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SUMMARY

In this paper, design equations of the most common Nested Miller topologies are derived. Moreover, a
coherent and comprehensive analytical comparison among the different topologies is also presented. In
particular, after deriving design equations, following the approach previously proposed by the authors that
have the phase margin as the main design parameter, the different solutions are compared by evaluating
a novel figure of merit that expresses a trade-off between gain-bandwidth product, load capacitance and
total transconductance, for equal values of phase margin. It is shown that there is no unique optimal
solution as this depends on the load condition and the relative magnitude of the transconductance of each
stage. From this point of view, the proposed comparison also provides useful design guidelines for the
optimization of small-signal performance. Simulations confirming the effectiveness of the comparison are
also given. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the analogue design domain, amplifiers with three stages are often encountered. We can find
them in audio power amplifiers [1, 2], in integrated power amplifiers [3–5] (realized with two or
more gain stages and a class AB output stage [5–8]), in integrated voltage regulators [9, 10], and
recently also to implement low-voltage high-gain operational transconductance amplifiers (OTAs).

To stabilize the frequency and transient response of a three-stage amplifier, where the second
stage is non-inverting and the last is inverting, the nested Miller compensation (NMC) topology
can be used [1, 2, 10, 11]. This technique employs two compensation capacitors which exploit
the Miller effect to split low-frequency poles and achieve the desired phase margin and transient
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response. However, this topology results in bandwidth reduction (gain bandwidth product (GBW)
is one-quarter of that achievable by a single-stage amplifier [12]) and in high-power consumption.

Recently, many researchers have proposed different compensation topologies to overcome the
inherent limits of NMC. Many of these topologies use a passive capacitive–resistive compensation
network [13–17] and one or two additional transconductance stages to form feed-forward paths
[18–21]. To improve both the GBW product and the slew rate, other solutions exploit only one
Miller capacitor and a damping-factor control stage [22], an active-feedback stage [23, 24] or an
AC boosting amplifier [25].

The performance achieved by some of the proposed topologies seems really interesting. Indeed,
they are going to be applied even in contests where other compensation strategies are traditionally
used, such as that of integrated voltage regulators [9, 10], where discrete components are used to
provide circuit compensation.

It is worth noting that for many of the proposed topologies, a clear and defined design strategy
which allows to dimension the compensation capacitances involved is not provided, and when
it is given it is based on the proposed methodology in [12] which cannot allow the designer to
arbitrarily set the phase margin. Indeed, the approach in [12] uses, as frequency response target
of the amplifier in unity-gain configuration, a third-order Butterworth frequency response, which
means to design the amplifier with a phase margin almost equal to 60◦.

Moreover, up to now each compensation technique is usually compared to the others only using
experimental data, while analytical comparison is carried out solely for the counterpart of NMC.
This type of evaluation may lead to imprecise results, as it strongly depends upon the technology
used to implement each amplifier as well as on the supply voltage and current consumption. And,
from the designer’s point of view, a comparison based only on the experimental results cannot
indicate the real advantages of a particular compensation topology as it only allows a ranking
based on the specific design conditions of different amplifiers.

Hence, an analytical comparison among the most common solutions presented in the literature
is necessary. Indeed, only this type of evaluation can highlight the real benefits of a compensation
network independently of the specific topology of the three gain stages, the transistor aspect
ratio and the particular technology adopted to implement the amplifier. Moreover, an analytical
comparison between different design solutions can help the designer to choose the compensation
strategy which best satisfies a given set of design constraints.

This paper is organized as follows. In Section 2, design equations for the most common
compensation topologies of three-stage amplifiers, with only the last stage inverting, are
carried out.

In particular, the design methodology proposed by authors in [13, 16], which allows to arbitrarily
set the amplifier phase margin, has been applied for each topology, thus achieving for each
topology analytical design equations to size the network compensation capacitances. Moreover,
the initial assumptions, transfer functions, stability criteria and design factors are also given.
In Section 3 a figure of merit that weights the trade-off between gain-bandwidth product, load
capacitance and the sum of all the transconductances, including those from the compensation
network requiring additional bias current, is introduced and discussed. In Section 4 the small-signal
performance for equal values of the phase margin is compared by analytically evaluating the figure
of merit introduced. And the effectiveness of the proposed design methodology as well as the
analytical figure of merit is confirmed by SPICE simulations. Finally, in Section 5, the conclusions
are given.
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2. PROPOSED DESIGN METHODOLOGY

In this section a design strategy, first proposed by Palumbo and Pennisi [13, 16], is extended to
10 different compensation strategies. Figure 1 shows the block diagram of a three-stage amplifier
and its equivalent small-signal model, where parameters gmi , roi and Coi represent the i th stage
transconductance, resistance and equivalent output capacitance, respectively. Unless and otherwise
stated, in the following the open-loop transfer functions of the topologies considered are carried out
by neglecting the effect of the parasitic capacitances Coi and output resistances roi and assuming
for each stage a DC gain AVi = gmiroi which is much greater than one. These approximations
hold for most amplifiers and allow us to develop a simpler transfer function while maintaining
accuracy. The gain-bandwidth product of all the compensation techniques considered is equal to

�GBW = gm1

CC1
(1)

In addition, since in general the output stage significantly affects the performance of the whole
amplifier in terms of power dissipation, linearity and bandwidth [26], we develop design equations
by normalizing transconductances with respect to the transconductance of the last stage gm3, thus
introducing the variables

GNm1 = gm1

gm3
(2)

GNm2 = gm2

gm3
(3)

Design equations giving the values of the compensation network components are usually carried
out by neglecting the effect of zeroes and assuming a Butterworth unity-feedback frequency
response. However, by following this procedure, the designer cannot set the compensation network
for the desired phase margin. To this end, we extend an alternative design strategy initially proposed
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Figure 1. (a) Block diagram of a three-stage amplifier; and (b) equivalent small-signal model.
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Figure 2. Block diagram of a three-stage NM compensated amplifier.
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Figure 3. Block diagram of NMCNR [15].

by Palumbo and Pennisi [13, 16] for NMC and NMCNR (nested Miller compensation with nulling
resistor), which introduces the phase margin as an additional design parameter, and apply it to all
the compensation topologies studied.

2.1. Nested Miller compensation (NMC) and NMC with nulling resistor (NMCNR)

The high-level schematic of a three-stage NMC amplifier is shown in Figure 2. This topology has
been extensively studied [12–14] assuming that gm3�gm2, gm1 with the purpose of neglecting the
effect of the two zeroes (one left half plane (LHP) zero and one right half plane (RHP) zero located
at a lower frequency) due to the feed-forward current through the two compensation capacitors.
Nevertheless, in low-power CMOS design condition gm3�gm2, gm1, which is equivalent to GNm1,
GNm2�1, is not easy to achieve and consequently, the design equations carried out can lead to
wrong results. To cancel the RHP zero, while maintaining the LHP, which enhances phase margin,
the NMCNR topology shown in Figure 3 was proposed [15].
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For the sake of conciseness we did not study the NMC core directly but derived it by setting
RC = 0 from the NMCNR topology shown in Figure 3. The transfer function of the equivalent
small-signal circuit of the block diagram in Figure 3, evaluated under the assumptions introduced
at the beginning of this section, is given by

AvNMCNR(s)= A0

1 + s

[
RCCC1 +

(
RC − 1

gm3

)
CC2

]
+ s2

gm3RC − 1

gm3gm2
CC1CC2(

1 + s

�P1

)[
1 + s

(
1

gm2
− 1

gm3

)
CC2 + s2

1 − gm2RC

gm3gm2
CC2CL

] (4)

where �P1 is the dominant pole expressed by

�P1 ∼= 1

ro1CC1gm2ro2gm3ro3
(5)

and A0 is the DC voltage gain given by

A0 =−gm1ro1gm2ro2gm3ro3 (6)

Equation (3) also includes two other (higher) poles and two zeroes.
Now let us develop the design conditions for CC1 and CC2 as a function of RC . The second-

order polynomial at the denominator of (4) is equal to the denominator of the open-loop gain
of the second and third stages alone (which we also refer to as the inner amplifier) and can be
rewritten as

Dinner = 1 + s

�GBWi
+ s2

�2
GBWi Ki

(7)

where �GBWi is the gain-bandwidth product (almost equal to the transition frequency) of the inner
amplifier, given by

�GBWi = gm2

(1 − GNm2)CC2
(8)

and Ki is the ratio between the inner amplifier second pole and �GBWi , called separation factor
(which is almost equal to the tangent of the phase margin of the inner amplifier [13]). To avoid over-
shoot in the inner amplifier frequency response module, a proper value of the separation factor Ki
must be set. In particular, assuming Ki = 2 (which is the minimum value guaranteeing a monotonic
module frequency response and corresponding to a phase margin of about 64◦)‡ and comparing
the coefficients of Equation (7) with those of a second-order polynomial at the denominator of
Equation (4), after some algebra we get

CC2 = 2
gm2gm3(1 − gm2RC )

(gm3 − gm2)2
CL (9)

‡This by representing the denominator of the inner amplifier, using pole frequency �n and damping factor �,
Dinner = 1 + (2�/�n)s + (1/�2

n)s
2. Such a condition is achieved by setting � = 1/

√
2.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2008; 36:53–80
DOI: 10.1002/cta



58 A. D. GRASSO, G. PALUMBO AND S. PENNISI

Now let us introduce phase margin � as design parameter of the global amplifier. Neglecting, for
the moment, the effect of the zeroes, the following relation holds:

tan� = tan

(
90◦ − tan−1 �GBW/�GBWi

1 − 1
2 (�GBW/�GBWi )2

)
= 1 − 1

2 (�GBW/�GBWi )
2

�GBW/�GBWi
(10)

where �GBW is the unity-gain frequency of the global amplifier expressed by Equation (1). Solving
Equation (10) using Equations (1), (8) and (9) we get the expression of CC1

CC1 =
[
tan� +

√
tan2 � + 2

] gm1(1 − gm2RC )

(gm3 − gm2)
CL (11)

Now, setting RC = 0, we obtain the design equations for NMC topology

CC1 =
[
tan� +

√
tan2 � + 2

] GNm1

1 − GNm2
CL (12a)

CC2 = 2
GNm2

(1 − GNm2)2
CL (12b)

and the constraint GNm2<1 is required to obtain LHP poles.
The above equations are valid if we neglect the effect of the zeroes on the phase margin (i.e. if

condition GNm1,GNm2�1 holds). It should be noted that this condition is mandatory if we want
to achieve feasible values for the compensation capacitors. Indeed, to get values of CC2 smaller
than CL , constraint GNm2<2−√

3∼= 0.27 must be satisfied. In the same way, to satisfy constraint
CC1<CL we set an upper limit on the value of GNm1, which can be found using Equation (12a)
and is expressed by GNm1<(1 − GNm2)/[tan� + √

tan2 � + 2].
In contrast, setting RC = 1/gm3 the s2 term in the numerator of Equation (1) is set equal to

zero, yielding only an LHP zero �z = gm3/CC1 as proposed by Leung and Mok [20] and called
NMCNR topology. Taking into account the LHP zero, the phase margin is given by

tan� = tan

(
90◦ − tan−1 �GBW/�GBWi

1 − 1
2 (�GBW/�GBWi )2

+ tan−1 �GBW

�Z

)

= 2�GBWi (�GBW/�GBWi )
2 + �Z (2 − (�GBW/�GBWi )

2)
�GBW

�GBWi
[�GBWi ((�GBW/�GBWi )2 − 2) + 2�Z ]

(13)

or equivalently, introducing the angle �B as the contribution of the zero to the phase margin

tan(� − �B) = tan

(
90◦ − tan−1 �GBW/�GBWi

1 − 1
2 (�GBW/�GBWi )2

)
= 1 − 1

2 (�GBW/�GBWi )
2

�GBW/�GBWi
(14a)

where

�B = tan−1
(

�GBW

�Z

)
= tan−1(GNm1) (14b)
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It should be noted that Equation (14a) is formally similar to Equation (10). Thus, setting RC = 1/gm3
in Equations (11) and (9), we obtain the following design equations:

CC1 =
[
tan(� − �B) +

√
tan2(� − �B) + 2

]
GNm1CL (15a)

CC2 = 2
GNm2

1 − GNm2
CL (15b)

Again, in order to get LHP poles and to have a zero at a frequency greater than the �GBW,
we must guarantee constraints GNm2<1 and GNm1<1, respectively. However a value of GNm1
and GNm2 which is much lower than 1 must be chosen to obtain compensation capacitances
lower than load capacitance. Indeed, from Equation (15a), neglecting the effect of zero, we get
GNm1<[tan� + √

tan2 � + 2]−1, and from Equation (15b) we get GNm2<
1
3 .

2.2. Double pole-zero cancellation (DPZC)

Compared to NMCNR, the DPZC compensation topology, proposed by Palumbo and Pennisi [16]
and Grasso et al. [17], exploits an additional resistor RC2 in the compensation network, as shown
in Figure 4, with the aim of extending the bandwidth through a pole-zero cancellation. The transfer
function of the small-signal equivalent circuit of Figure 4 is equal to

AvDPZC(s)

= A0

1+s

[
RCCC1+

(
RC2 + RC− 1

gm3

)
CC2

]
+s2

(1+gm2RC2)gm3RC−1

gm2gm3
CC1CC2(

1+ s

�P1

)[
1+s

(
RC2+ 1

gm2
− 1

gm3

)
CC2+s2

1 − gm2RC

gm2gm3
CC2CL

] (16)

By inspection of Equation (16), it can be seen that the zeroes can both be made negative and their
values can be adjusted to exactly cancel the two higher poles. By setting RC = 1/gm3 and equating

gm2 gm3

+ -

Av2 Av3

+

gm1

Av1

CL

CC1

CC2

Vin Vout

RC

RC2

Figure 4. Block diagram of DPZC [16, 17].
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the coefficients of the second-order polynomials, we get

RC2 = CL

gm3CC2
(17a)

CC1 = 1 − GNm2

GNm2
CC2 (17b)

By substituting Equation (17a) in Equation (17b), we find that the transfer function frequency
response of the amplifier is now a single-pole function. Setting the inner phase margin to over 64◦
yields GNm2<

1
2 . Under this condition, any value of CC2 lower than CL ideally ensures that the

inner amplifier is stable. In reality, the minimum value of CC2 is imposed by parasitic capacitances.
Indeed, after pole-zero cancellation, a parasitic pole remains which is approximately expressed by
�par = (gm3 − gm2)/Co2. Making the parasitic pole much higher than the gain-bandwidth product
yields condition CC2�Co2[GNm1GNm2/(1 − GNm2)

2]. From Equations (1) and (17b), it is clear
that the lower the value of CC2 the better the gain-bandwidth product of the amplifier. Thus, this
technique shows good performance for capacitive loads greater than 100 pF. In this case, as a rule
of thumb we can set CC2 = 0.05–0.1 CL in a first design step.

A final remark concerns the effects of process and temperature variations. These do not allow
perfect pole-zero cancellation and two pole-zero doublets arise which could deteriorate the ampli-
fier’s stability, especially if the lower doublet appears to the left of the transition frequency. This
drawback is common to all the pole-zero cancelling approaches and can be alleviated by using
pole-zero tracking biasing schemes.

2.3. Multi-path nested Miller compensation (MNMC)

To improve the bandwidth of the basic NMC solution, MNMC exploits an additional feed-
forward path, as shown in Figure 5. Assuming constraint gm3�gm1, gm2, the transfer function is
given by

AvMNMC(s)= A0

1 + s
CC1gm f 1

gm1gm2(
1 + s

�P1

)(
1 + s

CC2

gm2
+ s2

CLCC2

gm2gm3

) (18)

Neglecting the high-frequency zeroes, MNMC introduces an additional LHP zero compared to
the NMC solution. As proposed by Eschauzier and Huijsing [18], the multi-path LHP zero can
be used to cancel out the second non-dominant pole of the amplifier, thus enhancing �GBW. The
transfer function (18) can be rewritten as

AvMNMC(s)∼= A0

(
1 + s

�Z

)
(
1 + s

�P1

)(
1 + s

�P2

)(
1 + s

�P3

) (19)

where �Z = gm1gm2/gm f 1CC1, �P1 = gm1/CC1, �P2 = gm3/2CL(1 − √
1 − 4�), �P3 =

(gm3/2CL)(1 + √
1 − 4�), � = (gm2/CC2)CL/gm3.
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Figure 5. Block diagram of MNMC [18].

Setting �P2 =�Z and � = 0.1 [14], so that the third pole moves at high frequency, we get

CC2 = 10GNm2CL (20)

tan� = tan

(
90◦ − tan−1 �GBW

�P3

)
= �P3

�GBW
(21)

CC1 = 2
tan�

1 + √
0.6

GNm1CL (22)

It is worth noting that the proposed compensation is effective only when GNm1,GNm2�1 otherwise
the expression of the feed-forward zero is different and, additionally, an RHP zero appears.

Compared to NMCNR, this technique enhances GBW, albeit at the expense of extra circuitry,
increased power dissipation (gm f 1 = 4.54 gm2 for �= 60◦) and very high values of CC2, which
greatly affect slew rate and area occupation, especially when the capacitive load is high.

2.4. Nested Gm-C compensation (NGCC)

The NGCC solution [19] exploits two additional transconductance stages to implement the com-
pensation network, as shown in Figure 6. Although this compensation strategy can be profitably
extended to an N -stage amplifier, here we analyse only the three-stage case which represents a good
compromise between DC gain, power dissipation and circuit complexity. The transfer function of
a three-stage NGCC topology is given by

AvNGCC(s)= A0

1 + s
CC2(gm f 2 − gm2)

gm2gm3
+ s2

CC1CC2(gm f 1 − gm1)

gm1gm2gm3(
1 + s

�P1

)[
1 + s

CC2(gm f 2 − gm2 + gm3)

gm2gm3
+ s2

CLCC2

gm2gm3

] (23)

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2008; 36:53–80
DOI: 10.1002/cta



62 A. D. GRASSO, G. PALUMBO AND S. PENNISI

gm2 gm3

+ -

Av2 Av3

+

gm1

Av1

CL

CC1

CC2

Vin Vout

-

gmf2

+

gmf1

Figure 6. Block diagram of NGCC [19].

From the numerator of Equation (23), it can be seen that the zeroes can be easily eliminated
by setting gm f 1 = gm1 and gm f 2 = gm2. Thus, the phase margin is exactly expressed by Equation
(10), where �GBWi = gm2/CC2. Following the same procedure shown in Section 2.1, we obtain
the following design equations:

CC1 =
[
tan� +

√
tan2 � + 2

]
GNm1CL (24)

CC2 = 2GNm2CL (25)

Although condition GNm1,GNm2�1 is not required to derive the above equations, to get prac-
tical values for CC1 and CC2, i.e. values at least smaller than CL , we must satisfy constraints
GNm2<

1
2 and GNm1<[tan� + √

tan2 � + 2]−1, respectively. It should be noted that the NGCC
topology requires extra circuitry merely to implement gm f 1. Indeed, implementing the feed-forward
transconductance gm f 2 does not entail extra transistors, since it can be realized by simply changing
the connection of the active-load transistor in the last stage. Moreover, given that the load is driven
by a push–pull structure, the slew rate is only limited to internal nodes.

2.5. Nested Miller compensation feed-forward (NMCF) and NMCF with nulling resistor
(NMCFNR)

Cancelling both the RHP and LHP zeroes from the transfer function of the basic NMC amplifier
to obtain a stable amplifier as occurs in NGCC topology is unnecessary. Indeed, the LHP zero can
be used to enhance phase margin, allowing, in turn, the use of smaller compensation capacitors to
be used. To this aim, solutions NMCF [14] and NMCFNR [20, 21] were proposed. In particular,
both exploit one feed-forward transconductance, with NMCFNR also using a compensation resistor,
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+

gm1

Av1

CL

CC1

CC2
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RC
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gmf2

Figure 7. Block diagram of NMCFNR [21] and NMCF (RC = 0) [20].

as shown in Figure 7. The transfer function of the small-signal equivalent circuit of Figure 6 is
equal to

AvNMCFNR(s)

= A0

{
1+s

[
(CC1+CC2)RC+ (gm f 2−gm2)

gm2gm3
CC2

]
+s2

(gm f 2+gm3)RC − 1

gm2gm3
CC1CC2

}
(
1+ s

�P1

)(
1+s

gm3+gm f 2−gm2

gm2gm3
CC2+s2

1−RCgm2

gm2gm3
CC2CL

) (26)

The feed-forward transconductance gm f 2 can be set equal to gm3 to obtain a symmetrical push–
pull output stage which enhances slew rate performance. Setting RC = 0 we get NMCF topology.
Following the same strategy as in the previous subsections and considering that the phase margin
can again be expressed using Equation (14a), where �GBWi = gm2/(2−GNm2)CC2, we obtain the
following design equations:

CC2 = 2GNm2

(2 − GNm2)2
CL (27)

CC1 =
[
tan(� − �B) +

√
tan2(� − �B) + 2

] GNm1

2 − GNm2
CL (28)

�B = tan−1
(

�GBW

�Z

)
= tan−1

⎛
⎝2

1 − GNm2

(2 − GNm2)
(
tan� + √

tan2 � + 2
)
⎞
⎠ (29)

The term �B takes into account the effect of the lower frequency zero which is LHP. NMCF
topology is characterized by two zeroes whose expression can be found by equating the
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numerator of Equation (26) to zero after setting RC = 0. However, we can approximate the expres-
sion of the LHP zero to the reciprocal of the s term coefficient, if condition gm2gm3/(gm3−gm2)

CC2�CC1/(gm3−gm2) is satisfied, since in this case the numerator of Equation (27) can be
rewritten as

1 + s
gm3 − gm2

gm2gm3
CC2 − s2

CC1CC2

gm2gm3

∼=
(
1 + s

gm3 − gm2

gm2gm3
CC2

)(
1 − s

CC1

gm3 − gm2

)
(30)

Neglecting �B , the above condition is verified with good approximation when GNm1<2(1−
GNm2)

2/[(tan� + √
tan2 � + 2)(2−GNm2)], that is to say for all the values of GNm1 and GNm2

which in turn yield the values of the compensation capacitors smaller than CL . Indeed, to satisfy
conditions CC2<CL , CC1<CL , we must guarantee that GNm2<3−√

5∼= 0.76 and, neglecting the
effect of the zero, GNm2<2(2 − GNm2)/(tan� + √

tan2 � + 2), respectively.
The NMCFNR topology is obtained by setting gm f 2 = gm3 and RC = 1

2gm3. In this case,
the s2 term in the numerator of Equation (26) is set to zero and only the LHP zero �z =[CC1+CC2/

2gm3+(gm3 − gm2/gm2gm3)CC2]−1 remains. Compared to NMCF, the compensation resistor
RC allows smaller compensation capacitors to be obtained. Indeed, using Equation (14a) with
�GBWi = gm2/(2 − GNm2)CC2 and following the same procedure, we get the following
design equations:

CC1 =
[
tan(� − �B) +

√
tan2(� − �B) + 2

] GNm1

2
CL (31)

CC2 = GNm2

2 − GNm2
CL (32)

�B = tan−1
(

�GBW

�Z

)
= tan−1

(
GNm1

2
+ 1

tan� + √
tan2 � + 2

)
(33)

In order to satisfy conditions CC2<CL , CC1<CL , we must guarantee that GNm2<1 and, neglecting
�B , GNm1<2/(tan� + √

tan2 � + 2), respectively.

2.6. Damping-factor control frequency compensation (DFCFC)

Since �GBW = gm1/CC1, and considering the expressions of CC1, it can be seen that for all the
compensation strategies analysed until now, �GBW is proportional to the ratio gm3/CL . Thus,
high values of gm3 (i.e. high power consumption) are needed to increase bandwidth, especially
when driving a large capacitive load. This characteristic is inherited from the nesting of the two
compensation capacitors CC1 and CC2. In particular, CC2 limits bandwidth since it is directly
connected to the output. Including CC2, however, is mandatory if we want to ensure a proper
phase margin for the inner amplifier (i.e. a proper damping factor), avoiding undesired peaks in
the frequency response of the amplifier.

As shown in Figure 8, DFCFC topology [22] only uses the compensation capacitor CC1 con-
nected between two nodes in the direct path and introduces a damping-factor control stage involving
CC2 to guarantee an appropriate phase margin for the inner amplifier. Setting for simplicity
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Vin Vout

-

gmf2

-

gm4

CC2

Figure 8. Block diagram of DFCFC [22].

CC1 =CC2 and assuming that gm4 ro4>1 and Co1,Co4 are smaller than CC1, Co2 and CL , respec-
tively, the open-loop transfer function of the DFCFC topology is expressed by the three-pole and
two-zero function

AvDFCFC(s) = A0

1 + s
Co2gm f 2 − CC1gm4

gm2gm3 + gm f 2gm4
− s2

Co2CC1

gm2gm3 + gm f 2gm4(
1 + s

�P1

)(
1 + s

CLgm4

gm2gm3 + gm f 2gm4
+ s2

Co2CL

gm2gm3 + gm f 2gm4

) (34)

Unlike previous compensation topologies where the poles are a function of CC2, the non-dominant
poles depend on the parasitic capacitance at the output of the second stage Co2. Thus, the bandwidth
is significantly extended. As for the other topologies employing the feed-forward stage gm f 2, we
can set gm f 2 = gm3 so as to obtain a symmetrical push–pull output stage.

Imposing a phase margin of about 64◦ for the inner amplifier (i.e. damping factor of 1/
√
2),

we carry out the required value for gm4

gm4 = cNo2gm3

(
1 +

√
1 + 2

GNm2

cNo2

)
(35)

where

cNo2 = Co2

CL
(36)
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Neglecting the effect of the zeroes, the phase margin can be derived from Equation (10), where
�GBWi = (gm2gm3 + gm f 2gm4)/CLgm4. Solving for CC1 using Equation (35) yields

CC1 =CC2 = cNo2
(
1+√

1 + 2GNm2/cNo2
)

2
[
GNm2+cNo2

(
1+√

1+2GNm2/cNo2
)] (tan�+

√
tan2 �+2

)
GNm1CL (37)

As stated in [14, 22], it is always possible to neglect the effect of the zeroes since they depend
on CC1 and Co2, while the non-dominant poles depend on CL and Co2 and CC1<CL . It is worth
noting that in this topology the value of the compensation capacitor is always much smaller than
the load capacitance.

2.7. Active-feedback frequency compensation (AFFC)

AFFC [23, 24] eliminates capacitive nesting exploiting an active-capacitive-feedback network, as
shown in Figure 9. As a result, only CC2 is directly connected to the output. Setting CC1 =CC2
and assuming that gm4 ro4�1, and Co1,Co2�CC1, CL , the transfer function is given by

AvAFFC(s) = A0

1 + s
CC1

gm4(
1 + s

�P1

)(
1 + Co1CL

CC1(gm f 2 − gm2)
s + Co1CL

gm4(gm f 2 − gm2)
s2
) (38)

As in the previous subsections, gm f 2 is set equal to gm3. Setting a phase margin equal to 64◦ for
the inner amplifier yields

gm4 = gm1

[
tan(� − �B) +

√
tan2(� − �B) + 2

]
(39)

gm2 gm3

+ -

Av2 Av3

+

gm1

Av1

CL

CC2

Vin Vout

gm4

-

gmf2

+
CC1

Figure 9. Block diagram of AFFC [23, 24].
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The phase margin of the global amplifier can be derived from Equation (14), where �GBWi =
CC1(gm3 − gm2)/Co1CL and

�B = tan−1 �GBW

�Z
= tan−1

(
1

tan� + √
tan2 � + 2

)
(40)

Solving for CC1, using Equation (39), results in

CC1 =

√√√√cNo1GNm1

[
tan(� − �B) +√

tan2(� − �B) + 2
]

2(1 − GNm2)
CL (41)

where

cNo1 = Co1

CL
(42)

It is worth noting that the equation obtained includes the low-power strategy proposed by Leung and
Mok [14], since setting � = 60◦ yields gm4 ∼= 2.78gm1 which is much lower than value gm4 ∼= 4gm1
that we obtain by applying the classical approach.

2.8. AC boosting compensation (ACBC)

As shown in Figure 10, ACBC strategy introduces an additional AC amplifier in parallel with
the second stage to enhance high-frequency gain. Assuming ro2�ro4 and Co1,Co2�CC1, CL ,
an inherent pole-zero cancellation occurs [25] and the simplified small-signal transfer function can

gm2 gm3

- -

Av2 Av3

+

gm1

Av1

CL

CC1

Vin Vout

-

gmf2

-

gm4

CC2

-1

Figure 10. Block diagram of ACBC [25].
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be written as

AvACBC(s)≈ A0
1

(
1 + s

�P1

)⎛⎜⎜⎝1 + CL

gm3

(
A2h + gm f 2

gm3

)s
⎞
⎟⎟⎠

(43)

where

A2h = (gm2 + gm4)ro4 (44)

To obtain a symmetrical push–pull output stage, gm f 2 is set equal to gm3. Since only one non-
dominant pole can be considered, compensation is straightforward. Indeed, naming �ND as the
non-dominant pole, we can write

�= tan−1 �ND

�GBW
(45)

and, given that �GBW = gm1/CC1,

CC1 = tan�
GNm1

A2h + 1
CL (46)

Compensation capacitor CC2 can be set equal to CC1 in a first design step, but can be smaller
provided that it is greater than the parasitic capacitances.

As will be shown in the subsequent sections, ACBC is a very efficient compensation strategy.
Indeed, the additional gm4 transconductance stage can be implemented using a simple transistor.
Moreover, the A2h factor can be easily controlled by using a diode-connected transistor [15].

3. THE FIGURE OF MERIT

Hitherto, the performance achieved by a new compensation technique has been analytically com-
pared to the original NMC topology, while comparison of performance with the other approaches
has usually been done using only experimental results, adopting two figures of merit suitable to
evaluate the small-signal and large-signal performance of amplifiers.

In particular, in [22] to show the advantage of the proposed compensation network the two
figures of merit below were used

FOMS = �GBW · CL

Power
(47)

FOML = SR · CL

Power
(48)

where SR is the slew rate and Power is the DC power consumption. The higher the value of
Equations (47) and (48) the better the amplifier. These figures of merit, however, may lead to
imprecise results because they depend upon the supply voltage. A more precise figure of merit,
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which used the total bias current, Idd , in the denominator of Equations (47) and (48), was proposed
by Peng and Sensen [25]

IFOMS = �GBW · CL

Idd
(49)

IFOML = SR · CL

Idd
(50)

To evaluate the amplifier efficiency, the figures of merit (49) and (50) are certainly much useful.
Indeed, they allow to quantify the speed performance in the small and large signal domains,
respectively, after a load condition and a total bias current (i.e. the power consumption assuming
the power supply to be set) have been defined. Of course, the compensation network adopted
in an amplifier affects its final speed performance, but it is not the only element to define that
performance. Indeed, both the circuit topology of each single stage, which composes the amplifier
and the fabrication technology, impacts the amplifier efficiency. As an example, consider that for
a defined value of gm1 the use of a folded cascode topology requires twice the bias current needed
by a differential pair with a current mirror active load topology.

Thus, unless the same amplifier topology and technology is used, a comparison of different
compensation networks based on the above figures of merit from data obtained either experimen-
tally or by simulation, cannot provide general information about the real benefits of a particular
compensation technique, and only allows the considered amplifiers to be ranked as designed by
the original authors.

To perform a general comparison among the many compensation approaches independently of
their particular amplifier topology, design choices and technology, we introduce a novel figure of
merit (FOM). It relates load capacitance, gain-bandwidth product and the total transconductance
of the amplifier, gmT ,

FOM= �GBW · CL

gmT
(51a)

Several considerations lead to define the figure of merit in Equation (51a). The transconductance
is not only a key design parameter in the small-signal domain, but it is also strictly related to other
significant design aspects such as power consumption and silicon area. Indeed, the transconductance
shows the trade-off between transistor area and bias current. On the other hand, remembering
that for a CMOS transistor operating in saturation gm = 2IBIAS/VDSsat and assuming an almost
equal VDSsat for the transistors of the amplifiers being analysed, the transconductance represents
an assessment of power dissipation only. Moreover, perhaps the most relevant consideration is
that the FOM can be analytically evaluated, starting from the design equations derived in the
previous section, regardless of amplifier topology, technology and other design choices. For each
compensation topology, we get a function whose independent variables are the phase margin and the
transconductances of each stage (defined by design considerations which also include silicon area
and power consumption). Thus, the comparison among the compensation topologies can be carried
out through the behaviour of their FOMs. Moreover, for each compensation network, the FOM
function gives information on the topology efficiency due to a variation of the transconductances
distribution among the three stages.
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Exploiting Equation (51a) for a three-stage amplifier with a specific compensation network,
we get

FOM= �GBW · CL

gm1 + gm2 + gm3 + gmCOMP
= GNm1

GNm1 + GNm2 + 1 + gmCOMP

gm3

CL

CC1
(51b)

where gmCOMP represents the sum of the compensation network transconductances, if any, which
require additional bias current (i.e. more power dissipation) for their implementation.

The FOM (51) evaluated using the developed design equations versus the phase margin, �, and
parameters, GNm1, GNm2, are summarized in Table I.

A fair comparison between different compensation techniques can now be achieved by assum-
ing the same phase margin value. Note that this was almost impossible to obtain by following
the traditional design equations based on a Butterworth response for the unity-gain closed-loop
amplifier. Indeed, the resulting phase margin is substantially different from the expected value of
60◦ because the parasitic zeroes in the real transfer function are usually neglected.

Finally, it is worth noting that the proposed FOM represents the ratio between the gain-bandwidth
product of the amplifier under consideration and the gain-bandwidth product of a pure single-stage
amplifier under the same load and having transconductance equal to the total one of the three-stage
amplifier.

4. ANALYTICAL COMPARISON

4.1. Analysis and discussion

Without loss of generality, we make the comparison assuming a phase margin equal to 70◦, because
this value allows us to optimize the 1% settling time [13, 27]. Nevertheless, almost the same results
can be found for different phase margin values.

Let us start by analysing the compensation topologies whose FOM depends only on the phase
margin, �, and parameters, GNm1, GNm2. Hence, we do not consider the topologies DFCFC, AFFC
(whose FOM depends also on the ratio between parasitic capacitances and load capacitance, cNo1
or cNo2) and ACBC (whose FOM depends also on A2h). Moreover, we do not consider the DPZC
for the moment, which is the only technique showing an inherent phase margin of 90◦.

The FOM of NMC, NMCNR, NGCC, MNMC, NMCF and NMCFNR, are plotted in
Figures 11–13 versus GNm1, for three typical values of GNm2. We see by inspection that the
basic NMC always exhibits the lowest FOM. NGCC shows a FOM comparable to NMC for low
values of GNm2 (Figures 11 and 12) and is better than NMC only for higher values of GNm2.
Indeed, as shown in Figure 13, for GNm2 = 0.5 the FOM is about 1.5 times NMC, even though
this requires compensation capacitor values comparable to CL , as stated in Section 2.4. MNMC
exhibits a FOM higher than NMCNR only for very low values of GNm1 and GNm2. Finally,
NMCFNR and NMCF topologies generally have the best FOM. In particular, NMCFNR is always
the best choice, as the FOM is always 2–6 times higher than NMC. As regards NMCF, its FOM
is always lower than NMCFNR, but higher than the other topologies (except for NMCNR so
long as the condition GNm1>−GNm2 + 0.9 can be met, which unfortunately yields compensation
capacitances much higher than NMCF).
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From Figures 11–13 it can be seen that for all compensation strategies considered, the lower
the value of GNm2 the higher the FOM. Considering the dependence of FOM on GNm1 we
have different cases. The FOM increases reducing GNm21 for topologies NMC, MNMC, NGCC
and NMCF. For the NMCFNR topology, we observe a similar behaviour only for low values of
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Figure 11. FOM versus normalized transconductance GNm1 for GNm2 = 0.02, �= 70◦.
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Figure 13. FOM versus normalized transconductance GNm1 for GNm2 = 0.5, � = 70◦.

GNm2, whereas the FOM slightly increases increasing GNm1 for value of GNm2 approaching 0.5.
Finally, in contrast with the previous cases, the FOM of NMCNR increases increasing GNm1.

Now, let us consider the DFCFC, AFFC and ACBC topologies which are the only structures
whose FOM depends upon parasitic parameters cNo1, cNo2 and A2h . Their FOM are plotted
against GNm1 in Figures 14–16 for two values of cNo1, cNo2 and A2h and for three typical values
of GNm2. In particular, we chose the value of 0.002 and 0.02 for cNo1 and cNo2, which correspond
approximately to a load capacitance ranging from 800 to 1 nF and from 80 to 100pF, respectively.
In order to compare DFCFC, AFFC and ACBC with the other previously analysed topologies, in
the same figures we plot the FOM of NMCFNR, which has already appeared as the best solution.
By inspection of Figures 14–16, it can be seen that for DFCFC and AFFC, the lower the value of
cNo1, cNo2 (i.e. the higher the value of load capacitance CL) the higher the FOM. In particular,
AFFC shows better performance than DFCFC, except for high values of GNm2, for which, as
shown in Figure 16, DFCFC is the best choice. ACBC represents the best solution for low values
of GNm1. For heavy capacitive loads and GNm1>0.1, however, AFFC shows better performance.

It should be noted that for a given load capacitance CL , parameters cNo1 and cNo2 cannot be set
by the designer. In particular, for low/medium values of CL (1–40 pF) DFCFC and AFFC always
show a lower FOM than NMCFNR (even lower than NMCF and DFCFC), as shown in Figure 17
where the FOM is plotted for cNo1 = 0.1. The FOM of ACBC, in contrast, does not depend upon
CL but on parameter A2h whose value can be freely set by the designer to boost the GBW (see
Equation (46)). Consequently, the FOM of ACBC is always much higher than that of NMCFNR,
irrespective of the capacitive load. Thus, we can assert that ACBC is generally the best choice,
while AFFC is a viable alternative only for heavy capacitive loads (>80–100 pF).

From Figures 14–16 it can be seen that for all compensation strategies except AFFC, the lower
the value of GNm2 the higher the FOM. For the topologies DFCFC and AFFC, the FOM also
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increases for higher load capacitance, which means a lower ratio between parasitic and load
capacitances. For the ACBC it is advantageous to have a high value of A2h . Moreover, for
all compensation strategies except AFFC, the lower the value of GNm1 the higher the FOM.
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Figure 16. FOM versus normalized transconductance GNm1 for GNm2 = 0.5, � = 70◦.
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For AFFC, in contrast, there is a maximum value for the FOM. In particular, for a given value
of GNm2, the optimum value GNm1,opt can be found by setting the derivative of the FOM to
zero with respect to GNm1. Although an analytical expression can be found, this equation is still
too complex for hand calculations, but it can be approximated with an error lower than 5% for
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� ranging from 55 to 75◦ by

GNm1,opt = 1
50 [(−3 tan� + 18)GNm2 − 3 tan� + 18] (52)

Now, let us consider DPZC. By inspection of Table I it can be seen that the FOM of this
compensation technique is proportional to GNm2 and ratio CL/CC2. In particular, for a capacitive
load of 100 pF and CC2 = 0.05CL , the value of the FOM can be 2–3 times higher than the other
previously analysed solutions for values of GNm2 that range from 0.3 to 0.4, even though the
phase margin is equal to 90◦. For heavy capacitive loads (>500 pF), DPZC outperforms the other
solutions [17], since its FOM can be as high as 7 for GNm2 = 0.3, GNm1 = 0.4 and CC2/CL = 0.02.

Finally, it is worth noting that, in contrast to the common knowledge, the adoption of the
compensation topologies DPZC, DFCF, AFFC and ACBC, under some specific conditions, can
lead to a three-stage amplifier with gain-bandwidth product higher than that of a single-stage
amplifier having the same total transconductance (in other words the FOM is higher than 1).

4.2. Simulation results

To further confirm the obtained results, the three-stage amplifier whose schematic is shown in
Figure 18 was compensated using the compensation networks illustrated in Figure 19 and was
simulated with SPICE, adopting a 0.35-�m technology and a 2-V supply voltage. As already
stated in the previous sections, the feed-forward transconductance stage gm f 2 (in NGCC, NMCF,
NMCFNR, DFCFC, AFFC and ACBC) can be implemented simply by connecting the gate of
M13 to Vout1. It is worth noting that the schematics in Figure 19 are simplified. In particular,
to properly bias the transistors of the compensation networks of DFCFC and AFFC and avoid
DC offsets, an appropriate bias circuit should be used, as shown in [22, 23]. We designed all the
amplifiers for a phase margin of 70◦ and a load capacitance of 100 pF, setting gm1 = 112 �A/V,
gm2 = 86.2 �A/V, and gm3 = 853 �A/V, corresponding to GNm1 = 0.13 and GNm2 = 0.1.
Moreover, for ACBC, parameter A2h was set equal to 3, while for DFCFC and AFFC a value
of 0.02 was considered for both parameters cNo1 and cNo2, while for DPZC CC2 was set equal
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Figure 18. Schematic of the simulated three-stage amplifier.
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Figure 19. Schematics of the studied compensation networks: (a) NMC (RC = 0) and NMCNR; (b) DPZC;
(c) MNMC; (d) NGCC; (e) NMCF (RC = 0) and NMCFNR; (f) DFCFC; (g) AFFC; and (h) ACBC.

to 0.05CL . The simulation results obtained are summarized in Table II and are found in good
agreement with the design equations carried out in the previous sections, with the exception of the
MNMC, given that condition GNm1,GNm2�1, utilized for the calculations, was not met. Thus,
as stated in Section 2.3, the expression of the feed-forward zero changes and RHP zero appears,
causing a much lower phase margin than expected. After simulating MNMC with GNm1 = 0.02
and GNm2 = 0.02 (but with a power dissipation of about 1 mW), we obtained a phase margin of
67◦, confirming that condition GNm1,GNm2�1 is stringent and essential for this compensation
strategy.
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Table II. Simulation results for gm1 = 112 �A/V, gm2 = 86.2 �A/V, gm3 = 853 �A/V,
�= 70◦ and CL = 100 pF.

FOM
Phase CMRR PSRR
margin GBW CC1/CC2 SR+/SR− T+

S /T−
S (dB)/−3 dB (dB)/−3 dB Power Measure-

(deg.) (MHz) (pF) (V/�s) 1% (�s) (MHz) (Hz) (�W) Analysis ment

NMC 68.3 0.22 85/25 0.25/0.20 2.09/1.54 72/0.15 72/58 345 0.12 0.12

NMCNR 70.5 0.32 56/22 0.30/0.24 1.41/1.08 72/0.15 72/38 345 0.19 0.19

DPZC 90.5 0.40 44.5/5 0.39/0.36 1.28/1.26 72/0.16 72/73 345 0.24 0.24

MNMC 40 0.54 41/100 0.35/0.45 2.5/1.32 72/0.16 72/40 431 0.21 0.19

NGCC 69.1 0.25 76/20 0.33/0.24 1.94/1.44 72/0.11 71/45 365 0.13 0.13

NMCF 69.6 0.67 28/6 0.57/0.56 0.52/0.51 72/0.16 72/115 345 0.39 0.40

NMCFNR 72.1 0.80 23.4/5.3 0.63/0.62 0.45/0.44 72/0.15 72/140 345 0.45 0.48

DFCFC 66.6 0.96 17.5/17.5 0.8/0.75 0.34/0.35 72/0.14 72/184 372 0.56 0.54

AFFC 70.4 2.60 7.5/7.5 12/9 0.25/0.31 69/0.25 68/200k 424 0.98 1.12

ACBC 69.6 2.06 9/9 1.22/1.88 0.33/0.17 71/0.14 71/370 365 1.09 1.14

The value of compensation capacitors CC1 and CC2 is reported in the third column of Table II.
It should be noted that for DFCFC, AFFC and ACBC we set CC2 equal to CC1. Nevertheless,
CC2 can be set even smaller without changing the phase margin, provided that it is higher than
the parasitic capacitances.

To prove that DPZC can achieve better FOM than the other compensation strategies, we
simulated the amplifier by setting gm1 = 156 �A/V, gm2 = 174 �A/V, and gm3 = 512 �A/V and
CC2 = 0.05CL ; CL = 100 pF. The measured FOM was 2.16 (1.91 from the analytical model)
which by inspection of Figures 14–16 was about 2.5 higher than that of the other compensation
techniques, for an equal capacitive load.

5. CONCLUSIONS

In this paper, a design methodology which, unlike traditional ones, also adds the phase margin as
design parameter, was developed and applied to the most widely adopted compensation techniques
for three-stage CMOS amplifiers with only last stage inverting. The design equations obtained
were used to analytically compare the analysed solutions. In addition, we introduced a novel
figure of merit which evaluated the trade-off between gain-bandwidth product, load capacitance
and total transconductance, for equal values of phase margin. Although it was proved that there
is no specific optimal strategy, the best compensation technique depends basically on the value of
load capacitance. In particular, for low-medium capacitive loads (10–500 pF), ACBC provides the
best FOM, whereas for heavy capacitive loads (>500 pF) DPZC achieves better performance. The
DPZC technique also represents a good alternative to ACBC for loads around 100 pF. However,
ACBC generally represents the best choice since its FOM does not depend upon load capacitance.
In addition, it is characterized by relatively low circuit complexity. For all the compensation
strategies, excepting AFFC, the higher the transconductance of the last stage the higher the FOM.
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For AFFC, in contrast, an optimal value of the ratio of the transconductance of the first stage to
that of the last stage was found.

It is worth noting that, under some conditions, four of the analysed compensation techniques,
namely DPZC, DFCF, AFFC and ACBC, may have a FOM higher than one. This means that
the resulting three-stage amplifier has a frequency performance better than that of a single-stage
amplifier with the same total transconductance.

SPICE simulations on a three-stage amplifier compensated by the analysed compensation tech-
niques confirmed the validity of the design strategy as well as the analytical comparison proposed.

The proposed performance comparison was independent of the particular technology used,
allowed a better understanding of the real benefits of a specific compensation strategy and gave
further design guidelines. Indeed, the inspection of the FOM expressions can help the designer to
choose the best values of the transconductances for optimizing an amplifier compensated with a
given compensation technique.
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