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SUMMARY

Power amplifiers are essential components in communication systems and are inher-

ently nonlinear. The nonlinearity creates spectral growth (broadening) beyond the signal

bandwidth, which interferes with adjacent channels. It also causes distortions within the

signal bandwidth, which decreases the bit error rate at the receiver. Newer transmission

formats, such as wideband code division multiple access (WCDMA) or orthogonal frequency

division multiplexing (OFDM), are especially vulnerable to the nonlinear distortions due to

their high peak-to-average power ratios (PAPRs). If we simply back-off the input signal to

achieve the linearity required for the power amplifier, the power amplifier efficiency will be

very low for high PAPR signals.

Another choice is to linearize a nonlinear power amplifier so that overall we have a

linear and reasonably efficient device. Digital predistortion is one of the most cost effective

ways among all linearization techniques. However, most of the existing designs treat the

power amplifier as a memoryless device. For wideband or high power applications, the

power amplifier exhibits memory effects, for which memoryless predistorters can achieve

only limited linearization performance.

In this dissertation, we propose novel predistorters and their parameter extraction al-

gorithms. We investigate a Hammerstein predistorter, a memory polynomial predistorter,

and a new combined model based predistorter. The Hammerstein predistorter is designed

specifically for power amplifiers that can be modeled as a Wiener system. The memory

polynomial predistorter can correct both the nonlinear distortions and the linear frequency

response that may exist in the power amplifier. It is a robust predistorter, which has demon-

strated good performance on several nonlinear system models. Real-time implementation

aspects of the memory polynomial predistorter are also investigated in the dissertation.

The new combined model includes the memory polynomial model and the Murray Hill

model, thus extending the predistorter’s ability to compensate for strong memory effects in

xiii



the power amplifier. Performance of the new model is demonstrated through experimental

measurements.

The predistorter models considered in this dissertation include both even- and odd-

order nonlinear terms. In the literature, most of the power amplifier and predistorter

models consider only the odd-order terms. Here, we show that it is beneficial to include

even-order nonlinear terms in both the baseband power amplifier and predistorter models.

By including these even-order nonlinear terms, we have a richer basis set, which offers

appreciable improvement.

The ideal performance of digital predistortion certainly relies on robust predistorters

that can completely compensate for the nonlinearities of the power amplifier. In reality,

however, the performance can also be affected by the analog imperfections in the transmit-

ter, which are introduced by the analog components; mostly analog filters and quadrature

modulators. There are two common configurations for the upconversion chain in the trans-

mitter: two-stage upconversion and direct upconversion. For a two-stage upconversion

transmitter, we design a band-limited equalizer to compensate for the frequency response

of the surface acoustic wave (SAW) filter which is usually employed in the IF stage. For a

direct upconversion transmitter, we develop a model to describe the frequency-dependent

gain/phase imbalance and dc offset. We then develop two methods to construct compen-

sators for the imbalance and dc offset. These compensation techniques help to correct for

the analog imperfections, which in turn improve the overall predistortion performance.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Power amplifiers are indispensable components in a communication system and are inher-

ently nonlinear. The nonlinearity generates spectral regrowth, which leads to adjacent

channel interference and violations of the out-of-band emission requirements mandated by

regulatory bodies. It also causes in-band distortion, which degrades the bit error rate (BER)

performance.

To reduce the nonlinearity, the power amplifier can be backed off to operate within

the linear portion of its operating curve. However, newer transmission formats, such as

wideband code division multiple access (WCDMA) and orthogonal frequency division mul-

tiplexing (OFDM), have high peak to average power ratios, i.e., large fluctuations in their

signal envelopes. This means that the power amplifier needs to be backed off far from its

saturation point, which results in very low efficiencies, typically less than 10% [50]; i.e.,

more than 90% of the dc power is lost and turns into heat. Considering the large num-

ber of wireless base stations deployed worldwide, improved power amplifier efficiency can

substantially reduce the electricity and cooling costs incurred to the service providers. To

improve the power amplifier efficiency without compromising its linearity, power amplifier

linearization is essential.

Among all linearization techniques, digital predistortion is one of the most cost effective

(see Fig. 1). It adds a digital predistorter in the baseband to create an expanding nonlinear-

ity that is complementary to the compressing characteristic of the power amplifier. Ideally,

the cascade of the predistorter and the power amplifier becomes linear and the original

input is amplified by a constant gain. With the predistorter, the power amplifier can be

utilized up to its saturation point while still maintaining a good linearity, thereby signif-

icantly increasing its efficiency. In reality, the power amplifier characteristics may change

1
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Figure 1: Digital Predistortion System Diagram

over time because of temperature drift, component aging, etc. Therefore, the predistorter

should also have the ability to adapt to these changes.

Digital predistortion implementations in the current literature mostly focus on the power

amplifier that has a memoryless nonlinearity; i.e., the current output depends only on the

current input through a nonlinear mechanism. This instantaneous nonlinearity is usually

characterized by the AM/AM and AM/PM responses of the power amplifier, where the

output signal amplitude and phase deviation of the power amplifier output are given as

functions of the amplitude of its current input. There has been intensive research on pre-

distortion techniques for memoryless power amplifiers during the past decade [28].

As the signal bandwidth gets wider, such as in WCDMA, power amplifiers begin to

exhibit memory effects. This is especially true for those high power amplifiers used in

wireless base stations. The causes of the memory effects can be attributed to thermal

constants of the active devices or components in the biasing network that have frequency-

dependent behaviors [47]. As a result, the current output of the power amplifier depends

not only on the current input, but also on past input values. In other words, the power

amplifier becomes a nonlinear system with memory. For such a power amplifier, memoryless

predistortion can achieve only very limited linearization performance [29], [17]. Therefore,

digital predistorters also need to have memory structures. This dissertation investigates

robust predistorter models that are capable of linearizing power amplifiers with memory

effects. It also investigates system implementation issues related to these wideband digital

predistortion systems.
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1.2 Objectives

The objective of this dissertation is to develop digital predistortion systems for linearization

of power amplifiers with memory effects. Our research efforts focus on three areas:

• Predistorter models with memory structures;

• Digital compensation techniques of analog imperfections in the transmitters;

• Wideband digital predistortion testbed.

Volterra series is a general nonlinear model with memory. However, the large number of

coefficients in the Volterra series makes it unattractive for practical applications. Instead,

several special cases of the Volterra series are considered in this dissertation, which include

the Hammerstein model [25], the memory polynomial model [30], the Murray Hill model

[32], and possible combinations of these models.

The ideal performance of digital predistortion certainly relies on robust predistorters

that can completely compensate for the nonlinearities in the power amplifier. In reality,

however, the performance can also be affected by the analog imperfections in the trans-

mitter, which are introduced by the analog components, such as mixers, analog filters, and

quadrature modulators. The second focus of this dissertation is to investigate modeling and

compensation techniques for these imperfections.

In this dissertation, a wideband digital predistortion testbed is also developed to evaluate

the performance of digital predistortion systems on real power amplifiers.

1.3 Outline

The dissertation is organized as follows:

Chapter 2 reviews the literature in the field of modeling and predistortion of power

amplifiers. A memoryless power amplifier can be characterized by its AM/AM and AM/PM

responses. To linearize such a power amplifier, a memoryless predistorter is sufficient. For a

power amplifier with memory effects, various models are available to capture the behavior of

the power amplifier, which include the Volterra series, the Wiener model, the Hammerstein

3



model, and the Wiener-Hammerstein model. The indirect learning architecture is then

presented to construct the predistorter for a power amplifier with memory effects.

In Chapter 3, we present novel predistorters and their parameter extraction algorithms.

A Hammerstein predistorter, a memory polynomial predistorter, and a new combined model

based predistorter are considered. The parameters of these predistorters are extracted using

the indirect learning architecture, eliminating the need for model assumption and parameter

extraction of the power amplifier. Performance of these predistorters are demonstrated

through computer simulations and/or experimental measurements.

Most existing literature considers only odd-order nonlinear terms when modeling power

amplifiers and designing predistorters in the baseband. We show in Chapter 4 that it is

beneficial to include even-order nonlinear terms in the baseband PA as well as predistorter

models. By including these even-order nonlinear terms, we have a richer basis set, which

offers appreciable improvement.

In Chapter 5, we study the analog imperfections in the transmitter and design com-

pensation techniques. For a two-stage upconversion transmitter, we design a band-limited

equalizer to compensate for the frequency response of the SAW filter, which is usually

employed in the IF stage. For a direct upconversion transmitter, we develop a model to

describe the frequency-dependent gain/phase imbalance and dc offset. We then develop two

methods to construct compensators for the imbalance and dc offset. These compensation

techniques help to correct for the analog imperfections, which in turn improve the overall

predistortion performance.

In a practical implementation, predistorter training is performed on a digital signal

processor, such as the Texas Instruments TMS320C6711. In Chapter 6, we investigate

real-time implementation aspects of the memory polynomial predistorter. We implement

the predistorter training algorithm on a Texas Instruments TMS320C6711 processor and

evaluate the performance of the trained predistorter on our wideband digital predistortion

testbed.

Finally, Chapter 7 concludes the dissertation and provides future research directions.
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CHAPTER 2

BACKGROUND

In this chapter, we review modeling techniques and predistorter design for memoryless

power amplifiers, as well as power amplifiers with memory effects.

2.1 Modeling Memoryless Power Amplifiers

In the passband, a strictly memoryless power amplifier can be described as a nonlinear

function that maps a real valued input to a real valued output. Over a closed interval for

z̃(t), this memoryless nonlinearity can be approximated by a power series; i.e.,

ỹ(t) =
K
∑

k=1

b̃k z̃
k(t), (1)

where b̃k are real-valued coefficients, z̃(t) is the passband power amplifier input, and ỹ(t) is

the passband power amplifier output. In the baseband, (1) becomes

y(t) =

K
∑

k=1
k odd

bk z(t) |z(t)|k−1 (2)

[3, p. 69], [39], where

bk = 21−k

(

k
k−1
2

)

b̃k, (3)

z(t) is the baseband power amplifier input, and y(t) is the baseband power amplifier output.

The first observation from (2) is that it only contains odd order terms. This is because the

signals generated from the even order terms in (1) are far from the carrier frequency. Thus,

they do not contribute to the baseband output y(t). The second observation is that bk are

real valued since b̃k are real valued. Therefore, if the power amplifier is strictly memoryless,

it only introduces amplitude distortion to the input signal, giving rise to the so called

AM/AM conversion of the power amplifier.
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Figure 2: The AM/AM and AM/PM responses of a Class AB power amplifier.

Interestingly, if bk in (2) are allowed to be complex, (2) can represent a much larger

class of power amplifiers, often referred to as quasi-memoryless power amplifiers. In the

passband, a nonlinear power amplifier with memory can be approximated by the Volterra

series; i.e.,

ỹ(t) =
∑

k

∫

· · ·
∫

h̃k(τk)
k
∏

i=1

z̃(t− τi) dτk, (4)

where τk = [τ1, . . . , τk]
T , h̃k(·) is the real-valued kth-order Volterra kernel, and dτk =

dτ1dτ2 · · ·dτk. An important special case here is when the power amplifier in the passband

has short-term memory; i.e., the time span of the memory is short compared to the time

variations of the input signal envelope. With this assumption, it is shown in [39] that the

baseband version of (4) has the same form as (2) except that bk are complex valued. In this

case, besides amplitude distortion, the power amplifier also introduces phase distortion to

the input signal, which leads to the nonconstant AM/PM conversion of the power amplifier.

However, the baseband representation in this case is still memoryless.

In summary, power amplifiers that are strictly memoryless or quasi-memoryless can be

characterized by their AM/AM and AM/PM conversions. As an example, the AM/AM and

AM/PM responses of a memoryless Class AB power amplifier are shown in Fig. 2.
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2.2 Predistortion of Memoryless Power Amplifier

In the current literature, digital predistortion implementations mostly focus on memoryless

power amplifiers.

2.2.1 Data Predistortion for Memoryless Power Amplifiers

Early digital predistorters mainly fall into the data predistorter category in the sense that

predistortion is applied directly to each of the input signal constellation points. Depending

on the location of the pulse shaping filter in the transmitter, there are two types of data

predistorters.

The first type, exemplified by [24], [41], implements the pulse shaping filter using a radio

frequency (RF) bandpass filter after the power amplifier. The schematic diagram of this

type of predistortion system is shown in Fig. 3. Since the power amplifier is memoryless

and there is no filtering between the predistorter and the power amplifier, it is sufficient

to use a memoryless data predistorter here. The predistorter can be easily implemented

as look-up tables (LUTs) that map the original input constellation points to the desired

locations. Because of the small size of the input levels, this type of predistorters converges

fast and requires very little memory. However, RF bandpass filters with sharp cut-offs are

difficult to obtain and have relative large losses, thereby making this structure unattractive.

The second type, exemplified by [26], [27], [20], considers the case where the pulse

shaping filter is placed in the baseband, immediately after the data predistorter (see Fig.

4). In such an arrangement, a memoryless data predistorter is not sufficient to fully linearize
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Figure 4: Block diagram of a data predistortion system with the pulse shaping filter placed
in the baseband after the predistorter.

the memoryless power amplifier since it compensates only for those signal levels appearing

in the signal constellation. The approach taken by [26] uses a specific pulse shaping filter

to generate discrete values at two or three equally spaced data points per symbol interval.

Each data point is then predistorted by a memoryless predistorter and combined with

adjacent data points to reduce the nonlinear distortion at the power amplifier output. In

[27], the current data input is considered together with its previous and following inputs as

a signal point of a larger signal constellation, which is then predistorted by a memoryless

data predistorter. Eun and Powers [20] proposed a Volterra series based data predistorter

to compensate for the cascade of the pulse shaping filter and the power amplifier. The

predistorter is trained using the indirect learning architecture, where the desired power

amplifier output is set to be the original data after pulse shaping.

The main drawback of data predistorters is their dependence on the signal constellation

and the pulse shaping filter. Moreover, data predistorters do not work well if the processing

produces almost continuous input signal levels, e.g., in OFDM or WCDMA.

2.2.2 Signal Predistortion for Memoryless Power Amplifiers

To overcome these limitations, recent digital predistorters have usually been applied at the

last stage of the baseband processing (see Fig. 5). In contrast to data predistorters, these

predistorters can deal with arbitrary input waveforms, thus they are referred to as signal

predistorters here. They can be divided into three categories [44]: mapping structure, polar

structure, and complex gain structure.

The first signal predistorter for memoryless power amplifiers was proposed by Nagata
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[36] using a mapping structure. Given a complex baseband input signal x(t), the predistorter

generates a complex correction signal ∆[x(t)] from a two-dimensional LUT indexed by the

real and imaginary parts of x(t). The predistorted signal z(t) is given by

z(t) = x(t) + ∆[x(t)]. (5)

Thus, the predistorter maps each complex input point to its desired location, which is a

generalization of the first type of data predistorters in Section 2.2.1. This nonlinear mapping

can also correct for other types of memoryless distortions in the transmitter, such as the

gain/phase imbalance in the quadrature modulator. The drawback of this approach is the

large LUT size since the LUT needs to be two-dimensional and cover a large number of

input levels.

Considering that the AM/AM and AM/PM responses of the memoryless power amplifier

depend only on the input amplitude, the two-dimensional LUT in the mapping predistorter

can actually be replaced by two one-dimensional LUTs. Indexed by the input amplitude

rx(t), the one-dimensional LUTs specify the desired output amplitude, A[rx(t)], and the

phase shift, φA[rx(t)]; i.e., the predistorted output is given by

z(t) = A[rx(t)] ej {φx(t)+φA[rx(t)]}, (6)

where φx(t) is the pase of the input signal x(t). Since the predistortion LUTs are in polar

form, this predistorter, proposed by by Faulkner et al. [22], is often referred to as the

polar structure predistorter. In practical implementations, phase calculation in the polar

conversion for each input complex point is quite computationally intensive. Faulkner et
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al. [22] also provided an efficient implementation to avoid the polar conversion during

predistortion, which is a rearrangement of (6); i.e.,

z(t) = x(t)
A[rx(t)]

rx(t)
ej φA[rx(t)], (7)

where A[rx(t)]
rx(t) and ej φA[rx(t)] are given by the gain table and phase table, respectively. The

polar conversions are still needed when updating the LUTs, but the update can be done

much more slowly.

An approach similar to the polar predistorter was proposed by Cavers [6]. It employs a

complex gain table instead of the gain and phase tables in the polar predistorter; i.e.,

F [rx(t)] =
A[rx(t)]

rx(t)
ejφA[rx(t)]. (8)

The predistorted output is then given by

z(t) = x(t) F [rx(t)]. (9)

This structure avoids the conversions between polar and Cartesian forms. Therefore, it is

more computationally efficient. Furthermore, only one complex multiplication is needed in

(9) as opposed to two real and one complex multiplications in (7).

2.3 Modeling Power Amplifiers with Memory Effects

In Section 2.1, it is shown that power amplifiers with short-term memory effects in the pass-

band have memoryless baseband representations. However, as the input signal bandwidth

becomes wider, such as in WCDMA, the time span of the power amplifier memory becomes

comparable to the time variations of the input signal envelope. Thus, the memory effects of

the power amplifier in the passband can no longer be considered as short-term. Without the

short-term memory assumption, (4) gives the full baseband Volterra series [39], [4], which

is

y(t) =
∑

k

∫

· · ·
∫

h2k+1(τ2k+1)
k+1
∏

i=1

z(t− τi)
2k+1
∏

i=k+2

z∗(t− τi) dτ2k+1, (10)

where

h2k+1(τ2k+1) =
1

22k

(

2k + 1

k

)

h̃2k+1(τ2k+1) e
−j2πfo(

∑k+1
i=1 τi−

∑2k+1
i=k+2 τi), (11)
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(·)∗ denotes complex conjugation, and fo is the carrier frequency. In discrete-time domain,

(10) becomes

y(n) =
∑

k

∑

l1

· · ·
∑

l2k+1

h2k+1(l1, l2, · · · , l2k+1)
k+1
∏

i=1

z(n− li)
2k+1
∏

i=k+2

z∗(n− li). (12)

From (12), it can be seen that the number of coefficients of the Volterra series increases

exponentially as the memory length and the nonlinear order increase. This drawback makes

the Volterra series unattractive for real-time applications. This prompts us to consider sev-

eral special cases of the Volterra series. The special cases considered here include the Wiener

model, the Hammerstein model, the Wiener-Hammerstein model, the memory polynomial

model, and the Murray Hill model.

The Wiener model is a linear time-invariant (LTI) system followed by a memoryless

nonlinearity (NL) (see Fig. 6). The two subsystems are given by

u(n) =
L−1
∑

l=0

al z(n− l), (13)

y(n) =
K
∑

k=1
k odd

bk u(n)|u(n)|k−1, (14)

where al are the impulse response values of the LTI block and bk are the coefficients of the

odd-order polynomial describing the memoryless nonlinearity. Substituting (13) into (14)

gives

y(n) =
K
∑

k=1
k odd

bk

[

L−1
∑

l=0

al z(n− l)

] ∣

∣

∣

∣

∣

L−1
∑

l=0

al z(n− l)

∣

∣

∣

∣

∣

k−1

. (15)

The Wiener model was used by Clark et al. [11] to model the power amplifier with memory

effects, where improvements in modeling accuracy were observed when the Wiener model

replaces the memoryless polynomial model.
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Figure 8: The Wiener-Hammerstein model.
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The Hammerstein model is a memoryless nonlinearity followed by an LTI system (see

Fig. 7). The two subsystems in this model are described by

v(n) =

K
∑

k=1
k odd

bk z(n)|z(n)|k−1, (16)

y(n) =
L−1
∑

l=0

cl v(n− l), (17)

where bk are the coefficients for the memoryless nonlinearity and cl are the impulse response

values of the LTI system. Substitution of (16) into (17) leads to

y(n) =
L−1
∑

l=0

cl

K
∑

k=0
k odd

bk z(n− l) |z(n− l)|k−1. (18)

The Wiener-Hammerstein (W-H) model (see Fig. 8) is an LTI system followed by a

memoryless nonlinearity, which in turn is followed by another LTI system. Such a configu-

ration is commonly used for satellite communication channels, where the power amplifier at

the satellite transponder is driven near saturation to exploit the maximum power efficiency

for the downlink [2]. The subsystems in this model are described by

u(n) =

La−1
∑

l=0

al z(n− l), (19)

v(n) =

K
∑

k=1
k odd

bk u(n)|u(n)|k−1, (20)

y(n) =

Lc−1
∑

l=0

cl v(n− l), (21)

where al and cl are, respectively, impulse response values of the LTI systems before and

after the memoryless nonlinear block, and bk are the coefficients of the nonlinear block.

Combining (19), (20), and (21), we infer

y(n) =

Lc−1
∑

l1=0

cl1

K
∑

k=0
k odd

bk





La−1
∑

l2=0

al2z(n− l2 − l1)





∣

∣

∣

∣

∣

∣

La−1
∑

l2=0

al2z(n− l2 − l1)

∣

∣

∣

∣

∣

∣

k−1

. (22)

The memory polynomial model uses the diagonal kernels of the Volterra series and can

be viewed as a generalization of the Hammerstein model. In the discrete-time Volterra
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series (12), if l1 = · · · = l2k+1 = l, (12) becomes

y(n) =
P
∑

p=1

p odd

L−1
∑

l=0

bpl z(n− l)|z(n− l)|p−1, (23)

where bpl are equal to h2k+1(l, l, · · · , l) in (12). This model was considered for modeling

power amplifiers with memory effects in [30] and for data predistortion of the cascade of a

pulse shaping filter and a memoryless power amplifier in [10].

The Murray Hill model, proposed by Ma et al. [32], introduces a set of nonlinear

terms into the conventional memoryless polynomial model based on the underlying physical

phenomena. For each input, these terms generate a complex gain that depends on the

combination of the current and past input signal envelopes in a nonlinear fashion. The

output of the model is given by

y(n) =
P
∑

p=1

ap z(n)|z(n)|p−1 +

Q
∑

q=2

bq z(n)

[

L−1
∑

l=0

cl |z(n− l)|
]q−1

, (24)

where ap and bq are complex polynomial coefficients and cl are real valued memory filter

coefficients. Note that the bq coefficients start with b2 instead of b1. This is because the

term associated with b1, i.e., x(n), is already taken into account in (24) by a1. Moreover,

the cl coefficients are assumed to be real valued instead of complex valued for easier im-

plementation. This model was used in [32] as a predistorter model and achieved very good

performance on the power amplifiers under test.

There is another large class of power amplifier models [40] that is based on frequency-

dependent AM/AM and AM/PM conversions of the power amplifier. However, they are

usually obtained from single tone measurements and are difficult to extract from practical

baseband inputs and outputs. Therefore, they are not considered here.

2.4 Predistortion of Power Amplifiers with Memory Ef-

fects

For power amplifiers with memory effects, memoryless predistortion can achieve only very

limited linearization performance [29], [17]. Thus, digital predistorters also need to have

memory structures.
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Figure 9: The indirect learning architecture for the predistorter.

In the current literature, digital predistorters with memory structures are mostly consid-

ered for data predistortion of the cascade of a pulse shaping filter and a memoryless power

amplifier, as reviewed in Section 2.2.1. The models that have been considered for these

predistorters include the Volterra series [20], [21], the Hammerstein model [25], and the

memory polynomial model [10]. One exception is [32], in which Ma et al. applied a Murray

Hill model based predistorter to a power amplifier with memory effects and achieved good

linearization performance.

To construct digital predistorters with memory structures, there are two types of ap-

proaches. One type of approach is to first identify the power amplifier and then find the

inverse of the power amplifier, which was used in [25]. However, obtaining the inverse of

a nonlinear system with memory is generally a difficult task. Another type of approach is

to use the indirect learning architecture to design the predistorter directly, as adopted in

[20], [10]. The advantage of this type of approaches is that it eliminates the need for model

assumption and parameter estimation of the power amplifier.

A block diagram of the indirect learning structure is shown in Fig. 9. The feedback path

labeled “Predistorter Training” (block A) has y(n)/G is its input, where G is the intended

power amplifier gain, and ẑ(n) as its output. The actual predistorter is an exact copy of the

feedback path (copy of A); it has x(n) as its input and z(n) as its output. Ideally, we would

like y(n) = Gx(n), which renders z(n) = ẑ(n) and the error term e(n) = 0. Given y(n) and

z(n), this structure enables us to find the parameters of block A directly, which yields the
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predistorter. The algorithm converges when the error energy ||e(n)||2 is minimized.

In general, power amplifier characteristics do not change rapidly with time; changes in

the power amplifier characteristics are often due to temperature drift and aging, which have

long time constants. After gathering a block of y(n) and z(n) data samples, the training

branch (block A) can process the data off-line, which lowers the processing requirements

of the predistortion system. Once the predistorter identification algorithm has converged,

the new set of parameters is plugged into the high speed predistorter, which can be readily

implemented using application-specific integrated circuits (ASICs) or field programmable

gate arrays (FPGAs). When the predistorter coefficients have been found and it is believed

that the power amplifier characteristics are hardly changing, the setup in Fig. 9 can be run

in open loop; i.e., the training branch is temporarily shut down until changes in the power

amplifier characteristics require a predistorter coefficient update.
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CHAPTER 3

DIGITAL PREDISTORTER DESIGN

Digital predistortion implementations in the current literature mostly focus on memoryless

power amplifiers. For power amplifier with memory effects, memoryless predistortion can

only achieve very limited linearization performance [29], [17]. Thus, digital predistorters

also need to have memory structures. The most general way to introduce memory is to

use the Volterra series, which has been considered in designing data predistorters [20], [21].

However, the large number of coefficients of the Volterra series makes it unattractive for

practical applications. Therefore, we will investigate several special cases of the Volterra

series, which include the Hammerstein model [25], the memory polynomial model [30], and

the combination of the Memory polynomial and the Murray Hill models [32].

3.1 Hammerstein Predistorter Design

A Hammerstein predistorter is ideal for linearization of a Wiener system. The Wiener sys-

tem can be either a power amplifier with memory effects [11] or the cascade of a pulse

shaping filter and a memoryless power amplifier [25]. To construct a Hammerstein predis-

torter, the approach taken by [25] uses a gradient method to first identify the Wiener system

and then find the Hammerstein predistorter as its inverse. An alternative approach is pur-

sued here and [14], which generates the Hammerstein predistorter without first identifying

the Wiener power amplifier by using the indirect learning architecture.

3.1.1 Hammerstein Predistorter Training

In the training branch (see Fig. 10), the Hammerstein predistorter is given by:

v(n) =
K
∑

k=0
k odd

ck y(n) |y(n)|k−1 (25)

z(n) =
P
∑

p=1

ap z(n− p) +

Q
∑

q=0

bqv(n− q), (26)
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Figure 10: The indirect learning architecture for the Hammerstein predistorter.

where y(n) and z(n) are, respectively, the input and output of the predistorter in the

training branch, ck in (25) are the coefficients of the nonlinear block of the predistorter,

and ap and bq in (26) are the coefficients of the LTI portion of the predistorter. Substituting

(25) into (26), we obtain

z(n) =
P
∑

p=1

ap z(n− p) +

Q
∑

q=0

bq









K
∑

k=0
k odd

ck y(n− q) |y(n− q)|k−1









. (27)

In (25), the memoryless nonlinearity is modeled as an odd-order polynomial, and in (26),

the LTI block is modeled as a general pole/zero system. Note that (27) generalizes the

Hammerstein model described in Section 2.3 by using a pole/zero LTI system instead of an

FIR LTI system.

Parameter estimation of the model in (27) is a classical Hammerstein system identifi-

cation problem. If no additional assumptions are made on the system’s input signal y(n),

iterative Newton and Narendra-Gallman algorithms are the two most popular iterative es-

timation methods [19]. The two algorithms exhibit similar performance as shown in [19].

The main drawback of these algorithms is that they are sensitive to the initial guess and

may converge to a local minimum. A recent method proposed by Bai [1] uses a two stage

least-squares/singular value decomposition (LS/SVD) algorithm, which can lead to a global

optimum. Although the model structure considered in [1] is a Hammerstein system followed

by a memoryless nonlinearity, the results there can be easily modified to suit the model in

18



(27). Note that for a given set of {y(n), z(n)} values, the bq and ck coefficients are not

unique (i.e., multiplying bq with a constant and dividing ck by the same constant yields the

same model). To avoid this problem, we constrain that

Q
∑

q=0

|bq|2 = 1

and the real part of b0 is positive as suggested in [1].

Next, we will review the Narendra-Gallman (NG) and the optimal two stage identifica-

tion (LS/SVD) algorithms.

Narendra-Gallman algorithm. The NG algorithm starts with initial guesses for the

ap and bq coefficients, denoted by a
(0)
p and b

(0)
q , respectively. At the ith iteration (27) can

be rewritten as

z(n) −
P
∑

p=1

a(i)
p z(n− p) =

(K−1)/2
∑

k=0

c2k+1u2k+1(n) (28)

u2k+1(n) =

Q
∑

q=0

b(i)q y(n− q)|y(n− q)|2k.

At this stage, our objective is to solve for c2k+1. Using matrix notation we can reformulate

(28) as

z0 − Za(i) = Uc, (29)

where

Z = [z1, . . . , zP ],

zl = [0T
l , z(1), . . . , z(N − l)]T

with 0l is a l × 1 all-zero vector, and

a(i) = [a
(i)
1 , · · · , a(i)

P ]T ,

U = [u1, · · · ,uK ],

u2k+1 = [u2k+1(1), · · · , u2k+1(N)]T ,

c = [c1, · · · , cK ]T .

The least-squares solution for (29) is

ĉ(i+1) = (UHU)−1UH
(

z0 − Za(i)
)

, (30)
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where (·)H denotes Hermitian transpose. In the second step, based on the c
(i+1)
2k+1 ’s obtained,

we rewrite (27) as,

z0 = Za + Vb = [Z V]







a

b






, (31)

where

V = [v0v1, · · · ,vQ],

vl = [0T
l , v(1), · · · , v(N − l)]T ,

b = [b0, · · · , bQ]T , (32)

and v(n) is given in (51). The least-squares solution for (31) is,






â(i+1)

b̂(i+1)






=
(

[Z V]H [Z V]
)−1

[Z V]Hz0, (33)

With the new â(i+1) and b̂(i+1) estimates, we can go back to the first step and continue

until the algorithm converges.

Optimal two stage identification algorithm.

Since the difficulty in estimating the bq’s and c2k+1’s is that they appear together as the

coefficient on the r.h.s. of (27), if we define

dq,2k+1 = bq c2k+1, (34)

we can first estimate dq,2k+1 using least-squares and then find bq and c2k+1 from dq,2k+1.

Substituting (34) into (27), we obtain

z(n) =
P
∑

p=1

apz(n− p) +

Q
∑

q=0

(K−1)/2
∑

k=0

dq,2k+1 gq,2k+1(n), (35)

where

gq,2k+1(n) = y(n− q)|y(n− q)|2k. (36)

Rewriting in matrix form, we obtain

z0 = Za + Gd

= [Z G]







a

d






, (37)
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where

G = [g01, · · · ,g0K , · · · ,gQ1, · · · ,gQK ],

gq,2k+1 = [gq,2k+1(1), · · · , gq,2k+1(N)]T ,

d = [d01, · · · , d0K , · · · , dQ1, · · · , dQK ]T . (38)

The least-squares solution for (37) is







â

d̂






=
(

[Z G]H [Z G]
)−1

[Z G]Hz0, (39)

Equation (34) can be alternatively expressed as

D =



















d01 d03 · · · d0K

d11 d13 · · · d1K

...
...

...

dQ1 dQ3 · · · dQK



















= bcT ,

where b = [b0, . . . , bQ]T , c = [c1, . . . , cK ]T . Since the matrix D has rank one, a natural way

to estimate b̂ and ĉ from D̂ is to perform a singular value decomposition (SVD) on D̂ and

then find the eigenvectors corresponding to the largest singular value. Let the SVD of D̂

be given by,

D̂ =

min[(Q+1),(K+1)/2]
∑

i=1

σi µi ν
H
i , (40)

where µi and νi are Q + 1 and (K + 1)/2 dimensional orthonormal vectors, respectively.

Then b̂ and ĉ can be estimated as

b̂ = sµ µ1 , ĉ = sµ σ1 ν
∗
1 , (41)

where ∗ denotes complex conjugate and sµ is the first non-zero element of µ1. These

estimates can be shown to be the closest b̂ and ĉ to D̂ in the least-squares sense [1].

In summary, the NG algorithm is a simple and robust algorithm. Although it may

have convergence problems, it can perform well in many cases as will be shown in the next

section. The LS/SVD algorithm avoids the potential local minimum problem of the NG

algorithm. However, using SVD to find the bq’s and c2k+1’s may not result in the best bq’s
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and c2k+1’s that minimize the squared error criterion. Our examples in the next section

will show that both work well for identifying the Hammerstein predistorter although one

may outperform the other in a particular scenario.

3.1.2 Hammerstein Predistorter Simulation

The performance of the Hammerstein predistorter identified using the indirect learning

architecture is illustrated in following examples.

Example 3.1 The LTI portion of the Wiener power amplifier model has a pole/zero

form, whose system function is given by

H(z) =
1 + 0.3z−2

1 − 0.2z−1
. (42)

For the memoryless nonlinear portion of the Wiener power amplifier model, (25) is assumed

with K = 5 and

c1 = 14.9740 + 0.0519j

c3 = −23.0954 + 4.9680j

c5 = 21.3936 + 0.4305j, (43)

which were extracted from an actual Class AB power amplifier.

The baseband input signal was a 3-carrier WCDMA signal. Hammerstein predistorter

identification was carried out based on 8000 data samples. Usually within a few iterations,

the predistorter parameter estimation algorithm converges. The power spectral densities

(PSDs) of the input and output signals were then compared to assess the effectiveness of

the predistorter in reducing spectral regrowth. In this example, the LTI portion of the

Hammerstein predistorter is assumed to be a pole/zero system with two poles and one

zero (correct model orders for the inverse of H(z) in (42)). The nonlinear block of the

predistorter uses a 5th odd-order polynomial.

The performance of the predistorter identified with the LS/SVD algorithm [1] and the

Narendra-Gallman (NG) algorithm [19] is demonstrated in Fig. 11. Both algorithms fully

suppress the spectral regrowth exhibited in power amplifier output. In contrast, it can
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Figure 11: Comparison of the PSDs for the pole/zero Wiener power amplifier and the
pole/zero Hammerstein predistorter. (a) Output without predistortion; (b) Output with
memoryless predistortion; (c) Output with Hammerstein predistortion, NG and LS/SVD
algorithms (similar performance).

be observed in Fig. 11 that 5th order memoryless predistortion cannot fully suppress the

spectral regrowth.

Example 3.2 The LTI portion of the Wiener power amplifier is

H(z) = 1 + 0.3z−2 (44)

(FIR), and the LTI portion of the Hammerstein predistorter is assumed to be FIR as well.

The objective here is to see whether the algorithms can correctly identify an FIR filter that

approximates the inverse of the FIR system in the power amplifier. When the FIR system

in the predistorter has 15 taps, the performance of the predistorter is shown in Fig. 12. In

this case, the NG algorithm performs worse than the LS/SVD algorithm. When examining

the concatenated response of the two LTI blocks (one from the Wiener power amplifier and

the other from the Hammerstein predistorter), it is observed that the predistorter’s LTI

system identified by the NG algorithm can only compensate for the power amplifier’s LTI

system within the signal bandwidth. However, the LS/SVD algorithm is able to find a good

FIR system for the predistorter, both within and outside of the signal bandwidth.

Example 3.3 The Hammerstein predistorter was used to predistort a perturbed Wiener
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Figure 12: Comparison of the PSDs for FIR Wiener power amplifier and 15-tap FIR
Hammerstein predistorter. (a) Output without predistortion; (b) Output with memoryless
predistortion; (c) Output with Hammerstein predistortion (NG); (d) Output with Hammer-
stein predistortion (LS/SVD).
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Figure 13: Comparison of the PSDs for full Volterra power amplifier and 15-tap FIR
Hammerstein predistorter. (a) Output without predistortion; (b) Output with memoryless
predistortion; (c) Output with Hammerstein predistortion (NG); (d) Output with Hammer-
stein predistortion (LS/SVD); (e) Input signal.
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power amplifier to test the robustness of the predistorter. The perturbed Wiener power am-

plifier was constructed from the Wiener power amplifier in Example 3.2. First the Volterra

kernels of the Wiener power amplifier was found. Then zero mean complex Gaussian noise

with variance 2 × 10−4 was added to the Volterra kernels, which turns the original Wiener

model into a full Volterra system. From Fig. 13, it can be seen that although the power

amplifier is not exactly a Wiener system, significant reduction of spectral regrowth can still

be obtained by using the Hammerstein predistorter.

In all three examples, memoryless predistortion is not very effective in suppressing spec-

tral regrowth, which underscores the notion that power amplifier memory effects must be

taken into account when designing the predistorter.

3.2 Memory Polynomial Predistorter Design

A memory polynomial predistorter uses the diagonal kernels of the Volterra series and can

be viewed as a generalization of the Hammerstein predistorter. In this section [17, 18], the

memory polynomial predistorter is used to linearize power amplifiers with memory effects.

The predistorter is constructed using the indirect learning architecture, thereby eliminating

the need for model assumption and parameter estimation of the power amplifier. Comparing

with the Hammerstein predistorter, the memory polynomial predistorter has slightly more

terms. However, it is much more robust and its parameters can be easily estimated by way

of least-squares.

3.2.1 Memory Polynomial Predistorter Training

In the training branch (see Fig. 14), the memory polynomial predistorter can be described

by

z(n) =
K
∑

k=1
k odd

Q
∑

q=0

akq y(n− q)|y(n− q)|k−1, (45)

where y(n) and z(n) are, respectively, the input and output of the predistorter in the training

branch, and akq are the coefficients of the predistorter. Since the model in (45) is linear

with respect to its coefficients, the predistorter coefficients akq can be directly obtained by
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Figure 14: The indirect learning architecture for the memory polynomial predistorter.

least-squares. By defining a new sequence

ukq(n) =
y(n− q)

G

∣

∣

∣

∣

y(n− q)

G

∣

∣

∣

∣

k−1

, (46)

at convergence, we should have

z = Ua, (47)

where

z = [z(0), · · · , z(N − 1)]T ,

U = [u10, · · · ,uK0, · · · ,u1Q, · · · ,uKQ],

ukq = [ukq(0), · · · , ukq(N − 1)]T ,

a = [a10, · · · , aK0, · · · , a1Q, · · · , aKQ]T .

The least-squares solution for (47) is

â = (UHU)−1UHz, (48)

where (·)H denotes complex conjugate transpose.

3.2.2 Memory Polynomial Predistorter Simulation

The performance of the memory polynomial predistorter constructed using the indirect

learning architecture is demonstrated through the following examples. These examples
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Figure 15: Wiener-Hammerstein model diagram.

show that the same memory polynomial structure can effectively linearize several different

nonlinear models with memory, thereby demonstrating the robustness of memory polyno-

mial predistortion.

Example 3.4 Here, the nonlinearity to be compensated for is assumed to obey a Wiener-

Hammerstein (W-H) model (see Fig. 15); i.e., an LTI system followed by a memoryless

nonlinearity, which in turn is followed by another LTI system. Such a configuration is com-

monly used for satellite communication channels where the power amplifier at the satellite

transponder is driven near saturation to exploit the maximum power efficiency [2]. The LTI

blocks before and after the memoryless nonlinearity, which are denoted by H(z) and G(z),

respectively, are assumed to be

H(z) =
1 + 0.5z−2

1 − 0.2z−1
, (49)

G(z) =
1 − 0.1z−2

1 − 0.4z−1
. (50)

For the memoryless nonlinear portion of the W-H model,

w(n) =
K
∑

k=1
k odd

bk v(n)|v(n)|k−1, (51)

where v(n) and w(n) are, respectively, input and output of the memoryless nonlinear block.

For the coefficients, we had

b1 = 1.0108 + 0.0858j, b3 = 0.0879 − 0.1583j, b5 = −1.0992 − 0.8891j, (52)

which were extracted from an actual Class AB power amplifier.

The baseband input was a 3-carrier WCDMA signal. Memory polynomial predistorter

identification was carried out based on 8000 data samples. Next, the power spectral densities

(PSDs) of the input and output signals were compared to evaluate the effectiveness of the

predistorter in reducing spectral regrowth. Here, the predistorter (45) has two delay taps
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Figure 16: Effectiveness of predistortion in suppressing spectral regrowth when the power
amplifier is modeled by a Wiener-Hammerstein system. (a) Output without predistortion;
(b) Output with memoryless predistortion; (c) Output with memory polynomial predistor-
tion (Q = 2,K = 5) (d) Original input. (c) and (d) almost coincide.

(Q = 2) and 5th odd-order nonlinearity (K = 5). The performance of the predistorter is

shown in Fig. 16. Spectral regrowth is almost fully suppressed with only two delay taps,

even though the LTI portions of the W-H system have much longer impulse responses.

Example 3.5 Here, the power amplifier is also assumed to obey a memory polynomial

model similar to (45); i.e.,

y(n) =
K
∑

k=1
k odd

Q
∑

q=0

bkq z(n− q)|z(n− q)|k−1 (53)

The coefficients,

b10 = 1.0513 + 0.0904j, b30 = −0.0542 − 0.2900j, b50 = −0.9657 − 0.7028j,

b11 = −0.0680 − 0.0023j, b31 = 0.2234 + 0.2317j, b51 = −0.2451 − 0.3735j,

b12 = 0.0289 − 0.0054j, b32 = −0.0621 − 0.0932j, b52 = 0.1229 + 0.1508j, (54)

were extracted from the same power amplifier as in Example 3.1. Fig. 17 shows the per-

formance of various predistorters. The memory polynomial predistorter with Q = 2 and

K = 5 is able to suppress most of the spectral regrowth. However, when both even- and

odd-order nonlinearities are included in the predistorter, an additional 3-5 dB suppression
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Figure 17: Effectiveness of predistortion in suppressing spectral regrowth, when the power
amplifier itself is modeled by a memory polynomial. (a) Output without predistortion; (b)
Output with memoryless predistortion; (c) Output with memory polynomial predistortion
(Q = 2,K = 5, odd order); (d) Output with memory polynomial predistortion (Q = 2,
K = 5, even and odd orders); (e) Original input.
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Figure 18: Effectiveness of predistortion in suppressing spectral regrowth, when the power
amplifier is modeled by a perturbed Wiener (hence Volterra) system. (a) Output without
predistortion; (b) Output with memoryless predistortion; (c) Output with memory poly-
nomial predistortion (Q = 2,K = 5); (d) Output with memory polynomial predistortion
(Q = 10,K = 5); (e) Original input.

29



can be achieved. Spectral regrowth can be further suppressed by increasing the memory of

the predistorter to Q = 10.

Example 3.6 In this example, a perturbed Wiener system was used as the power

amplifier model. First, we constructed a Wiener model, whose

H(z) = 1 + 0.5z−2, (55)

b1 = 1.0108 + 0.0858j, b3 = 0.0879 − 0.1583j. (56)

Next, zero mean complex Gaussian noise with variance 2× 10−4 was added to the Volterra

kernels of the Wiener system, which turns the original Wiener system into a full Volterra

system. The results are shown in Fig. 18. We still observe significant reduction in spectral

regrowth with the memory polynomial predistorter (Q = 2,K = 5). With the maximum

delay increased to Q = 10, the predistorter almost fully suppressed the spectral regrowth.

Example 3.7 The power amplifier here is assumed to follow a 3-branch parallel Wiener

model (sum of Wiener sub-systems; see Fig. 19). The LTI blocks in the model are defined

by

H1(z) = 1,

H2(z) =
1 + 0.3z−1

1 − 0.1z−1
,

H3(z) =
1 − 0.2z−1

1 − 0.4z−1
. (57)

The memoryless nonlinearity in the ith branch has input/output relationship

yi(n) =

K
∑

k=1
k odd

dki vi(n)|vi(n)|k−1, (58)

where vi(n) and yi(n) are the input and output of the nonlinearity Fi(v), respectively. The
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dki coefficients used were

d11 = 1.0108 + 0.0858j, d31 = 0.0879 − 0.1583j,

d51 = −1.0992 − 0.8891j, d12 = 0.1179 + 0.0004j,

d32 = −0.1818 + 0.0391j, d52 = 0.1684 + 0.0034j,

d13 = 0.0473 − 0.0058j, d33 = 0.0395 + 0.0283j,

d53 = −0.1015 − 0.0196j. (59)

Since H1(z)=1, the first branch is actually a memoryless nonlinearity here. This reflects

some belief that the dominating type of nonlinearity in a power amplifier is memoryless.

The second and third branches both exhibit memory nonlinearity, with 10 dB and 13 dB

less power than the first branch, respectively.

Fig. 20 shows the performance of our memory polynomial predistorter in linearizing

such a power amplifier. With the memory polynomial predistorter (Q = 2, K = 5), there

is a significant decrease in spectral regrowth, and the result is further improved when Q is

increased to 5.

In all of the above cases, memoryless predistortion is not very effective in suppressing

spectral regrowth, which underscores the notion that power amplifier memory effects must

be taken into account when designing the predistorter.

The objective of power amplifier linearization is two-fold: suppression of spectral re-

growth to reduce adjacent channel interference and minimization of in-band distortion to

improve BER. Although only PSD plots are shown here, this does not mean that in-band

distortion is left un-checked. Recall that in the indirect learning architecture, our conver-

gence criterion requires the mean squared error between y(n) and Gx(n) to be minimized.

Therefore, at convergence, the power amplifier is linearized, which automatically ensures

the suppression of both in-band and out-of-band distortions. The PSD plots are shown for

verification purposes. Because the PSD is phase blind, if one were to define a linearization

criterion solely in terms of the PSD, the resulting predistorter may not be a true linearizer.
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Figure 19: Parallel Wiener model diagram. Hi(·) is an LTI block, and Fi(·) is a memoryless
nonlinear block.
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Figure 20: Effectiveness of predistortion in suppressing spectral regrowth, when the power
amplifier is modeled by a parallel Wiener system. (a) Output without predistortion; (b)
Output with memoryless predistortion; (c) Output with memory polynomial predistortion
(Q = 2,K = 5); (d) Output with memory polynomial predistortion (Q = 5,K = 5); (e)
Original input.
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3.2.3 Memory Polynomial Predistorter Discussion

The Volterra series is the most general polynomial type of nonlinearity with memory. In

this section, we have encountered the memory polynomial, the Wiener, the Hammerstein,

and the parallel Wiener models as special cases of the Volterra model. Next, we would like

to point out some interesting links among these models.

For the memory polynomial model (45), let us collect the coefficients in a matrix

A =



















a10 a11 · · · a1Q

a30 a31 · · · a3Q

...
...

. . .
...

aK0 aK1 · · · aKQ



















. (60)

A Hammerstein model on the other hand, can be described by

v(n) =
K
∑

k=1

ck x(n)|x(n)|k−1 (61)

y(n) =

Q
∑

q=0

h(q) v(n− q). (62)

Let us collect the coefficients in (61) and (62) in vectors

c = [c1, . . . , cK ]T ,

h = [h(0), h(1), . . . , h(Q)]T .

Substitution of (61) into (62) yields

y(n) =
K
∑

k=1

Q
∑

q=0

ck h(q) x(n− q)|x(n− q)|k−1. (63)

Comparing (63) with (45), we can see that the Hammerstein system (61)-(62) is a special

case of the memory polynomial model (45) with

akq = ck h(q). (64)

In other words,

A = chT (65)
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Figure 21: Parallel Hammerstein model diagram. Fi(·) is a memoryless nonlinear block,
and Hi(·) is an LTI block.

and hence rank(A) = 1. This implies that as a predistorter, the memory polynomial is

expected to work well with a Wiener power amplifier. On the other hand, the memory

polynomial predistorter is expected to be more robust than the Hammerstein predistorter.

Interestingly, although the memory polynomial model is more general than the Hammerstein

model, its parameter estimation is actually more straightforward (c.f., via the least-squares

solution (48)).

Let

vk(n) = Fk(x(n)) = x(n)|x(n)|k−1, (66)

yk(n) = vk(n) ∗ hk(n), (67)

where hk(n) = akn, and ∗ denotes convolution. We can rewrite the memory polynomial

model as

y(n) =
K
∑

k=1

yk(n) =
K
∑

k=1

vk(n) ∗ akn (68)

=

K
∑

k=1

Q
∑

q=0

akq x(n− q)|x(n− q)|k−1. (69)

Therefore, a memory polynomial model is also a parallel Hammerstein model (see Fig. 21)

where the memoryless nonlinear block is a polynomial.
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In [10], the authors tried to linearize a Wiener system with a Hammerstein predistorter

using the indirect learning architecture. They adopted the least squares approach1 to solve

for the predistorter coefficients, although the parameters of the memoryless nonlinear and

the LTI blocks of the Hammerstein model are not explicitly recovered.

Alternatively, we can also rewrite the memory polynomial model as

vq(n) = x(n) ∗ hq(n), hq(n) = δ(n− q), (70)

Fq(v) =
K
∑

k=1

akq v|v|k−1, (71)

y(n) =

Q
∑

q=0

Fq[vq(n)], (72)

where ∗ in (70) denotes convolution. Comparing with the parallel Wiener model (see Fig.

19), we observe that a memory polynomial is also a special parallel Wiener model with

Hq(z) = z−q, or hq(n) = δ(n− q). (73)

In summary, when considering polynomial type of nonlinearities, both the parallel

Wiener and parallel Hammerstein models are special cases of the Volterra series. In fact, it

can be shown that the memory polynomial model is equivalent to the parallel Hammerstein

model. We have also shown that a memory polynomial model is a special case of the par-

allel Wiener model. Obviously, the parallel Hammerstein model includes the Hammerstein

model as a special case, and the parallel Wiener model includes the Wiener model as a

special case. Hammerstein and Wiener models are the most “specialized” with the least

number of coefficients, but are by no means the easiest to identify. The memory polyno-

mial model, however, offers a good compromise between generality and ease of parameter

estimation and implementation.

3.3 A New Combined Predistorter Design

Although the memory polynomial model has been shown to be robust for predistorting

several types of nonlinear models with memory [17], the Volterra kernel support in the model

1There is a typo in Equation (13) of [10]: |x[n]|2x∗[n − 1] should be |x[n − 1]|2x∗[n − 1]; |x[n]|2x∗[n − 2]
should be |x[n − 2]|2x∗[n − 2]. Moreover, we believe that the baseband expression (9) should be in terms of
x[n − i]|x[n − i]|j−1 instead of xj [n − i].
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is very limited. Therefore, when predistorting a nonlinear system with complex memory

structures, the model may not be adequate. The Murray Hill model suggested by [32]

offers a memory structure that is not present in the memory polynomial model. This model

introduces a nonlinearity that depends on a linear combination of past input amplitudes and

adds it to the conventional memoryless polynomial model. Good performance was achieved

by using the model to predistort a Class AB power amplifier. However, unlike the memory

polynomial model, this model does not contain terms of an LTI system. Therefore, it does

not have the intrinsic capability of compensating for a linear frequency response that may

exist in the RF upconverter or the power amplifier. Moreover, the least-squares/simplex

approach used in [32] for estimating the model coefficients converges very slowly when the

number of memory taps becomes relatively large.

Here, we combine the memory polynomial model [30] and the model of [32] to obtain a

more robust new model. We also develop a fast-converging least-squares/Newton algorithm

for estimating the coefficients of the new model.

3.3.1 Combined Predistorter Model

Given an input x(n), the output of the model of [32], z(n), is defined as

z(n) =
P
∑

p=1

ap x(n)|x(n)|p−1 +

Q
∑

q=2

bq x(n)

[

L−1
∑

l=0

cl |x(n− l)|
]q−1

, (74)

where ap and bq are complex polynomial coefficients and cl are real envelope filter coeffi-

cients. Note that the bq coefficients start with b2 instead of b1 to avoid redundancy with

a1. The first term in the model is the conventional memoryless polynomial, where the

nonlinearity depends on the current input amplitude |z(n)|. The nonlinearity generated by

the second term, however, depends on combinations of the current and past input signal

amplitudes. Moreover, by restricting cl to be real, this nonlinearity can be represented by a

one-dimensional look-up table (LUT) indexed by
[

∑L−1
l=0 cl |x(n− l)|

]

, which makes it very

easy to implement the model in hardware.
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Figure 22: The indirect learning architecture of the new combined predistorter model.

If we replace the conventional memoryless polynomial in (74) with the memory polyno-

mial proposed in [30], we arrive at the new model

z(n) =
K−1
∑

k=0

P
∑

p=1

akp x(n− k)|x(n− k)|p−1 +

Q
∑

q=2

bq x(n)

[

L−1
∑

l=0

cl |x(n− l)|
]q−1

, (75)

where akp are the coefficients of the memory polynomial. The new model combines the

terms in both the memory polynomial model and the model of [32], which captures a wider

class of nonlinear behavior of a wideband predistorter and can be implemented easily in

hardware.

3.3.2 Combined Predistorter Training

In the training branch of Fig. 22, we have

ẑ(n) =
K−1
∑

k=0

P
∑

p=1

akp yc(n− k)|yc(n− k)|p−1 +

Q
∑

q=2

bq yc(n)

[

L−1
∑

l=0

cl |yc(n− l)|
]q−1

. (76)

To estimate the model parameters, we first define the instantaneous error as

e(n) = z(n) − ẑ(n). (77)

For a block of N data samples, the least-squares cost function is then given by

J =
N
∑

n=1

|e(n)|2 =
N
∑

n=1

e(n) e∗(n) (78)

where (·)∗ denotes complex conjugate.
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The optimum akp, bq, and cl that minimize J can be found by setting the partial

derivatives of J with respect to a∗kp, b
∗
q (pretending that apk and bq are constants [5]), and

cl equal to zero, i.e.,

∂J

∂a∗kp

= −
N
∑

n=1

e(n)u∗kp(n) = 0 (79)

∂J

∂b∗q
= −

N
∑

n=1

e(n) v∗q (n) = 0 (80)

∂J

∂cl
= −

N
∑

n=1

2 Re [e(n)s∗l (n)] = 0. (81)

where

ukp(n) = yc(n− k) |yc(n− k)|p−1 (82)

vq(n) = yc(n)

(

L−1
∑

l=0

cl |yc(n− l)|
)q−1

(83)

sl(n) =

Q
∑

q=2

bq yc(n) (q − 1) ×





L−1
∑

l1=0

cl1 |yc(n− l1)|





q−2

|yc(n− l)|. (84)

However, (79), (80), and (81) can not be solved simultaneously. The coefficients akp and bq

are coupled with cl. We propose an iterative method to solve this problem. First, from a

set of initial values of cl, akp and bq are found by the least-squares approach. After the akp

and bq are obtained, the cl are updated by Newton’s method. The adaptation continues

until all coefficients converge.

Least-Squares Method. Assuming the cl coefficients in the previous iteration are

known, denoted by c
(i)
l , we can derive the least-square solutions of a

(i+1)
kp and b

(i+1)
q by

solving (79) and (80) together. Rearranging (79) and (80) in matrix form, we have

(

[U V(i)]H [U V(i)]
)







a

b






=
[

U V(i)
]H

z, (85)
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where (·)H denotes complex conjugate transpose,

U = [u10, · · · ,uK0, · · · ,u1P , · · · ,uKP ],

V(i) = [v
(i)
2 , · · · ,v(i)

Q ]

a = [a10, · · · , aK0, · · · , a1Q, · · · , aKQ]T

b = [b2, · · · , bQ]T

z = [z(0), · · · , z(N − 1)]T

with the vectors ukp and v
(i)
q defined as

ukp = [ukp(0), · · · , ukp(N − 1)]T

v(i)
q = [v(i)

q (0), · · · , v(i)
q (N − 1)]

T
.

Note that v
(i)
q (n) in the i-th iteration is generated by plugging c

(i)
l into (83).

It follows from (85) that the least-squares estimates of a and b at the (i+1)-th iteration

are






â(i+1)

b̂(i+1)






=
(

[U V(i)]H [U V(i)]
)−1

[U V(i)]Hz. (86)

Newton’s Method. Once a(i+1) and b(i+1) are obtained, Newton’s method can be used

to update the cl coefficients. Rewriting c
(i)
l in vector form as c(i) = [c

(i)
0 , c

(i)
1 , · · · , c(i)L−1]

T ,

the new c(i+1) is found by Newton’s method [34, pp. 632-637] as

c(i+1) = c(i) −
[

∇2
c
J(c(i))

]−1
∇cJ(c(i)) (87)

where ∇cJ(c(i)) is the column gradient vector of J with the l-th element

[

∇cJ(c(i))
]

l
=

∂J

∂cl

∣

∣

∣

∣

c
(i)

(88)

and ∇2
c
J(c(i)) is the Hessian of J with the (m, l) entry

[

∇2
c
J(c(i))

]

lm
=

∂2J

∂cl∂cm

∣

∣

∣

∣

c
(i)

. (89)

We have already derived
∂J

∂cl
in (81). By taking the derivative of both sides of (81) with

respect to cm, we obtain

∂2J

∂cl∂cm
=

N
∑

n=1

2 Re [−e(n)z∗lm(n) + sm(n)s∗l (n)] , (90)
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where

zlm(n) =
∂sl(n)

∂cm

=

Q
∑

q=2

bq yc(n) (q − 1) (q − 2)





L−1
∑

l1=0

cl1 |yc(n− l1)|





q−3

×|x(n− l)| |x(n−m)|. (91)

Similar to the previous section, we can form column vectors s
(i)
l , z

(i)
lm, and e(i) from

the sequences sl(n), zlm(n), and e(n) after plugging in a(i+1), b(i+1), and c(i). Then the

gradient and Hessian vectors can be re-written in matrix form as follows,

∇cJ(c(i)) = −2 Re
{

[S(i)]He(i)
}

, (92)

∇2
c
J(c(i)) = 2 Re

{

[S(i)]HS(i) − [Z(i)]HE(i)
}

, (93)

where

S(i) = [s
(i)
0 , · · · , s(i)

L−1],

Z(i) =



















z
(i)
00 · · · z

(i)
0,L−1

z
(i)
10 · · · z

(i)
1,L−1

...
...

z
(i)
L−1,0 · · · z

(i)
L−1,L−1



















,

E(i) =



















e(i) · · · 0

0 · · · 0

...
. . .

...

0 · · · e(i)



















. (94)

As a result, the final update equation for c is

ĉ(i+1) = ĉ(i) +
[

Re
{

[S(i)]HS(i) − [Z(i)]HE(i)
}]−1

Re
{

[S(i)]He(i)
}

. (95)

3.3.3 Effects of Noise and Initial Estimates

In this section, we evaluate the effects of noise and initial estimate on the performance of

the least-squares/Newton algorithm through computer simulations.

40



No Noise

or White Noise

Predistorter

Estimated
Predistorter

Model

Model

Ideal yc0(n)z0(n)
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Figure 23: Block diagram of the predistorter model simulation.

The simulation setup is shown in Fig. 23. To obtain an ideal predistorter model, we first

acquired the output data (sampled at 153.6 MHz IF, complex demodulated, and downsam-

pled to 76.8 MHz) of an actual power amplifier from an experimental wideband predistortion

testbed for a 15 MHz 3-carrier WCDMA input signal. The power amplifier was a LDMOS

Class AB power amplifier from Xemod. We then obtained the parameters of the ideal pre-

distorter model using the least-squares/Newton algorithm by treating the power amplifier

input as the desired output of the algorithm and the power amplifier output as the input of

the algorithm. Therefore, the ideal model captures the essential behavior of a predistorter,

such as expanding nonlinearities. The order of the ideal model is represented by a vector

m = [7, 4, 7, 6], where m is defined as

m =
[

P K Q L
]

, (96)

with P , K, Q, and L given in (76).

In the following simulations, the input to the ideal model, yc0(n), is a noiseless WCDMA

3-carrier baseband signal with 15 MHz bandwidth. The output of the ideal model with the

noiseless input is denoted by z0(n). In the noiseless setting, yc0(n) and z0(n) were used,

respectively, as the input and desired output of the algorithm. In the noisy setting, noise

was added to yc0(n), which generated yc(n) with a signal-to-noise ratio of 45 dB. Then,

yc(n) and z0(n) were used, respectively, as the input and desired output of the algorithm.

This noisy setting agrees with the indirect learning architecture shown in Fig. 22, where

the noise of the transmitter and the feedback loop is actually contained in yc(n) (the input
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to the predistorter training block).

To evaluate the effectiveness of the least-squares/Newton algorithm, we compare the

difference between the outputs of the ideal model and the estimated model when the same

noiseless input yc0(n) is used for both, and denote this by e0(n). Note that e0(n) is not the

error e(n) that the algorithm minimizes to determine the estimated model. When noise is

present in yc(n), e(n) is dominated by the noise and cannot show the real difference between

the estimated model and the ideal model.

In the simulations, the following default options were used unless mentioned specifically.

• The order of the estimated model is [ 7 4 7 6 ], which is the same as the ideal model.

• The input and output data comprise 16k samples.

• c(0) = [ 1 1 1 1 1 1 ]T /
√

6.

Simulation 3.1. We study the effects of noise on the performance of the algorithm.

The convergency behavior of the algorithm for the noiseless setting and the noisy setting

are shown in Fig. 24 and Fig. 25, respectively. The mean squared error (MSE) in both of

the figures is defined as

MSE(dB) = 10 log10















N
∑

n=1

|z0(n) − ẑ(n)|2

N
∑

n=1

|z0(n)|2















. (97)

In these figures, we first observe that the MSE decreases monotonically with the number

of iterations. The large drops of the MSE are within the first several steps. Secondly, the

estimated model coefficients show smooth changes from one step to another. Moreover,

these coefficients converge very fast, usually within 10 iterations.

The power spectra of e0(n) for both cases are shown in Fig. 26. For comparison, the

power spectrum of z0(n) is also shown in the figure. From the figure, we can see that

the algorithm correctly (in terms of reducing e0(n)) estimated the model in the noiseless

case and constructed a fairly accurate model in the noisy case. The relative large in-band

error may be due to the fact that the noise was added in the input of the algorithm. More

in-depth analysis of this noise problem and several remedial techniques can be found in [35].
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coefficients, and (d) amplitudes of bq coefficients vs. number of iterations in the noiseless
setting.
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Simulation 3.2. Since the least-squares/Newton algorithm proposed in the previous

section is iterative, a different initialization may lead to a different solution. In this simu-

lation, we started the algorithm with different initializations of the c coefficients:

c
(0)
1 =

[

1 1 1 1 1 1
]T
/
√

6 ,

c
(0)
2 =

[

1 −1 0 0 0 0
]T
/
√

2 ,

c
(0)
3 =

[

−1 1 0 0 0 0
]T
/
√

2 ,

c
(0)
4 =

[

−1 1 1 −1 1 −1
]T
/
√

6 .

Here, c
(0)
1 is a simple lowpass filter, c

(0)
2 and c

(0)
3 are highpass filters, and c

(0)
4 is a random

vector made up of 1’s and –1’s. We ran the algorithm in the noisy setting and compared

the accuracy of the estimated model for each initialization. The power spectra of e0(n)

for different initializations are shown in Fig. 27. The power spectrum of z0(n) is also

displayed for comparison. We can see that initialization with c
(0)
1 gives better performance

while initialization with the others are almost the same. This simulation shows that the

initialization of the algorithm does affect the ability of the algorithm to estimate the model

parameters. However, initialization with c
(0)
1 gives a relatively good starting point.

3.3.4 Combined Predistorter Performance

In this section, we show overall system test results using the least-squares/Newton algorithm

on the wideband predistortion testbed mentioned in the previous section. The baseband

input data was again a 15 MHz 3-carrier WCDMA signal. The power spectra of the output

signals from the power amplifier are shown in Fig. 28. The results show that the new

predistorter can effectively linearize the power amplifier. Moreover, as shown in this figure,

the predistorter needs to have a 35-tap envelope filter in order to fully suppress the spectral

regrowth of the power amplifier, which indicates that the power amplifier has a relatively

long memory effect.
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CHAPTER 4

EFFECTS OF EVEN-ORDER NONLINEAR TERMS

In Chapter 3, the predistorter models include both even- and odd-order nonlinear terms.

However, in the literature, most of the power amplifier and predistorter models only consid-

ers the odd-order terms. In this chapter, we show that it is beneficial to include even-order

nonlinear terms in both the baseband power amplifier and predistorter models [15, 16].

By including these even-order nonlinear terms, we have a richer basis set, which offers

appreciable improvement.

4.1 Passband and Baseband Nonlinearities

4.1.1 Memoryless Case

Choice of the baseband predistorter is often dictated by the characteristics of the power

amplifier. For low power amplifiers and/or narrowband input, the power amplifier can be

regarded as memoryless or quasi-memoryless [39]. Polynomial models have been used ex-

tensively for memoryless nonlinear power amplifiers ([3, p. 69]), only odd-order polynomial

terms in the power amplifier nonlinearity impact a bandpass communication signal. Sup-

pose that a physical power amplifier obeys the following input/output relationship in the

passband:

ỹ(t) =
K
∑

k=1

b̃k z̃
k(t), (98)

where z̃(t) is the passband power amplifier input and ỹ(t) is the passband power amplifier

output. The baseband counter-part of (98) is [39], [3, p. 69]

y(t) =
K
∑

k=1
k odd

bk z(t)|z(t)|k−1, (99)

where bk = 21−k
( k

k−1
2

)

b̃k.

Although the above arguments for odd-order terms pertain to the power amplifier, when

47



constructing a polynomial-based predistorter, many published papers consider only odd-

order nonlinear terms as well; see e.g., [42, 43, 49]. This means that the output of the

predistorter (also input to the power amplifier), z(t), is expressed in terms of the input

signal x(t) as

z(t) =
L
∑

l=1
l odd

al x(t) |x(t)|l−1. (100)

In [49], the rationale for including only odd-order terms in the predistorter is stated: “Since

even-order powers in the power series representing the power amplifier does not reflect into

the first harmonic zone, concern only has to be taken to the odd powers when implementing

the predistortion polynomial.” In [42], it is said “We can model the predistorter and power

amplifier as two truncated complex power series . . . We restrict the power series to odd order

terms, since even order components have no power spill over in the adjacent channel.”

Here, we will show that it is beneficial to include even-order nonlinear terms in both

the baseband power amplifier and predistorter models; i.e., we allow even k values in (99)

and even l values in (100). By including these even-order nonlinear terms, we have a richer

basis set, which offers appreciable improvement.

4.1.2 Quasi-memoryless Case

In Section 4.1.1, we observed that if the power amplifier is strictly memoryless and obeys the

polynomial model (98) in the passband, then the baseband power amplifier input/output

relationship is described by an odd-order polynomial (99) with real-valued coefficients. In

this Section, we will show that if the power amplifier obeys a Volterra model in the pass-

band and the input signal is narrowband, then the baseband power amplifier input/output

relationship is also described by (99) but with complex-valued coefficients; such a power

amplifier is said to be quasi-memoryless.

For weakly nonlinear power amplifiers, for example, the Class AB power amplifiers

commonly employed in wireless handsets and base stations, the Volterra series model can

be used; see e.g., [33]. In the passband, the Volterra series can be expressed as:

ỹ(t) =
∑

k

∫

· · ·
∫

h̃k(τk)
k
∏

i=1

z̃(t− τi) dτk, (101)
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where z̃(t) is the passband power amplifier input, ỹ(t) is the passband power amplifier

output, τk = [τ1, . . . , τk]
T , h̃k(·) is the kth-order Volterra kernel, and dτk = dτ1dτ2 · · · dτk.

We note the following special cases.

Special case #1: When the power amplifier is strictly memoryless; i.e., h̃k(τk) = b̃k δ(τk),

we have the polynomial model (98).

Special case #2: When h̃k(τk) is non-zero only along the diagonal slice; i.e., h̃k(τk)

= h̄k(τ) if τ1 = . . . = τk = τ , and h̃k(τk) = 0 otherwise, we have

ỹ(t) =
∑

k

∫

h̄k(τ)z̃
k(t− τ) dτ, (102)

which we refer to as the memory polynomial model [17].

Assuming that z̃(t) is band-limited with bandwidth much less than the carrier frequency

fo, it can be shown that the corresponding baseband relationship is [39], [3]:

y(t) =
∑

k

∫

· · ·
∫

h2k+1(τ2k+1)

k+1
∏

i=1

z(t− τi)
2k+1
∏

i=k+2

z∗(t− τi) dτ2k+1, (103)

where

h2k+1(τ2k+1) =
1

22k

(

2k + 1

k

)

× h̃2k+1(τ2k+1)

× e−j2πfo(
∑k+1

i=1 τi−
∑2k+1

i=k+2 τi), (104)

j =
√
−1 and (·)∗ denotes complex conjugation. Note from (104) that the baseband Volterra

kernel h(·) is generally complex valued even though the passband Volterra kernel h̃(·) is real-

valued.

If the input is narrowband such that z(t− τi) ≈ z(t) over the support of each kernel, we

can replace z(t− τi) by z(t) in (103) to obtain [39]

y(t) =
∑

k

∫

· · ·
∫

h2k+1(τ2k+1) dτ2k+1 |z(t)|2kz(t)

=
∑

k

b2k+1 |z(t)|2kz(t), (105)

where

b2k+1 =

∫

· · ·
∫

h2k+1(τ2k+1) dτ2k+1,
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and is generally complex valued according to (104).

Eq. (105) is equivalent to eq. (99). It is interesting to note that whether we start from

the strictly memoryless model (98) or the Volterra model (101) with a narrowband input

(the quasi-memoryless case), we both end up with the same baseband relationship (99).

The difference is that in the strictly memoryless case, the bk coefficients are real-valued and

hence the power amplifier exhibits no AM/PM conversion (i.e., 6 y(t) − 6 z(t) is zero or π).

However, in the quasi-memoryless case, the bk coefficients are generally complex-valued,

thus creating AM/PM conversion.

In the next two sections, we will focus on the strictly memoryless and quasi-memoryless

cases which have the same baseband representation (99). We will return to the discussion

of nonlinear power amplifiers and predistorters with memory in Section 4.4.

4.2 Even-Order Terms in the Baseband Power Amplifier

Model

If a physical power amplifier is modeled exactly by the polynomial nonlinearity (98) or the

Volterra model (101), then indeed, we do not need to concern ourselves with even-order

nonlinear terms. However, in reality, both (98) and (101) are only approximations. To

the best of the authors’ knowledge, Kim and Konstantinou [30] were the first to consider

including even-order terms in power amplifier models. This means that instead of (99), one

considers modeling the power amplifier as

y(t) =
∑

k∈K

bk z(t)|z(t)|k−1, (106)

where K is a set containing all polynomial orders selected, which can be even or odd.

Expressing z(t) = |z(t)|ejφz(t), we can rewrite (106) as

y(t) = ejφz(t)F (|z(t)|), (107)

where

F (|z(t)|) =
∑

k∈K

bk|z(t)|k. (108)
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From (107) and (108), it follows that |y(t)| = |F (|z(t)|)|, 6 y(t) − 6 z(t) = 6 F (|z(t)|); i.e.,

|F (·)| is the AM/AM response, A(|z(t)|); and 6 F (·) is the AM/PM response, φA(|z(t)|). In

other words,

F (|z(t)|) = A(|z(t)|)ejφA(|z(t)|). (109)

Given the measured AM/AM and AM/PM characteristics, we can calculate (109). We

can then use (108) to solve for the bk coefficients using linear least-squares. The following

example compares the modeling accuracy when different choices of K are used in (108).

Example 4.1 We first measured AM/AM and AM/PM characteristics of an actual

Class AB power amplifier and then constructed a look up table (LUT) for F (·) based on

(109). We then fitted F (|z(t)|) according to (108) using three sets of polynomial orders: K1

= {1, 3, 5}, K2 = {1, 3, 5, 7, 9}, and K3 = {1, 2, 3, 4, 5}. Note that K1 and K3 have the

same maximum nonlinearity order whereas K2 and K3 contain the same number of terms.

The polynomial coefficient estimates {b̂k} were obtained via least-squares by regressing the

measured F (|z(t)|) over |z(t)|k. We would like the resulting F̂ (|z(t)|) =
∑

k∈K b̂k|z(t)|k to

approximate F (|z(t)|) well. In Figs. 29(a) and 29(b), the real and imaginary parts of the

measured F (|z(t)|) and the fitted F̂ (|z(t)|) are shown. The real and imaginary parts of the

fitting errors; i.e., F̂ (|z(t)|)−F (|z(t)|), are plotted in Figs. 29(c) and 29(d), respectively, to

allow easier evaluation of the goodness of fit. From these figures, we see that by including

the even-order terms; i.e., including k = 2, 4 in (108), modeling accuracy was improved

(compare the curves corresponding to K1 and K3). To give a quantitative measure of the

improvement, we define a ratio, named the normalized mean square error (NMSE), as

NMSE (dB) =

10 log10

[

∑N−1
n=0 |F (|z(n)|) − F̂ (|z(n)|)|2
∑N−1

n=0 |F (|z(n)|)|2

]

, (110)

where N is the total number of points in the LUT of F (|z(n)|). The NMSEs that correspond

to order sets K1, K2, and K3 are given in Table 1. It is seen that the choice of the nonlinearity

orders K3 yielded the best result. Note here that although K2 and K3 contain the same

number of terms, K2 involves higher order nonlinear terms than K3. In general, we would
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Figure 29: Fitting F (|z(t)|) using polynomials of different orders. (a) and (b) show the real
and imaginary parts of the measured F (|z(t)|) and its polynomial approximations F̂ (|z(t)|).
(c) and (d) show the real and imaginary parts of the fitting error F̂ (|z(t)|) − F (|z(t)|). In
all figures, LUT refers to the measured power amplifier data, and the polynomial order sets
K1 = {1, 3, 5}, K2 = {1, 3, 5, 7, 9}, K3 = {1, 2, 3, 4, 5}.

Table 1: NMSE for F (|z(t)|)
K1 K2 K3

NMSE (dB) -30.33 -41.49 -45.37
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Predistorter PA
x(t) z(t) y(t)

Figure 30: The predistorter precedes the power amplifier, and the objective is to have
y(t) ≈ Cx(t), where C is a constant.

like to avoid high order polynomials because they do not extrapolate well outside of the

interval of fit and the corresponding correlation matrix of |z(t)|k tends to be ill-conditioned.

We emphasize that the even k terms in the baseband power amplifier model (106) did not

come from any even-order term in the passband power amplifier model (98). The fact that

even k terms in (106) have any impact on power amplifier modeling is an indication that the

polynomial model (98) is not precise. By including even-order terms in the baseband model,

modeling error can be reduced. If we view {|z(t)|k} as the basis set, the set is obviously

richer if even k values are allowed. To obtain a better fit to the measured power amplifier

characteristics, one can choose between including even k terms and keeping the maximum

order low, or allowing odd k values only and going for high orders. The first option is

preferred, since low-order polynomials generally enjoy better numerical properties.

4.3 Even-Order Terms in the Baseband Predistorter Model

Similar to what we have seen for power amplifier modeling in the last section, including

even-order nonlinear terms in a baseband predistorter model can improve linearization

performance as well. In this section, we will first construct an ideal predistorter for a

given power amplifier using a LUT, and then try to fit the LUT with a polynomial and

assess the contributions from various nonlinear terms.

A diagram of the predistorter-power amplifier concatenation is shown in Fig. 30: x(t)

is the baseband predistorter input, z(t) is the baseband predistorter output and input to

the power amplifier, and y(t) is the baseband power amplifier output. To find the ideal

predistorter LUT values, we combine (107) - (109) to write

y(t) = A(|z(t)|)ej[φA(|z(t)|)+φz(t)]. (111)
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The predistorter may be expressed similarly as

z(t) = B(|x(t)|)ej[φB(|x(t)|)+φx(t)], (112)

where B(|z(t)|) and φB(|z(t)|) are the AM/AM and AM/PM responses of the predistorter,

respectively. In other words,

|z(t)| = B(|x(t)|)

φz(t) = φB(|x(t)|) + φx(t). (113)

Substituting (113) into (111), we obtain

y(t) = A(B(|x(t)|))ej[φA(B(|x(t)|))+φB(|x(t)|)+φx(t)]. (114)

This way, we have expressed the power amplifier output y(t) in terms of the predistorter

input x(t). Since the goal is to make the overall predistorter-power amplifier concatenation

linear with a gain C; i.e., y(t) = Cx(t), we need

A(B(|x(t)|)) = C|x(t)|

φA(B(|x(t)|)) = −φB(|x(t)|), (115)

where without loss of generality, we have assumed C > 0 is real valued. Therefore, the

predistorter can be constructed from the AM/AM and AM/PM characteristics of the power

amplifier as follows,

B(|x(t)|) = A−1 (C|x(t)|)

φB(|x(t)|) = −φA(B(|x(t)|)). (116)

This of course requires that A−1 exists, which usually is not a problem since most power

amplifier’s AM/AM conversion is monotonic. Similar to (108), we define a complex function

G(|x(t)|) as

G(|x(t)|) = B(|x(t)|)ejφB(|x(t)|), (117)
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and the predistorter input/output relationship can be written as

z(t) =
∑

l∈L

al x(t)|x(t)|l−1 (118)

= ejφx(t)
∑

l∈L

al |x(t)|l

= ejφx(t)G(|x(t)|), (119)

where L is a set containing all polynomial orders selected for the predistorter. From equa-

tions (116) and (117), we see that given a memoryless power amplifier’s AM/AM and

AM/PM characteristics A(·) and φA(·), we can calculate the predistorter G(·) function val-

ues. We can then obtain the âl estimates by regressing G(|x(t)|) over |x(t)|l. Note that if

the power amplifier is static and its AM/AM and AM/PM characteristics are known, then

a predistorter constructed using the LUT is sufficient. However, in the absence of direct

and exact power amplifier measurements, a parametric form of the predistorter is often

desirable.

In the next example, we will assess whether the inclusion of even l terms in the predis-

torter (119) improves predistortion performance.

Example 4.2 The power amplifier is the same as in Example 4.1, whose AM/AM and

AM/PM characteristics are known. We first obtained the predistorter LUT G(·) values ac-

cording to (116) and (117). Next, we estimated the âl coefficients that correspond to the or-

der sets; i.e., L1 = {1, 3, 5, 7}, L2 = {1, 3, 5, 7, 9, 11, 13}, and L3 = {1, 2, 3, 4, 5, 6, 7}.

The resulting fitted Ĝ(|x(t)|) =
∑

l∈L âl |x(t)|l. The real and imaginary parts of the fitting

errors; i.e., Ĝ(|x(t)|) − G(|x(t)|), are shown in Figs. 31(a) and 31(b), respectively, and the

NMSEs resulted from the fittings are given in Table 2. In Fig. 32, we compare the perfor-

mance of the predistorters on an IS-95 CDMA signal, where the power spectra of the power

amplifier outputs before and after predistortion are plotted. Comparing Tables 2 and 1,

Table 2: NMSE for G(|x(t)|)
L1 L2 L3

NMSE (dB) -39.24 -48.84 -48.32

we observe that while Set K3 gave around 4 dB of NMSE improvement over Set K2, Sets
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Ĝ
(|

x
(t

)|
)
−

G
(|

x
(t

)|
)]

|x(t)|

(a)

0 0.2 0.4 0.6 0.8 1 1.2
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

L1

L2

L3

Im
[Ĝ
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Figure 31: The errors Ĝ(|x(t)|) − G(|x(t)|) for three sets of polynomial orders L1 =
{1, 3, 5, 7}, L2 = {1, 3, 5, 7, 9, 11, 13}, and L3 = {1, 2, 3, 4, 5, 6, 7}. The real part
of the error is shown in Figure (a), and the imaginary part of the error is shown in Figure
(b). L2 and L3 resulted in comparable amount of error and both outperform L1.
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Figure 32: Predistortion linearization performance in terms of spectral regrowth sup-
pression. power amplifier output power spectral density (PSD) is shown for the follow-
ing cases: (a) there is no predistorter; (b) predistorter (119) with L1 = {1, 3, 5, 7} is
used; (c) predistorter (119) with L2 = {1, 3, 5, 7, 9, 11, 13} or predistorter (119) with
L3 = {1, 2, 3, 4, 5, 6, 7} is used (the two lines coincide). (d) PSD of the original input.

L3 and L2 resulted in similar NMSEs. This is because the predistorter generally has an

expanding nonlinearity, which can be fitted well by high order polynomials. On the other

hand, the power amplifier usually has a compressing characteristic, for which the inclusion

of high order polynomial terms cannot give as much improvement as for power amplifier

modeling. Nonetheless, in both power amplifier and predistorter models, the benefit of

including even-order terms is clear. By including even-order terms, modeling accuracy is

improved and generally lower order polynomials can be used.

The rationale for including even-order terms in the predistorter is similar to that for the

power amplifier. Given a nonlinear power amplifier and assuming that it is invertible, there

exists an ideal predistorter. By allowing even l terms in the predistorter model, we have

at hand a richer basis set to fit the predistorter and hence potential gains in predistorter

performance.
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4.4 Extensions to Power Amplifiers and Predistorters with

Memory

The same argument regarding the benefits of even-order nonlinear terms carry over to power

amplifiers and predistorters with memory. As an example, let us consider the memory

polynomial power amplifier model recently proposed by Kim and Konstantinou [30], which

has the following form,

y(n) =
∑

k∈K

P−1
∑

p=0

bkp z(n− p)|z(n− p)|k−1, (120)

where K is a set containing the polynomial orders, and P − 1 is the maximum delay. The

next example shows that if we keep the same maximum nonlinear order but include the

even-order nonlinear terms as well, power amplifier modeling accuracy can be improved.

Example 4.3 The baseband power amplifier input z(n) is a 15 MHz 3-carrier WCDMA

signal. The wideband power amplifier has memory effects. The memory polynomial coeffi-

cients estimates {b̂kp} were obtained from measured z(n), y(n) data and equation (120) by

least-squares. We compared three different memory polynomials, which all have P = 3 but

different order sets: K1 = {1, 3, 5}, K2 = {1, 3, 5, 7, 9}, and K3 = {1, 2, 3, 4, 5}. To

give a quantitative measure of the approximation accuracy, we define a normalized mean

square error similar to (110); i.e.,

NMSE (dB) = 10 log10

[

∑N−1
n=0 |y(n) − ŷ(n)|2
∑N−1

n=0 |y(n)|2

]

, (121)

where

ŷ(n) =
∑

k∈K

P−1
∑

p=0

b̂kp z(n− p)|z(n− p)|k−1. (122)

The NMSEs that correspond to the three different memory polynomial power amplifier

models are given in Table 3.

Table 3: NMSE when the power amplifier is modeled by memory polynomial.
K1 K2 K3

NMSE (dB) -36.40 -37.38 -37.44
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The memory polynomial is also shown to be a robust predistorter model with memory

[17]:

z(n) =
∑

l∈L

Q−1
∑

q=0

alq x(n− q)|x(n− q)|l−1, (123)

where L is a set containing the polynomial orders, and Q − 1 is the maximum delay. The

memory polynomial predistorter in (123) cannot be obtained directly similar to memoryless

predistorter construction. We shall use the indirect learning structure [21] to estimate the

predistorter coefficients for power amplifiers exhibiting memory effects.

Example 4.4 In this example, we used the memory polynomial power amplifier model

described in Example 3.7, which were extracted from an actual power amplifier with a 15

MHz WCDMA input. The predistorters all have the same Q = 4 but different nonlinear

orders: L1 = {1, 3, 5, 7}, L2 = {1, 3, 5, 7, 9, 11, 13}, and L3 = {1, 2, 3, 4, 5, 6, 7}. In

Fig. 33, we show the predistortion performance in terms of spectral regrowth suppression,

where a 3-carrier WCDMA signal with 15 MHz bandwidth is used. The difference between

Sets L1 and L3 is that even-order nonlinear terms are included in L3, which gave about 5

dB of additional spectral regrowth suppression for this particular example. The order set

L2 has comparable performance as L3, but the maximum nonlinear order was 13 instead of

7.

These examples show that the benefits of including even-order nonlinear terms apply to

power amplifiers and predistorters with memory effects as well.
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Figure 33: Predistortion linearization performance in terms of spectral regrowth suppres-
sion. Power amplifier output power spectral density (PSD) is shown for the following cases:
(a) there is no predistorter; (b) predistorter (123) with L1 = {1, 3, 5, 7} and Q = 4 is used;
(c) predistorter (123) with L2 = {1, 3, 5, 7, 9, 11, 13} and Q = 4 is used; (d) predistorter
(123) with L3 = {1, 2, 3, 4, 5, 6, 7} and Q = 4 is used. (e) PSD of the original input.
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CHAPTER 5

ANALOG IMPERFECTION COMPENSATION

The ideal performance of digital predistortion relies on robust predistorters that can com-

pletely compensate for the nonlinearities of the power amplifier. In reality, however, the

performance can also be affected by the analog imperfections in the transmitter. In this

chapter, we study modeling and compensation of analog imperfections in two types of trans-

mitters: one uses two-stage upconversion, and the other uses direct upconversion.

Here, we assume that the analog imperfections in the feedback path are negligible,

which is usually true with carefully designed downconverter (e.g., filters with relatively flat

frequency response, such as LC bandpass and lowpass filters, and digital demodulation,

which is free of any demodulation errors).

5.1 Two-Stage Upconversion Transmitter

In the upconverter, another configuration is to use digital modulation and two-stage up-

conversion, i.e., the baseband signal is first converted to IF and then to RF. Because of the

stringent image rejection requirements of the transmitter, a SAW filter is often used in the

IF stage for this configuration (see Fig. 34). However, the SAW filter tends to have relatively

large magnitude and phase variations over frequency, thereby distorting the predistorted

waveform. Ma et al. [31] proposed to use an equalizer after the predistorter to compen-

sate for the frequency response of the SAW filter and provided an empirical approach to

construct the equalizer. In this memorandum, we present a frequency-domain least-squares

approach to design the equalizer. This approach yields equalization over a desired frequency

band while maintaining low energy outside of the desired band.

5.1.1 System Setup

Figure 35 shows the overall diagram of a predistortion linearization system. The base-

band input u(n) first goes through the predistorter, whose output z(n) is then equalized
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Figure 34: Two-stage upconversion transmitter.
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Figure 35: Block diagram of the baseband predistortion system with equalization. The
dashed lines refer to the feedback path for equalizer training.

to generate x(n). After digital modulation and digital-to-analog conversion, the signal is

upconverted to the carrier frequency and amplified by the power amplifier. The feedback

path with the solid lines is used for predistorter training, while the dashed lines show the

feedback loop for the equalizer construction. Because of the frequency response of the up-

converter, the equalizer needs to be trained first to compensate for the upconverter before

the predistorter design. Thus, in the training phase, we first let x(n) = z(n) = u(n) and

obtain the feedback y(n) using the dashed-line loop. Based on x(n) and y(n), we design

the equalizer and plug it into the transmitter. Then the solid-line loop is activated, and

the training for the predistorter starts. Note that in the equalizer training phase, the input

signal u(n) should be able to excite the whole frequency range that we aim to equalize.

5.1.2 Channel Estimation

Given x(n) and y(n), our goal is to design an equalizer that can equalize the channel in the

band of interest and has low energy outside of the band. In this section, we first present a

least-squares method to estimate the channel. Then we provide a frequency-domain least-

squares approach to design an equalizer for the channel in the next section.
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For a linear channel with impulse response h(k) and input x(n), the output y(n) of the

channel is given by

y(n) =
K−1
∑

k=0

x(n− k)h(k), (124)

where K is the length of the channel. For a block of N data samples, x(n) and y(n),

0 ≤ n ≤ N − 1, (124) can be written in vector form, i.e.,

y = Xh, (125)

where y = [y(K − L − 1) y(K − L) . . . y(N − L − 1)]T with L a selectable delay,

h = [h(0) h(1) . . . h(K − 1)]T , and

X =



















x(K − 1) x(K − 2) x(K − 3) · · · x(0)

x(K) x(K − 1) x(K − 2) · · · x(1)

...
...

...
...

x(N − 1) x(N − 2) x(N − 3) · · · x(N −K)



















. (126)

In this formulation, not all N samples are used in order to avoid the boundary effect.

Moreover, we choose the delay L to be

L = b(K − 1)/2c, (127)

where bxc is the largest integer that is less than or equal to x, such that the tap with

the maximum magnitude is approximately located at the center of the channel’s impulse

response. The delay introduced in y means that the sampled channel response is noncausal;

for example, y(K − L − 1) depends not only on the past input x(n), 0 ≤ n ≤ K − L − 1,

but also on the future input x(n), K − L− 1 < n ≤ K − 1. It is true that the underlying

real physical system is always causal. However, the delay caused by the analog system can

fall between sampling intervals and make the system appear noncausal.

For example, suppose a continuous-time signal s(t) is constructed from a discrete-time

signal s(n). Then we know the following relationship holds [37, p. 88]:

s(t) =

∞
∑

n=−∞

s(n) sinc[(t− nT )/T ], (128)
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where

sinc(x) =
sin(πx)

πx
. (129)

When s(t) passes through a continuous-time system with impulse response δ(t− τ0), where

0 < τ0 < T , the sampled output of the system, s̃(m), is given by

s̃(m) = s(mT ) =
∞
∑

n=−∞

s(n) sinc[(τ0 +mT − nT )/T ]. (130)

Defining k = m− n and substituting into (130), we have

s̃(m) =
∞
∑

k=−∞

s(m− k) sinc
[τ0
T

+ k
]

. (131)

From (131), it follows that the impulse response of the discrete-time system is

h(k) = sinc
[τ0
T

+ k
]

, k = −∞, . . . ,∞. (132)

Therefore, the equivalent discrete-time system has a noncausal response although the un-

derlying continuous-time system is causal. It is easy to show that the discrete-time Fourier

transform (DTFT) of h(k) is

H(ejω) = ejωτ0/T , (133)

which indicates that the discrete-time system only introduces a non-integer delay to the

input signal. If we assume that the input s(n) is uncorrelated and the discrete-time system

is causal, the minimum mean-square error estimate of the system impulse response hc(k)

can be shown to be

hc(k) = sinc
[τ0
T

+ k
]

, k = 0, 1, . . . ,∞. (134)

An explicit expression of Hc(e
jω), the DTFT of hc(k), is difficult to obtain. In Fig. 36, we

illustrate the difference between Hc(e
jω) and H(ejω) through numerical simulations with

τ0 = T/16, −200 ≤ k ≤ 200 for h(k), and 0 ≤ k ≤ 200 for hc(k). We can see that the

noncausal system preserves the characteristics of the underlying continuous-time system

while the causal system distorts the magnitude response.
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Figure 36: Comparison between noncausal system response H(ejω) (solid line) and causal
system response Hc(e

jω) (dotted-line). Note that the mean slopes of the phase responses
have been removed. The phase responses of H(ejω) and Hc(e

jω) coincide.

In conclusion, if the synchronization between x(n) and y(n) is not perfect, i.e., non-

integer delay exists, it is better to model the underlying continuous time system as a non-

causal discrete-time system.

To estimate the channel filter h in (125), we define the least-squares cost function as

J = (y − Xh)H(y − Xh), (135)

where (·)H denotes complex conjugate transpose, y is from the real measurements, and Xh

is the modeled output. The least-squares estimate of h, which minimizes J , can then be

easily obtained as

ĥ = (XHX)−1XHy. (136)

5.1.3 Equalizer Design

Since the upconverter channel has bandpass characteristics, a direct inverse of the channel

would cause the equalizer to have a bandstop type of response, i.e., very large out-of-band

response. To avoid this, the equalizer in our design is bandlimited; i.e., it equalizes the

channel within the band of interest and has low out-of-band response.

Let a(k), k = 0, 1, · · · ,K − 1, denote the equalizer. Then the convolved response of the
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channel and the equalizer, denoted by c(k), can be written as

c(k) =

Ka−1
∑

l=0

h(k − l)a(l), k = 0, 1, · · · ,Ka +K − 2, (137)

which has length Kc = Ka +K− 1. To design the bandlimited equalizer, we first define the

in-band cost function as:

J1 =

∫ ωp

−ωp





Kc−1
∑

k1=0

c(k1)e
−jωk1 − e−jωn0









Kc−1
∑

k2=0

c(k2)e
−jωk2 − e−jωn0





∗

dω, (138)

where e−jωn0 is the desired frequency response of the equalizer-channel cascade within the

passband [−ωp, ωp ]. To minimize the out-of-band energy of the equalizer, the out-of-band

cost function is defined as

J2 =

∫ −ωp

−π

[

Ka
∑

l=0

a(l)e−jωl

][

Ka
∑

k=0

a(k)e−jωk

]∗

dω

+

∫ π

ωp

[

Ka
∑

l=0

a(l)e−jωl

][

Ka
∑

k=0

a(k)e−jωk

]∗

dω. (139)

Therefore, the overall cost function can be written as

J = J1 + w J2, (140)

where w is a weighting factor. The optimal equalizer minimizes J and can be found by

taking the partial derivative of J with respect to a∗(k) [pretending a(k) is constant [5]] and

setting it to zero, i.e.,

∂J

∂a∗(k)
=

∂J1

∂a∗(k)
+ w

∂J2

∂a∗(k)
= 0, k = 0, . . . , Ka − 1. (141)

To find
∂J1

∂a∗(k)
, we substitute (137) into (138) and take the derivative, which yields

∂J1

∂a∗(k)
=

∫ ωp

−ωp





Kc−1
∑

k1=0

Ka−1
∑

l=0

h(k1 − l)a(l)e−jωk1 − e−jωn0





×
Kc−1
∑

k2=0

h∗(k2 − k)ejωk2 dω. (142)

Rearranging (142) and carrying out the integration, we obtain

∂J1

∂a∗(k)
=

Ka−1
∑

l=0

a(l)

Kc−1
∑

k1=0

Kc−1
∑

k2=0

h(k1 − l) h∗(k2 − k) 2ωp sinc

[

ωp(k1 − k2)

π

]

−
Kc−1
∑

k2=0

h∗(k2 − k) 2ωp sinc

[

ωp(n0 − k2)

π

]

. (143)
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Similarly,

∂J2

∂a∗(k)
=

Ka−1
∑

l=0

a(l)

{

2π sinc(l − k) − 2ωp sinc

[

ωp(l − k)

π

]}

. (144)

Substituting (143) and (144) into (141) , rearranging the result, and rewriting it in matrix

form, we have

(R1 + wR2) a = hp, (145)

where a = [a(0) . . . a(Ka − 1)]T , and the elements of matrix R1, R2 and column vector hp

are defined as

R1(l, k) =

Kc−1
∑

k1=0

Kc−1
∑

k2=0

2ωp h(k1 − l) h∗(k2 − k) sinc

[

ωp(k1 − k2)

π

]

(146)

R2(l, k) = 2π sinc(l − k) − 2ωp sinc

[

ωp(l − k)

π

]

(147)

hp(k) =

Kc−1
∑

k2=0

2ωp h
∗(k2 − k) sinc

[

ωp(n0 − k2)

π

]

. (148)

Note that R1 and R2 are Toeplitz matrices. Thus, only the first row and column of the

matrices need to be calculated. From (145), we can see that the optimal a, which minimizes

J , is given by

â = (R1 + wR2)
−1 hp. (149)

5.1.4 Experimental Results

In this section, we present experimental results from our digital predistortion test bed. The

configuration of the test bed is shown in Fig. 37. The digital data play, record, and computa-

tions are done by a Celerity system with 150 MSPS maximum I/O rate. It sends out 16-bit

I/Q data streams to the DAC evaluation board continuously and acquires 12-bit digital IF

data samples from the ADC evaluation board when needed. The DAC and ADC used here

are, respectively, AD9777 and AD9430 from Analog Devices. The digital modulation can

be done either in the Celerity system or the DAC, while the digital demodulation is done

in the Celerity system. The power amplifier under test is a KLAM.

The equalizer is designed to equalize the upconverter channel for the predistorted wave-

form. Therefore, the training signal for the equalizer needs to cover the signal band of
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Figure 37: Block diagram of the test bed.

the predistorted signal. We can design a dedicated training signal beforehand to cover the

desired band. In practice, we may also turn off the equalizer first, construct a temporary

predistorter, and use its output as a training signal. This signal covers most of the desired

band and is easily available. An example of such a training signal is shown in Fig. 38.

With the training signal, the dashed loop in Fig. 35 was used for collecting the input

and output data of the upconverter channel. Fig. 39 shows the frequency responses of the

estimated channel, the equalizer, and the cascade of the two. Here, the estimated channel

has 51 taps. More taps help to reduce the windowing effects of the estimated channel filter,

thereby providing a finer resolution of the channel. The equalizer is assumed to be 14 taps.

The relatively short length of the equalizer helps to reduce the implementation cost. The

equalizer is designed with ωp = 0.7π and w = 10−3. Recall that [−ωp, ωp] is the frequency

band of equalization and w is the weighting factor in the cost function (140). Increasing

w reduces the out-of-band response of the equalizer. However, this is at the expense of

decreasing the accuracy of the equalizer in-band. Thus, there is tradeoff when selecting the

right weighting factor w.

The performance of the equalizer in a predistortion system is shown in Fig. 40. The

equalizer was designed with ωp = 0.7π and w = 10−3. We see that the equalizer signifi-

cantly improves the linearization performance of the predistortion system.
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Figure 38: Example of a training signal from predistorted waveform with the equalizer
turned off.
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Figure 39: Magnitude and phase responses of the estimated channel (solid line), the
equalizer (dotted line), and the overall cascade of the channel and the equalizer (dashed
line). The estimated channel has 51 taps. The equalizer has 14 taps and is designed with
ωp= 0.7π, w = 10−3.
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(a)

(d)

(c)

(b)

Figure 40: Comparison of power spectral densities (PSDs). (a) Training signal; (b) Power
Amplifier output with predistortion but no equalizer; (c) PA output with predistortion and
equalizer; (d) PA output with the same predistorter as in (c) but no equalizer.
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5.2 Direct Upconversion Transmitter

In the direct upconversion transmitter, the I/Q data streams are directly modulated to RF.

This structure enables the upconverter to be easily reconfigured to generate RF signals in

different frequency bands. It also uses fewer components and is easier to integrate than two-

stage upconversion. However, in practice, the quadrature carriers in the analog modulator

do not have exactly the same amplitudes and an exact phase difference of 90 degrees.

These effects are called gain/phase imbalance and can cause cross-talk between the I and Q

channels. Note that the asymmetry between the analog reconstruction filters in the I and

Q branches before the modulator also contributes to the imbalance. In addition, leakage of

the carrier to the transmitted signal manifests itself in the demodulated received signal as

a dc offset.

For narrowband inputs, the gain/phase imbalance can be considered as frequency-

independent. Its impacts on predistortion have been analyzed (e.g. [7]), and various

compensation techniques have been proposed (e.g. [9], [8]). For wideband inputs, the

gain/phase imbalance exhibits frequency-dependent behavior, which may be due to both

the reconstruction filters and analog modulator. A compensation technique for the recon-

struction filters is proposed in [45]. In [46], the modeling and compensation of both the

reconstruction filters and analog modulator in wideband receivers are considered, but the

modulator is assumed to be frequency-independent. Moreover, since the image in [46] is

caused by adjacent channel interference, which is not available at the receiver, the com-

pensation techniques in [46] are “blind”. In a predistortion system, a feedback path is

often present. Therefore, the output of the direct upconverter is usually available. In

this section [12], we propose a general model that describes the effects of both the re-

construction filters and the frequency-dependent analog modulator, which we refer to as

frequency-dependent gain/phase imbalance and dc offset. Based on the input and output

of the direct upconverter, we then develop techniques to extract the model parameters and

construct compensators.
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5.2.1 Channel Models

Figure 35 illustrates the general structure of the baseband predistortion system considered

here. As mentioned in the previous section, we use direct upconversion in the transmit-

ter chain, and a one-stage downconverter and digital demodulator in the feedback path.

Additional baseband processing for the input signal u(n) in the transmitter includes predis-

tortion and I/Q compensation, whose outputs are denoted by z(n) and x(n), respectively.

During the initialization phase, the predistorter and I/Q compensator are bypassed: i.e.,

x(n) = z(n) = u(n). We also bypass the power amplifier and acquire the direct upconverter

output in baseband, i.e., y(n). Based on x(n) and y(n), we can estimate the parameters of

the channel model and construct the I/Q compensator (shown by the dashed loop). After

the I/Q compensator is activated, we put the power amplifier back in the loop and start

training the predistorter (shown by the solid loop).

A detailed view of the channel, from x(n) to y(n), is shown in Fig. 42, where Re{·}

and Im{·} denote the real and imaginary parts of a complex number, respectively. We also

use subscripts i (in-phase) and q (quadrature) to denote the real and imaginary parts of

a complex sequence; for example, in Fig. 42, we have x(n) = xi(n) + jxq(n) and y(n) =

yi(n) + jyq(n).

Real I/Q Channel Model

The frequency-dependent gain/phase imbalance comes from the frequency-dependent

behavior of the analog components on the I and Q paths. To model the I and Q channels

and the cross coupling channels between them, we use four real filters, h11,h12,h21, and

h22 (see Fig. 43(a)). The channel output y(n) can then be written as

y(n) =

K−1
∑

k=0

{[xi(n− k)h11(k) + xq(n− k)h12(k)] + j[xq(n− k)h22(k) + xi(n− k)h21(k)]}

+ di + wi(n) + j[dq + wq(n)], (150)

where x(n) = xi(n) + jxq(n) is the baseband input, w(n) = wi(n) + jwq(n) is the additive

white noise, and d = di + jdq is the dc offset. In (150), we assume that all four filters

have the same length K, which helps to simplify the derivations in the following sections.

However, the same methodology can still be applied if the h filters have different lengths.

72



DAC PADirect
Upconverter

Demodulator
Digital

Converter
DownADC

Predistorter

Predistorter
Design

I/Q
Compensator

Construction

I/Q
Compensator

x(n)

y(n)

z(n)u(n)

Figure 41: Block diagram of the baseband predistortion system. The dashed lines refer
to the feedback loop for I/Q compensator training.
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Figure 43: Block diagrams of three channel models: (a) real I/Q model; (b) complex I/Q
model; (c) direct/image model.
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Complex I/Q Channel Model

In (150), we can combine the terms that have xi(n− k) or xq(n− k) and rewrite it in a

more compact form; i.e.,

y(n) =

K−1
∑

k=0

[xi(n− k)hi(k) + xq(n− k)hq(k)] + d+ w(n), (151)

where

hi(k) = h11(k) + jh21(k), hq(k) = h12(k) + jh22(k). (152)

A block diagram of the complex I/Q channel model is shown in Fig. 43(b).

Direct/Image Channel Model

The complex I/Q model in (151) gives the relationship between y(n) and the real and

imaginary parts of x(n). However, it is not clear from (151) how the modulator imbalance

affects the input x(n) as a whole. We know that

xi(n) =
x(n) + x∗(n)

2
, xq(n) =

x(n) − x∗(n)

2j
(153)

where (·)∗ denotes complex conjugate. Substituting (153) into (151) and rearranging the

result, we obtain

y(n) =
K−1
∑

k=0

[x(n− k)hd(k) + x∗(n− k)hm(k)] + d+ w(n), (154)

where

hd(k) =
hi(k) − jhq(k)

2
, hm(k) =

hi(k) + jhq(k)

2
(155)

are, respectively, the direct and image transfer functions. Fig. 43(c) shows a block diagram

of this channel model. Here, x∗(n) is viewed as an image of x(n) since when x(n) has a

one-sided spectrum, x∗(n) shows up on the other side of the carrier. The image x∗(n) is

undesired and appears in the output when hi(k) 6= hq(k), i.e., hm(k) 6= 0. When the input

x(n) has a double-sided spectrum, the image occupies the same spectrum as the input and

is covered up by the original input. However, it may still degrade predistortion performance

[7].
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The three models proposed in this section are all equivalent models. However, they reveal

different aspects of the channel, and each has its own pros and cons. For implementation

purposes, since all the complex operations have to be done in real numbers, the real I/Q

model is the most convenient and efficient. For channel estimation purposes, the complex

I/Q model is more compact than the real I/Q model. Moreover, its inputs are real sequences,

which leads to a real correlation matrix in the estimation process. In contrast, with the

direct/image model, we will have to deal with a complex correlation matrix. The advantage

of the direct/image model is that it reveals the effects of the system on the input and its

image, which cannot be directly observed from the other two models.

5.2.2 Channel Estimation

Because of the reasons stated above, we derive channel estimation algorithms based on the

complex I/Q model.

Least-Squares Method

For a block of x(n) and y(n) data samples, (151) can be written in vector form; i.e.,

y = Xihi + Xqhq + d1P + w, (156)

where y = [y(K − L− 1), . . . , y(N − L− 1)]T with L a selectable delay, Xi = Re(X) and

Xq = Im(X) with

X =



















x(K − 1) x(K − 2) · · · x(0)

x(K) x(K − 1) · · · x(1)

...
...

...

x(N − 1) x(N − 2) · · · x(N −K)



















, (157)

hi = [hi(0), · · · , hi(K − 1)]T , hq = [hq(0), · · · , hq(K − 1)]T , 1P is a column vector of

length P = (N−K+1) filled with all ones, and w = [w(K−1), . . . , w(N−1)]T . Note that

not all N samples of y(n) are used in the formulation in order to avoid the boundary effect.

Here, the system output y(n) has been nominally matched with the input x(n), i.e., the

relative delay, amplitude, and phase difference between y(n) and x(n) have been removed.
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To find the least-squares estimates of the channel coefficients, we define a cost function

as follows:

J = ||y − Xihi − Xqhq − d1P ||2, (158)

where || · ||2 denotes the l2 norm of a vector. The optimal hi, hq, and d that minimize the

cost function can be found by setting the partial derivatives of J with respect to h∗
i , h∗

q,

and d∗ to zero (pretending that hi, hq and d are constants [5]); i.e.,

∂J

∂h∗
i

= XH
i (y − Xihi − Xqhq − d1P ) = 0 (159)

∂J

∂h∗
q

= XH
q (y − Xihi − Xqhq − d1P ) = 0 (160)

∂J

∂d∗
= 1T

P (y − Xihi − Xqhq − d1P ) = 0. (161)

Since Xi and Xq in (159) and (160) are real matrices, the Hermitian transpose is replaced

by a simple transpose. Rearranging (159) - (161) and combining, we have













XT
i Xi XT

i Xq XT
i 1P

XT
q Xi XT

q Xq XT
q 1P

1T
PXi 1T

PXq 1T
P1P

























hi

hq

d













=













XT
i y

XT
q y

1T
Py













. (162)

Therefore, the least-squares estimates of the hi, hq, and d are













ĥi
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


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i y

XT
q y

1T
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











. (163)

Note that a coarse estimate of the dc offset can be obtained as the difference between the

mean of the system output and that of the system input; i.e.,

d̂ =
1

N

N−1
∑

n=0

[y(n) − x(n)]. (164)

From the complex I/Q model shown in Fig. 43(b), we know that d is actually given by

d = dy −
[

Re{dx}
K−1
∑

k=0

hi(k) + Im{dx}
K−1
∑

k=0

hq(k)

]

, (165)
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where dx and dy are, respectively, the mean values of the input x(n) and the output

y(n). Therefore, in order for (164) to be accurate, either dx needs to be very small or

∑K−1
k=0 hi(k) ≈ 1 and

∑K−1
k=0 hq(k) ≈ j. If either of these conditions hold, then we may use

(164) to estimate the dc offset and adjust the cost function (158) to

J = (y − d̂1P − Xihi − Xqhq)
H(y − d̂1P − Xihi − Xqhq), (166)

Similar to the previous derivation of the least-squares solutions, the least-squares estimates

of the hi, hq are then given by







ĥi

ĥq






=







XT
i Xi XT

i Xq

XT
q Xi XT

q Xq







−1 





XT
i (y − d̂1P )

XT
q (y − d̂1P )






. (167)

Least-Squares Method with Diagonal Loading

Since the input signal x(n) is usually a bandpass signal, the channel estimates are only

accurate within the signal band. The out-of-band responses are somewhat arbitrary, de-

pending on the noise floor in x(n) and y(n). This is not desired in predistortion applications

since the baseband signal after predistortion has low level out-of-band spectral regrowth,

which needs to be accurately preserved in order to compensate for the power amplifier non-

linearity. To overcome this problem, we can add a low-level white noise to both x(n) and

y(n) and then apply (163). The white noise creates a flat out-of-band frequency response,

but its level is kept low enough not to affect the in-band channel. By using a low-level white

noise that is uncorrelated with x(n) and y(n) and zero mean, it can be shown that (163)

becomes










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ĥi

ĥq

d̂






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


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


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i Xi + σ2I XT

i Xq XT
i 1P
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q Xi XT

q Xq + σ2I XT
q 1P

1T
PXi 1T

PXq 1T
P1P













−1 


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





XT
i y + σ2e

XT
q y + j σ2e

1T
Py













, (168)

where σ2 is the variance of the artificial white noise, I is a K × K identity matrix, and

e = [0T
L 1 0T

M ]T , where 0L and 0M are, respectively, length L and M = K −L− 1 column

vectors filled with all zeros. In the case where the dc offset is estimated using (164), the
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Figure 44: Cascade of the I/Q compensator and the channel.

least-squares estimates of the hi, hq with diagonal loading reduce to


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ĥi

ĥq
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
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XT
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i Xq

XT
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XT
i (y − d̂1P ) + σ2e

XT
q (y − d̂1P ) + σ2e






. (169)

The diagonal loading proposed here has the additional advantage of regularizing the

solution, i.e., reducing the condition number of the correlation matrix, so that more accurate

solutions can be achieved.

5.2.3 Compensator Construction

In this section, we design I/Q compensators to mitigate the frequency-dependent I/Q im-

balance and dc offset. It turns out that these imperfections can be fully compensated by

an I/Q compensator that has a structure similar to the channel models described in Sec-

tion 5.2.1. There are two approaches to construct such a compensator. In the two-step

approach, the channel is first estimated, and the compensator is constructed based on the

channel estimates. In the one-step approach, the compensator is constructed directly using

the system input x(n) and system output y(n).

Two-Step Approach

To ease the derivation, we choose the real I/Q channel model to represent both the I/Q

compensator and the direct upconverter channel. The cascade of the I/Q compensator and

the channel is shown in Fig. 44, where the I/Q compensator is represented by four real

filters, g11, g12, g21, g22, and a dc component c.

dc Offset Compensation
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The dc offset d̂ of the channel can be compensated by the dc component c in the I/Q

compensator. To achieve this, c after passing through the four ĥ filters should be equal to

−d̂, i.e.,

ci s11 + cq s12 = −d̂i

ci s21 + cq s22 = −d̂q, (170)

where

s11 =
K−1
∑

k=0

ĥ11(k), s12 =
K−1
∑

k=0

ĥ12(k)

s21 =
K−1
∑

k=0

ĥ21(k), s22 =
K−1
∑

k=0

ĥ22(k). (171)

It is clear from (170) that the solution for ci and cq is


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

ci

cq






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
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

s11 s12

s21 s22







−1 





−d̂i

−d̂q






. (172)

Note that when the inverse matrix in (172) is close to the identity matrix, we have







ci

cq






≈







−d̂i

−d̂q






. (173)

Gain/Phase Imbalance Compensation

After passing the dc component c through the ĥ filters, the four g filters in the com-

pensator and the four ĥ filters in the channel are connected directly. To achieve ideal com-

pensation, the cascade of filters should satisfy the following relationship in the frequency

domain; i.e., for ω ∈ [0, 2π),







Ĥ11(e
jω) Ĥ12(e

jω)

Ĥ21(e
jω) Ĥ22(e

jω)













G11(e
jω) G12(e

jω)

G21(e
jω) G22(e

jω)






= e−jωn0 I2, (174)

where I2 is a 2-by-2 identity matrix, and n0 is the desired delay of the overall cascade.
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Therefore, we have
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= A(ejω)
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jω)

−Ĥ21(e
jω) Ĥ11(e

jω)


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
, (175)

where

A(ejω) = [Ĥ11(e
jω)Ĥ22(e

jω) − Ĥ12(e
jω)Ĥ21(e

jω)]−1 (176)

is the determinate. In the time domain, (175) becomes,

g11(k) = ĥ22(k) ∗ a(k), g12(k) = −ĥ12(k) ∗ a(k)

g21(k) = −ĥ21(k) ∗ a(k), g22(k) = ĥ11(k) ∗ a(k), (177)

where ∗ denotes convolution and a(k) is the inverse Fourier transform of A(ejω). In other

words, a(k) is the inverse of the filter

hc(k) = ĥ11(k) ∗ ĥ22(k) − ĥ12(k) ∗ ĥ21(k), (178)

which can be constructed either in the time domain or in the frequency domain. Here, we

present a frequency-domain least-squares approach to design a(k).

To find the optimal a(k) coefficients, we adopt a frequency-domain least-squares ap-

proach. Suppose that filter a(k) has Ka taps, the convolved response of a(k) and hc(k) can

be written as

c(k) =

Ka−1
∑

l=0

hc(k − l)a(l), k = 0, 1, · · · ,Ka + 2K − 3, (179)

which has length Kc = Ka + 2K − 2. (Note that filter hc(k) is of length 2K − 1.) We then

define a cost function as the integrated difference between the frequency response of filter

c(k) and the desired frequency response, ejωn0 , within a given passband [−ωp, ωp]; i.e.,

Jc =

∫ ωp

−ωp





Kc−1
∑

k1=0

c(k1)e
−jωk1 − e−jωn0









Kc−1
∑

k2=0

c(k2)e
−jωk2 − e−jωn0





∗

dω. (180)
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Substituting (179) into (180), we have

Jc =

∫ ωp

−ωp





Kc−1
∑

k1=0

Ka−1
∑

l1=0

hc(k1 − l1)a(l1)e
−jωk1 − e−jωn0





×





Kc−1
∑

k2=0

Ka−1
∑

l2=0

hc(k2 − l2)a(l2)e
−jωk2 − e−jωn0





∗

dω. (181)

To find the optimal a(k) that minimizes the cost function, we take the partial derivative of

Jc in (181) with respect to a∗(l) (pretending a(l) is constant [5]) and set it to zero; i.e.,

∂Jc

∂a∗(l)
=

∫ ωp

−ωp





Kc−1
∑

k1=0

Ka−1
∑

l1=0

hc(k1 − l1)a(l1)e
−jωk1 − e−jωn0





×
Kc−1
∑

k2=0

h∗c(k2 − l)ejωk2dω = 0; l = 0, · · · , Ka − 1. (182)

Rearrange (182) to write

∂Jc

∂a∗(l)
=

Ka−1
∑

l1=0

a(l1)

Kc−1
∑

k1=0

Kc−1
∑

k2=0

hc(k1 − l1)h
∗
c(k2 − l)

∫ ωp

−ωp

e−jω(k1−k2)dω

−
Kc−1
∑

k2=0

h∗c(k2 − l)

∫ ωp

−ωp

e−jω(n0−k2)dω = 0. (183)

In predistortion applications, since least-squares with diagonal loading is used for estimating

the four h filters, filters h11(k) and h22(k) have flat responses outside of the signal band.

Moreover, the responses of the cross coupling filters h12(k) and h21(k) are usually much

smaller than those of the filters h11(k) and h22(k). Therefore, the out-of-band response of

filter hc(k) may be considered as flat with unit gain. Thus, we can use ωp = π in (183).

Substituting ωp = π into (183) and carrying out the integration, we obtain

∂Jc

∂a∗(l)
=

Ka−1
∑

l1=0

a(l1)

Kc−1
∑

k1=0

Kc−1
∑

k2=0

hc(k1 − l1) h
∗
c(k2 − l) 2π sinc(k1 − k2)

−
Kc−1
∑

k2=0

h∗c(k2 − l) 2π sinc(n0 − k2) = 0, (184)

where

sinc(x) =
sin(πx)

πx
. (185)
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For l from 0 to Ka − 1, we have a set of equations from (184); i.e.,

Ka−1
∑

l1=0

a(l1)

Kc−1
∑

k1=0

Kc−1
∑

k2=0

2π hc(k1 − l1) h
∗
c(k2 − l2) sinc(k1 − k2)

=

Kc−1
∑

k2=0

2π h∗c(k2 − l) sinc(n0 − k2). (186)

Removing 2π from both sides of (186) and rewriting it in matrix form, we have

Rha = ha, (187)

where a = [a0 . . . aKa−1]
T , and the elements of matrix Rh and column vector ha are defined

as

Rh(l1, l) =

Kc−1
∑

k1=0

Kc−1
∑

k2=0

hc(k1 − l1) h
∗
c(k2 − l) sinc(k1 − k2) (188)

ha(l) =

Kc−1
∑

k2=0

h∗c(k2 − l) sinc(n0 − k2). (189)

Note that Rh is a Toeplitz matrix, so we only need to calculate the first row and column

of the matrix. The least-squares estimate of a from (187) is

â = R−1
h ha. (190)

One-Step Approach

The I/Q compensator is the pre-inverse of the underlying channel. However, since

the channel is a linear system, its pre-inverse is the same as its post-inverse, whose input

and desired output are, respectively, y(n) and x(n). Therefore, the post-inverse, i.e., the

compensator, can be obtained using (168) by treating y(n) as the input and x(n) as the

desired output, i.e.,
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
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. (191)

The diagonal loading here is also essential to guarantee a flat frequency response outside

of the signal band. The main advantage of the one-step approach is that it generates
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Table 4: Ideal Model Coefficients
k hi(k) hq(k)

1 – 0.0046 + j 0.0016 – 0.0017 – j 0.0040
2 0.0064 – j 0.0013 0.0013 + j 0.0066
3 0.0054 – j 0.0080 0.0088 + j 0.0053
4 – 0.0013 – j 0.0063 0.0078 – j 0.0003
5 0.9982 – j 0.0060 – 0.0011 + j 1.0009
6 0.0052 + j 0.0003 – 0.0024 + j 0.0077
7 0.0091 – j 0.0052 0.0023 + j 0.0092
8 0.0055 – j 0.0054 0.0046 + j 0.0042
9 0.0044 + j 0.0038 – 0.0027 + j 0.0057

the g filters directly. The previous approach, in contrast, constructs the g filters through

convolutions of the estimated h filters and a separately designed common inverse filter a(k).

Therefore, the one-step approach may help to reduce the total number of taps required for

the compensation filters.

5.2.4 Simulations

In this section, we evaluate the performance of the I/Q compensators designed in Section

5.2.3 through computer simulations. The input signal, x(n), in the simulations is a 15 MHz

11-carrier CDMA signal shifted to the lower sideband. Given this input, we first extracted

a block of 40000 y(n) samples through the dashed-loop in Fig. 41 using our experimental

testbed. After matching y(n) with x(n) (delay, amplitude, phase rotation), the coefficients

of an ideal channel model were obtained using (168), which are given in Table 4 with

d = 0.0114 − j 0.0023.

Simulation 5.1 We simulated the dashed-loop in Fig. 41, where the DAC and direct

upconverter were replaced by the ideal channel model; the downconverter, ADC, and digital

demodulator were replaced by an additive white noise yielding an SNR of 45 dB. Given x(n)

and y(n), I/Q compensators were constructed by the two approaches proposed in Section

5.2.3. Fig. 45 shows the outputs of the ideal channel model with and without compensators.

Here, the 9/9 IQ compensator means that, in (177), the ĥ filters have 9 taps and a(k) has

9 taps. We can see that both the 9/9 I/Q compensator from the two-step approach and

the 9-tap compensator from the one-step approach were able to fully suppress the image.

84



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Normalized Frequency

P
S
D

(d
B

) (a)

(b)

(c), (d), (e)

Figure 45: Comparison of the direct upconverter outputs without I/Q compensation and
with different I/Q compensators. (a) Without I/Q compensation; (b) With a 1-tap I/Q
compensator; (c) With a 9/9 I/Q compensator constructed using the two-step approach;
(d) With a 9-tap I/Q compensator constructed using the one-step approach; (e) Original
input. Here, (c), (d), and (e) coincide.

However, the 1-tap compensator could not suppress the image completely, which suggests

that the gain/phase imbalance of the direct upconverter is frequency-dependent.

Simulation 5.2 We simulated the solid loop in Fig. 41 after plugging the I/Q compen-

sators constructed in the previous simulation into the loop. The configuration of the loop is

the same as in the previous simulation except that the power amplifier block was replaced

by a memory polynomial power amplifier model, whose parameters are given in (Example

3.7). The predistorter also follows a memory polynomial model here, i.e.,

z(n) =

K
∑

k=1

Q
∑

q=0

u(n− q)|u(n− q)|k−1. (192)

The simulation result is shown in Fig. 46. The predistorter used in the simulation has

Q = 3 and K = 7. We can see that with either the 9/9 I/Q compensator from the two-step

approach or the 9-tap I/Q compensator from the one-step approach, the predistorter is able

to fully suppress the spectral regrowth. However, with the 1-tap I/Q compensator, there is

a residue image after predistortion.
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Figure 46: Comparison of the power amplifier output with different I/Q compensators and
predistorters. (a) Without predistortion but with a 9-tap I/Q compensation from the one-
step approach; (b) With predistortion and a 1-tap I/Q compensator; (c) With predistortion
and a 9/9 I/Q compensator from the two-step approach; (d) With predistortion and a 9-tap
I/Q compensator from the one-step approach; (e) Original input. Here, (c), (d), and (e)
almost coincide.
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CHAPTER 6

REAL-TIME IMPLEMENTATIONS

In Chapter 3, we have shown that the memory polynomial predistorter is a good choice for

linearizing power amplifiers with memory effects. In this chapter, we investigate real-time

implementation aspects of the memory polynomial predistorter. We implement the predis-

torter training algorithm on a Texas Instruments TMS320C67xx processor and evaluate the

performance of the trained predistorter on our wideband digital predistortion testbed [13].

6.1 Memory Polynomial Model

Here, we adopt the model of Kim and Konstantinou [30] for the predistorter,

z(n) =
K
∑

k=1

Q
∑

q=0

akq x(n− q)|x(n− q)|k−1, (193)

which we call a memory polynomial. The input x(n), output z(n), and coefficients akq of

the model are all complex valued in general. Note that if the maximum delay Q = 0, (193)

reduces to

z(n) =
K
∑

k=1

ak0 x(n)|x(n)|k−1, (194)

which is a conventional memoryless polynomial. A direct implementation of the predis-

torter model in (193) requires multiplications on the order of K2Q. However, an efficient

implementation is possible by observing that (193) is equivalent to

z(n) =

Q
∑

q=0

x(n− q)

K
∑

k=1

akq |x(n− q)|k−1 (195)

=

Q
∑

q=0

x(n− q) LUTq(|x(n− q)|), (196)

[23], where the nonlinear polynomial for each delay q is implemented by a lookup table

(LUT) indexed by |x(n − q)|. Therefore, only Q complex multiplications per sample are

needed.
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Figure 47: The indirect learning architecture for the predistorter.

6.2 Indirect Learning Architecture

The indirect learning architecture has been introduced in Chapter 2. It is shown here

again in Fig. 47. In the architecture, the predistorter performs the same computation,

such as (196), for every input sample at high-speed. This kind of task is well suited for

field programmable gate arrays (FPGAs) or application-specific integrated circuits (ASICs).

The predistorter training block, however, involves relatively complex computations, which

require a powerful digital signal processor (DSP), such as the Texas Instruments (TI)

TMS320C67xx. The time required to train the predistorter determines the ability of the pre-

distorter to response to changes in power amplifier characteristics. Although these changes

usually happen slowly, which may be due to temperature drift, aging, etc., a powerful DSP

increases the flexibility of the overall system.

6.3 Predistorter Construction

In the context of predistorter training (see the training block of Fig. 47), (193) becomes

z(n) =
K
∑

k=1

Q
∑

q=0

akq y(n− q)|y(n− q)|k−1. (197)

Since z(n) is linear in the parameters akq, the latter can be estimated by a simple least-

squares method. By defining a new sequence

rkq(n) = y(n− q)|y(n− q)|k−1, (198)
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we can rewrite (197) in matrix form as

z = R a, (199)

where

z = [z(0), · · · , z(N − 1)]T ,

R = [R0, · · · ,RQ],

Rq = [r1q, · · · , rKq],

rkq = [rkq(0), · · · , rkq(N − 1)]T ,

a = [a10, · · · , aK0, · · · , a1Q, · · · , aKQ]T .

The least-squares solution for (199) is

â = (RHR)−1RHz, (200)

where (·)H denotes complex conjugate transpose. The accuracy and stability of the solution

â are directly related to the numerical condition of the matrix RHR. A good indication of

such condition is the condition number of the matrix [34, p. 258]; i.e.,

κ (RHR) =
λmax

λmin
, (201)

where λmax and λmin are, respectively, the largest and smallest eigenvalues of RHR. The

matrix RHR generally has a high condition number, which also means that there is large

correlation between the columns of this matrix. There are two sources for this large corre-

lation:

1. The nonlinear polynomials, such as y, y|y|, y|y|2, etc., are highly correlated.

2. The data sample y(n) with different time indices are correlated.

The correlation due to the first source can be greatly reduced by using the orthogonal

polynomial proposed in [38]. In this formulation, (197) becomes

z(n) =
K
∑

k=1

Q
∑

q=0

bkq ψk(y(n− q)), (202)
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where

ψk(y) =
k
∑

l=1

Ulk y |y|l−1 (203)

with

Ulk =
(−1)l+k(k + l)!

(l − 1)!(l + 1)!(k − l)!
. (204)

For a K-th order polynomial, Ulk forms an upper triangular matrix U, which leads to the

matrix form of (202), i.e.,

z = Fb, (205)

where F = [R0U, · · · ,RQU]. The least-squares solution for b is then given by

b̂ = (FHF)−1 FHz. (206)

The orthogonal polynomial in [38] is derived for complex random signals with amplitude

uniformly distributed between 0 and 1 (but is robust for non-uniformly distributed am-

plitudes as well). Therefore, to fully exploit the advantage of the orthogonal polynomial,

the amplitude of y(n) should be scaled to the [0, 1] interval first before applying the ψk()

operation.

The correlation from the second source can be alleviated by using a special training signal

whose samples at different time indices are independent. However, in many cases, dedicated

training is not feasible. In this case, the accuracy of the solution â can be improved by

using higher precision floating point numbers, such as using 64-bit double precision instead

of 32-bit single precision.

Fig. 48 shows an example of the condition number of the correlation matrix with different

Q values and different input signals. We see that if the input signal is random with uniformly

distributed amplitude in [0,1], the condition number is not affected by the number of delay

terms, and the orthogonal polynomial offers great advantages. For a three-carrier WCDMA

signal, the benefit of using orthogonal polynomial decreases with the increase of the number

of delay terms. However, a significant reduction of the condition number is still observed.
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Figure 48: Condition number of the correlation matrix with different Q values and dif-
ferent input signals: (a) three-carrier WCDMA with K = 5 conventional polynomials; (b)
three-carrier WCDMA with K = 5 orthogonal polynomials; (c) a complex random signal
(amplitude uniformly distributed in [0,1]) with K = 5 conventional polynomials; (d) a
complex random signal (amplitude uniformly distributed in [0,1]) with K = 5 orthogonal
polynomials.

6.4 DSP Implementation

Because of the benefits of orthogonal polynomials, we focused on DSP implementation using

orthogonal polynomials. To evaluate the real-time performance of the predistorter training

algorithm, we selected TI TMS320C6711, which is a low-cost yet powerful floating point

processor. We implemented the algorithm in C and generated the DSP-executable code

with level-3 optimization provided by the TI C-compiler.

6.4.1 Implementation Details

Figure 49 shows the flowchart of the algorithm. The algorithm starts with acquiring the

baseband input and output data samples of the power amplifier. The matrix R0 is then

formed and multiplied with U to form the first K columns of F. The other columns of F

are just shifted versions of the first K columns. Next, the upper triangular portion of the

coefficients of the correlation matrix FHF are calculated. These coefficients are sufficient

to define the whole matrix since the matrix is Hermitian. To obtain the solution for (206),

we adopt the Cholesky decomposition approach, which is very efficient in solving linear
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equations involving a Hermitian matrix [48]. Cholesky decomposition of FHF yields a

lower-triangular matrix L such that

LLH = FHF. (207)

Substituting (207) into (206), we see that b̂ is the solution of

LLH b̂ = FHz, (208)

which can be obtained easily by using forward and back substitution [48, pp. 26-30].

6.4.2 Performance Evaluation

The computation requirement of the algorithm in the previous section is determined by two

factors: the calculation of the correlation matrix and Cholesky decomposition. To give a

quantitative measure of the complexity, we evaluate the floating point operations (flops)

required by these two steps. For example, one complex multiplication involves six flops:

four real multiplications, one real addition, and one real subtraction.

It is straightforward to calculate the required number of flops once the C implementation

is available. In our program, for a block of N data samples, the number of flops for

obtaining FHF is approximately 4.5K2(Q + 1)2N. The number of flops for obtaining the

Cholesky decomposition is approximately 1.5K3(Q+ 1)3. Therefore, when N is large, the

computations are dominated by obtaining the correlation matrix.

Table 5 shows the CPU cycles and execution time required by the C6711 starter kit to

train the predistorter. We see that longer data lengths, more delay taps, and higher precision

implementation all increase the computation time, although they all help to improve the

predistortion performance. In practice, tradeoffs need to be made. The execution time

shown here can be further reduced by (i) using new generations of TMS320C67xx processor,

which are able to operate at a higher clock rate, (ii) coding the most time consuming block;

i.e., the calculation of the correlation matrix, in assembly.

6.5 Testbed Measurements

In this section, we present experimental results from our digital predistortion testbed, whose

configuration is shown in Fig. 50.
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Figure 49: Flow chart of the algorithm.
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Table 5: Real-time performance of the predistorter training algorithm.
(a) K = 5, Q = 0

N=5000 N= 20000
CPU Cycles Execution Time (s) CPU Cycles Execution Time (s)

32-bit 35094948 0.2351 140036672 0.9382

64-bit 50879944 0.3409 203001588 1.3601

(b) K = 5, Q = 4

N=5000 N= 20000
CPU Cycles Execution Time (s) CPU Cycles Execution Time (s)

32-bit 386017219 2.5863 1542049416 10.3317

64-bit 487638321 3.2672 1969757008 13.1974

Digital I/O

Celerity

System

D/A

A/D

BPF3

Atten

Load

LO2LO1

TI C6711
Starter Kit

DUT

BPF4LPF6 LPF5

BPF2BPF1 PreAmp

Figure 50: Block diagram of the testbed.
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In the testbed, the digital I/O instrument is a Celerity system with 150 MSPS 16-bit

digital input and output capability. It sends out 14-bit digital IF data streams to the

DAC board continuously and acquires 12-bit digital IF data samples from the ADC when

needed. The DAC and ADC used here are, respectively, AD9772 and AD9430 from Analog

Devices. The predistorter training algorithm is implemented on a TI C6711 starter kit,

which connects with the Celerity system through a parallel port. A two-stage upconversion

and downconversion chain were carefully assembled to avoid introducing extra distortions.

In the experiment, the device under test (DUT) is a Siemens CGY0819 handset power

amplifier operating at the cellular band (824-849 MHz). The input to the power amplifier is

a 3.6 MHz bandwidth signal centered at 836 MHz. We tested both memoryless and memory

polynomial predistorters on the power amplifier. To evaluate the effects of the data length

on predistortion performance, we trained each predistorter using 5,000 and 20,000 data

samples. We used 64-bit implementation for both the memoryless and memory polynomial

predistorters. The results are shown in Fig. 51 and Fig. 52. We see that the memory

polynomial predistorter achieved more spectral regrowth suppression than the memoryless

predistorter. This may be due to the memory effects in the power amplifier or the frequency

response caused by the analog filters in the upconverter. Moreover, training with a longer

data length helped to improve the performance of the memory polynomial predistorter.

Since the memory polynomial involves more parameters (K(Q + 1)) than the memoryless

case (K), it is expected that the memory polynomial model needs more data points to

estimate.
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Figure 51: Measured power amplifier output PSD: (a) without predistortion; (b) with
K = 5 memoryless predistorter trained by 5,000 data samples; (c) with K = 5 memoryless
predistorter trained by 20,000 data samples. (b) and (c) coincide.
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Figure 52: Measured power amplifier output PSD: (a) without predistortion; (b) with
K = 5, Q = 4 memory polynomial predistorter trained by 5,000 data samples; (c) with
K = 5, Q = 4 memory polynomial predistorter trained by 20,000 data samples.
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CHAPTER 7

CONCLUSIONS

This dissertation considered the design of digital predistortion systems to linearize power

amplifiers with memory effects. By adding a digital predistorter in the baseband, the power

amplifier is allowed to operate into its nonlinear region, thereby significantly increasing its

efficiency. The efficiency gain translates into electricity and cooling cost savings for service

providers and longer battery life for mobile terminal users. The challenge here is to address

the memory effects exhibited by the higher power amplifiers or the power amplifiers for

wideband signals. In addition, analog components in the transmitter have imperfections

that need to be compensated as well.

7.1 Contributions

Primary contributions of this dissertation are summarized here:

• Designed novel predistorters and their parameter extraction algorithms, which include

the Hammerstein predistorter, the memory polynomial predistorter, and the combined

predistorter.

• Explained the benefits of including even-order terms in power amplifier modeling and

predistorter design.

• Designed compensation techniques for analog imperfections in the transmitter, which

include the linear frequency distortion and frequency-dependent gain/phase imbal-

ance.

• Integrated a wideband predistortion testbed.

In addition, we implemented the memory polynomial predistorter training algorithm on

a Texas Instruments C6711 Starter Kit and evaluated the real-time performance of the

algorithm.
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7.2 Suggestions for Future Research

This dissertation can be extended in a number of directions, including:

• Designing a fast adaptive memory polynomial predistorter based on the orthogonal

polynomial theory.

• Performing tests on different types of power amplifiers and establishing connections

between the memory behavior of the power amplifier and the kernels of the Volterra

series.

• Combining predistortion with peak-to-average ratio reduction techniques to further

improve the efficiency of the power amplifier.
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