figure 10.2.
The gate consists of two inverters with shorted outputs, ratioed such that an in-
verter pulling down can overpower an inverter pulling up. This ratio is exactly
the same as is used for pseudo-NMOS gates. The difference is that when the out-
put should rise, both inverters pull up in parallel, providing more current than is
available from a regular pseudo-Nmos pullup.

The input capacitance of each input is 2. The worst-case pulldown current is
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Figure 10.2: Johnson’s symmetric 2-input NOR.

equal to that of a unit inverter, as we had found in the analysis of pseudo-NMOS
NOR gates. The pullup current comes from two PMOS transistors in parallel and
is thus 2/3 that of a unit inverter. Therefore, the logical effort is 2/3 for a falling
output and 1 for a rising output. The average effort is ¢ = 5/6, which is better
than that of a pseudo-NMOS NOR and far superior to that of a static CMOS NOR!

Johnson also shows that symmetric structures can be used for wider NOR func-
tions and even for NAND gates. Exercises 10-3 and 10-4 examine the design and
logical effort of such structures.

10.2 Domino circuits

Pseudo-NMOS gates eliminate the bulky PMOSs transistors loading the inputs, but
pay the price of quiescent power dissipation and contention between the pullup
and pulldown transistors. Dynamic gates offer even better logical effort and lower
power consumption by using a clocked precharge transistor instead of a pullup
that is always conducting. The dynamic gate is precharged HIGH then may eval-
uate Low through an NMOS stack.

Unfortunately, if one dynamic inverter directly drives another, a race can cor-
rupt the result. When the clock rises, both outputs have been precharged HIGH.
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Figure 10.3: Dynamic gates cannot be cascaded directly.

The HIGH input to the first gate causes its output to fall, but the second gate’s out-
put also falls in response to its initial HIGH input. The circuit therefore produces
an incorrect result because the second output will never rise during evaluation, as
shown in Figure 10.3. Domino circuits solve this problem by using inverting static
gates between dynamic gates so that the input to each dynamic gate is initially
Low. The falling dynamic output and rising static output ripple through a chain
of gates like a chain of toppling dominos. In summary, domino logic runs 1.5 to
2 times faster than static CMOS logic [2] because dynamic gates present a much
lower input capacitance for the same output current and have a lower switching
threshold, and because the inverting static gate can be skewed to favor the critical
monotonically rising evaluation edges.

Figure 10.4 shows some domino gates. Each domino gate consists of a dy-
namic gate followed by an inverting static gatel. The static gate is often but not
always an inverter. Since the dynamic gate’s output falls monotonically during
evaluation, the static gate should be skewed high to favor its monotonically ris-
ing output, as discussed in Section 9.2.1. We have calculated the logical effort of
high-skew gates in Table 9.2 and will compute the logical effort of dynamic gates
in the next section. The logical effort of a domino gate is then the product of the
logical effort of the dynamic gate and of the high-skew gate. Remember that a
domino gate counts as two stages when choosing the best number of stages.

A dynamic gate may be designed with or without a clocked evaluation tran-
sistor; the extra transistor slows the gate but eliminates any path between power

INote that a domino “gate” actually refers to two stages, rather than a single gate. This is
unfortunate, but accepted in the literature.
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Figure 10.4: Domino buffer and 8-input AND gate.
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and ground during precharge when the inputs are still high. Some dynamic gates
include weak PmOS transistors called keepers so that the dynamic output will re-
main driven if the clock stops high.

Domino designers face a number of questions when selecting a circuit topol-
ogy. How many stages should be used? Should the static gates be inverters,
or should they perform logic? How should precharge transistors and keepers be
sized? What is the benefit of removing the clocked evaluation transistors? We will
show that domino logic should be designed with a stage effort of 2-2.75, rather
than 4 that we found for static logic. Therefore, paths tend to use more stages and
it is rarely beneficial to perform logic with the inverting static gates.

10.2.1 Logical effort of dynamic gates

The logical effort for dynamic gates can be computed just as for static gates. Fig-
ure 10.5 shows several dynamic gates with NMOs stacks sized for current equal to
that of a unit inverter. Precharge is normally not a critical operation, so only the
pulldown current affects logical effort. The logical efforts are shown in Table 10.2.

Logical effort partially explains why dynamic gates are faster than static gates.
In static gates, much of the input capacitance is wasted on slow PMOS transistors
that are not even used during a falling transition. Therefore, a dynamic inverter
enjoys a logical effort only 1/3 that of a static inverter because all of the input
capacitance is dedicated to the critical falling transition.

Our simple model for estimating logical effort fails to capture two other rea-
sons that dynamic gates are fast. One is the lower switching threshold of the gate:
the dynamic gate output will begin switching as soon as inputs rise to V;, rather
than all the way to Vi /2. Another is the fact that velocity saturation makes the
resistance of long NMOS stacks lower than our resistive model predicts. There-
fore, simulations show that dynamic gates have even lower logical effort than
Table 10.2 predicts.

Notice that dynamic NOR gates have less logical effort than NAND s and indeed
have effort independent of the number of inputs. This is reversed from static CMOS
gates and motivates designers to use wide NOR gates where possible.

10.2.2 Stageeffort of domino circuits

In Section 3.4, we found that the best stage effort p is about 4 for static cMOS
paths. This result depends on the fact that extra amplification could be provided
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Gate type | Clocked evaluation | Formula |n=2 |n=3 | n=4
transistor?

inverter yes 2/3
no 1/3

NAND yes (n+1)/3 1 4/3 5/3
no n/3 213 1 4/3

NOR yes 2/3 213 2/3 2/3
no 1/3 1/3 1/3 1/3

multiplexer yes 1 1 1 1
no 2/3 2/3 213 2/3

Table 10.2: Logical effort per input of dynamic gates.

by a string of inverters with logical effort 1. Domino paths are slightly different
because extra amplification can be provided by domino buffers with logical effort
less than 1. Adding more buffers actually reduces F', the path effort! Therefore,
we would expect that domino paths would benefit from using more stages, or
equivalently, that the best stage effort p is lower for domino paths. In this section,
we will compute this best stage effort.

Our arguments parallel those in Section 3.4. We begin with a path that has n,
stages and path effort F. We contemplate adding n, additional stages to obtain
a path with a total of N = n; + n, stages. This time, however, the gates we
add are not static inverters. Instead, they may be dynamic buffers. In general,
the additional stages have logical effort g and parasitic delay p. The extra gates
therefore change the path effort. The minimum delay of the path is:

A

D=N (FgN_”l)l/N + (ipz> + (N —ny)p (10.1)

We can differentiate and solve for N which gives minimum delay. When
parasitics are non-zero, it proves to be more convenient to compute the best stage
effort p(g, p), which depends on the logical effort and parasitic delay of the extra
stages. The mathematics is hideous, but the conclusion is remarkably elegant:

p(g,p) = gp(1,p/g) (10.2)

where p(1,pi,) is the best stage effort plotted in Figure 3.4 and fit by Equa-
tion 3.24. This result depends only on the characteristics of the stages being added,
not on any properties of the original path.
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Let us apply this result to domino circuits, where the extra stages are domino
buffers. The logical effort of a domino buffer, like the one in Figure 10.4, is
10/18 with series evaluation transistors and 5/18 without. Estimate parasitic de-
lays to be (5/6)pin, for a high-skew static inverter, p;,, for a dynamic inverter
with series evaluation transistor. Since the buffer with series evaluation tran-
sistor consists of two stages, each stage has ¢ = /10/18 = 0.75 and p =
(11/6)pine/2 = (11/12)piny. If piny = 1, the best stage effort is p(0.75,0.92) =
0.75p(1,0.92/0.75) = 2.76. The same reasoning applies to dynamic inverters
with no clocked evaluation transistors having ¢ = 0.52 and p = 2/3, yielding a
best stage effort of 2.0.

In summary, domino paths with clocked evaluation transistors should target a
stage effort around 2.75, rather than 4 used for static paths. If the stage effort is
higher, the path may be improved by using more stages. If the stage effort is lower,
the path may be improved by combining logic into more complex gates. Similarly,
domino paths with no clocked evaluation transistors should target a stage effort of
2.0. Since it is impractical to leave out all of the clocked evaluation transistors,
many domino paths mix clocked and unclocked dynamic gates and should target
an effort between 2 and 2.75. As with static logic, the delay is a weak function
of path effort around the best effort, so the designer has freedom to stray from the
best effort without severe performance penalty.

10.2.3 Building logic in static gates

When, if ever, is it beneficial to build logic into the high-skew static gates? For
example, consider the two ways of building an 8-input domino AND gate shown
in Figure 10.6. One design consists of (dynamic 4-NAND, inverter, dynamic 2-
NAND, inverter). Another design is (dynamic 4-NAND, high-skew 2-NOR). Which
is better? The logical effort of the path is always larger when high-skew gates are
used. However, the high-skew gate could reduce the parasitic delay if it reduces
the total number of stages. If the stage effort of the first design is very small, the
path may become faster by using fewer stages. But if the stage effort is large, the
first design is best. In this section, we will quantify “small” and “large” to develop
guidelines on the use of logic in static gates.

We can use our results from the previous section to address this question. The
topology should be chosen to obtain a stage effort p = p(g, p), where g and p are
the mean logical effort and parasitic delay of the difference between the longer
and shorter paths. For stage effort below p, the shorter path is better, meaning it is
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Figure 10.6: Two designs for 8-input domino AND.

advantageous to use logic in the static stage. For stage efforts above p, the longer
path is better. An example will clarify this calculation:

Example 10.1 Which of the designs in Figure 10.6 is best if the path has electri-
cal effort of 17 If the path has electrical effort of 5?

We could solve this problem by computing the delays of each
design and directly comparing speed. Instead, we will use the stage
effort criteria derived in this section. The change in logical effort from
design (b) to design (a) is w = 0.46. This occurs over two
extra stages, so the logical effort per stage is ¢ = v/0.42 = 0.68. We
could work out the parasitic delay exactly, but we recall that over a
range of parasitics, p(1,p) is about 4. Therefore, p(0.68,p/0.68) ~
0.68 x 4 = 2.72. If the stage effort is below 2.7, design (b) is best. If
the stage effort is above 2.7, design (a) will be better.

Design (b) has a logical effort of (5/3) x (3/2) = 2.5 and thus a
path effort of 2.5H and stage effort of v/2.5H. If H = 1, the stage
effort is 1.6 and design (b) is best. If H = 5, the stage effort is 3.5
and design (a) would be better.
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This seems like too much work for a simple example in which comparing de-
lays is easy. The advantage of the method is the insight it gives: one should build
logic into static gates only when the stage effort is below about 2.7. Moreover,
it is best to first reduce the number of stages by using more complex dynamic
gates. Simple calculations show that a dynamic gate with up to 4 series transistors
followed by a high-skew inverter generally has lower logical effort than a smaller
dynamic gate followed by a static gate. An exception is very wide dynamic NOR
gates and multiplexers, which may be faster when divided into narrower chunks
feeding a high-skew NAND gate to reduce parasitic delay.

In summary it is rarely beneficial to build logic into the static stages of domino
gates. If a domino path has stage effort below about 2.7, the path can be improved
by reducing the number of stages. The designer should first use more complex
dynamic gates with up to 4 series transistors. If the stage effort is still below 2.7,
only then should the designer consider replacing some of the static inverters with
actual static gates.

10.2.4 Designing dynamic gates

In addition to the logic transistors, dynamic gates have transistors to control precharge
and evaluation and to prevent the output from floating. How should each transistor
be sized?

The size of the precharge transistor influences precharge time. A reasonable
choice is to size it as if the dynamic gate were a low skew gate; hence the PMOS
transistor can source half the current of the pulldown stack. Figure 10.5 uses such
sizes.

The designer has several choices regarding the evaluation transistor. If the
circuit inputs can be designed in such a way that there is no path to ground during
precharge, the clocked evaluation transistor can be safely omitted. Even if there is
a path to ground during part of precharge, the transistor can be removed if some
extra power consumption is tolerable and the precharge transistor is strong enough
to pull the output acceptably high in the time available. Frequently a clocked
evaluation transistor is necessary. How big should it be?

One reasonable choice is to make the clocked evaluation transistor equal in
size to the logic transistors in the dynamic gate. For higher speed, the clocked
device can be made larger, just as an unbalanced gate can favor the critical inputs
at the expense of the non-critical ones. For example, Figure 10.7 shows a dynamic
inverter with a clocked pulldown twice as large as in Figure 10.5. The input
transistor is selected so that the total pulldown resistance matches that of a normal
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Figure 10.8: Keeper on a dynamic gate.

inverter. The logical effort is thus only 4/9, much better than the effort of 2/3 with
a normal pulldown size and nearly as good as 1/3 for a dynamic inverter with no
clocked pulldown. The main cost of large clocked transistors is the extra clock
power. Therefore, a small amount of unbalancing such as 1.5 or 2x is best.

Some dynamic gates use keepers to prevent the output from floating high dur-
ing evaluation, as shown in Figure 10.8. The keepers also slightly improve the
noise margin on the input of the dynamic gate. They have little effect on the
noise margin at the output because they are usually too small to respond rapidly.
The drawback of keepers is that they initially fight a falling output and slow the
dynamic gate. How should keepers be sized?

The keeper current is subtracted from the pulldown stack current during eval-
uation. If the ratio of keeper current to pulldown stack current is r, the logical
effort of the dynamic gate increases by 1/(1 — r). Therefore, a reasonable rule of
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Figure 10.9: Weak keeper split into two parts.

thumb is to size keepers at » = 1/4 to 1/10 of the strength of the pulldown stack.
For small dynamic gates, this implies that keepers must be weaker than minimum
sized devices. Increasing the channel length of the keeprs will weaken them, but
also add to the capacitive loading on the inverter. A better approach is to split
the keeper into two series transistors, as shown in Figure 10.9. Such an approach
minimizes the load on the inverter while reducing keeper current.

10.3 Transmission gates

Many transmission gate circuits can be analyzed with the method of logical ef-
fort by incorporating the transmission gate into the logic gate that drives it. Fig-
ure 10.10 shows an inverter driving a transmission gate, and then shows the same
circuit redrawn. The second circuit is essentially a leg of a multiplexer (Fig-
ure 4.4).

The PMOS and NMOS transistors in the transmission gate should be equal in
width because both transistors operate in parallel while driving the output. The
strong NMOS transistor helps the weaker PMOS transistor during a rising output
transition. We can model the two transistors in parallel as an ideal switch with re-
sistance equal to that of an NMOSs transistor for both rising and falling transitions.
A larger PMOS transistor would slightly improve current drive on rising outputs,
but would add significant diffusion capacitance which slows both transitions.
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Figure 10.10: An inverter driving a transmission gate, and the same circuit re-

drawn so that it can be considered to be a single logic gate for the purposes of
logical effort analysis.
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Given this model, the circuit has drive equal to that of an inverter for both
rising and falling transitions. The logical effort is 2 for input a and only 4/3
for sx. This improvement in logical effort on sx relative to a normal tri-state
inverter comes at the expense of increased diffusion capacitance, leaving no great
advantage for transmission gate tri-states over normal tri-states.

In general, transmission gate circuits are sized with equal PMOS and NMOS
transistors and compared to an inverter with equal output current. As long as a
delay equation such as Equation 3.6 describes the delay of a circuit, the method
of logical effort applies. However, the parasitic capacitance increases rapidly with
series transmission gates, so practical circuits are normally limited to about two
series transmission gates.

A common fallacy when characterizing circuits with transmission gates is to
measure the delay from the input to the output of the transmission gate. This
makes transmission gate logic seem very fast, especially if the input were driven
with a voltage source. As logical effort shows, the only meaningful way to char-
acterize a transmission gate circuit is in conjunction with the logic gate that drives
it.
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10.4 Summary

This chapter used ideas of best stage effort, unbalanced gates, and unequal rise/fall
delays to analyze circuit families other than static cM0s. Quantifying the logical
effort of these circuit families enables us to understand better their advantages
over static cM0s and to choose the most effective topologies.

We first examined ratioed circuits, such as pseudo-NMOS gates, by comput-
ing separate rising and falling logical efforts. The analysis shows that Johnson’s
symmetric NOR is a remarkably efficient way to implement the NOR function.

We then turned to domino circuits and found a remarkable result for the best
stage effort of a path when considering adding extra stages, given in Equation 10.2.
The equation tells us that the best stage effort of dynamic circuits is in the range
of 2-2.75, depending on the use of clocked evaluation transistors. The equation
also tells us when it is beneficial to break a path into more stages of simpler gates.
We conclude that a path should incorporate logic into static gates only when the
dynamic gates are already complex and the stage effort is still less than 2.7.

Finally, we explored transmission gate circuits. The logical effort of transmis-
sion gate circuits can be found by redrawing the driver and transmission gates as
a single complex gate. Neglecting the driver is a common pitfall which makes
transmission gates appear faster than they actually perform.

10.5 Exercises

10-1 [20] Derive the logical efforts of pseudo-NMOs gates shown in Table 10.1.

10-2 [20] Design an 8-input AND gate with an electrical effort of 12 using pseudo-
NMOS logic. If the parasitic delay of an n-input pseudo-NMOS NOR gate is (4n +
2)/9, what is the path delay? How does it compare to the results from Section 2.1?

10-3 [25] Design a 3-input symmetric NOR gate. Size the inverters so that the
worst-case pulldown is four times as strong as the pullups. What is the average
logical effort? How does it compare to a pseudo-NMOS NOR? To static CMOS?

10-4 [20] Design a 2-input symmetric NAND gate. Size the inverters so that the
worst-case pulldown is four times as strong as the pullups. What is the average
logical effort? How does it compare to static CMOS?
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10-5 [30] Prove Equation 10.2.

10-6 [25] Design a 4-16 decoder like the one in Section 2.2, using domino logic.
You may assume you have true and complementary address inputs available.

10-7 [25] A 4:1 multiplexer can be constructed from two levels of transmission
gates. Design such a structure and compute its logical effort.
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Chapter 11

Wide Structures

One of the applications of logical effort is the analysis of wide structures, such
as decoders or high fan-in gates and multiplexers, to find the topological struc-
ture that offers the best performance. This chapter presents four examples. The
first is the design of an n-input AND structure. Then we design an n-input Muller
C-element, in which the n-input AND structure can be used. Third, we present
alternative designs for decoders that form 2" selection outputs from an n-bit ad-
dress. Finally, we analyze high fan-in multiplexers and show that it is best to
partition wide multiplexers into trees of 4-input multiplexers.

11.1 An n-input AND structure

It is sometimes necessary to combine a large number of inputs in an AND function,
for example, to detect that the output of an ALU is zero, or that a large number of
conditions are all true. Let us find a circuit structure that minimizes the logical
effort of the function.

11.1.1 Minimum logical effort

The simplest way to build an n-input AND function is to use an n-input NAND
gate followed by an inverter. In Section 4.5.1, we found that the logical effort per

O9Copyright (©1998, Morgan Kaufmann Publishers, Inc. This material may not be copied or
distributed without permission of the publisher.
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| n | Gana(n) | Tree structure | Number of stages ||
1 1.0 1,1 2
2 1.333 |21 2
3 1.667 | 3,1 2
4 1.778 2121 4
5-6 2222 3121 4
7-8 2370 212121 6
9 2778 |3,1,3,1 4
10-12 | 2963 | 3,1,2,1,2,1 6
13-16 | 3.160 |2,1,21,21,21 8
17-18 3.704 3,1,3,1,21 6
19-24 | 3951 |31,21,2121 8
25-32 | 4214 |2,1,21,21,2,1,2,1 10
33-36 | 4.938 | 3,1,3,1,2,1,2,1 8
37-48 | 5.267 |3,1,2,12,1,2,12,1 10
49-64 | 5619 |21,21212,121.2,1 12

Table 11.1: AND tree designs that minimize logical effort, for v = 2. The tree
structure gives the number of inputs of the gates at each level of the tree, starting
with the NAND gate at the leaves, and ending with the NOR gate at the root.

input of this structure is:

_n+y
14y
Although this is a simple solution, its logical effort grows rapidly as the number
of inputs increases. An n-input NOR gate could also be used, with an inverter on
each input, to compute the AND function. But since the logical effort of an n-input
NOR gate is always greater than that of an n-input NAND gate, this structure is not
an improvement.

To avoid the linear growth of logical effort, we can build a tree of NAND and
NOR gates to compute the AND function. Figure 11.1 shows such a tree: it has
a NOR gate at the root, alternating levels of NAND and NOR gates, and an even
number of levels. Observe that the number of inputs to gates at different levels in
the tree may differ. In the figure, most levels have 2-input gates, but the gates at
the leaves of the tree use 3-input gates. In some cases, the gates at certain levels
in the tree may have only one input, i.e., they will be inverters. Figure 11.2 shows
an example, in which the root NOR gate is an inverter.

The tree of Figure 11.1 has a logical effort per input of 6.17 (for v = 2),

g (11.1)
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Figure 11.1: A 3,2,2,2 AND tree composed of alternating levels of NAND and NOR

gates.
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oo

Figure 11.2: A degenerate case of the tree, in which the NOR gate has only one
input, i.e., it is an inverter.

while an equivalent 24-input NAND gate and inverter would have a logical effort
per input of 8.67. Of course, a 24-input NAND gate is also impractical because
parasitic delay grows quadratically with stack height. The tree in Figure 11.1
does not yield the lowest logical effort for 24 inputs: as we shall shortly see, a tree
with 8 levels and a logical effort per input of 3.95 is best.

A simple procedure can find the tree structure with the least logical effort.
The design process searches recursively through all plausible tree structures with
the right number of inputs. When designing a tree for n inputs, we first calcu-
late the logical effort of using a single n-input gate at the current level, perhaps
using inverters on its inputs to make the number of levels in the tree even. Then
we consider trees with a b-input gate at the root, and subtrees that have [n/b] in-
puts, where b ranges from 1 to n. The determination of the best subtree design is
achieved by a recursive call on the same tree-design procedure. Care is required
in the control of recursion to be sure that we don’t explore endlessly deep trees
that use 1-input gates at every level.

Logical effort offers several hints about the nature of the solution. Because the
logical effort of NOR gates exceeds that of NAND gates, we expect the NOR gates
in the tree to have fewer inputs than the NAND gates. In fact, to obtain minimum
logical effort, all the NOR gates in the tree will have only one input—they will
be inverters! Rather than inserting a NOR gate, the design procedure will find it
advantageous to use a NAND gate at the next lower level in the tree.

Table 11.1 shows designs for trees with up to 64 inputs. Notice that the trees
are very skinny, using only 2- and 3-input gates. Observe too that no NOR gates
with multiple inputs are used. This table shows the minimum effort design for the
24-input problem. Note that it is a tree eight levels deep.

The results of these designs can be used to formulate a lower bound on the
logical effort of an n-input AND tree. The tree will contain only 2-input NAND
gates, alternating with inverters, with as many levels as necessary to accommodate
n inputs. Thus if [ is the number of levels of NAND gates, 2! = n, or [ = log, n.
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n H=1 H=5 H =200
delay | tree delay | tree delay | tree

2 53 |21 8.2 |21 212 12111

3 6.6 |31 98 |31 231 13111

4 70 |22 10.7 | 2,2 234 12121
56 | 83 |32 125 | 3,2 254 13121
7-8 | 9.7 |4,2 14.2 | 4,2 258 1212121
16 | 129 |44 169 | 2,2,2,2 28.2 1222121
32 | 166 | 4,222 | 199 |4,2,2,2 309 |2.2.2.2.21
64 | 19.3 | 4,242 | 229 |4,24,2 33.6 |2,2,2,2,2,2
128 | 225 | 4,442 | 265 |4,22,2,2,2 | 36.7 |2,2,2,2,22721

Table 11.2: AND tree designs that minimize delay, for v = 2, when the total elec-
trical effort is specified. Note that these trees are different than those in Table 11.1
because the electrical effort influences the number of stages to use.

The logical effort per input is:

logy 1
2 )
Gana(n) = (11—1) — nloea(75) (11.2)

When v = 2, this simplifies to G,,q = n®*'®. Note that the logical effort of
AND trees grows much more slowly than the linear growth of a single NAND gate
(Equation 11.1).

11.1.2 Minimum delay

While these skinny trees offer the least logical effort, they are not always the best
choice in a given situation. It may happen that the path effort is so small that the
best design requires fewer stages than are called for in the tree. For example, if
n = 6 and the electrical effort H = 1, the design with the least delay is a 3-input
NAND gate followed by a 2-input NOR. Only when the electrical effort is large
will the skinny trees be fastest.

We can modify the design procedure to determine the fastest structure for a
given electrical effort. Again, we use a procedure that evaluates all branching
factors and recursively evaluates the required subtrees. When the procedure en-
counters a leaf node, it knows the logical effort of the proposed structure, so the
path effort I' = G H can be calculated, and the delay can then be determined.
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We find the best tree by minimizing this delay rather than minimizing the logical
effort.

Table 11.2 shows some results for the electrical effortsof H =1, H = 5, and
H = 200. The trees with low effort are bushier than those which minimize logical
effort because the limited total effort will make designs with too many stages slow.
The trees with high effort, on the other hand, use one of the skinny designs from
Table 11.1, possibly followed by additional inverters to yield the best number of
stages. For example, when n = 2, the least logical effort tree has logical effort of
4/3. Thus, the path with electrical effort of 200 has total effort 800/3. Table 3.1
shows a 5-stage design would be fastest, but the number of stages must be even.
Four stages turns out to be better than 6, so 2 additional inverters are used after
the 2-stage minimum logical effort tree.

11.1.3 Other widefunctions

DeMorgan’s Law helps us to transform AND trees to compute OR, NAND, Or NOR
functions. In all cases, the trees have alternating layers of NAND and NOR gates.
To perform the OR function, the order of NAND and NOR gates in the AND tree
is reversed. Similar trees having an odd number of stages, obtained by append-
ing an inverter to the tree, implement the complementary functions NAND and
NORHence, the minimum logical effort of all four functions is the same. The
minimum delay trees can be found in much the same way that we computed Ta-
ble 11.2.

11.2 An n-input Muller C-element

Muller C-elements are used in asynchronous circuit designs to detect when a
group of processes have completed. The C-element’s output becomes HIGH only
after all of its inputs become HIGH, and its output becomes Low only after all of
its inputs become Low. For other combinations of inputs values, the output of the
C-element retains its previous state.

11.2.1 Minimum logical effort

Figure 11.3 shows the simplest way to build an n-input C-element, which we
shall call a “simple-C.” It consists of a dynamic “C-arm” with series pullup and
pulldown transistors, followed by an inverter. The logical effort per input of this
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Figure 11.3: The “simple-C” design for a Muller C-element, with n = 3 inputs.

gate is just n (see Section 4.5.8). Variations of this dynamic circuit make it static
by adding some form of feedback. Although the feedback will increase the logical
effort slightly, we will ignore this effect.

Figure 11.4 shows another way to build a C-element using AND trees to detect
when the inputs are all HIGH and when they are all Low. We shall call this design
an “AND-C.” If we seek a design with the least logical effort, then the design of
the two AND trees will be identical, and each will have the same logical effort.
It might seem that the calculation of the logical effort for the entire C-element
would require deciding on the fraction of input current that is directed into each
AND tree. However, we can appeal to the results on bundles and observe that both
top and bottom paths experience the same logical effort in the AND trees, and so
signals = and y can be treated as a bundle, as shown in Figure 11.5. This bundle
drives a circuit that is identical to an inverter, which has a logical effort of 1. So
we see that the minimum logical effort of an n-input C-element is equal to the
logical effort of an n-input AND tree. The design of these trees was addressed in
the previous section.

If we study Table 11.1, we can see that the AND-C design has lower logical
effort than the simple-C design for any number of inputs. The column labeled
Ganq In this table gives the logical effort of the n-input AND tree, which is the
logical effort of the n-input AND-C design. In comparison, the logical effort of an
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Figure 11.4: The “AND-C” design for a Muller C-element, using AND trees to
determine when all inputs are HIGH or LOw.
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Figure 11.5: A different drawing of Figure 11.4, showing the bundle of two signals
computed by the AND trees.
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Figure 11.6: More precise version of Figure 11.4, showing NAND and NOR func-
tions driving the output stage.

n-input simple-C design is n.

11.2.2 Minimum delay

As with AND trees, the structure with the lowest logical effort does not always of-
fer the lowest delay, because it may have an improper number of stages. Obtaining
the design with the least delay requires knowing the overall electrical effort that
the C-element must bear.

The analysis of the simple-C circuit follows the familiar form used in all our
logical effort calculations. If the electrical effort of the n-input gate is H, the total
effort is nH, which is used to determine the best number of stages, N. Then the
delay is D = N(nH)Y". The circuit can be modified to have the right number of
stages by adding inverters or by building a tree of C-arms.

The analysis of the AND-C circuit depends on a slightly better design, shown
in Figure 11.6. NAND and NOR functions, rather than the AND function and invert-
ers shown in Figure 11.4, compute the x and y signals. These designs are logically
equivalent, and have the same minimum logical effort. However, when we con-
sider limited electrical effort, the improved design allows 2-stage solutions, while
the design in Figure 11.4 must have at least four stages, because the AND tree has
at least two.

As an initial design, we can assume that the NAND and NOR trees have equal
logical efforts. Therefore, we should choose s = /(1 + vy) to divide the input ca-
pacitance between the legs of the fork in proportion to the load each leg drives. Of
course, the logical effort and parasitic delay of the NOR tree is somewhat larger.
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Therefore, speed could be improved somewhat by iteratively adjusting s until de-
lays of the two legs are equal. The improvement is small and generally not worth
the bother.

Table 11.3 compares designs for the simple-C and AND-C designs, when the
electrical effort that must be borne by the circuitis H = 1 and H = 5. Notice
that the AND-C design is almost always faster than the simple-C design, even for
small numbers of inputs. The exceptions occur for designs with low electrical
efforts where the AND-C requires too many stages.

Nevertheless, a closer look at Table 11.3 shows that the relative advantage of
the AND-C design is small. This may seem surprising because the minimal logical
effort of the AND-C design scales as n%4> while the minimal logical effort of the
simple-C design scales as n. To understand why, consider the various components
of delay. Equation 3.26 can be rewritten with p = 4 as:

D ~ 4(log, G +1log, H) + P (11.3)

This shows that logical effort is only one of three components of delay. The AND-
C design can reduce the logical effort delay component by a factor of
logn

logn% ~ (11.4)
by using a minimal effort tree. However, the parasitic delays are comparable
to the logical effort delay, and so the reduced logical effort delay is a smaller
fraction of total delay. Moreover, when electrical effort is small, the trees are
bushy and do not achieve minimal logical effort; they may also have stage efforts
well below optimal. When electrical effort is large, the electrical effort delay
term is large, also making the savings in logical effort delay a smaller fraction of
the total delay. The conclusion is that for both large and small electrical efforts,
the overall speedup of the AND-C design is much less than one would expect by
considering logical effort alone.

11.3 Decoders

Efficient decoders are important for addressing memories and microprocessor reg-
ister files, where speed is critical. Decoding structures tend to have large total
effort because the fanout of address bits to all decoders and the fanout of the de-
coder output to the transistors in the memory word are both large. In this section,
we analyze three decoder designs from the perspective of logical effort.
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n | H simple-C AND-C
delay | stages || delay | NAND tree | NOR tree

211 5.8 2 56 |2 2

5 9.3 2 88 |2 1,2,1
311 7.5 2 71 |3 3

5 11.7 2 10.8 | 3,1,1 1,3,1
4 |1 8.0 2 85 |4 4

5 12.9 2 12.7 |1 2,1,2 2,2,1
6 |1 9.9 2 12.2 | 3,1,2 2,3,1

5 16.4 4 14.7 | 3,1,2 2,3,1
8 |1 11.7 2 125 | 2,2,2 2,2,2

5 17.1 4 15.3 | 2,2,2 2,2,2
16| 1 16.0 2 15.1 | 4,2,2 2,4,2

5 1] 20.0 4 18.2 | 4,2,2 24,2
321 19.5 4 18.1 | 4,24 4,42

5] 25.2 6 216 | 4,24 2,2,2,2,2
64| 1 | 23.3 4 212 4,44 444

5] 28.9 6 249 | 4,2,2,2,2 2,4,2,2,2
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Table 11.3: Comparison of minimum-delay designs for Muller C-elements, for
~ = 2, when the total electrical effort is specified.
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The considerations that affect decoder design are many, and minimizing log-
ical effort may not be paramount. Layout considerations are important, because
often the decoder must fit on the same layout pitch as the memory cells it ad-
dresses. Overall decoder size and power are important; a design that minimizes
logical effort may require too much power or too many transistors to be practical.
Finally, many decoder structures use precharging to reduce logical effort; we will
not analyze such designs here.

11.3.1 Simple decoder

The simplest form of decoder appears in Figure 11.7: each output is computed by
an AND tree, wired to the true or complement form of »n address bits. Each address
bit is wired to 2" decoders, half in true form and half in complement form. The
path effort from an address bit to the output is therefore:

F = 2"Gapna(n)H (11.5)

By way of example, consider a 64-entry file of 32-bit registers, so n = 6. If the
load on each address bit is 8 times the capacitance of a register cell, H = 32/8 =
4. A lower bound on G, from Equation 11.2 is 2.10, yielding a total effort of
538. This is a large total effort, which calls for a 5 stage AND tree design with
minimum logical effort.

11.3.2 Predecoding

Figure =refwsf-8 illustrates the idea of predecoding. The n address bits form p
groups of ¢ each. Each group is decoded to yield 27 predecode values. Then a
second layer of p-input AND trees combines the predecoded signals to generate
2" final signals. Let us compute the total effort on the longest path through the
decoder. Each address bit fans out to 2¢ decoders in the first layer, so there will be
a branching effort of 29. The decoder will introduce a logical effort of G 4,4(q),
the logical effort of an AND tree with ¢ inputs. Then there will be a fanout to 2™ ¢
AND gates in the second layer, each with logical effort G,,4(p). The path effort
from an address bit to the output is:

F = 2Guna(0)2" G ana(p) H (11.6)

We can compare this result with Equation 11.5, given n = pq. If we try a few
values, we find that predecoding has about the same logical effort as the simple
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Figure 11.7: A decoder generating 2™ outputs from an n-bit address.
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Figure 11.8: A decoder with g-bit predecoding.

structure. This result has an intuitive explanation: the predecoder structure is
really a reorganization of an AND tree that moves the fanout from the address
inputs to internal points in the tree.

Do not conclude from this analysis that predecoding offers no benefits. It
requires fewer transistors than other designs, and leads to more compact struc-
tures than the skinny trees of the previous section. Predecoding represents an
intermediate point between using a single n-input gate as a decoder and using a
minimum-effort AND tree.

11.3.3 A better decoder

Lyon and Schediwy [5] have invented a decoder that reduces the logical effort by
taking advantage of the fact that most outputs will be Low. A NOR gate is a good
way to pull an output Low, but usually has poor logical effort because large series-
connected PMOS transistors must pull the output HIGH. Since only one output of
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a decoder will be HIGH, it is possible to share the PmOS transistors across all of
the decoder gates! This is shown in Figure 11.9 for a 3:8 decoder. The decoder
can be viewed as eight 3-input NOR gates that share PMOsS pullups.

Rather than making the pullups all the same size, we shall make the transistors
higher in the tree wider. The lowest-level pullups will have width w, the next
pullup will have width 2w, then 4w, and so on. This scheme has the effect of
loading the input lines equally, so they will all have equal logical effort. Other
sizing schemes might reduce the logical effort of certain inputs and increase the
logical effort of others. If we compute the conductance of the n series pullup
transistors sized in this way, and equate it to the conductance of a PMOS transistor
of width ~ from the reference inverter, we find:

1
w=7<1 21"> ~ 2y (11.7)
=3
Now that we have designed the decoder to have the same output drive as the
reference inverter, the logical effort per input is just the input capacitance of each
input, divided by 1 + ~, the input capacitance of the reference inverter. Observe
that each input is connected to 2" ! pulldown transistors, each of width 1, and to

a total pullup width of 2" 1w. So the logical effort per input is:

1 L+ (11_%>
G(n) =2 T (11.8)
and the total effort is:
F=Gn)H (11.9)

Compare this equation to Equation 11.5: the fanout of address bits to all parts of
the decoder is incorporated into Equation 11.8. For v = 2, the Lyon-Schediwy
decoder has path effort:

5— 22"

F:G(z,n)H:2"< -

) H=~2"(5/6)H (11.10)
The corresponding expression for the AND tree, using Equation 11.5 and the lower

bound from Equation 11.2:
F =204 (11.11)

The second factors in the two equations are the only differences, so we see that
the Lyon-Schediwy decoder always has lower effort than the AND tree.
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Figure 11.9: The Lyon-Schediwy decoder, for 3 inputs.
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11.4 Multiplexers

Cmos multiplexers are interesting structures because the logical effort of a mul-
tiplexer is independent of the number of inputs. This suggests that multiplexers
could have a large number of inputs without speed penalty. Common sense tells
us otherwise. One problem is that decoding select signals for wide multiplexers
requires large effort, though this does not impact delay from data inputs. When
stray capacitance is considered, we discover that multiplexers should not be very
broad at all. In fact, over a broad range of assumptions, the best multiplexer has
four inputs. To select one of a large number of signals, we will see that it is best
to build a tree of 4-input multiplexers. Nevertheless, it is sometimes beneficial to
use multiplexers with up to 8 inputs.

11.4.1 How wide should a multiplexer be?

A multiplexer that selects one of  inputs has  independent arms. Figure 11.10
shows how each arm is designed and defines several important capacitances. C,;
is the load capacitance driven by the multiplexer. C;, is the capacitance of the data
input transistor gates. C is the stray capacitance, principly from drain diffusions,
contributed by each arm of the multiplexer. Notice that the circuit has the selection
signals s and 3 near the output so that unselected multiplexers present the least
stray capacitance to their common output. Our model of stray capacitance (see
Table 1.2) estimates a parasitic delay of 2rp;,, for an r-way multiplexer.

Figure 11.11 shows a branching structure of multiplexers that together select
one of n inputs. The branching structure consists of n,, layers of multiplexing,
each with an r-way branch. The branching structure is followed by n, stages of
amplifiers. Let C,,; be the load capacitance driven by the amplifier string and C;,,
be the input capacitance of one of the n inputs. Thus the electrical effort per input
is H = Cout/Cm.

We can now begin to develop some expressions that describe properties of
the multiplexer tree. We have n = ™=, or alternatively » = n'/™ or n,, =
(Inn)/(Inr). We will define the electrical effort of a multiplexer stage as h,,
and the electrical effort of an amplifier stage as h,. Using these values, we can
compute:

Ay = 20y + 2rPingy (11.12)

da = ha + Dinv (1113)
D = 2nm(hm + rpim;) + na(ha + pznv) (1114)
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Figure 11.11: A tree of r-way multiplexers to select one of NV inputs.

where d,, is the delay of a multiplexer stage; d,, the delay of an amplifier stage;
and D, the total delay.

Note how the logical effort per input of a multiplexer, 2, enters into the first
equation. We want to minimize the delay D subject to a constraint on total elec-
trical effort:

H = hymhye (11.15)

The theory of logical effort teaches us that for the best speed, the effort borne by
all stages should be equal, which suggests that 2h,, = h,. Although all stages
have equal effort, they will not introduce equal delay, because the delay through a
stage is the sum of effort delay and parasitic delay. But once again, the principal
lesson of the theory of logical effort—to equalize the effort borne by each stage—
results in the lowest overall delay, regardless of parasitic delay. However, the
parasitic delays will influence the best number of stages.

Let us now turn to the selection of the best number of logic stages. The struc-
ture of the multiplexer tree requires that there be n,,, multiplexer stages, but we can
vary n,, the number of amplifier stages, to achieve the minimum delay. Taking
notice that 2h,, = h, and » = n'/™ we obtain from Equation 11.14:

D = (N + 1) (2" H) 757 + 200" Dy, + 1aDiy (11.16)

The first term is the familiar N F'*/V effort delay in a network; the second term is
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the parasitic delay of the multiplexer stages; and the third is the parasitic delay of
the amplifier stages. We can find the fastest network by computing the values of
n,, and n, that minimize D. From the best value of n,, we can obtain the best
multiplexer width r = n'/™n,

Before starting to minimize the delay, let us try to anticipate the result. Sup-
pose that the overall electrical effort is H. We observe that the logical effort
of the n,, multiplexer stages in cascade will be 2", so the total effort will be
F = 2" H. If the best effort borne by each stage should is p, the best number of
stages is n,, + n, = (In F')/(In p). Solving for n,, we obtain:

In2 In H
Mg = Ty <n— - 1) i (11.17)
In p Inp

This equation shows that as the electrical effort grows, the number of stages in-
creases. But it also shows that there will be cases where no amplifiers are required,
i.e., ng = 0. For example, if H = 1, then n, = 0 because it is always true that
p > 2 (see Equation 3.23). For values of H not much greater than one, the number
of amplifiers will still be zero.

This result has an intuitive explanation. The logical effort of a multiplexer
stage, 2, is less than the best step-up ratio, p, which is always e = 2.718... or
greater. Thus a multiplexer stage has some “gain.” If the electrical effort per stage
is less than p/2, no additional amplifier stages are necessary. For sufficiently large
electrical effort, of course, extra amplifiers are required.

Let us now find the best value of n,,, and therefore the best width for a mul-
tiplexer, » = n!/™ . Minimizing Equation 11.16 is quite complex, because there
are two independent variables, n,,, and n,, and because the equation is itself com-
plex. In the simple case that H = 1, we have observed that n, = 0. In this case,
we obtain:

Inn

Dy— = 2nm(1 +pinvn1/nm) =2 (1—) (1 + Tpim)) (1118)
nr

Taking the partial derivative with respect to  and setting it to zero, we find:

1+ —Inr=0 (11.19)

TPinv
This striking equation lets us calculate r, the width of a multiplexer, given only
some information about the stray capacitance of the multiplexer design. The best
width is independent of the total number of inputs, n.
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Figure 11.12: Best multiplexer width, as a function of stray capacitance p;..

Figure 11.12 plots r for different values of p;,,,,, computed using Equation 11.19.
In practice, to make decoding manageable, we will require 7 to be a power of two.
With this constraint, it is clear from the table that for reasonable contributions of
stray capacitance, multiplexers should have four inputs.

To be sure of this result, we should analyze Equation 11.14 for electrical ef-
forts other than one. This analysis leads to slightly different values for r than those
predicted by Equation 11.19, but the best width for a practical multiplexer is still
four!

11.4.2 Medium-width multiplexers

The analysis in the last section offers advice on designing very wide multiplexers
as trees of 4-input multiplexers. But what if a multiplexer has 6 inputs? 10 inputs?
Is it better to build a partial tree of a 4-input multiplexer followed by a 2 or 3-input
multiplexer, or to use a single 6 or 10-input multiplexer? Such medium-width
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multiplexers are common in superscalar execution unit bypass paths.

The answer depends on the electrical effort borne by the path as well as the
number of inputs. At higher electrical efforts, a 2-stage design is helpful to drive
the load as well as to reduce parasitic capacitance. Therefore, we consider three
topologies for medium-width multiplexers:

e an n-input multiplexer
e an n-input multiplexer followed by an inverter
e a4-input multiplexer followed by an [n/4] multiplexer

The best design can be determined by comparing the delay equations of the
three choices. Figure 11.13 shows the ranges of n and H for which each design
is best. The choice between the first and second designs of adding an inverter
depends on the electrical effort: larger electrical efforts are best driven by more
stages. The third design is better than than the first driving large electrical efforts,
but it is not as good as the second. Therefore, the number of inputs at which the
multiplexer is best divided into a tree varies with the electrical effort. At electrical
efforts above 12, it is worth considering three stage designs as well.

The plot shows that it is useful to have multiplexers with up to 6 or 7 inputs in
a library. This cutoff depends on the parasitic capacitance; if the capacitance were
cut by two, multiplexers with 8-10 inputs become useful.

11.5 Summary

This chapter surveyed a number of tree-structured designs. The logical effort of a
tree structure grows more slowly with the number of inputs than does the logical
effort of a single gate that computes the same function. We made two observations
from the design of the tree structures in this chapter:

e Trees that minimize logical effort are deep and have low branching factor,
i.e., the number of inputs to gates is 2 or 3. Moreover, NOR gates never
appear in these trees, because a NAND gate and inverter computes the same
function with less logical effort.

e It is not always advisable to use the tree with the lowest logical effort, be-
cause the tree may have too many stages for best speed. Bushier trees with
larger logical effort and fewer stages may result in less delay.
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Figure 11.13: Best multiplexer design given n and H, assuming p;,, = 1.
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We have applied the tree structures to the design of C-elements and decoders.
We have seen, however, that logical effort is but one component of the delay and
that often electrical effort and parasitics dominate total delay. Thus, the delay
advantage of tree-based C-elements is lower than a simple logical effort analysis
would predict. Similarly, wide multiplexers are best divided into trees of 4-input
multiplexers to reduce the parasitic delay, despite the increase in logical effort.

11.6 Exercises

11-1 [20] For what values of p and ¢ does Equation 11.6 show substantial dif-
ferences between AND trees and predecoding? (Use Table 11.1.) Why is there a
difference?

11-2 [25] The Lyon-Schediwy decoder is presented in its NOR form. Show the
NAND form, and compute its logical effort. Which form has less logical effort?

11-3 [30] Determine the best multiplexer width for values of H > 1, as suggested
at the end of Section 11.4. Your results will depend on n.

11-4 [25] Make a plot similar to Figure 11.13 if p;,, = 0.5.

11-5 [25] Wide domino NOR gates are similar to multiplexers in that the logical
effort is independent of the number of inputs. Suppose the parasitic delay of an V-
input domino NOR is Npg;s¢. Make a plot similar to Figure 11.12 of the best NOR
gate width as a function of p4¢r. Assume the NOR gates have clocked evaluation
transistors and a logical effort of 2/3.



Chapter 12

Conclusions

12.1 The theory of logical effort

The theory of logical effort seeks to answer ubiquitous questions of circuit de-
signers. What is the fastest way to compute my logic function? How many stages
of logic should I use? How should I size each gate? What circuit family and
topology should I select?

Many designers know Mead and Conway'’s [6] result that strings of inverters
with no parasitics have minimum delay with a uniform step-up ratio of e. How
does this apply to more complex logic functions? What happens when realistic
parasitics are considered?

The theory of logical effort stems from a simple model that the delay of a gate
has two parts: an intrinsic delay driving internal parasitics, and an effort delay
driving a capacitive load. The effort depends on the ratio of the load size to gate
size and also on the complexity of the gate. We call the first term electrical effort,
defined as:

h = Cout/Cin (12.1)

We characterize the complexity of the gate by a number called logical effort. Log-
ical effort, g, is the ratio of the input capacitance of a gate to the input capacitance
of an inverter that can produce equal current; in other words, it describes how
much bigger than an inverter a gate must be to drive loads as well as the inverter
can. By this definition, an inverter has logical effort of 1.

O9Copyright (©1998, Morgan Kaufmann Publishers, Inc. This material may not be copied or
distributed without permission of the publisher.
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Gate type | Static | High | Low | Dynamic | Pseudo-
CcMOS | Skew | Skew NMOS
inverter 1 5/6 2/3 2/3 8/9
2-NAND 4/3 1 1 1 16/9
3-NAND 5/3 716 4/3 4/3 8/3
4-NAND 2 4/3 5/3 5/3 32/9
2-NOR 5/3 3/2 1 2/3 8/9
3-NOR 7/3 13/6 | 4/3 2/3 8/9
4-NOR 3 17/6 | 5/3 2/3 8/9
n-mux 2 5/3 4/3 1 16/9
2-XOR 4 10/3 | 8/3 2 32/9

Table 12.1: Typical logical effort per input for gates built with various circuit
families, with v = 2.

The delay through a single logic gate can now be written as
d=gh+p (12.2)

The results are in units of 7, the delay of an inverter driving another identical
inverter with no parasitics. The first term gh is called f, the stage effort or effort
delay.

One can estimate logical effort by sketching gates sized for output drive equal
to that of an inverter, or may extracted logical effort from simulated delay vs.
fanout curves. The logical effort depends on -, the ratio of PMOS to NMOS tran-
sistor sizes in an inverter. Using v = 2 is representative of CMOS processes and is
convenient for calculation. Table 12.1 lists the logical efforts of various gates in
different circuit styles.

A similar calculation finds the delay through a path. The path’s logical effort
G, is the product of the logical efforts of gates along the path. The path’s electrical
effort, H, is the path’s load capacitance divided by its input capacitance. The
path’s branching effort, B, accounts for internal fanout. The product of these
three terms is the path effort, F', which must be the product of the stage efforts of
each stage. Finally, the path’s intrinsic delay, P, is the sum of intrinsic delays of
gates along the path. We found that delay of a particular path is minimized when
the stage efforts are equal:

f = gihy = F'N (12.3)

We now know how to compute the sizes of gates along a given path to mini-
mize delay, taking into account the varying complexity of gates. But how did we
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know the path itself was a good design? A good path uses the right number of
stages and selects gates for each stage with low logical effort and parasitic delay.
The path effort and the best stage effort set the best number of stages. For gates
with no parasitics, the best stage effort is e = 2.718.... For gates with realistic
parasitics, the best stage effort is larger because it is better to use fewer stages
and reduce parasitic delay of paths. Stage effort of 4 is an excellent choice over a
range of assumptions. The designer has significant freedom to deviate from this
best stage effort, however. Stage efforts from 2.4 to 6 give delays within 15% of
minimum. The best number of stages is thus about:

N =~ log, F (12.4)

The designer should not only select a reasonable number of stages, but should
also employ gates with low logical efforts. For example, NAND gates are better
than NOR gates in static cM0Os . Multiple stages of low fan-in gates have lower
logical effort than a single gate with many inputs. Indeed, considering parasitics
and logical effort, fast gates generally have no more than 4 series transistors. Path
design may involve iteration because the path’s logical effort is not known until
the topology is chosen, but the right number of stages cannot be known accurately
without knowing the logical effort.

Logical effort also explains and quantifies the benefits of various circuit fam-
ilies. For example, domino circuits are faster than static because they have lower
logical effort. Pseudo-NMOS wide NOR structures are also fast because of low log-
ical effort. When static cMOs is insufficient to meet delay requirements, consider
other circuit families.

12.2 Insights from logical effort

The theory of logical effort is most valuable for the insights it lends into several
aspects of circuit design. While the same results might emerge from long de-
sign experience or from many circuit simulations, they emerge quite readily from
logical effort. We list the following among the interesting results:

1. The idea of a numeric “logical effort” that characterizes the delay charac-
teristics of a logic gate or a path through a network is very powerful. It
allows us to compare alternative circuit topologies and to show that some
topologies are uniformly better than others.
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. Circuits are fastest when the effort delay of each stage is the same. More-

over, one should select the number of stages to make this effort about 4.
CAD tools can automatically check a design and flag nodes with poorly
chosen efforts.

Fortunately, path delay is very insensitive to modest deviations from the op-
timum. Therefore, the designer has freedom to adjust the number of stages.
Sizing calculations can be done “on the back of an envelope” or in the de-
signer’s head to one or two significant figures. The final results will be
very close to minimum delay for the topology, so there is little benefit to
tweaking transistor sizes in a circuit simulator.

. The delay of a well-designed path is about 4(log, G + log, H) + P. Each

quadrupling of the load driven by the path adds about the delay of a fanout-
of-4 (FO4) inverter. Control signals that must drive a 64-bit datapath there-
fore incur an amplification delay of about 3 FO4 inverters.

. The logical effort of each input of a gate increases through no fault of its

own as the number of inputs grows. This vividly illustrates the cost of gates
with large fan-in. Logical effort can be used to compare designs that are
bushy and shallow with those that are narrow and deep.

Considering both logical effort and parasitic capacitance, we find a practical
limit of about four series transistors in logic gates and four inputs to mul-
tiplexers. Beyond this width, it is best to split gates into multiple stages of
skinnier gates.

. Circuits that branch should generally have path lengths differing by no more

than 1 gate between the branches. Input capacitance is divided among the
legs in proportion to the effort of each leg. It is much better to use 1-2 forks
or 2-3 forks than 0-1 forks because the capacitance can be balanced between
the legs.

. The average delay of a gate is minimized by choosing a P/N ratio equal to

the square root of the ratio which gives equal rising and falling delays. This
also improves the area and power consumption of the gate. Other ratios in
the vicinity of this value give excellent results, so a P/N ratio of 1.5 works
well for virtually all processes.
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9. Logical effort quantifies the benefits of different circuit families. It shows
that pseudo-NMOS is good for wide NOR structures. Johnson’s symmetric
NOR gate is even better. Domino logic is faster than static logic because it
uses dynamic gates with low logical effort and also uses high-skew static
gates that favor the critical transition. The best stage effort for domino logic
is about 2-3 because domino buffers provide more amplification than static
inverters.

It may be that logical effort is a useful measure of computational complex-
ity. What is the minimum logical effort required to add two N-bit numbers? To
multiply them? A model of the cost of computation based on logical effort far
more accurately portrays the time and space required to complete a calculation
than does a simple count of logic gates, perhaps with restricted fan-in. Extend-
ing complexity results to logical effort might lend new insights into the limits of
computation. The point is not that one should become preoccupied with reducing
logical effort, but rather that logical effort is a uniform basis on which to assess
the performance impact of different circuit choices.

12.3 A design procedure

We can apply the method of logical effort with a simple design procedure shown in
Figure 12.1. When there is little branching, the path effort is easy to compute and
no iteration is necessary. When there is complex branching and wire capacitance,
the procedure helps refine an initial guess at path effort into a good design with a
few iterations.

The design procedure must begin with a block specification describing the
function of the path, the input and output capacitances, and the maximum toler-
able delay. A common mistake of beginning circuit designers is to specify only
the function and the output capacitance. Unless a specification includes an input
capacitance limit, the block can be made arbitrarily fast by increasing the sizes
of gates. This inevitably causes a previous block to slow down. Similarly, if no
delay specification is given, the designer has no way of knowing when the design
is “good enough.” While feasibility studies may explore the fastest possible im-
plementations, real designs waste area, power, and design time if they are made
faster than necessary.

Given the block spec, the designer can select a topology. Critical paths may
use domino circuits or other special families for extra speed, but when in doubt
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Block Spec:
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Figure 12.1: A flowchart for path design.
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it is best to start with static cM0Os. The best number of stages emerges from
preliminary logical effort calculations, but may be revised later. Label each gate
with its logical effort.

Next, the designer should consider interconnect because the flight time across
long wires is independent of the driver size. Each wire should be labeled with its
length, metal layer (e.g. metal4), and width and spacing. Wires can default to min-
imum width and spacing unless they prove to be critical. From these parameters,
the designer can compute the wire resistance R, capacitance C, and distributed
delay, RC//2. If this delay is small enough, perhaps less than a gate delay, the
wire is acceptable. If the delay is too large, the designer may increase the width
or spacing or insert repeaters. Once the wire design is complete, the wire can be
treated as a lumped capacitance for logical effort purposes.

It is now time to pick sizes for the gates. The designer should estimate the
path effort and thus compute the stage effort. The stage effort should be about
4 for static logic and about 2.75 for domino logic; if it is far off, stages should
be added or combined. If the path is simple branching, the path effort is easy
to determine. If the path has complex branches and medium-length wires, the
estimate may be inaccurate, but will be corrected later. The designer starts at the
end and works backward, applying a capacitance transformation to compute the
size of each gate. Practical constraints sometimes restrict the choice of sizes. For
instance, transistors have a minimum allowable size or a library may limit choice
of gate sizes. Sometimes a large driver should be undersized to save area and
power.

After assigning gate sizes, compare the actual input capacitance to the speci-
fication. If the input capacitance is smaller than specification, the stage effort was
larger than necessary and can be reduced. If the input capacitance exceeds the
specification, the stage effort was smaller than necessary and must be increased.
If the input capacitance greatly exceeds the specification, the design probably has
too few stages and buffers should be added to the end of the path.

Once the input capacitance meets specification, compute the delay of the cir-
cuit by simulation, static timing analysis, or hand estimation. If you are fortunate,
the design is faster than necessary. Increase the stage effort and reduce the in-
put capacitance to reduce the area of the design and present a smaller load to the
previous path.

Murphy’s Law dictates that the design is usually too slow. A common mis-
take among beginners is to tweak the sizes of transistors in the path in the hope of
improving speed. This is doomed to failure if logical effort was correctly applied
because the gate sizes are already right for theoretically minimum delay, as accu-
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rately as the model allows. Often the problem is “solved” by upsizing all of the
devices in the path, but such a solution violates the input capacitance specification
and pushes the problem to the previous path. Moreover, it leads to designs with
overly large gates. A better approach is to rethink the overall topology. Perhaps it
is possible to use faster circuit families or rearrange gates to favor late inputs. If
a better topology is found, repeat the sizing process. If the topology and sizes are
thoroughly optimized, the block spec is infeasible and the specification must be
modified. Sometimes logical effort allows one to reject a specification as unreal-
istic with very little design work.

With practice, this design procedure is easy to use and works for a wide range
of circuit problems. It is intended only as a general guide; the designer should
also trust his or her own intuition and special knowledge of the problem.

12.4 Other approaches to path design

12.4.1 Simulate and tweak

Junior circuit designers with no instruction on sizing techniques tend to use the
simulate and tweak method. This method begins with a randomly selected topol-
ogy that implements the logic function. The engineer simulates the circuit and
finds that it is too slow. Therefore, he or she tries increasing the size of gates. This
only pushes the problem from one gate to another. After extensive simulation, the
engineer concludes the topology is too slow and tries compressing the function
into fewer stages with the hope of reducing the number of gate delays by reducing
the number of gates. If the stage effort was too large in the first topology, this only
makes delay worse. After sufficient experience, the engineer begins to develop
heuristics for path selection and design. Nevertheless, the design method involves
tedious and time-consuming simulation and spoils the joy of circuit design.

Fortunate engineers either get instruction from veteran designers or realize
themselves that simulate and tweak is a bad method and therefore derive better
techniques.

12.4.2 Equal fanout

One better technique is to use equal fanout per stage and to target a fanout of
about 4. This method is an intuitive extension of the result that inverter chains
with fanouts of 4 are fastest. The term fanout is used in place of electrical effort.
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Equal fanout design is sufficient for circuits like decoders in which the logical
effort tends to be low, but is suboptimal for paths with large logical effort because
it results in stage efforts well above 4.

12.4.3 Equal delay

Another improved design technique is delay allocation or equal delay per stage.
This is also provably non-optimal because it equalizes the sum of the effort and
parasitic delays rather than just the effort delays. Nevertheless, because path delay
is a weak function of exact sizes, equal delay sizing tends to give good results
unless parasitic delays are very large. An optimal delay per stage can be found
for a particular process. Given a delay specification, this dictates the number of
stages that should be used. Equal delay sizing has many practical advantages.
Designers usually are given specifications in picoseconds, which directly relate
to the number of stages they should employ. CAD tools also report delays in
picoseconds, so circuits can be optimized by adjusting sizes until the delays are
equal. This is easier than adjusting sizes until efforts are equal because efforts
cannot be determined directly from simulation or static timing analysis.

Besides non-optimal results, equal delay sizing has other theoretical draw-
backs. It gives less insight about circuits and about the cost of fanout. It also
produces process-dependent delay results, expressed in picoseconds. Therefore,
intuition developed in one process is more difficult to scale to the next generation
of process.

Both equal delay sizing and logical effort have a place in the designer’s tool-
box. Logical effort is most useful for reasoning about circuits and doing simple
calculations to determine topology. Equal delay sizing is most convenient when
finding a low cost circuit to meet a delay specification and when tuning a circuit
based on simulation or static timing analysis.

12.4.4 Numerical optimization

There are many tools available that harness the speed of computers to optimize cir-
cuit sizes numerically. Visweswariah [8] surveys the principles and challenges of
numerical circuit optimization. Because these tools can obtain optimal results and
can use more accurate models than the simple RC delay model, why are manual
techniques relevant?

The greatest value of logical effort is the insight it provides. While a numeri-
cal optimizer can tweak a given path for maximum speed, it does not explain why
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the path is fast nor whether the topology was a good one in the first place. More-
over, numerical methods are prone to get stuck in local optima and are unlikely
to produce meaningful results unless the user knows approximately what results
should be expected. Synthesis tools make some effort to explore topologies, but
still cannot match experienced designers on critical paths. Moreover, designers
have in their heads many constraints on the design, such as performance, floor-
plan, wiring, and interfaces with other circuits. Merely specifying all of these
constraints to an optimization tool may take longer than selecting reasonable sizes
by hand. Finally, accurate circuit optimization is fundamentally a nonlinear prob-
lem which tends to have runtime and convergence problems when applied to real
designs.

12.5 Shortcomings of logical effort

Logical effort is based on a very simple premise: equalize the effort delay of each
stage. The simplicity is the method’s greatest strength, but it also results in a
number of limitations:

e The RC delay model is overly simplistic. In particular, it fails to capture the
effects of velocity saturation and of variable rise times [3]. Fortunately, rise
times tend to be about equal in well-designed circuits with equal effort de-
lays and velocity saturation can be handled by characterizing logical effort
of gates with simulation.

e Logical effort explains how to design a path for maximum speed, but does
not easily show how to design a path for minimum area or power under a
fixed delay constraint.

e Logical effort does not provide simple closed-form solutions to paths that
branch and have a different number of stages or different parasitic delays
on each branch. Usually iteration is required to tune such circuits. Itera-
tion is also required when fixed wire capacitances are comparable to gate
capacitance.

e Many real circuits are too complex to optimize by hand. For example, prob-
lems in Chapter 11 were solved with spreadsheets or with simple scripts.
Given that numerical optimization is sometimes necessary, perhaps the op-
timizer should use a more accurate delay equation.
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12.6 Parting words

One of the joys of circuit design is the challenge of designing ever more powerful
chips. High speed processors push circuit design to the limit. Low power circuits
are also created from high speed designs operating at the lowest feasible voltage.
Every circuit designer constantly confronts the question of how to choose fast
circuit topologies and how to size the paths for greatest speed. As a result, every
good designer has developed a set of heuristics which lead to fast circuits. Logical
effort should not displace this insight but should rather supplement it by providing
a simple and powerful framework to reason about delay in circuits and a common
language for designers to communicate their ideas.

Even more importantly, we hope this monograph will help new circuit design-
ers quickly develop their own intuition. We have experienced the frustration of
endless simulation and tweaking of gate sizes before we developed logical effort.
Therefore, we hope we have provided a useful teaching tool.

The only way to become skilled with logical effort is to use it. At first, you
will find it slow and cumbersome. With practice, however, you will develop pro-
ficiency and soon discover logical effort is a very productive way to design fast
circuits.
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Appendix A

Cast of Characters

The notation used in this monograph obeys certain conventions whenever possi-
ble:

e Parameters of the fabrication process and design parameters that are likely
to be the same for all logic gates are given by Greek letters.

e Logic gate inputs and outputs are single lower-case letters, in the set a, b, ¢
whenever possible. Subscripts are often used to indicate different stages of
logic along a path in a network.

e Quantities used in equations for modeling transistor properties are chosen
to match existing conventions.

The principal notational symbols are:

d The delay in a single stage of a logic network, or “stage delay.” Often sub-
scripted to identify a single stage of a network.

D The total delay along a path through a logic network.

D The total delay along a path through a logic network when the design of the
network is optimized to obtain least delay.

g The logical effort per input or bundle of a logic gate. Often subscripted to
denote the particular input or bundle and/or to identify a single stage of a

O9Copyright (©1998, Morgan Kaufmann Publishers, Inc. This material may not be copied or
distributed without permission of the publisher.
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network. (The letter g represents logical effort because it is the first letter
in the word “logical” that is not easily confused with other symbols—I with
one and o with zero.)

gt The total logical effort of a single logic gate. Often subscripted to identify a
single stage of a network.

G The path logical effort borne by one or more paths through a logic network.
When subscripted with characters, denotes the logical effort between two
points in a network: G is the logical effort along the path from a to b.

h The electrical effort borne by a single stage: h = Cyy;/Cip. This is the ratio
of a logic gate’s load capacitance to the input capacitance of a single input.
Often subscripted to identify a single stage of a network. (The letter A is
chosen so that the formula f = gh reads in alphabetical order.)

H The path electrical effort borne by one or more paths through a logic network.
When subscripted with characters, denotes the electrical effort between two
points in a network: H,, is the electrical effort along the path from « to b.

b The branching effort borne at the output of a single logic gate. Often subscripted
to identify a stage of a network.

B The path branching effort borne by one or more paths through a network. Note
that branching effort at the last stage in a network is not counted, since the
electrical effort reflects the effort of branching in the last stage.

f The effort, electrical and logical, borne by a single stage: f = gh. Often
subscripted to identify a single stage of a network. Sometimes called the
effort delay, because it is the contribution to delay in a single logic gate that
is induced by the effort the gate bears. (The letter f was chosen to represent
the word “effort;” the letter e being too easily confused with the constant
2.718.)

f The optimum value of f to minimize delay along a path with a given number
of stages.

p The optimum value of f when the number of stages in a path is chosen to
minimize delay.
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F' The path effort, electrical, branching, and logical, borne by one or more paths
through a logic network: F' = GBH. When subscripted with characters,
denotes the path effort between two points in a network: F, is the path
effort along the path from « to b.

p The parasitic delay of a logic gate.

Pine The parasitic delay of an inverter.

P The parasitic delay along a path of a network.

N The number of stages along a logic path.

R Resistance. R, is the resistance per unit length of a metal wire.

C Capacitance. Cy, is the input capacitance of a logic gate or of a path through
a logic network. C,,; is the load capacitance of a logic gate or of a path
through a logic network. C,, is the capacitance per unit length of a metal
wire.

L The length of a transistor. In an inverter, L,, is the length of the n-type transistor
and L, is the length of the p-type transistor.

W The width of a transistor. In an inverter, W, is the width of the n-type transis-
tor and W, is the width of the p-type transistor.

7 The delay of an ideal inverter with no stray capacitance driving an identical
inverter. If rising and falling delays differ, then 7, is the rising delay, and 7,
is the falling delay.

~ The ratio of the shape factor of p-type pullup transistors to that of n-type pull-
down transistors in an inverter: v = (W, /L,)/(W,,/L,). Usually v > 1.

P/N ratio The ratio of the shape factor of p-type pullup transistors to that of n-
type pulldown transistors in an arbitrary logic gate. For inverters, the P/N
ratio equals ~. For a 2-input NOR gate, the P/N ratio must be 2+ to have
rising and falling delays proportional to those of an inverter.

it The mobility in n-channel devices.

i, The mobility in p-channel devices.
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p The ratio of n-channel mobility to p-channel mobility: p = u,/p,. Usually
1 > 1. Warning: Whereas y is the ratio of n to p mobilities, -y is the ratio

of p to n shape factors.

The adjectives “stage” and “path” are applied to logical effort, electrical effort,
effort, effort delay, and parasitic delay. The adjective “total” is applied to “logical
effort” only, and means the sum of the logical effort per input of all inputs of a

logic gate.
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L ogical Effort Tools

The Logical Effort web page offers several tools to assist with logical effort. The
page can be found at:

http://vel ox. stanford. edu/ TBD
Documentation for the tools is also online.

B.1 Library characterization

The Perl script used in Chapter 5 to characterize the logical effort of gates is
online. The script takes a SPICE netlist of the gates, a process file, and a list of
input stimulus for each gate. It measures the logical effort and parasitic delay of
each gate using the test setup described in Chapter 5.

B.2 Wide gate design

A Perl script is available to design wide NAND, NOR, AND, and OR gates. It
takes the number of inputs and the electrical effort of the path and computes the
minimum-delay tree, as discussed in Section 11.1. The tool can be used from a
form-based interface on the web, or downloaded for use on your computer.
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