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High-Performance Crystal Oscillator 
Circuits: Theory and Application 

Ahtruct -A general theory that allows the accurate linear and nonlinear 
analysis of any crystal oscillator circuit is presented. It is based on the high 
Q of the resonator and on a very few nonlimiting assumptions. The special 
case of the three-point oscillator, that includes Pierce and one-pin circuits, 
is analyzed in more detail. A clear insight into the linear behavior, 
including the effect of losses, is obtained by means of the circular locus of 
the circuit impedance. A basic condition for oscillation and simple analytic 
expressions are derived in the lossless case for frequency pulling, critical 
transconductance, and start-up time constant. The effects of nonlinearities 
on amplitude and on frequency stability are analyzed. As an application, a 
2-MHz CMOS oscillator is described, which uses amplitude stabilization 
to minimize power consumption and to eliminate the effects of nonlineari- 
ties on frequency. The chip, implemented in a 3-pm p-well low-voltage 
process, includes a three-Ftage frequency divider and consumes 0.9 pA at 
1.5 V. The measured frequency stability is 0.05 ppm/V in the range 1.1- 
5 V of supply voltage. Temperature effect on the circuit itself is less than 
0.1 ppm from - 10 to +60°C. 

I. INTRODUCTION 

TARTING in the late sixties, large efforts have been S devoted to the development of hgh-performance in- 
tegrated quartz crystal oscillators for electronic watches. 
This application requires high stability (1 second per day 
corresponds to 12 ppm) and very low power consumption, 
typically 0.1 to 1 pW. Because of the very special domain, 
few results have been published, most of them in very 
limited circles [1]-[13]. A more general interest for the 
problem arose later, for the realization of time bases in 
microprocessors and switched-capacitor filters. Special 
problems that appeared in these applications were dis- 
cussed in a few publications [14]-[17], but these failed to 
address the important issues of frequency stability and 
power minimization. Besides the watch, which is still being 
improved, high-performance crystal oscillators are re- 
quired in an increasing number of portable instruments 
where power is limited and precision is of some concern. 

The very high quality factor Q and the need for preci- 
sion prevent direct numerical computer simulation of a 
crystal oscillator. In particular, direct time-domain simula- 
tion to evaluate nonlinear effects would necessitate the 
calculation of close to one million periods of oscillation. In 
Section I1 of this paper, a very powerful analytic approach 
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based on [ l l ]  will be presented. This approach allows the 
accurate calculation of all linear and nonlinear effects in 
any crystal oscillator, by taking advantage of the high 
value of Q. Section I11 concentrates on the particular 
structure based on a single active device, which is used in 
most of the practical realizations. As an example, Section 
IV describes a high-performance CMOS oscillator devel- 
oped for advanced watch applications. 

11. GENERAL METHOD OF ANALYSIS OF QUARTZ 
CRYSTAL OSCILLATORS 

A .  Crystal Resonator 

A quartz crystal resonator may be represented by its 
electrical equivalent circuit shown in Fig. 1 [IS]. Each 
possible mode ( i )  of mechanical oscillation corresponds to 
a series resonant circuit L( i ) ,  C( i ) ,  R ( i )  having a mo- 
tional impedance Z,(i). The current i (  i )  through Z,( i )  is 
proportional to the velocity, thus its amplitude is propor- 
tional to the amplitude of oscillation at mode ( i ) .  The 
motional capacitance C( i )  is proportional to the electro- 
mechanical coupling of mode ( i ) .  Since this coupling is 
always very small, the total capacitance across the main 
electrodes 1 and 2 

is always much larger than C( i ) .  Part of this capacitance is 
shelded by a third electrode 0, usually connected to the 
case. Each mode of oscillation may be characterized by its 
mechanical resonant (angular) frequency (1 and 2 short- 
circuited) 

w,(i) = [ ~ ( i ) ~ ( i ) ]  p1'2 

and by its quality factor 

(3) 

In most practical resonators, the frequencies of the 
various modes are not exact multiples of each other, or the 
undesired modes are very weakly coupled. Thus, when 
oscillation occurs at a given single mode characterized by 
L ,  C, R ,  Z,, Q, a,, and i ,  all other series branches may 
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Fig. 1. Equivalent circuit of a crystal resonator. 

be neglected, even if the voltage U across the device 
contains large harmonic components. Furthermore, Q is 
always very large; the current i through the motional 
impedance Z, is therefore sinusoidal for any shape of 
voltage U. The motional impedance may be expressed as 

In an oscillator, w is always very close to U,, thus 
w - w, 

Urn 
P = -  << 1 

which yields 

2P Z , = R +  j -  
OC 

(4) 

where p is the relative amount of frequency pulling above 
the mechanical resonant frequency U, of the resonator. 

The mechanical energy of oscillation is given by 

E,=--- LVI2 - 111, 
2 2W2C 

and the mechanical power dissipation is 

(7) 

where 111 is the amplitude of sinusoidal current i .  

B. Optimum Splitting of the Oscillator 

A crystal oscillator is obtained by connecting the three 
poles of the resonator to an oscillator circuit, as shown in 
Fig. 2(a). The traditional analysis includes the whole reso- 
nator as a component of the circuit [18]-[20]. However, 
much more insight can be obtained by splitting the oscilla- 
tor into the linear motional impedance Z,  and the rest of 
the circuit, which includes capacitances Clo, Cl2, and C,, 
of the resonator and all the nonlinearities. 

As was pointed out above, the current through Z, can 
be assumed to be always sinusoidal, even if voltage U 
across it is strongly distorted. As a consequence, exchange 
of energy with the circuit can only occur at the fundamen- 
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Fig. 2. Most general form of a crystal oscillator. Deep insight and 
precise analysis are possible by splitting the circuit-resonator combina- 
tion (a) into the motional impedance Z ,  and an equivalent impedance 
of the circuit at fundamental frequency Z,(,, as shown in (b). 

tal frequency, and the nonlinear circuit can be completely 
characterized (Fig. 2(b)) by its equivalent impedance at 
this frequency 

(9) 

where ql) is the complex value of the fundamental compo- 
nent of U, which depends on the amplitude of I .  Further- 
more, since Zc(l) usually has no high-Q pole in the vicinity 
of w,, its frequency dependence is orders of magnitude 
smaller than that of Z,. Thefrequency w may therefore be 
considered constant (and equal to w,) with regard to Zc(l), 
whereas the frequency dependence of Z, is expressed by 
means of pulling p ,  according to (6) .  These assumptions 
do not introduce any significant loss of accuracy. They 
greatly simplify the linear and nonlinear analysis of any 
crystal oscillator. 

C. Linear Analysis 

As long as the amplitude of oscillation is small, the 
whole circuit stays linear, and the impedance Zc(l) reduces 
to the small-signal impedance Z,. The critical condition 
for oscillation can then be simply expressed as 

z,+z,=o. (10) 

Using expression ( 6 )  of Z,, it can be split into two 
conditions for the real and imaginary components: 

-Re(Z,) = R (11) 

shows that the negative resistance of Z, must exactly 
compensate the positive resistance R of the resonator; and 

2P -Im(z,)  = - 
W C  

shows that the amount of frequency pulling p is propor- 
tional to the imaginary part of Z,. As soon as -Re(Z,) 
becomes larger than R ,  oscillation builds up exponentially 
from noise, with a time constant 

1 
(13) = -  

L 
7 = -  

Re(Z,)+ R 02C(Re(Z,)+ R ) .  
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Fig. 3. Locus of Zc~l~(lIl) in the complex plane. It starts at linear 
impedance Z,  for small amplitude 111. Stable oscillation is reached at 
intersection P with locus of - Z, , , (p) .  

The time required for growing of oscillation, whch de- 
pends on the noise level, is usually comprised between 5 
and 157. It can be reduced by providing more initial 
energy through an adequate switching procedure [17]. 
Above a certain level, the circuit becomes nonlinear, whch 
provides amplitude limitation. 

D. Nonlinear Behavior and Analysis 

When voltage U is distorted by nonlinearities in the 
circuit, relations (10)-(13) are still applicable, provided the 
small signal impedance Z, (which has no more meaning) is 
replaced by the impedance for the fundamental compo- 
nent of voltage Zc( l )  defined by (9). As is shown qualita- 
tively in the complex plane of Fig. 3, the increasing rate of 
distortion due to an increase of amplitude 1Z1 progressively 
reduces the value of -Re(Zc(l)), which is the negative 
resistance provided by the circuit, until stable oscillation is 
reached for 

zc(l) + z, = 0. 

T h s  occurs when the locus of Zc( l~(~Z~)  intercepts the locus 
of - Z,( p )  at point P. The exact values of frequency 
pulling p and amplitude of oscillation are then given, 
respectively, by the imaginary part of Z, (according to 
(6)) and by the value of 111 at point P. 

An accurate numerical simulation of the nonlinear be- 
havior of any crystal oscillator can thus be carried out in 
the following manner. For a given circuit configuration, 
with given bias conditions, the impedance Zc(l) can be 
calculated by time simulation for a given amplitude 111: 
the sinusoidal current i (complex value I) is imposed by a 
current source, and the resulting periodic voltage U is 
computed. Its complex fundamental component yl) is 
then extracted by Fourier analysis and divided by I .  
according to (9). The locus of Zc(l)(lZl) is obtained by 
repeating this procedure for increasing values of 111. 

This lund of amplitude limitation by distortion has 
many disadvantages. As shown by the dotted curve in Fig. 
3, any change in the circuit bias (due for instance to a 
variation of supply voltage or temperature) corresponds to 
a new value of small signal impedance Z;, a new locus 

Fig. 4. Ideal nondistorting amplitude limitation. 

Z&)(lZl), and a new stable point P',  with a new value p' 
of frequency pulling. The frequency stability can therefore 
be strongly degraded. Furthermore, such a limitation has a 
poor power efficiency, since a large part of the supply 
power is wasted in producing harmonics. It also com- 
plicates the selection of the desired mode ( i )  of oscillation 
of the resonator [ l l ] .  

In high-performance oscillators, these problems must be 
eliminated by limiting the amount of distortion. Fixing the 
bias point just above the critical condition for oscillation 
would not leave enough margin for variations in the pro- 
cess, neither in the resonator nor in the environment. The 
solution consists in using a feedback loop, with a time 
constant much larger than the period of oscillation. As 
illustrated in Fig. 4 in an ideal case with no distortion, 
such a regulator reduces -Re(Z,) (usually by reducing 
the bias current) when the amplitude 111 increases, until 
equilibrium is reached at point P .  In practice, the stable 
amplitude at point P is chosen low enough to avoid any 
significant distortion, so that the circuit operates very close 
to the critical condition for oscillation. 

111. THEORY OF THE THREE-POINT OSCILLATOR 

A .  General Linear Circuit 

Excellent oscillators can be implemented by using essen- 
tially a single transconductance device, such as a bipolar or 
a MOS transistor [18], [19]. It can be shown that, since no 
integrated inductor is available, the only possibility is to 
associate the transconductance with two functional capaci- 
tors, to form the three-point oscillator shown in Fig. 5. The 
most general form of th s  oscillator, after separation of the 
motional impedance Z,, is represented by its ac diagram 
in Fig. 6. Impedances Z,-Z, include all the components 
of the real active device, except its transconductance g, ,  
and all other possible contributions. As discussed previ- 
ously, their values can be considered constant (indepen- 
dent of frequency pulling p << 1) without any significant 
loss of accuracy. The small-signal circuit impedance is 
easily obtained as 

T h s  relation is a bilinear function of g,. Therefore, the 
locus of Z,( g,) in the complex plane is a circle (half-circle 
for 0 < g ,  < CO) as shown in Fig. 7. This circle is always 
located inside the lower half-plane, since the reactive com- 
ponents are all capacitive. 
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Fig. 5. Basic three-point oscillator. 
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Fig. 6. General form of the three-point oscillator. 
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Fig. 8. Complex plane representation of the lossless three-point oscilla- 
tor (linear). 

Any increase of the real part of Z,, Z,, or Z3 moves the 
circle to the right, and causes an increase of p by pushing 
A downwards. These real parts correspond to losses in the 
circuit. They can be due to losses in the active device 
(output conductance, input conductance for a bipolar), to 
the components that must be added to bias it in active 
mode, to the external load of the oscillator, and to para- 
sitic effects such as interconnection resistance or moisture. 

B. Lossless Linear Circuit 
P 

-zm(P) I Losses in the circuit should be minimized to achieve 
Fig. 7. Complex plane representation of the general three-point oscilla- 

tor (linear). Stable critical oscillation corresponds to intersection A of 
loci Z c ( g m a )  and - Z , ( p ) .  

The critical conditions for oscillation correspond to in- 
tersections A and B of this locus with that of - Z,(p). It 
can be shown that no stable oscillation is possible at point 
B,  because the phase stability condition [21] is not satis- 
fied. The critical transconductance for oscillation g, 
may thus be calculated by introducing (15) into (11) and 
selecting the smaller solution (point A )  for g,. The second 
solution is g,,, (point B ) ,  beyond which no oscillation 
can start, as was pointed out elsewhere [15]. 

The negative resistance -Re(Z,) provided by the cir- 
cuit reaches a maximum for an intermediate value gmopt of 
transconductance. If resistance R in the motional imped- 
ance is larger than this maximum value, no oscillation is 
possible, whatever the value of the transconductance. If 
oscillation is possible, the start-up time constant given by 
(13) reaches a minimum for g, = gmopt. The representation 
of Fig. 7 also allows one to predict the qualitative in- 
fluence of the three circuit impedances on frequency pull- 
ing p. An increase of the imaginary part of Z, or Z, 
(reduction of C, or C,) reduces the diameter of the circle 
and always moves the stable point A downwards, which 
causes an increase of p. An increase of the imaginary part 
of Z3 (reduction of C3) moves the whole circle downwards 
and increases its diameter. As a result, point A may move 
downwards or upwards, depending on its initial position. 

minimum critical transconductance (and thus minimum 
current for oscillation) and maximum frequency stability. 
The ideal case with purely capacitive impedances (no other 
losses than that of the resonator) corresponds to the com- 
plex plane representation of Fig. 8. The real and imaginary 
parts of Z, are then 

(16) 
grnclc2 

(gmC3)’+ w2(clc2 +c2c3 +‘3‘1), 

gic3 + 02(c1 + c2)(c1c2 + c2c3 + c3c1) 

Re (Z,) = - 

Im (2,) = - 
[ (gmc3 >’+ u2(c1c2 + c2c3 + c,c , )~]  ‘ 

(17) 
The maximum negative resistance is obtained for 

and has the value 

which must be larger than resistance R to allow oscillation. 
By using (3), this condition can be expressed as 
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As seen in Fig. 8, the imaginary part of Z,  at the stable 
point A is a function of its real part R .  The frequency 
pulling p therefore depends on the quality factor of the 
resonator, which is quite unsatisfactory for frequency sta- 
bility. Meanwhile, if condition (20) is fulfilled with a large 
enough margin, point A stays very close to the imaginary 
axis, and this dependence is very small. The introduction 
of (17) with g,, --* 0 into (12) yields a value of frequency 
pulling independent of R and Q: 

C 
P =  ( c,c, \ . (21) 

2 c3+= I Cl+C2I 

Introducing (16) into (11) with the same hypothesis yields 
the critical transconductance for oscillation: 

O 

QC ClC2 

( C ~ C ,  + ~ 2 ~ 3  + ~ 3 ~ 1  > 2  
. (22) -. g m  cnt = 

It can be reduced by reducing capacitor values, at the cost 
of an increase of p given by (21). This trade-off between 
transconductance (related to current) and frequency pull- 
ing (related to stability) is best expressed by introducing 
(21) into (22); t h s  yields 

w c  (C,+C2)’ 
grncrit  = ~ ’ (23) 

QP * 4 C L  

which is a minimum for C, = C,. 
The minimum start-up time constant is achieved for the 

optimum value of transconductance given by (18). It can 
be obtained by introducing (19) into (13). Neglecting R ,  
t h s  yields 

The absolute minimum possible for a given resonator is 
obtained when C, is reduced to C,, << C ,  and C,, which 
results in 

2c12 
OC ‘minmin = - 

Because of the small piezoelectric coupling coefficient of 
quartz material, the value of C,,/C is always at least 
several hundred. Therefore, the start-up time constant 
always exceeds 100 periods of oscillations, which corre- 
sponds to a start-up time that always lies above 1000 
periods. 

C. Amplitude of’ Oscillation 

When the critical transconductance gmcrit is exceeded by 
applying a dc bias current Zo to the active device above a 
critical value ZOcrit, oscillation builds up. Nonlinear effects 
start appearing when the amplitude IV,l of the sinusoidal 
driving voltage of the device (see Fig. 6) becomes so large 

Fig. 9. Amplitude of oscillation for an active device with exponential 
transfer characteristics. 

as to generate harmonics in its output current i,. The 
small-signal transconductance must then be replaced by 
the transconductance for the fundamental defined as 

which is still real, since the fundamental component I , ( , ,  
of i ,  is in phase with V,. Amplitude IV,l stops increasing 
when g,(,) = gmcrit, whch yields the stable value 

(27) 
‘ D ( 1 )  I D ( , )  ‘0 v, = - - - -. - 
grncrit IO grncrit 

where I D ( , ) / I 0  must be calculated by Fourier analysis. 
If the active device is a MOS transistor, it should be 

operated in weak inversion [lo], whch provides a maxi- 
mum value of transconductance for a given bias current I ,  

IO 

HUT 
gm = - 

and exponential transfer characteristics 

where UT stands for kT/q  and n is the slope factor. 
Taking IV,l as the amplitude of the sinusoidal component 
of total gate voltage uG, the combination of (27) to (29) 
yields 

where 

= ~ v l ~ / n u T  (31) 

and IB0 and I,, are zero- and first-order modified Bessel 
functions. Ths relation is plotted in Fig. 9. It is also valid 
for a bipolar transistor ( n  =l). If the MOS transistor is 
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operated in strong inversion, the amplitude for a gven bias 
current can be shown to be smaller. For very large ampli- 
tudes, the transistor only conducts during a very short 
fraction of the period. For the limit case of Dirac current 
pulses, 1Z,(,)1 = 21, and (27) becomes 

This relation gives the maximum possible amplitude which 
can be obtained with bias current Z,, independently of the 
shape of the transfer characteristics. It is also reported in 
Fig. 9. 

The maximum power P, dissipated in the resonator can 
be evaluated by assuming negligible losses and C, << C, 

~~ 

and C,. The current flowing through Z, 
neglected, which gives 

111 < G I ~ l l .  
The combination of (8), (22), (32), and (33) 

The exact value of P,,, can be obtained by 
with the method described in Section 11-D. 

may then be 

(33) 

results in 

(34) 

computing 111 

D. Frequency Stability 

The frequency stability of a quartz crystal oscillator can 
be affected by various causes. 

Instabilities are first due to the resonator itself. Its 
natural mechanical frequency usually changes with tem- 
perature and aging. Although temperature compensation 
with the circuit is in principle possible [19], it will not be 
considered here. The circuit will be required to have a 
negligible additional effect on stability. 

Nonlinearities in the circuit can have a devastating 
effect on stability, through the mechanisms explained in 
Section 11-D. This can be avoided by limiting the ampli- 
tude of oscillation to reduce distortions. If nonlinear ef- 
fects are limited to the transfer characteristics of the active 
device, as discussed in Section 111-C, a small influence on 
the frequency of stable oscillation occurs in the following 
manner. The harmonic components of i ,  create harmonics 
of voltage U ,  across Z,. Harmonics of current flow through 
Z, and slightly distort driving voltage U ,  across Z,. These 
harmonics are then intermodulated in the device nonlin- 
earity, eventually creating an additional fundamental com- 
ponent of i ,  with a different phase, which shifts the 
frequency. If Z, were infinite, U ,  would not be distorted 
and there would be no effect on the frequency. 2, should 
then be as large as possible. 

Linear effects on stability can be due to variations of 
losses, either in the resonator (variation of Q) or in the 
circuit. Referring to Fig. 7, these can be minimized by 
ensuring a small slope of the tangent to the circle at 
equilibrium point A .  This requires low losses, large enough 

(a) (b) 

Fig. 10. CMOS inverter oscillator with controlled current. (a) Circuit 
diagram. (b) &ample of locus of Z , ( g , )  for o / 2 ~  = 2 MHz, C, = C, 
= 2 pF, and C, =1 pF. 

values of C, and C,, and a small value of C,. The 
remaining instabilities will be due to variations of the 
capacitances, according to (21). They can be minimized by 
reducing the nominal frequency pulling p (which costs 
current, according to (23)) and by minimizing the voltage 
and temperature sensitivities of the capacitors. 

E. Possible Practical Implementations 

The various possible implementations of the basic 
three-point oscillator differ in the choice of the grounded 
node. Grounding the gate would require two equal bias 
current sources and is not really feasible. The grounded 
drain configuration has the advantage of requiring only 
one additional pin for the resonator [16]. Its major draw- 
back is an increase of C, by one of the shielded capacitors 
C,, or C,, of the resonator. This reduces the diameter of 
the circle of Fig. 7 and therefore degrades the frequency 
stability. The transistor must be placed in a separate well 
to eliminate bulk modulation, which adds a large voltage- 
dependent capacitor to C, and further deteriorates sta- 
bility. 

The grounded source configuration, also called the Pierce 
oscillator, is therefore preferred for high-precision oscilla- 
tors. It is often implemented by means of a CMOS inverter 
biased in its active region [4], [20]. Because of the inherent 
class A B  operation of the inverter, the current increases 
with the amplitude of oscillation, which creates very strong 
nonlinear effects. T h s  results in a very poor frequency 
stability and a huge waste of power [ll].  This solution, 
which has the advantages of simplicity and rail-to-rail 
amplitude of oscillation, is only applicable in noncritical 
situations. 

A CMOS inverter with controlled bias current could be 
implemented as shown in Fig. 10(a). The advantage would 
be to add the transconductances of the complementary 
devices whch are biased by the same current. This requires 
the source of Mp to be grounded for ac signals with 
capacitors Co. Since CO cannot be infinite, Z, is no longer 
a bilinear function of g,, and the circle is distorted, as 
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shown in the example of Fig. 10(b). The slope of the 
tangent to the locus of Z,(g,,) is increased in the vicinity 
of the imaginary axis, whch significantly degrades the 
stability even with values of C, much larger than C, and 

reference [lo] which delivers a start-up current to the 
oscillator 

(35) 
U T  

R7 
1, start = A - 1 4  K 1 

C,. The preferred solution uses a single transistor biased 
by a current source. 

Using a fixed bias current requires sufficient margin to 
ensure oscillation with the maximum value of R (minimum 
Q )  and for extreme values of process and environment 
corresponding to minimum transconductance. This in- 
creases the power consumption and gives a transconduc- 
tance much higher than its critical value for the opposite 
extreme situation, which may drastically degrade the 
frequency stability through nonlinear effects. On the con- 
trary, amplitude regulation at a low level through a feed- 
back loop that adjusts the bias current virtually eliminates 
all nonlinear effects. It also limits the current just above its 
critical value in normal operation, whle allowing a much 
larger start-up current to reduce the start-up time. 

Except when a large amplitude of oscillation is accepted, 
an interface amplifier is necessary to produce a logic 
signal. This interface should not add too much loss in the 
oscillator. I t  should be optimized with respect to power 
consump tion. 

Iv. EXAMPLE OF PRACTICAL IMPLEMENTATION 

The circuit described here as an example of a high- 
performance oscillator is intended for a high-quality 
miniaturized 2-MHz ZT resonator [22], which provides a 
frequency stability withm 10 ppm from -10 to 50°C. Its 
application in a watch requires a nominal current drain 
below 1 PA, and a minimum supply voltage of 1.1 V. 
Frequency adjustment is carried out digitally in the 
frequency-divider chain [23], so that no trimming is neces- 
sary in the oscillator. The complete diagram of the whole 
oscillator is shown in Fig. 11. 

The heart of the oscillator uses transistor M ,  in a 
grounded source configuration, with the resonator con- 
nected to Q,  and Q,. It is biased by current I ,  delivered 
from an amplitude regulator. Transistor M,, is operated in 
weak inversion as a resistor, instead of lateral diodes in the 
polycrystalline silicon layer which were used in previous 
implementations [ l l ] ,  [24]. This resistor that forces M ,  
into the active mode must have a very high value to avoid 
degrading the frequency stability and increasing the cur- 
rent. Its value is imposed at about 100 MO by the biasing 
transistors M,, and M,, matched to M ,  and M,, [lo]. 
The total values of functional capacitors C, and C, (whch 
include all stray capacitances at nodes Q, and Q,)  are 
selected to ensure a negligible influence of the voltage- 
dependent junction capacitances, without pushing the cur- 
rent too high. 

The amplitude regulator is based on a known circuit 
[lo], [25] in which high-value resistors are again imple- 
mented by M,, and M39 biased by M ,  and M9. In the 
absence of oscillation, the regulator behaves as a current 

where K is the low current gain of loop M ,  - M6 and A is 
the ratio of mirror M,,  M,. When the oscillation grows, I, ,  
decreases until the amplitude IVll at node Q1 reaches a 
value solely determined by K and nuT, if M ,  and M ,  are 
in weak inversion. This amplitude can be adjusted to any 
higher value by the capacitive divider C,, Cll. The choice 
of IV,l results from the optimum trade-off between the 
current consumption of the oscillator itself and that due to 
the output amplifier, including its loading of the oscillator. 

The output amplifier and the following frequency- 
divider stages (not shown) are powered at a reduced volt- 
age V, to lower their current drain. The amplifier is a 
simple CMOS inverter M,,, M I ,  biased in active mode by 
the matched inverter M,,, M,,  and by M,,. It uses con- 
centric transistors to provide the maximum switching cur- 
rent with minimum size devices. I t  is capacitively coupled 
to node Q ,  of the oscillator. The total gate-to-drain capaci- 
tance C, of M,,  and M,,  causes an input conductance G, 
to load the oscillator, which can be evaluated as follows, 
with reference to the ac equivalent circuit of Fig. 12. If 
load capacitance C, >> C,, the gain of the amplifier is 
imaginary with 

I VL I 
IVll 

v, = j -  v,. (36) 

If the gain is large, the complex input current is simply 

I ,  = - joC,V[.. (37) 

Assuming that the output amplitude just reaches V,/2, the 
combination of these equations yields 

This conductance is inversely proportional to the oscillator 
amplitude lVll, which explains the trade-off in the choice 
of this amplitude. 

The reduced voltage V, is supplied by a dc voltage 
regulator whch uses M,, and M,, matched to M , , ,  M,, 
and M,,, M,, as a reference delivering voltage V,, and an 
adaptive biasing amplifier M24 - M35 [26]. The input pair 
M33, M3,  of this amplifier operates in weak inversion. A 
critical amount of positive feedback is obtained by choos- 
ing a current gain of 2 through mirrors M,,, M,, and 
M,,,  M2,.  The output current I ,  is then given by 

where B is the ratio of mirror M,,, M,, .  This relation is 
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Symbol Figure Value 

Formula 

7x1 

Unit 

Amplitude Out@ voltage output 
Oscillator I regulator I regulator amplifier 

- 0  

. VN 

Fig. 11. Complete circuit diagram of the high-performance crystal oscillator. 

Fig. 12. Effect of Miller capacitor C ,  of the output amplifier. 

Fig. 14. Complex plane representation for the experimental oscillator. 

TABLE I 
RESULTS OF CALCULATIONS FOR NOMINAL VALUES (BUT FOR 

EXTREMES OF R AND Q) AT 300 K 

-2 -1 0 

Loading characteristics of the dc voltage regulator Fig. 13. 

plotted in Fig. 13, which shows that this voltage-follower 
amplifier achieves a very small offset lVRl- IV,l for I ,  >> 
BIp. The scaling current Ip  mirrored by M29 is propor- 
tional to current I ,  in M,. A h g h  current efficiency is 
obtained by choosing a large value of mirror ratio B. 

The calculated values for the oscillator based on Section 
111 are given in Table I. They correspond to the complex 
plane representation of Fig. 14, which shows the relevant 
part of the circular locus of Z,( g,) with its intersections A 
and A’ with - Z,( p )  for minimum and maximum values 
of Q. The influence of Q on frequency is obviously negligi- 
ble. The amplitude regulation moves the value of g, from 
its value for I,,,,, (outside the plot) to small-signal value 
g,,. The rest of the reduction to gmcri, is due to nonlinear 
effects as discussed in Section 111-C. 

The influence of nonlinearities on frequency can in 
principle be calculated by computing Z c ~ l ~ ( l I l )  by the 

Circuit 
Functional capacitances 
(including parasitics) 
Total parallel Capacitance 
Frequency pulling 
Critical transconductance 
Critical current 
Amplitude of oscillation 
Bias current of M 1  
Start-up current in M1 

Current in oscil.tregulator 
Total arrent with dividers 

C1 Fig.5 
C2 Fig.5 
C j  Fig.6 

P (21) 
gmcrit (11t15) 

‘Ocrit ( ” )  

I V I I  Fig.6 

Io Fig.9 

I~start (35) 
410/3 

2.8 PF 
2.8 PF 
. 6  PF 
133 10-6 

1.60-2.27 p A f V  

6?-95 nA 
300 mV 
258-396 nA 
960 nA 
344-488 nA 
826-970  nA 

method presented in Section 11-D, using SPICE for time- 
domain simulation and Fourier analysis. However, this 
influence is so small in this almost linear case that the 
computing accuracy is not sufficient to produce any valid 
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TABLE 11 
EXPERIMENTAL RESULTS 

~ ~~ 

Area on chip (complete oscillator) 

Total current (dividers unloaded) 

Minimum supply voltage 

Frequency dependence on voltage 

(1.1 to 5 V )  

Frequency instability in -10 to 60 C: 

Global with resonator 

Contribution of circuit 

. z 1 m m Z  

.9uA at 1 . W  

1.1v 

. OSppm/V 

+loppm 

< .  lppm 

Fig. 15. Photomicrograph of the c h p  that combines the complete oscil- 
lator with a three-stage dynamic frequency divider. 

result (accuracy should be better than 0.1 percent). In fact, 
Zc(l)(lZl) is superimposed on Z c ( g n l ) ,  as shown on the 
same plot for Qmin, and the nonlinear equilibrium point P 
falls almost exactly on linear point A .  Nonlinear effects on 
frequency are thus completely negligible. This would not 
be the case if gnZO were much larger (no amplitude regu- 
lation) with a smaller diameter of the circle (large value of 
parallel capacitance C3) .  

The circuit has been realized in the 3-pm p-well low- 
voltage SACMOS process [27]. The experimental c h p  
shown in Fig. 15 includes three stages of dynamic frequency 
dividers. Its measured characteristics are reported in Table 
11. The measured frequency variation with temperature is 
virtually the same as that of the resonator alone. The 
current consumption falls within the calculated range. 
About half of it is due to the output amplifier and to the 
frequency divider. 

This circuit has been implemented as module of a pro- 
gram for automatic synthesis of analog functional blocks, 
which allows it to be adapted to any set of specification in 
any technology [ 2 8 ] .  

V. CONCLUSION 

Taking advantage of the very high Q of the resonator, 
the splitting of a crystal oscillator into the motional imped- 
ance Z,  of the resonator and the impedance Z ,  of the rest 

of the circuit allows a detailed analysis of all linear and 
nonlinear effects to be carried out. It also provides the 
necessary insight to synthesize optimum solutions with 
respect to frequency stability and power dissipation. In the 
special case of single-transistor circuits (three-point oscilla- 
tor), the linear analysis is simplified by the fact that Z, is a 
bilinear function of the transconductance, whch corre- 
sponds to a circular locus. The practical CMOS implemen- 
tation presented as an example uses a robust amplitude 
regulator to limit the current below 1 pA at 2 MHz. It 
achieves a circuit stability better than IOp7 with voltage 
and temperature variations. The nonlinear analysis was 
only used in this case to help eliminate nonlinear effects; it 
is presently applied with success to less optimum situa- 
tions. 
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