
SystemVerilog in Simulation

Product Version 9.2

July 2010

Copyright 1995-2010 Cadence Design Systems, Inc. All rights reserved.

Printed in the United States of America.

Cadence Design Systems, Inc., 555 River Oaks Parkway, San Jose, CA 95134, USA

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. (Cadence) contained in this document
are attributed to Cadence with the appropriate symbol. For queries regarding Cadence’s trademarks, contact the
corporate legal department at the address shown above or call 800.862.4522.

Open SystemC, Open SystemC Initiative, OSCI, SystemC, and SystemC Initiative are trademarks or registered
trademarks of Open SystemC Initiative, Inc. in the United States and other countries and are used with permission.

All other trademarks are the property of their respective holders.

Restricted Print Permission: This publication is protected by copyright and any unauthorized use of this publication
may violate copyright, trademark, and other laws. Except as specified in this permission statement, this publication may
not be copied, reproduced, modified, published, uploaded, posted, transmitted, or distributed in any way, without prior
written permission from Cadence. This statement grants you permission to print one (1) hard copy of this publication
subject to the following conditions:

1. The publication may be used solely for personal, informational, and noncommercial purposes;
2. The publication may not be modified in any way;
3. Any copy of the publication or portion thereof must include all original copyright, trademark, and other proprietary

notices and this permission statement; and
4. Cadence reserves the right to revoke this authorization at any time, and any such use shall be discontinued

immediately upon written notice from Cadence.

Disclaimer: Information in this publication is subject to change without notice and does not represent a commitment
on the part of Cadence. The information contained herein is the proprietary and confidential information of Cadence or
its licensors, and is supplied subject to, and may be used only by Cadence’s customer in accordance with, a written
agreement between Cadence and its customer. Except as may be explicitly set forth in such agreement, Cadence does
not make, and expressly disclaims, any representations or warranties as to the completeness, accuracy or usefulness
of the information contained in this document. Cadence does not warrant that use of such information will not infringe
any third party rights, nor does Cadence assume any liability for damages or costs of any kind that may result from use
of such information.

Patents: Cadence products described in this document are protected by U.S. Patents 5,095,454, 5,418,931,
5,606,698, 6,487,704, 7,039,887, 7,055,116, 5,838,949, 6,263,301, 6,163,763, 6,301,578

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
FAR52.227-14 and DFAR252.227-7013 et seq. or its successor.

Licensed Copyrights: This software includes, in binary form, a software package called CUDD V.2.4.1 1995–2004,
Regents of the University of Colorado. All rights reserved. Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following conditions are met: Redistributions of source code must
retain the above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary form must
reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution. Neither the name of the University of Colorado nor the names of its
contributors may be used to endorse or promote products derived from this software without specific prior written
permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

SystemVerilog in Simulation

July 2010 3 Product Version 9.2

1
Introduction to SystemVerilog in Simulation . 7

Additional Documentation . 7
Additional Examples . 8

2
Preparing SystemVerilog Designs for Simulation. 9

Using Options for Compiling, Elaborating, and Simulating SystemVerilog 9
Compilation Options (ncvlog and irun) . 9
Elaboration Options (ncelab and irun) . 9
Simulation Options (ncsim and irun) . 10

Using the Multi-Step Invocation Method . 15
Using the irun Utility . 16
Compiling a Design with Packages . 16

Compiling Packages with irun . 17
Compiling Packages with ncvlog . 20

Compiling Source Files into Compilation Units . 20

3
Accessing SystemVerilog Design Objects with SimVision . . 23

Accessing SystemVerilog Objects in the Design Browser . 23
Selecting SystemVerilog Objects with the Design Browser and Design Search Sidebars
24
Viewing Compilation Units in the Design Browser . 25
Viewing Parameterized Classes and Class Specializations in the Design Browser . . 26
Expanding and Collapsing SystemVerilog Aggregate Signals in the Design Browser 26
Sorting the Elements of a Queue, or Dynamic or Associative Array 27

Viewing SystemVerilog Objects in the Schematic Tracer . 29
Accessing Classes in the SystemVerilog Class Browser . 29

Opening the Class Browser . 30

Contents

SystemVerilog in Simulation

July 2010 4 Product Version 9.2

Using the Class Browser with the Design Browser . 32
Using the Class Browser with the Source Browser . 34

Viewing SystemVerilog Objects in the Waveform Window . 35
Adjusting the Minimum Height of an Array . 36
Viewing Associative Arrays in the Waveform Window . 37

Following SystemVerilog Signals in the Source Browser . 39
Preparing Your Design for the Constraints Debugger . 40
Opening the Constraints Debugger . 41
Constraint Debugger Overview . 42
Displaying Variable Values as Inputs to Constraints . 45
Displaying Constraints and Variables . 45
Enabling and Disabling Random Variables . 45
Enabling and Disabling Constraints . 45
Creating a Constraint . 46
Running the Current Randomize Call Again . 47
Handling Overconstraints . 47

Viewing Dynamic Objects with the SimVision Data Browser . 47
Setting Up the Data Browser . 47
Preparing Your Design for the Data Browser . 48
Opening Data Browser Windows . 49
Expanding and Collapsing a Dynamic Object . 51
Refreshing the Data Browser Contents . 51
Setting Breakpoints on Dynamic Objects . 52
Displaying Dynamic Objects for the Full Design . 52
Sending Dynamic Objects to the Design Browser . 52
Viewing Dynamic Objects in the Source Browser . 53
Sending Dynamic Objects to a New Data Browser Window 53
Setting the Debug Scope in the Data Browser . 53
Copying a Dynamic Object . 53

4
Accessing SystemVerilog Design Objects with Tcl 55

Debugging Compilation Units with Tcl . 55
Accessing Compilation Units with Tcl . 55
Examples . 56

SystemVerilog in Simulation

July 2010 5 Product Version 9.2

Debugging Classes with Tcl . 58
Limitations on Tcl Commands for Parameterized Classes . 59
Tcl Syntax for Class Object Names . 59
Tcl Syntax for Parameterized Class Names . 60
Accessing Class Objects with Tcl . 61
Determining the Class Instance Handle from Tcl . 64
Listing Class Instance Handles with Tcl . 65
Determining the Value of a Class Member with Tcl . 66
Traversing the Class Hierarchy with Tcl . 68
Setting Object Breakpoints within Classes with Tcl . 74
Setting Line Breakpoints within Classes with Tcl . 76
Using the heap Command with Classes . 79
Generating Heap Usage Reports . 83

Debugging Constraints with Tcl . 86
Stopping on Calls to randomize() with Tcl . 86
Enabling Random Variables and Constraints with Tcl . 87
Adding a New Constraint from Tcl . 88
Executing randomize() Calls with Tcl . 88

Debugging Semaphores with Tcl . 91
Describing a Semaphore . 91
Determining the Value of a Semaphore Variable . 92

Debugging Arrays, Structures, and Queues with Tcl . 92
Limitations on Tcl Commands for Arrays, Structures, and Queues 92
Tcl Syntax for Packed Structures . 93
Selecting Members of Structures . 93
Selecting Members of Packed Arrays with Tcl . 94
Describing Objects with Tcl . 94
Setting Breakpoints on Arrays and Queues with Tcl . 97
Displaying the Values of Arrays and Queues . 99

Debugging Strings with Tcl . 100
Debugging Clocking Blocks with Tcl . 102
Debugging Program Blocks with Tcl . 103
Debugging Interfaces with Tcl . 104
Debugging Packages with Tcl . 106

Package Names in Tcl . 107
Using the Tcl scope Command with Packages . 107

SystemVerilog in Simulation

July 2010 6 Product Version 9.2

Describing Packages with Tcl Commands . 109
Probing Packages with Tcl Commands . 109
Analyzing Package Items with Tcl . 109

Using an Extended Value Change Dump (EVCD) File . 110
SystemVerilog and EVCD . 110

Debugging DPI Exported Functions and Tasks . 111
Managing Breakpoints . 111
Interactive Debugging . 111
Limitations on DPI Debugging . 112

Index. 115

SystemVerilog in Simulation

July 2010 7 Product Version 9.2

1
Introduction to SystemVerilog in
Simulation

SystemVerilog is a set of extensions to the existing IEEE Verilog-2001 standard. These
extensions provide new capabilities for modeling hardware at the RTL and system level, along
with powerful new features for verifying model functionality. These SystemVerilog extensions
also require extensions to the simulator tools, so that you can view and debug these
constructs during simulation.

The simulator provides the following support for SystemVerilog:

■ The ncvlog, ncelab, ncsim, and irun utilities provide options for compiling, elaborating,
and simulating SystemVerilog constructs, such as compilation units, bind files,
assertions, and random variables.

■ The Cadence® Simulation Analysis Environment (SimVision) provides graphical tools
especially for SystemVerilog objects, such as classes. SimVision also lets you access
SystemVerilog objects in its standard windows, such as the Schematic Tracer and
Source Browser.

Note: Support for dynamic objects is limited in this release.

■ The simulator’s Tcl interface provides support for SystemVerilog constructs, including
compilation units, classes, and constraints. In particular, the describe, value, scope,
and stop commands have been extended to support SystemVerilog constructs.

Additional Documentation

■ SystemVerilog Reference—For information about using the SystemVerilog constructs
that are supported in the current release.

■ SimVision User Guide—For information about using SimVision

■ Verilog Simulation User Guide—For information about simulating Verilog designs

■ irun User Guide—For information about using the irun utility

SystemVerilog in Simulation
Introduction to SystemVerilog in Simulation

July 2010 8 Product Version 9.2

Additional Examples

■ SystemVerilog Engineering Notebook—Describes examples of various
SystemVerilog constructs. You can download the examples and run them using the
simulator.

■ SystemVerilog DPI Engineering Notebook—Describes examples of SystemVerilog
DPI. You can download the examples and run them using the simulator.

■ Examples Reference Guide—Lists the examples located within your installation.

SystemVerilog in Simulation

July 2010 9 Product Version 9.2

2
Preparing SystemVerilog Designs for
Simulation

Before you can simulate a design, you must compile and elaborate it for debugging. The
Incisive compiler and elaborator, and irun, provide command options specifically for
SystemVerilog designs.

Using Options for Compiling, Elaborating, and Simulating
SystemVerilog

The following options are available in ncvlog, ncelab, ncsim, and irun to support
SystemVerilog.

Compilation Options (ncvlog and irun)

-sv

Enables SystemVerilog constructs. You do not need to use this option with irun, if your
SystemVerilog source files have the .sv extension.

Elaboration Options (ncelab and irun)

-extbind file

Specifies a file containing bind directives that bind SystemVerilog assertion properties
to design units.

-noassert

Disables PSL and SystemVerilog assertions.

SystemVerilog in Simulation
Preparing SystemVerilog Designs for Simulation

July 2010 10 Product Version 9.2

-svperf arg

Disables checking for unique and/or priority violations.

-dpi_void_task

Starting with IUS 8.1, C and SystemC functions that correspond to an imported or
exported task are required to return an int value. For backward compatibility, you can
use the -dpi_void_task option with ncelab on existing DPI designs. Designs will not
be affected by this new requirement, and will behave as they did prior to IUS 8.1.

Simulation Options (ncsim and irun)

-randwarn

Enables warning messages for all failed randomize() calls. See “Controlling
Constraint Warnings from the Command Line” on page 10 for more information.

-nowarn SVRNDF

Disables constraint warnings for all failed randomize() calls. See “Controlling
Constraint Warnings from the Command Line” on page 10 for more information.

-sv_lib

-sv_root

-svrnc

Controls the behavior of the solver, which evaluates constraints during simulation.

See “Using the -svrnc Option to Control the Solver” on page 11 for information about
-svrnc arguments.

-svseed {n | random}

Defines a default seed value for randomized testing. See “Setting an RNG Default Seed
from the Command Line” on page 14 for more information.

Controlling Constraint Warnings from the Command Line

By default, IUS displays warning messages at the following times:

■ The first time an instance of randomize() is about to return a failure status, 0

■ When a variable is over-constrained

SystemVerilog in Simulation
Preparing SystemVerilog Designs for Simulation

July 2010 11 Product Version 9.2

■ When a solve...before constraint is causing a loop conflict

■ When a constraint conflicts with another constraint, and is causing the solver to fail

To disable these warning messages, use the -nowarn SVRNDF option with ncsim or irun.

To enable warning messages for all failed randomize() calls, use the -RANDWARN option.

Related topics:

■ “Using the -svrnc Option to Control the Solver” on page 11

■ “Setting an RNG Default Seed from the Command Line” on page 14

■ “Debugging Constraints with Tcl” on page 86

■ “Random Constraints” in the SystemVerilog Reference

Using the -svrnc Option to Control the Solver

The ncsim -svrnc option controls the behavior of the solver, which evaluates constraints
during simulation. It has the following arguments:

sat_solver

Specifies that the simulator use the SAT solver instead of the BDD solver.

randc_max_iter=n

In SystemVerilog, randc variable values are generated before the constraints are
solved—with the randc variable values held constant. If the solver cannot find a solution
for the constraints, it generates another set of randc variable values and tries the
constraint again. The solver repeats this process until one of the following conditions is
met:

❑ A solution is found.

❑ The solver reaches the maximum number of iterations, specified by n.

❑ The solver reaches the maximum number of unique values for all of the randc
variables (default for n).

fatal

Terminates the simulation with a warning message that a randomize() call has failed.
You might also receive warning messages that provide additional information about the
cause of the failure.

../sysverilog/randomization.html#firstpage

SystemVerilog in Simulation
Preparing SystemVerilog Designs for Simulation

July 2010 12 Product Version 9.2

For example:

❑ If solve...before constraints have a loop, the warning message identifies the
specific constraints that are involved. To disable this warning, use the -nowarn
RNDSVB command-line option.

❑ If a constraint can never be solved, the RNDOVC warning is given. For example, a
constraint that contains "a != a" causes this warning.

❑ If one or more constraints cannot be solved, the RNDOCS warning identifies these
constraints and the variables that cause the over-constrained condition.

rng_old

Currently, the LRM requires you to use the same default seed for each instance of a
module, interface, program instance, and package. However, by default in the Cadence
implementation, each initialization random number generator (RNG) is seeded with a
value that is a function of both the default seed and of the hierarchical path of the
instance. To use the LRM implementation, use the -svrnc rng_old option.

gc_mem_limit=n

Specifies the memory size at which randomization garbage collection starts. When the
ncsim virtual memory footprint reaches this limit, garbage collection starts. At this time,
the garbage collector identifies the least-accessed randomize call site and reclaims its
allocated internal memory. If ncsim encounters a randomize call site whose memory has
been reclaimed, it builds new data structures as needed.

The value of n is in megabytes, and the default value is 2000.

gc_item_limit=n

Specifies the minimum number of Verilog randomization calls required before starting
garbage collection.

For example, when set to 5, garbage collection is not done when there are five or fewer
randomize call sites in the code. When set to 0, garbage collection is based on the actual
ncsim virtual memory footprint.

You can use this option to reduce resource contention between garbage collection and
subsequent allocation of new memory.

The value of n is an integer, and the default is 5.

SystemVerilog in Simulation
Preparing SystemVerilog Designs for Simulation

July 2010 13 Product Version 9.2

gc_diff_limit=n

When the difference between the total number of randomize calls and the number of
times a randomize call has been accessed is less than this number, garbage collection
is not done.

For example, the following sets n to 5 (10 is the default):

% irun -sv -svrnc gc_diff_limit=5 test.v

If there are 100 randomize calls in the code, the garbage collector will not reclaim
memory for randomize calls that have been accessed more than 96 times.

For example, if you don’t specify n, ncsim uses the default of 10:

% irun -sv -svrnc gc_diff_limit test.v

If there are 90 randomize calls in the code, the garbage collector will not reclaim memory
for randomize calls that have been accessed more than 81 times.

real

Provides simple real number randomization support to match the Specman-AMS
capability, for example:

module top;
integer success, x1;
class class1;

rand int i1, i2;
rand real r1, r2, r3;
constraint c1 { 0.0 < r1; r1 < 10.0; }
constraint c2 { 17 < r2; r2 < 213; }
constraint c3 { 1 < i1; i1 < i2; i2 < 17021; }
constraint c4 { r3 inside { [1.01:1.117] }; }

endclass

class1 p1 = new;
initial begin
for (x1 = 0; x1 < 100; x1 = x1 + 1) begin

p1.i1 = x1;
p1.i2 = x1 +1;
p1.r1 = 1.0 * x1;
p1.r2 = 1.1 * x1;
success = p1.randomize();

$display("i1 %d i2 %d r1 %e r2 %e r3 %e\n",p1.i1,p1.i2,p1.r1,p1.r2,p1.r3);
// Check the random values
if (success != 1) $display("Error0, success != 1");
if (0.0 >= p1.r1 || p1.r1 >= 10.0) $display("failed 0 < r1 < 10");
if (17 >= p1.r2 || p1.r2 >= 213) $display("failed 17 < r2 < 213");
if (1 >= p1.i1 || p1.i1 >= p1.i2 || p1.i2 >= 17021)

$display("failed 1.1 < i1 < i2 < 17021");
if (1.01 >= p1.r3 || p1.r3 >= 1.117)

$display("failed r3 inside [1.01,1.117]");
end

end

SystemVerilog in Simulation
Preparing SystemVerilog Designs for Simulation

July 2010 14 Product Version 9.2

Setting an RNG Default Seed from the Command Line

In the current release, you can define the default seed by using the -svseed simulation-time
option. This option is an easy way to seed the RNGs everywhere in the design without making
explicit calls to the built-in srandom() method. With this option, you can run simulations with
new random number streams without recompiling and re-elaborating the design.

You can use the -svseed option with ncsim or irun. You provide either a 32-bit integer or
the random keyword as an argument to the option. If you specify random, the simulator sets
the value of the seed to a random number obtained from the current time of day and the
current UNIX process ID. This algorithm ensures that multiple simulation runs submitted
simultaneously have different seeds.

Calls to srandom() override the effect of the -svseed command-line option for all
subsequent randomization within the thread or object. If srandom() is called at the
beginning of the thread, the RNG for the thread is not affected by the command-line option.
Similarly, if a call to an object’s built-in srandom() method is made before the object is
randomized, the RNG for the object is not affected by the command-line option.

SystemVerilog in Simulation
Preparing SystemVerilog Designs for Simulation

July 2010 15 Product Version 9.2

Using the Multi-Step Invocation Method

With the multi-step method, you compile, elaborate, and run the simulator in separate steps,
as follows:

1. Invoke ncvlog to compile the source files.

When the design contains SystemVerilog, use the -sv option to enable the
SystemVerilog constructs implemented in this release.

To make source line numbers available in SimVision for debugging, use the
-linedebug option.

2. Invoke ncelab to elaborate the design and generate a simulation snapshot.

Use the -access +rwc option to make internal signals visible, so that you can trace the
connectivity of the signals in your design.

3. Invoke ncsim to simulate the snapshot.

If you will be debugging the design, specify either the -tcl or -gui option:

❑ The -tcl option invokes the simulator in interactive mode and stops at time 0, so
that you can enter Tcl commands.

❑ The -gui option invokes the simulator with SimVision. The simulator loads the
design hierarchy into SimVision and stops at time 0, so that you can begin
debugging with the SimVision tools.

For example, to compile and elaborate a design:

% ncvlog -sv -linedebug test.sv top.sv

% ncelab -access +rwc top

To simulate the design for debugging with Tcl:

% ncsim -tcl worklib.test:top

To simulate the design for debugging with SimVision:

% ncsim -gui worklib.test:top

See the Incisive Simulator Tcl Command Reference for information about all of the
command-line options available for ncvlog, ncelab, and ncsim.

SystemVerilog in Simulation
Preparing SystemVerilog Designs for Simulation

July 2010 16 Product Version 9.2

Using the irun Utility

Cadence recommends that you use the irun utility to compile, elaborate, and simulate any
design. The irun utility accepts files written in different simulation languages, such as Verilog,
SystemVerilog, VHDL, Verilog AMS, VHDL AMS, and Specman e, as well as files written in
general programming languages such as C and C++. Based on the file extension, it uses the
appropriate compiler to compile the files. After the input files have been compiled, irun
invokes ncelab to elaborate the design, and ncsim to run the simulator.

The irun utility accepts the same command-line options as ncvlog, ncelab, and ncsim, all
on the same command line. For example, to compile, elaborate, and simulate a
SystemVerilog design with irun for debugging in interactive mode, use the following
command:

% irun -tcl top.v test.sv

The irun utility recognizes the .v file as a Verilog source file, and the .sv files as
SystemVerilog files, so no -sv option is required to compile the SystemVerilog files. The
-tcl option invokes the simulator in interactive mode and stops at time 0, so that you can
enter Tcl commands.

For example, to compile, elaborate, and simulate the design with irun for debugging with
SimVision:

% irun -gui -linedebug -access +rwc top.v test.sv

The source files are compiled with the -linedebug option so that source line numbers are
displayed in SimVision. The irun utility then invokes ncelab to elaborate the design. The
-access option is passed to the elaborator to provide read, write, and connectivity access
to simulation objects. After the elaborator has generated a simulation snapshot, the -gui
option is passed to ncsim, and the simulator is invoked with SimVision.

If you want to compile a .v file that contains SystemVerilog constructs, use the -sv option
with irun. For example:

% irun -tcl -sv test.v

% irun -gui -sv -linedebug -access rwc test.v

See the irun User Guide for details on simulating with irun.

Compiling a Design with Packages

Packages create order dependencies between the package and any design unit that uses the
package. Packages, and the items they contain, must be defined before they can be used.
That is, a package declaration must appear in a description before it can be imported.

SystemVerilog in Simulation
Preparing SystemVerilog Designs for Simulation

July 2010 17 Product Version 9.2

Packages that depend on other packages in the same source file must also appear in the
correct order.

Because packages must be compiled before the design units that use them, the design units
that use the package must be recompiled whenever the package changes.

There are no compilation dependencies between packages and modules. <<Please
explain>>

The default view name for a package is verilog_package. For example:

worklib.pack:verilog_package

Related topics:

■ “Accessing SystemVerilog Objects in the Design Browser” on page 23

■ “Debugging Packages with Tcl” on page 106

■ “Packages” in the SystemVerilog Reference

Compiling Packages with irun

When you use the irun utility, you can specify package design units in any of the following
ways:

■ On the command line

■ In design source files

■ In a library directory

■ In a library file

Specifying Packages on the Command Line

Source files that you specify on the command line typically contain the top-level modules of
the design. Any source files that contain global packages must appear before source files that
use the packages. If packages also have dependencies, the packages dependent on other
packages must follow the packages that they depend on. For this reason, Cadence
recommends that you place source files first on the command line.

For example, a design file, repeater_dut.sv, uses packages defined in the
repeater_pkg.v package file. If both files reside in the current working directory, you
compile them with the following command:

irun repeater_pkg.sv repeater_dut.sv

../sysverilog/packages.html#firstpage

SystemVerilog in Simulation
Preparing SystemVerilog Designs for Simulation

July 2010 18 Product Version 9.2

By specifying repeater_pkg.sv first, you ensure that the package is compiled before the
design units that use the package.

Including Packages in Design Source Files

You can use the `include directive to include packages in design source files. You must
‘include the package source file before you import the package or use a package item
reference name.

In the following example, repeater_pkg.sv contains package item declarations. The
design file, repeater_dut.sv, includes repeater_pkg.sv and imports the package.
After that, all modules in repeater_dut.sv can refer to the package items.

// File: repeater_dut.sv

‘include "repeater_pkg.sv"
import repeater_pkg::*;

module repeater_dut (input clock, input reset, cdn_idt_if.master tx_if,
cdn_idt_if.slave rx_if);

...

endmodule

// File: repeater_pkg.sv

package repeater_pkg;

...

endpackage

The ‘include directive ensures that the parser compiles the package design units before
compiling the design units that use them. The package is compiled only once.

A single top-level design source file might contain multiple design units. If a design unit
depends on another design unit, it must appear after that design unit in the source file.

Specifying Packages in a Library Directory

A library directory can contain any number of source files, where each file describes a single
design unit. Files in a library directory are named according to the following convention:

design_unit_name.libext_suffix

The design_unit_name is the name of the module, package, or other type of design unit.
The libext_suffix is the extension for the files in the library directory.

Package source files delivered in a library directory must be compiled before the design units
that use them. You can compile the package source files by including them on the command

SystemVerilog in Simulation
Preparing SystemVerilog Designs for Simulation

July 2010 19 Product Version 9.2

line. You specify the file extension of the library files with the -libext option, and the path
to the library directory with the -y option.

In the following example, the -y option specifies the relative path to the library directory. The
-libext option specifies that all library files in that directory have the .sv extension:

irun -libext .sv -y ../../cdn_idt/sv idt_repeater.sv

The files in a library directory are compiled only if the definitions they contain are instantiated
by other instances.

You can also `include package source files in any source file in the library directory that
uses the package. This technique ensures that packages are always compiled before the
design units that import them.

For example, assume that module m is in a library directory (lib/m.v), and module m imports
package p (lib/p.v).

// File: lib/m.v // File: lib/p.v
`include "p.v" `ifndef p
import p::*; `define p
module m; package p;
... ...
endmodule endpackage

endif

Note: SystemVerilog package names are in a different name space than other design unit
types, so a module and a package can have the same name. However, a package and a
module cannot have the same name in a library directory, because the files will have the same
name. For example, if you have a module m and a package m, and if the libext is .v, both files
are called m.v, which is not allowed.

Specifying Packages in a Library File

A library file is a single source file that contains many design units. Design units present in
the file are compiled only if they are referenced by the design.

Packages delivered in a library file must always be the first design units encountered in the
file, before any other modules in the library file. All packages in the library file are compiled
as soon as irun starts searching the library file for a design unit. The packages are compiled
once, so packages in a library file are always compiled, even if they are not used in the design.
Compilation errors due to non-legal Verilog code in unused packages can be reported.

Design units in a library file can also use global packages that have been provided as top-level
units on the command line.

SystemVerilog in Simulation
Preparing SystemVerilog Designs for Simulation

July 2010 20 Product Version 9.2

Compiling Packages with ncvlog

Package design units must be compiled before design units that use the packages. You can
compile packages with ncvlog in any of the following ways:

■ By compiling all package source files before compiling the designs that use the
packages. You can compile all packages with one ncvlog command. For example:

ncvlog repeater_pkg.sv package2.sv package3.sv

■ By placing package source files on the ncvlog command line before the source files that
contain the design units that use the packages. For example:

ncvlog repeater_pkg.sv repeater_dut.sv

■ By using the `include directive to include the package source files in the design files
that use the packages, as described in “Including Packages in Design Source Files” on
page 18.

Packages create a compilation dependency on their importing design units. Specifying the
same package twice on the ncvlog command line generates an error, because it causes the
design units compiled with the previous version of the package to be out-of-date. The
-update option can also require the recompilation of out-of-date design units that use
modified packages.

A package name does not need to appear on the ncelab command line, because packages
are elaborated as a consequence of being dependent units of the importing modules.
Regardless of how many import clauses exist for the same package, a single instance is
created for that package in the design. That instance is shared by all importing design units.

Compiling Source Files into Compilation Units

A compilation unit is an implicitly-named scope composed of all source files compiled at the
same time. If any of the source files use the `include directive, those files are included in
the compilation unit.

Compilation units are identified by the $unit_# designator, where # is a unique number
assigned to the compilation unit. You can refer to the current compilation with the $unit
scope resolution operator.

For example, suppose you have the following source files, top.sv and test.sv:

// top.sv

// External declarations
integer a;
reg che;
wire [2:0] chetan;

SystemVerilog in Simulation
Preparing SystemVerilog Designs for Simulation

July 2010 21 Product Version 9.2

module unit;
integer a;
reg che;
reg clk = 0;

always
#2 clk = ~clk;

always @clk
i = a;

initial
begin

#0 a = 0;
#5 a = 5;
#5 a = 2;
#5 a = 6;
#5 a = 9;
#5 a = 1;
#10 $finish;

end

endmodule

integer i, j;
struct packed { bit A, B; } mem [0:1][0:1];

task t;
endtask

// test.sv

module test;
integer a;

reg clk = 0;

always
#2 clk = ~clk;

always @clk
i = a;

initial
begin

#0 a = 0;
#5 a = 5;
#5 a = 2;
#5 a = 6;
#5 a = 9;
#5 a = 1;
#10 $finish;

end
endmodule

SystemVerilog in Simulation
Preparing SystemVerilog Designs for Simulation

July 2010 22 Product Version 9.2

The compiler creates a compilation unit that contains a, che, chetan, i, j, and
mem[0:1][0:1] when you compile the design, as follows:

irun test.sv top.sv

When you compile each source file separately, the compiler creates a separate compilation
unit for each file. In this case, the declarations in each compilation-unit scope are accessible
within only its corresponding file. For example:

irun test.sv
irun top.sv

The declarations in test.sv will not be accessible from top.sv. In other words, the
references in top.sv to a, che, chetan, i, j, and mem[0:1][0:1] will result in an error.

Related topics:

■ “Viewing Compilation Units in the Design Browser” on page 25

■ “Debugging Compilation Units with Tcl” on page 55

■ “Compilation Units” in the SystemVerilog Reference

■ For an example that you can download and run, refer to the example in “Disabling DPI
Tasks and Functions” in the SystemVerilog DPI Engineering Notebook.

../sysverilog/packages.html#compileunit
../dpiEngrNtbk/dpiEngrNtbkTOC.html#firstpage

SystemVerilog in Simulation

July 2010 23 Product Version 9.2

3
Accessing SystemVerilog Design
Objects with SimVision

The SimVision Design Browser, Schematic Tracer, Source Browser, and Waveform windows
support SystemVerilog constructs. In addition, the SystemVerilog Class Browser sidebar is
available in the Design Browser and Source Browser windows to help you navigate a
SystemVerilog class hierarchy.

Refer to Chapter 2, “Preparing SystemVerilog Designs for Simulation,” for information about
how to simulate a SystemVerilog design for debugging with SimVision.

Accessing SystemVerilog Objects in the Design Browser

The Design Browser gives you access to the objects in your design, as follows:

■ The Design Browser and Design Search sidebars help you locate signals and variables
within the design hierarchy.

■ The signal list displays the signals and variables that you select in the Design Browser
and Design Search sidebars, including the values of these objects at the current
simulation time. Aggregate signals, such as structures and arrays, are displayed in the
scope in which they occur.

Related topics:

■ Chapter 6, Monitoring Signal Values, in the SimVision User Guide.

../simvision/search.html#firstpage

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with SimVision

July 2010 24 Product Version 9.2

Selecting SystemVerilog Objects with the Design Browser and Design
Search Sidebars

To open the sidebars:

The sidebars use the following icons to represent SystemVerilog constructs.

Table 3-1 SystemVerilog Icons

Related topics:

■ Chapter 5, Accessing Design Objects, in the SimVision User Guide.

Click the Design Browser tab. Use the Design Browser sidebar to navigate the
hierarchy of your design, including SystemVerilog modules, packages, compilation
units, interfaces, modports, program blocks, and classes.

Click the Design Search tab. Use the Design Search sidebar to search the entire
design, without regard to hierarchy.

SystemVerilog interface

SystemVerilog modport

SystemVerilog program block

SystemVerilog class

SystemVerilog class specialization

SystemVerilog package

SystemVerilog structures and unions

../simvision/selecting.html#firstpage

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with SimVision

July 2010 25 Product Version 9.2

Viewing Compilation Units in the Design Browser

The Design Browser displays compilation units in a folder labeled Compilation Units in the
Design Browser sidebar. Each compilation unit has a name that begins with the string
$unit_, followed by a unique number assigned to it when it is created.

To expand the list of compilation units:

1. Click the + button next to the Compilation Units folder to see the list of compilation units
in the design.

2. Click the + button next to a $unit_ name, if there is one, to see any scopes declared
within that compilation unit’s scope.

3. Click on a scope to display the objects defined within that scope in the signal list on the
right side of the window.

If an object is included in several compilation units, it shows up in the signal list for each
$unit_ in which it occurs.

Note: If you select a particular compilation unit, any signals (non-scope objects) declared
within that compilation unit scope are also displayed in the signal list.

To collapse the list of compilation units:

➤ Click the - button next to the scope, compilation unit, or folder.

Related topics:

■ “Compiling Source Files into Compilation Units” on page 20

■ “Debugging Compilation Units with Tcl” on page 55

■ “Compilation Units” in the SystemVerilog Reference

../sysverilog/packages.html#compileunit

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with SimVision

July 2010 26 Product Version 9.2

Viewing Parameterized Classes and Class Specializations in the Design
Browser

Parameterized classes can be instantiated with new parameter values. The combination of
the generic class and its actual parameter values is called a class specialization or variant.
The Design Browser displays parameterized class definitions in the scope list. If you click the
+ button next to a parameterized class name, you will see the specializations for that class.
Each specialization is followed by #(p_value), where p_value denotes the new
parameter value. For example:

// In file a.v

class cuClass;
...
endclass

class cuParamClass #(int count = 1) extends cuClass;
endclass

module a;

class cuParamExt #(int size = 1) extends cuParamClass #(4);
endclass

cuParamExt #(2) arraysize2; // Sets size to 2
cuParamExt #(.size(4)) arraysize4; // Sets size to 4
cuParamExt #() arrayone; // Sets size to default, which is 1
...
endmodule

The Design Browser shows the parameterized class called cuParamExt and its three
specializations:

Expanding and Collapsing SystemVerilog Aggregate Signals in the
Design Browser

In the Design Browser, when you view aggregate signals, such as SystemVerilog structures
and arrays, you might want to see all of its individual elements, or only the name of the object.
The Design Browser provides several ways to expand and collapse aggregates.

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with SimVision

July 2010 27 Product Version 9.2

Note: Queues, and dynamic and associative arrays can be expanded only when Watch Live
Data, , is enabled.

Related topics:

■ “Expanding and Collapsing Aggregates,” in the SimVision User Guide

■ “Splitting a Signal,” in the SimVision User Guide

■ “Creating a Scrollable Region,” in the SimVision User Guide

Sorting the Elements of a Queue, or Dynamic or Associative Array

The Design Browser lets you sort the elements of a queue, or a dynamic or associative array
(QDA) in either index-0-first or reverse index order.

Next to the name of a QDA, the Design Browser displays an arrow that indicates the order in
which the elements of the queue or array are sorted. An up-arrow, , indicates first-to-last
index order; a down-arrow, , indicates reverse order.

To change the order of elements:

➤ Click the arrow to change the order in which elements are sorted.

➤ Choose Edit – Expand Signal – View End or View Top.

➤ Right-click the + or - next to the object and choose View End or View Top.

For example, Figure 3-1 on page 28 shows a queue in first-to-last order. The array indexes
are absolute—0, 1, and so on. Figure 3-2 on page 28 shows a queue displayed in reverse
order. The index of the last element is referred to by the dollar sign ($), and all other elements
are referred to by their relative indexes, such as $-1, $-2, and so on.

../simvision/search.html#db_aggregates
../simvision/search.html#split_signal
../simvision/search.html#scroll_region

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with SimVision

July 2010 28 Product Version 9.2

Figure 3-1 Queue Displayed in First-to-Last Order

Figure 3-2 Queue Displayed in Reverse Order

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with SimVision

July 2010 29 Product Version 9.2

Viewing SystemVerilog Objects in the Schematic Tracer

In the Schematic Tracer, interfaces and modports are displayed as wires labeled with the
interface or modport name on the outer connection of the block that instantiates it. Inside the
block, the wire fans out to show the ports defined in the interface or modport.

For example, Figure 3-3 on page 29 shows a modport named slave that is instantiated in
the mem module. It appears as a wire going into the module, and its ports are displayed within
the module.

Figure 3-3 Displaying a SystemVerilog Modport in the Schematic Tracer

Related topics:

■ Chapter 14, “Viewing a Design Schematic,” in the SimVision User Guide

Accessing Classes in the SystemVerilog Class Browser

You can navigate and debug a SystemVerilog class hierarchy by using the SystemVerilog
Class Browser. The Class Browser is a sidebar on the Design Browser and Source Browser
windows.

SimVision creates a dynamic scope for each class object. Within the dynamic scope, you can
see values associated with an instance of a class object, and set instance-specific line

../simvision/schematic.html#firstpage

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with SimVision

July 2010 30 Product Version 9.2

breakpoints in methods, or set breakpoints on value changes to local data members. When
a class object no longer has any references to it, the scope is removed, and you cannot
access its local data members.

The SystemVerilog Class Browser sidebar lets you browse the class hierarchy in your design.
The sidebar is present in the Design Browser and Source Browser windows. The sidebar
itself behaves the same in both windows, but it interacts with each window in a slightly
different way:

■ In the Design Browser, you use the sidebar to select the class objects you want to
monitor.

■ In the Source Browser, you use the sidebar to locate class definitions in the source code.

Related topics:

■ “Debugging Classes with Tcl” on page 58

Opening the Class Browser

To open the SystemVerilog Class Browser:

Tip

If the sidebar is not visible, enable the Sidebar option in the View menu, then click
the Class Hierarchy tab.

The class hierarchy is displayed in the upper region of the sidebar, as shown in Figure 3-4 on
page 31.

Click the Class Hierarchy tab in a Source Browser or Design Browser window.

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with SimVision

July 2010 31 Product Version 9.2

Figure 3-4 Loading Data into the Class Hierarchy Browser

The browser displays the class hierarchy as a tree, with subclasses indented below their
parent classes. Initially, the tree is collapsed, showing only the top-level classes. The browser
also displays any class specialization types, with each specialization shown separately.

To expand and collapse the hierarchy:

➤ Click the + and - buttons next to a class name. If these buttons do not appear next to a
class name, the class has no subclasses.

After the hierarchy is loaded, the Load button changes to a Class Search field. If the class
hierarchy is large, you can use this field to locate a class definition.

To search for a class definition:

➤ Enter a search string in the Class Search field, and click Search Up, , or Search
Down, , to find the next or previous occurrence of the string within the hierarchy. The
search function does not find occurrences of the string in subclasses that are collapsed.

The string can include any of the following special characters:

* Match any number of characters

? Match a single character

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with SimVision

July 2010 32 Product Version 9.2

When you select a class, its class instances are listed in the Objects column on the right. The
name displayed in the Objects column is the instance handle for the selected class object. If
the column is empty, no instances of that class exist at the current simulation time.

The tabbed area at the bottom of the sidebar displays the methods and data members for the
selected class. You can sort these tables by any column heading in ascending or descending
order.

To sort the Methods and Data Members tables:

➤ Open the Methods or Data Members tab to display the information you want to sort.

➤ Click the column heading to choose the way you want to sort the information—Method
Name or Class Definition in the Methods tab; Member Name, Type, or Class
Definition for the Data Members tab.

➤ An arrowhead in the selected column indicates the sorting order— for ascending
order; for descending order. Click the arrowhead to reverse the order.

Using the Class Browser with the Design Browser

In the Design Browser, use the sidebar to select the class objects you want to monitor, as
follows:

➤ Select a class from the hierarchy tree, and it is added to the Design Browser signal list.
Expand the class, and you can see the variables declared within the class. Because they
are not instances, these variables have no value, as shown in Figure 3-5 on page 33.

➤ Select a class instance from the Objects column, and the class object is added to the
signal list. You can expand that object to display its local variables. Variables of class
objects have a value, as shown in Figure 3-6 on page 33.

➤ Select objects in the Methods and Data Members tables, and they are added to the
signal list. The variables added to the signal list in this way have no values, because they
are associated with the class definition, not the class instance.

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with SimVision

July 2010 33 Product Version 9.2

Figure 3-5 Adding a Class Definition to the Signal List

Figure 3-6 Adding a Class Instance to the Signal List

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with SimVision

July 2010 34 Product Version 9.2

Using the Class Browser with the Source Browser

In the Source Browser, you use the sidebar to locate class definitions in the source code, as
follows:

➤ Select a class.

The Source Browser scrolls to the location in the source file where the class is defined,
as shown in Figure 3-7 on page 34.

➤ Select a method or data member.

The Source Browser scrolls to the location in the source file where the method or data
member is defined, as shown in Figure 3-8 on page 35.

Figure 3-7 Locating a Class Definition in the Source Browser

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with SimVision

July 2010 35 Product Version 9.2

Figure 3-8 Locating a Method Definition in the Source Browser

Viewing SystemVerilog Objects in the Waveform Window

Note: In this release, you cannot probe queues and dynamic arrays, so you cannot view them
in the Waveform window.

When you view packed structures, packed arrays, and associative arrays in the Waveform
window, you can display the entire object as a single waveform, or expand the object to see
its logic elements or bits.

The Waveform window provides several ways to expand and collapse aggregates.

Related topics:

■ “Expanding and Collapsing Signals,” in the SimVision User Guide

■ “Splitting a Signal,” in the SimVision User Guide

■ “Creating a Scrollable Region,” in the SimVision User Guide

../simvision/displaying_types.html#wf_expand
../simvision/search.html#split_signal
../simvision/search.html#scroll_region

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with SimVision

July 2010 36 Product Version 9.2

Adjusting the Minimum Height of an Array

When an array is added to the Waveform window, it is displayed in a collapsed state—in that
it displays only the minimum height. Click on + to expand the array, or use the red sizer to
adjust the vertical height, as shown in the following figure:

To adjust the minimum height of dynamic arrays:

1. Go to Edit – Preferences.

2. Under the Waveform window heading, select Display.

3. Enter a new value for the Dynamic Arrays height # number of elements.

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with SimVision

July 2010 37 Product Version 9.2

Viewing Associative Arrays in the Waveform Window

When you expand an associative array in the Waveform window, the top row displays the
number of entries in the array, and subsequent rows display the individual array elements.
The order of the individual array elements is determined by the type of the index. For example,
numerical indexes are in numerical order, and strings are in lexicographical order—lesser to
greater. When an entry is created or deleted, the remaining entries shift up or down as
needed.

Number of entries
in the array

Individual array
elements

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with SimVision

July 2010 38 Product Version 9.2

When the value of an entry changes, a transition is displayed on the corresponding row. In
the following example, array aa has 14 entries at 70 ns. New entries, such as 42 created at
75 ns, are shown with a rounded left edge. Deleted entries, such as 36 at 80 ns, are shown
with a rounded left edge.

If you move your mouse over a segment of an expanded associative array, all of the segments
that correspond to that array element are highlighted, and the key and value of that segment
are displayed in the status bar.

Breaking Out Separate Waveform Traces

You cannot select an individual entry of an associative array. You can, however, break out a
separate waveform trace for an array entry. To open a separate waveform trace for an

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with SimVision

July 2010 39 Product Version 9.2

associative array entry, right click and hold on a segment, and choose Break out Index:
XXX, where XXX displays the entry’s key.

You can select and manipulate a broken-out waveform as for any other waveform. You can
expand the element, search for edges on the element, and plot the element in analog form.

You can also use Edit – Ungroup to break out each entry of an array that exists at the time
indicated by the cursor.

Following SystemVerilog Signals in the Source Browser

When you select a SystemVerilog signal or variable in the Source Browser, you can right-click
to pop up a menu of functions that you can perform on the object.

The Follow Signal option lets you look at the source code in other scopes where the signal
appears. If your design contains SystemVerilog implicit port connections, the Source Browser
displays the port connections as written—that is, with the .* notation.

The Follow Signal pop-up menu choice cannot follow these signals. However, the Schematic
Tracer and the Trace Signals sidebar display them as if they were explicitly defined.

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with SimVision

July 2010 40 Product Version 9.2

Working with the Constraints Debugger

In SystemVerilog, constraints are used to restrict the values that can be assigned to random
variables. Related constraints are often defined together in a class. When a class instance is
randomized at run time, the solver within the simulator processes all of the constraints, and
chooses values for the rand or randc variables that satisfy the constraints enabled at the
time.

The constraint debugger offers the following features:

■ Consolidated constraint viewing and manipulation

Constraints for a class instance are not always defined in one part of the source code, in
the case of packages or extended classes. The constraint debugger lists all of the
constraints for a class instance in one window, making it easier to view, enable, disable,
and add constraints for a particular class instance.

■ Overconstraint analysis

When values cannot be generated to satisfy all of the constraints, you can use the
Constraint Debugger to view constraints and add local constraints that modify the
constraint environment.

Preparing Your Design for the Constraints Debugger

To make the values of random variables visible in SimVision and the Constraint Debugger,
you must enable read and write access, as follows:

➤ Use the -access +rw option on the ncelab or irun command line.

The simulation must be stopped during the randomization of an instance (a randomize()
stop). Otherwise, the Constraints Debugger will either be empty, or not reflect the true state
of the system.

In the event of a randomize failure during simulation, SimVision automatically brings up the
Constraints debugger and creates a breakpoint by issuing the stop -randomize simulator
command. The breakpoint is created if all of the following conditions are met:

■ The simulator is in interactive mode (ncsim run with -tcl or -gui)

■ The simulator encounters a randomize call

■ There is no randomize breakpoint already set

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with SimVision

July 2010 41 Product Version 9.2

The breakpoint shows in the normal text and graphical interfaces; for example:

ncsim> stop -show

Randomize Enabled Randomize stop on failure

This breakpoint can be disabled as for any other breakpoint, by using stop -enable, -
disable, or -delete, or the Simvision equivalents.

Refer to “Stopping on Calls to randomize() with Tcl” on page 86 for more information about
creating or operating on breakpoints on calls to randomize().

Opening the Constraints Debugger

You can open the Constraints debugger from the menu bar or toolbox of any SimVision
window, as follows:

➤ Choose Constraints Debugger from the Windows – Tools menu bar of any SimVision
window, or from the toolbox of any SimVision window, as shown in the following figure.

Note: If you are not stopped during the randomization of an instance by a randomize()
stop, the constraint window will either be empty, or will not reflect the true state of the system.
Click on the button to run the simulation until the next stopping point.

Refer to “Stopping on Calls to randomize() with Tcl” on page 86 for more information about
creating or operating on breakpoints on calls to randomize().

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with SimVision

July 2010 42 Product Version 9.2

Constraint Debugger Overview

Figure 3-9 Constraint Window

Random Variables

The left side of the Constraint window lists all of the variables for the class instance being
randomized, including state variables. It shows the following information:

■ Name—Variable name

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with SimVision

July 2010 43 Product Version 9.2

■ Value—Value as the result of the most recent run of the solver

You can expand aggregate members, such as queues, to view its member values.

Note: To view variable values as inputs to constraints, see “Displaying Variable Values
as Inputs to Constraints” on page 45.

Constraints

The right side of the window lists all of the constraints in the design, as follows:

■ Name—Constraint name

■ Description—First line of the constraint definition from the source file

Note: By default, the constraint window displays all of the constraints in the design. Refer to
“Displaying Constraints and Variables” on page 45 for information about how to control which
constraints are displayed.

Source Code Viewer

The bottom portion of the window shows the source code. When you select a variable or
constraint, the source view region points to that particular variable or constraint definition.

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with SimVision

July 2010 44 Product Version 9.2

Icons for Constraints and Random Variables

Table 3-2 on page 44 describes the icons for variables and constraints.

Table 3-2 Icons for Constraints and Random Variables

Enabled rand variable

Enabled randc variable

Disabled rand or randc variable

A random variable that has been disabled is treated as a state variable. It is not
randomized by the randomize() method, and random values are not assigned
to it during a randomize() call.

Indicates that the rand variable is enabled, but is not local to this randomize()
instance, so it cannot be enabled or disabled within the Constraint Debugger

Indicates that the randc variable is enabled, but is not local to this
randomize() instance; therefore, it cannot be enabled/disabled within the
Constraint Debugger.

Enabled constraint

Indicates that the constraint either

■ Is not local to this randomize() instance, and cannot be enabled or disabled

■ Was created within the constraint debugger

Constraint is disabled

Constraints that are disabled are not considered by the randomize() method.

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with SimVision

July 2010 45 Product Version 9.2

Displaying Variable Values as Inputs to Constraints

Use the value annotation button to update the source code so that it displays the current
variable values as inputs to the constraints.

Displaying Constraints and Variables

By default, the constraint window displays all of the constraints in the design. Use the
following radio buttons to control which constraints are displayed:

■ All—Displays all of the constraints related to the class instance.

■ Related—When a variable is selected on the left side of the Constraint Debugger, this
button hides all constraints that are not related to that variable.

■ Error—Displays the constraints that the solver thinks are involved in an overconstraint.

Enabling and Disabling Random Variables

Each random variable has a button that you can toggle to enable or disable that variable
through the rand_mode() method.

Notes

■ If a random variable is static, the rand_mode() setting affects all instances of the
variables of the base class.

■ Individual array elements cannot be enabled or disabled.

Enabling and Disabling Constraints

Each constraint has a button that you can toggle to enable or disable a constraint through the
constraint_mode() method.

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with SimVision

July 2010 46 Product Version 9.2

Notes:

■ If a constraint is static, the constraint_mode() setting affects the constraint in all
instances of the class for which it is declared.

■ The constraint debugger supports inline constraints, but these constraints cannot be
enabled or disabled.

Creating a Constraint

To add a constraint:

1. Click on the button.

If you want to add a variable to the constraint, select the variable to add from the left
pane, then click on the button.

This creates a new constraint entry and assigns a default constraint name.

2. Optionally, you can edit the constraint expression of a simple constraint.

A simple constraint contains:

❑ Simple variables (unsigned integers or variables). If they are variables, they must be
random variables declared in the class of the current randomize() call; they
cannot use hierarchical references.

❑ One of the following operators: ==, !=,>, >=, <, or <=

For example:

constraint intl==200

3. Hit the Return key to add the new constraint, or the Esc key to remove the constraint.

The window is updated to reflect the new state of the class instance.

Notes:

■ If you enter an invalid constraint expression, the simulator issues an error message but
does not remove the constraint, so that you can edit the constraint expression.

■ To remove the constraint, click the button. The button disables ALL locally
created constraints. Locally created constraints cannot be re-enabled.

■ The constraint is persistent, in that it remains in effect even after you complete the
randomize() debugging session.

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with SimVision

July 2010 47 Product Version 9.2

Running the Current Randomize Call Again

Use the button when you want to execute the current randomize() call again. The
simulator uses the currently enabled constraints and variables, and the current state variable
values. The button runs only a single call to randomize—it does not continue running the
simulation.

Handling Overconstraints

If some constraints are overly restrictive, in that some random values cannot be satisfied, the
solver issues an overconstrained message and aborts the randomization attempt.

To debug the overconstraint, you can either disable one or more constraints (see “Enabling
and Disabling Constraints” on page 45) or add a simple constraint (see “Creating a
Constraint” on page 46), then re-run the randomize call (see “Running the Current
Randomize Call Again” on page 47).

Viewing Dynamic Objects with the SimVision Data
Browser

The SystemVerilog Data Browser lets you view SystemVerilog dynamic objects, such as
classes, queues, and dynamic arrays. The Data Browser displays dynamic objects
hierarchically, based on their location in the design. This merged hierarchical view is
particularly useful in designs that are based on OVM, where the structure of the verification
hierarchy is represented through the use of class-based dynamic objects.

Setting Up the Data Browser

To make the Data Browser available in the SimVision session:

1. Choose Edit – Preferences from the Design Browser.

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with SimVision

July 2010 48 Product Version 9.2

2. Under Plug-ins, choose Enable SystemVerilog Data Browser.

Preparing Your Design for the Data Browser

You must enable line debugging and read access to make the values of dynamic objects
visible in SimVision and the Data Browser.

To enable line debugging:

➤ Use the -linedebug option on the ncvlog or irun command line.

To enable read access:

➤ Use the -access r option on the ncelab or irun command line.

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with SimVision

July 2010 49 Product Version 9.2

Opening Data Browser Windows

As for other SimVision windows, you can open any number of Data Browser windows, and
the first one you open is the target, or default Data Browser window. You can make any Data
Browser the target by enabling the Target button, , in the lower left corner of the window.

To open a Data Browser window:

➤ Choose Windows – New – SystemVerilog Data Browser from the menu in any
SimVision window. The Data Browser opens and displays information about all dynamic
objects in the design.

➤ Click Data Browser, , in the Source Browser toolbar. If you have selected a class
object in the Source Browser or the Class Browser sidebar, the Data Browser opens and
displays information about that class object. If no class object is selected, but the debug
scope is within a class object, the Data Browser displays information about that class
object. Otherwise, the Data Browser displays information about all dynamic objects in the
design.

Tip

The Data Browser button sends selected objects to the target window. To send
objects to a new window, disable the Target button in the target Data Browser
window.

Figure 3-10 on page 50 shows a Data Browser window that contains a class object.

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with SimVision

July 2010 50 Product Version 9.2

Figure 3-10 Data Browser Window

For each object, the Data Browser displays the following information:

■ Name—Either the path to a SystemVerilog dynamic object or a class handle.

Note: Class constraints are not displayed in the Data Browser.

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with SimVision

July 2010 51 Product Version 9.2

■ Value—The class instance handle or the value of each data member or array element
at the current simulation time.

■ Size—The size of queues and arrays; otherwise blank.

■ Type—The class object type. For class data members, this column includes additional
information, such as whether the variable was randomized or protected.

The information in the table is similar to what the describe command returns.

To issue a describe command from the Data Browser:

➤ Right-click an object in the Data Browser and choose Describe from the pop-up menu.
The output from the describe command is displayed in the simulator tab of the
Console window.

Expanding and Collapsing a Dynamic Object

Non-null class objects, queues, and arrays can reference other SystemVerilog dynamic
objects, which can then be expanded in the Data Browser. The hierarchy for a queue or array
contains its elements. The hierarchy for a class object contains its data members, functions,
and tasks. Tasks and functions are listed under a pseudo-hierarchy, labeled Methods.

To expand or collapse an object:

➤ Click the + or - button next to the object name.

➤ Right-click the object and choose Expand All or Collapse All from the pop-up menu.

➤ Select the object and choose View – Expand All or View – Collapse All from the Data
Browser menu.

Refreshing the Data Browser Contents

The contents of Data Browser windows are automatically updated whenever the simulator
goes into an idle state, such as at a breakpoint. You can explicitly refresh the windows at any
time. For example, you might want to refresh the windows

■ When you perform a simulation reset or other operation that does not trigger an
automatic refresh.

■ When the design is large. The contents of the Data Browser window might be cut short
when the data exceeds the limit for the number of lines kept in the Console window. By
default, the limit is 5000 lines. You can increase this limit by going to the General Options

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with SimVision

July 2010 52 Product Version 9.2

tab of the Preference window and increasing the Maximum number of lines kept in
console.

■ When spurious output from the Console window appears in the Data Browser.
Sometimes, messages from the Console are inadvertently written to the Data Browser.
A refresh removes these messages.

To refresh the Data Browser contents:

➤ Click Refresh, .

Setting Breakpoints on Dynamic Objects

To set a breakpoint on a dynamic object:

➤ Select an object and click to set a breakpoint on a task or function of a class. The
breakpoint is triggered on any instance of that class.

➤ Select an object and click to set a breakpoint on a task or function of a specific class
instance.

Displaying Dynamic Objects for the Full Design

To display dynamic objects for the full design:

➤ Click .

This button is useful when you are viewing a single class object and want to add dynamic
objects for the full design, or when you have expanded a hierarchy by many levels and want
to quickly return to the top.

Sending Dynamic Objects to the Design Browser

To send dynamic objects to the Design Browser:

➤ Select the object and click Send to Design Browser, .

➤ Right-click the object and choose Send to Design Browser from the pop-up menu.

The Design Browser adds the object and its containing class to the signal list, if they are not
already there, and selects the object.

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with SimVision

July 2010 53 Product Version 9.2

Viewing Dynamic Objects in the Source Browser

To view a dynamic object definition in the Source Browser

➤ Select the object and click Send to Source Browser, .

➤ Right-click the object and choose Send to Source Browser from the pop-up menu.

To view a class handle declaration in the Source Browser

➤ Right-click the object and choose Send to Source Browser (handle declaration) from
the pop-up menu.

Sending Dynamic Objects to a New Data Browser Window

To send an object to a new Data Browser window:

➤ Right-click and choose Send to new Data Browser from the pop-up menu.

This technique is useful when you have isolated a dynamic object that you want to observe.

Setting the Debug Scope in the Data Browser

To set the simulator debug scope:

➤ Right-click a scope or class object and choose Set Debug Scope from the pop-up
menu.

Copying a Dynamic Object

To copy a dynamic object

➤ Right-click the object and choose Copy from the pop-up menu.

➤ Select the object and choose Edit – Copy from the Data Browser menu.

You can paste the object into another SimVision window. or paste the full path of the object
as text into a text-based window, such as an xterm window.

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with SimVision

July 2010 54 Product Version 9.2

SystemVerilog in Simulation

July 2010 55 Product Version 9.2

4
Accessing SystemVerilog Design
Objects with Tcl

See “Preparing SystemVerilog Designs for Simulation” on page 9 for information about how
to simulate a SystemVerilog design for debugging using Tcl.

Debugging Compilation Units with Tcl

In the current release, you can use the Tcl command-line interface to:

■ Describe a compilation unit scope (describe command)

■ Access objects within a compilation unit scope (value command)

■ Set the compilation unit scope (scope command)

Related topics:

■ “Compiling Source Files into Compilation Units” on page 20

■ “Accessing SystemVerilog Objects in the Design Browser” on page 23

■ “Compilation Units” in the SystemVerilog Reference

Accessing Compilation Units with Tcl

Compilation units are identified by the $unit_# designator, where # is a unique number
assigned to the compilation unit. You can refer to the current compilation with the $unit
designator.

Use the following Tcl commands to access compilation units:

describe $unit[_#][::object_specifier]

Returns information about the specified compilation-unit scope, or objects defined within
that scope.

../sysverilog/packages.html#compileunit

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 56 Product Version 9.2

value $unit[_#]::object

Returns the value of an object within a compilation unit.

scope -set $unit[_#]

Sets the current scope to the given compilation unit scope.

scope -show

Lists all of the compilation unit scopes under the heading Highest Level Modules.

scope $unit

Use this command from any scope to obtain the scope’s associated compilation-unit
scope.

Examples

This section lists two design source files that will be compiled together, then shows the results
of using the describe, value, and scope commands to list information about the compiled
result.

The following example defines an integer, a register, and a wire outside the module boundary,
and an integer and two registers inside the module:

integer a;
reg che;
wire [2:0] chetan;

module unit;
integer a;
reg che;
reg clk = 0;

always
#2 clk = ~clk;

always @clk
i = a;

initial
begin

#0 a = 0;
#5 a = 5;
#5 a = 2;
#5 a = 6;
#5 a = 9;
#5 a = 1;
#10 $finish;

end

endmodule

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 57 Product Version 9.2

The following example defines two integers and a packed structure outside the module
boundary, and an integer and a register inside the module:

integer i, j;
struct packed { bit A, B; } mem [0:1][0:1];

task t;
endtask

module test;
integer a;
reg clk = 0;

always
#2 clk = ~clk;

always @clk
i = a;

initial
begin

#0 a = 0;
#5 a = 5;
#5 a = 2;
#5 a = 6;
#5 a = 9;
#5 a = 1;
#10 $finish;

end

endmodule

When you compile and elaborate these two source files into a single snapshot, the compiler
creates

■ One compilation unit for the objects defined outside the module boundaries in both
source files

■ One design unit for each of the modules

For example, the following describe command returns the name and description of the
current compilation unit:

ncsim> describe $unit
$unit_0x7ecd0eae::...SystemVerilog Compilation Unit Scope

The describe command can return information about a specific object or all objects within
the compilation unit, as follows:

ncsim> describe $unit::a
$unit_0x7ecd0eae::a...variable integer = x

ncsim> describe $unit::*
$unit_0x7ecd0eae::i........variable integer = x
$unit_0x7ecd0eae::j........variable integer = x
$unit_0x7ecd0eae::mem......variable struct packed {

bit A = 1’h0
bit B = 1’h0

} array [0:1] [0:1] = ((’{A:1’h0, B:1’h0},’{A:1’h0,
 B:1’h0}), (’{A:1’h0, B:1’h0},’{A:1’h0, B:1’h0}))
$unit_0x7ecd0eae::a........variable integer = x

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 58 Product Version 9.2

$unit_0x7ecd0eae::che......variable reg = 1’hx
$unit_0x7ecd0eae::chetan...net (wire/tri) logic [2:0] = 3’h

The value command returns the value of objects within the compilation unit. For example:

ncsim> value $unit::mem
((’{A:1’h0, B:1’h0},’{A:1’h0, B:1’h0}), (’{A:1’h0, B:1’h0},’{A:1’h0, B:1’h0}))

You can use the scope command on compilation units, as well as modules. For example, the
scope -show command returns information that includes compilation units:

ncsim> scope -show
Directory of scopes at current scope level:

Current scope is (test)
Dependent compilation unit $unit_0x7ecd0eae::

Highest level modules:
unit
test
$unit_0x7ecd0eae

The following commands return the current scope, then set the scope to the compilation unit
associated with that scope:

ncsim> scope
test

ncsim> scope $unit

ncsim> scope
$unit_0x7ecd0eae::

Debugging Classes with Tcl

In the current release, you can use the Tcl command-line interface to

■ Describe a class object (describe command)

■ Determine a class instance handle (value command)

■ Determine the value of a class member (value command)

■ Traverse the class hierarchy (scope command)

■ Set breakpoints (stop command)

■ Analyze objects on the heap (heap command)

Note: Unless specified, the Tcl commands that are supported for non-parameterized classes
are also supported for parameterized classes.

Related topics:

■ “Accessing Classes in the SystemVerilog Class Browser” on page 29

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 59 Product Version 9.2

■ “Classes” in the SystemVerilog Reference

■ “Parameterized Classes” in the SystemVerilog Reference

Limitations on Tcl Commands for Parameterized Classes

Note the following when using Tcl commands on parameterized classes:

■ The current release supports Tcl expressions for automatic and static members, where
the prefix is the class handle. The current release does not support Tcl expressions that
use the class scope operator to access the static members.

■ The current release supports using object breakpoints with members of parameterized
classes. You can also use line breakpoints with parameterized class methods.

■ The current release does not support the Tcl force and drivers commands on
parameterized class handles or members of a parameterized class.

Tcl Syntax for Class Object Names

The Tcl interface describes a class object using the following syntax:

class_definition@heapIndex_reuseCount

class_definition

The name of the class definition.

heapIndex

An unsigned, non-zero decimal integer that represents the index for the class object in
dynamic memory (heap).

reuseCount

An unsigned, non-zero decimal integer that tracks the use or reuse of an instance
handle. The reuseCount number helps to uniquely identify a class object in both
space and time.

The @heapIndex_reuseCount represents the handle for a class object, also known as
the instance handle.

../sysverilog/classes.html#paramclass
../sysverilog/classes.html#firstpage

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 60 Product Version 9.2

Tcl Syntax for Parameterized Class Names

In the Tcl interface, a backslash must be placed before the # in a parameterized class name.
For example:

module test;
class c #(string s = "hi");

static reg r;
endclass
initial $display(c#("hi")::r);

endmodule
...
ncsim> value c\#("hi")::r

To avoid having to place a backlash before the #, you can use the @{name} syntax to access
a parameterized class using Tcl. For example:

ncsim> value @{c#("hi")::r}

or

ncsim> stop -condition {#@{c#("hi")::r} == 1}

Examples

The following example defines a class, simpleclass, and creates an instance of it, s1. The
$display task in the new() method uses the %+m formatting characters to display the
compilation unit, class definition, its heap index, and reuse count for c1. This example also
defines a parameterized class, paramclass, and a specialization of this class, specialz.
The $display task in the initial block does not use the %+m format string; it displays only
the instance handle:

class simpleclass;
function new;
$display ("I am here: %+m");
endfunction

endclass

class paramclass #(int i = 5 , string str = "8.1");
function void myfunc();

$display ("%d",i);
$display ("%s",str);

endfunction
endclass

typedef paramclass#() specialz;

module test;
simpleclass s1 = new;
paramclass p1 = new;
specialz z1 = new;

initial begin
$display ("Instance handle for s1 is:", s1);
$display ("Instance handle for p1 is:", p1);

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 61 Product Version 9.2

$display ("Instance handle for z1 is:", z1);
end

endmodule

When you run this example, the simulator displays the following messages:

% irun test.sv
...
I am here: $unit_0x118af7fb::simpleclass@2_1.new
Instance handle for s1 is:@2_1
Instance handle for p1 is:@3_1
Instance handle for z1 is:@4_1
ncsim: *W,RNQUIE: Simulation is complete.
ncsim> exit

Accessing Class Objects with Tcl

You can use the following Tcl commands to access class objects:

describe class_object

Provides a general description of a class object by characterizing its tasks, functions, and
data members, and by providing its instance handle

value static_object

Returns the value of a static object, but not a dynamic object

scope -set static_function

Scopes into a static function, but not a dynamic function

Example: Accessing Classes with Tcl

The following example models a dynamic class, C, that has static components:

module top;
class C;

static int staticValue;
int dynValue;
function new(int v);

dynValue = v;
staticValue = -v;

endfunction

// Access functions
static function int getStaticValue();

getStaticValue = staticValue;
endfunction
function getDynValue();

getDynValue = dynValue;
endfunction

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 62 Product Version 9.2

endclass

class simple #(int size = 1, byte width = 10);
bit [size-1:0] data1;
bit [size:size] data2;
bit [0:width] data3;

endclass

simple one = new;
simple #(2) two = new;
simple #(10) ten = new;

C c1;
int arg;

initial begin
c1 = new(417);
arg = C::getStaticValue();
$display(arg);
arg = c1.getDynValue();
$display(arg);

end

endmodule

Compile and elaborate this example with read, write, and connectivity access, so that the
simulator can display the values of variables. After you issue the simulator run command,
you can use the describe, value, and scope commands to access the class objects. For
example:

You can reference a static class member by using either a class reference or an instance
name:

ncsim> describe C::staticValue
C::staticValue...variable int = -417

ncsim> describe c1.staticValue
c1.staticValue...variable int = -417

When you reference dynamic data, the describe command displays the type of the object,
but not its value:

ncsim> describe C::dynValue
C::dynValue...variable int

When you try to access dynamic data, the value command returns an error:

ncsim> value C::dynValue
ncsim: *E,OBNOVL: Object does not have a value: top.C::dynValue.

You can scope into a static function, but not a dynamic function:

ncsim> scope -set top::C::getStaticValue

ncsim> scope -set top::C::getDynamicValue
ncsim: *E,PNOOBJ: Path element could not be found: getDynamicValue.

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 63 Product Version 9.2

For example, the following describes class specialization two:

ncsim> describe two
two........handle class top.simple#(2,8’h0a) = @2_1

The following describes class instance one:

ncsim> describe one
one........handle class top.simple#(1,8’h0a) = @1_1

For a detailed description of a class instance, use the -verbose qualifier with the describe
command.

ncsim> describe one -verbose
one........handle class top.simple#(1,8’h0a) {

bit [0:0] data1 = 1’h0
bit [1:1] data2 = 1’h0
bit [0:10] data3 = 11’h000
}

You can use the -handle qualifier with the describe command to describe a class using
its heap index. For example, the following describes class instance one, which has heap
index 1:

ncsim> describe -handle 1
1..........handle class top.simple#(1,8’h0a) {

bit [0:0] data1 = 1’h0
bit [1:1] data2 = 1’h0
bit [0:10] data3 = 11’h000

}

Example: Nested Classes

The following example defines two classes, A and B, where class A is nested inside class B.

module top;
class A;
static int statA;
int dynA;

endclass

class B;
A a1, a2;
function new();
a1 = new;
a2 = new;

endfunction
...
endclass

B b1 = new;
...
endmodule

When you have nested classes, you can use

■ scope to navigate the class hierarchy

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 64 Product Version 9.2

■ describe to return information about variables in the class

To scope into a nested class:

ncsim> scope -set top.b1.a1

To describe a member of a nested class:

ncsim> describe top.b1.a1.dynA
top.b1.a1.dynA...variable int = 0

To describe a static member of a nested class:

ncsim> describe top.b1.a2.statA
top.b1.a2.statA...static variable int = 0

Determining the Class Instance Handle from Tcl

An instance handle is a value that points to or represents a particular class object. A class
object can have only one instance handle, and an instance handle can point to only one class
object. However, multiple class variables can have the same instance handle.

You can determine the instance handle for a class object using the Tcl describe, where,
and value commands. If a class object is uninitialized, or a class handle reference is invalid,
the value command returns null.

Examples

This example defines a class, C, with one data member. The new() function assigns a value
to the data member, and the stopper task stops simulation when it is called. The initial
block creates an instance c1 of class C, calls the new() function with the data value 10, and
calls the stopper task. At that point, you can use Tcl commands to determine the class
instance handle.

module top;
class C;
int data;

function new (input int v);
data = v;

endfunction

task stopper();
$stop;

endtask

endclass

C c1;

initial begin

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 65 Product Version 9.2

c1 = new(10); // Creates the instance handle
c1.stopper;
#1 c1 = null;
c1 = new(20);
c1.stopper;

end
endmodule

Compile this example with read, write, and connectivity access.

At time 0, the class instance, c1, does not yet exist. The value command returns null:

ncsim> value c1
null

When you issue the run command, simulation runs until the c1.stopper task is called:

ncsim> run
Simulation stopped via $stop(1) at time 0 FS + 0
./classtcl.v:8 task stopper(); $stop; endtask

At that point, c1 has been allocated, and the value command returns its instance handle:

ncsim> value top.c1
@1_1

The describe command returns the instance handle, plus other information about the class
instance:

ncsim> describe top.c1
top.c1.....handle class top.C = @1_1

The where command returns scope and instance-related information about the current
execution point within the source file:

ncsim> where
Line 8, file "./classtcl.v", scope (top.C@1_1.stopper)
Scope is (top.C@1_1.stopper)

The scope reported by the Tcl where command provides information about the instance that
stopped class C.

Listing Class Instance Handles with Tcl

You can use the Tcl value command with the -classlist option to produce a list of class
instance handles. The -classlist option produces a global list—a report based on all
class objects, regardless of the current debug scope. To focus on a particular class object,
you must provide a class name with the -classlist option.

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 66 Product Version 9.2

Examples

This example defines two classes, A and B, and creates an array of class instances for each
class:

module top;

class A; int value; endclass
class B; int neg; endclass

int i;
A cla [];
B clb [];

initial begin
cla = new[3];
clb = new[3];

for (i=0; i<3; i++) begin
cla[i] = new;
clb[i] = new;

end
end

endmodule

Compile this example with read, write, and connectivity access, then issue the run command
at the simulator prompt. You can then use the value command with the -classlist option
to return a list of all instance handles:

ncsim> value -classlist
@3_1 @4_1 @5_1 @6_1 @7_1 @8_1

To return the instance handles for the instances of class B, specify the name of the class as
an argument to the -classlist option:

ncsim> value -classlist B
@4_1 @6_1 @8_1

If you pass the results of the value command to describe, it returns information about
each instance in the list:

ncsim> describe [value -classlist top.A]
top.A@3_1...handle class top.A {

int value = 0
}

top.A@5_1...handle class top.A {
int value = 0

}
top.A@7_1...handle class top.A {

int value = 0
}

Determining the Value of a Class Member with Tcl

The value command on a class data member returns the value of the data member.

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 67 Product Version 9.2

Examples

The following example defines a class, C, with one data member, data. The new() function
assigns a value to the data member, and the stopper task stops simulation when it is called.
The initial block creates an instance c1 of class C, calls the new() function with the data
value 10, and calls the stopper task. At that point, you can use Tcl commands to determine
the value of the class data member. When you resume simulation, the example creates
another instance of c1 and assigns the value 20 to the data member. You can examine this
data member when the stopper task suspends simulation.

module top;
class C;
int data;

function new (input int v);
data = v;

endfunction

task stopper();
$stop;

endtask

endclass
C c1;

initial begin
c1 = new(10); // Creates the instance handle
c1.stopper;
#1 c1 = null;
c1 = new(20);
c1.stopper;

end
endmodule

Compile this example with read, write, and connectivity access, then issue the run command
from the simulator prompt:

ncsim> run
Simulation stopped via $stop(1) at time 0 FS + 0
./classtcl.v:9 $stop;

The value command returns 10:

ncsim> value top.c1.data
10

The where command returns scope and instance-related information about the current
execution point within the source file. Notice that the instance handle for this class instance
is @1_1:

ncsim> where
Line 8, file "./classtcl.v", scope (top.C@1_1.stopper)
Scope is (top.C@1_1.stopper)

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 68 Product Version 9.2

Issue the run command again to allocate the second class instance:

ncsim> run
ncsim: *W,SCPINV: Dynamic scope ‘top.C@1_1.stopper’ no longer valid -
traversing to last valid scope ‘top’.
Simulation stopped via $stop(1) at time 1 NS + 0
./classtcl.v:9 $stop;

You can display the value of the data member by using either of the following references as
an argument to the value command:

ncsim> value top.c1.data
20

ncsim> value top.C@1.data
20

This time, the where command returns the instance handle @1_2, because this is the second
instance of c1 that has been created:

ncsim> where
Line 8, file "./classtcl.v", scope (top.C@1_2.stopper)
Scope is (top.C@1_2.stopper)

The reuseCount changes to reflect that the original class object has been lost over time.
When using the class_definition@heapIndex_reuseCount form as an argument
to the Tcl value command, reuseCount is optional. However, you can use the
reuseCount syntax only at the point where that unique reuseCount is active.

After the second class object has been allocated, you cannot access the first:

ncsim> value top.C@1.data
20
ncsim> value top.C@1_2.data
20
ncsim> value top.C@1_1.data
ncsim: *E,HPIUSE: Heap Index Reused: this heap location has been garbage
collected and re-allocated: top.C.

If you try to refer to the @1_1 instance handle, the simulator returns an error.

Traversing the Class Hierarchy with Tcl

The following scope commands can help you traverse a class hierarchy, much like
module-based design hierarchies.

scope -set scope_name

Sets the scope to the specified scope_name

The scope_name can be a class handle, such as top.d1; an instance handle, such
as @ 1_1; or a class instance, such as @1.

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 69 Product Version 9.2

scope -up
scope -set -up

Sets the debug scope to one level up the hierarchy from the current scope.

When the current scope is within a class hierarchy, you cannot use the Tcl scope -up
or scope -set -up commands to ascend a design hierarchy. The simulator cannot
always determine the parent scope of a particular class object.

scope -describe [scope_name]

Provides a generic description of the class objects and class variables in the specified
scope. If a scope_name is not specified, this command describes the class objects and
class variables in the current scope.

The scope_name can be a class handle, such as top.d1; an instance handle, such
as @ 1_1; or a class instance, such as @1.

scope class_variable
scope -set class_variable

Scopes into a class object using the value of a class variable. For example:

ncsim> value top.d1
@1_1
ncsim> scope top.d1
;# Same as the following:
ncsim> scope [value top.d1]

When used with a class variable, the scope command scopes into a class object whose
handle matches the value of d1.

scope -super | -derived

Sets the current scope to either the super class or a derived class.

scope -history

Lists all scopes, in the order in which they were entered. If a scope is no longer valid, it
is removed from the history list.

scope -back

Sets the scope to the scope used just prior to the current scope.

This command does not affect the scope -history command.

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 70 Product Version 9.2

scope -forward

If you are traversing the scope history, this command changes the debug scope to the
scope recorded after the current scope.

This command does not affect the scope -history command.

scope -set running
scope -running

Sets the scope to the running scope, which is the scope associated with the current
process.

stack

Returns the tasks and functions currently on the call stack, listing the entire call stack
used by the base process to reach the current execution point. This includes the
following:

❑ HDL stack frames for export functions and tasks and SystemVerilog functions and
tasks called from them

❑ C stack frames for import functions and tasks and C functions called from them

You can use this command when debugging DPI exported functions and tasks invoked
from context or non-context domains. As a requirement, you should compile the DPI
code (C/C++/SystemC files containing imported functions and calls from them to
exported functions) with the debug flag -g, without optimization (the -O flag).
Optimization flags can modify stack frame pointers, which may result in an incorrect
listing of the C stack frames.

If the DPI call chain was initiated in a SystemC context (via a method or thread), the base
process is listed as a SystemC thread or SystemC method. For export functions invoked
from non-context domains, however, the frame stack is listed with the name of the
callback (like cbNBASynch) or the initial callback from which the DPI call chain was
initiated.

Note: You cannot use the -set option to set the SystemVerilog call stack.

Examples: Non-Parameterized Classes

The following example defines a package, pack, that defines a class, A. The top module
extends A, by adding a task, bTask, and an integer, value:

package pack;
class A; int aVal; endclass

endpackage

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 71 Product Version 9.2

module top;
 class B extends pack::A;

task bTask();
int value;
$display(value);
endtask

endclass

B b = new;
endmodule

Compile and elaborate this example, then issue the run command from the simulator prompt.

The following command uses the class handle, top.b, to specify the scope:

ncsim> scope -set top.b

The following command uses the instance handle, @1_1, to specify the scope:

ncsim> scope -set @1_1

The following command sets the scope by using the value of b:

ncsim> scope top.b

In all of these cases, the scope command returns the following scope:

ncsim> scope
top.B@1_1

You can use the -history option to return the list of scopes that you have visited:

ncsim> scope -history
1) top

* 2) top.B@1_1
Where: * => current debug scope

When you reset the simulation, the dynamic scope is removed. For example:

ncsim> reset
ncsim: *W,SCPINV: Dynamic scope 'top.B@1_1' no longer valid - traversing to
last valid scope 'top'. Loaded snapshot worklib.top:module

Even after you rerun the simulation, the history does not include the removed scope:

ncsim> run
ncsim> scope -history
* 1) top
Where: * => current debug scope

You can scope into a task, but you cannot scope into a base class from within a task scope:

ncsim> scope b.bTask ; scope
top.B@1_1.bTask

ncsim> scope -super
ncsim: *E,SCPSP2: Current debug scope is not a class instance : top.B::bTask.

To scope into a base class, you must first scope into one of its derived classes. For example:

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 72 Product Version 9.2

ncsim> scope -up ; scope
top.B@1_1

ncsim> scope -super ; scope
pack::A@1_1

The describe command returns the following description of the class objects and class
variables in the current scope, pack::A@1_1:

ncsim> scope -describe
aVal.............variable int = 0

The -derived option takes you back to the scope of the derived class, top.B@1_1:

ncsim> scope -derived ; scope
top.B@1_1

At this point, the -history option returns the following list of scopes that have been visited:

ncsim> scope -history
1) top
2) top.B@1_1.bTask

* 3) top.B@1_1
4) pack::A@1_1
5) top.B@1_1

Where: * => current debug scope

Given this history, the -back and -forward options take you backward and forward through
the scopes in the list:

ncsim> scope -back ; scope
pack::A@1_1

ncsim> scope -back ; scope
top.B@1_1

ncsim> scope -forward ; scope
pack::A@1_1

The following example defines a class, frame, and an instance of the class, f1. The
initial block allocates storage for f1, then suspends the simulation:

module top;

class frame;
int a;
task stopper();
$stop;

endtask

endclass:frame

frame f1;

initial begin
f1 = new;
#1 f1.stopper();

end
endmodule

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 73 Product Version 9.2

Before running the following commands, compile and elaborate the example, then issue the
run command from the simulator prompt.

The where command tells you that the current scope is within the stopper() task of the
class instance @1_1:

ncsim> where
Line 6, file "./test.v", scope (top.frame@1_1.stopper)
Scope is (top.frame@1_1.stopper)

The following command sets the current scope to top:

ncsim> scope top ; scope
top

You can use the -running option to set the scope to the current execution point:

ncsim> scope -running ; scope
top.frame@1_1.stopper

The stack command returns the tasks and functions currently on the call stack:

ncsim> stack
0: task top.frame@1_1.stopper at ./test.v:6
1: initial block in top at ./test.v:15

Example: Parameterized Classes

When used on a hierarchy that contains class specializations, the scope -describe
command provides a generic description of the parameterized classes and class
specializations in the specified scope. If a scope_name is not specified, this command
describes the class objects and class variables in the current scope. For the following
example:

module top;

class simple #(int size = 1, byte width = 10);
bit [size-1:0] data1;
bit [size:size] data2;
bit [0:width] data3;

endclass

simple one = new;
simple #(2) two = new;
simple #(10) ten = new;

typedef int my_int;
typedef struct packed { bit a; shortint b; } tPS;

class vector #(
bit a = 1’b1,
logic b = 1’bz,
bit [3:0] c = 4’ha,
byte d = ’hab,
int e = 64,
my_int f = 17,

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 74 Product Version 9.2

tPS ps = 17’h1dead
);
bit [d-1:0] data1;
bit [e-1:0] data2;

endclass

vector vec1 = new;
vector #(0,1,4’hc,’hcd,43) vec2 = new;

endmodule

you can get this information:

% irun -tcl -access rwc test.sv
...

ncsim> run
ncsim: *W,RNQUIE: Simulation is complete.
ncsim> scope -describe
simple.....class #(size,width) {...}
one........handle class top.simple#(1,8’h0a) = @1_1
two........handle class top.simple#(2,8’h0a) = @2_1
ten........handle class top.simple#(10,8’h0a) = @3_1
my_int.....typedef int
tPS........typedef struct packed {...}
vector.....class #(a,b,c,d,e,f,ps) {...}
vec1.......handle class top.vector#(1’h1,1’hz,4’ha,8’hab,64,17,’{a:1’h1,
b:-8531}) = @4_1
vec2.......handle class top.vector#(1’h0,1’h1,4’hc,8’hcd,43,17,’{a:1’h1,
b:-8531}) = @5_1

Setting Object Breakpoints within Classes with Tcl

The Tcl stop -object command sets a breakpoint that triggers when a class object
changes value or is written.

The stop -object command has the following syntax:

stop -object classObject

classObject

Specifies the class object on which to set the breakpoint. You can specify a class handle,
instance handle, class instance, or class property.

Note: Breakpoints set using the class instance handle do not persist beyond the life of the
specified class object; they are garbage-collected when a class object is no longer valid.
When the instance is no longer valid, the simulator stops and produces a message noting that
the stop is no longer valid.

The following commands are not supported in the current release:

stop -object *

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 75 Product Version 9.2

You cannot set a breakpoint on all properties.

stop -object dereferenced_class_handle

You cannot set a breakpoint on a dereferenced class handle.

Examples
module top;

class C;
static int staticVar;
int dynamicVar;

// Writes to a static variable
task
setStatic(int v);
staticVar = v;

endtask
// Writes to a dynamic variable

task setDynamic(int v);
dynamicVar = v;

endtask

// Writes to a local variable within the task scope
task setLocal(int v);
int localVar;
localVar = v;

endtask
endclass:C

C cl1, cl2;

initial begin
cl1 = new; // cl1 trigger
cl2 = new; // no trigger
#1 cl1.setStatic(417);
#1 cl1.setDynamic(93);
#1 cl1.setLocal(54);

// Writes to share static variable through cl2
#1 cl2.setStatic(-14);
end
endmodule

The following command sets a breakpoint on a class handle, then runs the simulation up to
that breakpoint:

ncsim> stop -object cl1
Created stop 1

ncsim> run
0 FS + 0 (stop 1: top.cl1 = @1_1)
./stopobj.v:23 cl1 = new; // cl1 trigger

When simulation stops at this breakpoint, an instance of c1 has been allocated. At this time,
you can set breakpoints on the class instance, as follows:

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 76 Product Version 9.2

ncsim> stop -object @1_1
Created stop 2

These commands set breakpoints on class properties:

ncsim> stop -object C::staticVar
Created stop 3

csim> stop -object @1_1.dynamicVar
Created stop 4

This command sets a breakpoint by using the variable value syntax:

ncsim> stop -object [value cl1]
Created stop 5

Each run command executes up to the next breakpoint. If the simulator encounters multiple
breakpoints at the same time, it reports all of the breakpoints encountered:

ncsim> run
1 NS + 0 (stop 2: top.C@1_1)
1 NS + 0 (stop 3: top.C::staticVar = 417)
1 NS + 0 (stop 5: top.C@1_1)
./stopobj.v:8 task setStatic(int v); staticVar = v; endtask
ncsim> run
2 NS + 0 (stop 2: top.C@1_1)
2 NS + 0 (stop 4: top.C@1_1.dynamicVar = 93)
2 NS + 0 (stop 5: top.C@1_1)
ncsim> run
4 NS + 0 (stop 2: top.C@1_1)
4 NS + 0 (stop 3: top.C::staticVar = -14)
4 NS + 0 (stop 5: top.C@1_1)
./stopobj.v:8 task setStatic(int v); staticVar = v; endtask
ncsim> run
ncsim: *W,RNQUIE: Simulation is complete.

Setting Line Breakpoints within Classes with Tcl

The Tcl stop -line command sets a breakpoint that triggers when a specified line number
is about to execute. You can use the Tcl stop -line command to stop on a line within a
given class method. This command can set a breakpoint on the line within the current scope,
a specified scope, or all scopes.

Note: You cannot set a line breakpoint unless you have compiled with the -linedebug
option. See the “Incisive Simulator Tcl Commands” chapter of the Incisive Simulator Tcl
Command Reference.

The stop -line command has the following syntax:

stop -line line_number [scope_name] [-all]

line_number

Specifies the line number on which you want to set the breakpoint.

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 77 Product Version 9.2

scope_name

Specifies the class instance to which the breakpoint is applied. You can specify the
scope_name as a class instance, instance handle, or variable value. If you do not
specify a scope_name, the command sets the breakpoint on the specified line within
the current scope.

To set the current scope, use the scope -set command. See “Traversing the Class
Hierarchy with Tcl” on page 68 for information about the scope -set command.

-all

Sets the breakpoint on the line number within all scopes.

The stop -line command cannot be applied to class objects with null values.

To set a breakpoint on an instance of a derived class that stops within its parent class, do one
of the following:

■ If the current debug scope is the class object, use the scope -super command to
traverse through the class hierarchy until you reach the parent class. From there, you can
issue the stop -line command.

■ Use the parent_class@instance_handle_reuse_count form as an
argument to the stop -line command. For example:

stop -line parentClass@i1_i2

Examples

The following example defines a class, C, and two class instances, cl1 and cl2. The class
defines one data value, a show() task to display information about the class instance, and a
new() function:

1 module top;
2 class C;
3 int value;
4
5 task show;
6 $display("Class data follows");
7 $display("Value=%d", value);
8 $display("Complement=%d", ~value);
9 $display("Finished");
10 endtask
11
12 function new (int v);
13 value = v;
14 endfunction
15 endclass
16
17 C cl1, cl2;
18

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 78 Product Version 9.2

19 initial begin
20 cl1 = new(10);
21 cl2 = new(20);
22 $stop;
23
24
25 // This call will stop for breaks 1 and 2
26 cl1.show();
27
28 // This call will stop for breaks 1 and 3
29 cl2.show();
30 end
31 endmodule

Compile this example for read, write, and connectivity access, and for line debugging, then
issue the run command to allocate the class instances.

The following breakpoint applies to all class instances at line 9, while the remaining are for
specific class instances at lines 7 and 8:

ncsim> stop -line 9 -all
Created stop 1

This breakpoint applies to cl1 at line 7:

ncsim> stop -line 7 @1
Created stop 2

The following breakpoint applies to cl1 at line 8:

ncsim> stop -line 8 cl2
Created stop 3

Each run command executes up to the next breakpoint:

ncsim> run
Class data follows
0 FS + 0 (stop 2: ./class9.sv:7)
./class9.sv:7 $display("Value=%d", value);

ncsim> run
Value= 10
Complement= -11
0 FS + 0 (stop 1: ./class9.sv:9)
./class9.sv:9 $display("Finished");

ncsim> run
Finished
Class data follows
Value= 20
0 FS + 0 (stop 3: ./class9.sv:8)
./class9.sv:8 $display("Complement=%d", ~value);

ncsim> run
Complement= -21
0 FS + 0 (stop 1: ./class9.sv:9)
./class9.sv:9 $display("Finished");

ncsim> run
Finished
ncsim: *W,RNQUIE: Simulation is complete.

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 79 Product Version 9.2

Using the heap Command with Classes

The Tcl heap command provides information about objects allocated onto the heap. Objects
are allocated onto the heap when the new function is used to allocate storage for a dynamic
object, such as a class object.

Displaying Heap Data

You can use the following commands to display information about the heap:

heap -size

Displays the number of objects in the heap, and the total size in bytes of the allocated
data.

heap -show

Displays information about objects in the heap, including the number of objects in the
heap, their allocated handles, and heap system parameters.

For more information about heap system parameters, refer to “Running Garbage
Collection” on page 81

heap -show -verbose

Using the -verbose option also displays where the object was allocated, the size and
type of the object, and its current value.

heap -report [options]

Gathers and reports information about heap usage during the course of simulation. See
“Generating Heap Usage Reports” on page 83 for more information on this command.

Examples

The following example defines two classes, c1 and c2, and creates several instances of
those classes:

module top;
int myq[$];
int queueSize;

class c1;
real r;
byte u;
byte u1;
real r1;
integer p1;

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 80 Product Version 9.2

endclass

class c2;
real r;
integer foo;
integer p1;
integer p2;

endclass

reg [63:0] addr[];
c1 pc1, pc12, pc13;
c2 pc2;
integer i1;

initial
begin
#100;
pc1 = new;
pc2 = new;
pc12 = pc1;
pc13 = pc12;
queueSize = 10;

end

task queueInit(input int qsiz);
for (int j = 0; j <= qsiz; j++)
begin
myq.push_back(j);

end
endtask

endmodule

Compile this design with the -sv option, elaborate it with read, write, and connectivity access,
then invoke the simulator in Tcl mode.

At the start of simulation, no objects have been allocated on the heap, so the heap -size
command returns no information:

ncsim> heap -size

After you run the simulation, the command returns information about the class objects that
have been allocated, as follows:

ncsim> run
ncsim> heap -size
2 objects allocated on heap
112 total storage bytes

The size reflects the number of times the new function was invoked.

The heap -show command returns information about the objects that have been allocated
on the heap. For example, the following command returns handles 3 and 4, because the first
two handles were internally allocated:

ncsim> heap -show
2 objects allocated on heap

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 81 Product Version 9.2

User Allocated Handles: 3, 4
Heap System Parameters:

Garbage collection size policy (%)= -200
Garbage collection time policy (sec) = (default)

If you use the -verbose option, heap -show includes information about the handles that
were allocated:

ncsim> heap -show -verbose
User Allocated Handles: 3 , 4
3..........handle class test_top.c1 {

real r = 0
byte u = 8’h00
byte u1 = 8’h00
real r1 = 0
integer p1 = x

}
Object size = 64 Bytes
Handle has 2 reference

4..........handle class test_top.c2 {
real r = 0
integer foo = x
integer p1 = x
integer p2 = x

}
Object size = 48 Bytes
Handle has 1 reference

Heap System Parameters:
Garbage collection size policy (%) = -200
Garbage collection time policy (sec) = (default)

Running Garbage Collection

To run garbage collection on the heap, use the heap -gc command. In addition, use the
following predefined Tcl variables with the Tcl set command to control when garbage
collection is initiated. These variables also control the heap system parameters displayed
when you issue the heap -show command:

■ heap_garbage_size

Triggers garbage collection when the size of the heap has increased since the last
garbage collection.

A positive value specifies an increase in bytes. For example, the following command
triggers garbage collection when the heap has increased by 5 bytes:

ncsim> set heap_garbage_size 5

A negative value specifies an increase in percentage. For example, the following
command triggers garbage collection when the heap has increased by 5%.

ncsim> set heap_garbage_size -5

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 82 Product Version 9.2

The default value is -200. Setting this variable to 0 disables the check.

■ heap_garbage_time

Specifies the number of seconds to wait before triggering the next garbage collection.

For example, the following command triggers garbage collection every 7 seconds.

ncsim> set heap_garbage_time 7

The default value is 0. A value that is less than or equal to 0 disables the check.

■ heap_garbage_check

Specifies which simulation event triggers garbage collection. You can specify the
following events:

❑ SVH_CHK_NEW—On any new operation

❑ SVH_CHK_ASSIGNALL—On any assignment to a handle

❑ SVH_CHK_ASSIGN—On any assignment to a handle that decrements a reference
count

❑ SVH_CHK_DEREF—On any dereference operation

For example:

ncsim> set heap_garbage_check SVH_CHK_NEW

The default value is SVH_CHK_ASSIGN. A value of 0 disables these checks.

To see the latest values for the heap_garbage_size and heap_garbage_time variables,
display the heap system parameters using the heap -show command. For example:

ncsim> set heap_garbage_size 5
5

ncsim> heap -show
2 objects allocated on heap
User Allocated Handles: 3 , 4
Heap System Parameters:

Garbage collection size policy (%) = 5
Garbage collection time policy (sec) = (default)

ncsim> set heap_garbage_time 7
7

ncsim> heap -show
2 objects allocated on heap
User Allocated Handles: 3 , 4
Heap System Parameters:

Garbage collection size policy (%) = 5
Garbage collection time policy (sec) = 7

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 83 Product Version 9.2

Generating Heap Usage Reports

You can use the heap -report command to gather and report information about heap
usage during simulation. You can use this command to generate several types of report:

■ Object distribution—Reports how many classes, queues, and strings are currently
allocated on the heap. This is the default.

■ Object type—Reports the names, sizes, and reference counts of all objects of a given
type.

■ Object references—Reports references to and from a specific dynamic object.

■ Object size— Reports instance sizes, or container objects and their contents, as well as
information about a specific heap object or type of heap object.

The heap -report command has the following syntax:

heap -report [-redirect path | -append path]
[-distribution | -type object_type | -reference class_object] [-limit n]

-redirect path

Specifies the path to the file where the report is written. If the file does not exist, it is
created; if the file does exist, it is overwritten. If you do not specify this option, the report
is written to the standard output device. The report data is timestamped with the current
simulation time.

-append

Similar to the -redirect option, but appends the data to the report file, if it exists. If a
report file does not exist, it creates one. The appended report data is timestamped with
the current simulation time.

-distribution

Produces a distribution report. This is the default.

-type object_type

Specifies the type of heap object for which to produce a report. This option reports the
definitions used, the number of instances of each definition, and the memory footprint of
each instance. The object_type argument can be one or more of the following
characters:

s String
e Event
g Cover group

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 84 Product Version 9.2

a Associative array
q Queue
d Dynamic array
c Class
V Virtual interface
m Mailbox
4 Semaphore

The default limit on the number of objects reported by this subcommand is set to 10000.

-reference class_object

Produces a reference report, indicating references to and from the specified class object.
The default limit on the number of objects reported by this subcommand is set to 10000.

-limit n

Limits the number of items to be reported on to n, where n is an unsigned decimal
integer. Use this option to override the default limit (10000) for flexibility on the amount
of information generated by the -reference and -type subcommand.

Examples

The following example defines a class, C, and two queues, q1 and q2. A for loop creates
instances of these objects, then stops so that you can examine heap usage:

module top;
class C;

int value;
endclass // C

int i, q1 [$];
C c1, q2 [$];

initial begin
for (i=0; i<4; i++) begin

q1.push_front(i);
c1 = new;
q2.push_front(c1);

end
end

endmodule

The heap -report command can return information about the heap usage for these
memory objects. Before you can run the commands shown here, you must compile and
elaborate the example with read, write, and connectivity access, start the simulator in Tcl
mode, and issue the run command to allocate storage for the objects.

The following command produces a distribution report, showing a list of all dynamic objects
on the heap and their sizes:

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 85 Product Version 9.2

ncsim> heap -report
Queue: 2 [96 bytes]

Q or AA Value: 4 [128 bytes]
Class: 1 [32 bytes]

Each time you issue the run command, you can generate a report about the current heap
usage. For example:

ncsim> run
Simulation stopped via $stop(1) at time 0 FS + 0
./test.sv:14 $stop;
ncsim> heap -report -distribution

Queue: 2 [96 bytes]
Q or AA Value: 6 [192 bytes]

Class: 2 [64 bytes]
ncsim> run
Simulation stopped via $stop(1) at time 0 FS + 0
./test.sv:14 $stop;
ncsim> heap -report -dist

Queue: 2 [96 bytes]
Q or AA Value: 8 [256 bytes]

Class: 3 [96 bytes]

The following command returns information about the class instances:

ncsim> heap -report -type c
3 objects of type : Class [96 bytes]

Index - Datatype - Hierarchical Pathname
1:handle class top.C queue top.q2 [48 bytes]
6:handle class top.C queue top.q2 [32 bytes]
9:handle class top.C queue top.q2 [32 bytes]

12:handle class top.C top.c1 [32 bytes]

You can specify more than one report type, as follows:

ncsim> heap -report -type cq
3 objects of type : Class [96 bytes]

Index - Datatype - Hierarchical Pathname
1:handle class top.C queue top.q2 [48 bytes]
6:handle class top.C queue top.q2 [32 bytes]
9:handle class top.C queue top.q2 [32 bytes]

12:handle class top.C top.c1 [32 bytes]
2 objects of type : Queue [96 bytes]

Index - Datatype - Hierarchical Pathname
1:handle class top.C queue top.q2 [48 bytes]
3: int queue top.q1 [48 bytes]

To generate a report of references for a particular class object, use the -reference option,
as follows:

ncsim> heap -report -reference c1
References to c1:

top.c1
top.q2

To generate a report about references for all class objects on the heap, use the value
-classlist command as an argument to the -reference option, as follows:

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 86 Product Version 9.2

ncsim> heap -report -reference [value -classlist]
References to top.C@6_1:

top.q2
References to top.C@9_1:

top.q2
References to top.C@12_1:

top.c1
top.q2

Debugging Constraints with Tcl

In the current release, you can use the Tcl command-line interface to

■ Set breakpoints on randomize() calls by using the stop command

■ Enable random variables and constraints by using the deposit command

■ Add a new constraint by using the constraint command

■ Execute randomize() calls by using the run command

Related topics:

■ “Controlling Constraint Warnings from the Command Line” on page 10

■ “Using the -svrnc Option to Control the Solver” on page 11

■ “Setting an RNG Default Seed from the Command Line” on page 14

■ “Random Constraints” in the SystemVerilog Reference

Stopping on Calls to randomize() with Tcl

The Tcl stop command includes options for creating or operating breakpoints on calls to
randomize(), as follows:

stop -create -randomize [object]

Stops at the end of randomize() calls that are about to evaluate to false (return value
of zero).

Use the optional object argument to stop in specific randomize() calls. The object
can be a class or module name. The simulator stops on any randomize() calls that are
about to fail within the specified class or module.

stop -create -randomize -always [object]

Stops at all randomize() calls, regardless of their return status.

../sysverilog/randomization.html#firstpage

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 87 Product Version 9.2

Use the optional object argument to stop in specific randomize() calls. The object
can be a class or module name. The command stops on any randomize() call within
the specified class or module.

These command options are supported for calls to class and scope randomize methods, and
can be entered at any time by using the simulator Tcl command line. When the stop occurs,
the simulator displays the current location in the Verilog code.

Tip

You can use any simulator command while you are in a randomize() stop. To
continue with the simulation, use the run command. To delete a breakpoint, use the
stop -delete name command.

For more information about the stop command, see the “Incisive Simulator Tcl Commands”
chapter of the Incisive Simulator Tcl Command Reference.

Enabling Random Variables and Constraints with Tcl

The deposit command lets you enable or disable a constraint or random variable. When a
constraint is enabled, it is included in the set of constraints that are solved. Otherwise, the
solver ignores the constraint. When a rand or randc variable is enabled, the solver
generates a new value for the variable. Otherwise, the solver does not change the current
value of the variable. The deposit command has the following syntax:

deposit -rand_mode object_name [=] 0|1

Enables or disables the specified rand or randc variable. Use 0 to disable a variable or
1 to enable a variable.

The object_name must be a simple name that denotes a rand or randc variable in
the class of the current randomize() call. It cannot be a handle, struct, or array.

deposit -constraint_mode constraint_name [=] 0|1

Enables or disables the specified constraint. Use 0 to disable the constraint or 1 to
enable the constraint.

The -rand_mode and -constraint_mode options

■ Are available only when stopped inside a randomize() call.

■ Are available for class randomize calls; they are not supported for scope randomize calls.

■ Must appear first in the Tcl command line, and cannot be used with other deposit
options.

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 88 Product Version 9.2

■ Set values that persist for the class instance of the current randomize() call. That is,
when you continue the simulation using the run command, these values remain set and
affect other randomize() calls of the same class instance. New values also affect static
rand and randc variables for all instances of the class.

For more information about the deposit command, see the “Incisive Simulator Tcl
Commands” chapter of the Incisive Simulator Tcl Command Reference.

Adding a New Constraint from Tcl

Use the following command to add a new constraint to the current class randomize call:

constraint constraint_expression

The constraint_expression is a simple expression that has the following form:

operand_1 operator operand_2

operand_1 and operand_2

Unsigned integers or variables. If they are variables, they must be random variables
declared in the class of the current randomize() call; they cannot use hierarchical
references.

operator

One of the following operators: ==, !=,>, >=, <, or <=

If there is any whitespace between the operands and the operator, you must use double
quotes. For example:

constraint intl==200

constraint "intl == 200"

This command creates a persistent constraint, in that it remains in effect even after you
complete the randomize() debugging session. You can clear all of the constraints for the
current debugging session by using the constraint -clear command.

Note: In the current release, you cannot use the constraint command in scope
randomize() calls.

Executing randomize() Calls with Tcl

Use the run command with the -rand_solve option to execute the current randomize()
call again. The simulator uses the currently enabled constraints and variables, and the
current state variable values.

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 89 Product Version 9.2

Note the following for the -rand_solve option:

■ This option is valid only when the simulation has stopped within a randomize() call.

■ This option cannot be used with other options in the run command.

■ New randc values are generated for each execution of the run -rand_solve
command.

■ If the solver succeeds, it copies the newly generated random values to the rand and
randc variables.

■ If you use the run command without the -rand_solve modifier to continue the
simulation from a randomize() breakpoint, it returns the status from the most recent
run -rand_solve command.

■ After the run -rand_solve command re-executes the randomize() call, the
simulator stops and returns to the Tcl prompt. You must use the run command to
continue out of the randomize() call.

Example: Debugging randomize() Calls with Tcl

The following code shows how to debug randomize() calls by using the stop, deposit,
and run commands.

module top;

integer i4, i5;

class c1;

rand integer r1;
rand integer r2;
rand integer r3;

constraint con1 { r1 == 111; }
constraint con2 { r2 == 888; }

endclass

c1 ch1 = new;
integer res;

initial begin

ch1.r1 = 111;
ch1.r2 = 777;
ch1.r3 = 666;
i4 = 444;
i5 = 555;
res = ch1.randomize();

$display("ch1.r1 = %d", ch1.r1);
$display("ch1.r2 = %d", ch1.r2);

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 90 Product Version 9.2

res = randomize(i4) with { i4 == i5; };

$display("i4 = %d", i4);

end
endmodule

The following sequence of commands illustrates how you can control breakpoints on
randomize() calls, enable or disable constraints and random variables, and re-execute
randomize() calls.

To run these commands, you must compile and elaborate the example with the read, write,
and connectivity access, then invoke the simulator in Tcl mode.

The following commands set a breakpoint on all randomize() calls, then run the simulator
until it reaches the breakpoint:

ncsim> stop -create -randomize -always
Created stop 1

ncsim> run
SVSEED default:1
./test.v:28 res = ch1.randomize();

The following constraint command sets a constraint on r3. However, the value of r3 does
not change until you re-execute the randomize() call with run -rand_solve:

ncsim> constraint r3==999

ncsim> value ch1.r3
-1634031043

ncsim> run -rand_solve
ncsim: *N,DBGSLV: The randomization solver returned this status: 1 (success).

ncsim> value ch1.r3
999

The constraint -clear command clears the constraint on r3, and run -rand_solve
re-executes the randomize() call:

ncsim> constraint -clear
ncsim> run -rand_solve
ncsim: *N,DBGSLV: The randomization solver returned this status: 1 (success).

The following commands disable r1 and re-execute the randomize() call:

ncsim> deposit -rand_mode r1 = 0
ncsim> run -rand_solve
ncsim: *N,DBGSLV: The randomization solver returned this status: 1 (success).

The value command returns the new values of ch1.r1 and ch1.r2:

ncsim> value ch1.r1
111
ncsim> value ch1.r2
888

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 91 Product Version 9.2

The run command continues the simulation until the next breakpoint at a randomize() call:

ncsim> run
ch1.r1 = 111
ch1.r2 = 888
./test.v:31 res = randomize(i4) with { i4 == i5; };

The following commands return the current value of i4, deposit a value in i5, and re-execute
the randomize() call:

ncsim> value i4
555
ncsim> deposit i5 = 999
ncsim> run -rand_solve
ncsim: *N,DBGSLV: The randomization solver returned this status: 1 (success).

The following commands return the new value of i4 and run until simulation is complete:

ncsim> value i4
999
ncsim> run
i4 = 999
ncsim: *W,RNQUIE: Simulation is complete.

Debugging Semaphores with Tcl

In the current release, you can use the Tcl command-line interface to

■ Describe semaphores (describe command)

■ Determine the value of a semaphore variable (value command)

For more information about semaphores, see “Semaphores” in the SystemVerilog
Reference.

Describing a Semaphore

When used on a variable of the semaphore class, the describe command provides a
general description of the semaphore, including its corresponding class and instance handle.

For example:

ncsim> describe s
s...........handle semaphore = 1

Use the -handle qualifier with the semaphore’s instance handle to display the current key
count. For example:

ncsim> describe -handle 1
1..................handle semaphore {

key = 1
}

../sysverilog/sync_comm.html#firstpage

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 92 Product Version 9.2

Determining the Value of a Semaphore Variable

You can use the value command on variables of the semaphore class to determine their
value. For example, the following command returns the instance handle for variable s:

ncsim> value s
1

The following command returns the value of the class member count within semaphore s:

ncsim> value s.count
1

Debugging Arrays, Structures, and Queues with Tcl

In the current release, you can use the Tcl command-line interface to

■ Describe arrays, structures, and queues (describe command)

■ Determine the value for an array, structure, or queue (value command)

■ Set breakpoints for arrays and queues (stop command)

Related topics:

■ “Accessing SystemVerilog Objects in the Design Browser” on page 23

■ “Arrays” in the SystemVerilog Reference

■ “Structures” in the SystemVerilog Reference

Limitations on Tcl Commands for Arrays, Structures, and Queues

The following Tcl features are not supported for arrays, structures, and queues:

■ The Cadence implementation does not support using the deposit command on a
packed array using the SystemVerilog assignment pattern syntax. For example, if you
declare the following two-dimensional array:

// Declaration
bit [9:7][3:2] d_var;

The following deposit command is not supported:

ncsim> deposit d_var '{2'b11, 2'b10, 2'b00}

However, you can use the deposit command on a packed array using the Verilog
bit-vector syntax. For example, you can replace the previous deposit command with

ncsim> deposit d_var 6'b111000

../sysverilog/arrays.html#firstpage
../sysverilog/datatypes.html#firstpage

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 93 Product Version 9.2

Note: You must also use the Verilog bit-vector syntax when trying to force a packed
array object.

■ The Cadence implementation does not support using Tcl to modify the values of a queue
or associative array. For example, you cannot assign values into the index of an
associative array or queue.

■ The Cadence implementation does not support calling Tcl methods for queues or
associative arrays.

Tcl Syntax for Packed Structures

By default, Tcl commands use the SystemVerilog assignment pattern syntax to display
structures. This format is used whenever the value of a structure must be displayed but a
format specifier is not provided, or when the %n format specifier is provided.

Example

This section uses the following declarations to illustrate how structures are displayed in the
Tcl interface:

// Declarations
struct packed { logic [1:0] md1; logic [3:0] md2;} mymd = 6'h3a;
typedef struct packed { logic [1:0] md1; logic [3:0] md2;} stype;
stype v = 6'h29;
...

By default, the value command uses the SystemVerilog assignment pattern to display the
values of packed structures. You can also use %n to specify this format. For example, the
following commands are equivalent:

ncsim> value mymd
’{md1:2’h3, md2:4’ha}

ncsim> value %n mymd
’{md1:2’h3, md2:4’ha}

The following command uses %b to return the value of mymd in bit-vector format:

ncsim> value %b mymd
6'b111010

Selecting Members of Structures

This section describes how to select members of a structure from the Tcl interface. For
example, if P is a packed structure variable, parameter, or net that has a member called M,
then P.M is a valid name from the Tcl interface.

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 94 Product Version 9.2

In general, this type of name is valid for Tcl commands that support bit or part selects on
vectors. For example, the following commands are supported.

ncsim> value P.M
ncsim> describe P.M

The following commands are unsupported for variables, but supported for scalared nets:

ncsim> probe -screen P.M
ncsim> stop -object P.M

Selecting Members of Packed Arrays with Tcl

This example illustrates how to select members of a packed array from the Tcl interface.
Suppose you have the following declarations:

typedef logic [7:0][3:0] oneArray;

oneArray twoArray;

In this example, twoArray[5][2] is a valid name from the Tcl interface. Therefore, the
following commands are supported:

ncsim> deposit twoArray[5][2] 1

ncsim> value twoArray[5][2]
1’h1

ncsim> describe twoArray[5][2]
twoArray[5][2]...variable logic = 1’h1

The following commands are not supported for variables, but are supported for scalared nets:

ncsim> probe -screen twoArray[5][2]
ncsim: *E,PRVSUB: Cannot set a probe on a bit/part/member select of a variable
or an array element.

ncsim> stop -object twoArray[5][2]
ncsim: *E,STVSUB: Cannot set stop point on a bit/part/member select of a
variable or an array element.

Describing Objects with Tcl

You can use the Tcl describe command to display information about the following
simulation objects:

■ Packed arrays

Characterizes the data type, identifies the dimensions for the array’s ranges, and
identifies the element data type for the array.

When used on a packed array data type, the describe Tcl command characterizes the
packed array dimension ranges and the element data type.

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 95 Product Version 9.2

■ Dynamic arrays

Characterizes the data type, identifies the dimensions for the array’s ranges, and
displays the members of the array.

Note: The describe command can be used on dynamic arrays that have a simple data
type. Specifically, dynamic arrays of type bit, logic, byte, shortint, int, logint,
integer, and class, and packed arrays of type bit, logic, and reg. You can also
use the Tcl describe command on dynamic arrays within classes.

■ Associative arrays

Provides a generic description of the array, including the number of elements within the
associative array.

■ Structures

Identifies the members in the structure and their corresponding data types, and displays
the vector bounds on the structure type.

Example: Describing Packed Arrays

The following describes a packed array:

logic [7:0][4:0] l_mdv;
...
ncsim> describe packedarray

l_mdv....variable logic [7:0] [4:0] =
’{5’hxx, 5’hxx, 5’hxx, 5’hxx, 5’hxx, 5’hxx, 5’hxx, 5’hxx} (-C)

The following describes a packed array data type:

// Declarations
typedef logic [7:0] oneDType;
typedef oneDType [127:0] twoDtype;

// Tcl session

ncsim> describe twoDtype
twoDtype.....typedef oneDtype [127:0] // Describes a packed array datatype

Example: Describing Arrays

When used on an element of an array, an element of a vector, or a part of a vector, the
describe command describes the portion of the object identified in the command. For
example:

// Declarations
logic [1:0][1:0] xyz;

// Tcl session

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 96 Product Version 9.2

ncsim> describe xyz[0][0]
xyz[0][0]...variable logic = 1’hx

ncsim> describe xyz[0]
xyz[0]......variable logic [1:0] = 2’hx

ncsim> describe xyz
xyz.........variable logic [1:0] [1:0] = ’{2’hx, 2’hx}

The following defines a dynamic array:

int dynarr[];
initial begin

dynarr = new[8];

The describe command returns the following information about the array:

ncsim> describe dynarr
dynarr.....variable int dynamic array [0:7] = (0,0,0,0,0,0,0,0)

The following describes an associative array that has one element:

int myArr[int];
...
ncsim> describe myArr
myArr...variable int assoc array [int] = 1

Example: Describing Structures

The following example defines three packed structures:

//Packed structures
struct packed [8:7] { logic abc1; logic abc2; } xlog = 2'h2;
typedef struct packed { logic xyz1; logic xyz2; } ylog;
ylog zlog = 2'h2;

The describe command returns the following information about the ylog structure:

ncsim> describe ylog
ylog..........typedef struct packed {

logic xyz1;
logic xyz2;
}

When executed on an object within an anonymous structure type, which is a structure that is
declared without typedef, the describe command returns the members, their data types,
and their values. This command will also display vector bounds on the structure type, and the
overall value of the structure object as a hexadecimal bit vector. For example:

ncsim> describe xlog
xlog.........variable struct packed [8:7] {

logic abc1 = 1’hx;
logic abc2 = 1’hx;

}

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 97 Product Version 9.2

When executed on an object that is declared using the typedef structure, the describe
command returns the name of the typedef and the value of the packed structure object,
using the default display format. For example:

ncsim> describe zlog
zlog.........variable ylog = ’{xyz1:1’hx, xyz2:1’hx}

See “Selecting Members of Packed Arrays with Tcl” on page 94 for more information.

When executed on a member of a structure, the describe command describes only the
indicated portion of the structure. For example:

ncsim> describe xlog.abc1
xlog.abc1...variable logic = 1’hx

Setting Breakpoints on Arrays and Queues with Tcl

The Tcl stop -object command creates object breakpoints. When used on an array, the
command sets a breakpoint that triggers when the specified array or queue is created,
deleted, or resized; or when data elements are written. You can also set object breakpoints
on an element of an array or queue.

Example: Setting a Breakpoint on a Dynamic Array

The following example creates a dynamic array, DA, and initializes the elements of the array
during simulation:

module top;
int DA[];
initial begin
#1 DA = new[10];
#1 DA[0] = 14;
#1 DA[7] = -14;

end
endmodule

The stop -object command creates a breakpoint that triggers whenever the array is
accessed:

ncsim> stop -object DA
Created stop 1

You can set a breakpoint on an array element. For example:

ncsim> stop -object DA[0]
Created stop 2

The breakpoint triggers first when the array is created:

ncsim> run
1 NS + 0 (stop 1: top.DA = (0,0,0,0,0,0,0,0,0,0))

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 98 Product Version 9.2

1 NS + 0 (stop 2: top.DA[0] = 0)
./array1.sv:4 #1 DA = new[10];

The breakpoint also triggers whenever data is written to the array:

ncsim> run
2 NS + 0 (stop 1: top.DA = (14,0,0,0,0,0,0,0,0,0))
2 NS + 0 (stop 2: top.DA[0] = 14)
./array1.sv:5 #1 DA[0] = 14;

ncsim> run
3 NS + 0 (stop 1: top.DA = (14,0,0,0,0,0,0,-14,0,0))
./array1.sv:6 #1 DA[7] = -14;

Example: Setting a Breakpoint on a Queue

The following example creates a queue, initializes it, and deletes it:

module test_top;
int q[$];

initial begin
q[0] = 1;
q.delete(0);

end

endmodule

You can use the scope -describe command to return information about the queue:

ncsim> scope -describe
q..........variable int queue = 0

You can use stop -object to set a breakpoint on the queue:

ncsim> stop -object q
Created stop 1

You can set a breakpoint on an element of the queue:

ncsim> stop -object q[0]
Created stop 2

The run command simulates until the contents of the queue changes, or the queue is
deleted:

ncsim> run
0 FS + 0 (stop 1: test_top.q = 1)
0 FS + 0 (stop 2: test_top.q[0] = 1)
./queue1.sv:5 q[0] = 1;

ncsim> run
0 FS + 0 (stop 1: test_top.q = 0)
0 FS + 0 (stop 2: test_top.q[0] = 0)
./queue1.sv:6 q.delete(0);

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 99 Product Version 9.2

Displaying the Values of Arrays and Queues

When used on a dynamic array, the value Tcl command displays the array elements.

When used on an associative array, the value Tcl command provides the value of an index
operation into an associative array. When used on the whole associative array, this command
returns the size or number of elements in the array. You can also use the value command
-keys option to view a list of indices or keys for an associative array.

When used on a queue, the value command provides the value of an index operation into a
queue. When used on the whole queue, this command returns the size or number of elements
in the queue.

Note: The describe command is supported for dynamic arrays that have a simple data
type—specifically, dynamic arrays of type bit, logic, byte, shortint, int, logint,
integer, and class, and packed arrays of bit, logic, and reg. You can also use the Tcl
value command on dynamic arrays within classes.

Example: Displaying the Value of an Array

The following defines a dynamic array, dynarr:

int dynarr[];
initial begin

dynarr = new[8];
end

The describe and value commands return the following information about the array:

ncsim> describe dynarr
dynarr.....variable int dynamic array [0:7] = (0,0,0,0,0,0,0,0)

ncsim> value dynarr
(0,0,0,0,0,0,0,0)

Example: Displaying the Value of an Associative Array

The following example defines an associative array, aa_1:

module top;
int i;
int aa_1 [int];

initial
for (i=0; i<10; i++) begin
aa_1[i] = i;

end
endmodule

The value command returns the number of elements in the array:

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 100 Product Version 9.2

ncsim> value aa_1
10

The following command uses the -keys option to return a list of indices for the array:

ncsim> value -keys aa_1
0 1 2 3 4 5 6 7 8 9

The following example uses the list of indices returned by the value command to display a
formatted list of the array indices and their values:

ncsim> foreach idx [value -keys aa_1] {
> puts -nonewline "AA($idx) = "
> puts [value aa_1[$idx]]
> }
AA(0) = 0
AA(1) = 1
AA(2) = 2
AA(3) = 3
AA(4) = 4
AA(5) = 5
AA(6) = 6
AA(7) = 7
AA(8) = 8
AA(9) = 9

Example: Displaying the Value of a Queue

When used on a queue, the value command provides the value of an index operation into a
queue. When used on the whole queue, this command returns the size or number of elements
in the queue.

For example:

int q5[$];

ncsim> value q5
0

Debugging Strings with Tcl

Strings are dynamic objects that you can access with Tcl commands in the same way that
you access queues, dynamic arrays, and associative arrays.

Examples

The following example declares a string, s, and initializes it to the value Hello. The initial
block assigns other values to it during simulation:

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 101 Product Version 9.2

module top;
string s = "Hello"; // Declaration

initial begin
$display("value of string s %s", s);
#1
s = "ab\0cd"; // Assignment

$display("value of string s %s", s);
#1
s = "\0"; // Re-assignment
$display("value of string s %s", s);

end

endmodule

To run the commands shown here, you must compile and elaborate the example with read,
write, and connectivity access, then invoke the simulator in Tcl mode.

You can set a breakpoint to stop whenever the value of s changes, as follows:

ncsim> stop -object s
Created stop 1
ncsim> run
0 FS + 0 (stop 1: m.s = Hello)
./string.sv:2 string s = "Hello"; // Declaration

You can use the describe command to return information about s:

ncsim> describe s
s..........variable string array = Hello

Any NULL characters (\0) in the string are ignored. For example:

ncsim> run
value of string s Hello
1 NS + 0 (stop 1: m.s = abcd)
./string.sv:8 s = "ab\0cd"; // Assignment
ncsim> value s
abcd

You can access an individual character by its index into the string. For example:

ncsim> value s[0]
8’h61
ncsim> value %s s[0]
a

When the string is assigned the value \0, its length is 0:

ncsim> run
value of string s abcd
2 NS + 0 (stop 1: m.s =)
./string.sv:11 s = "\0"; // Re-assignment
ncsim> describe s
s..........variable string array =
ncsim> value s
ncsim>

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 102 Product Version 9.2

Debugging Clocking Blocks with Tcl

The Tcl interface of the Cadence implementation supports clocking blocks and clocking
items. The following are the Tcl commands for clocking blocks, and their corresponding
behavior in relation to clocking blocks.

scope

Clocking blocks are considered scopes, and can be entered using the scope command.
You can issue this command directly in a scope that contains a clocking block, or by using
a hierarchical expression.

scope -up

Once in the scope of a clocking block, use this command to change the scope to the next
level up in the hierarchy.

scope -show

Because clocking blocks are considered scopes, this command displays the appropriate
clocking block.

scope -describe

Displays the clocking items within the clocking block.

scope -list

Displays the source text of the clocking block.

describe

When applied to a clocking block, this command displays the clocking block name,
identifies it as a clocking block, and specifies default when it is the default clocking
block.

When applied to a clocking item, this command displays the signal name, identifies it as
a clocking item, and displays the hierarchical expression, when applicable.

value

When applied to a clocking item, this command displays the signal value or the
hierarchical expression, when applicable.

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 103 Product Version 9.2

drivers

When applied to a clocking item, this command identifies it as a clocking item, and
displays the associated signal along with any drivers. This command can display either
the signal name or the hierarchical expression.

stop -object

Sets a breakpoint on a specified object. When applied to a clocking block, stops the
simulation when a clocking-block item changes value or is written to.

stop -show

Displays information about breakpoints.

stop -disable

Disables a breakpoint.

stop -enable

Enables a previously-disabled breakpoint.

stop -delete

Deletes a breakpoint.

Debugging Program Blocks with Tcl

Tcl commands work the same way for program blocks as they do for modules. This includes
standard queries for information.

Example

The following example defines two modules, top and M, and a program, P:

module top;
wire A, B, C;
P p (A,B);
M m();

endmodule

module M();
wire q;

endmodule

program P(input a, b);
wire w;
reg r;

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 104 Product Version 9.2

task t;
r = w;

endtask
endprogram

The scope -show command returns the following information about the current scope, top:

ncsim> scope -show
Directory of scopes at current scope level:

program (P), instance (p)
module (M), instance (m)

Current scope is (top)
Highest level modules:
top

The scope -describe command returns information about the objects declared within the
scope:

ncsim> scope -describe
A..........net (wire/tri) logic = StX
B..........net (wire/tri) logic = StX
C..........net (wire/tri) logic = StX
p..........instance of program P
m..........instance of module M

The following commands set the scope to top.p, then return information about the objects
declared within that scope:

ncsim> scope top.p
ncsim> scope -describe
a..........input net (wire/tri) logic = StX
b..........input net (wire/tri) logic = StX
w..........net (wire/tri) logic = StX
r..........variable reg = 1’hx
t..........task

The describe command displays a short description of top.p:

ncsim> describe top.p
top.p......instance of program P

The following commands set the scope up one level in the hierarchy and return the name of
the scope:

ncsim> scope -up; scope
top

Debugging Interfaces with Tcl

Tcl commands work the same way for interface instances as they do for module instances.
They work the same way for objects in an interface as they do for objects in a module.

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 105 Product Version 9.2

Examples

The following example defines an interface called simple_bus:

interface simple_bus;
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;

endinterface : simple_bus

module top;
logic clk = 0;

simple_bus sb_intf();

memMod mem (sb_intf, clk);
cpuMod cpu (.b(sb_intf), .clk(clk));

endmodule

module memMod(simple_bus a, input clk);
logic avail;

always @(posedge clk) a.gnt <= a.req & avail;
endmodule

module cpuMod(interface b, input clk);

endmodule

At the start of simulation time, the show -scope command returns the following information
about the current scope, top:

ncsim> scope -show

Directory of scopes at current scope level:
interface (simple_bus), instance (sb_intf)
module (memMod), instance (mem)
module (cpuMod), instance (cpu)

Current scope is (top)
Highest level modules:
top

The following commands change scope to an instance of the interface and return information
about the objects declared in the instance:

ncsim> scope sb_intf
ncsim> describe *
req........variable logic = 1’hx (-C)
gnt........variable logic = 1’hx (-C)
addr.......variable logic [7:0] = 8’hxx (-C)
data.......variable logic [7:0] = 8’hxx (-C)
mode.......variable logic [1:0] = 2’hx (-C)
start......variable logic = 1’hx (-C)
rdy........variable logic = 1’hx (-C)

The scope -up command changes the scope back to top:

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 106 Product Version 9.2

ncsim> scope -up

The following commands change scope to the interface definition by using interface port
declaration name, and return information about the scopes at that level:

ncsim> scope top.cpu.b
ncsim> scope -show
Directory of scopes at current scope level:

Current scope is (top.sb_intf)
Highest level modules:
top

The following describe commands return information about the specified scopes:

ncsim> describe top.sb_intf
top.sb_intf...instance of interface simple_bus
ncsim> describe top.cpu.b
top.cpu.b...interface simple_bus (modport master) at top.sb_intf

The deposit and value commands set and return the value of an object:

ncsim> value top.cpu.b.gnt
1’hx
ncsim> deposit top.cpu.b.gnt 1
ncsim> value top.cpu.b.gnt
1’h1

You can use the probe command to save interface data to a simulation database file:

ncsim> probe -shm -waveform top.sb_intf
Created default SHM database ncsim.shm
Created probe 1

You can use the stop command to set a breakpoint on an object in an interface:

ncsim> stop -object top.sb_intf.addr
Created stop 1

The following strobe -time command displays the values of the specified objects every
100 time intervals:

ncsim> strobe -time 100 top.sb_intf.data top.sb_intf.addr
Setting up strobe time - ’100’

Debugging Packages with Tcl

In the current release, you can use the Tcl command-line interface to

■ Describe a package (describe command)

■ Probe package items (probe command)

■ Deposit a value to a package item (deposit command)

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 107 Product Version 9.2

■ Force a value on a package item (force command)

■ Access the current value of a package item (value command)

Related topics:

■ “Compiling a Design with Packages” on page 16

■ “Accessing SystemVerilog Objects in the Design Browser” on page 23

■ “Packages” in the SystemVerilog Reference

Package Names in Tcl

Using Tcl commands, you can refer to a package by its simple name. The syntax for the
simple name of a package is

package_identifier

or

package_identifier::

For example:

ncsim> scope IObus_package

ncsim> scope IObus_package::

When referring to a declared item in a package, keep in mind the following points:

■ From within a scope that imports a package or package declared item, or within a
package scope itself, you can use the simple name of the package declared item. For
example:

ncsim> describe error_count

You can also use the full name of the package declared item. The syntax is:

package_identifier::[package_scope_name.]item_name

For example, the following refers to the package by its package identifier and item name:

ncsim> describe globals::error_count

■ For all other situations, you must use the full name of the package declared item in the
Tcl command.

Using the Tcl scope Command with Packages

You can use the Tcl scope command to set the current scope, go up a scope, describe the
objects declared in the scope, and so on.

../sysverilog/packages.html#firstpage

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 108 Product Version 9.2

scope -set package_name

Sets the current scope to the package. For example:

ncsim> scope -set globals

If a library contains a top-level module and a package that have the same name, the
package_identifier:: syntax must be used to disambiguate the module from the
package. The following command sets the current scope to the module scope:

ncsim> scope -set name

The following command sets the current scope to the package scope:

ncsim> scope -set name::

scope -describe

In addition to returning objects declared in the current scope, a scope -describe
command returns the declarations of imported items if

❑ There is an explicit import statement (import
package_identifier::identifier) in that scope

❑ There is a wildcard import statement (import package_identifier::*) in
that scope, and the declaration is referenced in that scope or its subscopes

The scope -describe command returns the full name of imported items.

package_name::decl_name variable decl_name = value

The scope -describe command also returns the packages that the current design unit
depends on.

scope -list package_name

Prints the package source lines.

scope -show

Displays scope information, including the current debug scope, sub-instances, top-level
units, and dependent packages. This command returns the dependent packages for the
scope of a module, interface, package, or program.

scope -tops

Displays the top-level modules and packages used to elaborate the design. Package
names are displayed with the package_identifier:: syntax.

Because a package is not a hierarchy element, a scope -up command cannot set the scope
to a package scope.

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 109 Product Version 9.2

Describing Packages with Tcl Commands

The describe and scope -describe commands display information about a single design
object, or all design objects in a scope, including the declaration, data type, current value, and
access information. The describe command accepts the package_item_fullname or
package_item_name.

The describe command accepts a package_item_name under these conditions:

■ When there is an explicit import statement (import
package_identifier::identifier) in the current debug scope.

■ When there is a wildcard import statement (import package_identifier::*) in
the current debug scope, and the declaration is referenced in that scope or its
subscopes. The scope -describe command accepts the syntax for a
package_name to display information about the package itself.

For example, the following code defines type BOB in package p, which is imported and used
in module top.

typedef integer BOB;

ncsim> describe BOB
p::BOB....typedef integer
ncsim> describe p::BOB
p::BOB....typedef integer

Probing Packages with Tcl Commands

The probe command can create, enable, disable, or delete a probe on a package item. The
name of the package item must follow the same naming rules described in “Package Names
in Tcl” on page 107.

Analyzing Package Items with Tcl

The deposit, force, and value commands can deposit a value to a package item, force
a value on a package item, and access the current value of a package item, respectively. The
name of the package item must follow the same naming rules described in “Package Names
in Tcl” on page 107.

System tasks and functions such as $display and $monitor can take a package reference
item as an argument. System tasks and functions that can take a scope as an argument—for
example, $dumpvars and $recordvars—can take the name of a package as an argument.

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 110 Product Version 9.2

Using an Extended Value Change Dump (EVCD) File

A value change dump (VCD) file is an ASCII file that contains information about value
changes on selected variables in the design. The file contains header information, variable
definitions, and value changes for all specified variables.

For a complete description of EVCD files and how to create them, see Generating an
Extended Value Change Dump (EVCD) File in the Verilog Simulation User Guide.

SystemVerilog and EVCD

The IEEE SystemVerilog Standard has not yet extended the EVCD output format to directly
support the many new constructs and scope contexts introduced by SystemVerilog. However,
to retain compatibility with existing EVCD readers, the IEEE 1800 Standard specifies a set of
mapping rules that allow some basic SystemVerilog constructs to be encoded as IEEE
standard 1364 Verilog equivalents. The following table shows the support in the current
release for mapping SystemVerilog types to a Verilog type for EVCD dumping.

Packed arrays (multi-dimensional vectors), packed structures, packed arrays of packed
structures, and enumerations are dumped as a single vector of reg. Multiple packed array
dimensions are collapsed into a single dimension.

If an enum declaration specifies a type, the enum is dumped as the base type of the enum
rather than the default integer.

Unpacked structures, like unpacked arrays, are not mapped or dumped to the EVCD file.
However, any member of such a structure will be dumped and/or mapped accordingly if its
type is IEEE-1364 compatible or shown in the table above.

SystemVerilog Verilog Size

bit reg Total size of packed dimension

logic reg Total size of packed dimension

int integer 32

shortint reg 16

longint reg 64

byte reg 8

enum integer 32

../ncvlog/debugging.html#generating_evcd
../ncvlog/debugging.html#generating_evcd

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 111 Product Version 9.2

Debugging DPI Exported Functions and Tasks

This section describes Tcl commands that you can use to debug and manipulate functions or
tasks that have been exported using the Direct Programming Interface (DPI). For more
information, refer to “Direct Programming Interface” in the SystemVerilog Reference.

Managing Breakpoints

The Tcl stop command creates or operates on a breakpoint. You can create three kinds of
breakpoints within an exported function or task:

For more information on the Tcl stop command, refer to the “Incisive Simulator Tcl
Commands” chapter of the Incisive Simulator Tcl Command Reference.

Interactive Debugging

The Tcl run command starts or resumes a previously halted simulation. Once stopped within
an exported task or function, by using any of the breakpoints described in “Managing
Breakpoints” on page 111, you can use the run command with the following options to
examine the values of design objects or monitor the state of the simulation.

stop -create -line line_number scope_name

Sets a breakpoint that triggers when the specified line number is
about to execute.

stop -create -object list_of_objects

Sets a breakpoint that triggers when the specified object, or list of
objects, changes value or is written to. Objects can include wires,
signals, registers, variables, and assertions.

stop -create -subprogram subprogram_name

Sets a breakpoint that triggers when the specified subprogram is
called.

run -step Runs one behavioral statement, stepping into
subprogram calls.

run -next Runs one behavioral statement, stepping over any
subprogram calls.

../sysverilog/dpi.html#firstpage

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 112 Product Version 9.2

Limitations on DPI Debugging

In the current release

■ Exported functions and tasks can be invoked and debugged from the following
non-context domains:

❑ Pre-initial callbacks—These callbacks execute after all of the initialization
statements in SystemVerilog/Verilog, and before the behavioral constructs.

❑ Interface callbacks, as follows:

❍ cbNBASynch

❍ cbNBASynchSN

❍ vhpiEndOfProcesses

❍ tf_synchronize with the -NBASync option to ncsim

run -clean Runs the simulation to the next point at which it is
possible to create a checkpoint with the save
-simulation command.

run -delta [cycle_spec] Runs the simulation for the specified number of delta
cycles. If cycle_spec is not specified, runs the
simulation to the beginning of the next delta cycle. A
run -delta command is the same as run -delta 1.

run -phase Runs to the beginning of the next phase of the
simulation cycle.

run -process Runs to the beginning of the next scheduled process or
the beginning of the next delta cycle, whichever comes
first.

run -sync Runs to the next point when the digital engine and
analog engine synchronize.

run -timepoint time_spec [absolute | relative]

Runs until the specified time is reached.

run -return Runs until the current subprogram ends.

If this command is executed from an exported function,
it takes the cursor to the line that contains the imported
function from which the exported function was called.

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 113 Product Version 9.2

❑ VPI/VHPI/SystemC/TF Callbacks—You can invoke and debug export functions or
tasks from the following callbacks:

❍ cbSNValueChange

❍ cvValueChange

■ You can invoke export functions or tasks from the following callbacks, but you cannot
debug them:

❑ cbStartOfSimulation

❑ cbEndOfCompile

❑ cbEndOfRestart

❑ cbEndOfReset

❑ vhpiCbStartOfSimulation

❑ SystemC’s start_of_simulation

■ You can invoke export functions from SystemC methods and threads. You can invoke
export tasks from SystemC threads.

■ Interactive debugging is limited to exported functions and tasks that are invoked from
context imported functions and tasks. You cannot debug imported functions and tasks.

SystemVerilog in Simulation
Accessing SystemVerilog Design Objects with Tcl

July 2010 114 Product Version 9.2

SystemVerilog in Simulation

July 2010 115 Product Version 9.2

Index

Symbols
@{} syntax 60
+svseed 14
$unit

compilation unit designator 20
in Design Browser 25
with describe command 55, 57
with scope command 56, 58
with value command 56, 58

A
-access 15
aggregate signal

display of 23
expanding and collapsing

in Design Browser window 26

B
breakpoints

on class objects 74
on dynamic arrays 97

C
Class Browser 29

opening 30
searching for class definitions 31
sorting class members 32

class instance handle, determining 64
class specialization 26
class specialization, scope view icon 24
class variant 26
classes

class hierarchy, navigating 29
line breakpoints 76
locating class definitions 34
monitoring using the Design

Browser 32
setting breakpoints 74
SimVision support 29

specializations 26
stop -line command 76
stop -object command 74

clocking blocks, debugging with
Tcl 102 to 103

compilation units
designator 20
in Design Browser 25
scope view icon 24
with describe command 55, 57
with scope command 56, 58
with value command 56, 58

D
database

in Design Browser sidebar 24
saving interface data in 106

default seed, setting 14
Design Browser 32
design hierarchy

ascending 69
loading in SimVision 15
locating signals and variables 23
navigating

in the Design Browser sidebar 24
direct programming interface (DPI)

debugging exported functions or
tasks 111

debugging limitations 112
managing breakpoints 111
resuming a simulation 111
run command 111
stop command 111

dynamic arrays
setting breakpoints 97
stop -object command 97

E
EVCD databases

generating with Tcl commands 111
mapping SystemVerilog to Verilog 110
SystemVerilog support 110

SystemVerilog in Simulation

July 2010 116 Product Version 9.2

exported tasks and functions,
debugging 111

G
garbage collection 81
global list of object handles, listing 65

H
heap

displaying information 79
garbage collection 81

I
instance handle, syntax 59
interface scope view icon 24
interfaces 104 to 106
irun 16

L
line breakpoints, with classes 76
-linedebug 15

M
modport, scope view icon 24
multi-step mode 15

N
ncelab 15
ncsim 15
ncvlog 15
-nowarn SVRNDF 10

O
object handles, listing 65

P
packages 106 to 109

compiling a design 16
debugging 106
scope view icon 24

packed structures
debugging 96
selecting members 93
Tcl syntax for 93

parameterized class names 60
program blocks

scope view icon 24
using with Tcl 103

R
-randwarn 10
RNG 12
run command

in DPI 111
simulation breakpoints 76
to allocate class instances 78
using interactively 111
with randomization option 88

S
SAT solver, enabling 11
scope command

$unit 56
-set 56
-show 56

scope view icons 24
seed

setting default on command line 14
setting from command line 14
-svseed 10

simulation
running in multi-step mode 15
running with irun 16

SimVision
class browser 29
Design Browser 32
Source Browser 34

Source Browser 34
Search Down 31
Search Up 31

SystemVerilog in Simulation

July 2010 117 Product Version 9.2

stop command in DPI 111
stop -line command 76
stop -object command

on class objects 74
on dynamic arrays 97

structures
debugging 96
scope view icon 24

-sv 15
-sv_lib 10
-sv_root 10
-svrnc 10
-svseed 14

T
-tcl 15
Tcl commands

for packages 106
for structures 96

U
unions, scope view icon 24
unpacked structures, debugging 96

V
value -classlist command, with classes 65

SystemVerilog in Simulation

July 2010 118 Product Version 9.2

	Contents
	Introduction to SystemVerilog in Simulation
	Additional Documentation
	Additional Examples

	Preparing SystemVerilog Designs for Simulation
	Using Options for Compiling, Elaborating, and Simulating SystemVerilog
	Compilation Options (ncvlog and irun)
	Elaboration Options (ncelab and irun)
	Simulation Options (ncsim and irun)

	Using the Multi-Step Invocation Method
	Using the irun Utility
	Compiling a Design with Packages
	Compiling Packages with irun
	Compiling Packages with ncvlog

	Compiling Source Files into Compilation Units

	Accessing SystemVerilog Design Objects with SimVision
	Accessing SystemVerilog Objects in the Design Browser
	Selecting SystemVerilog Objects with the Design Browser and Design Search Sidebars
	Viewing Compilation Units in the Design Browser
	Viewing Parameterized Classes and Class Specializations in the Design Browser
	Expanding and Collapsing SystemVerilog Aggregate Signals in the Design Browser
	Sorting the Elements of a Queue, or Dynamic or Associative Array

	Viewing SystemVerilog Objects in the Schematic Tracer
	Accessing Classes in the SystemVerilog Class Browser
	Opening the Class Browser
	Using the Class Browser with the Design Browser
	Using the Class Browser with the Source Browser

	Viewing SystemVerilog Objects in the Waveform Window
	Adjusting the Minimum Height of an Array
	Viewing Associative Arrays in the Waveform Window

	Following SystemVerilog Signals in the Source Browser
	Working with the Constraints Debugger
	Preparing Your Design for the Constraints Debugger
	Opening the Constraints Debugger
	Constraint Debugger Overview
	Displaying Variable Values as Inputs to Constraints
	Displaying Constraints and Variables
	Enabling and Disabling Random Variables
	Enabling and Disabling Constraints
	Creating a Constraint
	Running the Current Randomize Call Again
	Handling Overconstraints

	Viewing Dynamic Objects with the SimVision Data Browser
	Setting Up the Data Browser
	Preparing Your Design for the Data Browser
	Opening Data Browser Windows
	Expanding and Collapsing a Dynamic Object
	Refreshing the Data Browser Contents
	Setting Breakpoints on Dynamic Objects
	Displaying Dynamic Objects for the Full Design
	Sending Dynamic Objects to the Design Browser
	Viewing Dynamic Objects in the Source Browser
	Sending Dynamic Objects to a New Data Browser Window
	Setting the Debug Scope in the Data Browser
	Copying a Dynamic Object

	Accessing SystemVerilog Design Objects with Tcl
	Debugging Compilation Units with Tcl
	Accessing Compilation Units with Tcl
	Examples

	Debugging Classes with Tcl
	Limitations on Tcl Commands for Parameterized Classes
	Tcl Syntax for Class Object Names
	Tcl Syntax for Parameterized Class Names
	Accessing Class Objects with Tcl
	Determining the Class Instance Handle from Tcl
	Listing Class Instance Handles with Tcl
	Determining the Value of a Class Member with Tcl
	Traversing the Class Hierarchy with Tcl
	Setting Object Breakpoints within Classes with Tcl
	Setting Line Breakpoints within Classes with Tcl
	Using the heap Command with Classes
	Generating Heap Usage Reports

	Debugging Constraints with Tcl
	Stopping on Calls to randomize() with Tcl
	Enabling Random Variables and Constraints with Tcl
	Adding a New Constraint from Tcl
	Executing randomize() Calls with Tcl

	Debugging Semaphores with Tcl
	Describing a Semaphore
	Determining the Value of a Semaphore Variable

	Debugging Arrays, Structures, and Queues with Tcl
	Limitations on Tcl Commands for Arrays, Structures, and Queues
	Tcl Syntax for Packed Structures
	Selecting Members of Structures
	Selecting Members of Packed Arrays with Tcl
	Describing Objects with Tcl
	Setting Breakpoints on Arrays and Queues with Tcl
	Displaying the Values of Arrays and Queues

	Debugging Strings with Tcl
	Debugging Clocking Blocks with Tcl
	Debugging Program Blocks with Tcl
	Debugging Interfaces with Tcl
	Debugging Packages with Tcl
	Package Names in Tcl
	Using the Tcl scope Command with Packages
	Describing Packages with Tcl Commands
	Probing Packages with Tcl Commands
	Analyzing Package Items with Tcl

	Using an Extended Value Change Dump (EVCD) File
	SystemVerilog and EVCD

	Debugging DPI Exported Functions and Tasks
	Managing Breakpoints
	Interactive Debugging
	Limitations on DPI Debugging

	Index

