EE214 Advanced Analog Integrated Circuit Design

- Winter 2011 -

Boris Murmann Stanford University murmann@stanford.edu

Table of Contents

- Chapter 1 Introduction
- Chapter 2 BJT Devices
- Chapter 3 MOS Devices and G_m/I_D-based Design
- Chapter 4 Review of Elementary Circuit Configurations
- Chapter 5 Two-Port Feedback Circuit Analysis
- Chapter 6 Frequency Response of Feedback Circuits
- Chapter 7 Wideband Amplifiers
- Chapter 8 Noise Analysis
- Chapter 9 Distortion Analysis
- Chapter 10 Opamps and Output Stages

Chapter 1 Introduction

B. Murmann Stanford University

Analog Circuit Sequence

Significance of Electronic Noise (1)

Example: Noisy image

http://www.soe.ucsc.edu/~htakeda/kernelreg/kernelreg.htm

Significance of Electronic Noise (3)

- The "fidelity" of electronic systems is often determined by their SNR
 - Examples
 - Audio systems
 - Imagers, cameras
 - Wireless and wireline transceivers
- Electronic noise directly trades with power dissipation and speed
 - In most circuits, low noise dictates large capacitors (and/or small R, large g_m), which means high power dissipation
- Noise has become increasingly important in modern technologies with reduced supply voltages

- SNR ~ V_{signal}^2/V_{noise}^2 ~ $(\alpha V_{DD})^2/V_{noise}^2$

 Designing a low-power, high-SNR circuit requires good understanding of electronic noise

B. Murmann

EE214 Winter 2010-11 - Chapter 1

- All electronic circuits exhibit some level of nonlinear behavior
 - The resulting waveform distortion is not captured in linearized smallsignal models
- The distortion analysis tools covered in EE214 will allow us to quantify the impact of nonlinearities on sinusoidal waveforms

7

Significance of Distortion

 For a single tone input, the nonlinear terms in a circuit's transfer function primarily result in signal harmonics

• For a two-tone input, the nonlinear terms in a circuit's transfer function result in so-called "intermodulation products"

Example: Two interferer tones create an intermodulation product that corrupts the signal in a desired (radio-) channel

B. Murmann

EE214 Winter 2010-11 - Chapter 1

Noise and Distortion Analysis in EE214

- Main objective
 - Acquire the <u>basic</u> tools and intuition needed to analyze noise and distortion in electronic circuits
 - Look at a few specific circuit examples to "get a feel" for situations where noise and/or distortion may matter
- Leave application-specific examples for later
 - EE314: Noise and distortion in LNAs, mixers and power amplifiers
 - EE315A: Noise and distortion in filters and sensor interfaces
 - EE315B: Noise and distortion in samplers, A/D & D/A converters

9

Technology

O-Mixe

Example that Leverages Densely Integrated CMOS: RF Transceiver System-on-a-Chip (SoC)

Mehta et al., "A 1.9GHz Single-Chip CMOS PHS Cellphone," ISSCC 2006.

- In modern CMOS technology, millions of logic gates can be integrated on a chip
 - Together with moderate- to high performance analog blocks

```
B. Murmann
```

EE214 Winter 2010-11 - Chapter 1

17

Analysis of Feedback Circuits

- Feedback circuits can be studied in several ways
 - Return ratio analysis (EE114)
 - Two-port analysis (EE214)
- Both methods have their own merits and demerits, and a good circuit designer should understand both approaches
- Two-port analysis nicely captures a number of practical scenarios in which the forward amplifier ("a") and feedback network ("f") can be intuitively identified and separated (while maintaining loading effects)
 - Shunt-shunt, shunt-series, series-shunt, series-series configurations

Valuable for stability analysis and frequency compensation

Course Outline

- BJT & short channel MOS device models
- Review of elementary amplifier stages (BJT focus)
- Two-port feedback circuit analysis
- Root locus
- Wideband amplifiers
- Noise analysis
- Distortion analysis
- OpAmps and output stages

В.	Murmann
υ.	mannann

EE214 Winter 2010-11 - Chapter 1

23

Summary of Learning Goals

- Understand device behavior and models for transistors available in advanced integrated circuit technologies
 - SiGe BJT, short channel MOS
- Acquire the basic intuition and models for
 - Distortion analysis
 - Noise analysis
 - Two-port feedback circuit analysis
 - Root locus techniques and their application to broadband amplifiers
- Solidify the above topics in a hands-on project involving the design and optimization of a broadband amplifier circuit

Staff and Website

- Instructors
 - Boris Murmann, Drew Hall
- Teaching assistants
 - Kamal Aggarwal, Pedram Lajevardi
- Administrative support
 - Ann Guerra, CIS 207
- Lectures are televised
 - But please come to class to keep the discussion interactive!
- Web page: <u>http://ccnet.stanford.edu/ee214</u>
 - Check regularly, especially bulletin board
 - Register for online access to grades and solutions

Β.	Murmann

EE214 Winter 2010-11 - Chapter 1

25

Text and Prerequisites

- EE214 Course reader
 - Hardcopies available at Stanford Bookstore (~1/3)
- Required textbook
 - Gray, Hurst, Lewis and Meyer, Analysis and Design of Analog Integrated Circuits, 5th ed., Wiley
- Reference text
 - B. Razavi, Design of Integrated Circuits for Optical Communications, McGraw-Hill, 2002
- Course prerequisite: EE114 or equivalent
 - Basic device physics and models
 - Frequency response, dominant pole approximation, ZVTC
 - Biasing, small-signal models
 - Common source, common gate, and common drain stages
 - Port impedance calculations
 - Feedback basics

Assignments

- Homework (20%)
 - Handed out on Wed, due following Wed in class
 - Lowest HW score will be dropped
 - Policy for off-campus students
 - Fax or email to SCPD before deadline stated on handout
- Midterm Exam (30%)
- Design Project (20%)
 - Design of an amplifier using HSpice (no layout)
 - Work in teams of two
 - OK to discuss your work with other teams, but no file exchange!
- Final Exam (30%)

в	Murmann
υ.	wumani

EE214 Winter 2010-11 - Chapter 1

27

Honor Code

- Please remember you are bound by the honor code
 - We will trust you not to cheat
 - We will try not to tempt you
- But if you are found cheating it is very serious
 - There is a formal hearing
 - You can be thrown out of Stanford
- Save yourself a huge hassle and be honest
- For more info
 - http://www.stanford.edu/dept/vpsa/judicialaffairs/guiding/pdf/honorcode.pdf

Chapter 2 Bipolar Junction Transistors

B. Murmann

Stanford University

Reading Material: Sections 1.1, 1.2, 1.3, 1.4, 2.5, 2.6, 2.7, 2.11, 2.12

History

Bardeen, Brattain, and Shockley, 1947

W. Brinkman, D. Haggan, and W. Troutman, "A history of the invention of the transistor and where it will lead us," *IEEE J. Solid-State Circuits*, vol. 32, no. 12, pp. 1858-1865, Dec. 1997.

W. Shockley, M. Sparks, and G. K. Teal, "P-N junction transistors," *Phys. Rev.* 83, pp. 151–162, Jul. 1951.

Conceptual View of an NPN Bipolar Transistor (Active Mode)

- Device acts as a voltage controlled current source
 - V_{BE} controls I_C
- The base-emitter junction is forward biased and the basecollector junction is reverse biased
- The device is built such that
 - The base region is very thin
 - The emitter doping is much higher than the base doping
 - The collector doping is much lower than the base doping

B. Murmann	EE214 Winter 2010-11 - Chapter 2	3

Outline of Discussion

- In order to understand the operation principle of a BJT, we will look at
 - The properties of a forward biased pn⁺ junction
 - The properties of a reverse biased pn⁻ junction
 - And the idea of combining the two junctions such that they are joined by a very thin (p-type) base region
- The treatment in the following slides is meant to be short and qualitative
 - See any solid-state physics text for a more rigorous treatment (involving band diagrams, etc.)

pn⁺ Junction in Equilibrium (No Bias Applied)

pn⁺ Junction with Forward Bias (1)

- Depletion region narrows, diffusion processes are no longer balanced by electrostatic force
- At the edge of the depletion region (x=0), the concentration of minority carriers [n_p(0)] can be computed as follows

$$\psi_0 - V_{\mathsf{BE}} = V_{\mathsf{T}} \ln \left(\frac{\mathbf{n}_{\mathsf{n}}}{\mathbf{n}_{\mathsf{p}}(\mathbf{0})} \right) \cong V_{\mathsf{T}} \ln \left(\frac{\mathbf{N}_{\mathsf{D}}}{\mathbf{n}_{\mathsf{p}}(\mathbf{0})} \right) \qquad \qquad \therefore \mathbf{n}_{\mathsf{p}}(\mathbf{0}) = \frac{\mathbf{N}_{\mathsf{D}}}{\mathbf{e}^{\frac{\mathbf{V}_{\mathsf{D}}}{\mathbf{V}_{\mathsf{T}}}}} \cdot \mathbf{e}^{\frac{\mathbf{V}_{\mathsf{BE}}}{\mathbf{V}_{\mathsf{T}}}} = \mathbf{n}_{\mathsf{p}0} \mathbf{e}^{\frac{\mathbf{V}_{\mathsf{BE}}}{\mathbf{V}_{\mathsf{T}}}} \cong \frac{\mathbf{n}_{\mathsf{i}}^2}{\mathbf{N}_{\mathsf{A}}} \mathbf{e}^{\frac{\mathbf{V}_{\mathsf{BE}}}{\mathbf{V}_{\mathsf{T}}}}$$

B. Murmann

EE214 Winter 2010-11 - Chapter 2

pn+ Junction with Forward Bias (2)

- The result on the previous slide shows that forward biasing increases the concentration of electrons at the "right" edge of the depletion region by a factor of exp(V_{BE}/V_T)
- The same holds for holes at the "left" edge of the depletion region

$$p_n(0) = p_{n0} \cdot e^{\frac{V_{BE}}{V_T}} \cong \frac{n_i^2}{N_D} \cdot e^{\frac{V_{BE}}{V_T}}$$

- Since N_D >> N_A, it follows that p_n(0) << n_p(0), i.e. the concentration of minority carriers is much larger at the lightly doped edge
- Since there must be charge neutrality in the regions outside the depletion region, the concentration of the majority carriers at the edge of the depletion region must also increase
 - However, this increase is negligible when $n_p(0) \le p_p \cong N_A$ (or $p_n(0) \le n_n \cong N_D$)
 - These conditions are called "low-level injection"

7

What Happens with the Injected Minority Carriers?

- The carriers would "like" to diffuse further into the neutral regions, but quickly fall victim to recombination
- The number of minority carriers decays exponentially, and drops to 1/e of the at the so-called diffusion length (L_p or L_p, on the order of microns)

Summary – Forward Biased pn+ junction

- Lots of electrons being injected into the p-region, not all that many holes get injected into the n⁺ region
 - The heavier n-side doping, the more pronounced this imbalance becomes
- The electrons injected in the p region cause a diffusion current that decays in the x-direction due to recombination
- The recombination necessitates a flow of holes to maintain charge neutrality; as the diffusion current decays, the hole current increases, yielding a constant current density along the device
- Near the edge of the depletion region, the electron diffusion current dominates over the hole current that supplies carriers for recombination
 - This is a very important aspect that we will come back to

Reverse Biased pn⁻ Junction

 Attach an n⁻ region that will "collect" and sweep across most of the electrons before there is a significant amount of recombination

Complete Picture

- Hole injection into emitter (\rightarrow 0 for infinite emitter doping)
- Recombination in the base (\rightarrow 0 for base width approaching zero)

First-Order Collector Current Expression

$$\begin{split} &J_n = qD_n \frac{dn_p(x)}{dx} \cong -qD_n \frac{n_p(0)}{W_B} \\ &I_C \cong qAD_n \frac{n_p(0)}{W_B} \\ &n_p(0) \approx \frac{n_i^2}{N_A} e^{\frac{V_{BE}}{V_T}} \\ &\therefore I_C \cong \frac{qAD_n n_i^2}{W_B N_A} e^{\frac{V_{BE}}{V_T}} \end{split}$$

Current density

A is the cross-sectional area W_B is the base width

Result from slide 7

B. Murmann

EE214 Winter 2010-11 - Chapter 2

15

Base Current

 $I_{B} = I_{B1} + I_{B2}$ where $I_{B1} =$ Recombination in the base $I_{B2} =$ Injection into the emitter

 I_{B1} follows from dividing the minority carrier charge in the base (Q_e) by its "lifetime" (τ_B)

$$I_{B1} = \frac{Q_e}{\tau_b} = \frac{\frac{1}{2}n_p(0)W_BqA}{\tau_b} = \frac{1}{2}\frac{W_BqAn_i^2}{\tau_bN_A}e^{\frac{V_{BE}}{V_T}}$$

 ${\sf I}_{\sf B2}$ depends on the gradient of minority carriers (holes) in the emitter. For a "long" emitter (all minority carriers recombine)

$$I_{B2} = -qAD_p \frac{dp_n(x)}{dx}\Big|_{x=0} = -qAD_p \left[\frac{d}{dx}\left(\frac{n_i^2}{N_D}e^{\frac{V_{BE}}{V_T}}e^{-\frac{x}{L_p}}\right)\right]_{x=0} = \frac{qAD_p}{L_p}\frac{n_i^2}{N_D}e^{\frac{V_{BE}}{V_T}}e^{\frac{V_{BE}}{V_T}}e^{\frac{N_B}{V_T}}e^{\frac$$

In modern narrow-base transistors $I_{B2} >> I_{B1}$.

Terminal Currents and Definition of $\alpha_{\text{F}},\,\beta_{\text{F}}$

Simplified model; very useful for bias point calculations (assuming e.g. $V_{BE(on)}$ = 0.8V)

Basewidth Modulation (1)

EE214 Winter 2010-11 - Chapter 2

Small-Signal Model

B. Murmann

EE214 Winter 2010-11 - Chapter 2

21

Intrinsic Gain

$$g_m r_o \cong \frac{I_C}{V_T} \cdot \frac{V_A}{I_C} = \frac{V_A}{V_T}$$
 $V_T \cong 26mV$ (at room temperature)

In the EE214 technology, the SiGe npn device has V_A = 90V, thus

$$g_m r_o \cong \frac{90V}{26mV} = 3460$$

Much larger than the intrinsic gain of typical MOSFET devices

Outline – Model Extensions and Technology

- Complete picture of BJT operating regions
- Dependence of β_F on operating conditions
- Device capacitances and resistances
- Technology
 - Junction isolated
 - Oxide isolated with polysilicon emitter
 - Heterojunction bipolar (SiGe base)
 - BiCMOS
 - Complementary bipolar

Carrier Concentrations in Saturation

- Base-Collector junction is forward biased
- $n_p(W_B)$, and therefore also I_C , strongly depend on V_{BC} , V_{CE}
- V_{CE(sat)} is the voltage at which the devices enters saturation
 - The difference between the two junction voltages, small ~0.05...0.3V

D. WUITTAITT

EE214 Winter 2010-11 - Chapter 2

Gummel Plot

- A Gummel plot is a semi-log plot of I_C and I_B versus V_{BE} (linear scale)
- It reveals the regions for which high β_{F} is maintained (region II below)
- What happens in regions I and III?

25

β_{F} vs. I_{C} and Temperature

Device Capacitances and Resistances

Base Charging Capacitance

$$\begin{split} C_{b} &\triangleq \frac{\partial Q_{e}}{\partial V_{BE}} = \frac{\partial Q_{e}}{\partial I_{C}} \frac{\partial I_{C}}{\partial V_{BE}} = \tau_{F} g_{m} \\ \tau_{F} &= \frac{\partial Q_{e}}{\partial I_{C}} = \frac{\partial}{\partial I_{C}} \left(\frac{1}{2} n_{p}(0) W_{B} q A \right) \qquad I_{C} = \frac{q A D_{n} n_{p}(0)}{W_{B}} \\ \tau_{F} &= \frac{\partial}{\partial I_{C}} \left(\frac{1}{2} \frac{W_{B}^{2}}{D_{n}} I_{C} \right) = \frac{1}{2} \frac{W_{B}^{2}}{D_{n}} \end{split}$$

- τ_{F} is called the base transit time (in forward direction)
- Typical values for high-speed transistors are on the order of 1...100ps

Small-Signal Model with Intrinsic Capacitances

$$\begin{split} C_{\pi} &= C_b + C_{je} = C_b + 2C_{je0} \\ C_{\mu} &= C_{jc} = \frac{C_{jc0}}{\left(1 + \frac{V_{CB}}{\psi_{0c}}\right)^n} \end{split}$$

B. Murmann

EE214 Winter 2010-11 - Chapter 2

35

Range of numbers

 $r_{e} \sim 1-3\Omega$ $r_{b} \sim 50-500\Omega$ $r_{c} \sim 20-500\Omega$ $C_{CS} \sim 3-200 \text{fF}$

Values at high end of these ranges may have large impact on performance \rightarrow Try to minimize through advanced processing & technology

HBT Current Gain

 Intrinsic carrier concentration in the SiGe base (n_{iB}) is larger than intrinsic carrier concentration in the Si emitter (n_{iE})

- Base doping (N_A) can be increased while maintaining same β_F
 - Can reduce base width without affecting r_b
 - Larger r_o due to decrease in base width modulation

B. Murmann

EE214 Winter 2010-11 - Chapter 2

39

Device Parameter Comparison

Parameter	Vertical <i>npn</i> Transistor with 2 μm ² Emitter Area	SiGe npn HBT Transistor with 0.7µm² Emitter Area	= 0.22μm x 3.2μm
β_F	120	300	
β_R	2	2	
V_A	35 V	90	
I_S	$6 \times 10^{-18} A$	3.2x10 ⁻¹⁷ A ←	3x smaller device
ICO	1 pA	1pA	5x bigger I _S
BVCEO	8 V	2.0V	
BVCBO	18 V	5.5V	
BV_{EBO}	6 V	3.3V	
$ au_F$	10 ps	0.56ps	 18x smaller τ_F
τ_R	5 ns	10ps	·
r_b	400Ω	25Ω ←	 16x smaller r_b
r_c	$100 \ \Omega$	60Ω	5
r_{ex}	40 Ω	2.5Ω	
C_{ie0}	5 fF	6.26fF	
ψ_{0e}	0.8 V	0.8V	
n_c	0.4	0.4	
$C_{\mu 0}$	5 fF	3.42fF	
ψ_{0c}	0.6 V	0.6V	
n_c	0.33	0.33	Ovide isolation vs
$C_{cs0}(C_{hs0})$	20 fF	3.0fF	
ψ_{0s}	0.6 V	0.6V	Junction isolation
n_s	0.33	0.33	
BiCMOS Technology

[Texas Instruments]

Transit Frequency Calculation (1)

Cross Section of npn Device

EE214 npn Unit Device

- A technology typically comes with an optimized layout for a unit device of a certain size
- A_E = 0.22μm x 3.2μm
- Great care is then taken to extract a Spice model for this particular layout using measured data
 - Spice model (usr/class/ee214/hspice/ee214_hspice.sp)

.model npn214 npn

- + level=1 tref=25 is=.032f bf=300 br=2 vaf=90
- + cje=6.26f vje=.8 mje=.4 cjc=3.42f vjc=.6 mjc=.33
- + re=2.5 rb=25 rc=60 tf=563f tr=10p
- + xtf=200 itf=80m ikf=12m ikr=10.5m nkf=0.9
- Instantiation in a circuit netlist
- * C B E
- q1 n1 n2 n3 npn214

BJT Model Parameters

Table 5-3 BJT Model Parameters

Parameter	Description			
DC	BF, BR, IBC, IBE, IS, ISS, NF, NR, NS, VAF, VAR			
beta degradation	ISC, ISE, NC, NE, IKF, IKR			
geometric	SUBS, BULK			
resistor	RB, RBM, RE, RC, IRB			
junction capacitor	CJC, CJE, CJS, FC, MJC, MJE, MJS, VJC, VJE, VJS, XCJC			
parasitic capacitance	CBCP, CBEP, CCSP			
transit time	ITF, PTF, TF, VT, VTF, XTF			
noise	KF, AF			

For more info consult the HSpice documentation under

/afs/ir.stanford.edu/class/ee/synopsys/B-2008.09-SP1/hspice/docs_help

PDF files: home.pdf hspice_cmdref.pdf hspice_integ.pdf hspice_relnote.pdf hspice_sa.pdf hspice_devmod.pdf hspice_mosmod.pdf hspice_rf.pdf hspice_si.pdf

B. Murmann

EE214 Winter 2010-11 - Chapter 2

51

Adding Multiple Devices in Parallel

- For the unit device, there exists a practical upper bound for the collector current
 - Due to the onset of high level injection
- This means that the unit device can only deliver a certain maximum g_m
- If more g_m is needed, "m" unit devices can be connected in parallel
- Instantiation in a circuit netlist (m=3)
- * C B E q1 n1 n2 n3 npn214 3

npn Unit Device Characterization

```
* ee214 npn device characterization
*
   СВЕ
q1 c b 0 npn214
Vc c 0
          1.25
ib 0 b
          1u
.op
.dc ib dec 10 10f 100u
.probe ib(q1) ic(q1) ie(q1)
.probe gm = par('gm(q1)')
.probe go = par('g0(q1)')
.probe cpi = par('cap_be(q1)')
.probe cmu = par('cap_ibc(q1)')
.probe beta = par('beta(q1)')
.options dccap post brief
.inc '/usr/class/ee214/hspice/ee214_hspice.sp'
.end
```


B. Murmann

EE214 Winter 2010-11 - Chapter 2

53

DC Operating Point Output

**** bip	olar junction	transistors
element	0:q1	
model	0:npn214	
ib	999.9996n	
ic	288.5105u	
vbe	803.4402m	
vce	1.2500	
vbc	-446.5598m	
vs	-1.2327	
power	361.4415u	
betad	288.5106	
gm	10.2746m	
rpi	26.8737k	
rx	25.0000	
ro	313.4350k	
cpi	14.6086f	
cmu	2.8621f	
cbx	0.	
CCS	0.	
betaac	276.1163	
ft	93.5999g	

Table 5-18 BJT DC Operating Point Output

Table 5-18 BJT DC Operating Point Output					
Quantities	Definitions				
ib	base current				
ic	collector current				
is	substrate current				
vbe	B-E voltage				
vbc	B-C voltage				
VCS	C-S voltage				
VS	substrate voltage				
power	power				
betad(betadc)	beta for DC analysis				
gm	transconductance				
rpi	B-E input resistance				
rmu(rmuv)	B-C input resistance				
rx	base resistance				
ro	collector resistance				
срі	internal B-E capacitance				
cmu	internal B-C capacitance				
cbx	external B-C capacitance				
ccs	C-S capacitance				
cbs	B-S capacitance				
cxs	external substrate capacitance				
betaac	beta for AC analysis				
ft	unity gain bandwidth				

- Important to realize that g_m will not be exactly equal to I_C/V_T at high currents

I-V Curves

Passive Components (1)

Resistors	Rs (O/Sq)	TCR (ppm/C)
Subcollector	8.1	1430
N+ Diffusion	72	1910
P+ Diffusion	105	1430
P+ Polysilcon	270	50
P Polysilicon	1600	-1178
TaN	135	-750
Capacitors	Cp (fF/um2)	VCR (+5/-5 ppm/V)
MIM	1	<45
MOS	2.6	5
Inductor	L (nH)	Max Q at 5 GHz
AI - Spiral Inductor	>=0.7	21
Varactor	Tuning Range	Q @0.5 GHz
CB Junction	1.64:1	90
MOS Accumulation	3.1:1	300

Joseph et al., BCTM 2001

Passive Components (2)

Chapter 3 MOS Transistor Modeling G_m/I_D-based Design

B. Murmann

Stanford University

Reading Material: Sections 1.5, 1.6, 1.7, 1.8

Basic MOSFET Operation (NMOS)

How to calculate drain current (I_D) current as a function of V_{GS} , V_{DS} ?

Simplifying Assumptions

- 1) Current is controlled by the mobile charge in the channel. This is a very good approximation.
- 2) "Gradual Channel Assumption" The vertical field sets channel charge, so we can approximate the available mobile charge through the voltage difference between the gate and the channel
- 3) The last and worst assumption (we will fix it later) is that the carrier velocity is proportional to lateral field ($v = \mu E$). This is equivalent to Ohm's law: velocity (current) is proportional to E-field (voltage)

B. Murmann	EE214 Winter 2010-11 -	- Chapter 3	3
Deriva	ation of First Order I	V Characteristics (1)	
$ \begin{array}{c} $	Channel I_D G D T D T T T T T T T T	$Q_{n}(y) = C_{ox} \left[V_{GS} - I_{D} = Q_{n} \cdot v \cdot W \right]$ $v = \mu \cdot E$ $I_{D} = C_{ox} \left[V_{GS} - V(y) - V(y) \right]$	- V(y) – V _t] V _t]·μ·Ε·W
	$I_{\rm D} = \mu C_{\rm ox} \frac{W}{L} \bigg[(V_{\rm GS} - V_{\rm t}) \bigg]$	$\left(-\frac{V_{DS}}{2}\right) \cdot V_{DS}$	

Plot of Transfer Characteristic (in Saturation)

B. Murmann

EE214 Winter 2010-11 - Chapter 3

Output Characteristic with "Channel Length Modulation"

$$=\frac{1}{2}\mu C_{ox}\frac{W}{L}(V_{GS}-V_{t})^{2}\cdot\lambda=\frac{\lambda I_{D}}{1+\lambda V_{DS}}\cong\lambda I_{D}$$

7

Capacitances

0

0

1

 \mathbf{C}_{gb}

1

+ WLC_{ox}

Capacitance Equations and Parameters

Г

Parameter	EE 214 Technology (0.18μm)			
	NMOS	PMOS		
C _{ox}	8.42 fF/μm²	8.42 fF/µm²		
C' _{ol}	0.491 fF/µm	0.657 fF/μm		
CJ	0.965 fF/µm ²	1.19 fF/μm ²		
C _{JSW}	0.233 fF/μm	0.192 fF/μm		
PB	0.8 V	0.8 V		
MJ	0.38	0.40		
MJSW	0.13	0.33		
LDIF	0.64 μm	0.64 μm		

B. Murmann

EE214 Winter 2010-11 - Chapter 3

11

Complete Small-Signal Model

What are $\mu \textbf{C}_{ox}$ ("KP") and λ ("LAMBDA") for our Technology?

. MODE	st nmos	5214	nmos	T.BUDI	- 49	
+acm = +VERSION =	3.1	TNOM	= 0.32e-6 = 27	TOX	= 49 = 4.1E-9	
= UX	1E-7	NCH	= 2.3549E17	VTHO	= 0.3618397	
1 =	0.5916053	K2	= 3.225139E-3	К3	= 1E-3	
3B = VTOW =	2.3938862	DVT1W	= 18-7	NLX DVT2W	= 1.776268E-7 = 0	The HSpice model for an N
VT0 =	1.3127368	DVT1	= 0.3876801	DVT2	= 0.0238708	
- 0	256.74093	UA	= -1.585658E-9	UB	= 2.528203E-18	device in our technology is
: =	5.182125E-11	VSAT	= 1.003268E5	A0	= 1.981392	to the left
ETA =	-9.888408E-3	Al	= 4.989266E-7 = 6.164533E-4	A2	= 0.9388917	
SW =	128.705483	PRWG	= 0.5	PRWB	= -0.2	
- 1	1	WINT	= 0	LINT	= 1.617316E-8	BSIM 3v3 model
L =	0	XW	= -1E-8	DWG	= -5.383413E-9	
WB =	9.111767E-9	CDSC	= -0.0854824 = 2.4E-4	CDSCD	= 2.2420572	110 narameters
DSCB =	0	ETAO	= 2.981159E-3	ETAB	= 9.289544E-6	
SUB =	0.0159753	PCLM	= 0.7245546	PDIBLC1	= 0.1568183	
DIBLC2 =	2.543351E-3	PDIBLCB	= -0.1	DROUT	= 0.7445011	KP and LAMBDA nownere
SCBE1 =	8E10 0 01	PSCBE2 RSH	= 1.876443E-9 = 6.6	PVAG MORMOD	= 7.200284E-3	found
RT =	0	UTE	= -1.5	KT1	= -0.11	
KT1L =	0	KT2	= 0.022	UA1	= 4.31E-9	
UB1 =	-7.61E-18	UC1	= -5.6E-11	AT	= 3.3E4	
WEN -	1	WLN WWT	- 1	WW T.T.	= 0	
LN =	1	LW	= 0	LWN	= 1	
LWL =	0	CAPMOD	= 2	XPART	- 1	
2GDO =	4.91E-10	CGSO	= 4.91E-10	CGBO	= 1E-12	
2J =	9.652028E-4	PB	- 0.8	MJ	= 0.3836899	
CJSWG =	3.3E-10	PBSWG	= 0.8	MJSWG	= 0.1253131	
2F =	0	PVTH0	= -7.714081E-4	PRDSW	= -2.5827257	
РК2 =	9.619963E-4	WKETA	= -1.060423E-4	LKETA	= -5.373522E-3	
PU0 =	4.5760891	PUA	= 1.469028E-14	PUB	= 1.783193E-23	
nlev =	3	kf	= 9.968409E-5 = 0.5e-25	PREIA	= -2.511948-3	
. Murma	ann				EE214 Winter 20	010-11 – Chapter 3
B. Murma	ann				EE214 Winter 20	010-11 – Chapter 3
B. Murma	ann			An /	EE214 Winter 20	o10-11 – Chapter 3 to Extract μC _{ox}
B. Murma	ann as MO	SFE	T at co	An /	Attempt 1	to Extract μC_{ox} _{DV} , sweep V _{GS} and plot μC_{ox} estimation
. Murma	ann	SFE	T at co	An /	Attempt 1 nt V _{DS} >V _O 300	to Extract μC_{ox} by, sweep V _{GS} and plot μC_{ox} estimation of the second state of the second st
Bia	ann	SFE	T at co	An / nsta	Attempt 1 nt V _{DS} >V _O 300 250 200	to Extract μC_{ox} by, sweep V _{GS} and plot μC_{ox} estimation of the set of the
Bia	ann as MO	SFE	T at co	An / nsta	EE214 Winter 20 Attempt 1 nt V _{DS} >V _O 300 250 200	to Extract μC_{ox} by, sweep V _{GS} and plot μC_{ox} estimation of the set of the
- Bia	ann as MO	SFE	T at co	An /	EE214 Winter 20 Attempt 1 nt V _{DS} >V _O 300 250 200	to Extract μC_{ox} by, sweep V _{GS} and plot μC_{ox} estimation of the set of the
. Murma	ann As MO	SFE	T at co	× [² //V ^{r1}]	EE214 Winter 20 Attempt 1 nt V _{DS} >V _O 300 250 200 150	to Extract μC_{ox} by, sweep V _{GS} and plot μC_{ox} estimates of the second states of
Bia	ann as MO $C_{ox} = -\frac{1}{\sqrt{2}}$		T at co	C ^{ox} [my/v ⁻⁵]	EE214 Winter 20 Attempt 1 nt V _{DS} >V _O 300 250 200 150	to Extract μC_{ox} by, sweep V _{GS} and plot μC_{ox} estimation of the set of the
Bia	ann as MO $C_{ox} = -\frac{1}{\sqrt{2}}$		T at co	h ^u C _{ov} [µV/v ²] husta	EE214 Winter 20 Attempt 1 nt V _{DS} >V _O 300 250 200 150	to Extract μC_{ox} by, sweep V _{GS} and plot μC_{ox} estimates a structure of the str
Bia	ann as MO $C_{ox} = -\frac{1}{\sqrt{2}}$	SFE	T at co	h ⁿ C _{ox} [hV ₀ ,]	EE214 Winter 20 Attempt 1 nt V _{DS} >V _O 300 250 200 150 100	to Extract μC_{ox} by, sweep V _{GS} and plot μC_{ox} estimates of the second states of

- n NMOS is shown
- ere to be

B. Murmann

EE214 Winter 2010-11 - Chapter 3

- The extracted μC_{ox} depends on L and V_{OV} and cannot be viewed as a constant parameter

0.1

0.2

V_{ov}[V]

0.3

0.4

0∟ 0

0.5

13

Device Characterization

```
* NMOS characterization
.param gs=0.7
.param dd=1.8
vds
          d 0
                      dc
                                'dd/2'
                      dc
          g 0
                                'gs'
vgs
                                                                     5/0.18
          d g 0 0
mn
                      nmos214 L=0.18um W=5um
.op
                                                                                          V<sub>DD</sub>/2
.dc gs 0.2V 1V 10mV
.probe ov
             = par('gs-vth(mn)')
.probe gm_id = par('gmo(mn)/i(mn)')
.probe ft = par('1/6.28*gmo(mn)/cggbo(mn)')
.probe gm_gds = par('gmo(mn)/gdso(mn)')
.options post brief dccap
.inc /usr/class/ee214/hspice/ee214_hspice.sp
.end
B. Murmann
                                 EE214 Winter 2010-11 - Chapter 3
                                                                                      17
                                      g<sub>m</sub>/I<sub>D</sub> Plot
     40
                                                             . . . . . . . . . . . . . . . .
                                                           0.18um NMOS
     35
                                                        - 2/V<sub>OV</sub>
     30
                                                            BJT (q/kT)
g<sub>m</sub>/I<sub>D</sub> [S/A]
     25
     20
     15
     10
       5
      0L
-0.2
                                                 0.2
                 -0.1
                             0
                                       0.1
                                                             0.3
                                                                       0.4
                                                                                  0.5
                                         V<sub>OV</sub> [V]
```

Observations

Definition of V_t

- Exactly what we assumed to derive the long channel model

Mobile Charge on a Log Scale

 On a log scale, we see that there are mobile charges <u>before</u> we reach the threshold voltage

- Fundamental result of solid-state physics, not short channels

BJT Similarity

- We have
 - An NPN sandwich, mobile minority carriers in the P region
- This is a BJT!
 - Except that the base potential is here controlled through a capacitive divider, and not directly by an electrode

Subthreshold Current

• We know that for a BJT

$$I_{\rm C} = I_{\rm S} \cdot e^{\frac{V_{\rm BE}}{V_{\rm T}}} \qquad V_{\rm T} = \frac{kT}{q}$$

· For the MOSFET in subthreshold we have

$$\mathbf{I}_{\rm D} = \mathbf{I}_{\rm 0} \cdot \mathbf{e}^{\frac{V_{\rm GS} - V_{\rm t}}{nV_{\rm T}}}$$

• n is given by the capacitive divider

$$n = \frac{C_{js} + C_{ox}}{C_{ox}} = 1 + \frac{C_{js}}{C_{ox}}$$

where $\mathbf{C}_{\mathbf{js}}$ is the depletion layer capacitance

• In the EE214 technology $n \cong 1.5$

В.	Murmann
----	---------

EE214 Winter 2010-11 - Chapter 3

25

Subthreshold Transconductance

$$g_m = \frac{dI_D}{dV_{GS}} = \frac{1}{n} \frac{I_D}{V_T} \qquad \qquad \frac{g_m}{I_D} = \frac{1}{nV_T}$$

Similar to BJT, but unfortunately n (≅1.5) times lower

Moderate Inversion

 In the transition region between subthreshold and strong inversion, we have two different current mechanisms

Drift (MOS) $v = \mu E$

Diffusion (BJT)
$$v = D \frac{dn}{dx} = \frac{kT}{q} \mu \frac{dn}{dx}$$

- Both current components are always present
 - Neither one clearly dominates in moderate inversion
- Can show that ratio of drift/diffusion current $\sim (V_{GS}-V_t)/(kT/q)$
 - MOS equation becomes dominant at several kT/q

Short Channel Effects

- Velocity saturation due to high lateral field
- Mobility degradation due to high vertical field
- V_t dependence on channel length and width
- $V_t = f(V_{DS})$
- r_o = f(V_{DS})
- ...
- We will limit the discussion in EE214 to the first two aspects of the above list, with a focus on qualitative understanding

Velocity Saturation (1)

- In the derivation of the square law model, it is assumed that the carrier velocity is proportional to the lateral E-field, v=µE
- Unfortunately, the speed of carriers in silicon is limited ($v_{scl} \approx 10^5 \text{ m/s}$)
 - At very high fields (high voltage drop across the conductive channel), the carrier velocity saturates

Velocity Saturation (2)

- It is important to distinguish various regions in the above plot
 - Low field, the long channel equations still hold
 - Moderate field, the long channel equations become somewhat inaccurate
 - Very high field across the conducting channel the velocity saturates completely and becomes essentially constant (v_{scl})
- To get some feel for latter two cases, let's first estimate the E field using simple long channel physics
- In saturation, the lateral field across the channel is

$$E = \frac{V_{OV}}{L}$$
 e.g. $\frac{200mV}{0.18\mu m} = 1.11 \cdot 10^6 \frac{V}{m}$

Field Estimates

In our 0.18µm technology, we have for an NMOS device

$$E_{c} = \frac{v_{scl}}{\mu} \cong \frac{10^{5} \frac{m}{s}}{150 \frac{cm^{2}}{Vs}} = 6.7 \cdot 10^{6} \frac{V}{m}$$

Therefore

$$\frac{E}{E_{c}} = \frac{1.11 \cdot 10^{6} \frac{V}{m}}{6.7 \cdot 10^{6} \frac{V}{m}} \approx 0.16$$

- This means that for V_{OV} on the order of 0.2V, the carrier velocity is somewhat reduced, but the impairment is relatively small
- The situation changes when much larger V_{OV} are applied, e.g. as the case in digital circuits

D	Murmonn
р.	wumann

EE214 Winter 2010-11 - Chapter 3

33

Short Channel I_D Equation

 A simple equation that captures the moderate deviation from the long channel drain current can be written as (see text, p. 62)

$$\begin{split} I_{D} &\cong \frac{1}{2} \mu C_{ox} \frac{W}{L} V_{OV}^{2} \cdot \frac{1}{\left(1 + \frac{V_{OV}}{E_{c}L}\right)} \\ &\cong \frac{1}{2} \mu C_{ox} \frac{W}{L} V_{OV} \cdot \frac{E_{c}L \cdot V_{OV}}{\left(E_{c}L + V_{OV}\right)} \end{split}$$

Think of this as a "parallel combination"

Minimum-length NMOS:

$$E_{c}L = 6.7 \cdot 10^{6} \frac{V}{m} \cdot 0.18 \mu m = 1.2V$$

Minimum-length PMOS:

$$E_{c}L = 16.75 \cdot 10^{6} \frac{V}{m} \cdot 0.18 \mu m = 3V$$

Modified g_m/I_D Expression

Assuming V_{OV} << E_cL, we can show that (see text, pp. 63-64)

$$\frac{g_{m}}{I_{D}} \cong \frac{2}{V_{OV}} \cdot \frac{1}{\left(1 + \frac{V_{OV}}{E_{c}L}\right)}$$

E.g. for an NMOS device with V_{OV}=200mV

$$\frac{g_m}{I_D} \cong \frac{2}{V_{OV}} \cdot \frac{1}{\left(1 + \frac{0.2}{1.2}\right)} = \frac{2}{V_{OV}} \cdot 0.86$$

- Means that the square law model in strong inversion (at $V_{OV}\!\cong\!200mV)$ should be off by about 15%
 - This prediction agrees well with the simulation data

EE214 Winter 2010-11 - Chapter 3

35

Mobility Degradation due to Vertical Field

- In MOS technology, the oxide thickness has been continuously scaled down with feature size
 - ~6.5nm in 0.35μm, ~4nm in 0.18μm, ~1.8nm in 90nm CMOS
- As a result, the vertical electric field in the device increases and tries to pull the carriers closer to the "dirty" silicon surface
 - Imperfections impede movement and thus mobility
- This effect can be included by replacing the mobility term with an "effective mobility"

$$\mu_{\text{eff}} \cong \frac{\mu}{\left(1 + \theta V_{\text{OV}}\right)} \qquad \theta = 0.1...0.4 \frac{1}{V}$$

- Yet another "fudge factor"
 - Possible to lump with E_cL parameter, if desired

Transit Frequency Plot

B. Murmann

Gradual Onset of 1/g_{ds}

The Challenge

- Square-law model is inadequate for design in fine-line CMOS
 - But simulation models (BSIM, PSP, ...) are too complex for handcalculations
- This issue tends to drive many designers toward a "spice monkey" design methodology
 - No hand calculations, iterate in spice until the circuit "somehow" meets the specifications
 - Typically results in sub-optimal designs
- Our goal
 - Maintain a <u>systematic</u> design methodology in absence of a set of compact MOSFET equations
- Strategy
 - Design using look-up tables or charts

[Courtesy Isaac Martinez]

n
n

EE214 Winter 2010-11 – Chapter 3

The Problem

45

The Solution

NMOS Simulation Data

Current Density Chart

V_{DS} Dependence

Generic Design Flow

- 1) Determine g_m (from design objectives)
- 2) Pick L
 - Short channel \rightarrow high f_T (high speed)
 - Long channel \rightarrow high intrinsic gain
- 3) Pick g_m/I_D (or f_T)
 - Large $g_m/I_D \rightarrow$ low power, large signal swing (low V_{DSsat})
 - Small $g_m/I_D \rightarrow high f_T$ (high speed)
- 4) Determine I_D (from g_m and g_m/I_D)
- 5) Determine W (from I_D/W, current density chart)

Many other possibilities exist (depending on circuit specifics, design constraints and objectives)

В.	Murmann

EE214 Winter 2010-11 - Chapter 3

59

Given specifications and objectives

- 0.18µm technology
- DC gain = -4
- $R_{L}=1k, C_{L}=50 fF, R_{i}=10k$
- Maximize bandwidth while keeping $I_B \le 300 uA$
 - Implies L=L_{min}=0.18um
- Determine device width
- Estimate dominant and nondominant pole

Small-Signal Model

Why can we Neglect r_o?

$$|A_{v}(0)| = g_{m}(R_{L} || r_{o})$$
$$= g_{m}\left(\frac{1}{R_{L}} + \frac{1}{r_{o}}\right)^{-1}$$
$$\frac{1}{|A_{v}(0)|} = \frac{1}{g_{m}R_{L}} + \frac{1}{g_{m}r_{o}}$$
$$\frac{1}{4} = \frac{1}{g_{m}R_{L}} + \frac{1}{g_{m}r_{o}}$$

- Even at L=L_{min}= 0.18 μ m, we have g_mr_o > 30
- r_o will be negligible in this design problem

Zero and Pole Expressions

High frequency zero (negligible)

Dominant pole (see Chapter 4)

$$\omega_{z} \cong \frac{g_{m}}{C_{ad}} >> \omega_{T}$$

$$\boldsymbol{\omega}_{\text{p1}} \cong \frac{1}{\boldsymbol{R}_{i} \left[\boldsymbol{C}_{\text{gs}} + \boldsymbol{C}_{\text{gb}} + \left(1 + \boldsymbol{g}_{\text{m}} \boldsymbol{R}_{\text{L}} \right) \cdot \boldsymbol{C}_{\text{gd}} \right]}$$

Nondominant pole (see Chapter 4)

$$\omega_{p2} \cong \frac{1}{\omega_{p1}} \frac{1}{R_{i}R_{L} \left(\left[C_{gs} + C_{gb} \right] C_{L} + \left[C_{gs} + C_{gd} \right] C_{db} + C_{L}C_{gd} \right)}$$

Calculation of capacitances from tabulated parameters:

$$\mathbf{C}_{gs} + \mathbf{C}_{gb} = \mathbf{C}_{gg} - \mathbf{C}_{gd} \qquad \qquad \mathbf{C}_{db} = \mathbf{C}_{dd} - \mathbf{C}_{gd}$$

B. Murmann

EE214 Winter 2010-11 - Chapter 3

63

Determine C_{gg} via f_T Look-up

Find Capacitances and Plug in

Circuit For Spice Verification

Simulated DC Operating Point

element	0:mn1	Calculation	
region	Saturati		
id	326.8330u	300 uA	
vgs	624.9116m		
vds	873.1670m		
vdsat	113.7463m		
vod	138.5878m		
gm	4.1668m	4 mS	Good agreement!
gds	108.2225u		
cdtot	21.8712f	23.6 fF	
cgtot	37.6938f	37.7 fF	
cgd	8.9163f	9.0 fF	
gm/ID	12.8	13.3 S/A	

HSpice .OP Capacitance Output Variables

Calculated values: $|A_v(0)|=12 \text{ dB} (4.0), f_{p1}=196 \text{ MHz}, f_{p2}=6.0 \text{ GHz}$

Using .pz Analysis

Netlist statement

.pz v(vo) vi

Output

******* pole/zero analysis input = 0:vi output = v(vo)

poles	(rad/sec)	poles	(hertz)
real	imag	real	imag
-1.34190g	0.	-213.569x	0.
-31.4253g	0.	-5.00149g	0.
zeros	(rad/sec)	zeros	(hertz)
real	imag	real	imag
458.247g	0.	72.9323g	0.

```
B. Murmann
```

EE214 Winter 2010-11 - Chapter 3

71

Observations

- The design and pole calculations essentially right on target!
 - Typical discrepancies are on the order of 10-20%, mostly due to V_{DS} dependencies, finite output resistance, etc.
- We accomplished this by using pre-computed spice data in the design process
- Even if discrepancies are more significant, there's always the possibility to track down the root causes
 - Hand calculations are based on parameters that also exist in Spice, e.g. $g_m/l_D,\,f_T,\,etc.$
 - Different from square law calculations using μC_{ox} , V_{OV} , etc.
 - Based on artificial parameters that do not exist or have no significance in the spice model

References

- F. Silveira et al. "A g_m/I_D based methodology for the design of CMOS analog circuits and its application to the synthesis of a silicon-on-insulator micropower OTA," *IEEE J. Solid-State Circuits*, Sep. 1996, pp. 1314-1319.
- D. Foty, M. Bucher, D. Binkley, "Re-interpreting the MOS transistor via the inversion coefficient and the continuum of g_{ms}/I_d," *Proc. Int. Conf. on Electronics, Circuits and Systems*, pp. 1179-1182, Sep. 2002.
- B. E. Boser, "Analog Circuit Design with Submicron Transistors," IEEE SSCS Meeting, Santa Clara Valley, May 19, 2005, <u>http://www.ewh.ieee.org/r6/scv/ssc/May1905.htm</u>
- P. Jespers, The g_m/I_D Methodology, a sizing tool for low-voltage analog CMOS Circuits, Springer, 2010.
- T. Konishi, K. Inazu, J.G. Lee, M. Natsu, S. Masui, and B. Murmann, "Optimization of High-Speed and Low-Power Operational Transconductance Amplifier Using g_m/I_D Lookup Table Methodology," IEICE Trans. Electronics, Vol. E94-C, No.3, Mar. 2011.

B. Murmann

EE214 Winter 2010-11 - Chapter 3

73

Chapter 4 Review of Elementary Circuit Configurations

B. Murmann

Stanford University

Reading Material: Sections 3.3.1, 3.3.3, 3.3.6, 3.3.8, 3.5, 7.2.3, 7.2.4.1, 7.3.2, 7.3.4, 4.2.2, 4.2.3, 4.2.4

Basic Single-Stage Amplifier Configurations

Widely Used Two-Transistor Circuits

- Write KCL for each node, solve for desired transfer function or port impedance
- Most general method, but conveys limited qualitative insight and often yields high-entropy expressions
- Miller theorem

http://paginas.fe.up.pt/~fff/eBook/MDA/Teo_Miller.html

- Miller approximation
 - Approximate the gain across Z as frequency independent, i.e. $K(s) \cong K$ for the frequency range of interest
 - This approximation requires a check (or good intuition)

Analysis Techniques (2)

Dominant pole approximation

$$\frac{1}{\left(1 - \frac{s}{p_1}\right)\left(1 - \frac{s}{p_2}\right)} = \frac{1}{1 - \frac{s}{p_1} - \frac{s}{p_2} + \frac{s^2}{p_1 p_2}} \cong \frac{1}{1 - \frac{s}{p_1} + \frac{s^2}{p_1 p_2}}$$

Given $\frac{1}{1 + b_1 s + b_2 s^2} \implies p_1 \cong -\frac{1}{b_1}, \quad p_2 \cong -\frac{b_1}{b_2}$

- Zero value time constant analysis
 - The coefficient b₁ can be found by summing all zero value time constants in the circuit

$$b_1 = \sum \tau_i$$

- Generalized time constant analysis
 - Can also find higher order terms (e.g. b₂) using a sum of time constant products
 - A. Hajimiri, "Generalized Time- and Transfer-Constant Circuit Analysis," IEEE Trans. Circuits Syst. I, pp. 1105-1121, June 2010.

```
B. Murmann
```

EE214 Winter 2010-11 - Chapter 4

Analysis Techniques (3)

- Return ratio analysis
 - See text pp. 599-612
- Blackman's impedance formula
 - See text pp. 607-612
- Two-port feedback analysis
 - See text pp. 557-587
 - More later in this course

5

Chapter Overview

- BJT-centric review of elementary circuit configurations
 - Highlight differences to MOS circuits
- Single-stage amplifiers
 - Common emitter stage
 - Common emitter stage with source degeneration
 - Common collector stage
 - Common base stage
 - Common gate stage (discussion of bulk connection)
- BJT current mirrors
- BJT differential pair

- Main differences to consider versus common-source stage (MOS)
 - Bias point sensitivity
 - Finite input resistance (due to r_{π})
 - Base resistance (r_b) often significant

Bias Point Sensitivity

Gate Tunnel Conductance for MOSFETS

- MOSFETs with extremely thin gate oxide draw a gate current due to direct tunneling
- This leads to a finite current gain and input resistance
- $f_{\text{gate}} = \frac{g_{\text{tunnel}}}{2\pi C_{\text{in}}}$ 107 1GHz 65nm 1MHz Î 10⁵ 90nm 120nm 1kHz i_D∕i_G 90nm f_{gate} 10³ 1Hz 65nm 180nm 10 1mHz 2 8 10 0 4 6 technology **L [μm]** -
- Similar to BJT!


```
B. Murmann
```

EE214 Winter 2010-11 - Chapter 4

11

Frequency Response

Using nodal analysis, we find

$$\frac{\mathbf{v}_{o}(\mathbf{s})}{\mathbf{v}_{i}(\mathbf{s})} = -\left(\frac{\mathbf{r}_{\pi}}{\mathbf{R}_{S}^{*} + \mathbf{r}_{\pi}}\right) \cdot \mathbf{g}_{m} \mathbf{R}_{Ltot} \frac{\left(1 - \frac{\mathbf{s}}{\mathbf{z}_{1}}\right)}{1 + \mathbf{b}_{1}\mathbf{s} + \mathbf{b}_{2}\mathbf{s}^{2}}$$
$$\mathbf{b}_{1} = \mathbf{R}_{S}^{*}(\mathbf{C}_{\pi} + \mathbf{C}_{\mu}) + \mathbf{R}_{Ltot}(\mathbf{C}_{L} + \mathbf{C}_{\mu}) + \mathbf{g}_{m}\mathbf{R}_{S}^{*}\mathbf{R}_{Ltot}\mathbf{C}_{\mu}$$
$$\mathbf{b}_{2} = \mathbf{R}_{S}^{*}\mathbf{R}_{Ltot}(\mathbf{C}_{\pi}\mathbf{C}_{L} + \mathbf{C}_{\pi}\mathbf{C}_{\mu} + \mathbf{C}_{L}\mathbf{C}_{\mu})$$
$$\mathbf{z}_{1} = +\frac{\mathbf{g}_{m}}{\mathbf{C}_{u}}$$

• z_1 is a feedforward zero in the RHP. If $C_{\pi} >> C_{\mu}$, then

$$z_1 = + \frac{g_m}{C_{\mu}} >> \frac{g_m}{C_{\pi} + C_{\mu}} = \omega_T$$

Dominant Pole Approximation

If a dominant pole condition exists, we can write

$$p_{1} \cong -\frac{1}{b_{1}} = -\frac{1}{R_{S}^{*}(C_{\pi} + C_{\mu}) + R_{Ltot}(C_{L} + C_{\mu}) + g_{m}R_{S}^{*}R_{Ltot}C_{\mu}}$$
$$= -\frac{1}{R_{S}^{*}\left[C_{\pi} + (1 + g_{m}R_{Ltot})C_{\mu}\right] + R_{Ltot}(C_{L} + C_{\mu})}$$
$$p_{2} \cong -\frac{b_{1}}{b_{2}} = -\frac{R_{S}^{*}(C_{\pi} + C_{\mu}) + R_{Ltot}(C_{L} + C_{\mu}) + g_{m}R_{S}^{*}R_{Ltot}C_{\mu}}{R_{S}^{*}R_{Ltot}(C_{\pi}C_{L} + C_{\pi}C_{\mu} + C_{L}C_{\mu})}$$

• If $C_{\mu} \ll C_{\pi}$, C_{L} , then

$$p_2 \cong -\frac{R_S^*C_\pi + R_{Ltot}C_L + g_m R_S^*R_{Ltot}C_\mu}{R_S^*R_{Ltot}C_\pi C_L} = -\left(\frac{1}{R_S^*C_\pi} + \frac{1}{R_L C_L} + \frac{g_m}{C_L} \cdot \frac{C_\mu}{C_\pi}\right)$$

B. Murmann

EE214 Winter 2010-11 - Chapter 4

13

Emitter Degeneration

- Degeneration resistor reduces the transconductance and increases the output resistance of the device
 - Same as in the MOSFET version of this circuit
- For the BJT version, R_E helps increase the input resistance

Calculation of R_i

- For the complete nodal analysis, see text p. 196
- A more intuitive way to find R_i is via the Miller theorem

- Tricks of this kind are useful for reasoning about low frequency behavior
- More detailed analyses must be used be taken when investigating frequency dependence

Small-Signal Equivalent Circuit for Degenerated CE Stage

- Deriving the transfer function of this circuit requires solving a 3x3 system of equations
- In order to obtain an estimate of the circuit's bandwidth, it is more convenient (and intuitive) to perform a zero-value time constant analysis

```
<page-header><page-header><page-header><page-header><page-header><page-header><page-header>
```

Bandwidth Estimate for Degenerated CE Stage (1)

$$\begin{split} \boldsymbol{R}_{\mu} &= \boldsymbol{R}_{s}^{*} \Big\| \boldsymbol{r}_{\pi} \left(1 + \boldsymbol{g}_{m} \boldsymbol{R}_{E} \right) + \boldsymbol{R}_{C} + \boldsymbol{G}_{m} \Big[\boldsymbol{R}_{s}^{*} \Big\| \boldsymbol{r}_{\pi} \left(1 + \boldsymbol{g}_{m} \boldsymbol{R}_{E} \right) \Big] \boldsymbol{R}_{C} \\ &\cong \boldsymbol{R}_{s}^{*} + \boldsymbol{R}_{C} + \boldsymbol{G}_{m} \boldsymbol{R}_{C} \boldsymbol{R}_{s}^{*} = \boldsymbol{R}_{s}^{*} \left(1 + \left| \boldsymbol{A}_{v}(0) \right| \right) + \boldsymbol{R}_{C} \end{split}$$

$$\mathsf{R}_{\pi} \cong \mathsf{r}_{\pi} \big\| \frac{\mathsf{R}_{\mathsf{S}}^{*} + \mathsf{R}_{\mathsf{E}}}{1 + \mathsf{g}_{\mathsf{m}} \mathsf{R}_{\mathsf{E}}} \cong \frac{\mathsf{R}_{\mathsf{S}}^{*} + \mathsf{R}_{\mathsf{E}}}{1 + \mathsf{g}_{\mathsf{m}} \mathsf{R}_{\mathsf{E}}}$$

B. Murmann

EE214 Winter 2010-11 - Chapter 4

19

Bandwidth Estimate for Degenerated CE Stage (2)

$$\tau = \left[R_{s}^{*} \left(1 + \left| A_{v}(0) \right| \right) + R_{c} \right] C_{\mu} + \frac{1 + \frac{R_{E}}{R_{s}^{*}}}{1 + g_{m}R_{E}} R_{s}^{*}C_{\pi} \qquad \qquad \omega_{-3dB} \cong \frac{1}{\tau}$$

Compare to the case of R_F = 0

$$\tau \cong \left[\mathsf{R}_{\mathsf{S}}^{*} \left(1 + \left| \mathsf{A}_{\mathsf{v}}(\mathbf{0}) \right| \right) + \mathsf{R}_{\mathsf{C}} \right] \mathsf{C}_{\mathsf{\mu}} + \mathsf{R}_{\mathsf{S}}^{*} \mathsf{C}_{\mathsf{\pi}} \qquad \qquad \boldsymbol{\omega}_{-\mathsf{3dB}} \cong \frac{1}{\tau}$$

- Adding R_E can help improve the bandwidth, provided that g_m > 1/R_S*
 - Note, however, that g_m (and hence the power dissipation must be increased) to maintain the same $A_v(0)$
- Consider another special case where g_mR_E>>1 and the time constant due to C_μ is negligible

$$\tau \cong \left(1 + \frac{R_{s}^{*}}{R_{E}}\right) \frac{C_{\pi}}{g_{m}} \qquad \qquad \omega_{-3dB} \cong \omega_{T} \left(\frac{C_{\pi} + C_{\mu}}{C_{\pi}}\right) \left(\frac{R_{E}}{R_{E} + R_{s}^{*}}\right)$$

Common-Collector Stage (Emitter Follower)

- Behavior is very similar to MOS common drain stage, except that
 - We do not need to worry about backgate effect
 - There is finite input resistance due to r_{π}
 - The output resistance depends on R_s (in addition to $1/g_m$)

B	Murmann

EE214 Winter 2010-11 - Chapter 4

21

Input and Output Resistance

Input resistance (by inspection)

$$R_i \cong r_\pi (1 + g_m R_L)$$

Output resistance (using push-through trick)

Low Frequency Voltage Gain

$$\begin{split} A_{v0} &= \frac{v_o}{v_i} = \frac{v_b}{v_i} \frac{v_o}{v_b} \cong \frac{r_\pi \left(1 + g_m R_L\right)}{r_\pi \left(1 + g_m R_L\right) + R_s^*} \frac{g_m R_L}{1 + g_m R_L} \\ &\cong \frac{g_m R_L}{1 + g_m R_L} \quad \text{ for } \quad r_\pi \left(1 + g_m R_L\right) >> R_s^* \\ &\cong 1 \qquad \qquad \text{ for } \quad g_m R_L >> 1 \quad \text{and } \quad r_\pi \left(1 + g_m R_L\right) >> R_s^* \end{split}$$

B. Murmann

EE214 Winter 2010-11 - Chapter 4

23

- Detailed analysis gives a very complex result for the general frequency response expression
- Must typically apply approximations based on given component values

Frequency Response

- Assuming that R_s is large (often the case, and the reason why the stage is used), we expect that the dominant pole is introduced at node v_b
- For the frequency range up until the dominant pole, we can therefore approximate

$$\begin{split} \frac{v_{o}}{v_{b}} & \cong \frac{g_{m}R_{L}}{1+g_{m}R_{L}} = K \\ \omega_{p} & \cong \frac{1}{s\left(C_{\pi}\left[1-K\right]+C_{\mu}\right)} = \frac{1}{sC_{i}} \end{split}$$

 See text, pp. 503 for a more detailed analysis, which also captures the feedforward zero introduced by C_π

в	Murmann
υ.	mannann

EE214 Winter 2010-11 - Chapter 4

25

Common Collector Output Impedance

- Detailed analysis of the common-collector output impedance shows potentially inductive behavior for large R_S
- The inductive behavior can lead to undesired "ringing" (or oscillations) during circuit transients
- In other cases, the inductive behavior is utilized for bandwidth extension ("inductive peaking")
- The capacitance C_u tends to reduce the inductive frequency range
 - C_{μ} appears in parallel with R_{S} , and creates a low impedance termination for high frequencies
 - Makes it difficult to use the circuit as a "good inductor"
- For a discussion on common collector output impedance and a detailed KCL-based analysis, see EE114 or section 7.2.3

Common-Base Stage

Note, however, that ω_{p2} can be important in feedback circuits (phase margin)

Common Gate Stage – Bulk Connection Scenarios

 ω_{p2,a} is always less than ω_{p2,b} → Usually a <u>bad</u> idea to connect source to bulk in a common gate stage

B. Murmann

EE214 Winter 2010-11 - Chapter 4

29

Backgate Effect in the EE214 Technology (1)

Backgate Effect in the EE214 Technology (2)

$$I_{IN} = I_{C1} + I_{B1} + I_{B2} = I_{C1} + \frac{I_{C1}}{\beta} + \frac{I_{C2}}{\beta} \cong I_{C2} \left(1 + 2\frac{I_{C2}}{\beta} \right) \quad \text{for} \quad I_{S1} = I_{S2}$$
$$\frac{I_{OUT}}{I_{IN}} \cong \frac{1}{\left(1 + \frac{2}{\beta} \right)} \cong 1 - \frac{2}{\beta}$$

EE214 Winter 2010-11 - Chapter 4

BJT Current Mirror with "Beta Helper"

Minimum V_{OUT} for which Q₂ remains forward active is increased

Differential Circuits

- Enables straightforward biasing without AC coupling
- Information is carried in "differential" signals that are insensitive to "common-mode" perturbations, such as power supply noise
- Fully differential circuits are increasingly used for I/O and clock-and-data recovery (CDR) circuits to allow the use of small signals at high speeds

 The following large signal analysis neglects r_b, r_c, r_e, finite R_{EE} and assumes that the circuit is perfectly symmetric

Large Signal Analysis

- Recall that full steering in a MOS pair occurs for $V_{id} = \sqrt{2} V_{OV}$
- BJT differential pair is linear only for $|V_{id}| < V_T \cong 26 \text{ mV}$

Emitter Degeneration

- Can use emitter degeneration resistors to increase the range of input voltage over which the transfer characteristic of the pair is linear
- For large R_E, linear range is approximately equal to I_{TAIL}R_E

Voltage Decomposition

Common-Mode Voltages

$$V_{ic} \triangleq \frac{1}{2}(V_{i1} + V_{i2})$$
$$V_{oc} \triangleq \frac{1}{2}(V_{o1} + V_{o2})$$

Inputs V_{i1} and V_{i2} can be decomposed into a combination of differential- and common-mode voltage sources

$$V_{i1} = V_{ic} + \frac{1}{2}V_{id}$$
$$V_{i2} = V_{ic} - \frac{1}{2}V_{id}$$

Interaction of Common Mode and Differential Mode

$$A_{cdm} \triangleq \frac{v_{od}}{v_{ic}} \bigg|_{v_{id}=0}$$
 and $A_{dcm} \triangleq \frac{v_{oc}}{v_{id}} \bigg|_{v_{ic}=0}$

- In a perfectly balanced (symmetric) circuit, A_{cdm} = A_{dcm} = 0
- In practice, A_{cdm} and A_{dcm} are not zero because of component mismatch
- A_{cdm} is important because it indicates the extent to which a commonmode input will corrupt the differential output (which contains the actual signal information)

See text, section 3.5.6.9 for a detailed analysis

B. Murmann

EE214 Winter 2010-11 - Chapter 4

45

Common-Mode Rejecton

For fully differential circuits, the common-mode rejection ratio (CMRR) is traditionally defined as

$$\mathsf{CMRR} \triangleq \left| \frac{\mathsf{A}_{\mathsf{dm}}}{\mathsf{A}_{\mathsf{cdm}}} \right|$$

However, the text defines the ratio as

$$\mathsf{CMRR}\big|_{\mathsf{Text}} \triangleq \left|\frac{\mathsf{A}_{\mathsf{dm}}}{\mathsf{A}_{\mathsf{cm}}}\right|$$

This latter definition is appropriate for circuits with a differential input and single-ended output, such as operational amplifiers.

Input-Referred DC Offsets

- In a perfectly symmetric circuit, V_{id} = 0 yields V_{od} = 0
- Imbalances can be modeled as input referred offsets

Analysis

$$V_{os} - V_{BE1} + V_{BE2} = 0$$

$$\therefore V_{os} = V_T \ln \left(\frac{I_{C1}}{I_{S1}} \right) - V_T \ln \left(\frac{I_{C2}}{I_{S2}} \right)$$

$$= V_T \ln \left[\left(\frac{I_{C1}}{I_{C2}} \right) \left(\frac{I_{S2}}{I_{S1}} \right) \right], \quad \text{where } V_T = \frac{kT}{q}$$

If V_{od} = 0, then

$$I_{C1}R_{C1} = I_{C2}R_{C2}$$
$$\therefore \ \frac{I_{C1}}{I_{C2}} = \frac{R_{C2}}{R_{C1}}$$

Thus

 $V_{os} = V_{T} \ln \left[\left(\frac{R_{C2}}{R_{C1}} \right) \left(\frac{I_{S2}}{I_{S1}} \right) \right]$
Result

• For small mismatches $\Delta R_C \iff R_C$ and $\Delta I_S \iff I_S$, it follows that

$$V_{os} \cong V_{T} \left(-\frac{\Delta R_{C}}{R_{C}} - \frac{\Delta I_{S}}{I_{S}} \right) = \left(\frac{g_{m}}{I_{D}} \right)^{-1} \left(-\frac{\Delta R_{C}}{R_{C}} - \frac{\Delta I_{S}}{I_{S}} \right)$$

And similarly

$$I_{os} \cong -\frac{I_C}{\beta} \left(\frac{\Delta R_C}{R_C} + \frac{\Delta \beta}{\beta} \right)$$
 (see text, pp. 231)

- Mismatch in I_s results primarily from mismatches in the emitter areas and the base doping
- Mismatch in β results primarily from mismatches in the base width
- The standard deviations of device-to-device variations in I_S and β is typically on the order of 5%

B. Mur	mann EE214 Winter 2	010-11 – Chapter 4
	Offset V	oltage Drift
	$\frac{dV_{os}}{dT} = \frac{d}{dT} \left[\frac{kT}{q} \left(- \frac{kT}{q} \right) \right]$	$\frac{\Delta R_{\rm C}}{R_{\rm C}} - \frac{\Delta I_{\rm S}}{I_{\rm S}} \bigg] = \frac{V_{\rm os}}{T}$
• E -	xample - V _{os} was determined to be 2 m - Means that the offset voltage v	V through a measurement at 300°K will drift by 2 mV/300°K = 6.6 μV/°C

 For a MOS differential pair, the offset drift is less predictable and turns out to be a complex function of several process parameters

Comparison of V_{OS} for MOS and BJT Differential Pairs

$$V_{OS,BJT} \cong \left(\frac{g_{m}}{I_{D}}\right)^{-1} \left(-\frac{\Delta R}{R} - \frac{\Delta I_{S}}{I_{S}}\right)$$
$$V_{OS,MOS} \cong \Delta V_{t} + \left(\frac{g_{m}}{I_{D}}\right)^{-1} \left(-\frac{\Delta R}{R} - \frac{\Delta (W/L)}{(W/L)}\right)$$
$$? Worse \qquad \text{Similar to BJT}$$

 The standard deviation of ∆V_t can be estimated using the following expression (Pelgrom, JSSC 10/1989)

$$\sigma_{\Delta V_t} \cong \frac{A_{Vt}}{\sqrt{WL}}$$

where $A_{vt}\cong 5mV\text{-}\mu m$ for a typical 0.18 μm process

B. Murmann

EE214 Winter 2010-11 - Chapter 4

51

Numerical Example

- Ignoring resistor mismatch for simplicity
- Assume $(g_m/I_D)_{MOS}$ = 10 S/A, W = 5 μ m, L= 0.2 μ m

$$std(V_{OS,BJT}) \cong std\left[\left(\frac{g_m}{I_D}\right)^{-1} \left(\frac{\Delta I_S}{I_S}\right)\right] = 26mV \cdot 5\% = 1.3mV$$
$$std(V_{OS,MOS}) \cong std\left[\Delta V_t + \left(\frac{g_m}{I_D}\right)^{-1} \left(\frac{\Delta(W/L)}{(W/L)}\right)\right]$$
$$\cong \sqrt{\left(\frac{5mV - \mu m}{\sqrt{5\mu m \cdot 0.2\mu m}}\right)^2 + (100mV \cdot 5\%)^2}$$
$$\cong \sqrt{(5mV)^2 + (5mV)^2} = 7.1mV$$

MOS offset is typically 5-10 times worse than BJT

Chapter 5

Two-Port Feedback Circuit Analysis

B. Murmann

Stanford University

Reading Material: Sections 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.8

Benefits and Costs of Negative Feeback

Negative feedback provides a means of exchanging gain for improvements in other performance metrics

Benefits

- Reduced sensitivity (improved precision)
- Reduced distortion (more later)
- Scaling of impedance levels (up or down)
- Increased bandwidth

Costs

- Lower gain
- · Potential instability

Ideal Feedback (1)

Assumptions for an ideal feedback system:

- 1. No loading
- 2. Unilateral transmission in both the forward amplifier and feedback network

$$S_{o} = a \cdot S_{\epsilon}$$

$$S_{fb} = f \cdot S_{o}$$

$$S_{\epsilon} = S_{i} - S_{fb}$$

$$\Rightarrow S_{o} = (S_{i} - S_{fb}) = a(S_{i} - f \cdot S_{o})$$

B. Murmann

EE214 Winter 2010-11 - Chapter 5

3

4

Ideal Feedback (2)

Closed-Loop Gain:
$$A \triangleq \frac{S_o}{S_i} = \frac{a}{1+af}$$

Loop Gain: $T \triangleq af = \frac{S_{fb}}{S_s}$ \Rightarrow $A = \frac{a}{1+T}$

If **T** >> **1**, then

$$A \cong \frac{a}{T} = \frac{1}{f}$$

The feedback loop acts to minimize the error signal, S_{ϵ} , thus forcing S_{fb} to track $S_{i}.\;$ In particular,

$$S_{\varepsilon} = S_{i} - f \cdot S_{o} = S_{i} - f \cdot \left(\frac{a}{1 + af}\right) S_{i} = \left(1 - \frac{af}{1 + af}\right) \cdot S_{i}$$

$$\therefore \quad \frac{S_{\varepsilon}}{S_{i}} = 1 - \frac{T}{1 + T} = \frac{1}{1 + T} \quad \text{and} \quad \frac{S_{fb}}{S_{i}} = a \cdot f\left(\frac{S_{\varepsilon}}{S_{i}}\right) = \frac{T}{1 + T}$$

Gain Sensitivity

- The feedback network is typically a precision passive network with an insensitive, well-defined transfer function f. The forward amplifier gain is generally large, but not well controlled.
- Feedback acts to reduce not only the gain, but also the relative, or fractional, gain error by the factor 1+T

$$\frac{dA}{da} = \frac{d}{da} \left(\frac{a}{1+af} \right) = \frac{1}{1+af} + a \frac{d}{da} \left(\frac{1}{1+af} \right)$$
$$= \frac{(1+af) - af}{(1+af)^2} = \frac{1}{(1+af)^2} = \frac{1}{(1+T)^2}$$

For a change δa in a

$$\delta a = \frac{dA}{da} \delta a = \frac{\delta a}{(1+T)^2}$$
$$\therefore \quad \frac{\delta A}{A} = \frac{\delta a}{(1+T)^2} \left(\frac{1+T}{a}\right) = \left(\frac{1}{1+T}\right) \frac{\delta a}{a}$$

B. Murmann

EE214 Winter 2010-11 - Chapter 5

The Two-Port Approach to Feedback Amplifier Design

- A practical approach to feedback amplifier analysis and design is based on constructing two-port representations of the forward amplifier and feedback network
- The two-port approach relies on the following assumptions:
 - Loading effects can be incorporated in the two-port model for the forward amplifier
 - Transmission through the forward amplifier is nearly unilateral
 - Forward transmission through the feedback network is much less than that through the forward amplifier
- When the preceding assumptions break down, the two-port approach deviates from, and is less accurate than, the return ratio approach devised by Henrik Bode
- But, the two-port approach can provide better physical tuition, especially with respect to what happens in the frequency domain when the feedback loop is "closed"
 - It is basically an effort to model feedback amplifiers in the way that Harold Black conceived them

Feedback Configurations

- In the two-port approach to feedback amplifier analysis there are four possible amplifier configurations, depending on whether the two-port networks are connected in SHUNT or in SERIES at the input and output of the overall amplifier
- At the OUTPUT
 - A shunt connection senses the output voltage
 - A series connection senses the output current
- At the INPUT
 - A shunt connection feeds back a current in parallel with the input
 - A series connection feeds back a voltage in series with the input
- The four possible configurations are referred to as SERIES-SHUNT, SHUNT-SHUNT, SHUNT-SERIES, and SERIES-SERIES feedback
- The following pages illustrate these configurations using ideal two-port networks

-	
В.	Murmann

EE214 Winter 2010-11 – Chapter 5

Series-Shunt Feedback

In this case a, A and f are all voltage gains

Shunt-Shunt Feedback

Series-Series Feedback

Note: T = af is always dimensionless

B. Murmann

EE214 Winter 2010-11 - Chapter 5

Closed Loop Impedances

- To illustrate the influence of feedback on the input and output impedances of an amplifier, consider the following:
 - Include finite input and output impedances in a simple, idealized two-port model of the forward amplifier
 - Assume that the feedback network has ideal input and output impedances so as not to load the forward amplifier
- Consider two examples, series-shunt and shunt-series amplifiers

SERIES-SHUNT

"Ideal" Series-Shunt Impedances

With $v_i = 0$

Input Impedance

$$Z_i \triangleq \frac{v_i}{i_i}\Big|_{i_0=0}$$

$$Z_{o} \triangleq \frac{V_{o}}{i_{o}} \bigg|_{v_{i}=0}$$

With $i_o = 0$

$$v_{o} = av_{\varepsilon}$$

$$v_{i} = v_{\varepsilon} + fv_{o} = (1 + af)v_{\varepsilon}$$

$$= (1 + T)v_{\varepsilon}$$

$$i_{i} = \frac{v_{\varepsilon}}{z_{i}} = \frac{1}{z_{i}} \left(\frac{1}{1 + T}\right)v_{i}$$

$$Z_{i} = \frac{V_{i}}{V_{i}} = (1+T)Z_{i}$$

$$v_{\varepsilon} + fv_{o} = v_{i} = 0$$

$$i_{o} = \frac{v_{o} - av_{\varepsilon}}{z_{o}} = \frac{1}{z_{o}} (1 + af)v_{o}$$

$$= \frac{1}{z_{o}} (1 + T)v_{o}$$

$$Z_{o} = \frac{V_{o}}{I_{o}} = \frac{Z_{o}}{1+T}$$

B. Murmann

EE214 Winter 2010-11 - Chapter 5

13

"Ideal" Shunt-Series Impedances

Input Impedance

$$Z_i \triangleq \frac{v_i}{i_i} \bigg|_{v_0=0}$$

With $v_o = 0$

$$i_{o} = ai_{\varepsilon}$$

$$i_{i} = i_{\varepsilon} + fi_{o} = (1 + af)i_{\varepsilon} = (1 + T)i_{\varepsilon} \implies Z_{i} = \frac{V_{i}}{i_{i}} = \frac{Z_{i}}{(1 + T)}$$

$$v_{i} = i_{\varepsilon}Z_{i} = \left(\frac{i_{i}}{1 + T}\right)Z_{i}$$

Output Impedance

$$Z_{o} \triangleq \frac{V_{o}}{i_{o}} \Big|_{i_{i=0}}$$

With $i_i = 0$

$$i_{\varepsilon} + fi_{o} = 0$$

$$v_{o} = (i_{o} + ai_{\varepsilon})z_{o} = (i_{o} + afi_{o})z_{o} \qquad \Rightarrow \qquad Z_{o} = \frac{v_{o}}{i_{o}} = (1+T)z_{o}$$

$$= i_{o}(1+T)z_{o}$$

In general:

- Negative feedback connected in series increases the driving point impedance by (1+T)
- Negative feedback connected in shunt reduces the driving point impedance by (1+T)

```
B. Murmann
```

EE214 Winter 2010-11 - Chapter 5

15

Loading Effects – Introductory Example

Consider the following feedback circuit

- Analysis methods
 - Closed loop transfer function using nodal analysis
 - Return ratio analysis (see EE114)
 - Two-port feedback circuit analysis

Nodal Analysis

Given

B. Murmann

 $0 = \frac{\mathbf{v}_1 - \mathbf{v}_0}{\mathbf{R}_F} - \mathbf{i}_i$ $0 = \frac{\mathbf{v}_0 - \mathbf{v}_1}{\mathbf{R}_F} + \mathbf{g}_{\mathbf{m}} \cdot \mathbf{v}_1 + \frac{\mathbf{v}_0}{\mathbf{R}_L}$ Find $(\mathbf{v}_1, \mathbf{v}_0) \rightarrow \begin{pmatrix} \frac{\mathbf{R}_F \cdot \mathbf{i}_1 + \mathbf{R}_L \cdot \mathbf{i}_i}{\mathbf{R}_L \cdot \mathbf{g}_m + 1} \\ \frac{\mathbf{R}_L \cdot \mathbf{i}_1 - \mathbf{R}_F \cdot \mathbf{R}_L \cdot \mathbf{g}_m \cdot \mathbf{i}_i}{\mathbf{R}_L \cdot \mathbf{g}_m + 1} \end{pmatrix}$ $\mathbf{A} = \frac{\mathbf{v}_0}{\mathbf{i}_i} = \frac{\mathbf{R}_L - \mathbf{R}_F \cdot \mathbf{R}_L \cdot \mathbf{g}_m}{\mathbf{R}_L \cdot \mathbf{g}_m + 1} = -\mathbf{R}_F \cdot \begin{pmatrix} 1 - \frac{1}{\mathbf{g}_m \cdot \mathbf{R}_F} \\ 1 + \frac{1}{\mathbf{g}_m \cdot \mathbf{R}_L} \end{pmatrix}$

No information about loop gain (which we need e.g. for stability analysis)

EE214 Winter 2010-11 – Chapter 5

17

Return Ratio Analysis

 $A = A_{inf} \cdot \frac{RR}{1 + RR} + \frac{d}{1 + RR} \qquad A_{inf} = -R_F \qquad d = R_L \qquad RR = g_m \cdot R_L$ $A = -R_F \frac{g_m \cdot R_L}{1 + g_m \cdot R_L} + \frac{R_L}{1 + g_m \cdot R_L} = -R_F \left(\frac{g_m \cdot R_L - \frac{R_L}{R_F}}{1 + g_m \cdot R_L}\right) = -R_F \cdot \left(\frac{1 - \frac{1}{g_m \cdot R_F}}{1 + \frac{1}{g_m \cdot R_L}}\right)$

- The result for the closed loop gain (A) matches the nodal analysis perfectly
- In addition, we have determined (along the way) the loop gain (RR)
 - This is useful for stability analysis
- The return ratio method is accurate and general
- The two-port method aims to sacrifice some of this accuracy and generality in exchange for better intuition and less computational effort
 - The involved approximations follow from the typical design intent for each of the four possible approximations