EE214
 Advanced Analog Integrated Circuit Design

- Winter 2011 -

Boris Murmann
Stanford University
murmann@stanford.edu

Table of Contents

Chapter 1 Introduction
Chapter 2 BJT Devices
Chapter 3 MOS Devices and G_{m} / I_{D}-based Design
Chapter 4 Review of Elementary Circuit Configurations
Chapter 5 Two-Port Feedback Circuit Analysis
Chapter 6 Frequency Response of Feedback Circuits
Chapter 7 Wideband Amplifiers
Chapter 8 Noise Analysis
Chapter 9 Distortion Analysis
Chapter 10 Opamps and Output Stages

Chapter 1

Introduction

B. Murmann
Stanford University

Analog Circuit Sequence

Fundamentals for upperlevel undergraduates and entry-level graduate students	Analysis and design techniques for highperformance circuits in advanced Technologies	Design of mixedsignal/RF building blocks
		EE314 RF Integrated Circuit Design
EE114 - Fundamentals of Analog Integrated Circuit Design	EE214 - Advanced Analog Integrated Circuit Design	EE315A - VLSI Signal Conditioning Circuits
		EE315B — VLSI Data Conversion Circuits

The Evolution of a Circuit Designer...

Significance of Electronic Noise (1)

Signal-to-Noise Ratio
$\mathrm{SNR}=\frac{\mathrm{P}_{\text {signal }}}{\mathrm{P}_{\text {noise }}} \propto \frac{\mathrm{V}_{\text {signal }}^{2}}{\mathrm{~V}_{\text {noise }}^{2}}$

Significance of Electronic Noise (2)

Example: Noisy image

http://www.soe.ucsc.edu/~htakeda/kernelreg/kernelreg.htm

Significance of Electronic Noise (3)

- The "fidelity" of electronic systems is often determined by their SNR
- Examples
- Audio systems
- Imagers, cameras
- Wireless and wireline transceivers
- Electronic noise directly trades with power dissipation and speed
- In most circuits, low noise dictates large capacitors (and/or small R, large g_{m}), which means high power dissipation
- Noise has become increasingly important in modern technologies with reduced supply voltages
- SNR $\sim V_{\text {signal }}{ }^{2} / V_{\text {noise }}{ }^{2} \sim\left(\alpha V_{D D}\right)^{2} / V_{\text {noise }}{ }^{2}$
- Designing a low-power, high-SNR circuit requires good understanding of electronic noise

Distortion

$$
v_{o}=f\left(v_{\text {in }}\right) \approx c_{0}+c_{1} v_{i}+c / v_{i}^{2}+c / v_{i}^{3}+\ldots
$$

- All electronic circuits exhibit some level of nonlinear behavior
- The resulting waveform distortion is not captured in linearized smallsignal models
- The distortion analysis tools covered in EE214 will allow us to quantify the impact of nonlinearities on sinusoidal waveforms

Significance of Distortion

- For a single tone input, the nonlinear terms in a circuit's transfer function primarily result in signal harmonics

- For a two-tone input, the nonlinear terms in a circuit's transfer function result in so-called "intermodulation products"

Example: Two interferer tones create an intermodulation product that corrupts the signal in a desired (radio-) channel

Noise and Distortion Analysis in EE214

- Main objective
- Acquire the basic tools and intuition needed to analyze noise and distortion in electronic circuits
- Look at a few specific circuit examples to "get a feel" for situations where noise and/or distortion may matter
- Leave application-specific examples for later
- EE314: Noise and distortion in LNAs, mixers and power amplifiers
- EE315A: Noise and distortion in filters and sensor interfaces
- EE315B: Noise and distortion in samplers, A/D \& D/A converters

Technology

Bipolar vs. CMOS (1)

- Advantages of bipolar transistors
- Lower parametric variance
- Higher supply voltages
- Higher intrinsic gain $\left(g_{m} r_{o}\right)$
- Higher f_{T} for a given feature size/lithography
- Disadvantages of bipolar transistors
- Lower integration density, larger features
- Higher cost

Bipolar vs. CMOS (2)

A.J. Joseph, et al., "Status and Direction of Communication Technologies - SiGe BiCMOS and RFCMOS," Proceedings of the IEEE, vol.93, no.9, pp.1539-1558, September 2005.

- CMOS tends to require finer lithography to achieve same speed as BiCMOS process with advanced BJT

Example that Leverages High-Speed BJTs: 40Gb/s Integrated Optical Transponder

Die Photo of 40Gb/s CDR Circuit *

- $120-\mathrm{GHz} \mathrm{f}_{\mathrm{T}} / 100 \mathrm{GHz} \mathrm{f}_{\text {max }}$ $0.18 \mu \mathrm{~m}$ SiGe BiCMOS
- 144 pins
- $3.5 \mathrm{~mm} \times 4.2 \mathrm{~mm}$
- +1.8 V and -5.2 V supplies
- 7.5W power dissipation
* A. Ong, et al., ISSCC 2003

Radar Sensor

BiCMOS process

1. Collision warning and mitigation
2. Pre-crash sensing
3. Blind spot detection
4. Parking aid
5. Adaptive Cruise Control (ACC)

- $0.13-\mu \mathrm{m}$ CMOS core (1.2/2.5V)
- 1.7 V BV CEo SiGe HBT
- $166 / 175 \mathrm{GHz} f_{\mathrm{t}} / f_{\text {max }}$
- 6 metal layers (1 thick)
- Capacitors MIM (2 fF/ $\mu \mathrm{m}^{2}$)
- Spiral PGS inductors

Example that Leverages Densely Integrated CMOS: RF Transceiver System-on-a-Chip (SoC)

Mehta et al., "A 1.9GHz Single-Chip CMOS PHS Cellphone," ISSCC 2006.

- In modern CMOS technology, millions of logic gates can be integrated on a chip
- Together with moderate- to high performance analog blocks

45nm CMOS (Intel)

Steve Cowden THE OREGONIAN July 2007

Research in Device Technology

Thoughts on Device Technology

- In the future, innovative circuit designers must embrace "whichever" technology is most suitable (in terms of performance, cost, reliability, etc. for their specific problem
- Regardless of the respective I-V law and associated nonidealities
- In EE214, we will use bipolar and MOS technology to illustrate the similarities and differences between two advanced technologies
- The device parameters and simulation models of the "EE214 technology" correspond to a modern $0.18-\mu \mathrm{m}$ SiGe BiCMOS technology
- See e.g. S. Wada, et al., "A manufacturable 0.18-um SiGe BiCMOS technology for 40-Gb/s optical communication LSIs," in Proc. 2002 Bipolar/BiCMOS Circuits and Technology Meeting, pp. 84-87.

Analysis of Feedback Circuits

- Feedback circuits can be studied in several ways
- Return ratio analysis (EE114)
- Two-port analysis (EE214)
- Both methods have their own merits and demerits, and a good circuit designer should understand both approaches
- Two-port analysis nicely captures a number of practical scenarios in which the forward amplifier ("a") and feedback network ("f") can be intuitively identified and separated (while maintaining loading effects)
- Shunt-shunt, shunt-series, series-shunt, series-series configurations

Root Locus Techniques

- Provides intuitive guidance on "where the poles move" when the loop gain is varied
- Valuable for stability analysis and frequency compensation

Course Outline

- BJT \& short channel MOS device models
- Review of elementary amplifier stages (BJT focus)
- Two-port feedback circuit analysis
- Root locus
- Wideband amplifiers
- Noise analysis
- Distortion analysis
- OpAmps and output stages

Summary of Learning Goals

- Understand device behavior and models for transistors available in advanced integrated circuit technologies
- SiGe BJT, short channel MOS
- Acquire the basic intuition and models for
- Distortion analysis
- Noise analysis
- Two-port feedback circuit analysis
- Root locus techniques and their application to broadband amplifiers
- Solidify the above topics in a hands-on project involving the design and optimization of a broadband amplifier circuit

Staff and Website

- Instructors
- Boris Murmann, Drew Hall
- Teaching assistants
- Kamal Aggarwal, Pedram Lajevardi
- Administrative support
- Ann Guerra, CIS 207
- Lectures are televised
- But please come to class to keep the discussion interactive!
- Web page: http://ccnet.stanford.edu/ee214
- Check regularly, especially bulletin board
- Register for online access to grades and solutions

Text and Prerequisites

- EE214 Course reader
- Hardcopies available at Stanford Bookstore ($\sim 1 / 3$)
- Required textbook
- Gray, Hurst, Lewis and Meyer, Analysis and Design of Analog Integrated Circuits, 5th ed., Wiley
- Reference text
- B. Razavi, Design of Integrated Circuits for Optical Communications, McGraw-Hill, 2002
- Course prerequisite: EE114 or equivalent
- Basic device physics and models
- Frequency response, dominant pole approximation, ZVTC
- Biasing, small-signal models
- Common source, common gate, and common drain stages
- Port impedance calculations
- Feedback basics

Assignments

- Homework (20\%)
- Handed out on Wed, due following Wed in class
- Lowest HW score will be dropped
- Policy for off-campus students
- Fax or email to SCPD before deadline stated on handout
- Midterm Exam (30\%)
- Design Project (20\%)
- Design of an amplifier using HSpice (no layout)
- Work in teams of two
- OK to discuss your work with other teams, but no file exchange!
- Final Exam (30\%)

Honor Code

- Please remember you are bound by the honor code
- We will trust you not to cheat
- We will try not to tempt you
- But if you are found cheating it is very serious
- There is a formal hearing
- You can be thrown out of Stanford
- Save yourself a huge hassle and be honest
- For more info
- http://www.stanford.edu/dept/vpsa/judicialaffairs/guiding/pdf/honorcode.pdf

Chapter 2 Bipolar Junction Transistors

B. Murmann
Stanford University

Reading Material: Sections 1.1, 1.2, 1.3, 1.4, 2.5, 2.6, 2.7, 2.11, 2.12

History

Bardeen, Brattain, and Shockley, 1947

W. Brinkman, D. Haggan, and W. Troutman, "A history of the invention of the transistor and where it will lead us," IEEE J. Solid-State Circuits, vol. 32, no. 12, pp. 1858-1865, Dec. 1997.

W. Shockley, M. Sparks, and G. K. Teal, "P-N junction transistors," Phys. Rev. 83, pp. 151-162, Jul. 1951.

Conceptual View of an NPN Bipolar Transistor (Active Mode)

- Device acts as a voltage controlled current source
- V_{BE} controls I_{C}
- The base-emitter junction is forward biased and the basecollector junction is reverse biased
- The device is built such that
- The base region is very thin
- The emitter doping is much higher than the base doping
- The collector doping is much lower than the base doping

Outline of Discussion

- In order to understand the operation principle of a BJT, we will look at
- The properties of a forward biased pn^{+}junction
- The properties of a reverse biased pn- junction
- And the idea of combining the two junctions such that they are joined by a very thin (p -type) base region
- The treatment in the following slides is meant to be short and qualitative
- See any solid-state physics text for a more rigorous treatment (involving band diagrams, etc.)

pn ${ }^{+}$Junction in Equilibrium (No Bias Applied)

n_{n} Concentration of electrons on n side (majority carriers)
p_{n} Concentration of holes on n side (minority carriers)
n_{p} Concentration of electrons on p side (minority carriers)
p_{p} Concentration of holes on p side (majority carriers)
The subscript " 0 " in the carrier concentrations denotes equilibrium (no bias applied)

Built-in Potential

- The built in potential sets up an electric field that opposes the diffusion of mobile holes and electrons across the junction

$$
\begin{array}{r}
\text { (Drift) } \quad q \mu_{\mathrm{p}} \mathrm{pE}=q D_{\mathrm{p}} \frac{d p}{d x} \quad \text { (Diffusion) } \\
\Rightarrow \psi_{0}=V_{T} \ln \left(\frac{p_{p 0}}{p_{n 0}}\right)=\mathrm{V}_{\mathrm{T}} \ln \left(\frac{n_{n 0}}{n_{p 0}}\right) \cong \mathrm{V}_{\mathrm{T}} \ln \left(\frac{\mathrm{~N}_{\mathrm{A}} \mathrm{~N}_{\mathrm{D}}}{n_{i}^{2}}\right) \quad V_{T}=\frac{k T}{q}
\end{array}
$$

pn ${ }^{+}$Junction with Forward Bias (1)

- Depletion region narrows, diffusion processes are no longer balanced by electrostatic force
- At the edge of the depletion region ($x=0$), the concentration of minority carriers $\left[\mathrm{n}_{\mathrm{p}}(0)\right]$ can be computed as follows

$$
\psi_{0}-V_{B E}=V_{T} \ln \left(\frac{n_{n}}{n_{p}(0)}\right) \cong V_{T} \ln \left(\frac{N_{D}}{n_{p}(0)}\right) \quad \therefore n_{p}(0)=\frac{N_{D}}{e^{\frac{V_{0}}{V_{T}}}} e^{\frac{V_{B E}}{V_{T}}}=n_{p 0} e^{\frac{V_{B E}}{e_{T}}} \cong \frac{n_{i}^{2}}{N_{A}} e^{\frac{V_{E E}}{V_{T}}}
$$

pn+ Junction with Forward Bias (2)

- The result on the previous slide shows that forward biasing increases the concentration of electrons at the "right" edge of the depletion region by a factor of $\exp \left(V_{B E} / V_{T}\right)$
- The same holds for holes at the "left" edge of the depletion region

$$
p_{n}(0)=p_{n 0} \cdot e^{\frac{V_{B E}}{V_{T}}} \cong \frac{n_{i}^{2}}{N_{D}} \cdot e^{\frac{V_{B E}}{V_{T}}}
$$

- Since $N_{D} \gg N_{A}$, it follows that $p_{n}(0) \ll n_{p}(0)$, i.e. the concentration of minority carriers is much larger at the lightly doped edge
- Since there must be charge neutrality in the regions outside the depletion region, the concentration of the majority carriers at the edge of the depletion region must also increase

$$
\begin{array}{l|ll}
n_{n} \ldots & n_{n}(0) & p_{p}(0)- \\
p_{n 0} \ldots & p_{n}(0) & n_{p}(0)-\uparrow
\end{array}
$$

- However, this increase is negligible when

$$
n_{p}(0) \ll p_{p} \cong N_{A}\left(\operatorname{or~}_{n}(0) \ll n_{n} \cong N_{D}\right)
$$

- These conditions are called "low-level injection"

What Happens with the Injected Minority Carriers?

- The carriers would "like" to diffuse further into the neutral regions, but quickly fall victim to recombination
- The number of minority carriers decays exponentially, and drops to $1 / \mathrm{e}$ of the at the so-called diffusion length (L_{p} or L_{n}, on the order of microns)

- In each region, there are now two types of currents
- Diffusion of injected minority carriers due to non-zero $\mathrm{dn}_{\mathrm{p}} / \mathrm{dx}$ (or $\mathrm{dp} \mathrm{p}_{\mathrm{n}} / \mathrm{dx}$)
- Majority carrier currents for recombination

Summary - Forward Biased pn+ junction

- Lots of electrons being injected into the p-region, not all that many holes get injected into the n^{+}region
- The heavier n-side doping, the more pronounced this imbalance becomes
- The electrons injected in the p region cause a diffusion current that decays in the x-direction due to recombination
- The recombination necessitates a flow of holes to maintain charge neutrality; as the diffusion current decays, the hole current increases, yielding a constant current density along the device
- Near the edge of the depletion region, the electron diffusion current dominates over the hole current that supplies carriers for recombination
- This is a very important aspect that we will come back to

(a) Applied external

Charge density ρ

- Reverse bias increases the width of the depletion region and increases the electric field
- Depletion region extends mostly into n^{-}side
- Any electron that would "somehow" make it into the depletion region will be swept through, into the nregion
- Due to electric field

Bipolar Junction Transistor - Main Idea

- Make the p-region of the pn^{+}junction very thin
- Attach an n^{-}region that will "collect" and sweep across most of the electrons before there is a significant amount of recombination

Complete Picture

Straight line because base is thin; negligible recombination ("short base" electron profile)

BJT Currents

http://en.wikipedia.org/wiki/Bipolar junction transistor

- Primary current is due to electrons captured by the collector
- Two (undesired) base current components
- Hole injection into emitter ($\rightarrow 0$ for infinite emitter doping)
- Recombination in the base ($\rightarrow 0$ for base width approaching zero)

First-Order Collector Current Expression

$$
\begin{array}{ll}
J_{n}=q D_{n} \frac{d n_{p}(x)}{d x} \cong-q D_{n} \frac{n_{p}(0)}{W_{B}} & \text { Current density } \\
I_{C} \cong q A D_{n} \frac{n_{p}(0)}{W_{B}} & \text { A is the cross-sectional area } \\
n_{p}(0) \simeq \frac{n_{i}^{2}}{N_{A}} e^{\frac{V_{B E}}{V_{T}}} & W_{B} \text { is the base width } \\
\therefore I_{C} \cong \frac{q A D_{n} n_{i}^{2}}{W_{B} N_{A}} e^{\frac{V_{B E}}{V_{T}}} & \text { Result from slide 7 }
\end{array}
$$

Base Current

$$
\begin{array}{rr}
I_{B}=I_{B 1}+I_{B 2} \quad \text { where } \begin{array}{l}
I_{B 1}=\text { Recombination in the base } \\
\\
I_{B 2}=\text { Injection into the emitter }
\end{array}
\end{array}
$$

$\mathrm{I}_{\mathrm{B} 1}$ follows from dividing the minority carrier charge in the base $\left(\mathrm{Q}_{\mathrm{e}}\right)$ by its "lifetime" (τ_{B})

$$
\mathrm{I}_{\mathrm{B} 1}=\frac{\mathrm{Q}_{\mathrm{e}}}{\tau_{\mathrm{b}}}=\frac{\frac{1}{2} n_{\mathrm{p}}(0) \mathrm{W}_{\mathrm{B}} q \mathrm{~A}}{\tau_{\mathrm{b}}}=\frac{1}{2} \frac{W_{B} q A n_{i}^{2}}{\tau_{\mathrm{b}} N_{\mathrm{A}}} e^{\frac{\mathrm{V}_{\mathrm{BE}}}{V_{T}}}
$$

$I_{B 2}$ depends on the gradient of minority carriers (holes) in the emitter. For a "long" emitter (all minority carriers recombine)

$$
I_{B 2}=-\left.q A D_{p} \frac{d p_{n}(x)}{d x}\right|_{x=0}=-q A D_{p}\left[\frac{d}{d x}\left(\frac{n_{i}^{2}}{N_{D}} e^{\frac{V_{B E}}{V_{T}}} e^{-\frac{x}{L_{p}}}\right)\right]_{x=0}=\frac{q A D_{p}}{L_{p}} \frac{n_{i}^{2}}{N_{D}} e^{\frac{V_{B E}}{V_{T}}}
$$

In modern narrow-base transistors $I_{B 2} \gg I_{B 1}$.

Terminal Currents and Definition of α_{F}, β_{F}

Text, p. 9

$n p n$

$\beta_{F} \triangleq \frac{I_{C}}{I_{B}} \quad$ (ideally infinite) $\alpha_{F} \triangleq \frac{I_{C}}{\left(-I_{E}\right)}=\frac{\beta_{F}}{1+\beta_{F}} \quad$ (ideally one)

- The subscript "F" indicates that the device is assumed to operate in the forward active region (BE junction forward biased, $B C$ reverse biased, as assumed so far)
- More on other operating regions later...

Basic Transistor Model

Text, p. 13

$$
I_{B}=\frac{I_{S}}{\beta_{F}} \exp \frac{V_{B E}}{V_{T}}
$$

(a)

(b)

Simplified model; very useful for bias point calculations (assuming e.g. $\mathrm{V}_{\mathrm{BE}(\mathrm{on})}=0.8 \mathrm{~V}$)

Basewidth Modulation (1)

Early Voltage (V_{A})

Text, p. 15

$$
\mathrm{V}_{\mathrm{A}} \triangleq \frac{\mathrm{I}_{\mathrm{C}}}{\frac{\partial \mathrm{I}_{\mathrm{C}}}{\partial \mathrm{~V}_{\mathrm{CE}}}}=-\frac{\mathrm{W}_{\mathrm{B}}}{\frac{\mathrm{dW}}{\mathrm{~B}}} \frac{\mathrm{dV}}{\mathrm{CE}} \text { const. (independent of } \mathrm{I}_{\mathrm{C}} \text {) }
$$

$$
\mathrm{I}_{\mathrm{C}} \cong \mathrm{I}_{\mathrm{S}} \mathrm{e}^{\frac{\mathrm{V}_{\mathrm{BE}}}{\mathrm{~V}_{T}}\left(1+\frac{\mathrm{V}_{\mathrm{CE}}}{\mathrm{~V}_{\mathrm{A}}}\right)}
$$

Small-Signal Model

$$
\begin{aligned}
& g_{m}=\frac{d l_{C}}{d V_{B E}}=\frac{d}{d V_{B E}} I_{S} e^{\frac{V_{B E}}{V T}}=\frac{I_{C}}{V_{T}} \\
& g_{\pi}=\frac{1}{r_{\pi}}=\frac{d l_{B}}{d V_{B E}}=\frac{d\left(\frac{I_{C}}{\beta_{F}}\right)}{d V_{B E}}=\frac{1}{\beta_{F}} \frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{~V}_{\mathrm{T}}}=\frac{\mathrm{g}_{\mathrm{m}}}{\beta_{\mathrm{F}}} \quad \text { (assuming } \beta_{\mathrm{F}}=\text { const.) } \\
& g_{o}=\frac{1}{r_{0}}=\frac{d l_{C}}{d V_{C E}}=\frac{d}{d V_{C E}}\left[I_{S} e^{\frac{V_{B E}}{V_{T}}}\left(1+\frac{V_{C E}}{V_{A}}\right)\right] \cong \frac{I_{C}}{V_{A}}
\end{aligned}
$$

Intrinsic Gain

$$
g_{\mathrm{m}} \mathrm{r}_{\mathrm{O}} \cong \frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{~V}_{\mathrm{T}}} \cdot \frac{\mathrm{~V}_{\mathrm{A}}}{\mathrm{I}_{\mathrm{C}}}=\frac{\mathrm{V}_{\mathrm{A}}}{\mathrm{~V}_{\mathrm{T}}} \quad \mathrm{~V}_{\mathrm{T}} \cong 26 \mathrm{mV} \quad \text { (at room temperature) }
$$

- In the EE214 technology, the SiGe npn device has $\mathrm{V}_{\mathrm{A}}=90 \mathrm{~V}$, thus

$$
g_{m} r_{o} \cong \frac{90 V}{26 m V}=3460
$$

- Much larger than the intrinsic gain of typical MOSFET devices

Outline - Model Extensions and Technology

- Complete picture of BJT operating regions
- Dependence of β_{F} on operating conditions
- Device capacitances and resistances
- Technology
- Junction isolated
- Oxide isolated with polysilicon emitter
- Heterojunction bipolar (SiGe base)
- BiCMOS
- Complementary bipolar

BJT Operating Regions

Text, p. 17

Carrier Concentrations in Saturation

- Base-Collector junction is forward biased
- $n_{p}\left(W_{B}\right)$, and therefore also I_{C}, strongly depend on $V_{B C}, V_{C E}$
- $\mathrm{V}_{\mathrm{CE}(\text { sat })}$ is the voltage at which the devices enters saturation
- The difference between the two junction voltages, small $\sim 0.05 \ldots 0.3 \mathrm{~V}$

Gummel Plot

- A Gummel plot is a semi-log plot of I_{C} and I_{B} versus $V_{B E}$ (linear scale)
- It reveals the regions for which high β_{F} is maintained (region II below)
- What happens in regions I and III?

Text, p. 24

β_{F} Fall-Off

- Region III (high current density)
- Injected electron charge in base region nears the level of doping ("high level injection")
- For this case, it can be shown that the injected carrier concentration rises with a smaller exponent (cut in half) and therefore

$$
I_{C}=I_{S} \mathrm{e}^{\frac{1}{2} \frac{V_{B E}}{V_{T}}}
$$

- Region I (low current density)
- There exists excess base current due to (unwanted) recombination in the depletion layer of the base-emitter junction
- This current becomes significant at low current densities and sets a minimum for I_{B}

Current Profile of a Forward Biased Diode Revisited

β_{F} vs. I_{C} and Temperature

Junction Isolated npn Transistor

Text, p. 97

Device Capacitances and Resistances

- Big mess!
- First focus on intrinsic elements

Charge Storage

- In the intrinsic transistor, charge is stored in the junction capacitances, C_{je} and $\mathrm{C}_{\mathrm{jc}}=\mathrm{C}_{\mu}$, and as minority carriers in the base and emitter
- Both minority carrier charge injected into the base and into the emitter, are proportional to $\exp \left(\mathrm{V}_{\mathrm{BE}} / \mathrm{V}_{\mathrm{T}}\right)$
- But the charge in the base is much larger, as discussed previously

Base Charging Capacitance

$$
\begin{array}{ll}
C_{b} \triangleq \frac{\partial Q_{e}}{\partial V_{B E}}=\frac{\partial Q_{e}}{\partial I_{C}} \frac{\partial I_{C}}{\partial V_{B E}}=\tau_{F} g_{m} \\
\tau_{F} & =\frac{\partial Q_{e}}{\partial I_{C}}=\frac{\partial}{\partial I_{C}}\left(\frac{1}{2} n_{p}(0) W_{B} q A\right) \quad I_{C}=\frac{q A D_{n} n_{p}(0)}{W_{B}} \\
\tau_{F}=\frac{\partial}{\partial I_{C}}\left(\frac{1}{2} \frac{W_{B}^{2}}{D_{n}} I_{C}\right)=\frac{1}{2} \frac{W_{B}^{2}}{D_{n}} &
\end{array}
$$

- τ_{F} is called the base transit time (in forward direction)
- Typical values for high-speed transistors are on the order of $1 . . .100$ ps

Junction Capacitance

Small-Signal Model with Intrinsic Capacitances

$$
\begin{aligned}
& C_{\pi}=C_{b}+C_{j e}=C_{b}+2 C_{j e 0} \\
& C_{\mu}=C_{j c}=\frac{C_{j c 0}}{\left(1+\frac{V_{C B}}{\Psi_{0 c}}\right)^{n}}
\end{aligned}
$$

Model with Additional Parasitics

Range of numbers
$r_{e} \sim 1-3 \Omega$
$\mathrm{r}_{\mathrm{b}} \sim 50-500 \Omega$
Values at high end of these ranges may have large
$r_{c} \sim 20-500 \Omega$ impact on performance \rightarrow Try to minimize through advanced processing \& technology

BJT in Advanced Technology

Text, p. 107

- Oxide isolated
- Self-aligned structure (base and emitter align automatically)
- Very thin base ($\sim 100 \mathrm{~nm}$ or less) through ion implantation
- Reduced breakdown voltages compared to more traditional structures

SiGe Heterojunction Bipolar Technology

- A heterojunction is a pn junction formed with different materials for the n and p regions
- Germanium is added to the base of a silicon bipolar transistor to create a heterojunction bipolar transistor (HBT)
- Base formed by growing a thin epitaxial layer of SiGe
- Results in a lower bandgap (and higher intrinsic carrier concentration) in the base than emitter
- In "band diagram speak" the bandgap mismatch increases the barrier to the injection of holes (in an npn transistor) from the base into the emitter
- One way to enumerate the benefits of a SiGe base is to look at the current gain expression
- Intrinsic carrier concentration in the SiGe base (n_{iB}) is larger than intrinsic carrier concentration in the Si emitter (n_{iE})

$$
\beta_{F}=\frac{\frac{q A D_{n} n_{p 0}}{W_{B}}}{\frac{1}{2} \frac{n_{p 0} W_{B} q A}{\tau_{b}}+\frac{q A D_{p} n_{i E}^{2}}{L_{p} N_{D}}} \cong \frac{\frac{q A D_{n} n_{p 0}}{W_{B}}}{\frac{q A D_{p} n_{i E}^{2}}{L_{p} N_{D}}}=\frac{\frac{q A D_{n} n_{i B}^{2}}{W_{B} N_{A}}}{\frac{q A D_{p} n_{i E}^{2}}{L_{p} N_{D}}}=\frac{D_{n} N_{D} L_{p}}{D_{p} N_{A} W_{B}} \frac{n_{i B}^{2}}{n_{i E}^{2}} \begin{aligned}
& \text { Added degree of } \\
& \text { freedom for HBT }
\end{aligned}
$$

- Base doping $\left(\mathrm{N}_{\mathrm{A}}\right)$ can be increased while maintaining same β_{F}
- Can reduce base width without affecting r_{b}
- Larger r_{0} due to decrease in base width modulation

Device Parameter Comparison

Parameter	$\begin{gathered} \text { Vertical } n p n \\ \text { Transistor with } 2 \mu \mathrm{~m}^{2} \\ \text { Emitter Area } \end{gathered}$	SiGe npn HBT Transistor with $0.7 \mu \mathrm{~m}^{2}$ Emitter Area	$=0.22 \mu \mathrm{~m} \times 3.2 \mu \mathrm{~m}$
β_{F}	120	300	
β_{R}	2	2	
V_{A}	35 V	90	
I_{S}	$6 \times 10^{-18} \mathrm{~A}$	$3.2 \times 10^{-17} \mathrm{~A}$	
$I_{C O}$	1 pA	1pA	$5 x$ bigger I_{S}
$B V_{C E O}$	8 V	2.0 V	
$B V_{C B O}$	18 V	5.5 V	
$B V_{E B O}$	6 V	3.3 V	
τ_{F}	10 ps	0.56ps	18x smaller τ_{F}
τ_{R}	5 ns	10ps	
r_{b}	400Ω	25Ω	$16 x$ smaller r_{b}
r_{c}	100Ω	60Ω	
$r_{e x}$	40Ω	2.5Ω	
$C_{j e 0}$	5 fF	6.26fF	
$\psi_{0 c}$	0.8 V	0.8 V	
n_{e}	0.4	0.4	
$C_{\mu 0}$	5 fF	3.42fF	
$\psi_{0 c}$	0.6 V	0.6 V	
n_{c}	0.33	0.33	Oxide isolation vs.
$C_{c s 0}\left(C_{b s 0}\right)$	20 fF	3.0fF	Junction isolation
$\psi_{0 s}$	0.6 V	0.6 V	
n_{s}	0.33	0.33	

BiCMOS Technology

Older BJTs used poly Si as "diffusion source" for emitter doping. Advanced (state-of-the-art) BJTs use epitaxial growth of both the SiGe base and Si emitter regions

Advanced Complementary Bipolar Technology
 BiCom3x Overview

Technology Features:

- 200 mm Wafers
- 0.35 um Features
- 5 V Operation
- SOI Substrates
- Trench Isolation
- SiGe Bipolar (NPN \& PNP)
- 115 A Gate Ox
- QLM (1.0 um Pitch)
- NiCrAl Thin Film Resistor
- Metal-Silicide Capacitor
- Cu Power Metal Option
- Laser Trimming
- 13 K Gates $/ \mathrm{mm}^{2}$
- Qualified 1Q06
- In Production

Component Set:

- CMOS: 5 V \& 3.3 V
- Isolated CMOS
- 5V NPN
- 5V PNP
- Poly Resistors
- Well Resistors
- Thin Film Resistor
- TiN-Polycide Capacitor
- Poly Fuse
[Texas Instruments]

Cross Section

[Texas Instruments]

Figures of Merit for BJTs

- Product of current gain and Early voltage, $\beta \cdot \mathrm{V}_{\mathrm{A}}$
- Product of transit frequency and breakdown voltage, $\mathrm{f}_{\mathrm{T}} \cdot \mathrm{BV}_{\text {CEO }}$
- Maximum frequency of oscillation, $\mathrm{f}_{\text {max }}$
- More in EE314
- Transit (or transition) frequency, f_{T}
- Formally defined as the frequency for which the current gain of the device falls to unity
- Important to keep in mind that the basic device model may fall apart altogether at this frequency
- Lumped device models tend to be OK up to $\sim f_{T} / 5$
- Therefore, f_{T} should be viewed as an extrapolated parameter, or simply as a proxy for device transconductance per capacitance

Transit Frequency Calculation (1)

Text, p. 35

$v_{1}=\frac{r_{\pi}}{1+r_{\pi} s\left(C_{\pi}+C_{\mu}\right)} i_{i} \quad i_{o}=g_{m} v_{1}$

$$
\begin{aligned}
& \frac{i_{o}}{i_{i}}=\frac{g_{m} r_{\pi}}{1+r_{\pi} j \omega\left(C_{\pi}+C_{\mu}\right)} \cong g_{m} r_{\pi}=\beta_{F} \quad \text { for } \quad \omega \ll \frac{1}{r_{\pi}\left(C_{\pi}+C_{\mu}\right)}=\omega_{\beta} \\
& \frac{i_{0}}{i_{i}} \cong \frac{g_{m}}{j \omega\left(C_{\pi}+C_{\mu}\right)} \quad \text { for } \quad \omega \gg \omega_{\beta}
\end{aligned}
$$

Transit Frequency Calculation (2)

$$
\begin{aligned}
& 1=\frac{g_{m}}{\omega_{T}\left(C_{\pi}+C_{\mu}\right)} \quad \Rightarrow \omega_{T}=\frac{g_{m}}{C_{\pi}+C_{\mu}} \\
& \tau_{T}=\frac{1}{\omega_{T}}=\frac{C_{b}}{g_{m}}+\frac{C_{j e}}{g_{m}}+\frac{C_{\mu}}{g_{m}}=\tau_{F}+\frac{C_{j e}}{g_{m}}+\frac{C_{\mu}}{g_{m}}
\end{aligned}
$$

- The particular current value at which f_{T} is maximized depends on the particular parameters of a technology and the emitter area of the BJT

EE214 Technology

- Assumed to be similar to a $0.18-\mu \mathrm{m} \mathrm{BiCMOS}$ technology featuring a high-performance SiGe npn device
$-\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ (BJT), $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$ (MOS)
- See e.g.
- Wada et al., BCTM 2002
- Joseph et al., BCTM 2001
- IBM 7HP documentation
- https://www-01.ibm.com/chips/techlib/techlib.nsf/products/BiCMOS_7HP)

http://fuji.stanford.edu/events/spring01/slides/harameSlides.pdf

EE214 npn Unit Device

- A technology typically comes with an optimized layout for a unit device of a certain size
- Great care is then taken to extract a Spice model for this particular layout using measured data
- Spice model (usr/class/ee214/hspice/ee214_hspice.sp)
.model npn214 npn
+ level=1 tref=25 is=.032f bf=300 br=2 vaf=90
$+c j e=6.26 f$ vje=. 8 mje $=.4$ cjc=3. 42 f vjc=. $6 \mathrm{mjc}=.33$
$+r e=2.5 \mathrm{rb}=25 \mathrm{rc}=60 \mathrm{tf}=563 \mathrm{f} \mathrm{tr}=10 \mathrm{p}$
$+x t f=200$ itf $=80 \mathrm{~m}$ ikf $=12 \mathrm{~m}$ ikr=10.5m nkf=0.9
- Instantiation in a circuit netlist
* C B E
q1 n1 n2 n3 npn214

BJT Model Parameters

Table 5-3 BJT Model Parameters

Parameter	Description
DC	BF, BR, IBC, IBE, IS, ISS, NF, NR, NS, VAF, VAR
beta degradation	ISC, ISE, NC, NE, IKF, IKR
geometric	SUBS, BULK
resistor	RB, RBM, RE, RC, IRB
junction capacitor	CJC, CJE,CJS, FC, MJC, MJE, MJS, VJC, VJE, VJS, XCJC
parasitic capacitance	CBCP, CBEP, CCSP
transit time	ITF, PTF, TF, VT, VTF, XTF
noise	KF, AF

- For more info consult the HSpice documentation under
/afs/ir.stanford.edu/class/ee/synopsys/B-2008.09-SP1/hspice/docs_help PDF files:
home.pdf hspice_cmdref.pdf hspice_integ.pdf hspice_relnote.pdf hspice_sa.pdf hspice_devmod.pdf hspice_mosmod.pdf hspice_rf.pdf hspice_si.pdf

Adding Multiple Devices in Parallel

- For the unit device, there exists a practical upper bound for the collector current
- Due to the onset of high level injection
- This means that the unit device can only deliver a certain maximum g_{m}
- If more g_{m} is needed, "m" unit devices can be connected in parallel
- Instantiation in a circuit netlist (m=3)
* C B E
q1 n1 n2 n3 npn214 3

npn Unit Device Characterization

```
* ee214 npn device characterization
* C B E
q1 c b 0 npn214
Vc c 0 1.25
ib 0 b Iu
.op
.dc ib dec 10 10f 100u
.probe ib(q1) ic(q1) ie(q1)
.probe gm = par('gm(q1)')
.probe go = par('g0(q1)')
.probe cpi = par('cap_be(q1)')
.probe cmu = par('cap_ibc(q1)')
.probe beta = par('beta(q1)')
.options dccap post brief
.inc '/usr/class/ee214/hspice/ee214_hspice.sp'
. end
```


DC Operating Point Output

**** bipolar junction transistors	
element	$0: q 1$
model	$0: n p n 214$
ib	999.9996 n
ic	288.5105 u
vbe	803.4402 m
vce	1.2500
vbc	-446.5598 m
vs	-1.2327
power	361.4415 u
betad	288.5106
gm	10.2746 m
rpi	26.8737 k
rx	25.0000
ro	313.4350 k
cpi	14.6086 f
cmu	2.8621 f
cbx	0.
ccs	0.
betaac	276.1163
ft	93.5999 g

Table 5-18 BJT DC Operating Point Output

Quantities	Definitions
ib	base current
ic	collector current
is	substrate current
vbe	B-E voltage
vbc	B-C voltage
vcs	C-S voltage
vs	substrate voltage
power	power
betad(betadc)	beta for DC analysis
gm	transconductance
rpi	B-E input resistance
rmu(rmuv)	B-C input resistance
rx	base resistance
ro	collector resistance
cpi	internal B-E capacitance
cmu	internal B-C capacitance
cbx	external B-C capacitance
ccs	C-S capacitance
cbs	B-S capacitance
cxs	external substrate capacitance
betaac	beta for AC analysis
ft	unity gain bandwidth

Gummel Plot

Transit Frequency

Intrinsic Gain

- Important to realize that g_{m} will not be exactly equal to I_{C} / V_{T} at high currents

I-V Curves

Passive Components (1)

Resistors	Rs (O/Sq)	TCR (ppm/C)	
Subcollector	8.1	1430	
N+ Diffusion	72	1910	
P+ Diffusion	105	1430	
P+ Polysilcon	270	50	
P Polysilicon	1600	-1178	
TaN	135	-750	
Capacitors	Cp (fF/um2)	VCR (+5/.5 ppm/V)	
MIM	1	<45	
MOS	2.6	5	
Inductor	L (nH)	Max Q at 5 GHz	
Al - Spiral Inductor	$>=0.7$	21	
Varactor	Tuning Range	Q @0.5 GHz	
CB Junction	$1.64: 1$	90	
MOS Accumulation	$3.1: 1$	300	

Passive Components (2)

Diffusion Resistor

Chapter 3 MOS Transistor Modeling G_{m} / I_{D}-based Design

B. Murmann
Stanford University

Reading Material: Sections 1.5, 1.6, 1.7, 1.8

Basic MOSFET Operation (NMOS)

Text, p. 41

How to calculate drain current $\left(I_{\mathrm{D}}\right)$ current as a function of $\mathrm{V}_{\mathrm{GS}}, \mathrm{V}_{\mathrm{DS}}$?

Simplifying Assumptions

1) Current is controlled by the mobile charge in the channel. This is a very good approximation.
2) "Gradual Channel Assumption" - The vertical field sets channel charge, so we can approximate the available mobile charge through the voltage difference between the gate and the channel
3) The last and worst assumption (we will fix it later) is that the carrier velocity is proportional to lateral field $(v=\mu \mathrm{E})$. This is equivalent to Ohm's law: velocity (current) is proportional to E-field (voltage)

Derivation of First Order IV Characteristics (1)

$$
I_{D}=\mu C_{\text {ox }} \frac{W}{L}\left[\left(V_{G S}-V_{t}\right)-\frac{V_{D S}}{2}\right] \cdot V_{D S}
$$

Pinch-Off

- Effective voltage across channel is $\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{t}}$
- At the point where channel charge goes to zero, there is a high lateral field that sweeps the carriers to the drain
- Recall that electrons are minority carriers in the p-region of a pn junction; they are being swept toward the n-region
- The extra drain voltage drops across depletion region
- To first order, the current becomes independent of V_{DS}

Plot of Output Characteristic

Triode Region
Saturation Region

Triode Region: $\quad I_{D}=\mu C_{\text {ox }} \frac{W}{L}\left[\left(V_{G S}-V_{t}\right)-\frac{V_{D S}}{2}\right] \cdot V_{D S}$
Saturation Region: $\quad I_{D}=\mu C_{o x} \frac{W}{L}\left[\left(V_{G S}-V_{t}\right)-\frac{\left(V_{G S}-V_{t}\right)}{2}\right] \cdot\left(V_{G S}-V_{t}\right)$

$$
=\frac{1}{2} \mu C_{o x} \frac{W}{L}\left(V_{G S}-V_{t}\right)^{2}
$$

Plot of Transfer Characteristic (in Saturation)

$$
\begin{aligned}
g_{m} & =\frac{d I_{D}}{d V_{G S}}=\mu C_{o x} \frac{W}{L}\left(V_{G S}-V_{t}\right)=\mu C_{o x} \frac{W}{L} V_{O V} \\
& =\sqrt{2 I_{D} \mu C_{o x} \frac{W}{L}}=\frac{2 I_{D}}{V_{O V}}
\end{aligned}
$$

Output Characteristic with "Channel Length Modulation"

$$
\begin{aligned}
& g_{\circ}=\frac{d l_{D}}{d V_{D S}}=\frac{d}{d V_{D S}}\left[\frac{1}{2} \mu C_{o x} \frac{W}{L}\left(V_{G S}-V_{t}\right)^{2}\left(1+\lambda V_{d s}\right)\right] \\
& =\frac{1}{2} \mu C_{o x} \frac{W}{L}\left(V_{G S}-V_{t}\right)^{2} \cdot \lambda=\frac{\lambda I_{D}}{1+\lambda V_{D S}} \cong \lambda I_{D}
\end{aligned}
$$

Capacitances

(a)

Text, p. 54

Gate Capacitance Summary

	Subthreshold	Triode	Saturation
C_{gs}	C_{ol}	$1 / 2 \mathrm{WLC}_{\mathrm{ox}}+\mathrm{C}_{\mathrm{ol}}$	$2 / 3 \mathrm{WLC}_{\mathrm{ox}}+\mathrm{C}_{\mathrm{ol}}$
C_{gd}	C_{ol}	$1 / 2 W_{L C}+C_{o \mathrm{ol}}$	C_{ol}
C_{gb}	$\left(\frac{1}{C_{\mathrm{j}}}+\frac{1}{W L C_{\mathrm{ox}}}\right)^{-1}$	0	0

Capacitance Equations and Parameters

$$
\begin{gathered}
C_{o x}=\frac{\varepsilon_{o x}}{t_{\mathrm{ox}}} \\
C_{o l}={W C_{o l}^{\prime}}_{C_{d b}=\frac{A D \cdot C_{J}}{\left(1+\frac{V_{D B}}{P B}\right)^{M J}}+\frac{P D \cdot C_{j S W}}{\left(1+\frac{V_{D B}}{P B}\right)^{M J S W}}}^{A D}={W L_{\text {diff }}}_{P D}=W+2 L_{\text {diff }}
\end{gathered}
$$

Parameter	EE 214 Technology $(\mathbf{0 . 1 8 \mu m})$	
	NMOS	PMOS
$C_{0 x}$	$8.42 \mathrm{fF} / \mu \mathrm{m}^{2}$	$8.42 \mathrm{fF} / \mu \mathrm{m}^{2}$
$\mathrm{C}^{\prime}{ }_{\mathrm{ol}}$	$0.491 \mathrm{fF} / \mu \mathrm{m}$	$0.657 \mathrm{fF} / \mu \mathrm{m}$
C_{J}	$0.965 \mathrm{fF} / \mu \mathrm{m}^{2}$	$1.19 \mathrm{fF} / \mu \mathrm{m}^{2}$
$\mathrm{C}_{\mathrm{JSW}}$	$0.233 \mathrm{fF} / \mu \mathrm{m}$	$0.192 \mathrm{fF} / \mu \mathrm{m}$
PB	0.8 V	0.8 V
MJ	0.38	0.40
MJSW	0.13	0.33
LDIF	$0.64 \mu \mathrm{~m}$	$0.64 \mu \mathrm{~m}$

Complete Small-Signal Model

$$
\mathrm{C}_{\mathrm{gg}} \triangleq \mathrm{C}_{\mathrm{gs}}+\mathrm{C}_{\mathrm{gb}}+\mathrm{C}_{\mathrm{gd}} \quad \mathrm{C}_{\mathrm{dd}} \triangleq \mathrm{C}_{\mathrm{db}}+\mathrm{C}_{\mathrm{gd}}
$$

What are $\mu \mathrm{C}_{\mathrm{ox}}$ ("KP") and λ ("LAMBDA") for our Technology?

. MODEL nmos214 nmos					
+acm	$=3$	hdif	$=0.32 \mathrm{e}-6$	Level	= 49
+VERSIon	$=3.1$	тnom	$=27$	tox	$=4.1 \mathrm{E}-9$
+xJ	$=1 \mathrm{E}-7$	nch	$=2.3549817$	vтно	$=0.3618397$
+K1	$=0.5916053$	к2	$=3.225139 \mathrm{E}-3$	кз	$=1 \mathrm{E}-3$
+K3B	$=2.3938862$	wo	$=1 \mathrm{E}-7$	${ }^{\text {nLX }}$	$=1.776268 \mathrm{E}-7$
+DVTow	$=0$	DVT1w	$=0$	DVT2W	$=0$
+DVTo	$=1.3127368$	DVT1	$=0.3876801$	DVT2	$=0.0238708$
+u0	$=256.74093$	UA	$=-1.585658 \mathrm{E}-9$	UB	$=2.528203 \mathrm{E}-18$
+uc	$=5.182125 \mathrm{E}-11$	vsat	$=1.003268 \mathrm{EE} 5$	${ }^{\text {a }}$	$=1.981392$
+AGS	$=0.4347252$	во	$=4.989266 \mathrm{E}-7$	${ }^{\text {B1 }}$	$=5 \mathrm{E}-6$
+KEtA	$=-9.888408 \mathrm{E}-3$	${ }^{\text {A1 }}$	$=6.164533 \mathrm{E}-4$	A2	$=0.9388917$
+RDSW	$=128.705483$	PRWG	$=0.5$	PRWB	$=-0.2$
+wr	$=1$	wint	$=0$	Lint	$=1.617316 \mathrm{E}-8$
+xL	$=0$	xw	$=-1 \mathrm{E}-8$	DWG	$=-5.383413 \mathrm{E}-9$
+Dwb	$=9.111767 \mathrm{E}-9$	vopf	$=-0.0854824$	nfactor	$=2.2420572$
+Cit	$=0$	cdsc	$=2.4 \mathrm{E}-4$	CDSCD	$=0$
+CDSCB	$=0$	etao	$=2.981159 \mathrm{E}-3$	etab	$=9.289544 \mathrm{E}-6$
+DSUB	$=0.0159753$	${ }_{\text {pCLM }}$	$=0.7245546$	PDIBLC1	$=0.1568183$
+PDIELC2	$=2.543351 \mathrm{E}-3$	pdiblcb	$=-0.1$	Drout	$=0.7445011$
+PSCBE1	= 8 E 10	PSCBE2	$=1.876443 \mathrm{E}-9$	pvag	$=7.200284 \mathrm{E}-3$
+Delta	$=0.01$	RSH	$=6.6$	Mовmоd	$=1$
+PRT	$=0$	UTE	$=-1.5$	$\mathrm{KT1}_{1}$	$=-0.11$
+KT1L	$=0$	KT2	$=0.022$	UA1	$=4.31 \mathrm{E}-9$
+UB1	$=-7.61 \mathrm{E}-18$	UC1	$=-5.6 \mathrm{~B}-11$	${ }_{\text {at }}$	$=3.3 \mathrm{E} 4$
+wL	$=0$	WLN	$=1$	ww	$=0$
+WWN	$=1$	wWL	$=0$	LL	$=0$
+LLN	$=1$	${ }^{\text {LW }}$	$=0$	Lun	$=1$
+LWL	$=0$	CAPMOD	$=2$	xpart	$=1$
+CGDo	$=4.91 \mathrm{E}-10$	cgso	$=4.91 \mathrm{~B}-10$	cgbo	$=1 \mathrm{E}-12$
+CJ	$=9.652028 \mathrm{E}-4$	${ }^{\text {PB }}$	$=0.8$	MJ	$=0.3836899$
+CJSW	$=2.326465 \mathrm{E}-10$	PBSW	$=0.8$	MJSW	$=0.1253131$
+Cuswg	$=3.3 \mathrm{E}-10$	PBSWG	$=0.8$	MJSWG	$=0.1253131$
+CF	$=0$	pvtho	$=-7.714081 \mathrm{E}-4$	PRDSW	$=-2.5827257$
+PK2	$=9.619963 \mathrm{E}-4$	wKETA	$=-1.060423 \mathrm{E}-4$	LKETA	$=-5.373522 \mathrm{E}-3$
+PU0	$=4.5760891$	pua	$=1.469028 \mathrm{E}-14$	pub	$=1.783193 \mathrm{E}-23$
+PVSAT	$=1.19774 \mathrm{E} 3$	Petao	$=9.968409 \mathrm{E}-5$	PKETA	$=-2.51194 \mathrm{E}-3$
+nlev	$=3$	kf	$=0.5 \mathrm{e}-25$		

- The HSpice model for an NMOS device in our technology is shown to the left
- BSIM 3v3 model
- 110 parameters
- KP and LAMBDA nowhere to be found...

An Attempt to Extract $\mu \mathrm{C}_{\mathrm{ox}}$

- Bias MOSFET at constant $\mathrm{V}_{\mathrm{DS}}>\mathrm{V}_{\mathrm{OV}}$, sweep V_{GS} and plot $\mu \mathrm{C}_{\mathrm{ox}}$ estimate

$$
\mu \mathrm{C}_{\mathrm{ox}}=\frac{2 \mathrm{I}_{\mathrm{D}}}{\frac{\mathrm{~W}}{\mathrm{~L}} \mathrm{~V}_{\mathrm{OV}}^{2}}
$$

- The extracted $\mu \mathrm{C}_{\mathrm{ox}}$ depends on L and V_{ov} and cannot be viewed as a constant parameter

Questions

- Which physical effects explain the large deviation from the basic square law model?
- How can we design with such a device?
- Is there another "simple" equation that describes its behavior?
- We will approach the above two questions by performing a systematic, simulation-based device characterization
- And discuss the relevant physical phenomena that explain the observed behavior
- As a basis for this characterization, we consider three basic figures of merit that relate directly to circuit design

Figures of Merit for Device Characterization

- Transconductance efficiency
- Want large g_{m}, for as little current as possible
- Transit frequency
- Want large g_{m}, without large $C_{g g}$
- Intrinsic gain
- Want large g_{m}, but no g_{o}

Square Law
$\frac{g_{m}}{l_{D}} \quad=\frac{2}{V_{O V}}$

$\frac{\mathrm{g}_{\mathrm{m}}}{\mathrm{C}_{g 9}}$

$\cong \frac{3}{2} \frac{\mu \mathrm{~V}_{\mathrm{oV}}}{\mathrm{L}^{2}}$

$\frac{g_{m}}{g_{0}}$

$$
\cong \frac{2}{\lambda \mathrm{~V}_{\mathrm{ov}}}
$$

```
* NMOS characterization
.param gs=0.7
.param dd=1.8
vds d 0 dc 'dd/2'
vgs g 0 dc 'gs'
mn d g 0 0 nmos214 L=0.18um W=5um
.op
.dc gs 0.2V 1V 10mV
.probe ov = par('gs-vth(mn)')
.probe gm_id = par('gmo(mn)/i(mn)')
.probe ft = par('1/6.28*gmo(mn)/cggbo(mn)')
.probe gm_gds = par('gmo(mn)/gdso(mn)')
.options post brief dccap
.inc /usr/class/ee214/hspice/ee214_hspice.sp
. end
.options post brief dccap
inc /usr/class/ee214/hspice/ee214_hspice.sp
```


Observations

- Square law prediction is fairly close for $\mathrm{V}_{\mathrm{OV}}>150 \mathrm{mV}$
- Unfortunately $\mathrm{g}_{\mathrm{m}} / I_{\mathrm{D}}$ does not approach infinity for $\mathrm{V}_{\mathrm{OV}} \rightarrow 0$
- It also seems that we cannot do better than a BJT, even though the square law equation would predict this for $0<\mathrm{V}_{\mathrm{OV}}<2 \mathrm{kT} / \mathrm{q} \cong 52 \mathrm{mV}$
- For further analysis, it helps to identify three distinct operating regions
- Strong inversion: $\mathrm{V}_{\mathrm{OV}}>150 \mathrm{mV}$
- Deviations due to short channel effects
- Subthreshold: $\mathrm{V}_{\mathrm{OV}}<0$
- Behavior similar to a BJT, g_{m} / I_{D} nearly constant
- Moderate Inversion: $0<\mathrm{V}_{\mathrm{oV}}<150 \mathrm{mV}$
- Transition region, an interesting mix of the above

Subthreshold Operation

- A plot of the device current in our previous simulation

- Questions
- What determines the current when $\mathrm{V}_{\mathrm{OV}}<0$, i.e. $\mathrm{V}_{\mathrm{GS}}<\mathrm{V}_{\mathrm{t}}$?
- What is the definition of V_{t} ?

Definition of V_{t}

- V_{t} is defined as the $V_{G S}$ at which the number of electrons at the surface equals the number of doping atoms
- Seems somewhat arbitrary, but makes sense in terms of surface charge control

- Around $\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{t}}\left(\mathrm{V}_{\mathrm{OV}}=0\right)$, the relationship between mobile charge in the channel and gate voltage becomes linear ($\mathrm{Q}_{\mathrm{n}} \sim \mathrm{C}_{\mathrm{ox}} \mathrm{V}_{\mathrm{ov}}$)
- Exactly what we assumed to derive the long channel model

Mobile Charge on a Log Scale

- On a log scale, we see that there are mobile charges before we reach the threshold voltage
- Fundamental result of solid-state physics, not short channels

BJT Similarity

p substrate

- We have
- An NPN sandwich, mobile minority carriers in the P region
- This is a BJT!
- Except that the base potential is here controlled through a capacitive divider, and not directly by an electrode

Subthreshold Current

- We know that for a BJT

$$
I_{C}=I_{S} \cdot e^{\frac{V_{B E}}{V_{T}}} \quad V_{T}=\frac{k T}{q}
$$

- For the MOSFET in subthreshold we have

$$
I_{D}=I_{0} \cdot e^{\frac{V_{\text {Gs }}-V_{t}}{n V_{T}}}
$$

- n is given by the capacitive divider

$$
\mathrm{n}=\frac{\mathrm{C}_{\mathrm{js}}+\mathrm{C}_{\mathrm{ox}}}{\mathrm{C}_{\mathrm{ox}}}=1+\frac{\mathrm{C}_{\mathrm{js}}}{\mathrm{C}_{\mathrm{ox}}}
$$

where C_{js} is the depletion layer capacitance

- In the EE214 technology $\mathrm{n} \cong 1.5$

Comparison - NMOS versus NPN

Subthreshold Transconductance

$$
g_{m}=\frac{d I_{D}}{d V_{G S}}=\frac{1}{n} \frac{I_{D}}{V_{T}}
$$

$$
\frac{g_{m}}{I_{D}}=\frac{1}{n V_{T}}
$$

- Similar to BJT, but unfortunately $\mathrm{n}(\cong 1.5)$ times lower

Moderate Inversion

- In the transition region between subthreshold and strong inversion, we have two different current mechanisms

Drift (MOS) $\quad v=\mu \mathrm{E}$
Diffusion (BJT) $\quad v=D \frac{d n}{d x}=\frac{k T}{q} \mu \frac{d n}{d x}$

- Both current components are always present
- Neither one clearly dominates in moderate inversion
- Can show that ratio of drift/diffusion current $\sim\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{t}}\right) /(\mathrm{kT} / \mathrm{q})$
- MOS equation becomes dominant at several kT/q

- What causes the discrepancy between $2 / \mathrm{V}_{\text {ov }}$ and $0.18 \mu \mathrm{~m}$ NMOS in strong inversion?

Short Channel Effects

- Velocity saturation due to high lateral field
- Mobility degradation due to high vertical field
- V_{t} dependence on channel length and width
- $V_{t}=f\left(V_{D S}\right)$
- $r_{0}=f\left(V_{D S}\right)$
- ...
- We will limit the discussion in EE214 to the first two aspects of the above list, with a focus on qualitative understanding

Velocity Saturation (1)

- In the derivation of the square law model, it is assumed that the carrier velocity is proportional to the lateral E -field, $\mathrm{v}=\mu \mathrm{E}$
- Unfortunately, the speed of carriers in silicon is limited ($\mathrm{v}_{\mathrm{scl}} \cong 10^{5} \mathrm{~m} / \mathrm{s}$)
- At very high fields (high voltage drop across the conductive channel), the carrier velocity saturates

Velocity Saturation (2)

- It is important to distinguish various regions in the above plot
- Low field, the long channel equations still hold
- Moderate field, the long channel equations become somewhat inaccurate
- Very high field across the conducting channel - the velocity saturates completely and becomes essentially constant (v_{sc})
- To get some feel for latter two cases, let's first estimate the E field using simple long channel physics
- In saturation, the lateral field across the channel is

$$
E=\frac{V_{\mathrm{OV}}}{L} \text { e.g. } \frac{200 \mathrm{mV}}{0.18 \mu \mathrm{~m}}=1.11 \cdot 10^{6} \frac{\mathrm{~V}}{\mathrm{~m}}
$$

Field Estimates

- In our $0.18 \mu \mathrm{~m}$ technology, we have for an NMOS device

$$
\mathrm{E}_{\mathrm{c}}=\frac{\mathrm{v}_{\text {scl }}}{\mu} \cong \frac{10^{5} \frac{\mathrm{~m}}{\mathrm{~s}}}{150 \frac{\mathrm{~cm}^{2}}{\mathrm{Vs}}}=6.7 \cdot 10^{6} \frac{\mathrm{~V}}{\mathrm{~m}}
$$

Therefore

$$
\frac{E}{E_{c}}=\frac{1.11 \cdot 10^{6} \frac{\mathrm{~V}}{\mathrm{~m}}}{6.7 \cdot 10^{6} \frac{\mathrm{~V}}{\mathrm{~m}}} \cong 0.16
$$

- This means that for V_{OV} on the order of 0.2 V , the carrier velocity is somewhat reduced, but the impairment is relatively small
- The situation changes when much larger V_{ov} are applied, e.g. as the case in digital circuits

Short Channel I I_{D} Equation

- A simple equation that captures the moderate deviation from the long channel drain current can be written as (see text, p. 62)

$$
\begin{aligned}
I_{D} & \cong \frac{1}{2} \mu C_{o x} \frac{W}{L} V_{o v}^{2} \cdot \frac{1}{\left(1+\frac{V_{o v}}{E_{\mathrm{c}} L}\right)} \\
& \cong \frac{1}{2} \mu C_{o x} \frac{W}{L} V_{o v} \cdot \frac{E_{\mathrm{c}} L \cdot V_{o V}}{\left(E_{\mathrm{c}} L+V_{o v}\right)}
\end{aligned}
$$

Think of this as a "parallel combination"

Minimum-length NMOS: $\quad E_{c} L=6.7 \cdot 10^{6} \frac{\mathrm{~V}}{\mathrm{~m}} \cdot 0.18 \mu \mathrm{~m}=1.2 \mathrm{~V}$
Minimum-length PMOS:
$E_{c} L=16.75 \cdot 10^{6} \frac{\mathrm{~V}}{\mathrm{~m}} \cdot 0.18 \mu \mathrm{~m}=3 \mathrm{~V}$

Modified $\mathrm{g}_{\mathrm{m}} / \mathrm{I}_{\mathrm{D}}$ Expression

- Assuming $\mathrm{V}_{\mathrm{OV}} \ll \mathrm{E}_{\mathrm{c}} \mathrm{L}$, we can show that (see text, pp. 63-64)

$$
\frac{g_{m}}{I_{D}} \cong \frac{2}{V_{o v}} \cdot \frac{1}{\left(1+\frac{V_{o v}}{E_{c} L}\right)}
$$

- E.g. for an NMOS device with $\mathrm{V}_{\mathrm{ov}}=200 \mathrm{mV}$

$$
\frac{g_{m}}{I_{D}} \cong \frac{2}{V_{O V}} \cdot \frac{1}{\left(1+\frac{0.2}{1.2}\right)}=\frac{2}{V_{o V}} \cdot 0.86
$$

- Means that the square law model in strong inversion (at $\mathrm{V}_{\mathrm{OV}} \cong 200 \mathrm{mV}$) should be off by about 15%
- This prediction agrees well with the simulation data

Mobility Degradation due to Vertical Field

- In MOS technology, the oxide thickness has been continuously scaled down with feature size
- $\sim 6.5 \mathrm{~nm}$ in $0.35 \mu \mathrm{~m}, \sim 4 \mathrm{~nm}$ in $0.18 \mu \mathrm{~m}, \sim 1.8 \mathrm{~nm}$ in 90 nm CMOS
- As a result, the vertical electric field in the device increases and tries to pull the carriers closer to the "dirty" silicon surface
- Imperfections impede movement and thus mobility
- This effect can be included by replacing the mobility term with an "effective mobility"

$$
\mu_{\mathrm{eff}} \cong \frac{\mu}{\left(1+\theta \mathrm{V}_{\mathrm{oV}}\right)} \quad \theta=0.1 \ldots 0.4 \frac{1}{\mathrm{~V}}
$$

- Yet another "fudge factor"
- Possible to lump with $E_{c} L$ parameter, if desired

Transit Frequency Plot

Observations - f_{T}

- Again the square-law model doesn't do a very good job
- Large f_{T} discrepancy in subthreshold operation and in strong inversion (large V_{ov})
- The reasons for these discrepancies are exactly the same as the ones we came across when looking at g_{m} / I_{D}
- Bipolar action in subthreshold operation and moderate inversion
- Short channel effects at large V_{OV}
- Less g_{m}, hence lower $g_{m} / C_{g g}$
- Same conclusion: we won't be able to make good predictions with a simple square law relationship

Intrinsic Gain Plot

- Impossible to approximate with the " λ " model equation!

Gradual Onset of $\mathbf{1 / g} \mathrm{g}_{\mathrm{ds}}$

NMOS, W/L=5/0.18, $\mathrm{V}_{\mathrm{OV}}=100 \mathrm{mV}$

$$
V_{D S}=V_{O V}
$$

Gradual Onset of $\mathbf{1 / g} \mathrm{g}_{\mathrm{ds}}$ (Zoom)

- $\mathrm{V}^{*}=2 /\left(\mathrm{g}_{\mathrm{m}} / \mathrm{I}_{\mathrm{D}}\right)$ is a reasonable estimate of " $\mathrm{V}_{\mathrm{DSsat}}$ "

Observations - Intrinsic Gain

- Device shows a rather gradual transition from triode to saturation
- Square law predicts an abrupt change from small to large intrinsic gain at $V_{D S}=V_{O V}$
$-V^{*}=2 /\left(g_{m} / I_{D}\right)$ provides a reasonable estimate for the minimum $V_{D S}$ that is needed to extract gain from a device
- Typically want to stay at least 100 mV above this value in practical designs
- The physics that govern the behavior of $r_{o}=1 / g_{d s}$ are complex
- Channel length modulation
- Drain induced barrier lowering (DIBL)
- Substrate current induced body effect (SCBE)
- Not present in all technologies and/or PMOS devices
- If you are interested in more details, please refer to EE316 or similar

The Challenge

- Square-law model is inadequate for design in fine-line CMOS
- But simulation models (BSIM, PSP, ...) are too complex for handcalculations
- This issue tends to drive many designers toward a "spice monkey" design methodology
- No hand calculations, iterate in spice until the circuit "somehow" meets the specifications
- Typically results in sub-optimal designs
- Our goal
- Maintain a systematic design methodology in absence of a set of compact MOSFET equations
- Strategy
- Design using look-up tables or charts

[Courtesy Isaac Martinez]

The Problem

The Solution

- Use pre-computed spice data in hand calculations

Technology Characterization for Design

- Plot the following parameters for a reasonable range of g_{m} / I_{D} and channel lengths
- Transit frequency (f_{T})
- Intrinsic gain ($\mathrm{g}_{\mathrm{m}} / \mathrm{g}_{\mathrm{ds}}$)
- Current density ($\mathrm{I}_{\mathrm{D}} / \mathrm{W}$)
- In addition, may want to tabulate relative estimates of extrinsic capacitances
- $\mathrm{C}_{\mathrm{gd}} / \mathrm{C}_{\mathrm{gg}}$ and $\mathrm{C}_{\mathrm{dd}} / \mathrm{C}_{\mathrm{gg}}$
- Parameters are (to first order) independent of device width
- Enables "normalized design" and re-use of charts
- Somewhat similar to filter design procedure using normalized coefficient tables
- Do hand calculations using the generated technology data
- Can use Matlab functions to do table-look-up on pre-computed data

Transit Frequency Chart

Intrinsic Gain Chart

Current Density Chart

Lookup Functions in Matlab

```
% Set up path and load simulation data (for VDS=O.9V)
addpath('/usr/class/ee214/matlab');
load techchar.mat;
% Lookup fT for NMOS, L=0.18um, at gm/ID=10S/A
lookup_ft(tech, 'n', 0.18e-6, 10)
ans = 2.2777e+10
% Lookup gm/ID for NMOS, L=0.18um, at fT=20GHz
lookup_gmid(tech, 'n', 0.18e-6, 20e9)
ans = 11.5367
% Lookup ID/W for NMOS, L=0.18um, at gm/ID=10S/A
lookup_idw(tech, 'n', 0.18e-6, 10)
ans = 29.3281
```


V_{DS} Dependence

- V_{DS} dependence is relatively weak
- Typically OK to work with data generated for $\mathrm{V}_{\mathrm{DD}} / 2$

Extrinsic Capacitances (1)

Extrinsic Capacitances (2)

Extrinsic Capacitances (3)

Generic Design Flow

1) Determine g_{m} (from design objectives)
2) Pick L

- Short channel \rightarrow high f_{T} (high speed)
- Long channel \rightarrow high intrinsic gain

3) Pick $g_{m} / I_{D}\left(\right.$ or $\left.f_{T}\right)$

- Large $g_{m} / I_{D} \rightarrow$ low power, large signal swing (low $V_{D S s a t}$)
- Small $g_{m} / I_{D} \rightarrow$ high f_{T} (high speed)

4) Determine I_{D} (from g_{m} and $\left.g_{m} / I_{D}\right)$
5) Determine W (from I_{D} / W, current density chart)

Many other possibilities exist (depending on circuit specifics, design constraints and objectives)

Basic Design Example

Given specifications and objectives

- $0.18 \mu \mathrm{~m}$ technology
- DC gain $=-4$
- $R_{L}=1 k, C_{L}=50 f F, R_{i}=10 k$
- Maximize bandwidth while keeping $\mathrm{I}_{\mathrm{B}} \leq 300 \mathrm{uA}$
- Implies $L=L_{\text {min }}=0.18 u m$
- Determine device width
- Estimate dominant and nondominant pole

Small-Signal Model

Calculate g_{m} and $\mathrm{g}_{\mathrm{m}} / I_{\mathrm{D}}$

$$
\left|A_{v}(0)\right| \cong g_{m} R_{L}=4 \quad \Rightarrow g_{m}=\frac{4}{1 \mathrm{k} \Omega}=4 \mathrm{mS} \quad \frac{g_{\mathrm{m}}}{I_{\mathrm{D}}}=\frac{4 \mathrm{mS}}{300 \mu \mathrm{~A}}=13.3 \frac{\mathrm{~S}}{\mathrm{~A}}
$$

Why can we Neglect r_{0} ?

$$
\begin{aligned}
\left|A_{v}(0)\right| & =g_{m}\left(R_{L} \| r_{o}\right) \\
& =g_{m}\left(\frac{1}{R_{L}}+\frac{1}{r_{0}}\right)^{-1} \\
\frac{1}{\left|A_{v}(0)\right|} & =\frac{1}{g_{m} R_{L}}+\frac{1}{g_{m} r_{o}} \\
\frac{1}{4} & =\frac{1}{g_{m} R_{L}}+\frac{1}{g_{m} r_{0}}
\end{aligned}
$$

- Even at $L=L_{\text {min }}=0.18 \mu \mathrm{~m}$, we have $\mathrm{g}_{\mathrm{m}} \mathrm{r}_{\mathrm{o}}>30$
- r_{0} will be negligible in this design problem

Zero and Pole Expressions

High frequency zero
(negligible)
$\omega_{\mathrm{z}} \cong \frac{\mathrm{g}_{\mathrm{m}}}{\mathrm{C}_{\mathrm{gd}}} \gg \omega_{\mathrm{T}}$

Dominant pole
(see Chapter 4)
$\omega_{\mathrm{p} 1} \cong \frac{1}{R_{i}\left[C_{g s}+C_{g b}+\left(1+g_{m} R_{L}\right) \cdot C_{g d}\right]}$

Nondominant pole (see Chapter 4)

$$
\omega_{\mathrm{p} 2} \cong \frac{1}{\omega_{\mathrm{p} 1}} \frac{1}{R_{\mathrm{i}} R_{\mathrm{L}}\left(\left[\mathrm{C}_{\mathrm{gs}}+\mathrm{C}_{\mathrm{gb}}\right] \mathrm{C}_{\mathrm{L}}+\left[\mathrm{C}_{\mathrm{gs}}+\mathrm{C}_{\mathrm{gd}}\right] \mathrm{C}_{\mathrm{db}}+\mathrm{C}_{\mathrm{L}} \mathrm{C}_{\mathrm{gd}}\right)}
$$

Calculation of capacitances from tabulated parameters:

$$
\mathrm{C}_{\mathrm{gs}}+\mathrm{C}_{\mathrm{gb}}=\mathrm{C}_{\mathrm{gg}}-\mathrm{C}_{\mathrm{gd}} \quad \mathrm{C}_{\mathrm{db}}=\mathrm{C}_{\mathrm{dd}}-\mathrm{C}_{\mathrm{gd}}
$$

Determine C_{gg} via f_{T} Look-up

$$
\begin{aligned}
& C_{g g}=\frac{1}{2 \pi} \frac{g_{m}}{f_{T}}=\frac{1}{2 \pi} \frac{4 \mathrm{mS}}{16.9 \mathrm{GHz}}=37.7 \mathrm{fF} \\
& \mathrm{C}_{\mathrm{gd}}=\frac{\mathrm{C}_{\mathrm{gd}}}{\mathrm{C}_{\mathrm{gg}}} \mathrm{C}_{\mathrm{gg}}=0.24 \cdot 37.7 \mathrm{fF}=9.0 \mathrm{fF} \\
& \mathrm{C}_{\mathrm{dd}}=\frac{\mathrm{C}_{\mathrm{dd}}}{\mathrm{C}_{\mathrm{gg}}} \mathrm{C}_{\mathrm{gg}}=0.60 \cdot 39.4 \mathrm{fF}=23.6 \mathrm{fF} \\
& \therefore \mathrm{f}_{\mathrm{p} 1} \cong 196 \mathrm{MHz} \quad \therefore \mathrm{f}_{\mathrm{p} 2} \cong 6.0 \mathrm{GHz}
\end{aligned}
$$

Device Sizing

Circuit For Spice Verification

Device width

$$
W=I_{D} / \frac{I_{D}}{W}=\frac{300 \mu A}{16.2 A / m}=18.5 \mu \mathrm{~m}
$$

Simulation circuit

Simulated DC Operating Point

element	0:mn1	Calculation
region	Saturati	
id	$326.8330 u$	300 uA
vgs	624.9116 m	
vds	873.1670 m	
vdsat	113.7463 m	
vod	138.5878 m	
gm	4.1668 m	4 mS
gds	108.2225u	
cdtot	21.8712 f	23.6 fF
cgtot	37.6938 f	37.7 fF
cgd	8.9163f	9.0 fF
gm/ID	12.8	13.3 S/A

HSpice (.OP)

```
cdtot 21.8712f
cgtot 37.6938f
cstot 44.2809f
cbtot 34.9251f
cgs 26.7303f
cgd 8.9163f
```

Corresponding Small Signal Model Elements

$$
\begin{aligned}
& \text { cdtot } \equiv C_{g d}+C_{d b} \\
& \text { cgtot } \equiv C_{g s}+C_{g d}+C_{g b} \\
& \text { cstot } \equiv C_{g s}+C_{s b} \\
& \text { cbtot } \equiv C_{g b}+C_{s b}+C_{d b} \\
& \operatorname{cgs} \equiv C_{g s} \\
& \operatorname{cgd} \equiv C_{g d}
\end{aligned}
$$

Simulated AC Response

- Calculated values: $\left|\mathrm{A}_{\mathrm{v}}(0)\right|=12 \mathrm{~dB}(4.0), \mathrm{f}_{\mathrm{p} 1}=196 \mathrm{MHz}, \mathrm{f}_{\mathrm{p} 2}=6.0 \mathrm{GHz}$

Using .pz Analysis

Netlist statement

```
.pz v(vo) vi
```


Output

```
****** pole/zero analysis
input = 0:vi output = v(vo)
\begin{tabular}{lcll}
\multicolumn{1}{r}{ poles (rad/sec) } & poles & (hertz) \\
real & imag & real & imag \\
-1.34190 g & 0. & -213.569 x & 0. \\
-31.4253 g & 0. & -5.00149 g & 0.
\end{tabular}
\begin{tabular}{lclr}
\multicolumn{1}{c}{ zeros (rad/sec) } & \multicolumn{1}{c}{ zeros ( hertz) } \\
real & imag & real & imag \\
458.247 g & 0. & 72.9323 g & 0.
\end{tabular}
```


Observations

- The design and pole calculations essentially right on target!
- Typical discrepancies are on the order of 10-20\%, mostly due to V_{DS} dependencies, finite output resistance, etc.
- We accomplished this by using pre-computed spice data in the design process
- Even if discrepancies are more significant, there's always the possibility to track down the root causes
- Hand calculations are based on parameters that also exist in Spice, e.g. $g_{m} / I_{D}, f_{T}$, etc.
- Different from square law calculations using $\mu \mathrm{C}_{\mathrm{ox}}, \mathrm{V}_{\mathrm{OV}}$, etc.
- Based on artificial parameters that do not exist or have no significance in the spice model

References

- F. Silveira et al. "A g_{m} / I_{D} based methodology for the design of CMOS analog circuits and its application to the synthesis of a silicon-oninsulator micropower OTA," IEEE J. Solid-State Circuits, Sep. 1996, pp. 1314-1319.
- D. Foty, M. Bucher, D. Binkley, "Re-interpreting the MOS transistor via the inversion coefficient and the continuum of $\mathrm{g}_{\mathrm{ms}} / I_{\mathrm{d}}$," Proc. Int. Conf. on Electronics, Circuits and Systems, pp. 1179-1182, Sep. 2002.
- B. E. Boser, "Analog Circuit Design with Submicron Transistors," IEEE SSCS Meeting, Santa Clara Valley, May 19, 2005, http://www.ewh.ieee.org/r6/scv/ssc/May1905.htm
- P. Jespers, The g_{m} / I_{D} Methodology, a sizing tool for low-voltage analog CMOS Circuits, Springer, 2010.
- T. Konishi, K. Inazu, J.G. Lee, M. Natsu, S. Masui, and B. Murmann, "Optimization of High-Speed and Low-Power Operational Transconductance Amplifier Using g_{m} / I_{D} Lookup Table Methodology," IEICE Trans. Electronics, Vol. E94-C, No.3, Mar. 2011.

Chapter 4 Review of Elementary Circuit Configurations

B. Murmann
Stanford University

Reading Material: Sections 3.3.1, 3.3.3, 3.3.6, 3.3.8, 3.5, 7.2.3, 7.2.4.1, 7.3.2, 7.3.4, 4.2.2, 4.2.3, 4.2.4

Basic Single-Stage Amplifier Configurations

Widely Used Two-Transistor Circuits

Analysis Techniques (1)

- Nodal analysis (KCL, KVL)
- Write KCL for each node, solve for desired transfer function or port impedance
- Most general method, but conveys limited qualitative insight and often yields high-entropy expressions
- Miller theorem

http://paginas.fe.up.pt/~fff/eBook/MDA/Teo_Miller.html
- Miller approximation
- Approximate the gain across Z as frequency independent, i.e. $\mathrm{K}(\mathrm{s}) \cong \mathrm{K}$ for the frequency range of interest
- This approximation requires a check (or good intuition)

Analysis Techniques

- Dominant pole approximation

$$
\begin{aligned}
& \frac{1}{\left(1-\frac{s}{p_{1}}\right)\left(1-\frac{s}{p_{2}}\right)}=\frac{1}{1-\frac{s}{p_{1}}-\frac{s}{p_{2}}+\frac{s^{2}}{p_{1} p_{2}}} \cong \frac{1}{1-\frac{s}{p_{1}}+\frac{s^{2}}{p_{1} p_{2}}} \\
& \text { Given } \frac{1}{1+b_{1} s+b_{2} s^{2}} \Rightarrow p_{1} \cong-\frac{1}{b_{1}}, \quad p_{2} \cong-\frac{b_{1}}{b_{2}}
\end{aligned}
$$

- Zero value time constant analysis
- The coefficient b_{1} can be found by summing all zero value time constants in the circuit

$$
\mathrm{b}_{1}=\sum \tau_{\mathrm{i}}
$$

- Generalized time constant analysis
- Can also find higher order terms (e.g. b_{2}) using a sum of time constant products
- A. Hajimiri, "Generalized Time- and Transfer-Constant Circuit Analysis," IEEE Trans. Circuits Syst. I, pp. 1105-1121, June 2010.
- Return ratio analysis
- See text pp. 599-612
- Blackman's impedance formula
- See text pp. 607-612
- Two-port feedback analysis
- See text pp. 557-587
- More later in this course

Chapter Overview

- BJT-centric review of elementary circuit configurations
- Highlight differences to MOS circuits
- Single-stage amplifiers
- Common emitter stage
- Common emitter stage with source degeneration
- Common collector stage
- Common base stage
- Common gate stage (discussion of bulk connection)
- BJT current mirrors
- BJT differential pair

Common-Emitter Stage

- DC input bias voltage $\left(V_{1}\right)$ biases Q_{1} in the forward active region
- Typically, want $\mathrm{V}_{\mathrm{O}} \cong \mathrm{V}_{\mathrm{CC}} / 2$
- Main differences to consider versus common-source stage (MOS)
- Bias point sensitivity
- Finite input resistance (due to r_{π})
- Base resistance (r_{b}) often significant

Bias Point Sensitivity

$I_{B} \cong \frac{V_{1}-V_{B E(\text { on })}}{R_{S}} \quad V_{O}=V_{C C}-I_{C} R_{L}=V_{C C}-\beta_{F} I_{B} R_{L}=V_{C C}-ß_{F} \frac{R_{L}}{R_{S}}\left(V_{1}-V_{B E(\text { on })}\right)$

- The dependence on β_{F} makes "direct voltage biasing" impractical
- How to generate V_{1} so as to control V_{o} ?
- Practical configurations are usually based on feedback, replica biasing, ac coupling or differential circuits

Small-Signal Equivalent Circuit for CE Stage

- For hand analysis, we will usually neglect r_{c} and r_{e}
- If significant, r_{b} can be included with R_{S}, i.e. $R_{S}{ }^{*}=R_{S}+r_{b}$
- Resulting low-frequency gain

$$
\begin{aligned}
\left.A_{V}(0) \triangleq \frac{v_{o}}{v_{i}}\right|_{\omega=0} & =-\underbrace{\left(\frac{r_{\pi}}{R_{S}^{*}+r_{\pi}}\right)}_{\text {for MOS }} \cdot g_{m} R_{\text {Ltot }} \quad R_{\text {Ltot }}=r_{o} \| R_{L} \\
& =1 \text {. }
\end{aligned}
$$

Gate Tunnel Conductance for MOSFETS

- MOSFETs with extremely thin gate oxide draw a gate current due to direct tunneling
- This leads to a finite current gain and input resistance
- Similar to BJT!

A. Annema, et al., "Analog circuits in ultra-deep-submicron CMOS," IEEE J. Solid-State Circuits, pp. 132-143, Jan. 2005

Frequency Response

- Using nodal analysis, we find

$$
\begin{aligned}
& \frac{v_{0}(s)}{v_{i}(s)}=-\left(\frac{r_{\pi}}{R_{S}^{*}+r_{\pi}}\right) \cdot g_{m} R_{L \text { tot }} \frac{\left(1-\frac{s}{z_{1}}\right)}{1+b_{1} s+b_{2} s^{2}} \\
& b_{1}=R_{S}^{*}\left(C_{\pi}+C_{\mu}\right)+R_{\text {Ltot }}\left(C_{L}+C_{\mu}\right)+g_{m} R_{S}^{*} R_{\text {Ltot }} C_{\mu} \\
& b_{2}=R_{S}^{*} R_{L \text { tot }}\left(C_{\pi} C_{L}+C_{\pi} C_{\mu}+C_{L} C_{\mu}\right) \\
& z_{1}=+\frac{g_{m}}{C_{\mu}}
\end{aligned}
$$

- z_{1} is a feedforward zero in the RHP. If $C_{\pi} \gg C_{\mu}$, then

$$
z_{1}=+\frac{g_{m}}{C_{\mu}} \gg \frac{g_{m}}{C_{\pi}+C_{\mu}}=\omega_{T}
$$

Dominant Pole Approximation

- If a dominant pole condition exists, we can write

$$
\begin{aligned}
\mathrm{p}_{1} \cong-\frac{1}{\mathrm{~b}_{1}} & =-\frac{1}{\mathrm{R}_{\mathrm{S}}^{*}\left(C_{\pi}+C_{\mu}\right)+R_{\text {Ltot }}\left(C_{L}+C_{\mu}\right)+g_{m} R_{S}^{*} R_{\text {Ltot }} C_{\mu}} \\
& =-\frac{1}{R_{S}^{*}\left[C_{\pi}+\left(1+g_{m} R_{\text {Ltot }}\right) C_{\mu}\right]+R_{\text {Ltot }}\left(C_{L}+C_{\mu}\right)} \\
p_{2} \cong-\frac{b_{1}}{b_{2}} & =-\frac{R_{S}^{*}\left(C_{\pi}+C_{\mu}\right)+R_{\text {Ltot }}\left(C_{L}+C_{\mu}\right)+g_{m} R_{S}^{*} R_{\text {Ltot }} C_{\mu}}{R_{S}^{*} R_{\text {Ltot }}\left(C_{\pi} C_{L}+C_{\pi} C_{\mu}+C_{L} C_{\mu}\right)}
\end{aligned}
$$

- If $\mathrm{C}_{\mu} \ll \mathrm{C}_{\pi}, \mathrm{C}_{\mathrm{L}}$, then

$$
p_{2} \cong-\frac{R_{S}^{*} C_{\pi}+R_{L \text { tot }} C_{L}+g_{m} R_{S}^{*} R_{L \text { tot }} C_{\mu}}{R_{S}^{*} R_{L \text { tot }} C_{\pi} C_{L}}=-\left(\frac{1}{R_{S}^{*} C_{\pi}}+\frac{1}{R_{L} C_{L}}+\frac{g_{m}}{C_{L}} \cdot \frac{C_{\mu}}{C_{\pi}}\right)
$$

Emitter Degeneration

$$
\begin{aligned}
& \begin{array}{l}
G_{m} \cong \frac{g_{m}}{1+g_{m} R_{E}} \\
R_{o} \cong r_{o}\left(1+g_{m} R_{E}\right)
\end{array}
\end{aligned}
$$

- Degeneration resistor reduces the transconductance and increases the output resistance of the device
- Same as in the MOSFET version of this circuit
- For the BJT version, R_{E} helps increase the input resistance

Calculation of R_{i}

- For the complete nodal analysis, see text p. 196
- A more intuitive way to find R_{i} is via the Miller theorem

$$
K=\frac{v_{e}}{v_{b}} \cong \frac{R_{E}}{\frac{1}{g_{m}}+R_{E}}=\frac{g_{m} R_{E}}{1+g_{m} R_{E}}
$$

$$
R_{i}=\frac{r_{\pi}}{1-K} \cong \frac{r_{\pi}}{\left(1-\frac{g_{m} R_{E}}{1+g_{m} R_{E}}\right)}=r_{\pi}\left(1+g_{m} R_{E}\right)
$$

- The same "bootstrapping" effect applies to C_{π}, we see $C_{\pi} /\left(1+g_{m} R_{E}\right)$ looking into the input
- Assuming $\mathrm{K}=$ constant in the frequency range of interest

Alternative Calculation of \mathbf{R}_{i}

$$
\mathrm{R}_{i} \cong \mathrm{r}_{\pi}+\mathrm{R}_{\mathrm{E}}(1+\beta)=\mathrm{r}_{\pi}+\mathrm{R}_{\mathrm{E}}\left(1+\mathrm{g}_{\mathrm{m}} \mathrm{r}_{\pi}\right) \cong \mathrm{r}_{\pi}\left(1+\mathrm{g}_{\mathrm{m}} \mathrm{R}_{\mathrm{E}}\right)
$$

- Tricks of this kind are useful for reasoning about low frequency behavior
- More detailed analyses must be used be taken when investigating frequency dependence

Small-Signal Equivalent Circuit for Degenerated CE Stage

- Deriving the transfer function of this circuit requires solving a 3×3 system of equations
- In order to obtain an estimate of the circuit's bandwidth, it is more convenient (and intuitive) to perform a zero-value time constant analysis

Useful Expressions

$$
\begin{aligned}
& R_{o} \cong r_{o} \| \frac{R_{C}+R_{E}}{1+g_{m} R_{E}} \quad \text { (for } \beta \rightarrow \infty \text {) } \\
& R_{\pi} \cong r_{\pi} \| \frac{R_{B}+R_{E}}{1+g_{m} R_{E}} \\
& R_{\mu}=R_{\text {left }}+R_{\text {right }}+G_{m} R_{\text {left }} R_{\text {right }} \\
& R_{\text {left }} \cong R_{B} \| r_{\pi}\left(1+g_{m} R_{E}\right) \\
& R_{\text {right }} \cong R_{C} \\
& G_{m}=\frac{g_{m}}{1+g_{m} R_{E}}
\end{aligned}
$$

Bandwidth Estimate for Degenerated CE Stage (1)

$$
\begin{aligned}
& R_{\mu}=R_{S}^{*} \| r_{\pi}\left(1+g_{m} R_{E}\right)+R_{C}+G_{m}\left[R_{S}^{*} \| r_{\pi}\left(1+g_{m} R_{E}\right)\right] R_{C} \\
& \cong R_{s}^{*}+R_{C}+G_{m} R_{C} R_{s}^{*}=R_{s}^{*}\left(1+\left|A_{v}(0)\right|\right)+R_{C} \\
& R_{\pi} \cong r_{\pi} \| \frac{R_{S}^{*}+R_{E}}{1+g_{m} R_{E}} \cong \frac{R_{S}^{*}+R_{E}}{1+g_{m} R_{E}}
\end{aligned}
$$

Bandwidth Estimate for Degenerated CE Stage (2)

$$
\tau=\left[R_{S}^{*}\left(1+\left|A_{v}(0)\right|\right)+R_{C}\right] C_{\mu}+\frac{1+\frac{R_{E}}{R_{S}^{*}}}{1+g_{m} R_{E}} R_{S}^{*} C_{\pi} \quad \omega_{-3 d B} \cong \frac{1}{\tau}
$$

- Compare to the case of $R_{E}=0$

$$
\tau \cong\left[R_{S}^{*}\left(1+\left|A_{v}(0)\right|\right)+R_{C}\right] C_{\mu}+R_{S}^{*} C_{\pi} \quad \omega_{-3 \mathrm{~dB}} \cong \frac{1}{\tau}
$$

- Adding R_{E} can help improve the bandwidth, provided that $g_{m}>1 / R_{S}{ }^{*}$
- Note, however, that g_{m} (and hence the power dissipation must be increased) to maintain the same $A_{v}(0)$
- Consider another special case where $\mathrm{g}_{\mathrm{m}} \mathrm{R}_{\mathrm{E}} \gg 1$ and the time constant due to C_{μ} is negligible

$$
\tau \cong\left(1+\frac{R_{S}^{*}}{R_{E}}\right) \frac{C_{\pi}}{g_{m}} \quad \omega_{-3 d B} \cong \omega_{T}\left(\frac{C_{\pi}+C_{\mu}}{C_{\pi}}\right)\left(\frac{R_{E}}{R_{E}+R_{S}^{*}}\right)
$$

Common-Collector Stage (Emitter Follower)

- Behavior is very similar to MOS common drain stage, except that
- We do not need to worry about backgate effect
- There is finite input resistance due to r_{π}
- The output resistance depends on R_{S} (in addition to $1 / g_{m}$)

Input and Output Resistance

- Input resistance (by inspection)

$$
\mathrm{R}_{\mathrm{i}} \cong \mathrm{r}_{\pi}\left(1+\mathrm{g}_{\mathrm{m}} \mathrm{R}_{\mathrm{L}}\right)
$$

- Output resistance (using push-through trick)

$$
R_{\circ} \cong \frac{1}{g_{m}}+\frac{R_{S}^{*}}{\beta+1} \cong \frac{1}{g_{m}}\left(1+\frac{R_{S}^{*}}{r_{\pi}}\right)
$$

Low Frequency Voltage Gain

$$
\begin{aligned}
A_{v 0} & =\frac{v_{o}}{v_{i}}=\frac{v_{b}}{v_{i}} \frac{v_{o}}{v_{b}} \cong \frac{r_{\pi}\left(1+g_{m} R_{L}\right)}{r_{\pi}\left(1+g_{m} R_{L}\right)+R_{s}^{*}} \frac{g_{m} R_{L}}{1+g_{m} R_{L}} \\
& \cong \frac{g_{m} R_{L}}{1+g_{m} R_{L}} \quad \text { for } \quad r_{\pi}\left(1+g_{m} R_{L}\right) \gg R_{s}^{*} \\
& \cong 1 \quad \text { for } \quad g_{m} R_{L} \gg 1 \text { and } r_{\pi}\left(1+g_{m} R_{L}\right) \gg R_{s}^{*}
\end{aligned}
$$

Frequency Response

$$
\frac{v_{o}}{v_{i}}=\frac{v_{b}}{v_{i}} \cdot \frac{v_{o}}{v_{b}}=\frac{Z_{i}}{Z_{i}+R_{s}} \cdot \frac{v_{o}}{v_{b}}
$$

- Detailed analysis gives a very complex result for the general frequency response expression
- Must typically apply approximations based on given component values

Frequency Response

- Assuming that R_{S} is large (often the case, and the reason why the stage is used), we expect that the dominant pole is introduced at node v_{b}
- For the frequency range up until the dominant pole, we can therefore approximate

$$
\begin{gathered}
\frac{v_{o}}{v_{b}} \cong \frac{g_{m} R_{L}}{1+g_{m} R_{L}}=K \quad \quad Z_{i} \cong \frac{1}{s\left(C_{\pi}[1-K]+C_{\mu}\right)}=\frac{1}{s C_{i}} \\
\omega_{p} \cong \frac{1}{\left(R_{s} \| R_{\text {in }}\right) C_{i}}
\end{gathered}
$$

- See text, pp. 503 for a more detailed analysis, which also captures the feedforward zero introduced by C_{π}

Common Collector Output Impedance

- Detailed analysis of the common-collector output impedance shows potentially inductive behavior for large R_{S}
- The inductive behavior can lead to undesired "ringing" (or oscillations) during circuit transients
- In other cases, the inductive behavior is utilized for bandwidth extension ("inductive peaking")
- The capacitance C_{μ} tends to reduce the inductive frequency range
- C_{μ} appears in parallel with R_{S}, and creates a low impedance termination for high frequencies
- Makes it difficult to use the circuit as a "good inductor"
- For a discussion on common collector output impedance and a detailed KCL-based analysis, see EE114 or section 7.2.3

Common-Base Stage

$$
A_{i}=\frac{i_{o}}{i_{i}} \quad A_{i}(0)=\frac{i_{c}}{i_{E}}=\frac{\beta}{\beta+1}
$$

Neglecting r_{b}, r_{c}, r_{e} and r_{π}, we have

$$
\begin{aligned}
& R_{o} \cong r_{o}\left(1+g_{m} R_{s}\right) \\
& R_{i} \cong \frac{1}{g_{m}}\left(1+\frac{R_{L}}{r_{o}}\right) \cong \frac{1}{g_{m}}
\end{aligned}
$$

Behavior is very similar to MOS common base stage, except that

- We do not need to worry about backgate effect
- The DC current gain is not exactly unity, due to finite β

Simplified Small-Signal Model for High-Frequency Analysis

$$
\frac{v_{o}}{i_{i}}=\frac{R_{L}}{\left(1-\frac{s}{p_{1}}\right)\left(1-\frac{s}{p_{2}}\right)}
$$

$$
\omega_{\mathrm{p} 2}=\frac{\mathrm{g}_{\mathrm{m}}}{\mathrm{C}_{\pi}}=\frac{\mathrm{C}_{\pi}+\mathrm{C}_{\mu}}{\mathrm{C}_{\pi}} \omega_{\mathrm{T}} \quad \omega_{\mathrm{p} 1}=\frac{1}{\mathrm{R}_{\mathrm{L}} \mathrm{C}_{\mathrm{L}}}
$$

- The time constant associated with the load usually dominates the frequency response, i.e. $\omega_{\mathrm{p} 1}<\omega_{\mathrm{p} 2}$
- Note, however, that $\omega_{\mathrm{p} 2}$ can be important in feedback circuits (phase margin)

Common Gate Stage - Bulk Connection Scenarios

$$
\omega_{\mathrm{p} 2, \mathrm{a}}=\frac{g_{\mathrm{m}}}{C_{\mathrm{gs}}+C_{g b}+C_{b s u b}+C_{d b}[1-K(s)]}
$$

$$
\omega_{\mathrm{p} 2, \mathrm{~b}}=\frac{g_{\mathrm{m}}+g_{\mathrm{mb}}}{C_{\mathrm{gs}}+C_{\mathrm{sb}}}
$$

- $\omega_{\mathrm{p} 2, \mathrm{a}}$ is always less than $\omega_{\mathrm{p} 2, \mathrm{~b}} \rightarrow$ Usually a bad idea to connect source to bulk in a common gate stage

Backgate Effect in the EE214 Technology

Backgate Effect in the EE214 Technology (2)

Basic BJT Current Mirror

I_{IN}

$$
\frac{\mathrm{I}_{\mathrm{C} 2}}{\mathrm{I}_{\mathrm{C} 1}}=\frac{\mathrm{I}_{\mathrm{S} 2} \mathrm{e}^{\frac{\mathrm{V}_{\mathrm{BE}}}{\mathrm{~V}_{\mathrm{T}}}}\left(1+\frac{\mathrm{V}_{\mathrm{CE} 2}}{\mathrm{~V}_{\mathrm{A}}}\right)}{\mathrm{I}_{\mathrm{S} 1} \mathrm{e}^{\frac{\mathrm{V}_{\mathrm{BE}}}{\mathrm{~V}_{\mathrm{T}}}}\left(1+\frac{\mathrm{V}_{\mathrm{CE} 1}}{\mathrm{~V}_{\mathrm{A}}}\right)} \cong \frac{\mathrm{I}_{\mathrm{S} 2}}{\mathrm{I}_{\mathrm{S} 1}}\left(1+\frac{\mathrm{V}_{\mathrm{CE} 2}}{\mathrm{~V}_{\mathrm{A}}}-\frac{\mathrm{V}_{\mathrm{CE} 1}}{\mathrm{~V}_{\mathrm{A}}}\right)
$$

- Error due to base current

$$
\begin{aligned}
\mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{C} 1}+\mathrm{I}_{\mathrm{B} 1}+\mathrm{I}_{\mathrm{B} 2}= & \mathrm{I}_{\mathrm{C} 1}+\frac{\mathrm{I}_{\mathrm{C} 1}}{\beta}+\frac{\mathrm{I}_{\mathrm{C} 2}}{\beta} \cong \mathrm{I}_{\mathrm{C} 2}\left(1+2 \frac{\mathrm{I}_{\mathrm{C} 2}}{\beta}\right) \text { for } \mathrm{I}_{\mathrm{S} 1}=\mathrm{I}_{\mathrm{S} 2} \\
& \frac{\mathrm{I}_{\mathrm{OUT}}}{\mathrm{I}_{\mathrm{I}}} \cong \frac{1}{\left(1+\frac{2}{\beta}\right)} \cong 1-\frac{2}{\beta}
\end{aligned}
$$

BJT Current Mirror with "Beta Helper"

$$
\begin{aligned}
& \underset{I}{\perp} \\
& -I_{E 3}=\frac{I_{\mathrm{C} 1}}{\beta}+\frac{I_{\mathrm{C} 2}}{\beta} \cong 2 \frac{I_{\mathrm{C} 2}}{\beta} \quad \text { assuming } \quad I_{\mathrm{S} 1}=I_{\mathrm{S} 2} \\
& \mathrm{I}_{\mathrm{B} 3}=-\frac{\mathrm{I}_{\mathrm{E} 3}}{\beta+1} \cong \frac{2 \mathrm{I}_{\mathrm{C} 2}}{\beta(\beta+1)} \quad \mathrm{I}_{\mathrm{N}}=\mathrm{I}_{\mathrm{C} 1}+\mathrm{I}_{\mathrm{B} 3} \cong \mathrm{I}_{\mathrm{C} 1}+\frac{2 \mathrm{I}_{\mathrm{C} 2}}{\beta(\beta+1)} \cong \mathrm{I}_{\mathrm{C} 2}\left[1+\frac{2}{\beta(\beta+1)}\right] \\
& \frac{\mathrm{I}_{\mathrm{OUT}}}{\mathrm{I}_{\mathrm{IN}}} \cong \frac{1}{1+\left(\frac{2}{\beta^{2}+\beta}\right)} \cong 1-\frac{2}{\beta^{2}}
\end{aligned}
$$

BJT Current Mirror with Degeneration

- Degeneration brings two benefits
- Increased output resistance
- Reduces sensitivity of mirror ratio to mismatches in I_{S}
- Minimum $V_{\text {OUT }}$ for which Q_{2} remains forward active is increased

Differential Circuits

- Enables straightforward biasing without AC coupling
- Information is carried in "differential" signals that are insensitive to "common-mode" perturbations, such as power supply noise
- Fully differential circuits are increasingly used for I/O and clock-and-data recovery (CDR) circuits to allow the use of small signals at high speeds

BJT Differential Pair

Differential Input Voltage

$$
V_{i d} \triangleq V_{i 1}-V_{i 2}
$$

Differential Collector Current

$$
\mathrm{I}_{\mathrm{cd}} \triangleq \mathrm{I}_{\mathrm{c} 1}-\mathrm{I}_{\mathrm{c} 2}
$$

Differential Output Voltage
$\mathrm{V}_{\mathrm{od}} \triangleq \mathrm{V}_{\mathrm{o} 1}-\mathrm{V}_{\mathrm{o} 2}$

- The following large signal analysis neglects r_{b}, r_{c}, r_{e}, finite $R_{E E}$ and assumes that the circuit is perfectly symmetric

Large Signal Analysis

$$
\begin{aligned}
& V_{i 1}-V_{b e 1}+V_{b e 2}-V_{i 2}=0 \quad I_{C 1} \cong I_{S 1} e^{\frac{V_{b e 1}}{V_{T}}} \quad I_{C 2} \cong I_{S 2} e^{\frac{V_{\text {be } 2}}{V_{T}}} \\
& \Rightarrow \frac{I_{c 1}}{I_{c 2}}=e^{\frac{V_{\text {be1 }}-V_{\text {be2 }}}{V_{T}}}=e^{\frac{V_{i 1}-V_{i 2}}{V_{T}}}=e^{\frac{V_{\text {id }}}{V_{T}}} \\
& I_{\text {TAIL }}=-\left(I_{\text {e1 }}+I_{e 2}\right)=\frac{1}{\alpha}\left(I_{c 1}+I_{c 2}\right) \quad \Rightarrow I_{c 1}=\frac{\alpha l_{\text {TAIL }}}{1+e^{-\frac{v_{i d}}{V_{T}}}} \quad I_{c 2}=\frac{\alpha l_{\text {TAIL }}}{1+e^{+\frac{v_{\text {id }}}{V_{T}}}} \\
& I_{c d}=I_{c 1}-I_{c 2}=\alpha_{F} I_{\text {TAIL }}\left[\frac{1}{1+e^{-\frac{V_{i d}}{V_{T}}}}-\frac{1}{1+e^{+\frac{V_{\text {id }}}{V_{T}}}}\right]=\alpha_{F} I_{\text {TAIL }} \tanh \left(\frac{V_{\text {id }}}{2 V_{T}}\right) \\
& V_{o d}=I_{o d} R_{L}=\left.\alpha\right|_{\text {TAIL }} R_{L} \tanh \left(\frac{\mathrm{~V}_{\text {id }}}{2 \mathrm{~V}_{\mathrm{T}}}\right)
\end{aligned}
$$

Plot of Transfer Characteristics

- Linear region in $\mathrm{V}_{\text {od }} \mathrm{vs}$. $\mathrm{V}_{\text {id }}$ characteristic is narrow compared to MOS
- Recall that full steering in a MOS pair occurs for $\mathrm{V}_{\mathrm{id}}=\sqrt{2} \mathrm{~V}_{\mathrm{OV}}$
- BJT differential pair is linear only for $\left|\mathrm{V}_{\mathrm{id}}\right|<\mathrm{V}_{\mathrm{T}} \cong 26 \mathrm{mV}$

Emitter Degeneration

- Can use emitter degeneration resistors to increase the range of input voltage over which the transfer characteristic of the pair is linear
- For large R_{E}, linear range is approximately equal to $I_{\text {TAIL }} R_{E}$

Voltage Decomposition

Common-Mode Voltages

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{ic}} \triangleq \frac{1}{2}\left(\mathrm{~V}_{\mathrm{i} 1}+\mathrm{V}_{\mathrm{i} 2}\right) \\
& \mathrm{V}_{\mathrm{oc}} \triangleq \frac{1}{2}\left(\mathrm{~V}_{\mathrm{o} 1}+\mathrm{V}_{\mathrm{o} 2}\right)
\end{aligned}
$$

Inputs $V_{i 1}$ and $V_{i 2}$ can be decomposed into a combination of differential- and common-mode voltage sources

$$
\begin{aligned}
& V_{i 1}=V_{i c}+\frac{1}{2} V_{i d} \\
& V_{i 2}=V_{i c}-\frac{1}{2} V_{i d}
\end{aligned}
$$

Small Signal Model for $\mathrm{v}_{\mathrm{ic}}=\mathbf{0}$

Text, p. 224

- Define differential mode gain as

$$
\left.\mathrm{A}_{\mathrm{dm}} \triangleq \frac{\mathrm{v}_{\mathrm{od}}}{\mathrm{v}_{\mathrm{id}}}\right|_{\mathrm{v}_{\mathrm{ic}}=0}
$$

Differential Mode Half Circuit

Small Signal Model for $\mathrm{v}_{\mathrm{id}}=\mathbf{0}$

Text, p. 227

- Define common mode gain as

$$
\left.\mathrm{A}_{\mathrm{cm}} \triangleq \frac{\mathrm{v}_{\mathrm{od}}}{\mathrm{v}_{\mathrm{id}}}\right|_{\mathrm{v}_{\mathrm{id}}=0}
$$

Common Mode Half Circuit

Text, p. 227
$v_{o c}=-G_{m} R v_{\text {ic }}$
$A_{c m}=\frac{v_{o c}}{v_{\text {ic }}}=-G_{m} R=-\frac{g_{m} R}{1+2 g_{m} R_{\text {TAIL }}}$

Interaction of Common Mode and Differential Mode

$$
\left.\mathrm{A}_{\mathrm{cdm}} \triangleq \frac{\mathrm{v}_{\mathrm{od}}}{\mathrm{v}_{\mathrm{ic}}}\right|_{\mathrm{v}_{\mathrm{id}}=0} \quad \text { and }\left.\quad \mathrm{A}_{\mathrm{dcm}} \triangleq \frac{\mathrm{v}_{\mathrm{oc}}}{\mathrm{v}_{\mathrm{id}}}\right|_{\mathrm{v}_{\mathrm{ic}}=0}
$$

- In a perfectly balanced (symmetric) circuit, $\mathrm{A}_{\text {cdm }}=\mathrm{A}_{\text {dcm }}=0$
- In practice, $\mathrm{A}_{\text {cdm }}$ and $\mathrm{A}_{\text {dcm }}$ are not zero because of component mismatch
- $\mathrm{A}_{\text {cdm }}$ is important because it indicates the extent to which a commonmode input will corrupt the differential output (which contains the actual signal information)
- See text, section 3.5.6.9 for a detailed analysis

Common-Mode Rejecton

For fully differential circuits, the common-mode rejection ratio (CMRR) is traditionally defined as

$$
\mathrm{CMRR} \triangleq\left|\frac{\mathrm{~A}_{\mathrm{dm}}}{\mathrm{~A}_{\mathrm{cdm}}}\right|
$$

However, the text defines the ratio as

$$
\left.\mathrm{CMRR}\right|_{\mathrm{Text}} \triangleq\left|\frac{\mathrm{~A}_{\mathrm{dm}}}{\mathrm{~A}_{\mathrm{cm}}}\right|
$$

This latter definition is appropriate for circuits with a differential input and single-ended output, such as operational amplifiers.

Input-Referred DC Offsets

- In a perfectly symmetric circuit, $\mathrm{V}_{\text {id }}=0$ yields $\mathrm{V}_{\text {od }}=0$
- Imbalances can be modeled as input referred offsets

PAIR W/ MISMATCH

Analysis

$$
\begin{aligned}
\mathrm{V}_{\mathrm{OS}} & -\mathrm{V}_{\mathrm{BE} 1}+\mathrm{V}_{\mathrm{BE} 2}=0 \\
\therefore \mathrm{~V}_{\mathrm{OS}} & =\mathrm{V}_{\mathrm{T}} \ln \left(\frac{\mathrm{I}_{\mathrm{C} 1}}{\mathrm{I}_{\mathrm{S} 1}}\right)-\mathrm{V}_{\mathrm{T}} \ln \left(\frac{\mathrm{I}_{\mathrm{C} 2}}{\mathrm{I}_{\mathrm{S} 2}}\right) \\
& =\mathrm{V}_{\mathrm{T}} \ln \left[\left(\frac{\mathrm{I}_{\mathrm{C} 1}}{\mathrm{I}_{\mathrm{C} 2}}\right)\left(\frac{\mathrm{I}_{\mathrm{S} 2}}{\mathrm{I}_{\mathrm{S} 1}}\right)\right], \quad \text { where } \mathrm{V}_{\mathrm{T}}=\frac{\mathrm{kT}}{\mathrm{q}}
\end{aligned}
$$

If $V_{\text {od }}=0$, then

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{C} 1} \mathrm{R}_{\mathrm{C} 1}=\mathrm{I}_{\mathrm{C} 2} \mathrm{R}_{\mathrm{C} 2} \\
\therefore & \frac{\mathrm{I}_{\mathrm{C} 1}}{\mathrm{I}_{\mathrm{C} 2}}=\frac{\mathrm{R}_{\mathrm{C} 2}}{\mathrm{R}_{\mathrm{C} 1}}
\end{aligned}
$$

Thus

$$
\mathrm{V}_{\mathrm{os}}=\mathrm{V}_{\mathrm{T}} \ln \left[\left(\frac{\mathrm{R}_{\mathrm{C} 2}}{\mathrm{R}_{\mathrm{C} 1}}\right)\left(\frac{\mathrm{I}_{\mathrm{S} 2}}{\mathrm{I}_{\mathrm{S} 1}}\right)\right]
$$

Result

- For small mismatches $\Delta R_{C} \ll R_{C}$ and $\Delta I_{S} \ll I_{S}$, it follows that

$$
\mathrm{V}_{\mathrm{os}} \cong \mathrm{~V}_{\mathrm{T}}\left(-\frac{\Delta \mathrm{R}_{\mathrm{C}}}{R_{\mathrm{C}}}-\frac{\Delta \mathrm{I}_{\mathrm{S}}}{I_{\mathrm{S}}}\right)=\left(\frac{g_{\mathrm{m}}}{I_{\mathrm{D}}}\right)^{-1}\left(-\frac{\Delta \mathrm{R}_{\mathrm{C}}}{\mathrm{R}_{\mathrm{C}}}-\frac{\Delta \mathrm{I}_{\mathrm{S}}}{\mathrm{I}_{\mathrm{S}}}\right)
$$

- And similarly

$$
\begin{equation*}
\mathrm{I}_{\mathrm{os}} \cong-\frac{\mathrm{I}_{\mathrm{C}}}{\beta}\left(\frac{\Delta \mathrm{R}_{\mathrm{C}}}{\mathrm{R}_{\mathrm{C}}}+\frac{\Delta \beta}{\beta}\right) \tag{seetext,pp.231}
\end{equation*}
$$

- Mismatch in I_{S} results primarily from mismatches in the emitter areas and the base doping
- Mismatch in β results primarily from mismatches in the base width
- The standard deviations of device-to-device variations in I_{S} and β is typically on the order of 5\%

Offset Voltage Drift

$$
\frac{d V_{o s}}{d T}=\frac{d}{d T}\left[\frac{k T}{q}\left(-\frac{\Delta R_{C}}{R_{C}}-\frac{\Delta \mathrm{l}_{\mathrm{S}}}{\mathrm{I}_{\mathrm{S}}}\right)\right]=\frac{\mathrm{V}_{\text {os }}}{\mathrm{T}}
$$

- Example
- $\mathrm{V}_{\text {OS }}$ was determined to be 2 mV through a measurement at $300^{\circ} \mathrm{K}$
- Means that the offset voltage will drift by $2 \mathrm{mV} / 300^{\circ} \mathrm{K}=6.6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- For a MOS differential pair, the offset drift is less predictable and turns out to be a complex function of several process parameters

Comparison of $\mathrm{V}_{\text {os }}$ for MOS and BJT Differential Pairs

$$
\begin{array}{r}
\mathrm{V}_{\mathrm{OS}, \mathrm{BJT}} \cong\left(\frac{g_{m}}{I_{\mathrm{D}}}\right)^{-1}\left(-\frac{\Delta \mathrm{R}}{\mathrm{R}}-\frac{\Delta \mathrm{I}_{\mathrm{S}}}{I_{\mathrm{S}}}\right) \\
\mathrm{V}_{\mathrm{OS}, \mathrm{MOS}} \cong \Delta \mathrm{~V}_{\mathrm{t}} \\
\underbrace{\left(\frac{g_{m}}{I_{\mathrm{D}}}\right)^{-1}}_{?} \underbrace{\left(-\frac{\Delta R}{R}-\frac{\Delta(\mathrm{W} / \mathrm{L})}{(\mathrm{W} / \mathrm{L})}\right)}_{\text {Worse }}
\end{array}
$$

- The standard deviation of $\Delta \mathrm{V}_{\mathrm{t}}$ can be estimated using the following expression (Pelgrom, JSSC 10/1989)

$$
\sigma_{\Delta V_{\mathrm{t}}} \cong \frac{\mathrm{~A}_{\mathrm{Vt}}}{\sqrt{\mathrm{WL}}}
$$

where $A_{\mathrm{vt}} \cong 5 \mathrm{mV}-\mu \mathrm{m}$ for a typical $0.18 \mu \mathrm{~m}$ process

Numerical Example

- Ignoring resistor mismatch for simplicity
- Assume $\left(\mathrm{g}_{\mathrm{m}} / \mathrm{I}_{\mathrm{D}}\right)_{\text {MOs }}=10 \mathrm{~S} / \mathrm{A}, \mathrm{W}=5 \mu \mathrm{~m}, \mathrm{~L}=0.2 \mu \mathrm{~m}$

$$
\begin{aligned}
\operatorname{std}\left(\mathrm{V}_{\mathrm{OS}, \mathrm{BJT}}\right) & \cong \operatorname{std}\left[\left(\frac{g_{m}}{I_{\mathrm{D}}}\right)^{-1}\left(\frac{\Delta \mathrm{I}_{S}}{I_{\mathrm{S}}}\right)\right]=26 \mathrm{mV} \cdot 5 \%=1.3 \mathrm{mV} \\
\operatorname{std}\left(\mathrm{~V}_{\mathrm{OS}, \mathrm{MOS}}\right) & \cong \operatorname{std}\left[\Delta \mathrm{V}_{\mathrm{t}}+\left(\frac{g_{\mathrm{m}}}{I_{\mathrm{D}}}\right)^{-1}\left(\frac{\Delta(\mathrm{~W} / \mathrm{L})}{(\mathrm{W} / \mathrm{L})}\right)\right] \\
& \cong \sqrt{\left(\frac{5 \mathrm{mV}-\mu \mathrm{m}}{\sqrt{5 \mu \mathrm{~m} \cdot 0.2 \mu \mathrm{~m}}}\right)^{2}+(100 \mathrm{mV} \cdot 5 \%)^{2}} \\
& \cong \sqrt{(5 \mathrm{mV})^{2}+(5 \mathrm{mV})^{2}}=7.1 \mathrm{mV}
\end{aligned}
$$

- MOS offset is typically 5-10 times worse than BJT

Fig. 3. Evolution of matching coefficient over process gen eration. Squares are derived from[4], the other mea surements are by the authors.
[Pelgrom, IEDM 1998]

[Chang, TED 7/2005]

- A_{Vt} improves with technology scaling
- But, unfortunately, A_{Vt} scales not as fast as minimum device area
- Hence V_{t} mismatch for minimum size devices worsens

Chapter 5

Two-Port Feedback Circuit Analysis

B. Murmann
Stanford University

Benefits and Costs of Negative Feeback

Negative feedback provides a means of exchanging gain for improvements in other performance metrics

Benefits

- Reduced sensitivity (improved precision)
- Reduced distortion (more later)
- Scaling of impedance levels (up or down)
- Increased bandwidth

Costs

- Lower gain
- Potential instability

Ideal Feedback (1)

Assumptions for an ideal feedback system:

1. No loading
2. Unilateral transmission in both the forward amplifier and feedback network

$$
\left.\begin{array}{l}
\mathrm{S}_{\mathrm{o}}=\mathrm{a} \cdot \mathrm{~S}_{\varepsilon} \\
\mathrm{S}_{\mathrm{fb}}=\mathrm{f} \cdot \mathrm{~S}_{\mathrm{o}} \\
\mathrm{~S}_{\varepsilon}=\mathrm{S}_{\mathrm{i}}-\mathrm{S}_{\mathrm{fb}}
\end{array}\right\} \Rightarrow \mathrm{S}_{\mathrm{o}}=\left(\mathrm{S}_{\mathrm{i}}-\mathrm{S}_{\mathrm{fb}}\right)=\mathrm{a}\left(\mathrm{~S}_{\mathrm{i}}-\mathrm{f} \cdot \mathrm{~S}_{\mathrm{o}}\right)
$$

Ideal Feedback (2)

$\left.\begin{array}{rl}\text { Closed-Loop Gain: } & A \triangleq \frac{S_{o}}{S_{i}}=\frac{a}{1+a f} \\ \text { Loop Gain: } \quad T \triangleq a f=\frac{S_{f b}}{S_{\varepsilon}}\end{array}\right\} \Rightarrow A=\frac{a}{1+T}$
If $T \gg 1$, then

$$
A \cong \frac{a}{T}=\frac{1}{f}
$$

The feedback loop acts to minimize the error signal, S_{ε}, thus forcing S_{fb} to track S_{i}. In particular,

$$
\begin{aligned}
& S_{\varepsilon}=S_{i}-f \cdot S_{o}=S_{i}-f \cdot\left(\frac{a}{1+a f}\right) S_{i}=\left(1-\frac{a f}{1+a f}\right) \cdot S_{i} \\
& \therefore \quad \frac{S_{\varepsilon}}{S_{i}}
\end{aligned}=1-\frac{T}{1+T}=\frac{1}{1+T} \quad \text { and } \quad \frac{S_{f b}}{S_{i}}=a \cdot f\left(\frac{S_{\varepsilon}}{S_{i}}\right)=\frac{T}{1+T} .
$$

Gain Sensitivity

- The feedback network is typically a precision passive network with an insensitive, well-defined transfer function f . The forward amplifier gain is generally large, but not well controlled.
- Feedback acts to reduce not only the gain, but also the relative, or fractional, gain error by the factor $1+\mathrm{T}$

$$
\begin{aligned}
\frac{d A}{d a} & =\frac{d}{d a}\left(\frac{a}{1+a f}\right)=\frac{1}{1+a f}+a \frac{d}{d a}\left(\frac{1}{1+a f}\right) \\
& =\frac{(1+a f)-a f}{(1+a f)^{2}}=\frac{1}{(1+a f)^{2}}=\frac{1}{(1+T)^{2}}
\end{aligned}
$$

- For a change δ a in a

$$
\begin{aligned}
\delta a & =\frac{d A}{d a} \delta a=\frac{\delta a}{(1+T)^{2}} \\
\therefore \quad & \frac{\delta A}{A}
\end{aligned}=\frac{\delta a}{(1+T)^{2}}\left(\frac{1+T}{a}\right)=\left(\frac{1}{1+T}\right) \frac{\delta a}{a} .
$$

The Two-Port Approach to Feedback Amplifier Design

- A practical approach to feedback amplifier analysis and design is based on constructing two-port representations of the forward amplifier and feedback network
- The two-port approach relies on the following assumptions:
- Loading effects can be incorporated in the two-port model for the forward amplifier
- Transmission through the forward amplifier is nearly unilateral
- Forward transmission through the feedback network is much less than that through the forward amplifier
- When the preceding assumptions break down, the two-port approach deviates from, and is less accurate than, the return ratio approach devised by Henrik Bode
- But, the two-port approach can provide better physical tuition, especially with respect to what happens in the frequency domain when the feedback loop is "closed"
- It is basically an effort to model feedback amplifiers in the way that Harold Black conceived them

Feedback Configurations

- In the two-port approach to feedback amplifier analysis there are four possible amplifier configurations, depending on whether the two-port networks are connected in SHUNT or in SERIES at the input and output of the overall amplifier
- At the OUTPUT
- A shunt connection senses the output voltage
- A series connection senses the output current
- At the INPUT
- A shunt connection feeds back a current in parallel with the input
- A series connection feeds back a voltage in series with the input
- The four possible configurations are referred to as SERIES-SHUNT, SHUNT-SHUNT, SHUNT-SERIES, and SERIES-SERIES feedback
- The following pages illustrate these configurations using ideal two-port networks

Series-Shunt Feedback

$$
\begin{aligned}
& a=\frac{v_{o}}{v_{\varepsilon}}, \quad f=\frac{v_{f b}}{v_{o}} \\
& A=\frac{v_{o}}{v_{i}}=\frac{a}{1+a f}=\frac{a}{1+T}
\end{aligned}
$$

In this case \mathbf{a}, \mathbf{A} and \mathbf{f} are all voltage gains

Shunt-Shunt Feedback

a and A are transimpedances; f is a transadmittance

Shunt-Series Feedback

$$
\begin{aligned}
& a=\frac{i_{0}}{i_{\varepsilon}}, \quad f=\frac{i_{f b}}{i_{0}} \\
& A=\frac{i_{0}}{i_{i}}=\frac{a}{1+a f}=\frac{a}{1+T}
\end{aligned}
$$

a, \mathbf{A}, and \mathbf{f} are current gains

Series-Series Feedback

\mathbf{a} and \mathbf{A} are transadmittances; \mathbf{f} is transimpedance

Note: $\mathrm{T}=\mathrm{af}$ is always dimensionless

Closed Loop Impedances

- To illustrate the influence of feedback on the input and output impedances of an amplifier, consider the following:
- Include finite input and output impedances in a simple, idealized two-port model of the forward amplifier
- Assume that the feedback network has ideal input and output impedances so as not to load the forward amplifier
- Consider two examples, series-shunt and shunt-series amplifiers

SERIES-SHUNT

"Ideal" Series-Shunt Impedances

Input Impedance

$$
\left.\mathrm{Z}_{\mathrm{i}} \triangleq \frac{\mathrm{v}_{\mathrm{i}}}{\mathrm{i}_{\mathrm{i}}}\right|_{\mathrm{i}_{0}=0}
$$

With $\mathrm{i}_{\mathrm{o}}=0$

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{o}}=\mathrm{av}_{\varepsilon} \\
& \mathrm{v}_{\mathrm{i}}=\mathrm{v}_{\varepsilon}+\mathrm{fv}_{o}=(1+\mathrm{af}) \mathrm{v}_{\varepsilon} \\
& \\
& =(1+\mathrm{T}) \mathrm{v}_{\varepsilon} \\
& \mathrm{i}_{\mathrm{i}}=\frac{\mathrm{v}_{\varepsilon}}{\mathrm{z}_{\mathrm{i}}}=\frac{1}{\mathrm{z}_{\mathrm{i}}}\left(\frac{1}{1+\mathrm{T}}\right) \mathrm{v}_{\mathrm{i}}
\end{aligned}
$$

$$
z_{i}=\frac{v_{i}}{i_{i}}=(1+T) z_{i}
$$

Output Impedance

$$
\left.\mathrm{Z}_{\mathrm{o}} \triangleq \frac{\mathrm{v}_{\mathrm{o}}}{\mathrm{i}_{\mathrm{o}}}\right|_{\mathrm{v}_{\mathrm{i}}=0}
$$

With $\mathrm{v}_{\mathrm{i}}=0$

$$
\begin{aligned}
& v_{\varepsilon}+f v_{o}=v_{i}=0 \\
& i_{o}=\frac{v_{0}-a v_{\varepsilon}}{z_{o}}=\frac{1}{z_{o}}(1+a f) v_{o} \\
& =\frac{1}{z_{o}}(1+T) v_{o} \\
& Z_{o}=\frac{v_{o}}{i_{o}}=\frac{z_{o}}{1+T}
\end{aligned}
$$

"Ideal" Shunt-Series Impedances

Input Impedance

$$
\left.Z_{i} \triangleq \frac{v_{i}}{i_{i}}\right|_{v_{o}=0}
$$

With $\mathrm{v}_{\mathrm{o}}=0$

$$
\begin{aligned}
& i_{o}=a i_{\varepsilon} \\
& i_{i}=i_{\varepsilon}+f i_{o}=(1+a f) i_{\varepsilon}=(1+T) i_{\varepsilon} \quad \Rightarrow \quad z_{i}=\frac{v_{i}}{i_{i}}=\frac{z_{i}}{(1+T)} \\
& v_{i}=i_{\varepsilon} z_{i}=\left(\frac{i_{i}}{1+T}\right) z_{i}
\end{aligned}
$$

Output Impedance

$$
\begin{aligned}
& \qquad\left.Z_{o} \triangleq \frac{v_{o}}{i_{o}}\right|_{i_{i}=0} \\
& \text { With } i_{i}=0 \\
& \qquad \begin{aligned}
i_{\varepsilon} & +f i_{o}=0 \\
v_{o} & =\left(i_{o}+a i_{\varepsilon}\right) z_{o}=\left(i_{o}+a f i_{o}\right) z_{o} \quad \Rightarrow \\
& =i_{o}(1+T) z_{o}
\end{aligned}
\end{aligned}
$$

In general:

- Negative feedback connected in series increases the driving point impedance by ($1+\mathrm{T}$)
- Negative feedback connected in shunt reduces the driving point impedance by (1+T)

Loading Effects - Introductory Example

- Consider the following feedback circuit

- Analysis methods
- Closed loop transfer function using nodal analysis
- Return ratio analysis (see EE114)
- Two-port feedback circuit analysis

Nodal Analysis

Given
$0=\frac{\mathrm{v}_{1}-\mathrm{v}_{\mathrm{o}}}{\mathrm{R}_{\mathrm{F}}}-\mathrm{i}_{\mathrm{i}}$
$0=\frac{\mathrm{v}_{\mathrm{o}}-\mathrm{v}_{1}}{\mathrm{R}_{\mathrm{F}}}+\mathrm{g}_{\mathrm{m}} \cdot \mathrm{v}_{1}+\frac{\mathrm{v}_{\mathrm{o}}}{\mathrm{R}_{\mathrm{L}}}$
$\operatorname{Find}\left(v_{1}, v_{o}\right) \rightarrow\binom{\frac{R_{F} \cdot i_{i}+R_{L} \cdot i_{i}}{R_{L} \cdot g_{m}+1}}{\frac{R_{L} \cdot i_{i}-R_{F} \cdot R_{L} \cdot g_{m} \cdot i_{i}}{R_{L} \cdot g_{m}+1}} \quad A=\frac{v_{o}}{i_{i}}=\frac{R_{L}-R_{F} \cdot R_{L} \cdot g_{m}}{R_{L} \cdot g_{m}+1}=-R_{F} \cdot\left(\frac{1-\frac{1}{g_{m} \cdot R_{F}}}{1+\frac{1}{g_{m} \cdot R_{L}}}\right)$

- No information about loop gain (which we need e.g. for stability analysis)

Return Ratio Analysis

$$
\begin{aligned}
& A=A_{i n f} \cdot \frac{R R}{1+R R}+\frac{d}{1+R R} \quad A_{\text {inf }}=-R_{F} \quad d=R_{L} \quad R R=g_{m} \cdot R_{L} \\
& A=-R_{F} \frac{g_{m} \cdot R_{L}}{1+g_{m} \cdot R_{L}}+\frac{R_{L}}{1+g_{m} \cdot R_{L}}=-R_{F}\left(\frac{g_{m} \cdot R_{L}-\frac{R_{L}}{R_{F}}}{1+g_{m} \cdot R_{L}}\right)=-R_{F} \cdot\left(\frac{1-\frac{1}{g_{m} \cdot R_{F}}}{1+\frac{1}{g_{m} \cdot R_{L}}}\right)
\end{aligned}
$$

- The result for the closed loop gain (A) matches the nodal analysis perfectly
- In addition, we have determined (along the way) the loop gain (RR)
- This is useful for stability analysis
- The return ratio method is accurate and general
- The two-port method aims to sacrifice some of this accuracy and generality in exchange for better intuition and less computational effort
- The involved approximations follow from the typical design intent for each of the four possible approximations

