CMOS Comparators

Course *Integrated Circuit Design*, 2009

Franco Maloberti Department of Electronics University of Pavia

Outline

[Introduction](#page-2-0)

- [Performance characteristics](#page-3-0)
- [Comparator Gain and Response Time](#page-6-0)
- [Offset Cancellation Techniques](#page-11-0)
- [Comparators with Hysteresys](#page-29-0)
- [Latched Comparators](#page-32-0)
- [Power Consumption](#page-39-0)

Introduction

Definitions

A comparator detects whether its input is larger or smaller than a reference voltage

- \blacksquare The output of a comparator a digital signal ("1" or "0" level)
- Overdrive \rightarrow If the input of the comparator is driven with a voltage larger than the minimum voltage required to achieve the correct digital level, the comparator is overdriven

Use of comparators

- Threshold detector
- Zero-crossing detector
- \blacksquare High immunity noise digital line receiver

Performance characteristics

- Voltage gain (A_v) → Differential DC gain of a comparator
- **If** Input offset $(V_{os}) \rightarrow$ Voltage that must be applied to the input to obtain a transition between the low and the high state
- Response time $(t_r) \rightarrow$ Time interval between the instant when a step input is applied and the instant when the output reaches the corresponding logic level (depends on the input step amplitude)

Performance characteristics

 \blacksquare Overdrive recovery \rightarrow Time interval required to recover from overdrive (the response time, for a given input step amplitude, depends on how much the comparator was previously overdriven)

Performance characteristics

- **Latching capability** \rightarrow **A latch command and an unlatch** command store and release the output logic state
- Power supply rejection ratio (*PSRR*) → Transfer function between the supply rails and the output of the comparator
- Power consumption \rightarrow Power dissipated at DC (static) and during comparisons (dynamic)
- \blacksquare Hysteresis \rightarrow The threshold voltage for rising input signals is different from the threshold voltage for falling input signals

Basic considerations

- \blacksquare A comparator is basically an open loop gain stage
- Any gain stage can be used as comparator, from a simple inverter to a complex operational amplifier
- If required a latch can be connected at the output of the gain stage

Key issues in comparator design

- Gain obtained by using a single complex stage or by using a cascade of simple stages (stability is not an issue)
- **Offset cancellation**
- **Power supply rejection**
- Overdrive recovery
- **Power consumption**

Comparator gain vs bandwidth trade-off

- \blacksquare Due to the finite bandwidth of the circuit V_{out} reaches A_vV_{in} with a delay with respect to the input step (response time *t^r*)
- The same values of *Vout* and *t^r* are obtained by using stages with different bandwidths and DC gains

■ Single-stage comparator

$$
t \ll \tau = R_L C_L \Longrightarrow v_{out} = g_m R_L v_{in} \left(1 - e^{-\frac{t}{\tau}}\right) \cong v_{in} \frac{g_m}{C_L} t
$$

■ Multi-stage comparator (*n* stages)

$$
t \ll \tau = R_L C_L \Longrightarrow v_{out} \cong v_{in} \left(\frac{g_m}{C_L}\right)^n \frac{t^n}{n!}
$$

For a given gain, it exists an optimum number of stages which gives the best response time

$$
A_{v,n}=\frac{(n+1)^n}{n!}\Longrightarrow t_{r,n}=(n+1)\frac{g_m}{C_L}
$$

- \blacksquare For a small gain we achieve a smaller response time with a single stage than with several stages
- \blacksquare For a large gain we achieve a smaller response time with several stages than with a single stage

Autozero technique

- Basic idea \rightarrow Sample the offset during one clock phase and subtract it from the signal during the other clock phase
- Two non-overlapping clock phases are required
	- Phase 1 \rightarrow Autozero
	- **Phase 2** \rightarrow **Comparison**

 \blacksquare Time-domain analysis

$$
V_{i}(T) = V_{+}(T) - V_{-}(T) = V_{os}(T) - [V_{in}(T) + V_{os}(0)]
$$

■ If V_{os} varies slowly with respect to *T*, then $V_{\text{os}}(T) \cong V_{\text{os}}(0)$

$$
V_{i}\left(T\right)\cong-V_{in}\left(T\right)
$$

Figure Frequency-domain analysis (Laplace transform)

$$
V_i(s) = V_{in}(s) + V_{os}(s) \left(1 - e^{-sT}\right)
$$

$$
H_{os}(s) = 1 - e^{-sT} = 2je^{-\frac{sT}{2}}\sin\left(\frac{sT}{2}\right)
$$

■ The low frequency components of V_{os} are canceled

Autozero in single-stage comparators

- During phase 1 the gain stage is in unity-gain closed-loop configuration and *Vos* is sampled on capacitor *C*
- During phase 2 the gain stage is in open-loop configuration and the offset-free comparison is performed
- Capacitor *C* represents an output load of the gain stage during phase 1
- Stability of the gain stage during phase 1 has to be considered

 \blacksquare The finite gain A_v of the gain stage produces a residual offset error

$$
V_{os,res} = V_{os} - V_{os} \frac{A_v}{1+A_v} = V_{os} \frac{1}{1+A_v}
$$

 \blacksquare The clock feedthrough at the opening of $S₁$ determines an equivalent offset error (*Vos*,*ck*)

$$
V_{os,res} = V_{os} \frac{1}{1 + A_v} + V_{os,ck}
$$

- \blacksquare The charge injected by the switch S_1 is integrated onto C and the input capacitance of the gain stage
- **n** The input signal is attenuated by the factor $C/(C + C_{in})$
- In order to reduce the attenuation and the equivalent offset $V_{\text{os } \text{ck}} = Q_{\text{ck}} / (C + C_{\text{in}})$, *C* must be chosen much larger than C_{in}
- \blacksquare If complex gain stages are used it is necessary to compensate the stage during the autozero phase with capacitor *C^c*

■ With the autozero technique the comparator can only detect zero-crossing

Threshold voltage implementation

 \blacksquare The offset is canceled and the input voltage of the comparator during the comparison phase becomes

$$
V_{+} - V_{-} = - (V_{in} - V_{ref}) + V_{os,res}
$$

 \blacksquare The comparator operates with the same input common-mode voltage independently of the value of *Vref*

Autozero in multi-stage comparators

- **E** The gain of the comparator is $A_v = A_{v,1}A_{v,2} \cdots A_{v,n}$
- \blacksquare The offset of the third stage is referred to the input attenuated by the factor $A_{v1}A_{v2} \rightarrow$ It is negligible
- \blacksquare The input referred offset without autozero is

$$
V_{os} = V_{os,1} + \frac{1}{A_{v,1}} V_{os,2}
$$

- **The residual offset due to finite gain of** A_1 **is sampled on** C_2 **and** canceled
- \blacksquare The overall residual offset with autozero is

$$
V_{os, res} = \, V_{os, 2} \frac{1}{A_{v, 1} \, (1 + A_{v, 2})}
$$

 \blacksquare The clock feedthrough at the opening of S_1 and S_2 determines two equivalent offset errors at the input of A_1 and A_2 ($V_{\alpha s, c k, 1}$ and *Vos*,*ck*,2)

$$
V_{os, res} = V_{os, 2} \frac{1}{A_{v, 1} \left(1 + A_{v, 2} \right)} + V_{os, ck, 1} + V_{os, ck, 2} \frac{1}{A_{v, 1}}
$$

 \blacksquare To reduce the residual offset due to clock feedthrough \rightarrow Open $S₁$ before $S₂$

 S_1 is driven with phase 1, while S_2 and S_3 with phase 1d

- **The charge injected by** S_1 **is collected on** C_1 **and the equivalent** offset is amplified by $A_{v,1}$, but since S_2 is still on, the output voltage of A_1 is sampled and stored onto C_2
- $V_{\text{os,1}}$ and $V_{\text{os,ck,1}}$ are completely canceled, while $V_{\text{os,2}}$ and $V_{\alpha s, c k}$, are referred to the input attenuated by a factor $A_{v,1}$

$$
V_{os, res} = V_{os, 2} \frac{1}{A_{v, 1} \left(1 + A_{v, 2} \right)} + V_{os, ck, 2} \frac{1}{A_{v, 1}}
$$

Each gain stage can be implemented with a CMOS inverter $(A_v = 5 \div 20)$

During the autozero phase *M*1, *M*2, *M*³ and *M*⁴ are diode-connected ➜ The current consumption is not controlled

Large *W*/*L* for *M*₁, *M*₂, *M*₃ and *M*₄ \rightarrow Fast inverters with large transconductance ➜ Low response time but large power consumption

Fully-differential comparators

- \blacksquare In a fully-differential comparator, the clock feedthrough due to the opening of S_1 and S_2 produces a common mode signal
- The effect is attenuated by the common-mode rejection ratio (*CMRR*)
- Residual offset is only due to mismatches in the fully-differential structure

- \blacksquare Fully-differential comparator gain stages
	- Stages with very low gain
	- Stages with low gain and common-mode feedback
	- Conventional fully-differential amplifiers
- \blacksquare Stages with very low gain
	- \blacksquare The common-mode feedback is not required $[+]$
	- The parasitic capacitances $C_{gs,3,4}$ load the output node $[-]$

- Stages with low gain and common-mode feedback
	- **Low capacitive load at the high impedance nodes** $[+]$
	- Common-mode feedback is required [-]

Offset compensation by auxiliary input stage

Basic idea ➜ Store the offset at the output of the gain stage and \blacksquare use it in feedback connection to cancel the input offset

During phase 1, the inputs of A_1 **are short-circuited, the output of** A_1 becomes $A_{v,1}$ $V_{os,1}$ and the output of the comparator is

$$
V_{out} = V_{os,1} \frac{A_{v,1}}{1 + A_{v,2}} + V_{os,2} \frac{A_{v,2}}{1 + A_{v,2}}
$$

During phase 2, the residual input referred offset is

$$
V_{os,res} = V_{os,1} \frac{1}{1 + A_{v,2}} + V_{os,2} \frac{A_{v,2}}{(1 + A_{v,2}) A_{v,1}} \cong \frac{V_{os,1}}{A_{v,2}} + \frac{V_{os,2}}{A_{v,1}}
$$

- If S_1 is opened while S_2 is still closed, the additional offset caused by the clock feedthrough from $S₁$ is attenuated by a factor $1/(1 + A_{v,2})$
- When S₂ is opened the clock feedthrough produces an equivalent input referred offset *Vos*,*az* on *Caz* , which referred to the input becomes

$$
V_{os,ck} = V_{os,az} \frac{A_{v,2}}{A_{v,1}}
$$

If $A_{v,1}$ is larger than $A_{v,2}$, then $V_{os,ck}$ is reduced (optimal choice is $A_{\nu,2}=\sqrt{A_{\nu,1}}$

 \blacksquare Implementation with double differential stage

Comparators with Hysteresys

- When in a comparator the input signal is near the threshold voltage and varies slowly with respect to the response time, noise can produce oscillations in the output
- \blacksquare Hysteresis \rightarrow The threshold voltage when the output changes from "0" to "1" ($V_{ref. H}$) is larger than the threshold voltage when the output changes from "1" to "0" (*Vref*,*L*)

Comparators with Hysteresys

Comparators with Hysteresys

- If $V_{in} \ll V_{ref}$ then M_1 and M_3 are on, M_2 , M_4 and M_{11} are off, M_{10} is in the triode region \rightarrow $V_{out} = 0$
- If $V_{in} \gg V_{ref}$ then M_2 and M_4 are on, M_1 , M_3 and M_{10} are off, M_{11} is in the triode region \rightarrow $V_{out} = 1$
- **■** If $V_{out} = 0$, $V_{in} \cong V_{ref}$ and rising, when $I_2 > \beta I_1 \rightarrow M_4$ turns on, *M*₃ turns off and $V_{out} = 1 \rightarrow V_{ref} + V_{ref}$
- **■** If $V_{out} = 1$, $V_{in} \cong V_{ref}$ and falling, when $I_1 > \beta I_2 \rightarrow M_3$ turns on, M_4 turns off and $V_{out} = 0 \rightarrow V_{ref}$, V_{ref}
- The hysteresis is controlled by the current mirror ratio β

$$
\beta = \frac{W_{10}L_3}{L_{10}W_3} = \frac{W_{11}L_4}{L_{11}W_4}
$$

T Transistors M_{10} and M_{11} create a positive feedback loop that, besides introducing hysteresis, makes the response time of the comparator faster

- \blacksquare In latched comparators, comparison is performed at given time instants (controlled by the *Latch* signal) and the result is maintained until the next comparison is performed
- **Latched comparators are typically used in sampled-data systems** (e.g. data converters), where the latch signal is the clock
- A latched comparator consists of a gain stage followed by a latch stage and eventually a set-reset flip-flop to hold the output signal while the latch is reset (*Latch* signal)
- The latch stage is based on a positive feedback loop \rightarrow Very fast response time

Simple latch stage

- \blacksquare During the reset phase (*Latch*) M_1 , M_3 and M_2 , M_4 form two inverters with active load
- The parasitic capacitances at nodes V_{out+} and V_{out-} are precharged to the desired logic signals

- During the latch phase (*Latch*) the positive feedback is enabled and the latch reaches a stable state
- \blacksquare The state of the latch depends on the logic level precharged in the parasitic capacitances
- \blacksquare Thanks to the regenerative behavior of the positive feedback loop the response time is very short even with small input signals
- The offset of the latch cannot be canceled with autozero or auxiliary stages
- \blacksquare To reduce the offset transistors M_5 and M_6 must have relatively large area (*WL*) ➜ Speed limitation
- Since the latch is reset before each comparison overdrive recovery is not an issue

Differential stage with regenerative load

- **The input signal unbalances the currents flowing in** M_1 **and** M_2
- When the *Latch* signal is applied, in the regenerative loop (M_3) and *M*4) the transistor with the largest current wins

Latch stage with double regenerative loop

- Double positive feedback loop ➜ Fast response \blacksquare
- One positive feedback loop strengthens the other

Combination between gain stage and latch

Complete latched comparator

Power Consumption

Comparator with two gain stages, autozero and latch

 \blacksquare The voltage at the output of the first stage is

$$
V_o(t) = \frac{g_{m,1}}{C_1} \int_0^t V_{in}(t) dt
$$

 \blacksquare The voltage swing at the output of the second stage is

$$
V_{out}(t)=\frac{g_{m,2}}{C_2}\int_0^t V_o(t) dt
$$

Power Consumption

 \blacksquare For constant or slowly varying signal at the end of the comparison phase (γ / f_{ck}) the output voltage V_{out} is

$$
V_{out}\left(\frac{\gamma}{f_{ck}}\right)=\frac{1}{2}V_{in}\frac{g_{m,1}g_{m,2}}{C_1C_2}\left(\frac{\gamma}{f_{ck}}\right)^2
$$

 \blacksquare MOS transistors in strong inversion

$$
g_m = \sqrt{\frac{2\mu G_{ox} I_D W}{L}}, I_D > 2n\mu G_{ox} \frac{W}{L} \left(\frac{kT}{q}\right)^2
$$

MOS transistors in weak inversion

$$
g_m=\frac{ql_D}{nkT},\,\,l_D<2n\mu C_{ox}\frac{W}{L}\left(\frac{kT}{q}\right)^2
$$

Power Consumption

- If the input voltage of a gain stage exceeds the critical value $V_{crit} = n kT/q$ or $V_{crit} = (V_{GS} - V_{th})/2$, the output current saturates to the maximum value $I_{max} = 2I_D$
- \blacksquare To achieve a given value of V_{out} the current in the second stage must be

$$
I_{D,2} > \frac{V_{out}C_2f_{ck}}{2\gamma}
$$

 \blacksquare The current in the first stage can be obtained from

$$
\begin{cases} g_{m,1} > \frac{V_{crit}C_1f_{ck}}{V_{in,min}\gamma}, \ V_{in,min} < V_{crit} \\ I_{D,1} > \frac{V_{crit}C_1f_{ck}}{2\gamma}, \ V_{in,min} > V_{crit} \end{cases}
$$

- **The obtained values of** $I_{D,1}$ **and** $I_{D,2}$ **lead to the minimum** theoretical value of the comparator power consumption
- \blacksquare In practical designs a safety margin has to be considered

References

Main textbook

■ F. Maloberti, *Analog Design for CMOS VLSI Systems*, Springer-Verlag, 2001.

Other references

- B. Razavi, *Design of Analog CMOS Integrated Circuits*, McGraw-Hill, 2001.
- D. Johns and K. Martin, *Analog Integrated Circuit Design*, Wiley, 1997.
- W. Sansen, *Analog Design Essentials*, Springer-Verlag, 2006.
- P. Allen and D. Holberg, *CMOS Analog Circuit Design*, Oxford University Press, 2002.