
Design Compiler®

Register Retiming
Reference Manual
Version C-2009.06, June 2009

Design Compiler Register Retiming Reference Manual, version C-2009.06 ii

Copyright Notice and Proprietary Information
Copyright © 2009 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary
information that is the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and
may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may
be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise,
without prior written permission of Synopsys, Inc., or as expressly provided by the license agreement.

Right to Copy Documentation
The license agreement with Synopsys permits licensee to make copies of the documentation for its internal use only.
Each copy shall include all copyrights, trademarks, service marks, and proprietary rights notices, if any. Licensee must
assign sequential numbers to all copies. These copies shall contain the following legend on the cover page:

“This document is duplicated with the permission of Synopsys, Inc., for the exclusive use of
__ and its employees. This is copy number __________.”

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks (®)
Synopsys, AMPS, Astro, Behavior Extracting Synthesis Technology, Cadabra, CATS, Certify, CHIPit, Design Compiler,
DesignWare, Formality, HDL Analyst, HSIM, HSPICE, Identify, iN-Phase, Leda, MAST, ModelTools, NanoSim, OpenVera,
PathMill, Physical Compiler, PrimeTime, SCOPE, Simply Better Results, SiVL, SNUG, SolvNet, Syndicated, Synplicity,
Synplify, Synplify Pro, Synthesis Constraints Optimization Environment, TetraMAX, the Synplicity logo, UMRBus, VCS,
Vera, and YIELDirector are registered trademarks of Synopsys, Inc.

Trademarks (™)
AFGen, Apollo, Astro-Rail, Astro-Xtalk, Aurora, AvanWaves, BEST, Columbia, Columbia-CE, Confirma, Cosmos,
CosmosLE, CosmosScope, CRITIC, CustomSim, DC Expert, DC Professional, DC Ultra, Design Analyzer, Design Vision,
DesignerHDL, DesignPower, DFTMAX, Direct Silicon Access, Discovery, Eclypse, Encore, EPIC, Galaxy, Galaxy Custom
Designer, HANEX, HAPS, HapsTrak, HDL Compiler, Hercules, Hierarchical Optimization Technology, High-performance

ASIC Prototyping System, HSIM
plus

, i-Virtual Stepper, IICE, in-Sync, iN-Tandem, Jupiter, Jupiter-DP, JupiterXT,
JupiterXT-ASIC, Liberty, Libra-Passport, Library Compiler, Magellan, Mars, Mars-Rail, Mars-Xtalk, Milkyway,
ModelSource, Module Compiler, MultiPoint, Physical Analyst, Planet, Planet-PL, Polaris, Power Compiler, Raphael,
Saturn, Scirocco, Scirocco-i, Star-RCXT, Star-SimXT, System Compiler, System Designer, Taurus, TotalRecall,
TSUPREM-4, VCS Express, VCSi, VHDL Compiler, VirSim, and VMC are trademarks of Synopsys, Inc.

Service Marks (SM)
MAP-in, SVP Café, and TAP-in are service marks of Synopsys, Inc.

SystemC is a trademark of the Open SystemC Initiative and is used under license.
ARM and AMBA are registered trademarks of ARM Limited.
Saber is a registered trademark of SabreMark Limited Partnership and is used under license.
All other product or company names may be trademarks of their respective owners.

Contents

What’s New in This Release . viii

About This Manual . viii

Customer Support. xi

1. Introduction to Register Retiming

Understanding Register Retiming. 1-2

A Register Retiming Example. 1-2

Design Flow Using Register Retiming . 1-4

Register Retiming Commands . 1-4

The optimize_registers Command. 1-5

The pipeline_design Command . 1-5

The balance_registers Command . 1-6

2. Register Retiming Concepts

Basic Definitions and Concepts . 2-2

Flip-Flops and Registers . 2-2

SEQGENs . 2-3

Control Nets. 2-4

Register Classes . 2-5

Forward Retiming . 2-6

Backward Retiming . 2-7

Asynchronous Control Inputs of Registers . 2-8
iii

Design Compiler Register Retiming Reference Manual C-2009.06Design Compiler Register Retiming Reference Manual Version C-2009.06
Synchronous Control Inputs of Registers . 2-8

Translating Synchronous Input Pins to Equivalent SEQGEN Pins 2-9

Transforming Synchronous Input Pins Through
Combinational Decomposition . 2-9

Multiclass Retiming. 2-12

Pipeline and Nonpipeline Circuits . 2-13

Reset State Justification . 2-14

3. Writing HDL Code for Retiming

Allowed Circuits . 3-2

Writing HDL Code for Pipelines . 3-2

Calculating the Number of Pipeline Stages . 3-3

Determining the Initial Location of the Registers . 3-4

Using the DesignWare Pipeline Register Component . 3-4

Writing HDL Code for Nonpipelines . 3-5

4. Performing Analysis and Elaboration for Retiming

Inferring Registers for Pipelines and Nonpipelines . 4-2

5. Setting Attributes and Constraints for Retiming

Setting Timing Constraints . 5-2

Setting Timing Constraints for Pipelines . 5-2

Setting Timing Constraints for Nonpipelines . 5-3

Setting the Compile Command Option on SEQGEN Cells. 5-3

Netlist Modifications to Avoid . 5-3

Test-Related Modifications. 5-3

Physical Design-Related Modifications . 5-4

6. Retiming the Mapped Netlist

Preventing Retiming . 6-2

Doing Timing Analysis During Retiming . 6-3

Setting Timing Constraints . 6-4

Selecting Transformation Options . 6-5
Contents iv

Design Compiler Register Retiming Reference Manual Version C-2009.06
Recommended Transformation Options for Pipelines . 6-6

Recommended Transformation Options for Nonpipelines 6-6

Retiming Designs With Multiple Clocks . 6-7

Settings That Influence Register Retiming Runtime . 6-8

Netlist Changes Performed by Register Retiming. 6-9

7. Analyzing Retiming Results

Standard Output of the optimize_registers Command . 7-2

Checking for Design Features That Limit the Quality of Results. 7-2

Output Before Registers Are Moved . 7-2

Output After Registers Are Moved . 7-4

Displaying the Sequence of Cells That Limits Delay Optimization 7-5

Appendix A. Additional Information on the Register Retiming Commands

Setting Retiming Attributes on Individual Cells . A-2

Other Commands Related to Retiming. A-2

Examples of dc_shell Register Retiming Scripts . A-4

Script for a Nonpipelined Design, Using the optimize_registers Command . . . A-4

Script for a Pipelined Design, Using the optimize_registers Command. A-4

Script for Pipelining a Combinational Design,
Using the pipeline_design Command. A-5

Appendix B. Command Syntax and Variable Syntax

The balance_registers Command. B-2

The optimize_registers Command . B-3

The pipeline_design Command . B-9

The set_balance_registers Command . B-12

The set_optimize_registers Command . B-12

The set_register_type Command . B-16

The set_transform_for_retiming Command . B-16

Index
Chapter 1: Contents
1-vContents v

Design Compiler Register Retiming Reference Manual C-2009.06Design Compiler Register Retiming Reference Manual Version C-2009.06
Contents vi

Preface

This preface includes the following sections:

• What’s New in This Release

• About This Manual

• Customer Support
vii

Design Compiler Register Retiming Reference Manual C-2009.06Design Compiler Register Retiming Reference Manual Version C-2009.06
What’s New in This Release

Information about new features, enhancements, and changes, along with known problems
and limitations and resolved Synopsys Technical Action Requests (STARs), is available in
the Design Compiler Release Notes in SolvNet.

To see the Design Compiler Release Notes,

1. Go to the release notes page on SolvNet located at the following address:

https://solvnet.synopsys.com/ReleaseNotes

If prompted, enter your user name and password. If you do not have a Synopsys user
name and password, follow the instructions to register with SolvNet.

2. Select Design Compiler, then select a release in the list that appears at the bottom.

About This Manual

The Design Compiler Register Retiming Reference Manual describes the concepts of
register retiming and shows you how to use this capability to retime circuits. Register
retiming performs a sequential optimization that moves registers to optimize timing and
area. It optimizes gate-level netlists to meet timing while trying to use as few registers as
possible.

This manual supports version B-2008.09 of the Synopsys synthesis tools, whether they are
running under the UNIX operating system or the Linux operating system. The main text of
this manual describes UNIX operation.

Audience

This manual is intended for logic designers and engineers who use the Synopsys synthesis
tools to design ASICs, ICs, and FPGAs. Knowledge of high level techniques, a hardware
description language, such as VHDL or Verilog is required. A working knowledge of UNIX is
assumed.

Related Publications

For additional information about Design Compiler, see Documentation on the Web, which is
available through SolvNet at the following address:

https://solvnet.synopsys.com/DocsOnWeb
Preface
What’s New in This Release viii

Design Compiler Register Retiming Reference Manual Version C-2009.06
You might also want to refer to the documentation for the following related Synopsys
products:

• Automated Chip Synthesis

• Design Budgeting

• Design Vision

• DesignWare components

• DFT Compiler

• PrimeTime

• Power Compiler

• HDL Compiler

Also see the following related documents:

• Using Tcl With Synopsys Tools

• Synthesis Master Index
Chapter 2: Preface
About This Manual 2-ix
Preface
About This Manual ix

Design Compiler Register Retiming Reference Manual C-2009.06Design Compiler Register Retiming Reference Manual Version C-2009.06
Conventions

The following conventions are used in Synopsys documentation.

Table 1

Convention Description

Courier Indicates command syntax.

Courier italic Indicates a user-defined value in Synopsys syntax,
such as object_name. (A user-defined value that is
not Synopsys syntax, such as a user-defined value
in a Verilog or VHDL statement, is indicated by
regular text font italic.)

Courier bold Indicates user input—text you type verbatim—in
Synopsys syntax and examples. (User input that is
not Synopsys syntax, such as a user name or
password you enter in a GUI, is indicated by regular
text font bold.)

[] Denotes optional parameters, such as
pin1 [pin2 ... pinN]

| Indicates a choice among alternatives, such as
low | medium | high
(This example indicates that you can enter one of
three possible values for an option:
low, medium, or high.)

_ Connects terms that are read as a single term by
the system, such as
set_annotated_delay

Control-c Indicates a keyboard combination, such as holding
down the Control key and pressing c.

\ Indicates a continuation of a command line.

/ Indicates levels of directory structure.

Edit > Copy Indicates a path to a menu command, such as
opening the Edit menu and choosing Copy.
Preface
About This Manual x

Design Compiler Register Retiming Reference Manual Version C-2009.06
Customer Support

Customer support is available through SolvNet online customer support and through
contacting the Synopsys Technical Support Center.

Accessing SolvNet

SolvNet includes an electronic knowledge base of technical articles and answers to
frequently asked questions about Synopsys tools. SolvNet also gives you access to a wide
range of Synopsys online services including software downloads, documentation on the
Web, and “Enter a Call to the Support Center.”

To access SolvNet, go to the SolvNet Web page at the following address:

https://solvnet.synopsys.com

If prompted, enter your user name and password. If you do not have a Synopsys user name
and password, follow the instructions to register with SolvNet.

If you need help using SolvNet, click HELP in the top-right menu bar or in the footer.

Contacting the Synopsys Technical Support Center

If you have problems, questions, or suggestions, you can contact the Synopsys Technical
Support Center in the following ways:

• Open a call to your local support center from the Web by going to
https://solvnet.synopsys.com (Synopsys user name and password required), and then
clicking “Enter a Call to the Support Center.”

• Send an e-mail message to your local support center.

• E-mail support_center@synopsys.com from within North America.

• Find other local support center e-mail addresses at
http://www.synopsys.com/Support/GlobalSupportCenters/Pages

• Telephone your local support center.

• Call (800) 245-8005 from within the continental United States.

• Call (650) 584-4200 from Canada.

• Find other local support center telephone numbers at
http://www.synopsys.com/Support/GlobalSupportCenters/Pages
Chapter 2: Preface
Customer Support 2-xi
Preface
Customer Support xi

Design Compiler Register Retiming Reference Manual C-2009.06Design Compiler Register Retiming Reference Manual Version C-2009.06
Preface
Customer Support xii

1
Introduction to Register Retiming 1

In this document, the term “register” refers to both edge-triggered registers and
level-sensitive latches unless stated otherwise. Both types of sequential cells can now be
retimed. However, the pipeline_design and balance_register commands can be
applied to only edge-triggered registers in the current release.

This chapter contains the following sections:

• Understanding Register Retiming

• A Register Retiming Example

• Design Flow Using Register Retiming

• Register Retiming Commands
1-1

Design Compiler Register Retiming Reference Manual C-2009.06Design Compiler Register Retiming Reference Manual Version C-2009.06
Understanding Register Retiming

Register retiming is a sequential optimization technique that moves registers through the
combinational logic gates of a design to optimize timing and area. Other optimization
techniques, such as those implemented in the compile_ultra command or compile
command, optimize the combinational logic by performing Boolean optimization and
mapping to cells in the technology library. These techniques leave unchanged the location
and number of any registers present in the design. Register retiming adds an opportunity for
improving circuit timing.

When you describe circuits at the RT-level prior to logic synthesis, it is usually very difficult
and time-consuming, if not impossible, to find the optimal register locations and code them
into the HDL description. With register retiming, the locations of the flip-flops in a sequential
design can be automatically adjusted to equalize as nearly as possible the delays of the
stages. This capability is particularly useful when some stages of a design exceed the timing
goal while other stages fall short. If no path exceeds the timing goal, register retiming can be
used to reduce the number of flip-flops, where possible.

Purely combinational designs can also be retimed by introducing pipelining into the design.
In this case, you first specify the desired number of pipeline stages and the preferred flip-flop
from the target library. The appropriate number of registers are added at the outputs of the
design. Then the registers are moved through the combinational logic to retime the design
for optimal clock period and area.

Register retiming leaves the behavior of the circuit at the primary inputs and primary outputs
unchanged (unless you choose special options that do not preserve the reset state of the
design or add pipeline stages). Therefore you do not need to change any simulation test
benches developed for the original RTL design.

Retiming does, however, change the location, contents, and names of registers in the
design. A verification strategy that uses internal register inputs and outputs as reference
points will no longer work. Retiming can also change the function of hierarchical cells inside
a design and add clock, clear, set, and enable pins to the interfaces of the hierarchical cells.

A Register Retiming Example

During retiming, registers are moved forward or backward through the combinational logic of
a design. Figure 1-1 and Figure 1-2 illustrate an example of delay reduction through
backward retiming of a register.
Chapter 1: Introduction to Register Retiming
Understanding Register Retiming 1-2

Design Compiler Register Retiming Reference Manual Version C-2009.06
Figure 1-1 Circuit Before Retiming

Figure 1-2 Circuit After Retiming

In this example, before register retiming there are four levels of combinational logic and only
one register at the endpoint of the critical path. After retiming, the register, which has been
replaced by four registers, has been moved back through two levels of logic, and the critical
path now consists of two stages. The critical path delay in each stage is less than the critical
path delay in the initial single stage design. As in this example, delay reduction through
retiming often leads to an increase in the number of registers in the design, but usually this
increase is small.

D Q

Before retiming:

critical path through four gates

D Q

D Q

D Q

After retiming:

critical path through two gates

D Q
Chapter 1: Introduction to Register Retiming
A Register Retiming Example 1-3
Chapter 1: Introduction to Register Retiming
A Register Retiming Example 1-3

Design Compiler Register Retiming Reference Manual C-2009.06Design Compiler Register Retiming Reference Manual Version C-2009.06
Design Flow Using Register Retiming

You optimize registers after you have compiled the design; that is, register retiming is
performed on mapped netlists. Figure 1-3 shows the position at which register retiming is
used in a typical design flow.

Figure 1-3 Design Flow With Register Retiming

As part of the register retiming functionality, an incremental compile is usually carried out
automatically after retiming. Note, however, that there are three register retiming commands
(see “Register Retiming Commands” on page 1-4), two of which include the incremental
compile capability and one that does not. You can prevent the automatic incremental
compile in the two commands by specifying the appropriate option.

Register Retiming Commands

Register retiming consists of three major retiming commands and a number of support
commands for setting retiming-related attributes. The principal commands are

• optimize_registers

• pipeline_design

• balance_registers

The optimize_registers command offers the most convenient way to perform all retiming
tasks for sequential designs. In general, this command optimizes both synchronous and
asynchronous registers with respect to timing and area (minimum number of registers). An
incremental compile is automatically done after the retiming, unless you specify otherwise.
The command supports the retiming of level-sensitive latches and also includes analysis
options.

The pipeline_design command is used to pipeline purely combinational designs. After
you specify the number of stages, the command inserts the registers into the design and
then optimizes the registers with respect to timing and area by accessing the functions of the
optimize_registers command.

HDL code
analyze /
elaborate

compile retime registers

scan chain
insertion,
physical
optimization,
and so on
Chapter 1: Introduction to Register Retiming
Design Flow Using Register Retiming 1-4

Design Compiler Register Retiming Reference Manual Version C-2009.06
The balance_registers command moves the existing registers of a sequential design to
minimize the clock period. This command does not minimize the number of registers or
retime asynchronous registers. Also, no incremental compile is carried out, and no analysis
options are available.

Note:
Typically you apply these commands globally to a design. However, you can assign
retiming attributes to individual cells. For more information, see “Setting Retiming
Attributes on Individual Cells” on page A-2.

The optimize_registers Command
The optimize_registers command performs the following principal actions on a
sequential design:

1. Minimizes the clock period

The registers are moved to ensure the smallest clock period for the retimed circuit.

2. Minimizes the register count

The minimum clock period determined in the first step is compared to a user-defined
clock period target. If the minimum clock period is smaller than or equal to the target clock
period, the target clock period is used and a register distribution is computed that
accommodates the target clock period with the smallest number of registers possible. If
the target clock period is smaller than the minimum clock period, the number of registers
is minimized for the minimum clock period.

3. Executes an incremental optimization of the combinational logic

Because of the new distribution of registers, the loads for cells and the location of the
critical paths change. An incremental logic optimization step identical to the compile
-incremental command optimizes the combinational logic to reflect these changes.

The pipeline_design Command
The pipeline_design command performs the following principal actions on a purely
combinational design:

1. Inserts registers at the outputs of a combinational design

The registers are first placed at the outputs of a design and then moved back through the
combinational logic to create a staged, pipelined design.

2. Optimizes register retiming
Chapter 1: Introduction to Register Retiming
Register Retiming Commands 1-5
Chapter 1: Introduction to Register Retiming
Register Retiming Commands 1-5

Design Compiler Register Retiming Reference Manual C-2009.06Design Compiler Register Retiming Reference Manual Version C-2009.06
The same principal actions as those of the optimize_registers command are
performed.

The balance_registers Command
The balance_registers command performs the following principal actions on a sequential
design:

1. Minimizes the clock period

The registers are moved to ensure the smallest clock period for the retimed circuit and to
balance the pipeline stage delays.

2. Performs a sequential mapping after moving the registers
Chapter 1: Introduction to Register Retiming
Register Retiming Commands 1-6

2
Register Retiming Concepts 2

In this document, the term “register” refers to both edge-triggered registers and
level-sensitive latches unless stated otherwise. Both types of sequential cells can now be
retimed. However, the pipeline_design and balance_register commands can be
applied to only edge-triggered registers in the current release.

This chapter discusses fundamental register retiming concepts. A good understanding of
these concepts will help you make the best use of the Design Compiler register retiming
capabilities.

This chapter contains the following sections:

• Basic Definitions and Concepts

• Forward Retiming

• Backward Retiming

• Asynchronous Control Inputs of Registers

• Synchronous Control Inputs of Registers

• Multiclass Retiming

• Pipeline and Nonpipeline Circuits

• Reset State Justification
2-1

Design Compiler Register Retiming Reference Manual C-2009.06Design Compiler Register Retiming Reference Manual Version C-2009.06
Basic Definitions and Concepts

To understand how register retiming works, you need first to understand certain basic
definitions and concepts. In particular, you must understand what sequential generic
elements (SEQGENs), control nets, and register classes are. These are important because
during retiming, mapped registers are temporarily replaced by SEQGENs according to their
classifications as determined by their control nets.

Note:
In this manual, the terms design, cell, leaf cell, hierarchical cell, combinational cell, and
sequential cell are used in the same sense as in other Synopsys manuals.

Flip-Flops and Registers
Flip-flop, register, synchronous register, asynchronous register, and latch are familiar terms;
however, with respect to register retiming as discussed in this manual, these terms have the
following specialized usage:

• A flip-flop is an element of a technology library (target library) that has, unlike the
combinational cells, a state and a distinguished clock input. Flip-flops can be edge
triggered or level sensitive.

• A register is technically an instance of an edge-triggered flip-flop in the design. But for the
purposes of this manual, since both edge-triggered flip-flops and level-sensitive latches
can be retimed, the term register will refer to both types of sequential devices unless
stated otherwise.

• A synchronous register is a register that can change its state only at the active edge of
the clock signal.

• An asynchronous register is a register that, in addition to changing its state on a clock
edge, can also change its state according to the control levels of asynchronous signals,
which are independent of its clock signal.

• A latch is an instance of a level-sensitive flip-flop in the design. Register retiming
supports designs with latches and retimes them instead of the registers if the -latch
option is used.

The essential point here to understand is that flip-flops are technology library elements,
while registers and latches are their design instances.
Chapter 2: Register Retiming Concepts
Basic Definitions and Concepts 2-2

Design Compiler Register Retiming Reference Manual Version C-2009.06
SEQGENs
A SEQGEN is a generic sequential element that is used by Synopsys tools to represent
registers and latches in a design. SEQGENs are created during elaboration and are usually
mapped to flip-flops during compilation. Because mapped flip-flops are temporarily replaced
by SEQGENs during register retiming, it is important that you understand the basic
functionality of these elements.

Figure 2-1 shows the pins that are used when the SEQGEN cell describes a synchronous
or asynchronous register. (Additional pins occur when the SEQGEN is operated as a latch.)

Figure 2-1 Relevant Pins of the SEQGEN Cell

In register retiming, the operation of SEQGEN cells is as follows:

• The synchronous toggle pin (ST) has an inactive value of 0. Therefore, the SEQGEN cell
will be retimed only if the ST pin is connected to a constant net with value 0.

• The clock (CLK) pin is always connected to the clock net of the design.

• The synchronous state changes occur at the rising edge of the clock signal.

• If set to 1, the synchronous load (SL) pin enables the next-state D input to become the
next state. The SL pin should be tied to a constant 1 net when unused.

• The synchronous clear (SC) pin sets the state to 0 if active. This pin preempts the SL
input and, to be inactive, must be tied to a constant 0 net.

• The synchronous set (SS) pin sets the state to 1 if active. This pin preempts the SL input
and, to be inactive, must be tied to a constant 0 net.

• If both SC and SS are active, the constant set as an attribute on the particular SEQGEN
instance becomes the new state.

AC
AS
D
SC
SS
SL
ST
 CLK

Q

QN

AC
AS
D
SC
SS
SL
ST
CLK

: asynch_clear
: asynch_set
: next_state
: synch_clear
: synch_set
: synch_load
: synch_toggle
: clocked_on

EN
AD

EN : enable (clock if
operated as latch)

AD : asynch_data (data if
operated as latch)
Chapter 2: Register Retiming Concepts
Basic Definitions and Concepts 2-3
Chapter 2: Register Retiming Concepts
Basic Definitions and Concepts 2-3

Design Compiler Register Retiming Reference Manual C-2009.06Design Compiler Register Retiming Reference Manual Version C-2009.06
• The asynchronous inputs AC and AS override all settings of the synchronous inputs;
these pins change the state and output of a SEQGEN instance, independent of the clock
input.

• The AC input sets the Q output to 0 if active; the AS input sets the Q output to 1 if active.
Both inputs must be 0 to be inactive.

• The EN input replaces the CLK clock pin if the SEQGEN cell operates as a level-sensitive
latch.

• The AD pin input replaces the D pin input if the SEQGEN cell operates as a
level-sensitive latch.

Control Nets
A control net is a net connected to one of the SL, SC, SS, AC, or AS pins of a SEQGEN
instance. The equivalence of control nets plays a crucial role in the movement of registers
during retiming.

By definition, a set of control nets are equivalent if they meet either of the following
conditions:

• All the nets can be reached from a common source, and between this common source
and the SEQGEN instances, all the nets have an odd number of inverters or all the nets
have an even number of inverters. (A net with no inverters is regarded as having an even
number of inverters.)

• The control nets are constant and have the same constant values (0 or 1).

Thus, two nonconstant nets with a common source, one that includes an odd number of
inverters and the other an even number of inverters, are not equivalent nets. Note that any
number of buffers is allowed between the common source and the SEQGEN pin of an
equivalent net.

Figure 2-2 shows an example of equivalent and nonequivalent nets. Nets n1 and n3, which
have even number of inverters (0 and 2), are equivalent, while net n2, which has an odd
number of inverters (1), is not equivalent to either of them.
Chapter 2: Register Retiming Concepts
Basic Definitions and Concepts 2-4

Design Compiler Register Retiming Reference Manual Version C-2009.06
Figure 2-2 Equivalent Control Net Example

Register Classes
The SEQGEN instances are grouped into register classes according to their connections to
control nets. Grouping is necessary because only registers belonging to the same group can
be moved together across a combinational gate without violating the circuit logic.

Two SEQGEN instances belong to the same register class if the following conditions are
fulfilled:

• Their SL pins are connected to equivalent control nets.

• Their SC and SS pins are connected to equivalent control nets. That is, a given control
net can be connected to the corresponding SC or SS pins in the SEQGEN instances or
to the SC pin of one SEQGEN instance and to the SS pin of the other.

• Their AC and AS pins are connected to equivalent control nets. The same conditions hold
for the asynchronous pins as for the synchronous pins.

Figure 2-3 shows an example in which registers A and B belong to the same class.

AC
AS
D
SC
SS
SL
ST
 CLK

Q

QN

AC
AS
D
SC
SS
SL
ST
 CLK

Q

QN

AC
AS
D
SC
SS
SL
ST
 CLK

Q

QN
n1 n2

n3

R1 R2 R3
Chapter 2: Register Retiming Concepts
Basic Definitions and Concepts 2-5
Chapter 2: Register Retiming Concepts
Basic Definitions and Concepts 2-5

Design Compiler Register Retiming Reference Manual C-2009.06Design Compiler Register Retiming Reference Manual Version C-2009.06
Figure 2-3 Swapping of Control Net for Registers in the Same Class

In Figure 2-2 on page 2-5, if all pins not connected to nets n1, n2, and n3 are connected to
their inactive constants, registers R1 and R3 belong to the same class, but register R2
belongs to a different class.

When registers belonging to the same class are moved, it is possible to swap their control
nets as needed to accomplish the retiming. This swapping capability is true for both
synchronous and asynchronous register pins.

Forward Retiming

To retime forward across a combinational cell, each net in the immediate fanin of the cell
must be driven by the Q pin of a register, and all these registers must belong to the same
class. After the forward retiming move, the registers in the fanout of the cell belong to the
same class as those in the fanin before the move.

Figure 2-4 shows an example of retiming forward across the combinational cell g1.

Note:
In this and the following sections, the explicit control nets for registers are not drawn
unless there is a special reason to do so. Register classes are denoted by class names
(for example, C1 and C2).

AC
AS
D
SC
SS
SL
ST
 CLK

Q

QN

AC
AS
D
SC
SS
SL
ST
 CLK

Q

QN

n1

n2A B
Chapter 2: Register Retiming Concepts
Forward Retiming 2-6

Design Compiler Register Retiming Reference Manual Version C-2009.06
Figure 2-4 Forward Retiming Example

Before the retiming move is executed, all the registers in the immediate fanin of the g1 cell
belong to class C1. Notice that after the move the three registers have been replaced by two
registers belonging to the same class C1. It is not possible to retime forward the next slice
of registers in the fanin of the g1 cell because not all these registers belong to the same
class. Also, after the first retiming, it is not possible to retime forward the class C1 register
that drives one of the g2 cell inputs because only one input pin of the cell has a register
driving it.

If during retiming the maximum number of forward retiming moves across a cell has been
performed, the cell has reached its forward retiming boundary limit.

Backward Retiming

Rules similar to the forward retiming rules govern backward retiming across a combinational
cell is possible. All nets in the fanout of a combinational cell must fan out to the D pin of the
registers, and all these registers must belong to the same class. After the backward retiming
move, the registers in the fanin of the cell belong to the same class as those in the fanout
before the move.

Figure 2-5 shows how the combinational cell g1 can be retimed backward after the cell g2
has been retimed backward. Note that two backward timing moves have been carried out.

C1

C1

C1C1

C2

C2

C1

C1
C1

C2

C2

g1

g2

g3

C3

C3 C3

C3

g1

g2

g3

Before retiming After retiming
Chapter 2: Register Retiming Concepts
Backward Retiming 2-7
Chapter 2: Register Retiming Concepts
Backward Retiming 2-7

Design Compiler Register Retiming Reference Manual C-2009.06Design Compiler Register Retiming Reference Manual Version C-2009.06
Figure 2-5 Backward Retiming Example

If during retiming the maximum possible number of backward retiming moves across a cell
has been performed, the cell has reached its backward retiming boundary limit.

Asynchronous Control Inputs of Registers

Before the registers of a circuit can be classified for retiming, all of them have to be
represented by SEQGEN cells. For registers with typical asynchronous set or clear pins, this
is a relatively straightforward and unambiguous procedure. In Figure 2-6, a register with an
active-low asynchronous clear input is transformed into an equivalent SEQGEN instance.
(All inputs of the SEQGEN not shown in the figure are connected to a constant net with their
inactive value.)

Figure 2-6 Cell Transformation With Asynchronous Clear Input

Synchronous Control Inputs of Registers

A register with typical synchronous control inputs can be represented with an equivalent
SEQGEN instance in two ways:

C1

C1

C1C1

C2

C2

g1

g2

g3

C3

C3

C1

C1

C1C1

C2

C2

g1

g2

g3

C3
C3

C3

C3

Before retiming After retiming g2 and then g1

D Q

CD
AC

D

 CLK

Q

SEQGEN

CLK
Chapter 2: Register Retiming Concepts
Asynchronous Control Inputs of Registers 2-8

Design Compiler Register Retiming Reference Manual Version C-2009.06
• The synchronous control pins are directly translated to equivalent SEQGEN pins.

• The synchronous control nets are transformed through combinational decomposition of
the register.

Translating Synchronous Input Pins to Equivalent SEQGEN Pins
As with asynchronous pins, this method carries out a straightforward translation of the
register pins to equivalent SEQGEN pins of the SEQGEN cell. Figure 2-7 shows an example
of a register with an active-low synchronous reset signal and an active-high synchronous
enable signal. That is, the RST pin has been translated to an active-low SC pin, and the EN
pin has been translated to an active-high SL pin.

Figure 2-7 Cell Transformation With Synchronous Clear and Enable

Note:
This method of transforming the original registers of a design leads to multiclass retiming
because the resulting SEQGEN instances will probably not all belong to the same class.

Transforming Synchronous Input Pins Through Combinational
Decomposition
Combinational decomposition transforms synchronous input pins by

• Using combinational cells to implement the synchronous functionality, and

• Connecting the output of the combinational cells to the D pin of a SEQGEN cell

Note:
Combinational decomposition can be applied to the synchronous pins of asynchronous
registers.

 Figure 2-8 shows the combinational decomposition of the register example of Figure 2-7.

D
SC

SL

 CLK

Q

D

EN

RST

Q
SEQGEN

 CLK
Chapter 2: Register Retiming Concepts
Synchronous Control Inputs of Registers 2-9
Chapter 2: Register Retiming Concepts
Synchronous Control Inputs of Registers 2-9

Design Compiler Register Retiming Reference Manual C-2009.06Design Compiler Register Retiming Reference Manual Version C-2009.06
Figure 2-8 Transformation by Decomposition Example

An advantage of combinational decomposition is that all purely synchronous registers
belong to the same class after they are transformed to SEQGENs. Consequently, there are
no limits to the number of forward or backward moves possible at multiple input or output
gates due to registers belonging to different classes. Not using decomposition (multiclass
retiming) can lead to register class conflicts, which ultimately limit the number of forward or
backward retiming moves possible.

Figure 2-9 shows how registers with different enable control nets can be moved forward after
decomposition. (To simplify the figure, the clock net is not drawn.) These registers could not
be moved after multiclass retiming. Notice, however, that two D flip-flops remain with the
fanouts belonging to synchronous combinational logic and cannot be forward retimed; the
third flip-flop is free to move by forward retiming.

D

EN

RST

Q

D

 CLK

Q

SEQGEN

EN

RST

D

 CLK

0
1

Chapter 2: Register Retiming Concepts
Synchronous Control Inputs of Registers 2-10

Design Compiler Register Retiming Reference Manual Version C-2009.06
Figure 2-9 Forward Retiming of Decomposed Cells With Load Enable

Combinational decomposition can also limit the movability of registers. Figure 2-10 shows
how decomposition applied to a sequence of two synchronous clear registers leaves the left
register without the possibility of a forward move because the newly introduced AND gate
does not have a register at its second port. (The right register is forward retimed through an
inverter.) Alternatively, multiclass retiming allows both registers to move forward: The right
register can be moved across two inverters and the left register across one buffer.

D Q
LE

D Q
LE

D Q

D Q

D Q

D Q

D Q

Decompose Retime

le1

le2
Chapter 2: Register Retiming Concepts
Synchronous Control Inputs of Registers 2-11
Chapter 2: Register Retiming Concepts
Synchronous Control Inputs of Registers 2-11

Design Compiler Register Retiming Reference Manual C-2009.06Design Compiler Register Retiming Reference Manual Version C-2009.06
Figure 2-10 Reduced Mobility After Decomposition

Multiclass Retiming

Multiclass retiming can offer significant area savings compared with retiming after
decomposition. A multiclass example is shown in Figure 2-11. The situation is similar to the
example in Figure 2-9 except that the two load enable registers belong to the same class
and therefore can be moved across the AND gate, leading to a single register. Using
decomposition leads to a higher number of registers and additional cells after retiming.

D Q
R

D Q
R

D QD Q

D QD Q

D Q
R

D Q
S

Retime (multiclass) Retime

Decompose

No forward move possible
Chapter 2: Register Retiming Concepts
Multiclass Retiming 2-12

Design Compiler Register Retiming Reference Manual Version C-2009.06
Figure 2-11 Reduced Area Through Multiclass Retiming

Pipeline and Nonpipeline Circuits

In deciding which retiming method (multiclass or decomposition) to apply to a design, it is
useful to classify circuits or parts of circuits by their topology, as well as by the types,
connections, and locations of registers within the design. Circuit topologies can be classified
as pipeline or nonpipeline, as defined later in this section.

For pipeline circuits, multiclass retiming is recommended. For nonpipeline circuits,
decomposition or a combination of decomposition and multiclass retiming works best.

Defining Pipeline Circuits

You can understand the concept of a pipelined circuit, including register indexes, slices, and
stages, in the following way:

Circuit registers can be reached by different paths from the primary data inputs. (A primary
data input is an input that does not drive any control pin of a register.) During the transversal
of a path, cells are passed from their input pins to their output pins.

D Q
LE

D Q
LE

D Q

D Q

D Q

D Q
LE

Decompose
and retime

Multiclass
retime
Chapter 2: Register Retiming Concepts
Pipeline and Nonpipeline Circuits 2-13
Chapter 2: Register Retiming Concepts
Pipeline and Nonpipeline Circuits 2-13

Design Compiler Register Retiming Reference Manual C-2009.06Design Compiler Register Retiming Reference Manual Version C-2009.06
For a particular register, the number of other registers encountered along each path from the
primary inputs to the given register can be counted. If this number is independent of the path
chosen (that is, the same for every path to the register), each register can be assigned this
number as a register index of the circuit. All registers in such a circuit that have the same
index form a slice.

If all the registers in each slice belong to the same class and if there is the same number of
registers on any path from a primary input to a primary output, the circuit is classified as a
pipeline. All other circuits not satisfying this definition are defined as nonpipelines.

The largest index occurring for the registers in a pipeline plus one is the number of pipeline
stages. For example, a pipeline with just one slice of registers has two stages.

Note:
This definition of pipeline does not require that registers be located at the primary outputs
or primary inputs.

Figure 2-12 and Figure 2-13 show examples for pipeline circuits and nonpipeline circuits.

Figure 2-12 Nonpipeline Circuit Examples

Figure 2-13 Pipeline and Nonpipeline Circuit Examples

Reset State Justification

When you move the registers in a circuit, it is not sufficient to follow only the rules for retiming
of a single gate. In addition, it is usually necessary to preserve an equivalent reset state.

Not a pipeline Not a pipeline

C1

C1

C1

C2

C1

C1

C2

C2

Not a pipeline Pipeline
Chapter 2: Register Retiming Concepts
Reset State Justification 2-14

Design Compiler Register Retiming Reference Manual Version C-2009.06
The circuit state is defined by the values of all the registers in the circuit at a given point in
time. A circuit and its retimed version have an equivalent state if they produce the same
sequences of values at corresponding primary outputs for identical sequences of values at
the corresponding primary inputs.

When power is switched on in a circuit, its state is unknown. Depending on the type of
circuit, you might need to have an external reset or set input to reset the registers to a known
value. This step ensures that the circuit has reproducible behavior after the input becomes
active for the first time.

If a circuit is designed this way, by default register retiming ensures that the reset state of the
retimed circuit is equivalent to that of the original circuit, and that the behavior is identical
when a finite number of clock cycles has passed after the activation of the reset. If all
registers are properly reset, output sequences should match immediately.

However, a typical case where the first few output values might not match is that of a
pipelined data path where the registers do not have any set or clear connections. The
maximum duration of the mismatch is the number of stages of the pipeline multiplied by the
clock period.

The computation of the equivalent reset state is called justification. Justification for registers
that have been moved forward across combinational gates is always possible and does not
require significant amounts of CPU time. Justification for registers moved backward across
combinational gates can be more complicated. Figure 2-14 shows an example of the
difficulty with backward justification.

Figure 2-14 Impossible Backward Justification Example

The numbers inside the register symbols are the given reset values. When the registers are
moved to the post-retiming positions, it is not possible to find an equivalent state for the
circuit. Register retiming handles this case by finding a position for the registers where an
equivalent state is found that is as close to the optimal position as possible.

Before retiming After retiming

0

0

1

?

?

?

?

Chapter 2: Register Retiming Concepts
Reset State Justification 2-15
Chapter 2: Register Retiming Concepts
Reset State Justification 2-15

Design Compiler Register Retiming Reference Manual C-2009.06Design Compiler Register Retiming Reference Manual Version C-2009.06
Backward justification also can cost more CPU time than forward justification. If the circuit to
be retimed has a reset but does not need to have an equivalent reset state after retiming,
there is a method available that does not perform justification. This method can be applied
to pipelined data paths, but it is not suitable for controllers.

You can use the -justification_effort option of the optimize_registers or
set_optimize_registers command to specify the justification effort level during backward
justification. The option can take one of the following values: low, high, or medium. For more
information, see Appendix B, “Command Syntax and Variable Syntax.”
Chapter 2: Register Retiming Concepts
Reset State Justification 2-16

3
Writing HDL Code for Retiming 3

In this document, the term “register” refers to both edge-triggered registers and
level-sensitive latches unless stated otherwise. Both types of sequential cells can now be
retimed. However, the pipeline_design and balance_register commands can be
applied to only edge-triggered registers in the current release.

Successful register retiming very much depends on a compatible HDL description of the
original design. In particular, certain design limitations must be observed, including ones
specific to pipelined designs.

This chapter contains the following sections:

• Allowed Circuits

• Writing HDL Code for Pipelines

• Writing HDL Code for Nonpipelines
3-1

Design Compiler Register Retiming Reference Manual C-2009.06Design Compiler Register Retiming Reference Manual Version C-2009.06
Allowed Circuits

For the retiming optimize_registers command to work successfully, the circuit HDL
description must conform to certain rules. Therefore you should check the original HDL code
and constraints against the following rules:

• If the -latch option is used, registers are treated as fixed and only level-sensitive latches
are retimed. (By default only edge-triggered registers are moved.)

• The clock distribution network can contain only buffer, inverter, and clock-gating cells.
Note that clock-gating cells should be unate at their clock input pin, contain only one
output, and have no more than one clock signal at their inputs. (Avoid using nonunate
cells, such as XORs and XNORs, in clock networks.)

• The design can contain only master-slave or standard edge-triggered registers.

• Combinational feedback loops are not allowed.

The balance_registers and pipeline_designs commands have additional restrictions.
See Appendix B, “Command Syntax and Variable Syntax,” for more information on these
commands.

Timing exceptions such as false paths, multicycle paths, and maximum delay constraints are
supported only in a limited way by retiming. Sequential cells named explicitly as startpoints
or endpoints of these exceptions will not be moved. The quality of results for designs with
timing exceptions might be negatively affected. Therefore, it is better to avoid having the
timing exceptions of a design retimed.

When retiming latches with the optimize_registers command, latches must be driven by
a symmetric, two-phase clock system. This system can be created by using two clock ports,
one for each phase, or by using the clock signal directly for one phase and inverting this
signal for the other phase.

Writing HDL Code for Pipelines

This section describes how to write HDL code in the following sections:

• Calculating the Number of Pipeline Stages

• Determining the Initial Location of the Registers

• Using DesignWare Pipeline Register Component
Chapter 3: Writing HDL Code for Retiming
Allowed Circuits 3-2

Design Compiler Register Retiming Reference Manual Version C-2009.06
Calculating the Number of Pipeline Stages
There are three cases to consider when you are setting the number of pipeline stages for
your design. In two of the cases, you use formulas provided in this section to compute an
approximate number. Note that the actual number of stages needed is often one less or one
greater than this estimated number. (If the formulas yield a fractional result, you should
round the number up to the next integer value.) In the third case, the number of stages is
given, so no calculation is required.

The formulas that follow use these parameters with the following definitions:

• N is the number of pipeline stages in the design. It is one more than the number of
registers on any path from the primary inputs to the primary outputs.

• Tc is the clock period of the design after retiming.

• Ts is the setup time of a typical flip-flop used for pipelining. Select a flip-flop with the same
capabilities (load enable, reset) as needed for the final pipelined design.

• Tq is the clock-to-Q delay of the typical flip-flop. (Use the same selection criteria as for the
setup time.)

• Td is the maximum delay from inputs to outputs of the compiled combinational design
before pipelining, including input and output delays. To obtain a value for this number,
perform a separate compile before adding the pipeline stages.

The target clock period cannot be less than the sum of setup time and clock-to-Q delay for
the flip-flop, that is, Ts + Tq < Tc. Furthermore, Td > Tc is assumed. Otherwise, no pipeline
registers are needed.

In the first case, the objective is to minimize the number of pipeline stages, N, when the clock
period, Tc, is given. The combinational design should be compiled with tight timing
constraints to achieve the smallest possible delay. If the outputs are not registered, the
number of stages needed can be estimated as follows:

On the other hand, if the outputs are registered, the following estimate can be used:

N
Td Ts– Tq–

Tc Ts– Tq–
-------------------=

N
Td Tc Ts– 2Tq–+

Tc Ts– Tq–
-----------------------------=
Chapter 3: Writing HDL Code for Retiming
Writing HDL Code for Pipelines 3-3
Chapter 3: Writing HDL Code for Retiming
Writing HDL Code for Pipelines 3-3

Design Compiler Register Retiming Reference Manual C-2009.06Design Compiler Register Retiming Reference Manual Version C-2009.06
In the second case, the objective is to minimize the overall area of the design when the clock
period Tc is given. In this case, the combinational design should be compiled with an area
constraint of 0 and no timing constraints. The resulting number for Td can then be used in
the same formulas as in the first case to obtain an estimate of the number of stages needed.

In the third case, the objective is to minimize the clock period when the number of stages, N,
is given. Therefore nothing has to be calculated in this case. The design should be compiled
with tight timing constraints, as in the first case. The retiming should then be performed with
a very small target clock period that cannot be achieved (for example, Ts). Based on the
negative slack values you obtain, you can find the minimum clock period possible for the
design.

Determining the Initial Location of the Registers
The initial location you specify for the registers influences the movability of the registers and
the CPU time needed for retiming.

If none of the registers in the pipeline is connected to any synchronous or asynchronous set
or clear signal or if you plan to use the don’t-care state attribute for all registers, it is usually
convenient to place the registers at the primary outputs. This is easy to code, and no CPU
time-consuming backward justification is necessary. Even if you choose decomposition
during retiming, only the forward movability through AND gates is limited, and this is
irrelevant because the registers will not be moved forward during retiming.

In all other cases (that is, when there is a set or clear functionality for some of the registers
and the equivalent reset state is important), you should register the primary inputs of the
design. However, it is important that you not register the clock, set, clear, or load enable
inputs, while registering all other inputs. Otherwise, the forward movability of the registers is
limited. Placing the registers at the inputs ensures short justification times.

Using the DesignWare Pipeline Register Component
To infer pipeline registers in RTL is to use the DesignWare pipeline register component. The
DesignWare library provides the DW_pl_reg pipeline register component, which makes it
easy to pipeline the arbitrary logic of arithmetic structures using register retiming.

When you instantiate the DW_pl_reg component in your RTL, you specify the parameters to
control the width, enable/reset, and the number of stages of the pipeline register
component.

For more information on how to use the DesignWare pipeline register component, see the
DW_pl_reg DesignWare Building Block IP Datasheet.
Chapter 3: Writing HDL Code for Retiming
Writing HDL Code for Pipelines 3-4

Design Compiler Register Retiming Reference Manual Version C-2009.06
Writing HDL Code for Nonpipelines

No special restrictions or recommendations can be made for nonpipelined designs because
the register locations relative to primary inputs and outputs are difficult to change in a way
that still provides the required functionality. Often a complex hierarchical design contains
parts that can be considered as pipelined, although the rest of the design is not. You can
apply the previous guidelines to the pipelined parts of a nonpipelined design.
Chapter 3: Writing HDL Code for Retiming
Writing HDL Code for Nonpipelines 3-5
Chapter 3: Writing HDL Code for Retiming
Writing HDL Code for Nonpipelines 3-5

Design Compiler Register Retiming Reference Manual C-2009.06Design Compiler Register Retiming Reference Manual Version C-2009.06
Chapter 3: Writing HDL Code for Retiming
Writing HDL Code for Nonpipelines 3-6

4
Performing Analysis and Elaboration
for Retiming 4

In this document, the term “register” refers to both edge-triggered registers and
level-sensitive latches unless stated otherwise. Both types of sequential cells can now be
retimed. However, the pipeline_design and balance_register commands can be
applied to only edge-triggered registers in the current release.

The chapter includes the following section:

• Inferring Registers for Pipelines and Nonpipelines

Note:
If any of the variables discussed in this chapter are to be set to nondefault values, they
should be set before the analyze, elaborate, read, read_verilog, or read_vhdl
commands for the HDL code are issued.
4-1

Design Compiler Register Retiming Reference Manual C-2009.06Design Compiler Register Retiming Reference Manual Version C-2009.06
Inferring Registers for Pipelines and Nonpipelines

For pipelines, the only HDL variable that should be set differently from its default value is
hdlin_ff_always_sync_set_reset. This variable controls whether the synchronous clear
(SC) and synchronous set (SS) pins of the SEQGEN cells in the elaborated netlist are used
instead of combinational cells to create set and clear. Set the variable as follows:

dc_shell> set hdlin_ff_always_sync_set_reset true

To enable multiclass retiming in pipelines, move the registers with their synchronous clear
and set. Because all registers in one slice are in the same class, no moves are limited.

For nonpipelines, keep the HDL variable set at its default value as follows:

dc_shell> set hdlin_ff_always_sync_set_reset false

For nonpipelines, setting this variable to true can create registers belonging to too many
different classes, which in turn limits the movability of registers and consequently the delay
reduction.
Chapter 4: Performing Analysis and Elaboration for Retiming
Inferring Registers for Pipelines and Nonpipelines 4-2

5
Setting Attributes and Constraints for Retiming5

In this document, the term “register” refers to both edge-triggered registers and
level-sensitive latches unless stated otherwise. Both types of sequential cells can now be
retimed. However, the pipeline_design and balance_register commands can be
applied to only edge-triggered registers in the current release.

This chapter shows you how to set constraints before issuing the compile_ultra command
or compile command. It also discusses which of the steps often associated with compilation
in the design flow should be deferred until after register retiming.

This chapter includes the following sections:

• Setting Timing Constraints

• Setting the Compile Command Option on SEQGEN Cells

• Netlist Modifications to Avoid
5-1

Design Compiler Register Retiming Reference Manual C-2009.06Design Compiler Register Retiming Reference Manual Version C-2009.06
Setting Timing Constraints

For any type of design, you should set the input and output delays to realistic values by using
the commands set_input_delay and set_output_delay. (For information on how to use
these commands, see the appropriate man page.) How you set timing constraints depends
on whether the design is pipelined or nonpipelined.

Note:
Be careful to choose the correct clock and clock edge when you set specific input and
output delays.

Setting Timing Constraints for Pipelines
How you set timing constraints for pipelines depends on whether the registers are located at
the primary inputs and outputs of the design or are already distributed throughout the
design.

If the registers are still located at the primary inputs and outputs, the delay of the
combinational circuit is usually larger than the clock period with registers at inputs and
outputs. To avoid unnecessarily long processing time, set the clock period to a value greater
than the target clock period for the retimed design. If the combinational delay, Td, has
already been determined as part of the computation of the number of stages, N, for a given
final clock period, Tc, the combinational delay can be used as the target clock period for the
initial compilation.

Otherwise, if the number of stages, N, the final clock period, Tc, the setup time, Ts, the
clock-to-Q delay, Tq, and the output delay, To, or the input delay, Ti, are known, a target clock
period, T, for the initial compilation can be computed as follows:

If the registers are located at the primary outputs,

T = N * (Tc - Tq - Ts) + Tq + 2Ts - To

If the registers are located at the primary inputs,

T = N * (Tc - Tq - Ts) + 2Tq + Ts - Ti

If the registers are already approximately in their final positions after you have retimed the
clock period, the first compile clock period should be the same as the target clock period
after retiming.
Chapter 5: Setting Attributes and Constraints for Retiming
Setting Timing Constraints 5-2

Design Compiler Register Retiming Reference Manual Version C-2009.06
Setting Timing Constraints for Nonpipelines
For nonpipelines, the clock period for the first compile should be the same as the target clock
period after retiming.

Setting the Compile Command Option on SEQGEN Cells

During compile, Design Compiler performs a step known as sequential mapping. This step
maps the generic SEQGEN cells of the elaborated netlist to cells from the technology library.
However, depending on the flip-flops available in the technology library and the
optimizations that can be performed by sequential mapping, information about control nets
can be lost in the process.

For example, if no synchronous set flip-flop is available, a SEQGEN cell whose synchronous
set pin is connected to a nonconstant net might be mapped to a simple D flip-flop with an
OR gate feeding its D pin. Another possibility is that the synchronous clear and the next
state input might be swapped by sequential mapping, greatly increasing the number of
classes and reducing the number of possible forward moves.

If you want to perform multiclass retiming, you need to restrict the sequential mapping to
map the SEQGEN to the technology library cell that exactly matches the functionality of the
SEQGEN cell. You can achieve this by using the -exact_map option of the compile_ultra
command.

Netlist Modifications to Avoid

Certain design modifications and optimizations are often performed together with the first
compilation. Some of them can still be performed before register retiming, but others must
be deferred until the retiming has been performed. You should note carefully the following
guidelines.

Test-Related Modifications
Test-ready compile by using the -scan option can be performed before register retiming.
Test flip-flops and feedback loops are again inserted after retiming. You must perform
retiming before scan-chain insertion; the presence of scan chains makes moving the
registers impossible.

In some libraries, there are no scan equivalents for load-enable registers. Therefore,
test-ready compile before retiming introduces feedback loops around the registers that
retiming cannot remove. In this case, use the following commands:
Chapter 5: Setting Attributes and Constraints for Retiming
Setting the Compile Command Option on SEQGEN Cells 5-3
Chapter 5: Setting Attributes and Constraints for Retiming
Setting the Compile Command Option on SEQGEN Cells 5-3

Design Compiler Register Retiming Reference Manual C-2009.06Design Compiler Register Retiming Reference Manual Version C-2009.06
....
#no scan option initially

compile_ultra
optimize_registers -no_compile
compile -incr -scan
....

Physical Design-Related Modifications
Avoid creating a clock tree before retiming. Register retiming can retime designs with clock
trees consisting of inverters, buffers, and any clock-gating cell that is unate at its clock input
pin. However, the tree is no longer balanced after retiming.

Defer other physical design-related optimization options until after retiming because register
locations and the delays change significantly during retiming.

Using multibit flip-flops to realize registers is possible. However, if no dont_touch attribute
is put on these flip-flops before retiming, they are split up into single-bit registers and moved
individually.
Chapter 5: Setting Attributes and Constraints for Retiming
Netlist Modifications to Avoid 5-4

6
Retiming the Mapped Netlist 6

In this document, the term “register” refers to both edge-triggered registers and
level-sensitive latches unless stated otherwise. Both types of sequential cells can now be
retimed. However, the pipeline_design and balance_register commands can be
applied to only edge-triggered registers in the current release.

After the preparation and initial compilation, you can retime your design by using the
optimize_registers or pipeline_design command. However, before using either of
these retiming commands, you must set or reset certain constraints and attributes. This
chapter discusses the steps you take to use the optimize_registers command.

This chapter contains the following sections:

• Preventing Retiming

• Doing Timing Analysis During Retiming

• Setting Timing Constraints

• Selecting Transformation Options

• Retiming Designs With Multiple Clocks

• Settings That Influence Register Retiming Runtime

• Netlist Changes Performed by Register Retiming
6-1

Design Compiler Register Retiming Reference Manual C-2009.06Design Compiler Register Retiming Reference Manual Version C-2009.06
Preventing Retiming

Sometimes it is best to avoid retiming some of the registers in a design. For example,
registers driving primary outputs that have to stay in place because of a particular design
style should not be retimed. In this case, you should set the dont_retime attribute on these
output registers.

Another example of not moving certain registers occurs when you want to keep the
controller registers of a design in place while allowing the data-path registers to move.
Keeping the controller registers in place lets you easily identify these registers and relate
them to the original HDL code. In this case, you can set the dont_retime attribute on the
registers in the controller or on the controller cell itself (if it is a hierarchical cell).

The dont_retime attribute prevents a register from moving during retiming but allows
sequential mapping to map the register to a different flip-flop.

Use the set_dont_retime command to control the designs or cells that can be retimed.
When set to true (the default), the command sets the dont_retime attribute on specific cells
and designs in the current design so that sequential cells are not moved during retiming
optimizations. For example,

set_dont_retime [get_cells {z1_reg z2_reg}] true

Setting the dont_retime attribute on a hierarchical cell implies that the attribute is set on all
sequential cells below it that do not have the dont_retime attribute set to false. A leaf-level
cell that has the dont_retime attribute is not retimed if it is a sequential cell. When the
dont_retime attribute is set on a design, all sequential cells that do not have the
dont_retime attribute set to false are not retimed. For example, consider the following
sequence of commands:

set_dont_retime [get_cells U1]
set_dont_retime [get_designs mid] true
set_dont_retime [get_cells U_mid/U3] false
set_dont_retime [get_cells U_mid/U_bot]false
optimize_registers

Figure 6-1 shows that cells U1 and design mid are not retimed.
Chapter 6: Retiming the Mapped Netlist
Preventing Retiming 6-2

Design Compiler Register Retiming Reference Manual Version C-2009.06
Figure 6-1

Note:
The set_dont_retime command overrides the set_transform_for_retiming
command. That is, if the value of the dont_retime attribute is true, setting the
transform_for_retiming attribute to decompose or multiclass will not make a register
retimable. A movable register cannot be moved across a register with the dont_retime
or the dont_touch attribute.

Doing Timing Analysis During Retiming

When the registers are moved during retiming, their final location is unknown. Therefore the
influence of the registers on the delay of the final circuit cannot be taken into account for
each individual register. Instead, the combinational delay between registers is optimized. To
set a realistic goal for the combinational delay, you must correct the target clock period by
subtracting all the delay components related to the registers.

Because each register can have a different delay, you must find a representative delay value
for all registers. You do this by selecting one flip-flop, called the preferred flip-flop, from the
technology library. You select this flip-flop from the flip-flops instantiated in the design and
similar ones available in the library. The selection criteria you should use, in the order of
importance, are as follows:

1. Smallest setup time. The setup time is available directly from the library information.

2. Smallest average clock-to-Q delay. The average clock-to-Q delay is obtained by
computing the average load of all nets in the design. This load is then driven by the
flip-flop, and the resulting clock-to-Q delay is computed.

3. Smallest average load of all input pins. The average load of all input pins of the flip-flop is
computed from the library information.

If there is a tie between several flip-flops after these criteria are applied, further selection
criteria (not described here) are used. For more information on how to determine the
selection of the preferred flip-flop, see Appendix A, “Additional Information on the Register
Retiming Commands.”

D Q D Q

bot

mid

U_mid

U_bot

U1 U3

Retimed

Not retimed
Chapter 6: Retiming the Mapped Netlist
Doing Timing Analysis During Retiming 6-3
Chapter 6: Retiming the Mapped Netlist
Doing Timing Analysis During Retiming 6-3

Design Compiler Register Retiming Reference Manual C-2009.06Design Compiler Register Retiming Reference Manual Version C-2009.06
After you select the preferred flip-flop, a clock correction is computed. The clock correction
is determined from the following three factors:

• Setup time

• Median clock-to-Q delay of the design

An instance of the preferred flip-flop is used to drive each net of the design. For each of
these configurations, the clock-to-Q delay is computed. The median of all these values is
taken as the clock-to-Q delay for the clock correction. Using the median value instead of
the arithmetic average helps reduce the influence of a few extreme values on the
outcome.

• Clock uncertainty

This quantity is set by the user when determining the clock for the design.

The sum of these three values is the clock correction. The clock correction is subtracted
from the target clock period, and the resulting number is used as the target value for the
combinational delay during the register moving phases. If the number is less than 0, a
warning is issued, and 0 is used instead.

When retiming latches with different clock ports for the two clock phases, the difference in
the clock source latency of the two clock ports is also added to the clock correction.

You can prevent the clock correction, if necessary. For information on how to circumvent the
computation of the clock correction, see Appendix A, “Additional Information on the Register
Retiming Commands.”

During incremental compilation phase of the optimize_registers command, exact timing,
including register delays, is used for the design.

Setting Timing Constraints

Setting accurate input and output delays for all primary inputs and primary outputs is very
important. If the correct values have already been set for the compilation of the design, no
change is necessary. Otherwise, you should set the values before using the
optimize_registers command.

Input and output delays are set relative to clocks created for the design. If a port has an input
or output delay set relative to a particular clock, the cells in the fanin or fanout of this port will
be part of the network for this particular clock, if it is retimed. See “Retiming Designs With
Multiple Clocks” on page 6-7.

For Design Compiler register retiming, the tool assumes that the input delay at each primary
input is at least as large as the median clock-to-Q delay used for the clock correction. If the
input delay is less, a warning is issued and the median clock-to-Q delay is used.
Chapter 6: Retiming the Mapped Netlist
Setting Timing Constraints 6-4

Design Compiler Register Retiming Reference Manual Version C-2009.06
Similarly, for register retiming, the tool assumes that the output delay at each primary output
is at least as large as the setup time used for the clock correction. If the output delay is less,
a warning is issued and the setup time of the preferred flip-flop is used.

The clock period has to be set for the external clock port, using the create_clock
command. The value of the clock period might be different from the one used during initial
compilation, especially if the design is a pipeline whose registers are still concentrated at the
outputs. The clock period value is used by the register moving phases and the incremental
compilation phase of the optimize_registers command. For more information on how to
set different constraints for the two phases, see Appendix A, “Additional Information on the
Register Retiming Commands.”

Selecting Transformation Options

The optimize_registers command lets you specify how the mapped registers are
transformed to SEQGEN cells. There is a transformation option for synchronous registers
and another for asynchronous registers. (Recall that a synchronous register does not have
any asynchronous input pins and an asynchronous register has at least one asynchronous
input pin.)

The transformation option for synchronous registers is

-sync_transform multiclass | decompose| dont_retime

The multiclass value specifies that the synchronous clear, set, and enable functionality is
moved with the synchronous sequential cells (if they are moved during retiming). The
decompose value specifies that any synchronous sequential cell is decomposed
(transformed into an instance of a D flip-flop or latch and additional combinational logic to
create the necessary synchronous functionality). The dont_retime value specifies that
these registers are not to be moved. The default value for this option is multiclass.

The transformation option for asynchronous registers is

-async_transform multiclass | decompose | dont_retime

The multiclass value specifies that the asynchronous clear and set as well as any
synchronous clear, set, and enable functionality are moved with the asynchronous
sequential cells (if they are moved during retiming). The decompose value specifies that any
asynchronous sequential cell is decomposed. The dont_retime value specifies that these
registers are not to be moved. The default value for this option is multiclass.

Registers that are already SEQGEN instances are not affected by these settings. Their set,
clear, and enable connections are controlled by HDL Compiler options, as described earlier
in Chapter 3, “Writing HDL Code for Retiming.”
Chapter 6: Retiming the Mapped Netlist
Selecting Transformation Options 6-5
Chapter 6: Retiming the Mapped Netlist
Selecting Transformation Options 6-5

Design Compiler Register Retiming Reference Manual C-2009.06Design Compiler Register Retiming Reference Manual Version C-2009.06
Recommended Transformation Options for Pipelines
For pipelined designs, the recommended transformation options for the
optimize_registers command are as follows:

optimize_registers -sync_trans multiclass -async_trans multiclass

Because there are no class conflicts preventing registers in pipelines from being moved
across combinational cells, using multiclass retiming for all types of registers is best. These
settings give the best timing results with the smallest possible register count and area.

Note:
As described in Appendix A, individual attribute settings on cells or their parent cells
override these option settings.

Recommended Transformation Options for Nonpipelines
For nonpipelined designs, the recommended transformation options for the
optimize_registers command are as follows:

optimize_registers -sync_trans decompose -async_trans decompose

In most cases, decomposing all synchronous functionality ensures that no unnecessary
class conflicts occur to limit the movability of the registers. The solution with the smallest
possible delay or target delay should be found. An exception to this result can occur when
the forward movability of registers is limited because of additional AND gates or OR gates
as shown in Figure 6-2 on page 6-7. In this situation, setting the individual retiming attributes
might help.

Note:
As described in Appendix A, individual attribute settings on cells or their parent cells
override these option settings.
Chapter 6: Retiming the Mapped Netlist
Selecting Transformation Options 6-6

Design Compiler Register Retiming Reference Manual Version C-2009.06
Figure 6-2 Reduced Mobility After Decomposition

Retiming Designs With Multiple Clocks

If the registers of the design are triggered by multiple different clocks or by both the rising
and the falling edge of the same clocks, the retiming can be performed on only one clock at
a time. The optimize_registers command offers you two ways to achieve this retiming,
namely, by using the -clock option or not using this option.

With the -clock option you can specify that the registers for a single clock are retimed
during one invocation of the optimize_registers command. By default only the registers
triggered by the rising edge of the clock are retimed. If you want to retime the registers
triggered by the falling edge of the clock, you have to use the -edge option with the value
fall.

If the -clock option is not used, registers for all clocks are retimed during the first (register
moving) phase of retiming. The retiming is performed one clock at a time. Clocks with a
larger clock period are retimed before clocks with a smaller clock period. If two clocks have
the same clock period, the clock with the larger number of registers is retimed first. For each
single clock, the registers triggered by the rising edge are retimed before those triggered by
the falling edge. Note that this default order might not yield the best possible results. Also,
retiming all clocks in the first phase means that there is no incremental optimization of the
combinational logic when different clocks are retimed. Therefore it is recommended that you
determine the best order for retiming clocks yourself and apply that order by using multiple
runs of optimize_registers with the -clock option.

D Q
R

D Q
R

D QD Q

D QD Q

D Q
R

D Q
S

Retime (multiclass) Retime

Decompose

No forward move possible
Chapter 6: Retiming the Mapped Netlist
Retiming Designs With Multiple Clocks 6-7
Chapter 6: Retiming the Mapped Netlist
Retiming Designs With Multiple Clocks 6-7

Design Compiler Register Retiming Reference Manual C-2009.06Design Compiler Register Retiming Reference Manual Version C-2009.06
When retiming latches, a two-phase clock system is being retimed. This means that the
rising and falling edges of a clock or two or more different clocks have to be retimed together.
If you specify a clock using the -clock option while using the -latch option, the
optimize_registers command retimes all the clocks and edges that need to be retimed
with this clock. Note that even though the -clock option take only one argument, the
command finds the other clock of the two-phase clock system.

Settings That Influence Register Retiming Runtime

In larger designs, using the optimize_registers command can result in increased CPU
runtime. The following option settings can reduce the runtime while exploring the potential
delay improvement resulting from register retiming. Note, however, that for the final
optimization, you might not want to use some or any of the options.

• -min_period_only

If this option is set, register count minimization is not performed. The registers are only
moved to the locations that result in the smallest possible combinational delay between
registers.

• -justification_effort low | medium | high

Specifies the effort level to be used during backward justification of registers. Specifying
a low effort ensures that justification terminates quickly; however, the quality of results
(QoR) can be poor. A medium effort might provide better QoR but result in a larger
runtime. A high effort could give provide the best QoR without considering runtime. The
default is medium.

• -no_compile

This argument omits the default incremental logic synthesis step normally performed
after computation of the optimal sequential cell locations. If you specify this option, no
design rule fixing is performed. Generic sequential cells might remain in the design.

When you use this option, you can choose a logic compilation script adapted to your
design instead of relying on the default used internally by optimize_registers. It is
important to perform logic synthesis after sequential cell retiming to obtain the best
possible timing results.

If the runtime of the optimize_registers command is too long, you can use all these
settings at one time and then successively switch them off again to see when the runtime
increases greatly.
Chapter 6: Retiming the Mapped Netlist
Settings That Influence Register Retiming Runtime 6-8

Design Compiler Register Retiming Reference Manual Version C-2009.06
Netlist Changes Performed by Register Retiming

Because retiming moves registers in the design, it is no longer possible to associate each
register in the retimed design with exactly one register in the design before retiming.
Therefore new names have to be given to the registers. Registers that have the dont_touch
or dont_retime attribute set on them are not retimed and not renamed.

Also, registers can be moved into hierarchical cells where there were no registers before
retiming or into hierarchical cells where registers are not connected to the same set, clear,
or enable signals. In these situations, additional pins have to be added to the hierarchical
cells to have the necessary clock, set, clear, and enable nets. Adding these pins to a
hierarchical cell changes its name and the name of its design.

Finally, if retiming cannot improve the delay or reduce the number of registers of the circuit,
no register is moved or renamed and no incremental compilation is performed. The design
is unchanged.
Chapter 6: Retiming the Mapped Netlist
Netlist Changes Performed by Register Retiming 6-9
Chapter 6: Retiming the Mapped Netlist
Netlist Changes Performed by Register Retiming 6-9

Design Compiler Register Retiming Reference Manual C-2009.06Design Compiler Register Retiming Reference Manual Version C-2009.06
Chapter 6: Retiming the Mapped Netlist
Netlist Changes Performed by Register Retiming 6-10

7
Analyzing Retiming Results 7

In this document, the term “register” refers to both edge-triggered registers and
level-sensitive latches unless stated otherwise. Both types of sequential cells can now be
retimed. However, the pipeline_design and balance_register commands can be
applied to only edge-triggered registers in the current release.

While it is running, the optimize_registers command displays information to dc_shell that
can help you understand and often improve results. Besides the standard information output
to dc_shell, you can set various optimize_registers options to provide additional
information.

This chapter contains the following sections:

• Standard Output of the optimize_registers Command

• Checking for Design Features That Limit the Quality of Results

• Displaying the Sequence of Cells That Limits Delay Optimization
7-1

Design Compiler Register Retiming Reference Manual C-2009.06Design Compiler Register Retiming Reference Manual Version C-2009.06
Standard Output of the optimize_registers Command

By default, the optimize_registers command provides the following informational
messages (not including warning or error messages):

• Name and setup time of the preferred flip-flop.

• Worst, best, and median clock-to-Q delay obtained, using the preferred flip-flop.

• A table with histogram information for the clock-to-Q delays found from computing the
median clock-to-Q delay.

• Two values for the combinational delay between registers after registers are moved.
These values, obtained from the retiming delay calculator, are referred to as the lower
bound estimate and the critical path length. They are computed using slightly different
methods.

• The value used for the clock correction and its components (setup time, clock-to-Q delay,
and clock uncertainty).

Checking for Design Features That Limit the Quality of Results

Sometimes it is useful to obtain more statistical information about the design being retimed.
You can do this by using the -check_design argument for the optimize_registers
command. The additional information can often help you find potential problems in the
design.

The -verbose argument can be used only with the -check_design argument to display the
cells by name. Using the -verbose argument might produce many lines of output for large
designs, but it might help identify the exact cause of a problem.

To properly analyze retiming results, you need to examine the output before and after the
registers are moved. Sections “Output Before Registers Are Moved” on page 7-2 and
“Output After Registers Are Moved” on page 7-4 describe types of output.

Output Before Registers Are Moved
You should analyze the following output before the registers are moved by retiming:

• All base clocks in the design that trigger registers

For each base clock, all gated clocks that are derived from this base clock are printed.
And for each gated clock, its polarity relative to its base clock is provided. A positive
polarity means that a rising edge of the base clock results in a rising edge of the gated
Chapter 7: Analyzing Retiming Results
Standard Output of the optimize_registers Command 7-2

Design Compiler Register Retiming Reference Manual Version C-2009.06
clock. A negative polarity means that a rising edge of the base clock results in a falling
edge of the gated clock. If the -verbose option is also used, then for each gated clock,
all the registers derived from the gated clock and their polarities relative to the gated clock
are printed.

• The five timing arcs with the largest delay in all the combinational cells

If a single cell has a large delay, this can severely limit the smallest delay the retiming can
achieve. Therefore cells with a delay larger than a particular percentage (for example, 10
percent) of the target clock period should be avoided. Two reasons such cells might exist
are as follows:

First, a dont_touch attribute was put on a combinational hierarchical cell. Such a
hierarchical cell appears as a single cell during the register moving phases. Consider
removing the dont_touch attribute if the cell’s delay is too large.

Second, the presence a combinational cell from the library that is either very complex or
has low drive strength and therefore a large delay. Consider compiling the design again
after putting a dont_use attribute on this particular type of library cell.

• Delay distribution for all timing arcs in the design

The histogram information can indicate whether there are a few cells with a particularly
large delay compared to others.

• Detailed description of the selection process for the preferred flip-flop

• Total number of combinational leaf cells in the design

The larger this number, the more complex the retiming becomes, and as a result CPU
times might increase.

• Number of hierarchy cells with the dont_touch attribute

• Number of black box cells

Black box cells are cells without timing information. No registers will be moved across
them. If you do not want to have black box cells, check the linking of your design and the
completeness of the library information.

• Total number of movable sequential cells

• Number of movable synchronous sequential cells with the decompose attribute

• Number of movable asynchronous sequential cells with the decompose attribute

• Number of movable synchronous sequential cells with the multiclass attribute

• Number of movable asynchronous sequential cells with the multiclass attribute

• Number of movable sequential cells with an asynchronous clear pin

• Number of movable sequential cells with an asynchronous set pin
Chapter 7: Analyzing Retiming Results
Checking for Design Features That Limit the Quality of Results 7-3
Chapter 7: Analyzing Retiming Results
Checking for Design Features That Limit the Quality of Results 7-3

Design Compiler Register Retiming Reference Manual C-2009.06Design Compiler Register Retiming Reference Manual Version C-2009.06
• Total number of immovable sequential cells

If this number is large relative to the number of movable cells or if you suspect that some
registers are not movable because of attributes or constraints you are unaware of, check
the categories next in this list to find and possibly change the movability of some cells.

• Number of sequential cells that are not movable due to having the dont_touch attribute
set

If the dont_touch attribute is not necessary, remove it.

• Number of sequential cells that are not movable due to having the dont_touch attribute
set on one of their parent cells

If the dont_touch attribute is not necessary, remove it.

• Number of sequential cells that are not movable due to point-to-point exceptions

Check whether your design has to be implemented using multicycle or false paths.
Change the design or timing constraints, if possible, to eliminate these immovable
sequential cells.

• Number of sequential cells that are not movable due to insufficient technology library
information

The information given on the flip-flop in the technology library is not sufficient to transform
the instances of these flip-flops to SEQGEN cells. Try to compile the design before
retiming, after you put a dont_use attribute on these flip-flop library cells.

• Number of asynchronous sequential cells that have the dont_retime attribute set

If the attribute is not necessary, remove it.

• Number of synchronous sequential cells that have the dont_retime attribute set

If the attribute is not necessary, remove it.

Output After Registers Are Moved
You should analyze the following output after the registers are moved by retiming:

• Total number of movable sequential cells

• Number of movable sequential cells with an asynchronous clear pin

• Number of movable sequential cells with an asynchronous set pin
Chapter 7: Analyzing Retiming Results
Checking for Design Features That Limit the Quality of Results 7-4

Design Compiler Register Retiming Reference Manual Version C-2009.06
Displaying the Sequence of Cells That Limits Delay Optimization

In addition to using the -check_design argument of the optimize_registers command,
you can also use the -print_critical_loop option to find the part of the design that is
limiting delay improvement. This option is available for both the optimize_registers and
the pipeline_design commands.

With this option, the command displays a sequence of combinational cells, ports, and
nonmovable registers in the design. The location of the registers between these cells before
and after retiming is also displayed. For each cell, the rise and fall delays and the total delays
from the last register or port to the output of the cell are displayed. The names of the cells
and output pins are those used in the netlist before retiming. Therefore you can recognize
them by looking at a schematic for this netlist in a graphical display tool such as Design
Vision.

The only exceptions are the cells inserted into the netlist when registers are decomposed.
You cannot find these cells in the netlist before retiming, but some of them can show up in
the critical loop display. Sometimes the same sequence of cells is displayed several times.
This has no particular significance.

The three different classifications of critical loops that can be printed before the sequence of
cells are as follows:

• Loop without primary Input/Outputs

In this case, the loop does not contain a primary output, a primary input, or a pin of a
register that cannot move. Such a register is regarded as fixed (for example, because it
has the dont_touch attribute set). The total delay of the cells in the loop and the number
of registers in the loop determine the minimal delay that retiming can achieve. To further
reduce delay, you might have to reduce the delay inside the loop (for example, by
recoding the design or recompiling with different constraints). If the design allows such a
modification, you can also add an additional register to the loop.

• Loop from primary input to primary output

This case includes loops that go from actual primary input to primary outputs as well as
those that begin or end at a fixed register. If the loop begins or ends at a fixed register,
you might want to check whether the dont_touch or dont_retime attribute placed on
that register, or on any of its parent cells, is really needed. If the start and end points are
a primary input and a primary output, you can either reduce the combinational delay
between the ports by recoding and recompiling the design, or you can add registers to
the design at one or more of these ports (which increases the latency).

• Loop limited by node bounds
Chapter 7: Analyzing Retiming Results
Displaying the Sequence of Cells That Limits Delay Optimization 7-5
Chapter 7: Analyzing Retiming Results
Displaying the Sequence of Cells That Limits Delay Optimization 7-5

Design Compiler Register Retiming Reference Manual C-2009.06Design Compiler Register Retiming Reference Manual Version C-2009.06
This case occurs when different classes of registers are present in the fanin or fanout of
a cell (also referred to as a node), limiting the delay that can be achieved by retiming. To
find which cells contribute to the register class conflict, look at the cells at the beginning
and the end of the sequence. If the cells are combinational cells (that is, not fixed
registers, black boxes, or primary ports), they are the cells responsible for the class
conflict.

If the cell at the beginning of the sequence is combinational, look at the registers in its
fanin. Some of them will belong to different classes or be clocked by different base clocks.
If this class difference is due to the control nets to synchronous pins, you might be able
to reduce the delay further by using the decompose option or putting the decompose
transformation attribute on these registers.

Alternatively, if the combinational cell at the end of the sequence has the bound, you can
apply a similar process to the registers in the fanout of the cell.

Example 7-1 shows the critical loop output with a node bound.

Example 7-1 Critical Loop Output With a Node Bound

Critical Loop(s) for Minimum Period Retiming
--
---- loop limited by node bound(s) ----

Point Incr Path

xstack_4k/U52/Z (MX21LC) (0.19 0.18) 0.19 0.18
xstack_4k/U47/Z (MX21LB) (0.12 0.13) 0.30 0.32
xstack_4k/U65/Z (ND2C) (0.06 0.09) 0.38 0.39
xalu/U90/Z (MX21LC) (0.16 0.19) 0.55 0.57
xalu/U91/Z (N1F) (0.08 0.10) 0.66 0.66
xalu/add_59/plus/plus/U24/Z (NR2C) (0.12 0.10) 0.78 0.76
xalu/add_59/plus/plus/U18/Z (EON1C) (0.07 0.10) 0.83 0.88
xalu/add_59/plus/plus/U31/Z (EN3A) (0.21 0.22) 1.09 1.10
xalu/U96/Z (N1B) (0.05 0.06) 1.15 1.15
*** 1 register(s) AFTER min. period retiming here ***
xalu/U86/Z (OR2B) (0.15 0.19) 0.15 0.19
xalu/U85/Z (ND2B) (0.22 0.27) 0.41 0.42
*** 1 register(s) BEFORE min. period retiming here ***
xseg7dec/U6/Z (NR2L) (0.22 0.11) 0.64 0.52
xseg7dec/U13/Z (AO2A) (0.17 0.28) 0.69 0.92
xseg7dec/U30/Z (ND2B) (0.06 0.08) 0.98 0.77
g/**outside** (**out_port**) (0.34 0.34) 1.32 1.32
(++)

(+) I/O port resulting from a pin of a fixed register or black box
(++) Delay may have been corrected by clock to Q (input) or setup

(output)
Chapter 7: Analyzing Retiming Results
Displaying the Sequence of Cells That Limits Delay Optimization 7-6

Design Compiler Register Retiming Reference Manual Version C-2009.06
The cell xstack_4k/U52 is the one that has the conflict. Figure 7-1 shows the fanin of this
cell.

Figure 7-1 Analyzing Node Bounds Example

The three registers in the fanin all belong to different classes because their LD (load enable)
pins are driven by different nets. Because the design is not a pure pipeline, you could
improve performance by following the general recommendation of using decomposition for
all registers. If this increases the area too much, an alternative tactic is to set the decompose
attribute on these registers individually while using the multiclass option for all other
registers in the optimize_registers command.

dc_shell> set_transform_for_retiming \
[get_cells "xstack_4k/breg_reg[1]"] decompose

dc_shell> set_transform_for_retiming \
[get_cells "xstack_4k/dreg_reg[1]"] decompose

dc_shell> set_transform_for_retiming \
[get_cells "xcontrol/adr_count/qi_reg[1]"] decompose

dc_shell> optimize_registers -sync_trans multiclass \
-async_trans multiclass

You might have to repeat this process for class conflicts at other nodes, depending on the
outcome of subsequent runs of the optimize_registers command.

D Q

LD

D Q

LD

D Q

LD

xstack_4k/breg_reg[1]

xstack_4k/dreg_reg[1]

xcontrol/adr_count/qi_reg[1]

n223

n271

cb

xstack_4k/U52
Chapter 7: Analyzing Retiming Results
Displaying the Sequence of Cells That Limits Delay Optimization 7-7
Chapter 7: Analyzing Retiming Results
Displaying the Sequence of Cells That Limits Delay Optimization 7-7

Design Compiler Register Retiming Reference Manual C-2009.06Design Compiler Register Retiming Reference Manual Version C-2009.06
Chapter 7: Analyzing Retiming Results
Displaying the Sequence of Cells That Limits Delay Optimization 7-8

A
Additional Information on the Register
Retiming Commands A

In this document, the term “register” refers to both edge-triggered registers and
level-sensitive latches unless stated otherwise. Both types of sequential cells can now be
retimed. However, the pipeline_design and balance_register commands can be
applied to only edge-triggered registers in the current release.

This appendix describes additional options for the register retiming commands. This
information is provided for use in special cases or for compatibility with previous versions of
the retiming capability.

The commands for setting retiming attributes are explained in this appendix. Also, some
other commands related to retiming are briefly explained.

This appendix contains the following sections:

• Setting Retiming Attributes on Individual Cells

• Other Commands Related to Retiming

• Examples of dc_shell Register Retiming Scripts
A-1

Design Compiler Register Retiming Reference Manual C-2009.06Design Compiler Register Retiming Reference Manual Version C-2009.06
Setting Retiming Attributes on Individual Cells

You can control the transformation and the equivalent reset state computation for individual
registers by setting attributes on these cells. Setting attributes on individual registers instead
of using command-line options can sometimes improve the retiming results or runtime. You
can use the following set_transform_for_retiming command to set attributes on
individual cells:

The command syntax is

set_transform_for_retiming cell_list \
decompose | multiclass | dont_retime

This attribute determines how registers are transformed into generic SEQGEN cells and
whether they are moved during retiming. A dont_touch attribute set on a given cell or its
parent cells in the hierarchy overrides this attribute on that cell.

If no dont_touch attribute is set on the specified cell, decompose specifies that the registers
affected by the attribute are decomposed when they are transformed to SEQGEN cells. The
multiclass value specifies that the synchronous set, clear, and load pins of the SEQGEN
cells are to be used in this transformation, if possible. The dont_retime value specifies that
the registers are not to be transformed or moved.

See Appendix B, “Command Syntax and Variable Syntax” for syntax information on this
command.

Other Commands Related to Retiming

The following commands relate to register retiming because they influence the behavior of
the optimize_registers and pipeline_design commands or they perform some
retiming function themselves:

• set_register_type

This command lets you specify a particular flip-flop as the preferred flip-flop. You set this
command before running the register retiming command as follows:

set_register_type -exact -flip_flop flip_flop_name \
[design_name]

You can find potential candidates for the preferred flip-flop by running the register retiming
command with the -check_design option but without the set_register_type option.
However, keep in mind that this setting also restricts the flip-flops chosen by compile for
the sequential mapping, including incremental compilation.
Chapter A: Additional Information on the Register Retiming Commands
Setting Retiming Attributes on Individual Cells A-2

Design Compiler Register Retiming Reference Manual Version C-2009.06
See Appendix B, “Command Syntax and Variable Syntax” for syntax information on this
command.

• set_optimize_registers

This command sets the optimize_registers attribute on a design so that
compile_ultra or compile automatically invoke retiming similar to the
optimize_registers command during optimization on the instances of the design. The
attribute is particularly useful for creating embedded dc_shell compilation scripts for HDL
descriptions that are to be transformed to DesignWare synthetic library components.

The set_optimize_registers command allows you to control retiming behavior with
various options. The command can also be used together with the optimize_registers
command and the -only_attributed_designs option.

See Appendix B, “Command Syntax and Variable Syntax” for syntax information on this
command.

• balance_registers

This command performs register retiming on a mapped gate-level netlist that is similar to
optimize_registers but with the following restrictions or exceptions:

• No support is provided for multiple clocks.

• No minimum register count retiming is performed, and the target clock period is
always 0.

• No retiming of asynchronous registers or latches is possible.

• Synchronous register functionality is always decomposed.

• No incremental compile is performed as part of the command.

• No retiming analysis options are available.

See Appendix B, “Command Syntax and Variable Syntax” for syntax information on this
command.

• set_balance_registers

This attribute-setting command is similar to the set_optimize_registers command.
However, the set_balance_registers attribute invokes retiming functionality
equivalent to the balance_registers command during compile time. This attribute
setting command is intended only for developing pipelined synthetic library components.

See Appendix B, “Command Syntax and Variable Syntax” for syntax information on this
command.
Chapter A: Additional Information on the Register Retiming Commands
Other Commands Related to Retiming A-3
Chapter A: Additional Information on the Register Retiming Commands
Other Commands Related to Retiming A-3

Design Compiler Register Retiming Reference Manual C-2009.06Design Compiler Register Retiming Reference Manual Version C-2009.06
Examples of dc_shell Register Retiming Scripts

The following sections present three examples of register retiming scripts. The first two
examples apply the optimize_registers command to a nonpipelined and pipelined
design. The third example applies the pipeline_design command to a purely
combinational design.

Script for a Nonpipelined Design, Using the optimize_registers
Command
Example A-1 on page A-4 shows the dctcl script used to apply the optimize_registers
command to a nonpipelined design.

Example A-1 Using optimize_registers on a Nonpipelined Design
set search_path [concat $search_path [list "." "../lib"]]
set synthetic_library [list standard.sldb]
set target_library [list lcbg10pv.db]
set link_library [list $target_library $synthetic_library]

analyze -f vhdl vhd/calc.vhd

elaborate -arch rtl calc

create_clock clk -period 1.5
set_input_delay 0.50 -clock clk [remove_from_collection [all_inputs] clk]
set_output_delay 0.40 -clock clk [all_outputs]

set_max_area 1000000

compile -map_effort medium

report_timing

set_max_area 0

optimize_registers -sync_trans decompose -async_trans decompose

report_timing

Script for a Pipelined Design, Using the optimize_registers
Command
 Example A-2 on page A-5 shows the dctcl script used to apply the optimize_registers
command to a pipelined design.
Chapter A: Additional Information on the Register Retiming Commands
Examples of dc_shell Register Retiming Scripts A-4

Design Compiler Register Retiming Reference Manual Version C-2009.06
Example A-2 Using optimize_registers on a Pipelined Design
set search_path [concat $search_path [list "." "../lib"]]
set synthetic_library [list standard.sldb]
set target_library [list lcbg10pv.db]
set link_library [list $target_library $synthetic_library]

set hdlin_ff_always_sync_set_reset true

read_verilog verilog/tsu_mul24x24_seq.v
create_clock clk -period 11.0
set_input_delay 0.50 -clock clk [remove_from_collection [all_inputs] clk]
set_output_delay 0.40 -clock clk [all_outputs]

/* keep SEQGENs during compile */
set_dont_touch [get_cells -hier -filter "@ref_name==**SEQGEN**" *] true

compile -map_effort medium

report_timing

/* remove dont_touch attribute for retiming */
remove_attribute [get_cells -hier -filter "@ref_name==**SEQGEN**" *]
dont_touch

create_clock clk -period 4.5

optimize_registers

report_timing

Script for Pipelining a Combinational Design, Using the
pipeline_design Command
Example A-3 on page A-6 shows the dctcl script used to apply the pipeline_design
command to a combinational design.
Chapter A: Additional Information on the Register Retiming Commands
Examples of dc_shell Register Retiming Scripts A-5
Chapter A: Additional Information on the Register Retiming Commands
Examples of dc_shell Register Retiming Scripts A-5

Design Compiler Register Retiming Reference Manual C-2009.06Design Compiler Register Retiming Reference Manual Version C-2009.06
Example A-3 Using pipeline_design on a Combinational Design
set search_path [concat $search_path [list "." "../lib"]]
set synthetic_library [list standard.sldb]
set target_library [list lcbg10pv.db]
set link_library [list $target_library $synthetic_library]

read_verilog verilog/tsu_mul24x24_comb.v

create_clock clk -period 11.0
set_input_delay 0.50 -clock clk [remove_from_collection [all_inputs] clk]
set_output_delay 0.40 -clock clk [all_outputs]

compile -map_effort medium

report_timing

create_clock clk -period 4.5

pipeline_design -stages 3 -clock_port_name "clk" -async_reset "rst" \
-reset_polarity high -stall_ports "hold" -stall_polarity low

report_timing
Chapter A: Additional Information on the Register Retiming Commands
Examples of dc_shell Register Retiming Scripts A-6

B
Command Syntax and Variable Syntax B

In this document, the term “register” refers to both edge-triggered registers and
level-sensitive latches unless stated otherwise. Both types of sequential cells can now be
retimed. However, the pipeline_design and balance_register commands can be
applied to only edge-triggered registers in the current release.

This appendix contains the following sections:

• The balance_registers Command

• The optimize_registers Command

• The pipeline_design Command

• The set_balance_registers Command

• The set_optimize_registers Command

• The set_register_type Command

• The set_transform_for_retiming Command
B-1

Design Compiler Register Retiming Reference Manual C-2009.06Design Compiler Register Retiming Reference Manual Version C-2009.06
The balance_registers Command

The balance_registers command works by timing a design and moving registers through
the logic levels of the design so that the delays between the register banks are equal. The
balance_registers command affects the state of the flip-flops internal to a design but
maintains cycle-to-cycle behavior at all outputs of the design.

The balance_registers command has the following requirements.

• Registers must be

• Single bit registers

• Edge-triggered flip-flops clocked by the same phase of the same clock, or

• Master-slave elements with the same signals for the master and slave pins, or

• Level-sensitive latches (latches are not moved during retiming).

• Flip-flops and master-slave elements cannot be present in the same design.

• Master and slave clock waveforms cannot overlap.

• All clock pins of the flip-flops in the design must be connected to the same clock port. The
interconnection from the clock port to the clock pins can contain buffers, inverters.

If inverters are used, all clock pins of the network must be connected to the clock either
by an even (including 0) number of inverters or by an odd number of inverters.

The outputs of the clock network can be connected only to sequential cells. Buffers and
inverters might be removed from the clock network of the retimed design.

• Flip-flops that have asynchronous set or clear pins are not moved.

Subdesigns in the hierarchy are ungrouped into the design unless the dont_touch attribute
is set. The balance_registers command does not ungroup an instance that has the
dont_touch attribute, and it does not place any registers inside an instance that has the
dont_touch attribute.

The balance_registers command includes a delay modeling capability. For the sake of
predictability, the algorithm selects a register from the target library with a small setup time,
good drive at the outputs, and low input loading as compared with other registers in the
library. This register is designated as the preferred flip-flop. Sequential mapping is invoked
in the final step to improve the circuit by remapping the registers. The preferred flip-flop
helps provide tighter bounds on the performance variation after the balance_registers
sequence. To disable delay modeling, set the shell variable balance_reg_delay to 0.
Chapter B: Command Syntax and Variable Syntax
The balance_registers Command B-2

Design Compiler Register Retiming Reference Manual Version C-2009.06
As part of the delay modeling capability, balance_registers provides some statistics on
the delays in the circuit. If the preferred flip-flop appears as a driver for a net,
balance_registers analyzes the circuit to compute the clock-to-pin-to-next-state-pin delay
for that net. These estimates provide a bound on the final clock period after the
balance_registers sequence.

To cause balance_registers to be automatically invoked during compile, use the
set_balance_registers command to set the balance_registers attribute on the design.

See the balance_registers man page for more information.

The optimize_registers Command

The optimize_registers command performs retiming of sequential cells (edge-triggered
registers or level-sensitive latches) on a mapped gate-level netlist. The command
determines the placement of sequential cells in a design to achieve a target clock period and
minimizes the number of sequential cells while maintaining that clock period.

The optimize_registers command syntax is as follows:

optimize_registers
[-minimum_period_only]
[-no_compile]
[-sync_transform multiclass | decompose | dont_retime]
[-async_transform multiclass | decompose | dont_retime]
[-check_design [-verbose]]
[-justification_effort low | medium | high]
[-only_attributed_designs}
[-print_critical_loop]
[-clock clock_name [-edge rise | fall]]
[-latch]

-minimum_period_only

This argument indicates that only the minimum period step of the retiming algorithm
(minimum clock period retiming), and not the minimum area (sequential cell count
optimization) step is to be executed. By default, the minimum period and minimum area
optimization steps are executed. The -minimum_period_only argument is useful if you
want to have a fast turnaround when trying to optimize the design’s timing. The runtime
is reduced, but your area results will not be optimal. Once you are satisfied with the
timing, you can attempt to reduce area by running the retiming command without this
argument.

-no_compile

This argument omits the default incremental logic synthesis step normally performed
after computation of the optimal sequential cell locations. If you specify this option, no
design rule fixing is performed. Generic sequential cells might remain in the design.
Chapter B: Command Syntax and Variable Syntax
The optimize_registers Command B-3
Chapter B: Command Syntax and Variable Syntax
The optimize_registers Command B-3

Design Compiler Register Retiming Reference Manual C-2009.06Design Compiler Register Retiming Reference Manual Version C-2009.06
When you use this option, you can choose a logic compilation script adapted to your
design instead of relying on the default used internally by optimize_registers. It is
important to perform logic synthesis after sequential cell retiming to obtain the best
possible timing results.

-sync_transform multiclass | decompose | dont_retime

Specifies which transformation is used for synchronous sequential cells in the design. An
edge-triggered register is synchronous if none of its input pins change the outputs
asynchronously. A level-sensitive latch is considered synchronous if none of its input pins
can change the outputs during the clock phase where the latch is not transparent.

Selecting the multiclass transformation specifies that the identifiable synchronous
clear, set, and enable functionality is moved with the synchronous sequential cells if they
are moved during retiming. Sequential cells are classified according to their set, clear,
and enable connections. The class of the sequential cells at the fanin or fanout of a
combinational cell determines whether retiming across this cell can be performed.

Selecting the decompose argument specifies that the synchronous cells in the design are
transformed into instances of a D flip-flop or D-latch respectively and the additional
combinational logic necessary to create synchronous functionality. Only the D flip-flop or
D-latch can be moved during retiming.

Selecting the dont_retime argument specifies that the synchronous sequential cells are
not moved during retiming. Their mapping, however, might change to a different flip-flop
or latch from the technology library.

To set the retiming transform attribute for individual sequential cells use the
set_transform_for_retiming command.

The default value for this option is multiclass.

-async_transform multiclass | decompose | dont_retime

Specifies which transformation method is used for asynchronous sequential cells in the
design. An edge-triggered register is asynchronous if at least one of its input pins
changes the outputs asynchronously. A level-sensitive latch is asynchronous if at least
one of its inputs can change the outputs during the clock phase where the latch is not
transparent.

Selecting the multiclass transformation specifies that the identifiable asynchronous
clear and set functionality, as well as any synchronous set, clear, and enable functionality,
is moved with the asynchronous sequential cells, if they are moved during retiming.
Sequential cells are classified according to their set, clear, and enable connections. The
class of the sequential cells at the fanin or fanout of a combinational cell determines
whether retiming can be performed across this cell.

Selecting the decompose transformation specifies that asynchronous sequential cells in
the design are transformed into an instance of a flip-flop or latch respectively with
asynchronous set and clear inputs, as necessary, and additional combinational logic to
Chapter B: Command Syntax and Variable Syntax
The optimize_registers Command B-4

Design Compiler Register Retiming Reference Manual Version C-2009.06
create the necessary synchronous functionality. Only the flip-flop or latch instances can
be moved during retiming. They are classified according to their synchronous set, clear,
and enable functionality.

Selecting the dont_retime value specifies that asynchronous sequential cells will not be
moved during retiming. Their mapping might still be changed to a different flip-flop or
latch from the technology library. The dont_touch attributes and retiming transformation
attributes set on individual sequential cells override the value set in this option.

To set the retiming transform attribute for individual sequential cells use the
set_transform_for_retiming command.

The default value for this option is multiclass.

-check_design

Indicates that additional information about the design is to be displayed before and after
retiming. This information includes the number of cells in different categories (for
example, hierarchy cells with dont_touch attributes or non-movable sequential cells) and
more detailed information about the selection of the preferred flip-flop or latch
respectively. You use this information to help in troubleshooting if retiming does not show
the expected results.

-verbose

For use only with the -check_design option. Indicates that the explicit names of the cells
are to be displayed along with the number of cells in each category for most categories
of the -check_design option. The explicit naming of cells can help to locate a problem;
however, the lists of output names might be long.

-print_critical_loop

Indicates that the critical loop of the design, as seen during retiming, is to be displayed.
The critical loop is defined as the sequence of directly-connected combinational and
sequential cells whose total combinational delay divided by the number of registers in the
loop has a higher value than any other loop in the design. The critical loop limits the
minimum clock period that can be achieved by retiming. Use this option to help in
troubleshooting problem areas of the design if the intended clock period cannot be
achieved with the given number of sequential cells in the design. If you are pipelining a
data path, you might need to add pipeline stages in the HDL code.

-clock clock_name

Specifies the name of the clock whose sequential cells are to be retimed. The clock must
not be a virtual clock, that is, it must have a clock port associated with it. The name of the
clock is either the name specified in the create_clock command or the name of the
clock port, if the create_clock command had no name specified. The registers of the
clock are all sequential cells which are triggered by this clock. The connection from the
clock port to the sequential cell can be through clock gating cells, buffer cells and inverter
cells. If the -clock option is specified and edge-triggered registers are retimed, registers
of other clocks are not retimed. If level-sensitive latches are retimed and the -clock is
Chapter B: Command Syntax and Variable Syntax
The optimize_registers Command B-5
Chapter B: Command Syntax and Variable Syntax
The optimize_registers Command B-5

Design Compiler Register Retiming Reference Manual C-2009.06Design Compiler Register Retiming Reference Manual Version C-2009.06
specified, the latches driven by this clock, as well as those driven by other clocks needed
to complete a two-phase clock system, are retimed. If edge-triggered registers are
retimed, only registers triggered by one specific edge of the clock are retimed. By default
the registers triggered by the rising edge are retimed. A different edge can be specified
using the -edge option.

-edge rise | fall

Specifies whether the registers triggered by the rising or the falling edge of the clock are
to be retimed. This option can only be used together with the -clock option. When
level-sensitive latches are retimed this option does not matter.

-latch

Specifies that level-sensitive latches are to be retimed instead of edge-triggered
sequential cells (flip-flops). If this option is used the edge-triggered sequential cells in the
design will not be moved. In order to be able to retime latches, they must be driven by a
symmetrical two-phase clocks system. Latches that are used to prevent glitches in gated
clocks will not be moved, even if the -latch option is used. These latches are in the fanin
of clock-gating cells.

-justification_effort low | medium | high

Specifies the effort level to be used during backward justification of registers. Specifying
a low effort ensures that justification terminates quickly; however, the quality of results
(QoR) can be poor. A medium effort might provide better QoR but result in a larger
runtime. A high effort could give provide the best QoR without considering runtime. The
default is medium.

-only_attributed_designs

Specifies that instead of the top-level design, only instances of those designs in the
hierarchy that have the optimize_registers attribute are retimed.

The optimize_registers command operates in two phases. During the first phase, it
performs retiming by moving the sequential cells in the design to meet a target clock period
and minimize the number of sequential cells while maintaining that clock period. The second
phase consists of an incremental compile, which adjusts the design to the changed fanout
structure. The optimize_registers command uses the clock period of the clocks being
retimed. Otherwise, the command returns without moving registers.

If the design has multiple clocks which are not virtual clocks and the -clock option has not
been used, sequential cells for all clocks will be retimed during the first phase of retiming.
When retiming edge-triggered registers, the retiming is performed one clock at a time. When
retiming level-sensitive latches the retiming is performed for sets of clocks which together
with their latches form a symmetric two phase clock system. Clocks with a larger clock
period will be retimed before clocks with a smaller clock period. If two clocks have the same
clock period, the clock with the larger number of movable sequential cells will be retimed
first. When retiming edge-triggered registers, for each single clock the registers triggered by
the rising edge are retimed before those triggered by the falling edge. Please be advised
Chapter B: Command Syntax and Variable Syntax
The optimize_registers Command B-6

Design Compiler Register Retiming Reference Manual Version C-2009.06
that this default order may not yield the best possible results. Also retiming all clocks in
phase one means that there will be no incremental optimization of the combinational logic
when retiming different clocks. Therefore it is recommended that you determine the best
order for retiming clocks yourself and apply it, using multiple runs of optimize_registers
-clock.

The optimize_registers command has the following requirements:

• A gated clock must be derived from one of the design's clock ports or another gated clock
through a unate clock gating cell (usually a logic AND or logic OR gate). The clock gating
control logic can contain latches. The clock network between the base clock port and
gated clocks can contain buffer and inverter cells.

• Flip-flops and master-slave elements cannot be present in the same design. Master and
slave clock waveforms cannot overlap.

• All clock pins of all flip-flops in the design must be connected to their base clock or a
gated clock derived from the base clock in the following way: The connection from the
clock origin (i.e. the clock port or the clock gating cell) to the clock pins can contain buffer
and inverter cells with one input and one output pin. All clock pins must be connected
either by an even number (including zero) or odd number of inverters to the clock origin.
Buffer and inverter cells on the clock network may be removed during retiming. Therefore
any existing clock tree has to be resynthesized.

• All sequential cells must be single bit, or it must be possible to decompose them into
single-bit registers.

• Only certain FPGA technologies are supported.

• Designs cannot contain a combinational loop.

• The timing constraints for the design should be set in the following way: The external
clock ports of the design must have a clock constraint created by the create_clock
command. These are called the base clocks. All primary inputs of the design should have
a non-negative input delay relative to one or more of the base clocks. All primary outputs
of the design should have a non-negative output delay relative to one of the base clocks.
Negative input and output delays are tolerated, but the quality of the final retiming result
might be worse than expected. Point-to-point timing exceptions as created by the
set_false_path, set_multicycle_path, set_max_delay and set_min_delay
commands are honored, but their presence might reduce the quality of results. In the
presence of such point-to-point exceptions, timing constraint violations might be
worsened by retiming. Therefore, it is strongly recommended to not apply retiming to
designs with these exceptions. Case analysis constraints are also ignored when moving
the sequential cells. The incremental compilation after moving the sequential cells takes
all types of constraints into account.

• Designs cannot contain unmapped synthetic library components.
Chapter B: Command Syntax and Variable Syntax
The optimize_registers Command B-7
Chapter B: Command Syntax and Variable Syntax
The optimize_registers Command B-7

Design Compiler Register Retiming Reference Manual C-2009.06Design Compiler Register Retiming Reference Manual Version C-2009.06
The movement of registers and the handling of hierarchical subdesigns can be controlled as
follows (in addition to the -async_transform and -sync_transform options):

• If a sequential cell has the dont_touch attribute set, the optimize_registers command
does not move the sequential cell itself, nor does it move any other sequential cell across
that cell.

• If instances contain the dont_touch attribute, they are not ungrouped. The
optimize_registers command does not ungroup and does not place any registers
inside an instance that has the dont_touch attribute set. If a hierarchical cell does not
contain sequential cells and has the dont_touch attribute set, sequential cells can move
across the cell. If the cell does contain sequential cells and has the dont_touch attribute
set, sequential cells cannot move across the cell.

• The optimize_registers command can move sequential cells into a level of hierarchy.
In this case, a clock pin is inserted into the interface of the instance if there was no clock
pin previously. The new clock pin is named after the clock pin of the enclosing hierarchical
instance.

The optimize_registers command supports handling of black box cells (that is, cells for
which no timing is specified, such as placeholders for RAMs). The optimize_registers
command models a black box cell as if the cell is external to the current design, without
actually changing the interface of the design itself.

The optimize_registers command includes a delay modeling capability. For the sake of
predictability, the algorithm selects from the target library a flip-flop or latch that has a small
setup time, good drive at the outputs, and low input loading as compared with other flip-flops
or latches in the library. This flip-flop or latch, respectively, is designated as the preferred
flip-flop or preferred latch. The preferred flip-flop or preferred latch helps to provide tighter
bounds on the performance variation after the optimize_registers command sequence.
To select a particular preferred flip-flop or latch, use the set_register_type command
described in the section, “The set_register_type Command” on page B-16. To exclude
certain flip-flops from being chosen, use the set_dont_use command.

After retiming, implementation selection is no longer performed on synthetic library
components in the design by subsequent executions of compile.

To cause optimize_registers to be automatically invoked during compile, use the
set_optimize_registers command to set the optimize_registers attribute on the
design.

See the optimize_registers man page for more information.
Chapter B: Command Syntax and Variable Syntax
The optimize_registers Command B-8

Design Compiler Register Retiming Reference Manual Version C-2009.06
The pipeline_design Command

The pipeline_design command syntax is as follows:

pipeline_design
[-stages number_of_stages]
[-stall_ports port_list]
[-stall_polarity high | low]
[-sync_reset reset_port | -async_reset reset_port]
[-reset_polarity high | low]
[-clock_port_name clock_port]
[-no_compile]
[-check_design [-verbose]]
[-print_critical_loop]
[-minimum_period_only]
[-register_outputs]

-stages

This argument specifies the number of pipeline stages in the design after execution of the
command. The number of stages must be one more than the number of registers
encountered on any path from any data input port to any data output port of the design.
The minimum allowed value is 2 (the default).

-stall_ports

This argument specifies one or more 1-bit-wide input ports of the design as stall ports.
The ports must exist in the design before the pipeline_design command is executed.
How registers connect to the stall ports depends on the following scenarios:

• If there is only one stall port, it controls all registers. An inactive stall pin loads
registers; an active stall pin allows registers to keep their state.

• If the design has more than one stall port, the number of stall ports must be one less
than the number of stages. The flip-flops are indexed according to their “distance” from
the input ports. Flip-flops with direct access to the inputs get the index 1. Those that
reach inputs by crossing one other register get the index 2, and so on. The nth stall
port that you list in the command line controls flip-flops with the index n.

• If there is no stall port, the loading of the internal registers is always enabled.

-stall_polarity

This argument specifies the polarity of the stall ports as active high (the default) or active
low. An active input value at a stall port makes the corresponding registers keep their
state value at the rising edge of the clock.
Chapter B: Command Syntax and Variable Syntax
The pipeline_design Command B-9
Chapter B: Command Syntax and Variable Syntax
The pipeline_design Command B-9

Design Compiler Register Retiming Reference Manual C-2009.06Design Compiler Register Retiming Reference Manual Version C-2009.06
-sync_reset

This argument specifies an existing 1-bit-wide reset port to be used as a synchronous
reset for the design. By default, there is no reset. If this option is specified, registers are
connected to the reset port after retiming so that they are reset synchronously by an
active reset signal. This option and -async_reset are mutually exclusive.

-async_reset

This argument specifies an existing 1-bit-wide reset port to be used as a asynchronous
reset for the design. By default, there is no reset. If this option is specified, registers are
connected to the reset port after retiming so that they are reset asynchronously by an
active reset signal. This option and -sync_reset are mutually exclusive.

-reset_polarity

This argument specifies the polarity of the reset signal as active high or active low when
using the -async_reset or -sync_reset option. The default is active low.

-clock_port_name

This argument specifies the name of the clock port, which is a 1-bit-wide input port of the
design. This port must already exist before you execute the pipeline_design
command. This port connects to the clock pins of all registers in the design. The default
clock port name is clock.

-no_compile

This argument directs register retiming to omit both the default incremental logic
synthesis step normally performed after computation of the optimal register placement
and the design rule fixing step. Note however that generic sequential cells might remain
in the design. Using this option, you can choose a logic compilation script adapted to your
design instead of relying on the default used internally by pipeline_design. But you
should perform a logic synthesis to obtain the best possible timing results.

-check_design

This argument directs register retiming to print additional information about the design
before and after retiming. Use this information to determine why register retiming does
not show the expected results. This option shows the number of cells in different
categories (such as the dont_touch hierarchy cells or the sequential cells that cannot
move) and more detailed information about the preferred flip-flop.

-verbose

This argument is for use only with the check_design argument. It indicates that the
explicit names of the cells are to be displayed along with the number of cells in each
category for most categories of the check_design argument. The explicit naming of cells
can help to locate a problem; however, the lists of output names might be long.
Chapter B: Command Syntax and Variable Syntax
The pipeline_design Command B-10

Design Compiler Register Retiming Reference Manual Version C-2009.06
-print_critical_loop

This argument causes the critical loop of the design, as seen during retiming, to be
displayed. The critical loop is defined as the sequence of directly connected
combinational and sequential cells whose total combinational delay divided by the
available number of registers has a higher value than any other loop through the design.
The critical loop limits the minimum clock period that can be achieved by retiming. Use
this argument to help in troubleshooting problem areas of the design if the intended clock
period cannot be achieved with the given number of pipeline stages.

-minimum_period_only

This argument indicates that only the minimum period step of the retiming algorithm
(minimum clock period retiming) is to be executed, and not the minimum area (register
count optimization) step. By default, the minimum period and minimum area optimization
steps are executed. This option is useful if you want to have a fast turnaround when trying
to optimize the design’s timing. The runtime is reduced, but your area results are not
optimal. After you are satisfied with the timing, you can attempt to reduce area by running
the retiming command without this option.

-register_outputs

This argument indicates that the primary outputs of the pipelined design are registered.
The total number of registers encountered on a path from a data input port to a data
output port is still (number_of_registers - 1), which means that no extra registers are
added. Because each primary output is always connected directly to a register when this
option is used, the retiming algorithm is constrained. That is, the delay of combinational
logic between a pipeline stage can be longer compared with the case when this option is
not used. Due to this, the minimum clock period that can be achieved for a given number
of pipelining stages by using the -register_outputs option is usually longer than that
which can be achieved when not using the option.

-exact_map

This argument indicates that during incremental compile, exact mapping of sequential
cells is carried out (that is, a single flip-flop cell as opposed to a flip-flop with additional
logic implementing enable, reset, and so on). This option can be used with
-register_outputs if logic components such as inverters are placed between a
primary output and the last stage register. When -exact_map is not being used to
enforce that condition, the last stage register is directly connected to the primary output.
There can be an area overhead when this option is used.

See the pipeline_design man page for more information.
Chapter B: Command Syntax and Variable Syntax
The pipeline_design Command B-11
Chapter B: Command Syntax and Variable Syntax
The pipeline_design Command B-11

Design Compiler Register Retiming Reference Manual C-2009.06Design Compiler Register Retiming Reference Manual Version C-2009.06
The set_balance_registers Command

The set_balance_registers command sets the balance_registers attribute on the
specified designs or on the current design so that the design is retimed during compile. The
set_balance_registers command syntax is as follows:

set_balance_registers [true | false] [-design design_list]

true | false

This argument is the value with which to set the balance_registers attribute. The
default is true.

-design

This argument specifies a list of designs to retime. The default is the current design.

If the balance_registers attribute is set to true (the default) on the design, compile
automatically invokes the balance_registers command, which moves registers to
minimize the maximum register-to-register delay. Subdesigns in the hierarchy are
ungrouped into the design, unless the dont_touch attribute is set.

In addition, it is a mistake to invoke balance_registers on a design that contains generic
logic. If the balance_registers attribute is set, compile attempts to optimize the design by
invoking balance_registers. Be sure that your design contains no generic logic when
balance_registers is called during compile.

To remove balance_registers, use remove_attribute or reset_design. You can
achieve the same effect by setting the balance_registers attribute to false.

See the set_balance_registers man page for more information.

The set_optimize_registers Command

The set_optimize_registers command sets the optimize_registers attribute on the
specified design or on the current design, so that compile automatically invokes the
optimize_registers attribute to retime the design during optimization.

The set_optimize_registers command syntax is as follows:

set_optimize_registers [true | false] [-design design_list]
[-minimum_period_only]
[-sync_transform multiclass | decompose | dont_retime]
[-async_transform multiclass | decompose | dont_retime]
[-clock clock_name [-edge rise | fall]]
[-check_design [-verbose]][-latch]
[-justification_effort low | medium | high]
Chapter B: Command Syntax and Variable Syntax
The set_balance_registers Command B-12

Design Compiler Register Retiming Reference Manual Version C-2009.06
true | false

These arguments set the value with which to set the optimize_registers attribute. The
default is true.

-design

This option specifies a list of designs to retime. The default is the current design.

-minimum_period_only

This argument indicates that only the minimum period step of the retiming algorithm
(minimum clock period retiming), and not the minimum area (sequential cell count
optimization) step is to be executed. By default, the minimum period and minimum area
optimization steps are executed. The -minimum_period_only argument is useful if you
want to have a fast turnaround when trying to optimize the design’s timing. The runtime
is reduced, but your area results will not be optimal. Once you are satisfied with the
timing, you can attempt to reduce area by running the retiming command without this
argument.

-sync_transform multiclass | decompose | dont_retime

Specifies which transformation is used for synchronous sequential cells in the design. An
edge-triggered register is synchronous if none of its input pins change the outputs
asynchronously. A level-sensitive latch is considered synchronous if none of its input pins
can change the outputs during the clock phase where the latch is not transparent.

Selecting the multiclass transformation specifies that the identifiable synchronous
clear, set, and enable functionality is moved with the synchronous sequential cells if they
are moved during retiming. Sequential cells are classified according to their set, clear,
and enable connections. The class of the sequential cells at the fanin or fanout of a
combinational cell determines whether retiming across this cell can be performed.

Selecting the decompose argument specifies that the synchronous cells in the design are
transformed into instances of a D flip-flop or D-latch respectively and the additional
combinational logic necessary to create synchronous functionality. Only the D flip-flop or
D-latch can be moved during retiming.

Selecting the dont_retime argument specifies that the synchronous sequential cells are
not moved during retiming. Their mapping, however, might change to a different flip-flop
or latch from the technology library.

To set the retiming transform attribute for individual sequential cells use the
set_transform_for_retiming command.

The default value for this option is multiclass.
Chapter B: Command Syntax and Variable Syntax
The set_optimize_registers Command B-13
Chapter B: Command Syntax and Variable Syntax
The set_optimize_registers Command B-13

Design Compiler Register Retiming Reference Manual C-2009.06Design Compiler Register Retiming Reference Manual Version C-2009.06
-async_transform multiclass | decompose | dont_retime

Specifies which transformation method is used for asynchronous sequential cells in the
design. An edge-triggered register is asynchronous if at least one of its input pins
changes the outputs asynchronously. A level-sensitive latch is asynchronous if at least
one of its inputs can change the outputs during the clock phase where the latch is not
transparent.

Selecting the multiclass transformation specifies that the identifiable asynchronous
clear and set functionality, as well as any synchronous set, clear, and enable functionality,
is moved with the asynchronous sequential cells, if they are moved during retiming.
Sequential cells are classified according to their set, clear, and enable connections. The
class of the sequential cells at the fanin or fanout of a combinational cell determines
whether retiming can be performed across this cell.

Selecting the decompose transformation specifies that asynchronous sequential cells in
the design are transformed into an instance of a flip-flop or latch respectively with
asynchronous set and clear inputs, as necessary, and additional combinational logic to
create the necessary synchronous functionality. Only the flip-flop or latch instances can
be moved during retiming. They are classified according to their synchronous set, clear,
and enable functionality.

Selecting the dont_retime value specifies that asynchronous sequential cells will not be
moved during retiming. Their mapping might still be changed to a different flip-flop or
latch from the technology library. The dont_touch attributes and retiming transformation
attributes set on individual sequential cells override the value set in this option.

To set the retiming transform attribute for individual sequential cells use the
set_transform_for_retiming command.

The default value for this option is multiclass.

-check_design

Indicates that additional information about the design is to be displayed before and after
retiming. This information includes the number of cells in different categories (for
example, hierarchy cells with dont_touch attributes or non-movable sequential cells) and
more detailed information about the selection of the preferred flip-flop or latch
respectively. You use this information to help in troubleshooting if retiming does not show
the expected results.

-verbose

For use only with the -check_design option. Indicates that the explicit names of the cells
are to be displayed along with the number of cells in each category for most categories
of the -check_design option. The explicit naming of cells can help to locate a problem;
however, the lists of output names might be long.
Chapter B: Command Syntax and Variable Syntax
The set_optimize_registers Command B-14

Design Compiler Register Retiming Reference Manual Version C-2009.06
-print_critical_loop

Indicates that the critical loop of the design, as seen during retiming, is to be displayed.
The critical loop is defined as the sequence of directly-connected combinational and
sequential cells whose total combinational delay divided by the number of registers in the
loop has a higher value than any other loop in the design. The critical loop limits the
minimum clock period that can be achieved by retiming. Use this option to help in
troubleshooting problem areas of the design if the intended clock period cannot be
achieved with the given number of sequential cells in the design. If you are pipelining a
data path, you might need to add pipeline stages in the HDL code.

-clock clock_name

Specifies the name of the clock whose sequential cells are to be retimed. The clock must
not be a virtual clock, that is, it must have a clock port associated with it. The name of the
clock is either the name specified in the create_clock command or the name of the
clock port, if the create_clock command had no name specified. The registers of the
clock are all sequential cells which are triggered by this clock. The connection from the
clock port to the sequential cell can be through clock gating cells, buffer cells and inverter
cells. If the -clock option is specified and edge-triggered registers are retimed, registers
of other clocks are not retimed. If level-sensitive latches are retimed and the -clock is
specified, the latches driven by this clock, as well as those driven by other clocks needed
to complete a two-phase clock system, are retimed. If edge-triggered registers are
retimed, only registers triggered by one specific edge of the clock are retimed. By default
the registers triggered by the rising edge are retimed. A different edge can be specified
using the -edge option.

-edge rise | fall

Specifies whether the registers triggered by the rising or the falling edge of the clock are
to be retimed. This option can only be used together with the -clock option. When
level-sensitive latches are retimed this option does not matter.

-latch

Specifies that level-sensitive latches are to be retimed instead of edge-triggered
sequential cells (flip-flops). If this option is used the edge-triggered sequential cells in the
design will not be moved. In order to be able to retime latches, they must be driven by a
symmetrical two-phase clocks system. Latches that are used to prevent glitches in gated
clocks will not be moved, even if the -latch option is used. These latches are in the fanin
of clock-gating cells.

-justification_effort low | medium | high

Specifies the effort level to be used during backward justification of registers. Specifying
a low effort ensures that justification terminates quickly; however, the quality of results
(QoR) can be poor. A medium effort might provide better QoR but result in a larger
runtime. A high effort could give provide the best QoR without considering runtime. The
default is medium.

See the set_optimize_registers man page for more information.
Chapter B: Command Syntax and Variable Syntax
The set_optimize_registers Command B-15
Chapter B: Command Syntax and Variable Syntax
The set_optimize_registers Command B-15

Design Compiler Register Retiming Reference Manual C-2009.06Design Compiler Register Retiming Reference Manual Version C-2009.06
The set_register_type Command

The set_register_type command specifies latch or flip-flop type information for the
compile to use by setting appropriate attributes on the designs or cell instances.

The set_register_type command syntax is as follows:

set_register_type [-exact -latch example_latch]
[[-exact] -flip_flop example_flip_flop]
[cell_or_design_list]

-exact -latch example_latch

The -exact -latch example_latch specifies a latch from the target library to be used
by compile as the exact latch for cells and as the exact default latch for designs. It sets
the default_latch_type_exact attribute to the example latch on all designs in the
cell_or_design_list, and the latch_type_exact attribute to the example latch on all
cells in cell_or_design_list. Notice that you must use the -exact argument with the
-latch argument. You can specify both the -latch argument and the -flip_flop
argument; however, you must specify at least one.

-[exact] -flip_flop example_flip_flop

The -exact -flip_flop example_flip_flop argument specifies a flip-flop from the
target library to be used by compile as the default flip-flop type. If you use -exact, this
indicates that compile is to make an exact mapping to the example flip flop, if possible.
The argument sets the default_flip_flop_type or default_flip_flop_type_exact
attribute to the example flip-flop on all designs in cell_or_design_list; and the
flip_flop_type or flip_flop_type_exact attribute to the example flip-flop on all cells
in cell_or_design_list. You can specify both the -latch argument and the
-flip_flop argument; however, you must specify at least one.

cell_or_design_list

The cell_or_design_list argument specifies a list of cells or designs in which the
specified latch or flip-flop is to be used. The default is the current design.

See the set_register_type man page for more information.

The set_transform_for_retiming Command

The set_transform_for_retiming command sets the transform_for_retiming
attribute on cells in the current design. This command can affect hierarchical cells and
sequential leaf cells.
Chapter B: Command Syntax and Variable Syntax
The set_register_type Command B-16

Design Compiler Register Retiming Reference Manual Version C-2009.06
The set_transform_for_retiming command syntax is as follows:

set_transform_for_retiming cell_list
multiclass | decompose | dont_care

cell_list

The cell_list argument is a list of cells on which the transform_for_retiming attribute
is to be set. If you specify more than one cell name, the names must be enclosed in
quotation marks (“”) or in braces ({}). For more information about cell names, see to the
Synopsys find command man page.

multiclass | decompose | dont_care

The multiclass | decompose | dont_retime argument specifies the value with which
to set the transform_for_retiming attribute. There is no default value. One of the
values must be specified.

 If the transform_for_retiming attribute is placed on a sequential, nonhierarchical
cell, the attribute value determines the way in which that cell is transformed for retiming. The
attribute does not affect nonsequential, nonhierarchical cells.

The multiclass value specifies that the cell is moved together with any synchronous or
asynchronous preset or clear or synchronous load enable signals.

The decompose value specifies that synchronous load enable and synchronous reset logic
are made explicit, and only the basic storage register is moved. For example, if a register
has a data (D) input, a clock (CLK) input, and a synchronous clear (SD) input with active-low
polarity and the transform_for_retiming attribute is set to decompose, it is decomposed
into a simple register with D and CLK input and an AND gate driving the D input. The inputs
of this AND gate are the original data net and the synchronous clear net. Only the simple
register is moved for retiming, while the AND gate stays in place.

The dont_retime value specifies that the cell is not retimed. It can still be mapped to a
different library cell during incremental mapping optimizations. If you want to disable
retiming and sequential mapping optimizations for a cell, use the dont_touch attribute.

If the attribute is set on a hierarchical cell, it applies to all sequential cells in the hierarchy
below this cell, unless the attribute is set on a hierarchical cell in between or on the
sequential leaf cell itself. Values of the attribute set on lower levels of hierarchy override
those set on higher levels.

If the attribute has not been set on a sequential leaf cell or on any of its hierarchical parent
cells, the transform that is applied to this cell is determined by the corresponding
command-line option chosen for the optimize_registers command, or by the default
setting for the retiming command that you are using.

If the dont_touch attribute is set to true on a cell, the transform_for_retiming attribute
does not come into effect on this cell or any of its child cells.
Chapter B: Command Syntax and Variable Syntax
The set_transform_for_retiming Command B-17
Chapter B: Command Syntax and Variable Syntax
The set_transform_for_retiming Command B-17

Design Compiler Register Retiming Reference Manual C-2009.06Design Compiler Register Retiming Reference Manual Version C-2009.06
Using the attribute can improve timing results but at the cost of increased area for certain
designs.

To remove the transform_for_retiming attribute, use the remove_attribute command.

See the set_transform_for_retiming man page for more information.
Chapter B: Command Syntax and Variable Syntax
The set_transform_for_retiming Command B-18

Index

A
analysis during retiming 6-3
area

reduce using decompose attribute 7-7
reduced using multiclass 2-12
reduction B-3, B-13

asynchronous register
definition 2-2

attributes
dont_touch 5-3, 5-4

B
backward justification 2-16
balance_registers 1-5, A-3, B-2
black box cells 7-3, B-8

C
circuit

clock distribution network 3-2
clock edge-triggered registers 3-2
combinational feedback loops 3-2
rules 3-2
state definition 2-15

clock network
circuit rules 3-2

clock period
avoid long CPU time 5-2
set for the external clock port 6-5

clock port
specifying the clock port name B-10

clock tree 5-4
combinational cell

backward retiming 2-7
forward retiming 2-6
large delay 7-3

combinational delay
during the register moving phases 6-4
optimized between registers 6-3
register values after moving 7-2

combinational feedback loops 3-2
commands

balance_registers A-3, B-2
compile 5-2, 5-3, A-2, B-16
create_clock 6-5
optimize_registers 1-5, 6-5, 6-6, 6-8, 7-2,

B-3
pipeline_design 7-5, B-9
remove_attribute B-12
reset_design B-12
set_balance_registers A-3, B-12
set_dont_touch 5-3
set_input_delay 5-2
set_optimize_registers A-3, B-12
IN-1
IN-1

Design Compiler Register Retiming Reference Manual Version C-2009.06
set_register_type A-2, B-16
set_transform_for_retiming 6-2, B-16

compile 5-3
constraints

setting before compile 5-1
control net

equivalent example 2-5
grouped into classes 2-5
registers with different enable 2-10
SEQGEN 2-4

create_clock 6-5

D
decompose option 6-5
decomposition

definition 2-9
reduced mobility example 2-11
retiming compared to multiclass 2-12
synchronous functionality 6-6
transformation example 2-9

delay modeling capability
optimize_registers B-8

dont_retime
not retimed and not renamed 6-9
option 6-5

dont_touch
attribute on SEQGEN 5-3
cells with large delay 7-3
netlist changes 6-9
prevent registers from moving 6-3
using multibit flip-flops 5-4

dont_use
combinational cell with large delay 7-3

E
elaborated netlist 5-3

F
flip-flop

default B-16
definition 2-2
mapping B-16
multibit 5-4
preferred flip-flop 6-3, 7-2, A-2, B-8
selection criteria 6-3
test 5-3

H
HDL code

write for pipelines 3-2
hdlin_ff_always_sync_set_reset 4-2
hierarchical cells

number of 7-3
register moved into 6-9
set_transform_for_retiming B-16

histogram information 7-2

I
incremental compile

omitting incremental compile B-10
input delay 6-4

J
justification

backward 2-16
definition 2-15
reset state 2-14

L
latch

default B-16
definition 2-2
retiming a two-phase clock system 6-8
IN-2
Index IN-2

Design Compiler Register Retiming Reference Manual Version C-2009.06
retiming with different clock ports, clock
latency 6-4

retiming with optimize_registers 3-2
loops

different classifications for critical 7-5
example 7-6

M
mapping

flip-flop B-16
SEQGEN cells 5-3

multiclass option 6-5
multiclass retiming

area savings compared to decompose 2-12
compared to decomposition 2-12
dont_touch 5-3

N
netlist

changes performed by BRT 6-9
nonpipeline

circuit classification 2-14
example diagram 2-14
example script A-4
setting transformation option 6-6
setting variables 4-2

O
optimization

decompose option 7-6
deferred until after retiming 5-4
improving delay 7-5
of combinational logic 1-5

optimize_registers 1-4, 7-2
black box cells B-8
command syntax B-3
delay modeling capability B-8
for pipelines 6-6
mapped register transform to SEQGEN 6-5

reduce runtime 6-8
requirements B-7
syntax B-3

output delay 6-5

P
pipeline

circuit classification 2-14
example diagram 2-14
example script A-4
mismatch duration 2-15
multiclass retiming 4-2
setting transformation option 6-6

pipeline stages
definition 2-14
specifying number of B-9

pipeline_design 1-4, B-9
command 7-5

R
registers

backward justification example 2-15
belonging to different classes 2-10
decompose option 6-5
definition 2-2
don’t-care 3-4
dont_retime option 6-5
edge-triggered master-slave 3-2
forward retiming of decomposed cells 2-10
hierarchical cells 6-9
inferring for nonpipelines 4-2
justification 2-15
limit movability 4-2
minimum count retiming 1-5
multiclass option 6-5
naming in retimed designs 6-9
nonpipeline 2-14
output after moving 7-4
pipeline 2-14
prevent moving 6-3
IN-3
Index IN-3

Design Compiler Register Retiming Reference Manual Version C-2009.06
prevent retiming 6-2
representative number for all registers 6-3
reset or set input 2-15
slice 2-14
transformed into generic SEQGEN A-2
with different enable control nets 2-10

remove_attribute B-12
reset port

specifying polarity B-10
reset_design B-12
retiming

algorithm B-3, B-13
backward example 2-7
circuit rules 3-2
clock tree 5-4
command syntax 2-1
decomposition compared to multiclass 2-12
dont_touch 5-3
during compile B-12
forward across combinational cells 2-6
forward example 2-7
multiclass 2-12, 6-6
multiclass in pipeline 4-2
reset state 2-15
scan chain 6-2
timing analysis 6-3

runtime
attributes to improve A-2
increased CPU runtime 7-3
reduction 6-8, B-3, B-13

S
scan chain

not inserted before retiming 6-2
SEQGEN

control net 2-4
control net example 2-5
decomposition 2-9
definition 2-3
dont_touch attribute 5-3

functionality 2-3
grouped into classes 2-5
mapped registers are transformed 6-5
mapping generic cells 5-3
pin assignment 2-3
registers transformed into generic A-2
swapping conrtol net example 2-6
synchronous clear and set pins 4-2

sequential cells 3-2
number of movable 7-3

sequential mapping 5-3
set_balance_registers A-3, B-12
set_dont_touch 5-3
set_input_delay 5-2
set_optimize_registers A-3, B-12
set_register_type A-2

syntax B-16
set_state_for_retiming A-2
set_transform_for_retiming 6-2, 7-7, A-2, B-16
stall port

option to specify stall ports B-9
specifying polarity B-9

synchronous clear and set pins 4-2
synchronous register

definition 2-2

T
target clock period

avoid long CPU time 5-2
calculation rule 3-3
cell with large delay 7-3
clock correction 6-4
how to compute 5-2

target library
default flip-flop B-16
exact latch for cells B-16
register as preferred flip-flop B-8

technology library 5-3
test benches 1-2
IN-4
Index IN-4

Design Compiler Register Retiming Reference Manual Version C-2009.06
timing
analysis during retiming 6-3
cells without timing B-8

V
variables

hdlin_ff_always_sync_set_reset 4-2
IN-5
Index IN-5

	Preface
	Introduction to Register Retiming
	Understanding Register Retiming
	A Register Retiming Example
	Design Flow Using Register Retiming
	Register Retiming Commands
	The optimize_registers Command
	The pipeline_design Command
	The balance_registers Command

	Register Retiming Concepts
	Basic Definitions and Concepts
	Flip-Flops and Registers
	SEQGENs
	Control Nets
	Register Classes

	Forward Retiming
	Backward Retiming
	Asynchronous Control Inputs of Registers
	Synchronous Control Inputs of Registers
	Translating Synchronous Input Pins to Equivalent SEQGEN Pins
	Transforming Synchronous Input Pins Through Combinational Decomposition

	Multiclass Retiming
	Pipeline and Nonpipeline Circuits
	Reset State Justification

	Writing HDL Code for Retiming
	Allowed Circuits
	Writing HDL Code for Pipelines
	Calculating the Number of Pipeline Stages
	Determining the Initial Location of the Registers
	Using the DesignWare Pipeline Register Component

	Writing HDL Code for Nonpipelines

	Performing Analysis and Elaboration for Retiming
	Inferring Registers for Pipelines and Nonpipelines

	Setting Attributes and Constraints for Retiming
	Setting Timing Constraints
	Setting Timing Constraints for Pipelines
	Setting Timing Constraints for Nonpipelines

	Setting the Compile Command Option on SEQGEN Cells
	Netlist Modifications to Avoid
	Test-Related Modifications
	Physical Design-Related Modifications

	Retiming the Mapped Netlist
	Preventing Retiming
	Doing Timing Analysis During Retiming
	Setting Timing Constraints
	Selecting Transformation Options
	Recommended Transformation Options for Pipelines
	Recommended Transformation Options for Nonpipelines

	Retiming Designs With Multiple Clocks
	Settings That Influence Register Retiming Runtime
	Netlist Changes Performed by Register Retiming

	Analyzing Retiming Results
	Standard Output of the optimize_registers Command
	Checking for Design Features That Limit the Quality of Results
	Output Before Registers Are Moved
	Output After Registers Are Moved

	Displaying the Sequence of Cells That Limits Delay Optimization
	Additional Information on the Register Retiming Commands
	Setting Retiming Attributes on Individual Cells
	Other Commands Related to Retiming
	Examples of dc_shell Register Retiming Scripts
	Script for a Nonpipelined Design, Using the optimize_registers Command
	Script for a Pipelined Design, Using the optimize_registers Command
	Script for Pipelining a Combinational Design, Using the pipeline_design Command

	Command Syntax and Variable Syntax
	The balance_registers Command
	The optimize_registers Command
	The pipeline_design Command
	The set_balance_registers Command
	The set_optimize_registers Command
	The set_register_type Command
	The set_transform_for_retiming Command

	Index
	A
	B
	C
	D
	E
	F
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	V

