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Preface 

A Delta-Sigma (AS) Modulator is a relatively simple system, which, 
however, has attracted the interest of many and very important research 
workers and professionals over the past 40 and more years. It is an 
academically challenging system, because it involves analog and/or 
digital issues for its study and implementation. Most important though is 
the practical aspect of it, because of its robustness and the number of 
important applications among which its use in the design of Analog-to-
Digital Converters and Digital-to-Analog Converters predominates. A 
great number of research and tutorial papers as well as excellent books 
have been published. Although the topic of AS Modulation has 
undoubtedly reached a considerably high state of maturity, the literature 
nevertheless continues to be enriched with new and scientifically sound 
contributions to this topic. 

The extended literature on AS modulation has been one of the main 
reasons behind the decision of these authors to write this book. They felt 
the need to assist the newcomer professional, the advanced final year 
First Degree in Electrical Engineering students and early postgraduate 
students in getting easier involved with this topic. The book covers the 
most important issues associated with the study, design and 
implementation as well as some important applications of AS 
modulators. 

The content of the book refers nearly exclusively to all issues applied 
to single-bit, single-stage AS modulators for reasons of simplicity in the 
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VI AZ Modulators 

presentation and design popularity. Oversampling and noise shaping, 
noise modeling, system architectures, noise transfer function derivation, 
stability considerations, design implementation and practical 
imperfections, stabilization techniques, application of AS modulation to 
the design of data converters, frequency synthesis etc. are the main issues 
examined to some detail. Moreover the issue of low power systems is 
explained briefly. Practical design examples are given for those readers 
who would be interested in reproducing in their laboratory the designed 
circuits using discrete components. These include low-pass and band­
pass single-bit AS modulators. 

It has been attempted to make the book educationally rather than 
research oriented. A number of solved examples have been included in 
the text, where it was felt necessary, while unsolved problems can be 
found at the end of each chapter. Extended bibliography is also given at 
the end of each chapter to help the interested reader get a deeper 
understanding of the various issues described in the text. Finally, a web 
site has been built relevant to the book with the purpose of bringing the 
authors and the reader in close contact. The visitor to the site will find 
information about the book, possible misprint corrections, solutions to 
the unsolved problems etc. in the following address: 

http://www.ellab.physics.upatras.gr/ 
Preparing a manuscript is not an easy task, especially when the 

authors belong to three different generations as these authors do. 
However, the fact that the three younger ones had been both 
undergraduate and postgraduate students of the eldest (T. Deliyannis), 
coupled with the traditional respect that well brought-up Greek students 
feel towards their seniors, simplified this task. 

Therefore, the completion of the manuscript was achieved in an 
amicable and co-operative atmosphere. It is with great pleasure that the 
senior author acknowledges the important contribution of each one of his 
co-authors in preparing the manuscript and expresses his gratitude to 
them for offering him the satisfaction of terminating his official 
university career in coincidence with the publication of this book. He 
also expresses his thanks to A. Doyle and Yeow-Hwa-Quek for making 
all necessary arrangements for the publication of the book as well as to 
Professor A.G. Constantinidis of Imperial College, London for many 

http://www.ellab.physics.upatras.gr/
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useful discussions and his encouragement. Drs N. Kouvaras and D. 
Lagoyiannis are gratefully acknowledged for their earlier collaboration 
with this author in Delta Modulation and for their assistance in his 
research in the subject of the book. Thanks are also due to V. Boile for 
typing chapter 1 and other minor parts of the manuscript. The married 
authors (T.D, V.A. and A.P.) express their thanks to their spouses 
Myriam, Maria and Efi respectively for their patience and understanding, 
particularly when many professional and personal needs had to be left 
aside in order to give priority to the preparation of some urgent parts of 
the manuscript. The other author (G.B.) thanks his parents for their love 
and understanding. 

GB Patras 
AP Athens 
VA Patras 

TLD Patras 
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Chapter 1 

Introduction 

1.1 Modulation - Demodulation 

Information is transferred from its source to the receiver through a 
channel. For this link to be successful certain rules have to be obeyed and 
requirements to be satisfied. In telecommunications the information is 
carried by a signal, voltage, current or electromagnetic wave. The 
initially produced signal, in order to deliver the information to the 
receiver accurately and safely, when passing through the channel, should 
not be contaminated by any type of unwanted signals, noise for instance. 
To avoid this possibility, before entering the channel, the signal is 
processed in order to take a form that will guarantee the accurate and safe 
delivery of the information it carries to the receiver [1]. The processing 
includes amplification but, most important, a type of transformation 
called modulation, under one of the schemes referred to as Amplitude 
Modulation (AM), Frequency Modulation (FM), Phase Modulation 
(PM), Pulse-Code Modulation (PCM), Differential PCM (DPCM), Delta 
Modulation (DM), Delta-Sigma Modulation (AS), etc. 

In AM, FM and PM a carrier (high-frequency sine wave) has its 
amplitude, frequency or phase respectively modulated i.e. changed by the 
information carrying signal in the modulating circuit or system. 

In PCM the initial signal is converted to pulse trains representing 
digital words, which correspond to samples of the signal usually obtained 
at equally spaced time intervals. In DM the difference in the signal from 
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2 AX Modulators 

sample to sample is quantized and transmitted through the channel. 
Finally, in AS Modulation it is the integral of the difference between the 
information carrying signal and the modulator output signal that is 
quantized and then transmitted through the channel. 

To convert a continuous-time signal to PCM a circuit called Analog-
to-Digital Converter (ADC) is required. There is a number of various 
methods in use to build an ADC. One of them is using the AS modulator, 
which has been proved very successful in this application. 

The reverse process of modulation is to extract the information from 
the modulated signal. This process takes place in the receiver, is called 
demodulation, and is performed by the demodulator. In the case of a 
PCM signal, the process of extracting the information in the form of an 
analog signal is called Digital-to-Analog Conversion and requires the use 
of a Digital-to-Analog Converter (DAC). One method for building a 
DAC involves the use of AS Modulation and this proves once more the 
usefulness of this type of modulation. 

Studying the various parameters related to AS Modulation and some 
of its numerous applications is the objective of this book. 

1.2 AS Modulation 

The Delta modulator was proposed in late forties [2] as the simple 
feedback loop shown in Fig. 1.1, for converting a low frequency analog 
signal into a bit stream which could be easily transferred through noisy 
channels. In early fifties the modulator was extensively studied and 
analyzed [3-6], whereas much work was done in the following years [7]. 
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Fig. 1.1 The Delta Modulator 
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The binary pulses y(n) produced by the Delta modulator represent 
the sign of the difference between the input and feedback signals, hence 
the prefix delta. The integrator plays the role of the decoder so that the 
feedback signal xp(t) would be always approximating the input analog 
signal x(t). Consequently, the decoder circuit at the receiver should be 
exactly the same. The number of positive or negative pulses at the output 
bit stream depends on the slope of the input signal hence the name of the 
Delta-Modulator. The linear Delta-Modulator is difficult to be analyzed 
since the quantizer is a non-linear device. Furthermore, slope overload 
[7] is one of the drawbacks of Delta modulator, as this encoder cannot 
respond to fast changes of the input signal. To overcome this problem an 
integrator can be used in front of the Delta modulator to limit the 
amplitude of high frequencies. The use of the integrator results in 
encoding the integral of the input signal (summation - Z) and thus the 
resulting modulator is called Delta-Sigma or AZ modulator. The output 
bit stream is now related to the amplitude of the signal itself. The circuit 
of the AZ modulator can be simplified if the two integrators are moved 
inside the loop as shown in Fig. 1.2. The decoder for the AZ modulator is 
just a low pass filter. 

x(t) 

Analog input &u Sampler 

— • > -
y(n) 

Quantizer 
u One bit 

digital 
output 

Fig. 1.2 The AZ modulator 

The Delta as well as the AZ modulators are oversampling converters in 
the sense that the sampling frequency is higher than twice the Nyquist 
frequency. As a result, the quantization error power is spread over a 
wider area of frequencies, compared to the signal power that remains 
within the signal band. Clearly, the circuit of AZ modulator behaves 
differently for the quantization error and the signal. This fact may require 
the realization of complicated transfer functions instead of the single 
integration, so that the signal would pass unaltered through the 
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modulator, while the quantization noise was high-pass filtered. In this 
way the quantization noise is separated from the signal in the frequency 
domain and can be removed by a high precision digital filter [9]. Using 
continuous-time or discrete-time circuitry AS modulators of various 
orders and characteristics can be built [10]. These modulators 
accompanied with high-precision digital filters for the quantization noise 
removal can lead to Analog-to-Digital conversion circuits of high 
resolution [11]. 

The main advantage of AS modulators is that they offer a very good 
separation of the input signal from the quantization noise due to 
oversampling and noise shaping. Thus, employing high precision digital 
circuitry a high quality digital signal can be obtained. With contemporary 
technology 24-bit Analog-to-Digital converters can be built for audio 
frequencies based on AS converters. Signal bandwidths of 20 MHz can 
be encoded with 8 bit accuracy. Nevertheless, component non-idealities 
and other sources contribute to an increased noise floor in the digital 
signal. Various techniques can be employed for circuit matching and 
optimizing modulator performance [10]. 

1.3 Design and Implementation of AH Modulators 

Each AS modulator is characterized by its order. The one shown in Fig. 
1.2 is a first-order in accordance with the order of the integrator. As it 
was mentioned in the previous section, to improve the design more noise 
power from the signal band has to be shaped, i.e. to be pushed out of the 
signal frequency band. To achieve this the integrator is replaced by a 
suitable filter, low-pass or band-pass, which has higher selectivity than 
the simple integrator. The order of this filter will determine the AS 
modulator order, the two orders being the same. Thus a third-order AS 
modulator will employ a low-pass filter of third-order. The transfer 
function of this filter should be such that it will shape the noise spectrum, 
however leaving the signal spectrum unaltered. This function is the so-
called Noise Transfer Function (NTF) and can be obtained from the 
existing lists of such functions, as Butterworth, Chebychev and Inverse 
Chebychev etc. or by optimization. 
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The next step in the design of a AS modulator would be to realize 
this NTF using one of the well-known methods for filter design. Here the 
technology has to be chosen on the basis of the requirements. Thus the 
filter can be realized as a continuous-time or as discrete-time circuit. 
There is an abundance of such circuits cited in the literature [12-14] and 
the designer should select the one they consider more suitable for their 
application. Depending on the signal frequency range and the 
oversampling frequency as well as on other criteria, the circuit of the 
filter can be implemented as an integrated circuit or using discrete 
components. 

One characteristic of the AS modulator of main importance is the 
ratio of the signal power over the power of the quantization noise lying 
inside the signal band. This Signal-to-Noise Ratio (SNR) depends on 
both the signal power and the effectiveness of the filter in reducing the 
noise power inside the signal band. Unfortunately the magnitude of the 
signal cannot be unlimited. Assuming the signal to be a pure sinusoid for 
example, its amplitude cannot be increased beyond a certain value, 
because then instability will occur and the modulator will become 
useless. So a figure of merit in a AS modulator design will be the highest 
amplitude of the input signal before instability occurs, coupled with the 
corresponding maximum value of the achieved SNR. 

The first-order AS modulator shown in Fig. 1.2 is always stable. The 
problem of instability occurs in single-bit, higher-order modulator 
circuits, which are implemented in one-stage. To avoid the occurrence of 
instability it is possible to implement the high-order single-bit AS 
modulator by properly cascading first-order stages. Although the 
problem of instability is solved this way, matching of the cascaded stages 
becomes necessary if the SNR is to be high. On the other hand, various 
stabilization methods have been developed [10] through which the 
amplitude of the input signal can be increased to some extent. 

Apart from single-bit, multi-bit AS modulators have been suggested 
offering certain advantages. However, the single-bit ones are more 
popular, mainly because of the simplicity of their implementation. 
Hybrid as well as adaptive AS modulators have also been proposed, 
which are considered advantageous in certain applications. Regarding the 
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requirements in voltage and consumed power, low-power, low-voltage 
AS modulators have been proved practical. 

1.4 Applications 

AS modulators have been employed in numerous fields of signal 
acquisition and processing, with dominating the one of ADC and DAC 
converters [15]. ADCs and DACs based on AS modulators have been 
devised for conversion in various frequency bands and resolutions. 
Accordingly, for low frequency signals, such as those met in medicine 
(ECG), resolution of 24 bits is achieved. For audio frequencies 20 bits is 
nowadays a typical resolution, while 14 bit ADCs are available for 
encoding signals with over 1 MHz bandwidths. Higher bandwidths 
necessary for video signals can be achieved by means of AS modulators 
employing lower oversampling ratios. 

An ADC is employed in a digital radio receiver at the IF stage. 
Band-pass AS modulators have been extensively used to efficiently 
digitize the IF signal, exhibiting interesting characteristics for the 
suppression of out-of-band noise and channel selection [16,17]. An 
interesting application of AS modulation is found in frequency synthesis 
as well as in frequency and phase demodulation [18,19]. In these cases, it 
is combined with a Phase-Locked Loop (PLL). Furthermore, AS 
encoders are employed for implementing digitally programmable analog 
oscillators thus minimizing both the analog and the digital circuitry [20]. 

Many companies worldwide are involved in high-speed and/or high-
resolution AS modulators design and implementation [11,21]. Various 
types of integrated AS encoders are available on the market, including 
low-voltage low-power 16-bit or 24-bit multi-channel ADCs, 24-bit 
signal conditioning ADCs, low noise, high dynamic range as well as ICs 
incorporating seventh-order AS encoders [10]. As the CMOS technology 
feature size is continuously decreasing, AS ADCs will operate at higher 
frequencies and finer resolution. In the meantime new application areas 
for AS modulation are emerging some of which are driven by the 
wireless (mobile telephony and GPS facilities) and the Internet market 
[21]. 
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1.5 Book Organization 

The book is organized in 9 chapters including the present one which is 
introductory. Each chapter starts with an introduction and finishes with a 
summary of comments and conclusions, followed, in some chapters, by 
unsolved problems and bibliography. Solved problems are also included 
in each chapter. 

Chapter 2 contains mostly background material on Analog-to-Digital 
Conversion and should be useful to the reader who is not an expert in 
digital signal processing. Basic concepts, like sampling and the sampling 
theorem, aliasing and the antialiasing filter, spectral images, quantization 
and the resulting quantization noise, characteristics under consideration 
when one studies A/D conversion, are briefly reviewed. Sampling of 
band-pass signals is also looked at. Then the effect of oversampling on 
the power spectrum is explained and the Delta Modulator, Linear and 
Exponential, is introduced as a system taking advantage of oversampling 
and prediction. The advantageous use of oversampling for the reduction 
in quantization noise is further improved by applying the principle of 
noise shaping to the oversampled signal. The latter serves as preliminary 
for the introduction to the concept of AS modulation, which is the object 
of the following chapter 3. 

Chapter 3 is of primary importance in this book, because it contains 
the architectures of the various AS modulators. It starts with the 
introduction of the first-order AS Modulator, which is analyzed, and its 
performance compared with that of the Linear and the Exponential Delta 
modulator, mainly for educational purposes. Then it extends this 
modulator to the second- and higher-order single-bit, single-stage 
modulators. The stability problems, which incur in the latter, are revealed 
and as alternative the multistage high-order AS modulators are 
considered. Various other type AS modulators, like multi-bit, hybrid and 
adaptive, are briefly introduced. Finally, the Band-pass AS modulator, 
which is of high importance for the development of digital radio, is 
examined. 

The objective of Chapter 4 is to design Noise Transfer Functions 
(NTF), which achieve an optimum trade off between maximum Signal -
to-Noise Ratio, SNRmax, and maximum amplitude xmax of the input signal 
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before the modulator becomes unstable. For this purpose, first the well 
known models for the quantization noise of the single-bit, single-stage 
AS modulators, namely, the Linear and Quasi-Linear models, are 
reviewed. Then the characteristics of a "good" NTF are stated. The 
stability of AS Modulators is also examined and relevant criteria are 
given. Based on this knowledge and following an optimization 
procedure, useful NTFs are derived, which are proved advantageous with 
regard to the SNRmax -xmax trade off when compared to other NTF 
families. 

Chapter 5 deals with the design and implementation of AS 
modulators used in Analog-to-Digital Conversion. First the various 
stages in the AS Modulator block diagram are identified. Since 
integrators are the basic stages in the implementation of the loop-filter, 
their realization as continuous-time and discrete-time circuits is 
presented. Besides, the implementation of the required local ADC and 
DAC is explained. A section is devoted to explaining how a continuous-
time filter can be used to implement the discrete-time function required 
in the design of a AS modulator. Then we proceed with the 
implementation of AS modulators of orders 1 up to 4 giving the detailed 
circuit diagrams for both discrete-time and continuous-time realization. 
For some of these circuits we present experimental and simulated plots of 
the SNR (against the amplitude of input signal). The relevant 
experimental procedure is explained for those readers who would like to 
repeat the experiments or to test their own circuits. Finally, the case of 
low-power, low-voltage AS modulators is briefly reviewed. 

In chapter 6 various undesirable effects on the performance of the AS 
Modulator are examined. These effects, which are caused by the non-
ideality of the components, concern the Switch Capacitor as well as the 
Continuous Time implementations. The component imperfections do not 
cause the same problems and of the same severity to both 
implementations. Thermal and flicker noise, pulse jitter, opamp 
imperfections (namely, finite open-loop gain, slew-rate, settling-time) as 
well as the local DAC non-linearity (mainly of concern for multi-bit AS 
modulators) are main factors that affect the performance of a AS 
modulator. In some cases certain remedies are suggested. 
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The stability and tonal problems of higher-order, single-stage AS 
modulators encountered throughout this book are considered in detail in 
Chapter 7. These modulators tend to become unstable as the magnitude 
of the input signal approaches a certain value, which is characteristic of 
each modulator circuit. In multi-bit AS Modulators this critical 
magnitude is increased compared to that for the single-bit modulators of 
same order. Additionally, the noise can drive the modulator to instability 
even if the magnitude of the input signal is constrained. To overcome 
these problems, stabilization methods are presented and compared. The 
appearance of tones at the output sequence is then considered. These 
tones are troublesome even if the Signal-to-Noise Ratio is high. This 
problem is also examined in chapter 7, where some methods to suppress 
the tones are presented. 

One of the most important applications of AX modulators is in the 
design of Analog-to-Digital Converters (ADC) and Digital-to-Analog 
Converters (DAC). In this use the AS modulator is followed by the 
necessary circuitry to reduce the sampling rate, since the modulator 
signals are oversampled. This process is called decimation. On the other 
hand the input signal to the DAC is sampled at low rate, which will have 
to be increased if it is to be processed by the AS modulator. The process 
is called interpolation and together with decimation is referred to as rate-
conversion. Various types of rate-conversion are examined in chapter 8 
and suitable filters for achieving this are discussed. Finally, full ADC and 
DAC systems based on AS modulation are presented. 

The last chapter of the book is chapter 9, where some important 
applications of AS modulation are presented, apart from the ADC and 
DAC, which are discussed in chapter 8. Digital radio today makes use of 
AS modulators and this application is presented first. Frequency 
synthesis is another application, where the AS modulator operates in 
combination with a Phase-Locked-Loop. Digitally programmable clocks 
with reduced jitter and oscillators with high accuracy in the generated 
frequency have highly benefited by the inclusion of AS modulators in 
their circuitry. All these applications are reviewed in this chapter 9. 
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Chapter 2 

Analog to Digital Conversion 

2.1 Introduction 

Most signals in nature are of analog form representing the continuous 
variation of physical quantities in time or in space [1,2]. Representative 
examples are the sound, the temperature, and various types of images, 
medical signals and seismograms. The processing of these signals is 
more effectively performed in the digital domain. Digital Signal Process­
ing (DSP) techniques [3] present serious advantages over analog process­
ing. Among them the following are prominent: 

a. High accuracy 
b. Loss-less and high-density storage with perfect reproducibility 
c. Flexibility and high performance in realizing various functions 
d. Low cost 
e. Small size, low power consumption and high throughput rate 
f. High reliability. 
Analog-to-Digital Converters as well as Digital-to-Analog Convert­

ers (DACs) [5,6] are very essential electronic components, since they act 
as interface between the digital system and the real world as shown in 
Fig. 2.1. The Analog-to-Digital Conversion process aims at the represen­
tation of an analog signal by a sequence of binary numbers (digital sig­
nal). The digital signal can be easily processed (digital signal process­
ing), transmitted (digital transmission), stored or converted back to ana­
log signal, so that it could be properly detected by the real world sensors. 

12 
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Analog-to-Digital Conversion can be carried out using the conven­
tional Nyquist converters or those, which are based on other techniques. 
Conventional high-resolution A/D converters, such as successive ap­
proximation and flash type converters, operating at sampling frequency 
approximately equal to twice the maximum frequency in the input signal 
(Nyquist rate), often do not make use of the exceptionally high speeds 
achieved with VLSI technology. Additionally, the analog circuitry re­
quired in conventional A/D converters limits their accuracy in represent­
ing the digital signal. High precision successive approximation tech­
niques achieve up to 12 or 14 bits accuracy for the digital samples, while 
in the case of flash type converters this accuracy is smaller [7]. In various 
applications, such as high fidelity audio systems, the above accuracy is 
inadequate, resulting in poor performance of the system. 

x(t) 

Analog 
ADC 

Signal 
Digital 
Signal 

Digital Signal 
Processing 

~m°:«*** 

Digital Stora'j'.' 

Digital 
Transmission 

DAC 
x'(t) 

Analog 
Signal 

Fig. 2.1 ADC and DAC is the interface between digital systems and real world. 

Delta-Sigma (AZ) modulation based analog-to-digital (A/D) conver­
sion technology is a cost effective alternative for high resolution (greater 
than 12 bits) converters, which can be ultimately integrated with digital 
signal processor ICs [5,6,8]. Although the delta-sigma modulator was 
first introduced in 1962 [9], it did not gain importance until recent devel­
opments in digital VLSI technologies. AS A/D converters use a low reso­
lution A/D converter (1-bit quantizer), noise shaping and oversampling 
rate (64 times is a typical value). As the signal is oversampled and the 
quantization noise is shaped out of band, high resolution is achieved by 
decimation (sample-rate reduction). 

In this chapter first the basic operations required for such conversions 
are introduced and explained. They include sampling, quantization and 
encoding. Next, the resulting quantization error and the Signal-to-Noise 
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Ratio are studied. Then oversampling is discussed and the A modulator is 
presented and studied briefly being considered the forerunner of the AE 
Modulator. 

2.2 The Basic Concept of A/D Conversion 

The Analog-to-Digital Conversion process involves two consecutive 
operations on the original analog signal. The first is uniform sampling 
whereas the second one is uniform quantization [4,10]. The implementa­
tion of these operations is carried out by means of special circuitry, 
which is essential in building A/D Converters. After that, the encoding 
follows which gives the final digital signal. All the steps required in a 
conventional ADC are depicted in Fig. 2.2. 

Conventional 
Analog-to-Digital Converter 

x(t) 

Analog 
signal 

A 

h 
Anti-aliasing 

filter 

, \ 

u 
Sampler 

xfnTJ 
Mp 

1—' 

M-level 
Quantizer 

x„(nTJ 
Encoder 

ydn) 

Digital signal 
(B-bit word) 

Fig. 2.2 Block diagram for conventional analog to digital conversion 

According to Fig. 2.2. the input signal x(t) is initially sampled at uni­
form time intervals Ts by means of the sampler circuit. The resulting 
sequence x(nTs) or simpler x(n) is called the sampled signal. In order to 
avoid loss of information the sampling rate/J has to be at least twice that 
of the signal bandwidth. An antialiasing filter is used before the ADC to 
guarantee this condition. Each sample x(n) will be finally converted to 
the digital signal y/n) which is a B-bit word. These B bits, which deter­
mine M=2B distinct equidistant levels in the full dynamic range spanned 
by the converter, characterize its quality. Initially, the samples x(n) are 
quantized, in the M-level quantizer, which means that their values are 
rounded to reach the closest quantization level. After that each quantized 



Analog to Digital Conversion 15 

sample is encoded to the corresponding B-bit binary word. The whole 
process is discussed in the following sections. 

2.3 Uniform Sampling 

The sampling process is essential for the analog signal to be recorded 
without loss of information. The condition that has to be fulfilled for a 
lossless sampling is the well-known sampling theorem: 

If the highest spectral component of the signal isf, the signal has to 
be sampled at least at a sampling ratef twice the size off i.e. 

f>2fb (2.1) 

If, for example, a band-limited signal with highest frequency equal to 4 
kHz has to be converted to digital, a sampling rate of at least 8 kHz is 
necessary. In case the sampling rate is lower than the one specified by the 
sampling theorem, the obtained sampled signal contains, at low frequen­
cies, illusory spectral components. This phenomenon is called aliasing. 
As a result the initial analog signal cannot be reliably reconstructed from 
its samples. 

The analysis of the sampling theorem and a deep insight in the sam­
pling process requires some basic concepts from the Fourier analysis 
[11]. The ideal sampling is examined by means of the schematic repre­
sentation shown in Fig. 2.3. The analog signal x(t) is band-limited with 
spectral contents in the range f-ftjij. This input signal is sampled uni­
formly using the infinite train of impulses p(t): 

00 

p{t)=Y^S{t-nTs) (2.2) 
H = - 0 0 

This is achieved by means of the ideal sampler shown in the same Figure. 
The sampler is controlled by the pulse train p(t) and is considered ideal in 
the sense that the pulse train is an ideal signal, not easily realizable. The 
signal x '(t) at the output of the sampler consists of equally spaced sam­
ples obtained from the multiplication of x(t) by p(t): 

00 00 

x'(t) = p(t)-x(t)= Y, x(t)S(t-nTs)= ^ x(nTs)S(t-nTs) (2.3) 
n=-oo n=-oo 
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On the left side of Fig. 2.3 the signals x(t),p(t) andx'(t) are shown and 
on the right of the same Figure their spectra. The spectrum X(f) ofx(t) is 
band-limited while the spectrum of p(t) is also an impulse train in the 
frequency domain with distance between the impulses fs=l/Ts. This 
means that the denser the sampling impulse train is getting the sparser the 
corresponding spectrum becomes. 

Ideal Sampler 

x(t)- <s> ~x'(t)=x(t)p(t) 

Time domain P(t) Frequency Domain 

p(t) 

L 
w 

\ f 

J L 
-2f, -fs 

S M=-QO 

i T 
*l/Ts—fs 2f, 

0 
Irm n\ r 

X'<J) = yYJX(f-nfs) 

\r\ 
-2f, -fs 0 /, 2f, 

Fig. 2.3 The sampling processes of an analog signal results in a periodic spectral content 
for the sampled signal. 

Finally, the spectrum of the signal x '(t) is the convolution of the spec­
tra of the signals x(t) and p(t), since multiplication in the time domain 
implies convolution in the frequency domain. As a result of the convolu­
tion process, the spectrum X'(f) of the signal x '(t) is a periodic repetition 
of X(f) with period,/J=7/7;, which is the period of P(f). The spectrum of 
x '(t) consists of the frequency band of the initial signal as well as the 
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repetition of this band, which extends theoretically to infinity. The new 
bands are called 'images' of the initial band. The first of them is centered 
at/,. 

In case the initial analog signal is to be reconstructed, all the 'images' 
have to be eliminated. This can be achieved using some kind of low-pass 
filtering with cut-off frequency in the middle of the range [0,fs]. This 
presupposes that the 'images' do not overlap, or, otherwise, the spectral 
power created from the sampling process will not be spread into the base 
band. To marginally avoid such an overlapping of the images, as it can 
be easily concluded from Fig. 2.4, the value of/ must be at least double 
the higher frequency fb in the signal. This is actually what the sampling 
theorem states. 

Folding Sampling 
frequency 

Signal 
band N ^ 

0 UU fs/2 fx fs 

Fig. 2.4 Aliasing. The frequencies of the analog signals, which are above f/2, are found 
in the reconstructed signal at a lower frequency, symmetric with reference to the so-
called 'folding' frequency^/2. 

However, if overlapping occurs, then spectral energy of the first im­
age enters the original signal band. In this case every frequency compo­
n e n t / in the original analog signal, which is greater than / /2 , cannot be 
resolved in the reconstructed signal in its proper position. It appears 
folded around fs /2 (folding or Nyquist frequency) in a new lower fre­
quency posi t ion/- / . Thus the initial analog signal cannot be properly 
reconstructed. In the example of Fig. 2.5, s ince /=5/ /6 , it appears in the 
reconstructed signal a t / - / = / / ( 5 o r / / 5 . The phenomenon is non-linear 
and is called 'aliasing' as we saw above. It is depicted graphically and 
explained theoretically in Figs. 2.4 and 2.5, respectively. 

The aliasing can only be prevented by properly low-pass filtering the 
input signal up to the Nyquist frequency. This low-pass filter, included in 
Fig. 2.2, is called the anti-aliasing filter. Its response must be flat over 
the frequency band of interest (base band) and attenuate the frequencies 
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above the Nyquist frequency enough to bring them under the noise floor. 
Since the analog anti-aliasing filter is a limiting factor in controlling the 
bandwidth and phase distortion of the input signal, a high performance 
anti-aliasing filter is required to obtain high resolution and minimum 
distortion. 

- f r - M T T T 
Fig. 2.5 The aliasing phenomenon. A high frequency component^ (solid wave) is sam­
pled with sampling frequency 6j'J5. The frequency of the reconstructed signal (dashed 
wave) is//5. 

In addition to an anti-aliasing filter, a sample-and-hold circuit is re­
quired. Although the analog signal is continuously changing, the output 
of the sample-and-hold circuitry must be constant between samples so 
that the signal could be quantized properly. This allows the converter 
enough time to compare each individual input sample with the internally 
generated reference levels [7], in order to give a more reliable digital 
output signal. Furthermore, the impulses p(t) are not realizable. In prac­
tice they have a finite width, which affects the spectrum of the digital 
signal. Consequently, the sampling process in practice is not the ideal 
one shown in Fig. 2.3. 

The signal is sampled and held constant for all the time period Ts. 

The impulse response h(t) of the sample-and-hold circuit is a pulse of 
height 1 and width Ts. Its spectrum H(f), shown in Fig. 2.6.a, is 

H(f) = e'i7^5 sin(7i jTs) l{jtf) • Therefore, the spectrum of the sampled 

signal (Fig. 2.6.c) is that of the ideally sampled signal (Fig. 2.6.b) modu-
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lated by the function | / / ( / ) | . Obviously, this process significantly dis­
torts the base band of the signal. This distortion is equalized during the 
reconstruction process by means of a specially designed low-pass filter 
(Fig. 2.6.d). 

W(D\ 

-ft 0 ft f 
Fig. 2.6 a. Frequency response of the holding circuit, b. Spectrum of the ideally sampled 
signal c. Spectrum of the sampled signal and d. Low-pass reconstruction filter. 

Example 1.1 An analog signal x(t) is given in the time domain as fol­
lows: 

x(t)=2-cos(800-x-t) Volts 
Determine the frequency of the reconstructed analog signal if the sam­
pling rate is 500 Hz. 

Solution The argument of the cosine term corresponds to 2fxM. Accord­
ingly the frequency of the signal equals 400 Hz. This signal is not prop­
erly sampled by the sampling rate of 500 Hz and using Fig. 2.4 it is con­
cluded that a frequency component is recovered at fs-fx=100 Hz. 
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2.4 Quantization Error and the Linear Model 

The sampling process in an ADC is followed by the quantization process. 
The quantization is the conversion of a continuous valued sample x 
(which has infinite resolution by definition), into one of a finite set of 
discrete values qh The value x varies in the interval (xmimxmw), while qt 

takes values from the set {qi,q2,—,qM}- The number M of the discrete 
values q-t is determined by the type of the quantizer and its transfer func­
tion q(x). For a uniform quantizer, two types of which are shown in Fig. 
2.7a and 2.7b, the sub-intervals A=qi+1-qi are equal. This quantizer is 
more commonly used, although it is not always the most efficient. For an 
efficient quantizer the sub-intervals A in the range x are determined on 
the basis of the probability density function (PDF) of x. 

The difference e(n)=qj(n)-x(n), which results when x(n) is approxi­
mated by qi(n), is called quantization error and depends on how the sig­
nal is being approximated. The quantization error is of the order of A and 
can be quite small compared to full-scale (FS) signals, depending on the 
number of the quantization levels. A full-scale signal has a peak-to-peak 
variation equal to (xmax- xmin). If the input signal exceeds this value, con­
version is not properly carried out (overload case), while the quantization 
error becomes larger than A (see Fig. 2.7c). On the other hand, as the 
input signal gets smaller, the quantization error becomes a higher per­
centage of the total signal. 

Since the final digital signal is represented by a binary number of B-
bits, a total of M=2B quantization levels are available. Assuming that the 
sequence x(n) is scaled such that I x(n) \ < 1 for fractional number repre­
sentation, the pertinent dynamic range is 2. For a uniform quantizer, the 
interval between successive levels, A, is therefore given by 

A = - ^ ~ (2.4) 

which is called the quantization step size. The sampled input value x(n) is 
then rounded to the nearest level. The procedure is demonstrated in Fig. 
2.8, for the simple case of representing the signal samples with a 3-bit 
word. The full signal range contains 23=8 equidistant levels. The quanti­
zation step A is considered equal to 1, which is 1/7 of the total range. 
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Thus the quantization error, being of the order of A, corresponds to an 
error of one least-significant-bit (LSB) of the digital signal. In the quan­
tization process the initial value of each sample is altered so that it can 
reach the closest level. This alteration gives rise to the quantization error 
e(n), which has maximum absolute value 0.5A. If the converter has a 2V 
input dynamic range then A=0.29V and the quantization error is unac-
ceptably large. However, if a 16-bit A/D converter is used, which is the 
standard for high accuracy A/D converters, a total of 2I6-1 = 65535 dif­
ferent reference levels are available. For a converter with a 2 V input dy­
namic range, the spacing of these levels is only 30 fdV apart. 

No overloading region 
(c) 

Fig. 2.7 a. Transfer function of a uniform quantizer with 7 levels. One of them is the 
zero-level (midread). b. Transfer function of a uniform quantizer with 6 levels (midriser) 
c. Quantization error as a function of the input signal x (midriser case). 
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From Fig. 2.8 it follows that the ADC output xq(n) is the sum of the 
sampled signal x(n) and an error component e(n), which is called quanti­
zation noise. Then 

xq(n) = x(n) + e(n) 
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Fig. 2.8 In the quantization process the values of the samples are rounded to the closest 
available level and then are represented in the respective binary code. The alteration of 
the initial samples results in the quantization noise e(n). 

Accordingly, the quantization process can be considered to be a lin­
ear operation as shown in Fig. 2.9. In practice of course, this is not true, 
since the quantizer is a non-linear circuit. However, the linear model for 
the quantizer can be employed when the number of quantization levels is 
large and equally probable. In this case the quantization noise e(n) is 
almost uncorrected with the input signal, has a white spectrum and its 
probability density function (PDF) is uniform in the range [-A/2, A/2]. 
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Consequently, the quantization error can be regarded as an independent 
additive white noise source. 

The quantization noise affects the quality of the signal. This is quan­
titatively expressed using the Signal-to-Quantization-Noise Ratio 
(SQNR), i.e. the ratio of the signal power over the power of the quantiza­
tion noise 

Signal Power 
SQNR = 

Quantization Noise Power 
(2.6) 

x(n) xq(n) x(n) / ^ Xq(n)=x(n)+e(n) 

Quantizer Linear model of the 
Quantizer 

Fig. 2.9 The linear model for the quantizer. The quantization error is considered to be an 
additive noise source. 

For an input signal, which is large compared to the quantization step A , 
the error term e(n) is a random quantity uniformly distributed in the in­
terval (-A/2, A/2). In this case its mean value is zero and its power is the 
variance cre given by 

A/2 A/2 

a2=E{e2}= $e2fe(e)de=^ \e2de^~ (2.7) 

-A/2 -A/2 

where E{} denotes statistical expectation. If the values of e(n) are as­
sumed uncorrected and identically distributed, the quantization noise is 
white and its power is spread uniformly over the entire frequency range 
\rfJ2,fJ2\ as shown in Fig. 2.10. Thus the power spectral density (PSD) 
of the noise N(f) can be expressed as 

W ) = 
12/, 

(2.8) 

For a sine wave input signal with full scale amplitude variation 

2A = (2B - 1)A, its power is A2/2 and the SQNR is expressed as 
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SQNR = 101og 
v A 2 /12 y 

slOlog 
' 3 - 2 2 ^ 

: (6.02-5 +1.76) dB (2.9) 

Consequently, for a sine wave signal with maximum amplitude, the 
maximum achieved SQNR and the quantization error possessing the 
above mentioned properties, depend on the number B of bits used to rep­
resent these samples. Specifically, 

Increasing the number of bits by one, the quality of the digi­
tal signal, represented by the SQNR, increases by 6 dBs. 

Furthermore, relationship (2.9) determines the maximum number of bits 
required for quantizing an analog signal with specific noise floor. So, if 
this noise floor is determined by a Signal-to-Noise Ratio (SNR) of 58 
dBs, 10 bits will be adequate for quantization. More bits in the digitiza­
tion accuracy would actually contribute to digitizing the noise. 

Quantization 
noise 

frequency 

Signal band 

Fig. 2.10 Power spectral density (PSD) at the output of the conventional ADC. The 
quantization noise spreads all over the signal band. 

Another quantity that characterizes the Quantizer is its dynamic 
range. It is related to its resolving power and depends on the smallest 
signal it can recognize and quantize. This signal is usually of the order of 
the maximum value of the quantization error. Accordingly, the dynamic 
range is expressed in bits as follows: 

dynamic range = log2 
A/2 

(2.10) 
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2.5 Sampling of Band-Pass Signals 

The sampling of band-pass signals is carried out based on the same prin­
ciples as those applied to band limited signals in Section 2.3. However, it 
can be shown, that for adequate sampling, it is the bandwidth of the sig­
nal that determines the required sampling rate [12]. In Fig. 2.11.a the 
spectrum of a band-pass signal is demonstrated. The signal consists of 
two symmetric spectral bands. The positive one (PB) is restricted within 
the frequency range I/O/H] resulting in a bandwidth 

B=ML (2.11) 

• 1*01 

I ™* fL fH Kr f 

(b) tyrjH 
Fig. 2.11 a. Spectrum of the band-pass signal, b. Images resulting from sampling proc­
ess must not overlap. 

The symmetric negative band (NB) displays similar characteristics. The 
sampling process will create 'images' of both bands. When fs<2fH, some 
of these 'images' will lie in the region [-fL, fL]. However, overlapping of 
the 'images' with the original bands must be avoided. Aliasing occurs 
when an 'image' of the NB overlaps with the PB. This simultaneously 
means that an 'image' of the PB overlaps with the NB. As it is shown in 
Fig. 2.1 l.b, in order to avoid overlapping of the PB with the k-th 'image' 
of the NB the band PB must lie between the (k-l)-th and the k-th images 
of NB i.e. 
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(k-\)fs-fL<fL (2.12a) 

kfs-fH>fH (2.12b) 

IffH is expressed in terms of B Le.fH=rB, substituting from (2.11) in 
(2.12) gives 

fs<2B{r-\)l{k-\) (2.13a) 

fs>2Brlk (2.13b) 

Equations (2.13) give the functions f\{r,k) = 2B(r-\)/(k-\) and 

f2(r,k) = IBrlk . These functions with variable r and parameter k divide 
the plane (fs,fu) in regions as shown in Fig. 2.12. For each k a different 
non-shaded area is obtained, containing the set of points (fStfn) for which 
aliasing is avoided, with/ / /and/ expressed in units of B. The lines/; and 
f2 always intersect, for r=k, on the line fs=2B. Consequently, the sam­
pling frequency cannot be smaller than 2B. 
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Fig. 2.12 Map for determining the sampling frequency for band-pass signals. White 
regions contain the appropriate points. 
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Example 1.2 Suppose that the spectrum of a band-pass signal lies be­
tween fi-7 and/H-9 kHz. Which are the appropriate sampling frequen­
cies? 

Solution The signal band is B=2 kHz. Therefore, fH=4.5B. Using Fig. 
2.12 we have to draw a vertical line on fH=4.5B. The prohibited regions 
are those parts of this line with ordinates in the aliasing zones. 

2.6 Oversampling Principles 

The high resolution and dynamic range requirements in modern signal 
processing cannot be fully satisfied by the conventional ADCs, because 
of limitations in their implementation. Specifically, the limitations of 
technology refer to the following: 
a. The implementation of uniform quantizers with a high number of 

quantization levels. For a successive approximation ADC with 16 bits 
accuracy, 2l6-65536 equidistant voltage levels must be determined. 
This can be hardly achieved with current VLSI technology. Although, 
LASER trimming techniques [13] improve this situation, they result 
in complicated Nyquist converters. 

b. The implementation of the analog anti-aliasing filter with very strict 
requirements, such as very narrow transition-band, high attenuation in 
the stop-band (>90 dBs), very small pass-band ripple (error), phase 
linearity, low noise etc. Such specifications cannot be achieved in 
analog integrated circuits. 

c. The presence of the jitter effect, i.e the uncertainty in timing of the 
clock pulse edges used in the sampler. 
One way of improving the situation is to increase the sampling rate 

many times higher than that of the conventional ADCs, i.e. above the 
Nyquist rate fN = 2fb. Of course this requires the various components 
of the ADC to operate at a much higher frequency. Sampling at a higher 
rate fs, higher than the Nyquist rate fN, is called oversampling. A 

measure of this oversampling is the Oversampling Ratio (OSR), R, de­
fined as follows: 
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R = ̂ f- (2.14) 
JN 

Usually, the value of OSR is taken to be a power of 2. If the OSR is be­
tween 2 and 16 we talk about a mild oversampling, whereas heavy over-
sampling occurs if the OSR is between 16 and 256. 

The result of the oversampling approach is graphically depicted in 
Fig. 2.13 for R=4. It is evident that the images of the signal band are not 
so close to one another and, consequently, the specifications of the an­
tialiasing filter can be relaxed. Furthermore, the quality of the digital 
signal, as far as the SQNR is concerned, is improved when oversampling 
is applied. This can be proved by means of Fig. 2.14. When oversam­
pling is used, the quantization noise power is distributed in a larger fre­
quency range. Consequently, the power of the part of the quantization 
noise lying in the signal band is reduced. The quantization noise lying 
outside the signal band can be eliminated by means of a high accuracy 
digital filter. Accordingly, for an oversampling converter with OSR=R 
and a full scale input sine wave, the SQNR is evaluated in dBs as fol­
lows: 

SQNRoversampling = lOlog / ^ = SQNRNyijuistlOlog(R) (2.15) 
(A l\.Z)IR 

" D Nyquist Sampler 

/* IN (a) 

Oversampling OSR=4 

• » / 

— ' S • / 

W fs=4fN 

Fig. 2.13 The oversampling process takes apart the images of the signal band. 
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The last equation shows that the SQNR can be improved by 3 dB if the 
sampling rate is doubled and the out-of-signal-band noise is eliminated. 
This improvement is equivalent to using half a bit in the resolution of the 
quantizer. It is evident that for digitizing audio signals, instead of using a 
Nyquist ADC with sampling rate of 44.1 kHz and 12 bit accuracy, an 
oversampling converter can be employed with sampling rate 
4x44.1=176.4 kHz with 11 bit accuracy. This process can be followed to 
reduce the accuracy of the ADC to one bit, but then the sampling rate 
should be increased to 44.1 kHz x 4U = 185 GHz. In fact this sampling 
rate is not realizable with present day technology. 

However, the 1-bit ADCs that are based on AZ modulators, achieve a 
higher improvement in the SQNR for each doubling of the sampling rate, 
since the quantization noise is almost totally moved out of the signal 
band by means of noise shaping techniques. Thus a high value for the 
SQNR can be reached for lower oversampling rates. This technique is 
discussed thoroughly throughout this book. In this chapter, the basic 
oversampling ADC of one bit, the Delta Modulator (DM), is introduced. 

Quantization noise in 
Nyquist converters 

Quantization noise in 
Oversampling converters 

0 IN/2 fJ2 

Fig. 2.14 When the sampling rate increases (4 times) the quantization noise spreads over 
a larger region. The quantization noise power in the signal band is 4 times smaller. 

2.7 The Delta Modulator 

In addition to the substantial improvement in the SQNR, oversampling 
possesses inherently the motivation for prediction. Specifically, the sig­
nal does not change significantly in the interval between successive sam­
ples when it is oversampled. This can lead to a reduction in the number 
of the quantization levels if the difference of two consecutive samples is 
encoded (Differential Pulse Code Modulation - DPCM). Since the values 
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of these samples are very close, they are highly correlated and therefore 
future samples could be predicted from the past ones. A modulator whose 
operation is based on this prediction principle is called predictive modu­
lator. The simplest predictive modulator is the Linear Delta Modulator 
(DM) and its simplified version the Exponential Delta Modulator 
[8,9,13]. 

The Delta Modulator is a 1-bit ADC that was initially developed for 
digitizing analog signals in noisy environments. Its basic advantage was 
its simple circuitry. An implementation architecture of the Linear Delta 
Modulator is shown in Fig. 2.15a (switched-capacitor [13]). A model for 
the circuit in Fig. 2.15a is depicted in 2.15b. In 2.15c the sampler is 
moved to the input allowing the discrete-time representation of the delta 
modulator. In Fig. 2.15d is schematically demonstrated the reconstruction 
of a signal after the transmission of the modulated signal through a 
transmission line. 

The DM shown in Fig. 2.15a (and 2.15b) consists of a Differential 

Loop, where the difference x(t)-xp(t) is quantized to give the output se­

quence y(n) so that the signal xp(t) should track the input signal x(t) all 

the time. The operation of DM can be better understood by means of Fig. 

2.16. During the initial stages of operation the predicted signal x (t) 

tries to catch up with the waveform x(t). This is the acquisition mode of 

operation. When this is achieved the predictor locks itself with the wave­

form x(t) (tracking mode) and can follow its changes with an error al­

ways smaller than \e(n)\ < A/2 . Nevertheless, if the signal x(t) changes 

quickly, faster than A/27^ , the predictor starts losing track of the wave­

form x(t). In this case slope overload results. When the signal x(t) 

ceases changing rapidly, the system will once more operate in the acqui­

sition mode for a while, until the tracking mode has been achieved again, 

etc. If the x(t) waveform is constant or nearly constant the delta se­

quence yd («) will become periodic with period 2TS. This is called 

Idling Pattern. 
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Fig. 2.15 a. Implementation of a Delta Modulator, b. and c. Equivalent block diagrams 
of the Linear Delta Modulator, d. Transmission and demodulation process. 



32 AS Modulators 

The condition for no slope overloading is 
A 

2T, 

dx(t) A 

dt 
If x(t) is a sinusoid, i.e. 

x(t) = V0sm{2jrft) 

we get 

^ = 2 ^ K 0 c o s ( 2 ^ ) s 2 ^ 0 
at 

Combining equations (2.16) and (2.18) gives for V0 

V < 
Anf 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

Thus the maximum value of input signal amplitude V0 depends on its 

frequency and becomes minimum when this frequency is fb. For this 

value we have 

/ , R 
(2.20) 

A/2 27tfb n 

According to Fig. 2.15.b the reconstruction of the signal is easily accom­
plished by means of a demodulation filter. However, this demodulation 
filter must be exactly the same as the one in the loop of the modulator 
(matched units). 

Acquisition 
Mode 

(Starting 
period) 

Overload 
Fail to track 

Tracking Mode 
Acquisition & 

Idling Pattern 

Fig. 2.16 Various signals in the Linear Delta Modulator circuit. 
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2.8 Performance of the Delta Modulator 

The performance of the Delta Modulator will be examined in this section 
employing the methodology used in the analysis of oversampling con­
verters. In this approach the SQNR is used as a quality criterion and is 
evaluated first. For this purpose the linear model for the quantizer is em­
ployed. Thus the delta modulator of Fig. 2.15 is drawn using the linear 
model, as shown in Fig. 2.17. 

E(z) 

X(z) U(z) 

+ 
Y(z) 

+ 
Xp(z) 2-Level 

Quantizer 

1-z' 

Fig. 2.17 Mathematical model for analyzing the Linear Delta Modulator, employing the 
linear model for the quantizer. 

Analysis of the above figure using the z-transform gives 
-l 

Y{z) = X{z)-
1-

-Y(z) + E(z) (2.21) 

Solving for Y(z), the DM can be described by means of two transfer func­
tions, namely the signal transfer function (STF) and the noise transfer 
function (NTF). Accordingly, the output Y(z) is expressed as follows: 

Y(z)=STF(z)X(z)+NTF(z)E(z) (2.22) 
where 

STF(z) = l-z~1 

NTF(z) = l-z~l 

At the receiver the DM sequence is demodulated by the demodulation 
filter l/(l-z~') and the original signal x(n) plus the quantization noise are 
obtained. The low-pass filter rejects the quantization noise lying out of 
the signal band improving the SQNR. Thus the SQNR is given by 

(2.23) 
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SQNR = -^- (2.24) 

In order to evaluate the quantities Ps and PeM, we consider first that the 
Delta Modulator is not overloaded. In this case (2.19) is valid and thus 

'L 
For the P. ,„ we have 

P < 
A2 ' < ^ 2 

32;r2 
(2.25) 

fb- \2 A 2 1 f A1 A2 1 

'--jiJir'-iiTr (226) 

-/* 
Consequently, the maximum value for the SQNR without overloading the 
modulator will be 

SQNRmax=^-
8TT2 

' / . ^ (2.27) 
v / y 

which depends on the frequency of the signal and takes its minimum 
value foxf=fb. 

2.9 The Exponential DM 

The exponential DM is based on the same principles as its linear counter­
part. However, it presents the following advantages: 

a. Its circuitry is simpler than that of the linear DM. 
b. The demodulation filter is not necessary and consequently there is 

no need for matching the two integrators. 
c. Only the low-pass filter is necessary for the reconstruction of the 

signal. 
Nevertheless, its analysis is more complicated than in the case of Linear 
DM and the functions STF(z) and NTF(z) are different from those given 
in (2.23). 

The implementation of exponential DM is depicted in Fig. 2.18. 
The only difference from the circuit implementing the Linear DM is the 
simple RC lossy integrator which replaces the ideal Lossless Discrete 
Time Analog Integrator. This ideality is very difficult to be implemented 
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and thus the exponential DM was mostly used instead of its linear coun­
terpart. 

The input analog signal x(t) is compared with the reconstructed 
waveform xp(t), and the output of the comparator is sampled by a D Flip-
Flop. The output sequence y(n) consists of positive and negative pulses 
such that the waveform xp(t) continuously tracks the input x(t). The lossy 
integrator is implemented by a simple RC circuit whose cutoff frequency 
is 

fcutoff = 1 /2^1 C, (2.28) 

1-bit ADC 

Edge Triggered 
D-Latch 
Flip-Flop 

Lossy 
Continuous-time 

Integrator 
1-bitDAC 

Fig. 2.18. Implementation of the exponential DM. 

If this frequency is higher than fb, i.e. if 

2nRxCx " 
(2.29.a) 
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or equivalent^ RXCX < (2.29.b) 

we can assume that the transfer function of the integrator will behave 
nearly as all-pass in the signal frequency band. Furthermore, overloading 
is to be avoided. For this purpose it has been proved [9] that the value of 
the time constant R1C1 must be 

2rfb 
Since, (2.29.b) and (2.30) should be valid simultaneously the time con­
stant should be 

#,(:,=—*— (2.31) 
2tfb 

2.10 The Concept of Noise Shaping 

The advantages of oversampling were analyzed to some depth in previ­
ous sections. At the same time an introduction to the concept of predic­
tion was given by means of an explanation of the operation of Delta 
Modulator. A further improvement in the SQNR can be achieved by 
pushing also most of the in-band noise, left after the oversampling, out­
side the signal frequency band as shown in Fig. 2.19. This is attainable if 
the STF(z) is all-pass whereas, and most important, the NTF(z) is high-
pass. This technique is called noise shaping and can be easily and effi­
ciently implemented by modifying the DM system. The idea is to try to 
encode the integral of the input signal rather than the input signal di­
rectly. Clearly, integration (and generally linear filtering) being a linear 
function does not affect the system function whether it is placed at the 
end of the system or at the beginning. This means that the demodulation 
integrator (or filter) can be placed at the input of the DM as well, as it is 
shown in Fig. 2.20a. Furthermore, for the same reason, the two integra­
tors in this Figure can be replaced by one placed inside the DM loop as 
shown in Fig. 2.20b. The significant modification of the DM system is 
that matching the two integrators, the analog and the digital, is not re­
quired any more, since the same integrator performs now the function of 
both. The new DM is called Delta-Sigma (AS) Modulator and achieves 
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quantization noise shaping i.e. it pushes the quantization noise outside 
the signal band as it is shown in Fig. 2.19. The letter Sigma (£) is signify­
ing the fact that the input signal is integrated first before entering the 
DM. If the integrator is substituted by a higher order linear filter, the 
Delta-Sigma Modulator will be of the same order with the filter. The 
analysis and the characteristic properties of the 1st and higher order AS 
Modulators will be studied in the next chapter. 

• PSD 
Quantization noise 

siLir:! Nyquist converters 

Quantization noise 
Oversampling coniverters_ 

Quantization noise 
Oversampling and noise 

shaping converters 

0 FN/2 frequency Fs/2 
Fig. 2.19 Spectrum at the output of a noise shaping quantizer loop compared to those 
obtained from Nyquist and Oversampling converters. 
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Fig. 2.20 Successive development of AX modulator. 

2.11 Summary 

In this introductory chapter the fundamental concepts of Analog-to-
Digital conversion were presented. The sampling and quantization stages 
in an ADC were examined in depth since they significantly affect the 
quality of the obtained signal. After that, the oversampling principle was 
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explained while its advantages and disadvantages were presented. Over-
sampling is a technique applied to get rid of a large amount of quantiza­
tion noise by spreading much of its power out of the signal band. 

The delta modulator, which is the simplest Analog-to-Digital conver­
sion circuit employing oversampling, is analyzed. This circuit is the 
predecessor of AZ modulators, which in addition employ noise shaping in 
order to separate almost all of the quantization noise from the signal of 
interest. In the next chapter a variety of AS modulators are presented and 
their operation is analyzed. 

Problems 

2.1 An analog signal x(t) is given in the time domain as follows: 
x(t)=2cos(800-n-t) Volts 

a. Determine the lower sampling rate which is required to adequately 
sample x(t). 

b. If the sampling rate used is 600 Hz, determine the frequency of the 
reconstructed analog signal. 

c. Determine the frequency of the reconstructed analog signal if the 
sampling rate is 300 Hz. 

2.2 A triangular signal with peak-to-peak voltage variation of 2 Volts, is 
digitized by an ADC with 2 Volts of maximum input dynamic range. 
If twelve bits are available for sample representation, evaluate the 
SQNR achieved with the specific ADC and input signal. 

2.3 A six-level uniform quantizer has the following quantization levels: 
{-1, -0.6, -0.2, 0.2, 0.6, 1}. Evaluate the Signal-to-Quantization-
Noise Ratio when the following signals are quantized: 

i. dc signal of 0.85 Volts 
ii. dc signal of 0.195 Volts 
iii. triangular waveform with amplitude 0.01 Volts and dc offset 

0.6 Volts 
iv. triangular waveform with amplitude 0.8 Volts 

Comment on the way that the SQNR is affected by the signal power. 
Is it an increasing function of this power? 
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2.4 Suppose that the spectrum of a band-pass signal lies between 6.8 
and 8.8 kHz. Which are the appropriate sampling frequencies? (use 
Fig. 2.12 andfH=4.4B). 

2.5 A band-pass filter is used for reconstructing a sampled band-pass 
signal. Using Fig. 2.11b, show that the appropriate sampling fre­
quencies for the band-pass filter requirements to be relaxed are 
given as follows: 

fs = 2 ( { £ . + ftf) where k = 1,2,..., £max with *max 

2K:-1 i 2B 
2.6 Which is the improvement in the SQNR when a conventional Ny-

quist converter is used in oversampling mode with OSR=101 
2.7 Prove eq. (2.30). (Hint: Consider a sinusoidal input equal to Vref. 

The derivative dx(t)/dt cannot be larger than the slope of xp(t) at the 
output of the RC circuit in Fig. 2.18). 

2.8 Evaluate the time constant RC for the integrator in an exponential 
Delta Modulator when the signal band is [0, 1000 Hz]. 

fL+f" +0.5 
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Chapter 3 

AS Modulators -Architectures 

3.1 Introduction 

Oversampling and noise shaping were introduced and explained in the 
previous chapter. The former spreads the quantization noise spectrum 
uniformly over the whole frequency band, thus leaving a small portion of 
it inside the signal band. The latter, on the other hand, reduces the 
quantization noise power inside the signal frequency band even further, 
by pushing most of the in-band noise outside the signal band. Both of 
these processes are employed in the various types of the AS modulator, 
which are described in this chapter. 

In Sec. 3.2 of this chapter the first-order AZ modulator is analyzed 
and in 3.3 it is compared to the Delta modulators. Then, in Sec. 3.4, AS 
modulation is extended to the second-order and, in Sec. 3.5, to the 
higher-order single-stage AZ modulators. The stability problems of the 
latter are demonstrated in Sec. 3.6. The higher-order multi-stage AZ 
modulators are then considered in Sec. 3.7. Next, the use of multi-bit 
quantizers in AS modulators is considered in Sec. 3.8, hybrid modulators 
in Sec. 3.9 and adaptive ones in Sec. 3.10. Finally, in Sec. 3.11, the 
concept of AZ modulation is extended to band-pass signals. 

41 
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3.2 First-Order AE Modulators 

The first-order AE Modulator was briefly introduced in Sec. 2.10. This 
modulator employs oversampling to spread the quantization noise over 
the [0,/y/2] frequency band, as well as noise shaping in order to push 

most of the in-band noise out of this band to higher frequencies. 
The block diagram of AS modulator is shown in Fig. 3.1 (a), while 

for the sake of analysis its linear model is shown in Fig. 3.1 (b). The 
sampler and the encoder are omitted as they have no impact on the 
analysis at this level, while the quantizer is replaced by its linear model. 

x(n) s- z"1 
» 

(a) 

^/7^ ^s 
~ 
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1-z-1 

"(«) 

2-level 
quantizer ±5 

e(n) 

r *^ 
\I>r 

1 

») 
l • 

y(n) 

(b) 
Fig. 3.1 Block diagram of a first-order AS modulator (a) and its linear model (b). 

By straightforward analysis of the linear system in Fig 3.1 (b), we 
can easily obtain the following: 

Y(z) = z']X(z) + (l-z~l)E(z) (3.1) 

From (3.1) the STF and the NTF are 

STF(z) = z~1 (3.2) 

NTF(z) = 1-z"1 (3.3) 

Clearly, the STF(z) leaves the signal unaltered, just delayed by the 

period of a single bit, whereas the NTF(z) high-passes the quantization 
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error, i.e. it shapes it by suppressing it at low frequencies. Consequently, 
if oversampling by R is employed, the quantization noise power inside 
the signal band [0,/x/2i?] = [0,/A] will be lower than its value when no 

shaping is applied. This is shown below by means of example 3.1. 
Under the assumption that the introduced quantization noise is white 

with power Pe, the total noise power will be 

fs/2 x 

Pe,* = T" f WTF^'flf- )|2 df = -s- | W F ( ^ ) | 2 dO (3.4) 
-fs/2 

The out-of band noise can be attenuated using a sharp digital low-pass 
post filter, while the output samples can be down-sampled to the Nyquist 
rate. Both of these functions can be performed by the decimator [1-3], 
which is discussed in Chapter 8. After decimation, the remaining noise 
that corrupts the signal is the in-band portion of the quantization noise 
power, which is 

ft, x/R 
pem=— [\NTF(eJ2nflfs)\ df = ^- f \NTF(eJ9)\ dO (3.5) 

/I J I I In J ' ' 
s -h -*l* 

Assuming sinusoidal input of amplitude A and frequency / , the 
signal-to-noise ratio' SNR is given by 

A2 , ,2 
SNR = ——\STF(f)\ (3.6) 

The SNR, as given by (3.6), increases indefinitely. Of course this is not 
the case. The linearization of the quantizer is valid as long as its input 
does not overload it. A quantizer having N levels around zero and 
quantization step 25 is not overloaded if its input u is such that the 
quantization error does not exceed 8 , i.e. 

\u\<NS (3.7) 

Unfortunately, due to the feedback in the AS modulator, if its order is 
larger than 1, it is impossible to analytically relate the input of the 

Note that the noise mentioned in the signal-to-noise ratios in this chapter is the 
quatization noise, but for the sake of brevity, the symbol SNR is used instead of the 
SQNR to denote them. 
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quantizer to the input of the AS modulator. Hence (3.7) cannot be used to 
investigate the stability of AS modulators. 

Example 3.1 Assume a first-order AS modulator that modulates a 
signal oversampled R times. Find the reduction of the in-band 
quantization noise P in as a function of R. 

Solution 

It is 

Hence 

Using (3.4), the total quantization noise power becomes 

P tK\ i2 P Tn\ i2 

Petot=— \NTF{eH dd = ^ \ \\-e-n dO 
n Jo ' ' n Jo ' ' 

\-e~ie\ =| l-(cos6>-;sin(9) |2=2-2cos(9 

Using (3.5), the in-band fraction of the quantization noise power becomes 

For large values of R » n, the sine function can be approximated using 
a Taylor series expansion, hence keeping up to the third-order term yields 

P • - • 
1 e,in — 

IP. 

n 

. 3 ~\ 
n n 

e3R3 
(3.9) 

Thus the in-band shaped noise is attenuated 3i?3 /^2 times, compared to 

the non-shaped noise. 

So for the first-order AS modulator, the noise is attenuated by the 
third power of the oversampling ratio. Also note from (3.8) that even 
though the effect of the NTF on the total noise power is to double it, only 
a very small fraction of the noise remains in-band. 

file:////-e-n
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3.2.1 Input and output waveforms 

The output waveforms of the first-order AE modulator of Fig. 3.1 (a) are 
presented in Fig. 3.2, for two types of input, namely a DC and a sine 
wave. It can be seen that the output consists of a sequence of pulses of 
height ±S. The relative density of the positive or negative values 
depends on the amplitude of the input at that region. Hence for small 
amplitudes (cases (a) and (c) in Fig. 3.2) the positive and negative AI 
sequence values are evenly distributed, while for large amplitudes (cases 
(b) and (d) in Fig. 3.2) the positive AZ sequence values are denser than 
the negative A£ sequence values at large positive input values and vise 
versa. Clearly the form of the output varies significantly as the input is 
changed. 
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Fig. 3.2 Input waveforms (continuous lines) and output sequences (circles) of the 
first-order AI modulator for DC input of level (a) 0.1<5and (b) 0.9S. Same for sine wave 
input of frequency 12 kHz and amplitude (c) O.l^and (d) 0.9(5. The sampling frequency 
is 1 MHz and S=\. 
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3.2.2 SNR and PSD diagrams 

Although the linear analysis performed thus far yields an insight to the 
performance of the first-order AS modulator, in order to correctly 
evaluate its performance, the first-order AS modulator is simulated as a 
non-linear system. Using a sinusoidal input and sweeping its power, the 
SNR of the first-order AS modulator is obtained. This is depicted in Fig. 
3.3, from which some useful conclusions can be drawn. The maximum 
SNR is not obtained for the maximum input signal, i.e. the full scale of 
the quantizer, due to its overloading. Also, the dynamic range of the first-
order AS modulator, defined as the range of input power for which the 
SNR in dBs remains positive, is limited. This limits the application of the 
first-order AS modulator as an ADC to only low dynamic range systems. 
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Fig. 3.3 SNR as a function of input power for the first-order AS modulator and 
sinusoidal input. The oversampling ratio is 64. The maximum SNR of 54.7 dB is 
obtained for sinusoidal input of 8 dBm. The dynamic range of the modulator is 44.2 dB. 

The power spectral density of the output signal for small variations of the 
frequency is depicted in Fig. 3.4. Evidently the spectrum can exhibit 
discrete tones. These tones can be at multiples of the input frequency 
(case (a) of Fig. 3.4), very dense at all frequencies (case (c) of Fig. 3.4), 
or they may not exist at all (case (b) of Fig. 3.4), depending on slight 
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changes in the frequency of the input signal. This is very undesirable in 
many applications, like audio systems, since although the total in-band 
noise is low, the tones can be audible. Due to its limited dynamic range 
and its noise tones, the applications of the first-order AE modulator are 
limited. 

0 005 0.01 0.015 0.02 0 025 

Normalized frequency (f5=1) 

0.01 0.015 0.02 0025 0 03 

Normalized frequency (fs=1) 

Fig. 3.4 Power spectral density of the output signal of the first-order AI modulator 
for low frequencies and for an 8 dBm sinusoidal input. The input frequency is: 
a. 9.7656 • 10^, b. 9.7534 • 10"4 and c. 9.6451 • 10-4 of the sampling frequency. 
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3.3 Comparison of Delta and AS Modulators 

The performance comparison of the DM, with that of the AE modulator 

is done by determining the maximum value of SNR, SNRmax, for each 

case. If Ps is the signal power and Pejrl the in-band portion of the 

quantization noise power, then 

SNR = -^- (3.10) 

3.3.1 Linear DM 

In order to determine the signal power Ps we assume that the DM is not 

slope overloaded. According to (2.27) it is 

' k 

Clearly SNRmax is frequency dependent and obtains its minimum value at 

/ = / 6 .Then 

3R3 

3R r r ^2 

"SŴ max = —"J 
8TT 

(3.11) 

SNRmax=--^ (3.12) 

3.3.2 Exponential DM 

For the exponential DM, assuming no amplitude overload, it is 

Ps^-f- (3-13) 

while Pein is given by (2.26). Then 

max {.P.} V f 

SNRmax = — ^ - = 6R -%- (3.14) 

Using (2.20) 

2% 
A = 

Thus 

A"Tr«> 

SNR, 
3R3 

max . T 
2nl 
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3.3.3 AZModulator 

For the first-order AZ modulator, the in-band portion of the quantization 
noise power is given by (3.9), which using (3.8) becomes 

e'' 3R3 12 3R3 36R3 

Now there is no slope overload restriction for Ps, but the input signal 

should satisfy |JC(/)| < Vrej or \x{t)\ < A/2 . Hence 

SNR - p* - ( A / 2 ) 2 / / 2 - 9 R3 nm 
SNR™=lT--^^-^R (3-16) 

We observe that the SNR of the exponential DM and the first-order 
AZ modulator both depend on the third power of R, i.e. there is a 9 dB 
improvement per doubling of the R. Also the SNR of the first-order AZ 
modulator is improved by a factor of 3 (4.8 dB) compared to that of the 
exponential DM. Thus the first-order AZ Modulator compared to the 
exponential Delta modulators is superior at least from the maximum SNR 
point of view. Regarding the linear DM, the SNR depends on the 
frequency of the input signal, with its minimum value given by (3.12). 

3.4 Second-Order AZ Modulators 

Using a second-order filter in place of the integrator in Fig. 3.1 with 
transfer function 

/ \ 2z_1 - z'2 

L(z)= , 2 (3.17) 
l - 2 z ~ ' + z 2 

the second-order AZ modulator is obtained. Its NTF is a second-order 
differentiator 

iV7F(z) = ( l - z _ 1 ) (3.18) 

while its STF remains just a single sample delay. It can be shown (see 
exercise 3.1), that although the total quantization noise increases 6 times, 
the relative attenuation of the in-band fraction as a function of the 
oversampling ratio is 
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n (3.19) 
Pe 15R5 

i.e. it is attenuated by the fifth power of the oversampling ratio. 
The SNR of the second-order AZ modulator is shown in Fig. 3.5 (a). 
Both the maximum SNR and the dynamic range are enhanced. 

Also, the power spectral density of the output signal for low 
frequencies is depicted in Fig. 3.5 (b). The noise is now randomized by 
the higher-order loop and does not have any discrete tones. 
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Fig. 3.5 Second-order AI modulator with sinusoidal input and OSR 64. a. SNR as a 
function of input power (dBm). The maximum SNR of 71.5 dB is obtained for 6 dBm 
input. The dynamic range of the modulator is 76.3 dB. b. Power spectral density of the 
output signal for low frequencies and for 6 dBm input. The noise no longer forms tones. 
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3.5 Higher-Order AS Modulators 

The advantages of extending the order of the AS modulator from first to 
second have been demonstrated in the previous section. These 
advantages can be further exploited by increasing the order of the AS 
modulator. Yet, higher-order AS modulators are not without problems. 
Apart from overloading that has been encountered in the lower-order AS 
modulators, their higher-order counterparts suffer also from instability. 

There exist a variety of architectures for the implementation of 
higher-order AS modulators [4-9]. The purpose of this and the following 
sections is to introduce them, point out their relative advantages and 
disadvantages and explore their suitability as either ADCs or DACs. 

The most common approach in the design of high-order AS 
modulators to be used for A/D conversion is the single-stage 
architectures. The block diagram of a single-stage AS modulator to be 
used in A/D conversion is depicted in Fig. 3.6, where the ADC - DAC 
pair substitutes the quantizer shown in other block diagrams, e.g. in Fig. 
3.1a. 

X G(z) 

Fig. 3.6 Block diagram of higher-order AS modulator. 

These modulators comprise a loop filter L(z), a local ADC and a local 

DAC in a single loop. Both of these converters are high-speed to allow 
for oversampling and low-bit (most usually single-bit). The addition of a 
pre-filter G(z) before the summer of the loop in Fig. 3.6 facilitates the 

implementation of any STF. These filters are usually discrete-time, but 
they can also be continuous-time. However, when the modulator is used 
for D/A conversion, then obviously the input is digital. When it is used 
for A/D conversion, the input can be sampled before the modulator, 
enabling the use of discrete-time filters. The loop filter is implemented 
by suitably cascading integrators. There exist various structures for the 
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loop filter of a single-stage AS modulator [4,6,10-14]. There is a trade off 
between the complexity of each structure and the freedom in choosing 
the position of the zeros of the NTF and the shape of the STF. The 
structures are depicted in Fig. 3.7 for third-order AS modulators and are 
classified as follows: 
CIDF The Cascaded Integrators with Distributed Feedback is the 

simplest structure, shown in Fig. 3.7.a. All the integrators /,-

are delaying integrators. The NTF zeros are fixed to unity, and 
the shape of the STF cannot be defined independently. 

CIDIDF The Cascaded Integrators with Distributed Input and 
Distributed Feedback structure is shown in Fig. 3.7.b. The 
phase of the NTF zeros can be set arbitrarily. The shape of the 
STF can be defined independently. If all the integrators /, are 

delaying, then the real part of the NTF zeros is fixed to unity. 
If the even-order integrators I2i are non-delaying, then the 
restriction on the real part does not apply. 

CIDIFF The Cascaded Integrators with Distributed Input and summed 
Feed-Forward structure is shown in Fig. 3.7.c. It employs 
single output feedback. The phase of the NTF zeros can be set 
arbitrarily. The shape of the STF can be defined independently. 
If all the integrators /, are delaying, then the real part of the 
NTF zeros is fixed to unity. If the even-order integrators 72; 
are non-delaying, then the restriction on the real part does not 

apply-
In this classification the loop filters were assumed to be discreet-time 

filters. However the same classification applies when continuous-time 
filters are employed. In this case continuous-time integrators are used 
instead of discrete-time ones. For more details we refer the reader to 
Chapter 5, where the implementation of AS modulators is presented. 

Note that the c, coefficients (Fig. 3.7) are used for scaling of the 
internal states, hence are set to unity unless a circuit implementation is 
considered. Also the g, coefficients (Fig. 3.7.b and c) are only used for 
complex zeros; should the zeros be real, they are set to zero. 

If delaying and non-delaying integrators are used, then the first and 
third integrators are non-delaying, whereas the second is delaying. 
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Fig. 3.7 Structures for the third-order single-stage AI modulators: a. CIDF, b. 
CIDIDF and c. CIDIFF. 

Example 3.2 Using the CIDIDF structure, realize the second-order AS 

modulator with NTF = (l-z~l) . Take advantage of the STF flexibility 

by setting STF(z) = l. 

Solution Based on Fig. 3.7 (b) and using a non-delaying integrator for 
/ , , the block diagram of the second-order CIDIDF AS modulator is 

drawn in Fig. 3.8. Note at this point that since no specific circuit 
implementation that needs scaling of the internal states is considered, 
cj = c2 = 1, and since the NTF zeros are unity, g, = 0. These 
simplifications are not used in order to derive the NTF and STF in the 
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Fig. 3.8 Block diagram of the CIDIDF realization of a second-order AX modulator. 

more flexible form allowed by the CIDIDF structure. 
It is 

1 
Xx=(b,X-axY-g,X2) 

\-z -l 

X2=(b2X-a2Y + cxXx)-^ 

Y = c2X2+b3X + E 

Substituting (3.20) and (3.21) in (3.22) yields 

NTF=-
\ + (cxgx-2)Z-X + z-

x=o l + (c\g\+C\c2a\ +c2a2-2)z + ( l - c 2 a 2 ) z 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

and 

Y 
STF = — 

X 

^b3+(cxC2bx+C2b2+Cxgxb3-2b3)z '+(£>3-C2fc2)z 2 

£=o l + (c\g\ + cxc2ax +c2a2-2)z~l + (l-c2a2)z~2 

(3.24) 

As already discussed, the coefficients cx and c2 are for internal state 

scaling of the modulator, and for the sake of this example are set to 

unity. Then 

NTF = ( l - z~X) 

Note that as expected, gx = 0. Also 

ax-\ 

a2=l 

(3.25) 
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STF = 1 <=> ft2 =«2 (3.26) 

Finally, substituting (3.25) in (3.26) yields ft, = b2 = 1. 

For the fabrication of the AI modulator as an IC, the integrators in 
the structures of Fig. 3.7 are usually built using SC circuitry for two 
reasons. Firstly, the accuracy of the coefficients is determined by 
capacitor ratios that can be very accurate in MOS technology, and 
secondly because the value of the coefficients does not depend on the 
sampling rate which can then be easily changed [15]. The quantizer is 
single-bit to benefit from ease of implementation of the single-bit ADC 
and DAC and the linearity of the latter [2]. 

Unfortunately, single-bit single-stage AS modulators are potentially 
unstable systems [2,13,16-18]. This will be discussed further in the next 
section. Thus the design of their loop filter is a non-trivial task 
[2,6,10,11,13,17-20,21], and will be the subject of Sec. 4.6. Due to the 
stability considerations, the SNR improvement as the modulator order 
increases is diminished for increasing orders [2,21]. The single-stage 
modulators are quite immune to coefficient errors; such tolerated errors 
have been reported to be larger than 5% [2,6]. On the other hand, the 
sensitivity of single-bit single-stage AS modulators to analog circuit 
imperfections is considerably reduced compared to their multi-stage 
counterparts. Opamp gain as low as the oversampling ratio can easily be 
tolerated and can be further reduced by the use of gain-compensated SC 
integrators [2]. Thus single-stage AS modulators are relatively insensitive 
to linear opamp errors. Considerable degradation occurs only if the 
opamp slew rate is very low due to the limited current supply of the 
opamp [2]. Limited opamp swing is also a problem, especially for the last 
integrator, which has very large signal swings. Internal scaling of the 
modulator limits these swings and alleviates the problem [2]. These 
circuit realization considerations are investigated in more detail in 
Chapter 6. 

In Fig. 3.9, the SNR versus input power for a sinusoidal input 
obtained by simulation for certain AS modulators of orders 3, 4 and 5 is 
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Fig. 3.9 SNR as a function of input power for the higher-order AI modulators with 

sinusoidal input. The oversampling ratio is 64. 

shown. These plots and other results given in this section should be 
considered as indicative of the effect of the NTF order on the SNR. 

The corresponding power spectral density plots of their outputs for 
low frequencies are depicted in Fig. 3.10. Their maximum SNR and 
dynamic range are given in Table 3.1. 

Table 3.1 Maximum SNR, the input power for which it is achieved and dynamic 
range of the AS modulators of orders 1 to 5. The input is sinusoidal and the 
oversampling ratio is 64. The SNR increase as the order N of the AS 
modulator is increased to N+l becomes smaller as N increases. The 
increase of the dynamic range also becomes smaller for increasing N, but is 
still substantial. The input power for which the maximum SNR is obtained 
is reduced, indicating faster overload of the quantizer. 

Modulator 
order 

1 
2 
3 
4 
5 

Max SNR 
(dB) 
54.7 
71.5 
92.5 
107 
114 

Input power 
(dBm) 

8.0 
6.0 
5.0 
5.0 
4.0 

Dynamic range 
(dB) 
44.2 
76.3 
98.8 
113 
126 



AS Modulators - Architectures 57 

Power ° 
spectral 
density-50 

(dB) 

-200 

-250 

-300 

-350 

w 
f I' 

#f! 

3rd order 

0 

Power 
spectral^. 
density 
(dB) 100 

-250 

0.005 0.01 0.015 0.02 0.025 0.03 

Normalized frequency (fs=1) 

Wtfff 

4 , h o rder 

0.01 0.015 0.02 0.025 0.03 

Normalized frequency (fs=1) 

MM 
t > T | " 

jt *f 
1 

irffH* 
TOT 

LIULMM # ' 1 ' I 

5 , ho 

(Iff?! 

rder 

f 
Power 
spectral-so 
density 
(dB) -ioo 

-150 

-200 

-250 

-300 

Normalized frequency (fs=1) 
Fig. 3.10 Power spectral density of the output signal of the higher-order AS modulators 
for low frequencies and for sinusoidal input of power that results to the highest SNR for 
each. The fades of the spectrum are due to the NTF zeros, which are not at DC, but are 
distributed in the signal frequency band. 



58 AX Modulators 

The first and second-order modulators are also included in the table for 
comparison. Increasing the order of the modulators yields wider dynamic 
range. The improvement of the SNR gets smaller, as less frequency 
selective NTFs are necessary for the stability of the increasing order 
modulators. 

3.6 Stability of Single-Stage AS Modulators 

When the quantizer of a higher-order single-stage AE modulator is 
overloaded, then the system can become unstable. Instability occurs as 
low-frequency high-amplitude oscillations are excited at the quantizer 
input. If the quantizer is single-bit, the result is long sequences of 
consecutive +1 or -1 , i.e. the AE sequence no longer tracks the input 
signal. This is demonstrated in Fig. 3.11. 

i ' n—i ! — i r 

100 200 300 400 500 600 
Time (samples) 

Fig. 3.11 Instability of a higher-order AS modulator. Originally the AS sequence tracks 
the input. Then the tracking is lost. The error receives very large values and the AZ 
sequence comprises long series of+1 o r - 1 . 
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Even worse than the loss of tracking of the input, is that these limit 
cycles, once generated, are very difficult to cease, even if the input signal 
is removed. If no damping means are used, like clipping the internal 
states of the modulator or resetting them [13,16], then the limit cycles are 
impossible to overcome. Thus the modulator becomes unusable. 

When these limit cycles are excited, the quantizer is heavily 
overloaded, thus the quantization noise power obtains extreme values. It 
is beneficial to determine the maximum input for which stable operation 
is guaranteed, but it depends on the type of input used and it sometimes 
takes extremely long input sequences for the limit cycles to be excited. 
Thus, if simulation is to be used, this must be extensive both in types of 
input and in length, in order to provide bounds with some confidence. 

The stability of single-stage AS modulators is further considered in 
Sec. 4.4, followed by some stability criteria in Sec. 4.5. It is very 
important to have some means of stabilizing the higher-order single-stage 
AS modulators. Bounding the input is not enough, since some noise can 
lead to instability. The stabilization techniques are discussed in Sec. 6.10. 

3.7 Multi-Stage AS Modulators 

The multi-stage AS modulators [2,22] consist of first- and/or second-
order AS modulator stages in cascade. The input to the first stage is the 
signal to be modulated. The consecutive stages modulate the quantization 
error of the previous ones. The outputs of the stages are suitably 
combined so that at the output of the multi-stage AS modulator only the 

input signal and signal-independent noise shaped by l l - z I are 

present. The combination of the stages in a multi-stage AS modulator is 
better described by means of the following example: 

Example 3.3 The Triple First-Order Cascade (TFOC) [22] structure is 
depicted in Fig. 3.12. By linearizing the quantizers of the TFOC AS 
modulator, verify that it behaves like a third-order AS modulator. 
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Fig. 3.12 TFOC AI modulator. Three first-order AI modulators are cascaded, so that 
the quantization error of the previous stage is the input to the next. The three outputs are 
differentiated and delayed accordingly, so that the combined output is third-order shaped. 

Solution Assume that each quantizer in Fig. 3.12 introduces the noise 

Ej. Then, the input of the three first-order stages is X, -E{ and -E2. 

Accordingly the outputs Yt of the three will be 

Yx=z~-X + [ -(1-z"').*, 

Y2=z-x\-E,) + (\-z-l)-E2 

Y,=z-l\-E2) + (\-z-X\E, 

(3.27) 

The outputs of the three stages are combined using delays and 
differentiators as follows: 

r = z - 2 -^+z" 1 - ( i -z - 1 ) -y 2 + ( i -z" 1 ) -y3 (3.28) 

Hence substituting Eqs. (3.27) into (3.28) yields for the combined output 

Y = z~3-X + {l-z~1) -E3 

Thus the TFOC AZ modulator shapes the noise by ( l - z - ) , while it 



AX Modulators - Architectures 61 

delays the input by three samples, i.e. it is a third-order AE modulator. 

The combination of the output of the stages in an Mh-order multi­
stage AZ modulator comprising non-delaying stages is as follows. The 
output of the first stage is the input signal X plus the quantization noise 
E] of the quantizer of the first stage shaped by a low-order noise transfer 

function of the form l l - z _ I , where &, =1 or 2 is the order of the 

stage 

Yx=X + {\-z"^x Ex (3.29) 

Stage n has the quantization noise of the previous stage as input. The 
output is the noise of the n -1 stage plus the noise En from the «-th 

quantizer, again shaped by a noise transfer function II — z j , kn = 1 or 

2 

Y„=E^+(l-z-*f"E„ (3.30) 

n-\ 

Differentiating the output of the n-th stage Nn = / £ , - times yields 
i=i 

N„+k„ 

As Nn = JV„_i + £„_j, in order to cancel out the shaped quantization noise 

of all the stages but the last, all the differentiated outputs Vt, i = 2,...,N, 

are added together with the necessary signs. Thus the output signal is the 

input signal plus the quantization noise of the last stage shaped by 

II - z I .If delaying first- and second-order stages are to be used, then 

delays are appropriately used to account for the delay introduced by AS 
stages as shown in Fig. 3.12 for the TFOC multi-stage AE modulator. 

The success of multi-stage AZ modulators in randomizing the 
quantization noise is considerable [23]. This is demonstrated in Fig. 3.13. 
While the single-stage modulators clearly do not have white quantization 
noise, the multi-stage third-order AS modulator has. This is a very 
interesting result, as the three sections that comprise it have the typical 
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Fig. 3.13 Quantization noise spectra for single-stage AZ modulators of orders 1 to 3 
the TFOC multi-stage A2 modulator. 

and 

discrete noise spectrum of the first-order AZ modulator. 
Multi-stage AS modulators also inherit the excellent stability 

properties of their low-order stages, thus high SNR is achieved. The 
SNR of the TFOC AS modulator is depicted in Fig. 3.14. 

Multi-stage AS modulators are commercially used as very successful 
DACs in CD players. In such a configuration the modulator accepts 
interpolated PCM signals and converts them to single-bit AS signals. The 
AS bit-streams are easily converted to analogue form, and as they are 
oversampled, the requirements of the analog smoothing filter are relaxed. 
Also, the quantizers of the modulator stages are realized by just keeping 
the sign bit of their input. The use of AS modulators for D/A conversion 
is further considered in Sec. 8.4. 

Unfortunately, the use of multi-stage AS modulators as ADCs is not 
as straightforward. In such a configuration the modulators comprise an 
analog part (the low-order modulator stages) and a digital part (the logic 
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that combines the output of the stages). In order for the digital 
differentiators to cancel out the noise of all but the last quantizer, the 
analog modulators must ideally shape the noise of the stages. Finite 
opamp gain [2,13,17,18,22] makes the ideal shaping impossible, as even 
SC integrator topologies with low opamp gain sensitivity [2,15,24,25] 
cause considerable discrepancies from the ideal transfer functions. As a 
result of the mismatch of the analog and digital parts, lower-order shaped 
noise leaks into the output of the modulator and hence the achievable 
SNR is reduced. The effect of mismatch is considered in more detail in 
Sec. 6.2.1. 
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Fig. 3.14 SNR as a function of input power for a given TFOC third-order multi-stage 
AS modulator with sinusoidal input. The oversampling ratio is 64. The maximum SNR is 
102.1 dB, achieved at 9.5 dBm of input power. The dynamic range is 108.2 dB. This 
figure is comparable with the performance of a fourth-order single-stage AI modulator. 

As there are no stability constraints in the design of multi-stage AS 
modulators, any increase of their order by cascading more stages results 
to an increase of the SNR. The limit to this increase is the matching of 
the digital and analog parts. The component of the output noise due to 
leakage of the lower-order shaped noise becomes relatively larger 
compared to the increasingly higher-order shaped noise term of the final 
stage and, finally, renders any improvement of the latter useless. 

Finally note that the output of a multi-stage AS modulator is not 

|-----}----f----j---^K-]------
i : / i ! 

i 1 i ^ i i 1 

i/y_ ' i i i ' 
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single-bit, even though the quantizers of the stages comprising it are. The 
bits are increased by the combining logic. 

Example 3.4 Find the number of bits of the output of the TFOC AS 
modulator. 

Solution Each of the outputs Yt of the three stages is ±1. The two 

delays of the combining logic for Y] do not change the possible values. 

The differentiator of the combining logic for Y2 increases the number of 

possible values to -2 , 0 and 2. The two differentiators of the combining 
logic for 73 increase the number of possible values to -4 , -2 , 0, 2 and 4. 

Summing the three branches together yields as a possible result the 
values -7 , -5, -3, -1 , 1, 3, 5 and 7. These 8 different values of the output 
of the TFOC AS modulator need 3 bits to be represented. 

The increased number of bits of the output signal of the multi-stage 
AS modulators increases the complexity of any digital signal processing 
that follows the modulator. 

3.8 Multi-Bit AS Modulators 

As it was explained in Chapter 2, increasing the bits b (or equivalently 
the levels N = 2b) of any quantizer by one leads to an increased SNR by 
6.02 dB. Hence increasing the quantizer bits can increase the SNR of a 
AS modulator. Also, the number of quantizer bits is related to the 
maximum stable input of a AS modulator and its noise and signal transfer 
functions. To show this, the output y(n) of a AS modulator is written as 

the sum of the quantizer input u(n) plus the quantization noise e(n). 

Hence 

«(«) = y(n)-e(n) (3.32) 

For the z-transform X of the input x(n) to the AS modulator, Y of its 

output and E of the additive noise it is 
Y = STF(z)-X + NTF(z)-E (3.33) 

Hence in the time domain 



AI Modulators - Architectures 65 

,(n) = J]stf(k)x(n-k) + '£ntf(k)e(n-k) (3.34) 

where stf(n) is the STF impulse response and ntf(n) is the NTF 

impulse response. Using (3.34), (3.32) can be written as 
f \ 

u(n)= ^stf(k)x(n-k) + ^ntf(k)e(n-k) -e(n) (3.35) 

v k k J 

Denote the maximum absolute value of the input by l * ^ and assume 
that the quantizer is never overloaded. This guarantees stability of the AS 
modulator, although it is a very strict condition; AS modulators with 
occasional overloading can be stable. Then, if the full scale of the 
quantizer is normalized to unity, the quantization noise is bounded by 

\e(n)\<-^— (3.36) 
I V >\ N_x 

and the quantizer input is bounded by 

\u(n)\<\+-^— (3.37) 

Employing the Schwartz inequality on (3.35) and replacing (3.36) and 
(3.37) yields 

2 NIL "4 
N>1 + „ " . — r (3.38) 

HMUK 
where |o|| denotes the one-norm of a sequence and |;c| is normalized to 
the full scale of the quantizer. Two facts can be derived from (3.38). 
First, increasing N in a given AS modulator allows for larger maximum 
stable input. This is shown in Fig. 3.15. Second, increasing N allows AS 
modulators that implement NTFs to offer more in-band noise attenuation 
without increasing the order, while stability is maintained although the 
out-of-band noise amplification increases. 
Example 3.5 Using (3.38), find the minimum number of bits required 

to realize the NTF(z) = I 1 - Z ~ j , which is unstable when realized as a 

single-bit single-stage AS modulator, and compare it to the actual 
number of bits obtained by simulation. 
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Solution It is \\ntf\[ = 8, hence (3.38) yields N > 13 and b > 4. 

Simulation shows that a single-stage AS modulator realizing this NTF, 
becomes stable if the quantizer is 3-bit. The overestimation of the needed 
quantizer bits by (3.38) is due to the demand for quantizer non-
overloading, which is a very strict stability criterion. 

104 

-
3 bits _ 

^ 

i i 

/ 

K" A / _ /~\ 

V-

2 bits 

0 1 2 3 4 5 6 7 8 9 10 

Input power (dBm) 

Fig. 3.15 Variation of the SNR of a third-order AI modulator as the quantizer bits are 
increased from 1 to 3. The achievable SNR and maximum input power for which the 
modulator remains stable increase, although the NTF is constant. 

The drawback of multi-bit tsL modulators is that a multi-bit local 
ADC must be accompanied by a multi-bit local DAC in the feedback 
path. This DAC should be fast, but only of a few bits (say b) of 
resolution. Such DACs are usually built using a thermometer-type 
decoder and 2b parallel unit elements of the same value. These elements 
can be resistors, capacitors, or transistors and can be activated by the 2 
decoder outputs. The analog value is the sum of their voltages or currents 
and their accuracy determines the linearity of the DAC. AE modulators 
are relatively immune to ADC errors due to noise shaping. When the 
quantizer is single-bit, there exists no DAC error. But in the case of 
multi-bit AZ modulators, circuit imperfections cause mismatches in the 
unit elements of the DAC, thus DAC errors occur, to which the 
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modulators are very sensitive. Referring to Fig. 3.16, where the 
quantization error is modeled by an additive white noise source EADC 

and the local DAC error by a similar source EDAC , the transfer function 

of the system is 

Y = 
L(z) v L(z) 

-X 
1 

1 + Z,(z) \ + L(z) 
-DAC \ + L(z) 

: ADC 

'ADC (3.39) 

X L(z) 

eDAC 

• > y 

DAC 

Fig. 3.16 Linearized block diagram of the multi-bit AX modulator. 

Thus the DAC error is only shaped by the STF, which is approximately 
all-pass at the signal frequency band, i.e. it is not attenuated. 
Consequently the DAC linearity should be as high as the desired 
modulator resolution. This is very difficult to achieve without element 
trimming, which is impractical for integrated circuit designs. 

In order for multi-bit AS modulators to be of any practical use, 
actions have to be taken to increase the DAC linearity, as discussed in 
Sec. 6.8. Unfortunately, all these actions considerably increase the 
complexity of the A£ modulator. 

Thus far multi-bit single-stage AS modulators have been considered. 
Multi-stage AE modulators can also employ multi-bit quantizers to 
enhance the SNR [27]. Two important considerations should be taken 
into account: 
a. As the quantization noise of the intermediate stages does not appear at 

the output of the modulator (if properly cancelled out), the use of 
multi-bit local ADC/DAC pairs at these stages does not improve the 
SNR. Hence only the final stage employs a multi-bit quantizer. 

b. The linearity of the local ADC/DAC pair in the last AS modulator 
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should be as high as the resolution of a first or second-order 
modulator. The local ADC noise is only first- or second-order shaped 
by the modulator stage; the differentiators of the digital noise 
cancellation circuitry provide the rest of the noise shaping, and this 
shaping is applied to both the local ADC and DAC errors. Thus if the 
modulator is of Mh-order and the last stage is of Mi-order, then the 

l ~\\N'k 

local ADC/DAC linearity error will be shaped by l l - z I , 

/ _,\N 
whereas the quantization noise will be shaped by l l - z I , i.e. only 

one or two orders higher. 
Thus the local ADC/DAC block linearity constrains are greatly reduced 
in a multistage modulator. Should the last stage be a first-order one, the 
use of a multi-bit quantizer becomes practical. Such modulators can yield 
high SNR at low oversampling ratios [27], and hence are very useful in 
high frequency applications. 

3.9 Hybrid AS Modulators 

Leslie and Singh in [28] have proposed the use of a multi-bit ADC in the 
feed-forward path and a single-bit DAC in the feedback path of a AZ 
modulator. A digital filter cancels out the single-bit quantization noise, 
so that only the multi-bit quantization noise remains. The block diagram 
of the resulting modulator is shown in Fig. 3.17. 

W N-bit 
ADC 

1-bit 
DAC 

MSB 
feedback 

Single-bit quantization 
noise cancellation 

Fig. 3.17 Multi-bit ADC single-bit DAC AX modulator. 

The N-bit ADC 1 -bit DAC block is equivalent to a single bit quantizer, 
and introduces error e, in the feedback path and the lower digital path. 
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The N-bit ADC introduces noise eN in the upper digital path. The power 

of eN is 6.02 • N dB lower than that of ex. Hence the goal of the system 

is to cancel out ex. The linearized system yields 

W = [_X-(W + Ex)\-L(z) (3.40) 

and 

Y = (W + EN)--jj- + W + El (3.41) 

Substituting Wfiom (3.40) into (3.41) yields 

Y = X + -\--EN (3.42) 

i.e. the 1-bit quantization noise is cancelled out. 
This scheme has an analog and a digital part, as the multi-stage AS 

modulators. In order for the 1-bit quantization noise to be cancelled out, 
the two parts must match. Finite opamp gain alters the actual transfer 
function of the analog loop filter, thus single-bit quantization noise leaks 
in the output of the modulator. 

3.10 Adaptive AS Modulators 

The idea of adaptive oversampling converters dates back to the adaptive 
quantizer step in Delta modulators [29]. That configuration was proposed 
to reduce the effect of slope overload in Delta modulators. Similar is the 
goal of the adaptive AS modulators; if the quantizer is not overloaded, 
then the modulator is stable. Yu in [30] has considered two types of 
adaptive AS modulators. AS modulators can have adaptive quantizers. 
The variation of the quantizer step ensures stability. Alternatively, AS 
modulators can have adaptive loop filters. The NTF then changes to 
decrease the noise power amplification. Then, the in-band noise 
attenuation also decreases, but the modulator remains stable. Yu has 
shown that the adaptation of even a single coefficient of the loop filter is 
sufficient. AS modulators with adaptive loop filters are not suited for 
ADCs, as the implementation of an adaptive analog filter is very 
complicated. 
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3.11 Band-Pass AS Modulators 

The advantages of oversampled, noise-shaping methods for A/D and D/A 
conversion of low frequency signals can also be obtained for narrow­
band signals. The zeros of the NTF can be distributed in the narrow 
signal band, allowing the separation of the signal from the quantization 
noise. 

Band-pass AI modulators share the advantages of their low-pass 
counterparts, and can be derived from them using the following low-pass 
to band-pass transformation: 

z -> -z2 (3.43) 
Modulators derived applying (3.43) share the same stability and noise 
performance as their prototypes [2], Under this transformation, the signal 
band is centered at fs/4, allowing for simple decimator design [2]. 

Clearly, to achieve the same noise suppression, band-pass modulators are 
of twice the order than their low-pass counterparts, although this increase 
in order does not correspond to a similar increase in circuit complexity, 
as only the first integrator design is crucial. 

Example 3.6 Transform the NTF of the second-order low-pass AS 
modulator to the corresponding band-pass modulator. 

Solution The NTF of the second-order low-pass AS modulator is 

NTFLP(z) = (l-z-]f 

Applying (3.43) yields the corresponding band-pass NTF 

NTFBP{z) = NTFLP{z)\z^zl = ( V ( - z 2 ) " ' j =(l + z'2f (3.44) 

The band-pass NTF is compared to its low-pass prototype in Fig. 3.18. 
The AI modulator realizing (3.44) has the same SNR and dynamic 

range as its low-pass prototype and operates on signals around fs / 4 . Its 

output spectrum is compared to that of the low-pass modulator in Fig. 

3.19. 
The main application of band-pass AI modulators is in RF 

communication systems; hence over the past few years there is a trend 
towards higher sampling frequencies and higher SNR at wider signal 
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bandwidths for band-pass AS modulators. The achievements are 
impressive: In 1993 the state of the art was a fourth-order AE band-pass 
modulator for use in a GSM transceiver; clocked at 26 MHz, the 
modulator converted signals of 200 kHz bandwidth centered at 6.5 MHz 
and achieved SNR of 55 dB. The process used was a 1.2 ^m / 7 GHz 
BiCMOS [9]. More recently, higher IF and converted bandwidths with 
lower power dissipation are addressed. Bazarjani and Snelgrove [31] 
have proposed a fourth-order SC band-pass AE modulator converting a 
bandwidth of 1.25 MHz centered at 40 MHz with an SNR of 47 dB. The 
process used was a 0.5 jxm CMOS and the chip dissipated 65 mW out of 
a 3 V supply [31]. Finally, Gao and Snelgrove have announced a 
modulator that samples signals of 200 kHz bandwidth centered at 950 
MHz at a sampling frequency of 3.8 GHz, achieving an SNR of 57 dB. 
The modulator dissipates 135 mW out of a 5 V supply [32]. 

0 0.2 0.4 0.6 0.8 1 
Normalized frequency (f,=1) 

Fig. 3.18 NTF of the low-pass and band-pass second-order AI modulator. 

The main concern with band-pass modulators is that they have to 
sample higher-frequency signals, i.e. they need faster samplers. Signals 
for low-pass modulators have frequencies at least 2R times smaller than 
the sampling frequency. Band-pass modulators usually have a signal 
band centered at fs / 4 . Hence, the available time for the settling of the 

opamps is reduced. A two-path approach in [33] alleviates this problem. 
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Fig. 3.19 Output spectra of a. the second-order low-pass AS modulator and b. its 
equivalent band-pass. 

Should discrete-time circuits be used for band-pass modulators, the 
sample-and-hold circuit at the input must operate much faster. Should 
continuous-time circuits be used, the sample-and-hold circuit is in the 
modulator loop and any errors are noise-shaped. But such designs can be 
implemented either using LC circuits with high-Q off-chip inductors, or 
using gmC circuits, whose linearity is bounded by the linearity of the 

transconductance. Lately, IC fabrication process enhancements have 
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allowed the integration of inductors [34], thus the use of LC circuits 
seems to be the most promising for high frequency band-pass AS 
modulators. Indeed, this is the technology used in [32] for the results at a 
sampling frequency of 3.8 GHz. 

Finally note that not all the architectures of low-pass AS modulators 
can be converted into band-pass. For example, the cascaded AZ - pipeline 
scheme proposed in [5] is restricted in speed by the need of a pipeline 
ADC, which is slow and cannot operate at the speed necessary for band­
pass modulators. 

3.12 Summary 

The effect of embedding a filter and a quantizer in a feedback loop is 
examined using the linear model for the quantizer. The resulting noise-
shaping oversampled modulator is investigated both for first- and 
second-order loop filters, and for higher-order loop filters. The second 
case gives rise to stability problems. Other architectures for the 
implementation of higher-order AS modulators are also considered: 
multi-stage, multi-bit and hybrid architectures. In addition adaptive AS 
modulators are considered. Finally, AS modulation is applied to band­
pass signals. 

Problems 

3.1 Assume a second-order AS modulator with NTF(z) = (\-z~l I 

that modulates a signal oversampled R times. Find the resulting 
attenuation of the quantization noise power as a function ofR. 

3.2 The most usual implementation of a second-order AS modulator is 
by cascading a non-delaying and a delaying integrator, as in Fig. 
3.20. Demonstrate using linear theory that the system has 

NTF(z) = (l-z-
lf. 
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Fig. 3.20 Block diagram of second-order AS modulator for problem 3.2. 

3.3 Find the gain in SNR of the second-order AX modulator over the 
first-order using linear theory as a function of the oversampling ratio 
R. Compare it to the actual value for sinusoidal input and 64 times 
oversampling given in Table 3.1. 

3.4 A cascade of a second-order and a first-order AS modulator stages is 
depicted in Fig. 3.21. Find the necessary digital transfer functions 
i/,(z) and H2(z) that combine the outputs of the two stages so 

that the system will be a third-order AS modulator with 

NTF(z) = (l-z~1) . Which is the STF? The resulting two-stage 

implementation of the third-order AS modulator is the Second-Order 
First-Order Cascade (SOFOC). 

x-*Q-
\-z-

*Q-
l - z " d= • " . ( * ) 

-& 
G^Y 

-»©- d= • t f 2 (z ) . 

Fig. 3.21 Block diagram of two-stage AS modulator for problem 3.4. 
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Chapter 4 

Single-Bit Single-Stage AS Modulators 
Modeling and Design 

4.1 Introduction 

In the previous chapter various architectures and types of AI 
Modulators were introduced. Some of these are more frequently 
used than others mostly for reasons of circuit simplicity. In this 
context, the single-bit, single-stage architecture has gained the 
largest popularity so far. Consequently, we have chosen this type 
of AL Modulator to study further in this and the following 2 chap­
ters. 

One important aspect in studying and subsequently designing 
AL Modulators is the modeling of the quantization noise. An accu­
rate model for this noise is essential for the creation of proper 
NTFs, which will lead to most effective designs. Thus in this 
Chapter, modeling of single-bit, single-stage AS Modulators is 
examined first in Sec. 4.2. The quantization noise models used are 
the linear and the quasi-linear ones, which are reviewed for this 
purpose. Next the characteristics of a 'good' NTF are outlined in 
Sec. 4.3. Stability of AE modulators is explained and criteria for 
stable circuits are presented in Sees. 4.4 and 4.5, respectively. 
Then based on all this material, NTFs for optimal performance of 
the AS modulator are derived and discussed in Sec. 4.6. Finally, 

77 
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the characteristics of these functions are given for comparison in 
Sec. 4.7, followed by the conclusions in Sec. 4.8. 

4.2 Modeling of AS Modulators 

A typical structure of a single-bit, single-stage AE modulator is 
shown in Fig. 4.1. For this circuit the output can be expressed in 
the z-domain as a function of both the signal and the quantization 
noise as follows: 

Y(z) = STF(z) • X(z) + NTF(z) -E(z) (4.1) 

Here STF is the Signal Transfer Function 

STF(z) = - ^ - = l 
\ + Lx{z) 

and NTF is the Noise Transfer Function 
1 

NTF(z) = 

(4.2) 

(4.3) 
1 + Z,,(z) 

The STF should be an all-pass function and this is achieved when 
L0(z) is equal to L/(z) and I Li(z) \ »1. Furthermore, the NTF has 
to be a high-pass transfer function, since its role is to move the 
quantization noise power out of the signal band. 

Input 
y(n)=u(n)+e(n) 

— • 

Output 
( lbi t ) 

Fig. 4.1 A typical structure of a single-bit, single-stage AS modulator. 

Knowledge of various parameters of the quantization noise, 
such as its power spectral density (PSD) and its probability density 
function (PDF) will help to evaluate the performance of the AE 
modulator. This is carried out by means of the maximum value of 
the SNR as well as the maximum acceptable value of the signal for 
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the modulator to remain stable. Modeling of the AS modulator 
with respect to quantization noise is discussed in this section em­
ploying the simple linear model [1,2] and the quasi-linear model 
[3]. 

4.2.1 Linear model 

According to the linear model the quantizer in Fig. 4.1 is repre­
sented by the quantization noise source e(n). Then the output y(n) 
will be as follows: 

y(n) = u{n) + e(n) (4.4) 

Ignoring completely the fact that e(n) = S •sgn{«(«)}-«(«), the 

model is completed assuming the following: 

a. The noise e(n) is white in the frequency interval [ 0,/^ ]. 

b. The PDF fe{e) of the quantization error is uniform in the 

interval [-S, S]. 

These two assumptions are adequate for evaluating the maxi­
mum SNR from (4.3) as follows: 
According to the first assumption, the quantization noise power in 
the signal band is 

P % 

Pe-in=— \\NTF(eJ0)2dd (4.5) 
n J' 

o 
where R is the oversampling ratio and Pe the total quantization 
noise power, which according to the second assumption is 

+00 

Pe= je2fe(e)de = S2/3 (4.6) 

— 00 

For a sinusoidal input signal with maximum amplitude xmax the 
SNRmax is 

SNRmax = X - / 2 (4.7) 

PA t to\i ^ (INTFU0) de 
o 

Since in the first-order AE modulator xmax=8, it is found that 
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SNRr 
S2/2 

/R 

^- \\NTF(eje)'dd 
K J' 

(4.8) 

According to the material exposed so far, it may be thought that 
the design of AE modulators is solved. However, in practice the 
operation of the modulators is not satisfactory for the following 
reasons: 

a. Many of them, which are expected to be stable and give high 
SNR, are in fact unstable. Moreover, most of the AE modula­
tors of orders higher than 2, are not stable for the maximum in­
put signal xmax=S. 

b. Often, the previously set assumptions are not valid and, conse­
quently, equations (4.5) to (4.8) give a misleading estimation of 
the SNRmax. 

The first of the above remarks is regarded as the most significant. 
Instability occurs when the transfer functions STF and NTF have 
at least one of their poles outside the unit circle. The position of 
the poles can be controlled by an amplification factor k, which can 
be introduced as shown in Fig. 4.2. Consequently, the STF and 
NTF become 

k-L0(z) 
STF(z) = 

NTF(Z) = 

l + *-L,(z) 

1 

\ + k-Lx(z) 

(4.9.a) 

(4.9.b) 

Input 

Output 
( l b i t ) 

Fig. 4.2 The operation of a AZ modulator is not affected when a positive gain k 
is placed before the quantizer. 
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In the general case k is unknown and the transfer functions are 
not exactly known. This ambiguity is almost resolved in the quasi-
linear model, where the values of A: are determined. 

4.2.2 Quasi-Linear model 

In this model [3], the input to the quantizer u(n) is divided into 
us(n) and ue(n). The first of these components is related to the input 
signal while the second one to the quantization error. These com­
ponents are multiplied by different amplification factors ks and ke 

respectively. Thus the quantizer is replaced by a linear system de­
scribed by 

y(n) = ys(n) + ye(n) = ks-us(n) + ke-ue(n) + e(n) (4.10) 

which in turn divides the modulator into two linear systems shown 
in Fig. 4.3. 

x(n) 

— • 

L0(z) 

L,(z) 

u„(n) 

' V 
ys(n, 

,> 

(a) 
e(n) 

-
Li(z) 

ue(n) 
Ke ., -4 S^ ye(n) 

J 

(b) 

Fig. 4.3 According to the quasi-linear model, the AS modulator is split into two 
linear systems describing its functioning for a. the input signal and b. the quanti­
zation error. 

Two assumptions are made in this model, too. One refers to 
the noise e(n) whilst the other to the component ue(n). These are as 
follows: 

a. The quantization error e(n) is white noise (as in the case of 
the linear model), uncorrelated with the input signal. No 
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assumption is made for its probability density function 
(PDF), 

b. The PDF of ue(n) is assumed Gaussian with zero mean. 
The gains ks and ke are introduced so that the two hypotheses, 
namely, 

i. e(n) is uncorrected to the input signal and 
ii. e(n) is white 

would not contradict each other, as it happens with the linear 
model. For the noise e(n) to be uncorrected with the signal x(n) 
we should have 

£{us(n)ue(n)} = 0 (4.1 La) 

and 
E{e(n)us(n)}=0 (4.1 l.b) 

Furthermore, if e(n) is white, then 

E{e(n)ue(n)}=0 (4.1 l.c) 

Solving equation (4.10) for e(n) and taking into consideration 
(4.11), the gains ks and ke will be obtained from 

k = E\y(n)-us(n)} 

E{us(n)-us{nj\ 

= E{y(n)-ue(n)} 
E{ue{n)-ue{n)} 

The same result would have been obtained if the quantization 
noise power Pe 

Pe=E{e(n)2}=E{(y(n)-ks-us(n)-K ue(n)f\ (4.13) 

had been minimized. Applying the linear Mean Square Estimation 

for the variable y(n), by means of the linear estimator 

ks • us(n) + ke • ue{ri), gives, according to the orthogonality princi­

ple, the estimation error e(n) = y(n) -ks-us (n) -ke-ue (n), to be 

orthogonal (i.e. uncorrected) to the signals ue(n) and us(n). 

(4.12.a) 

(4.12.b) 
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Using the second assumption (ue(n) is Gaussian), the quantiza­
tion noise power Pe and the gains ks and ke can be numerically 
evaluated [3] for specific types of input signals (sine wave or dc). 
As a result, the signal and noise transfer functions will be written 
as follows: 

STF(z)= ks'Lo(z) (4.14.a) 

\ + ke-Lx{z) 

The above quantities, i.e. Pe, ks, ke, STF and NTF, are not constant 
but depend on the type and the power of the input signal [3]. This 
fact lends the name "quasi-linear" to the described model. 

Finally, the evaluation of the SNRmax is carried out using (4.7) 
as in the case of the linear model. In this case, the required in-band 
quantization error, given by (4.5), depends on the input signal 
power. Drawing the SNR curve, the estimation for the SNRmax can 
be made and, consequently, a thorough assessment for the opera­
tion of the modulator using the quasi-linear model can be 
achieved. Nevertheless, the value of the signal amplitude for which 
instability occurs depends on the type of the signal. 

4.3 NTF Characteristics 

The design of a AZ modulator requires the selection of an appro­
priate filter L](z) or, according to (4.3), the corresponding NTF, so 
that the modulator would be stable and at the same time achieve a 
high SNR. For this purpose the NTF should possess the following 
characteristics: 

a. The first term h0 of the impulse response of the NTF, should 
always be equal to 1 [1]. This is necessary for the AE modu­
lator to be a causal system. The quantization error has to be 
delayed by at least one sampling period Ts before returning 
to the quantizer input. 

b. Suppose that the NTF is of the form 
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NTF{z-]) = H(z-l) = g-f]il Zi'Z \] (4.15) 

where g is a constant. Using Taylor series expansion around 
z~J=0, for the first term of the impulse response we will have 

h0=NTF(0) = g (4.16) 

Consequently, g=l and this has to be taken into considera­
tion when an ordinary transfer function is to be selected 
from tabulated data, 

c. The signal power, which can be properly processed by the 
A£ modulator, decreases as the noise power increases. This 
fact easily proves to be valid, since the output sequence has 
always constant power 8 which is composed of the signal 
and the total noise power 

Px+Pe-tot = S2 (4-17) 
If the quantization noise spectrum is white, its spectrum at 
the output of the AI modulator will be 

Pe-m=^r hTF{eJ
9)2de = Pe-A (4.18) 

LK J' 

where the quantity A is called the noise amplification factor. 
d. The quantization noise power within the signal band de­

pends on the order of the NTF. It can be shown that, for an 
ideal high-pass NTF, this noise power is given approxi­
mately by [15] 

^ 4 - 1 - ^ ( " " ' ) (4-i9) 
R e 

where e is the base of natural logarithms. Clearly Pe.in de­
creases rapidly with increasing A. 

e. The maximum achievable SNR is usually obtained for mod­
erate signal amplitudes. Since the maximum SNR is given 
by 

SNRmn=-£- = ?-^=eL (4.20) 
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substituting from (4.19) into (4.20) gives 

SNRnm=e-j~A<*-l)-{p2-Pe-A) (4.21) 

According to this last equation the maximum SNR is 
achieved for a high value of A and consequently for a high 
order NTF. However, this results in increasing the Pe.m and 
accordingly (see eqn. (4.17)) in decreasing the tolerable Px 

in the AS sequence. Therefore, for encoding high values of 
the input signal, a compromise leading to lower SNR must 
be accepted, 

f. An NTF with minimum phase will lead to higher SNR. A 
non-minimum phase NTF has the factor g in (4.15) greater 
than 1. This results in an increase in the quantization noise 
power by a factor of g2. Using equations (4.17) and (4.20) it 
becomes evident that the SNR decreases since in (4.20) the 
numerator decreases whereas the denominator increases. 
The non-minimum phase NTFs result in the so-called cha­
otic AS encoders [1,13]. Chaotic encoders are more prone to 
instability and achieve lower maximum SNR. Although the 
problem of idling tones is not prominent in these circuits, 
since the nature of quantization noise is quite random, they 
are not used, due to their disadvantages that were previously 
mentioned. 

4.4 Stability of AS Modulators 

AS modulators are basically non-linear systems and their stability 
cannot be analyzed by means of stability criteria employed in lin­
ear systems. As far as single-bit, single-stage AS modulators are 
concerned, instability occurs for systems of order higher than one, 
and is detected from the behavior of internal signals. In this case 
the amplitude of the internal signal increases rapidly and oscilla­
tions take place at low frequencies (limit cycles) [1,4,5]. Using 
various kinds of simulation, it was concluded that instability oc-
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curs when the amplitude or the frequency of the input signal ex­
ceeds a specific value. The unstable encoder cannot usually return 
to its stable operation even if the reasons for instability does not 
exist any longer. 

y(n) 

1800 2000 2200 2400 2600 2800 

Fig. 4.4 Time evolution of the modulator output y(n) for sinusoidal input signal 
in case of unstable modulator. 

An example of an unstable modulator is depicted in Fig. 4.4, 
by means of simulating a third-order AS modulator for sinusoidal 
input signal with 0.6 of the full scale amplitude. The input to the 
quantizer u(n) is, till a time instant, varying inside the expected 
amplitude region. Nevertheless, owing to the nonlinear nature of 
the modulator as well as to signal dynamics, suddenly, u(n) in­
creases rapidly even if the input signal is withdrawn. Moreover, as 
shown in Fig. 4.4, the modulator output does not alternate rapidly 
between -<5and +S, as it does when the modulator is properly func­
tioning. 

Various stabilization techniques for restoring the normal opera­
tion of the modulator have been proposed [6-8] and are reviewed 
in Chapter 7. Each time a stabilization technique is applied, the 
SNR is significantly reduced for a reasonable time period until the 
modulator totally recovers. This means that a stabilization tech­
nique is a necessary but not an optimal solution to avoid instability 
problems. The most appropriate approach is to design the AX 
modulator so that it will never become unstable. 
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4.5 Stability Criteria 

Various stability criteria for selecting the appropriate NTF and 
thus assessing the functionality of a A£ modulator can be found in 
the literature [1]. Three of them are the following: 

a. The sum of the absolute value of the terms in the impulse 
response of the NTF is bounded [9,10], i.e. 

00 

5|A|SEW=3-Xmax (4-22) 

where xmax is the maximum signal amplitude for which the 
modulator remains stable. This criterion is quite strict giv­
ing stable circuits, which, however, achieve low SNRmax 

though. The criterion is usually applied in the form 
S\h\ < c, where c is around 3.5. 

b. The mean-squared value of the magnitude response of the 
NTF (noise amplification factor) 

n 
A = — [\NTF(ej9) dO<c (4.23) 

where c^2.5 [9,11] 
c. The maximum value of the frequency response of the NTF 

has to be smaller than c=2 [9,12], i.e. 
M = max{|JV7F(z)|}< c (4.24) 

The empirical nature of these criteria is evident, while the value 
of c has been estimated after extensive simulations. For a specific 
AE modulator the most suitable NTF is obtained from the family 
of functions [1,3] 

NTF- • • ,(z\ 

NTFk (z) = '" ' t o A ; (4.25) 
k + (l-k)-NTFinitial(z) 

This NTF should accomplish the above criteria for certain values 
of k. However, the exact amplitude of the input signal beyond 
which the modulator becomes unstable cannot be determined. 

Unfortunately, the estimation of xmax based on the first crite­
rion is accurate only in a few cases, as for example is the case of 



88 AS Modulators 

the first-order AE modulator. For the rest of cases, the criterion is 
very strict and the value of xmaxis underestimated or is found to be 
negative, which means that the modulator is unstable. This crite­
rion can be employed for estimating xmax for a known NTF or 
when designing NTFs posing restrictions on S\h\. In this last case 
the criterion is applied using (4.22). In general, when increasing 
S\H\, Xmax decreases and the modulator becomes more easily unsta­
ble. Consequently, S\h\ must be held small. 

As far as the criterion for the value of A is concerned, for a 
stable modulator the available power of the signal in the AS se­
quence should not be negligible, since 

Px=S2-Pe_tot=S2-Pe-A>0 
requiring 

A<^- (4.26) 

When using the linear model, where Pe - 52/3, A should be 
smaller than 3, whilst when using the quasi-linear model, A should 
be smaller than 2.75, sincePe = S2(\-2/TT) [1,3] in the latter case. 
Thus, the employment of the models explains the limitations in the 
value of the noise amplification factor A. Using the same justifica­
tion, the criterion that imposes limitations on the quantity M, can 
be explained, since Mis indirectly related to A. Both quantities A 
and M provide a measure for the available input signal power con­
tained in the AE sequence and, consequently, describe the stability 
of the modulators. 

The above discussion about the quantity A, where 

'-tlNTFU (ej0)\2dd = Yjif = 1 + Yji = l + Ai (4-27) 

reveals two necessary but contradicting conditions. The quantity A 
must be large enough for a high SNR to be achieved. However, the 
quantity S\h\ has to be small. Consequently, while the increase in A 
results in increasing the terms of the impulse response, the de­
crease in S\h\ demands their decrease. For a given value of A, 
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minimization of S\h\ occurs when only one term of the impulse re­
sponse is non-zero and all the others are zero [15] (the first term h0 

is always 1). For the first-order AZ modulator the second term is 
h]--l, whereas for higher order modulators the value of |/?/| can be 
selected to be much larger than the values of the rest of the terms. 
In [14,15] it is shown that an alternative stability criterion could be 
the following: 

00 

v s Z A ' 2 < c (4-28) 
i=2 

The value of c, after extensive simulations, is found to be 0.07. 

4.6 Noise Transfer Function Determination 

A desired AE modulator should be stable for high values of the 
input signal and simultaneously achieve maximum SNR. This cor­
responds to forming the NTF in such a way that the best trade off 
between maximum achievable input xmax and maximum SNR is 
reached. Various NTF^ can be obtained depending on the require­
ments and specifications of the modulator. However, they must be 
high-pass. It is possible to be drawn from tabulated data containing 
Butterworth, Chebyshev or Inverse Chebyshev functions. The po­
sition of poles and zeros of such a function could be as depicted in 
Fig. 4.5. For high attenuation in the signal band the zeros must be 
located inside the signal band, while the poles must lie far away 
from the zeros. For high oversampling ratios the zeros are close to 
z=l. In this case the magnitude of the NTF in the signal band is 
mainly determined by the zeros according to 

/ ^ 2 \NUM(eje)\ 
NTF{eje) = L _ >±_ (4.29) 

ri!'-o<i2 

;=1 

For small 0 the denominator can be considered constant and thus 
the power of the quantization error in the signal band will be pro­
portional to the integral of this quantity. Consequently, the prob-
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lem of determining an optimal NTF is related to finding first the 
best position of zeros and then the position of poles. 

Im z-plane 

Signal band 
and region of 
zero locations 

Fig. 4.5 Location of poles and zeros in the unit circle. 

4.6.1 Optimizing the position of zeros 

The position of zeros should be such that the power of the 
quantization error in the signal band is minimized [9]. This means 
that the following integral should be minimized: 

I, [|M/M(e-^)| d6 (4.30) 

Since the zeros lie on the unit circle, they can be written in the 

form of e1^'. Then for z = e] we will have for even N 

NUM(Z~] )=Y\(l~ e~^^\ - *'<*"'>)« f j fe2 - 02)= 2>0 2 ' 
!=1 1=0 

(4.31.a) 
while for odd TV 

N-\ 
2 2 

NUM(Z~1 )= (l - e^Yl (l - e-to+°)\ - eJ<*-°))M jO^J^ 
1=1 ;=0 

(4.3 l.b) 
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These are valid to a good approximation since 0 ,</>,- < n/R «1. It 

is preferable to evaluate the coefficients fe, since the frequencies 0, 
can be determined explicitly only for a NTF of order smaller than 
5 [9]. In order to avoid dependence on R, the normalized frequen­
cies will be evaluated (for nlR = \). 

For iV even we have fey = ( - l ) ^ . The evaluation of the other 

coefficients fe, proceeds as follows: First we insert the expression 
for NUM(z') from eq. (4.31.a) into eq. (4.30) and evaluate the 
integral. Then, taking the partial derivatives with respect to bt's 
and setting them equal to zero leads to the following set of equa­
tions: 

( -1)^ N 
V ' — £=0,1,..., — - 1 (4.32.a) 

f-
^ 2 * + 2/ + l N + 2k + \ 2 
(=0 

A similar procedure followed for odd N results in the following 
set: 

^ " 1 / JAM)/ 

t "' - < - ' ) , M U ^ ± - l (4.32.b, 

The desired frequencies (Pi are the roots of the polynomials (4.31). 
The normalized coefficients as well as the normalized roots deter­
mined in this way are given in Table 4.1 for orders 2 up to 5. 
These polynomials will be subsequently referred to as optimal. 
The corresponding quantities for the equiripple Chebyshev poly­
nomials are presented in Table 4.2. Comparing the two Tables the 
difference in the positions of the zeros, between optimal and Che­
byshev polynomials, can be determined. The normalized frequen­
cies will have to be multiplied by 7i/R, for denormalization pur­
poses. 

In Table 4.3 the performance achieved by the optimal and 
Chebyshev polynomials when compared to the coN polynomials, 
which have all their roots at zero, is presented. This table shows 
that it is preferable to move the zeros away from dc. Furthermore, 
the optimal polynomials outperform those of Chebyshev by 
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approximately 1.2 dB. This fact is expected since the Chebysh 
polynomials are equiripple and they do not lead to minimum me 
square quantization error in the signal band. 

Table 4.1 Coefficients and roots of optimal polynomials for orders 2 to 5. 

Coefficients 
N b0 

2 -0.3333 

3 -0.6 

4 0.0857 

5 0.2381 

b, 
1.0 

1.0 

-0.8571 

-1.1111 

b2 <p, 

±0.5774 

0.0 

1 ±0.34 

1 0.0 

Roots 
(p2 

±0.7746 

±0.8611 

±0.5385 

<P3 

±0.9062 

Table 4.2 Coefficients and roots of Chebyshev polynomials for orders 2 to 5. 

N b0 

2 -0.5 

3 -0.75 

4 0.125 

5 0.3125 

Coefficients 
b\ 

1.0 

1.0 

-1.0 

-1.25 

b2 

1.0 

1.0 

<Pi 

+0.7072 

0.0 

±0.3827 

0.0 

Roots 

(Pi 

±0.8661 

±0.9239 

±0.5878 

<P3 

±0.9511 

Table 4.3 Gain in power compared to coN polynomials. 

N 

2 

3 

4 

5 

Gain (dB) 
Optimal 

3.5 

7.9 

12.8 

17.9 

Chebyshev 

2.3 

6.7 

11.6 

16.7 
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4.6.2 Optimizing the position of poles 

The quantization noise power in the signal band is reduced as 
the distance of the poles from the origin of the unit circle in­
creases. However, this results to an increase in the NTF magnitude 
at high frequencies, and consequently, in an increase in the total 
quantization noise power Pe-tot. Thus the power of the AI se­
quence available to the signal is reduced and the modulator be­
comes prone to instability. The selection of an existing function to 
model the NTF predetermines the position of poles on the complex 
plane according to the specific function characteristics. 

The selection of poles and thus the determination of the NTF 
using the Inverse Chebyshev functions requires the multiplication 
of the NTF by g, so that it takes the form of equation (4.15) with 
g=h0=l (for pass-band gain equal to 1, g must be less than 1). For 
Inverse Chebyshev NTF.? the position of poles can be uniquely 
determined by the value of parameter A or M, in case the latter 
should be constrained (Eqs. (4.23) and (4.24)). 

The resulting NTF.S have their zeros in the signal band as given 
in Table 4.2. The poles are given in Table 4.4 and depend on the 
value of M. The parameter BE in the same Table expresses the de­
gree of expected stability in increasing order. This means that 
modulator E4 is more stable than El, which implies that it remains 
stable for higher values of the input signal. For small values of M 
the poles are close to the origin of the unit circle. 

Another way for selecting the optimum position of poles is to 
search the whole region inside the unit circle to find the position of 
poles leading to maximum SNR [14-15]. For this purpose, the 
maximum value of s,2 is constrained and the whole region is ex­
amined for the poles to minimize the integral in (4.5) and, conse­
quently, maximize the SNR. In Table 4.5 the poles of the NTF are 
given having been obtained from the above approach. The zeros 
can be those of Table 4.1 or Table 4.2. 
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Table 4.4 Poles of the Inverse Chebyshev NTFs for various values of M. 

Order 

3 

4 

5 

BE 

El 

E2 

E3 

E4 

El 

E2 

E3 

E4 

El 

E2 

E3 

E4 

M(dB) 

5 

4 

3 

2 

5 

4 

3 

2 

5 

4 

3 

2 

Poles of the NTF 

0.5427, 0.65841/0.3720 

0.6191, 0.73141/0.3173 

0.7055,0.80621/0.2511 

0.7906, 0.87161/0.1830 

0.78391/0.3333, 0.6570dy0.1157 

0.82861/0.2834, 0.71201/0.1010 

0.87691/0.2228, 0.7777+/0.0818 

0.92221/0.1566, 0.8480+/0.0596 

0.6997, 0.8486±/0.2973, 0.73531/0.1592 

0.7494, 0.88231/0.2491, 0.78191/0.1364 

0.8091, 0.91771/0.1914, 0.83631/0.1078 

0.8657, 0.94681/0.1377, 0.8866±/0.0797 

Table 4.5 Poles resulting by means of search over the entire region of the unit 
circle for maximizing SNR. 

Order 

3 

4 

BE 

El 

E2 

E3 

E4 

El 

E2 

E3 

E4 

Constrain in S,2 

0.064 

0.032 

0.016 

0.008 

0.064 

0.032 

0.016 

0.008 

Poles of the NTF 

-0.0528, 0.7951±/0.3622 

-0.0382, 0.83541/0.3024 

-0.0309, 0.86951/0.2500 

-0.0285, 0.90491/0.2073 

0.0611, 0.6044, 0.92521/0.2800 

0.0365, 0.7044, 0.93611/0.2354 

0.0320, 0.7444, 0.95611/0.1900 

0.0156, 0.8144, 0.96061/0.1600 

El 0.064 -0.0457,0.96991/0.1934,0.81941/0.3006 

E2 0.032 -0.0157,0.97701/0.1634,0.84231^0.2420 

E3 0.016 -0.0157, 0.97701/0.1420, 0.8851+/0.1834 

E4 0.008 -0.0143,0.98711/0.1100,0.9029+/0.1671 
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4.7 AS Modulator Assessment 

The performance assessment of a AS modulator is based on the 
maximum SNR that can be achieved, as well as on the maximum 
input signal for which the modulator remains stable. This can be 
derived from the SNR plot against the input signal amplitude. The 
spectrum of the AS sequence can be used to evaluate both the sig­
nal and the quantization noise power, and thus the SNR. In Fig. 
4.6, the SNR is given as a function of the input signal applied to 
third-order AS modulators for two different methods for determin­
ing the NTF, namely the Inverse Chebyshev and the search for 
maximum SNR. In Table 4.6 their characteristics are given for 
various AS modulators resulting from simulations. Specifically, 
the values of the maximum SNR and the maximum signal ampli­
tude for which the modulator remains stable are presented. Ac­
cording to these data, the above-mentioned methods for selecting 
the NTF are found to be effective. However, the second method 
based on finding the poles for maximum SNR may lead to AS 
modulators with better performance as can be easily deduced from 
Table 4.6. 

Table 4.6 AS modulator characteristics for Inverse Chebyshev and maximum 
SNR type NTFs. 

Order 

3 

4 

BE 

El 
E2 
E3 
E4 
El 
E2 
E3 
E4 

Inverse Chebyshev 
SNRmax 

(dB) 
91.5 
90.4 
87.5 
82.9 
106.3 
105.8 
101.1 
92.9 

Xmax (FS) 

0.537 
0.741 
0.851 
0.912 
0.316 
0.575 
0.741 
0.870 

Maximum SNR 
SNRmax 

(dB) 
93.5 
93.4 
92.2 
89.8 
107.6 
107.9 
105.1 
101.1 

(FS) 

0.407 
0.589 
0.646 
0.813 
0.295 
0.562 
0.692 
0.776 

El 117.8 0.186 122.8 0.355 
5 E2 118.4 0.501 121.5 0.575 

E3 111.9 0.676 116.9 0.708 
E4 101.8 0.832 111.4 0.794 
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4.8 Summary 

In this Chapter the modeling and design of single-bit single-stage 
AZ modulators was analyzed. The design of modulators with satis­
factory characteristics is based on the selection of NTFs with spe­
cific properties. Among them the first term of its impulse response 
should be significant while the rest negligible. 

SNR95 

(dB) go Scolder ^ " " ^ 

> b LE3 . 

-10 -5 0 

Input amplitude (dB) 

(a) 

-10 -5 0 
Input amplitude (dB) 

(b) 
Fig. 4.6 SNR plot as a function of input signal amplitude for Inverse Chebyshev 
(a) and maximum SNR modulators (b). 

The availability of an easily applied stability criterion and a 
suitable quantization noise model, enables the designer to find an 
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optimum NTF for the AE modulator. The procedure is carried out 
in two stages. First, the positions of zeros are evaluated analyti­
cally so that the minimization of the quantization error power in 
the signal band is achieved. Then, the optimization of the pole lo­
cations is carried out using numerical methods, in order to satisfy a 
stability criterion and achieve maximum SNR for the specific 
model simultaneously. Accordingly, the problem of designing sin­
gle-bit single-stage AE modulators is tackled and their behavior 
and performance is examined. However, other issues concerning 
the spectral properties of the quantization error for example, 
should also be considered. 

Problems 

4.1 Using MATLAB find the poles and zeros of an Inverse Che-
byshev high-pass NTF, like one of those given in Table 4.4 
(specific order and parameter M). Determine the in-band at­
tenuation so that the desired M is achieved. Draw the plot of 
M as a function of the in-band attenuation. Is it verified, this 
way, that decreasing PeJ„ results in increasing Pe,t0P-

4.2 Consider as NTFjnitiai one of the Inverse Chebyshev NTFs 
given in Table 4.4. Write a program in MATLAB for 
determining, using eq. (4.25), the corresponding NTFs, for 
various values of k. Find the values of k for which 
minimization oiS\h\, A and Mis achieved. Determine also, the 
minimum values for S\t,\, A and M. Does NTFjnitiai obey some 
of the criteria given in eqs. (4.22), (4.23) and (4.24)? 

4.3 Using SIMULINK design a AE modulator. Make use of Fig. 
4.1 letting 5=1 and in place of L0(z) and L,(z) the structure in 
Fig. 3.6. Determine the values of G(z) and L(z) so that the 
STF is an all-pass function with the NTF being one of those 
in Table 4.4. 

a. For various values of the amplitude of the input signal (al-
ways<l) and various frequencies, draw the output pulse 
sequence as well as the input to the quantizer. 
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b. Determine the spectrum of the output using a window of 
65536 samples and comment on its noise shaping charac­
teristics. 

c. Evaluate the SNR for various amplitudes of the input sig­
nal and draw the corresponding diagram. 

d. Using the SNR plot, determine the input signal amplitude 
for which instability occurs. For this amplitude, simulate 
the modulator and monitor the input and the output of the 
quantizer. 

e. Reduce the accuracy of filter coefficients and examine the 
change in Noise Shaping. 

f. Use two separate filters L0(z) and L}(z) for the structure in 
Fig. 4.1 (instead of G(z) and L(z)) and simulate the result­
ing modulator. Monitor the signals at their output. Could 
this structure be suitable for implementation? 

4.4 Simulate a AE modulator whose NTF is one of those in Table 
4.4. Find the output spectrum. Can the observed noise shaping 
characteristic be approximated by an inverse Chebyshev high-
pass transfer function? Justify your answer. 

4.5 Simulate a AE modulator whose NTF is one of the Inverse 
Chebyshev functions in Table 4.4. Repeat with the same NTF 
having the same poles and zeros at dc. Verify that the gain in 
SNR is as given in Table 4.3. 
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Chapter 5 

Implementation of AZ Modulators 

5.1 Introduction 

In chapters 3 and 4 the AZ Modulator was examined in the signal flow 
diagram level. The study referred to modeling, design, the characteristics 
of various structures of AZ modulators, their efficiency and their stabil­
ity. In the present chapter we are looking at the implementation of AZ 
modulators with emphasis on those used in the design of ADC. We start 
with the presentation of each of the stages in the block diagram of the 
AZ modulator and give various basic circuits useful in the implementa­
tion. Next the actual design is presented at the circuit level of first-, sec­
ond-, third-order low-pass as well as a fourth-order band-pass AZ sin­
gle-bit modulators. Also simulation and experimental results with refer­
ence to SNR and PSD of these actual circuits are given. The experimen­
tal method of obtaining these results is also described. It is hoped that the 
reader, having gone through this chapter, will be able to build and test 
his own AZ modulator at the laboratory. 

5.2 Basic Blocks of a AZ Modulator for Analog-to-Digital 
Conversion 

The single-stage AZ modulator, whether single-bit or multi-bit, is shown 
in block diagram form in Fig. 5.1. It consists of the following blocks: 
a) The loop filter (LF) 

100 
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b) The local ADC 
c) The local DAC 

The loop filter is analog and can be active continuous-time (CT) or 
discrete-time (DT). The combination of the local ADC and DAC is 
equivalent to a sampler followed by a quantizer. Sampling is necessary in 
order to produce the AS sequence at the output of the modulator, while 
with the presence of the DAC the required states of the quantizer are 
produced in order to be returned to the input of the analog filter. 

Analog 
Input 

c(0 <\ 

. 

ya 

- • 

y(«) 

Two-input analog filter 
/ equivalent to 

' two discrete-time filters 

«(«) u(t) 

U) 

Analog 
Output 

1 

Y 

oU) 

= STF(z)-X + Nl 

/ 

T(z) 

\ 

i Sampler + Quantizer 

Local 
ADC 

Local 
DAC 

•E 

1 

y<t(») 

Digital 
Output 

Bus 
(m-bit) 

1+i iU) l + M z ) 

Fig. 5.1 General block diagram of a AI modulator for analog-to-digital conversion. 

Signals x(t), ya(t), u{t) and yd{n) are real appearing respec­
tively at the analog input of the modulator, at the output of the local 
DAC, at the input and output of the local ADC. The first three are con­
tinuous time waveforms and can be observed using a CRO, while yd («) 
is a m-bit digital signal. The signals x(n), u(n) and y(n) exist in the 
discrete-time model of the AS modulator, which describes it in the sig­
nal flow-level. These may be obtained by sampling ideally the respective 
continuous-time signals x(t), u(t) and ya (t) at the proper instances 

assuming ideal components. 
When the modulator is single-bit, the local ADC is also one bit, eas­

ily implemented by a comparator followed by a D flip-flop, while the 
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local DAC is also 1-bit. Care should be taken that the loop is not de-
layless. In the following sections we examine the implementation of each 
of these blocks in some detail. 

5.2.1 The loop filter 

The loop filter is employed in order to obtain the required NTF, which 
should be high-pass (for low-pass AS modulators), as well as the STF, 
which is desired to be all-pass. Usually L0(z) and Lx(z) are the same 
function L(z). 

This filter is analog and can be implemented either in a continuous-
time or in a discrete-time active form (switched-capacitor (SC), or 
switched-current (SI)). After the NTF has been selected, the transfer 
function of this filter Lx(z) can be obtained from Eq. (4.3) to be 

l - M F C z , 

NTF(z) 

As has been shown in Chapter 3, in order to realize Lx(z), it is custom­
ary in AS modulation work, to employ methods that are based on the 
use of integrators in a negative feedback loop. The main reason for this is 
the low sensitivity of these structures, since multiple negative feedback is 
applied to a cascade connection of integrators. In Figs. 5.2a and b the 
inverting and the non-inverting SC integrators are shown respectively 
[1], together with their respective transfer functions, assuming ideal op­
erational amplifiers. Similarly, the continuous-time active RC integrator 
[2], shown in Fig. 5.2c, is also used as the basic component in imple­
menting the loop filter. In the latter, of course, sampling is taking place 
after the signal has passed through it. This is not required in the case of 
employing SC techniques, because sampling is accomplished by the SC 
filter itself. 
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xft) 

(a) 

x(t) 
Y(z)~-

-1/2 

C 1-
-X(z) 

(b) 

*(/) •—W\A 

Y(s)=-—X(s) 
RC- s 

(c) 

Fig. 5.2 a. Inverting and b. non-inverting single-ended SC integrators and c. the CT 
integrator. 

In Fig. 5.3 fully-differential SC and CT integrators are shown. These 
are very useful when a high performance AS modulator is required at 
higher frequencies. For operation at even higher sampling rates employ­
ment of current-mode continuous-time integrators will be required. 
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x+(l) 

x~(t) 

K+(Z)-K-(Z)= 

y'(t) 

(a) 

y'U) 

(b) 

C^ 1 _ 

" c i_2-> 
( j f + ( z ) - * " ( * ) ) 

Fig. 5.3 Fully-differential a. SC and b. CT integrators. 

As has been mentioned already, the order of the AS modulator is 
identical to that of the loop filter. Thus a first-order AZ modulator will 
employ a simple integrator of either type shown in Figs. 5.2 and 5.3, 
which is a first-order circuit. Higher order modulators will employ loop 
filters of corresponding orders. These filters will normally consist of the 
cascade connection of integrators with distributed feedback applied to 
the cascade. Local negative feedback in two consecutive integrators may 
also be applied in order to form resonators with high-selectivity. This is 
clearly shown in Fig. 5.4, which is the general structure and a more de­
tailed repetition of Fig. 3.7b. In case the loop filter is implemented using 
SC circuits, integrators with or without delay can be used. In the first 
case the circuit can operate up to higher frequencies as there is no need 
for multiple opamp settling during the sampling period. In Fig. 5.4a, 
where the integrators have no delay, the necessary delay in the negative 
feedback network of the resonator, can be implemented by properly 
phasing the switches. In Fig. 5.4b, correct phasing of the switches is also 
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necessary to avoid the double delay. However, in order to simplify the 
circuit and to avoid the required double opamp settling, the resonator can 
be implemented as indicated by the broken line [3] (see problem 5.1). 

-g(N-\)l2 

Output 
( l b i t ) 

y(ri) 

(a) 

Input -&(«-l)/2 

Output 
( 1 bit) 

(b) 

Fig. 5.4 Structure of the loop filter as a Chain of Integrators with Distributed Feedback 
and local resonator feedback (CIDF) a. using delay-less integrators, b. using integrators 
with delay. 
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5.2.2 Local ADC and DAC 

In the single-bit A£ Modulator, both the local ADC and the DAC are 1-
bit. In the multi-bit modulators these should be multibit. 

The single-bit local ADC is implemented using a comparator fol­
lowed by an edge-triggered D Flip-Flop. The frequency of the clock is 
the oversampling frequency, while the comparator is implemented using 
an operational amplifier on open-loop having as high a slew rate (SR) as 
possible. For single-ended structures one of the inputs is grounded, while 
for fully differential structures, its differential input is fed from the dif­
ferential output of the last integrator of the loop filter. The D Flip-Flop, 
operating at the oversampling rate performs the sampling of the com­
parator output signal. This combination of the comparator and the flip-
flop is equivalent to first sampling the signal u(t) using a sample-and-

hold circuit which is then followed by the comparator action. The output 
AD sequence is obtained from the Q output of the D Flip-Flop. 

Next the output sequence from the D Flip-Flop enters the local DAC 
and controls the generation of the analog states at its output. In the sin­
gle-bit case the simplest circuitry of the DAC consists of a double throw 
switch connecting its output either to + Vrej- or to - Vrej- thus closing the 

loop of the AS modulator. In this case the DAC output pulses will be 
nearly ideal square waves as shown in Fig. 5.5. 

1 

<— Time slot 1 • 

1 

4— Time slot 2 • 

\ 1 

< — Time slot 3 • 

\ 1 

t 

\ 

t\-T, tx t] + Ts (,+27; 

Fig. 5.5 Suitable output pulses from the local DAC in the case of a single-bit AI 
modulator. 
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In continuous-time AS modulators [3,4], to avoid problems created 
by non-equal rise and fall times of the DAC output pulses (see next chap­
ter), the latter may have the form shown in Fig. 5.6 (Return to zero (RZ) 
waveform). A circuit generating this type of pulses will be given in the 
next chapter. 

ya(0 

Vref 

vref 

Time slot 1 • Time slot 2 Time slot 3 

h-T, h h+T, tl+2Ts 

Fig. 5.6 DAC output pulses to reduce the effect of non-equal rise and fall times. 
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Fig. 5.7 First-order, single-bit AS modulator using a CT integrator. 
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Analog 
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Output 

Clock 

IJUT-H D nip-flop 
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Complementary 
Digital 
Output 

9 — .Vrf(») 
Digital 
Output 

Fig. 5.8 First-order, single-bit AS modulator using a SC integrator. 

In Figs. 5.7 and 5.8 the implementation of a first-order AZ modula­
tor is shown. In the first case the loop filter is a continuous-time integra­
tor, while in the second a switched-capacitor integrator. Details of the 
way the component values have been calculated are given in Sec. 5.3. 

In multi-bit AS modulators the local ADC is a Flash ADC the out­
put signal y^(n) of which consists of m-bit digital words. These words 
can be in any binary representation i.e. sign-magnitude, one's comple­
ment or two' s complement, depending on the digital circuitry following 
the modulator. The local DAC is also m-bit and should be as linear as 
possible i.e. its output levels should be equidistant. 

5.3 Continuous-Time Loop Filter Implementation 

The purpose of this section is to explain how continuous-time filters can 
be used in the design of AS modulators to implement a discrete-time 
transfer function [5]. It should be noted that the output of the loop filter 
is sampled by the local ADC that follows the LF. Also the result at the 
LF output is dependent on the waveform of the signal at its input, which 
can be continuous- or discrete-time, as for example the waveform of the 
DAC output signal (see Figs. 5.5 and 5.6). 
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To begin with, let the input signal to the continuous-time filter, be an 
analog discrete-time signal of the form: 

CO 

xx(t)=^x(nTs)-h(t-nTs) (5.2) 
n=-oo 

In this equation x(nTs) a sampled signal with h(t) describing the shape 
of each pulse in the time domain. Thus, h(t) takes a value within the 
time limits t e [0 , Ts] being zero outside these limits. Let also the im­
pulse response of the continuous-time filter be f(t). 

Ideal sampling 

at time instances : 

nT, + r 

nT, t 

Fig. 5.9 Implementation of a discrete-time filter using a continuous-time filter. 

I d e a l s a m p l i n g 

a t t i m e i n s t a n c e s : 

nT, + i 

Fig. 5.10 Equivalent procedure to that in Fig. 5.9. 

The whole procedure is clearly presented in Fig. 5.9 and equivalently in 
Fig. 5.10. It can be seen by means of Fig. 5.10, that passing a discrete-
time signal X] (/) through a continuous-time filter, having a transfer 
function F(s), is equivalent to passing the ideally sampled signal xs(t) 
of x(t) through a CT filter with transfer H(s)- F(s). Taking the Inverse 
Laplace Transform of the latter the impulse response is 

Filter 

f(0 

•MO 

1 
-* 

h(l) 

— 
F i l t e r 

f«> 

hf(t) = L-l{H(s)-F(s)} (5.3) 
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Since hf(t) is sampled at time instances nTs + i, the impulse response 

of the discrete-time filter is that obtained by the impulse invariant 

method [6]. Therefore 

HF(z)=z~rlTs y]hf(nTs + r)z'n (5.4) 

n=0 

In the case of AS modulators which use a CT filter, x is equal to 

Ts. Also when ya{t) is of the form shown in Fig. 5.6, h(t) will be as 

follows: 

h(t)-

Ts 3TS 

-s— -s—-

e 4 -e 4 

T 37 
h(t) = l te[± , ^ ] 

4 4 
=> H(s) = 

T 3T s 
h(t) = 0 t *[-£-, ^Z-] 

4 4 

(5.5) 

Using Eqs. (5.3) to (5.5) the following cases are examined: 

a) Simple integration: F(s)= 
T-s 

hf(t)=L-l{-

Ts 371 Ts 371 
-s— -s—- - J — —s—-

4 - e 4 1 i e 4 e 4 

r - 5 r-r r v 

or hf{t)--
(t - Ts/4)u(t - Ts/4)-(t -3Ts/4)u(t -3Ts/4) 

(5.6) 

where u(/) is the unit step function. Substituting hf(t) from Eq. (5.6) 

into Eq. (5.4) with r = Ts gives 

HF(z)= £ 
«, (nTs + 1 7 > ( « 7 ; + -Ts)-(nTs + ?f)u(nTs + ^ - ) 

4 4 4 4 ,-(«+!) -•z 
«=0 
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(nTs+3Ts/4)-(nTs+Ts/4) _ z_(B+1) 

Lu T 
«=o 

T 

2T 
z-1 £ z " B (5.7) 

n=0 

Finally Eq. (5.7) can be written (see Eq. (A.l) in Appendix at the end of 
this chapter) as follows: 

b) Double integration: F(s)= 
T2s2 

hf{ty (' ~ Ts/4)2 u(/ - Ts/4)-(t -3TS/4)2u(t -3TS/4) ( J 9 ) 

2T2 

Substituting in Eq. (5.4) and using Eq. (A.2) in Appendix (see problem 
5.2) gives 

HF(z)=\-Z ' (1+f '> (5.10) 
4T2 ( 1 - z - 1 ) 2 

c) Triple integration F(s)= 
T V 

kf{t)- « - V 4 ) V ' ~ Tsl*)~(t -37;/4)3u(? -3TJ4) ( 5 U ) 

6r3 

Substituting in (5.4) and using Eq. (A.3) in Appendix A (see problem 
5.2) gives 
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HF^jL.y'^^^-1) (5.12) 
19273 (1-z ) 

It can be easily shown that Eqs. (5.8), (5.10) and (5.12) at low frequen­
cies all reduce to 

HF{eJO>Ts) = --F{o)) (5.13) 

But these discrete-time transfer functions, apart from the one given by 
Eq. (5.8), do not correspond to pure discrete-time integration of the form 

) as one could expect. This forces the designer to make addi­
tional calculations in order to implement the NTF(z) correctly. However 
in all cases the order is preserved, meaning that the implementation of a 
third- order AS modulator will require three integrators of either type, 
CT or DT. 

In case the waveform ya(t) has the shape shown in Fig. 5.5, h(t) 

will be as follows: 

Kt)-
A(0 = 1 te[0, TS] _sL 

=> H(s) = 1'6 (5.14) 

h(t) = 0ti[0,Ts] 

Then for single, double and triple integration the transfer function 
HF{z) will be (see problem 5.3) as follows: 

-l 
HF^)=-^-^-=T ( 5 - 1 5 ) 

T 1- z 

2 -1 -1 

HF(z)=\-Z 0+f } (5.16) 
2T2 (1-z" 1 ) 2 

HF{z>lL.^^'\Y2) (5.17) 
6T3 (1-z ) 3 
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The same method can be applied in order to determine the equivalent 
discrete-time transfer function when the NTF zeros are not at dc. Such a 
case is that of band-pass AZ modulators, which are usually required to 
operate at high frequencies and thus have to be implemented as CT cir­
cuits [7,8]. 

5.4 Circuit Design of a First-Order AE Modulator 

As a first application example of the analysis in the previous sections, we 
consider here the circuit design of the first-order AE modulators, which 
are depicted in Figs. 5.7 and 5.8. Let the loop filterLx(z) be 

Z , 1 ( Z ) = - 1 - (5.18) 
1-z"1 

A very important point in the design is the selection of the oversam-
pling ratio (OSR). This is determined by the ratio fs/2fb , where fb is 
the desired signal frequency band and fs the sampling frequency. The 

latter is determined by the frequency limitations of the opamps which are 
used in the integrators. So, if fs can be high, OSR also can be high. 

Let us, for example, design a first-order AS modulator with the sig­

nal frequency band fb =390Hz and oversampling ratio 64. Then the re­

quired sampling frequency will be fs =50kHz. It is clear that for SC im­

plementation making use of the integrator in Fig. 5.2b, C] = C2 =C, say 

330pF. 
For CT implementation, using Eq. (5.15), with T being the time 

constant RC, we get RC = T = Ts. Therefore RC =20us. However, since 

the amplitude of the signal at the input of the quantizer can be scaled by 
a factor k without affecting the result at its output, as was explained in 
Chapter 4, it is not absolutely necessary for RC to be exactly 20us. It 
should be of that order though, so we select Rx = R2=51k£l and 
C=330pF giving i?C=16.8us. 

Once the RC time constant has been determined, the determination 
of the actual values of R's and C's will depend on whether the modulator 
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circuit is going to be built as an integrated circuit or using discrete com­
ponents. In the first case certain manufacturing limitations like chip size, 
power dissipation e.t.c. will influence the selection. On the other hand, 
when building the circuit using discrete components, the values of the 
resistors should be low and those of the capacitors high. This is so in or­
der to minimize thermal noise and the effects of offset currents, leakage 
currents and parasitics. Care should be taken though that the impedance 
level will not be too low, otherwise the resulting high currents will bring 
the opamps to non-linear operation, which is highly undesirable. 

The modulator input signal Full-Scale (FS) range depends on the in­

tegrator gain Gs for the input signal and on that for the feedback signal 

± Vref, which is the output of the local DAC. If the latter is Gy , we may 

write that Gs • FS = GfVrej-. In Fig. 5.7 for example the gains G^and 

Gf are given by -{RXC)~X and ~(R2C)~] respectively. Thus the choice 

of the values of /?, and R2 as well as that of Vrej fix also the FS of the 

modulator. 
It should be noted that in the above designs we may change the OSR 

without having to make any change in the circuit. For example these 
modulators can operate properly with OSR 64/2=32 when the signal 
band becomes fb =2x390Hz=780Hz. This is also true for any NTF with 

zeros at dc. An additional advantage of the SC implementation is of 
course the fact that fb can be changed simply by changing the clock fre­
quency fs. 

5.5 Circuit Design of a Second-Order AS Modulator 

Consider the CIDF structure of second-order AS modulator to be as 
shown in Fig. 5.11. 
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Fig. 5.11 CIDF structure of a second-order AS modulator. 

Straight forward analysis gives the following NTF(z): 

NTF(z)= 
l - ( 2 - g ) z - ' + z"2 

1+gz -1 
(5.19.a) 

The gain g is determined by the NTF's zeros. The numerator of the NTF 

can be written as follows: 

l-(2-g)z_1 +z~2 = (l-«T-'V1).(l-Vz-1] (5.19.b) 

Let us select the value of ^ from Table 4.1 to be equal to 

0=2xO.5774fb/fs, where fb is the highest frequency in the signal band 

and fs the sampling frequency. Coefficient matching in Eq. (5.19.b) 

gives (since g is real) 

2cos(^)=2cos 2/r0.5774^-1 = 2 - g (5.20) 
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For OSR=64, i.e. fb/fs =1/128, the value of g, obtained from Eq. 

(5.20), is 8xl0"4. This is really very small and makes \gz~\ « 1 . Conse­

quently the NTF(z) can be simplified, i.e. it is almost equal to the nu­

merator of the right part in Eq. (5.19a). As a result the effect of the gain 

g on the NTF is just to move the zeros slightly from dc. This result can 

be extended for any low-pass AS modulators, where for high OSR, g 

affects mainly the zeros of the NTF and very little its poles, the position 
of which are fixed by the coefficients k] and k2 . The proof is left to the 
reader, who can be helped by the example 3.2. 

The block diagram of the second-order AZ modulator, when this is 
implemented using CT integrators, is as shown in Fig. 5.12. 

x(t) Ci„~~^ *( ' -

X X 

T-s 

^ J 
-©-

I X 

T-s 

V (t\ 
yaV) 

ADC 

DAC 

yd(» 

Fig. 5.12 Block diagram of the second-order AI modulator implemented using CT 
integrators. 

We want to determine the values of cin , C\, c2 and gj in order to 

implement the NTF given by Eq. (5.19a). The previous result, i.e. that 

the coefficients cx and c2 fix the position of the poles and gx the posi­

tion of the zeros of the NTF is also valid here. Therefore g] is related to 

g, while cx, c2 are related to the coefficients kx and k2 • Coefficient 

cin determines the Full-Scale of the input signal. To proceed with the 

determination of C\, c2 and c,„ we may work as follows : 
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Ignoring the gain g we may write Lx (z) for of the block diagram of 

Fig. 5.11 as follows: 

Z,(z)=-z~ 1 
1\2 1-z"' (1 -z" ' ) 

(5.21) 

On the other hand from the block diagram of Fig. 5.12, again ignoring 

g, and using Eqs. (5.8) and (5.10), the equivalent Lx (z) can be ex­

pressed as follows: 

L,(z)= -1 
c2 ' 

1 T/ 0 + z V 
2Tl-z~] + C ' AT1 ( 1 - z " 1 ) 2 ; 

(5.22) 

From Eqs. (5.21) and (5.22), equating right hand parts and assuming for 

simplicity that T=TS, we obtain cx = 2 and c2 = 3 . 

To obtain the value of cjn we proceed as follows: 

From Fig. 5.11 we obtain 

or 

M*)= 

L0{eM) 

1 

(1-z" 1 ) 2 

(\-e-j(oTA 
(5.23) 

and since the frequency of the input signal is much lower than the sam­
pling frequency we may write approximately 

L0{eMy 
1 1 

( l - e - X ) {j<»Tsy 
(5.24) 

Thus the frequency response of the double discrete-time integrator is al­
most equal to that of a double continuous-time integrator. Therefore 
c,„ =1. 
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For the same reason we will have gx - g . In fact g affects the fre­

quency response of L0 (z) and Lx (z) at low frequencies inside the signal 

band. But since at these frequencies the two integrator types, discrete-
time and continuous-time, have nearly identical frequency responses, for 
the effect of g{ to be the same as that of g requires, g\ = g • 

The corresponding detailed circuit using CT integrators is shown in 
Fig. 5.13. Component values have been calculated for fb =781Hz and 

OSR=64. Thus the sampling frequency fs is 100kHz and 

RC = TS =10//s. The value of C was selected to be 330pF. Thus 

R =30.3k£X Based on this we may calculate the component values to be 
as follows: 

C, = C2 =330pF , 

R{ = R4 =30.3kQ, 

R2 = R/Cjn =30.3kQ , R3 = R/Cl =15.15kQ, R5 = R/c2 =10.1kQ. 

If we want to have the Full-Scale equal to 2.5V (for ± Vrej =±5V) then 

R2 =15.15kQ. Finally, if we raise the impedance level of resistors R2, 

R^ and R5 6 times and use standard values, we will obtain the compo­

nent values appearing in Fig. 5.13 (see also problem 5.6). 

5.6 Circuit Design of a Third-Order AS Modulator 

The CIDF structure of a third-order AS modulator is shown in Fig. 5.14, 
while the block diagram of its implementation using CT integrators is 
shown in Fig. 5.15. 

The NTF under implementation has the poles and zeros given in Ta­
ble 5.1. The values of the coefficients k{, k2 and &3 of the CIDF struc­
ture of the AS modulator as well as those of cx, c2 and c3 required for 
its implementation in Figs. 5.14 and 5.15 respectively are also given in 
the same Table. These values have been determined in a way similar to 
the way it was followed in the case of the second-order AS modulator 
(see problem 5.4). 
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Fig. 5.14 CIDF structure of a third-order AS modulator. 

yd(") 

Fig. 5.15 Block diagram of the third-order AS modulator implemented using CT inte­
grators. 

Table 5.1 Characteristics of the selected third-order AS modulator 

Poles of 
NTF(z) 

-0.0367 
0.8076+J0.2733 

Frequencies of zeros 
of NTF(z) i n (M) 

0 
+0.8 

Coefficients 
k 

/t;=0.1158 
Jt2=0.2776 
/tj,=1.0267 

Coefficients 
c 

c,=0.2316 
c;=0.7868 
cj=2.4154 

The value of the feedback gain g in the local resonator is calculated 

from the equation 



Implementation of AS Modulators 121 

2cos 
f f \ 
In -0.8^-/J 

= 2 - g (5.25) 

as it was also done in the case of the second-order AE modulator. Solv­
ing Eq. (5.25) for g, if the OSR=64, gives g = 1/650. 

The actual circuit for the implementation of this third-order AS 
modulator employing CT integrators is shown in Fig. 5.16. 

On the other hand in Fig. 5.17 the actual circuit implementing the 
same NTF and employing SC integrators is shown. In the calculations an 
OSR=32 was used to obtain a more practical implementation with dis­
crete components, in case the reader would like to build and test the AZ 
modulator circuit in his laboratory. It should be noted that the value of g 

in this case is equal to 1/163 being calculated via Eq. (5.25) for 
A//* =64. 

In both cases, the Full-Scale is 2.5V and the sampling frequency 
100kHz. For the CT implementation in Fig. 5.16 (OSR=64) fb =781Hz, 
while for the SC implementation in Fig. 5.17 (OSR=32) fb =1562Hz. 

To avoid the use of high resistance values in the first integrator in 
Fig. 5.16 the impedance level has been reduced by a factor of 10 with a 
corresponding increase in the capacitor value in this integrator. 

In the circuit in Fig. 5.17, for reliability reasons, when the circuit is 
to be built in the laboratory using discrete components, the values of the 
capacitors have been selected high enough in order to reduce the effects 
of thermal noise, offset currents, leakage currents and parasitic capaci­
tances. The capacitance level was selected to be 1.5nF, in order to avoid 
high capacitances that would draw high currents and thus result in non­
linear settling of the opamps. Suitable values of the capacitances in the 
feedback paths whose ratios are nearest to the ratios of the coefficients 
kx, k2 and £3 were 330pF, 92pF and 370pF. The value (15nF) of the 

storage capacitor of the first integrator has been multiplied by 10 in order 
the capacitor in the corresponding feedback path not to have a very small 
value. 
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The value of the capacitor at the input is 2x370pF so that the Full-Scale 
will be 2.5V. The value of g is implemented by means of a resistive 

voltage divider combined with the capacitance ratio 330pF/1.5nF i.e. 

3 3 0 ^ ^ _ = 1 / 1 5 5 

l5nF Rx+R2 

With these component values the time constant (/?i IIR2 )C] is about 

33ns, which is much smaller than Ts/2 =5/us. Thus the capacitor C\ has 

the time to get fully charged. 

5.7 Circuit Design of a Fourth-Order Band-pass AS Modulator 

It was stated in Chapter 3 that band-pass AS modulators can be obtained 

from the low-pass ones by applying the transformation z~ —> - z ~ to 

the NTF of the latter [2]. With this transformation each product term 

(l-z,.z- ] 

follows: 

from the low-pass ones by applying the transformation z~ —> - z ~ to 
F of the latter [2]. With this transfer 

( l - z , z _ I ) of the NTF is turned to (l+z (z~ ) , which can be written as 

(l+z,.z-2)=(WV~2)= 
(1- e^'/2+*/2) ̂ ] z - i ) ( 1 + eM/2+*/2) ̂ j z - i ) = 

(i_ emp+*/v ^f z- i )(i_ ejw-*iv ^ j z - i } ( 5 2 7 ) 

Therefore each zero is split in two with arguments <Pj /2 + TT/2 and 

<Pi/2 - TT/2 , as shown in Fig. 5.18. Arguments n/2 and -nil correspond 

to frequencies fs /4 and - fs/4, thus the resulting modulators can en­

code signals with spectra that occupy narrow bands of frequencies 

around the frequency fsjA (see also Sec. 3.11). With z = e7 , the argu­

ment 9 is transformed to ± TT/2 + 0/2. As a result, the magnitude re­

sponse of NTFBP(z) for the range of frequencies [-fs/2 ,0] and 

[0 , fs/2] is exactly the same with the magnitude response of the 
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NTFLP(z) of the low-pass prototype for the range of frequencies 

[- fs/2 , fs/2 ] , as shown in Fig. 3.18. The respective frequency band, 

that is encoded, falls within the range 

Us /4 - fs /4 OSR ,fs/4 + fs IA OSR]. 

Fig. 5.18 Movement of zeros in the z-plane when the transformation z"'-» -z2 is applied 

The structure of a fourth-order band-pass AS modulator, which has 
been obtained by applying the above z —> - z transformation to the 
second-order AS modulator of Sec. 5.5, is shown in Fig. 5.19. 

fc„=i 

Fig. 5.19 Structure of a fourth-order AZ modulator. 
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The values of gi and g2 in the two local resonators, which determine 
the positions of the NTF(z) zeros, can be obtained again from Eq. (5.20) 
by substituting the transformed arguments, i.e. 

2cosf^- + - l=2s in( ^ 1 =2- gi (5.28) 

In this equation (f)i are the frequencies of the zeros of the second-order 

modulator. An OSR=32 results in </>x 2 = +2^0.5774/32. Then from Eq. 

(5.28) we get g, 2 =2(1 ±1/36). 

It should be mentioned, that in order to avoid overloading the inte­
grators, coefficients k,„, k, and k2 may have to be scaled. lffs=100 kHz 
and OSR=32 the frequency band of the band-pass modulator under con­
sideration will be [25-0.781, 25+0.781] kHz. The implementation of this 
modulator as a SC circuit is shown in Fig. 5.20. 

For CT implementation of band-pass modulators the determination 
of gains g„ as well as of the feedback coefficients c, is more difficult, 
because the approximations made in Sec. 5.5 cannot be applied. Thus the 
procedure given in Sec. 5.3 should be followed from start [7,8], (see also 
problem 5.7). 

5.8 Testing the Operation of Modulators Experimentally 

The experimental test of a AI modulator is mainly concerned with the 
measurement of the SNR and the spectrum of the AS sequence. 

To take the various measurements, it is useful to possess a work­
station in combination with a data acquisition card. The card receives a 
large number of samples (65536 samples) from the D flip-flop output. 
The logic states 1 and 0 are taken to correspond to the +1 and -1 states of 
the AZ sequence. Applying FFT to these data, using also a window (for 
example the Blackman window) one obtains the correct spectrum. Using 
a pure sinewave as the input signal, this appears clearly in the FFT of the 
pulse sequence. The signal power is considered to be the sum of the 
squares of all components which are inside the signal frequency lobe. On 
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the other hand the quantization noise power is the sum of the squares of 
all components in the spectrum outside the lobe of the main frequency 
lying of course inside the frequency band. The ratio of these two powers 
gives the SNR. Applying this procedure for various amplitudes of the 
input signal the diagrams of the SNR for the AS modulators we designed 
above are obtained. In all cases the input signal is a sine wave. 

SNR 
(dB) 40 

-80 -70 -60 -50 -40 -30 -20 -10 

Amplitude of the input signal (dB) 

Fig. 5.21 Plot of SNR versus the amplitude of the input signal for the second-order AX 
modulator using CT integrators. Continuous line is obtained by simulation and crosses 
are the experimental points. 

SNR 
(dB) 40 

-70 -60 -50 -40 -30 -20 -10 

Amplitude of the input signal (dB) 

Fig. 5.22 Simulation (continuous line) and experimental (points) plots of SNR in the 
case of the SC third-order AS modulator. 
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100 

SNR 
(dB) 

-100 -80 -60 -40 -20 

Amplitude of the input signal (dB) 

Fig. 5.23 Simulation (continuous line) and experimental (points) plots of the SNR for 
the third-order AZ modulator employing CT integrators with OSR= 64. 

In Figs. 5.24 and 5.25 are respectively shown separately the spec­

trum obtained experimentally and that obtained by simulation for the 

third-order AZ modulator employing CT integrators and operating at an 

OSR=64. 

0 

-20 

-40 

PSD • 6 0 

(dB) -go 

-100 

-120 

-140 

-160 

0 

-20 

^^^lHJ^^I^J -40 
^|HHHHH|MR||HHp|MHp| PSD 

(dB) -80 

-100 

-120 

-140 

20 30 40 

Frequency (kHz) 

20 30 

Frequency (kHz) 

(a) (b) 
Fig. 5.24 Plot showing the spectum of the shaped quantization noise at the output of the 
third-order AI modulator a. Experimental, b. by simulation. 
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Fig. 5.25 Details of the spectra in Fig. 5.24 inside the signal frequency band a. Experi­
mental, b. by simulation. 

In Figs. 5.26 and 5.27 the spectra obtained experimentally and by 

simulation are shown for the SC fourth-order band-pass AS modulator. 
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Fig. 5.26 Spectrum of the quantization noise at the output of the SC fourth-order AS 
modulator obtained a. Experimentally, b. by simulation. 
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Fig. 5.27 Details of the spectra in Fig. 5.26 within the signal frequency band a. Experi­
mental, b. by simulation. 

5.9 Low-Power, Low-Voltage AS Modulators 

High technology portable electronic equipment like mobile telephones, 
lap-top computers etc. operate on batteries that, for obvious reasons, 
have to be small, light, last long and discharge as slowly as possible. This 
demands designing the electronic circuitry properly to consume as low-
power as possible during operation. On the other hand advanced designs 
require larger numbers of components on the die, a requirement met by a 
reduction of the components size. VLSI CMOS technology is most suit­
able today to be exploited to meet both these demands, i.e. consumption 
of low-power and the scaling down of the components size. 

However scaling while keeping the same supply voltage, say 5V, 
creates breakdown problems due to the presence of high field strengths 
in the transistors. Consequently the supply voltage should be reduced 
too. In digital circuitry, scaling down leads to higher speeds while reduc­
ing the supply voltage surely results in low power consumption. How­
ever in high resolution analog and mixed-signal circuit designs supply 
voltage reduction may lead to increased power consumption. Additional 
important problems created in analog circuits are the following: 

f# 
24.5 25 25.5 

Frequency (kHz) 

(b) 
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a. reduction in signal swing that can limit the achievable dynamic range 
and increase harmonic distortion 

b. rapid increase of transistor output conductance not coupled by analo­
gous rise in transistor transconductance. This results in reduced intrin­
sic gain of the transistor 

c. increased thermal noise 
d. mismatch-induced offsets 
e. passive components, resistors and capacitors may not be available, 

making 
f. bottom plate parasitics become more important 
It must be stressed that the design and implementation of analog circuits 
with high dynamic range requires the solution of various problems asso­
ciated with the output swing, common-mode rejection, power supply 
noise rejection etc. 

Therefore in mixed-signal VLSI circuits, the required interfacing cir­
cuitry is desirable to be mostly digital. In this case the converters, ADC 
and DAC, designed to employ oversampling AS modulators, prove most 
suitable, since their analog part is simple, while the most involved proc­
essing is performed by the digital part. Thus by scaling down the digital 
circuitry and reducing the supply voltage the consumed power can be 
reduced dramatically. 

The power in the AS loop is mainly dissipated in the first integrator. 
Clearly the noise performance of the first integrator is more important 
than the corresponding performance of any other subsequent integrator in 
the AS modulator. This noise is limited by the kT/C noise, where k is 
Boltzmann's constant, T the absolute temperature and C the capacitance 
used in the integrator. The value of this capacitor should be high enough 
to reduce this noise from the first integrator for the accuracy of the over­
all modulator to be independent of the oversampling ratio, whereas 
smaller capacitors can be used in subsequent integrators. But higher ca­
pacitance for a given voltage value requires higher power to charge, thus 
proving the dominating role of the first integrator in the total power dis­
sipation in the AI loop. 

There are three integrator architectures that may be employed in low-
power, low-voltage AS modulators. These are the Switched-Capacitor 
(SC) integrator, the Continuous-Time (CT) integrator and the Switched-
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Current integrator. Assuming ideal opamps in the cases of SC and CT 
integrators, the power dissipation in all three integrators is found to be 
proportional to the Dynamic Range, and the Nyquist sampling rate corre­
sponding to the signal baseband, while it also depends on the amplifier 
design. 

The integrators, both the SC and the CT, are usually fully-
differential, Fig. 5.3. In the case of the CT integrator practical circuit the 
amplifier settling is not so severely strict as in the case of the SC circuit, 
while off-chip resistors can be used to increase the input signal swing. 
There are however some design aspects that make the CT integrator un­
suitable for use in digital-audio applications, where the required dynamic 
range cannot be achieved easily by this integrator. These aspects include 
the sensitivity to jitter, sensitivity to hysterisis in the feedback reference 
signal and the need for either off-chip resistors or highly linear on-chip 
resistors. 

Analysis also shows that the switched-current integrator is not suit­
able for low-voltage operation. Indeed the power dissipation is higher 
than in the case of the SC integrator, while it is difficult to achieve high 
linearity when operating at low voltage. The latter is due to 
a. The fact that the input voltage should be a small percentage of the 

overdrive voltage VGs-VT in order to limit the input current swing 
b. The presence of channel length modulation 
c. The dependence of the charge injection MOS switches on the signal. 
Following the above argument we are left with the SC integrator to be 
the most suitable candidate among the three for the design of low-power, 
low-voltage modulators. 

Among the advantages of using a fully-differential SC integrator are 
the following: 
a. It provides high rejection of common-mode supply and substrate 

noise 
b. It is relatively immune to switch charge injection errors 
c. It results in a 3 dB increase in the dynamic range, since for a given 

voltage range, the differential signal has twice the amplitude and four 
times the power of a single-ended signal, while introducing only 
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twice the noise power, since the signal flows along two independent 
paths. 

The choice of the opamp architecture is of fundamental importance since 
this should be the best compromise with regard to various issues such as 
voltage swing, slewing and settling, low noise (1/f and thermal), low-
power consumption and all these at low voltage. The oversampling ratio 
has an implicit effect on the amount of power dissipation, which in­
creases dramatically above a certain value depending on the amplifier 
design. 

Low-power, low-voltage single-bit AI modulators of higher order 
(>2) are implemented preferably by cascading first-and/or second-order 
stages. Single-bit is preferable to multibit in order to avoid the high line­
arity requirement from the DAC in the feedback path of the multibit 
modulator. Also cascading first-and/or second-order stages is better than 
using a single-stage, because in the latter the overload level is low, the 
peak SNR is low and there is presence of strong spectral tones at low 
input levels. 

Finally the comparator and the feedback DAC in each modulating 
stage should not contribute much to the power dissipation of the modula­
tor. In particular, as we have seen previously (Sec. 5.2.2) the 1 bit DAC 
is a simple network of switches connected to off-chip reference voltages, 
Fig. 5.8 

5.10 Summary 

The object of this chapter was to explain how one can implement, build 
and test in the laboratory single-bit, single-stage AZ modulators. The aim 
was to concentrate on the educational aspect of the presentation. This 
explains the reason why we emphasized on implementations using dis­
crete components, since the corresponding circuits can be easily built and 
tested in the laboratory. 

From the results that were presented above, obtained by simulation 
and experimentally, one may easily draw some conclusions: 
a. The experimental results obtained without any particular effort nearly 

coincide with those obtained by simulation 
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b. There is a highest value of the amplitude of the input signal for which 
maximum SNR is achieved. For amplitudes of the input signal above 
this value the performance of the AE modulator is degraded. This is 
because the modulator is unstable for these amplitudes. However, be­
cause the outputs of the integrators are clipped due to limits set by the 
power supply voltage, the modulator remains stable with decreased 
SNR 

c. The performance of the AE modulator is not particularly sensitive to 
the accuracy of the component values 

d. The performance of a AS modulator can be demonstrated in the labo­
ratory more easily and accurately using CT circuits than SC circuits. 
A lot more about advantages and disadvantages of these types of cir­
cuits implementing AE modulators are included in the next chapter, 
which is devoted to the various sources of errors in AE modulators in 
practice. 

Problems 

5.1 Determine the transfer function of the resonator shown in Fig. 5.4b 
when there exists a) a single, b) a double delay in the loop. Give 
your comments. When there exists a double delay in the loop, un­
der what conditions the resonator will be effective? 

5.2 Derive equations (5.10) and (5.12) following the procedure pre­
sented in Sec. 5.3 for the case of Eq. (5.8). 

5.3 Show the validity of Eqs. (5.15) to (5.17), if the impulse response 
h(t) of the circuit that determines the pulse waveform of Fig. 5.5 is 

that given by Eq. (5.14). 
5.4 Using the block diagrams in Figs. 5.14 and 5.15 calculate the coef­

ficients kj, ct, for i=l, 2, 3 for the NTF{z) given in Table 5.1. 
Calculate also the coefficients k\ in the case that the integrators 

have a delay as shown in Fig. 5.4b. 
5.5 The impulse response of the RC filter of the exponential DM in 

Fig. 2.18 is h(t)=e~''RC. Following the procedure presented in 
Sec. 5.3 for the case of Eq. (5.8), find the equivalent discrete time 
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transfer function for the RC filter. Then find the STF(z) and the 
NTF(z) for the exponential DM. 

5.6 In order to obtain suitable values of the resistors R2, R3, R5 in the 
AS modulator circuit in Fig. 5.13, the initially determined values 
have been increased six times. Although this increase does not af­
fect the Full-Scale of the modulator, what is its effect on the ampli­
tude at the output of the integrators? Do we expect, theoretically, 
any changes in the AS sequence? 
State all possible ways we can change the Full-Scale of this AS 
modulator. 
State all possible ways we may change the Full-Scale of this modu­
lator without affecting the amplitude of the signal at the output of 
the integrators. 
State all possible ways we may scale the output of the two integra­
tors without changing the Full-Scale of the modulator. 

5.7 Determine the gain gx and the coefficients cx and c2 in the block 
diagram in Fig. 5.12 in order to design a second-order band-pass 
AS modulator, with an equivalent discrete-time transfer function 

a) when the DAC output waveform is that shown in Fig. 5.5 with 
h(t) given by Eq. (5.14). 

b) when the DAC output waveform is that shown in Fig. 5.6 (RZ) 
with h(t) given by Eq. (5.5). 

Hint: Follow step by step the same procedure as in Sec. 5.3 for the 
derivation of Eq. 5.8. Use also the Z-Transform of Eqs. (A.5) and 
(A.6). 
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Appendix 

The Z-transforms of some common sequences are given below. They 
can also be found in [6,11]. 
For x(n)=\ 
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Chapter 6 

Practical Limitations of AE Modulators 

6.1 Introduction 

The implementation of various AE modulators, that we presented in the 
previous chapter, assumed the use of ideal components. However this is 
not true in practice. For example the opamps do not have infinite gain, 
infinite bandwidth and infinite slew-rate. There are no ideal DACs, espe­
cially multibit DACs. Switches in the SC circuits do not have zero resis­
tance while these circuits suffer from clock feed-through. Also clock jit­
ter problems can appear. All these non-idealities generate additional 
noise in the practical AE modulator, on top of the quantization noise. 

In this chapter we examine the effects of these sources of noise on 
the performance of the AE modulator. Then we use these and previous 
results to compare the AE modulators using SC to those using CT loop 
filters (LF). 

6.2 Practical Circuit Limitations 

The implemented AE modulator is subjected to certain limitations and 
this applies to both using SC and CT loop filters circuits. These limita­
tions are caused by the non-ideal operation of the various components of 
the modulator, namely the integrators and the local converters especially 
the DAC. They may also be due to the jitter of clock pulse edges. More-
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over in mulistage modulators additional problem exists, namely, the mis­
matching between the analog and the digital part of the modulator. 

The non-ideal operation of the integrators is due to the various limi­
tations of the amplifiers such as finite gain, finite bandwidth, finite slew-
rate as well as thermal and flicker noise. Noise can be also produced by 
the various switches in the SC circuit. 

Problems also arise from the operation of the local DAC whose out­
put levels have to be constant and, in the case of the multibit DAC, these 
levels have to be equidistant, i.e the DAC should be linear. 

The result of all these limitations is the appearance of additional 
noise in the output AE sequence, on top of the quantization noise that 
was examined in preceding chapters. However, although the quantization 
noise is shaped by the AS loop filter, this does not happen in all cases of 
the noise generated by the above mentioned sources. 

In what follows these noise sources and their effects are examined 
quantitatively and in some cases some remedies are suggested. 

6.2.1 Noise sources in the AS loop 

For reasons of clarity and better understanding we may redraw the block 
diagram of the AS modulator with the various noise sources indicated 
on it. This is depicted in Fig. 6.1 in the case of a second-order AS 
modulator. 

Clearly, in the case of an ideal modulator the only noise source 
would be the quantization error e„ (n). In a non-ideal AS modulator for 

use in analog-to-digital conversion, there are additional noise sources 
shown in Fig. 6.1 which may be due to the following: 
a. External noise accompanying the input signal. This is included in the 

noise source ej («). 

b. Thermal noise of the input stage of the integrators or flicker noise of 
their opamps, which is included in the noise sources ex{n) and 
e2 (n). 

c. Clock feed-through in the case of SC implementations also included 
in the noise sources ex (w) and e2 («). 
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d. Noise due to clock jitter. In the case of SC implementation, when the 
input signal is sampled, this noise is included in ex (n). In the case of 
CT implementation this type of noise is included in e3(n) and 

eDAc(n)-
e. Noise due to the non-linear operation of the integrators. Due to finite 

slew-rate or clipping of the output of the opamps, this noise appears at 
the output terminal of the integrators and thus it is included in the 
noise sources e2 (") and e3 («) . 

f. Noise due to the non-linear operation of the local ADC included in 
the noise source e3 (n). 

g. When the local DAC is multibit, as is the case of multibit AS modu­
lators, non-linear operation is equivalent to the noise source eDAC (n). 

eq{") 

X(W) __y+y, 
Analog \f 
Input 

e2(") e3(n) 

1-z" + 1-z" 
ADC 

eDAc(») : 

y(") ! 

Ideal 
DAC 

yA») 

Digital 
Output 

Bus 

Real 
DAC 

Fig. 6.1 Noise sources in a second-order AI modulator for analog-to-digital conver­
sion. 

All these noise sources may affect the signal at the output of the sys­
tem and consequently affect the performance of the AS modulator. 
From Fig. 6.1, using z-transform we may write for the output y(n) of 
the modulator (corresponding to the digital words yd («) at the output of 
the real system) the following: 
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Y=X + E]-z-lEDAC+(E2-z-lEDAC)(l-z-1) 

1\2 + ( £ _ + £ 3 ) ( l - z - i ) (6.1) 

Clearly, the most critical noise sources are eDAC (w) and ex (n), since 

they appear at the output not shaped. The noise e2 («) is subjected to the 

first-order shaping, while the effect of e3 (w) is negligible, since it is sub­

jected together with eq («) to second-order shaping and its power spec­

tral density is usually much lower than that of eq («). 

Other type non-idealities like finite bandwidth and finite dc gain of 
the opamps, mismatching in multistage modulators, e.t.c. affect the NTF. 
To show their effect consider for example the two-stage AS modulator 
in Fig. 6.2 with Ha and Ha being the transfer functions of the analog 

integrators and Hd the transfer function of the digital differentiator. As­

suming ideal local DACs, the output y(n) of the modulator correspond­

ing to the digital words yd{n) is as follows: 

H„ 

l+z~lH„ 
-X + 

Y = Yx-HdY2 

Ha2
Hd 

V*+z " % l+z'lH, 
E. 

H, 
i\ 

a2J l+z~lH, 
12 

(6.2) 

"2 

Note that it is usual yd] (n) and ydi (n) to be single-bit as shown in Fig. 

6.2. However, yd(n) is not single-bit any longer because it is the sum of 

the sequences yd (n) and ydi («) - ydi (n -1) (see also example 3.4). 

For ideal analog integrators, Ha^ (z) and Hai (z) will be equal to 

l/(l-z_1).Then 

Y=X-E. 92 M (6.3) 

i.e. there is a second-order shaping. 
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Fig. 6.2 Two-stage AX modulator for analog-to-digital conversion consisting of two 
first-order AX modulators. 

Consider now the case when the analog integrators Ha (z) and Ha (z), 

due to various imperfections, are not ideal. For simplicity assume that 

only the first integrator Ha (z)= g / ( l - pz~]) is not ideal, i.e. its gain g 

and its pole p are not equal to unity. Then Eq. (6.3) will become as fol­

lows: 
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Y = gx_ ( 1 „ _ - l 

l+(g-p)*~] 

X~PZ~ - ( 1 - Z - 1 ) 
i+(g-p)z~l 

Eqi-(l-z-')2Eqi(6A.a) 

Assuming that g =1 and p =1, to a first-order approximation, we may 

write Eq. (6.4.a) in the following form: 

Y = X + ((1 - g)(l - z"1 )z"' +(1 - p)z~2 yqi -(1 - z"1 )2 £ ? 2 (6.4.b) 

Clearly the quantization noise Eq is subjected to second-order 

shaping. However, the gain error (1 - g) causes a first-order shaped leak­

age of E and the pole error (1 - p) an unshaped leakage of E to ap­

pear at the output of the modulator (see also problem 6.1). 

6.3 Effect of Thermal Noise 

To simplify the study of the effect of thermal noise we split this into two 
parts: 
a. We consider that the opamps are noiseless and we calculate the effect 

of thermal noise generated in the other components and 
b. We consider the effect of thermal and flicker noise in the opamps the 

rest of the circuit being assumed noiseless. 
The latter is examined separately in Sec. 6.5.3. 

6.3.1 SC circuits 

Consider the non-inverting SC integrator. In Fig. 6.3 it is assumed that 
thermal noise is generated in the resistance Ron of each switch (the 

opamp is assumed noiseless). 
At the end of phase 1, i.e. just before switches 1 open, the capacitor 

Cs has been charged to the voltage x{nTs)+ e\{nTs)-e4(nTs), where 

ex and e4 are noise voltages due to noise sources nx (t) and «4 (t). At the 

end of phase 2, just before switches 2 open, the capacitor Cs has been 
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charged to the voltage e3(nTs + Tj2)-e2(nTs +Ts/2). Therefore the 

total charge that will be transferred to capacitor C0 will be 

X(nTs)+e](nTs)-e4(nTs)-e3(nTs+Ts/2)+e2(nTs+Ts/2) (6.5) 

Fig. 6.3 Noise sources in a SC integrator. 

Note that e; (/) is the voltage across the capacitor Cs due to noise 

source «,(/)> i=l,2,3,4 respectively. Each noise source nt{t) has a PSD 

P(f) given by 

P(f)=4kTR0 (6.6) 

which is not bandlimited (goes up to THz). Consequently all e, (t) have 

white spectrum almost up to the frequency / ] =l/2RonCs , which is 

much higher than the oversampling frequency fs. On the other hand the 

frequency of x(t) is much lower than fs. As a result x(t) is sampled 

without the occurrence of aliasing, while aliasing occurs when each 

e , (0 , i=l,...4 is sampled. The mean square value of each voltage et{t) 

across the capacitor Cs is as follows [1,2]: 
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00 

4,.(02}=^jW*o 
0 

\+j2coRonCs 

2 

da (6.7.a) 

MTR„„ 1 

In 2Rn„C 
-TT 1 7r tan- , (2 f f lR 0 l l C,) (6.7.b) 

Assuming that the various noise sources «,(?) are independent of each 

other, then the total noise power will be 

Ptherma, = {*? } + *{*f } + *{*3} + ^ 4 } = ~ (6-8) 

The spectrum of the sampled thermal noise e,- (KTS ) is white in the fre­

quency band [- fs /2 , fs /2] as is the spectrum of e;- (t). Aliasing does 

not affect the shape of the PSD but only its magnitude. Also the power of 

the sampled thermal noise E{et{KTs) } equals the power E{ej(t) } . 

Therefore the thermal noise power inside the signal frequency band will 

be 

OSR being the oversampling ratio. This equation explains why the value 
of the capacitor Cs of the first integrator should be large when the AS 
modulator is to be produced in integrated form using SC circuits. 

6.3.2 CT active RC circuits 

In the CT integrator the thermal noise source is due to resistor Rx. The 

attenuation of this noise e(t) by this integrator up to the frequency 

fs /2 is high enough so as to assume that there will not be any aliasing 

effects due to its subsequent sampling in the local ADC. Then [3] 
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P,h,in =4*TR 
fs 

20SR 
(6.10) 

Thus the thermal noise in the CT integrator is proportional to R\fs, 

which dictates that the value of Rx should be small. 

x(0 »-gHV\AA 
• y«) 

Fig. 6.4 Thermal noise source in a CT integrator. 

6.4 Effects of the Opamp Non-Idealities 

We examine these effects by studying their influence on the operation of 
the integrators, which are basic building blocks of the AS modulators. 
The non-ideal behaviour of the opamp is mainly due to thermal and 
flicker noise, dc offset, finite open-loop voltage gain, limited bandwidth 
and finite slew-rate. 

6.4.1 Thermal and flicker noise and DC offset of the opamp 

In Fig. 6.5a a noise source, including thermal and flicker noise and dc 
offset of the opamp, is introduced assuming noiseless operation of the 
switches. The signal at the integrator output, assuming that this is sam­
pled in phase 2, will be as follows: 

Y(z)-- 1 

C0 1-z - l 
X(z)+ 1 - C * 1 

C0 1- W (6.11) 
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It can be seen from Eq. (6.11) that the noise v„ and its integral appear at 

the output. 

n Noise source 

(a) (b) 

Fig. 6.5 a. Thermal and Flicker noise and dc offset in the integrator, b. Integrator using 
CDS. 

Clearly the presence of flicker or 1/f noise is significant at very low 
frequencies. Various techniques have been developed for its rejection, as 
well as the rejection of the dc offset. Most important of them are the fol­
lowing [4]: 
a. Chopper Stabilization, CHS. 
b. Autozeroing (AZ) and its special type Correlated Double Sampling, 

CDS. 
The CDS technique, which is popular for SC circuits, can lead to the re­
duction of the undesirable effects of dc offset, flicker noise and non-
infinite gain of the opamp on the operation of the integrator [4]. In Fig. 
6.5b a simple example of an integrator using this technique, is shown [5]. 
Its operation is as follows: 

In phase 1, which is the autozero (AZ) phase, the dc offset as well as 
the noise vn are sampled in the capacitor C ( . In phase 2, when the input 

is sampled and integrated, the signal at the integrator output will be as 
follows (see problem 6.2): 

Y(z)--
C. 1 

C0 1-; 
•X(z)+ 1 - ^ - — L _ ( l - z-'/2)K„(z) (6.12) 
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In this case the noise at the output is filtered by the factor (1 - z ' ) 
which is high-pass. This is so because the noise is sampled twice in each 
sampling period. First it is sampled in the AZ phase, phase 1, and then it 
is sampled again in phase 2, when the input signal is sampled. Thus the 
noise sample in the AZ phase is subtracted from the noise sample in 
phase 2. As a result the dc offset can be totally cancelled, while the 1/f 
noise, the power of which is high mainly at very low frequencies, can be 
reduced significantly. 

6.4.2 Finite opamp gain 

We turn now to the effect of the opamp finite open-loop gain on the op­
eration of the integrator. 

Due to finite gain of the opamp the transfer function of the SC inte­
grator in Fig. 6.6a is changed to the following (as it was used in Sec. 
6.2.1): 

7 ( Z ) - C* - 8 (6.13) 
X{z) C0 \-pz-' 

The pole p lies inside the unit circle. This is due to the fact that it is not 

possible for the charge on the capacitor Cs to be fully transferred to C0 

in each clock period, due to the fact that the latter is not fully discharged 

during the same period. Applying the charge conservation principle, it 

can be shown (see problem 6.3) that 

1 (6.14) 
1+— 

C„ l+A 
and 

1 + - - ^ + 1 
AKC0 
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where A is the dc open-loop gain of the opamp. Similarly in the case of 
the CT integrator 

-1 Y(s) 

X(s) RxC(l+l/A)s + l/A 
(6.16) 

l 2 1 ' r 
y(t) y(t) 

(a) (b) 

Fig. 6.6 a. Non-inverting SC integrator and b. the CT integrator. 

Direct consequence of the modification of the integrator transfer 
function is that the NTF zeros have been moved inside the unit circle. 
This leads to a reduction of the attenuation of the quantization noise in­
side the signal-band and, therefore, to a reduction of the SNR. The effect 
of the finite dc gain to alter the realized NTF is not so severe in single-
stage modulators, as these are quite robust to circuit non-idealities. To 
demonstrate this, a second-order modulator comprising the cascade of 
two integrators as shown in Fig. 5.11, each having the transfer function 
given by Eq. (6.13) and a third-order shown in Fig. 5.14 comprising the 
cascade of three such integrators, are simulated for various values of the 
error in the pole position p. From Eq. (6.14) it can be shown that the 

pole error is almost proportional to \l A . The resulting maximum SNR is 
presented in Fig. 6.7a. Both modulators are quite robust to this error and 
consequently to the variations of A , down to very extreme values. 

The effect of finite opamp gain becomes more important when 
higher-order single-stage modulators are realized. Then the variation of 
the NTF can lead to unstable designs. Finally, as already discussed in 
Sec. 6.2, the effect of finite opamp gain is very significant in multi-stage 
modulators [6]. This is demonstrated in Fig. 6.7b. 
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Fig. 6.7 SNR as a function of the error at the pole value, a. In the case of single-stage 
AS modulators, b. in the case of multistage AS modulators (cascade of two first-order 
modulators and cascade of three first-order modulators). The input is sinusoidal and the 
oversampling ratio is 64. 

The technique of Autozeroing has been used successfully in order to 
improve the performance of the integrators in multi-stage AS modula­
tors [7], as well as that of single-stage AS modulators [8]. 

6.4.3 Finite bandwidth and slew-rate of the opamp 

We assume that the open-loop gain A(s) of the opamp follows the sin­

gle-pole model, i.e. 

Aco 
A(s)=- p 

S + 0)r 

(6.17) 

where A is the dc gain and cop the pole frequency. It can then be easily 

shown that the transfer function of the integrator in Fig. 6.6b is as fol­
lows 

Y{s) -Acop 

^ 0 ) R^s2 +(RlC(A+l)a)D +\)s + cac 

(6.18) 
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Clearly, the operation of the CT integrator is not ideal. For the SC inte­
grators the analysis of the effects of finite bandwidth in combination with 
the finite gain of the opamp is more complicated and has been studied in 
detail in [9,10]. Also various types of integrators have been proposed 
[11-13] in order to achieve a better performance. 

In SC integrators the important parameter is the settling time r of 
the integrator, (assuming an integrator with exponential impulse re­
sponse), which depends on the opamp bandwidth. In usual SC filters the 
unity gain bandwidth of the opamp has to be at least 10 times larger than 
the sampling frequency. However in AS modulators no important prob­
lems occur when the settling time r and the sampling period Ts are of 
the same order [14]. When the settling time r is larger than the sampling 
period Ts, the modulator may become unstable as it can be shown by 
means of simulation [14]. 

As far as the limited slew-rate of the opamp is concerned, in the case 
of the CT integrators, this leads to harmonic distortion due to the result­
ing non-linear operation. In the case of SC integrators if proper settling is 
achieved within the sampling period, the effect of the slew-rate can be 
ignored. Otherwise linear operation of the integrator will be necessary in 
order to avoid harmonic distortion [14] and increase of the inband noise 
[1]. 

6.5 Effect of Jitter 

The term jitter refers to the uncertainty of the time characteristics of a 
pulse, i.e. the moment of arrival of the pulse edges. The cause of jitter is 
the intrinsic noise generated by the components of the pulse generating 
circuit, such as crystals, transistors, resistors etc. 

In our study of the effect of jitter in AE modulation, we assume that 
the pulses have zero rise and fall times but there is an uncertainty Ar in 
the time of the arrival of the edges of the pulse, as shown in Fig. 6.8. 

The effect of jitter is equivalent to noise generation at various parts 
of the circuit, as was explained in Sec. 6.2. However the result is differ­
ent in the SC from that in CT circuits, where it is much more severe [15], 
as we explain below. 
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V 

V, ref 

Fig. 6.8 Uncertainty in the timing of the pulse edges. 

6.5.1 SC circuits 

In SC circuits the main problem from jitter arises at the stage of sampling 
the signal, i.e. at the input of the modulator. Let us suppose that the sig­
nal x{t) is not sampled at the moment nTs but at nTs + At. Then the 
resulting error power will be [14] 

Pjit = El(x(nTs + At)- x(nTs))
2] = E\At2x'(nT) 

= E\At 
l}E{x'(nTsf (6.19) 

where x'(t) is dx{t)/dt. Clearly, there exists a strong dependence on 
the power of the derivative of the signal. For a sinusoidal input signal of 
amplitude x0 and frequency / we get 

Pjil=^-(2nf)2E{At2} (6.20) 

If the uncertainty At is uniformly distributed in the range [- zjit , rJU] 

Eq. (6.20) gives 
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PJit=^(2nf)2^f- (6.21) 

This noise enters the modulator together with the signal. Therefore it is 
not shaped. In the case of the sinusoidal input of frequency fb = fs/2R, 

the resulting inband noise power due to jitter will be the following: 

x2
0 (2nfs/2R)2 T% xl n2 T% 

Pju*=T—R—r=Y^if (622) 

Then the ratio of the noise power due to jitter over the signal power will 
be 

P n2 T2 

„ T ~T (b.23) 
Ps 3R3 T2 

6.5.2 CT active RC circuits 

In the CT active RC circuits the noise due to jitter is related to the uncer­
tainty of the characteristics of the pulses of ya (t), i.e. the output pulses 

from the local DAC in Fig. 5.6 [3]. These pulses subsequently enter the 

integrator and are integrated with time constant i?,C. Assuming a pulse 

similar to that shown in Fig. 6.8, its integration will cause an error ve at 

the output of the integrator given by: 

J2+Ar2 t2 

/,+Af, /, 

The total error at the output of the integrator, after the integration of the 
n-th pulse, will be given by the sum of all errors ve(k), k=\,2...,n, re­
sulted from the integration of each one of the n pulses. The result is 
equivalent to that obtained if, instead of having the uncertainty in the 
pulse timing, we considered that there existed an error ve in the ampli-
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tude Vref of each pulse. Thus, the effect of jitter in CT active RC circuits 

is equivalent to that of a noise source ve (n), which can be included in 

the noise source eDAC(n) in Fig. 6.1, and appears at the output of the 

modulator not shaped. 

If At is uniformly distributed in the range [- TJU , TjU ] and assum­

ing that Ati and At2 are independent variables, the mean value of the 

power of the noise ve{ri) will be 

Pjit ^E{vM)2}-^(E{^2}+E{Ah%
2^Llk (6.25) 

Usually RXC is of the order of the oversampling period Ts. If we assume 

for simplicity that the spectrum of this noise is white, then the part of this 

noise in the signal band will be 

Pjit,in- 1 D o (6-26) 
3>R T 

Assuming also that the modulator remains stable up to the full-scale 

Vrej-, the highest input signal power will be V?ef 2, if the signal is sinu­

soidal. Therefore the ratio of the power of noise due to jitter over the 

power of signal will be 

2 

^ L , A ZJ!L (6.27) 
Ps 3R Ts

2 

Comparing Eqs. (6.23) and (6.27), it can be seen, that the SC imple­
mentation is advantageous as far as the effect of jitter is concerned, since 
the above power ratio, when the oversampling ratio R increases, is re­
duced for the SC circuit faster than for the CT circuit. To see what this 
means in practice, consider the following example. Assuming R=64, for 
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the AS modulator to achieve a maximum SNR of 96dB the requirements 
will be as follows: 
a. SC implementation 

X2*2ji< „ 1 _ Tj„ , 1 
< • 

3-643Ts
2 23 2 Ts 250 

< (6.28) 

b. Active RC implementation 

4T% < 1 _ rju 

3-64T? 232 T. 9450 
(6.29) 

This means that in the case of the CT circuit the uncertainty of the clock 
pulses should be 40 times lower than in the case of the SC implementa­
tion. 

6.6 Effect of Rise and Fall Times of DAC Pulses in CT Circuits 

Non-zero rise and fall times of the DAC pulses create problems in CT 
AS modulators. This is explained here as follows: 
Assume that at a certain time period the waveform of the local DAC of a 
AS modulator corresponds to the pulse sequence -1 , 1,1. This waveform 
will be approximately as shown in Fig. 6.9. Clearly, the transition from -
1 to 1 takes some time depending on the rise time of the pulse. However 
the transition from 1 to 1 does not take any time at all. Thus all positive 
pulses (and this is true also for all negative pulses) have not the same 
shape. Consequently, the result of their integration by an analog CT inte­
grator will not always be the same. It will depend on their sequence [15]. 
For example, the integral of the pulse sequence -1,1,1 will give a differ­
ent result from that of the sequence 1,-1,1. Such a problem does not exist 
in a SC integrator, where the result at its output depends only on the final 
value of each pulse. This is also true in the case of the digital processing 
of the AS sequence. 
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t 
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h + Ts /, +2TS 

Fig. 6.9 Pulses at the output of the local DAC of a CT AI modulator. 

The effect of rise and fall times in CT circuits is similar to that of jit­
ter, since the type of rising and falling edges of the pulses appearing ran­
domly is equivalent to noise during the integration of the analog se­
quence ya (t). The simplest way to avoid this problem is to reduce the 

duration of the pulses and force them to return to '0 ' during the rest part 
of the period Ts. This technique is called 'return to zero (RZ)' [6,15,16] 
and is applied to CT AS Modulators. The modified pulse waveform is 
shown in Fig. 5.6, while a simple circuit for achieving this is shown in 
Fig. 6.10 together with the corresponding waveforms. This was used in 
the CT AS modulators, which were presented in Chapter 5. As it is 
shown in Fig. 6.10, a second clock Clk2 is used to trigger the D Flip-
Flop having a Ts/4 phase difference from Clkl. When the leading edge 

of Clk2 pulse arrives, the voltages at the outputs Q and Q of the D Flip-

Flop have already been fully settled. Thus all pulses in the analog wave­

form ya{t) will have the same rise and fall times, which depend only on 

the corresponding times of Clk2 and the speed of the switches. 

yav) 

-V. 

Time slot '. 
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Fig. 6.10 a. A circuit to produce pulses in order to avoid the problem of unequal rise 
and fall times, b. Timing chart of the various signals. 

6.7 A Comparison of SC and CT Active RC Circuits 

Based on the contents of the previous sections, we summarize here in 
Table 6.1 some of the important characteristics, advantages and disad-
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vantages, of AS modulators implemented as SC and as CT circuits. 
More thorough and detailed discussion on this comparison can be found 
inRefs. [6,15]. 

Table 6.1 Comparison of SC and CT AS Modulator implementations 

Issue 

Simulation 

Breadboarding 

Loop Filter scaling with 
clock frequency 

Jitter 

Compatibility with VLSI 
CMOS process 

High SNR 

Opamp Requirements 

Capacitors 

Resistors 

Digital noise pick up 

SC 

Easy 

Difficult1 

Yes 

Insensitive 

Yes 

Reduced by 
capacitor size 

Low settling-time 

Accurate 
capacitance ratios 

Not required 

Prone 

CT 

Not easy 

Easy 

No 

Sensitive 

Not so compatible 

Not limited 
by capacitor size 

Low noise 

Large values 

Linear high values2 

Not much prone 

1 The required typical values (<lpF) are of the order of the parasitic capacitances. 
2 Laser trimming is required for accurate RC time constants in monolithic designs 

6.8 DAC Errors 

Problems can occur in AS modulators because of the non-ideal opera­
tion of the local DAC. These depend on whether the AS modulator is 
single-bit (when single-bit DAC is used) or multibit (when the local 
DAC is multibit). We examine both cases separately here below. 
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6.8.1 Single-bit DAC 

We consider the single-bit DAC implemented the way shown in 
Figs. 5.7, 5.8 and 6.10a. The most probable error in the implementation 
of this DAC occurs if its two output voltage levels are not exactly - Vref 

and + Vrej-. Let them be - Vref + v, and Vrej- + v2 . We may write these 

values as follows: 

" Kef ~ (v2 - v, )/2 + (v2 + v, )/2 = -V;ef + v (6.30.a) 

and 

Kef + (V2 " Vl )/2 + (v2 + V, )/2 = F/e/ + V (6.30.b) 

where 

^ / = Kef + (v2 - v, )/2 = gF r e / (6.31 .a) 

v = ( v ,+v 2 ) /2 (6.3 l.b) 

The effect of these errors can be better understood by means of Fig. 
6.1 la. In Fig. 6.1 lb the equivalent system is shown of a AS modulator 
using a non-ideal DAC. The input of the quantizer in the two systems of 
Figs. 6.11a and 6.11b is exactly the same. However, as has been ex­
plained in Chapter 4, the output of a single-bit ADC is invariant to any 
scaling of its input. Therefore the gain g of the integrator can be ignored 

in Fig. 6.11b. Consequently the results of these errors are a. the appear­
ance of a dc offset - v/g at the output of the modulator and b. the at­
tenuation or amplification of the input signal depending on whether the 
factor g - V^j- jVref is larger or smaller than 1 respectively. Both of 

these results do not create serious problems, since the AS modulator is 
not usually used for encoding dc signals, while the multiplication of the 
input signal by 1/g does not affect the spectrum of the signal. 
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x(n) — / + 
1-z" 

1-bit 
ADC 

+ 

V 

<iKj 
Ideal 
DAC ,. 

± Kef 

Real 1-bit 
DAC 

(a) 

x(n) + 1/g + 1-z" 

1-bit 
ADC 

-1 * 

Ideal 
DAC 
±V. sf 

(b) 

Fig. 6.11 a. Single-bit AI Modulator with non-ideal DAC, b. Equivalent system. 

6.8.2 MultibitDAC 

In the case of a multibit AZ modulator, both the local ADC and DAC 

are of M-bit and the results are different. The states of an ideal M-bit 

DAC are Lm ={m +0.5)VsteD with m = -2 M'X ,..0,1,..,(2 M~l - 1 ) , when it is 

with m = - ( 2 A/"1 -1),..0,1,..,(2 M _ 1 - 1 ) , 

-,m v , , ^.^j, step 

of the even type and Lm=m Vstep 

when it is of the odd type. Vst is the voltage step of the DAC output, 

i.e. the voltage difference between any two successive states. Again in 
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the implementation, as in the single-bit DAC, an error will appear in the 
level of the states which will be Vm = Lm + vm. Here though vm is a 

random error, which does not allow the assumption that the levels are 
multiplied by a constant and shifted equally up or down. Simulation 
shows that when the states are not equally spaced, apart from a dc offset, 
there appear harmonic distortion, undesirable tones, as well as noise, the 
spectrum of which overlaps with the shaped quantization noise. All these 
lead to a degradation of the operation of the AZ modulator. Why the 
non-ideality is so serious can be explained by means of the introduction 
of a noise source S^^Q , as shown in Fig. 6.1. 

The most frequently used structure for the implementation of a DAC 
with increased linearity is based on the use of Unit Elements [6]. These 
elements may be current sources, resistors, capacitors, etc. An example 
of such a DAC implementation is shown in Fig. 6.12. 

Digital code words 
yd(n) 

Demultiplexer 

'step 

Digital logic for 
the activation of 

the switches 

\ 
SW4 

' \ 

\ 
SWI 

'step 

Analog 
output 

R(\+aJ 

-AAAA 

R(l+a3) 

-AAAA-

R(\+a2) 

-AVA-
R(\+aO 

-AAAA I 

Fig. 6.12 DAC implementation using resistors as unit elements. 
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The main characteristic of this topology is the relatively lower sensi­
tivity to the errors in the values of the various elements, which leads to 
increased linearity. In Fig. 6.12 four unit elements (resistors) are used, 
the values of which should be matched, for a 5 level DAC. 

If the values of the unit elements are not matched, the levels of the 
DAC will not be equally spaced (see problem 6.4) and thus the DAC will 
not operate linearly. Although this structure of the DAC is less sensitive 
than others to the errors of the element values, in the case of high accu­
racy AZ modulators of the problem still remains. 

The problems caused by the DAC non-linearities can be resolved by 
various methods which fall into the following categories: 
a. Element-Trimming Approaches [6] 
b. Digital Correction techniques [6,17,18] 
c. Self-Calibration techniques [19,20] 
d. Dynamic Element Matching. This method is quite attractive and vari­

ous techniques have been developed for its applications, namely 
i. Dynamic Element Randomization [6,21] 
ii. Dynamic Element Rotation-Barrel Shifter [6] 
iii. Individual Level Averaging [6,22,23] 
iv. Noise-Shaped Element Usage [6,24-28] 

We do not intend to elaborate on these methods here. The interested 
reader can consult the relevant references given above. 

6.9 Summary 

In this chapter we reviewed the effects of various circuit component 
non-idealities on the performance of AS modulators. Such non-idealities 
refer primarily to the opamps and are their finite gain, bandwidth and 
slew-rate. The finite opamp gain creates a more serious problem in the 
multistage than in the single-stage modulators. Also problems arise from 
the various types of noise, namely thermal and flicker noise as well as 
the clock jitter. The thermal noise constitutes a problem, especially for 
the SC circuits, while the clock jitter is a more important problem for the 
CT circuits. Also problems arising from the component inaccuracies., like 
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the resistor or capacitor values of the local DAC, may degrade the per­
formance of multibit modulators in particular. Multistage modulators are 
sensitive to the various errors in the component values as well as to mis­
matching. In general, one may conclude, that single-bit single-stage, 
modulators are more robust against the various errors in the component 
values, which justifies their wide use. 

Problems 

6.1 Determine the effect of mismatching when the second integrator in 
Fig. 6.2 is not ideal. Repeat when the output of the first DAC is sub­
tracted from the output of the first integrator each of them being 
multiplied by a non-unity coefficient when feeding the summing 
node eq in the second stage 

6.2 Prove Eq. (6.12). 
6.3 Prove Eqs. (6.14) and (6.15). 
6.4 Determine the values of the DAC levels in Fig. 6.12. Calculate the 

mean value of the error and its variance in each state. Generalize in 
the case of M unit elements. 
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Chapter 7 

Stabilization and Suppression of Tones for 
Higher-Order Single-Stage AS Modulators 

7.1 Introduction 

It was demonstrated in Sec. 3.6, that higher-order single-stage AE 
modulators become unstable as their input approaches the full-scale of 
the quantizer. The input amplitude for the onset of instability is increased 
if the quantizer is multi-bit, but nevertheless excessive input can lock the 
modulator in unstable limit cycles. Even if the input is constrained, noise 
can drive the modulator to instability. Also, some modulators are 
unstable for a set of initial conditions. In Sees. 7.2 to 7.4, four 
stabilization methods are presented and compared. Fortunately, one of 
them, namely clipping, occurs at the supply voltage of the integrators in 
any AE modulator realization, but other methods can have superior 
performance. 

The single-bit AS sequence exhibits a repetitive nature if the input 
amplitude is small and rational. Thus tones exist in the output of a AE 
modulator. Such tones have been encountered in the analysis of the first-
order AE modulator, in Sec. 3.2. Although the overall SNR can be very 
high, these tones are troublesome, as they are perceived by the human 
ear. In Sees. 7.5 to 7.7 the tonal behavior of AE modulators is examined 
and the various strategies to suppress the tones are presented and 
compared. Fortunately, in ADCs the thermal noise helps to overcome the 
tonal problem, which needs addressing only in DACs. 

167 
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7.2 Bounds on Quantizer Input Using the Variable Gain Method 

The instability of AZ modulators can be accounted for analytically. The 
use of the variable gain method provides confident bounds on the input 
to the quantizer [1]. According to this method, every non-linearity can be 
substituted by a variable gain K. The value of the gain changes to the 
ratio of the output of the non-linearity over its input. Thus the system is 
transformed into a linear one with a variable parameter K. A transfer 
function of the system can be derived in the usual way for linear systems. 
For sampled-data systems, this function is of the form H(z,K). If the 

poles of H(z,K) are kept inside the unit circle for all K, then the system 

is stable. When a pole is moved outside the unit circle for a particular K, 
then the system is no longer stable in the Bounded-Input-Bounded-
Output sense (considering the quantizer input as the output of the system, 
as the AS is always bounded). Thus the signal levels in the system tend to 
increase in an uncontrolled fashion. This results in a change in K. If this 
change is such as to move the pole back inside the unit circle, then there 
exists a stable limit cycle. If on the other hand the pole is kept outside of 
the unit circle, then the limit cycle is unstable. The system can lock itself 
into it and become unstable. 

To use the variable gain method on AS modulators [1,2], the range of 
the gain K is calculated. The non-linearity is a 1-bit quantizer, thus the 
gain is the inverse of the absolute value of the input to the quantizer (if 
the quantizer output is normalized to ±1). Thus K e (0,+oo]. The usage 

of the method involves the calculation of the transfer function of the 
system and then its poles as a function ofK. Stability is investigated from 
the pole loci when K takes all the values in its allowed range. 

T 

L(z) 
U 

-1 
z 

— '— 

Fig. 7.1 A general AS modulator block diagram. 



Stabilization and Suppression of Tones 169 

Hence replacing the quantizer in the block diagram of a AZ modulator 
shown in Fig. 7.1 by the variable gain K yields the following transfer 
function: 

K-L(z)G(z) 
" ( * ) = \ + z~lK-L(z) 

(7.1) 

From (7.1), the pole loci for K e (0,+co] can be plotted. 

Using the variable gain method, the stability of some AE modulators 
is investigated. The results are depicted in Fig. 7.2. 
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Fig. 7.2 Application of the variable gain method for the quantizer input to AI 
modulators. 
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The first- and second-order AS modulators are shown to be inherently 
stable, as only a stable limit cycle exists at half the sampling frequency. 
This limit cycle, termed idling pattern, occurs in modulators of any order 
when the amplitude of the input to the quantizer is very small. The 
excitation of the idling pattern is responsible for the idle channel noise of 
the AS modulator [3]. On the other hand, higher-order single-bit single-
stage modulators can become unstable. 

Using the variable gain method on AS modulators, a minimum value 
of the gain Kmin for stable operation is derived which corresponds to a 
maximum absolute value at the input to the quantizer, wmax 

"max = ~ ( 7 - 2 ) 
^min 

This value can be used as a safe bound for the state of the last integrator 
of the loop filter. 

7.3 Stabilization Methods 

All the methods to stabilize the higher-order single-stage AS modulators 
are based on the detection of states that will possibly lead to instability. 
These states can be either the excessive values stored in the integrators 
that comprise the loop filter, or long sequences of identical outputs, the 
latter being evidence of a large amplitude, low frequency limit cycle at 
the quantizer input. Hence a detection threshold is set for any of the 
before mentioned quantities. Upon exceeding it, some action is triggered 
that stabilizes the modulator. The objectives of any stabilization method 
are the following: 
a. Recovery, i.e. return to normal operation should the destabilizing 

input be reduced. The recovery should be fast, in order for the 
stabilization method to be deactivated and the modulator to be 
allowed to return to normal operation. This is very important as the 
modulator always yields higher SNR when it operates normally. 

b. Ease of implementation. 
c. Insensitivity of the method to circuit imperfections, like finite opamp 

gain. 
d. Limited loss in SNR for the stable input range. As stabilization 
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actions change the behavior of the modulator, the performance of the 
modulator might be degraded, should these actions be activated before 
the onset of instability. 

e. Increase of the SNR of the unstable input range. This is the 
stabilization gain achieved by the method. 

f. Ease of determination of the detection threshold, which should not 
vary when different types of input signals are used. It can be 
analytically calculated using, for example, the variable gain method 
outlined in the previous section. 

7.3.1 Resetting the integrators 

One stabilization method involves the reset of the integrators of the loop 
filter [4,5]. The instability detection can be based on monitoring the 
signals in the integrators, or the output states. The latter is found more 
convenient, thus upon detection of n same AE sequence bits all the 
integrators are reset and instability is prevented. The method leads to 
instant recovery from the overload state as, immediately after resetting, 
the modulator operates normally. Unfortunately, when resetting the 
integrators, the correlation of the oversampled input samples is lost [4], 
thus when the method is activated, the SNR is degraded significantly. 
Variations of the method, like resetting only the last integrator, does not 
improve matters, as the high signal levels at the rest of the integrators 
soon overload the highest-order. Any gain due to keeping some of the 
information in the integrators is lost due to the more frequent need for 
resetting. 

7.3.2 Clipping the integrators 

A second stabilization method involves clipping the integrators to some 
limiting values [5,6]. It is the easiest method to implement, as integrators 
are built using opamps, and they clip at their supply voltage. When ideal 
opamps are used, this method performs very well in terms of SNR. But 
when a real opamp is saturated, the inverting input is no longer a virtual 
ground [1]. Time is needed for this voltage to fall back to zero, leading to 
degradation of the modulator performance. This time reduces the speed 
of return to normal operation, should the input amplitude be reduced. 
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Also, as MOS devices are not good limiters [5], the clipping stabilization 
method is not suited for switched-capacitor AS modulators in CMOS. 

7.3.3 Activation of local feedback loops around the integrators 

A third method involves the activation of local feedback loops around the 
integrators upon the detection of a state that may lead to instability [4,7]. 
These loops, when activated, decrease the signals stored in the 
integrators, thus stabilizing the modulator. The block diagram of such a 
third-order AS modulator used in [4,7] is shown in Fig. 7.3. 

Fig. 7.3 Third-order AI modulator stabilized using local feedback loops around the 
integrators. 

The modulator is based on the CIDF structure. The hardware involved is 
quite complicated as the instability detectors (OLD, Over-Load Detector) 
in the local feedback loops involve tri-state ADCs and DACs. Also, 
digital correction filters Hf, i=l, 2, 3 are used to counter the effect of the 

loops at the output. This leads to the problem of matching the digital and 
analogue parts, already discussed regarding multi-stage AS architectures 
in Sees 3.7 and 6.2.1. Especially the loop around the first integrator leaks 
non-shaped noise and heavily degrades the performance of the modulator 
[7]. In order for finite opamp gain not to degrade the SNR as much as in 
the multi-stage modulators, the loops should rarely be activated. This is 
achieved in the design proposed in [4,7], but is not the case for any 
modulator design, like those of Chapter 4. Another disadvantage of this 
method is that the CIDF loop structure used allows only unity zeros, and 
so the optimized placement of zeros is impossible. Applying the method 
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to AS architectures that allow non-unity zeros (CIDIDF or CIDIFF) leads 
to IIR digital correction filters, whose stability is not guaranteed. Finally, 
the output of the modulator due to the digital correction filters is multi-
bit, 9-bit for the modulator proposed in [4], making the implementation 
of the decimator difficult. 

7.3.4 Reducing the order of the loop filter 

According to the fourth method of reducing the order of the loop filter 
[8,9], upon detection of a state in the highest-order integrator that can 
lead to instability, this integrator is cut-off from the loop filter. Thus the 
order of the modulator is reduced, and the resulting modulator has a 
wider range of input amplitude for stable operation, i.e. it is more stable. 
Also, a third-order AS modulator is reduced to a second-order one, which 
is always stable. A third-order AS modulator based on the CIDIDF 
structure and stabilized by reducing the order of the loop filter, is shown 
in Fig. 7.4. The excess hardware involves the implementation of the -a$ 
coefficient, the two switches and their control circuits, the instability 
detector and the sign comparator. 

J. ~b 
mW 

Vj(«l 

- ^ < ± H ^ ( + > - h -M>-K±> 

bt Cut-off 
switch y(n) 

«)(«) "\4-

Fig. 7.4 Third-order AI modulator stabilized by reducing the order of the loop filter. 

For small input signals, the modulator operates in the stable region. 
Using the variable gain method, the stable region is defined as the range 
of input amplitudes for which the output of the third integrator is 
bounded by 
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h ( » ) | * ^ - (7-3) 
"•min 

In the stable region no stabilization actions are taken and the input to the 
quantizer is the value w3 («) of the third integrator. As the input signal 

increases, w3 («) can exceed the limit imposed by (7.3). This range of 

input amplitudes is defined as the unstable region of operation. For input 
amplitudes in this region the modulator becomes unstable. To prevent 
this, the signal u2 («) from the second integrator is used as input to the 

quantizer, effectively cutting-off the third integrator from the loop. The 
result is a second-order AS modulator, which is stable. The third 
integrator, although its output is not connected to the loop, still integrates 
its input. If the sign selection switch in Fig. 7.4 is selecting always the 
+a3 branch, the input v3 (H) to the third integrator is given by 

v3 (") = w2 (") - ^3 " ^ ( " ) 07-4) 

where y(n) is the AS sequence, which is fed back. Thus w3(«) changes 

during the cut-off time. The order of the modulator is restored only when 
the signal at the third integrator satisfies (7.3) once more. A switch 
selects the output of the third or the second integrator. This is the cut-off 
switch in Fig. 7.4. The cut-off switch is controlled by an instability 
detector that performs the comparison in (7.3). 

In order to make the cut-off time as short as possible, if the excessive 

input signal is removed, v3 («) should be such that it minimizes |«3 (w)|. 

To do so v3(n) and w3(«) should have different polarity for as many 

time samples as possible. Note that the a3 coefficient is positive, it 

weights the feedback signal and the result is subtracted from v 3 («) . 

Thus the feedback signal reduces the value stored in the 73 integrator, in 

an attempt to keep u-i,{n) bounded. Should / 3 be cut-off and ^ l " ) an<^ 

w3(«) have different polarity, the feedback no longer reduces the value 

stored in 73. In order to keep reducing the value stored in 73 and thus 

facilitate the fast recovery of the modulator from the overload state, it 

should be 
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\u2(n)-a3y(n) if u2(n)uz(n)>0 
v3(«) = ^ (7.5) 

[u2(n) + a3y(n) if u2(n)u3(n) <0 

The sign comparator and the sign selection switch in Fig. 7.4 implement 
Eq. (7.5) by controlling the sign of a3. When (7.3) holds, i.e. the 

modulator operates normally, the sign comparator effectively compares 

the sign of the same quantity, namely w3. Finding the two signs the 

same, it selects +a3, i.e. the loop remains unchanged. Should I3 be cut­

off, the signs of u2(n) and «3(«) are compared. If they are the same, 

then again +a3 is selected minimizing w3(«). If the signs of u2(n) and 

M 3 ( « ) are different, then - a 3 • y(n) has the same sign as « 3 («) . So the 

sign selection switch selects the -a 3 coefficient, and thus K3 («) is still 

reduced. Thus the sign comparator and the sign selection switch in Fig. 
7.4 are used to minimize the cut-off time of the modulator. 

Comparing the stabilized AE modulators of Fig. 7.3 and 7.4, the 
circuitry involved in the stabilization by the method of reducing the order 
of the loop filter is simpler than that of using local feedback loops. This 
is evident as stabilization circuitry in the proposed method is used only 
around the third integrator and not around all of them. Also, the 
instability detector is a single-threshold device, in contrast to the double-
threshold overload detectors of the stabilization using local feedback 
loop. As for the sign comparator, it can be built using two single-
threshold devices and a XOR gate. Stabilization by reducing the order of 
the loop filter also leads to better performance in most cases, as it will be 
shown in the next section. 

7.4 Comparison of the Stabilization Methods 

Two AZ modulators are used for the comparison of the stabilization 
methods. Modulator A has NTF poles at -0.0367 and 0.8076+/0.2733 and 
modulator B at -0.0554 and 0.8070±/"0.3510. Modulator A has higher 
maximum stable input (and consequently smaller maximum SNR) than 
modulator B. As for the zeros, they vary according to the needs of the 
structure of every stabilization method: For the methods of resetting and 
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clipping the integrators, as both integrators and resonators can be used, 
the zeros are also the optimal at 0 and e

±j0m& (see chapter 4). For the 
method of reducing the order of the loop filter, as only integrators are 
used, the zeros have real parts equal to unity. This does not change them 
considerably from the optimum placement, thus the SNR gain of the 
optimum placement is retained. Finally, for the method of activating 
feedback loops around the integrators, the zeros have to be set to unity, 
and the resulting modulators are sub-optimal. For every method, many 
thresholds are used to obtain the optimum. The methods are applied as 
follows: 

a. For the method of resetting the integrators, all of them are reset upon 
the detection of a number of AS samples of the same value. This 
number is the threshold r for the activation of the method. 

b. For the method of clipping the integrators, a modification from [6] is 
proposed to enhance performance: only the third integrator is clipped 
at some threshold level T. 

c. For the method of activating feedback loops around the integrators, 
activation of the lower-order loops at too low or too high level yielded 
poor results. Not using the lowest-order loop at all (to avoid the non-
shaped noise leakage) resulted to unstable modulators. Thus the two 
lower-order integrators have their feedback loops activated at twice 
the theoretical threshold. The loop around the third integrator is 
activated using a variable threshold T. 

d. For the method of reducing the order of the loop filter, the method is 
activated as described in Sec. 7.3.4, only with variable threshold T. 
For each method the SNR as a function of the input amplitude is 

plotted for the optimum threshold in Fig. 7.5. 
The effect of finite opamp gain is to change the loop filter transfer 

function, hence also the SNR. But as long as the modulator remains in 
the stable input range, i.e. the stabilization method is not activated, this 
SNR change is minimal due to the robustness of the AS modulator. Of 
course, the change of the loop filter alters the boundaries of the stable 
and unstable ranges in an unpredictable way. These changes are 
responsible for the SNR loss in all stabilization methods. In addition, as 
the method involving the local feedback loops involves digital correction 
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filters that, due to finite opamp gain, are no longer matched to the 
analogue part of the modulator, there is greater SNR degradation for low 
opamp gains. Opamp gains of 400 and the very low 100 are used to 
evaluate the robustness of the methods. The resulting SNR curves are 
depicted in Fig. 7.6. 

From the results of the method of resetting the integrators it is 
evident that the performance in the stable input range is excellent, but in 
the unstable input range the gain is rather low. Also, the optimum 
number of consecutive +1 or -1 used to activate the method varies a lot 
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Fig. 7.5 SNR of the two stabilized third-order modulators as a function of the 
sinusoidal input amplitude. Modulator A is represented by solid lines, while B by the 
dashed. 
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as the NTF or the input signal change. On the other hand, modulators 
thus stabilized are very insensitive to finite opamp gain. Also, the 
recovery from overload is instant, as the integrators are reset. Finally, the 
hardware that facilitates resetting is simple, as the integrating capacitors 
just have to be discharged and the activation of the method is based on 
observation of the digital output. 

The method of clipping the integrators yields far better unstable input 
range gain than the method of resetting the integrators. This gain can be 

-10 -9 -8 -7 -6 -5 -4 -3 -2 '-1 0 
Input amplitude (dBFS) 

10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 
Input amplitude (dBFS) 

Activating feedback loops 
around the integrators 

3 of Reducing the order of 
the loop filter 

-7 -6 -5 -4 -3 -2 -1 0 
Input amplitude (dBFS) 

-7 -6 -5 -4 -3 -2 -1 0 
Input amplitude (dBFS) 

Fig. 7.6 SNR of the stabilized third-order modulator with finite opamp gain, as a 

function of the sinusoidal input amplitude. The opamp gain is shown on each curve. 
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further increased should some loss in the stable input range be tolerated. 
Thresholds around three times the full-scale yield the optimum gains, 
although even smaller thresholds yield comparable performance. This is 
also shown in Fig. 7.7, where the range of acceptable thresholds for the 
various methods and a third-order modulator with sinusoidal input are 
shown. These thresholds are close to the one predicted by the variable 
gain method. The activation of the method is rather insensitive to the 
type of input signal, which is advantageous if the modulator is to be used 
with real-world signals. Regarding the effects of finite opamp gain, the 
method proves rather insensitive, unless the opamp gain is too low. Then 
it exhibits the worst performance from all the methods. In terms of 
hardware, the only excess circuitry needed for the implementation of the 
method is that which regulates the supply voltage of the last integrator 
according to the threshold. On the other hand, opamp saturation reduces 
the speed of recovery from overload. 

The performance of the third-order AS modulators stabilized using 
local feedback loops around the integrators in the stable input range is 
very good as it exhibits gain. Also the gain in the unstable input range is 
large, in some cases covering the handicap due to the non-optimal 
placement of zeros due to the CIDF structure. Unfortunately, as the NTF 
is different, a direct comparison of these gains to those of other methods 
is not possible. The gains achieved have a strong dependency on the 
threshold, as shown in Fig. 7.7. The method is not immune to finite 
opamp gain, as then the gain in both the stable and the unstable input 
ranges is greatly reduced. Also, the method is quite complex to 
implement, as already discussed in the previous section. The optimal 
thresholds of activation vary between one and two times the full-scale, 
and are not always constant for different input signal types. Finally the 
recovery from overload is very fast, even for extreme levels of input. 

When the method of reducing the order of the loop filter is used to 
stabilize the third-order AS modulators, very good results are obtained 
for a wide range of thresholds larger that 1.5 times the full-scale. This is 
evident from the comparison in Fig. 7.7. Also the optimal thresholds are 
constant, regardless of the type of input signal. These thresholds are 
somewhat smaller than those predicted by the variable gain method. 
There is no loss of SNR in the stable input range and the gain in the 
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unstable input range is comparable to or even higher than that of clipping 
the integrators. Also the method is quite insensitive to finite opamp gain, 
as the gain in the unstable input range remains very high, even for very 
low opamp gains. The hardware needed for the method of reducing the 
order of the loop filter is already found less involved than the one of 
activating the local feedback loops. The recovery from overload is fast, 
comparable to that of the method of activating feedback loops around the 
integrators, as long as the input level is kept below full-scale. At full-
scale the delay grows to some hundred of samples, which is of no worry 
as the signals are highly oversampled. 

80 

§ 7 5 

c 
(0 

I 60 

0 0.5 1 1.5 2 2.5 3 3.5 

Threshold (relative to FS) 

Fig. 7.7 Mean gain in the unstable range for thresholds yielding acceptable mean gain 
in the stable range. The performance of the method of activating local feedback loops 
around the integrators depends strongly on the threshold, and the method of reducing the 
order of the loop filter yields good results for a wide range of thresholds. 

Concluding the comparison of the stabilization methods, results are 
summarized in Table 7.1. It is evident that resetting the integrators is the 
faster to recover from instability but the worse in terms of SNR gain in 
the unstable input range. Clipping the integrators has good SNR gain, but 
is slow in recovering. Activating local feedback loops around the 
integrators leads to excellent speed of recovery and SNR gain, which 
unfortunately cannot be directly compared to the rest, as the NTF zeros 
are forced to unity. 

r Reducing the order 
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Finally, the method of reducing the order of the loop filter yields better 
SNR gain than the method of clipping the integrators and is very fast in 
recovery from overload for all input amplitudes apart from the full-scale. 
It is also easier to implement and less sensitive to finite opamp gain than 
the method of activating the local feedback loops. 

7.5 Tones in AS Modulators 

Tones are reported in the output spectra of AS modulators, especially 
when the input is rational DC or a sinusoid of rational frequency [5,10-
13]. It is a common belief that only lower-order AS modulators suffer 
from tones, but this is not true [5] as it is demonstrated in Fig. 7.8, for a 
third-order AS modulator having NTF zeros at 0 and e1-/'0-038 and poles at 
-0.0367 and 0.8076±/0.2733. Note that this will be the modulator used in 
the analyses of the next sections, unless otherwise specified. 

Tones are mostly evident when the input to the modulator is rational 
(in level or frequency). When the modulator is used as an ADC, then the 
probability of such signals is zero and so tones are not very important. 
But when the modulator is used as a DAC, the signals being digital are 
rational, and the tones become a serious unwanted artifact. 

The existence of high frequency tones can be explained as follows: 
The only steady-state solution for zero input to the classic first-order 
modulator is the repeating pattern ..., 1, -1 , 1, -1 , ... i.e. a limit cycle 
causing a tone at fs /2 . If a small DC input mx is added, then from time 
to time two identical codes are generated, as the error between the 
modulator input and output accumulates in the integrator. The frequency 
of the generation of the identical codes is mxfs, which explains the 

dominant out-of-band tone at 

/A=0-«x)y (™) 
This out-of-band tone is very strong, comparable to the full-scale. The in-
band tones at multiples of the first in-band harmonic at 

fl=mxfs (7-7) 
are due to the fact that the constant output power has to be shared 
between the strong out-of-band tone and the random components. As a 
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Fig. 7.8 Tones in the quantization error spectra of a third-order AX modulator for a. 
rational DC input level 1/512 of the full-scale, or b. sinusoidal input of rational frequency 
1/1024 of the sampling frequency and rational amplitude 1/256. 

result the base-band noise power is modulated by / ( [5]. The in-band 
tones are of considerably less power than their out-of-band counterparts. 

Although the in-band noise power of the modulators is low, the very 
existence of in-band tones is troublesome, as they can be perceived by 
the human ear [5]. Out-of-band tones are also troublesome, as circuit 
non-idealities can cause them to demodulate down to the base-band [5]. 
As these tones are usually of high power, even a small degree of 
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demodulation can destroy the SNR. Thus both in- and out-of-band tones 
should be suppressed. 

Methods to suppress the tones are reported in the literature. 
Traditionally tones in AS modulators are suppressed using dithering 
[5,11-14], or by using chaotic AS modulators [5,13]. More recently bit-
flipping has been introduced [11,12]. These are the fixed techniques. 
Also, adaptive techniques like adaptive dithering [5] or adaptive bit-
flipping [12] have been proposed. 

In the following sections the effectiveness of the above mentioned 
tone suppression methods is examined, both for the in-band and the out-
of-band tones. The input signal is a rational DC level 1/512 of the full-
scale. Also, as all these methods degrade the stability of the modulators, 
this adverse effect is examined by finding the Maximum Stable 
Amplitude (MSA) using a very slowly increasing ramp input signal. 
Finally, another adverse effect is the reduction of the SNR of the 
modulators. This is examined by determining the SNR for a sinusoidal 
input of amplitude 0.117 relative to the full-scale. 

7.6 Fixed Techniques 

The fixed techniques for suppressing the tones are presented in the 
following subsections. They are fixed in the sense that the action against 
the tones is taken, independent of whether the modulator is in a state that 
generates tones or not. 

7.6.1 Dithering 

The most widely used technique to suppress the tones in any data 
converter is dithering. Dithering is the addition to the input of the data 
converter of an uncorrelated signal. As a result the input and the 
quantization error become uncorrelated. Dithering is investigated 
theoretically in [14]. It is applied to data converters in [12] and 
specifically to AS modulators in [5,12,13,15]. 

With the addition of the dither signal the noise in the modulator 
increases. Thus, care must be taken for the higher-order modulators not 
to become unstable, i.e. the dither signal should be small. Also, the in-
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band noise power increases alarmingly, unless the dither signal is high-
pass filtered (or band-reject filtered for band-pass AE modulators). This 
filtering operation can be achieved by simply adding the dither signal 
directly to the input of the quantizer, thus shaping it by the NTF. 

The dither signal is usually a pseudo-random noise. Rectangular and 
triangular PDF can be used. If the modulator is used as an ADC, then the 
dither signal must be analog. In order to avoid the use of a DAC, or the 
implementation of an analog noise source of a given PDF, single-bit 
dither can be used. This is obtained by single-bit quantizing the output of 
a digital pseudo-random noise source. The generation of such a signal is 
done using digital hardware. The single-bit DAC needed is trivial. 

The effect of three types of dither signals, namely the single-bit, the 
rectangular PDF and the triangular PDF on AS modulators is 
investigated, having the power of the dither signal as a parameter. 
Dithering is certainly successful in the suppression of tones, as is shown 
in Fig. 7.9. In the same figure, the effect of the three types of dithering 
on MSA and SNR is demonstrated. The first in-band tone is suppressed 
using very small dither signals in all three cases. The suppression of the 
first out-of-band tone is more difficult. Triangular PDF dither is the most 
efficient. Rectangular PDF and single-bit dither signals should have more 
than double the power to achieve the same results. The introduction of 
the dither noise signal makes the modulators less stable. The MSA 
resulting from the triangular PDF dither signal is less than that from the 
rectangular PDF and single-bit dither signals of the same power. Finally, 
although the dithering signal is high-pass shaped, it increases the base­
band noise level, hence its introduction reduces the SNR. 

7.6.2 Chaotic AZ modulators 

When the NTF of a AS modulator is not minimum phase, then the loop 
filter has at least one pole outside the unit circle [5,13]. The whole 
feedback system can still be stable, but the dynamics of the loop filter are 
destabilized, and thus periodic sequences are broken. So chaotic AZ 
modulators are not tonal. 

Chaotic modulators are obtained from non-chaotic ones by reflecting 
at least one NTF zero outside of the unit circle. From the linear model 
point of view, the performance of the modulator does not change if the 
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reciprocal of some zero is used. But AS modulators should have NTF 
zeros on the unit circle (see Chapter 4), thus this reflection is not 
possible. Moving the zero away from the unit circle degrades the SNR 
and thus is not desirable. What is usually done to obtain a chaotic AE 
modulator is the extension of the NTF of a non-chaotic modulator by an 
all-pass term 

H. all-pass 
( & • 

l-a-z 

1 -

- l 

(7.8) 
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Fig. 7.9 Tone suppression using dither, a. In-band suppression and b. out-of-band 
suppression, c. Degradation of the MSA and d. Degradation of the SNR. 
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If \a\ > 1 then the resulting modulator is chaotic, and more so as the 

magnitude of a increases. The resulting increase of the order of the 
modulator is not very important from a hardware point of view, as the 
involved circuitry need not be very expensive. It is reported in [13] that 
the extension with a negative zero a is more effective for the out-of-band 
tone suppression than the use of positive a. 

The disadvantage of the chaotic modulators is that they are more 
unstable than their non-chaotic counterparts. This can be easily seen as 
the one-norm of the NTF increases, and does so excessively for negative 
a. In some cases it is impossible to obtain stable chaotic modulators from 
the extension of non-chaotic ones with negative zero. 

In the following subsections the effectiveness and penalties of the 
use of chaotic AS modulators to suppress the tones is investigated, both 
for positive and negative zero extension. 

The use of a positive zero in the all-pass term of Eq. (7.8) leads to 
chaotic modulators with adequate suppression of tones in the base-band. 
Unfortunately this is not true for the tones lying near half the sampling 
frequency. The effectiveness of the suppression and its effect on the 
MSA and the SNR as a function of the positive zero used for the 
extension is shown in Fig. 7.10. The more chaos is used, the less stable 
the modulator becomes. Finally, the SNR does not vary considerably 
until the onset of instability for large a, as the base-band noise level is 
fairly constant. 

Although the SNR and stability performance of the extended with 
positive zero modulator is considerable and the base-band tones are 
adequately suppressed, positive zero extension is inadequate for the out-
of-band tones. Thus the performance of the extension with negative zero 
has to be investigated, even though this can be applied only to sub-
optimal modulators. The fifth-order modulator obtained using Chebyshev 
NTF prototypes is used for this analysis. 

The effectiveness in the suppression of tones as a function of the 
negative zero used for the extension and the degradation of the MSA and 
the SNR are shown in Fig. 7.11. The suppression of tones in the base­
band needs somewhat larger values of \a\ than in the case of positive a. 
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Fig. 7.10 Tone suppression using chaos with positive zero extension. In-band (a) and 
out-of-band (b) suppression. Also degradation of the MSA (c) and the SNR (d). 

Now, also the tones lying near half the sampling frequency are 
adequately suppressed. Again the more chaos is used, the less stable the 
modulator becomes. Finally, the SNR does not vary considerably. Even 
very large values of \a\ still lead to stable modulators. 

7.6.3 Bit-flipping 

The effect of dithering (in single-bit quantizer modulators) is to flip the 
output bit with probability Pf given by 
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Fig. 7.11 Tone suppression using chaos with negative zero extension, a. In-band and b. 
out-of-band suppression, c. Degradation of the MSA and d. Degradation of the SNR. 

11 n 

Pf=Pr[d(n)<-u(n)]= J fd{x)dx (7.9) 
—00 

where d(n) is the current sample of the dither signal, w(w) is the 

current sample of the output of the loop filter and fd is the PDF of the 

dither signal. So in effect, as u(n) becomes smaller, the probability of 

the output of the dithered modulator to be flipped increases. It is this bit-



190 AS Modulators 

flipping mechanism that actually breaks up the periodicity of the output 
bit-stream, effectively suppressing the tones. 

Magrath in [11,12] proposes the following scheme. Let the output of 
the quantizer be flipped with probability 1, if the input to the quantizer is 
smaller than a threshold value D. This is equivalent to single-bit 
dithering with a signal ±D, which always has the inverse polarity with 
respect to that of the input to the quantizer. This scheme is termed bit-
flipping. 

The effectiveness of this scheme in the suppression of tones and its 
effect on the MSA and SNR is depicted in Fig. 7.12. 

0.1 0.2 0.3 
Bit-flipping threshold Bit-flipping threshold 

( C ) (d) 

Fig. 7.12 Tone suppression using bit-flipping, a. In-band and b. out-of-band 
suppression, c. Degradation of the MSA and d. degradation of the SNR. 
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It is evident that the first in-band harmonic and the tone near half the 
sampling frequency can be suppressed, but for different threshold values. 
At the value of D for which both tones are suppressed adequately, the 
second in-band harmonic has increased power. Thus simultaneous 
suppression of tones is very difficult using bit-flipping. The larger the 
threshold values are used, the less stable the modulator becomes. Finally, 
the SNR decreases with increased threshold D. 

7.6.4 Comparison of fixed techniques 

In the preceding sections three fixed techniques for the suppression of 
tones were presented. Dithering and bit-flipping are closely related and 
can be applied to any AE modulator. Chaos can universally be used only 
if NTF extension with a positive zero is performed. What is wanted when 
these techniques are applied is to attenuate all tones at the minimum SNR 
and MSA costs. The techniques are compared in terms of costs when the 
dominant in-band tone is attenuated by at least 7dB and the dominant 
out-of-band tone is attenuated by at least 17dB. The results are 
summarized in Table 7.2. 

Table 7.2 Comparison of the fixed techniques for tone suppression. 

Technique 
Uniform dither 
Triangular dither 
Single-bit dither 
Chaos, positive zero 
Bit-flipping 

MSA 
0.51 
0.44 
0.53 
0.26 
0.55 

MSA loss (%) 
24 
34 
21 
51 
18 

SNR (dB) 
75.9 
75.3 
75.8 
77.2 
76.1 

SNR loss (dB) 
3.44 
4.04 
3.54 
2.14 
3.24 

It is evident from Table 7.2 that overall bit-flipping performs best, 
although care has to be taken about the second in-band harmonic. Chaos 
preserves the SNR nicely, but it is very inadequate at the out-of-band 
tone suppression. The resulting MSA is poor. From the fixed dither 
techniques, the best is single-bit dithering, both in terms of performance 
and in ease of implementation. 
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7.7 Adaptive Techniques 

It is not good practice to take action against the tones, if the modulator is 
in a state that is likely to generate them, as these tone suppression 
techniques result in a degradation of the modulator performance. 
Adaptive techniques on the other hand do monitor the modulator and are 
equipped with a decision-making mechanism: is the modulator 
generating tones or not? These techniques are the adaptive dithering [5] 
and the adaptive bit-flipping [12], and are presented in the next 
subsections. 

7.7. / Adaptive dithering 

The generation of tones depends on the input signal. Quiet input signals 
generate tones, whereas busy input signals do not. Thus it is 
advantageous to monitor the input signal, and arrange the power of the 
dither signal injected into the system. If the input level is small, then 
large dither is needed, but overall stability is not jeopardized. On the 
other hand, if the input level is large, then no dither is needed. It is also 
advantageous to monitor the input level in the digital domain. This is 
readily done by checking the digital output of the decimator, which is a 
close approximation of the corresponding analog input signal. This 
technique is the adaptive bit flipping introduced by Norsworthy in [5]. 

Adaptive single-bit dithering is applied to the third-order AZ 
modulator used throughout this chapter. The dither level is adjusted 
using the level of the output of the first decimator stage as in Table 7.3. 
Using this scheme, the in-band tones for an input DC level of 1/512 of 
the full- scale are completely suppressed, while the out-of-band tone at 
fh is suppressed by 25.3dB. This is achieved without any loss in the 

MSA and only 2.59dB loss in the SNR. 

Table 7.3 Adjustment of single-bit dither amplitude using the amplitude of the output 
of the first stage decimator. 

Decimated signal amplitude Dither amplitude 
[0,0.0625) 0.5 

[0.0625,0.5) 0.1 
[0.5, oo) no dither 
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7.7.2 Adaptive bit-flipping 

In adaptive dithering an estimation of the amplitude of the input signal is 
used to determine whether actions are needed to suppress the tones or 
not. Limit cycle detection at the output bit stream can also be used. 
Should limit cycles be detected, then the current output bit is flipped, 
effectively breaking up the limit cycle. This is adaptive bit-flipping, 
introduced by Magrath in [12]. 

The disadvantage of adaptive bit-flipping is that the limit cycle 
detector is not trivial. The number of possible limit cycles is large, thus a 
lot of digital logic is needed to detect them. In [12] it is proposed just to 
detect first-order limit cycles, i.e. ..., 1,-1, 1,-1, ... or second-order limit 
cycles, i.e. ..., 1, 1, -1 , -1 , 1, 1, ... longer than a given length. This is 
tried for a length of 8 bit for both limit cycles and the third-order AZ 
modulator used throughout this chapter. The result was the mediocre 
suppression of the out-of-band tone at fh by only 16.7dB. This is just 

the performance obtained using chaos and positive zero extension. For 
in-band tones the situation is even worse; they are not suppressed at all. 
Again there is no loss in the MSA (characteristic of the adaptive 
techniques), but there is a considerable loss of 8.01 dB in the SNR. 

7.7.3 Comparison of the adaptive techniques 

Tone suppression should be carried out using adaptive techniques to 
minimize performance loss in terms of MSA and SNR. Unfortunately 
adaptive bit-flipping needs impractical limit cycle detectors. On the other 
hand adaptive single-bit dithering is very effective with minimal SNR 
penalty and no MSA penalty. The adaptation hardware is not involved 
and fully digital. Also no analog noise source is needed. Thus adaptive 
single-bit dithering is the best candidate for tone suppression. 

7.8 Summary 

Having designed single-stage higher-order AS modulators in the previous 
chapters, here two inherent problems of these modulators, namely 
stability and tones, are considered, and means to overcome them are 
presented. 
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Although careful design can ensure stability up to any input power, 
noise can drive the modulators into instability. Hence some means of 
preserving the performance of the modulator and returning it to stable 
operation are needed. Clipping of the integrators at their supply voltage 
is inherent in any circuit realization, alleviating the problem, but other 
methods can be more effective. These methods are presented in the first 
half of this chapter, and are summarized in Sec. 7.4. 

The tones of AE modulators are troublesome only in DAC designs, 
as in ADCs the thermal noise serves as dithering signal, and rational 
input signals do not exist. In DACs, the tones can be suppressed. In-band 
tones are easily suppressed, but the out-of-band tones are more 
persistent. Following the comparison of the tone suppression techniques 
in Sees. 7.6.4 and 7.7.3, the most successful technique is adaptive single-
bit dithering. 
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Chapter 8 

Decimation, Interpolation and Converters 

8.1 Introduction 

In previous chapters we examined the various types of AS modulators, 
with emphasis on those employing single-bit quantizers. In this chapter 
their particular use in building ADCs and DACs is explained. Because of 
the use of oversampling in AS modulators, the need arises for changing 
the sampling rate of the signal, decreasing it to the Nyquist rate in the 
case of an ADC or increasing it in the case of a DAC [1-3]. The former 
process is called decimation, whereas the latter interpolation. Such rate 
conversions can be achieved employing high precision FIR filters, 
usually in multiple stages. The ratio of the initial over the final sampling 
rate may be fractional as in case of transferring data from a music CD 
(44.1 kHz) to a Digital Audio Tape (48 kHz). 

The basic concepts on rate conversion, namely decimation and 
interpolation are analyzed in section 8.2. Next, in section 8.3 are given 
certain filter structures and filtering techniques suitable for rate 
conversion. In the next section decimation is applied to the output AS 
sequence to facilitate A/D conversion and give the final multibit signal in 
the Nyquist rate. In the last section interpolation is applied to a Nyquist-
rate multi-bit digital signal to increase the sampling rate and facilitate the 
use of a AS Modulator in the D/A conversion process. 

196 
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8.2 Rate Conversion 

There are many cases where the sampling rate at which digital signals are 
processed needs to be changed. Such needs arise when interfacing 
between two systems with different sampling rates. The process at which 
the sampling rate is decreased by r is called decimation, as one every r 
samples is kept. The inverse process of increasing the sampling rate by r 
is called interpolation, as r-1 appropriate samples are inserted between 
two original samples. We examine both decimation and interpolation 
separately in the following subsections. 

8.2.1 Decimation 

The operation of a decimator by r is straightforward: one every r samples 
is kept, the rest are discarded. This way the original sampling frequency 
fs is decreased tofjr. To avoid aliasing of the spectral components above 
half the final sampling rate, i.e. the spectral components m[fs/2r,fs ll\ 

into the band of the decimated signal, a low-pass decimation filter 
precedes the down-sampling process (Fig. 8.1). 

,PSD 

fJ2r fjr 1 / 
Fig. 8.1 Decimation by r=4. a. Spectrum of the oversampled signal, b. Low-pass 
filtering of signal components higher than fs/2r. c. Spectrum of the down-sampled signal. 
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8.2.2 Interpolation 

The inverse operation of the interpolator by r involves the insertion of r-
1 appropriate samples between two original samples. Three approaches 
to achieve this are as follows: 

A straightforward approach is to insert r-1 zeros. The increase of the 
sampling rate from fs to rfs brings the frequency content of the r-1 
Nyquist zones (m fs/2,(m + l) fs/2), m=l,...,r-l, together with the first 

one (m = 0) in the new first Nyquist zone (0,rfs IT), creating r-1 images 

of the original spectrum. The spectra of the r-1 images equal the wanted 
spectrum at (0,fs/2), and need to be attenuated bellow a specified level 

to avoid excessive signal distortion (Fig.8.2). 
>PSD 

rf f 
PSD 

(c) 

fJ2 fs rfs f 
Fig. 8.2 Interpolation by r=4. a. Spectrum of the original signal, b. Low-pass filtering 
for canceling r-1-3 images of the original signal band. c. Spectrum of the interpolated 
signal. 

A second approach involves a sample and hold operation, where the 
sampling performs resampling at the higher rate and the zero-order hold 
keeps the original sample value for k samples. The rest r-k-1 samples are 
zero. In this case the r-1 images also exist, but the signal suffers from 
sin x/x distortion, given by 
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sin nj 

\HLmifs)\ — I rfs J jt = o r - i (8.i) 
I I I rrf 

(jfc + l)sin ^~ 

Ws) 
The magnitude of (8.1) is plotted in Fig. 8.3a for (r,k)=(16,15), i.e. when 
all the r-1 inserted samples have the value of the first original sample. In 
this case the r-1 images are attenuated, but the wanted part of the 
spectrum in (0,fs/2) is degraded. 

A third approach is to perform linear interpolation between the two 
original values. In this case the r-1 images are even more attenuated, but 
the wanted part of the spectrum in (0,fs/2) is also more degraded. 

The effect of the three approaches of interpolation on a sinewave and 
on white noise is depicted in Fig 8.3 All the interpolation approaches 
presented result to images of the original spectrum. To avoid distortion 
they have to be attenuated. The last two approaches are equivalent to 
some sort of filtering that, to some extent, achieves this suppression. 
Their drawback is that they also introduce some distortion of the original 
spectrum. Hence the best approach is to insert r-1 zeros. The attenuation 
of the images will be performed afterwards, using a filter with smoother 
pass-band than that of Fig. 8.3b. 

Example 8.1 A HIPERLAN/2 wireless LAN [4] system has two base­
band quadrature (I/Q) digital signals sampled at fs = 20 MHz. Their 
bandwidth B is 16.25 MHz. Assume that the low intermediate frequency 
IF is also 20 MHz. Describe a system that will interface the base-band 
transmitter to this IF using digital modulation. 

Solution To digitally modulate two quadrature base-band signals to IF 
[5], one multiplies the in-phase (I) signal with the cosine of the IF and 
the quadrature (Q) signal with the sine of the IF. Then the two results are 
added. The resulting digitally modulated signal is centered at IF. Hence 
the highest frequency of the modulated signal is 
IF + B/2 = 28.125 MHz. Evidently the original sampling rate cannot 

accommodate this frequency. Interpolation of the I/Q signals is needed. 
The resulting interface to the IF is shown in Fig. 8.4 
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Fig. 8.3 Effect of the three interpolation approaches on the spectrum of a. a sine wave 
by 4 and b. white noise by 16. The latter is an indication of the magnitude response of the 
equivalent filtering process. Inserting zeros results in unfiltered images and no in-band 
distortion, while sample and hold or interpolation result in attenuated images and in-band 
distortion. The frequency axes are normalized to the original sampling rate. 
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Digital I/Q modulation 

HL/2 
modulator 

Interpolator e-
Modulated signal 
fs,m with modulating 
frequency/,, 

Base-band I/Q, 
fs.b 

Up-sampled I/Q, 
/,.„, L=1F 

Fig. 8.4 Base-band to IF interface for a HIPERLAN/2 digital modulation system. The 
base-band I/Q signals are centered at DC and are sampled by fsjr=20 MHz. The 
interpolated I/Q signals are still centered at DC but are sampled by fs,„,=S0 MHz. Finally 
the modulating frequency is fm=IF=20 MHz and the modulated signal is centered at IF 
and is still sampled byfsm=S0 MHz. 

Selecting to interpolate the I/Q signals by r=4 yields an increased 
sampling rate of rfs=8Q MHz. Then the IF is one-fourth of the final 
sampling rate; hence the generation of the sine and cosine of IF and the 
multiplication with the interpolated I/Q signals are trivial: The cosine 
samples are 1, 0, -1 , 0, ... and the sine samples are 0, 1, 0, -1 , ..., so the 
two multiplications are performed simply by passing through the I/Q 
samples, reversing their sign or zeroing them. 

8.3 Decimation and Interpolation Filters 

As discussed in the previous section, an interpolating filter follows the 
increase of the sampling rate from fs to rfs in an interpolator. Its goal is 
to attenuate the r-1 images, while keeping the distortion up to fs/2 

below a desired level. If the bandwidth of the signal is B, then the r-1 

images to be suppressed lie in the frequency zones given by 

„ /* B „ L B\ [ r / 2 r even 

2 2 2 2) [(>--l)/2 r odd 

Evidently, the low-pass interpolation filter should have a cut-off 
frequency of B/2 and should achieve the maximum attenuation at 
fs - B/2. The image suppression filtering is depicted in Fig. 8.5.a. 
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f,-BI2 

(a) 

-fjr -fjlr 

Wanted 1 zone to 
be aliased 

r-\ zone to 
be aliased 

Ir 
fjlr \ fjr 3 fjlr (r-\)fs fjl 

^fJr-B/2 

(b) 

Fig. 8.5 a. Interpolating and b. decimating low-pass filters. The rate conversion is r, 
which in the figure is assumed even. 

A low pass filter is also used in the decimation process. The rate 
reduction by r breaks up the original Nyquist zone (0,fs/2) into r zones, 
{mfs /2r,(m+l)fs /2r), m=0,...,r-l. The r-l zones (m=0,...,r-l) alias into 
the first one, hence the frequency content in these zones has to be 
suppressed below a desired level to keep the wanted signal noise-free. As 
the bandwidth of the signal usually does not span the entire Nyquist 
zone, the frequency zones that have to be suppressed are 

f, B fs B\ , I r/2 r even 
!— ,/w — + — , m = \,...A 

r 2 r 2) l ( r - l ) / 2 r odd 
(8.3) 

Evidently, the low-pass decimating filter should have a cut-off frequency 
of fl/2 and should achieve the maximum attenuation at fs /r-B/2. The 

anti-aliasing filtering is depicted in Fig. 8.5.b. 
Both the decimating and interpolating filters operate in the higher 

sampling rate; the decimating filter operates prior to the rate reduction, 
while the interpolating filter operates after the rate increase. They are 
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strict filters, as the width of their transition band is a small fraction of the 

sampling rate on which the filters operate \fStf,igh)- This width is given 

by fs hjgh Ir-B and decreases as the resampling ratio r increases. 

Example 8.2 Returning to the HIPERLAN/2 digital I/Q modulator of 
the example 8.1, design the required interpolation filter. 40 dB of image 
suppression is required. 

Solution The sampling rate of the filter is 4fs = 80 MHz. Its cut-off 

frequency is 5/2 = 8.125 MHz . The stop-band, where 40 dB attenuation 

is required, begins at fs-B/2 = U .875 MHz . 

Using MATLAB, an equiripple FIR filter fulfilling the above 
specifications is designed. Its order is 43 (44 symmetrical coefficients). 
The requirements are fulfilled, as the minimum stop-band attenuation is 
41 dB, while the in-band distortion it introduces is ±0.1 dB. The 
magnitude response of the filter is shown in Fig. 8.6. 

This number of coefficients is large for the high sampling frequency 
of Afs = 80 MHz, as the required rate of multiplications to implement 

the filter is the non-trivial 
multiplications samples multiplications 

22 80 = 1.76 
sample us ns 

8.3.1 Multi-stage rate conversion 

As shown in Example 8.2, it is advantageous to reduce the complexity of 
the resampling filters. In the last section, the width of the transition band 
of these filters is increased as the resampling ratio r is reduced. This 
gives motivation to perform the resampling in multiple stages, say n [2-
3], where the individual resampling ratios r, fulfill 

n 

r = Y[ri (8-4) 
1=1 

In this case each filter is more relaxed and operates at a different 
sampling rate. 
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Fig. 8.6 Magnitude response of the interpolation filter of Example 8.2. 

Example 8.3 Perform the interpolation of Example 8.2 in two stages 
and compare the number of multiplications per ns needed in each case. 

Solution The interpolation by r=4 can be performed in two steps by 
n=2, * = 1,2. 

The first interpolating filter operates at a sampling rate of 
rjf„=40Milz. Its cut-off frequency is again 5/2 = 8.125 MHz and the 

stop-band, where 40 dB attenuation is required, begins at 
fs-B/2 = l 1.875 MHz. Using MATLAB, an equiripple FIR filter of 

order 25 (26 symmetrical coefficients) is designed, yielding minimum 
stop-band attenuation of 45.1 dB and ±0.048 dBof in-band distortion. 

The second interpolating filter operates at a sampling rate of 
>"ir^'s=rfs'=80 MHz. Its cut-off frequency is 5/2 = 8.125 MHz and the 

stop-band, where 40 dB attenuation is required, begins at 
rxfs - 5 / 2 = 31.875MHz. Using MATLAB, an equiripple FIR filter of 

order 8 (8 symmetrical coefficients and a central one) is designed, 
yielding minimum stop-band attenuation of 47 dB and ±0.049 dB of in-
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band distortion. 
The rate of multiplications now is 

13r,/5 + 5rxr2fs = 0.92 multiplications/ns 

i.e. almost half of those needed in the single-stage interpolation of 
Example 8.2. The overall in-band distortion is ±0.097 dB, i.e. 
approximately the same as the distortion introduced by the single-stage 
interpolation of Example 8.2. Finally, the overall stop-band attenuation is 
at least 44.8 dB, almost 4 dB more than that of the single-stage 
interpolator of Example 8.2. The overall response of the two-stage 
interpolator is shown in Fig. 8.7. 

Fig. 8.7 Two-stage FIR interpolation filter for Example 8.3. Note that the response 
peak above the wanted attenuation of 40 dB does not coincide with any aliased band of 
the signal. 

8.3.2 Comb filters 

In Examples 8.2 and 8.3, the rate conversion ratio is not large. This is not 
the typical case for oversampled signals from AS modulators, where 
oversampling rates of 64 are common. In such cases, the rate conversion 
is performed in multiple stages, with the high-rate stage being 
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implemented by a comb filter [1,2,6-8]. 
The comb filters are low-pass FIR filters whose transfer function is 

H(Z): V"1 
2>"; 

r 

1 1-

r 1-z"1 
(8.5) 

Since all their coefficients are unity, they are easily implemented. 
Also, the second form of (8.5) is very hardware efficient [6,8]. The 
denominator is implemented as an integrator at the high sampling 
rate, while the numerator as a differentiator at the low sampling rate. 
The order of the comb filter is chosen equal to the conversion rate r, 
so that the zeros of (8.5) are at the multiples of fjr. The frequency 
response of a comb filter with r = 16 and N = 1 is depicted in Fig. 8.8. 

0 1 2 3 4 5 6 7 8 
Frequency 

Fig. 8.8 Magnitude response of the 16-tap comb filter, which is used for rate change 
by 16. The frequency is normalized to the low sampling rate. 

Evidently these filters can be used for i?-times rate conversion. Increasing 
N results to higher stop-band attenuation. 

The drawback of using comb filters for rate conversion is their large 
pass-band droop, evident in Fig. 8.3.b. For this reason they are only used 
as a first (high-rate) stage rate conversion filter, where the actual signal 
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pass-band edge is at least two times less than the pass-band edge 
(7^ /20 of the comb filter. 

8.3.3 Fractional rate conversion 

In many cases the resampling factor is not integer, but it is a ratio N/M, 

where TV and M are integers. In this case, the resampling is achieved by 

interpolating by N and decimating by M. 

Example 8.4 The sampling rate used to store music in a CD is 
approximately 44 kHz, while the rate used in a Digital Audio Tape 
(DAT) is 48 kHz. How can a CD be recorded onto digital tape? 

Solution The interface between the two systems comprises a 
resampler from the CD rate to the digital tape rate. Hence interpolation 
by 48/44 = 12/11 is needed. 

As already discussed in the previous sections, the decimation and 
interpolation are both performed in stages, hence the numerator and 
denominator of the resampling ratio are written as products of prime 
numbers 

n«. 
Next, the order of the K interpolations by Nt and the L decimations 

by Mj has to be determined. Two rules should apply to this 

determination 
a. The sampling rate at any given step must not be lower than the final 

sampling rate. Due to aliasing, the bandwidth of the signal is 
constrained at every decimation step. This low-pass filtering must not 
constrain the bandwidth more than the final sampling rate dictates. 

b. The sampling rate at any given step should be kept minimum, for 
computational efficiency: higher sampling rates require circuits that 
consume more power, and thus any increase of the sampling rate more 
than it has to be should be avoided. 
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Example 8.5 Assume that a resampling ratio of 14/15 is needed. 

Demonstrate a system to efficiently achieve this. 

Solution As it is 14/15 = (2-7)/(3-5), four resampling steps are 

needed. If interpolation by N is denoted as t N and decimation by N is 
denoted as 4 TV, then the four resampling steps are 12 , 17 , 4 3, 4 5 . All 
12 possible sequences of these steps are listed and tried: 
1. 4 3 , rate less than final 
2. 4 5 , rate less than final 
3. T 2, 4 5, rate less than final 

4. 12 , 4 3, rate less than final 
5. t2 , t7 , 45, 43 
6. t2 , T7, 43, 45 
7. T 7, 4 5, 4 3, rate less than final 
8. T7, 4 5 , T2, 4 3 

9. 17 , 4 3, 4 5, rate less than final 

10. T7, 43, t 2 , 45 
11. T7, t 2 , 45, 43 
12. T7, t 2 , 4 3 , 4 5 

Sequences 1-4, 7 and 9 result in a temporary rate that is less than the 
final sampling rate, hence introducing stricter anti-aliasing filtering than 
needed. Sequences 5, 6, 11 and 12 are the same: first interpolate by 14 
and then decimate by 15. The other two possible sequences are 8 and 10: 
T7, 4 5 , T2, 4 3 , or T7, 4 3 , T2, 4 5 . From these three possibilities, 
the system that performs 17 , 45 , T 2 and finally 4 3 is selected, as this 
sequence of resampling steps keeps the intermediate rates at minimum. 

8.4 AI Modulators for ADC 

AS modulators are primarily used in the design of data converters [7]. 
High precision converters can be achieved using noise shaping and 
oversampling instead of high precision components. The following 
example demonstrates the needed accuracy of conventional data 
converters. 
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Example 8.6 What is the accuracy of a 16-bit DAC operating with a 
full scale voltage of 2 V? 

Solution The required accuracy is lA of the LSB, which corresponds to 
— 1 7 

2-2 V = 15 uV . On a 50 Ohm termination, this is comparable to the 

thermal noise in a 1 GHz bandwidth! 
An ADC system employing a AS modulator is shown in Fig. 8.9. The 

AS modulator can either be discrete-time or continuous-time. In the 
former case the sampling is performed before the noise-shaping loop (as 
depicted in Fig. 8.9), while in the latter, at the quantizer embedded in the 
loop. In every case the signal is oversampled, allowing for a very relaxed 
anti-aliasing analog filter. The decimator that follows the modulator 
reduces the sampling frequency close to the Nyquist rate, while it 
suppresses the out-of-band quantization noise. The desired resolution of 
the ADC dictates the oversampling ratio, the order of the AS modulator 
and the level of noise suppression the decimating filters should provide. 

Analog 
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Analog 
antialiasing 

filter 
-* Sampling 

OSR% t' 
1 

Delta-Sigma 
Modulator ;;* 

Decimation 
by OSR 

Digital N-bit 
-> output 
sampled at/J 

Discrete time, 
continuous 
amplitude 

Single-bit 
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Fig. 8.9 ADC system based on AS modulation. The Nyquist rate is fs, while the AX 
modulator oversampling ratio is OSR. 

Example 8.7 Design an 8-bit ADC for audio signals employing AS 
modulation. The desired sampling rate is fs = 48 kHz. 

Solution Since the signals to be converted are audio, their bandwidth 
B is approximately 22 kHz. The low signal frequency easily allows for 
large oversampling ratios to be used, hence a second order AS modulator 
can provide the desired SNR of 8 bits • 6 dB/bit = 48 dB. 

From the SNR versus input amplitude plot of Fig. 3.5, the peak SNR 
of a second-order AS modulator with oversampling ratio r' = 64 and 
ideal 'brick-wall' decimation is SNR' = 72 dB . Also, from (3.19) the in-
band portion of the quantization noise of the second-order AS modulator 
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is inversely proportional to the fifth order of the oversampling ratio. 
Hence the required SNR = 48 dB is ideally achieved employing 
oversampling r, given by 

SNRISNR' = {rlr'f 

Hence r, =21.2. 

But a practical decimator does not employ 'brick wall' filters. Their 
finite stop-band attenuation and pass-band ripple reduce the SNR. Thus 
an oversampling ratio r( = 32 is chosen, which allows for the reduction 

of the SNR due to the imperfect decimation filters. Hence the sampling 
rate for the modulator is fsm = r • fs = 1.536 MHz. 

Due to the large oversampling ratio, the required analog anti-aliasing 
filter is quite relaxed. Its cut-off frequency is at B. Its ripple should be 
low to avoid distortion, and is set to 0.01 dB. Its stop-band attenuation 
should be more than the required SNR, and to allow for the various 
sources of error, it is chosen far below that, at -60 dB. It should be 
achieved at / - 5 = 1.514 MHz. This sort of performance is achieved 

with a third-order Butterworth filter. Note that the anti-aliasing filter 
needed if a Nyquist rate converter is used is impossible, as its estimated 
order is 46! 

Two-stage decimation is employed. The first filter reduces the rate 
by r, = 16 and the second by r2 = 2 . The first-stage decimator is the 

cascade of two 16-tap comb filters (N=2). These attenuate the 
quantization noise that will be folded down into the base-band, as the 
nulls of the filter's response are at multiples of fs<m/rt. The second-
stage decimator is a half-band FIR filter with cut-off frequency at B, 
ripple of 0.01 dB and 20 dB of attenuation achieved from 
fs - 5 = 26 MHz onwards. The order of the filter is 32. The 

performance of the system is depicted in Fig. 8.10. The required 48 dB of 
SNR are only marginally achieved. Matters are greatly improved if the 
first-stage decimator is comprised of three comb filters in cascade (N=3). 
Then the degradation due to the decimators from the ideal SNR (using 
'brick-wall' filters) is very small, and the specifications for the ADC are 
easily exceeded. Usually, the number N of comb filters is chosen equal to 
the order of AE modulator plus one (N=L+1) [1]. 
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Fig. 8.10 Performance of the ADC system based on AS modulation designed in 
Example 8.7. The SNR resulting from two different fist-stage decimators is compared to 
the ideal, when 'brick-wall' decimation filters are used. 

8.5 AZ Modulators for DAC 

High accuracy DACs can be implemented using AZ modulators in much 
the same way as AZ ADCs, by trading the accuracy of the analog 
components for speed of the digital circuits. A DAC system employing a 
AZ modulator is shown in Fig. 8.11. 
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Fig. 8.11 DAC system based on AS modulation. The Nyquist rate isfs, while the AS 
modulator oversampling ratio is OSR. 

The multi-bit input signal is oversampled and then modulated using a 
digital AZ modulator. The modulated signal is a low-resolution (most 
times single-bit) oversampled digital signal. A low-resolution high-speed 
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DAC converts this signal to analog. In the case of single-bit AS 
modulator, the DAC is single-bit, which is inherently linear. An analog 
LPF follows the DAC, which suppresses the images of the DAC and the 
shaped quantization noise of the AS modulator. The loop filter of a 
digital AS modulator is digital. Its quantizer is implemented by means of 
truncating to the M most significant bits, which constitute the feedback 
signal [1]. 

The loop of a AS modulator employed in a DAC system is digital, 
eliminating the need for matching between the digital and analog parts of 
a multi-stage AS modulator. The disadvantage of using such a AS 
modulator is that the output is not single-bit. 

8.6 Summary 

Rate conversion (decimation and interpolation) and the associated digital 
low-pass filters were considered in the first part of this chapter. Special 
emphasis was given on multi-stage rate conversion, on the properties of 
comb filters as well as on the way fractional rate conversion is achieved. 
Finally, the decimation and interpolation filters were used together with 
AS modulators to build ADC and DAC systems respectively. 

Problems 

8.1 Design four comb filters with R = 16 and W=l,2,3,4. Observe the 
improvement of the stop-band attenuation and the increased pass-
band droop. 

8.2 A low-pass filter is to be used in a decimation process. The original 
sampling rate is 80 MHz. The final sampling rate will be 10 MHz. 
The signal band should be restricted to 4 MHz (cut-off frequency) 
and the stop-band with attenuation 60 dB should start at 5 MHz. 
Using MATLAB evaluate the order of the equiripple FIR filter to be 
used as a decimator. Evaluate the order of the equiripple FIR filters 
employed in case the decimation is to be performed in two 
successive stages. 

8.3 Assume that a resampling ratio of 16/5 is required. Demonstrate a 
system to achieve this efficiently. 
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Chapter 9 

Applications 

9.1 Introduction 

As it was stated in the introductory chapter, the applications of AS 
modulation are numerous. One main reason for this is its simplicity and 
economic implementation. In Chapter 8 we described the use of AS 
modulation in the design of ADC and DAC. Among the many other use­
ful applications, we choose to describe a few that, we consider, to be of 
interest to most of the readers of this book. 

We start in section 9.2 with the application of AS modulation in 
digital radio, because of its high importance in communications today. 
Next, in sections 9.3 and 9.4 the application of AS modulation, in com­
bination with a Phase Locked-Loop, is described in frequency synthesis 
and in the implementation of digitally programmable clocks with reduced 
jitter useful in the switched-capacitor filters. Frequency and phase de­
modulation using AS modulation are explained in section 9.5. Finally, 
the use of AS modulation in the implementation of oscillators with high 
accuracy in the generated frequency, is presented in section 9.6. 

9.2 AS Modulation in Digital Radio 

Wireless transmitters up-convert the base-band signal to some Radio Fre­
quency (RF) where wireless transmission is possible. They control the 
spectrum and power of the transmitted RF signal according to the com­
munication standard they implement. Conversely, wireless receivers 

214 
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down-convert the received RF signal to base-band. To do so they am­
plify the received weak signal and filter it to get rid of interferers. The 
RF signals are analogue, while in modern communication systems, base­
band processing is carried out digitally. Hence at some point in the 
transmitter a DAC is used, whereas at some point in the receiver an ADC 
is used. 

Globalization of modern telecommunications has raised the need for 
multi-mode mobile handsets, i.e. capable of operation with more than 
one standard. Thus either multiple branches, or programmable compo­
nents are employed. Also, the cost, size and power consumption of such 
handsets should be kept low. These needs force the number of analogue 
components in the handsets to the bare minimum, placing the burden on 
the digital part of the radio, where modern DSPs can handle it. These 
goals form the concept of digital radio [1,2]. Concentrating on the re­
ceiver of digital radios, there are two additional design goals, namely the 
recovery of RF signals having a wide range of power and the suppression 
of strong nearby interferers. 

Selectivity is needed to suppress interferers and accentuate the in­
tended channel. Should this be provided at base-band, the bandwidth and 
resolution of the ADC have to be large. Also it is not possible to provide 
the necessary selectivity at RF; existing RF filters select bands of com­
munication standards, not their individual channels. The way around the 
selectivity problem is the super-heterodyne receiver. The frequency of 
the received signal can be lowered using a sequence of down-conversion 
steps, down to Intermediate Frequencies (IF). At each IF stage the pass-
band of the filters is located at lower frequency, hence they can be more 
narrow-band. The various IF filters collectively provide the needed selec­
tivity. 

To account for the wide dynamic range of the RF signal, the dynamic 
range of the ADC should be accordingly large. A way around this is to 
provide variable amplification at the RF and IF sections, large for small 
input signals and vice versa. Then the dynamic range of the signal at the 
input of the ADC is reduced. This is achieved using Variable Gain Am­
plifiers (VGA) controlled by Automatic Gain Control (AGC) loops. 

Alternatively, new architectures that employ direct down-conversion 
to base-band (zero-IF), or almost to base-band (low-IF) [3] can be em-
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ployed. Although the novel receiver architectures are the ultimate goal of 
digital radio, they impose strict matching requirements to the analogue 
components [1-3]. Hence such architectures are used for cheap, low-
performance equipment like pagers, and are for now unsuitable for im­
plementing the most demanding mobile communication standards. Thus 
the novelty in the receivers for digital radio lies in the position of the 
ADC in the chain. Traditionally two ADCs convert the dual base-band 
signals (I, in-phase and Q, quadrature), but recent technology advances 
allow IF digitization [2] using conventional converters or AZ modula­
tors [2,4]. A typical heterodyne receiver with IF digitization is shown in 
Fig. 9.1. 

I 
RF stage 4— 

RF 
Amplification 

Duplexer 
& 

RF Filtering 

—• IF stage 

Variable IF 
Amplification 

— >-HX 

Frequency 
Synthesizer 

IF 
Filtering ADC 

Base-Band 
Processing 

Fig. 9.1. Typical heterodyne receiver with IF digitization. 

The IF stage in a heterodyne receiver is necessary to achieve the 
wanted selectivity of the receiver [3], as narrow-band band-pass filters 
are not achievable at RF. Hence after the selectivity and amplification of 
the RF stage, a mixer down-converts the signal to IF, for further band-
limiting and amplification. At the RF stage the primary concerns are 
noise and the selection of the received band of a standard (for example a 
GSM duplexer and a Low Noise Amplifier). At the IF stage variable gain 
amplification and (partial) channel selection are sought. To facilitate IF 
digitization, anti-aliasing filtering is also provided by the IF filter(s). 

The digital radio imposes many constraints to the ADC. One con­
straint is on the power consumption that is very important for the battery 
life of the handset. Also, to support multi-standard operation, the ADC 
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has to accommodate a variety of conversion bandwidths, yielding a vari­
ety of resolutions. Finally, the ADC has to cope with the large input fre­
quency, as typical IF values for heterodyne receivers are of the order of 
tens of MHz. As it will be shown in the next two subsections, the last 
two constraints can be efficiently covered using band-pass AE modula­
tors. Also, the decimator that follows the AS modulator can serve two 
roles: suppress the shaped out-of-band noise, and perform the channel se­
lection, with the same circuit. 

9.2.1 Conversion bandwidth and resolution 

The channel bandwidths of modern mobile communications standards 
ranges from 200 kHz (GSM-like) to 20 MHz (WLAN). Given the chan­
nel positioning at IF achieved by the mixer, this is the bandwidth to be 
converted to digital. On the other hand, the required conversion resolu­
tion is adjusted by two factors: the dynamic range (DRR F in dB) which 
by definition is the maximum amplitude (^4max) minus the minimum 
(A m i n ) of the RF signals, i.e.: 

DRRF = A m a x - A m i n (9.1) 

and the range of the IF variable gain amplification stage. The latter is 
important, as large signals can be amplified less by a gain factor gmax, 
and small signals can be amplified more by gm i n , resulting to a signal at 

the input of the converter that has smaller dynamic range. To demon­
strate this, assume that the constant gain of the receiver is g and the gain 
range of the IF variable gain amplifier is DRjp , i.e. 

DRlF=gmm~gm^ (9.2) 

The difference between the maximum and minimum amplitude of the 
signals at the input of the ADC (in dB) is 

DRADC =(^m a x + g + gmax ) - (^ m i n + g + gmin )= DRRF - DRIF (9.3) 
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As the RF dynamic range grows or the IF amplifier gain range less­
ens, the needed resolution of the converter grows. Considering a constant 
IF amplifier gain range (e.g. to the maximum value allowed by the am­
plifier), then the needed resolution is proportional to the RF dynamic 
range. 

Usually the mobile telecommunications standards that have large RF 
dynamic range also have small channel bandwidth. Hence the ADC 
should be able to adjust a resolution - bandwidth trade off. Such a trade 
off is easily adjusted using a AZ modulator as an ADC. Spreading the 
NTF zeros in a wider band will increase the converted bandwidth, but 
will also make the noise shaping less favorable, reducing the resolution. 
This is demonstrated in the next example. 

Example 9.1 Assume a standard with channel bandwidth of 200 kHz. 
The channel is digitized using a fourth-order band-pass AS modulator. 
What is the effect on the resolution if the channel bandwidth is doubled? 

Solution The oversampling ratio is 

R = A (9.4) 
IB 

The fourth-order band-pass AS modulator is obtained by transform­
ing a second-order low-pass AS modulator by z-> -z2 as it was ex­
plained in Sees. 3.11 and 5.7. The in-band noise power is 

njl+njlR njR 

Pejn=T- \ \NTFBP{e-jefdG=^- \\NTFLP{e-J9f d6 {9.5) 

nll-njlR -njR 

Assume optimal placing of the NTF zeros of a second-order low-pass 
AS modulator, from Table 4.1, the frequencies of the roots are 
0 = ±Q.5774TT/R. Following similar reasoning as in Sec. 4.6.1, the in-
band noise power is proportional to 
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I l ^ i ^ i f ] <9-6) ,̂,„<* wr-e-
o 

As the achieved SNR is inversely proportional to Pe in, it gives: 

1 45fJ?V 45// 1 , A „ 
SNR x oc— — = — i i (9.7) 

Pein 4 ^ 4-32^5 5 5 

Hence the achievable SNR is inversely proportional to the fifth 
power of the conversion bandwidth. By doubling the bandwidth, the 
SNR is reduced by a factor of 32 or 15dB as in usual second-order AS 
modulators. 

9.2.2 Sampling rate 

A band-pass AS modulator that results from an equivalent low-pass via 
y 

the transformation z ^> -z converts a band centered at one fourth of its 
sampling frequency. In literature various implementations of band-pass 
AS modulators can be found [5-15]. However, an IF of 70 MHz would 
require a sampling frequency of 280 MHz, which is too high for the 
modulator1, even for the following DSP to handle. 

The solution to this problem is to sub-sample the signal, prior to 
modulating it. In this case the modulator has to have a discrete-time ana­
log part, hence it is implemented using SC circuits. The advantage of this 
approach is that by band-pass sampling the signal, it is centered around 
one fourth of the selected sampling frequency. This sampling frequency 
can be very small, provided that 
a. it remains two times larger than the bandwidth, 
b. the IF filters can provide the necessary anti-aliasing and 
c. the resulting oversampling ratio is sufficient. 

1 Note that in [11,14], modulators capable of handling high sampling rates has been pre­
sented (3.8 GHz in [11]!), but these results should be considered far from the industrial 
standard. 



220 AS Modulators 

Given a signal centered at the IF frequency fIF, it can be sampled 

(see problem 2.5) by a set of frequencies given by 

A(*)=TT7'H ) ' 1 ' - '*nu* (9-8) 
2k +1 

where the maximum value kmax is determined by the constraint 

fs(kmaK)>2B. Hence 

K flF 0.5 
B 

(9.9) 

where [xj is the largest integer smaller or equal to x. Consequently, 

anti-aliasing filtering must provide the necessary attenuation at the clos­
est image, which lies Af(k) away, where 

1 ( 4 / , 
A / W = - ^ ^ - S | , / = 0 , l , . . . , A ; m a x (9.10) 

Finally, the oversampling ratio as a function of A: is 

R(k)= 2^IF , z=0, 1, ...,*max C9-11) 
(2k+l)B max V ' 

Example 9.2 The necessary anti-aliasing attenuation, as extracted from 
the GSM specifications, is 68 dB. The TOKO SA070WA-010 Surface 
Acoustic Wave filter has a pass-band centered at 70 MHz and provides 
68 dB of attenuation at 8 MHz offset from the center of the band. The 
GSM channel bandwidth is 200 kHz. What is the minimum sampling 
frequency and the resulting oversampling ratio? 

Solution From Eq. (9.10), given that the frequency offset Af is 8 MHz, 

the maximum k is 

flF k = 
A/ + B/_ 

-0.5 (9.12) 
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Then, from Eq. (9.8) the minimum sampling frequency is 16.47 MHz 
and the associated oversampling ratio is 41.18. 

In the above example, the sampling frequency has been set using the 
constraint imposed by the anti-aliasing filter and employing Eq. (9.10). 
Similarly the DSP complexity can bound the sampling frequency, in 
which case Eq. (9.8) is used to find the suitable value of k. Finally, the 
modulator may bound the oversampling ratio for a given resolution, 
whereupon Eq. (9.11) is used. 

Note that the value of k cannot be very high, resulting to many times 
sub-sampling, as this operation leads to noise aliasing [1]. Although the 
circuitry has provided enough attenuation up to the sampling frequency 
to make the noise at this point non-critical, care should be taken to con­
strain the noise introduced in the receiver. 

9.3 Frequency Synthesis 

An interesting application of AE modulation is found in frequency syn­
thesis [16] as well as in Frequency and Phase Demodulation [17]. In 
these cases it is combined with a Phase-Locked Loop (PLL). Before ex­
plaining how these can be achieved we give a short description of the 
PLL and its operation. 

9.3.1 Principles of the PLL operation 

The Phase-Locked Loop [18] is a very useful circuit in signal processing. 
It is shown in a simplified block diagram in Fig. 9.2. It consists of a 
Phase-Detector, a Loop Filter, an Amplifier and a Voltage-Controlled 
Oscillator (VCO). The output signal from the PLL is proportional to the 
phase difference of two signals, the input signal and the feedback signal 
coming out of the VCO. If the VCO signal is in phase with the input sig­
nal, there will be no output signal from the phase detector and therefore 
no output from the PLL. However, when the two signals, input and VCO 
output, are not in phase there will be an output signal from the phase de­
tector, which is low-pass filtered producing a dc voltage proportional to 
the phase difference. A difference in frequency can be also described as a 
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phase difference in which case the signal at the output of the phase detec­
tor will be proportional to the diffrence in frequency. The dc ouput signal 
from the low-pass filter will be amplified and then applied to the VCO 
input in such a way that it will cause the frequency of the VCO output 
signal to become equal to the frequency of the input signal. When this is 
achieved we say that the PLL is in lock. 

x(t) 

*i(0 
— > 

Phase Detector 
Vp(') Loop Filter 

& 
Amplifier 

v0(0= 

Fig. 9.2 Block diagram of PLL. 

Without an input signal the VCO is free running. When the input sig­
nal is applied, the PLL operates trying to capture the frequency of the in­
put signal and locks in it. To achieve this the frequency of the input 
signal has to be within the capture range of the circuit. Also the input 
signal to the VCO should be of either polarity in order for the VCO to 
follow slow variations in the frequency of the input signal. 

As an example, consider that the input signal is the Frequency 
Modulated (FM) signal 

x(t)= Acos(0(t)) (9.13) 

Clearly, the frequency / as a function of time will be 

1 df) 
/(/)= ~— = fc+Af MWj) (9.14) 

2K at 

where fc is the centre frequency, Af the maximum frequency deviation 

and / the modulating frequency. 
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In order to describe mathematically the operation of the PLL we re­
draw Fig. 9.2 as shown in Fig. 9.3. In Fig. 9.3.a the input signal is the 
Laplace Transform @(s) of the phase 0(t) measured in radians, while in 
Fig. 9.3.b the input signal is the Laplace Transform Q(s) of the fre­
quency a)(t). Note that 

Q0)= se(s) (9.15) 

with the output signal given in Volts. 
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Fig. 9.3 Equivalent PLL block diagrams useful for the analysis of its operation. 
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In Figs. 9.3.a and 9.3.b, the H(s) function determines the dynamics 
of the system, i.e. how the frequency lock-in will be achieved with re­
gard to the initial conditions (phase and frequency) in the VCO (acquisi­
tion mode). Also the selection of H(s) will determine the steady-state 

error lim(d(t)- &x(t)), when the PLL will be operating in the tracking 

mode. Since this error is desired to be zero, the second-order PLL is 
mainly used instead of the first-order PLL, the PLL order being the same 
as that of the loop filter. 

9.3.2 AL modulation in frequency synthesis 

The purpose of Frequency Synthesis is to generate a frequency fsyn,i, 

from a reference frequency frej- with the ratio of the two frequencies be­

ing a rational number R, i.e. 

fsynth = Rfref (9.16) 

One of the most useful methods in Indirect Frequency Synthesis is 
based on the use of the PLL [19,16]. Such a system is shown in Fig. 9.4. 

Phase Detector Loop VCO 

©re/M 

©,V„ 

<tH 
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P 

• • • * 

H-R 

H(s) 
s 

Frequency Divider 

Fig. 9.4 Indirect frequency synthesis based on the use of a PLL. 

The basic problem of this method is the implementation of the fre­
quency divider when R is not an integer. Let us assume that 
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R = r + -
m 

(9.17) 

where r is the integer part of R and k , m themselves integers. The fre­
quency division by the rational number R can be approximately 
achieved, if on some occasions the division is performed by r and on the 
other occasions by r+l. However this type of operation introduces some 
kind of noise into the system, which causes the output frequency not to 
be constant with value fsyntf, , but to vary in time, assuming the value, 

say, fout CO-
In order to minimize these variations of fout{t) one may employ 

AS modulation. In such a case the block diagram of the frequency di­
vider becomes as shown in Fig. 9.5. This consists basically of a dual 
modulus counter, which divides the VCO output frequency some times 
by r and some by r+l, depending on the state of the control input sig­
nal. 

/«*(') Dual Modulus Counter 
Divide by 
rorr+l 

1-bit 
Control signal 

1-bit Digital 
AI Modulator 

/ * « 

Modulator's 
Clock 

Modulator's 
Input signal klm 

Fig. 9.5 Frequency divider by a rational number OR) employing AI modulation. 

The system shown in Fig. 9.5 implements a frequency divider by a ra­
tional number. The analysis of its operation will be examined in the fol­
lowing subsection. 
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9.3.3 Analysis of the frequency divider 

The division of a constant frequency can be implemented simply by a 
counter modulo r . On the other hand the implementation of the division 
of the varying frequency fout (t) by an integer can be achieved only ap­
proximately. The result is as shown in Fig. 9.6 assuming that the decima­
tion is always by the factor r . 

Fast 
Pulse sequence 
of frequency 

fou,(t) 

Decimated 
Pulse sequence 
of frequency 

. , . • ••• L . 1 • ••• " . L 

nT+At„ ><— (n+l)7" + Ar„ 

Fig. 9.6 Frequency division by a constant integer. 7" is the mean period of the pulses in 
the decimated sequence 

The approximate result is due to the fact that, with this simple fre­
quency division, the period of each created pulse is r times longer than 
the mean period of the pulses in the preceding frame of r pulses. Clearly, 
for the system to operate as a divisor of the instantaneous frequency, the 
variation of fout (t) in the time period of the r pulses should be small. 

When the period of the successive pulses changes quickly with time, the 
division of the instantaneous frequency is meaningless. However, if the 
variation of their period is relatively small, we may consider that the pe­
riod is nearly constant and equal to the mean value of the periods, say 
T th, which corresponds to a constant frequency equal to fsynth. The 

time instances t„ , when a pulse of the decimated sequence appears, will 

be 
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t„=nT + At„ (9.18) 

These pulses appear periodically with a mean period T, which will evi­
dently be equal to rTsynth, while there will be some uncertainty in the 

time of the arrival of each pulse. 
Equation (9.18) is also valid when the decimation is performed some 

times by r and some other times by r +1. In this case the uncertainty Atn 

in the time of arrival of the decimated pulses will be due either to the un­
certainty in the period of the fast pulse sequence or to the uncertainty in 
the variation of the decimation factor ( r or r +1). In this case the period 
T will be 

T= lim 
AT->co 

1 I 
-^r(n)Tsynth =E{r(n)} (9.19) 

N • 
«=o 

where Eir{n)\ is the mean value of r(n). But 

E{r(n)} = p(r +1)+(1- p)r (9.20) 

where p is the probability for the division by r +1 and 1- p the prob­

ability for the division by r . 
The AS modulator used in the frequency divider is shown in Fig. 

9.7. This modulator encodes the constant integer & in a AZ sequence of 
digits 1 and 0 which correspond to the integers m and 0 respectively. The 
probability that 1 appears at the output of the comparator is equal to 

P = - (9-21) 
m 

This corresponds to the probability for dividing by r+\, since the AZ 
modulator output controls the Modulus Counter in Fig. 9.5. Substituting 
from (9.21) into (9.20) and the result in equation (9.19) gives the follow­
ing: 
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T-\r + — \Tsynth -RT s y n t h (9.22) 

Therefore the system in Fig. (9.5) in actual fact operates as a divider of 
the frequency by R. 

1 
-̂ -/TY_* 
— { + ^ > 

j 

A 
L(z) — > 

C 

z" 1 

f 
omparat or 

+1,0 

y{ri) 

Fig. 9.7 Block diagram of the AX modulator used in the frequency divider. 

As far as the uncertainty Atn in the time of appearance of the pulse 

is concerned, this corresponds to a sampled noise in the phase 

. At„ In 
ea(nT)=2n—- = — Z r ( / ) 2 i - nRT„ synth ruxl synth 

V,=0 J 

(9.23) 

But 

r(i)= r + y(z> r + - + \y(i)- -)=R + q(i) (9.24) 
m V m/ 

where <7(i) are the samples of the quantization noise at the AZ modula­

tor output. Substituting from equations (9.22) and (9.24) in (9.23) gives 

;=0 

(9.25) 
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Applying z-transform gives 

In Q(z) In NTF(z) 
Ee{z)= 

R 1- - l R 1-; 
E(z) (9.26) 

Thus, it can be seen that the error in phase is shaped by the NTF of the 
A£ modulator and pushed to higher frequencies, which are subsequently 
dropped by the low-pass filter that is placed in the forward path of the 
PLL shown in Fig. 9.4. As a result the synthesized frequency fout (t) is 
almost constant and equal to the desired fsynth • 

9.4 Clock Generators Using AE Modulation 

It is possible to obtain frequency synthesis based on the use of AS 
modulation without the use of a PLL [20] at the same time. In this case 
the variations of the synthesized frequency are not so small as in the case 
of the method that was presented in the previous subsection. However 
the spectrum of these variations is pushed far away from the desired fre­
quency, and the method becomes useful in different applications. This 
method is as follows: 

fc 
Modulator's 

Input 

R 
/.£>bits 

Digital Multibit 
AI 

Modulator 

Modulator's 
Output 

/bits 

1 
DCO 

Non-Constant 
Output 

frequency 

•f, 

Modulator's 
Clock 

Fig. 9.8 System for the generation of clock pulses with increased but shaped jitter noise. 

The system consists of a digital AS modulator, which is multi-bit in 
order to obtain sharper noise shaping, combined with a digital controlled 
oscillator (DCO) as it is shown in Fig. 9.8. The operation of the DCO is 
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much the same as the operation of the dual modulus counter as was de­
scribed in Sec. 9.3.2. The number r(n) is the instant decimation factor of 

a high rate pulse train, of constant frequency fc. This can be better un­

derstood with the help of Fig. 9.9. The desired period is RTC with R be­

ing a rational number having an integer part of / bits and a decimal part 

of D bits, while Tc is the period of the constant clock which synchro­

nizes the system. 

r(n)Tc 

f> 

« - 12TC —» « -147 ; —» 

' 

«-137 ; —» 

' 

r + Af, 27"+A/2 37"+A/3 

Fig. 9.9 Varying decimation of pulses. 

It can be seen that the instantaneous period of the generated pulse 
train is not constant, but equal to r(ri)Tc. In this case we may assume, as 

we did in the previous section, that the generated pulse sequence is 
nearly periodic with period T and jitter Atn in the falling edges. In a 

similar way as we did before, we may show that the period T is larger 
than Tc by the mean value of the words r(n), i.e. R times. It may be 

written as follows: 

T= lim 
W-»oo 

n=0 

R-T„ (9.27) 

Also the uncertainty Atn will be 
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n n n 

*n = J / O ' ) ^ " "RTc = 2̂  + ̂ ^ ~ "RTc = T'Yjq{i) (9-28) 

;'=0 i=0 (=0 

where q(ri) is the noise at the AI modulator output. Therefore the spec­

tral density At(z) of the jitter noise will be 

Am,TcmT^TcEmE(2) (9,9) 
1- z 1- z 

i.e. it is shaped by the NTF of the AE modulator. 
The generated pulse sequence is suitable to be used as the clock in 

discrete-time filters such as the switched-capacitor filters. It has the ad­
vantage that through this we may adjust digitally the cut-off frequency of 
low-pass or the center frequency of a band-pass discrete-time filter, since 
in these filters the characteristic frequencies are set by the sampling fre­
quency. The problem created by the non uniform sampling of the analog 
signal, which is caused by the jitter of this clock, is minimized, if the fil­
ter is low-pass or band-pass. To show this, assume that the analog signal 
is x(t)= A cos(a)t). Then 

x{n)= A cos(co(nT + At„)) (9.30) 

Expansion in a Taylor series gives 

x{n)= A cos(««r) - cohtnA sm{conT) - ± -!— A cos{(onT) + (9.31) 

As long as 6)At„ is much smaller than unity, the noise due to jitter will 

be determined by the term coAtnAsm.{conf). Its power is concentrated 

mainly at frequencies far from the signal band. Therefore this noise will 
be attenuated by the filter function H(z), provided that this filter is low-
pass or band-pass. 
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9.5 AS Modulation in Analog-Input Digital Phase-Locked Loops 
for Frequency and Phase Demodulation 

AS modulation can be used in a different way from that explained in 
Sec. 9.3.2, to obtain an analog-input digital phase-locked loop (ADPLL) 
which is useful for frequency and phase demodulation. The structure of 
an ADPLL is shown in block diagram form in Fig. 9.10, where the out­
put y{n) corresponds to the instantaneous frequency of the input signal 
x{t). 

xyi) 

1—> 

Phase 
Detector 

> Coarse 
ADC 

Digital 
Loop Filter 

y 

Fig. 9.10 Block diagram of an ADPLL. 

In spite of the profound advantage of the ADPLL to achieve digital fre­
quency demodulation, the use of the coarse ADC (low number of bits) 
introduces quantization noise. In this case it is possible to apply noise-
shaping in order to improve the system performance. Since the principle 
of operation of the resulting system, shown in Fig. 9.11, is similar to that 
of a conventional AS encoder of an analog signal to digital, this type of 
ADPLL is referred to in the literature as ASPLL. 

The structure of the ASPLL is very similar to AS modulator, since 
at its output we get samples /(«) of the instantaneous frequency f(t) 
of the input signal x(t), as well as noise q{ri), the spectrum of which 
has been shaped at high frequencies and thus can be attenuated later by a 
low-pass filter. The operation of the digital controlled oscillator is similar 
to that described in previous sections. Both the DCO and the ADC are 
clocked by a constant clock. The signal flow diagram of the ASPLL is 
given [17] in Fig. 9.12. It can be easily shown that 
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Y(z)=cF(z)+(l-z~]\ E(z) (9.32) 

i.e. the system is a Kth-order AS modulator. An IC implementing a 
A2PLL for frequency demodulation of FM signals has been obtained 
[21]. 
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Fig. 9.11 Block diagram of a AEPLL. 
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Fig. 9.12 Model for the analysis of the AIPLL. 
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9.6 AX Modulation in Analog Oscillators 

AS modulation can be used in the implementation of digitally program­
mable analog oscillators thus minimizing the analog as well as the digital 
circuitry. The simplified structure of such an analog oscillator is shown 
in Fig. 9.13. 
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Interpolation 
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Digital 
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1-bit 
DAC 

N-bit 
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Low-Pass 
Analog 
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40 

Fig 9.13 Simple digitally programmable analog oscillator. 

The digital oscillator can be based on a Lossless Discrete Integrator 
(LDI) biquad filter shown in Fig. 9.14 

Gain 

Register 2 

Fig. 9.14 Digital oscillator. 

The output signal in Fig. 9.14 is determined by the following equation: 

z2Y(z)+(k -2)zY(z)+ Y(z)=0 (9.33) 



Applications 235 

As long as 0<k<4 the output y(n) will be 

y(n)= A sin(2;z/' • nTs + </>) (9.34) 

where the frequency / can be obtained from the roots of the characteris­

tic equation (9.33) 

z z +(it -2)z +1=0 (9.35) 

Thus it can be obtained that 

or 

2cos(2^/T5)=2- k 

, 1 -if 2 - * 
/ = cos 

2TTT< 

(9.36) 

The amplitude A and the initial phase are determined by the initial set­

tings x\ and *2 of registers 1 and 2 . 

It is left to the reader to show that 

A = 

and 

(p- tan - l 

(1 - k)xx - kx2 

sin(2nfTs + <p) 

(Xl + x2)sm(27fTs) 

xl(l-k - cos(2nfTs)- x2(k + cos(2nfTs))J 

(9.37.a) 

(9.37.b) 

This system can be modified by the introduction of a AZ modulator 
in the Digital Oscillator Loop, which makes possible the elimination of 
the multiplier required for the implementation of the Digital Oscillator in 
Fig. 9.14, as well as the elimination of the interpolation filter in Fig. 
9.13. The modified system is shown in Fig. 9.15 [22,23]. In this figure 
the multiplier has been replaced by a multiplexer, which chooses either 
the word k or the word - k . The scaling by the factor 2~b (simple shift­
ing and not multiplication) prevents the overloading of the AS modula­
tor. 
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1 -bit Sequence 

Register 2 

Fig. 9.15 Block diagram of a Digital Oscillator employing AI modulation. 

Various implementation and simulation results using various types of 
AS modulators (high-order or band-pass) reveal the satisfactory per­
formance of the method with respect to the purity of the produced sine 
wave [24]. These types of oscillators are useful for analog signal genera­
tion with emphasis on simple and compact implementation. They are 
suitable for on-chip analog circuit testing and built-in self-test of mixed 
signal integrated circuits [24,25]. 

9.7 Summary 

In Chapter 8 we examined the application of AS Modulation in Data 
Converters, ADC and DAC, which is of high importance in digital audio 
systems. Some additional most important applications of AS modulation 
have been reviewed in this chapter among the many mentioned in Chap­
ter 1. Thus we started with its application in Digital Radio in the form of 
Band-Pass AS Modulators. Next, its application in frequency synthesis 
as well as in frequency and phase demodulation was reviewed. Also we 
saw its use in the implementation of digitally programmable clocks with 
reduced jitter, which are useful in SC circuit operation. Finally, its use in 
the implementation of analog signal generators with reduced circuit com­
plexity, which are useful for the on-chip analog circuit testing, was 
examined. However, there are many more uses of AS Modulators, 
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which are not well known, mainly because they may still be in the state 
of development. In future, no doubt, we should expect more applications 
of A£ modulation to appear in the literature and in practice. 
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