Electronic
Circuit and
System
Simulation
Methods

Lawrence T. Pillage
Ronald A. Rohrer
Chandramouli Visweswariah

McGraw-Hill, Inc.

New York San Francisco Washington, D.C. Auckland Bogota
Caracas Lisbon London Madrid Mexico City Milan
Montreal New Delhi San Juan Singapore

Sydney Tokyo Toronto



Library of Congress Cataloging-in-Publication Data

Pillage, Lawrence.
Electronic circuit and system simulation methods / Lawrence
Pillage, Ronald A. Rohrer, Chandramouli Visweswariah.
p. ocm.
Includes index.
ISBN 0-07-050169-6
1. Linear integrated circuits—Computer simulation. 2. SPICE
(Computer file) I. Rohrer, Ronald A. II. Visweswariah,
Chandramouli. III Title.
TK7874.P52 1994
621.3815'01'1353—dc20 04-24429
CIP

Copyright © 1995 by McGraw-Hill, Inc. All rights reserved. Printed in
the United States of America. Except as permitted under the United
States Copyright Act of 1976, no part of this publication may be repro-
duced or distributed in any form or by any means, or stored in a data
base or retrieval system, without the prior written permission of the
publisher.

1234567890 DOC/DOC 90987654

ISBN 0-07-050169-6

The sponsoring editor for this book was Stephen S. Chapman.
Printed and bound by R. R. Donnelley & Sons Company.

Information contained in this work has been obtained by
McGraw-Hill, Inc., from sources believed to be reliable. However,
neither McGraw-Hill nor its authors guarantee the accuracy or
completeness of any information published herein, and neither
McGraw-Hill nor its authors shall be responsible for any errors,
omissions, or damages arising out of use of this information.
This work is published with the understanding that McGraw-
Hill and its authors are supplying information but are not
attempting to render engineering or other professional services.
If such services are required, the assistance of an appropriate
professional should be sought.




Other McGraw-Hill Books of interest

Handbooks

cHEN » Computer Engineering Handbook

cooMmes « Printed Circuits Handbook

coomss » Electronic Instruments Handbook, Second Edition
pi ciacomo » Digital Bus Handbook

FINK AND CHRISTIANSEN » Electronics Engineers’ Handbook
HARPER * Electronic Packaging and Interconnection Handbook
JURAN AND GRYNA + Juran’s Quality Control Handbook
RORABAUGH  Digital Filter Designer’s Handbook

TUMA + Engineering Mathematics Handbook

wAYNANT » Electro-Optics Handbook

WILLIAMS AND TAYLOR o Electronic Filter Design Handbook

Other

ANTOGNETTI » Power Integrated Circuits

BEST * Phase-Locked Loops, Second Edition

BUCHANAN » CMOS | TTL Digital Systems Design

BUCHANAN » BiCMOS/CMOS Systems Design

BYERS » Printed Circuit Board Design with Microcomputers
DAUGHERTY * Analog to Digital Conversion

eLLioTT * Integrated Circuits Fabrication Technology

HECHT « The Laser Guidebook

KIELKOWSKI * Inside SPICE

LICAR] » Multichip Module Design

MASSOBRIO AND ANTOGNETTI » Semiconductor Device Modeling with
SPICE, Second Edition

sze o VLSI Technology

TABAK » Advanced Microprocessors, Second Edition

tsul « LSI{VLSI Testability Design

WATERS » Active Filter Design

woBsCHALL » Circuit Design for Electronic Instrumentation
WALKER » Optical Engineering Fundamentals

To order or receive additional information on these or any

other McGraw-Hill titles, in the United States please call

1-800-822-8158. In other countries, contact your local

McGraw-Hill representative. BC14BCZ






Table of
Contents

Preface cuvveeeeerrreererrensesnsseeceseeesssessssssssssesssssssssaseasassansannsssscossasse IX
Chapter 1 Introduction to Circuit Simulation................ ORI |
1.1  Traditional Circuit SIMUIAtiON ......ccceveivurrmrrenernie et 1
1.2  Linear, Time-Invariant CirCUILs ..........ccceviiiimiiniinimnemnnensiie e 2
1.3 NOAal ANALYSIS...c.ivvrecemeriniriiiiicieersins sttt e 4
1.4  Nodal Admittance EQUation SEAMPS........ccccreinimninssscesnininniinsssnereneanss 6
1.5 Nonlinear (dc) Circuit ANALYSIS....cccoovieiiiiiiiiniiiinirn et 11
1.6 Small Signal (ac) ANALYSIS....c.ceieieeinriiiininienerercc i s 17
1.7  Linear Transient Analysis.....coouciiiiiomimmeieiicsininnsesssesnsiee 18
1.8  Nonlinear Transient ANAlYSis ... 24
1.9 SUIMMMATY ...evverererereriesiencne it r s sbabasms sttt e b bbbt b at st e 24
110 REFEIENCES .viueiieeereciecriereeisrreseesrtesenssssssbessassaesne st et e s eatasaa s r e st et ss s semsa st 26
Chapter 2 Linear dc Nodal Analysis .............. ceteereraessassnaresse 27
2.1  Voltage-Controlled Current SOUTCES.........covvrereerescrrereriniiniminenene e 27
2.2  Independent VOUtage SOUTCES ........cceciviriimenmssesnsscnnsisiiinnmetesnsas s 31
2.3  (Conventional) Nodal AnalysiS.......ccceeverrmermrineissnnissesiiessencsssinsensninsiinnnen. 34
2.4  Controlled Sources in General ...ttt 36
2.5  Operational AMPLFIETS ..o s 40
2.6  When Do Nodal Equations Fail? ..o 42
2.7  DC Solution of Circuits with Energy Storage: C-cutsets and L-loops............ 43
28 SUMIMATY ..ottt s e n s sa e s e st o s b an et s e s a s et 44
2.9 REferBINCES.....cecreiecreeiiireeraresnae e semeesereae st n s e as s e s b s e e s n s s e s s seesr e sbaten 45
Chapter 3 Solution of Linear Equations ...... cesesancseacsesssesseesee 47
3.1  Gaussian EHMINAtion.........cccoiiiiiiniinnieeiiiiee et 47
3.2 LU FaCtOMZatiON .....c.ceeveeereeeerniereeeeesessresseseninissieessssesssisssssssssssssnsssnssnsssess 50
3.3 How LU Factorization Works.........ccccocerereninnniininennnncnnniresesesssssnsnes 54
3.4 Pivot CondItIONMING ... .oceveieuereieiercceterece et esieecesas s s s s ssns s snass e ses 58
3.5 Iterative Refinement..........ccovvivenriiiniininininieninre et sess e 64




vi Table of Contents
3.6 SensitivIty ANALYSIS ...coirereeosrersrrsensriiiiesrsss s 67
37 SUIMMIIATY . oeerevereeeeesescserensosearassesstsetstses s st r et dR st 74
B8 REECLENCES eerveverrivreerereereesetsteisesre s e sss et s st ea s s e e 74
Chapter 4 Linear Transient Analysis Looiennneencicienncsnaenenses 78
4.1  The One-Step Integration APproxXimations ........cevcssisssssmmimssssssensersisees 75
472  Forward Euler ApProXimation .....cccoecomecmmiiminissrssissnesnisisii s cecees 80
43  Backward Euler APPrOXimation....cce it stiisssnssscecees 81
4.4  Trapezoidal APPrOXHNALON.....ovcvevsirississsrisems st 82
4.5  Companion Models for INQUCLOTS.....ouviiiimiiicimisiiiiiim s 82
46  Preliminary COMMENLS ON ACCUIACY .ouuurrursisseserssssnsursnssisssissn st sees 86
47  The Exact Solution of a Simple Series RC CirCuit.......c.ooiioimnninniinnnns 87

4.8  Comparison of One-Step Integration Approximations with the Exact
GOIULION. ..vrvveaseseseeeseesesnesesssesenseneseebsaaeastrasesba e eREHE bR SR n e e e eSSt 95
49  Accuracy of One-Step APProXimations ... 100
4.10 Stability of One-Step Integration ApPProXimation ......c..ccemmrurrmiermecssecases 105
4.11 LTE Estimation via Divided Difference Approximations.......cccveecevcesenens 109
B.12  IIAUCHANCE. ..o eeeeremeeeeeeeieesesssssossseessn e naasnsebaesr s ses e s sre e nasaasm s e s a e b s s bt b e s s e 113
4,13 SUMINATY ...ovveereeeecrctrireseresssenessaere b s tses e res st a eSSt 113
414 REFETEIICES «eeoovieirvevereeireeeaaseesaesetisrsebe e s sebr s s st ssa s ba bt et e s a e s s s e s s et 113
Chapter 5 Linear Transient Analysis IT .ccccovvriiicinsiceinsnenne 115
5.1  Multiple Energy Storage EIEMENts. ..ot 115
5.2 Step and Ramp INPULS.....coeeioeeieeerneriiiii it 125
5.3  One-Step Integration APProXimations ...........cesirirssinmcsscssisinsiniineees 128
5.4 SEADILILY ..cveerveeereerreecmeasie st e 134
5.5  Limitations of One-Step Integration Models.........cconviiiniiiiniines 139
5.6  REFEIENCES .cocieereieiitreeireieereieeittsnr s ettt bt sas s 140

Chapter 6 Frequency Domain Analysis and Moment-

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

Matching Methods .....ccoceieincreecieniicrinccinaneciseoie 141

Small Signal aC ADALYSIS .....ocovuieirerrirccceni s 141
POLE/ZEr0 ANALYSTS ...ecvveuiieirnensiiesetetnies st s 145
Laplace Transform of the State EQUAtions ..o 147
Moments of the Impulse Response and Linear Delay Estimation ............... 149
The Elmore Delay and RC Trees.....covvereerriniiinmiinnn e 152
Moments of the IMpulse ReSPONSE.....ccovveuviviiiimimmiiiieiciiins s 153
Efficiently Computing Moments for RC Trees ......occovececninminsninccnens. 156
Dominant Pole ApProxXimations ......ccoeeeeeeceessismnssimnnsissssssisisiusnnes 158
Dominant Poles via Moment MatChing......cceveeeiieiiieiininenniniiinnen 161

Computing Moments for Generalized CIrCUits .......cocoecorierimceisnniinsiininnn. 165



Table of Contents vii

6.11
6.12
6.13
6.14
6.15

Generalized Moment MatChing .........c.c.ooviveiiriiiiniceninenrcereeeee e 169
Practical (Numerical) Considerations .........ccocceverreeievnnnnneineeecrssssssneneeesssnnnnss 175
Sensitivity ANALYSIS ..oocoirriiiieiec et e 182
CONCIUSIONS .....uviiiieeiiiiririreeeese s errtrrreee s sersnraesesessesssrasessaeseressesssssessesesesssees 186
| 23 £ (=) 117 =1 186

Chapter 7 Sparse Matrices and Some of Their

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11

IMplications ...cccireciiireciiiiiriiiecrncrcinineisinecreseeneass 189

INrOAUCTION ....c..eeiiiiirrcr s s ses 189
Sparse Nodal Admittance MatriCes .........c.oveveiiiiiiienneniinioiiie s 190
Ordering of Sparse MatriCes ......ooveeverreciinrinnicree e e 194
Suboptimal Ordering.........c.ccerveriereieeneeee e e s e nas 196
Numerical Conditioning and Partial Pivoting..........cccccocceviernnrcciiennne. 198
Sparse Tableau AnalysiS.......coccvirvenniiniiniiimie e 200
Qualitative Attributes of the Sparse Tableau.............cccooiiiiiiiiniiininnenen. 204
Relation of the Sparse Tableau to Other Solution Schemes..........cccccuenne. 206
The Original Sparse Tableau Approach..........cccocoeiiinini, 208
Some Sparse Tableau Modeling Considerations ..............cocveccviicicnnninnn. 210
REMEIEIICES ..ottt s bbb 214

Chapter 8 Circuit Partitioning and Large Change

AT 1 188713 217
8.1  Adding a Resistance Between Two Nodes...........cooiiiiiiiinnnn, 218
8.2 NOde TearNG .......ceviuirvimiiiriiiiiiiiiirneneie e sres e st e 227
8.3  Multiple Voltage Source Additions .......c..cceeoieeerricenneccnnicieccs 231
B4 RETEIEINCES...ceieieeeeeeeceetee ettt ettt e s s sae s s r e s br e rbesarenae 237
Chapter 9 Incremental Sensitivity...c.covecrirenirencsienncieannnnene. 239
9.1  Direct Circuit SENSItiVItIES .......covveuerirereriennniiiinienenesirecieesesiereeenesessnsanes 240
9.2  Matrix Interpretation of Direct Sensitivity ........cccoccoeeieinniinnnecrceicinnes 244
9.3  Controlled Sources and Nonlinear Elements............coccoeerininenrcniecennenns 246
94 Adjoint Sensitivity ANALYSIS ......cccovvveviiriiiirieririeiecesesre s esse e 249
9.5  The Adjoint Sensitivity ReIGtiON ...........ccoevrererieermeceeenisees oo 251
9.6  Simple Reciprocal (R, G, V, I) Linear dc Circuits...........ccooveeeveverrnresreiereenens 252
9.7  Sensitivities with Respect to Dependent Source Values..........c.coeeeeeeuerrecenes 259
9.8  Adjoint Circuit Representation of Some Other Multi-Terminal Circuit
EIBIMENLS ... ..ot et sae s sra s sreseassne 264
9.9  The Sparse Tableau Interpretation of Adjoint SENSitiVity ...........ccocevvvrvnene. 267
9.10 Some Possible Applications of Adjoint SENSitiVIty........c.coveerreeereererereennnn. 274
9.11 Time and Frequency Domain Sensitivity Analysis ........ccccocveiemeerereenrennne. 277
912 REfEINCES ....cviuivircttctcece ettt sttt eb bbbttt e eeeones 283



vii Table of Contents
Chapter 10 Simulation of Nonlinear Circuits........ veesevsrnenees 285
101 SPICE c.ooeeeeoeeeeeeteeeteb s et s bbb b 285
10.2  Nonlinear dc ANALYSIS c.cccoceiiriiiiiiiimrisreet i 287
10.3  Newton-Raphson Iteration..... ..o 288
10.4 Damped Newton-Raphson Teration ... 291
10.5 Multi-Dimensional Newton-Raphson Heration.......c.ceoveiiiniisincnennnnn. 295
10.6  Multi-Terminal BIEIMENES .......ocovvriemnerirsimmnsi et 297
10.7 Nonlinear Transient ANALYSIS ......cooeoeveoiiiirmmnniiiise e 306
10.8 Nonlinear Energy Storage EIEMEnts ..o 308
10.9  The BOOm LINE.....eoeoeeecureieremrmereseeseisiersssssss st 313
10,10 REFETEICES «..evvrvrereseaessseeenessstisssbats et e st 314
Chapter 11 Timing Simulation ....ccccccieiineinicnnnneisssicnsssecees 315
11.1 The Quest for Other Methods of Simulation ... 315
11.2  Static vs. Dynamic SimMulation .......coccoeiiiemimsiiins e 316
113 Dynamic SIMUIAON .......coourverreeemeemsiinisrnr sttt 317
11.4 Motivation for Timing Simulation ........ccceevmiiiiiim s 322
11.5 The MOS Timing Simulator (MOTIS).....ccccooiiiiii e 325
11.6 ELogic and SAMSON ..ot 328
11.7 Piecewise Approximate Timing Simulation.........cooiiiennn 332
11.8 Relaxation Methods in Circuit Simulation ... 349
11.9  CONCIUSIONS ...c.vvieeeereeeeeeeitietresseeseersssaesrssrasssse b e b s st sese s s bbb s s e 356
11,10 REFEIEICES ..oonneeivtiiiiriereieareeeeie e tisssaesstssatsins s e s e s s e s st s bt s b s s b s et s e e st et 356
Appendix A Tree/Link Analysis .....cccccccccciirerenens cereesnsnnsnnese 301
Al GIaPRS...ccicic e s 361
A.2 Fundamental Loops and CutSeIS.......cceeeeeiieeienicerenrinnsiiiiinninse st 363
A.3  The Incidence MAtriX ......cceevreereroeeiiiiiinieniinsrise et st 366
A.4  Sparse Tableau and Reduced Tableau Analysis......coovmeiiiiinnnncicncnnss 368
A5  Loop and Cutset MatriCes. ...c.vveveiiieiiiieiiiiiisn e 369
A.6  Circuit Equations in Terms of Loops and CutSets..........ocomnneinncnnens 371
A.7  Tree Selection Procedure. .........coocvivviiimirieniieeinieiinccintseni et 376
A8 REFEICIICES ..ooivviineieectieetireieestissee e smes e e e s st e ba s sba s st sme e as st bt AR s 383
Index ....... tetesecsssesetertrstaresssnstostsnsassassassarass terereressesnsssenessnsesss IO



Preface

The field of circuit simulation has seen some exciting developments ever since the advent
of integrated circuits. Modern integrated circuits continually challenge circuit simulation
algorithms and implementations with the verification problems they pose. What makes
circuit simulation unique is its multi-disciplinary nature. It is an intertwined set of con-
cepts borrowed and adapted from mathematics, circuit theory, graph theory, physics,
device modeling, electrical engineering, and software development. Although there is
much active research in the subject, this book attempts to clearly explain some of the fun-
damentals of circuit simulation, on which most modern techniques are based. Some of the
more recent advances are covered in the book, too.

This book evolved from our teaching and research activities over the years. We are
indebted to all those who invented the concepts and techniques described in the book and
to those who wrote earlier books on the subject.

This book would not have been possible without the collaboration, cooperation, and
help of many colleagues, students, and friends. While it is not possible to mention all of
them, we would particularly like to thank our spouses Leah Pillage, Casey Jones, and
Patricia Buchanan for their constant support and encouragement; Catherine Rapinett for
typing early drafts of the manuscript; all of the graduate students from the simulation
courses at Carnegie Mellon University and the University of Texas at Austin for their cri-
tique of the notes; and David Ling, Ellen Yoffa, and Bill Joyner at the IBM T. J. Watson
Research Center for their support and encouragement. We also thank Steve Chapman and
Jim Halston at McGraw Hill for an outstanding job.

LTP,RAR,andC.V,

ix






Electronic
Circuit and
System
Simulation
Methods






Chapter 1 Introduction to
Circuit
Simulation

The simulation techniques introduced in the 1950s to analyze circuits with tens of transis-
tors are substantially the same as those used today to analyze circuits with tens of thou-
sands of transistors. With the availability of powerful computers and the advent of
workstations, circuit simulators can run much faster today than they did then. But these
programs are often called upon to verify the potential performance of the next generation
of workstations and parallel processors, and with each new generation of computers the
underlying circuitry becomes ever more complex. Due to this increasing complexity, cir-
cuit simulation as a pre-manufacturing design verification strategy is barely keeping up
with the demands that are being placed upon it. And in many areas of application it has
even fallen behind, being supplemented by less precise switch- and logic-level simulation.
But such reduced-precision simulation strategies may only work reliably when design
styles are restricted. In the fierce competition for faster and smaller circuits, more often
than not, presumed restrictions on design styles are bent or broken. In the final analysis
then, only circuit simulation is trusted -- sometimes more so than it should be -- to verify
the essential electrical-system behavior. As a result, huge computing resources are
assigned to the circuit simulation task, which is often the bottleneck in the design process.

This chapter provides an overview of circuit simulation techniques. In particular, it is an
introduction to some of the algorithms and methodologies used in the industry standard
circuit simulator SPICE [Nagel71, Nagel75]. The techniques introduced in this chapter
will be covered in greater detail in the chapters that follow. In addition, alternatives to

SPICE and various nontraditional simulation techniques will be introduced in subsequent
chapters.

1.1 Traditional Circuit Simulation

Before introducing circuit simulation techniques it may be helpful to first discuss some of
the capabilities of a simulator such as SPICE. Most general purpose circuit simulation pro-
grams provide the following capabilities:



2 Introduction to Circuit Simulation

« Linear dc analysis to evaluate the dc currents and dc voltages for a lumped, linear,
time-invariant circuit.

» Nonlinear dc analysis to obtain the quiescent operating point of a circuit which con-
tains nonlinear elements, such as transistors.

« Linear ac analysis to obtain the frequency response of a lumped, linear, time invari-
ant circuit.

» Small signal ac analysis to obtain the frequency domain response of a circuit by
replacing nonlinear elements with their linearized equivalents computed from the
quiescent operating point.

» Linear transient analysis to determine the time domain response of a circuit to vari-
ous input waveforms starting with the initial conditions obtained from the linear dc
analysis.

* Large signal transient analysis to obtain the time domain response of a circuit which
contains nonlinear elements, such as transistors. The time domain responses are
determined by considering the various input waveforms starting with the initial con-
ditions obtained from the nonlinear dc analysis.

In addition to the modes listed above, circuit simulators provide a variety of other func-
tions, such as pole/zero analysis and noise analysis. There are also special purpose simula-
tion programs for thermal analysis, switched capacitor circuit analysis, and so on. By far
the most common way in which the above modes are used is a nonlinear dc¢ analysis to
establish the quiescent point at the start of the simulation, followed by a large signal tran-
sient analysis. The analyses listed above, which form the core for most general purpose
circuit simulators, also share a common analysis core in that they all rely on the linear dc
analysis algorithm. Therefore, to consider how a circuit simulator provides these capabili-
ties we start with the foundations of linear dc analysis.

1.2 Linear, Time-Invariant Circuits

Consider a simple linear time-invariant circuit comprised of the most basic two-terminal
elements: resistors, ideal independent current and voltage sources. The branch relations
for these circuit elements are shown in Figure 1.1. The current-voltage relationships for
any of these elements can be abstracted in terms of a generic two-terminal element or a
topological branch as shown in Figure 1.2. In order to treat all types of branches in a con-
sistent and systematic manner, we use associated reference directions.

Associated Reference Directions: The positive (+) reference for the branch veltage (v,)

is at the tail of the branch current (i,) reference arrow, and the negative (-) reference for
the branch voltage is at the head of the branch current reference arrow.



Linear, Time-Invariant Circuits 3

vn+
+ | R vg=Rig
v . ip = Gv
RESISTANCE R %lq{ (’; , R
- "R
V.
vn+
* i, =1,
INDEPENDENT v, l{,
CURRENT SOURCE v; = Unknown
Y

+

Vi
vy = Vy
INDEPENDENT v iy
VOLTAGE SOURCE ¥ iy = Unknown
V,.

Figure 1.1 Branch relations for some two-terminal circuit elements.

Vs Vit
+ |
Vp Iy o
V. vV,

Figure 1.2 Generic two-terminal element and a topological branch.

The (positive referenced) branch voltage drop is in the same direction as the (positive

feferenced) branch current. Using the associated reference directions, we can compute
Instantaneous branch power as follows:

Py, = v,i,> 0 implies power is being delivered to the element from the rest of the
circuit.
* Py, = v,i, <0 implies power is being delivered to the rest of the circuit from the
element.



4 Introduction to Circuit Simulation

Using the topological branch model in Figure 1.2 and the associated reference direction
conventions, Kirchhoff’s Laws of Interconnection are easily defined:

Kirchhoff's Voltage Law (KVL): Every circuit node has a unique voltage (with
respect to the ground or datum node, which is 0 volts by convention). The voltage
(drop) across a branch, v,, is equal to the difference between the (positive and nega-
tive referenced) voltages of the nodes on which it is incident.

Vp = Vo~V (1.2.1)

Kirchhoff’s Current Law (KCL): The (algebraic) sum of all of the currents flowing
out of (or into) any circuit node is zero.
An example of the application of KCL at a node is shown in Figure 1.3. The branch
relations along with the KCL expression for node N result in the following equation in
terms of the node voltage variables:

VN~V VN~ "K+ Vy— Vg VN~ Vg

I.-14=0 1.2.2
R3 ' RS RlO i R64 "l ® ( )
K L
R, b)),
Vg R64 Vy RS
P A VAVAY AAN— Yy
RlO 149

Figure 1.3 KCL at the N node.

1.3 Nodal Analysis

Consider a » branch, (n+1) node circuit (in the rest of this book, we will consider
(n + 1) node circuits so that the number of non-datum nodes will always be n). Writing a



Nodal Analysis 5

KCL equation in terms of node voltages, as described above, for every non-datum node,
leads to n nodal equations in terms of n non-datum node voltages. The datum node is also
called the ground or reference node, and usually is taken to be at a potential of zero volts.
We can write programs to formulate and then solve such sets of equations in general.

For example, consider the analysis of the dc circuit shown in Figure 1.4. This circuit

has four nodes not counting the ground node; therefore, n = 4. Consider for now that all
of the resistances are 1Q and the two current sources have values of 1A. By inspection

we can write the KCL expression for the n non-datum nodes resulting in the following set
of nodal equations:

Vi- v0+ Vi—Vy
R, R,

_[1

!
o}
l

R, R, R,
(1.3.1)
B2 3l Vs 0 V,+ 3V v 0
= - "2 37 V4 T
R, R, R,
V-V V,— Vv
4

Vg = 0V (ground)

Figure 1.4 Resistor ladder circuit example.

These r nodal equations can be expressed in matrix form



6 Introduction to Circuit Simulation

Yy = J (1.3.2)

where Y is the n x n nodal admittance matrix, J is the nx 1 vector of current source
inputs and v is the nx 1 vector of node voltages which are being sought. Writing the set
of nodal equations by applying KCL at each node is not, however, the most efficient
means of formulation for a software program.

1.4 Nodal Admittance Equation Stamps

In general, the circuit being analyzed is described for a circuit simulation program in terms
of a netlist file. Even computer-aided engincering (CAE) tools which include schematic
capture will first convert the graphical representation into a netlist description. Figure 1.5
is a simple netlist format (similar to the SPICE language) which describes the circuit
shown in Figure 1.4.

Branch type/ From node To node Value
name
1 0 i 1.0
R2 1 0 10
R3 1 2 1.0
R4 2 0 1.0
RS 2 3 1.0
R6 3 0 1.0
R7 3 4 1.0
RS 4 0 1.0
9 0 4 1.0

Figure 1.5 A netlist representation of the circuit shown in Figure 1.4.

For the nodal admittance (matrix) equations, the elements in the netlist contribute terms
in a procedural manner. Branches 2 through 8, the resistors, contribute terms to the ¥
matrix while branches 1 and 9, the independent current sources, contribute to the J vector.



Nodal Admittance Equation Stamps .

From the input list these contributions can be characterized on a branch-by-branch basis
in terms of matrix stamps (sometimes called element stencils or just stencils). To explain
how stamps work, we will assume that the circuit nodes are consecutively numbered. Of
course this 1s not the case in general, however, unique alphanumeric node names in the
user-specified netlist are easily mapped into consecutively numbered nodes internal to the
circuit simulator.

The resistor matrix-stamp is shown in Figure 1.6(a). For a resistor of value R, from
node i to node j as shown in Figure 1.7(a), a positive conductance value (1/R,) is added
to matrix locations (i, i) and (j,j) while a negative value (-1/R,)is added to matrix
locations (i, j) and (j, i) . The stamp for independent current sources is shown in Figure
1.6(b). For a current source branch of value 7, directed from node i to node j, as shown in
Figure 1.7(b) a negative current source value is added to the i" entry of the J vector and
a positive value is added to the it entry. We postpone the treatment of the independent
voltage source stamp until Chapter 2 where we discuss Modified Nodal Analysis.

1 -1 ) From node i
R, &z, frr:‘:; node i -1, (row)
-1 ! I | To node j
R, R, | |+ '{l% ;'lv(;dej 11 * (column)

Fromnode i To nodej
(column) {column)

@ (b)

‘Figure 1.6 Element stamps: (a) For a resistor of value R, connected from node i to node
J; (b} For an independent current source of value I, connected from node i to node j.

V;
R,
V-V, I
R,
Vj j

(a) (b)

Figure 1.7 (a) A resistor connected from node i to node J, and (b) a current source con-
nected from node i to node j.




8 Introduction to Circuit Simulation

We can obtain the overall set of nodal admittance equations by stamping in the branch
contributions on an element-by-element basis. To understand the stamp concept, note that
the current entering node i and leaving node j due to /, adds two terms to the J vector.
For example, the first line of the netlist in Figure 1.5 is stamped into the nodal matrix
equations as follows:

_ S D
0oo000|[° |
000001 I
00000||v =1|g (1.4.9)
00000y, 0
00000}, | [0

Note that this section builds up the equations the way a computer program would. The
intermediate forms of the equations (1.4.1), (1.4.4), and (1.4.5) are not mathematically
valid equations, but the final set of equations (1.4.6) and (1.4.7) are complete. For resistors
(see Figure 1.7(a)), the current is expressed in terms of the node voltages on the left hand

side. For example, the current leaving node i due to resistor R, is

1
R (V=) (1.4.2)

and the current leaving node j through resistor R, is

R, (v;- v (1.4.3)

Therefore, stamping in the second element (R, ) from the netlist in Figure 1.5 results in

1 |-
__—000 Vv, [ 7
R, R, o |,
1 1 Vi I
“-Rz R—Z 0 O 0 vz - 0 (1.4.4)
0 0 000||v 0
0 0 000j|v,| LO]
0 0 000




Nodal Admittance Equation Stamps 9

Similarly, after stamping the third element (R;) from the netlist the partial matrix equa-
tions are

1 ) vl = 1o (1.4.5)
0 . E00v3 g
0 0 0o oo/l’d L°-
0 0 0 00

Finally, after stamping in all of the elements from the netlist we have the following set of
nodal equations:

}1+1+1+1)_1 1 1 1
R, R, R, R, R, R, R Rg
1 1 1 1 ] r -
—_— —_+ —_— 0 v =J —
. Rz R3 R3 0 0 1] 19
Y1 I
1 1 1,11 1 0 ol = I
-y ~o o T T -y - 0
4 R3 R3 R4 5 RS v2 0
1 1 1 1 1 1 3
- 0 - (o +—+=)~= I
6 R, Rs R Ry, R, ACI S
1 1
- 0 0 ,_i — + i
L RS R7 R‘i 8 |
(1.4.6)

We need not -- and usually do not -- bother to build the zeroth (ground node) row and
corresponding column, but here it does show the symmetry of the nodal formulation.
What we have here is the indefinite (or “floating”) admittance formulation: each row and
€ach column sums algebraically to zero, indicating that we do not have an independent set
of equations. We can pick any node to be the reference and obtain the definite admittance
Jormulation by crossing out its row and the corresponding column. In this case the zero
TOW and column correspond to the designated ground node, and can be omitted:



10 Introduction to Circuit Simulation

_ !
1
(lf + 1—) - 0 0
R, R, R, o
1 ( 1 N 1 Ly 1 0 Vi I,
R; Ry R, Rs R; Val _ |0 (1.4.7)
o 1 (1 . 1 +L) s Vs 0
Ry Rs R, R, R, v, 1)
0 0 : ( Ll )
L R, R; Ry

Because all rows and columns sum algebraically to zero, we can reconstruct the indefinite
admittance formulation from the definite in case we want to change reference nodes. The
indefinite admittance formulation will be useful to us later when we consider multi-termi-
nal elements. For now, we should note that the two-terminal element stamps are indefinite.
They can be made definite, of course, by eliminating any matrix entries that correspond to
the ground node’s row or column.

The final step for dc Nodal Analysis is to solve the matrix equations in (1.4.7) to obtain
the dc node voltages. Constructing the inverse of ¥ and multiplying it by J is one way of
obtaining the vector of node voltages. However, there are more efficient means of solving
circuit equations (more on this later in Chapter 3 and Chapter 7). In fact, most simulators
use a direct method for solving sets of linear simultaneous equations to obtain the node
voltages. Gaussian Elimination or LU factorization are the most often applied algorithms
for generalized circuit simulation. In this book we will often use the matrix inverse nota-
tion to indicate solution of a set of simultaneous equations, like

v=Y"J (1.4.8)

In almost all such instances, a practical implementation would use Gaussian Elimination
or LU factorization in the interests of efficiency. Thus any references to obtaining the
inverse of a matrix can be assumed to mean factoring the equations with either of these
direct methods. Further, the equations of large circuits produce sparse matrices, i.e., matri-
ces with very few non-zero entries. The sparsity of such matrices is exploited to obtain the
solution on a computer with reasonable memory and runtime requirements. The matrix in
(1.4.7) is somewhat sparse since the percentage of non-zeros is only 62.5 percent. For
large circuits, however, the matrices can be extremely sparse with less than 1 percent of
the entries being non-zero. The special handling of sparse matrices will be covered in
detail in Chapter 7 where it is shown that one of the reasons that we do not attempt to
invert large sparse matrices is that the sparsity gets destroyed.

The importance of the linear solution cannot be overstated since the following sections
will demonstrate that nonlinear dc and time domain transient circuit analysis are based
upon successive applications of a linear circuit solver.



Nonlinear (dc) Circuit Analysis

1.5 Nonlinear (dc) Circuit Analysis

Consider the problem of determining the dc bias point for the simple diode circuit shown
in Figure 1.8. This single loop circuit can be most easily described in terms of a loop
equation for the current i,. Suppose that the diode in Figure 1.8 is characterized in the
i — v plane by the curve shown in Figure 1.9. Classically, we can obtain the dc operating
point by means of the (Thevenin equivalent) load line also shown in this figure. The load
line represents the voltage source and series resistor, and its intersection with the i - v

curve for the diode is the dc operating point for this circuit.

R

W

iq ‘ 1 Vv,

<

-

dc operating
point

Figure 1.9 Diode i-v curve and graphical solution of dc operating point.

. CQmputationally, we solve for this dc operating point iteratively. To describe how this
Clrcu_lt would be analyzed in a circuit simulator we will first convert the Thevenin equiva-
lﬁ‘:nt n Figure 1.8 to the Norton equivalent shown in Figure 1.10 in order to simplify this
discussion. The single KCL equation at the non-datum node, hence, the nodal equation is




12 Introduction to Circuit Simulation

(1.5.1)

=<
=
1 < -+
a
4___
ht‘-u.
I
=
|
<
.,

Figure 1.10 Diode circuit with a Norton equivalent source.

For completeness, however, we must also include the branch relation equation for the
diode. The nonlinear expression for the diode’s current could be the following:

v
nwkT

where I, is the reverse saturation current, g is the charge on an electron, n is the non-

ideality factor, k is Boltzmann’s constant, and T is the absolute temperature in degrees
Kelvin. Equation (1.5.2) describes a curve in the first quadrant of the i,-v, plane similar

to the one in Figure 1.9. Combining (1.5.1) and (1.5.2) we can express the nodal equation
in terms of the node voltage variable exclusively, as

v

d qVy vV

Equation (1.5.3) represents a nodal equation in terms of a single node voltage. The only
difference between it and other nodal equations considered thus far is that the equation is a
nonlinear function f(v ) :

Vs v gV, ]
Fvp = = - (5+Iar|exp(—) 1)) =0 (1.5.4)
R R nkT :

To solve (1.5.4) using Newton-Raphson [Ralston78) we would start with some initial

guess v, = V, . and attempt to evaluate the node voltage as follows:

Start: n=20
Guess: v, = Vo

Linearize: fiv,+Aavy =fv,) +f(v,)av, = 0 (Taylor expansion)



Nonlinear (dc) Circuit Analysis 13

fvy) d
Solve: Av, = - where f'(v)) = af
fvy avl, -,
Increment: Vael = Vot AV,
Test: Is [f(v,, ] <e?
If yes, we have converged to the required solution; if no, then return to the linearization

step.
Newton-Raphson iteration will converge provided that:

1. The first derivative of f(v) , f'(v) , is continuous (which presents certain restric-
tions on the device models).

2. The initial guess is “sufficiently close” to the final solution (SPICE uses the node-set
concept to allow the user to force this situation).

The Newton-Raphson steps outlined above can also be explained graphically for the
simple circuit in Figure 1.10. For example, consider the linear load line and the diode
curve in Figure 1.11. Starting with an initial guess P1, a tangent T1 is extended from this
presumed operating point. At the intersection of T1 and the load line, solution S1 is
obtained. This tangent projection represents the Newton-Raphson linearization step while
the solution represents the solve step. If S1 is not within € (the error tolerance) of the
actual operating point, a new guess, P2, is obtained from this first solution. The next solu-
tion attempt is then the intersection of tangent T2 with the load line. These iterations are
repeated until a solution is found to be acceptably close to the exact operating point.
(Since the exact solution is not known, convergence is assumed when successive solutions
are within € of each other.)

B ~~—T1 V

Figure 1.11 Iteration to obtain dc operating point.



14 Introduction to Circuit Simulation

The linearization about a presumed operating point can be depicted as replacing the
diode by a linear Norton equivalent circuit at each iteration. The relation between the tan-
gent linearization and a linear Norton equivalent circuit is shown in Figure 1.12. The iter-
ation procedure amounts to successive solutions of linear(ized) dc circuits with each
nonlinear device being replaced by its tangent-determined Norton equivalent circuit.

Ly

i
oy
Q

P1 P
N

~

v
ol d
rd
~ \ Geq

= slope of linearization

-~
Y1 o= ..
eq = la axisintercept

Figure 1.12 The companion model which represents the linearized approximation
(tangent) about the presumed operating point.

In general, this nonlinear iteration procedure is attempted with multiple nonlinear ele-
ments, all being linearized simultaneously. The overall procedure is as follows:

1. Initialize: Guess circuit voltages and/or currents.

2. Linearize: Obtain linearized Norton equivalents for all nonlinear elements
about their presumed operating points.

3. Solve: Formulate (nodal) equations that characterize the linearized
circuit, and solve them for the new presumed operating points.

4. Convergence: Return to Step 1 using the new presumed operating points as
the “guesses” unless the change from the last iteration has been
acceptably small. If the changes are small, then the iteration
terminates successfully. If the number of iterations has
exceeded a pre-determined number of iterations, then the solu-
tion procedure has failed.

Since multiple elements are linearized simultaneously, each element which should
“see” a nonlinear load line will actually “see” a moving linear load line from one iteration
to the next. Mathematically, this is multi-dimensional Newton-Raphson iteration which
will be covered in more detail in Chapter 10. Assuming that such iterations are feasible,



Nonlinear (dc) Circuit Analysis 15

we can extend our dc analysis of linear circuits to solve dc nonlinear circuits by adding to
it model routines that provide linearized equivalent circuits as functions of their presumed
node voltages. Note that such nonlinear elements contribute a stamp both to the ¥ matrix
and to the J vector.

For example, we showed that each nonlinear iteration corresponded to a tangent
approximation of the curve. In terms of (1.5.2) the linearized model in Figure 1.13(a) is

k k
i linearization
T — qu Geq
O
I
l
(a)

G,, G, |« krow » 1,
Geq Geq < [-TOW » qu
|— 3 f —7] | 7 |
k-column {-column

(b)

Figure 1.13 Stamp for linearized diode model.

obtained by evaluating the tangent (partial derivative of (1.5.2)) at the voltage operating
point (the last nonlinear iteration value). Note that the figure shows the direction of I, ,
which is to be treated algebraically. 7, , may be negative, as shown in the figure. This lin-
earization will be covered in more detail in Chapter 10, however, we note here that the
rffSUlting linear Norton equivalent circuit has a Y matrix and J vector stamp as shown in
_Flgllre 1.13(b). Therefore the heart of the nonlinear analysis routine is the repeated stamp-
Ing and linear circuit solving as summarized by the flowchart in Figure 1.14.

We should also point out that the dc diode equation (1.5.2) does not include the capaci-
tance effects associated with a diode Junction. Capacitance is, of course, excluded from
Consideration simply because we are performing a dc analysis. In a dc¢ analysis, there is no
concept of time. The assumption is that time is allowed to go to infinity so that all tran-



16 Introduction to Circuit Simulation

Initial guess
_(node-set)

Linearize nonlinear
elements

l Revised guess
Linear dc analysis

Newton-Raphson
iteration loop

Converged?

Figure 1.14 Flowchart for nonlinear dc analysis. Convergence is reached when approxi-
mately the same answer is obtained twice in a row. The rate and fact of convergence are
affected by the initial guess.

sients in the circuit die out, and our only interest is in computing the final “steady state”
values of the circuit. Therefore, capacitors are made into open circuits and inductors into
short circuits for the purposes of a dc analysis. However, if this dc analysis is a precursor
to a nonlinear transient analysis or an ac analysis, the energy storage elements are reintro-
duced once the dc solution has been obtained. In this case, the diffusion and depletion
capacitances associated with the diode are evaluated at the computed operating point and
introduced into the circuit for the transient or ac analysis.



Small Signal (ac) Analysis 17

1.6 Small Signal (ac) Analysis

Due to the way in which the nonlinear (Newton-Raphson) iterations are performed, the
final Newton-Raphson linearization step produces a portion of the small signal equivalent
circuit model used for ac analysis. For example, the small signal model for the diode in

Figure 1.8, biased at a voltage V", is the tangent about the operating point (the last New-
ton-Raphson iteration) as shown in Figure 1.15. Of course this is not the complete small

_  Slope = sma]l—signalGeq

[ +—a,,

- * vd

Figure 1.15 Small signal diode model at the dc bias point.

signal model since the curve in Figure 1.15 represents the dc characteristics of the diode
as shown in equation (1.5.2). The model does not account for the small signal capacitance
effects. The small signal capacitances (both the diffusion and depletion capacitance) are

simply obtained by evaluating them at the dc operating point, V" .

For small signal ac analysis the energy storage elements (constituting the linearized
small signal capacitances and inductances) are modeled in the frequency domain, as
shown in Figure 1.16. With these branch relations in terms of complex admittances, we
Can extend linear dc analysis to linear ac analysis simply by using complex valued volt-
ages and currents (phasors) and stamping the complex admittances into the ¥ matrix. The
Stamps are identical to those for linear resistors in every way except that the admittances
are now complex values. Therefore, we must extend the linear simultaneous equation

391Ver to handle complex values, The analysis steps for an ac analysis are summarized in
Figure 1.17,



18 Introduction to Circuit Simulation

vTcl I=joCV=G,, = joC
+
Vv 1
Ve
‘_/ ij::Ge‘I joL

Figure 1.16 Complex admittances for capacitors and inductors during ac analysis.

It is important to note that we must exercise caution when performing an ac analysis at
the frequency extremes. Specifically, as © — 0 the capacitors become open circuits and
the inductors become shorts. Conversely, as @ — o the inductors become open circuits
and the capacitors become shorts. Nodal Analysis, which handles only admittance branch
relations, may not cope well with these frequency extremes. Even values close to the
extremes may cause the ¥ matrix entries to become excessively large or small, thus caus-
ing numerical problems due to the finite precision and range of number representation in a
computer. We will discuss ways to overcome such problems later. Figure 1.17 assumes
that reformulation of the nodal equations will solve the problem of extreme values. SPICE
is set up to handle the extreme case of @ — « only under the assumption that the fre-
quency specified will never be sufficiently close to infinity to cause trouble. However, the
limit ® = 0 is a more difficult problem since this is a practical frequency (dc) and the
inductor admittance becomes infinite.

1.7 Linear Transient Analysis

In contrast to small signal ac analysis, linear transient analysis is applied to evaluate the
large signal behavior of a linear circuit as a function of time, t. For example, consider the

lumped, linear ( C is a constant and not a function of the voltage v), time-invariant capac-
itance shown in Figure 1.19. Suppose that we have a circuit with two such capacitors and
a large signal time-varying current source as shown in Figure 1.18. The nodal equations
for this circuit are:

Vi V1=V, d
E'l' R2 +C1'EE(V1—V2) = I,n(t)
(1.7.1)
Vy V-V d dv,

R, R, L dt dt



Linear Transient Analysis 9

Nonlinear dc biasing
(Figure 1.14)

p
v

Initial frequency F(:lrcx)ndg}aéglf;rigglsex Y

Update element
values
l Increment
frequency
Solve complex /
nodal equations
End frequency? N

Y

Bode plot

Figure 1.17 Small signal ac analysis. As the frequency is incremented it must be checked
to ensure that the frequency is not at some extremal point that will cause ill-conditioning.

Notice that the equations in (1.7.1) form a set of first order linear differential equations.
Suppose that we know the solution of the circuit in Figure 1.18 at time ¢, and we seek to

find the solution at some subsequent time ¢ + At. First we replace the differential equation

in Figure 1.19 with an equivalent integral equation:



20 Introduction to Circuit Simulation

¢,
1]
@ @
R, i
Ly (1) R, R, ¢,
_ )l

Figure 1.19 Lumped, linear, time-invariant capacitor.

J.(HAI)Q'd _ IE,J-:I+AI)1.(T) de (1.7.2)

Integrating over the time interval of interest results in

V(E+AD - V(D) = ]E,j:tw)i(t)dt 1.7.3)

or

V(I+ A = v(H + —j( At) (v) dt (1.7.4)

From (1.7.4) we see that the voltage at some future time ¢+ A¢ depends upon the volt-.i
age at time ¢ and the current which flows through the capacitor for the time mterva{.
(t,t+ AD . We do not know the value qf i (1) for this complete interval, but only at th ’
endpoints where its (approximate) values are computed. Therefore, we can approx1mate
the integral of i (#) in equation (1.7.4) by means of the trapezoidal approximation shown'
in Figure 1.20. The integral from ¢ to ¢+ A is approximated by the shaded area, thereforc,

At
I:Hm) (1ydt = ~[i(t) +Ii{t+AD] (1.7.5)

and (1.7.4) becomes



Linear Transient Analysis 21

At
v(t+At)zv(n-+56{iU)+i(t+An] (1.7.6)
i(1)
i(t+AD
it v

Area = integral

“ approximation

4 t+ At T

Figure 1.20 The trapezoidal approximation for the integral of the capacitor current.

We do not know v (t+ Af) or i(t+ At) since we are attempting to compute them in
the circuit solution at time ¢ + At. Hence this is an implicit formula. It would be explicit if
we had an expression for v(r+ At) or i (¢+ At) entirely in terms of known quantities.
Equation (1.7.6) has two unknowns in one equation, however, this is not a problem
because it too has a simple circuit interpretation. A companion model for the capacitance
voltage approximation in equation (1.7.6) is shown in Figure 1.21.

V= v toni) R =
=v(t) +=—=i(t = —
[(1+AD 4 ~ 2C ¢4 2C i(t+ A
— W, AVAVAY >

+ V(t+ AD -

Figure 1.21 Capacitance companion model for trapezoidal integration approximation.

Notice that the unknown voltage, v (t+ At), appears across the Thevenin companion
model which consists of a known voltage source value and a resistor which is a function
of Az. Therefore we can perform numerical integration on our differential equations in
g: -1.1) by solving a linear circuit with resistors which are functions of the numerical time

Cp. :

S_inCe we have considered only Nodal Analysis so far, we transform the Thevenin
“quivalent in Figure 1.21 into its Norton equivalent in Figure 1.22. (This is the approach
USeq by SPICE with the trapezoidal integration option. We will discuss alternative inte-
gration schemes in subsequent chapters.) We note that the Norton equivalent capacitance
Companion model in Figure 1.22 degenerates gracefully to an open circuit for dc analysis,



22 Introduction to Circuit Simulation

At — o . But for very small time steps, A7 — 0, elements of the Norton equivalent capac-
itance model may become excessively large. This is the origin of the SPICE error mes-
sage: “..Time Step Too Small.” In such situations the Thevenin equivalent companion
model derived originally is preferable. We should recognize, however, that the Thevenin
equivalent capacitance companion model may present problems for dc analysis, Al — .
Hence the Thevenin and Norton representations of the trapezoidal companion model have
their relative advantages and disadvantages.

i(t+ Al ”

+

2C 2C
- i it V(I+ Al = ——
Lg= 1+ V(D) b (1+ A0 é Gy = 4

i(t+AD ll

Figure 1.22 Norton equivalent circuit for capacitance trapezoidal model.

Using the Norton equivalent models in Figure 1.22 for the capacitors in Figure 1.18, the
linear “dc” equivalent circuit in Figure 1.23 is solved to approximate the node voltages at
time f + Af. Then, time is moved ahead again and the solution procedure is repeated, until
the required time of simulation has passed.

ic) () + (2C/AD Ve (D)

(&)
N,
+  vo (T+AD) - -
A R
iy (1449 T iy (£ A1) 5
AAY ~
R, + -
I, (1+ A1) ng R3§ At12C,S v {t+AD -
= : 8

Figure 1.23 The RC equivalent circuit for a trapezoidal integration approximation.



Linear Transient Analysis 23

Inductance is the dual of capacitance, so we need not repeat in detail the steps above.
Figure L. 24 includes the differential equation and the corresponding trapezoidal approxi-

mation for an inductor. The trapezoidal integration approximation provides directly the
Norton equivalent companion model form in Figure 1.25.

di

+ “!
’ l,‘ Ldt
L At

I(t+AD =i(b +§—z[v(t) +V(I+ AD]

Figure 1.24 Trapezoidal integration approximation equation for an inductor.

SPICE does not use the Norton companion medel for inductors; to facilitate dc analy-
sis, it uses the Thevenin equivalent circuit inductance companion model shown in Figure
1.26. To handle the voltage source in this companion model SPICE resorts to Modified
Nodal Analysis (MNA), which will be discussed in the next chapter.

i(t+ Al

/|

+

At
L, = 1(t)+—-v(t) <+> v+ Al qu ST

)

i(t+AD

Figure 1.25 Norton equivalent companion model for an inductor.

2L L
V= vty + =i R,, = L
i(t+AD) At

+ V(E+ AD -

i(t+AD
EE——

Figure 1.26 Thevenin equivalent companion model for an inductor.

| We can implement linear transient analysis for RLC circuits using the companion mod-
€ls shown above ag follows:



24 Introduction to Circuit Simulation

1. Start with a known set of capacitance voltages and inductance currents at a specified
time (the initial conditions are either user-specified or obtained from a dc bias com-
putation);

2. Increment time by a prescribed amount A ¢ and invoke the appropriate companion
models; At is selected based on stability, accuracy, and efficiency considerations
and can be different at different times.

3. Perform a “dc type” analysis;

4. Return to step (1) with the results and appropriately modify the companion model
values until the specified end time is attained.

In this section, we have not discussed how best to choose the time step A ¢. This, along
with other numerical integration details, will be covered extensively in Chapter 4.

1.8 Nonlinear Transient Analysis

Finally, we consider what may be the most often applied circuit simulation analys1s,;
namely, nonlinear transient analysis. This analysis is used to determine the large s1gna1f
time domain behavior of circuits containing nonlinear elements. There are many subtleties
involved, however, so we will delay the introduction of nonlinear transient analysis until
later chapters. For now we will present a superficial flowchart (Figure 1.27) for nonline
transient analysis to once again emphasize that linear dc analysis is a critical component o -
everything we seek to do. At each time step, companion models are used to obtain a non-
linear circuit which is solved iteratively by techniques described in Section 1.5.

1.9 Summary

The critical observation to be made is that linear circuit solution lies at the core -- the
deepest inner loop -- of all of the above modes of analysis. Our linear circuit solution rou-
tine(s) must be robust, reliable, and as efficient as possible. To this end we discuss in mom
detail the traditional Modified Nodal Analysis approach to linear circuit solution in the
next chapter. In later chapters we will discuss some alternatives to the traditional methods'
along with their advantages and disadvantages. "



Symmary 25

Nonlinear dc biasing] ~ Without a “good” initial
(Figure 1.14) <— guess, this iteration may

not converge
Initial conditions

Form companion
models
For good choice of Az, ¢ Increment time
PO . Nonlinear
this iteration usually “dc” analysis .
converges rapidly

End time?

Transient
response plot

F,'Ql!re 1.27 Nonlinear transient analysis. Both nonlinear dc analysis stages may require
Significant iteration -- especially the one for determining the dc operating point.



26 Introduction to Circuit Simulation

1.10 References

[Nagel71] L. W. Nagel and R. A. Rohrer. Computer Analysis of Nonlinear Circuits,
Excluding Radiation (CANCER). IEEE Journal of Solid State Circuits, vol. SC-6, pp.
162-182, August 1971.

[Nagel75] L. W. Nagel. SPICE2, A Computer Program to Simulate Semiconductor Cir-
cuits. Technical Report ERL-M520, UC-Berkeley, May 1975.

[Ralston78] A. Ralston and P. Rabinowitz. A First Course in Numerical Analysis.
McGraw-Hill, 1978.



Chapter 2 Linear dc
Nodal Analysis

As we have seen in Chapter 1, Nodal Analysis is well suited to the formulation of equa-
tions for circuits containing only resistances (or conductances) and ideal independent cur-
rent sources. In our preliminary discussion of dc, ac, transient, and nonlinear analyses, we
studiously avoided voltage sources and dependent sources of any kind. In this chapter we
will consider the extension of the nodal equations to handle independent voltage sources
and various linear controlled sources. With these extensions, Nodal Analysis will provide
the means for performing analysis in general on a wide range of electronic circuits.

2.1 Voltage-Controlled Current Sources

Of independent voltage sources and the four kinds of controlled sources, voltage-con-
trolled current sources are the ones that most naturally fit into the nodal equation formula-
tion. We will first discuss these controlled sources, and then generalize our discussion to
the other elements listed above.

Linear controlled sources are not elements which you will find in electronic circuits
explicitly. They are, however, important elements for modeling the behavior of various
linear and nonlinear circuit components. For example, consider the N-MOSFET amplifier
circuit shown in Figure 2.1. To analyze the frequency response of this amplifier we use a
small signal model for the MOSFET and perform an ac analysis on the complete
linear(ized) circuit. A small signal model for a MOSFET, such as the one shown in Figure
2.2, contains a linear voltage-controlled current source. That is, under the small signal
assumption, the circuit behaves linearly such that small signal voltages applied to the gate
of the MOSFET (for example, a 10 mV-peak sine wave in Figure 2.1) produce an ampli-
fied drain-to-source current sine wave. The small signal current gain is the transconduc-
tance, g, , which will be considered in more detail in Chapter 10. For now we will
Consider the incorporation of such a model into our Nodal Analysis equations.

The voltage-controlled current source from Figure 2.2 is a natural for Nodal Analysis.
For generality we model any voltage-controlled current source as a four-terminal element,
Such as the one shown in Figure 2.3. Note that the controlling branch in the figure is a

27



28 Linear dc Nodal Analysis

Vdd ?
C
-
v;!p

Figure 2.1 MOSFET amplifier circuit.

D G D
+0 O

G small signal
‘1 “model P Ve BnVes  ZTas
-0 0
S S S

Figure 2.2 Low frequency small signal N-MOSFET model.

lpg = mVy

Figure 2.3 Voltage-controlled current source.

zero-valued current source. This source is merely an open circuit and does not affect the
operation of the circuit. It acts as an ideal voltmeter that helps us measure the controlling
voltage in a convenient way. In a circuit, the controlling branch of a voltage-controlled
current source may be anything: a resistor, a diode, a capacitor, and so on. Rather than for-
mulate equations differently in each of these cases, we add a zero-valued current source
and then build equations in a canonical fashion. Thus, representing a voltage-controlling



vVoltage-Controlled Current Sources 29

pranch by a zero-valued current source leads to notational and computational conve-
nience. Moreover, in Chapter 9 it will be shown that this “ideal voltmeter” facilitates the
calculation of the circuit sensitivities.

The voltage-controlled current source in Figure 2.3 contributes the stamp shown in Fig-
ure 2.4 to the Y matnix.

G [ |« e
—8 4 < rowgq

Lo

column k column |

Figure 2.4 Stamp for a voltage-controlled current source.

Notice that this stamp contributes conductance terms to the ¥ matrix much like those for
linear resistors. The distinction here is that the conductance terms do not appear symmet-
ricaily about the diagonal of the matrix. For example, the current out of node D, hence the
expression appearing in row p of the matrix, is

g = 8mVi = lpg = 8mn (V= V) (2.1.1)

From (2.1.1) it is apparent that for row p of the matrix, which sums the current flowing
out of row p, the conductance terms appear as a positive value in column & and a negative
value in column /. Similarly, conductance terms appear with exactly the opposite signs for
the entries in columns & and / for row g, since i,, is flowing into this node. Note that we
could show it formally, but we recognize that the zero-valued current source that repre-

sents the controlling branch contributes nothing to the J vector. In other words, we recog-
nize that the zero-valued current source is not even required, but included only for our
Notational convenience.

_ T‘? clarify the use of this controlled-source matrix stamp we will replace the MOSFET
n Figure 2.1 with the small signal model in Figure 2.2 and construct the complete set of
nodal_equations. The complete small signal circuit model is shown in Figure 2.5. Note that
_fOf this small signal transistor model we have applied the low-frequency assumption. That
18, we do not consider the effects in the small signal model due to the parasitic MOSFET
Capacitances. Of course, if the frequency of the input sine wave were high enough, these
“apacitance effects would have to be considered.



30 Linear dc Nodal Analysis

The stamping of all of the elements in Figure 2.5 leads to the following set of nodal
equations:

1 0 0 0 W Vi (.]0))—1 vV, (jo)
—joC, (joC,+G,+G,) 0 0 V, (o) _ 0
0 “Em (G4+gm+gd +jmcout) 84 V3 (jw) 0
0 8m (—84— 8 (84+G3) Vo) 0
(2.1.2)

@
=90
gmvgs rd R
@ 3
R4 T Cout

<

Figure 2.5 Small signal equivalent circuit for the MOSFET amplifier.

Note that the resistors in Figure 2.5 have been expressed in conductance form in (2.1.2).
The voltages are expressed as complex voltages due to the complex admittances of the -
capacitors. As was shown in Chapter 1, capacitor stamps are identical in form to linear
conductance stamps, except that the admittance is joC instead of simply G. :

Although we haven’t discussed voltage source stamps yet, equation (2.1.2) includes an
independent voltage source. Since one end of the voltage source in Figure 2.5 is connected"
to ground, we can trivially include it with an equation V, = V,, just as we have done in

row one of (2.1.2). However, non-grounded, or floating voltage sources are not as easily
handled. In the section which follows we seek a more generalized approach for stamping
voltage sources using the Modified Nodal Analysis (MNA) method. Once we can handle
voltage source stamps, we will return to the other three types of linear controlled sources
since all of them depend upon the ability to handle voltage source elements. ’



Independent Voltage Sources 31

2.2 Independent Voltage Sources

Since they do not have an admittance description form, it might appear that independent
voltage sources complicate Nodal Analysis, but when properly handled they actually sim-
plify it. Suppose that we have a floating voltage source connected between non-datum
nodes k& and [ in a circuit, as shown in Figure 2.6. (The more common situation of a
grounded voltage source can be easily obtained as a simpler special case of this treat-
ment.)

Figure 2.6 A floating voltage source between nodes k and /.

The voltage, V,;, between nodes & and [ is known, so we cannot declare both node
voltages, v, and v;, to be independent variables. To resolve this problem we introduce the

voltage source current, i x> s a new independent variable and add the voltage constraint,

as a new equation. Now we have one more equation and one more unknown in addition to
those for conventional Nodal Analysis. Thus, for an (n+ 1) node (including datum) cir-
cuit with one floating voltage source V,, from node & to node I/, we have the following set
of Modified Nodal Analysis (MNA) equations:



32 Linear dc Nodal Analysis

coll colk coll coln

coln+l1
rOWI yll.--- yIk v yll .:. yIn O V.I I;Ij
rOWk ykl s ykk R ykl v yk" 1 vk Ik
: ' A RE 2.2.2)
FOWl y“' res y”c es y” vea yl?l —l vl Il
rown ynl."' Yok -+ Yni Yan 0 Vn In
rown+l |0 ... 1 . =1 .. 0 0f[iy LVkL

The y terms and the / terms represent the ¥ matrix and J vector entries without inclusion
of the floating voltage source. In other words, (2.2.2) is equivalent to having the following
stamp for a voltage source,

_ N o
row k 1
y .
vi=1|J (2.2.3)
row [ -1
S S b i1 V..
rown+l| 1 -1 0] AL Lk

colk coll coln+l

where the dashed lines indicate the augmentation of the original matrix ¥ and vector J
which represent the conventional nodal admittance equations.

So long as they do not form loops, several independent voltage sources can be treated
similarly, each having a simple set of stamps and adding a new row and column to the
MNA equations. A loop of independent voltage sources is illegal and non-physical (more
on this topic in Section 2.6) so we do not have to worry about such a situation. Note, how-
ever, that there is a zero on the diagonal in the (n+ 1, n+ 1) place for equations (2.2.2)
and (2.2.3). Some simultaneous equation solution schemes may expect to be able to divide



Independent Voltage Sources 33

the entries in a row by the corresponding diagonal element. Modified Nodal Analysis
(MNA) [Ho75] overcomes this problem by exchanging row & with row n, which results
ina +1 inthe (k, k) locationand a +1 inthe (n+1,n+1) location:

coll colk coll coln

coln+1
rowl |y, .. Yik Y11 Vi 0 V! I.I
row k 0o ... 1 ...-1...0 0O vy Vk!
: : : : _ (2.2.4)
rowl Yip - Y - Yy - Yin 1Y |y !
roWn Y1 - Yuk o Ynt o Yun OV, fn
row n+1 Y1 - Yek o Yur o Yin 1 R

As an example of how the nodal equations appear when there are voltage sources, con-
sider the simple circuit in Figure 2.7. Since there are three non-datum nodes and two volt-

Figure 2.7 Circuit example with a floating voltage source.

age sources, the MNA equations are characterized by the following 5 X 5 ¥ matrix and
5 X1 J vector:

I
0 0 (Gy+Gy) 0 =1)iVs o |5 (2.2.5)
1 0 0 0 0 4 sl
L0 1 -1 0 ol Ve




34 Linear dc Nodal Analysis

Of course, we could swap rows 1 and 2 with rows 4 and 5, respectively, in order to ensure
that there is a nonzero term for each diagonal entry. Next, we will show that it is easier,
however, just to eliminate the excess rows and columns.

2.3 (Conventional) Nodal Analysis

An alternative to swapping rows (k and n + 1) as noted above is to eliminate the unknown
current i, at the outset by adding together rows & and [ in equation (2.2.2) [Nagel71].
(The value of i, can always be resurrected, if required, by substituting into either of these
equations after solving for the vector of node voltages.) Since we have eliminated one
equation on that basis, we may eliminate one more unknown. We can further simplify the
set of equations by substituting in the voltage constraint equation, (2.2.1), thereby reduc-
ing the number of equations and variables by two. The overall result is as follows and is
obtained by a) adding rows k and /, b) adding columns & and / and moving the V,, terms
to the right hand side, and c) eliminating the I'™* row and column.

col 1 col k coln-1

rowl | Yy o Yu¥Yuo Yo ||V Li+y 1V

_ (2.3.1)
rowk [YertYir o Y P Yt YtV o Yen ¥ Vi [Vl T 1 Lt Vi Oy + i)

rown-1t Y, - Yoi ¥ Vni o Yan | [V L+y, Vi

Note that there is one less equation now than the number of non-datum nodes since the I*
row and column have been eliminated and there is no v, unknown.

After having solved this set of equations, we can easily obtain i, from either of the
original ™ or I™* equations. So long as there are no voltage loops in a circuit (more on
this in Section 2.6), the above manipulations can be undertaken with any number of inde-
pendent voltage sources. The result is a more compact set of nodal equations, which in our
experience usually is better conditioned numerically, and can be solved more efficiently
than the MNA equations.

Many elementary circuit analysis textbooks use the supernode concept to deal with
independent voltage sources, Where a supernode encompasses any subset of nodes that are
voltage-source connected. For the example in Figure 2.8 we would designate k-I to be a
supernode so that a single KCL equation can be written in terms of it.



(Conventional) Nodal Analysis 35

supernode k-1

Figure 2.8 Supernode treatment of a floating voltage source.

Here, again, it must be recognized that v, — v, = V> and that only one of these two

node voltages is independent. Careful treatment of a supernode leads to the same compact
nodal equations we have shown above. But it is our experience that for complicated cir-
cuits it is more straightforward and less error prone to obtain the compact nodal equations
as above by first formally writing out the MNA equations and then systematically elimi-
nating the excess currents and the dependent voltages from the unknown vector,

Another way of looking at the above formulation of compact nodal equations is in
terms of voltage source transportation. With the exception of the suppressed node, I, the
circuit in Figure 2.9 is equivalent to that in Figure 2.6.

Figure 2.9 Result of voltage source transportation on the subcircuit of Figure 2.8,

A Thevenin to Norton transformation of the composite branches that include V,, in
Figure 2.9 yields the appropriate equivalent current source and parallel conductance. The
compact nodal equations follow directly from the transformed circuit.

Applying this approach to the circuit example in Figure 2.7 would result in a single
equation in terms of a single unknown as shown below:

(G, +G+Gy) vy = GV + (G, +G;) Vg, + 1, (2.3.2)



36 Linear dc Nodal Analysis

However, a word of caution: if there are many independent voltage sources, care must be
taken with the above manipulations and the order in which the voltage sources are
addressed may become important.

2.4 Controlled Sources in General

Whereas it is straightforward to deal with voltage-controlled current sources in conjunc-
tion with Nodal Analysis, manipulations similar to those for independent voltage sources
are required for the other three kinds of controlied sources and for some other active ele-
ments as well. Of the remaining three types of controlled sources, a voltage source is
required for either the controlled branch or the controlling branch. Similar to the ideal
voltmeter in Figure 2.3, a zero-valued voltage source is used as an ammeter in series with
the element whose current is the controlling variable. This method is convenient since we
showed that modified Nodal Analysis maintains a current variable for every voltage
source in the circuit. Thus, a zero-valued voltage source can be used as an ideal ammeter.
In fact, SPICE requires the insertion of a zero-valued ideal voltage source in order to mea-
sure current if the output variable of interest is a current.

Similar to the voltage-controlled current source in Figure 2.2 used to model the small
signal behavior of the MOSFET in Figure 2.1, the small signal A parameter model for the
bipolar junction transistor (BJT) amplifier circuit in Figure 2.10 contains a linear current-
controlled current source. But due to the way in which circuit simulators such as SPICE
perform large signal nonlinear analysis, we will show in later chapters that linear con-
trolled sources are also required to represent the tangent projections for certain nonlinear
devices. Moreover, even without considering the Newton-Raphson linearizations, there
are some large signal device models, such as the Ebers-Moll BJT model in Figure 2.11,
which contain linear controlled sources. For the case of this simple BJT model, the for-
ward and reverse linear controlled current sources are used to represent the percentage of
charge which travels from the emitter to the collector and from the collector to the emitter,
respectively.

Figure 2.12 is the two-branch model for a current-controlled current source, which
includes a zero-valued independent voltage source (ammeter) as (or in series with) the
controlling branch. To accommodate this element we formulate the nodal equations as
usual but with i, as an excess variable and v, —v, = 0 = v, = v; as an excess equation.

The stamp for a current-controlled current source is:



Controlled Sources in General 37
%L
R,
1%
Vl.n cc
- C
<=
Figure 2.10 BIJT inverter circuit.
C
B ) large signal
model  »
E
Figure 2.11 Ebers-Moll model for a BJT.
row k 1
row | -1
Y v (2.4.1)
row p o
row g —Q
R -1 o]l
col k col



38 Linear dc Nodal Analysis

k P
+

ki lé.? V=0 éjipq = Oy,
r q

Figure 2.12 Current-controlled current source.

This set of modified nodal equations can be solved directly, or i, can be eliminated a
priori to obtain compact nodal equations. To eliminate i,, we could add rows k and !
together to form a new composite (supernode) equation, and then we could use either of
equations k or / to eliminate i,,from equations p and g. Such a priori manipulations usu-

ally are not necessary since a good simultaneous equation solution program will do them
for us.
The two-branch model for a voltage-controlled voltage source has only one voltage

source as shown in Figure 2.13. The stamp for this controlled source, therefore, adds only
one equation and one unknown:

_ 1
row p 1
Y = (2.4.2)
row ¢q -1 3
TR TR I O N | A 1)

colk coll colp colqg

Tk p

+ .

Vil @llkz =0 lpql Vpg = Wi
el q

Figure 2.13 Voltage-controlled voltage source.



Controlled Sources in General 39

Because it is zero, iy, = I, need not be considered, and i, is the only excess current
variable. The row equation is merely the voltage constraint

Vpg— WV = 0= (v, =V, — UV, + 1y, = 0) (2.4.3)

Again, we can leave these modified nodal equations as they stand and feed them
directly to a simultaneous equation solver (details of that in Chapter 7), perhaps after
some row and/or column swapping. Or we can easily eliminate the excess current variable
g and one of the unknown voltages v, v;, v,.or v, to obtain compact nodal equations.

Because it adds two excess current equations and two new equations of voltage con-
straints, the current-controlled voltage source is the most difficult of the dependent
sources to deal with for MNA. The stamp for the two element current-controlled voltage
source in Figare 2.14 is:

row k 1 o0
row | Y -1 0|V
" J
= (2.4.9)
row p I I |
row q 0 -1
...................................................................................... o 0
—1 Lt
1 1 0|1 9]
L f 0 m ©J pg]

colk coll colp colg
lg_ p

ikll V=10 ipql Vog = Tmin
I q

Figure 2.14 Current-controlled voltage source.

With some manipulation, both excess currents, i i and i,,. can be eliminated, along

?”lth one of the two voltages v, or v,, and one of the two voltages v, or v,. But given the
Infrequency with which current-controlled voltage sources arise in active device models,
We need not worry too much about how to handle this element. And a good simultaneous
€quation solution program will handle it for us anyway, should it ever arise.



40 Linear dc Nodal Analysis

2.5 Operational Amplifiers

A device which behaves similarly to a voltage-controlled voltage source is an operational
amplifier. An often acceptable simple model for an operational amplifier such as the one in
Figure 2.15 is the equation:

vg = A(v, —v_) (2.5.1)

where A is the op amp gain. Equation (2.5.1) assumes that the amplifier remains linear in
its behavior, therefore it can be represented by a voltage-controlled voltage source like the
one in Figure 2.13. Typically, the op amp gain, A, is very large which can lead to numeri-
cal complications in the solution of the MNA equations if the values of the other conduc-
tors in the circuit are much smaller than A.

Voo

V, 00—

Figure 2.15 Simple operational amplifier model.

Off-diagonal matrix terms due to A are significantly larger than the diagonal terms
which can result in an ill-conditioned matrix. To overcome such problems, in [Vlach83] it
is recommended that we replace equation (2.5.1) with its inverse

,—Vv_ = Bv (2.5.2)

where

B=— (2.5.3)

and B is typically a very small value. All three nodes of this op amp appear as columns
and rows in Y, therefore, we are now stamping a very small value (B) in the column cor-
responding to v, instead of stamping large values (A) into the columns corresponding to c
v, and v_. This simple artifice typically improves the numerical conditioning of Y.

In the extreme case of an ideal op amp, the model dictates that

v, = v. (2.5.4)



Operational Amplifiers 41

or A is infinite. In addition, the two separate ideal op amp currents shown in Figure 2.16
are zero:

i, =0 and i_=0 (2.5.5)
Equation (2.5.5) stipulates that there is an independent KCL equation at each of the two
input nodes for an ideal op amp, similar to the constraint on the voltage-controlled voltage

source in Figure 2.13. In contrast to the controlled source, however, the op amp model
also has the voltage constraint, equation (2.5.4).

Figure 2.16 Ideal op amp model for which input currents are zero.

Because the voltage constraint equation must be incorporated into the overall set of
equations which describe this element, a new unknown must be added for equation con-
sistency. The arbitrary output current, i , can be added to those currents leaving the node
to which the op amp output is connected. This additional unknown will make the MNA
equations consistent.

Suppose, for example, that an ideal op amp were connected in an appropriate negative
feedback configuration with its inputs to nodes & and / and its output to node p, as shown

in Figure 2.17. Then its contributing stamp to the MNA equations would appear as fol-
lows:

i = (2.5.6)
row p 1

colk coll



42 Linear dc Nodal Analysis

Figure 2.17 Example of an ideal op amp configured as an inverting amplifier.

2.6 When Do Nodal Equations Fail?

When there are several voltage sources and/or controlled sources in a circuit, we must
exercise care in the formation and manipulation of the circuit equations. At the very least,
we must avoid situations for which there are voltage source loops that might be in viola-
tion of KVL. Similarly, current source cutsets may be in violation of KCL (a cutset is a set
of elements whose removal leaves two portions of the original circuit disconnected; an
alternate statement of KCL is that the algebraic sum of currents through any cutset is
zero). Even if these easily detectable situations do not arise, the combination of controlled
sources and certain element values may render the circuit equations unsolvable.
Assuming that we have stamped in all of our circuit elements, including all of the con-
trolled sources expressed in terms of element pairs, we must check the topology of the cir-
cuit in some way to detect the possible occurrence of voltage source loops and current
source cutsets. For example, the loop of independent voltage sources in Figure 2.18 vio-
lates KVL if V, + V, — V, is not equal to zero. Moreover, even if the voltages do properly

satisfy KVL, the loop current that flows through these sources is undefined. That is, the
loop current can take on any value without violating the circuit equations.

|
l

T

o
T~

Figure 2.18 Loop of independent voltage sources.

/

Similarly, the current source cutset in Figure 2.19 is also non-physical. First of all, if the
sum of the currents /|, /,, and /5 is not zero, then KCL is violated at this node. And, even
if KCL were satisfied, the node voltage value would be undefined. Therefore, instances of



DC Solution of Circuits with Energy Storage: C-cutsets and L-loops 43

independent voltage source loops and independent current source cutsets should be
detected after parsing the circuit netlist and before the equations are stamped.

L I3
I

Figure 2.19 Cutset of independent current sources.

2.7 DC Solution of Circuits with Energy Storage: C-cutsets
and L-loops

We must be careful to recognize loops and cutsets of certain energy storage elements since
during initial dc analysis they are equivalent to independent sources. For example, in
order to determine the initial state of a circuit for —o < <0, we replace all of the capaci-
tors by open circuits and all of the inductors by short circuits. This set of equations is
equivalent to requiring that in steady state, all voltage and current derivatives are zero,
hence capacitor currents and inductor voltages are zero.

For the circuit in Figure 2.20, replacing all the capacitors by open circuits (current
sources of value zero) results in the dc circuit shown in Figure 2.21. The opening of all the
C’s has resulted in an illegal cutset among I,, I, and I, or a floating node, 4. Even

though KCL is satisfied at this node, it is not obvious how we can ascertain its voltage.

D a2 1@ 2 ®

1
Vinlt)
T

Figure 2.20 A circuit containing a cutset of capacitors.

C; Cs <R;

Formulating the equations for this circuit, nodes 1,2, 3, and 5 are easily described in
terms of MNA. At node 4, with all of the current sources equal to zero, we have a consis-
tent, but useless nodal equation. Since the nodal equation for node 4 is useless, a supple-
mental equation is required to resolve the voltage at this node.



44 Linear dc Nodal Analysis

Figure 2.21 The dc equivalent for the circuit in Figure 2.20.

Since charge conservation must hold for this circuit just as it must for all dc circuits, we
can use the following equation for node 4 to supplement the MNA equations:

Co(vy—vy) +C5(vy—vs) +C4v, =0 (2.7.1)

The assumption on which this equation is based is that there is no charge stored on any of
the capacitors at ¢ = —co and that as time evolves (to £ = 0) charge must have been con-
served. Hence the complete set of dc circuit equations is

1 0 0 0 0 vV V. (0)

-G, (G{+G,) -G, 0 0 v, 0
0 -G, G, 0 0 vyl = 0 (2.7.2)
0 0 —-C, (C+C3+C) —C5 |y, 0

0 0 0 0 Gy J|vs|] L O

A similar procedure can be used for circuits which contain loops of inductors -- which
produce a loop of voltage sources in the dc equivalent circuit -- in terms of supplemental
conservation of flux equations.

2.8 Summary

The nodal and modified nodal equations are extremely general and easily implemented for
any “proper” circuit. They also tend to produce the most compact set among equation for-
mulation alternatives. For this reason the nodal equations constitute the standard formula-
tion method for computer-based circuit analysis. In the next chapter we will consider the
solution, reordering, and overall conditioning of equations that have been formulated with
(Modified) Nodal Analysis.



References 45

2.9 References

[Nagel71] L. W. Nagel and R. A. Rohrer. Computer Analysis of Nonlinear Circuits,

Excluding Radiation (CANCER). IEEE Journal of Solid State Circuits, vol. SC-6, pp.
162-182, August 1971.

[Ho75] C. W. Ho, A. E. Ruehli, and P. A. Brennan. The Modified Nodal Approach to Net-

work Analysis. IEEE Transactions on Circuits and Systems, vol. CAD-25, pp. 504-509,
June 1975.

[Vlach83] J. Vlach and K. Singhal. Computer Methods for Circuit Analysis and Design.
Van Nostrand Reinhold Company, 1983.






Chapter 3 Solution of
Linear
Equations

In Chapter 2 we demonstrated the formulation of (nodal) equations that describe a circuit,
under the assumption that there is a technique available to solve them. Because the method
of formulation can affect the means of solution, in this chapter we provide a brief intro-
duction to simultaneous equation solution. In subsequent chapters we will revisit circuit
equation formulation and solution as we become more familiar with the issues involved.

3.1 Gaussian Elimination

Consider the solution of the ladder circuit from Chapter 1 shown here once again in Figure
3.1. The nodal equations which describe this circuit are

2v, -, =1
—-v,+3v,—v =0
Pt 31.1)

vy = OV (ground)

Figure 3.1 Resistor ladder circuit with 1Q resistors and 1A current sources.

47



48 Solution of Linear Equations

We can proceed to solve this set of four equations in terms of four unknowns using Gaus-
sian Elimination. The elimination steps are as follows:

1. Normalize the first equation with respect to the first coefficient:

1 —

5 (3.1.2)

1
2

2. Add the normalized first equation to the second equation to eliminate its leading
coefficient:

1
3. Normalize the new equation 2:
2 i
V-3V = 3 (3.1.4)
4. Add the new, normalized equation 2 to the third equation to eliminate its leading
coefficient:
13 1
5. Normalize the new equation 3:
vV, — > v, = ! 3.1.6
137413 316)
6. Add the new, normalized equation 3 to the fourth equation to eliminate its leading
coefficient:
Ev = E 3.1
1374 13 (31.7)
7. Normalize the new equation 4.
2
v =3 (3.1.8)

The above steps are summarized in matrix form in Figure 3.2. It is apparent that the
matrix has been transformed into normalized upper triangular form (by upper triangular,
we mean that all entries below the diagonal are zero; by normalized, we mean that each of
the diagonal entries is unity):



Gaussian Elimination

49

STEPS

1) and 2)

3)and 4)

5) and 6)

7)

Figure 3.2 Steps of Gaussian Elimination in matrix form.

2-1 00
-1 3~-10
0-1 3-1
0 0-1 2

7
]

b
|
NI Rt —

oo o
o
Lo
|N’I-‘

0 t—<= 0

0 0-1 2

2
< 0
0 1%

5
0 0 -——
! 13

0 0 0 1]

1
—

Wi— U= =

o= wi—= i

=2 0O =)

= O = =]

L—l

[y
-

gl.—-w—-mq |

WM
L

(S
2




50 Solution of Linear Equations

1 1
Vl §v2 = i
2 1
Vy = §V3 = 5
5 _ 1 (3.1.9)
2
V4 = §

We can now proceed to the solution of the upper triangular equations by means of Back
Substitution:

2
V4=-3~
_1+5 _1
BEBTRT 3
_ ]+ 2 ..,.l (3.1.10)
2= 5t Ene;
_ 1+_1_ _2
1= 37 3273

3.2 LU Factorization

We are often interested in repeatedly solving matrix equations for which the left-hand side
(LHS) is unchanged but the right-hand side (RHS) vector (called the forcing function
because it contains the voltage and current source stimuli to the circuit) is changed. Such
situations arise when performing sensitivity analysis (Section 3.6) and in some special
cases of linear transient analysis. To exploit these cases where the LHS does not change,
we perform LU factorization of the admittance matrix instead of Gaussian Elimination.
During LU factorization, we operate only on the LHS matrix and the RHS input-stimulus
vector is not considered. The results of LU factorization can efficiently be reused to solve
sets of equations with different RHS vectors.
For example, starting with the nodal admittance equations:

Yy =J (3.2.1)

let us assume that the nodal admittance matrix ¥ can be factored into a product of lower-
and upper-triangular matrices:



LU Factorization 51

Y = [ﬂ [U} (3.2.2)
L0

A lower triangular matrix has zeros above the main diagonal and an upper triangular
matrix has zeros below the main diagonal; typically the main diagonal elements of either

of these matrices are not zero. Note that det (Y) = det (L) det (U) . Therefore, both L
and U cannot have all zeros on their main diagonals for the determinant of ¥ to be non-
zero, and hence for the equations to be solvable.

Substituting for ¥ in (3.2.1), we have

LUy = J (3.2.3)
We substitute

x =Uv (3.2.4)
to obtain

Lx =] (3.2.5)

So we first solve the lower triangular system (3.2.5) by Forward Substitution to obtain x
and we then solve the upper triangular system

Uv = x (3.2.6)

by Back Substitution to obtain the final result v.

Overall, we break the solution of a set of simultaneous equations into two steps: LU
factorization (I.UF) and Forward and Back Substitution (FBS). We should recognize that
the intermediate vector x obtained above is the modified RHS that results from Gaussian
Elimination. In other words, Gaussian Elimination provides the combination of LU fac-
torization and Forward Substitution. By breaking down the sequence of steps we can deal
more effectively with varying right hand sides.

Referring to our example in the previous section, ¥ was transformed into an upper tri-
angular U matrix by Gaussian Elimination.

1—% 0 0
2-1 0 0 )
y= |1 3-10_01-2 0 _p (327
0-1 3-1 | 5
0 0-12 |00 1-7
0 0 0 1



52 Solution of Linear Equations

Here we perform the same elimination steps, but instead of operating on the RHS vector
we save the elimination steps in a lower-triangular matrix L. We can obtain the L matrix
from the values that appeared on and below the main diagonal immediately before their
normalization (for the main diagonal elements) or annihilation (for those below the main
diagonal). For the Gaussian Elimination example in Figure 3.2, the development of the L
matrix is shown in Figure 3.3.

The lower triangular matrix is

2 00 0
5

-1 3 00
L = 3.2.8
0-1 13 0 (428)

5
21
i 0 0 ""1 '—1‘3;
and one can easily verify that

LU =Y (3.2.9)

for this example.
Returning once again to the original problem, perform first the Forward Substitution:

Lx = J (3.2.10)
200 0]
o 2 0 01" 1
2
%) 0
13 = (3.2.11)
0"‘1 ? x:;, 0
1
21| *a
0 0-1 —| ~
L 13
2x, =1 = X "1
1 1~ 2
5 |
—x1+§x2= 0 = Xy =3 o
13 1 (3.212)
Xyt 5 Xy 0 = X3 = 13
21 2



I.U Factorization

53

STEPS

1) and 2)

3) and 4)

5) and 6)

7

1
—~ 0 0
1=

2
0 1-Z
z 0
5
00 1 -=
P13
00 0 1

then

then

then

then

0

Figure 3.3 Steps of LU factorization in matrix form.

Nl e

*
[ J [ ]
® [
13
— L J
5
-1
L ] L ]
L ] ®
13
—_— ®
5
21
-1 =
13




54 Solution of Linear Equations

We note that this solution, x = L™'J, is the same as the RHS we obtained in the previous
section with Gaussian Elimination, as it should be. So upon proceeding to the Back Sub-
stitution,

Uv =x (3.2.13)

We thus obtain equations identical to (3.1.9), which yield upon solution

2 1 1 2
= = V2 = 3 andv1=§

(3.2.14)
as we have seen before in equation (3.1.10).

We would tend to use LU factorization with Forward and Back Substitution instead of
Gaussian Elimination because: (1) it is of equal complexity, and (2) we can change the
RHS excitation vector and re-solve the equations easily and efficiently.

For example, if we wanted to solve the circuit in Figure 3.1 again, but this time with
I, = 2A, we would need only to change the J vector since the LU factors still apply.

Consider also the case of linear transient analysis as described briefly in Chapter 1. With a
fixed time step, the equivalent conductance and resistance models for the energy storage
clements would remain constant, and only the input signals and the companion model
sources would change with each time step. A single LU factorization could be used
throughout the entire fixed time step transient analysis. Later we will see that the LU fac-
tors prove useful for other applications as well, such as sensitivity analysis and large
parameter variation analysis.

3.3 How LU Factorization Works

In the previous section, we assumed that it would be possible to factor a square matrix into
lower- and upper-triangular factors. We outlined a practical procedure for computing the
LU factors of a matrix. In this section, we will explain how LU factorization works, and
thus validate the practical procedure described in the previous section. For clarity, we will
go through the steps of factoring a 4 x4 symbolic matrix; the procedure can clearly be
extended to an n X n matrix.

Given the Y matrix, first 1abel its original version with superscript zeros:

T @ _® _©)
Yii Yiz Yiz Yua

(0 () _(0) (0)

¥y - Yo Y Y3 Yu (3.3.1)

(0 (0 (O (O
Y310 Y32 Y33 Y
O 0 (O
Va1 Yao Yaz Vaa |




How LU Factorization Works 55

In an attempt to factor the matrix in (3.3.1) into the product of two matrices, we will start
with the trivial step:

O ) () (0
Yiu Y20 Yiz Yia

1000 (0) (0) (0) _(0)
y=7Oypy® _ 10100 Yu Yo Yoz Yo (3.3.2)

0 (@ (0 (0
0010 (Y31 Y3 Va3 Yaa

0001 Oy _(0) _(0)
Yar Va2 Va3 y44j

Of course Y'” is not an upper triangular matrix yet; however, this terminology will sim-
plify our explanation.

To begin, we normalize row 1 by dividing through by y(o) . Then we add appropriate
multiples of the first row to each of those below it to annihilate y21 , yé?), and yﬁ)) - Based

on the previous section, the entire first column of the ¥'”' matrix should be stored as the
first column of the L matrix:

©) (@) (0 (0 (0)
Fyll Yizo Y1z Yia 00 0
(@ (@ (0 (0 (0)
y @ — |21 Y2 Y3 Yoa LM - y21) 100 (3.33)
0) (0 (O (0)
Y31 Y Yz Y y31 010
® (O _(0)  (0) (0)

The diagonal element that is used to normalize a row and annihilate the rest of the col-

- . 0 :
umn below it is called the pivot. Once we have used )’1(1) as the pivot element to normal-
ize the first row and to annihilate the rest of the first column we have:

1) (1) ()]
Lyp yi3° Y

(1y (1
y — 0}’22 Y23 Yo (3.3.4)

(1) (1
0)’32 Y33 Yau

(1) (1) {1
0 vy 44 |

where the superscript (1) indicates that we have completed the first loop of LU factoriza-
tion. More generally, we could write for a square matrix of dimension 7 x n:



56 Solution of Linear Equations

(0)

w _ Vi X
iy < —0) j=23,4,..,n
Yn
(1) (0) (1 j=2,3,4,...,n

=Yg — O Yy) k=2,3,4,...,n

At this point, we have the partial factorization of the original ¥ matrix:

~ M
(0) (N (1) (n
yn 00 0 1 Yiz2 Y13 Y4

(0) n (1) (n
)’21 100110 yy ¥33° ¥

(0) (1) (1) (1)
¥31 010010 y3, y33° ¥3

(0) (1) (n M
Yair 00 1[0y’ Ya3' Yas |

y = Oy =

(3.3.5)

(3.3.6)

(3.3.7)

Using equations (3.3.5), (3.3.6) and multiplying L™ and Y'", one can verify that this

relation holds true. The first column of L( b will be the first column of the eventual lower-

triangular matrix and the first row of Y"" will be the first row of its upper-triangular

counterpart.

Because of the zero-valued portion of the first row of L and the zero-valued portion

of the first column of ¥*" , we can focus further factorization on the lower right (3 x 3)

portions of both matrices. These submatrices can be factored as shown below.

® (2)_

(1) (1) (1) (1)

Yoo Yz Yaa Y2 00 1 Y4
(n (1) (D] = N (2) (2)
Y2 Y33 Y ¥ 10]|0y33" yay
(n _()y (D (1) (2) _(2)
Ya2' Va3 Yaa| (Va2 O 10545 yas |

(3.3.8)

which represents another round of LU factorization as above. Once again, in general

g

(2) j ,

y2j = (1) J=3’4’5!"9n
Y22

k=3,4,5 n
(2 (1) (2 s Ay Iy ey
wom D) josas

(3.3.9)

(3.3.10)



How LU Factorization Works 57

The overall product, ¥ = LPY? can be verified here too, using equations (3.3.9)
and (3.3.10):

w0 00/|1yY yQ @
000 1 5
ya ¥a 10[[0 0 P @
(0 1)01 0 0 yg) yﬁ)

(3.3.11)

(
Ya1 Va2

The first two columns of L are the actual columns of the lower-triangular result that we
seek and the first two rows of ¥'2 are the first two rows of our eventual U matrix.

Continuing now with the factorization of the lower-right-hand portions of L?® and
¥? we have

(2) _(2) (2) (3)
Y33 O |1 w4

Y33 Y| _ (3.3.12)
(2) (2 (2) (3)
Ya3 Yaa Yoz 1]]0 yy

And finally

[yﬁ’] = [yﬁ)] [1] (3.3.13)

The Y matrix is now the upper-triangular matrix U that we determined previously

by Gaussian Elimination. The L® matrix is the lower-triangular counterpart L. There-
fore,

r -
Y@ 0 o o[y, ,m

1y yi3" yia
D oM 9 o (2) (2

LU = |72 Y 0 1 yy ¥y (3.3.14)
(0 (1) (2)
Yau Y ¥ 00lo o 1 )’S)

0 () (2 3
_}’151)3’22 )’23 )’541 00 0 1]

e
H

Note that since the diagonal terms of U are always one, we need not store them and the
relevant terms of U and the terms of L could be stored in one matrix. In practice, we



58 Solution of Linear Equations

would start with Y and begin elimination on column 1. After terms are annihilated, the
first column of L could be stored there. Similar manipulations would be used for column
2, column 3, and so on. Let us assume that we are dealing with dense matrices, where
every element of the matrix is stored, whether it is a zero or a non-zero. In this case, the
naive implementation of LU factorization would require double the storage required for a
single n X n matrix, with the original matrix being massaged into U, and a new matrix
being created to store L. However, by carrying out the factorization in-place, we can get
by with just as much storage as required for the original matrix. If we are using sparse
matrices, where only the non-zeros of a matrix are stored, then the memory requirements
situation is totally different. For a more detailed discussion of sparse matrices, see Chapter
7.

In the above discussion we performed the LU factorization on a row basis. We should
mention that LU factorization can be equally well performed on a column basis. Then the
L matrix would have ones on the main diagonal and the U matrix would not. An easy
way to think of this is that we could LU factor the transpose of the ¥ matrix as above, and
then transpose the result:

T_ AN _ I\TI\T_
Yl =ii=>Y=0U1L =LU (3.3.15)

ol . . . . -7
where L = U is a lower-triangular matrix with ones on the diagonal and U = L is an
upper-triangular matrix.

3.4 Pivot Conditioning

Floating point representation of variables on computers with finite machine precision
results in rounding (or round-off) errors during arithmetic operations in general and LU
factorization in particular. Especially when the matrix condition is poor -- which is when
the determinant of Y is very small -- we are particularly susceptible to the dangers of
round-off error. We must recognize though that poor matrix conditioning and round-off
errors are separate problems, but we are generally worst affected when the two combine to
create numerical problems. While we are stuck with the conditioning of the matrix we can
use some clever techniques to minimize round-off error.

Round-off errors usually occur when the difference of two large but roughly equal num-
bers is computed or when a large number and a tiny one are added or subtracted. Multipli-
cation does not affect round-off error significantly. The rationale behind the above
statements is most easily explained by way of a simple example.

Consider the linear set of equations:



Pivot Conditioning 59

an appf X b
= (3.4.1)
Lzl “j u [”j

which we might solve by Gaussian Elimination or LU factorization. First we choose a,
to be the pivot element to obtain

V) b,

1 —lx  |—
ay 14y (3.4.2)

X2
4s Ay b,
Then we annihilate the a,, term:
~ - - 4
a b,

| -z -
ap [ﬂ _ a5 4.3
aZIaIZJ X, ( ‘121le (3.4.3)
bz_
/|

At this point we note that round-off error would be small if the following inequalities were
true:

d, +a
lay,| » | 2L 12 (3.4.4)
ay
and
a, b
By » 21 1’ (3.4.5)
dy)
If, however, these inequalities were
a, ' a
|ag,| «| 22712 (3-4.6)
ay

and



60 Solution of Linear Equations

ay - by

1b,| « (3.4.7)

ap

then significant information from the original a,,or b,, values would be lost.

The reason we are concerned with the round-off error when the inequality in (3.4.6) is
true, and not for the condition in (3.4.4), is because the absolute round-off error is related
to the size of matrix entries. The conditions in (3.4.6) premote the growth of absolute val-
ues of matrix elements, while those in (3.4.4) do not.

oy 1 .
For example, the new a,, entry after one factorization step, az(z) is

(0) (0)

a a

1 0y 921 42

02(2) = (aZ(Z - (0) J (3.4.8)
ay

) - ~ (1
where aég) is the original a,, entry. The actual az(zl) value that we calculate, az(z), has a

certain amount of round-off error, 822:

() _ (1
ay = a3y +9,, (3.4.9)

Since the matrix entries are stored as floating point numbers, this absolute round-off
error is related to the magnitudes of the element values. When the inequality in (3.4.6) is

true, the magnitude of az(zl) is much greater than the magnitude of the original value, az(g ),

We would expect, therefore, that the absolute round-off error would be largest when
(3.4.6) is true.
We can demonstrate this change in round-off error due to growth of the matrix entry

values with the following example. Consider the following numerical values for the a;;

terms and the b, terms in (3.4.1):

1.00  1.00] |x, 2.00
Also, to demonstrate our point, we’ll assume that the computer used to factorize this
matrix has only three decimal digits of precision. For such an exaggerated case, after nor-

malization of the first row and annihilation of the a,, term we would obtain

1.00 1.00e4 | |%1| _ [1.00«1 (3.4.11)
0.00 —1.00e4| x, ~1.00e4



Pivot Conditioning 61

For this example, with only three digits of machine precision, the round-off error for 212(21)

is 1.00. This large round-off error is a consequence of the large magnitude term, or the
growth of the a,, term. Back Substitution of the equations in (3.4.11) yields x, = 1.00

and x; = 0.00, clearly an incorrect solution.
From (3.4.4) we see that we would like the diagonal entries, a,; and a,,, to be much

larger than the off-diagonal terms, a,, and @,; - These conditions also deter the growth of

the element values, hence, the absolute round-off erTor.
For example, rearranging the order of the rows in (3.4.10),

LOO  1.00| ¥ _ [2. (3.4.12)
1.00e — 4 1.00] |x, 1.00

Then normalizing and annihilating as was done previously yields

1.00 1.00| [*;| _ 12.00 (3.4.13)
0.00 1.00; |x, 1.00
The absolute round-off error for ay, 1snow le — 4. Moreover, upon Back Substitution we

find that x, = 1.00 and x, = 1.00, which are the correct answers for the given machine

precision.

Thus far we have considered only the round-off error as it affects the matrix terms. We
should point out that the round-off errors in the right hand side terms can also be signifi-
cant.

To proceed to the solution of (3.4.3) in terms of Back Substitution

a, b,
bz_
aq
Xy= — M (3.4.13)
4 a8y,
2
ay
and
3 ay b,
b a 2 a
P T 0415
ay ayg 71812




62 Solution of Linear Equations

Here, again, we would not want to lose significant information from the original value of
b,, so we would ask that the following inequality be true:

dyb,
bz_
an
|by| » @y | ———— (3.4.16)
4 a,1ay,
227
ap

In order to avoid numerical problems, the general strategy is to exchange rows or col-
umns to have as large a pivot on the diagonal as possible. There are two approaches to
adjusting the pivot element, or pivoting. The first approach is full pivoting, where we swap
rows and/or columns to get the largest possible pivot from among all the rows and col-
umns of the submatrix being factored. The second approach is partial pivoting, where we
swap rows or columns to get the largest available pivot in the first row or first column of
the submatrix being factored. Note that neither of these pivoting strategies takes the right
hand side vector into account. But we see from inequalities (3.4.5) and (3.4.16) that the
right hand side magnitudes|b,| and|b,| are important as well. Since LU factorization

ignores the right hand side of a matrix equation, problems may arise later during Forward
and Back Substitution. In particular, those rows which may have small or zero valued right
hand sides should be given higher pivoting priority than others. Such prioritization can
only be invoked for Gaussian Elimination, where the right hand side of the matrix equa-
tion is considered along with the left, and only a single solution is sought. In such a situa-
tion, we can consider normalizing the equations in terms of the right hand sides as shown
below:

@ Gz
b b [xﬂ = H (3.4.17)
b2 b2

Then we can proceed with pivot selection for Gaussian Elimination as usual. We note
finally that a row with a small magnitude or zero-valued right hand side should be given a
very high pivot priority. Such a prioritization would not be possible with LU factorization
which ignores the right hand side vector entirely.

To reduce round-off error, partial pivoting is often applied, whereby the pivot element

for the (i, i) location is selected as the largest element in the i’ " column or row, but not



Pivot Conditioning 63

both. For example, consider the LU factorization of the following matrix equations with
partial pivoting:

121 % 5
113]|x, = |8 (3.4.18)
411 X, 7

To begin, the largest element in column 1, the 4 in position (3, 3) , would be selected
as the first pivot element, as shown in Figure 3.4. This requires swapping rows 1 and 3,
including the corresponding elements in the RHS vector. The values saved in the L matrix
are the values prior to annihilation and normalization of column 1, but after the reordering
of the rows for partial pivoting. The remaining steps of factorization (with partial pivot-
ing) are outlined in Figure 3.4. One can easily verify that the product of the final L and U
is equal to the original matrix with the new row ordering 3, 1, 2.

Although it is rarely warranted in practice, full pivoting is the selection of the pivot ele-
ment as the largest element in the submatrix which remains to be factored. The LU factor-
ization and solution of equation (3.4.18) with full pivoting is shown in Figure 3.5. We
should note that the swapping of columns required during full pivoting does involve the
reordering of variables, as demonstrated by this example. The swapping of columns 2 and
3 permuted the order of the variables as shown in the results.

For all of these factorization examples

Y =LU (3.4.19)

and
det(Y) = det(L)det(U) (3.4.20)

The determinant of U is simply | since the U matrix is triangular with only ones along
the main diagonal. Therefore

det(Y) = det (L) (3.4.21)

and the determinant of L is simply the product of its diagonal terms, which are the pivot
values prior to normalization. So, in the course of LU factorization we can monitor the
determinant of Y, hence the condition of the matrix, according to the values of the pivot
elements. Even with full pivoting we may be ultimately forced to use a very small pivot
value, since no matter what pivoting scheme we use, the determinant of Y is invariant! So
a nearly singular ¥ matrix will ultimately result in a small pivot.



64 Solution of Linear Equations
Y »U L
SWap Tows
121 land3 1411 4 0 o
”1:13 = 113 1] o o
411 121 1o o
1 1 1 swaprows | | 1 l-|' 4 0 i
4 4 2and 3 4 4 7
o 2 u = o ! 3 13
4 4 4 4 3
7 3 3 11 -
. = - 4
ey _0 i 7 _ N
- . (4 0 0]
RES 7
4 4 L=1|1 i 0
3
o 1 3 , 3 0
2 7
17 - -
0 e
R A
; L1 411 7
U = 4 : LU ={121 (new) RHS = |5
B 1 2 113 8
0 7
0 0 1]

Figure 3.4 LU factorization with partial pivoting.

3.5 Iterative Refinement

Ry

Even with the best pivoting schemes, some round-off error is incurred during factoriza
tion. Hence we obtain a solution that dces not quite satisfy the original set of equations.
Let us say v,, ., is the exact solution and v is our computed solution. Then, we can write



Iterative Refinement

—_

o
[ ]

Slw

- o
o o

INFRIFN
R

YU
swap rows
1 2 1| land3 |4 1 1
1 1 3 =3 113
4 11 L2 1
1 swap [ ]
1 3 columns |1 - =
4 2and3 | 4 4
3 1 3
bt — 1 3
0 4 0 T3
7 3 7
% 3 o 2 7
1
0
0
p 101 a
4 4 1
U= .
0 1 3 X3
11 5,
L0 0 1 _

Figure 3.5 LU factorization with full pivoting.



66 Solution of Linear Equations

=0 (3.5.1)
and
J-Yy =r (3.5.2)

where r is the vector of residues due to the inaccuracy in our solution process. Each resi-
due component is the algebraic sum of the currents entering the corresponding node when

our vector of computed node voltages is applied to the circuit. If the i"™ component of r is
zero, then our solution correctly satisfies KCL at the i"* node. If not, the i component of

r is the erroneous sum of currents at the i"”* node.

Intuitively, if the sum of the computed currents into node i were greater than zero
(r;>0), we could consider increasing the computed node voltage v; in our next guess to
decrease that net current. Similarly, if the sum of the computed currents flowing into node
i were less than zero (r; < 0), we could attempt to increase that net current by decreasing

the computed node voltage at node i in our next guess. Iterating on a solution to improve
it by successively guessing better solutions is called iterative refinement. In theory, we
could continue iterating on the node voltages until all of the residue components were
acceptably small. But this procedure is ad hoc, therefore we consider a more formal itera-
tive improvement scheme described below.
Subtracting (3.5.1) from (3.5.2), we get
Yv —-Yv=r (3.5.3)

exact

Define a vector e of node voltage errors in our solution.

e = v v (3.5.4)

exact -

Then

Yv Yy =Y(v v) =Ye=r (3.5.5)

exact exact

To improve the computed solution, we add these errors computed by means of (3.5.5) to

the factorized solution. But since r is not exact and the computed error, e, also has some
round-off error, we repeat this improvement as an iterative process:
1. Treat the solution from LU factorization as the initial guess v o,

2. Calculate the residue vector at the j* iteration from

r¥ = J-yr? (3.5.6)

and compute the error at the j** iteration using the same LU factors



Sensitivity Analysis 67

YeV' = 1@ 5V = vy, @ (3.5.7)

3. Ifthe j* error term is sufficiently small for every node i

v 4 e (3.5.8)

absolute

9] <e

relative
we accept the solution v where €, 1arive I8 2 Telative error tolerance and € , o

an absolute error tolerance. This type of tolerance equation is often used to test con-
vergence of any iterative scheme. For answers that are large in absolute value, itera-
tion stops when the solution is sufficiently close. For small numbers, iteration stops

when we are within the absolute tolerance of the right answer.

4. Else improve the solution for the node voltages by adding the j* error terms to them

AR (3.5.9)

then increment j and go back to step 2.

Without any formal proof, we will make the statement that this iterative improvement
will always work {converge) unless the factorization round-off error is nearly as large as

the initial solution »‘* [Ralston78]. If the iterations fail to converge, (or, in other words,
diverge) and equation (3.5.8) is never satisfied, then the LU decomposition must be car-
ried out with greater machine precision.

In practice, most circuit simulation programs use double precision (8 bytes) to represent
floating point numbers. They use pivoting schemes aimed at maintaining numerical accu-
racy while taking into account some other considerations (see Chapter 7). They do not
check residues at the end of each LU factorization, thus assuming that their circuit equa-
tions were well-conditioned enough and their pivoting schemes were good enough to
obviate any need to “check” the answer.

3.6 Sensitivity Analysis

Given a (nominal) circuit, the previous section discussed numerical problems that can
lead to errors in the solution of the circuit. However, it is possible that the element values

in the circuit are themselves not correct. In other words, an element that is nominally 1€
may not actually be 1€ but a little less or more due to manufacturing tolerance. Particu-

larly in integrated circuit design, manufacturing variations must be taken into account. In
addition, a circuit designer may want to conduct a “what-if” analysis. For example, a

designer may ask the question, “If I increase a resistor R, by a small amount, by how



68 Solution of Linear Equations

much will its current change?” All of these situations call for a sensitivity analysis. A sen-
sitivity analysis can help us understand the variation of circuit response with respect to
variation in circuit parameters like element values.

There are two methods of sensitivity analysis: the direct method and the adjoint method.
These two methods are discussed in detail in Chapter 9. This section provides an introduc-
tion to the adjoint method by differentiating the circuit equations in matrix form. A more
formal derivation of the adjoint method (based on Tellegen’s theorem) can be found in
Chapter 9.

In Chapter 1 we showed that the core analysis of circuit simulation is the solution of a
matrix equation:

My =b=x=M'"p (3.6.1)

where M is an n X n matrix, b is an n X 1 vector, and x is the n X 1 vector of unknowns.
As usual, we reiterate that we would never actually invert M, rather we would LU factor it

and then perform Forward and Back Substitution; we use M' to indicate that process.
Now, suppose that we perform a slight variation on the elements that have been stamped

into M and b, and we wish to ascertain the effects that these variations might have on the
solution x. Let us assume that M changes to M + dM, where dM is an n X n matrix of
M parameter variations and b changes to b + 8b where b is an nx 1 vector of RHS
parameter variations. Further, let us assume that the changes to M and b are small. Then

(M+0M) (x+03x) =b+db (3.6.2)

where 6x is the n x 1 vector of changes in the circuit unknowns. Upon expanding the left
hand side we obtain

Mx + dMx + Mdx + dMb6x = b + 8b (3.6.3)

Subtracting the nominal solution (3.6.1) and neglecting the second-order variation,

}lfc + OMx + Mdx + 8@!6@ = )4 ob (3.6.9)

we obtain

Mox = — OMx + &b (3.6.5)

Because we have already LU factored M to obtain the nominal solution x, we could eas-
ily perform a perturbation analysis by solving this expression for 8x in terms of a specific
OM and &b



Sensitivity Analysis 69

dx = M ' (- 5Mx + 5b) (3.6.6)

Thus, with the expense of one additional matrix multiplication, one additional vector
addition and one additional Forward and Back Substitution, we can obtain 8x, the vector
of circuit response variations. But suppose that we want to perform a “what if” sensitivity
analysis. In such a case it would be useful to be able to find the change 8x with respect to
specific parameter changes OM, ; and 8b,. If the components of M or b depend in a com-
plicated way on circuit or physical parameters, we could contemplate the use of the chain
rule to express the sensitivities in terms of those parameters.

Under the assumption that we may be interested in the sensitivity of a particular

response variable (at the circuit output, for example), and that we are not concerned with
any others, then we have

6x, = [i" row of M'] (—5Mx +8b) (3.6.7)

i
.

row vector

for the i variable in 8x. Note that

T
i row of M™'=i" column of (M)

g (3.6.8)
=i" column of (M)
But
M" (MN)™ =1 (3.6.9)
SO
M7y (i"" column of (M")™') = i* column of 1 (3.6.10)
Equation (3.6.10) can be restated as
ME = e, (3.6.11)

where &1. 1s a column vector representing the i" row of (M)~ and e, 1s a column vector

with all zeros except for a one in its i'" row (the i** unit vector). Then the i"" component
sensitivity is

8x, = £ (- 3Mx + 8b) (3.6.12)

But we do not have to go so far as to compute



70 Solution of Linear Equations

T, ! 1, T
E,= (M) e,= (M) e (3.6.13)
In the solution of the nominal circuit we have already found

M=LU (3.6.14)

and
M =ULT (3.6.15)

which provides the lower (U Ty and upper (L) triangular factors of M T Therefore, we
can solve

UTg,- = ¢ (3.6.16)

by Forward Substitution to obtain the intermediate variable g,, and then solve

L't =g, (3.6.17)

by Back Substitution to obtain the column vector & . Returning to the sensitivity expres-
sion (3.6.12), we can recognize the following individual sensitivities:

ox; ¢
— =& (3.6.18)
Bbj ]
which is the h component (row) of the column vector &i, and
ox; '
ST ~&. % (3.6.19)

ki

which is the negative of the k¥"* component (row) of the column vector &, multiplied by

the I** component (row) of the nominal solution x.
To validate the above we can consider in symbolic form the following 2 x 2 matrix

example.
[M“ Mu} {xl} = E’ﬂ (3.6.20)
My My |x, b,

The LU factors of the matrix M are given by



Sensitivity Analysis 71

[Mn Mu} _ 1My 0 1 1 (M} M,,) (3.6.21)
M, M, M, (Mzz_M21m1M12) 0 1

Suppose that we seek the sensitivity of x, with respect to the components of M and b,
then we must solve the following transposed system:

1 0| My, M,, 1 _ 11
. 1 = (3.6.22)
(MTIMIZ) 1o (Mzz_M21m1M12) 12 Q

From Forward Substitution

1 0 I:glﬂ _ [
(M;;Mlz) 1812

IJ (3.6.23)
0

we obtain

gy =1 and 812 = —MLIMQ (3.6.24)

Then from Back Substitution

M, M,, }Fﬂ _ [ I } (3.6.25)
-1 - 1
0 M22_M2]M11M12 512 —MIlMlz
we obtain
-M,, M,,
é —_ and & = (3.6.26)
12 M11M22“M21M12 = M11M22_M21M12

From (3.6.18) and (3.6.19) and the result in (3.6.26) we have the following sensitivities:

ox, M,,

=k = (3.6.27)
abl 1 M11M22_M21M12

—_ = é; =
abz 12 M11M22_M21M12

(3.6.28)



72 Solution of Linear Equations

dx -M
-k ox, = 2 ___x (3.6.29)
a[‘411 M11M22_M21M12
ox -M
1 = _511x2 = 2 12 (3.6.30)
aMlZ M11M22—M21M12
ox M
L= Ex = 2 X, (3.6.31)
aA421 M11M22_M21M12
ox M
= =E %, = 12 X, (3.6.32)
a‘A422 M11M22_M21M12

We can check these results in terms of the explicit solution for this 2 X 2 matrix prob-

lem:
X _ 1 My, —-Mi\b, (3.6.33)
which yields
M, -M,
X, = b, + b (3.6.34)
! MMy, -My M, : M My—-M, M, 2
_ ox, ox, _
It is easy to see that the 55 and 35, for (3.6.34) match those in (3.6.27) and (3.6.28)
1 2
. . . ox, )
respectively. With a little more effort we can show that A of equation (3.6.34) yields
22
1 -M. M M M
R - b+ 1¥22 2b1+ 11" 2b2
n¥a=Ta%n o (M My - My My,) (M My — M M,))
1
= (=MyMpby+ M Myb,)
2
(M My, — M, M,,) (3.6.35)
- M, |: -M,, b+ M, b:!
(M11M22 - M21M12) M11M22 - M21M12 : M My, - M21M12 2

M12
= 'x2
(M11M22 - MZIMIZ)




Sensitivity Analysis 73

which matches the result in (3.6.32). Similar results can be obtained from the direct sym-
dx, ox; dx,
, , , etc.
oM,,’ oM 12 OMy,

It is important to note that the technique described above is not a perturbation method.
It provides exact sensitivities to within machine accuracy. In a perturbation method, two
simulations are performed with the sensitivity parameter being perturbed by a small
amount. Then a difference method is used to obtain sensitivity. The first disadvantage of
perturbation methods is that an extra simulation is required in addition to the nominal cir-
cuit solution. Further, the amount of the perturbation is hard to determine. Accuracy and
numerical reasons make it hard to predict the right amount of perturbation in order to get
good answers.

In general, more than one entry in the M matrix and/or the b vector may depend on the

same physical parameter p. Consider, for example, the simple circuit in Figure 3.6. The
nodal equations are:

bolic differentiations

11 1, |
(o-+35) (—5)
M=Y= Ry R | R51 b=1=m x=v=[ﬂ (3.6.36)
_ L0 4 )
] ( Rs) (R3+R5)_
Vi ks V2

I 0 14

Figure 3.6 A simple two-node circuit for which sensitivities are calculated.

We see, for instance, that all four entries of M, depend on Rs. Therefore, to determine

the sensitivity of the i"* node voltage to changes in p we must apply the chain rule:

dx, aM,, o b,



74 Solution of Linear Equations

: : o oM, b,
For such computations to be possible, the partial derivatives T and T must be
obtained analytically and stored a priori as part of each element’s model description.

3.7 Summary

In this chapter we have introduced several approaches for directly solving the Nodal Anal-
ysis matrix equations. We have also considered the errors introduced in doing so, as well
as the means to perform a sensitivity analysis after a nominal solution of the circuit. This
is not the last word on any of these topics. We will consider alternatives to Gaussian Elim-
ination and LU factorization when we consider sparse matrices in Chapter 7. We will also
describe sensitivity analysis in much greater detail in Chapter 9 and apply sensitivity to
noise analysis and performance optimization.

However, we will close our discussion of dc equation formulation, analysis, and solu-
tion for now in order to begin time domain, or transient analysis, which will be the topic of
the next two chapters. Of course, as was shown in Chapter 1, even the time domain analy-
sis will employ the dc analysis techniques which we have covered so far.

3.8 References

[Ralston78] A. Ralston and P. Rabinowitz. A First Course in Numerical Analysis.
McGraw-Hill, 1978.



Chapter 4 Linear
Transient
Analysis |

Transient analysis (or time domain analysis) involves computing the waveforms of a cir-
cuit as a function of time. If we were blindly to set up Modified Nodal Analysis (MNA)
equations for a circuit that contained energy storage elements, we would find that we have
terms like dv/dt (for the currents of capacitors) and di/dt (for the voltage of inductors).
The challenge in transient analysis is to move time forward by integrating these terms to
get sets of equations at each time step that we know how to solve. In particular, we will
integrate the current through capacitances and the voltage across inductances.

In this chapter we will elaborate on the introduction to time domain analysis provided in
Chapter 1. Chapter 1 discussed only Trapezoidal integration. In this chapter, we will also
discuss other integration algorithms such as Forward Euler and Backward Euler. We will
study the accuracy and stability properties of these integration methods in terms of a sin-
gle exponential transient response for a simple series RC circuit.

4.1 The One-Step Integration Approximations

Consider once again a lumped, linear, time-invariant capacitor, shown in Figure 4.1. In
equation (1.7.4) we expressed the capacitor voltage in terms of the integral of the capaci-
tor current

t+Ar

v(t+Al) = v (1) +(lj J i(t)drt (4.1.1)

Figure 4.1 Lumped, linear, time-invariant capacitor.

75



76 Linear Transient Analysis I

Here we consider approximating the integral in equation (4.1.1) in three possible ways:

At-i(r) Forward Euler (FE)
t+ At
At i{t+ At k ler (B
J' (1) dT = ) i{ ) Backward Euler (BE) 41.2)
t .
f - [i(f) +i(t+Ar)] Trapezoidal (TR)

The graphical interpretation of each of these integration approximations is shown in
Figures 4.2, 4.3, and 4.4, respectively. All of these are one-step integration approxima-
tions in that they rely only on the value of the integrand at the single time point immedi-
ately preceding that being computed. These methods are in contrast to multistep
approximations which rely on other prior values of the integrand further back in time as
well. From Figures 4.2, 4.3, and 4.4 one could make the intuitive (correct) conclusion that
the Trapezoidal approximation is the most accurate among the three, although it may be
more difficult to implement than the others.

i(1)

TNl

t t+ At T

Figure 4.2 Forward Euler integration.

Inserting the approximations in (4.1.2) into (4.1.1) yields the following

At-i(t) (FE)
V(4 A =y () + L. A HEHAD (BE) @.1.3)
C |[Ar . (TR)
-E[z(t)+t(t+At)]

The approximations in (4.1.3) can also be arrived at using difference approximations:



The One-Step Integration Approximations

77
i(ry P
! tvar
Figure 4.3 Backward Euler integration.
i
//-ﬁ‘\\
L —
t t+ At T
Figure 4.4 Trapezoidal integration.
i dv v(t+At)—-v(t)
- = s 4.1.4
C dr At @.14)

where we are approximating the voltage derivative, hence o the time range 7 to ¢ + At
by



78 Linear Transient Analysis I

i (FE)
C
V(1) = w (BE) (4.1.5)
1 . .
3¢ i(s) +i(t+ A (TR)

For example, with FE we approximate v (t) for t <1<+ At by the derivative at time
t in order to compute the voltage at time ¢+ At via extrapolation. This FE projection is
shown graphically in Figure 4.5. In other words, since i = Cv, FE is approximating the
current over the interval (¢, #+ At) as a constant equal to i (t), as we would expect from
the development of equation (4.1.2).

v(T)

I |

t t+ At T

Figure 4.5 Forward Euler difference approximation.

The BE and TR difference approximations are formulated in a similar fashion, but with
v approximated by v (¢ + At) for BE and the average of v () and v (¢ + Ar) for TR inte-

gration. The graphical depictions of the BE and TR difference approximations are shown
in Figure 4.6 and Figure 4.7, where the end of the arrowhead indicates the next voltage

value that will be computed at time ¢ + Az as opposed to the actual value of v (z+ Ar) . It
may be apparent from Figure 4.6 and Figure 4.7 that since we do not know the value of the
voltage or current at £ + At (it is what we are trying to find), the derivative used to project
to ¢ + At is based upon the approximate or guessed voltage at ¢ + At. Moreover, Figure 4.3
and Figure 4.4 seem to imply that the BE and TR integration approximations comprise
areas for which the exact current i (¢ + At) is known, which is not the case. The area is a
function of the approximate current at (¢+ At) . This is why BE and TR integration are
referred to as implicit integration algorithms in contrast to Forward Euler integration



The One-Step Integration Approximations

79

Y

Figure 4.6 Backward Euler difference approximation.

v(n) A

t t+ At

} |
T

Figure 4.7 Trapezoidal difference approximation.

which is explicit.

! t+ At

Inserting the appropriate v approximation into (4.1.4) and solving for v (1 + At) , yields
the following FE, BE, and TR difference equations:

v(E+ AN =v (1) +At-

’

()
C
i(r+Ap
C
(D) +i(r+An

\

2C

(FE)

(BE)

(TR)

(4.1.6)



80 Linear Transient Analysis I

which are identical to the numerical integration approximations in (4.1.3).

4.2 Forward Euler Approximation

For a Forward Euler (FE) approximation we compute the response at time ¢+ At in terms

of v(t) and i (), both of which are already known from the solution at the previous time
point (hence the method is explicit). The Forward Euler approximation

At
v(t+Ar) =v (1) +Ei(t) (4.2.1)

can be represented electrically by a companion model, which in this case is an independent
voltage source as shown in Figure 4.8. This approximation is appealing in its simplicity.
Every independent voltage source simplifies dc circuit analysis, so circuits which typically
have many capacitors can become very simple with the FE companion model. Integrated
circuits typically have many capacitors due to transistor parasitics and wiring and inter-
connect models.

v(t+ At) +i l P+ A

-1 C

. At
z(:+m)l v+ = vt i ()

Figure 4.8 Forward Euler companion model for a capacitor.

Some simulators make an assumption that they can model all the capacitors in inte-
grated circuits with a capacitor to ground from each node. This assumption leads to a dc
equivalent circuit that is trivial to analyze with the FE approximation. Of course, if there
were any floating capacitors (a floating capacitor has neither end grounded), the dc equiv-
alent circuit would contain loops of independent voltage sources that are seemingly
impossible to accommodate. But we will soon demonstrate simple ways to overcome such
limitations.



Backward Euler Approximation 81

Before we become overly enamored with the simplicity of Forward Euler integration,
we should mention that Forward Euler carries with it the undesirable problems of reduced
accuracy and instability, which are to be discussed later. Implicit integration algorithms --
those which depend on as yet unknown circuit values at time ¢ + At -- are more commonly
applied in practice due to these accuracy and stability issues. However, in Chapter 11 we
will describe some simulation algorithms that in part use Forward Euler integration and
exploit its simplicity and efficiency.

4.3 Backward Euler Approximation

The Backward Euler (BE) approximation is an implicit formula since the voltage at time
t + At is a function of the current at time 7 + Ar.

At
v(t+AD) =v (L) + —C—i(t+At) (4.3.1)

In Figure 4.9, the companion model for Backward Euler integration includes a resistor to
account for this implicit relation. This Thevenin equivalent companion model can be
transformed to the Norton form shown in Figure 4.10, which is more convenient for
Nodal Analysis.

+ . V,, = v()
v(t+Ar) ll Hiran — i(t+At)l "

-1 C R =

At
eq E

Figure 4.9 Backward Euler companion model for a capacitor.

As was the case for the Trapezoidal integration approximation that we discussed briefly
in Chapter 1, the Norton equivalent model in Figure 4.10 may be numerically better suited
to a dc steady state analysis, where At — oo and a capacitor is modeled by an open circuit.
On the other hand, the Thevenin equivalent companion model may be better computation-
ally for situations with specified initial conditions or for very small time steps. The corre-
Sponding arguments for inductors will be made later in this chapter. We will also show

that Backward Euler integration has accuracy comparable to that of Forward Euler but is
more stable.



82 Linear Transient Analysis I

i i (1+ A1)

-+

C C
Ig = 2,7 v (1 +AD) G, = —

Figure 4.10 Norton representation of BE model for a capacitor.

4.4 Trapezoidal Approximation

For completeness, we review the Trapezoidal (TR) integration approximation:

At At

v(t+ A =v (1) +R‘t(t) +§,_El(t+At) (4.4.1)
As with the BE approximation, the TR algorithm is implicit since it is dependent on
unknown quantities. The TR companion models for a capacitor in Thevenin and Norton
form are shown in Figure 4.11(b) and Figure 4.11(c), respectively. Again, the Norton
equivalent companion model may be preferable for large values of At or dc steady state
computation, when a capacitor is replaced by an open circuit. The Thevenin model may be
preferable for extremely small time steps. As we will see later in this chapter, Trapezoidal
integration is in general more accurate than either FE or BE, and it lies between the two in
terms of its stability behavior.

4.5 Companion Models for Inductors

In the previous three sections, we discussed applying FE, BE, and TR to capacitors. In this
section, we will extend those same arguments to inductors. The basic equation for a
lumped, linear, time-invariant inductor is

"‘Ldi(t) 4.5.1
v(t) - dt (")




Companion Models for Inductors 83

i li(t+At)
T

(a)

v (t+ At)

i(t+At)l 1% =v(t)+:2A—é,i(t)

€q

R _At
eq_ﬁ

(b)

li(t+At)

eq

, 2C et
I, =1i(1) +EV(I) Geq Af

(©)

Figure 4.11 (a) A capacitor and its Trapezoidal companion models in (b) Thevenin and
(c) Norton forms.

and the circuit element is shown in Figure 4.12. Given the current at time !, we can write
the current at time (¢ + Ar) as

+% li v = di
y = [
7L dt

Figure 4.12 Lumped, linear, time-invariant inductor and its basic equation.



84 Linear Transient Analysis I

t+ At
: . I
i(t+A) =i(0) +Z j v(1)dt (4.5.2)

)

Forward Euler

Applying the FE approximation to the integral in equation (4.5.2), we get

At
i(t+ AN =i(1) +Zv(t) (4.5.3)

The Norton form of the FE companion model for an inductor is shown in Figure 4.13 (the
FE companion model has no Thevenin form).

i(t+Ar) * i(t+Ar)

At
v{(t+AD — v(t+An (v) 1, =i() +—Ev(t)

Figure 4.13 Forward Euler companion model for an inductor.

Backward Euler

Applying the BE approximation to the integral in equation (4.5.2), we obtain

A
i(t+Ar) =i(t)y+ Itv(l‘+At) (4.5.4)

‘The Norton and Thevenin forms of the BE companion model for the inductor are shown in
Figure 4.14(b) and Figure 4.14(c), respectively. The Thevenin form is good for dc steady

state analysis in which Az — . The Norton form is good for situations involving initial
conditions and when At is very small.

Trapezoidal
Applying the TR approximation to the integral in (4.5.2), we obtain



Companion Models for Inductors 85

i(t+ Ar)
v (t+ Ar)
L
(a)
li(r+At)
* |
_Ar
vit+An (v, =i() Gog = L
. I
(b)
l i(t+Ar)
* I L
NV = B}L(t)
v (r+Ar
L
- Req ) Z—t
(c)

Figure 4.14 (a) An inductor and its Backward Euler companion models in (b) Norton and
(c) Thevenin forms.

] AN = | A Al t+ At 4.5.5
i(t+ Ap) —t(t)+ﬂv(t)+iiv( ) (4.5.5)

The Norton and Thevenin forms of the TR companion model of an inductor are shown in
Figure 4.15(b) and Figure 4.15(c), respectively. As in the case of Backward Euler, the
Thevenin form is good for dc steady state analysis in which At —> oo. The Norton form is

good for situations involving initial conditions and when A7 is very small.



86 Linear Transient Analysis I

i(t+Ar)
v(t+ Ap)
L
(a)
. Tl i(t+Ar)
A At
v(t+A1) 2G,, = ﬁi VI, =i V(D)
] !
(b)
l i(t+ A
* 20
Vo, = E'(t) +v (1)
v(t+ At)
2L
i A
(c)

Figure 4.15 (a) An inductor and its Trapezoidal companion models in (b) Norton and (¢)
Thevenin form.

4.6 Preliminary Comments on Accuracy

All of the integration algorithms that we have discussed involve some degree of approxi-
mation. In the case of the implicit algorithms (BE and TR), we should restate that the cur-

rent through the capacitance companion model, i (#+ Af), is an approximation to the
actual current at ¢+ Ar. In the case of an inductor, v (t+ At) is an approximation to the
actual voltage at ¢+ Ar. The FE formula would appear at first to be an approximation in

terms of an exact quantity, but after the initial time step, all voltage points are approximate
(which is true for all methods of integration). It is because these values are approximate
that we can study only the local error associated with these methods. The local error



The Exact Solution of a Simple Series RC Circuit 87

includes only the error incurred in the present time step, unlike the cumulative error,
which includes the error due to the starting point of the present time step being inexact.
The tacit assumption here is that if we can control the local error to be sufficiently small,
then the cumulative error after n steps is at most » times the local error involved in a sin-
gle step. The local error tolerance is chosen such that the cumulative error is still accept-
able. As a practical matter, we are helped along by the local truncation error being a
signed quantity, and hence there is the possibility of some negative and positive errors
canceling out over time.

In general, the integration error is evaluated in terms of the local truncation error for
these one-step integration methods. If the required integration is expressed as a Taylor
expansion, the one-step integration methods can be shown to be truncated versions of
those expansions, hence the term truncation error. The values at time ¢ are treated as
exact and the local error incurred in stepping from 7 to ¢ + Ar is considered. Higher order
integration can also be considered, which employs several preceding time points in an
attempt to better predict the value at time ¢ + At. In such cases a polynomial of appropri-
ate order is fitted to these time points and then extrapolated (for explicit integration) or
interpolated (for implicit integration) to the present time point [Gear71].

These multi-step integration approaches lead once again to Thevenin or Norton com-
panion models as before, but with the independent source components dependent on val-
ues from more than one past time point. With careful planning, the companion models can
be updated efficiently from one time point to the next [Brayton72].

The higher order integration algorithms are usually applied when the time domain
waveform accuracy is critical and the device nonlinearities are slight. For example, for
small signal transient analysis of analog circuits, the one-step methods may yield numeri-
cal noise which might be perceived as unusual response behavior. Multi-step methods can
reduce this numerical noise. However, this scheme works for small signal analog circuits
since the nonlinearities are slight. In general, if the nonlinear elements change dramati-
cally from one time point to the next, the use of previous time points to predict future
behavior could have an adverse affect. In particular, in digital circuits, devices such as
transistors and diodes and their associated parasitic capacitances often switch rapidly over
a very small time period. When that occurs, using more history than one time point to per-
form a prediction does not serve a useful purpose. Therefore, only the one-step algorithms
will be discussed in further detail in this book. The accuracy and stability of the one-step
algorithms will be studied in terms of an example in the following sections.

4.7 The Exact Solution of a Simple Series RC Circuit

To study the behaviors of the one-step integration approximations, we apply them to a
simple problem, the solution to which can be computed exactly. The series RC circuit



88 Linear Transient Analysis I

shown in Figure 4.16 provides such a problem that will allow us to gain some insight
regarding these numerical approximations.

4 (b m T

Figure 4.16 Series RC circuit.

We can write a single equation to describe this single-loop circuit

‘ Cdvc - 4.7.1
THar TR @71
and then reformulate it as a first order differential equation
dv, 1 i
PR Tala Tod “r2

To establish some formalism which we will use again in the next chapter, we first consider
the homogeneous equation for the capacitor voltage, which arises when the excitation V is
zero and there is a nonzero initial condition on the capacitor, v ,:

dvch 1 -
= —pEVen v () = vq (4.7.3)
Separating the terms in (4.7.3),
dvch 1
= —dt 4.74
Vo RC “74

and integrating over the appropriate limits



The Exact Solution of a Simple Series RC Circuit 89
v, (D)
* dv,, 1 y
J =-— J' dr
Ven RC
Vs (1) )
In(v) = In(v.g) = ——ms (1—1
#Wen) =in (Vo) = ~p= (1=1) (4.7.5)
vch 1
Inf — |=- -1,
n( COJ RC (t 0)
! (r—15)
v - (-
“ch_p RCT T
ch
results in
L (r=1,)
ry-R L)
v, () = vee &€ (4.7.6)

This solution satisfies the specified initial condition, and is what would prevail in the
absence of an excitation, V (r) =0. For this reason it is also referred to as the zero-input

response.

Next we turn our attention to the overall solution which we attempt to obtain in terms of

an unknown function multiplying the homogeneous solution:
v (1) = z(D) vy, (D)
Note that
2(ty) =1
in order to satisfy the specified initial condition
Ven(tg) = Voo
Substituting equation (4.7.7) into equation (4.7.2) we obtain

dz dvch 1 1

—y 47" - +
FTACEY RCVrt Re”

(4.7.7)

(4.7.8)

(4.7.9)

(4.7.10)



90 Linear Transient Analysis I

Because of (4.7.3) the terms immediately to the left and right of the equals sign cancel,
leaving

d 1
'gf"ch = 2cV (4.7.11)
Therefore
d 1 Vv
zz; = 2o (4.7.12)
ch
Inserting (4.7.6),
: (1—1y)
% - RLC Vo ere (4.7.13)
ch
and integrating
z (1) (’r o)
J dz = I RCv. V(t)dr (4.7.14)
z (%)
results in
RC(t fo)
Z(t) —z(ty) = je V(1) dt (4.7.15)
cO

0

Substituting (4.7.7) and (4.7.8) for z (¢,) and z(t) into (4.7.15) and using the homoge-
neous solution (4.7.5) we have finally

(t-—to) (t T)

R = Je V(1) dt (4.7.16)

Iy

" RC
v (1) = v,€

We see here the classic separation between the zero-input response, which in this case is
the homogeneous solution

v (1) = vee 5¢ (4.7.17)



The Exact Solution of a Simple Series RC Circuit 91

and the zero-state response, which is the convolution integral
1 ¢ me (=1
Veo, () = Ie V(t)dt (4.7.18)

For example, with a 1 pF capacitor, a 10 kQ resistor, a voltage input V(1) = 5u(s),
and an initial capacitor voltage v, = 1 volt, the zero-input, zero-state, and complete
response are shown in Figures 4.17, 4.18, and 4.19, respectively.

5.0

» s
o o
I I

M
o
f

Zero input response (volts)

[an) ]
o
(

0 | | l
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Time (seconds)

Figure 4.17 Zero-input response for series RC circuit.

Given any initial condition and driving voltage function, we can easily obtain the
capacitance voltage from equations (4.7.17) and (4.7.18). To be able to compare such
solutions with those we may obtain using integration approximations, we confine the
input voltage function to be a sequence of steps and ramps in time as shown in Figure
4.20. As long as the time points are sufficiently close together any input voltage (or cur-
rent) of interest can be approximated in this way. It may seem that we need not consider
step changes since they cannot actually occur in reality and we could consider approxi-
mating them with very fast ramps. It turns out though that such an approach may be more
Computationally expensive than the explicit treatment of steps, so we will retain them in

our discussion without further explanation at this time. To proceed, we focus on the n™
Open input segment for which ! <z < f. .- as shown in Figure 4.23. We establish some

nomenclature for this open interval, ¢ € (¢, ,, ), as follows:

n+1



12 Linear Transient Analysis I

e O =
c o ©o ©
I I i

(=N
S
|

Zero state response (volts)

| | | ! | | I
0 001 002 003 004 005 006 007

Time (seconds)

S
=

Figure 4.18 Zero-state response for series RC circuit.

Complete response (volts)

0.0 | | | i l | |
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Time (seconds)

Figure 4.19 Complete response for series RC circuit.



The Exact Solution of a Simple Series RC Circuit

93

V()

<N
/\_/ P

Figure 4.20 Piecewise input segments.

Figure 4.21 The input segment (7,1, ).



94 Linear Transient Analysis I

AV,
V(t) = Vn+ (t—tn)_&m

n

V=V
(4.7.19)

AV, =V (L, ) - V(L)

&
i

In the absence of impulse excitations, which we will disallow for now, there can be no
discontinuities in the capacitance voltage state variable, so

v (6,) = v (5 = v (1) =V, (4.7.20)

Referring back to the general solution, equation (4.7.16), we can write the following
expression for the state at time ¢, ., in terms of the state at time 7, and the behavior of the

input on the open interval t € (z,,1,, )

- ( +1 ) 1 - (tn+l ) AV
RC RC
Ve pat = Ve n€ + e J e [Vn+ (t-1) Atth
n
t"
Atn In+l ( ) A
_R- 1 _RC Ly =7 V
=v_, € +RJ‘€ (Vn—tnz—tf)d‘c

n
+— T d
RC ar ot
& @4.7.21)
_% Az, AV
RC “RC
= C’ne + (1 - RC\J(VH—tnA—tn)
n
AV Atn
+ (1 RC)—" — (+. —RC)—"e R¢
( n+1 ) tn ( n ) Atn
At,
v +RCVM e R L (v 1AV _RCEYE
= (vc,n_ .t Atn)e +(V,+AV, - Atn)

The last three terms in (4.7.21) account for the ramp portion of the overall response.



Comparison of One-Step Integration Approximations with the Exact Solution 95

Note, if the slope of the excitation were zero (A V, = 0), we would have the familiar
step response augmented by a transient term due to the initial condition V.,

Ve wa1 = Ve € O+ Vn(l —e RCJ @.7.22)

4.8 Comparison of One-Step Integration Approximations with
the Exact Solution

Next, we consider the various integration approximations and compare them with the
exact solution as shown in (4.7.21).

Forward Euler

For a Forward Euler approximation we replace the original circuit with the sequence of dc
equivalents shown in Figure 4.22. So we see that

n c,n
i.(1,) = R (4.8.1)
and
At,
vc,n+l = vc,n + —é—lc (tn)
4.8.2
At (4.8.2)
= vc,n+ R—C [Vn_vc,n]
is the recursive relation with which we calculate v,.
Now, we go back to the exact expression (equation (4.7.21))
Atn
AV,  —%-
Vens1 = (v, ,— V. +RC )é +(V +AV, RC 5 (4.8.3)
’ ’ At, At,
and expand the exponential in a Taylor series
Ar, A Vi
v t 1 At
efC=1-_"4 w(—) ~ 57 (@) oo (4.8.4)

RC 2! RC



96 Linear Transient Analysis I

WA
Atn—l.
Vn (*)@% vc,n = vc,nwl+Tlc(tn_1)
R

NN

A
Vs C)@C) Vensr = vc,n+—gic(t,,)

Figure 4.22 The dc equivalent circuits for FE analysis of a series RC circuit.

Retaining only the first two terms in this series we obtain, after considerable cancellation,

At

v + E—é (V,—v,.,) (4.8.5)

c,n+l = vc, n
This expression is identical to the Forward Euler recursion in (4.8.2), thus implying that

the Forward Euler approximation amounts to taking into account only the first two terms
At
in the Taylor expansion of e X€.

When using the Forward Euler approximation in the presence of step function excita-
tions, however, as shown in Figure 4.23, we must compute the capacitance current that
would prevail immediately after the onset of the step, and use that in the subsequent time
point computation, as shown in Figure 4.24.

When the step change in the input occurs, the voltage of the capacitor cannot change
instantaneously. Hence the additional voltage drop occurs across the resistor, thus instan-
taneously changing the current through the capacitor. During the step, no time passes and
no integration steps are necessary. Once we move on to the ramp, we need to apply the
integration approximation. Hence the FE approximation uses the capacitance current that
prevails immediately after the onset of the step. It is therefore necessary to perform a com-
putation at every time point that any driving function has a step function. The post-step
capacitance currents are used for the subsequent time point computation. This distinction
between pre- and post-step capacitance currents is a subtle point that is often missed in the
actual implementation of the Forward Euler integration approximation. We could alterna-



Comparison of One-Step Integration Approximations with the Exact Solution 97

Vi) +

V(t;+l) T
/IAVn
V() -

1

-t

In At tn+1 4

n

Figure 4.23 The input segment (¢,,¢,, ) .

A
V(t:) C) i(’:) <i> Ve,n =vc,n—1+'—%ﬂic(t:—l)

A
V() CD@C) Vens1 = vc,,,+%ic(f3)

Figure 4.24 Modified FE circuit analysis.

tively prohibit step function changes in input, but then we would be forced to approximate
step inputs with very steep ramps. Such an approach often necessitates using very small
time steps. In practice we are better off allowing steps and even approximating very steep
ramps by steps. As a final note, we should mention that not only should we recompute
with Forward Euler (or any one-step integration) at step function changes in the input, but
also at any change in input slope even if the function is continuous. If the input were a



08 Linear Transient Analysis 1

sinusoid, we would take appropriately “small” time steps so as not to lose accuracy due to
the change of the input during the time step. Accuracy and stability considerations may
also influence the time step and force us to recompute at intermediate time points

(between ¢, and ¢, in Figure 4.23).

Backward Euler

Next we turn our attention to the Backward Euler integration approximation. We first
rewrite the exact solution (equation (4.7.21)) by expressing the voltage at ¢, as a function

A,
of the voltage at ¢, _ ;, and then multiply through by € ¢
At,
AV, AV, RC
= V"_RCAt +[Vc,n+1 (v, +AV)+RC J (4.8.6)

Now, we expand the exponential in equation (4.8.6) in a Taylor series

At ) 3
eR—C | At, 1 At
= +E—é ?(—) 3—(7) +...+ 48.7)
and retain only the first two terms to obtain
. At, 1 v
= + —_——
( RC) cn+l RC ( n+AVn) (4'8'8)

or

At At,
v (V +AV,) —

Venv1 = Ve, R—C entl (4.8.9)
Equation (4.8.9) is equivalent to the BE expression in (4.3.1)
At
Vc,n+lzvc,n+?l(tn+1) (4.8.10)

This BE expression matches the dc equivalent circuit in Figure 4.25.

Again, we would always want to recompute at every occurrence of a step change in the
input, but such a change is accounted for naturally in Backward Euler integration which
focuses on the ¢, , side of the computational interval. Note that we are computing the

voltage v, ,,; (which is the same on either side of the step), and i(r,,,) (before the



Comparison of One-Step Integration Approximations with the Exact Solution 99

R
Vv +
Veon
V(t;+1) C) i(t;+l) At Ven+l
R, =& _

Figure 4.25 The dc equivalent circuit for BE analysis.
step) by means of the integration.

Trapezoidal Analysis

To compare Trapezoidal integration with the exact solution, we rewrite equation (4.7.21)
as

At,‘ At

AV, AV 1 ———
[vc,,”, (V,+AV,) +RCL } e*kC = [vc,n—VH+RCAt"}€ 2RC T @8a1)

n n

Next, we expand each of the exponentials in a Taylor series and retain the first two terms
of both. After a great deal of cancellation, we are then left with the Trapezoidal integration
approximation:

L4 " A V,+ (V,+AV
AR = e .8.12
( +2Rc)vc,n+l ( 2RC) 2RC[ +(V,+AV)] (4.8.12)
or
At, At,
Venel = Ve, 2RC 2RC c n 2RC c n+1 (4.8.13)
which is equivalent to the TR expression in (4.4.1)
At,
Vens1=Ventam Li(t,) +it,, )] (4.8.14)

2C

As we should expect from our experience with the above, the dc equivalent circuit in
Figure 4.26 that matches expression (4.8.12) follows from the handling of the input volt-

age discontinuity in the Forward Euler companion model. Once we have obtained v, , | ,



100

Linear Transient Analysis I

we see the need to compute i, (¢, ), as shown in Figure 4.27, for use in the subsequent

time point computation, given by

V(t:+l) -V

i (thy)) = 2 A (4.8.15)
R
NN Atn N +
) vc’n+izc(tn)
V(t”+1) C) i(I;+l) At Ven+1
Req = ﬁ

Figure 4.26 The dc equivalent circuit for TR analysis.

R

V£, ) ()@() Ve

AAAY

Figure 4.27 TR integration requires modification similar to FE when the input has steps.

4.9 Accuracy of One-Step Approximations

We can estimate the accuracy of one-step integration approximations in terms of the local
truncation error that follows from the largest of the neglected terms in the Taylor series
expansion for the exponentials. We are aided in our analysis by the fact that in a conver-
gent series, each term dominates the sum of all of the remaining terms.

Forward Euler

For the Forward Euler approximation we (in effect) approximated the exponential by



Accuracy of One-Step Approximations 101

At, A
RC -
e Fe~1-_" (4.9.1)
RC

and neglected the remaining terms. Assuming a convergent series, the dominant term that
we neglected is

2
1 A,
5 (R') (4.9.2)
So from the exact solution
At
AV, ¢ AV,
Veper = (v, ,—V,+RC ye "+ (V, +AV, —RC ) (4.9.3)
' ' Az, At,
we have an upper bound on the local truncation error €:
< 1 At, 2 v RCAV"
L= (== -V + 494
E’ 2(RC) (vcyn n Atn) ( )
Returning to the Forward Euler approximation (4.8.5) itself,
At,
Ven+1=Vent pe (V,-v.,) (4.9.5)
With some rearranging we have
RC
Vc’ﬂ—‘ Vnz z‘;— (Vc,n—vc,n_'_l) (4.9.6)
n
Substituting (4.9.6) into (4.9.4) we have
2
1 At, "RC
RS 2 (_(’;) E (vc,n Vet +AVn)
" (4.9.7)

1 At
- _i (R*) (vc,n-‘-vc,n+l +AVP‘!)



102 Linear Transient Analysis I

We could leave it at equation (4.9.7) and say that the local truncation error is propor-

At .
tional to —% ( R—C",) and then have two components, one proportional to the change in state

voltage and the other proportional to the change in input voltage. Or we can go further:

1 Ar,
ESE(EE’){[(VR+AVR)_VC,H+I]“[Vnmvc‘,n]} (4.9.8)
and since
V +AV.) —v
Ve ;; ol = (L) (4.9.9)
and
WV"—VC’” (1 4.9.10
R =i.(t,) (4.9.10)
then
lAtn . - . +
ES z""@*[lc(rn_’_l) —lc(tn)] (4.9-11)

This error approximation makes good intuitive sense. It suggests that the error will be
small if the difference in the capacitor current from one end of the time interval to the

other is small, and of course if the time step Az, is small. In fact, if the exact current

through the capacitor during the time step is constant (i.e., the voltage slope is constant),
then Forward Euler integration does not incur any local truncation error. Forward Euler
approximates the voltage slope for all of the time step as being the voltage slope at the
start of the time step. Hence, if the voltage slope is constant (or the voltage is a linear func-
tion of time), no error is incurred. If, however, the voltage as a function of time is very
convex or concave, Forward Euler integration may incur a relatively large error.

The local truncation error as expressed in (4.9.11) can now be used to adjust the time
step to stay within a pre-set error bound. At the outset, we can try to traverse an entire time
interval, throughout which no steps or ramp slope changes occur. If we subsequently dis-
cover the (voltage) truncation error to be too great we can limit the time step and settle for
the computation of an intermediate solution. Such a solution need not be computationally
expensive, since adjustment of the Forward Euler time step only entails a change in the
companion model equivalent source value. So the LU factorization obtained for the dis-
carded solution can be reused with a new Forward and Back Substitution. Note finally that
although the Forward Euler error appears to be proportional to At, , it is also dependent on

the change of current in the capacitor. The larger the time step, the larger is the worst-case



Accuracy of One-Step Approximations 103

change in capacitor current and the larger the worst-case truncation error.

Backward Euler

From the exact expression (4.8.6)

Ar,
AV, AV, 7
Ven = Vn—RCAt + [vc,n”—- (V,+AV) +RCAt }e (4.9.12)
we can expand the exponential terms as
AVn At 1 At 2
-(V,+AV ) +RC Py (2 9.1
|:vc,n+1 v, ) AIHJ[1+RC+2! (RC) +J (4.9.13)

Since Backward Euler corresponds to approximating this Taylor series by the first two
terms, we can estimate the error from (4.9.13) as we did for the Forward Euler case:

1 Atn 2 AVn
e<-5 (22) [vm“— (V,+4V,) +RC J (4.9.14)

n

In contrast to (4.9.4) there is a minus sign for this local truncation error expression since,
unlike the FE case, the error term and the v, ,,, both appear on the same side of the
equation.

Next, using the Backward Euler approximation

At
vC,Il+lzvc,n+R—g[(Vn+AVn) —vc’n-}.l] (4-9.15)

rearranged in the following manner,

vc,n+1_ (Vn+AVn) = %' [vc,n_vc,n+1] (4-9-16)
we substitute (4.9.16) into (4.9.14) resulting in
<] At, A
8_—5 (I_i’—é) [vc,n_vc,n+l+ Vn]
' (4.9.17)

_ 1 A,
- —Q(EE) { [(Vn+AVn) _vc,n+l] - [Vn_vc’"]}

Again, we can express the right-hand side in terms of the capacitance current to obtain



104 Linear Transient Analysis I

1 A, o
es—i (—E) i. (£, —i.(1;)] (4.9.18)

Qualitatively, equation (4.9.18) is merely the negative of that obtained for the Forward
Euler integration error. Quantitatively, the magnitudes of these errors may differ greatly
since the actual values of the capacitance currents are computed quite differently. Later in
this chapter, we will see that because it is more stable, Backward Euler integration is gen-
erally more accurate than Forward Euler.

On a voltage basis, both of the Euler integration approximations have an error compo-
nent proportional to the input change AV, . Steep ramp input slopes usually drive Euler

integration approximations to take very small time steps in order to retain reasonable
accuracy.

Trapezoidal Integration

Because we have expanded (in effect) the exact solution exponentials in terms of a smaller
At,
2RC’

gration to have a smaller local truncation error than either of the Euler approaches. To ver-
ify that this is true, we reconsider the exact solution in the form shown in (4.8.11):

multiple of the circuit’s time constant, we would generally expect Trapezoidal inte-

Ar, Ar,

AV, AV 7 5w
{vc,ﬁl (V,+AV,) +RCL } e2RC I:vc’n—Vn+RCAt"}€ 2RC T ae.19)

n

To obtain the Trapezoidal approximation we retained the first two terms in the Taylor
series expansion of each exponential. To estimate the local truncation error, we retain the
next two terms in each of these two Taylor series because cancellations reduce their effects
to the same order. After a great deal of algebra the result is

2
1 A,
ES§(5EE) (Vemse1= Ve n—AV,) (4.9.20)

To verify the above result, substitute the third and fourth terms of the Taylor expansion
of the two exponentials and then take the difference between the left hand side and right

At,
hand side. Separate out the terms which have a ﬁ' multiplier and apply the basic Trap-

ezoidal approximation equation to perform simplification, thus leading to the above
expression for €. Provided that Az, < 2RC, which is a reasonable restriction, this Trape-
zoidal integration error generally is much smaller than the corresponding Euler errors for a

comparable time step. It is proportional to Ati along with a dependence on the change in



Stability of One-Step Integration Approximation 105

capacitor current during the time step. The truncation error is not as easily computed in

terms of capacitor currents as are the Euler errors because of the presence of R? in the
denominator. We can of course write

Af?

n
12RC
But for a general situation, as opposed to this single series RC circuit, we would have no
easy mechanism for deriving a formula independent of R, or other circuit element values.
See Section 4.11 for a description of other methods to estimate the local truncation error.

In any of the integration methods, if the truncation error is exceeded, interpolation can
be used based on the change in capacitor current to locate a suitable intermediate time
point. Another way to approach the problem is to divide the time step in half until a time
step with an acceptable local truncation error is found. When circuit simulation programs
successively reduce their time steps, they can run into numerical problems. First, the small
At can cause matrix entries that are very large. Second, the program may hit machine pre-
cision limits. To protect against these situations, circuit simulation programs often have a

pre-set minimum time step after which they abort with a “Time step too small” error mes-
sage.

£ =

(i, (t,,) —i.(£)] (4.9.21)

4.10 Stability of One-Step Integration Approximation

In the last section we derived upper bounds for the local truncation error of the various
one-step integration approximations to get a feel for their accuracy. We should recognize
that the local truncation error provides us with a worst-case for the error that may be
incurred over a single time step of integration. Stability is concerned with whether that
accumulated error grows or decays as time evolves through a series of time steps. An easy
way to consider stability is in terms of the exact solution, equation (4.7.21):

A,

Y RCAV" e ¢
+ -V +
At, WVen= Vi At, ) (4.10.1)

v L
n's VT

o+l =

particular solution transient solution

Note that the particular solution is a step-ramp combination since the input forcing func-
tion is a step-ramp combination, V, from Figure 4.23.

For example, from the original first-order differential equation for this RC circuit in
(4.7.2)



106 Linear Transient Analysis I

dv 1 1

@ = ke TR

il o (4.10.2)

we can evaluate the particular solution, v_, as follows.
First, assume a step-ramp form for the particular solution

v, =a(t—-t)+b (4.10.3)
which corresponds to the step-ramp input forcing function

AV

n

At

n

V =

(t—t) +V, (4.10.9)

for the open interval t € (1,1, ) . Inserting (4.10.3) and (4.10.4) into (4.10.2) and solv-

ing for the coefficients a and & results in

- AV, AV,
v, = AT (t—t,) +V,-RC A7 (4.10.5)

n

From (4.10.5) the particular solution at ¢, , | is

n

At

n

V41 = (V,+AV,) —RC (4.10.6)

and for 7, itis

AV
v.,=V,-RC At" (4.10.7)

n

Returning to (4.10.1), and rearranging the terms, we can express the exact solution in
the following way:

At

AV” AV" RC
[vmﬂ— (V,+4V,) +RC } = [vc,,,-V,ﬁRCAt ]e (4.10.8)
n

n

From equations (4.10.6) and (4.10.7) we recognize the particular solution terms on both
the right hand side and left hand side of (4.10.8), therefore

At,
- - RC
[vc’n+1——vc’n+1] = [vc,n_vc’n]e (4-10-9)



Stability of One-Step Integration Approximation 107

The quantities in the LHS and RHS brackets represent the difference between the
capacitance voltage value and the steady state solution at time points ¢, , , and t,, respec-

~(At,/RC)
tively. The bracketed quantity on the RHS is multiplied by € , which is less than

one in magnitude since At,, R, and C are all positive values. So we should expect the

approximation to be closer to steady state at the end of the numerical integration time
interval than it was at the beginning. In other words, any accumulated error should decay.

We can, therefore, invoke a simple stability criterion which must hold regardless of
what integration approximation we choose to use:

Ve, ne1 = Ve nar] < Ve =V, ] (4.10.10)

This stability criterion is sufficiently general that it can be invoked even if we were to
guess the value of v, . . For example, we could jump directly to the steady state solu-

tion in one step, ignoring any transient, and certainly be stable. Of course, we may not be
very accurate in such a situation.

Classically, integration algorithm stability studies focus on the exponential approxima-
tion, and demand that its absolute value be less than one.

Forward Euler

For Forward Euler approximation we use

T At
RC n
=] — — 4,10.11
€ RC ( )
So for stability we must have
‘1 Al 1= A1, <2RC 4.10.12
"Rl S < e

Limiting the time step in terms of this restriction is not severe for this series RC circuit,
since this criterion imposes a (very reasonable) maximum time step equal to twice the
time constant of the circuit. However, we will see later that the equivalent limitation on
circuits with multiple time constants can be quite extreme, We should also note the rela-
tion between (4.10.12) and (4.10.10) for this simple RC example.

If we apply a unit step of voltage to the series RC circuit, the initial FE current will be
/R if the capacitor is initially uncharged. Let us now apply FE for a maximum allowable
time step of Ar = 2RC. Hence

i (0
v (A1) = v(0) +%—)—At =0+2 =2V (4.10.13)



108 Linear Transient Analysis I

Thus the voltage would be as far away from the steady state at the end of the time step as
it was before the step was taken; therefore, At = 2RC would violate both equations
(4.10.12) and (4.10.10).

Backward Euler

For Backward Euler approximation we use

— At
RC n
€ =1+—— 4.10.1
RC (4.10.149)
or
~Ar, 1
erc = | At (4.10.15)
+ J—
RC
So we must have
b 1 (4.10.16)
}1 At o
+ -
RC

which poses no restriction for Az, > 0; hence stability considerations pose no restrictions
on the time step for Backward Euler.

Trapezoidal integration

For Trapezoidal integration the exponential approximation is

4, _;2 1- AL,
"RC e 2RC
e - - 4.10.1
A, | At, ( 7
Bl LAl
e*rc 2RC
and
-
___2RCy (4.10.18)
At

I+ 5ke



LTE Estimation via Divided Difference Approximations 109

From equation (4.10.18) it is apparent that TR analysis is also stable for any Az > 0. But
for At, » 2RC, the left side of equation (4.10.18) is very close to 1, which means that we

approach steady state very slowly. It turns out that for Ar, » 2RC, the approximation is

stable, but oscillatory. It should be noted that these oscillations are purely numerical, since
a simple RC circuit cannot oscillate. In the interest of accuracy, time steps that are much
larger than the time constant of the circuit being analyzed are not recommended with any
integration scheme.

4.11 LTE Estimation via Divided Difference Approximations

We can also derive local truncation error estimates in terms of divided difference approxi-
mations for higher order derivative terms. For FE and BE we will find that the error
expressions are identical to those in Section 4.9. For TR integration, a truncation error
expression is derived that is not dependent on circuit element values.

Forward Euler and Backward Euler

Focusing on the Forward Euler approximation for a single capacitor, from a simple differ-
ence equation we can write

A

Vens1 =Vt At v, , (4.11.1)

Assuming that all of the solution points for ¢+ <t are exact, we can express the exact

capacitor voltage at time ¢, , | in terms of a Taylor series expansion about ¢ = ¢,:

. 2vqn qun
= Ven + Atnvc,n + Atn—2 + At"—6

v + ... (4.11.2)

c,n+1l

Recognizing that the first two terms of (4.11.2) correspond to the FE expression in (4.9.5),
we can express the error

€=V, i1~ Vent1 (4.11.3)
as
'2van qun
e = Az, 5 + Atf, g T (4.11.4)

For a convergent series,



110 Linear Transient Analysis 1

Zi;c (i)

£ = At, 5

(4.11.5)

where 1, <§<1t,, .
One can easily show that the Backward Euler error is the same as (4.11.5) but of oppo-
site sign

Zi}c (g)

€ = —At 5

(4.11.6)

for some £ between 7, and 1, _ ,.

Approximating the FE and BE errors requires approximating the second derivative of
the capacitor voltage. Similar to the divided difference expressions [Carnahan69] which
were used to derive the FE and BE formulas earlier in this chapter,

. Ventl ~ Ven lc,n+1_ic,n
V. (&) = =

At - AC

n

(4.11.7)

Combining (4.11.7) and (4.11.5) we have the following expression for the FE error,

Atn . .
&= 5 lig a1 =i, ] (4.11.8)

and combining (4.11.7) and (4.11.6) we have a BE error of

_Atn . .
£=—2—é— [lc’n+1—lc’n] (4.11-9)
Notice that these expressions are identical to the FE and BE error expressions derived in
the previous section.

Trapezoidal Integration

Next we consider the Trapezoidal integration error. From (4.11.2) we know the exact solu-
tion is

2vc,n + At3.i;c (Q)

vc,n+1 = vc,n+Atnvc,n+Atn 2 "6

(8.11.10)

forz, <¢g<t It follows that

n+1-



LTE Estimation via Divided Difference Approximations 111

. . . V. (Q)
Ve mat = vc’n+AtnvC’n+Ati%§— (4.11.11)
fort, <{<t,, 4.
Solving for v, , in (4.11.11)
v -y Ar
Vo, = —“'”"A]t L 7" V. (£) (4.11.12)
and substituting (4.11.12) into (4.11.10)
ALV, =V, At V()
V. 1 = Ve, tALY +~—"(~f—’u——”'i} (Q)J+At3 ‘ (4.11.13)
c,n+1 ] ncn 2 Atn 2 c no6
Combining the ¥ terms in (4.11.13) and rearranging yields
At v
Vens1 = vc,n+~2—"(1}c,n+1+vc,,,) —Ariﬂ (4.11.14)

12

where 1, <&<1, ..

We can see that the first two terms in (4.11.14) are the TR approximation for the capac-
itor voltage. Therefore, we know that the error is

e = _At?;-i}c (g)

T3 (4.11.15)

We can approximate (4.11.15) by higher order divided differences. For example, we
used the first divided difference formula to derive the FE and BE expressions earlier in
this chapter:

Vc,n+lmvc,n

At

n

V. (&) =v.[1,,,1,] = (4.11.16)
where the term, v_{¢, . t,], refers to the first divided difference using the terminology

from [Carnahan69]. Note that v_[¢, , ,¢,]1 is a first derivative and v {1,, .t 1,_,]
refers to a second derivative.
The second divided difference expression is given by



112 Linear Transient Analysis I

Ve [tn+1’ tn] -V [tn’ tn—l]

vt ptat,_ (] = At AL (4.11.17)
where
At, =t —1 _, (4.11.18)
and
Atn_l = tn—l '—tn_z (4.11-19)
It follows that the third divided difference expression is
v_[t t,t _]—-v. [t,t t Ll
cltin+ 122 tn-1 clfm *n-1"n-2
Vot bty gl = (4.11.20)

At, +At, | +At,_,

and so on.

In [Carnahan69] it is shown that the k™ divided difference is related to the k" deriva-
tive by

d*v, (&)

k

= k! v [t
df ¢

it sty _pail (4.11.21)

Using (4.11.21) we can approximate the TR error term in (4.11.15) using the following
third order divided difference:

d3vc(E-') vc[tn+1’tn’ tn—l] _vc{tn’ tn—l’tnw—2]

=v [t f,t Ll =
cit'n+l*'*'n-1""*n-2
dt3 A‘n+A‘n—1+A’n—2

Ve [tn+ l’tn] _vc[tn’ tn—l] Ve [tn’ tn—l] =V [tn~1’ In—2]

Az, +Ar, At, (+At, _,
Atn+Atn—l+Atn-

2
vc(tn+1) _vc(tn) ve () v (4, 1) vc(tn) vt ) v () v (1,_5)
Atn At _ Ar, At _,

A, + At | A, +A1, _,

At,+ At _ +Ar _,

(4.11.22)



Inductance 113

The above expression, unlike (4.9.20) and (4.9.21), gives us the truncation error inde-
pendent of circuit element values. In highly nonlinear circuits, relying on history values is
not desirable since variables are prone to change rapidly. To the extent that the above trun-
cation error expression includes circuit values two time steps in the past, it may not work
very well with highly nonlinear circuits. See [Rohrer84] for a more general method of
estimating trapezoidal truncation errors.

4.12 Inductance

Inductance is the dual of capacitance. Readers might wish to enhance their understanding
of this material by deriving appropriate integration and error formulas for a parallel GL
circuit excited by an independent current source comprised of steps and ramps.

4.13 Summary

In this chapter we have developed stability and accuracy considerations for single-step
numerical integration approximations as they apply to circuits with a single energy-stor-
age element. In the following chapter we will introduce state variables so that we can con-
sider similar derivations for the case of circuits containing multiple capacitors and
inductors.

4.14 References

[Carnahan69] B. Carnahan, H. A. Luther, and J. O. Wilkes. Applied Numerical Methods.
John Wiley and Sons, 1969.

[Gear71] C. W. Gear. Numerical Initial Value Problems in Ordinary Differential Equa-
tions. Prentice-Hall, 1971.

[Brayton72] R. K. Brayton, F. G. Gustavson, and G. D. Hachtel. A New Efficient Algo-
rithm for Solving Differential-Algebraic Systems Using Backward Differentiation Formu-
las. Proceedings of the IEEE, vol. 60, pp. 98-108, 1972.

[Rohrer84] R. A. Rohrer, H. Nosrati and K. Heizer. Quasi-static Control of Explicit Algo-
rithms for Transient Analysis. IEEE Transactions on Computer Aided Design, vol. CAD-
3(3), pp. 226-234, July 1984.






Chapter 5 Linear

Transient
Analysis 11

We have spent a great deal of time in Chapter 4 discussing the special case of linear tran-
sient analysis of circuits containing just one energy storage element. However, we will see
that this has not been time wasted. In this chapter, we consider linear circuits which may
have many energy storage elements and we will see that the same considerations and com-
parable manipulations apply. Much of the intuition and many of the results from the previ-
ous chapter will now prove to be useful for the general case.

5.1 Multiple Energy Storage Elements

To study the behavior of the various one-step integration approximations when used in
conjunction with circuits which may have more than one energy storage element, we use
the state variable formulation to simplify the discussion. The standard form of the state
equations 18

X = Ax+Bu (5.1.1)
y = Cx+Du (5.1.2)

where x is the n x 1 state vector, # is the m X 1 input vector, and y is the vector contain-
ing the outputs of interest. Much of the mathematical literature on the solution of ordinary
linear differential equations has been developed in terms of a coupled set of n first-order
equations such as (5.1.1).

Although state equations are useful for describing various characteristics of a circuit or
set of circuit equations, they are not used in practical programs due to the difficulty in
forming them. However, we will see that state equations will help us explain some con-
cepts elegantly in this chapter. Further, the concepts will be applicable to other methods of
equation formulation, too. To develop some insight into how a circuit is described by a set
of equations such as (5.1.1), consider the linear RLC circuit in Figure 5.1. In order to gen-
erate the state equations we attempt to express the circuit exclusively in terms of the two

115



116 Linear Transient Analysis II

000 +
Loty |
G, =C, G, - C

I R S A

st

Figure 5.1 RLC circuit example.

capacitor voltages, the inductor current, and the first derivatives of these three variables.
To begin, we write the two nodal equations for this circuit:

Gve,+Cpvey+igy =1
. (5.1.3)
Gyt Cyver =iy, =0

Since the admittance form of the inductor current is an integral expression, we include the
inductor current (rather than voltage) as a variable just as we did for the case of ideal inde-
pendent voltage sources in the MNA equations. Then, as we did for voltage sources, we
add an auxiliary equation for the inductor:

Equations (5.1.3) and (5.1.4) can be combined to form a set of “matrix” equations that
describes the circuit in Figure 5.1:

d(+)
G, +Ci— 0 1
dt y
d(+) C1 I
0 [G2+C27] -1 |ivesl =0 (5.1.5)
1 1 LA “ ’
L Udr
Or, we can arrange (5.1.3) and (5.1.4) as
0 C2 0 ]}C2 = 0 —GZ 1 Vo + 0 [131] (5.1.6)
0 0 Ll I:L] 1 -1 0 iLl 0

and then further rearrange (5.1.6) to correspond to the state equation form shown in
(5.1.1)



Multiple Energy Storage Elements 117

-1
"}Cl Cl 00 _Gl 0 —ﬂ vc] 1
1;CZ = O C2 0 O —Gz 1 VCZ + O [Isl] (5-1.7)
iy 0 0L, 1 -1 0]|ig

=)

Comparing (5.1.7) with (5.1.1), x, the vector of independent state variables, is comprised
exclusively of the two capacitor voltages and the inductor current. For this simple circuit
it was not difficult to express the equations in terms of these independent variables. In
general, however, the formulation of state equations is significantly more involved.

For example, consider the circuit shown in Figure 5.2. We can formulate the state equa-
tions in terms of a dc circuit that can be obtained by replacing all capacitances by indepen-
dent voltage sources and all inductances by independent current sources, as shown in
Figure 5.3.

I Source-free memoryless

(resistance/conductance,
and linear controlled source) ? .

portion of the circuit.

Figure 5.2 Linear circuit with multiple inductors and capacitors.

It may not always be possible to form such a circuit. For example, if the circuit in Fig-
ure 5.2 has a loop of voltage sources and capacitors then all of the capacitor voltages in
the loop are not independent. We will not discuss how to overcome such situations to
obtain state equations, since formulating state equations is not our primary goal here. The
details of how to form the state equations for generalized circuits can be found in the liter-
ature [Kuh65]. For now we are introducing state variables and their formulation only to
add circuit analysis intuition to the mathematical manipulations which come next.



118 Linear Transient Analysis II

1% [
Ck Ck Source-free memoryless

(resistance/conductance,

iy p
and linear controlled source) j
v Lp+l
I, p+1

portion of the circuit.

Figure 5.3 The dc circuit used to obtain state equations.

To continue with the our generation of the state equations, the dc circuit in Figure 5.3 is

used to generate the hybrid matrix, H:

~l¢, | Ve
"'ic,k vC,k
Vi k+1 - N
5 HecHep Hey Hey :
Vion | — H, H, H,H, -i, (5.1.8)
=y H, H, H, H, Yy i
: H,. H, H, H, :
_iV,p Yv.p
Vip+1 _il,p+1
vl,m~ _ila’"_

H is called a hybrid port matrix because it characterizes both port voltages and currents in
terms of both currents and voltages. The negative signs denote that the currents in Figure
5.3 are directed oppositely to the traditional reference directions for port currents. Note



Multiple Energy Storage Elements 119

that each of the 16 entries in H (each of the H’s), is a submatrix itself. Some of the sub-

matrices of H have dimensions of resistance, some conductance, and some are dimen-
sionless. Each submatrix relates port currents or voltages to the independent-variable
currents and voltages, as indicated by the subscripts.

‘The hybrid matrix is obtained by suppressing certain variables such as node voltages at
resistive nodes (nodes without a capacitor or inductor connected to them). The details for
formulating the hybrid matrix can be found in [Kuh65]. We do not wish to cover such
details here, but we will merely state that these equations can be obtained for all but the
most pathological of circuits.

As an example of how one might generate the hybrid matrix consider the simple circuit
in Figure 5.4, which contains a voltage source and a capacitor, but no inductors or current

sources. The dc equivalent circuit used to generate the hybrid matrix is shown in Figure
5.5.

R, v, R
AA—T—AM— 4

Port 1
7 Uod

Figure 5.5 The dc equivalent circuit used to eliminate internal resistive node variable.

For the circuit in Figure 5.5 the hybrid equations are

l:—l:V — [Gli Gl.ﬂ [VV (5'1-9)
~le Gy Gl | Ve

Equation (5.1.9) represents the y parameter equations for the two-port circuit in Figure
5.5. The negative signs denote that i and i, are directed oppositely to the traditional ref-

erence directions for port currents. We could generate these y parameters by writing the



120 Linear Transient Analysis 11

MNA equations for the dc circuit in Figure 5.5 and then eliminating the node voltage vari-
able, v_, algebraically. In this example, it can be shown that

1
1 - ——
[ RlA} -1

Cu=—%" Gia = RRA
1 1
. R, A] (5.1.10)
G, = Gp=—F
RRA R,
1 1 1
A= (o +—+—
(Rl R2 R3)

Another way of arriving at the same result is by recognizing that the circuit in Figure 5.4 is
equivalent to the one shown in Figure 5.6, where we have applied the “Y-delta” or “star-
delta” transform to the interconnection of the three resistors. A in Figure 5.6 is the same as
in (5.1.10). From Figure 5.6, the expressions for G,;, G,;, G,;, and G, can be written
by inspection.

RR A
AN~
< = ¥
& [ -
<

Figure 5.6 Equivalent circuit to the one shown in Figure 5.4.

Once we have the hybrid equations, the state equations follow from the recognition that

. dvc diy
lC = CE" aHd VL = LE (5.1.11)
Then, for the general case
x = Ax+Bu (5.1.12)

we have

i[vﬂ _lch o [Hcc _HCIE| E’cﬁlJr c'o [HCV _Hcﬂ [V‘ﬂ (5.1.13)
dt| g, o LY ["Hic Hu ]|k o L'|["Hy Hy |1



Multiple Energy Storage Elements 121

For the simple example in Figure 5.5 which is described by equation (5.1.9), we solve
for the port current i as follows:

Therefore, we have the following single state equation
‘;C = —C_IG“VC—C_IGQVV (5.1.15)

which is identical to the form shown in (5.1.1)if A = ~C"'G,, and B = -C"'G,.
For

y = Cx+Du (5.1.16)

we have in the general case

e el el
Yy -H, H, ||i -H,, H,||I,
which for the circuit in Figure 5.4 is

Equation (5.1.17), the input-state-output equation, is simply algebraic. Once we know
the input and state values, the outputs can easily be computed. So we will focus our atten-
tion on the differential state equation

X = Ax+Bu (5.1.19)

The state of a system at any given time divides the past from the future. If we know the
state of a system (values of all the state variables) at any time #,, we need not know any-
thing about its history prior to that in order to compute its future response. We study the

differential state equation just as we did in the first-order case with the simple series RC
circuit. First, consider the zero-input case,

X = Ax (5.1.20)
The solution for this coupled set of first-order homogeneous equations is

A
x(1)=¢€ txo for t20 (5.1.21)

At
where € is an n X n square matrix, and



122 Linear Transient Analysis 11

x, = x(0) (5.1.22)

is the n x 1 vector of specified initial state at ¢ = 0. It is most convenient to characterize a
square matrix function in terms of the power series (in the matrix) of that function. For
example,

e = 1+At+—2—(At) +—6-(At) +... (5.1.23)
and
A A
d @) = A+A%t+ Laspy . = ae™ (5.1.24)
dt 2
It follows that
A(r=1y) At —At,
=€ € (5.1.25)
and
-At Ar -1
e = [¢e ] (5.1.26)

If we wanted an explicit expression for e*', we could use the one-sided Laplace trans-
form to obtain it:

Lix()} = J"’"x (e di=X(s) (5.1.27)

Applying the transform to both sides of (5.1.20)

I:xe_”dt = AJ':xe—Hdt (5.1.28)

evaluates to
x(ne :+ s‘[:xe_szdt = AJ.:xe—”dt (5.1.29)
-Xq+5X(5s) = AX(5) (5.1.30)

and finally

(s1-A) X (5) = x(0) (5.1.31)



Multiple Energy Storage Elements

where 1 is the unit (or identity) matrix. Solving for X (s) yields

X(s) = (s1-4)7'x,
From (5.1.21) and (5.1.32) it is apparent that

(5.1.32)
At -1 -1
x(t) =€ xo=L {(s1-A) Xy} (5.1.33)
or
€' =L {(s1-4)" (5.1.34)
To proceed with (5.1.32), we must solve

det(s1-A) =0

(5.1.35)
to obtain the eigenvalues of A, which are the poles (or natural frequencies) of the circuit.

For example, consider the well known parallel RLC circuit shown in Figure 5.7. Note
that the state equations for this circuit are

(5.1.36)

Figure 5.7 Parallel RLC circuit.

The determinant of 51— A is simply

(5.1.37)
The roots of (5.1.37), hence the poles of the parallel RLC circuit are,



124 Linear Transient Analysis II

1 4
RC w (RC)? LC (5.1.38)

2

In general, the matrix (s1-A)~' can be expressed as the matrix of its cofactors
divided by its determinant. Partial fraction expansions of the resulting expressions about
their root factors yield a set of terms that easily can be inverse Laplace transformed to

obtain e*’. Except for very small circuits, we would never go to the trouble and expense

of computing ¢! in this manner. Rather, we would approximate that computation in terms
of the one-step integration algorithms discussed in Chapter 4. To appreciate such approxi-

mations we will study further the nature of e’ and the overall solution to the differential
state equation.
Suppose that the input # is not zero. Then we try as a solution

At
x(t) =€ z(1) (5.1.39)
Note too that
At,
x(t) =€ z(1) (5.1.40)
implies that
A1,
z(t,) =€ x, (5.1.41)

which we will need fater. Substituting (5.1.39) into the differential state equation

x = Ax+Bu (5.1.42)
we obtain
At At At
A€ z+€ 7 =A¢€ z+Bu (5.1.43)
or
_ -At
=€ Bu (5.1.44)

Integrating equation (5.1.44)

r . t —-AT
[izar = [i € Bu(mar (5.1.45)



Step and Ramp Inputs 125

t AT
2(1) —z(ty) = J‘Ioe Bu (1) dt (5.1.46)
and using (5.1.41)
-A1, r AT
1) =€ xo+[, € Bumdr (5.1.47)
Then from (5.1.39)
At Al -A
x(t) =¢€ t[e x0+ﬁ € TBu('c)d't'.] (5.1.48)

Note that we can differentiate (5.1.48) to verify that this solution is correct:

. Ar At ; At At At
i=ad e x| e Buma] + ¢ Bugy
. — .~ — ’ (5.1.49)
Ax Bu
Usually we write the general solution in (5.1.48) as
A(t-1y) ¢ Al-1)
x(t) = € xXg + |, € Bu (t)dt (5.1.50)
_\/—’ - 0 J
zero-input response zero-state response
(convolution)

So far, we have studied (by example) how to obtain state equations. Then, we discussed

the meaning of the e*' in both the time domain and frequency domain. Then we derived
the full solution to state equations in standard form. In the next section, we will restrict the
input vector, u (¢) to consist of steps and ramps, as we did in Chapter 4, and apply the
general solution to circuits with this form of input.

5.2 Step and Ramp Inputs

As with the simple series RC circuit, we confine our attention to the situation in which the
input function may only be a sequence of steps and ramps, as shown in Figure 4.23. It
should be noted that we are now considering a vector of such inputs, u (1) .

We focus our attention on the input segment te (z,,¢,,,), i.e., £y <t<t . ,.So,any

input step will have occurred prior to time f7 and any subsequent input will occur after



126 Linear Transient Analysis II

time 7, ,. The input is a simple ramp over the interval of interest. We assume that there

are no impulses in the inputs, and hence disallow step discontinuities in the state variables.
Capacitor voltages and inductor currents cannot change instantaneously, so

x(6;) =x(t)) =x(t,) =x, (5.2.1)

We will consider charge and flux sharing -- in which cases there can be impulses -- later in
Section 5.5.
Referring to Figure 5.8, we characterize the input segment on the open time interval

te (tn’tn+l):

Au,
u(r) =u,+ (t-t) AL (5.2.2)
u,=u(t)) (5.2.3)
Au, = u(r,, ) -u(t,) (5.2.4)
At, =t -t (5.2.5)

u

un+AunEu(t;+l)

u, =u(t)

A
T,

t t t

n n+1

Figure 5.8 The form of one input signal from u (?) .

Under these circumstances (equations (5.2.2) through (5.2.5)) we can obtain an exact solu-
tion for the state at time ¢} <f<t,, , in terms of the state at 7, using (5.1.50):



Step and Ramp Inputs 127

Al-1,) -1 -1 Aun
x(t) =¢€ [x(tn) +A  (Bu,+A BAt )}

(t-1) (5.2.6)

At

-1 -1 Aun
-A |B(u,+ Au,) +A B

At

n n

The above equation was derived by substituting (5.2.2) into (5.1.50), integrating by parts
and indulging in some tedious algebra. Setting ¢ = Lni 1o

AAr, -1 1 A“n
x(t,,) =€ [x(l‘,,) +A" (Bu,+A BAt )J

n

(5.2.7)

-1 -1 Aun
~A [B(un+Aun)+A BAJ

n

Note once again that A~ may not exist if there are inductance loops or in other degen-
erate cases. Using the notation

X+l Ex(trH»l)

5.2.8
x,=x(t) 528
it is most convenient to rewrite equation (5.2.7) as
-1 -1 Aun
X, +tA [B (u,+Au,) +A BAt ]
" (5.2.9)

AAL, 1 1. Au,
=€ [xn+A (Bu,+A BAI )]

n

Equation (5.2.9) shows explicitly the exponential transformation from a deviation from
the initial steady state

_ -1 -1 Aun
Xyss = A" | Bu, +A"B - (5.2.10)

n

to the final one

-1 -1 Aun
Xpil56 = A [B (u,+Au) +A B Az } (5.2.11)
just as we saw for the single RC circuit case in Chapter 4. Equations (5.2.10) and (5.2.11)
are the steady state terms at time £, and ¢, , respectively, in a manner similar to that
shown for the single RC case in equations (4.10.6) and (4.10.7).



128 Linear Transient Analysis Il

5.3 One-Step Integration Approximations

Similar to our analysis for the simple series RC circuit, we can obtain various approxima-
tions to the exact solution in terms of the Taylor series expansion of the matrix exponential

Al 1 2 1 3
e = 1+A’nA+*2“(Aan) +6(At,,A) + ... (5.3.1)

Forward Euler

For the Forward Euler integration approximation

AAr,
€ =1+A1tA (5.3.2)
we have
-1 -1 Aun -1 -1 Aun
xX,,.1= (1+At,A) [xn+A (Bu,+A BAt )}—~A [B (u,+Au,) +A BAt J
(5.3.3)
which reduces to
X,,1=X,+At, (Ax,+Bu,) (5.3.4)

Equation (5.3.4) makes intuitive sense since Ax, + Bu, is simply ¥ evaluated at f, . Of
course, this result is the same as the one we obtained earlier on an individual element

basis:
{vc(ml)} = {VC(IH)}’AI ' 0 flicth) (5.3.5)
i (t,. ) i) Lo v ()

Next, we can estimate the local truncation error vector of the FE approximation:

1 2 -1 _1 A%,
enzi(AtnA) x,+A (Bu,+A BAt )

| " (5.3.6)
= 1Atn [A (x

=5 —x,) +BAu,]

n+1

which can be rewritten as



One-Step Integration Approximations 129

R

Nlp—n ST

At [{Ax, +B(u,+Au,)} - {Ax,+Bu,}]

(5.3.7)
At [xn +1 xn]

Expression (5.3.7) can be interpreted as

- t_ [ -+
[cr oH i ()| _ :cu,,)} 638
0 L v (1) v, (1))
Equation (5.3.6) shows that the error is proportional to the changes in the state variables

and the changes in the inputs. Equation (5.3.7) shows that the error is proportional to the
changes in the state variable derivatives. We note in particular that large Au, values may

NI»-

dictate small Az, values to maintain reasonable error sizes. On the other hand, we can
accommodate a step function change with no such error problem merely by ensuring that

we compute i_(#;) and v, (£;) immediately after the onset of the step. With a Forward

Euler approximation such a computation typically is not very costly. So it may be better
with Forward Euler to approximate a very steep ramp input in terms of a step function
rather than the opposite.

Backward Euler

For a Backward Euler approximation we write the exact solution as

-AAs, -1 1. A, 4 _1 Au,
x, =€ [xn+1+A {B(u,+Au,) +A BAt }]—A [Bun+A B

At

n

} (6.3.9)

n

—AA
We then assume € "~ 1- At,A to get

At

n

Au Au
~ (1-AtA) [xm +A" {B(u,+Au,) +A"'B "}]—A‘l [Bun+A_lB At"}

n

(5.3.10)

which reduces to

n

x,=x,, —At [Ax,, +B(u,+Au)] (5.3.11)

Then, rearranging the terms in (5.3.11) yields



130 Linear Transient Analysis II

x, =x,+At, [Ax,  ,+B(u,+Au,)]

) (5.3.12)
=x,+Atx, .,

Again, we can interpret this result on an individual energy storage element basis as

1 . -
Vel | o el g 1€ 0 | ficttna) (5:3.13)
i (t,,1) I () 0 LY v (£, )
Next, we see that the Backward Euler local truncation error is (qualitatively) equal to
and opposite the sign of the Forward Euler approximation:

1 2 -1 o1,
enz—azu (At,A) | x,,,+A {B(u,+Au,) +A Bm }

n

= -—%Atn [A(x,,, —x,) +BAu ]
(5.3.18)

= -—%Atn [{Ax,, ,+B(u,+Au,)} - [Ax, +Bu,]]

1 . .
= _jAtn [x,.,—x,]

As before, the local truncation error estimate is shown to be proportional both to the
changes in the state variables and to the changes in the input values. From the final expres-
sion we can compute the local truncation error to be

1 . - . +
En:_%Atn[iC— 0}{ lC(tn-i—l) _ lC(tn) } (5.3.15)
0 LY |60 v

Trapezoidal

For a Trapezoidal integration approximation we start with the exact solution in the follow-
ing form



One-Step Integration Approximations 131

lAAt
2

n Au
e [xn+1+A"l {B(u,+Au) +A'B At"}]

n

(5.3.16)

%AAt" -1 -1 Aun
=€ [xn+A {Bu,+A BAt }J

n

Again, using the first-order truncation of the Taylor series for both matrix exponentials,
we obtain

2 At

n

1 -1 -1 Aun
(1-zAtA)|x,, +A" {B(u,+Au,)) +A" B }}

(5.3.17)
= (1+ 1At"A) x, +A {Bu +A"IBAu"}
2 " " At,
or,
1 1
X, .1~ EAIn [Ax,, +B(u,+Au,)] =x, + iAtn (Ax,+Bu,) (5.3.18)
Finally, rearranging (5.3.18),
X, 1 =X+ %Atn [{Ax,+Bu,} + {Ax,, ,+B(u,+Au,)}]
(5.3.19)

1 ) )
=X, + EAt" [x,+x,,,]

In terms of the individual energy storage elements we have

1 N + - —
Tc(t,m) _ ‘ic(t")} +%At,, cC 0 { ic(t)] | ic(t,,1) } (5.3.20)
i (t,41) i (t,) o LY |y () v (f,. 1)
To estimate the local truncation error, we take the next two terms in the Taylor series
expansions of both exponentials.



132 Linear Transient Analysis II

? 1 ? -1 -1 Aun
z[ (——-AtA) +—(- SAr,A) M:x,,H+A (B(u,+Au,) +A"'B }]

n

11 3 -1 1, A,
(——A ,,A) + 2 (5ALA) [xn+A (Bu,+A™'B— )}

n

1,2
—AtA[A -x.) +BAu
12 nA [ (xl'l+ 1 n) n] (5.3-21)

:—zAtf,A [{Ax,,,+B(u,+Au,)} — {Ax, +Bu,}]

é A[lm {(Ax,,+B(u,+Au))) — (Ax, + Bu )}]

r . .
= gAtnA I_EAtn {xn+l uxn}]

We see once again that the local truncation error is proportional to the changes in state
variable values and input values across the time interval of interest, as well as to the square

of At,. Overall, the error is proportional to At?1 since the aforementioned changes are pro-
portional to Az, . From equation (5.3.21) we can write

CT(T - .
€, = cALA %At{c_ OH el _ficth) } (5322
0 LYl ()] ()

We consider the computation of this quantity as follows. First define an auxiliary vector
Xp= [VC{| = % |jC— O—‘ { iC(t;+ l)—| _ lC(t;) } (5.3.23)

o LY (] ()

And then use that vector x, to define a set of excitation sources in place of the original
energy storage elements as shown in Figure 5.9. Then

(5.3.24)



One-Step Integration Approximations 133

] | O
é‘li_ original circuit

x
" X = Ax+Bu
L
+
vCT PCT
- original circuit
Xr
n ©
tLT‘ Vir
— ————0

Figure 5.9 Calculating the auxiliary vector to measure the local truncation error.

This auxiliary computation usually is not performed since there are other means to esti-
mate the local truncation error for Trapezoidal integration {Nagel75]. For example, given
that the TR approximation is

At

n 1 t
Xpe1 = X+ - (X, +%,,4) (5.3.25)

We can express the derivative at ¢, , | in terms of a Taylor series expansion

AP

n

X, ., =x,tAtx, + 5 x,+... (5.3.26)

Combining (5.3.25) and (5.3.26), the TR approximation is

At [, . . A2,
xn+1 :xn+*'i—' xn+ xn+Atnxn+Txn+. (5.3.27)



134 Linear Transient Analysis II

However, the full Taylor series expansion is

A2, AR L Al
=X, t—x,+x, +... (5.3.28)

X,,, =X, +Atx + > g 4

and hence the local truncation error can be approximated by

At AL,
SaEn o = —pa % (8) (5:3.29)

fa—y

_Lya 1,
g, = 6Atnxn - ZA:,,x,, +

where 1, <& <t + At . To estimate this error, we approximate xn (&) by a divided differ-
ence formula. The first divided difference DD, is

DD Xne1~ %y 5.3.30
l(tn+|) - Atn+1 ( .3. )
which approximates x, (£) . The second divided difference
DD, (t,, ) -=DD, (1)
DD = 3.
2 (£, 41) At +Ar (5.3.31)
approximates x, (£) . The third divided difference
DD, (t,,,) -DD,(t,)
pp,(1,,,) = — 2 "*! 2 (5.3.32)

At +At,, |

approximates xn (&) . 1t is apparent that the k'* divided difference requires the retention

of k previous time point solutions. So for TR integration, we would need the solutions at
the time points ¢, _,, #,_,, t,,and 1, | to estimate the local truncation error for the time

step from ¢, to ¢, ;.

5.4 Stability

We can discuss one-step integration approximations as before in terms of the exact solu-
tion (5.2.9) as we did for the single RC circuit case in Chapter 4:



Stability 135

~1 ~1 Aun
x,, tA [:B(un+Aun) +A BAtJ

n

(5.4.1)
AAr ~1 -1 Au,
=€ [xn+A (Bu,+A B )]
At,
Equation (5.4.1) represents a transformation from the initial steady state error
-1 -1 Aun
x,+A {Bun +A B :l (5.4.2)
At,
to the final steady state error
-1 -1 Aun
x,. +A [B(un+Aun) +A B A7 } (5.4.3)
AAr,
by a factor of €

If the final steady state error vector is smaller than the initial, then we can pronounce
the integration algorithm stable:

-1 -1 Aun i -1 Aun
x,, tA [B (u,+Au,) +A B :l <|x,+A [Bun-kA B il (5.4.4)
At, At,
Given a vector
T
y=[pyy oyl (5.4.5)
we can measure the size (or length) of the vector in any of the following ways.
Iyl =3 1 (5.46)
k=1
n
Iyl = [ |y (5.4.7)
k=1
n
il = max iy} (5.4.8)

k=1



136 Linear Transient Analysis II

All three of these length measures (norms) work; it is merely a matter of convenience as to
which to use. The euclidean, |/ yll,, is the most natural, but the || y|| , norm often is easier

to compute and apply in practice. It is possible, of course, to reject as possibly unstable a
result based on the ||y|| . norm that may be shown to be stable on the other bases.

AAL
Classically, stability studies focus on the approximation of € . Provided that the

original circuit is asymptotically stable, we would expect

Aar~k
im[e "] -0 (5.4.9)

k> oo

which would be the result of a uniform time step. For stability of an integration approxi-
mation we demand the same behavior.
For Forward Euler approximation we have then

AAr,
€ =1+A1A (5.4.10)

So we would ask that
] k
Jlim (1+A7,4)" -0 (5.4.11)

too.
We recognize that A can be diagonalized [Strang86] as

A = TAT! (5.4.12)
where A is the Jordon canonical form for A and T is a normalized modal matrix. Then

1+At,A=TT" +At, TAT

(5.4.13)
=T(1+A1,A) T

and it follows that

(1+Ar,A)* = T(1+Ar,A) T (5.4.14)

Under the reasonable assumption that the eigenvalues of A, its As, are distinct, from
(5.4.11) we must have

lim (1+Ar,A)*—>0 for all A (5.4.15)

k > o



Stability 137

for all of the eigenvalues of A in order to guarantee stability. If the eigenvalues are not

distinct the same result holds; it is merely more difficult to derive. From (5.4.15) we con-
clude that

|[L+At,A <1 for all A (5.4.16)

Suppose that the eigenvalues are complex numbers. Consider one eigenvalue

A=a+jp (5.4.17)
Then (5.4.16) becomes
|1+ At o+ jAt B <1 (5.4.18)
(1+At,a)®+ (ArB) <1 (5.4.19)
1+2At 0+ (Ar,0) %+ (At B) < 1 (5.4.20)
241,00+ AP (o + B7) <0 (5.4.21)
At, <— (5.4.22)
o’ + B
1
At <—2Re (I) (5.4.23)

for all of the eigenvalues of A.

We note that this stability criterion is very restrictive for large real eigenvalues, Com-
plex eigenvalues that have large imaginary parts and small real parts (high-Q poles) will
necessitate small time steps, and likewise with eigenvalues that have large real parts and
small imaginary parts. From (5.4.23) it is apparent that the largest pole (or smallest time
constant or highest natural frequency), is the most restrictive and limits the time step pos-
sible in a stable Forward Euler approximation. The region of stability of an integration
method is defined as that subset of the complex plane such that if Az, A is inside the region

of stability for all A, then the method of integration is guaranteed to be stable. Thus the
region of stability of Forward Euler integration is limited.
For Backward Euler approximation we have

AAz,
e "= (1-AtA) (5.4.24)

S0 we must demand



138 Linear Transient Analysis II

’; <1 (5.4.25)
! 1- Atn;\.
which leads to
At (o +B7) > 2a (5.4.26)
1
At, >2Re (X) (5.4.27)

for all of the eigenvalues of A. Since o < 0 for an originally stable system, this condition
poses no restriction for Az, > 0. The region of stability thus includes the entire left half of

the complex plane and hence Backward Euler integration is said to be A-stable.
For the Trapezoidal approximation we have

AAr 1 -1 1

e "= (1 -5AL4)  (1+5A1,4) (5.4.28)
SO we must require
(1+ %Atnl)
— <1 (5.4.29)
(1- EAtn?«,)
which leads to
—2At,00>0 (5.4.30)
or
—2At,Re (M) >0 (5.4.31)

for all of the eigenvalues of A. This condition poses no restriction for an originally stable
system. The region of stability thus includes the entire left half of the complex plane and
hence Trapezoidal integration is A-stable. However, Trapezoidal integration is oscillatory,
as discussed in Section 4.10.

For originally stable systems only the Forward Euler integration approximation poses a
time step restriction due to stability. And that restriction can be severe especially in cases
of “stiff systems.” A stiff system is one with natural frequencies widely spread in values.



Limitations of One-Step Integration Models 139

5.5 Limitations of One-Step Integration Models

The one-step integration techniques described in this chapter are implemented efficiently
in terms of the companion models in Figures 4.8 through 4.11 and in Figures 4.13 through
4.15. As for the case of stamps in Chapter 2, however, we must determine when these
models can and cannot be used.

For instance, in addition to all of its other limitations, Forward Euler integration cannot
handle loops of capacitors or cutsets of inductors. This is apparent from the FE companion
models which would result in loops of voltage sources and cutsets of current sources from
circuits containing capacitor loops and inductor cutsets, respectively. We should add that
these loop and cutset situations are not a problem for the implicit integration algorithms,
such as BE and TR, which are characterized by companion models that contain resistors
or conductors.

The only other restriction on these integration models is due to our assumption in equa-
tion (5.2.1) that there are no impulses in the circuit and that the state variables are contin-
uous. In situations where we have loops comprised solely of independent voltage sources
and capacitors, or cutsets comprised solely of independent current sources and inductors,
the assumption in equation (5.2.1) may be violated.

For example, consider the circuit shown in Figure 5.10 in which an independent voltage

source and a capacitor form a loop. If the input voltage V is a step function then the
capacitor voltage v is discontinuous.

v, C)iiv C— v,

1

Figure 5.10 Capacitor and voltage source loop.

The voltage v in Figure 5.9 violates equation (5.2.1) because v . is not a state variable.

The state equation assumptions made in Section 5.1 assume that the state variables are
independent. When there are loops of voltage sources and capacitors, the capacitor volt-
ages are not independent and one of the capacitors must be omitted as a state variable. A
similar argument applies to cutsets comprised solely of independent current sources and
inductors. :

If we take the voltage source current as a variable, for the example in Figure 4.28, then
we have



140 Linear Transient Analysis II

dv

M

dt

iy = —C (5.5.1)

So step function input voltage sources which form loops solely with capacitors give rise
to impulse currents, which cause step changes in the capacitor voltages. Such situations do
not occur often, but we must be careful to watch for them and handle the potential impulse
currents separately. Charge sharing is a classic example of such a situation, in which two
capacitances of unequal initial voltages are suddenly switched to be in parallel. An
impulse of current must flow to instantly equilibrate the voltages. This topic will be dis-
cussed further in our treatment of nonlinear transient analysis and switches in Chapter 10.

Finally, we mention that multi-step methods take into account more than one past time
point in computing the present integration approximation. In nonlinear circuits, these
methods must be used carefully, since more history is not always useful in predicting the
future. In the case of a highly nonlinear element there can be a large change in operating
point with a small change in the voltage across it, rendering the multi-step approximation
possibly less useful than a one-step approximation.

This chapter developed single-step integration methods and studied their stability in cir-
cuits with multiple energy storage elements. The state variable formulation provided a
convenient mathematical framework for this discussion. However, the methods them-
selves are applicable in any equation formulation method, as was discussed earlier in the
chapter.

5.6 References

[Kuh65] E. S. Kuh and R. A. Rohrer. The State Variable Approach to Network Analysis.
Proceedings of the IEEE, vol. 53, pp. 672-686, July 1965.

[Nagel75] L. W. Nagel. SPICEZ2, A Computer Program to Simulate Semiconductor Cir-
cuits. Technical Report ERL-M520, UC-Berkeley, May 1975.

[Strang86] G. Strang. An Introduction to Applied Mathematics. Wellesley-Cambridge
Press, Wellesley, MA, 1986.



Chapter 6 Frequency Domain
Analysis and
Moment-Matching
Methods

So far we have covered in detail the techniques for evaluating the time domain responses
of lumped, linear, time-invariant circuits. In this chapter we consider various approaches
for analyzing the same class of circuits in the frequency domain in terms of magnitude and
phase, and poles and zeros. In addition, dominant pole analysis, based upon moment
matching, is covered in detail. Dominant pole approximations have been widely used for
analog circuit design, digital circuit delay modeling, and RLC interconnect analysis. Dom-
inant pole approximations capture the salient features of linear circuit behavior without
resorting to expensive analysis by “exact methods.”

6.1 Small Signal ac Analysis

As we mentioned in Chapter 1, a straightforward approach to small signal ac analysis is to
first obtain the dc bias point for the nonlinear circuit, and then replace all nonlinear ele-
ments by their linearized equivalents at the appropriate bias points. This is most conve-
niently explained in terms of the circuit example in Figure 6.1.

Figure 6.1 Simple BJT amplifier.

141



142 Frequency Domain Analysis and Moment-Matching Methods

This familiar common emitter amplifier circuit is biased using resistors R, and R, so

that the BJT operates in the forward active mode. To simplify the example, we use the
ideal Ebers-Moll model to represent the dc characteristics of this transistor as it operates in
the forward active mode. For this mode we need not consider the base-collector diode, as
shown in Figure 6.2, since it is reverse biased, or turned off. Although we will discuss
device modeling in more detail in later chapters, we should point out that we have
included a zero-valued voltage source in series with the diode which acts as an ammeter to

measure the controlling current I.. The complete BJT model also includes nonlinear
device capacitances Cyj, Cp, and C ¢ (more on this topic later).

C

o

|

Figure 6.2 Amplifier circuit using the ideal Ebers-Moll model for the BJT.

To begin, we open all capacitors and solve for the dc bias point. The base-emitter diode
is the only nonlinear dc element, therefore, we solve for the dc node voltages in terms of a
one-dimensional Newton-Raphson algorithm as discussed in Chapter 1. Graphically, the
diode operating point is computed by iterating in terms of straight-line tangent approxima-
tions to its i — v characteristics. At convergence the tangent straight line passes through
the bias point as shown in Figure 6.3.

Since the straight-line tangent for the final nonlinear iteration passes through the bias
point, it is the small signal model for the diode. To complete the ac analysis circuit model
we replace the energy storage elements by their complex-valued immittance equivalents
shown in Figure 6.4. (Immittance is a combined term for impedance and admittance.)
Therefore, the circuit model for ac analysis uses the final Newton-Raphson companion
model (see Figure 6.3) and is shown in Figure 6.5.

Note that our example does not contain any inductors or nonlinear capacitors. If it did,
inductors would be represented by their complex impedance values and nonlinear capaci-
tors by their complex admittance at the appropriate dc bias point.



Small Signal ac Analysis 143

diode v
characteristic

tangent
approximation

__J-—— slope =G,

load line

v

q

“— dc operating point

€q

Figure 6.3 Newton-Raphson straight-line tangent at convergence.

1
T

Figure 6.4 The complex immittance equivalents of small signal C and L models.

C-G,, =joC %L—)Req:ij

Once the energy storage elements are replaced by their frequency domain models, it is
merely a matter of solving the resulting complex linear circuit for various frequency val-
ues of interest. Any formulation of the circuit equations can be employed. If Modified
Nodal Analysis (MNA) were used, and there were inductances in the circuit, they would
be treated as complex impedances to provide a dc compatible set of equations as @ — 0.

Inserting an impedance value in the MNA matrix requires an auxiliary equation just as
for the case of independent voltage sources. The inductor current is added as a variable,

1., as shown in Figure 6.6, and the auxiliary equation for this inductor from node % to
node / is:

ve—v,—joLi, =0 (6.1.1)

The corresponding stamp for the inductor in Figure 6.6 is:



144 Frequency Domain Analysis and Moment-Matching Methods

D

cc

Figure 6.5 Small signal ac circuit model for the common emitter amplifier.

Vi

Ikll % R,q = JOL
V

I

Figure 6.6 An inductor connected between nodes & and /.

(6.1.2)

So, if we wanted a Bode plot with 10 points per decade over 10 decades of frequency,
we would need to solve 100 complex-valued linear circuits involving 100 LU Factoriza-



Pole/Zero Analysis 145

tions, and 100 Forward and Back Substitutions. Such an approach, while straightforward,

is computationally expensive. Moreover, it may not provide as much design-oriented
insight as a pole/zero analysis.

6.2 Pole/Zero Analysis

Given the one-sided Laplace Transform

F(s)=L{f()} = J“’" e (1) dt 6.2.1)

we can apply it directly to lumped, linear, time-invariant capacitance and inductance ele-
ments to obtain the complex frequency domain models shown in Figure 6.7 and Figure
6.8, respectively.

l IR

CI i=C "=>1(s) = 5CV(s) - Cv(0) = G,, = sC

Figure 6.7 The frequency domain model for a capacitor, including the initial condition.

IR
Lot di

. _ . di _ Yy _
ll év v—Ld—t=>V(s)—sLI(s) L1(0)=$Req sL V(s)

© - Li(0)

o

Figure 6.8 The frequency domain model for an inductor, including the initial condition.

For the purposes of frequency domain analysis, we can omit the initial conditions while
calculating the circuit poles. The Laplace Transform then provides a linear model for the
frequency dependent components in terms of the complex frequency s. Replacing the
capacitors and inductors with frequency domain models, the resulting linear circuit may
be solved algebraically to obtain the frequency domain response.

In general, we seek the circuit function H (s), shown in Figure 6.9, which is often
expressed as a ratio of polynomials in s:



146 Frequency Domain Analysis and Moment-Matching Methods

H(s) = % (6.2.2)

The roots of the denominator polynomial

P(s) = (s—p)(s—py)...(s—-p,) =0 (6.2.3)

are the poles (or natural frequencies) of the circuit. Both the time and frequency domain
responses are obtainable from the poles.

U(s)m_;Geq=sC% §R Req=sL$——> Y(s) = H(s)U(s)

Figure 6.9 The circuit function H (s) .

An easy way to deal with the circuit function H (s) is in terms of its partial fraction
expansion. For the case of » distinct poles

n

k
H(s) = 2 : (6.2.9)

S—
b 4

where k; is the residue that corresponds to pole p,. From these, and knowing the input

function, we can easily obtain the zero-state transient response from the inverse Laplace
Transform. And the frequency response is even easier to come by:

n

k
H(jo) = Z : (6.2.5)

' —
l=1'] b,

So, if we could determine H () and its poles efficiently, then to obtain a frequency plot
would be a simple and efficient post-processing task. We’ll see that it is difficult to obtain
H (s) and its poles efficiently in general, so instead we attempt to find effective approxi-
mations to these quantities.



Laplace Transform of the State Equations 147

6.3 Laplace Transform of the State Equations

The state equations for a circuit are the most convenient form for discussing the circuit

function H (s) and its poles. From Chapter 5 we expressed the standard form of the state
equations as

X = Ax +Bu (6.3.1)

where x is the n X 1 state vector, and # the m X | input vector. Upon applying the
Laplace Transform to these matrix equations we have

sX (s) —=x(0) = AX (s) +BU (s) (6.3.2)
or
(s1-A)X (s) = x(0) +BU () (6.3.3)
and
X(s) = (s1-4) "' [x(0) +BU (5)] (6.3.9)

Neglecting the initial conditions, that is, with x (0) = 0, we have

X(s) = (s1-A)"'BU (s) (6.3.5)

From equation (6.3.5) and Figure 6.9 we recognize that if we treat the set of state variables
as the outputs, the circuit function is the matrix

H(s) = (s1-4)7'B (6.3.6)
We recognize that the poles of H (s) are the roots of the characteristic polynomial

P(s) =det(s1-A) =0 (6.3.7)

or the eigenvalues of the matrix A.

There are means available for finding the eigenvalues of a matrix, and some of them
have been translated into operations that can be performed directly on a circuit without
actually forming the state equations. But even if we don’t have to formulate the state

equations, solving for all of the eigenvalues of A by direct or indirect methods is ineffi-
cient for large problems.



148 Frequency Domain Analysis and Moment-Matching Methods

Circuit simulators which provide pole/zero analysis typically use Muller’s root finding
algorithm [Muller58]. Using the complex-frequency dependent immittances (admittances
or impedances) in Figure 6.9, the equations formulated via Modified Nodal Analysis are:

Y(5)V(s) = J(s) (6.3.8)

where Y (s) is the complex-valued nodal admittance matrix, V (s) is the matrix of node
voltages and J (s) the vector of input stimuli.
We know from Cramer’s Rule that the response at node i can be obtained from

detT
e 6.3.9
' detY ¢ )
where
Yl,l"' Yl,i—l ‘]i Yl,i+1“‘ Yl,n
T = YZ,-I"‘ YZ.,i—} ‘{2 Y‘2,i+1"' IT2,n (6.3.10)
__Yn,l : Yn,i-—l‘ln Yn,i+1’“ Yn,n_

It is apparent from (6.3.9) that the roots of |¥ {(s)| must be the poles for the circuit
response functions. So for a value s = p,, where p; is a circuit pole, |¥Y(s)| = 0 and
therefore ¥ (s = p,) is singular.

Muller’s algorithm iteratively searches for points in the s plane where |¥ (s)| is singu-
lar. Starting with three points in the s plane to evaluate |¥ (s)|, an interpolating polyno-
mial is formed to search for roots of |¥ (s)|. The search is continued iteratively until
|Y ()| is sufficiently small. To determine if a matrix is singular at a point an LU factor-

ization is attempted. When the determinant of L becomes sufficiently small, it is assumed
that the point represents a pole.

Obviously, determining all of the circuit poles can be inefficient. Especially since some
of them make an insignificant contribution to the circuit performance, what we may seek
instead is an efficient means to obtain those few “dominant poles™ that adequately charac-
terize circuit behavior. One of the most effective procedures for approximating a set of
dominant poles (and zeros) is moment matching.



Moments of the Impulse Response and Linear Delay Estimation 149

6.4 Moments of the Impulse Response and Linear Delay
Estimation

To motivate our subsequent studies we digress briefly to consider the qualitative behavior
of a circuit in the time domain. First, consider the ideal delay element shown in Figure
6.10. The Laplace Transform of the input function f(¢) is

F(s) = L{f(D} = J:f(t) e dr (6.4.1)
.
ideal
f delay o f-T)
T

Figure 6.10 Ideal delay function.

The Laplace Transform of the output is

Lift-D} = [Tra-De ar

o —¥ (T + T)
- J f(ne dt
-T (6.4.2)

- e_STJ:f(t) edt [f(t) =0 for 1<0]
—sT
e F(s)

It is apparent from (6.4.2) that an ideal delay of time T is equivalent in the frequency

domain to multiplication by € ", An ideal delay element is characterized in the fre-
quency domain by the system transfer function

Hs) =€ (6.4.3)



150 Frequency Domain Analysis and Moment-Matching Methods

Given the transfer function for an ideal delay system such as the one in Figure 6.10, the
delay can be calculated by differentiating the system function and evaluating itat s = 0:

H (s) = %[H(s)] = _re””" (6.4.4)

Therefore,
H (s)\s=0 = -T (6.4.5)

From this observation, Elmore [Elmore48] postulated that the delay for a circuit charac-
terized by a transfer function H (s) could be approximated by:

T,=—H' (0) (6.4.6)

Elmore also showed that this value, T ,, is the first moment of the impulse response. This
can be shown by first starting with the definition of the Laplace Transform of 4 (¢)

H(s) = j:h(z) edt 6.4.7)
and expanding 8_” about s = 0 to yield

H(s) = j:h (1) [1 —st+ %sztz— %S3t3 + ...]dt

o (6.4.8)
(=1)* g s
= 2 5 Iorh(t)dt
k=0
Taking the derivative of (6.4.8) with respect to s and evaluating at s = 0, results in
H (0) = —j: th (1) dt (6.4.9)
We define the first moment of a function s (t) as
m, = —j: th (£) dt (6.4.10)
Therefore
H (0) = m, (6.4.11)

(Our definition of the moments is slightly different from the classical definition; see the



Moments of the Impulse Response and Linear Delay Estimation 151

last paragraph of this section.) The first moment can be thought of as the (negative of) the
mean of x (¢) . That is, if we treat 4 (f) as a probability density function (since the total
area under the unit impulse response for a system with unity dc gain is 1.0), the first
moment is the (negative of the) “average time” and the (negative of the) Elmore delay.

In general, we define the ¢"* moment of h (¢) as

m, = (_l)qrﬂh(:)dt 6.4.12
=g o (6.4.12)
Thus from (6.4.8),
H(s) = Zskmk (6.4.13)
k=0

Expanding H (s) about s = 0 directly in the frequency domain,

H(s) = H(0) +sH' (0) + %szH" (0) + éf’H"' (0) +...

<k

_ ) (k)

= Za” (0)
k=0

where H™® (0) is the k™ derivative of H (s) evaluated at s = 0. Comparing coeffi-
cients of s* between (6.4.13) and (6.4.14), we find

(6.4.14)

m, = kl—!H"" (0) (6.4.15)

Note that our definition of moments from (6.4.12) is slightly different from the classical
definition

m, = I: 1h (1) dt (6.4.16)

but our definition will simplify notation throughout the rest of the chapter and is consis-
tently used according to our definition in this book.

Elmore used only the first moment of the impulse response to generate a simple delay
expression for wideband amplifiers. Over thirty years later, this first moment value was

used for estimating logic gate delays in terms of simple RC tree circuit models [Pen-
field81].



152 Frequency Domain Analysis and Moment-Matching Methods

6.5 The Elmore Delay and RC Trees

Consider the CMOS inverter in Figure 6.11 driving a similar inverter through a long
length of interconnect. The interconnect is modeled as several lumped RC segments,
thereby approximating the actual distributed resistance and capacitance of the conducting
path. For efficiency, the driving gate is sometimes modeled as a linear resistor in order to
simplify the delay analysis, as shown in Figure 6.12. Notice that the driver is modeled by a
voltage source step function with a 6002 resistance, and the metal interconnect and the

~ inverter load at the end of the path are modeled by the Rs and Cs as shown. One could
perform a transient analysis on this circuit to determine the delay, but as we will demon-
strate shortly, the first moment of the impulse response, or the Elmore delay, can be calcu-
lated very efficiently for this circuit model.

Ao o
T 17171

Figure 6.1 A CMOS inverter driving a similar inverter through a long stretch of
interconnect.

600<2 40Q 30Q 100£2
AANTAANTAAN

CTJ)APF C,| 0.6pF C,]0.5pF C,|
<~ ~ ~7

step

ol

.6pF

Figure 6.12 The RC circuit model to calculate the delay for the circuit in Figure 6.11.

The impulse response and the step response for the RC circuit in Figure 6.12 are shown

in Figure 6.13. Note that the impulse response has been scaled by 10° in order to plot it on
the same scale as the step response. The mean of this impulse response, or the Elmore
delay for this circuit, is 1.476 ns. Notice that the essence of Elmore’s approximation is that
the 50 percent point of the step response (which is the median point of the unit impulse
response) can be approximated by the centroid, or the mean of the impulse response. Of
course we would expect this approximation to be accurate when £ (f) is symmetric, and



Moments of the Impulse Response 153

we would envision it becoming inaccurate as h (f) becomes asymmetric.

1

0.75 \

Step Response

Tp, = 1.476

Impulse Response

Step and (Scaled) Impulse Responses
o]
¥ ]

0 1 [ I ] } |
0.0 1.5 3.0 4.5 6.0 7.5

Time (nanoseconds)

Figure 6.13 The step response and the impulse response (scaled by 10°) for the voltage at
capacitor C, in Figure 6.12. The Elmore delay value represents the mean of the impulse
response.

The first moment of the impulse response (the Elmore delay), T ,, is used more often as

a dominant time constant approximation than as a 50 percent delay estimate for RC trees.
The relation between moments and circuit time-constants will be studied in detail in sub-
sequent sections.

6.6 Moments of the Impulse Response

It is usually more efficient to analyze linear circuits such as the one in Figure 6.12 in the
frequency domain as opposed to the time domain. We can express the transfer function of

this circuit (for V,, = 8(#)) as

V (s
H(s) = =V,. (8 (6.6.1)



154 Frequency Domain Analysis and Moment-Matching Methods

Let

l+as+a,s +...+a,s"
H(s) = . - (6.6.2)
l+bs+b,s"+...+b,s

where m > n. For a 4" order RC circuit, m = 4 and n < 3. We can factor the numerator
and the denominator of (6.6.2) to display the poles and zeros explicitly:

A S s
ays—2) (-2 o (s-2y g Tyl
bm(s_pl) (S—pz)...(S"'pm) (l—i) (l—i)(l—i)

P P,

Pm

H(s) =

(6.6.3)

where K is the dc gain, which is 1.0 for this RC tree.

Coming up with the rational form in (6.6.2) or all of the poles and zeros in (6.6.3) is dif-
ficult for a large circuit. We will instead approximate the transfer function in the complex
frequency domain as a series in powers of s:

H(s) = my+ms+ m232 + m3s3 + ... (6.6.4)

From the previous section, we know that the coefficients of the power series terms, the
m;’s, are the moments of the impulse response. To consider the relation between these
moments and the poles of H (s) , we expand (6.6.2) about s = 0, or equivalently, divide
the denominator into the numerator in (6.6.2), yielding H (s) as an infinite series in pow-
ers of s:

H(s) =1+ (a,—b)s+ (a,—b,—bia, +b5) s

- (6.6.5)

Comparing (6.6.4) and (6.6.5) we can recognize the m; coefficients as a function of the
numerator coefficients (aj’s) and the denominator coefficients (bj’s) of the transfer func-

tion in (6.6.2). Alternately, for our 4™ order circuit, from (6.6.2) and (6.6.4), we have:
2 3 4 2 2 3
(14 b,s+bys"+bys" +bys) (mg+ms+mys™+... ) = 1+as+a,s +a,s (6.6.6)

Collecting the first four powers of s (s° = s°) in (6.6.6), we can express the numera-
tor polynomial coefficients in terms of the m,’s and the b;’s:



Moments of the Impulse Response 155

1= my,

a, =myb,+m,
6.6.7
a, = mob, + mb, +m, ( )

ay = mybs+m b, + m,b, +m,

Note that for this RC tree example, the dc gain is 1, hence, @, = 1. We will show later
that in general, a;, is equal to m,,.

The next four powers of s (s* = s”) in (6.6.6) express the coefficients of the pole
polynomial in terms of the m;’s:

0=myby+mby+m,b, + mib, + m,
0=mb,+myby+mb, +m,b, +mg

6.6.8
0 =myby+msbs+myb, + msb, +mg ©.68)

0 =msby+muby+msb, + mgb, + m,

We have shown that if we had the first eight m;’s for this 4% order system (more on

how to get these m;’s in the next section) we could uniquely specify the poles and the

zeros for this circuit. That is, we can rearrange (6.6.8) as a matrix problem to determine
the bj’s:

my my m, ms| b, my
my my mymyl by \mg (6.6.9)
m, my my ms| | b, mg
my my ms mg) _bL M)

Once the b;’s are obtained we can calculate the four poles for this circuit by finding the
roots of a 4" order polynomial. In RC circuits, all the poles lie on the negative real axis.
For this example, the four poles are: —0.72296572, —15.038701, —55.767850, and

~119.30382, all in units of —10° Hertz. These values are identical to those obtained by
solving for the eigenvalues of the state matrix A in (6.3.7). Once we know the moments
and the b;’s, (6.6.7) can be used to find the a;’s. Then by finding the roots of a 37 order
polynomial, we can find the zeros.

Notice that in general, for a ¢ order circuit, the first 2q moments can uniquely specify
the circuit poles and zeros. But all of this is predicated on the calculation of the moment
values, which is addressed in the next section.



156 Frequency Domain Analysis and Moment-Matching Methods

6.7 Efficiently Computing Moments for RC Trees

In the previous section we showed how the first eight moments for our sample circuit

could be used to calculate the poles and zeros for a 4™ order circuit. This approach is use-
ful only if the moments are easy to compute. In this section we demonstrate the ease with
which these coefficients can be obtained for our lumped linear RC tree example. Later in
this chapter we will demonstrate the ease of moment calculations for generalized RLC cir-
cuits.

Returning to our example in Figure 6.12, the impulse response in the complex fre-
quency domain can be analyzed in terms of the circuit in Figure 6.14, where capacitors
have been replaced by their complex admittances. Let us assume that each of the capacitor
voltages (which in this circuit are also the node voltages) is expressed in terms of an infi-

nite series in powers of s as shown in the figure. The superscripts for the m,’s in Figure

6.14 denote that all of the m j’s are different from one node to the next.

VC2 = mgz+mf2s+m§252+... 3 c3 ca c3
VC =my +ms+m, PLIEN
VC1 = mgl+mfls+mglsz+...
VC4 = mg4+mf4s+mg4s2+...
Ii’1 \ R2 R3 R4 /

yC4
sCy

V, (s) = 1.0

Figure 6.14 The s-domain representation of the RC circuit of Figure 6.12 in terms of
complex admittances.

Expressing the capacitor voltages in this way and knowing the capacitor admittances,
we can write similar expressions for the capacitor currents. Moreover, knowing the capac-
itor currents, we can replace the complex admittances by current sources using the Substi-

tution Theorem, as shown in Figure 6.15. The mf terms are the only unknowns in Figure
6.15.
Referring to Figure 6.15, we can solve for the m,’s for all of the capacitor voltages by

setting s = 0. Since there are no constant terms (s terms) in the capacitor currents (they
are open for s = 0), we set the current sources in Figure 6.15 to zero and solve for the
my,’s using the dc equivalent circuit in Figure 6.16. For this RC tree, the m’s are all equal



Efficiently Computing Moments for RC Trees 157

to 1.0. Note that this procedure for replacing capacitors by zero valued current sources to
calculate the m,’s holds for all circuit topologies. When there are inductors in the circuit,

they are replaced by zero valued voltage sources when calculating the m,, terms for their
current responses. More on RLC circuits in Section 6.10.

VC2 = mgz+mfzs+m§252+...

Ve = mg3+mf3s+mg3s2+

VCl C1 Cl Cl 2

- c4 c4 2
-—mO +m1 s+m2 ST+ ...

4 _ C4
VC =my +mys+my st

R, \ R, R\3/\/_ R, /

O wr @e Gr Gr

i Cl Cl1 cl 2 3 C3 C3 c3 2
= sCy(mg +m s+my s°+...) 3= sCy(mg™ +m"s+m, s+ ...)
2 c2 C2 c2 2 4 C4 c4 c4 2
IC = sCz(m0 +m"s+myTsT+ ) 4 = sCy (my +ms+my st L)

Figure 6.15 A circuit equivalent to Figure 6.12 assuming the node voltages solutions of
the form shown.

Figure 6.16 The dc equivalent circuit used to calculate the m,’s for all of the capacitor
voltages.

Referring back to Figure 6.15, we now solve for the s' coefficients, i.e., for the m)’s.

The s' terms in the current sources have m, coefficients, which are now known. There-

fore, we can evaluate the m,’s of the voltage responses by setting each of the respective

Current sources equal to C km’(;, and solving for the node voltages, which are the m{’s. The



158 Frequency Domain Analysis and Moment-Matching Methods

voltage input is a constant, so it does not affect the calculation of any of the terms other
than the m,’s. Subsequent moments are calculated from Figure 6.15 following the same
recursion. All of these moments are calculated from a dc equivalent circuit, as shown in
Figure 6.17. To generate a complete transfer function for this 4" order circuit we would
calculate the first eight moments from the circuit in Figure 6.17 recursively. Once we
know the moments, we know how to find the poles and zeros of H (s) .

Vi = mgil V2 T
600Q2 40Q
1.0 for my NV
calculation; C, mC!

q

0.0 otherwise

Figure 6.17 The dc equivalent circuit used to calculate the moments for the RC circuit in
Figure 6.12.

6.8 Dominant Pole Approximations

We have seen that moments can be computed by recursively solving a simple dc circuit. It
is this ease with which moments are calculated that makes them so useful. Elmore was
attempting to model the 50 percent point delay of unity gain transfer function circuits by
determining when the impulse response area was half consumed. Since the first moment of
the impulse response is so readily calculated, he treated the non-negative impulse response
as a probability density function (PDF) and approximated the median point by the mean
value. However, the first moment of the impulse response is more often used as a domi-
nant pole approximation.
Consider once again Elmore’s unit step response delay approximation, 7 ,:

T, = I:th(t) dt  when  my= I:h(z) dt = 1.0 (6.8.1)
From the transfer function coefficients in (6.6.5), it follows that the Elmore delay is:
T,=-m, =b —a (6.8.2)

when m; = 1.0.



Dominant Pole Approximations 159

From equation (6.6.3) we observe that terms b, and a, are the sum of the reciprocal
poles (circuit time constants) and the sum of the reciprocal zeros respectively:

m n

b, = - 1 a, = — 1 (6.8.3)
p; Z;

j=1 j=1

Therefore, returning to (6.8.2), if there are no low frequency zeros (all the z j’s are large),
the numerator coefficients, including a,, are small and

T,=b, (6.8.9)
Further, if one of the time constants (or poles) is dominant:

i » l for j=23,...,m (6.8.5)
Py P

then

1

T,=—— 6.8.6
d P ( )

A single RC ladder circuit such as the one in Figure 6.12 has no finite zeros for the
response at C, (the end of the ladder). Therefore, we would expect that the Elmore delay
value is a reasonable dominant time constant approximation at this node:

T, = 1476 ns (6.8.7)
The actual first time constant is
T, = —(p)~'1=1.383 ns (6.8.8)

Assuming a single pole response of the form

v(t) = 1+ké" (6.8.9)
we fit the first order model as a dominant pole approximation by setting p = — (T, ™!
and £ = —1.0 in (6.8.9). The waveform approximation is compared with the exact 4-pole

response in Figure 6.18.
From Figure 6.18 we can see that the dominant pole approximation is reasonable,

although slightly optimistic near ¢+ = 0 and then pessimistic for large values of ¢. Other
nodes in the RC circuit of Figure 6.12 do have finite zeros. Thus we would expect less



160 Frequency Domain Analysis and Moment-Matching Methods

1 —
5 "
§ 075 L 1st Order Model
&
Q "
o,
3
[+
o 05
Q
E
m -
g
e 025 -
73
i Step Response
0 ! l 1 l I l ) | ! H
0.0 1.5 3.0 4.5 6.0 1.5

Time (nanoseconds)

Figure 6.18 Comparison of the step response and the first order response at C, in the
circuit of Figure 6.12 using the Elmore value as a dominant time-constant approximation.

accuracy in their dominant pole approximations, since T, varies for different node volt-
ages.

At C,, the Elmore delay value is 1.260 ns. Using this value in equation (6.8.9) results in
the first order approximation shown in Figure 6.19. Notice that the approximation is now
pessimistic near ¢+ = 0 and becomes optimistic as ¢ becomes larger. This change in sign of
the error is due to the low frequency zeros for the voltage response at capacitor C,.

It is difficult to know when a single pole dominates the low frequency behavior of a cir-
cuit. Even for these simple RC tree circuits, when the model deviates from a simple RC
ladder there can be a large number of low frequency zeros at any of the nodes. For this rea-
son Penfield and Rubenstein established bounds for the step response delay of this impor-
tant class of RC circuits [Penficld81]. When there are dominant zeros or several dominant
poles, or if we are dealing with more general RLC circuits, then higher order moments of
h (t) are important, too.



Dominant Poles via Moment Matching 161

1 —
<
St
5 075 - ep Response
[:P]
=
2 i
o
& Ty, = 1.260
o 05
=)
E
m -
E
e 0.25
A 1st Order Model
0 ! ] \ ] : | ! | ; |
0.0 | P} 3.0 4.5 6.0 1.5

Time (nanoseconds)

Figure 6.19 Comparison of the step response and the first order response at C, in the
circuit of Figure 6.12 using the Elmore value as a dominant time-constant approximation.

6.9 Dominant Poles via Moment Matching

The first order approximations shown in the previous section are actually forms of

moment matching. That is, even though this 4'* order circuit is described exactly by the
first eight moments, we can derive a unique first order approximation by matching the first
two moments. To clarify, consider once again the RC tree example in Figure 6.12. We can,
by inspection of this simple circuit, calculate the first two moments for the voltage
response at C,:

(6.9.1)
4 = _1.476

=
i



162 Frequency Domain Analysis and Moment-Matching Methods

Note that we have scaled the Rs to be in k€2 and the C's to be pF so that the units of time
would be nanoseconds when calculating the moments.

A first order approximation, A (t) = fcleﬁ ' is obtained by matching the first two
moments of the approximate model to those of the actual circuit. In the time domain, the
moments of A (¢) are:

A

o0 o A k
_ ~ gy = 1
mo—joh(t)df—_[nklep dt = 5.
A (6.9.2)
o o0 -~ fat k
my = _I th (1) dr = —j th & Vdt = A
° ° pi

This relation between the moments and the poles and residues can also be obtained by
expanding the partial fraction expression in (6.2.4) about s = 0, and collecting the pow-
ers of 5. Matching moments in pole-residue form requires solving:

ky
L = —my=-1.000
P
; (6.9.3)
= =-m; = 1476 x 107
P1
Evaluating (6.9.3) yields
—m
LT 1476107
Pr 7o
. =10 1 o (6.9.4)
k= IR
b

which when integrated produces a unit step response identical to the dominant pole
approximation waveform in Figure 6.18.
The above describes a first order AWE (Asymptotic Waveform Evaluation) approxima-

tion [Pillage90]. In general, AWE is a g™ order extension of this dominant pole approach

in that 2g moments are used to generate ¢ order approximations, where g is less than m
(the order of the actual circuit).
The first four moments for our RC tree example are:



Dominant Poles via Moment Matching 163

m, = 1.000
m; = —-1.476
m, = 2.048
m,=-2.834

(6.9.5)
A second order approximation of the form

h(t) = k& + ke (6.9.6)

is characterized by matching the first four moments of (6.9.6) to those in (6.9.5):

(6.9.7)

'

J 2R
Since evaluating (6.9.7) directly requires a nonlinear analysis, we prefer to apply the

moment matching formulas from Section 6.6 which permit us to first calculate the coeffi-
cients of the polynomial for the poles from (6.6.9) via moment matching. That is, while all

of the moment-matching arguments in Section 6.6 were for an m'™ order approximation
for an m"™ order circuit, they are also the moment matching equations for a g order
approximation. The only difference here is that we are assuming that we have a g'" order

system, while it is m™ order in reality, with g < m. Applying (6.6.9),

1.000 —1.476{|bs| _ _| 2.048 (6.9.8)
~1.476 2.048 | |b, ~2.834

yields the characteristic polynomial for the approximate poles, the p's,

bp +bp+1 =0 (6.9.9)




164 Frequency Domain Analysis and Moment-Matching Methods

from which we obtain the two approximate poles:

Py =-0.7227

X 15.06 (6.9.10)
P2 =—1.

Notice that the first approximate pole is now extremely close to the first actual pole
(—0.72296572) , while the second approximate pole is attempting to model the effects of
all the remaining poles. This type of pole convergence is usual with moment matching. We
should add that it is important to maintain as much precision as possible when solving this
matrix problem, and we use four digits here only to demonstrate the approach. When we
use double precision for the moment calculations, the second approximate pole is
—13.7791, quite different from our result in (6.9.10) where we used four decimal digits of
accuracy. The importance of numerical precision will be covered in detail in Section 6.12.

Once the poles are known, the zeros can be calculated starting with a formula similar to
(6.6.7). In this case, however, we prefer to go directly to the time domain response by
solving for the residues using the approximate pole values and any two equations from
(6.9.7).

This second order transient waveform estimate at C, is shown plotted with the exact

response in Figure 6.20. We could use six moments to obtain a third order approximation,
but that procedure is hardly necessary given the accuracy of the second order estimate. We
should point out, however, that one usually has to calculate the next order of approxima-
tion in order to test the accuracy. In this case, there is little difference between second and
third order, hence the approximations would conclude at this level.

Of course it may not seem that significant that a 4'* order system can be accurately
approximated by one of second order; however, low orders of approximation (g = 1 to
g = 4) are often the range of necessity for big circuits too. Fortunately, even a circuit
with over a hundred thousand state variables (poles) usually has only a handful of domi-
nant poles in terms of which its behavior can be adequately characterized.

Just as it is possible to compute the first moment of the impulse response (the Elmore
delay) with linear complexity for RC trees, higher order moments can be calculated for
any RLC tree topology with the same complexity [Pillage90, Ratzlaff94]. But moment
matching, as implemented in Asymptotic Waveform Evaluation, applies to other circuit
topologies, too. Controlled sources can be part of the linear circuit models for applications
such as pole/zero analysis. We will show in the next section that calculating the moments
for general circuits is a simple extension of the preceding discussion.

To summarize the key points of dominant pole approximations for our RC tree example:

1. 2q moments are easily computed by 2¢ recursive dc solutions of a simple circuit.
2. Once the moments are obtained, the coefficients of the approximate ¢'" order

denominator polynomial of H (s) can be computed using a linear set of equations
such as in (6.6.9).



Computing Moments for Generalized Circuits 165

<

~J

Lh
1

The two curves are indistinguishable
at the resolution of this plot.

0.25

Second Order & Exact Voltage Response at Cy
o
(¥,
I

o

&
=

1.5 3.0 4.5 6.0 7.5
Time (nanoseconds)

Figure 6.20 Comparison of a second order approximation with the exact response for the
voltage at C, in Figure 6.12.

3. The poles can be determined by finding the roots of that polynomial.

4. The residues can be obtained from an expression of the form shown in (6.9.7).

5. A time-domain response can be computed as a sum of g exponentials.

6.10 Computing Moments for Generalized Circuits

To consider general RLC circuits, we return to the differential state equations for a circuit
driven by a single impulse function, 6 (¢) :

X = Ax+Bo (1) (6.10.1)

Note that we are considering the transfer function from a single input to, in this case, all
the states. If there are multiple inputs, the response to each can be computed separately
and then combined via superposition.

Applying the Laplace Transform to these equations yields

sX(s) —x(0) = AX(s) +B (6.10.2)



166 Frequency Domain Analysis and Moment-Matching Methods

Assuming
x(0) =0 (6.10.3)

then

X(s) = (s1-4)"'B
=[(1-sA"") (—A)]ﬁlB (6.10.4)
——A(1-s4""'B

-1
Expanding (1 —sA_l) ~ about s = 0:

X(s) = -A" (1+sA7 +5°47%+5°A7 + ..)B (6.10.5)

The vector of coefficients of the powers of s are directly related to the moments of the
impulse response at all the state variables:

my=-A"'B
m =-A"B=A"m,

m,=-A"B=A"m,

_ 4@+ -l
m, = A B=A"m,_, (6.10.6)

We can obtain the moments (for the series coefficients) for any output variable of inter-
est by selecting the appropriate combination of state variable moments. LU factoring A
once, we can apply its LU factors recursively to obtain successively higher moments. We
should note, however, that we’re assuming that the A matrix is nonsingular. Such is not
the case when there are cutsets of capacitances or loops of inductances. In such cases, the
circuit under consideration does not have a unique dc solution. We can get around this
problem by imposing charge and flux conservation constraints as described in Section 2.7.
In addition, there is a circuit transformation we will show later in this chapter that also
overcomes potential problems with singular A matrices.

We must also point out that the recursive Forward and Back Substitutions are equivalent

to raising A~! to higher and higher powers. If A has a large spread in eigenvalues, such
computations can be numerically ill-conditioned. This problem can also be addressed on
the same basis as the potentially singular A matrix.



Computing Moments for Generalized Circuits 167

The above recursive relation is useful, but we would rather not formulate the state
matrix A if we can avoid it. We know that A has the following form:

-1
H.. H.
A=|C0 Hecla (6.10.7)
0L H, H,,
such that
-1
a7t = HecHer {C 0} (6.10.8)

where H is the dc hybrid matrix which we’ve described in terms of four submatrix com-
ponents.

Referring to (6.10.6), only the dc hybrid matrix H need actually be inverted (LU fac-
tored) to calculate the moments. Inverting H for a circuit such as the one in Figure 6.21 is
equivalent to performing the dc analysis in Figure 6.22. All capacitances are replaced by
independent current sources and all inductances by independent voltage sources.

dc ? v
(hybrid)
portion

of the

-
| I
R

Figure 6.21 Circuit with energy storage elements and independent sources separated
from the “dc portion.”

To obtain the vector of m, moments, we solve

-1
m, = -A"'B = -[g [Co' [‘j 8] (6.10.9)

Equation (6.10.9) is equivalent to setting the independent sources, v,, and i,, equal to 1 in
Figure 6.22 and solving for the open circuit capacitor voltages and short circuit inductor



168 Frequency Domain Analysis and Moment-Matching Methods

[+ i
4 C I=90 de Vy
i (hybrid)
X 4 portion
of the
i circuit ? )
Li V = 0 1 I

Figure 6.22 The dc analysis equivalent of inverting H.

currents. The m, moments are the initial conditions, or the open-circuit capacitance volt-
ages and the short-circuit inductance currents in the absence of initial conditions.
From the same dc circuit all subsequent sets of moments can be obtained as follows:

1. Set independent sources equal to zero.
2. Set each capacitor current source equal to the product of the capacitance value C

and the corresponding element of the previous moment vector mjc.

3. Set each inductor voltage source equal to the product of the inductance value L and

i . L
the corresponding element of the previous moment vector m;;".

4. Solve for the voltages across the capacitor current sources (mjc+ 1) and the currents

through the inductor voltage sources (mjL +1) » the next set of moments.

These steps are summarized in Figure 6.23.

Note the similarity between the above recursion and that described for an RC tree in
Section 6.7. We need not formulate the state equations to solve the dc circuit defined in
Figure 6.22 and Figure 6.23. We can use any dc circuit analysis scheme to solve for the
voltages of the capacitor current sources and the currents of the inductor voltage sources. -
We note that the analysis in Figure 6.23 poses no problem when the original circuit has
capacitance loops or inductance cutsets. But there will be a problem when the original cir-
cuit has capacitance-current source cutsets or inductance-voltage source loops. These are
the situations for which the dc circuit may not have a unique solution -- the A matrix is
singular. This problem will be addressed a little later in the chapter.

For the simple RC tree example in Figure 6.12, replacing capacitors with current
sources results in the dc equivalent circuit shown in Figure 6.15. The zeroth moment, m,

is obtained by setting V;, = 1 (which is equivalent to setting the proper entry in u equal



Generalized Moment Matching 169

[ﬁ ;jm,. < .,

Figure 6.23 The dc circuit used to solve recursively for the sets of moments.

to 1) and solving for the dc voltages when all of the capacitor current sources are equal to
zero (which is equivalent to setting ¥ = 0). Then, using the same dc circuit and solution
(the LU factors are unchanged) we set V,, = 0 (which is equivalent to setting all entries
of u equal to zero) and set the current sources equal to the product of the capacitance and
the previous moment for that capacitance voltage (which is equivalent to setting ¥ = m)

and solving for the current source voltages as shown previously for the RC tree example
in Figure 6.12 and the dc equivalent circuit in Figure 6.17. The procedure is repeated
recursively until we have enough moments.

6.11 Generalized Moment Matching

Now that we have generalized the calculation of moments to all lumped, linear, time-
invariant circuits, we would like to do the same for the moment matching procedure and

equations. Under the assumption that there are no repeated roots, we can expect the I
state variable to have an impulse response characterized by

q
x, (1) = ijep’t (6.11.1)

j=1
which in the frequency domain corresponds to

q 2
B kj 3 ag+a;s+a,s +...+aq_1s
X (s) =

S =P, 1+bys+bys’+...+b s

(6.11.2)
i=1



170 Frequency Domain Analysis and Moment-Matching Methods

Recall that
2 2g-1
X, (5) = mg +my s+my s+ tmy, g s (6.11.3)

We can expand each of the partial fraction terms in (6.11.2) as series in powers of s:

q kj q k] s S2 S3
2 = 2{“# [1+_+W2+_3+‘"H (6.11.4)

p; P;

J

Then, with the 2¢ unknowns -- g poles and the g corresponding residues -- we arrange
2g moment matching equations:

P P Py
k, k, k,
—(—2+—2+.. +—2)—m”
P P Py (6.11.5)
k, k, k
q
—[ 207 2T _55) Mag-1
Py Py

The subscript [ refers to the I'* state variable, or the {"* component of each moment vec-
tor.

If we can solve these 2¢ equations in 2¢ unknowns, we will have a low order approxi-
mation which matches the first 2g moments of the original circuit function. Note that,
contrary to what prevails in the actual system, different state variables for the low order
approximating systems may have different approximating poles. Recall that the dominant
pole approximations (the Elmore delays) varied for different nodes in the RC tree example
in the previous section. Moreover, in the RC tree example, we noticed that different nodes
have a different number of low frequency zeros, therefore, we would expect that the accu-
racy of our approximations would be different for different state variables. If we use a
convergence criterion to determine the order of our approximations, the orders for two dif-
ferent nodes may end up being different.

To proceed to the solution of equations (6.11.5) we rewrite them as follows:



Generalized Moment Matching I

_1 -
~ = 0 0.. 0 O
141
1 1 1l0 Lo o ollt)] [my,]
Py Py Py | . p? X kyl _ | my
: P : A= (6.11.8)
. 1 : :
1 1 1 0 00 p— 0 Lk1 m,_q,
-1 -1 g-1 9-1
_pl P2 pq _ 1
0 00.. 0 —
L Dy
and
5 +1
1 1
~ 1= 0 0 O
1 P ) ) )
i i i 0 ;}—0 0 0 kl mq,l
2
Py P.z P, < ; Ky _ | Mas1 (6.11.7)
: : : 1 T :
1 1 1 0 00... p—_ 0 _kq_ LY
g—-1 _g-1 qg-—1 g-1
pl p2 pq a l
0 00.. 0o —
L p‘L

We recognize a Vandermonde matrix, V, and a diagonal matrix, A, on the left hand
side of both of these equations. Upon the introduction of some convenient vector and
matrix notation, we rewrite (6.11.6) and (6.11.7) as

VAk = -m, (6.11.8)
VAT 'k = —m, (6.11.9)

where m, represents the first g moments (0 through g — 1) and m,, represents the higher

order moments (g through 2g —1).
Solving (6.11.8) we have

k=-A"'V'm, (6.11.10)



172 Frequency Domain Analysis and Moment-Matching Methods

and therefore using (6.11.10) we can rewrite (6.11.9) as

VAV 'm, = m, (6.11.11)

To continue toward the solution we note that a Vandermonde matrix

v=| ' (6.11.12)

g-19g-1 g—1
AT LAY

is a modal matrix for a related system in companion form:

(0 1 0 0|
Jo o0 1 0
A= : (6.11.13)
0o 0 0 .. 1
b, b,y ~b,_y . —b,

The matrix A is said to have the Forbenius form, with only super-diagonal and last row

elements. This companion form arises from a g™ order linear system description of the
form

(q) (g—-1 . . _
x" +bx +..t+b, JX+b,_X+bx = bu (6.11.14)
if we define
X\ =x
X=X = X,
X=X = X
3 2 (6.11.15)
(-1 _ .

Xg =X =X,

Then



Generalized Moment Matching 173

0
: = Ax+ |0
X =Ax+ )| U (6.11.16)
b
with the state vector
T : (g-n, 7
X = [xl,xz,...,xq] = [x X ..,x ] (6.11.17)

Such a linear system can be used to obtain the state-space representation of a frequency
domain transfer function in the time domain. The system has as many states as the order

of the denominator polynomial. Note that successive multiplication by s in the frequency

domain corresponds to successive derivatives in the time domain, resulting in equations
like those in (6.11.15).

Given the companion form A, it has an eigenvector

T
[LALAZ A0 (6.11.18)
with the eigenvalue A, provided that
Mab A"+ b, A +b, M +b, =0 (6.11.19)
So, we know that

VAV = A (6.11.20)

where A is the diagonal matrix of eigenvalues.
Rearranging (6.11.20) we have

A = VAV (6.11.21)

and

= VAV (6.11.22)

Therefore we can substitute (6.11.22) into (6.11.11) to obtain

Am =m, (6.11.23)



174 Frequency Domain Analysis and Moment-Matching Methods

By repeatedly raising A to higher powers and indulging in a bit more algebra, we obtain
the equivalent set of equations

mo ml moZ eee mq_l r b ] _ m ]
m, m, m; .. m 9 1
g-1f = —} g+l (6.11.24)
m2 m3 m4 - mq+1 . .
. . . i b] | __m2q—]_
F.mq—l Mg Mgyy .. Myy_g

Notice that this set of matrix equations is identical in form to those we derived earlier in

Section 6.6 for a 4'* order system (see equation (6.6.9)).
We first solve this set of linear equations for the characteristic polynomial coeffi-
cients { b 7 b g-1 b g-2 0 b,} . From these coefficients we form the related characteristic

polynomial,

bp'+b,_p" T b, p . +bptl =0 (6.11.25)

and obtain its g roots. We can reverse the characteristic equation to solve for the recipro-
cal roots, hence the time constants:

by+b, T+b, U+ .+t 41 =0 (6.11.26)

From the roots of (6.11.25), which are the p,’s, we can return to

k = —A‘IV_lm, (6.11.27)

to obtain the corresponding residues.

To summarize the steps involved in obtaining a low order approximation to a high order
circuit response via moment matching:

1. Find as many moments (24) as necessary or desirable from the recursive application

of A™! (the solution of a related dc circuit).

2. Obtain the set of polynomial coefficients {b 7 b g-1 b .., b;} from the solution

g-2>
of ¢ equations in g unknowns in terms of the 2¢ moments {mg, m,, ..., my,_;}
using (6.11.24).

3. Obtain the roots of the resulting characteristic equation:

bpt+b, p' b, _p" P+ +bp+1 =0 (6.11.28)



Practical (Numerical) Considerations 175

4. Find corresponding residues by solving the related Vandermonde moment equations
(g equations in ¢ unknown):

VAk = —m, (6.11.29)

5. Compute the required time-domain response as a sum of g exponentials.

The above description is a more formal way of describing the procedure presented at
the end of section 6.9.

6.12 Practical (Numerical) Considerations

The moment matching described above is a form of Padé approximation [Baker75]. Sup-
pose we have a ratio of polynomials

. aq_lsq_l+aq_2sq'2+aq_3sq_3+...+a1s+a0
H(s) = - e — (6.12.1)
bys"+b, 50 +b, ;5 “+...+bs+]
and we wish to match it to
H(s) = 2 } -l 6.12.2
(s) = my+ms+mys +mys totmy, S (6.12.2)
Then, just as we did for the 4" order circuit in Section 6.6, we have
g = My
a, = mgb,+m,;
a, = myb,+m b, +m,
(6.12.3)

0= mobq+m1bq_1+m2bq_2+ .t m

0= mlbq+m2bq_l+m3bq_2+ et m

O=m,_\b,+mb,_+m, b, _,+.. +m,,

The last g of these equations are the same as the ones we obtained previously for the
coefficients of the characteristic polynomial, the roots of which are the approximate dom-

inant poles. The first g of these equations are for the coefficients of the numerator polyno-




176 Frequency Domain Analysis and Moment-Matching Methods

mial, the roots of which are the approximate zeros. We should note that other Padé
approximations of this order can be obtained by raising the number of finite poles sought
and correspondingly lowering the number of finite zeros. But the one we have here with
one fewer zero than pole corresponds to what we did earlier in terms of poles and residues.

The Padé approximation seems straightforward, so the reader might wonder why we did
not just present the results on that basis in the first place. The reason is simply that the
Padé approximation, as powerful as it can be, is fraught with danger. The pole-residue
approach that we discussed earlier is better for pointing out some of its problems and how
to overcome them. When the Padé approximation works, which it does in most cases, it
works well, but when it fails, it can do so spectacularly.

Consider, for example, a stable system with two real (negative valued) poles,

k, k,
H(s) = + (6.12.9)
s+0, s+0,

and the following one pole Padé approximation to it:

H(s) = kA (6.12.5)
S+C
From the above we have
k kK
=t
6 O, G,
A (6.12.6)
k ky Kk
22T 2
6 O, G,
S0
ky  k,
o, O,
5= L 2 (6.12.7)
ki Kk
=t
S, O,

Even though both ¢, and o, are negative, left-half plane poles, it is easy to conceive of

values of k, and k, which would render & positive, a right-half plane pole leading to an
unstable and incorrect result.



Practical (Numerical) Considerations 177

In all cases for which the poles returned by the Padé approximation are suspect, it is
good practice to then attempt a higher order approximation. Experience has shown that
Padé approximation yields two kinds of poles. The first kind are good or genuine poles,
which continue to appear with consistent values as higher orders of approximation are
undertaken. The second kind are “bogus poles” which bounce around in value and should
be rejected.

For passive networks, such as large, linear interconnect circuits, we can of course cate-
gorically reject right half plane poles, which are impossible in such cases. We can even
force the solution of the moment matching equations to yield only left half plane poles by
means of constrained optimization. But if we want to use Padé approximation for active
circuits, which actually may possess right half plane poles, we cannot afford such a cava-
lier strategy. The presence of a right half plane pole for an active circuit is the most vital
piece of information we could have regarding the potential performance of that circuit, so
we would not want to suppress or ignore it.

If we could take the Padé approximation to a sufficiently high order we could avoid
false poles and always obtain excellent results. But the very nature of Padé approximation
may preclude that. The problem manifests itself in equation (6.11.5), which is reproduced
here for convenience:

Py P Py
k, k k
—(p—;+—i+ + ‘;) =m,
2 2 P (6.12.8)
ki Kk, k,
1 P, q

If all of the poles are approximately the same magnitude, then these equations may be
easily solved on a computer with reasonable floating-point precision. But if they are not,
the higher order moments may represent numerical noise rather than useful information.
We can take some steps to overcome such problems, but in practice a Padé approximation

is limited to finding about ten approximate dominant poles on a computer with reasonable
precision,

F requency scaling

Since we start with a first order approximation, frequency scaling can be used to get to
higher orders before encountering numerical problems. At the outset, we have



178 Frequency Domain Analysis and Moment-Matching Methods

ky
— =m,
P
kl (6.12.9)
S oM
Py
S0
m,

p, = — (6.12.10)

1 m,

We can scale the frequency of this dominant pole to magnitude 1 for subsequent com-
putations by multiplying all circuit capacitance and inductance values by p,:

sCo (2)p,C  sL— (J)p,L (6.12.11)
Py P

This method is classical frequency scaling as used in filter design. Frequency scaling
keeps the first terms in (6.12.8) reasonable. In situations for which we may only be able to
obtain one or two good poles without frequency scaling, we are usually able to obtain
three or four with it.

Expansions about s =

When approximating the time domain waveforms by matching moments, the largest error
will occur near ¢ = 0. In [Pillage90], one point from the expansion about s = o was
used for a more accurate starting waveform at ¢+ = 0. Combining an arbitrary number of
points from expansions about s = 0 and s = o was described in [Huang90]. To include
nonlinear elements in Padé type approximations, some researchers have tried using mostly
points from an expansion about s = oo, and only one point from s = 0 to force stability
[Lin92]. Perhaps most successful, however, has been the combination of expansions from

various points in the s plane when a large number of poles are required. Frequency shift-
ing allows us to expand about various points along the real axis in order to obtain pole
convergence. It also alleviates some of the numerical conditioning problems.

Frequency shifting

Referring to (6.12.8) it is obvious that the spread in magnitudes of the poles can be the
source of numerical problems. Expanding about s = 0 results in relatively small pole val-
ues raised to high powers which can wash out the effects of other poles on the moment
values. There are situations where this effect is beneficial. If we are only looking for truly



Practical (Numerical) Considerations 179

dominant poles, then those that are much larger in magnitude and have relatively small
residues are not significant anyway. This situation tends to prevail for a large class of lin-
ear interconnect circuit problems. But for active circuits, non-dominant poles near the
unity gain frequency can have significant effects on their frequency response characteris-
tics like gain and phase margins. These non-dominant poles can sometimes be computed
through frequency shifting.

From classical filter design, it is well known that all circuit poles can be shifted uni-
formly by an amount @ in the s plane upon the addition of a parallel conductance propor-
tion to each capacitance and a series resistance proportional to each inductance as shown
in Figure 6.24. The constant of proportionality is c.

c ——— %C §G=ac
L
R = oL

——

L >

Jjo

-—X

AR
IIQ

-

Figure 6.24 Frequency shifting to obtain higher order moments.

Suppose that a circuit has poles p, = ~1 and p, = ~10°, then we may shift them by

~10° to obtain p; = —1000001 and p, = —2000000. Their original ratio was 10°, but
after shifting it is approximately 2, and now we are more likely to find both. Alternately,



180 Frequency Domain Analysis and Moment-Matching Methods

we could first determine the small pole and then apply the shift. Using a sequence of such
shifts, we can even attempt to compute clusters of poles. Frequency shifting works well,
often allowing us to obtain as many as ten genuine poles -- from twenty good moments. It
is non-trivial, however, to determine the best frequency shift. For many analog problems
the high frequency range of interest is obvious. For linear interconnect, analysis by fre-
quency shifting is beneficial, but not as necessary. This type of expansion shift has been
successfully applied for both real {Huang90] and complex frequency points [Chiprout93].

Frequency shifting has another advantage; it breaks capacitance cutsets and inductance
loops, which would otherwise have rendered the A matrix singular. So it is a simple and
straightforward means for mapping the related dc circuit into one that is easier to analyze.
Capacitance cutsets and inductance loops give rise to poles at the origin in the original cir-
cuit. If a circuit has a pole at the origin, it is impossible to expand its circuit function in a
series about s = 0. Once we have frequency shifted all such poles away from the origin,
the series expansion poses no problem. We must not forget, of course, to shift the approxi-
mate dominant poles that we obtain for the altered circuit back to the right to obtain the
actual answers.

Frequency shifting poses yet another advantage. Since all capacitances are to be
replaced by independent current sources and inductances by independent voltage sources,
we can convert all of the energy storage elements to Norton equivalents to calculate their
moments as shown in Figure 6.25. There is no fear of the equivalent G’s becoming either
0 or . Therefore, we can employ straightforward Nodal Analysis to find the moments. In
practice we have found this approach to work on frequency-shifted circuits for which
Modified Nodal Analysis failed to work on their unshifted versions.

'L——>:: G =0o0C —> G = oC
TC C
BN . v G- L
R = oL R = oL

Figure 6.25 Energy storage element models with frequency shifting.




Practical (Numerical) Considerations 181

Moment shifting

If one is interested in only a few poles or more accuracy in the pole values with frequency
shifting, moment shifting can be applied to remove the large magnitude pole effects and
make the poles converge to the actual low frequency poles (or whatever frequency to
which one has shifted). Since the poles are invariant to the input forcing function, we can

multiply any series of moments by powers of s~' and still expect the moment matching
equations to hold. In effect, what we would be matching is the transient portion of some

forced response (s'isa step, s2is a ramp, etc.), but the poles are invariant to this
change.

With a wide spread in the pole values, since the moments are related to the sum of the

powers of p ', asweusea higher approximation order the lower poles begin to dominate
the moments. At some point, with finite machine precision, only the first pole affects the
higher order moments.

We can demonstrate this pole convergence using the first six moments for the response
at C, of the RC tree in Figure 6.12:

my = 1.000
m; = ~-1.260
m, = 1.737
(6.12.12)
my = —2.402
m, = 3.322
ms = —4.595

For an impulse response, the dominant time constant (p~') is m,/m,. For a step
response, the dominant time constant is m,/m,, etc. As we use a higher order set of two

moments to find the dominant time constant approximation, we find that it converges to
the exact first time constant for this circuit, as summarized below:

1 = 1260
my
m,
™ = 1.379
m
(6.12.13)
"3l - 1383
m,
M| = 1.383
ms



182 Frequency Domain Analysis and Moment-Matching Methods

After only two moment shifts, the first time constant has converged to the exact value
within four significant digits.

6.13 Sensitivity Analysis

It is sometimes useful to have the dominant pole and zero sensitivities in addition to the
approximate values. In Section 3.6 we showed how one can calculate the sensitivities of
the solution vector, x, for a set of equations Mx = b, in terms of the parameter values in
the M matrix and the b vector. This procedure was shown to be useful for determining the
sensitivities of dc voltages and currents in terms of circuit parameter values. Since
moments are obtained by LU factoring a dc equivalent circuit, we can evaluate the sensi-
tivities of the moments following an approach similar to that outlined in Section 3.6. From
these moment sensitivities, the pole and zero sensitivities can be calculated as described in
[Lee92]. From those, we can make sensitivity statements about the transient waveforms of
the circuit.

Referring back to the moment expressions in state variable form in (6.10.6), we can

write a recursive expression for the j™ set of moments as

m, =-A""""B (6.13.1)

Using the identity
—-aA_l = ,«ff‘a"iA"1 6.13.2
de de (6.132)

we can write the sensitivity of the j"' moment with respect to some scalar parameter e
using the chain rule:

om; 0A _; .1 0A ._,OB
_J = A_l —mmim —j_l - A—"_l— _1 -_ —"_l——— - -3
% ( aeA + ...+ aeA )B-A 3o (6.13.3)
Focusing on the i moment at one particular node,
om, 0A _; .1 0A 0B
R T -1 i ~f=1 —j—1 il ~1 B— —j—-1 hins
% c [(A aeA +...+4A aeA ) A ae}

(6.13.4)

J
= chAv—i—la_AA“"(j"i"'l)B _cTA—j——la_E
de de

i=0



Sensitivity Analysis 183

where ¢ is a column vector with all zeros and a 1.0 in the row corresponding to the node
of interest.

To explain all of the terms in (6.13.4), we begin with the original solution for the vector

of zeroth moments, m, = A”'B. The zeroth moment sensitivities for one particular node
would be (from (6.13.4)):

amo _ A_la -1 B A_laB
= = [( A" B- ae} (6.13.5)

A oB
The 3 and % terms in (6.13.5) are simply the derivatives of the element stamps
(more on this topic in Chapter 9). These matrices are zero everywhere except for those

matrix positions that are a function of e. The A

oB

5 stamps and the LU factors used to obtain the original solution m, = A”'B. The first

term is easily evaluated using the

de

dA
term in (6.13.5) post-multiplies the — stamps by the vector m, and pre-multiplies them

de
T ,-1
by row vector ¢’ A

The ¢’A™" term represents the adjoint circuit solution which we introduced in Chapter
3 and which will be covered in detail in Chapter 9. The adjoint system is

ATy = ¢ (6.13.6)
and the solution of this adjoint system is

y=(AN""e= @ah'e (6.13.7)

Therefore, if we solve the nominal circuit m, = A™'B and the adjoint circuit described
by (6.13.7), we can readily evaluate the m,, sensitivities:

om _ oA roB 6.13.8
e Y 3eM0Y e (6.13.8)
We should point out, as we did in.Chapter 3, that the adjoint solution is obtained using the

original LU factors, therefore it requires only one additional Forward and Back Substitu-
tion.

The higher order sensitivities can also be calculated recursively using the original and
adjoint solutions. In summary,



184 Frequency Domain Analysis and Moment-Matching Methods

om;, (& OA 3B
ST [2”?52”'1'4)_ ij$ (6.13.9)

where y, is the vector for the i" adjoint solution:

y,; = (A" ‘e (6.13.10)

* For a ¢' order approximation, we calculate 2¢ moments and the 2g sensitivities for
the response node(s) of interest using (6.13.9) and (6.13.10). To obtain the characteristic
polynomial for the approximate poles we solve equation (6.11.24)

™ ]
mo ml m2 e mq__l B b ] _ m ]
my my my ... m, b" 1
m
g-1 = — g+1 6.13.11
m, my my .. M., _ : ( )
: b, m2
L _ 29 -1
_mq—l Mg Mast oo Mag_g
which we will refer to as
mb=m, (6.13.12)
We evaluate (6.13.12) by inverting m,,
b=m'm, (6.13.13)

To consider the sensitivity of the characteristic polynomial with respect to some param-
eter e, we evaluate (6.13.13) via the chain rule:

ob _ om, 9
3¢ - Mm 3. T30 (m

=m, —~ + (_m-l_e"'m- ym, (6.13.14)

Equation (6.13.14) relates the sensitivity of the characteristic polynomial coefficients to
the sensitivities of the 2g moments. For a q"‘ order approximation the characteristic poly-



Sensitivity Analysis 185

nomial for the AWE poles is

q
P(s) = z b,s* (6.13.15)
k=0

Referring to [Frank78], we can evaluate (6.13.15) at aroot, p ;» and apply the chain rule to
obtain the root sensitivity:

aP

q ap
- =0 = 2 (?;p}c+kbkje£pj’f_l) (6.13.16)

Or, rearranging (6.13.16) in terms of the pole sensitivity of interest,

dp; k=0 de

= = A — (6.13.17)

E‘Ib,p]’.'1
=0

Using the moment sensitivities and equations (6.13.14) and (6.13.17) we can easily
generate the pole sensitivities. For analog circuit design applications we would want to
know the zero sensitivities too. They are obtained using an expression similar to (6.13.17)

a.
along with the sensitivities of the numerator coefficients in (6.12.1), =Z. These numera-

de
tor sensitivities are available by directly differentiating the expressions in (6.12.3). These
sensitivities are a function of the moment sensitivities and the denominator coefficient
sensitivities, both of which are known.

If we seek the time domain sensitivities, we can calculate the residue sensitivities
directly. The residues are obtained by solving

k = —A‘lv_lm, (6.13.18)
Therefore, following the steps used to generate (6.13.14) from (6.13.13),

ok om; 9[-VA]
— _A-ly-1 I
de ATV de de

k) (6.13.19)

1. , e
where 5, 8 calculated using the pole sensitivities,
e



186 Frequency Domain Analysis and Moment-Matching Methods

6.14 Conclusions

We began our discussion with small-signal ac analysis and then studied moment matching.
Moment matching methods are relatively new mechanisms for approximating the fre-
quency domain response for large linear circuits. These methods find a low order rational
polynomial approximation of the actual impulse response in the frequency domain. The
approximations yield valuable time domain information, too. Various techniques are used
to avoid numerical problems. Further, sensitivity calculations are possible with only a
small computational overhead. These methods are very efficient and they have been made
to work on a wide variety of linear circuits.

6.15 References

[Elmore48] W. C. Elmore. The Transient Analysis of Damped Linear Networks with Par-
ticular Regard to Wideband Amplifiers. Journal of Applied Physics, vol. 19(1), 1948.

[Muller56] D. E. Muller. A Method for Solving Algebraic Equations Using an Automated
Computer. In Mathematical Tables and Other Aids to Computation (MTAC), vol. 10, pp.
208-215, 1956.

[Baker75] G. A. Baker, Jr. Essentials of Padé Approximants. Academic Press, 1975.
[Frank78] P. M. Frank. Introduction to System Sensitivity Theory. Academic Press, 1978.

[Penfield81] P. Penfield and J. Rubenstein. Signal Delay in RC Tree Networks. In Pro-
ceedings of the 19th Design Automation Conference, 1981.

[Pillage90] L. T. Pillage and R. A. Rohrer. Asymptotic Waveform Evaluation for Timing
Analysis. IEEE Transactions on Computer Aided Design of ICs and Systems, April 1990.

[Huang90] X. Huang, V. Raghavan, and R. A. Rohrer. AWEsim: A Program for Efficient
Analysis of Linear(ized) Circuits. Proceedings of the IEEE International Conference on
Computer-Aided Design (ICCAD), November 1990.

[Lee92] I. Y. Lee, X. Huang, and R. A. Rohrer. Pole and Zero Sensitivity Calculation in
Asymptotic Waveform Evaluation. IEEE Transactions on Computer Aided Design of ICs
and Systems, May 1992.

[Lin92] S. Lin and E. S. Kuh. Transient Simulation of Lossy Interconnect. Proceedings of
the 29th Design Automation Conference, 1992.



References 187

[Chiprout93] E. Chiprout and M. Nakhla. Transient Waveform Estimation of High-Speed

MCM Networks Using Complex Frequency Hopping. Proceedings of IEEE MCM Con-
ference, March 1993,

[Ratzlaff94] C. Ratzlaff and L. T. Pillage. RICE: Rapid Interconnect Circuit Evaluator

using AWE. IEEE Transactions on Computer Aided Design of ICs and Systems, June
1994.






Chapter 7 Sparse Matrices
and Some of Their
Implications

Circuit elements are usuatly connected to four or fewer nodes. Similarly, a small fraction
of all pairwise combinations of nodes has an element connecting them. Thus matrices
describing circuits are generally sparse. Sparse matrices are matrices that contain a high
proportion of zero entries. We can make use of this sparsity to accelerate circuit analysis.
With sparse matrix methods, zero-valued matrix entries are not stored (resulting in a sav-
ings of memory) and, to the extent possible, not manipulated (resulting in a savings of
CPU time). In fact, while dense matrix LU factorization or Gaussian elimination has an

order of complexity 7> in the size of the matrix, for sparse matrices typical of circuits, the
run time grows only as about n'>. Very large sparse matrix solutions may show an

asymptotic complexity as low as n'!.

7.1 Introduction

For the circuit example that we worked earlier in Chapter 1 through Chapter 3, shown here
again in Figure 7.1, we had the Nodal Analysis equations

(7.1.1)

This is a sparse matrix because it has plenty of zero-valued elements. Every node is not
connected to every other node in this circuit, and for Nodal Analysis nonzero-valued ele-
ments result only from direct connections. For much larger circuits with graphs that are
fairly planar, there are relatively few direct connections between pairs of nodes, and the
nodal admittance matrices are extremely sparse.

189



190 Sparse Matrices and Some of Their Implications

Figure 7.1 Circuit example from earlier chapters.

Generally speaking, the larger the circuit, the more sparse is its nodal admittance
matrix. We can figure that there are usually about two to four branches incident on non-
datum nodes, with a reasonable average being three. But even for a high of four nonzero-
valued elements for each nodal admittance matrix row, at n = 40 non-datum nodes the
nodal admittance matrix would be 90 percent sparse. At n = 100, it would be 96 percent
sparse, and at n = 400 non-datum nodes it would be 99 percent sparse. Hence circuits of
any reasonable size have very sparse nodal admittance matrices and the sparsity increases
with circuit size.

In this chapter we will discuss means of taking advantage of matrix sparsity to reduce
storage requirements and to reduce the number of floating point operations entailed in LU
factorization and Forward and Back Substitution. We will start our study in terms of the
simple example introduced above, and then extend it to cover other more general situa-
tions.

7.2 Sparse Nodal Admittance Matrices

Because the nodal admittance matrices that represent reasonably sized circuits typically
are very sparse, we seek mechanisms whereby we need neither to store nor to process their
zero-valued elements. To reduce storage, we simply avoid storing zero-valued elements.
By default, every element of a sparse matrix is a zero unless explicitly stored as a nonzero.
To reduce the number of operations in dealing with sparse matrices, we recognize the fol-
lowing, which provides the basic motivation for sparse matrix algorithms:

zero-clement * zero-element = zero-element
zero-element * nonzero-element = zero-clement
zero-element + zero-element = zero-element
zero-element + nonzero-element = that nonzero-element



Sparse Nodal Admittance Matrices 191

As we process the elements of a sparse matrix, it is in our interest to preserve its spar-
sity. We have already unwittingly accomplished this goal in the example that we worked
in Chapter 1 through Chapter 3. To obtain the upper triangular U matrix, we did not pro-
cess the lower triangular zeros of the original ¥ matrix, and we did not alter the upper tri-
angular zeros of the original ¥ matrix either, as shown in Figure 7.2.

o
1 5 original zeros
2
1 ==
[ = O\ 75
5
0 BE
i Mo 0No\ 1.
original Zzeros
\ new zZeros

original zeros

L =
P ¢

original zeros -1 —| new zeros

Figure 7.2 LU factorization of sparse matrices.

Now suppose that for the same circuit the nodes had been numbered differently, as

shown in Figure 7.1. The nodal admittance matrix has the same number of zero-valued
elements as before, so it is equally sparse:

3 0]-1 -1
0] 2 [0]-1||v,
-1 @ 2@ Vi
-1 -1 @ 3 V4

(7.2.1)

|
[=E N



192 Sparse Matrices and Some of Their Implications

Figure 7.3 The circuit in Figure 7.1 with a different node number ordering.

Let us investigate how well LU factorization will maintain this sparsity with the new node

ordering. The normalized first row must be applied to both the third and the fourth rows to
proceed toward the upper triangular form.

1 [o]-L 1)

373 |y,

@ 201 ||,

5 =
g |LY4
N "@5 4

A zero-element that turns into a nonzero during the solution procedure is called a fill-in.
Such elements must be stored and computed, unlike the zero-elements that they replaced.
Further, such elements may cause more fill-ins. Clearly, fill-ins must be avoided wherever

possible. The fill-ins are denoted in (7.2.2) by .
Continuing with the Gaussian Elimination, we obtain

(7.2.2) -

Q= = O

[
]
|
|
| s
1
I

(7.2.3)

N= = = O

o
o
f
i




Sparse Nodal Admittance Matrices 193

and, finally,
t[o}1 -1 0]
3 3 |-
1 |V E
[0] 1 @—"2" v, 2
= |3 (7.2.4)
0[0] 1 R
V4
oow | n
i 10 | il
Y . 1 2 2 1
When we apply Back Substitution we obtain v, = 3 V3= 3 V2= 3 and v, = 3’

which is the same solution as before except for the node renumbering. Even though the
results are the same as before, we had to do more work to obtain them. We created a fill-in

in the (4, 3) position in the lower triangle, and then we had to annihilate it later (shown
by the x in (7.2.4)). We also created a fill-in, which required extra storage, in the
upper triangle in the (3, 4) position.

In terms of LU factorization, in this instance we obtain the following:

1@—%—% é}g
=00 @l

00 1@ __1_1<%>
00 0 1 - -

(7.2.5)

WwWwn O O

SR o oo

The second node numbering scheme requires more arithmetic operations and more stor-
age than the first. So we ask the question: is there an optimal node ordering scheme to
reduce the fill-ins and maintain the original sparsity as much as possible? If we had such a
scheme, the simulation program, unbeknownst to the user, could renumber nodes (per-
mute rows and columns of the nodal admittance matrix) to minimize the number of fill-ins
that occur in L and U. If we don’t create nonzero elements, we don’t have to store or
annihilate them! Intuitively, we should suspect by now that the earliest processed rows
and columns should have the fewest nonzero-valued elements. So, we might attempt to
renumber the nodes soas to shape the nodal admittance matrix something like this:



194 Sparse Matrices and Some of Their Implications

zero-valued 7
elements

Nnonzero
valued

elements = (7.2.6)

zero-valued
elements

7.3 Ordering of Sparse Matrices

Since the MNA matrix Y is sparse, we don’t build the full matrix. Rather, we compute the
locations and values of the nonzeros. Certain sparse matrix algorithms are computation-
ally efficient if the locations of the nonzeros do not change through the matrix processing.
Given a (square) sparse matrix, it is possible to symbolically determine the locations of the
potential fill-ins before the LU factorization is commenced. This section will explain how
these locations are determined, and how sparse matrices can be reordered to minimize fill-
ins. This approach applies to the LU factorization of any square nonsingular sparse matrix.

To begin to understand what must be done we consider three rows of a 7 X 7 sparse
matrix, where x’s indicate nonzero-valued elements:

X 0 0 X 0 0 X
X 0 0 X 0 x (7.3.1)
x 0 X x 0 X 0

If we consider choosing the (1, 1) position element to be the first pivot, we find the fol-
lowing:

no fill-in for
second row
x < because it has

a zero in pivot
column

pivot —p

0

no fill-in for

Zero on zero or x

o R T =
— O = O

—» O O
—p % O O

no fill-in for fill-in for x on zero
xonx



Ordering of Sparse Matrices 195

For this pivot choice there would only be one fill-in in the first three rows. Of course, we
would not attempt to use any of the zeros as pivot elements, but there are two other non-
zero possibilities, the choice of which would correspond to reordering the variables:

y pivot

no fill-in for
0 0 0 X | second row
C 0 ( 0 X 0 x 4 because it has

X
0

a zero in the
* 0 o @ pivot column

no fill-ins for 0 on anything and x on x fill-in

> O = O
—

and

fill-in fill-in <« pivot

C X 0 0 C X 0 0 C

’@) x 0 0030 X 0 @
X 0 X X 0 X 0 «— no fill-ins
in this row

Even in this limited illustration, we can see that different pivot choices in the first row
(i.e., variable reordering) can cause different numbers of fill-ins for subsequent rows.

We can also consider the interchange of rows, which corresponds to reordering the
equation numbers, and check what would happen if we were to take the first pivot from
other rows. We will illustrate this without actually interchanging the rows so that the
results can be easily compared with the above. We will first consider the two pivot selec-
tions shown below.

X 0 0 x 0 0 X
0 x 0 0 X 0 X
X 0 X X 0 X 0

Neither of these two second row pivot choices would cause any fill-ins in rows one or
three because both rows have zeros in their respective pivot columns. If we were to

choose the (2,7) position element to be the first pivot element, we would obtain two fill-
ins in the first row and none in the third.

s @no s By @4
X 0 X 0

4 no fill-ins

(7.3.2)




196 Sparse Matrices and Some of Their Implications

For an (nxn) dense matrix there would be [n2+ (n—12+...+2%+ 12] pivot
choices for a full LU factorization and somewhat less than that for a sparse matrix. Every
one of these possibilities would have to be evaluated to optimaily order for fill-in minimi-
zation. In general the number of possible sets is too large to check in a computationally
efficient manner. So we typically resort to some suboptimal ordering scheme, such as the
one we will discuss in the next section.

But before we go on to that we should mention a bit about pivot selection as it has been
applied traditionally to Modified Nodal Analysis. As enunciated originally by its initial
advocates, Modified Nodal Analysis expects to find nonzero pivot elements on the diago-
nal of the ¥ matrix. Modified Nodal Analysis swaps those rows with zeros on their diago-
nals (because of a voltage source connected to that node) with the “excess row”
contributed by the voltage source voltage constraint to place unity valued elements on the
diagonal entries of both rows. So, the modified nodal equations are formulated so as to
have nonzero-valued elements on the diagonal of the augmented ¥ matrix. Given that we
are starting off with no zeros on the diagonal, we can resort to diagonal pivoting. In this
simple-minded scheme, the “best” pivot (based on fill-in or numerical considerations) is
chosen from among the diagonal elements only. Thus diagonal elements stay on the diag-
onal. Stated differently, whenever rows i and j are exchanged, columns i and j are
exchanged, too. Without further explanation at this point, we will state that pivot selection
schemes that are more sophisticated than diagonal pivoting typically work better and bring
Modified Nodal Analysis into closer correspondence with the original compact Nodal
Analysis described in Chapter 3.

Recall that Chapter 3 briefly introduced two types of pivoting schemes: full pivoting,
which involves choice of a pivot from any of the rows and columns in the sub-matrix
being LU factored and partial pivoting, which involves the choice of a pivot from just the
first row or first column of the sub-matrix being LU factored.

7.4 Suboptimal Ordering

Several suboptimal ordering schemes have been proposed since that presented originally
by Markowitz [Markowitz57], but we will discuss the method of Markowitz here since it
captures the essence of suboptimal ordering. All such schemes boil down to estimating the
fill-in potential in the sub-matrix being factored in order to make a pivot selection from the
remaining rows and columns not yet processed. To explain the method of Markowitz, we
first introduce some simple notation:

* NZUR is the number of Non Zero-valued elements in the first Upper triangular
Row;

* NZLC is the number of Non Zero-valued elements in the first Lower triangular Col-
umn as shown in Figure 7.4.



Suboptimal Ordering 197

N

o
.

7

v
NZLC

Figure 7.4 The NZUR and NZLC counts for a sparse matrix during LU factorization.

The consequences of the rows and columns already processed are included (as fill-ins)
in NZUR and NZLC. So, as a pivot is selected, it can affect the values of NZUR and
NZLC for subsequent rows and columns from which pivots are yet to be selected. Each
nonzero potential pivot element is assigned the NZUR of its row and the NZLC of its col-
umn. Then, according to Markowitz, pivots should be selected as follows:

1. Min[ (NZUR - 1) x (NZLC - 1)] and
2. Min(NZLC).

The idea behind the Markowitz criterion is quite simple. Each of the NZURs except the
pivot potentially causes one fill-in in its column in each of the (NZLC - 1) rows below
the pivot. The product [ (NZUR —1) x (NZLC - 1)] is not the actual number of fill-
ins, but the worst-case number of fill-ins. The second criterion is a tie-breaker. If the prod-
uct is the same for two pivots, we choose the one with the smaller NZLC (equivalently,
the larger NZUR). The lower value of NZLC guarantees that one or more row(s) will have
no fill-ins whereas a lower NZUR guarantees that one of more column(s) will be free of
fill-ins. Obviously, we could equally well consider Min (NZUR) as a tie-breaker, but
experience has shown that not much is gained by such elaborations. Note that the
Markowitz criterion only considers fill-in potential. Some sparse matrix manipulation
schemes also reject any potential pivot that is too small in magnitude even if it is most
desirable based on the Markowitz criteria.

In essence, the challenge of suboptimal ordering is to find row/column interchanges
such that the.ones with the fewest nonzero-valued elements are first. Fill-in potentials are
used to find the pivots. Even for a simple pivot selection scheme, such as that advanced by
Markowitz, the cost of setting up the appropriate data structures for subsequent LU factor-



198 Sparse Matrices and Some of Their Implications

izatton can be large relative to that of a simple LU factorization and Forward and Back
Substitution. So, conventional wisdom says that such a symbolic analysis must be amor-
tized over several subsequent solutions of a circuit. But picking a pivot merely on the basis
of fill-in potential ignores entirely numerical problems that may arise because of small
pivot size. SPICE, for example, attempts to apply the same pivot selection to all LU fac-
torizations of the same circuit. As a nonlinear circuit may go through various regions of
operation, numerical conditioning can become a problem, as described in the next section.

7.5 Numerical Conditioning and Partial Pivoting

During a nonlinear transient analysis or a frequency-domain analysis, matrix element val-
ues change from one Newton-Raphson iteration to the next and/or from one time point to
the next or from one frequency to the next. Any scheme that considers numerical condi-
tioning would have a dynamic pivoting scheme, unlike the symbolic scheme proposed in
the previous section. In essence, a symbolic analysis of fill-ins would have to be carried
out repeatedly for complete dynamic pivoting. Further, a dynamic scheme would lead to
an unpredictable fill-in pattern, which is both cumbersome and inefficient to handle in a
program. Hence, most general purpose circuit simulators do not consider numerical condi-
tioning during pivot selection. However, this section will explore methods for and the con-
sequences of numerical conditioning,.

We have already discussed pivot conditioning in some detail at the end of Chapter 3.
The essence of what we wish to avoid is the following:

big — too big
small } bad numbers

big ~ big — too small

One way to take numerical conditioning into account is by means of partial pivoting,
which is the interchange of columns (or rows) only, but not both, to obtain the largest
(best) pivot element. With active devices in a circuit, the largest element in a row or col-
umn of the MNA Y matrix may not be on the diagonal. So it might be advantageous not to
be bound exclusively by diagonal pivoting.

Under the assumption that we may be able to do it fast enough (perhaps with special
purpose hardware), we can consider the following suboptimal ordering, which incorpo-
rates partial pivoting for numerical accuracy:

1. Pick the “pivot row” as that which has the lowest NZUR (break ties with the lowest
NZLC).



Numerical Conditioning and Partial Pivoting 199

2. Pick as the pivot element in that row its largest magnitude nonzero-valued element.

3. Carry out one step of LU factorization with that pivot; update NZURs and NZLCs
as and when annihilation and/or fill-ins occur.

4. Repeat this procedure for the remaining rows/columns.

With regard to the above, note the following:

1. Processing a row with NZUR = 1 actually reduces by one the NZURs of the suc-
ceeding rows upon which its pivot impinges.

2. Processing a row with NZUR = 2 cannot increase the NZURs of succeeding rows
upon which its pivot impinges, and it may soon reduce some of them.

3. Processing a row with NZUR = 3 increases the NZURs of subsequent rows by no
more than 1.

4. Processing a row with NZUR = 4 is probably better than processing a row with
NZUR = 35, etc.; this conclusion actually depends on the value of NZLC, too.

So a simple nested reduction scheme based only on minimum NZURs allows partial piv-

oting, and it may even go a long way toward the actual LU factorization of a very sparse
matrix before causing any fill-in.

To illustrate this point, recall the first Nodal Analysis example with the nodes numbered
consecutively from left to right. Its ¥ matrix structure was as follows:

no fill-in
B
0 X X X

2

3

3 NZURs (7.5.1)
0 0 x X 2

So after one step of Gaussian Elimination we have

no fill-in

X b 0 0

0 X 0 2 (7_5_2)
OC@ G Cx 3}NZURS

0 X X

0 2

And after another step of Gaussian Elimination we have



200 Sparse Matrices and Some of Their Implications

X 0 0

0
* * no fill-in

0 X 2 (7.5.3)
0 C & C S }NZURS

Recall that the Modified Nodal Analysis excess elements (e.g., zero-valued sources
introduced to model controlled sources) produce rows and columns with NZURs and
NZLCs that are typically one or two and sometimes three. So we can process many of
them first with no fear of fill-in, and then proceed to the remainder of the ¥ matrix. That is
precisely what was done in the name of (compact) Nodal Analysis.

Now that we understand sparse matrix considerations, a valid question to ask is whether
(Modified) Nodal Analysis provides the best formulation of circuit equations with which
to take advantage of sparsity. The next section will address this question.

o O O =

7.6 Sparse Tableau Analysis

Sparse Tableau Analysis [Hachtel71] is described in Section A.4 of Appendix A. A quick
review is provided below. For an (n+ 1) node b branch circuit:

Ai, =0 (n KCL equations) (7.6.1)
v, = ATvn (b KVL -equations) (7.6.2)
ov,+Bi, =y (b BCR equations) (7.6.3)

Thus we have a total of (2b+n) equations in (2b+ n) unknowns. In Chapter 2 and
Chapter 3 we discussed smaller, more manageable forms of circuit equations like Nodal
Analysis and Modified Nodal Analysis. But now that we understand sparse matrix consid-
erations, we might ask, “Why not address the larger set of (2b+n) equations in
(2b+ n) unknowns directly? Perhaps the larger set of equations will be compensated for
by gains in sparsity.” And that is exactly what Sparse Tableau Analysis attempts to do.

Before getting into sparsity considerations in Sparse Tableau Analysis, it helps to have
some insight to the generalized BCRs in equation (7.6.3). Consider, for example, the cir-
cuit in Figure 7.5. The branch-node incidence matrix is



Sparse Tableau Analysis 201

00
00 (7.6.4)
11

Figure 7.5 A simple linear circuit with a voltage controlled current source.

The seven Branch Constitutive Relations are the following:

v, =V,
. 1 .

v, =Ryi, = 0 or R—2v2—12 =0
. 1 .
V3—=Ryi; = 0 or I—?—3v3—13 =0

i,=0
4 1 (7.6.5)
) 1.
guVa—ig =0 or v4—g—16=0
m
. 1 ;

We will consider only the left hand set of equations for the purpose of this example. But
in actual circuit simulation we may want to renormalize some of them as on the right to
aid in numerical conditioning. The various matrices of the generalized BCRs follow from
the set of seven equations on the left:



202 Sparse Matrices and Some of Their Implications

1000000
0100000
0010000
®=/0000000
0000100
000g,000

0000 00 1]

(7.6.6)

L o

[ o8]
:Iuoo
(%)

OO O = O OO
o O OO

I

o

A
oo © oo
coCc o oo

|
j—

=
(l
co co o oo

oo oo o
oo OO

=
o
=

7

Y=V, 0 0 0 0 0 0

Both the o and B matrices are very sparse. They are also singular (both the matrices
have a row fuil of zeros), but we can invert them “partially” as in going from the left to the
right hand branch relations, as shown in (7.6.5) above. We note too that it is very straight-
forward in this approach to characterize any kind of dependent source as well as so called
“singular elements,” such as the limiting case ideal operational amplifier shown in Figure
7.6. The operational amplifier provides three BCR equations in six unknown terminal
variables, which is consistent with the observation that the BCRs in general must provide

b equations in 2b unknowns.

Figure 7.6 An ideal operational amplifier.

In general, the BCRs of the form in (7.6.3) can be formed for all of the following ele-
ments:



Sparse Tableau Analysis 203

« the linear independent and dependent elements

v—Ri=0 resistance/conductance
Gv-i=0

y = V} independent sources

i=1 (76.7)
EmYy— i, =0
i —Bi. =0 dependent sources
x y
v,—Hv, =0
v, = Ii, =0
+ the companion models for the energy storage elements
At )
v(t+ A = v(1) +—C~l(t ) FE Capacitance
At .
v(t+AD = v (1) +~61(I+At) BE Capacitance
At . .
v(t+ A = v (1) +E{z(t Y +i(t+ AN} TR Capacitance
Ar (7.6.8)
i(t+At) =i(d) +Iv(t+) FE Inductance
At
i(t+A) =i(t) + _fv (t+ A BE Inductance

At
i(t+AD =i +37 v(t) +v(t+AD} TR Inductance

The notation " refers to situations involving step voltages or currents, as described

in Chapter 4.
* the Newton-Raphson linearization model for a nonlinear element characterized by
fvi) =0
o o, |
g)v + a—il = —'f(V, I) (7.6.9)

In terms of equations (7.6.1), (7.6.2), and (7.6.3), we can now formulate the Sparse
Tableau Analysis equations:



204 Sparse Matrices and Some of Their Implications

1 0 -A T vb 0 KVL
0 A 0 ||i,] = (0] KCL (7.6.10)
a B 0|y, Y| BCRs

Not only are there four zero-matrix entries in the Sparse Tableau Matrix, but the remaining
five nonzero matrix partitions are sparse as well. So we set out to solve this very large,

sparse set of (2b+ n) equations in (2b + n) unknowns. The advantages are
» sparsity of equations.
« all circuit variables are directly obtained by the solution procedure.
e BCRs are straightforward.

Of course, we have more equations, but the increased sparsity may compensate for that.

7.7 Qualitative Attributes of the Sparse Tableau

Recall the first Markowitz criterion for suboptimal pivot selection to attempt to reduce
potential fill-ins:

Min[ (NZUR — 1) x (NZLC - 1)] (7.7.1)

Tacit to this criterion is the observation that an NZUR = 1 row or an NZLC = 1 col-

umn can create no further fill-ins. In fact, an NZUR = 1 row will reduce by one the
NZUR of succeeding rows with nonzeros in their pivot columns. Recall from our previous

discussion that rows with NZUR = 2 cannot increase the NZUR of subsequent rows.
Hence we could conceive of a strategy by which all the NZUR = 1 rows would be pro-
cessed first, and then the NZUR = 2 rows, and so on. Let us see how such a
Min (NZUR) scheme would fare on a Sparse Tableau matrix.

» The KCL rows have NZURs equal to the number of branches incident on the corre-
sponding node (2 for the node between branches in series, 3 or more otherwise).

» The KVLs have NZURs of two for all branches with one end grounded and NZURs
of three for all floating branches. (Note that branches in parallel can be combined on
a local basis without generating fill-in by eliminating one of the two branches’ volt-
age variables in favor of the other’s.)

» The BCRs have NZUR of one for all independent sources, including those that arise
from Forward Euler approximated energy storage elements; and NZURs of two for



Qualitative Attributes of the Sparse Tableau 205

all other elements, including dependent sources and Newton-Raphson linearized
equivalents of nonlinear elements. (Some multi-terminal elements may have BCRs
with NZURs of three or greater.)

On the basis of immediate fill-in potential, the following ordering would be followed:
Independent source BCRs.

Remaining BCRs with NZUR = 2.

KVLs for grounded branches.

KCLs for series connections.

Remaining BCRs with NZUR = 3.

Combination of parallel branches (this is a special NZUR =3 operation).

Remaining KVLs for floating branches.
KCLs with NZUR = 3 (which are typical!).
KCLs or any remaining BCRs with NZUR = 4.

© ® NG R WN A

Remember that selecting a pivot element from an NZUR = 1 row can only reduce the
NZURs of some rows to be processed subsequently. And selecting a pivot element from
an NZUR = 2 row cannot increase the NZURs of any row to be processed subsequently.
So further fill-in economies can be generated by the row processing in categories 1 to 4,
above.

We note that “processing a row” is equivalent to eliminating its pivot element as an
unknown variable in subsequent rows of the matrix. It is recovered later in the course of
Back Substitution. Since the nontrivial KCLs tend to be processed last, or so it appears
qualitatively, we would expect some branch currents to remain as essential variables in the
final flow columns. This approach tends to be opposite what occurs in Nodal Analysis,
which eliminates branch currents in favor of node voltages to the extent possible.

Much of the above discussion is merely qualitative. We need only consider

min (NZUR); max (Pivot Magnitude)

to implement a reasonable STA LU factorization scheme. We should note though that we
would require dynamic storage allocation and expect a new ordering with each new anal-
ysis. Traditional circuit simulators, such as SPICE, seek to use a single suboptimal order-
ing over many analyses so as to amortize its cost of creation. But the scheme discussed
above would be more numerically robust, and the simplicity of the scheme would render it
an excellent candidate for hardware acceleration. If we are careful in working with prop-
erly normalized rows, we can even consider replacing underflows with zero values and
proceeding to process the rows in which they occur with appropriately reduced NZUR:s.



206 Sparse Matrices and Some of Their Implications

7.8 Relation of the Sparse Tableau to Other Solution Schemes

Reduced Tableau equations are derived in Appendix A (see equation (A.4.3)). In essence,

Reduced Tableau equations are generated as follows. Substitute the KVL equations

v, = ATy,
into the BCRs
av,+Bi, = vy
to get
ad’v, +Bi, = vy
Add in the KCL equations
Ai, =0

to get the Reduced Tableau equations

b n
0

AP

(7.8.1)
(7.8.2)
(7.8.3)

(7.8.4)

(7.8.5) ';

The above procedure can be thought of as a partial LU factorization. Starting with the

Sparse Tableau equations,

b b n
6|1 0 —-AT| |V |0}
20 A 0 !||iye= |0jn
p@ B0 [y i, [V

(7.8.8)

We can write the following partial LU factorization because the upper left partition is an

identity matrix:

100]({1 0-AT||v, 0
010((0A 0|[i =10
001 ﬂﬂOLAi"n Y

(7.8.7)



Relation of the Sparse Tableau to Other Solution Schemes 207

The overall LU factorization of a (2b+n) X (2b + n) matrix has been reduced to that of
the following (b +n) X (b +n) matrix:

b n

nlA 0 7.83)
s (B oAl -

Once we have solved the Reduced Tableau equations (7.8.5), we can easily recover the
branch voltages v, via KVL.

To get from the Reduced Tableau to (compact) Nodal Analysis, if possible, we invert

B:

Bi,+aA’y, =y
o ; (7.8.9)
ib+ B G'A vn = B Y
and then
AG,+p oAy ) =AB7ly
Ai,+AP oAy, = ARy (7.8.10)

AP 'ad” v, = APy
—  — ——
Y J

The incidence matrix A is comprised of “connection vectors” (columns with just a +1

and —1 in them), so AP~'aA” is another way of characterizing the composition of the ¥
matrix via stamps. But B does not always have an inverse, as in the earlier example, in
which case we would have to resort to Modified Nodal Analysis. But MNA equations --
and even pure nodal equations -- are best formulated directly, and not via the circuitous
route sketched above. The above discussion was to show the relation between MNA and
STA for intuition only.

We can repeat the qualitative row-ordering analysis of the previous section on the
Reduced Tableau formulation of equation (7.8.5). Prior to any row processing we have the
following:

1. NZUR =1 for the BCRs of independent current sources and grounded independent
voltage sources.

2. NZUR =2 for KCL of nodes with incidence 2 and for the BCRs of floating indepen-
dent vol?ge sources, grounded two-terminal elements.




208 Sparse Matrices and Some of Their Implications

3. NZUR =3 for parallel connections of floating two-terminal elements and for BCRs
of floating two-terminal elements including singly-controlled dependent sources,
and for most KCL equations.

4. NZUR 2 4 for remaining KCL relations and some multi-terminal element BCRs.

Qualitatively, this ordering appears to be opposite that of Nodal Analysis.

7.9 The Original Sparse Tableau Approach

In the overview in Chapter 1 we observed that nonlinear transient analysis involves
repeated nonlinear iterations performed within a time advancement loop. Either to account
for manufacturing variations or to understand the sensitivity of the circuit to various
parameters, there may be an outer loop performed with perturbed element values. The
design process, in turn, consists of repeatedly evaluating multiple circuit configurations.
These analysis procedures can be viewed as being comprised as a set of nested loops,
shown here in Figure 7.7. Hachtel et al. [Hachtel71] advocated the ordering of the equa-
tions to maximize reuse of LU operations across successive iterations. To accomplish that,
equations would be ordered such that topological constraints like KVL and KCL would be
processed first since they change least often.

perturbed| new circuit

) transient | element|/ configuration
nonlinear

iteration

Figure 7.7 The nested loops for circuit simulation.



The Original Sparse Tableau Approach 209

Given the Sparse Tableau equations in (7.8.6), the first b+ n rows are processed a pri-
ori, since only o, B, and Y may change through the course of the analysis. And we need
not worry about the size of the pivots in processing the first b +n rows since they are
comprised only of +1s or 0s. In fact, we can use integer arithmetic, or even purely logical
operations, in processing the effects of those rows upon themselves. Nor are floating point
multiplies entailed in the processing of the first b + n rows, but only floating point addi-
tions and/or subtractions in the final b BCR rows. For example, we need only add and
subtract appropriately to go from the Sparse Tableau to the Reduced Tableau shown in
(7.8.5).

Similarly, in processing the next n rows no floating point multiples are entailed. But if
we proceed in that order, we are trying to preserve the node voltages as essential variables.
And that is what is done for Modified Nodal Analysis. So it is not surprising that the orig-
inal form of Sparse Tableau Analysis has been largely abandoned in favor of Modified
Nodal Analysis, which arrives at roughly the same set of reduced equations in a more
straightforward fashion. The generally accepted conclusion is that MNA is computation-
ally more efficient than STA, but the modeling ease and numerical robustness of STA are
superior.

Sparse Tableau Analysis might be a good approach for AWE (see Chapter 6), if fre-
quency shifting can be avoided, because with AWE, energy storage elements are replaced
by (NZUR = 1) independent sources. But such an approach coincides more closely with
the

Min (NZUR) ; Max (Pivot Magnitude )
scheme than does the originally advocated Sparse Tableau Analysis.

The original advocates of Sparse Tableau Analysis only considered pivot size in the
processing of the final » BCR rows if it dropped below a predetermined threshold magni-
tude. Their LU factorization scheme was based first on element variability, and then on
fill-in potential, and only finally on pivot magnitude:

1. First, process topological constraints as described above.

2. Next, process linear time-varying elements (linear resistance/conductance elements
and fixed time step, Backward Euler or Trapezoidal capacitance and inductance ele-
ments).

3. Next, process linear time-varying elements (variable time step, Backward Euler or
Trapezoidal capacitance and inductance elements).

4. Finally, process nonlinear elements.

The rationale here is that iteration is entailed in a nonlinear transient analysis, so the
elements are ordered to render the inner loops most efficient. Of course, within each cate-
gory, fill-in potential is minimized.



210 Sparse Matrices and Some of Their Implications

7.10 Some Sparse Tableau Modeling Considerations

For the bipolar junction transistor (BJT) shown in Figure 7.8 the most simplified models
for the cutoff, forward active and saturation regions of operation are shown in Figures 7.9,
7.10, and 7.11 respectively.,

Figure 7.8 An NPN bipolar junction transistor (BJT).

Cutoff: v, <V, (on) ~065V =i,=0 & i.=0 & i,=0

Figure 7.9 A simple model for the cutoff region of operation.

There is also a reverse active mode of operation, which mirrors forward active but usu-
ally with a much smaller value of current gain, Py which we need not consider for thcr

purpose of the present discussion.

The above model works very well for a “back-of-the-envelope” analysis of bipolar dig-
ital circuits. It is even reasonable for a “first cut” analysis of analog bipolar dc circuit
behavior. (We would need to supplement such a simple model with the bipolar junction
current-voltage relation of 60mV/decade at room temperature, etc., to begin to approach a

!



Some Sparse Tableau Modeling Considerations 211

Forward Active: v, =V, (on) ~0.65V & Vee <V (sat) ~0.15V =i, = Bfib

ic = leb
V,. (on)

i, = —(1+B)i,

Figure 7.10 A simple model for the forward active region of operation.

Saturation: v,, =V, (on) ~065V & v, =V, (sat) ~ 0.15V

v, (on) o
¢ i, = —(i,+i)

Figure 7.11 A simple model for the saturation region of operation.

more exact analysis.) But such a simple model would not work well in (Modified) Nodal
Analysis, because its changes from one region of operation to another are tantamount to
topological changes. It would work well with a

Min (NZUR) ; Max (Pivot Magnitude )
Sparse Tableau Analysis scheme, however, which would reformulate the circuit equations
for each analysis iteration.

Consider voltage sources to be generalized short circuits and current sources to be gen-
eralized open circuits, resulting in Figure 7.12. It is apparent that moving from one model
to the next during the course of a simulation would be equivalent to changing the circuit
topology. It is, therefore, not only for accuracy that more complete transistor models such

as the one shown in Figure 7.13 are used, but also because they are more suitable to simu-
lation algorithms.



212 Sparse Matrices and Some of Their Implications

#/ic= lc = Bflb lC
ip=0 i iy
—— —_ N

/f ie = i, le

cutoff forward active saturated

Figure 7.12 Regions of operation with the voltage sources modeled as short circuits.

iC
<"
Ip Ty
A §’s
X7 ide a‘ridc
=
ie

Figure 7.13 A more detailed BJT model.

In the model in Figure 7.13,

11)_
i =1 (e"” - 1) (7.10.1)



Some Sparse Tableau Modeling Considerations 213

for each junction. There are even more elaborate models with even more parasitic ele-
ments, which are said to provide even greater accuracy. For a “quick and dirty” analysis
we may attempt to zero or ignore some of the parasitic element values. But a (Modified)
Nodal Analysis program may rely on them to be finite to avoid producing a singular
matrix that cannot be LU factored. Note that there are approximately four branches per
node inside the dc device model. There are probably fewer branches impinging on those
nodes where the devices actually interconnect! So it may require several additional nodes
and branches in a circuit to formulate “reliable and accurate” BIT device models. But the
simpler model introduced earlier often provides (more than) adequate answers with much
better computational efficiency if we can handle it. In Chapter 9 we’ll see that we may be
able to use adjoint sensitivity to elaborate a simple model efficiently, if necessary. And a
simple model may be preferable for statistical analysis, where we must make several (effi-
cient) runs based on variations in environmental and processing parameters.

We have seen that Modified Nodal Analysis cannot cope with simple BIT models.
When bipolar transistors are used for analog design, more accurate models are needed
given the nature of the design, so this failing is not an issue. Simple MOS devices how-
ever, such as that in Figure 7.14, are well suited to Nodal Analysis.

d +
— i i v
+
vgs
h

Figure 7.14 An N type MOS transistor.

For dc analysis the MOS gate terminal is always open. For small-signal analysis, when
Ves > Vg and for large values of v, the source-drain channel can be modeled in terms of a
voltage-controlled current source (a generalized open) as shown in Figure 7.15. This is, of
Course, a simplification of the small-signal MOSFET model shown in Chapter 2. Note that
&, is a nonlinear function of v, . Nodal Analysis works well for models such as this one.

Switch level simulators model the source-drain channel as a voltage-controlled switch
that is on or off depending on whether v, 18 greater or less than V., as shown in Figure

7.16. Such a'simple model is not handled well by Nodal Analysis, so it is difficult to mix
switch and circuit level simulators. The simulator, RSIM [Terman83] adopts the compro-
mise shown in Figure 7.17.



214 Sparse Matrices and Some of Their Implications

v gs gmvgs vdS
S - Y

Figure 7.15 A simple small-signal model for an NMOSFET in saturation.

N +
vgs Vgs > VT vds

Figure 7.16 A switch-level model for an NMOSFET.

+ +
Ves > Vr
Vgs Vds
Ravg )

Figure 7.17 A switch-resistance model for an NMOSFET.

This model can be used in a straightforward fashion in Nodal Analysis and in conjunc-
tion with capacitance energy storage elements it can provide crude timing information. It

is not always easy, though, to find a good value of R, which may differ between turn-on

and turn-off. “Model tuning” is usually employed to make such crude models reasonably
accurate.

7.11 References

[Markowitz57] H. M. Markowitz. The Elimination Form of the Inverse and Its Applica-
tion to Linear Programming. Management Science, vol. 3, pp. 255-269, April 1957.

[Desoer69] C. A. Desoer and E. S. Kuh. Basic Circuit Theory. McGraw-Hill, 1969.



References 215

[Hachtel71] G. D. Hachte], R. K. Brayton, and E G. Gustavson. The Sparse Tableau
Approach to Network Analysis and Design. IEEE Transactions on Circuit Theory, vol.
CT-18, pp. 101-118, January 1971.

[Terman83] C. J. Terman. Simulation Tools for Digital LSI Design. Ph.D. Thesis, Massa-
chusetts Institute of Technology, September 1983.






Chapter 8 Circuit P amtzonmg
and Large Change
Sensitivity

So far, we have considered the analysis of a single circuit with a given topology and a
given set of component values. In practical applications, however, there are many reasons
for analyzing variants of the basic circuit design. We may, for example, need to ensure that
the circuit works as specified in the context of manufacturing variations or operating tem-
perature variations. We may want to assess the behavior of the circuit for a range of values
of a certain element. Computing the change in circuit response with respect to circuit
changes is called sensitivity analysis. The goal is to find the sensitivity of the behavior of a
circuit to variations in the underlying, or nominal, circuit. Sensitivity computation has
many applications in circuit tuning, optimization, reliability analysis, periodic steady state
analysis, critical path analysis, and so on.

A change in the nominal circuit can be a large change (or large scale change) or a small
change. Examples of large changes are the addition of a finite resistance between an exist-
ing pair of nodes, the removal (“cutting”) of an existing circuit branch, or the “splitting” of
an existing node. They usually involve either topological changes or large variations in
component values. Understanding how to analyze these situations leads to the ability to
analyze circuit partitions separately and then combine the subcircuit analyses to obtain the
solution of a larger circuit. An example of a small change is the increase or decrease of a
resistance value or the width of a transistor by a fraction of 1 percent. Sensitivity values
give us the direction and magnitude of the circuit response change with respect to a
change in the nominal circuit. Small change sensitivity is a special case of large change
sensitivity and special, more efficient, techniques exist for computing small change sensi-
tivities.

Note that one method of computing sensitivities is by using finite differences, whereby
multiple simulations are performed to compute the sensitivity. Finite difference methods
are often inefficient and numerically sensitive. In contrast, this chapter and the next will
address incremental methods of sensitivity analysis. An incremental method assumes that
the nominal analysis has been performed, and asks the question, “Is it possible to re-use
the nominal solution and determine the sensitivity with a small incremental overhead?”
Note that the nominal analysis might have to be performed in a particular manner so as to
be prepared for the incremental sensitivity analysis. This chapter will address large change

Sensitivity and the next chapter will address small change sensitivity, both on incremental
bases,

217



218 Circuit Partitioning and Large Change Sensitivity

8.1 Adding a Resistance Between Two Nodes

Given an original circuit with nodes k and / shown in Figure 8.1, suppose that we have
already solved this circuit in terms of Nodal Analysis equations, so that we know

Yy =] or v=Y"J (8.1.1)
The latter is, of course, our notation to indicate the solution. We would not actually invert

the Y matrix, but rather LU factor it. Next, we pose the following question: “What is the

effect on this solution of adding a resistance of value R between nodes k and / (as shown
in Figure 8.2)7”

Original Circuit

Figure 8.1 A linear(ized) circuit with nodes k and /.

Original Circuit

Figure 8.2 Adding a resistance between nodes k and /.

Note that we have provided this added resistance branch with an arbitrary orientation,
from node k to node !, which we will need for convenience in subsequent discussions. To



Adding a Resistance Between Two Nodes 219

solve this problem formally, we first define a connection vector, & =

0

0
+1 | — phow

gkl =|: - all other rows are zero

~1| ¢ phpoy

In terms of this connection vector we can write the open circuit voltage between nodes k
and [ as (see Figure 8.3):

T T 51
Voe = V=V =& = §, Y J (8.1.2)

Original Circuit

Figure 8.3 The open circuit voltage between nodes k and /.

Next, we note that the solution ¥~ 1& « Would provide the vector of voltages that would

prevail if all independent sources in the original circuit were zeroed (independent voltage
sources replaced by short circuits and independent current sources replaced by open cir-
cuits) and an independent current source of unit value were connected from node ! to

node k. The voltage that would appear across nodes k and ! would then be &LY’lf;k!.



220 Circuit Partitioning and Large Change Sensitivity

Therefore, the Thevenin equivalent resistance across that {k, [} node pair is

Rpy = ETY'E,, (8.1.3)

as shown in Figure 8.4. Again, we emphasize that we would not invert Y; to obtain R, is
a straightforward computation in terms of the LU factors of Y.

T o1

Vig = Rpy = ﬁkllf ﬁu

o —
I=1

Original Circuit, but with all
VV =Qand/ I= 0

Figure 8.4 The Thevenin equivalent resistance between nodes & and /.

Using (8.1.2) and (8.1.3), from the viewpoint of the added resistance R, the situation
appears to be that shown in Figure 8.5. The resulting (loop) current that flows in the resis-
tance is

vOC

io=
R R+Rpy

(8.1.4)

The substitution theorem [Desoer69] says that, so long as the circuit solution is unique, we
can replace any element by an independent voltage source that constrains the same value
of voltage or an independent current source that constrains the same value of current and
not change the values of any voltages or currents throughout the circuit (refer to Figure
8.6). Under these circumstance all circuit voltages and currents are the same as they would
be if the resistance R were connected between nodes £ and /.

We will now use superposition to derive the required solution of the circuit in Figure
8.6. First, we will only apply I, by zeroing out all other independent sources in the circuit,

to obtain the set of voltages

v = Y& (—Ip) (8.1.5)



Adding a Resistance Between Two Nodes 221

Original Circuit

Figure 8.6 Applying the substitution theorem for the resistor between nodes k and /.

by linearity, as shown in Figure 8.7. Next, we will zero [ z and apply all the independent

sources in the original circuit. We know the original solution is v = ¥~'J, so we add
these two solutions together to get

P =v+y = v—IRY“lE_,H (8.1.6)




222 Circuit Partitioning and Large Change Sensitivity

Original Circuit, but with
Vy=0 and I,=0

Figure 8.7 Applying the substitution theorem and calculating the change in node
voltages.
or

node voltage contribution due to +1A independent
current source from node / to node k

v 1
o oc
P=v- Y'e
ki

/v R+ RTH

.. —_— &T
original source o ¥

contribution I, normalization =

T 51
R+ &le_ E-'kl

So, finally, we have the complete solution from Figure 8.8 which is equivalent to that in
Figure 8.9.

v
A oc 1
P=v- YE
ki
R+ Rpy

EqY I
R + E"z‘lrlgkl

(8.1.7)

Y'g,

Note that &le‘IJ is a scalar, v, hence



Adding a Resistance Between Two Nodes 223

a oc 1
P = v Y
R+Ryy, Su

Original Circuit

Figure 8.8 Complete solution for the addition of a resistor between nodes & and /.

I — vOC
MW R R+Ry
R
N N e
>y = v—R+RTHY_ E-'kl
Original Circuit

Figure 8.9 The complete solution for the actual circuit.

1

p = Y-IJ_ ““——-——"—Y_léklgTY—IJ
R+ELY'E, i
. | (8.1.8)
[ RegrE, "

The revised circuit can be described conveniently by



224 Circuit Partitioning and Large Change Sensitivity

1 N
(Y+ 28800 =] (8.1.9)

where %E_, . l&; is the dyad (outer product) that shows explicitly the stamp contributed by

the resistance R to the nodal admittance formulation. So we have obtained

1, o7 1 1 lg T o1 7'
(Y+=¢ &) =Y —-———Y £ Y (8.1.10)
R kiRkl R+§LY-IE_,H ki=kl

an explicit expression for the inverse of a matrix plus a dyad. This is known as Kron’s for-
mula to electrical engineers, or Householder’s formula to mathematicians [Kron39,
Householder57].

Seldom, if ever, would we use this formula to find the explicit form of an inverse. Even
) 1 ) .
if Y and Eﬁkﬁfl were sparse matrices, neither ¥ ' nor the dyad Y"‘g,dz;,f,r‘ are guaran- .

teed to be sparse. Rather we recognize that we can efficiently compute the new node volt- :

age vector ¥ with no new LU factorizations required and only one new Forward and Back
Substitution in terms of the original LU factors of Y. Because the value of resistance R is
explicit, we can use these formulas as design equations to study the variation of node voit-
ages with R. And we can then consider with no more difficulty the addition of another sin-
gle resistance between any other node pair. Alternatively, by considering the parallel
addition of either a positive or negative resistance to an existing one, we can investigate
the effect of resistance variation. Simultaneous multiple resistance additions and/or
changes can be similarly handled, but with more difficulty as we will see later in this sec-
tion.

As an example, we consider the ladder circuit we have studied previously but with a
new resistance of value R connected between nodes 1 and 4 as shown in Figure 8.10. In
this symmetric case we have

E_,MvT =y, -V, = %V —%V = 0V (8.1.11)

which implies no change regardless of the value of the resistance. This is not surprising
since nodes 1 and 4 are at the same potential and the added resistance would not upset the
symmetry of the circuit or its solution. So we consider the more interesting case in which
the arbitrary resistance is connected between nodes 2 and 4, as shown in Figure 8.11. Now
we have

Voc = §§4v S VeT VW = %V —%V = _%V (8.1.12)



Adding a Resistance Between Two Nodes 225

Figure 8.10 Example of adding a resistance between nodes 1 and 4 for the resistor ladder
circuit from Chapter 1.

Figure 8.11 Example of adding a resistance between nodes 2 and 4 for the resistor ladder
circuit from Chapter 1.

To find Y1§24 and §;Y’1§24 we use the original LU factors of ¥; Lx = §,,:

2 0 00 -
_1 2 0 ol|m 0
2 %) 1
= (8.1.13)
0-1 }; 0f|x, 0
-1
- 21| ¥4
] 0 0-1 1—3_
. . 2 2 11 . .
which yields x; = 0, x, = 5 Xy = 3 and x, = ~37" Following that Forward Substi-



226

Circuit Partitioning and Large Change Sensitivity

tution, we can apply Back Substitution to Uy' = x:

which yields v, = ——

So,

And finally,

or

— —

1

l—i 0 O
2
0 1—-5- 0
5
0 0 l—i—j
0 0 0 1]
1 .
V3=—§T,V2=—

B E2a?
R+RTH

_g_

3

1 !l
= —5

3 R+§T

2

3]

— —

(8.1.14)

(8.1.15)

(8.1.16)

(8.1.17)

Now we can vary the value of R arbitrarily and easily compute the results. Even R = 0
and R = oo are possibilities.

Using Kron’s method, we could also consider the hypothetical cutting of a circuit
branch that might partition a circuit into two smaller subcircuits (refer to Figure 8.12), and
then build up the overall solution by piecing the subcircuit solutions together. This
approach was called branch tearing by Kron, and it forms the basis for his link-at-a-time
algorithm. In the extreme, we could consider cutting enough (link) branches that the
remaining circuit would be reduced to merely a tree. Refer to Appendix A for a discussion



Node Tearing 227

of trees and links. Then we could add back in a link at a time to ultimately solve the origi-
nal circuit. This solution method is seldom used because it is difficult to exploit the matrix
sparsity of the original circuit. Node tearing is more popular and is the topic of the next
section.

‘i”_

Figure 8.12 Representation of branch tearing between two circuits.

8.2 Node Tearing

Recall
Eq
b= v +Y’&H (8.2.1)
R +§HY— E—'kl
or
Py voc Y—la (82 2)
v - V— m kl vilue

These formulas hold in the limit as R — 0:

gLy
P=vp-— TLIY‘@“ (8:2.3)
gkiY- F’kl
or
b= v-——vﬁrll‘;u (8.2.4)

R TH



228 Circuit Partitioning and Large Change Sensitivity:

i~

So we can consider even the addition of a short circuit between a node pair.

Equivalently, we can consider the tearing (splitting) of a node to create two smaller ciré’
cuits as shown in Figure 8.13. Then we could solve the two smaller subcircuits separately“[’
as shown in Figure 8.14, to obtain v,.. Next, we could cousider obtaining R, as the volt-

age that would appear across a 1A independent current source placed across the tom;
node(s) with all other independent source values set to zero (see Figure 8.15). But in terms:.

of current “source transportation,” this situation is equivalent to the analysis shown in Fxg- :
ure 8.16.

‘ng_

Figure 8.13 Node tearing.

O———0 +V0C - O—t—20

independent independent
sources on sources on

L

Figure 8.14 Solving two “torn” subcircuits separately.

So if we save the LU factors from the two separate solutions of the partitioned subcir-
cuits (that we use separately to obtain v,.), we can apply them separately once again (to

unit independent current source vectors) to obtain v = Ry In the course of that compu-

tation, we of course find YIlél and Y;lﬁz as well. Note that since these unit vectors rep-

resenting the independent current sources have one end grounded, we can drop the double
subscript notation that we had to use earlier. If “tearing” a node splits the circuit into two
smaller subcircuits, we can solve (LU factor) the subcircuits independently and then piece
the overall solution together as shown in the previous section.



Node Tearing 229

+ v= RTH -
independent 1A independent
sources off sources off
| |
L

Figure 8.15 Evaluating the Thevenin resistance between the torn subcircuits.

+Vry = Rpy -

o—t—-=2 b O

independent independent

sources off &1 CD A 1A G>§2 sources off

Figure 8.16 Equivalent representation of Figure 8.15.

1 1
P = Y, J, —I:i Y g (8.2.5)
Y, 1, "ML E,

or

[ ] gl

=" = = 1 (8.2.6)
Y, J, Y18 +& 5|y &

2

Before we proceed to consider the simultaneous splitting of several nodes, we general-
ize the above short circuit case to include the addition of an independent voltage source
between a pair of nodes (Figure 8.17). As usual, we first obtain the Thevenin equivalent
circuit that faces the added branch, as shown in Figures 8.18 and 8.19, where v is the node



230 Circuit Partitioning and Large Change Sensitivity

voltage vector for the original circuit.

B—
@>—ED v

Figure 8.17 Adding an independent voltage source between nodes k and /.

—0

independent : _ E_,Tv _ gT Yy
sources on Coc 7 7 M7 ¥

D

Figure 8.18 Measuring the open circuit voltage between nodes & and /.

independent ® *
T <1
sources off 1A Vg = §k,Y_ &k, = Ryy
@ >

Figure 8.19 Calculating the Thevenin resistance between nodes k and /.

Again, we invoke the substitution theorem and we must find the value of the indepen-
dent current source / (Figure 8.20) that causes the desired source voltage vy to appear
across it:

oc

8.2.7

R TH



Multiple Voltage Source Additions 231

NV
SR

D i

Figure 8.20 Applying source substitution.

Then, by superposition

P=v- IY'likl
vy —Vv
y— oc VY_I&H
Ry (8.2.8)

1

T
vy=&u¥

———————Y—E_,
T 51 kl
‘:th‘_ gkl

This result reduces to what we obtained earlier for a short circuit (R — 0) when v, - 0,

as we would expect. So we see that we can compensate for the addition of even an inde-
pendent voltage source in terms of the LU factors of the original Y.

= v+

8.3 Multiple Voltage Source Additions

We will now consider a multiplicity of split nodes. This generalization is as easily derived,
poses some interest in its own right and is more useful. We proceed exactly as we did
above, only now for a multi-port representation of the problem. First, find the open circuit
voltages for the 2-port circuit in Figure 8.21:

1
Yv=J=v=Y ]
o _eT

Vol = Vig = V=V =E v (8.3.1)
_ 0y . _gT

voc'Z"—«qu"vp Vq-—gpqv

Next, excite the circuit separately with unit valued independent current sources at each
port as shown in Figures 8.22 and 8.23:



232 Circuit Partitioning and Large Change Sensitivity:“

k P
o T— O
+ . +
Vol independent Vo2
] sources on )
o— 0
l q

Figure 8.21 Measuring the open circuit voltages at two ports.
Yv =E,=v =Y §,
_ t _ 1] L] _ T ! _ T Y_l
le - Vkl - vk - Vl - &klv o &kl E-’kl (8-3-2)

- ro T T o1
L = Vp =V, =V, = E_,pqv = &qu §H

k p
+ 0 +

2 =V 1A independent Zo =V
n sources off 2 Tre
- o -

! q

Figure 8.22 Calculating the two-port z parameters, z;, and z,,.

Y=g =v=YE,

_ ” _ " _ 1" _ T " _ T 1
L = Vpy =V, =V, = §pqv = ﬁqu’ épq (8.3.3)
- " - " " - T H _ T 1
=V =V — v =8,y =8, Y &
k p
+ O +
z v, independent 1A Zo = V.
2 T sources off 2
o -
! q

Figure 8.23 Calculating the two-port z parameters, z,, and z,.



Multiple Voltage Source Additions 233

So, entirely in terms of y! (the LU factors of ¥), we have found the following two-
port impedance parameters:

(8.3.9)

[Z] - 1?11 le} - E-‘:lrlgkt ﬁflrlﬁpq

221 29 &:quﬁk, §§qY'1§p

The open circuit voltages were also obtained in terms of Y~! (the LU factors of ¥), and
overall we have the two-port equivalent circuit in Figure 8.24.

WA — WA

Z Z
Vocl 11 2 Yoc2

0wy 2122 () Dzt ENIRE

Figure 8.24 The equivalent circuit for the two-port z parameters.

To apply the substitution theorem, we must simultaneously adjust the independent cur-
rent source values i, and i, so as to obtain the desired independent voltage source voltage
values (refer to Figure 8.25):

V= vy and Vy = Vi (8.3.5)
So
Vyy =V 1+ 2,0, + 2450
Vi oc1 T 211t T Xl
_ , (8.3.6)
Vys = Voe2 T 20101 T 2000
or

[211 Zu} Ll _ 1Vv1 "Yocl (8.3.7)
221 Lp2) |12 Vv2 Vo2

or



234 Circuit Partitioning and Large Change Sensitivity\‘l

—_—

Bl _ [ ]1Yvi "Veel
1 = (8.3.9)

Vv C) Vva

Figure 8.25 Applying source substitution for the two-port problem.

Now, since
i =1=v =Yg, (8.3.9)
and
i, =1=v = Y"‘&pq (8.3.10)
by superposition we have |
58 — 1 1 Vy1 “Vocl
b=yt [Y“ & Y &pl [[1} va "Vo.j (8.3.11)
or
b =v+ y! e |zt -l (8.3.12)
= Y EJ“ Y &p ; 3.12)
Vv2 “gpqv
i T 1
P = Y—]J+ Y—l rl Z'l VVl - le_ J (8.3-131
S E-’p T 41
Vv2 —&qu_ J

Except for the 2 x 2 matrix Z to be inverted, all constituents of this result are in terms of



Multiple Voltage Source Additions 235

y ! (the LU factors of Y).
In the special case where the added source voltages are zero -- the reconstitution of split
nodes with short circuits -- we have

T 1
Y
p=Y'J- [y—lgkl rlgp[]Z” ! F’;’ 1J (8.3.14)
quY- J
or
A 1 1 gT 1
P=11-Y[§, & 1Z ;1 Y'J (8.3.15)
5
In other words
! 1 1 e | &]7;1 1
Y =Y -Y[§, £ 1Z e Y (8.3.16)
P

is the generalization to the addition of two dyads of Householder’s -- or Kron’s -- formula.
The extension of these results to the case of many added independent voltage sources,
say 7y of them, is straightforward:

[4%1 "ﬁf"
T
p=y+Y! [€, & ... gy] AN —&,¥ (8.3.17)

T
vy Ty

Here the §}. vector is the appropriate § , connection vector that designates the node pair

k ~ 1 between which the j* independent voltage source is (to be) connected, v = Y ' J as
usual, and Z is a 'y Xy matrix with the following components:

g = ﬁ,-Trlﬁ,- (8.3.18)

Such a partitioning can always be effected provided that ¥~ and Z™' exist. For Z™' to
exist the ﬁj’s must be linearly independent. That is, there can be no loops of voltage



236 Circuit Partitioning and Large Change Sensitivity

sources as we would expect. Common sense conditions also prevail for ¥ to exist. For
the node-splitting case, if the sources are zero (short circuits) the above result particular-
izes to

p=v-Y'[E & .. Z;Y]Z'1 2|y (8.3.19)

And we can easily derive from it the y dyad extension of the Kron-Householder formula.

So we can consider tearing a large circuit into several subcircuits by means of node-
splitting, and then piecing the resulting smaller analyses together via the above formula. If
the above partitions are cleverly defined, we may get Y and/or Z to be of the form shown
in Figure 8.26.

]

Figure 8.26 The overall appearance of a circuit matrix with tearing.

How to effect “optional partitionings” has been the subject of much research [Branin75,
Rabbat76, Rabbat79]. Of those (usually digital) circuit simulators that use partitioning at
all, most merely take it along the lines of user-defined (library cell) building blocks. Parti-
tioning may be used to exploit subcircuit latency. If the inputs to a circuit have not
changed since the last analysis we need not re-solve it but rather can reuse the old solution.

We note that the above results for addition of independent voltage sources are what we
could also obtain upon appropriate reduction of MNA equations to first eliminate excess
currents.

Another possible application of the above is to analyze a circuit full of switches: first
with all switches open and then with them closed as appropriate. The method can be
applied to diode circuits, too. Let us say we wish to use a simple model for the diode,
whereby a diode is open (OFF) when its voltage is less than say 0.6V, and behaves like a
voltage source of 0.6V otherwise. Then the circuit can be initially analyzed with all diodes



References 237

OFF. Then, those diodes with 0.6V or more across them can be replaced with independent
voltage sources and the solution iteratively recomputed efficiently using the formulas
derived in this chapter. Another possible application of partitioning is switched capacitor
filter circuit analysis.

We note finally, that all of the results of this chapter can be generalized beyond Nodal
Analysis. A word of warning, though: one should be careful with notation, since it can
easily get out of hand.

8.4 References

[Kron39} G. Kron, Tensor Analysis of Networks. Wiley, 1939.

[Householder57] A. S. Householder. A Survey of Some Closed Methods of Inverting
Matrices. SIAM Journal of Applied Mathematics, vol. 5, pp. 153-169, 1957,

[Desoer69] C. A. Desoer and E. S. Kuh. Basic Circuit Theory. McGraw-Hill, 1969.

[Branin75] F. H. Branin. A Sparse Matrix Modification of Kron’s Method of Piecewise

Analysis. Proc. IEEE International Symposium on Circuits and Systems (ISCAS), pp. 383-
386, 1975.

[Rabbat76] N. B, Rabbat and H. Y. Hsieh. A Latent Macromodular Approach to Large-
scale Sparse Networks. IEEE Trans. on Circuits and Systems, vol. CAS-23, pp. 745-752,
December 1976.

[Rabbat79] N. B. Rabbat, A. L. Sangiovanni-Vincentelli, and H. Y. Hsieh. A Multilevel
Newton Algorithm with Macromodeling and Latency for the Analysis of Large-scale

Nonlinear Circuits in the Time Domain. /EEE Transactions on Circuits and Systems, vol.
CAS-26, pp. 733-741, September 1979.






Chapter 9 Incremental
Sensitivity

In the last chapter we saw that the “large change sensitivity” of a circuit’s response with
respect to a single element value can be computed relatively efficiently. For example, the
node voltage changes that result from variation of a single parameter can be computed in
terms of a new Forward and Back Substitution by reusing the LU factors of the original
nodal ¥ matrix. There are a few other computations required to obtain the final results, but
they are relatively inexpensive compared to LU factorization and Forward and Back Sub-
stitution.

We saw (oo in the previous chapter that we could consider the simultaneous variation of
more than one parameter, but at a higher run-time cost. Each parameter requires a new
Forward and Back Substitution; and a new square matrix Z, of size equal to the number of
parameters, must be LU factored as well. The situation remains workable provided there
are not too many parameters. By these methods, we can efficiently find the large change
variation of all circuit responses with respect to arbitrary variations of a few circuit
parameters.

This chapter will focus on incremental sensitivity or small change sensitivity. Incremen-
tal sensitivity is defined as the partial derivative of a circuit response with respect to a
parameter of interest,

d (response)

d (parameter)

It is valid in a small range around the nominal value of the parameter of interest. We ask
the question, “Can the incremental sensitivity of all the circuit responses be computed
with respect to single parameter efficiently?” Further, “Can the incremental sensitivity of a
single circuit response be computed with respect to multiple parameters efficiently?” This
chapter will describe direct sensitivity and adjoint sensitivity, which are methods that
answer these two questions, respectively. Both of these methods involve construction of a
new circuit with the same topology as the original one, whose solution yields the required
set of sensitivities. In the case of direct sensitivity, the auxiliary circuit is called the sensi-
tivity circuit and in the case of adjoint sensitivity it is called the adjoint circuit. In both
methods, LU factors from the original circuit solution are reused with new Forward and
Back Substitutions to compute sensitivities. We alluded to this process in Chapter 3.

239



240 Incremental Sensitivity

9.1 Direct Circuit Sensitivities

We begin the discussion of direct sensitivity by considering a simple example. The circuit
in Figure 9.1 has the following voltage at node 2:

Vv R, 1.1
v, = S[R1+R2:| ©.1.1)

the following voltage at node 1:

v, = Vg (012)

ig = (9.1.3)

Figure 9.1 A simple voltage divider circuit.

The sensitivity of this voltage response with respect to some circuit parameter is easily
obtained from (9.1.1) by partial differentiation. For example, the sensitivity of v, with

respect to R, is

_2__y R (9.1.4)
oR, ‘L (R, +R,)? o

The sensitivity of v, with respect to R, is 0 and the sensitivity of i with respect to R, is

oR, = (R, +R,)?

(9.1.5)



Direct Circuit Sensitivities 241

We don’t usually have the luxury of analytical expressions for the response voltages.
Instead, sensitivity circuits are used to obtain this information in general. These sensitivity
circuits are obtained by direct differentiation of the original circuit equations.

The easiest way to think of direct sensitivity is in terms of differentiation of the BCRs
of the original circuit. We will first explain direct sensitivity in this manner, and then dis-
cuss a matrix interpretation of the same method in section 9.2. Consider a circuit consist-
ing of conductors, resistors, independent current sources, and independent voltage sources
only. Assume that we are interested in the sensitivity of the circuit response to some
parameter x, which can be any quantity like temperature (which might effect many ele-
ment values), value of a resistance, value of the voltage supply to a circuit, and so on. Dif-
ferentiating the BCRs, we find

dig dv; oG

Conductors:  i;=Gvg= > G-é-; + P
, . vy di, oR .
Resistors: vy =Rip = e RT); + 55 ir
| 3i, (9.1.6)
Independent current sources: i, = I = a = s
dv, dV;
Independent voltage sources: v, =V = = - ox

Postulate a new circuit 1) called the sensitivity circuit that has the same topology as the
original circuit. The sensitivity circuit 1 has branch voltages, branch currents, and node
voltages y,, ¢,, and v, respectively, as shown in Figure 9.6. In tabular form, we can
summarize the relationship between the two circuits as follows:

original circuit sensitivity circuit
branch voltages Yy v,
i
branch currents b 9,
node voltages ) Va v,

topologically identical



242 Incremental Sensitivity

N M
Vs s ¥, Vo O ¥V,

Figure 9.2 A circuit N and its sensitivity circuit 1.

We would like the currents and voltages of the sensitivity circuit to be the sensitivities
we seek. Hence, we can write the BCRs for the sensitivity circuit as follows:

JdG
Conductors: ¢, = Gy + 35 V6

. oR .
Resistors:  y, =R@, + 55 iR

of 9.1.7)
Independent current sources: @, = 53;

Vv,
Independent voltage sources: ¥, = o

Thus each branch voltage is the sensitivity of the same branch voltage of the original cir-
cuit and likewise with branch currents. Each conductor in the original circuit is replaced
by a conductor of the same value in parallel with an independent current source whose
value is known from the original circuit solution. Thus each conductor becomes a Norton
model in the sensitivity circuit. Likewise, resistors become Thevenin models in the sensi-
tivity circuit (which can easily be converted to Norton models if necessary). Each inde-
pendent source is replaced by the partial derivative of its value with respect to the
parameter of interest, which could possibly be zero.

Next, we solve the sensitivity circuit. The sensitivity circuit has the same topology as
the original circuit and the same nodal admittance matrix ¥. The excitation vector J,
however, is different. Hence the LU factors of the nominal solution can be reused by For-
ward and Back Substitution with a new J vector to determine all the sensitivities at once.
Node voltages are simple linear combinations of branch voltages, so their sensitivities are
automatically determined by the same process.

For example, let us apply the above method to our simple example in Figure 9.1. First
we construct the sensitivity circuit by directly differentiating the BCRs:



Direct Circuit Sensitivities 243

s~ a_Rl -
. Vs (9.1.8)
Vo1 = R Qg tig =R @y + m '

Vo = Ry@p,

The sensitivity circuit is shown in Figure 9.1. Solving this circuit, we obtain the necessary
sensitivities:

dv, v 0
o = ¥s = (9.1.9)
av, . R, v R,
SR A R v at] oo
and
di ins Ve
= = = 9.1.11
Ps TR, TR +R, T (R +Ry? (31.11)
®
¥o=0 CD
Qs

Figure 9.3 Sensitivity circuit for example in Figure 9.1.

Thus the sensitivities of all of a linear dc circuit’s responses with respect to one parameter
of interest can be computed simultaneously with just one extra Forward and Back Substi-

tution. Each new parameter of interest will entail one more Forward and Back Substitu-
tion.



244 Incremental Sensitivity |

9.2 Matrix Interpretation of Direct Sensitivity

Consider the MNA matrix equation for a linear time-invariant circuit

Yy = J (9.2.1)

which has a solution

v=YJ (9.2.2)

Of course, as before, v is obtained by LU factorization, not by matrix inversion. Assuming
we have this nominal solution, we would now like to calculate the sensitivities of the

response vector v, to changes in a single circuit parameter x.
Differentiating (9.2.1),

J -9
3, () = () (9.2.3)

results in

o
Yy [BY aJ] (9.2.4)

o’ ax

So, we can calculate the vector of response sensitivities, dv/dx, using the original circuit
oY dJJ

=)

Solving (9.2.4) requires only one extra Forward and Back Substitution using the origi-

nal LU factors. To demonstrate this fact, the circuit in Figure 9.1 has the following MNA
equations

LU factors and the new excitation vector —[

1 0 0

1 1 1 Vi |4
—_— — 4+ —30 s

R, (Rl Rz) vl =10 (9.2.5)
o1 s Lo
_Rl Rl

This ¥ matrix is lower-triangular, therefore, the LU factors are simply L = ¥ and
U = 1. To solve the sensitivity equations, (9.2.4), we build the appropriate RHS vector.
For our example above, x = R, therefore



Matrix Interpretation of Direct Sensitivity 245
0 0 o
| 1
o _ 15 "m0
a = Rl Rl (9.2.6)
1 1
= a0
_ v -
o
v=|"*\R, +R, (9.2.7)
-V,
R, +R, ]
and
il = : 9.2.8
3 |0 (9.2.8)
0
From (9.2.4), the new RHS term for the sensitivity circuit analysis is
_ 0 _
VS
RHS = —|R, (R, +R,) (9.2.9)
_VS
R, (R +R,) |

Applying the original LU factors (the lower triangular ¥ matrix for this example) to the

new RHS vector,

— - _avl_
1 0 0 %
11 o

& @) O
1 1 ox

- ——e 1 a-
R, R, s
- "~ ox |

= —|R, (R, +R,)

_R1 (R, +R2)J

-V

5

(9.2.10)



246 Incremental Sensitivity

Hence the voltage sensitivities are

) 0 2.1
- = (9.2.11)
and
av2 R,
vy 9.2.12
ox S[(R,+R2)2} ¢ )
and
oi Vv
's 5 (9.2.13)

3 (R, +R,)?

These expressions match our earlier sensitivity calculations from (9.1.4) and (9.1.5), as
well as from the sensitivity circuit in (9.1.10) and (9.1.11).

The matrix interpretation produces the same results as directly differentiating BCRs and
creating a sensitivity circuit. The excitation vector for the sensitivity circuit (from the right
hand side of (9.2.4)) contains two terms. The first is oJ/ 9x, which means that independent

N ooy,
sources are replaced by their derivatives. The i"* element of the other term is —z —a—” V).
j=1 *
So, for example, if there is a conductance G connected from node i to node j, then a cur-
rent source of value dG/dx (v, —v;) or (0G/0x) v; is connected from node i to node j in

the sensitivity circuit. We arrived at the same result in the previous section by directly dif-
ferentiating the BCRs.

9.3 Controlled Sources and Nonlinear Elements

This section will extend direct sensitivity to circuits containing linear controlled sources
and nonlinear elements. To begin, we differentiate the BCRs of the four types of linear
controlled sources to obtain the corresponding sensitivity circuit elements as follows.

i, dv, og

Voltage-controlled current source: i, = g,v, = Pl e

8m 3y + E"H
9.3.1)
28,

-0, =8Vt P



Controlled Sources and Nonlinear Elements 247

So a voltage-controlled current source is replaced in the sensitivity circuit by an identical
voltage-controlled current source in parallel with an independent current source whose
value is known from the original circuit solution.

Vol trolled volt : P2 O, o
oltage-controlled voltage source: v, = pv, — o M Y 032

: op
. W2=l*u|’1+'a_xvl

Hence, a voltage-controlled voltage source will manifest itself as an identical element
in the sensitivity circuit, in series with an independent voltage source.

. .0 di; da,
Current-controlled current source: i, = oti, = = = ot— + =1,
ox ox dx
(9.3.3)
do

e, =0, + —a—;i]

Thus a current-controlled current source is replaced by an identical source in parallel with
an independent current source in the sensitivity circuit. Finally,

o, di, or
Current-controlled voltage source: v, =r, i, - — = mae t
X

m-1 ax
or

m

Y, = rm(p1+_a";il

el
(9.3.9)

whereby a current-controlled voltage source is substituted by a similar source in series
with an independent voltage source of known value in the sensitivity circuit.

As before, the linear sensitivity circuit is built, and then solved using the same LU fac-
tors as for the original circuit. All the required sensitivities are obtained by this procedure.

In the case of nonlinear circuits, since we are considering small change sensitivities, we
can only discuss sensitivity about an operating point. Once the original nonlinear circuit
has been solved, we know from Chapter 1 that a linearized companion model has been
determined for each element at the operating point. Figure 9.4 depicts a linearized model

consisting of a Norton equivalent with a conductance G, in parallel with a current source
1, ,. The BCR for this linearized element,

i, = Geqvb+qu (9.3.5)

can be directly differentiated to obtain



248 Incremental Sensitivity

di av, dG, dl,
a_; - Geqngf * axq"b * axq (8:3.6)
or
aGeq al, ‘
o, = Geq\I’b + (—a;“ vyt W) (9.3.7)

Thus the element in the sensitivity circuit is also a linearized Norton equivalent as shown
in Figure 9.4.

Figure 9.4 Companion model for a linearized element.

di,,
ox
+
dv
G b v aGeq aqu
eq _
? ox ( ox I ox

Figure 9.5 Companion model for a linearized element in the sensitivity circuit.

In our simple example in Figure 9.1, we considered the sensitivities of the response
variables due to a change in a single resistance value. It is more likely that we would have
occasion to calculate the sensitivities with respect to some complex parameter. In such
cases, we can use the chain rule of differentiation to obtain the sensitivity circuit element.

As an example, consider the case of calculating the sensitivities of the node voltages
with respect to the change in the saturation current of a diode. The diode branch relation is



Adjoint Sensitivity Analysis 249

Va

iy = fpx) = Igple"—1 (9.3.8)

where x = [, .. Differentiating,

diy of v, of
il o e (9.3.9)

we recognize that G,, = df/dv, and df/dx computed at the operating point give us a
companion model for the sensitivity circuit.
In summary, the direct sensitivity analyses in Sections 9.1, 9.2, and 9.3 compute the

sensitivities of all responses with respect to one parameter using the LU factors of the
original circuit,

9.4 Adjoint Sensitivity Analysis

The approach described in the previous section for calculating sensitivities directly
yields the sensitivities of all of the responses to changes in one parameter. Conversely,
during circuit optimization, we are sometimes interested in the sensitivity of one output,
with respect to many parameter values (perhaps all element values). In Chapter 3 we
introduced adjoint sensitivity analysis and showed how to evaluate the adjoint matrix
equations to obtain such sensitivities.

Consider once again the example shown in Figure 9.1. Recall the steps for adjoint sen-
sitivity computation from section 3.6. To obtain the sensitivities of v, with respect to all

parameters in ¥ and J (which are shown in (9.1.7)), we define

e, = (9.4.1)

O o= O

where a “1” entry appears in the v, location for the solution vector. We solve for an inter-
mediate vector g, (the subscript 2 refers to the second variable in the solution vector) in

Ug, =e, (9.4.2)

by Forward Substitution using the original LU factors. For our example in Figure 9.1,
U = 1, therefore g, = e,. By Back Substitution we then solve



250 Incremental Sensitivity

L't =g, (9.4.3)
or
L.
R, R, 0
1 1. -1]E1 =11 (9.4.4)
0 (=—++) =+
1 2 Rl 0
0 0 1]

5, = | RR, (045)

From section 3.6, we know

v, ¢
_ e (9.4.6)
2
aJ; J
where c";zj is the j* entry of &, and J ; is the j™ entry of J. Or, we can calculate the sensi-

tivities with respect to the Y matrix using

dv,
—— = — 4.7) -
where Y,, is the (k, [) component of ¥ and v, is the I"* solution variable.

The dv,/dR, term, for example, is now obtained by applying the chain rule of differen-

tiation. We first find all the locations in ¥ where R, appears and combine that stamp with

the sensitivity with respect to those stamp locations to obtain the composite sensitivity that
we seek.

Now that we have recalled the material from section 3.6 and applied it to our simple
example, we are ready to proceed further. Like the sensitivity circuit for direct sensitivity,
this matrix-based adjoint analysis has a physical circuit interpretation. We did not describe
the adjoint circuit in Section 3.6, but we do so here in the remainder of this chapter.



The Adjoint Sensitivity Relation 251

9.5 The Adjoint Sensitivity Relation

Before introducing the adjoint circuit, we must review and extend Tellegen’s theorem
(which is mentioned in (A.5.11)), where we demonstrated that conservation of energy is a
consequence of the KCL and KVL topological constraints.

To obtain the basic sensitivity relation, first suppose that we have two topologically
identical circuits. That is, they have the same graph, with the same branch numbering, but
their branch constitutive relations (BCRs) may be different. As with direct sensitivity, the

original circuit N has branch voltages v,, i, and v,, respectively and the related “adjoint
circuit” m has branch voltages, branch currents, and node voltages V,, ¢,, and y ,
respectively, as shown in Figure 9.6.

N n
Vi Iy V, Vi @ W,

Figure 9.6 A circuit N and its adjoint circuit 1.

Because the circuits are topologically identical, their topological constraints (KCL and
KVL) are the same (see (A.3.2) and (A.3.3)):

KCL:  Ai,=0 and  Ag, =0

r r (9.5.1)
KVL: v, = Ay, and y, =AY
We begin with Tellegen’s theorem [Desoer69] in its most general form:
v,f(pb =0 and w:ib =0 (9.5.2)

Equation (9.5.2) can easily be derived from the above topological constraints [Desoer69]
since

vg(pb = (ATvn) T(pb = V:A(pb =0 (9.5.3)
and
Vi, = ‘(ATwn)Tib = ylAi, = 0 (9.5.4)

We note that the energy conservation relations



252 Incremental Sensitivity

vii,=0  and  y,9, =0 (9.5.5)

are special cases of Tellegen’s theorem.

Suppose that we alter the BCRs, but not the topology of the original circuit. Because of
the variation of some parameters of interest, let us assume that the nominal branch volt-
ages and currents show a variation:

v, v, +0v, and i,—>i,+0i, (9.5.6)
Again, by Tellegen’s theorem
T T T, . .
(vp+0v,)o, =0 and y, (i, +6i,) =0 (9.5.7)

Subtracting the original pair of relations (9.5.2) from this pair, we obtain

Sv,¢, = 0 and y,di, = 0 (9.5.8)

Finally, we can subtract the second of these relations from the first to obtain

v, 0, — ¥, 080, = 0 (9.5.9)

which is the basic sensitivity relation. So far, we have made no assumptions regarding the
Branch Constitutive Relations in either circuit; this result is general. The only assumption
made so far is that the two circuits share a common incidence matrix A . We will see that it

is more convenient for subsequent manipulations to consider the basic sensitivity relation
in scalar form:

2 (@3v—ydi) =0 (9.5.10)
all branches

9.6 Simple Reciprocal (R, G, V, I) Linear dc Circuits

Consider a circuit that has only independent voltage and current sources, resistances, and
conductances. We expand the basic sensitivity relation as follows:



Simple Reciprocal (R, G, V, I) Linear dc Circuits 253

(93v—ydi) = 3 (¢,8v,—y,5i,)
all branches 4
+Z (9,0v, - y,8i))
I (9.6.1)
+2 (@pdvg — W, 8ip)
R

+z (90v;—y8ig) =0
G

Here the subscripts, V, I, R, and G, on the original and adjoint circuit branch voltages
and currents indicate the generic branch types. And these same subscripts on the summa-

tion symbols (Zs) indicate that the summation is to be taken over all such branches.
Next, we consider the varied BCRs for each generic branch type:

Independent voltage sources:
vy=Vy

dv, =8V,

Independent current sources:
=1

: 9.6.3

i, +8i,=1,+3I, (3.6.3)

8i; = 81,

Resistors:
szRiR
vR+8vR= (R+OR) (iR+8iR)
Ovp = Rdiy + ORI, + ORI,

(9.6.4)

Conductors:
i=Gvg
ig+0i; = (G+3G) (vg+0vy)
i =GO+ 0Gvs+8GHv,

(9.6.5)



254 Incremental Sensitivity

The final relations in (9.6.4) and (9.6.5) for the resistances and conductances are only
approximate since we have crossed out the second-order variations. It is this assumption
that limits the applicability of the following results to incremental sensitivity studies.

Upon substitution of the BCR sensitivity relations (9.6.2) to (9.6.5) into the basic sensi-
tivity relation (9.6.1), we obtain

Y (0,8Vy—w,Biy) + Y (98v,~v,31)
Vv 1
+ Z (@ (RBix+BRig) — Wil (9.6.6)
R
+ ) 198 Wg (Gdrg+8Gvg) ] =0
G

We are free to choose any BCRs for the adjoint circuit elements. So we define the resis-

tance and conductance BCRs for the adjoint circuit so as to remove their voltage and cur-
rent variations from (9.6.6):

Resistances: VY, = RO, (9.6.7)

Conductances: o, = Gy, (9.6.8)

In other words, resistance and conductance branches in the original circuit correspond to

resistance and conductance branches, with the same respective values, in the adjoint cir-
cuit. Substituting these adjoint element BCRs into (9.6.6),

Z ((PVSVV_ aniv) + 2 ((PISVI - W[SII)
v ! (9.6.9) °
+Z(pRiR5R+2 (¥ v8G) =0

R G

Separating independent source variations on the left hand side, we obtain the following
useful result:

S iyt D (—0) 8y, = 98V, + Y (-v) 8,
v T v !

+ ;(pRiRSR + zG: (—ysvg) 8G

(9.6.10)

Here we have isolated the variations of the response variables, 8i, and §v;, on the left
hand side of the equation, and the variable parameters, 3V, 8/, 3R, anddG, on the right.
Without loss of generality, we can always take independent voltage source currents and



Simple Reciprocal (R, G, V, I) Linear dc Circuits 255

independent current source voltages to be response variables, since we can introduce zero
valued sources appropriately into a circuit wherever we want to define responses.

To complete the interpretation of the sensitivity relation (9.6.10), we choose BCRs for
the independent sources in the adjoint circuit. We choose to replace independent sources
in the original circuit with the same type of elements in the adjoint circuit. Thus,

vy, =¥, (9.6.11)

and

-, = @, (9.6.12)

can be taken to be independent voltage and current source branches, respectively, in the
adjoint circuit.

Let us assume we have just one response of interest. First, we set all independent
sources in the adjoint circuit to zero, except for the one in which we are interested, which
we set to unity (+1 if the response is the current of an independent voltage source, -1 if its
is the voltage of an independent current source). The next step is to solve the adjoint cir-
cuit by reusing the LU factors of the original circuit. Finally, we can pick off all the
required sensitivities from the right hand side of (9.6.10).

More generally, given a scalar performance function

[y, vy (9.6.13)

then

of . of
&f = ;a—iv&ﬁ Zlfa_v,s"' (9.6.14)

S0, we can take the following as adjoint circuit independent source excitations:

a
0, &
| for each such (9.6.15)
df | response (branch)
¢, = —
dv,

Then the variation of the scalar performance function (9.6.14) coincides with the left hand
side of (9.6.10), and we can pick from the right hand side the variations of the perfor-
mance function f(i,, v;) with respect to each of the individual elements (types):

of

a—‘/v = q)V (9.6.16)



256 Incremental Sensitivity

the current(s) through the adjoint voltage source(s);

of
ar, = Vi (9.6.17)

(the negative of) the voltage(s) across the adjoint current source(s);

of

56 = VYo' (9.6.18)
(the negative of) the product(s) of the voltages across the original and adjoint circuit con-
ductances;

of .
Sp = 9rix (2.6.19)
the product(s) of the currents through the original and adjoint resistances.

In this simple case the original and adjoint circuits are identical except for their inde-
pendent source values. And the adjoint circuit independent source excitation values are
derived from the original circuit responses via the scalar performance function f(i,,v;)

and its variation (9.6.14). So we see that with two simple circuit solutions, first the original
and then the adjoint, we can obtain the incremental sensitivity of an arbitrary scalar perfor-.
mance function f(i,, v,) with respect to every circuit parameter. Since the original and
adjoint circuits are the same except for their independent source excitation values, most of
the effort entailed in the adjoint circuit solution (the LU Factorization) has already been-
performed for the original circuit. The original LU factors need merely be reapplied via
Forward and Back Substitution to a new excitation vector defined by (9.6.15).

Before we leave this topic, we note finally that the resistance and conductance sensitiv-
ity expressions

of . -
a—R = (pRlR (9.6-20)
and
0
% = —Yve (9.6.21)
are consistent. Because
1
G= (9.6.22)



Simple Reciprocal (R, G, V, I) Linear dc Circuits 257

we expect
o _ 9 dG_ 19 o
OR ~ dG dR~ R20G (9.6.23)
Using
1 ) 1
Qp = féwR and ip = I_{vR (9.6.24)
we obtain
of . 1 1 1 0f
5k - Prlr T PWRVR T2 (=V¥evg) = “PE (9.6.25)

as expected. Since these sensitivities are identical, it does not matter whether we treat
such elements as conductances or resistances. But there is a good reason to distinguish
between them. Suppose that we want to find the sensitivity of a scalar performance func-

tion f(iy, v;) with respect to a non-existent parasitic resistance (in series with another ele-

ment) or conductance (across a node pair). For example, we may omit a parasitic
resistance in the nominal analysis and then desire to find the sensitivity with respect to the
parasitic effect that we omitted. In such cases, we must distinguish between conductances
and resistances, since we are finding the sensitivity with respect to zero-valued elements.
The ability to obtain such “parasitic sensitivities” aids in device model refinement and in
simulation validation. Sometimes for simulation efficiency we may wish to suppress para-
sitic elements that we do not expect to have an appreciable effect on the outcome of the
analysis. Then we can find the sensitivities of the simulation results with respect to the
suppressed parasitic elements to verify our assumption in excluding them from the origi-
nal analysis. Similarly, we can use such parasitic sensitivities to determine initial wiring
paths in conjunction with performance driven layout programs.

Consider the circuit example in Figure 9.7. Suppose that our performance function is
merely the output voltage

f=v, (9.6.26)

Let us try to find the sensitivity of f with respect to all element values by the adjoint
method. For the original circuit analysis we have the following results:

R, R,
vy = Vy Vra = R, +R, Vy Ve = R2+R3VV
(9.6.27)
vy Vv ) Vy

ip: = i {
R1 R2 R3




258 Incremental Sensitivity

§R1 R2§ +
VV J: V; + [[..—_O

K.;I__

Figure 9.7 Circuit for sensitivity computation.

The adjoint circuit is shown in Figure 9.8. For the adjoint circuit analysis we have the fol-
lowing results:

®=Rr+rR, Om %= g 4R, o7 R r, ©8
R,
VN
g +
-
¥, =0 \L% : OO T R A
! dv,
=
Figure 9.8 Sensitivity circuit for example in Figure 9.7.
So we obtain the sensitivity expression from (9.6.10)
R R,V -R,V
Bv, = R—:R—-—SVV+0(8R1) + 2V R, + 2V 38R,
2 3 (R,+R (R,+R,) 6.29
- 2 2t R3) 2T (9.6.29)
v Ppyir) Ppair Pr3irs
From (9.6.29), we can pick off the required sensitivities
d R ad e, R,V d -R,V.
f 2 f _ o f 3ty f 2V (9.6.30)

dVy ~ Ry+R;  OR OR,  (R,+Ry)> ORy  (R,+Ry’



Sensitivities with Respect to Dependent Source Values 259

For this simple circuit we can check these results analytically:

R,
Uil ey
of _ R, of ~ 0 of _ RyVy of Ry @o.31)
dVy R,+R; OR, dR, (R, +Ry)’ oR, (R, +Ry)*

In general we cannot compute the sensitivities analytically as we have been able to for this
simple example. But, using the adjoint circuit, we can compute in general the required
incremental sensitivities numerically and exactly.

9.7 Sensitivities with Respect to Dependent Source Values

The adjoint circuit formulation gets a little more complicated when the original circuit
contains dependent sources and active devices. To begin to address this generalization we
first consider the four basic dependent source relations and their perturbations in terms of
the two branch models introduced first in Chapter 2.

Figure 9.9 shows a voltage-controlled current source and its sensitivity equations. Like-
wise, a voltage-controlled voltage source, current-controlled current source and current-
controlled voltage source are shown along with their sensitivity equations in Figures 9.10,
9.11, and 9.12, respectively. In all of the above we have neglected second-order variations
as indicated in the figures.

o o
+
3/, =0
1, = OGD Vi Gb i =gmv1
Oi, =g, Ov,+0g, v +8g>év1

Figure 9.9 Voltage-controlled current source.

To account for dependent sources in the basic sensitivity relation (9.6.10), we consider
together both their controlling and controlled branches in a single composite term:

(@dv—ydi) = ...+ (0,8v, —y 8i +@,0v,—y,3i,) +... = 0 (9.7.1)
all branches



260 Incremental Sensitivity

oI, =0
I, = OCD 13} v, = UV, :

Ov, =~ WOV, + Opuv, + 89’%’1

Figure 9.10 Voltage-controlled voltage source.

8V, =0

=0 @) b=

diy = adi, + daiy + 8>b{il

Figure 9.11 Current-controlled current source.

Oln G o
V,=0(" J/il v) V2 = rmil
| dvy=r, 8i, +0r,i + 6}@1’1

Figure 9.12 Current-controlled voltage source.

where a typical dependent source term is shown explicitly. As before, we seek to define
the adjoint circuit BCRs s0 as to eliminate original circuit branch voltage and current vari-
ations from the basic sensitivity relation. Upon careful examination of the composite term
in (9.7.1) as contributed by each of the four types of dependent sources, we obtain the fol-
lowing adjoint circuit relations.

For a voltage-controlled current source, the contribution to (9.7.1) is



Sensitivities with Respect to Dependent Source Values 261

M*/‘%sv/z —V, (/8«5(1 +8g,,v,) (9.7.2)

We are free to choose the BCRs of the adjoint circuit elements. So we choose ¢, = 0 and

@, = 8,V¥,- Thus the adjoint circuit element is a voltage-controlled current source, too,

but with the direction of control reversed, as shown in Figure 9.13. That leaves the follow-
ing contribution to the left hand side of (9.7.1):

-y,v,8g, (9.7.3)

Thus the sensitivity with respect to g, is the negative product of the original and adjoint
controlling voltages.

Similarly for a voltage-controlled voltage source, with the appropriate choice of BCRs
for the adjoint circuit,

9,,8{+ 9, (v, +duv)) —W= ®,v,Ou (9.7.4)

and the corresponding sensitivity circuit is shown in Figure 9.14. For a current-controlled

current source,
—/\#‘{51/14'}{51’/2—%(}51'1/7“ dai) = —y,i;da (9.7.5)

. and the corresponding sensitivity circuit is shown in Figure 9.15. Finally, for a current-
controlled voltage source,

j%&ﬂ+ (pz(%ﬁf+ ori)) —)%52 = @,i,dr, (9.7.6)

and the sensitivity circuit is shown in Figure 9.16.

¢, =0 and ¢, =g,V,

Q [0}

+

0=t (B WD) @ -0

Q 0

Figure 9.13 Sensitivity circuit for a voltage-controlled current source.



262 Incremental Sensitivity

W2 = 0 and (pl = —H(Pg

¢, = -1, G) %\LCD ¥,=0

Figure 9.14 Sensitivity circuit for a voltage-controlled voltage source.

9, = 0 and y, = -y,

Vv, = —ay, v, ®, =0

Figure 9.15 Sensitivity circuit for a current-controlled current source.

i
o

v, and v, = r,0,

] +

¥ =70, (O %i@ ¥, =0

e} o]
Figure 9.16 Sensitivity circuit for a current-controlled voltage source.

Whereas we could have derived equivalent results without them, the two-branch depen-
dent source models have simplified considerably the manipulations. The adjoint circuit
topology remains the same as that of the original circuit, only the direction of control in
each dependent source is reversed. We could not have detected this effect with reciprocal
circuits, by considering one element at a time as in the previous section.



Sensitivities with Respect to Dependent Source Values 263

If we form the adjoint circuit by replacing all of the original circuit elements with their
appropriate adjoint elements as detailed above, we obtain the following generalization of
the sensitivity relation shown in (9.6.10):

8f (i, v)) = ;%aiv + Za%a"f
= Zv‘l‘PVSiV+ ZI“ (-®,) v,
= ZV‘,wvﬁVw Z‘ (=) 81,
+ ;(pRiRSR + Z (¥ ,v5) 8G
£ (=Y 8g,+ Y 9,v 80

vCi vcv

+ (~w,i) da+ Y 0,idr,

ICI cv

©.7.7)

As before, appropriate adjoint-circuit independent source excitations

of of
v = E and ® = —é—;vl (9.7.8)

b4
lead to adjoint circuit responses from which the desired sensitivities can be selected.

In the case of nonlinear circuits, the original circuit is first solved for an operating point.
Each nonlinear element is represented by a linearized equivalent at its operating point.
Then an adjoint sensitivity analysis can be carried out on the linearized circuit exactly as
described above. The chain rule of differentiation can be applied to determine the sensitiv-
ity with respect to device model parameters.

We note that if the original linear(ized) circuit were solved in terms of a matrix

M = LU, then the adjoint circuit can be solved in terms of M T = UTLT. U7 and LT are
lower and upper triangular, respectively, so no new LU factorization needs to be per-
formed. This relationship may not be obvious from the above dependent source relations,
s0 we will discuss it in more detail later in the chapter.

In general, small change sensitivities in general can be determined by either the direct
method or the adjoint method. In the direct method, we can consider many functions at
once, but each parameter of interest requires a new Forward and Back Substitution. In the
adjoint method, we can consider many parameters at once, but each response function
requires a new Forward and Back Substitution. Hence, the adjoint method is used when
there are more parameters than functions, and the direct method when there are more
functions than parameters.



264 Incremental Sensitivity

9.8 Adjoint Circuit Representation of Some Other
Multi-Terminal Circuit Elements

In this section, we consider the adjoint circuit elements of some common linear multi-ter-
minal circuit elements.

Perhaps the most interesting is the nullator/norator model of an ideal operational ampli- -
fier (see Figure 9.17) under appropriate stabilizing feedback. Incorporation of ideal opera- -
tional amplifiers into Nodal Analysis is discussed in section 2.5. The circuit models for
nullators and norators are shown in Figure 9.18. We can entertain such a model because -
two circuit branches should introduce two independent BCRs; both the relations, however,
apply to the left hand nullator branch and the right hand norator branch is unconstrained.
For the nullator we have |

ov, = 0 and di, =0 (9.8.1)

The composite term from the basic sensitivity expression (9.7.1) is

(987, — v, 81 +970v, - diy) =0 (9.8.2)

provided we choose the adjoint circuit BCRs as
¢, =0 and vy, =0 (9.8.3)

The adjoint circuit models for a nullator and norator are shown in Figure 9.19. So, the
adjoint circuit element for an ideal operational amplifier is another ideal operational
amplifier, but reversed.

+ o
Vi
- O/ L)

i

+

Figure 9.17 Ideal operational amplifier.

For an ideal transformer shown in Figure 9.20 we have
v, = nv, = bv, = ndv, + 6nv, + 8>6<22 (9.8.4)
and

i, = —ni, = 8i, ~—ndi, — Oni, — Ongl (9.8.5)
2 1 2 1 1 1



Adjoint Circuit Representation of Some Other Multi-Terminal Circuit Elements

265

Nullator Norator

T [

v, = don’t care

v, =0 =0 v iy

: 1

ip = don’t care

Figure 9.18 Nullator and norator model of an op-amp.

Norator Nullator

I T

VY, = don’t care
! vV, ¢, y, = 0

l 1

S
)
I
<

©, = don’t care

Figure 9.19 Adjoint circuit for an ideal op-amp.

So the composite term in the basic sensitivity expression (9.7.1) becomes

(¢,6v, -y, di + (p26v2 ~-y,0iy) = @, (m%{z +9nv,)
380, + 948,
-V, (_\”ﬁ\il — bniy)
= (@,vy +W,i;) dn

provided that we choose the adjoint BCRs as

Yy, = ny, and ¢, = —no,

(9-8.6)

(9.8.7)

Thus the adjoint circuit element for an ideal transformer element is the same as the origi-
nal. Independent sources, resistances, conductances, and ideal transformers are self-
adjoint (or reciprocal) circuit elements: their adjoint circuit models are the same as those

of the original elements.



266 Incremental Sensitivity -

I n:l Iy
+ ¥
Vl V2
3 o

Figure 9.20 Ideal transformer.

Dependent sources and (ideal) operational amplifiers are not self-adjoint. We have
observed this lack of reciprocity for dependent sources and ideal operational amplifiers
above. A gyrator is another example of an element that is not self-adjoint. Consider a

gyrator, shown in Figure 9.21.

e VG

+

Figure 9.21 A gyrator.

For a gyrator, we have:

v, = 0, = &v, = adi, + doui, + 8&{:’2
: , , _ 9.8.8

and

(@,8v; — ¥, 8i; + @,dv, ~ y,diy) =9, ((}%2 +90iy) — W\IS\H
+ ¢, (— 08, ~ Bouiy) ~y,Bi, (089

= (@i~ 0,i) 6

provided that

y, = —ag, and V¥, = 00, (9.8.10)

The sensitivity circuit for a gyrator is shown in Figure 9.22. As expected, the gyration .
ratio is reversed. Hence the gyrator is not a self-adjoint element.



The Sparse Tableau Interpretation of Adjoint Sensitivity 267

¢, o ®,
e <

w0

Figure 9.22 Sensitivity circuit for a gyrator.

9.9 The Sparse Tableau Interpretation of Adjoint Sensitivity

The only response variables that we have considered so far are currents through indepen-
dent voltage sources and voltages across independent current sources. However, in the
Sparse Tableau formulation of circuit equations (see section A.4 for details), all branch
voltages, branch currents, and node voltages are explicitly determined. Hence, in sensitiv-
ity computation and optimization situations, it may be advantageous to work with the
Sparse Tableau formulation of the circuit equations.

In this section, we will recall our matrix-based introduction to sensitivity in section 3.6.
We will build on that foundation to derive more general sensitivity equations. Then we
will interpret those equations in the context of Sparse Tableau formulation and tie them in
with the sensitivity expressions we derived in earlier sections of this chapter based on Tel-
legen’s theorem.

Given a set of linear(ized) equations

Mx =b {9.9.1)
we can write
Mdx + 6Mx = &b {9.9.2)
by neglecting second-order variations, and
dx = M [8b - SMx] (9.9.3)
Suppose we have a scalar performance function f(x) . We can write
af} T

&f = [5& ox = [;ﬂ TM‘I [8b — SMx) (9.9.4)



268 Incremental Sensitivity |

Postulate a matrix & such that

MTE = B{J (9.9.5) |
Then

ETM = [%}T (9.9.6)
and

ET = [g} TM'1 (9.9.7) °

From (9.9.7), £ can easily be determined using the LU factors of M. Substituting (9.9.7)
into (9.9.4),

&f = ET[8b ~ dMx] (9.9.8) .

So the sensitivities of f with respect to the matrix entries of M and b can be computed.
Let us apply (9.9.13) and (9.9.16) to the Sparse Tableau equations (see section A.4):

10-A"|" |o
0A 0 ||i, = |o (9.9.9)
af 0 ||v, ¥

and recognize that they are in the form Mx = b. Then to obtain the sensitivities of a sca-
lar performance function

f(x) = f(vy,iyv,) (9.9.10)
we must solve
-af—
v,
10 off|-@ 5 jf
0 AT BT \I]n = a_ib (9.9.11)/
-A0 0| N, of




The Sparse Tableau Interpretation of Adjoint Sensitivity 269

Note that we have given convenient names to the various adjoint variables

._(Pb
=1y, (9.9.12)
N,

which will be determined when the adjoint circuit is solved.
Separated, these equations become

of
T .
—¢,tom,=-P,= av,,
of of
T T w oo _
Ay +Bn, =¥, = 3, [ = ax (9.9.13)
of
Ap, = = 3,

The subvectors —®,, ¥, , and @ of df/dx are adjoint circuit independent source excita-

tions that provide the requisite right hand sides required for the desired sensitivity calcula-
tion. Note too that df/ dx could merely be the unit vector e, if we were only interested in

the sensitivities of the k" unknown variable in the original circuit.
Let us try to interpret (9.9.8) for a simple example. If a parameter of interest is a resis-
tance value, one element of [ is the only part of M that changes when the resistance value

changes. From (9.9.16) we see for this example that 85 is zero and 6Mx picks out the
current through that resistor in the original circuit, with all other values in the vector being
zero. Hence the sensitivity is the product of the currents in the original and adjoint cir-
cuits, the same result as the one we obtained with Tellegen’s theorem. This tntuition will
be formalized in the rest of this section.

Now, suppose that we define the adjoint circuit branch voltage vector

y,=A"y, (9.9.14)
then the above equations become
T
¢, =M, +P,
Y, = - BTTIb +¥, (9.9.15)
Ap, =D

And these are a description of a related adjoint circuit that is topologically identical to the



270 Incremental Sensitivity

original:

KVL: y, = Ay

(9.9.16)
KCL: Ag, =D

where the ® represent current sources connected from ground to the nodes in the adjoint
circuit which are nonzero only if the node voltages v, appear explicitly in the performance

function f.
BCRs: ¢, =am,+®, and y, = -B'n,+¥, 0.947)

P, represents indepéndent current sources in parallel and ¥, independent voltage.
sources in series with adjoint circuit branches, which are nonzero only if their respective-
voltages or currents appear explicitly in the performance function f. ,

To begin to interpret the BCRs, suppose that o and 3 have inverses, even though in
general they probably do not. Then we can eliminate the dummy variable 1, :

(aT)—lw,,+ (BT)—I\v,, = (aT)"1¢b+ (BT)'I‘Pb (9.9.18)

or
wb+BT(aT)*I(pb = ‘Pb+BT(aT)_](Db (9.9.19)

or
¥, + (o'B) T(pb =¥, + (a_IB)TCDb (9.9.20)

Upon reconsideration of the original BCRs
av,+Bi, = vy (9.9.21)

we see also that

v, + a_lﬁib =o'y (9.9.22)
|

So, with the exception of the adjoint circuit independent source excitations derived fromy
the performance function f, we see that the BCRs for the adjoint circuit are transposes of
the original BCRs, as expected.

From this point it is straightforward to obtain individual element sensitivities in terms
of the expressions derived earlier via Tellegen’s Theorem. In the Tellegen’s Theorem for-



The Sparse Tableau Interpretation of Adjoint Sensitivity

271

mulation of the sensitivity expressions we only allowed the currents through independent
voltage sources (or ammeters) or the voltages across independent current sources (or volt-
meters) to be performance function variables. That formulation is more elegant than the
results from the Sparse Tableau formulation, but the answers are identical. To corroborate
this statement, we look at some familiar circuit elements and their corresponding entries

in the o, B, and ¥ matrices.

o
Independent voltage source: 1
Independent current source: 0
Resistance: 1
Conductance: ~G

For an independent voltage source in the adjoint circuit,
o, =M, +P,
is an arbitrary response, and
yy, =¥,

is nonzero only if i, is explicit in f.
For an independent current source in the adjoint circuit,

is nonzero only if v, is explicit in f, and

vy, = -n,+¥
1s an arbitrary response.
For a resistance,
Qp =Nz + Py
Y, = Rn et ¥ R

- O ™

=

—_—

(9.9.23)

(9.9.24)

(9.9.25)

(9.9.26)

(9.9.27)

and, if the resistance branch voltage and current do not appear explicitly in the perfor-

mance function f, we have

Y, = Ro,

(9.9.28)



272 Incremental Sensitivity -

For a conductance,

(pG=—GnG+<I>G

(9.9.29)
Yo=-MNg+%¥;

and, again, if the conductance branch voltage and current do not appear explicitly in the
performance function f, we have

o; = Gy, (9.9.30)

Note in general that the inclusion of resistance or conductance branch voltages or currents
in the performance function leads merely to composite (Thevenin or Norton equivalent)
branches in the adjoint circuit,

The interpretation is equally straightforward for multi-terminal elements. To illustrate
this statement, we consider as an example the current-controlled voltage source shown in

Figure 9.23.
v, = oﬁgiil izi%vz =r i

Figure 9.23 Current-controlled voltage source.

The generalized BCRs for this two-branch composite element

oav+Pi =7 (9.9.31)

sl k] -

0

arc

And the related adjoint circuit BCRs are

=B oo

and



The Sparse Tableau Interpretation of Adjoint Sensitivity 273

b4
Vil {0 d ﬂ 4| T (9.9.34)
v, 00]n, |¥,
Assuming that v, v,, i,, and i, do not appear explicitly in the performance function, we
can ignore CDl, (1)2, ‘I’l, and ‘P2 to obtain

v, =r,0, and y,=0 (9.9.35)

The sensitivity circuit is shown in Figure 9.24, which is the same adjoint circuit element
that we obtained earlier via Tellegen’s Theorem.

(pli Y, = 1,9 (Pz\L y, =0

Figure 9.24 Sensitivity circuit for a current-controlled voltage source.

Thus the adjoint circuit is the same whether it is obtained by Tellegen’s Theorem or
from the transpose of the Sparse Tableau equations. The Sparse Tableau equations have
the advantage that they permit more general performance functions, and the introduction
of zero-valued sources in the original circuit to define responses for such functions is not
necessary. It is therefore easier to include branch voltages, branch currents, and node volt-
ages in the performance function with the Sparse Tableau formulation.

Although the algebra in this section may seem a little daunting at first, the actual proce-
dure for sensitivity computation is quite straightforward. The original analysis (of the

)
form Mx = b) is first completed in terms of LU factors. Then M Te = [%] is solved in

terms of the UT and L7 factors of the original solution. Finally, sensitivities are computed
from (9.9.8). Most element values occur only once in each Sparse Tableau BCR, so pick-
ing off the sensitivity results is relatively easy. The transposed system computations are
especially straightforward, with all the circuit variables explicitly represented. Thus,
many parameters of interest may enter the Sparse Tableau equations linearly and in only
one place, rendering the actual sensitivity computation trivial once & has been deter-
mined. :



274 Incremental Sensitivity

9.10 Some Possible Applications of Adjoint Sensitivity

In “sensitivity refined analysis,” we may initiate a circuit simulation using the simplest
possible device models. Then we can use sensitivities to adjust the response(s) of interest
to bring it (them) into closer correspondence with the results that better models might pro-
duce.

For example, for a forward-biased diode, initially we might use

v = V,(on) (9.10.1)

as shown in Figure 9.25. Then we can analyze the circuit and obtain a value for the current .

i flowing through the ideal voltage source model. We recognize that for this current i the
actual diode voltage is

v = %Tln(li +1) (9.10.2)

5

So, we multiply the sensitivity of our performance function with respect to v by the volt-
age change

ov = Egzwln (Ti +1) -V, (on) (9.10.3)

s

to approximate the change in a response of interest. We can adjust for all such (small) dis-
crepancies simultaneously and efficiently because we can find all pertinent sensitivities of
a single response from only one Forward and Back Substitution with the original LU fac-
tors.

+
] forward ]
I\L v T l \L v = V,(on)

Figure 9.25 Forward-biased diode.

Similarly, for a back-biased diode we can solve for v and then adjust from I = 0 to

qv
8i =1 (e"”— 1) (9.10.4)



Some Possible Applications of Adjoint Sensitivity 275

as shown in Figure 9.26. In general we need not use these idealized equations. We could
use tables of measured data, if available, to find the deviations more accurately.

i \L back I =0 \L
v Sl v
) biased

Figure 9.26 Reverse-biased diode.

If in such an approach some sensitivities turn out to be large, we could choose to substi-
tute more sophisticated models for these instances, and then to re-analyze. Often the cost
of two or more such approximate analyses is far less than that of a single accurate analy-
sis, which is overburdened with unnecessarily detailed models.

This approach is the automated equivalent of the analysis that designers often carry out
for dc bipolar circuit analysis: first use a crude switching model for the BJTs and then
adjust for voltage changes by 60 mV per decade of current change at room temperature. In
the case of MOS devices, the simplified i — v model shown in Figure 9.27 may be ade-
quate for a first-cut analysis. '

Lys

as

s

Figure 9.27 I-v characteristics of a MOSFET.

This approach has been applied to operational amplifier circuit analysis [Hage82]. First
the circuit is analyzed with simplified ideal op-amp models consisting of nullators and
norators. Then the sensitivities with respect to manufacturer specified model parameters
are computed. The tolerances of these parameters are indicated on the specification sheets



276 Incremental Sensitivity

of the manufacturer. This approach works well because operational amplifiers are
designed and manufactured to be nearly ideal, so the ideal model used in the first-cut anal-
ysis yields an answer quite close the final answer.

If all circuit element parameter value deviations were small or Gaussian in distribution,
we could even consider the approximation of pseudo-statistical analysis via sensitivities, :
Unfortunately, these assumptions are seldom true in practice. We can, however, attempt to
exploit sensitivity analysis in worst case tolerance analysis.

Assume that we have a circuit with a number of toleranced elements (resistors, for
example). We are interested in finding the worst-case and best-case performance of the

circuit. For each toleranced variable p; in the circuit suppose that it has a nominal value

P =P; ‘ (9.10.5) |
a lower bound
p; = B;— Ap; (9.10.6)
and an upper bound
p; = p;+ Apjf (9.10.7
In other words
p;—Ap; <p;<p,+Ap; (9.10.8)

with p; being the nominal value of the parameter p;.

First, find the sensitivity of the desired response variable (or scalar function of response :
ox;
apj ;,

sensitivities efficiently in terms of the nominal solution for alt p; = ﬁj and the LU factors :

of the original circuit equations. Next, simultaneously change all toleranced parameters in
those directions that the signs of the sensitivities indicate will be mutually reinforcing.

Upper tolerance bound:

variables) with respect to all toleranced parameters pj,ie. . We can compute these

axi = +
P >O=>pk—>pk+Apk
k'p,
(9.10.9
| . (9.10.9)
=—| <U=p,—=p,—Ap
apl _ ! ! {

Lower tolerance bound:



Time and Frequency Domain Sensitivity Analysis 277

ox;
Iy,
3 (9.10.10)

i <0=p,—>p,+Ap]
P

>0=p,—p,—Ap,

Next, we must reanalyze at both the upper and lower tolerance bounds to ascertain the
worst case responses. Moreover, we must check the sensitivities at those worst case
boundaries to ensure that they haven’t changed in sign from what they were at the nominal
point. Figures 9.28 and 9.29 show situations where the response curve is monotonic in the
region of interest. In these two cases we may assume that we are at the worst case bound-
aries. Figure 9.30 shows the situation with an extremity in the middle of the response
curve. In this case, we know that we are not at the worst case because of the change in
sign of sensitivity from the nominal point to one of the tolerance bounds. We can fit a fifth
order polynomial through the computed data (three points and three derivatives), and then
find the minimum or maximum of that polynomial within the tolerance bounds. Or, if we
lack confidence in the accuracy of this procedure, we may conduct a search in the space of
the offending parameter. The latter may be necessary if there are multiple extremities in
the performance function within a parameter’s tolerance bounds.

X;

— I —_— . + pk
P, —Ap, Py P+ Ap,

Figure 9.28 Monotonically increasing response curve.

9.11 Time and Frequency Domain Sensitivity Analysis

The adjoint circuit concept generalizes easily to the frequency domain. Returning to the
basic sensitivity relation (9.5.10), we can re-derive it in terms of phasor quantities to
obtain



278

Incremental Sensitivity

H H pl
p;—Ap, D P+ AP;

Figure 9.29 Monotonically decreasing response curve.

p—Ap P p+Ap*

Figure 9.30 Response curve with an extremity in the middle.

[®(w)dV(jn) - (jo)dl(jo)] =0 (9.11.1)
all branches

Then, upon considering capacitances to be represented by complex admittances of value
joC and inductances to be complex impedances of value jwL, it is straightforward to

reproduce the earlier arguments we made for dc circuits, as shown below.
For a capacitor, we have

I-(jw) = joCV, (jw)

(9.11.2)
3l (jw) =jwCdV . (jw) +joV,.(jw)dC

so the contribution to the sensitivity relation (9.11.1) is

D (j®) 8V (jo) - ¥ (j©) [0CV, (jo) +joV, (jo) 8C] (9.11.3)



Time and Frequency Domain Sensitivity Analysis 279

By choosing the BCR for the adjoint element as

®.(jo) = joC¥, (jo) (9.11.4)

(or in other words retaining the element as a capacitor in the adjoint circuit), the sensitiv-
ity of a complex valued function F (jw) with respect to C can be computed by

oF (jw)
aC

= —jo¥,.(jo) V. (jo) (8.11.5)
Similarly, for an inductor we have,

Vi (o) =joll, (jo)

OV, (jw) = joLdl, (jo) +jol, (jo)SL (G116
so the contribution to the sensitivity relation (9.11.1) is
Q, (jo) [joLdl, (jo) +jol, (jo) 8L} - ¥, (jo) 8!, (jo) (9.11.7)
By choosing the BCR for the adjoint element as
¥, (o) = JoLD, (jw) (9.11.8)

(or in other words retaining the element as an inductor in the adjoint circuit), the sensitiv-
ity can be computed by

oF (jm)
oL

= jo®, (jo) I, (jo) (9.11.9)
Thus we find that capacitances and inductances modeled in the frequency domain as

complex admittances and impedances, respectively, are self-adjoint (their adjoint circuit
equivalents are the same as them). The composite relation for the sensitivities is

8F (jo) = jo)[Z{—‘Pc(jm) V_(jw) 5C} +2¢L (@) I, (j) SL] (9.11.10)
C L

It is even possible to obtain a sensitivity with respect to a small frequency variation:

oF (jw) . : . .
a(c]“ = J[; {-C¥.(jo) V. (jmw)} +;L<DL oy, (](o)J (9.11.11)

It is relatively easy to obtain and apply such sensitivities at a single frequency in terms
of the LU factors that arise in the original analysis. These sensitivities can be extended to



280 Incremental Sensitivity

apply to performance measures defined over a range of frequencies, since circuit perfor-
mance specifications are often in terms of the frequency response.

In section 6.13, we saw that when global frequency domain considerations are involved
it may be more efficient -- and more revealing -- to work with the approximate poles of the
circuit in terms of AWE sensitivity. Further, the time domain transient sensitivities of lin-
ear circuits are most efficiently obtained in terms of AWE-derived approximate poles. |

We will now turn our attention to time-domain sensitivity or transient sensitivity. First,
we extend Tellegen’s theorem to a more general form in the time domain. For any two cir-

cuits N and 1 that share the same topology:

[ATv, (179, (1)

v, ()9, (1) vi(HAQ, (1) =0 (9.11.12)

and

vl (i, (0 = [ATy, (D175, (0) = ¥ (DA, () =0 (0.11.13)

Thus Tellegen’s theorem can be applied to a pair of circuits with the same topology by
combining the branch currents and voltages at any two instants of time. There is no restric-

tion whatsoever on ¢ and T in (9.11.12) and (9.11.13). Hence we can generalize (9.5.10) to

(o (t)dv(t) -y (T)di(t,)] =0 (9.11.14)

all branches

Since we want to solve and store the results of only one original circuit and one adjoint
circuit, we choose ¢, = t, = ¢ and T, = 1, = 7. Further, integrating over a time period

of interest from ¢ to L,

t

[@(T)dv () —y(T)di(r)]dt =0 {9.11.15) -
all branches,

Now let us apply (9.11.15) to a capacitance. For a capacitance,

ic (1) = Cve (1)

(9.11.16)
di (1) = Cov- (1) +v (1) dC

so the contribution to the sensitivity term of (9.11.15) is



Time and Frequency Domain Sensitivity Analysis 281

t

f
J'[cpc(r) Sve (1) —Wo (1) {8V (1) + v (1) 5C} 1 dt (0.11.17)

Iy

To remove signal variations from the overall sensitivity expression we can integrate by
parts the v term to obtain

Y (1) Cove (1) |7

r (9.11.18)
+J' [0 (1) 8ve (1) — W, (1) 8CVe (1) +o (1) Cov, (1) dt

f

We can drop the signal variation dv.(f) from the integral relation if we define the corre-
sponding adjoint circuit branch as

P (V) =~y (T)C (9.11.19)

We would like to avoid negative energy storage element values because of their inher-
ent instability. But we are free to choose T, since Tellegen’s theorem is valid irrespective
of the choice of T. So we choose T to be backward time. In other words,

that is
t=ty=>T=1;

I=1=1T=1 (9.11.21)
dt = —-dt

Thus the BCR for the capacitor in the adjoint circuit becomes

ady (1)
ar

o (1) =C (9.11.22)
an ordinary capacitor. The actual sensitivity computation is a convolution between the for-
ward-in-time voltage slope of the capacitor in the original circuit and the backward-in-
time voltage across the capacitor in the adjoint circuit.




282 Incremental Sensitivity

I )
af (1) g = . J ;
J"’E)F ‘= —J' (w1 + 1~ D Ve (1) 1 dr (0.11.23)
L Ty
where f(t) is the performance function. But we are not done yet; we must deal with the
first term that we obtained in the integration by parts: |

— W (1) CBvC(tf) +W (1) Cov (1)) =0 (9.11.29)

If the initial condition is specified, then dv(f,) = 0, and we can choose the adjoint cir- "
cuit initial condition

Y. (1) =0 (9.11.25)

in order to make the term in (9.11.24) zero, and the sensitivity equation in (9.11.23) valid.
There are circumstances too where we may want to find the periodic steady state
response of a circuit via adjoint sensitivity; then for one period

velt) = ve(ty) (9.11.26)
and

Svc(tf) = Ov, (1) (9.11.27)
so from (9.11.24)

Ve(t) = v (1) (9.11.28)

is the appropriate adjoint boundary condition. Thus capacitors are self-adjoint in the time
domain, too. Note that a similar development of sensitivity relations can be undertaken for
inductance elements. |
Sensitivity functions which can be expressed as integral functions are particularly ame-
nable to transient adjoint sensitivity. An example of such a function is the Elmore delay of
a waveform. (For a linear circuit, it would be much more efficient to find the sensitivity of
an Elmore delay by using AWE-based sensitivity.) Some functions cannot be expressed in
the required form, in which case adjoint sensitivity cannot be used. For example, a tran-
sient node or branch voltage waveform is not an allowed function. Such functions can be
accommodated using direct sensitivity. However, the value of a voltage or current at a par-

ticular instant of time 7 is an allowed function (the function can be expressed as
f = J‘if v(£)8(t—=T)dt where 8(t—T) is a shifted impulse; the adjoint excitation will
0

be an impulse at time T) and the time at which a voltage crosses a particular value is an
allowed function and the sensitivity is computed using the equation



References 283

av(Tcross)
aTcross ap
» - (9.11.29)
ot t=T

Cross

In the case of linear circuits, the following steps are involved in sensitivity computa-
tion. First the original circuit (with appropriate zero-valued sources added) must be ana-
lyzed. All pertinent original circuit response waveforms must be stored over the time
interval of interest. Then the adjoint circuit is analyzed backwards in time. Note that the
adjoint circuit analysis is not as computationally expensive as the original. It is possible to
store the LU factors in the original analysis and to resurrect them (with appropriate inter-

polation) as U TLT factors for the adjoint circuit. But such a strategy may entail a prohibi-
tive amount of storage for a transient analysis of a large circuit involving many time
points. With fixed time step schemes, there is only one set of LU factors, but most practi-
cal simulators use variable time step methods. Finally, a separate convolution for each
parameter of interest must be carried out.

With nonlinear circuits, the above approach to time domain sensitivity computation is
seldom used in practice because it is prohibitively expensive. The Jacobians could change
radically from one time step to another and the LU factors must either be stored or re-
computed for the adjoint circuit. Further, the analysis time steps of the forward and back-
ward simulation may not coincide, so interpolation must be employed to match the wave-
forms up for convolution.

Time-domain sensitivity can be very useful in critical path analysis, reliability analysis,
circuit optimization, delay tuning, and so on. In the case of linear circuits, approaching the
problem in terms of AWE sensitivities may be the most efficient method. In the case of
nonlinear circuits, time-domain adjoint sensitivity computation may be too expensive in
full-blown detailed circuit simulators. However, in the context of event-driven methods
involving simplified device models and no Jacobians, transient sensitivity is efficient
enough to be useful in practical applications (see Chapter 11 for details). Thus these effi-
cient timing simulation methods can render techniques like transient sensitivity feasible,
whereas they would be too computationally intensive for detailed simulators.

9.12 References

[Director69] S. W. Director and R. A. Rohrer. The Generalized Adjoint network and Net-
work Sensitivities. IEEE Transdctions on Circuit Theory, vol. CT-16(3), August 1969.

[Desoer69] C. A. Desoer and E. S. Kuh. Basic Circuit Theory. McGraw-Hill, 1969.

[Brayton75] R. K. Brayton and S. W. Director. Computation of Time Delay Sensitivities



References 284

for Switching Circuit Optimization. IEEE Transactions on Circuits and Systems, vol.
CAS-22, December 1975.

[Brayton80] R. K. Brayton and R. Spence. Sensitivity and Optimization. Elsevier Scien-
tific Publishing Company, vol. 2, 1980.

{Hage82] C. J. Hage and R. A. Rohrer. Efficient Op Amp Circuit Analysis with Manufac-
turer Specified Macromodel Parameters. I[EEE Transactions on CAD of ICs and Systems,
vol. CAD-1(3), July 1982.

{Hocevar85] D. A. Hocevar, P. Yang, T. N. Trick, and B. D. Epler. Transient Sensitivity
Computation for MOSFET Circuits. IEEE Transactions on CAD of ICs and Systems, vol.
CAD-4(4), October 1985.



Chapter 10 Slmulatzon Of
Nonlinear
Circuits

Finally, we now have all of the background that we need to discuss nonlinear circuit anal-
ysis. The essence of nonlinear circuit simulation was covered briefly in Chapter 1. In this
chapter we will elaborate on that exposition and consider as well some of the subtleties
that arise in the course of nonlinear circuit simulation. We start with a brief description of
the industry standard SPICE.

10.1 SPICE

As conceived originally, SPICE combined (Modified) Nodal Analysis with trapezoidal
integration (in its time domain transient mode) and Newton-Raphson (N-R) iteration
[Nagel71, Nagel75]. Some variants of SPICE may substitute more sophisticated integra-
tion algorithms instead of using trapezoidal. And almost all versions of SPICE employ
some “tricks” in attempts to ensure the convergence of the Newton-Raphson (N-R) itera-
tions, especially for dc analysis. Such convergence usually is not an issue in the course of
transient analysis, since a sufficiently small time step can almost always be chosen so that
the initial guess projected from the previous time point is sufficiently close to the correct
solution at the present time point. During a step of the transient analysis, the time step is
progressively reduced until convergence is obtained within a reasonable number of N-R
iterations.

On occasion, though, the time step may be forced to be too small because of interac-
tions among the algorithms SPICE employs and the nonlinear device models with which it
must contend. In such instances, the SPICE transient analysis may be aborted with a mes-
sage like, “Time step too small.” Convergence most often is a problem, however, in the
initial dc portion of a circuit simulation, which must be performed prior to either a large
signal transient analysis (to obtain an appropriate set of initial conditions) or a small signal
ac analysis (to obtain an appropriate bias point). In an attempt to overcome this conver-
gence problem, SPICE allows a user to specify the initial guesses of node voltage values.
Good initial guesses both aid and speed the convergence of the nonlinear dc solution.

285



286 Simulation of Nonlinear Circuits

With minor modification, the combination of algorithms that forms the core of SPICE
has been in use since the mid-1960s. Originally, such circuit simulators used Nodal Anal-
ysis, and not Modified Nodal Analysis, to handle floating voltage sources. For example, a
small resistance could be inserted in series with each floating voltage source, and the com-
bination replaced with a Norton equivalent parallel combination of current source and
conductance. But it soon became apparent that the inclusion of such small resistances
could cause wide value spreads in the resulting ¥ matrix and potentially lead to ill-condi-
tioning of the resulting nodal equations. Before sparse matrix manipulation was brought to
bear on the solution of the circuit equations, it was recognized that “current variables”
could be introduced along with voltage constraint equations to characterize voltage
sources and other “impedance-basis” elements. In [Nagel71] these current variables were
eliminated in the final course of the formulation of the nodal equations as described in
Chapter 2 of this book. Once sparse matrix techniques become accepted and entrenched
some questioned the elimination of the current variables since a good sparse matrix solver
could take care of them too. It can be argued that a good sparse matrix solver should elim-
inate those excess currents at the outset, essentially providing normal nodal equations as
an intermediate form on the way to solution. But that doesn’t appear to be the case, since
SPICE tends to struggle when it encounters a circuit which has a large number of induc-
tance elements, which it treats on an impedance basis. We suspect this behavior to be a
consequence of the SPICE preference for diagonal pivot selection and the a priori row
swapping that entails. A sparse matrix solution strategy that did not favor diagonal pivot-
ing probably would improve the performance of SPICE for circuits with a large number of
inductances. But so far there has not been much motivation to provide such an alternative
since integrated circuits, the primary province of SPICE, typically do not include (many, if
any) inductance elements in their models. But with higher signal frequencies and smaller
feature size this situation is bound to change as integrated circuit technology evolves.
And, beyond the integrated circuit chip, for IC packages, printed circuit boards, and back
planes, inductance element models are already a well established part of the circuit models
employed. In spite of its idiosyncracies, most nonlinear transient circuit simulators today
use Modified Nodal Analysis.

Stated succinctly, there appears to be no alternative to (the) SPICE (combination of
algorithms and detailed circuit models) if the goal is to obtain extreme accuracy from a
nominal circuit simulation. But the computational price that must be paid to attain such
accuracy may become prohibitive for large circuits.

In the remainder of this chapter, we will discuss nonlinear equation solution and all the
entailed complications required to deal with real circuits. Multiple coupled nonlinear
equations, multi-terminal nonlinear elements, and nonlinear energy storage elements as
functions of one or more circuit variables will be discussed. Reasons for non-convergence
and methods for dealing with them will be pointed out along the way.



Nonlinear dc Analysis 287

10.2 Nonlinear dc Analysis

Consider the circuit in Figure 10.1, which has no energy storage elements, but has one
branch for which the current is a nonlinear function of the voltage. Namely,

i, = f(v,) (10.2.1)
where f, is a nonlinear function, and i » and v, are the branch current and voltage, respec-
tively.

R R
@ 2 4 (3
VAYAY C? /\f’\/V—Q +
| L -
v, (f R, § b ﬁ Vb
D ez B
B ) ~

Figure 10.1 Nonlinear dc circuit.

We can write the nodal equations for this circuit the same way that we would if all of
the branches were linear. For example, applying KCL at every non-datum node results in
the following set of three nonlinear equations in terms of the three node voltages:

node 1: ———==-1,=0

node 2: ——— 4+ - =9 (10.2.2)

node 3: ]T—~+fl (v5) =0

The equation set in (10.2.2) is comprised of two linear equations and one nonlinear equa-
tion. Of course we could reduce (10.2.2) to a single nonlinear equation in terms of a single
unknown, v,. This procedure is not possible in general when there are numerous nonlin-
ear models in the circuit. In either case, closed form solutions are not available and we

must solve the nonlinear equation, or coupled set of equations, using some form of itera-
tion.



288 Simulation of Nonlinear Circuits

10.3 Newton-Raphson Iteration

Newton-Raphson iteration is at the heart of SPICE (nonlinear dc and transient analysis).
The Newton-Raphson algorithm seeks to solve the nonlinear equation

f(x) =0 (10.3.1)
iteratively by successive solution of a set of linearized approximations to this equation.
Suppose that we have at the k™ iteration, x,, a value of x such that

f(x) #0 (10.3.2)
Then we wish to find
Xy =X+ Ax (10.3.3)

such that f(x, ) is closer in value to zero than is f(x;) . To do so, we resort to Taylor’s
Theorem:

Flx +Axy) = f(x) +f'(x) Ax, + %f" (E) Ax? (10.3.4)

where & lies between x, and x,, , in value. For this result to apply, it is necessary that

™ (&) exist over that entire interval as well. (This necessary existence of the third deriv-
ative of the characteristic becomes a device modeling requirement in SPICE.) If

5 (&) Axi is small, and this is critical to the convergence of the iteration, then we can

ignore it and write
f(x,+Ax) =f(x) +f'(x) Ax, (10.3.5)
In search of solution we consider that

fx) +f(x)Ax, =0 ‘\\ _, (10.3.6)

therefore,
~f (xk)
Ax, = —— 10.3.7
“ f '(xk) ( )

Inserting (10.3.7) into (10.3.3) we have



Newton-Raphson Iteration 289

Xpo1 = X — f—,(fi (10.3.8)
f (xk)

This iteration is repeated until Ax,, the change between iteration is “acceptably small,” or
lower in absolute value than a pre-set tolerance. A graphical depiction of the iterations
involved in equation (10.3.8) is shown in Figure 10.2. From an initial guess, x,, we linear-
ize the curve using the first two terms of the Taylor series expansion, equation (10.3.5).
We solve for the single root of this linear approximation, x|, using equation (10.3.8).

Then, we linearize about this new value, x,, by projecting to the point on the curve,
f(x)), and linearizing as before. Eventually, we will stop iterating when the linear
approximation is accurate enough, such as for the projection which determines X5.

f(x)

Figure 10.2 Graphical depiction of N-R iterations.

As an example, consider once again the simple diode circuit shown in Chapter 1,
repeated here in Figure 10.3. The diode equation is

qv
iy = ISAT[exp(ﬁ?;—") - IJ (10.3.9)

We can characterize the circuit in Figure 10.3 in terms of the following nonlinear equa-
tion:

Ve vy I qv, 1 0
flvy) = R R SAT[exp(n—k]:) - ] = (10.3.10)



290 Simulation of Nonlinear Circuits

Ve=v

Figure 10.3 Simple diode circuit.

Our goal is to solve (10.3.10) by finding the value of v, that makes f(v,) = 0. We
iterate on (10.3.10) using the N-R equation, (10.3.8). Setting x, = v,, we have,

V. x, qx;
f(x) = R E—ISAT{exp(n—H) - 1} (10.3.11)
and

1 b
1 $sar p(q £y (10.3.12)

P& = =g~ P Ger

Finally, equation (10.3.8) for the circuit in Figure 10.3 becomes:

V. x qx;
{"‘I-é" - E—ISAT[expm - lil}
1 qlgur qx;

exp (m)

R nkT

We demonstrated in Chapter 1 that we could carry out this N-R iteration by linearizing
the elements individually (as opposed to formulating the nonlinear equations and lineariz-
ing them) and iteratively solving the resulting linearized circuit. For example, for the
diode in Figure 10.3 we showed in Chapter 1 that each linearization of this nonlinear
model can be represented by the Norton equivalent in Figure 10.4. Here the diode is lin-

earized about the k™ iteration value, v’;, using the first two terms of the nonlinear diode
equation:

-k

. diy

dv, (v, —v5) (10.3.14)

where i, is given by (10.3.9). The solution of the circuit using the linearization in



Damped Newton-Raphson Iteration 291

Ly
|
/ K
;s I
P €4 ”
A
s ! ©
- vs Vg
~
k A “~
qu + Gk
€q

Figure 10.4 Norton equivalent model for diode N-R linearization.

(10.3.14) would give us v¢* ! and i**!, the next iteration values. From (10.3.14) and Fig-
g d d
ure 10.4 we can see that

di
k d
_ 24 10.3.15
o (10:3.15)
and
di
Fo= ke 22 (b (10.3.16)
e =tV gy |

The linearized N-R equivalent for the circuit in Figure 10.3 is the circuit shown in Figure

10.5. Note that the dc solution for this circuit at the k™ iteration can be shown to be equiv-
alent to equation (10.3.13). The graphical interpretation of these iterations is shown in
Figure 10.6. The iterations are carried out until convergence.

10.4 Damped Newton-Raphson Iteration

Newton-Raphson iteration may not always converge, and various modifications on the
pure form must be employed to assist in convergence. Most of these tricks amount to lim-

itations on the magnitude of Ax; so that the remainder term is “sufficiently small.” In



292 Simulation of Nonlinear Circuits

O

~

Figure 10.5 Linearized N-R circuit.

Vs
R

load line __-

eq

Figure 10.6 N-R iterations.

other words, x is not allowed to change by more than a certain maximum value between
successive iterations. Such /imiting is warranted even for the simple diode example shown
above. For instance, given the initial guess and the linear projection shown in Figure 10.7,
the voltage at the K+ 1 iteration is calculated and used as the next operating point for
Newton-Raphson. However, in the case shown in this figure, due to the exponential nature
of the diode curve, the current at this value of voltage may result in a floating point over-
flow. To address such problems we would instead follow the direction of the first linear-
ized projection, but limit the amount of change that is allowed in one N-R step.

Limiting the magnitude of Ax, to below its Newton-Raphson value is called damping.

Almost always when damping is used, the sign of Ax, is retained, alth,migh sophisticated
variants that are employed in multiple dimensions may not even do that for all of the vari-



Damped Newton-Raphson Iteration 293

overflow

i

Figure 10.7 Potential for overflow using N-R without damping.

ables of interest. In [Nagel71], a damping factor of 2V, was found to be sufficient for
bipolar circuits, where V., is the thermal voltage (0.0259 V at room temperature). Damp-

ing aids convergence, but some times at the cost of extra N-R iterations. During transient
analysis, SPICE-like simulators typically give up after a certain number of iterations and
try to reduce the time step before starting up the iterations again. There are a number of
user-defined settings that can be used to aid in convergence (more on that topic in section
10.9).

Bipolar devices, with their exponential characteristics, are more difficult for N-R than
MOSFETs, which in the worst case follow a square law behavior in their i — v character-
istics. Thus, the damping factor is usually dictated by the device models with the most
abrupt nonlinearities. Another difficulty with bipolar circuits is the diode characteristic in
the third quadrant (when the diode is off). The current is nearly a constant, /¢, ,, and the

N-R projections are nearly horizontal lines which makes G,, nearly zero. In order to

overcome this, successive secant iteration is often used in practice. (Note that N-R itera-
tion can be thought of as a successive tangent iteration.) The secant is a linearization of
the diode which passes through the origin as shown in Figure 10.8. Note that the conver-
gence may be slightly slower, but the iterations will be more robust. Since the secant
model passes through the origin, the equivalent circuit model is simply an equivalent con-
ductance

G, = = (10.4.1)



294 Simulation of Nonlinear Circuits

i
k+1 k d
vy 19
; } e
vd - P
secant
linear
projection

Figure 10.8 Successive secant iteration.

It should be apparent from this diode example that nonlinear iteration algorithms are
“model dependent” to some extent. That is, we must adjust the N-R implementation to
account for peculiarities in the nonlinear device equations. It is possible that the nonlinear
function has more than one solution, as shown in Figure 10.9. In this case, we must rely on
an appropriate initial guess to ensure that the “right one” prevails. Convergence problems

become even more involved when we consider multiple nonlinear elements, which is the
subject of the next section.

f(x)

Figure 10.9 A nonlinear function which has multiple roots.



Multi-Dimensional Newton-Raphson Iteration 295

10.5 Multi-Dimensional Newton-Raphson Iteration

Suppose we would like to solve n nonlinear equations in n unknowns:

fi(xpxg,x,) =0

So(xp, x5 .5 x,) =0

(10.5.1)
fo(Zp Xy o0yx)) =0
or
f(x) =0 (10.5.2)
Then
Ax = - o ) 1
= (a—x) f(x) (10.5.3)

is (undamped) Newton-Raphson iteration [Carnahan69, Ortega70]. As in the one-dimen-
sional case, || Ax|| must be “sufficiently small” and appropriate third derivatives must

exist. The n x n matrix =— is the Jacobian of f with respect to x and is defined as:

ox

af, of, If
dx; ox, ''ox,
o |8 %
J EE‘H =|dx, dx, ox, (10.5.4)
a}n a-.fn afn
_a_'x-l a_x2 s 5;’;J

To perform nonlinear circuit simulation, we do not actually formulate a set of nonlinear
equations and then take their partial derivatives with respect to the solution variables of
interest. Rather we build up the Jacobian in terms of linearized stamps that represent the
individual circuit elements. We showed how this process happens for a two-terminal non-



296 Simulation of Nonlinear Circuits

linear diode in section 10.3. Next, consider the circuit with two diodes in series shown in
Figure 10.10. Using the diode equation from (10.3.9), we can write the two nonlinear
nodal equations for this circuit as follows:

V]

+N-v2

TOETINE

~

Figure 10.10 Two diode circuit.

q(v;—v,)
fivpvy) = —Is+le1+ISAT[exp(—l———2—) —~1:1 =0

nNkT
(10.5.5)
qg(v,—v,y) qv,
Lvvy) = —ISAT[exp(T) - 1} +ISAT[exp(m) - l] =0
From (10.5.3) the N_-R equations would be
- - =1 \
% %
! _ vil || 9v, oy, GRS (1056)
g || % % JAGRS)
dv, dv, - )

P2

where v is a vector of dimension 2, and J is the square Jacobian matrix of dimension
2 x 2. The entries of the Jacobian matrix are:

ofy qlsar (‘1 (Vllc - Vlzc) )

'é';'—l' k 1 + leT exp T‘kT (10.5.7)
afl Qlgar (q (Vlf - Vg) ]
ov, T OMkT exp nkT ‘10'5'8)

& k
Vis ¥,



Multi-Terminal Elements 297

% _ _qISATex (9("’1(_"]2())

v, o T Tkt P\ mET (105.9)
% _ Ysar (Q(Vl{—vb] qISATex (qv’;) 10.5.10
v, T T P\ T kT P\ et (10.510)

1?72

But, just as for the case of linear circuits, we do not want to actually find the inverse of
J . Instead of generating (10.5.6), we would solve

EXxA XA
dv, dv, v’f” _ dv, dv, v’l‘ A (v'l‘, v’;’) (105.11)
Y| I A T I YY1 I VY G
_avl avz_ L \_avl avz_ L
or more generally
N AR VL ) (10.5.12)
or
JEAavk = —F (vh (10.5.13)

We then solve (10.5.13) by LU factorization. Note that we can arrive at this same set of
equations by linearizing the diodes individually as shown in Figure 10.4, and then stamp-
ing in the Norton equivalents and solving the resulting linearized circuit. There are, how-
ever, some subtleties involved in obtaining the stamps for multi-terminal elements, e.g.,
transistors, which we will cover in the next section.

10.6 Multi-Terminal Elements

Given a three-terminal element, as shown in Figure 10.11, we can treat the bottom termi-
nal as “common” and characterize the element -- if possible -- on an admittance basis as
follows:

iL=g,(v, Vz)

_ (10.6.1)
l2 = gz (vp Vz)



298 Simulation of Nonlinear Circuits

Then, linearizing these relations we obtain

' 0g, 8
I+ AL =g, (V,vy) +5— v, Av, 8 Av2+error
10.6.2
882 8 ( )
Iy + Ay =g, (v, Vy) + =— v, Av, a sz + error

i h i,
O

Figure 10.11 Port description of a three-terminal element.

To be general, we must treat all terminals on an equal basis, so we recast the port descrip-
tion of the element into the terminal description in Figure 10.12. Then

v, =V, — Vv, and Av, = Ava—AvC
Vy = V-, and Av2 = Avb*—Avc
i, = —(i+1i,) and Ai, = —(Ai; + Ai,) (10.6.3)

i, = I and Ai, = Al

a

i, = i, and Ai, = Ai,



Multi-Terminal Elements

299
i, _
Vv, o > i,
o Vb
v V2
Figure 10.12 Terminal description of a three-terminal element.
So,
: . g, g, dg, g,
i, +Ai, =g, (v, vy) + é_ﬁAv“ + a—vavb + [— —371 - E)Avc
S 0g; 08, dg, 08,
Iy tAi, =g, (v, v,) + a_v;Av" + a—vavb + (— 5;; - a—vz)Avc
(10.6.4)
. . dg, 9g,
i +Ai =g, (v,vy) —g, (v, vy) + _3"—1_5; Av,
d d d 0 dg, dg
+ _E 25 Av, + g1+ g'+ 242 Av,
dv, dv, dv, dv, dv, dv,
If we consider normal nodal equations
YAv = 1 (10.6.5)

we can take from the above relations the elements to be stamped into the ¥ matrix:



300 Simulation of Nonlinear Circuits

v, av, dv, dv,
b-row ?ﬁ % - 8_52 _ a_gE (10.6.6)
v, v, dv, dv,
_881_882 _agl_agz ag1+ag1+ag2+ag2
crow i v, dv, dv, v, ) \dv, Odv, dv; v, |
a-column b-column c-column
and the I vector:
a-row -8, (v vy)
b-row —g;(vy, V) (10.6.7)

c-row |81 (vy, V2) + 85 (Vp Vz)

We must then LU factor the resulting overall ¥ matrix to obtain Av. (Whether we solve
for Av or v + Av depends on how we choose to handle independent source contributions
to these equations.)

Note that the derivatives like dg,/dv, are usually provided as part of the device model,
so they are in terms of the port voltages. However, in (Modified) Nodal Analysis, we solve
for the node voltages, so all the other terms must be expressed with terminal voltages. At
each N-R iteration, the node voltage solution is used to compute the port voltages and then
the appropriate derivatives.

We see in (10.6.6) and (10.6.7) that the stamps are singular. Each column of both the ¥
and T stamps adds to zero, and each row of the Y stamp adds to zero. This result should
not be surprising; a two-terminal element provides a 2 X 2 singular stamp to the ¥ matrix,
and an n-terminal element an n X n singular stamp. And, of course, all elements of the
current source vector must add to zero so as not to violate Kirchhoff’s Current Law. The Y
stamp provides the “floating” (or indefinite) admittance characterization of the linearized
element. We can choose a common terminal and cross out its corresponding row and col-
umn to obtain the definite admittance characterization. But it is the indefinite characteriza-

tion that we want to stamp into the ¥ matrix and I vector, unless one of the terminals just
happens to be ground.



Multi-Terminal Elements 301

We will now consider two common nonlinear multi-terminal elements. QOur discussion

will be in terms of simple models, but the concepts can easily be extended to more com-
plex device models.

Bipolar Junction Transistors (BJTs)

Consider, for example, the common-base Ebers-Moll model for a bipolar junction transis-
tor (BJT) [Ebers54] shown in Figure 10.13. For this NPN transistor shown we have

Vhe vbc
. v,, vy,
l,=—1,€ " —1|+oa,l e -1 (10.6.8)
and
vbt vb:
. v, v,
i, = a‘FIes € "—-1|-1€e" -1 (10.6.9)

where 1, and /I ; are the emitter and collector junction saturation currents respectively,
V5. and Vi are the thermal voltages, k7/q, scaled by the appropriate nonideality factor
for each junction, and &, and 0., are the forward and reverse current gains.

Vhe

Figure 10.13 NPN type Bipolar Junction Transistor and its model.

We begin by evaluating the partial derivatives for this three port model:



302 Simulation of Nonlinear Circuits

aie Ies :
) =—-—€ = 8ee
Vbe Vre
v,.
di, I,
"8“_" = € = 8ec
vbc vTc
vbe
alc - o Ies evr =g
Ny F =3&ce
avbe vTe
Vbc
di. 1., o .
=T =b&cc
avbc vTc
Hence
Aie - geeAvbe + gecAvbc
Aic - gceAvbe + gccAvbc
or

Aie =- geeAve - gecAvc + (gee + gec) Avb
Aic == gceAve - gccAvc + (gce + gcc) Av.b
Aiy = —(Ai, +Ai)

So, we have the Y matrix stamp:

e-column  c-column b-column
e-row —8ee e (gee+ gec)
c-row - —8ce (gce + gcc)

b‘row (gee+gce) (ggc+gcc) (_gge_gec_gce_gcc)

(10.6.10)

(10.6.11)

(10.6.12)

(10.6.13)

Note the negative signs in (10.6.13) because the original definition uses v,, and v, _, not

v,, and v_,. And for the I stamp:

e-row | —i
c-row | —i

b-row |1, +1,

(10.6.14)



Multi-Terminal Elements 303

In summary, we wrote the nodal equations at the three nodes which were connected to
the element in Figure 10.13 using the linearized expressions in (10.6.4). We then stamped
these linearized equations directly into ¥. From (10.6.4) we can also generate an equiva-
lent circuit model which represents the linearized three-terminal BJT, and then stamp it
into ¥. While this step is unnecessary, it is helpful in gaining insight and it is left as an
exercise to the reader. Note that the linearized circuit model is very similar to the familiar
small signal transistor model.

Field Effect Transistors (FETs

We consider the generation of a three-terminal linearized N-R model for the case of a
MOSFET, such as that shown in Figure 10.14. A simple dc MOSFET model can be
described by the following set of equations [Muller77]:

2
vy ,
iy = B[(vgs — V) Vi — TS} for v, < Ves — Vr (linear) (10.6.15)
i, = 3 (Ves— V) 2 for (Vgs >V, —vy) (saturation) (10.6.16)
and
iz =0 for v, <v; (cutoff) (10.6.17)
Vd
+
iy
i,=0
Ve D—%—i \les Vds
+
vgs is
v

Figure 10.14 An N-type Metal Oxide Semiconductor Field Effect Transistor
(NMOSFET).

In terms of the port description of the NMOSFET in Figure 10.14,



304 Simulation of Nonlinear Circuits

ig = fl(vgs’ vds) =0

id = f2 (vgs’ vds) = ids (10.6.18)

I =

£ “lg —lg = —lds

We linearize these port currents by characterizing them with the first two terms of their
Taylor series expansion:

& K
1g+Azg =0
of. f.
-k ko kok 2 k+1 k 2 k+1 k
gs k ds k
.k ko & -k
ic+ Al = —(iy+ ALy

where the partial derivative terms are well known as the small-signal transconductance,

af, di,

= =g (10.6.20)
dv,,  Ov, "
and the small-signal drain to source conductance,
daf, di,
_BVd = _.._an*‘ = G, (10.6.21)
5 5

as shown in Figure 10.15. Using the linearized equations in (10.6.19) along with the par-
tial derivative terms in (10.6.20) and (10.6.21) we can model the linearized MOSFET by
the equivalent circuit in Figure 10.16. Note the similarities to the small-signal MOSFET
model shown in Figure 2.2 of Chapter 2. Applying Nodal Analysis with this linearized
model is equivalent to directly stamping in the expressions in (10.6.6).

Before leaving the topic of MOSFETs, we should further point out that all of the above
discussions and equations have been for NMOSFETs. PMOSFETs are similarly handled,
except, of course, the voltages are of opposite sign. Moreover, for both N- and P-MOS-
FETs, the drain, source, and gate voltages must be monitored continuously to recognize
the region of operation, and the direction of drain-source current flow. For example, when
the source is at a higher voltage than the drain for the NMOSFET in Figure 10.14, the cur-
rent sources in the linearized model in Figure 10.16 must be negative to note that the cur-
rents are directed oppositely. Simply stated, the source node becomes the drain and the
drain node becomes the source. In other words, irrespective of the labeling of an NMOS-
FET, the lower potential node is the (effective) source and the higher potential node the



Multi-Terminal Elements

305

B

small changes in the
gate-source voltage

increasing v g5

vds

Figure 10.15 Linearization of NMOSFET curve about an operating point.

K+ 1
Lis
G -« D
+o O +
k+1 k+1 k
1% k k+1
8s @g’”v&f qu Gys Vds
- O O~
S S
K+l _ ok k+1 & koo ok+l &
s = lds+gm(vgs _vgs) + Gds (vds vds)

k. sk k k k
qu = lgst Em (_vgs) + Gds (mva‘s)

Figure 10.16 N-R linearized MOSFET model.

(effective) drain, and vice versa for a PMOSFET,

As a final note on Newton-Raphson iteration, we should point out that it is not always
easy to obtain the correct partial derivatives that constitute the stamps. Consequently,
many circuit simulators resort to “numerical differentiation.” A typical approach is to fit a
cubic (spline) through four appropriate points on the characteristic curve and then to
employ its symbolic derivative. The advantage of a cubic over lower order polynomial fits

is that f™ (&) is guaranteed to exist.



306 Simulation of Nonlinear Circuits

10.7 Nonlinear Transient Analysis

Up to now we have considered only nonlinear dc analysis. Now we will consider nonlin-
ear transient analysis. As was briefly outlined in Chapter 1, nonlinear transient analysis
begins by linearizing the energy storage clements with difference approximations as
described in Chapters 4 and 5 and then performing N-R iterations on the resulting nonlin-
ear dc equivalent circuit.

To consider this procedure in more detail, we start with the diode circuit in Figure
10.17. Notice that there are two capacitors in this circuit along with an independent cur-
rent source which is a function of time. We know that the capacitors and the diode will be
represented by linear Norton equivalents for the TR integration and the N-R iteration
respectively, as shown in Figure 10.18.

R,

NV

1 — 1 .
/ Iy R, T-C D =G

Va

Figure 10.17 Diode circuit with linear capacitors.

vy R2 v,
AVAVAV
CI ] Cz
Is{t) Rl qu Ifq qu ‘
v

Figure 10.18 Linear dc equivalent circuit for the circuit in Figure 10.17.

To begin, we would perform a dc analysis for £ < 0. The input current sourée would be
set to its initial value of I,, and the capacitors would be opened by setting their I,,’s and
G,,’s equal to zero, as shown in Figure 10.18. The diode is first linearized about some ini-
tial voltage guess, probably zero, and then the iterations proceed as described previously



Nonlinear Transient Analysis 307

for a dc analysis. Once convergence is reached, we know v, (0%) and v,(0%) since
capacitance voltages cannot change instantaneously. However, one idiosyncracy of Trape-

zoidal integration, and Forward Euler for that matter, is the necessity to compute i (07)

and v, (0) for the companion models of capacitance and inductance elements, respec-

tively, since a step change in excitation occurs at time to. Calculating these currents would

require us to replace the Norton equivalents in Figure 10.18 with independent voltage
sources as described in Chapter 4. Changing the circuit topology to handle steps is not
always warranted. For this reason, some versions of SPICE handle only piecewise linear
(continuous) input waveforms. In addition, the Backward Euler integration approximation

poses no such problem with steps, so some versions of SPICE provide that option to
accommodate step functions.

Ii Rl 0* Ifq 0*
<

Figure 10.19 Linear dc equivalent circuit for finding solution at ¢ = 0.

Once the discontinuity is handled for this step example, we begin the transient analysis
by taking a step in time to + = Ar. First, the input current source is set equal to I, its

value for > 0. Second, using TR integration, the two capacitors are linearized. Referring
to Figure 10.18, the companion model values for the capacitors are:

2C,v, (0%) c, 2C
C, , 1¥1 '
g = ic, (07) L Pa— Goo = &
(10.7.1)
2C,v, (0M) c, 2G,
C . 2
Ie; = e (0+) +———~2 Azt Geq = At

Then, the diode model is repeatedly linearized and the circuit is iteratively solved until
convergence is reached at time ¢ = At. Notice that the initial solution values appear in the

TR companion models, and these voltages are also used as the starting guess for the first
N-R iteration. Once convergence is reached, time is advanced and the whole process is
repeated.



308 Simulation of Nonlinear Circuits

10.8 Nonlinear Energy Storage Elements

Although we have covered nonlinear transient analysis which considers circuits with non-
linear devices and linear energy storage elements, we must also consider such analyses
when there are nonlinear energy storage elements. Diodes, for example, are characterized
by a nonlinear i-v characteristic, and a nonlinear charge storage (capacitance) characteris-
tic. As shown in Figure 10.20, there are two nonlinear capacitance terms associated with
diodes. Both the depletion capacitance and the diffusion capacitance are nonlinear func-

tions of the diode voltage, v,.

C.
_ j0
| CG=— =
+ (1--2)
C Vi
vy h 4 i Cp

: Vg
CD = T'ld= T'ISAT exp(m -1

Figure 10.20 Nonlinear diode capacitances.

For these nonlinear capacitors, C is a nonlinear function of the voltage which appears
across it, therefore,
c dv,
I = V) —— 10.8.1
c (va) a1 ( )
There are subtle problems associated with the use of integration algorithms for the expres-

sion in (10.8.1). To begin to appreciate them, consider the general case which can be
described by the following set of nonlinear state equations

x(@®) =f(x(@®),u() (10.8.2)

where f is a nonlinear operator. Of course, we would never consider the actual formula-
tion of such state equations; the linear case is complicated enough. This form serves our

purpose, however, which is to point out the problems we can encounter if we are not care-
ful.

If we apply Trapezoidal integration to the above, we obtain

x(t+ A1) = x (1) +%—t[f(x(t),u(t)) +f(x(t+ A, u(t+Ar))] (10.8.3)

or



Nonlinear Energy Storage Elements 309

x(t+Ap) —%t[f(x(t+At),u(t+At))]
As (10.8.4)
=x(t)+3[f(x(t),u(t))]

Of course, x (¢), f(x (1), u (1)), and therefore the right hand side of (10.8.4) are known.

But we must perform Newton-Raphson iteration to find x (z + A7) , and the appropriate
Jacobian is

(10.8.5)

B At af
"*‘E(W]

X(t+AD,u(t+AD

So we must be careful to update the Jacobian to reflect the presumed value of x (t+ A1)
at each Newton-Raphson iteration. If we don’t, we may converge to a close but incorrect
solution. This point is easy to appreciate in terms of the state equations, but it may not be
so easy to implement in Modified Nodal equations -- or any other practicable form, for
that matter.

To illustrate the point, consider a nonlinear capacitor that is characterized by the
charge-voltage relation

q = f(v} (10.8.6)
Then we have the i — v relation
i=qg = %v (10.8.7)
and we might write
-1
Vo= (%} i (10.8.8)

Trapezoidal integration of (10.8.8) would yield

V(I+At)zv(t)+%f(l:%’ ]-li(t)_i_[gf

-1
] i(t+ At)] (10.8.9)
t+ At

dv

Some simulators have erroneously attempted to use

-1
V(t+ AL =v (L) + [gi:{ ] %t{i(t) +i(t+AD} (10.8.10)



310 Simulation of Nonlinear Circuits

which does not appropriately update the capacitance companion model, leading to a viola-
tion of the conservation of charge. The problem, of course, is that the companion model

depends on dff dv evaluated at v, ,,, which in itself in an unknown and for which we are

tying to iteratively solve.

Referring back to the capacitors in Figure 10.20, the TR integration expressions are
changed slightly to reflect the fact that the capacitances change with voltage, and hence
time:

_ Atn ic(tn+l) ic(tn)
v.(t,, ) =v.(2,)+ 5 [C(fn+1) + C(tn)} (10.8.11)
We can rearrange (10.8.11) as follows
2C(t,, ) C(t,, )
() = o (1, ) =y (8 1 i (1) (10.8.12)

At

)

C(t,)

and from (10.8.12) derive the companion model for this nonlinear capacitor, as shown in
Figure 10.21.

BRACUNY _ ), B0 )Y ()
eq C(tn) n Atn
1,
2C (14
Geg = At

n

Figure 10.21 Companion model for a nonlinear capacitor.

As an example, for the depletion capacitance in Figure 10.20, the equivalent (nonlinear)
conductance is given by

2 C;
Gy = n (10.8.13)
Atﬂ [l _ vc (tn+1) )
Vi
and the equivalent (nonlinear) current source is
_ [ 2l o (10.8.14
«@= \C(ty) A 8.14)

vc(tn+]) "
=)



Nonlinear Energy Storage Elements 311

We could model the nonlinear diffusion and deplction capacitances on an individual basis
using the companion model in Figure 10.21. We then treat this Norton equivalent just as
we would treat any other nonlinear device model and we evaluate it via N ewton-Raphson.

It is a bit more difficult in practice to deal with a multi-terminal capacitance element,
such as those which might arise in the detailed modeling of an MOS transistor. For MOS-
FETs, for example, the nonlinear capacitances may be functions of several voltages, not
just the voltage across them. For instance, referring to the MOSFET and its associated
capacitances in Figure 10.22, C,, can be shown to be a nonlinear function of v ¢s» Vay» and

V- Therefore, €, is a nonlinear capacitance which is a function of three voltages.

Figure 10.22 A MOSFET and its associated capacitances.

As a simple example, if we assume that v, = 0 and choose to ignore the drain to sub-

strate capacitance, there are two remaining MOSFET capacitances which can be
expressed as nonlinear functions of two voltages.

©=h ) (10.8.15)
Cz =f2 (V1, Vz)
We can no longer write
d
ic= C) al: (10.8.16)
but must now write
— dq, _ aqll} + aGh\;
=T w1t e
(10.8.17)

dq, aqz. aqz.

[y = — = "y, + —2y
T dr avll ov, °



312 Simulation of Nonlinear Circuits

We may also express these relations in terms of the charge as a nonlinear function of the

voltage

q, = fi vy, Vz)
and
g, = fg(Vsz)

since the most straightforward way to deal with this situation is to take

) . fl(v1(I+At)av2(t+At))_fl(vl(t)svz(t))
ey = 417 At

and

. . fz("](t'*‘At)aVz(t"'At)) _fz(Vl(I)avz(t))
lep = q,= At

Then, generically, we can take

ic=1ic(t) for Forward Euler

ic=1ic(t+ A1) for Backward Euler

or

1
ic= 3 [i-(£) +i-(t+Ar)] for Trapezoidal

Stated another way, the TR equation is

At
de(thp)) = ac(t) + = (e iy ) +dc (7))

and therefore,

At
C(t,, )v(t,.;) = C)v(L) +—2—" (e (t,, ) +ic(t)
or

_C)vr,) At,

V) = Ty T26G,, 0

(ic(t,ep) +ic(t,))

(10.8.18)

(10.8.19)

(10.8.20)

(10.8.21)

(10.8.22)

(10.8.23)

(10.8.24)

(10.8.25)

(10.8.26)



The Bottom Line 313

Note, finally, that these integration algorithms merely transform the nonlinear capacitor
to an equivalent nonlinear resistance, which still must be linearized to produce the appro-
priate stamp.

10.9 The Bottom Line

Newton-Raphson iteration is the cause of most of SPICE-like simulators’ non-conver-
gence problems. N-R assumes that the third derivative of all constituent model equations
with respect to all circuit variables exists over the range of solution values. This assump-
tion serves as a guide to a device model developer, who has to make sure not only that

there are no discontinuities in i — v and g ~ v characteristics, but that the third derivative
of the characteristic functions exist at all operating points. This restriction can be difficult
to satisfy, especially in the regions where a device moves from one mode of operation to
another.

The evaluation of device models and stamping of the Jacobian matrix is done once per
device for each N-R iteration, and the procedure is repeated for each time step. Hence the
speed of the model evaluation code often determines the speed of the overall simulator.
There is a costly price to be paid for model complexity. In the interests of efficiency, tran-
scendental function evaluations should be avoided in the mode] evaluation code wherever
possible,

Some simulators use a device model bypass algorithm to reduce the number of model
evaluations required. Hence, if the terminal voltages of a device have not changed by
more than a pre-set tolerance since the last time the device was evaluated, the new evalua-
tion is skipped and the previous model is used. Note that the previous evaluation could
have been during a previous N-R iteration at the present time point, or the final N-R itera-
tion at the previous time point.

SPICE-like simulators often have convergence problems while attempting a dc solu-
tion. One way to tackle this problem is to supply intelligent guesses to be used for the first
N-R iteration (in SPICE3, NODESET cards can be used for this purpose). SPICE fails to
converge during a dc solution if the number of N-R iterations exceeds a pre-set limit. The
user can increase the limit to aid convergence (using the ITL1 parameter in SPICE3).
Another way of dealing with the situation is to tell SPICE not to carry out a dc solution
prior to transient analysis, and to supply initial conditions for the transient analysis (using
IC cards and the UIC command in SPICE3).

During transient analysis, non-convergence can occur for a number of reasons. When a
pre-set number of N-R iterations is exceeded, the time step is reduced and another attempt
is made. The time step is not reduced below a certain limit. There is also a limit on the
total number of N-R iterations (ITL5 in SPICE3) which can be changed by the user. In
addition, SPICE allows control of the default time step (TSTEP), the tolerance used in
determining whether N-R has converged (ABSTOL and RELTOL), and the truncation
error tolerance (TRTOL). There are also controls provided that can influence pivoting



314 Simulation of Nonlinear Circuits

strategies (PIVTOL and PIVREL). Knowing what these parameters do and how they
influence the convergence and accuracy of the simulation are key to making good use of a
simulation tool.

In summary, when properly implemented, the combination of Modified Nodal equa-
tions, Newton-Raphson iteration, and Trapezoidal integration can yield nonlinear transient
circuit simulation with high accuracy -- well beyond the precision with which integrated
circuits can be built. But the price exacted in program maintenance and support, device
model development, and CPU resource utilization is very high. The latter has tended to
preclude the use of circuit simulators for the transient analysis of very large circuits. If one
is willing to sacrifice accuracy, some compromises may be made. Logic and switch level
simulation are very efficient because they employ extremely simple models, and produce
crude or no timing information. For many high performance digital designs, a more
detailed appreciation of timing is critical to the successful operation of the circuit. Conse-
quently, there is a great deal of research that attempts to address the gap between highly
accurate but highly inefficient circuit simulation, and highly efficient but highly inaccurate
logic/switch level simulation. Some of these alternatives are explored in the following
chapter.

10.10 References

[Ebers54] J. J. Ebers and J. L. Moll. Large Signal Behavior of Junction Transistors. IRE,
vol. 42-12, December 1954.

[Carnahan69] B. Carnahan, H. A. Luther, and J. O. Wilkes. Applied Numerical Methods.
Wiley, 1969.

[Ortega70] J. M. Ortega and W. C. Rheinboldt. lterative Solution of Nonlinear Equations
in Several Variables. Academic Press, 1970.

[Nagel71] L. W. Nagel and R. A. Rohrer. Computer Analysis of Nonlinear Circuits,
Excluding Radiation (CANCER). IEEE Journal of Solid State Circuits, vol. SC-6, pp.
162-182, August 1971.

[Nagel75] L. W. Nagel. SPICE2, A Computer Program to Simulate Semiconductor Cir-
cuits. Technical Report ERL-M520, UC-Berkeley, May 1975.

[Muller77] R. S. Muller and T. I. Kamins. Device Electronics for Integrated Circuits.
Wiley, 1977. ;



Chapter 11 Ti”l’lll’lg
Simulation

Traditional circuit simulation is impractical for the functional and timing verification of
large integrated circuits and systems. This chapter explores some alternatives to “full-
blown” detailed circuit simulation. Timing simulation is an active and evolving topic of
research and this chapter does not cover all the approaches suggested in the literature.
Rather, this chapter seeks to demonstrate how the fundamentals that we studied in the pre-
vious ten chapters form the foundation for these alternative approaches. In the process, we
will review some representative timing simulation techniques.

11.1 The Quest for Other Methods of Simulation

There are two main factors that make circuit simulation impractical as a means of verify-
ing a full chip or system. The first is the complexity of such chips and systems. With
advances in integrated circuit fabrication, it is not uncommon for processor chips to con-
tain in excess of a million transistors and memory chips many times that. Further, device
models tend to increase in their complexity from each generation of fabrication technol-
ogy to the next. The asymptotic order of complexity of circuit simulation is superlinear in
the number of elements in the circuit. Hence, as circuit size grows, the CPU time require-
ment for simulation grows superlinearly and quickly becomes prohibitive for circuits con-
sisting of tens of thousands of transistors. Since each element contributes a fixed “stamp”
to the system matrix, the memory requirements of these programs typically grow linearly
with the size of the underlying circuit.

The second factor that makes circuit simulation impractical is the rapid increase in the
speed of chips and systems. With each new generation of hardware, the simulation
required to solve a circuit for a fixed period of time, say 1ys, keeps increasing. Luckily,
the growth of CPU time with the time period of simulation is linear. Even in the case of
simulators that store all waveforms in memory, the growth of memory requirements with
the period of simulation is linear, too.

The quest for high-performance circuits has led to an increased emphasis on custom
design. Custom-crafted circuits are often tricky and require careful analysis and simula-

315



316 Timing Simuiation

tion to guarantee correct operation. It has often been noted that one constantly faces the
challenge of designing and verifying tomorrow’s ever more complex and ever faster hard-
ware with the aid of today’s computers. In the push to design more complex circuits in
shortening design cycles, simulation is often the bottleneck. Circuit simulation, while
essential in its own right, is not enough to face this challenge successfully. The combined
pressures of needing more simulation for greater time periods of larger circuits with
tighter schedules has led to a significant number of alternative approaches. This chapter
will quickly review some of these methods, and then concentrate on one class of tech-
niques called timing simulation.

11.2 Static vs. Dynamic Simulation

Dynamic simulation implies the simulation of a circuit from a given start time to a given
end time. The inputs to the circuit during this period of time are fully specified. (In the
case of digital or logic circuits, these input signals are called “input patterns™ or “input
vectors.”) The initial state of the circuit is usually at least partially specified and/or com-
puted. The goal is to solve the circuit for the required time interval. All the methods
described so far in this book deal with dynamic simulation methods.

Static simulation, on the other hand, attempts to characterize a circuit for all time, inde-
pendent of its input signals. While this book will not cover static simulation in any detail,
this section will provide a quick overview. Static simulation, or static timing analysis (as it
is more commonly known) [Hitchcock82], is often used to characterize the delay of an
interconnected set of combinational logic blocks between the flip-flops of a digital circuit.

Figure 11.1 shows a simple circuit consisting of two banks of flip-flops (FF, and FF,)
and four combinational blocks (B, through B,). Each combinational block’s delay 1s pre-

characterized. The delay from each input to each output is described either as an equation
or stored as a look-up table. The delays are functions of such variables as input slope,
fanout, and output load capacitance. The precharacterization phase consists of many cir-
cuit simulation runs at different temperatures, power levels, loading conditions, and so on.
Delay data from these runs are abstracted into a timing model for each block.

The actual analysis is carried out in two phases. In the first phase, the delay of each sig-
nal is propagated through the combinational blocks, using the precharacterized delay fig-
ures for each block. Thus each signal is labeled with an arrival time at which its correct
digital signal can be guaranteed. In the second phase, the required arrival time is propa-

gated backwards from the target bank of flip-flops, FF,. The required arrival time on the

signal is the latest time by which that signal must have its correct value in order for the
required worst-case delay between the banks of flip-flops to be met. The difference
between the required arrival time and the actval arrival time of each signal is termed the
slack of the signal. All the signals are listed in increasing order of their slack. This analysis
yields a wealth of information about the timing of the circuit.



Dynamic Simulation 317

] I
FF, FF,

Figure 11.1 Static timing analysis of circuits containing combinational blocks.

Clearly, if there is negative slack on any of the signals, the circuit will not meet the per-
formance requirements. The path with the least (perhaps most negative) slack on all of its
signals is the critical path. The signals on this path will all have the same slack. The
slacks also contain clues needed to redesign the circuit to cause it to function correctly.
The above analysis can also be carried out with a minimum and maximum delay for each
block. In that case, a set of early and late arrival times can be computed. The early mode
is computed using the best possible case for the arrival of all input signals to a block and
the late mode considers the most pessimistic scenario. Then two sets of slacks are com-
puted for each signal. These slacks yield valuable information about the timing properties
of the circuit including possible violations of flip-flop setup or hold times. For more
details on the calculation and interpretation of slacks, see [Hitchcock82].

Static timing analysis is a highly efficient method to characterize the timing of circuits.
It can be used to determine the critical path of a circuit and obtain valuable information on
other timing characteristics, However, it assumes that all paths in the circuit are active or
sensitizable. In reality, however, there are certain paths in logic circuits that are not sensi-
tizable because of the nature of the logic or the manner in which the circuit is exercised.
These paths are called false paths. Because it ignores the false path problem, static timing
analysis often predicts pessimistic (or overly conservative) worst-case path delays.

11.3 Dynamic Simulation

Depending on the level of modeling abstraction, dynamic simulation of circuits can be
carried out at many levels. The different levels of simulation are qualitatively depicted in
Figure 11.2

Circuit simulation:

The device models in circuit simulation [Sze85, Mullerg6, Roulston90] consist of equiva-



318 Timing Simulation

-

Circuit
simulation

Accuracy

Timing
simulation

Switch-level

simulation

Logic or
gate-level
simulation
. >
Run time

Figure 11.2 Trade-offs between the different levels of simulation.

lent circuits for complex devices and analytical equations describing the characteristics of
these constituent elements. Algorithms used for solution consist typically of integration
(as described in Chapter 4 and Chapter 5), linearization (as described in Chapter 10), and
sparse solution of the resulting equations (see Chapter 7 and Chapter 3). The unknowns
are typically element and node voltages and element currents as a function of time. These
waveforms are usually represented as floating point numbers. Circuit simulation is by far
the most detailed, accurate, and general of the methods described in this chapter. It is also
the slowest and is limited to relatively small circuits for relatively short intervals of time
compared to the other methods.

Timing simulation

Timing simulators [Chawla75, de Geus82, de Geus84, Chen84, Tsao85, Sakallah85, Vidi-
gal86, Ruan88, Visweswariah89, Ruan90, Lin93, Devgan94] use simplified device models
in order to obtain a speedup over traditional circuit simulators. The simplifications in the
device models, while allowing rapid turnaround, often limit the applicability of timing
simulators. Many timing simulators, for example, are limited to MOS digital circuits. Like



Dynamic Simulation 319

circuit simulators, timing simulators attempt to compute all the voltages and currents of a
circuit. The algorithms involved usually include event-driven methods, by which only
changes in the circuit quantities are computed. These methods allow the exploitation of
latency to render the simulation more efficient. The run time of this class of simulators
usually increases linearly with the size of the circuit being simulated, thus permitting the
simulation of relatively large circuits for relatively long intervals of time. Timing simula-
tion is only as accurate as its modeling assumptions permit and there is a trade-off
between model complexity and run time. Timing simulation is described in detail in Sec-
tions 11.4 to 11.7.

Switch-level simulation

The basic model for a transistor in switch-level simulation is an ideal switch [Bryant80,
Bryant81]. This level of simulation is confined to digital MOS circuits. If the signal at the
gate of an MOS transistor causes it to turn ON, it is conducting and there is a path between
the drain and the source of the transistor. If not, there is no connection between the drain
and source. The simplest signal representation consists of three discrete states: ‘0’ (logic
low), ‘1’ (logic high) and ‘X’ (unknown or uninitialized). An N (P) type MOS transistor
with a signal of ‘1’ (‘0) on its gate is conducting whereas a gate signal of ‘0’ (‘17) causes
it to be open. A transistor with an ‘X’ on the gate can either be conducting or nonconduct-
ing and is said to be potentially conducting.

A switch-level simulator operates as follows. To begin, the circuit is partitioned into
strongly connected components (SCCs) which are subcircuits consisting of transistors that
are channel-connected, as shown in Figure 11.3. The communication at the boundary of
SCCs is through gates of transistors only. Each SCC is represented by an undirected
graph. Each vertex of the graph corresponds to a signal in the circuit and each edge corre-
sponds to the drain-source channel of a transistor.

Figure 11.3 An example of a strongly connected component (SCC).



320 Timing Simulation

The actual simulation consists of a simple procedure. All nodes of the circuit except the
primary inputs are initialized to “X’. Input signals are then applied. For each vertex of
each SCC, all conducting paths to VDD (the power supply) and GROUND are traced.
Paths consisting of transistors that are turned ON are called definite paths. Paths consisting
of transistors that are potentially conducting are called potential paths. If all the conduct-
ing paths from a node are to VDD (GROUND), the state of that signal is ‘1’ (‘0"). If there
are no paths to either VDD or GROUND, the signal is assigned its previous state. But in
the case where paths exist to both VDD and GROUND, there is a resolution process to
determine the state of the signal.

Resolution of signals is based on the concept of strength. Each transistor is assigned a
strength or current-driving capability. The strength is usually chosen from a small set of
integers to reflect the width and type of the transistor (N or P type). The strength can be
thought of as being indicative of the conductance of the transistor. The strength of a series
path consisting of ON transistors is the strength of the weakest ON transistor. The strength
of multiple paraliel paths consisting of ON transistors is the strength of the strongest path.
If the strength of the paths to VDD (GROUND) is “much more” than the strength of the
paths to GROUND (VDD), the signal is assigned a ‘1’ (‘0’). If the two strengths are “com-
parable,” the signal is assigned an ‘X’. Of course, empirical heuristics are necessary to
determine what “much more” and “comparable” mean. Once the states of all of the signals
of all the SCCs have been determined, they are propagated to their fanout SCCs and used
as gate inputs for the next cycle of simulation. To proceed to the next cycle, the new pri-
mary inputs for that cycle are assigned, the fanouts across the borders of the SCCs are
propagated, and then the simulation procedure is repeated. Switch-level simulators are
called unit delay simulators since they have no concept of time except for moving from
one set of inputs to the next (presumably at the next “clock tick™). The analysis assumes
that sufficient time elapses between such cycles for the circuit to completely settle down.

The procedure outlined above is adequate to handle static CMOS ratioed logic. How-
ever, it does not in general accommodate charge storage, charge sharing, or bidirectional
signal flow that is common in dynamic circuits or in circuits containing pass transistors. A
simple enhancement can be made to extend the algorithm to handle these situations. Each
node in the circuit is assigned a storage node strength or storage node size, which repre-
sents the value of the capacitance of that node to ground. Storage node strengths are cho-
sen from among a small set of integers. VDD, GROUND, and the primary inputs are
assigned the highest strength. Whenever paths to VDD and GROUND are traced from a
node of an SCC, the node is not only assigned a signal state, but also a signal strength,
being the strength of the path by virtue of which it was assigned its state. Then the storage
node strengths, signal states, and signal strengths are used in a rule-based resolution pro-
cess.

Switch-level simulation possesses some unique advantages. It is efficient because its
MOS model is so simple and because it uses an event-driven algorithm. Hence large cir-
cuits can be simulated for a large number of time cycles. The switch-level behavior of
some commonly used circuit blocks can be precompiled for additional efficiency [Bry-
ant87]. Parallel fault simulation is also possible at the switch level. However, switch-level



Dynamic Simulation 321

simulators have some fundamental limitations linked to their simplistic modeling of tran-
sistors and time. First, they provide limited or no timing information. Second, their han-
dling of analog situations like charge sharing, glitches, and bidirectional signal flow is
inaccurate and some times even wrong. Finally, they depend on partitioning the circuit
into SCCs, which may result in some very large circuit blocks. For example, a barrel
shifter could be one large SCC, and the repeated tracing of paths in that graph can be com-
putationally expensive.

Logic or gate-level simulation

Logic simulation is at a higher level of abstraction than switch-level simulation. In its sim-
plest form, the circuit is modeled as a connection of simple logic primitives like NAND
gates, NOR gates, and so on. Each primitive has a logic behavior by which the output(s)
of the gate can be computed given the input(s). In addition, each primitive has a delay
model that represents the delay from each of the inputs to each of the outputs. Signal rep-
resentation, as in the case of switch-level simulators, consists of a ‘1’ (logic high), ‘0’
(logic low), and ‘X’ (unknown or uninitialized state). Some logic simulators have special
signal representations for high impedance states, tristate signals, and so on.

The simulation algorithm consists of a simple event-driven or selective trace mecha-
nism. All primary inputs are assigned their values and the fanouts of the primary inputs
(those primitives to which they are connected) are placed on an event queue for evalua-
tion. When the primitives are evaluated, their outputs and delays are computed. The
change on each output is scheduled to take effect at a future point in time depending on
the delay of the primitive. The fanouts of the primitive are scheduled to be evaluated when
the fanout signals change. One way to implement such a simulator is to have a time wheel
with a list of events at each time point.

There are two kinds of events, update events and evaluate events. The update events are
first processed, during which signals are given their new values (either because a primary
input changed at that time or because a previous evaluation of a primitive caused this sig-
nal update to be scheduled). Then the evaluate events are processed, during which primi-
tives are evaluated. The fanout signals and primitives are then scheduled for a future time.
Zero-delay primitives can require the update-evaluate combination to be repeated multiple
times at a given point in the time wheel. When the list of events to be processed at a given
time is empty, time is moved to the next time at which there is at least one event pending,
and the simulation continues.

A number of extensions over the simple procedure described above are commonly
found in logic simulators. The user is often afforded the capability to write his/her own
behaviors for building blocks of the circuitry. A state-strength model for signal represen-
tation is used (as in switch-level simulation) to better model bidirectional signals, tristate
conditions, and buses. Various high-level primitives, circuit debugging aids, display
options, and so on, are integral parts of most logic simulators. Many logic simulation
engines have special purpose hardware to accelerate their performance.



322 Timing Simulation

Logic simulators are very fast and can handle large chips and/or systems. They are the
mainstay of circuit verification of large, digital systems. The primitive models are simple
and hence quick to evaluate. The accuracy of the results is, of course, only as good as the
accuracy of the behaviors of the primitives and the timing model provided for those prim-
itives.

Now that we have a high-level understanding of circuit, timing, switch-level and gate-
level simulation, we will delve into the topic of timing simulation in more detail.

11.4 Motivation for Timing Simulation

Device modeling

The analytical equations that describe electronic device models are complex, and their
evaluation is time consuming. In fact, over half the computer time of circuit simulation
programs can be spent evaluating device models. In such a situation, improvements in the
algorithms that formulate and solve equations yield very little in the way of improved
turnaround time. In order to gain significant speed over traditional simulation methods,
this “modeling bottleneck™ has to be overcome by using simplified device models. Simpli-
fied models lead to more efficient simulation, but with a concomitant loss of simulation
accuracy. This trade-off is shown in Figure 11.2.

Device models typically consist of i — v characteristics and parasitic capacitances. In
the case of MOS transistors, there is only one current to be modeled since the gate current
is negligible. The channel current computation is often simplified using table look-up,
piecewise constant, or piecewise linear models. In addition to the i — v characteristics, the
equivalent circuit for the MOS transistor consists of nonlinear (voltage-dependent) capac-
itances to model the gate oxide, junction, and overlap capacitances. Figure 11.4 shows a
simplified equivalent circuit where the five nonlinear, floating capacitances associated
with the MOS transistor have been replaced by three linear grounded capacitances. Each
of these equivalent capacitances has a width, length, and area coefficient. All the coeffi-
cients are determined by a fitting and optimization process. Miller effects (e.g., gate to
drain capacitance coupling) are not simulated with this simplified model. However, for
most digital circuits, this mode] has been shown to produce sufficient accuracy. A number
of timing simulators use this linear grounded capacitance model to simplify their compu-
tations. The advantage of this model is that node and branch variables can be solved in a
decoupled fashion in the absence of floating capacitors. Of course, there is an accuracy
penalty to be paid for this modeling simplification.

When nonlinear capacitors are modeled by timing simulators, piecewise linear func-
tions in the g — v plane are most often used. These approximations correspond to piece-
wise constant functions in the C — v plane. Such a model can be constructed in a charge
and energy conserving manner as shown in Figure 11.5. The curved lines in the figure



Motivation for Timing Simulation 323

R o!
Y
X
ot

|

o

ow

Figure 11.4 Simplified equivalent circuit for the capacitances associated with MOSFETs.

"A CA

Vs
v, E
Vo
9 i Ty Vo iy o

Figure 11.5 Modeling of nonlinear capacitances.

show the actual g — v and C — v characteristics of the capacitor. Since the end points of
the analytical curve and piecewise linear approximation in the g — v plane are the same
(gy and g;), charge is conserved. If the two shaded areas in the figure on the left are equal,
the area under the analytical curve and the piecewise linear approximation are equal,




324 Timing Simulation

implying conservation of energy. The piecewise linear table is easily converted to a piece-
wise constant table in the C — v plane.

Exploitation of latency

Most circuits display both spatial and temporal latency. In fact, larger circuits often dis-
play a relatively high degree of latency. Spatial latency refers to the situation where at any
given time, there are portions of the circuit with no activity. Further, activity in a small
section of a circuit usually affects only the neighboring portions rather than the entire cir-
cuit. Likewise, for a given portion of a circuit there are periods of time when it is inactive,
giving rise to temporal latency. Timing simulators take advantage of inherent temporal
latency by using event-driven or activity-dl’iven methods. Thus computation time is spent
only on the active portions of the circuit, and only during active subintervals of time. Tim-
ing simulators often take advantage of spatial latency, too, by partitioning the circuit into
smaller blocks called subcircuits that can be solved in a decoupled fashion.

Variable accuracy

In the accuracy-speed trade-off, it would be beneficial to be able to trade accuracy for
more speed and vice versa. In other words, the ability to accommodate variable accuracy
device models is desirable. Traditional circuit simulators are accurate, but do not atlow the
reduction of accuracy requirements in return for faster simulation (adjustment of toler-
ances does affect run time, but not by much). Variable accuracy can be useful both across
portions of the circuit and across runs of the simulator. For example, a critical path or a
sensitive portion of a circuit could be assigned higher accuracy without paying the price of
slow run time for the entire circuit. Or a new design can be quickly simulated with crude
models as a sanity check, and the device models can be replaced by progressively more
accurate models during the final tuning of the circuit.

High capacity

Using traditional circuit simulation methods, designs are often manually broken into
smaller chunks and simulated separately. This design partitioning is necessary since cir-
cuit simulators typically cannot accommodate a full chip or system. The process of split-
ting circuits into smaller ones, verifying them separately and thus guaranteeing correct
operation of the overall design is tedious and error-prone. Hence any increase in capacity
is a welcome aid in the design of integrated circuits.

We will first understand how these motivating principles are applied in the MOS Tim-
ing Simulator (MOTIS), and then discuss some examples of more recent research activity
in the domain of timing simulation.



The MOS Timing Simulator (MOTIS) 325

11.5 The MOS Timing Simulator (MOTIS)

MOTIS [Chawla75], developed at AT&T Bell Laboratories, was one of the first timing
simulators. It pioneered such techniques as event-driven simulation, table models, and
simplified device models. It was developed for use on circuits containing MOS transistors
only. It was designed to simulate digital logic circuits including transmission gates (or
pass gates) to accurately predict the timing of the circuits, including subtle characteristics
such as glitches.

Device models

The model for an MOS transistor in MOTIS is simple. The MOSFET i — v characteristics
consist of a two-dimensional table representing the drain to source current,

€

'y (Vos = Viws V) . (11.5.1)

i, =
ds Leff

with 64 equally spaced voltage values on each axis. An auxiliary one-dimensional table
for threshold voltage,

Vi = f(vy) (11.5.2)

uses 64 values to represent the body effect or the variation of threshold voltage due to
back-gate bias or v,,. The threshold voltage is used as a shift in the main two-dimen-
sional table. Different tables are built for different types of transistors (N type, P type, sat-
uration loads, etc.) as well as for different temperatures and process bias conditions. The
evaluation of the channel current of a transistor from analytical equations in the innermost
loop of a simulator can be quite time consuming. MOTIS replaces that evaluation by the

two simple table look-ups discussed above and scaling of the result by the W /L, ;¢ Tatio

of the device.
The circuit to be simulated is assumed to consist of simple building blocks like NAND
gates, registers, flip-flops, and so on. Each gate is precharacterized to have a certain equiv-

alent load capacitance C, which is linear (voltage-independent) and grounded. Hence
Miller effects (gate to source and gate to drain capacitance coupling) are ignored.

Gate current evaluation

Using the look-up table to evaluate the current of each MOS transistor of a logic gate, cur-
rents of transistors in parallel are added, and currents of transistors in series are combined
in the following fashion:



326 Timing Simulation

1

total

_ 1.1 (11.5.3)
I

I

1, and I, are computed by table look-up as though the fofal series voltage of the two tran-
sistors were applied across each of the transistors in turn. Referring to Figure 11.6, I, and
1, are computed as though all of v, were applied in turn to the channels of transistors
M, and M,. From (11.5.3),

= + (11.5.4)

VDD

Figure 11.6 Equivalent model for an NMOS NAND gate in MOTIS.

Or

1 1 1

= — 4+ — (11.5.5)
Gtotal Gl G2

which is exactly like combining conductances in series. The total current flowing out of a
logic block 7,,, is computed as the difference between the total current of the pull-up

chain (I, _,,) and the pull-down chain (1, _ 4,.,), a8 illustrated in Figure 11.7.

Event-driven simulation

The model for a gate is shown in Figures 11.6 and 11.7. In the first step, each gate is
replaced by a single equivalent pull-up and pull-down device, and the output load is mod-
eled by a single grounded capacitance. Then each of the pull-up and pull-down transistor



The MOS Timing Simulator (MOTIS) 327

VDD
I
pull —up _
¢ Inet - Ipull—up_lpull—down
_’_‘__

Ipull—down<¢> out
1 Cl

Figure 11.7 MOTIS electrical model for a logic gate.

chains is replaced by a single current source using the gate current evaluation procedure
described above (see Figure 11.7).

Any time the inputs to the gate change, the gate is re-evaluated and then its fanouts are
scheduled to be re-evaluated, too. The equations for evaluating logic gates are as follows:

Av, = — j I dt (11.5.6)

Using the Backward Euler formula to integrate 7, ,:

Av,,, = al’“’(HAI) At (11.5.7)

During the period ¢ to + At, the variations of the gate input voltages are ignored. How-
ever, 1,,, is a function of v, ,, therefore

L,(t+At) =1 () +G,Av,, (11.5.8)

where G, is the equivalent conductance at the output of the gate. Combining (11.5.7) and
(11.5.8) yields

Ine (t)
Avom = (:lt— (11.5-9)
Ar~ Ges

where C, is known and I, ,, (¢) is computed using table look-up and series/parallel com-
binations. Hence we need only G, to compute Av,,,.



328 Timing Simulation

G,, can be computed using expensive Newton-Raphson iterations, but in the interest of
speed, MOTIS uses a secant approximation as shown in Figure 11.8. A secant is drawn
from the present operating point to the origin of the i — v plane and the slope of that line is
used as G,,. Once Av,,, is computed, the change is propagated to the fanouts of the gate.
Simulation then continues in an event-driven fashion.

1 pull—down
i-v characteristic AN
\l present operating
point
G,
\ secant
approximation
v

out

Figure 11.8 The secant approximation in MOTIS.

MOTIS was the first timing simulator and pioneered such techniques as event-driven
timing simulation, simplified device models and table models. It only accommodates cir-
cuits consisting of carefully precharacterized logic blocks and some limited pass transistor
configurations. It ignores gate-to-drain capacitance coupling because of its grounded
capacitor assumption. However, it is very efficient and sufficiently accurate for the types
of circuits and technologies that were present at the time it was first developed. Many
enhancements on the basic MOTIS algorithms have been carried out after the original
development [Chen84, Tsao85].

11.6 ELogic and SAMSON

This section and the next will briefly review some other interesting timing simulation
strategies that were reported in the literature since the time that MOTIS was originally
published. The approaches presented here were motivated by the need for a general, fast,
large-capacity and reasonably accurate timing simulator for digital circuits. The review
here is not exhaustive; some representative timing simulation efforts are briefly described.



ELogic and SAMSON 329

SAMSON

SAMSON {Sakallah85] is a mixed circuit/logic simulator. It uses an event-driven algo-
rithm to maximally exploit temporal latency. First, SAMSON partitions the circuit into
loosely connected subcircuits. Each subcircuit is allowed to have its own time step, dic-
tated by its activity pattern and any changes in the inputs to that subcircuit. Each subcir-
cuit is evaluated at discrete time points, and a circuit event is said to occur at each of these
time points.

Each subcircuit, at any given time, is either alert or dormant. Alert circuits are modeled
by a set of nonlinear algebraic differential equations, as in detailed SPICE-like simulators.
A subcircuit is always alert during its circuit events, and dormant otherwise. Dormant
subcircuits do not require linearization or discretization in their solution process. Instead,
the previous behavior of the subcircuit is extrapolated using a predictor/corrector integra-
tion scheme. Hence evaluation of dormant subcircuits is relatively inexpensive. The
higher the proportion of dormant subcircuits and the longer the subintervals of time for
which they are dormant, the more efficient the simulation. If any input to a dormant sub-
circuit changes, the subcircuit is replaced by an alert model, with a reduced time step from
the one previously computed using the dormant model. The outputs of dormant models
could drive other dormant subcircuits and cause those subcircuits to change to an alert
state.

To discretize time, a stiffly stable variable order integration scheme is used in SAM-
SON [van Bokhoven75]. These integration formulas provide efficient extrapolation for
dormant circuits. In addition, good truncation error formulas and estimates for the decou-
pling error between subcircuits are available. Two types of truncation error are used. The
first is an a priori truncation error estimate that can be applied before the solution at the
next time step has been computed. This estimate is useful in time step selection. The sec-
ond is an a posteriori estimate that can be used to calculate the truncation error in a time
step after the solution has been computed. It is useful in rejecting time steps that were too
large. If a time step is rejected, theoretically, the simulation time has to be rolled back to
the time of the rejected time step since other subcircuits could have marched ahead with
erroneous input waveforms. But rolling back time is computationally expensive and diffi-
cult to implement. Instead, SAMSON deals with the problem by being conservative in
replacing dormant models with alert ones.

The actual solution of linear(ized) equations uses either a Block LU Factorization or a
Block Gauss-Seidel iteration (see Section 11.8 for a discussion of Gauss-Jacobi and
Gauss-Seidel iterations) since the global matrix is composed of several loosely connected
diagonal blocks.

Thus SAMSON uses partitioning and event-driven algorithms to exploit latency, with-
out significant loss in simulation accuracy. The event-driven nature helps the simulator
incorporate logic blocks characterized by behavioral models as subcircuits, in addition to
transistor-level subcircuits.



330 Timing Simulation

Electrical Logic simulation (ELogic)

Electrical Logic simulation (ELogic) [Kim89] uses an event-driven method to analyze
MOS digital circuits. Nodal Analysis is used as the basis of equation formulation. Each
node voltage is allowed to take one of a set of discrete values or states. Nodes can move
from one state only to the next adjoining state in either direction. The transition from one
state to another is called an event and the time when that occurs is the event time. Simula-
tion proceeds by computing the event time for each node. Simulation time is moved to the
time of the most imminent event, which is then processed. At that time, the node voltage 1s
updated to its next state and the expected time that will elapse before its next event is com-
puted, and an event scheduled into the future. The number of voltage states can be varied
both across portions of the circuit and across runs of the simulator, allowing the user to
influence the speed-accuracy trade-off.

Figure 11.9 shows a node voltage v, that moves from state V| through V, with transi-
tion times ¢, t,, and t;. These transition times are the unknowns in ELogic. Event times
are determined using the equivalent circuits shown in Figure 11.10, where each Norton
equivalent in Figure 11.10(a) represents a linearized MOSFET model. Assume that node
A has just had an event and its new voltage is V,,. We must now compute the time it will
take for node A to reach its next discrete voltage state, V, . ELogic assumes that there is
a capacitor to ground from every node. The linearized MOSFET model is computed
assuming that the voltage of node A is V. The voltages of all other nodes except the one
being updated are assumed to be constant, and hence an independent voltage source is
used to represent the capacitor to ground from those nodes.

v

ti—t5 t5 —-

Figure 11.9 In ELogic, node voltages make discrete transitions from one state to another;
the transition times are the unknowns.



ELogic and SAMSON 331

[
IvorTON
NOLYON

| |
| |
0

N
N"'-i
o
T
<

v, C

(a) (b)

Figure 11.10 Equivalent circuit in ELogic for updating of node A. The equivalent circuit
in (a) is combined to compute the event time using (b).

All the elements connected to node A are combined into a single Norton equivalent
consisting of a current source Iy,pron in parallel with a conductance G, pron- 35
shown in Figure 11.10(b). Then a Forward Euler model is used to compute the time to the
next event Az:

(Vn+I_Vn) CA

At = (11.6.1)
INORTON - VnGNORTON

At that time into the future, the voltage of node A will be updated to V, ; and the time

for it to make its next transition will be computed using the voltages at the surrounding
nodes and linearized device models in effect at that time. An event queue of transitions is
maintained and simulation consists of repeatedly processing the most imminent event.
There are also variants of the ELogic algorithm that use Trapezoidal integration for only
the capacitor at the node that is being updated, and that permit floating capacitors
[Kim89].

The advantages of the ELogic algorithm are that it is fast due to its event-driven nature
and it allows for a continuous accuracy-speed trade-off. One of the problems, however, is
that discrete voltage states can lead to an oscillation problem whereby two nodes repeat-
edly cause each other to jump between discrete states, in turn causing an unnecessarily
large number of events. ELogic addresses this problem by implementing a cycle detector
to detect and suppress such spurious oscillation.



332 Timing Simulation

11.7 Piecewise Approximate Timing Simulation

Piecewise approximate simulation refers to a class of timing simulators that model circuit
quantities (voltages, currents, i — v characteristics) by piecewise functions. For example, a
node voltage could be approximated by a piecewise linear function of time or the current
through a nonlinear device could be approximated as a piecewise linear function of volt-
age. In SPECS (Simulation Program for Electronic Circuits and Systems) [Visweswari-
ah91a, Visweswariah93], i —v characteristics are assumed to be piecewise constant,
branch currents piecewise constant in time and branch voltages to be piecewise linear in
time. In ACES (Adaptively Controlled Explicit Simulation) [Devgan94}, i —v character-
istics are modeled by piecewise linear functions and all branch and node quantities are
piecewise linear in time. In SWEC (StepWise Equivalent Conductance) [Lin93], branch
conductances are approximated by piecewise constant functions of time.

The advantage of piecewise approximate methods is that they lend themselves well to
event-driven simulation. Whenever a branch or circuit quantity reaches a corner of a
piecewise segment, an event is processed. By varying the number of piecewise segments
used in the approximation, variable accuracy is a natural benefit of piecewise approximate
models. Thus there is a direct trade-off between accuracy and the number of events pro-
cessed, or the speed of simulation. This section will describe some piecewise approximate
timing simulation methods that were recently reported in the literature. We first begin with
a description of SPECS.

Device models for 2-terminal non-energy-storage devices

In SPECS, all non-energy-storage devices have their i —v characteristics modeled by
piecewise constant functions. In the case of two terminal elements, these are one-dimen-
sional functions as shown in Figure 11.11. The models can be built at different levels of
accuracy as shown in the figure. A large number of stepwise constant segments, as shown
on the right, leads to a more accurate model, and vice versa. The implication of this

approximation is that as long as the voltage across the element is between v; and v, ), it

behaves like an independent current source of value Z The v,’s and fi’s are computed and
stored a priori as table models, using the following simple formula:

Vitl

!

- 1
L= G J'f(v) dv (11.7.1)

where i = f(v) represents the actual i — v characteristics of the element.



Piecewise Approximate Timing Simulation 333

A |
| | =
. ! >
v Viet v ° ’v

Figure 11.11 [-- v characteristics are approximated by piecewise constant functions.

Device models for linear capacitances

Linear (non-voltage-dependent or constant) capacitances are modeled using their constitu-
ent equation

| = C— 7.
i T (11.7.2)

Nonlinear capacitors will be discussed later in this section.

Simulation algorithm overview

Consider a simple section of a circuit as shown in Figure 11.12. This section will explain
the simulation of this circuit qualitatively. See [ Visweswariah93] for a more mathematical
description. Figure 11.11 assumes that we have a circuit consisting only of two-terminal
resistive elements and grounded constant capacitors. Later in this section, we will see that
resistive elements are treated as links in a tree/link formulation (see Appendix A for

details), which explains the notation Ly, Ly, and L, for these elements (not to be con-

fused with the notation of L for inductors in previous chapters). Each of the these link ele-
ments is represented by a table model of i — v characteristics, as shown in Figure 11.12.
An event is said to occur (or fire) whenever a device reaches a corner in its table of
i — v characteristics. At that time, the branch current of the element that caused the event
makes a step jump to the new current looked up from the table model. Hence the branch
current of all nonstorage elements is piecewise constant in time. These currents distribute
to the capacitances in accordance with KCL, causing the branch currents of all elements to
be piecewise constant in time. Let us say branch L has an event causing a change of cur-

rent Ai.. Then, by applying KCL,




334 Timing Simulation

ol _—f
Ai6¢
:, E -
T Avg Ve
L L L,
e I o e B o e I
— R —_—

il\L ——, izl:___ C, i l:: C, i4i:: C,

Figure 11.12 Segment of circuit to demonstrate SPECS algorithm.
iy =ls— i = Ai, = —Ai, (11.7.3)
and
Iy =i¢~i, = Ay = Aig (11.7.8)

No other currents anywhere else in the circuit change, assuming this event is the only one
occurring at the present time.

Piecewise constant currents in capacitors cause piecewise linear branch voltages. These
voltages distribute via KVL causing all branch voltages to be piecewise linear in time.
Hence KVL can be applied in terms of voltage slopes, which in turn are piecewise con-
stant in time.

. i . —Aig

V2 = E; = AV2 = Tz (11.7.5)
. t3 . Aig

V= 63 = AV3 = a‘ {11.7.6)



Piecewise Approximate Timing Simulation 335

No other capacitor voltage slopes in the circuit change. Applying KVL,

Aig  Aig A

1;6=\r.’2—v-3$A\}6=—‘6“—z‘*' = C (11.7.7)
2 3 eq
Ai
2
Ai
3

where C,_ is the series combination of C, and C;. Other than L, L, and L,, there is no

change in the voltage slope of any other noncapacitor element in the circuit. These slopes
allow us to predict the next event time of each of L, Lg, and L, using the simple formula

. ) Target voltage — Present voltage
Eventtime = Presenttime + g g g

11.7.
Voltage slope (11.2.10)
The target voltage is determined from the table model. Thus, for L,
Ave
Até = — (11.7.11)
Ve

is the time to the next event. Hence the event corresponding to L, is scheduled for a time

At later as shown in Figure 11.13. L, and L, are rescheduled to reach their target volt-
ages at new event times due to their change in slope, as shown in Figure 11.13. The figure
shows Lg’s event being rescheduled. Similarly, L,’s event is rescheduled, too.

Vs
target ... .. ___ -
voltage new v T
present o E
voltage -~ >~ ! :
beginning | /{d\}5 ! |
of segment| : : !
: ‘ > : ! -
present event ¢ present new old ¢
time time time event event

time time

Figure 11.13 Scheduling and rescheduling of events for L and L.




336 Timing Simulation

An event queue is maintained. Time is moved to that of the most imminent event in the
queue and that event is processed. As a result, that event is scheduled for a future time and
perhaps some other events are rescheduled. The event queue is appropriately juggled to
restore time ordering and then the next most imminent event is processed. Event process-
ing is the heart of the simulation process. The equations above show how event processing
can be reduced to a small number of arithmetic operations. Thus simplified models
(tables) and event-driven algorithms contribute to the efficiency of the timing simulator.
Further, although L, and L in Figure 11.12 may both be identical devices, they can have

table models built with a different number of segments in their table models; hence vari-
able accuracy is possible across portions of the circuit and across runs of the simulator.

Device models for MOS transistors

All piecewise approximate simulators use piecewise functions to approximate device

characteristics. In SPECS, the i — v characteristics of MOS transistors are approximated
by stepwise constant functions in two dimensions as shown in Figure 11.14. The average
current is computed as follows:

Ves(i+ 1) Yds (G +1)

- 1 1
I, = [V — J[v — ] j J.f(vgs,vds)dvgsdvds (11.7.12)
gs(i+1) gs (i) ds(j+ 1) ds (j)

Vestn Vs

The channel current is also a function of v, (“back-gate bias”) due to the variation of

threshold voltage (also called the “body effect” or “back-gate bias effect”). However,
building a three dimensional table would make the table very large. Instead, a two dimen-
sional table is built as shown in (11.7.12) and the effect of the back-gate bias is taken into
account dynamically during the simulation. In the simplest case, the MOS parasitic capac-
itances are modeled as shown in Figure 11.4.

Modeling of independent sources

The voltage of independent sources is approximated in SPECS by a piecewise linear func-
tion of time and the current of independent current sources is approximated by a piecewise
constant function of time as shown in Figure 11.15. Hence the voltage of all branches is
piecewise linear in time and the current through all branches is piecewise constant in time.

Event processing without loops of Cs

The event processing procedure described for the sample circuit in Figure 11.12 will now
be formalized and generalized. In SPECS, the voltage-step of each device is fixed and the
unknown is the time necessary for the traversal to the next voltage boundary. Hence event
processing is similar to the ELogic concept of finding the next time that a node voltage



Piecewise Approximate Timing Simulation 337

‘ Ids
ids

Ves (i) Ves(i+1)

> Vs

Vs (i) <
Vas(i+ 1) e s

e

Vs ’ e

Figure 11.14 Each range of V., and v,  has a constant current I;,. The current shown
here is only for one subrange of v, and v,,.

Vv‘ i A

Figure 11.15 Modeling of independent sources.

crosses a threshold, only here we are dealing with branch voltages. This section describes
event processing in SPECS with the assumption that all the linear capacitors and indepen-
dent voltage sources of the circuit form a tree. One way for this assumption to be satisfied
is to have a linear capacitor or independent voltage source from each node to ground, and
no floating capacitors or voltage sources. Let the circuit contain p independent voltage
sources, g linear capacitors, and m cotree links.

Events are usually caused by a (resistive) link moving from one segment of its table
model to the next. Events can also be caused by an independent voltage or current source
changing its voltage slope or current value, respectively. The list of independent voltage



338 Timing Simulation

source events is known ahead of time. In fact, the simulation begins by ramping up inde-
pendent voltage sources to their initial value and stepping up independent current sources
to their value at the beginning of the simulation. This method of finding the initial state of
a circuit is called a “pseudo-transient analysis” and replaces the dc solution that traditional
circuit simulators carry out before starting the transient analysis.

Let us consider an event caused by the j link having a change of current Ai ;- We will
use the subscript ¢ to indicate tree branch values and the subscript ! to denote link values.

KCL for every fundamental cutset that includes the j link will dictate how the change of
current is distributed to other circuit elements. Since all the links in each cutset have a
fixed current dictated by their respective table models, the change of current will be
absorbed by the unique tree branch in each of these fundamental cutsets such that KCL
continues to be satisfied. We write KCL and KVL in terms of fundamental cutsets and

loops, using the F matrix (see section A.5 for details). Each row of the F matrix corre-
sponds to a fundamental cutset and each column a fundamental loop. Writing KCL for the

% tree branch,

o = — Z F, i (11.7.13)

where the superscripts old and new are used to denote circuit quantities before and after
the processing of the event. Writing KCL after the event,

jew - 2 (11.7.13)

Subtracting (11.7.14) from (11.7.13), we get
Ai, = —F A, (11.7.15)

(11.7.15) can be applied to compute the new current of every tree branch that includes the
** link in its fundamental cutset. But that set of tree branches constitutes the fundamental

loop of the j** link (see Appendix A for details). Hence all the tree branches in the j™
link’s fundamental loop are assigned a new current and KCL is now satisfied for all cutsets
in the circuit.

The next step is to write KVL for the " link before and after the event:

Ptq ptg old

Vol = szr"fk = ZFk,V,k+ Y Fk, (11.7.16)

k=p+1



Piecewise Approximate Timing Simulation 339

Ptq new
Vi = 2 F, Vu+ Z F, —— C (11.7.17)
k=p+1
Subtracting and substituting from (11.7.15),
ptq p+q . .
F A Ai,,
AV, = F = ~-F, 7 - _ 7 11.7.1
ir - z kr o~ Ck _z kr Ck Ceq(r,j) ( 8)
p+1 k=p+1

where C, q(r,j) 15 the series equivalent capacitance of the shared capacitances in the fun-

damental loops of the j* and " links, taking orientation into account. In particular, for
the j link itself,

i v Fy 1
- Z Mo 2 — (11.7.19)
Ceq G.J) k=p+1 Ck Csinjloop ¢

which is the series equivalent capacitance of all the capacitors in j’s fundamental loop,
since the square of every significant element of the F matrix is unity.

The event time of every affected link is adjusted in the event queue. The set of affected
links is called the sphere of influence of the link that had an event. Two links are in each
others’ sphere of influence if they share at least one capacitance in their fundamental

loops. The j* link is scheduled to have its next event when its voltage slope dictates that
it will reach the next corner in its table model. The links in its sphere of influence will be
rescheduled to reach their target voltages either earlier or later, as shown in Figure 11.13.
In particular, it is possible for a new voltage slope to be zero (in which case the new event
time is o=) and the corresponding event leaves the active event queue. It is also possible

that the new voltage slope of a rescheduled link is opposite in sign to the old voltage
slope. In that case, the link is rescheduled to return to the start of the segment that it had
begun to traverse prior to the event. Note that a change of voltage slope does not affect the
next event time of an independent current source, just as the change of current in an inde-
pendent voltage source does not change its voltage slope.

An event caused by a current source transition is handled in much the same manner as
above. The current of each tree branch in the fundamental loop of the source is first
updated. Then the new slope of all affected links is computed and events appropriately
rescheduled. The source’s voltage slope changes, too, but that does not affect any events
on the queue.

An event caused by an independent voltage source is a little different. The change in
voltage slope of the source results in the change of voltage slope by the same absolute
amount in each of the links in the source’s fundamental cutset. Each of these links is
appropriately rescheduled to take into account its new slope. No currents change in the



340 Timing Simulation

circuit until the next time that a link has an event and hence a current change.
Thus event processing consists of a few arithmetic operations and the juggling of an
event queue, and can be performed efficiently.

Timing error estimation

This section will estimate the timing error incurred due to the piecewise constant approxi-

mation in i — v characteristics. Traditional simulators use a local truncation error formula
to estimate integration error. In SPECS, however, the actual integration and simulation are
exact, whereas the approximation is in the device models. Further, the unknowns we are
dealing with are event times, not voltages or currents. Hence we need to develop an error
criterion that relates the timing error to the device modeling error.

Consider a link . A portion of its table model is shown in Figure 11.16. The dark solid
line shows the table with one segment in the table model for the voltage range vy <v <v,.
The heavy dotted line shows the table if the same voltage range were represented by two
voltage segments [vy, v; } and [v;, v, }. Let the three table model currents be

1 v,
I, = =) ,,Of(V) dv
_ 1 (Vs
I, = m vof(") dv (11.7.20)
— 1 Vs
I; = m- Vif(v) dv

where f(v) represents the true i-v characteristics of [. Let Ai,=I,—-1, and
Ai, =1, —1I,. Let the slope of the voltage across the link / be s in its transition from v, to
v, with the current /,. We compute the difference in timing At for the traversal from v, to

v, between a one-segment model and a two-segment model. As the number of segments

approaches infinity, the timing error will monotonically decrease to zero. Assume that the
transition is completed with no change of slope during the traversal. Obviously the two-
segment model is more accurate.

If the voltage slope across / is s on the current segment I,, then the voltage slope on the
segment with current 7, is (s+Ai,/C, 7 and the slope in the segment corresponding to
I;is (s—Ai/C,), where C,, is the series combination of all the capacitors in the fun-

damental loop of the link . These voltage slopes are derived using (11.7.18). Now we can
write an expression for the timing error Af:

At = + - 11.7.21



Piecewise Approximate Timing Simulation 341

4’,
VO V. Vf 1%

Figure 11.16 Relative timing error between a one- and two-segment model.

or

1] v,—v, V=V,
At = - + — v+ 11.7.22
! s . Ai : Ai, EARC ( )
+ —_
sC,, sC,,
Expanding the first two terms into a series valid for small Ai,/sC, g and Aiy/sC, , we
obtain
PO P e B I
t=—|{v,~v - + -3+
§ 0 SCeq Szcgq
11.7.23
{ e Aiy AL , (m-7.23)
Vo=V, + +—=—+..} vty
£ sC,, sngq fo0
Collecting the constant terms, we have
1
At = (v, = v+ V=V = vt vg) + 0 (Al Ady) = O (Ai}, Aij) (11.7.24)

Thus the constant terms cancel out. Collecting the coefficients of Ai; and Ai, we have

1 Ai, Aiy 2 42
Ar = i (v;=vp) o |t (vp=v) sC + O (Aif, Aiy) (11.7.25)

eq eq



342 Timing Simulation

From (11.7.20), we obtain
Iz(vf— vo) = I (vi—vy) +1; (vf— v;) (11.7.26)
Substituting for (v,—v,) we have
LI(ve=v) + (vi—vp) ] = I (vi=vp) + I3 (vi=v)) (11.7.27)
Rearranging terms,
(ve=v) (Aiy)) = (v;=vy) (Afy) (11.7.28)

Combining (11.7.25) and (11.7.28) we find that the coefficients of Ai; and Ai, are zero.
The relative timing error, At/ t is of the order of

(AVAI'ZJ
S3C3q AL

) (11.7.29)

Av B (sC

A

Hence, the relative timing error is second order in Ai, and inversely proportional to the
square of the transient voltage slope across the device. In digital circuits the timing of tran-
sitions from a high to a low voltage and vice versa are very important. Transitions are peri-
ods of high slope, so this algorithm produces relatively accurate timing results. On the
other hand, when steady state is approached, the voltage slope is relatively low and hence
the relative timing error is large. This error manifests itself as a steady state level error.
Since timing information is more important than level information in most digital circuits,
this algorithm is well suited to digital timing verification.

Steady state algorithm

Due to the discretization in device models, there is the possibility of oscillation when
steady state is approached because a device can jump back and forth between two current
levels in its table model. To deal with this problem, a special steady state algorithm is
used. The basic principle of the steady state algorithm is to never let a device have an
event that instantaneously changes the sign of its voltage slope. Since steady state is
defined as the condition of zero voltage slope, no device can cross its steady state. The
above principle ensures the stability of the integration (see section 5.4 for a discussion of
stability of integration formulas), and is illustrated below by means of an example.
Consider a link / traversing the segment BC in its table model with a positive slope as
shown in Figure 11.17. When it reaches the point C, [ has an event and its current is
updated to the value E (looked up from the table model). If its new voltage slope is posi-



Piecewise Approximate Timing Simulation 343

i A

-
L%
Figure 11.17 Example to demonstrate the steady state algorithm.

tive, [ is assigned a new event time to reach F and event processing continues as usual.
However, if the new voltage slope is negative, it means that the increase of current corre-
sponding to CE is too much. Then an “in-between” current level D is computed at which

the voltage slope of the link / is exactly zero. This current is chosen to be I’s new current
and I’s event leaves the active event queue since its voltage slope is zero. If any link in ’s
sphere of influence subsequently has an event, I’s voltage slope will cease to be identi-
cally zero. At that time a pseudo-segment JK is created by interpolation and { is scheduled
to reach K or J, depending on whether the voltage slope after rescheduling is positive or
negative, respectively. If, for example, the new voltage slope is positive, an event occurs
when !/ reaches the voltage K. At that time the current is updated to the value L. Again, if
there is a change in sign of voltage slope, an in-between current is computed. If not, / con-

tinues along the segment LF. Note that only one pseudo-segment is required at any given
time.

In the case of MOS transistors, the above algorithm can easily be extended to two
dimensions. Instead of a pseudo-segment, a pseudo-square is created in the v
plane when necessary.

gs — Vds

Event processing in the presence of loops of Cs

The scalar equations that we solved to determine event times in the absence of floating
capacitors get replaced by small sets of matrix equations that must be solved simulta-
neously when the circuit has floating capacitors. The basic idea behind event processing is
the same, but the update equations are now coupled. Details of the equation formulation
and solution can be found in [Visweswariah93].




344 Timing Simulation

Modeling of nonlinear capacitors

The nonlinear capacitance model shown in Figure 11.5 is used to create a piecewise con-
stant C — v model for each nonlinear capacitor. An event is associated with each nonlinear
capacitance. Whenever the capacitance reaches a comner in its C—v table model, the
capacitance has an event. At that time, the capacitance is updated to its new value from the
table. Every link that has the updated capacitance in its fundamental loop has a new volt-
age slope and a new C,,. Such links are rescheduled based on their new voltage slopes

and simulation continues. In addition to nonlinear capacitors, ECL circuits containing
bipolar transistors have been incorporated into SPECS using the simple Ebers-Moll BIT
model [Visweswariah91b].

Sensitivity in SPECS

The simple device models and event-driven nature of SPECS make the computation of
transient sensitivity extremely efficient by both the adjoint and direct methods [Nguyen89,
Feldmann91]. For direct sensitivity (see section 9.1), the sensitivity element for a two-ter-
minal link is obtained by directly differentiating the BCR with respect to the parameter of
interest p:

i=f(v,p)
di_ v ¥
dp odvdp op (11.7.30)
of o
=V op
Hence the sensitivity circuit element consists of a current source of value — in series

op
, o . - : .
with a conductance of value — . Since the original element is a current source with step

dv

changes in current at the voltage segment boundaries, the sensitivity element is a zero-val-
ued conductance (open circuit), except at the voltage boundaries where it is a train of
Dirac impulse functions of height equal to the height of the corresponding step in the orig-

inal i — v characteristics, as shown in Figure 11.18. In the adjoint method, the contribution
of a two-terminal link to the sensitivity relation (9.5.10) is

9
Qov —ydi = mﬁv—w(£8v+%ﬁp) (11.7.31)

Choosing the BCR for the adjoint circuit as ¢ = wa—{ , the sensitivity relation becomes



Piecewise Approximate Timing Simulation 345

ik G. A

Vi Vv, Vs V, v v, Vs Vy, v
of
Geq = —a—v
o L@_
—>
i = f(v,p) ; 2 ¥
eq ap
@) (b)

Figure 11.18 (a) Two-terminal element in SPECS and (b) the corresponding sensitivity
circuit element.

oF af
3 = —wa—p (11.7.32)
where F is the sensitivity function of interest. Hence the adjoint circuit element is simply
a conductance with a series of impulses at voltage segment boundaries.

The sensitivity and adjoint circuit elements for capacitors are the same as those derived
in Chapter 9. The simulation of the sensitivity and adjoint circuits is particularly straight-
forward. The associated circuit in either case consists of disjoint capacitors to ground
from each node. At each event time of the original circuit, there is an impulse of current
that flows from one capacitor to another, causing an instantaneous change in a pair of
capacitor voltages due to charge redistribution. Hence the associated circuit can be solved
at a much Jower cost than the original circuit. Finally, sensitivity results are obtained by
combining the waveforms of the original and associated circuit. In the case of adjoint sen-
sitivity, a convolution between the two sets of waveforms is required to obtain the
required sensitivities.

SPECS summary

Simplified device models and event-driven methods give SPECS a speedup of one to two
orders of magnitude over classical methods. With the grounded capacitor model shown in
Figure 11.4, most digital circuit delays can be predicted to within 5 percent of the correct



346 Timing Simulation

delays. SPECS can be used to simulate much larger circuits than traditional simulators,
and transient sensitivity analysis can be performed efficiently. However, new device mod-
els must be derived from the standard available (SPICE-like, analytical) device models;
the SPECS algorithm is based on special purpose device models that have to be created
and tuned by means of an automated optimization process. Floating capacitors (and thus
loops of capacitors) cause a loss of efficiency. In particular, if there are floating capacitors
all over the circuit, then every link is coupled to every other link and much of the effi-
ciency is lost. The integration technique used is akin to Forward Euler and hence suffers
from requiring extremely small time steps in the presence of stiff circuits. Circuits with
widely differing time constants are said to be stiff. In particular, circuits derived by
extracting transistors and parasitics from layout information can have many tiny resistors
in them, resulting in stiff circuits and severe degradation of simulation efficiency. Finally,
inductors do not naturally fit into the formulation since piecewise constant currents and
piecewise linear voltages are just the opposite of the situation in which inductors would be
comfortable. Nevertheless, they can be accommodated by treating inductors as “current-
based” and associating events with inductors whenever they cross predetermined current
thresholds [Visweswariah90].

Adaptively Controlled Explicit Simulation (ACES)

Explicit integration methods like Forward Euler are efficient, but not stable. We saw in
section 5.4 that in order for Forward Euler integration to be stable, the time step is limited
by the smallest time constant of the circuit. Thus for stiff circuits (circuits with a large
variation in time constants) explicit integration methods can be inefficient. This behavior
is also seen in timing simulators that use explicit integration, like SPECS. Adaptively
Controlled Explicit Simulation {Devgan94] seeks to render explicit simulation stable by
adaptively controlling the update derivative, and then takes advantage of the explicit inte-
gration method in an efficient timing simulation algorithm.

The essence of ACES is that the Forward Euler formula

x(t+A1) = x() +Atx (1) (11.7.33)

is replaced by

x(t+ A1) = x (1) +Ax" (1) (11.7.34)

In (11.7.33), At is adjusted to keep the integration formula stable. In (11.7.34), the update

derivative x* (¢) is adaptively controlled to render the integration stable. Each state vari-
able of the circuit is considered to be quiescent if its time derivative is zero. Once a state
variable is quiescent, its update derivative is adjusted to retain the state in quiescence,

hence x (#) #x* (1) . For a non-quiescent state variable, there is no need to adjust the



Piecewise Approximate Timing Simulation 347

update derivative and hence x* () = % (¢) . To begin, all state variables are non-quies-
cent. The time step required to place each variable into quiescence is computed and time
is moved forward to the smallest of these time steps. The state variable with the smallest
time step is then placed in quiescence and retained in quiescence from that time on by
adaptively adjusting its update derivative. Then the next state variable in placed in quies-
cence, and so on, until all state variables are quiescent, and steady state is reached. Of
course, a primary input to the circuit may change, causing state variables to come out of
the quiescent state. This method is illustrated below by means of an example.

Consider the RC circuit shown in Figure 11.19. Assume a step input. The state equa-
tions for this circuit can be written as

Vi==2v,+tv,tu
. (11.7.35)
Vip = u() 1Oy, 1.0 v,
AAvAY ANV
1.0—— —
S SN T1.0 TI.O
t

Figure 11.19 Sample circuit to demonstrate ACES integration.

Consider a time step of Az, for v, and Ar, for v,. Integrate the two state variables using
(11.7.34) with such a time step as to achieve quiescence. Then

vy (At)) = =2v, (A1) +v, (At)) +1 (11.7.36)

Using the Forward Euler approximation in (11.7.34) and solving for the time at which qui-
escence is reached,

0 = —2v,(0) —2A1,¥} (0) +v, (0) +Ar,v (0) +1 (11.7.37)

Initially, v;(0) = v,(0) = 0 and ¥,(0) = v](0) =1 and v,(0) = v; (0) =0
since neither v, nor v, is in quiescence. Hence Az, = 0.5.

Carrying out a similar analysis for v,, we have

v(AL) = v, (Aty) —v, (Aty)

(11.7.38)
0 = v, (0) + Az} (0) — v, (0) — A, (0)




348 Timing Simulation

which cannot be satisfied for any value of A¢, indicating that v, cannot be placed in qui-
escence. So now we choose as our time step Af; = 0.5 (the smallest feasible time step)
and proceed to move time to 0.5. Note that at time 0.5, v, (0.5) = 0, v;(0.5) = 0.5,
V5 (0.5) = v,(0.5) = 05, v,(0.5) = 0.0, and v] (0.5) is unknown as shown in Fig-
ure 11.20.

Nothing
Voltage Quiescent v, quiescent Both quiescent
1.0
V1
0.5 —
Va
0.0 | | 1 |
0.0 0.5 1.0 1.5 20 2.5 t

Figure 11.20 Waveforms for sample circuit in Figure 11.19.

Now that v, is in quiescence, the next step is to find the time steps A#; and A?, that
place v, in quiescence, while retaining v, in quiescence. We have the following equations

for vy

Vv, (0.5 + A7) =-2v, (0.5+A%) +v,(05+ A7) +1

. (11.7.39)
0 =-2v,(0.5) —2A1;v] (0.5) +v,(0.5) + Aljv, (0.5) +1
Thus A7, drops out of the equation and we get
vi (0.5) = 025 (11.7.40)
For the other state variable
Vs (0.5 + Aly) = v, (0.5 + Ah) —v, (0.5 + Ahy)
0 =v,(0.5) + A%} (0.5) — v, (0.5) - Ay, (0.5) (11.7.41)

0 = 0.5 + A%, (0.25) — 0.0 — A%, (0.5)



Relaxation Methods in Circuit Simulation 349

yielding A7, = 2.0 and the final waveforms shown in Figure 11.20. Now both state vari-
ables are in quiescence and the simulation is completed, until one of the inputs changes.

The key idea in the above integration method is to place into quiescence the states with
the fastest time constants and then adaptively adjust their update derivatives to keep them
in quiescence. If there are n states in quiescence and m states not in quiescence, then we
would solve n+m equations with » unknown update derivatives to keep the quiescent
states in quiescence and m unknown time steps for each of the others to reach quiescence.
Of course, the smallest of these time steps is selected. A local truncation error can be
derived for this integration method, quite similar to the truncation error for Forward Euler
integration.

This integration method has been successfully implemented in a simulator [Devgan94]
called ACES. In ACES, the circuit is first partitioned into subcircuits to exploit spatial
latency. Devices are modeled with piecewise linear characteristics in the i — v plane, thus
permitting variable accuracy by using coarser or finer piecewise linear segments. Adap-
tively controlled explicit integration is used in each partition. For each partition, the time
step is chosen to be the smallest from the following three sets:

* the set of time steps to place each non-quiescent state variable into quiescence

* the set of time steps that would get each nonlinear device to the next boundary in its
piecewise linear model

* the set of time steps at which primary inputs of the subcircuit change, including
fanout signals from other partitions.

Further, the time step may have to be decreased to satisfy a truncation error check.

Thus ACES uses Forward Euler integration with adaptive control, partitioning, piece-
wise linear models, and event-driven techniques to implement an accurate, general, and
variable accuracy timing simulator.

11.8 Relaxation Methods in Circuit Simulation

This section will describe a class of iterative methods in circuit simulation known as
relaxation methods. Relaxation can be applied at various levels, including linear algebraic
equation level, nonlinear algebraic equation level and nonlinear differential equation
level. This section will briefly explain some relaxation-based techniques for circuit simu-
lation.

Waveform Relaxation (WR)

Traditional circuit simulation consists of three nested loops: integration, linearization and
sparse solution. The asymptotic order of complexity is superlinear in the size of the cir-



350 Timing Simulation

cuit. Waveform relaxation [Lelarasmee82, White83, Newton84] attempts to partition the
circuit into subcircuits. Subcircuits are repeatedly solved and the solutions pieced together
by Waveform Relaxation (WR). The convergence of the overall solution is linear and the
basic idea is that repeated inexpensive solutions of small partitions is more efficient than
one solution of a large circuit. A by-product of partitioning is that each subcircuit can have
its own time step depending on its activity pattern. Hence latency can be maximally
exploited when combined with partitioning.
Consider a circuit represented by the following equations.

Cv,u)v+f(v,u) =0 and v(0) =V (11.8.1)
where C is the n X n symmetric diagonally dominant nodal capacitance matrix with
C,(v,u) = sum of capacitances incident on node
C,;(v,u) = - total floating capacitance between nodes i and ;.

v is an n X 1 vector of node voltages and v its time derivative. u is an r X 1 vector of pri-
mary inputs and V the vector of initial conditions at time ¢ = 0. f is a vector function of
the net current at each node due to resistive elements (transistors, resistors, diodes, current
sources, controlled sources, etc.). Let us assume for simplicity that we partition this sys-
tem of equations into subcircuits comprising one single node each. Then the steps
involved in the waveform relaxation algorithm are as follows.

1. Set the WR iteration count k = 0. The iteration count will be indicated by a super-
script.

2. Guess a waveform vo(t) for te [0, T] such that v°(0) = V, where T is the
period of simulation. It is easiest to choose vO () = V for all time.

3. Increment the iteration count k& and solve the following equation for vf (#) for all
time for 1 <i< n:

-1 k-1 -k
Zcu(vl’ .. v,,le, e Vg L U) V;

j=1

(11.8.2)
k k k-1 k-1 k-1
+ 2 Cl.j(vl,...,vi,viﬂ VN ,u)vj
=i+l
k-1 k-1 -
+f(v1,.. vz,le,...,vN ,u) =0

Note that in solving the equations, we are taking the present iteration value for the
voltages from 1 to i, but the previous iteration values for the voltages fromi+1to
N. Hence when we solve for v,, we use all previous iteration values and when we
solve for v, we use all present iteration values. Mathematically, the above proce-
dure is called Gauss-Seidel (GS) relaxation.



Relaxation Methods in Circuit Simulation 351

4. Repeat step 3 until

Max, ;o Maxg, o Vi) =vET 1 ()] <e (11.8.3)

where € is a convergence tolerance.

To state the above steps in words: start by guessing a voltage for every node for all time.
Solve for the first node for all time using the guess for the rest of the voltages and treating
them all as known values. Then solve for the second node’s voltage for all time using the
just-obtained solution for the first node and using the initial guess for the remaining nodes.
Continue in this manner until all the nodes have been solved once. That concludes the first
WR iteration. Repeat the procedure for as many iterations as necessary. When all wave-
forms stop changing for all time, as defined by a tolerance factor, terminate the process.

Is convergence to a unique answer guaranteed? Can we have partitions that are larger
than a single node? How many iterations does it take to converge to an answer? How
important is the initial guess? Does the ordering of the nodes matter? These are all legiti-
mate questions and they are addressed below.

It can be shown that under some fairly mild assumptions, the fact of convergence is
guaranteed [Lelarasmee82]. The mild assumptions involve requiring nonzero C matrix
diagonal entries (i.e., a capacitance to ground from every node) and super-smooth (Lips-
chitz continuous) i — v and g — v characteristics for all elements. The fact of convergence
is not affected by the initial guess or the order of processing of the equations.

There is no reason why each equation in (11.8.2) cannot be replaced by a set of equa-
tions corresponding to a subcircuit with more than one node. In practice, subcircuits of
several to several hundred transistors are formed.

The number of iterations necessary for convergence, on the other hand, depends on a
number of factors. Reduction of the number of waveform relaxation iterations and/or the
cost of each iteration is attempted in a number of ways:

* Feedback across subcircuits increases the number of iterations necessary for conver-
gence. Hence strongly coupled circuits and circuits with feedback are lumped into a
single subcircuit wherever possible. A straightforward method to accomplish this
result is to use Strongly Connected Components (SCCs) as described in our discus-
sion of switch-level simulation (see Figure 11.3).

* Subcircuits are scheduled in the direction of information flow to the extent possible.
Hence if an input signal of subcircuit 2 is an output of subcircuit 1, it makes sense to
process subcircuit 1 before subcircuit 2. If the circuit has global feedback, it is not
possible to schedule in this fashion, and the feedback loop has to be “broken” during
the scheduling process.

* Long simulation times cause an increase in the number of iterations required for
convergence. The concept of time windows is introduced to solve this situation. The



352

Timing Simulation

total period of simulation is divided into time windows and each time window is
solved as an independent simulation problem. The initial conditions for each time
window are obtained from the final values of the previous time window. There is a
danger with carrying windowing too far. At each window boundary, all the wave-
forms of all the subcircuits have to be synchronized. So the exploitation of latency
or multirate behavior of the circuit is temporarily lost. Time windows, however,
generally accelerate convergence, reduce the storage requirements and reduce the
number of iterations required.

The simple procedure that we outlined above involves one time window and three
nested loops for iteration count, subcircuit number, and time. The actual order in
which these tasks are performed can be varied and is called a relaxation schedule.

If one set of subcircuits with global feedback requires a large number of iterations to
achieve convergence, the extra iterations may not be necessary for all subcircuits. If
the inputs and loading of a subcircuit have not changed from the previous iteration,
that subcircuit is said to be partially converged and its processing is skipped. The
concept of partial convergence can also be applied to subintervals of time. For
example, the first 10ns of time may have converged for a given subcircuit, so that
part of the simulation can be skipped.

A good initial guess reduces the number of iterations required. The resuits of a logic
simulation, for example, can be used as an initial guess.

The first few WR iterations produce results that need further refinement, so there is
no point in computing them precisely. Hence an adaptive error control scheme can
be used, with larger tolerances for the solution of equations during initial iterations.
As global convergence is approached, these tolerances can be tightened to meet the
required accuracy.

Successive over-relaxation (SOR) is used to accelerate the convergence of the WR
iterations. In an SOR scheme, the equation used for applying updates between WR
iterations is

k k

-1 k k-1

(11.8.4)
where o is the overrelaxation factor, and the superscript denotes the iteration count.
Hence every time there is an update of any variable v, the change since the last iter-
ation is exaggerated by a factor ¢. If the movement towards the solution is mono-
tonic, overrelaxation helps reach the actual solution quicker.

A number of variations on WR have been tried and are briefly described here for com-
pleteness.

Gauss-Jacobi relaxation: Rewrite (11.8.2) as



Relaxation Methods in Circuit Simulation 353

N
k-1 k-1 k-1 _k k-1 k-1 k-1
Z Cij(vl )vz s---,V,-_l,vi,le,...,vN ’u)vj
j=1,j#i
(11.8.5)
k-1 k-1 k~1 k k-1 k-1 &
+ GV Yy eV I VBV e Yy W)Y
k=1 k-1 k=1 k k-1 k-1
+ OV Vs s Vi L VS Vi s Yy s u) =0

for the solution of vf (#) for all time. The change here is that we are using the previ-
ous iteration value for all node voltages except for the one being solved. This type
of relaxation is called Gauss-Jacobi (GJ) relaxation. GJ relaxation converges under
the same conditions as GS relaxation and the convergence is linear, but the number
of iterations required for convergence is typically larger. Also, two versions of each
waveform need to be stored for GJ relaxation. The advantage of GJ relaxation over
GS relaxation is that all the subcircuits can be solved in parallel since they have a
dependency only on the previous iteration solutions. Hence GJ relaxation is a good
candidate for implementation on parallel processors. Note that the ordering of equa-
tions in GJ is immaterial since all solutions are carried out with previous iteration
values, even if the present iteration solutions are available.

* Overlapped waveform relaxation: One of the reasons that WR needs many itera-
tions to converge is that when a subcircuit is solved, the loading from its fanouts is
not accounted for correctly. The number of iterations is sensitive to coupling and
feedback between subcircuits. The global WR procedure is used to communicate
this coupling information during subsequent iterations. Instead, overlapped wave-
form relaxation [Mokari-Bolhassan85] includes one stage of fanout in each subcir-
cuit. Thus each subcircuit is solved including its immediate fanouts. Then the
waveforms of the fanouts are discarded. The extra time spent solving slightly larger
partitions pays dividends in the form of fewer global WR iterations required for
convergence. An overlap of “two inverting stages” has been proposed as an optimal
amount of overlap.

* Segmented waveform relaxation: This form of waveform relaxation is applicable
only to synchronous, clocked circuits and addresses the problem of global feedback.
Constder a circuit operated with a two phase non-overlapping clock scheme as
shown in Figure 11.21. The clock period is divided into four time segments as
shown in the figure. Then the standard WR algorithm is used, with the time seg-
ments acting as time windows. The difference here is that the partitioning is differ-
ent for each time segment [Dumlugol86]. If the circuit being simulated has global
feedback, the feedback loop is broken based on the clocking scheme of the subcir-
cuits involved in the feedback. For example, with phase ¢, on and ¢, off, the feed-
back loop may be broken at a certain point because of the way the circuit is clocked.
In the other phase of the clocks, the loop could be broken in some other way. So in
any given time segment, there is no global feedback.



354 Timing Simulation

; >
* t
4 ] M S
T, T, T, T, !

Figure 11.21 Time segments in a two-phase clocking scheme.

Simulation is now simple. Any time segment of a subcircuit S can be scheduled for
processing provided (a) all inputs of S have converged in the i"" WR iteration of that
time segment, (b) all outputs of S have converged in the i’ or (i —1)*" WR itera-
tion of that time segment, and (c) S has converged in the previous time segment. In
fact, a parallel processor version can assign subcircuit and time-segment pairs that
are ready for simulation to the next available process. Although an elegant method
for breaking feedback loops, the applicability of segmented waveform relaxation is
limited to digital synchronous circuits.

Waveform relaxation in summary

The main advantage of waveform relaxation is a speedup over conventional simulators
with no loss in accuracy. It is true that waveform relaxation results in no loss of accuracy
provided the same device models are used. However, in practice, the speedup is sensitive
to the partitioning algorithm and the implementation of windowing and partial conver-
gence. Because of the sensitivity to good partitioning, waveform relaxation is only applied
to digital MOS circuits. In that realm, there are many prototype implementations of WR
and parallel WR reported in the literature that show promising speedups over conventional
methods.

One Step Relaxation (OSR)

One of the problems in WR is that circuits with global feedback need many iterations to
converge. Time windowing in WR helps reduce the number of relaxation iterations
required for convergence. The basic flow in waveform relaxation is:




Relaxation Methods in Circuit Simulation 355

Find an imtial guess for all waveforms for all time;
For w =1, 2, ... until end of simulation time /* time window */
For i =1, 2, ... until convergence /* relax iterations */
For p =1, 2, ... number of partitions /* partitions */
While t< T, /* discretized time */
Integrate circuit equations

For NR =1, 2, ... until convergence /* N-R iterations */
Solve linear equations
End
End
End
End
End

indow

Hence windowing “steals” time out of the inner integration loop and brings it out to the
outermost loop. One Step Relaxation (OSR) [Hennion85] carries the concept of time win-
dowing to the limit. Each time step is made into a window and relaxation is carried to con-
vergence within that window. The basic flow for comparison is as follows:

Find an initial guess for all waveforms for all time;
While t< T, /* for all time */

For i =1, 2, ... until convergence /* relax iterations */
For p =1, 2, ... number of partitions /* partitions */
Integrate circuit equations
For NR =1, 2, ... until convergence /* Newton-Raphson iteration */
Solve linear equations
End
End
Compute a predictive value
End
End

imulation

Note that the predictive value is a prediction for the zeroth relax iteration of the next
time step for all subcircuits.

One problem with OSR is that the entire circuit is confined to using the same time step,
which is not a good way to exploit latency. Activity in any small part of the circuit will
force small time steps for the entire circuit. Further, partial convergence cannot be used to
skip re-solving some equations. Global feedback, however, is less of a problem than in
waveform relaxation. Also, the memory requirements of OSR are not as prohibitive as
WR since waveforms can be written to disk as they are computed.



356 Timing Simulation

Iterated Timing Analysis (ITA)

ITA [Newton84] makes three major modifications over OSR. First, in OSR, the Newton-
Raphson iteration in the innermost loop is carried forward to convergence. In ITA, how-
ever, only one Newton-Raphson iteration is performed. The rationale is that since we carry
the relaxation to convergence at each time point, there is no need to solve the nonlinear
equations exactly at each relaxation iteration. The second modification is that ITA uses an
event-driven approach to recompute only those partitions that have activity during any
particular time step. An event queue is maintained. The most imminent event from the
event queue is picked and the appropriate partition is solved for its present time step using
just one Newton Raphson iteration. If it is converged, it is scheduled for a future time. If
not, it is scheduled for the next relaxation iteration at the same time. The process is
repeated until the event queue for the present time is empty. The fanouts of any partitions
that have changed are also scheduled at the present time. When full convergence is
reached at the present time, time is advanced to the next event from the queue and the pro-
cess is repeated. Finally, ITA usually uses successive over relaxation (SOR) to achieve
quick convergence.

In summary, ITA improves its efficiency, both by reducing the total number of Newton-
Raphson iterations required and by using an event-driven scheme to exploit latency.

11.9 Conclusions

Many alternatives to detailed circuit simulation are available. Simulation can be per-
formed at different levels like the switch-level, gate-level, and so on. This chapter dis-
cussed timing simulators, which use simplified device models to carry out an approximate
but quick circuit analysis. Various timing simulation algorithms like MOTIS, piecewise
approximate simulation, and adaptively controlled explicit simulation were presented. The
area of timing simulation is a topic of current research. Further, the class of relaxation
methods can be used to partition a circuit and obtain the solution of the overall circuit in
terms of the individual subcircuit analyses.

While this chapter did not cover all of the approximate and relaxation-based methods in
the literature, it showed that these methods are based on the fundamentals that were cov-
ered in the earlier chapters of this book.

11.10 References

[van Bokhoven75] W. M. G. van Bokhoven. Linear implicit differentiation formulas of
variable step and order. IEEE Transactions on Circuits and Systems, vol. CAS-22(2), pp.
109-115, February 1975.



References 357

[Chawla75] B. R. Chawla, H. K. Gummel, and P. Kozak. MOTIS - An MOS timing simu-
lator. IEEE Transactions on Circuits and Systems, vol. CAS-22(12), pp. 901-910, Decem-
ber 1975.

[Bryant80] R. E. Bryant. An algorithm for MOS logic simulation. Lambda, vol. 1(3), pp.
46-53, 1980.

[Bryant81] R. E. Bryant. MOSSIM: a switch level simulator for MOS LSI. In Proceed-
ings of the 18th Design Automation Conference, June 1981,

[Hitchcock82] R. B. Hitchcock, G. L. Smith, and D. D. Cheng. Timing analysis of com-
puter hardware. IBM Journal of Research and Development, vol. 26(1), pp. 100-105, Jan-
uary 1982.

{de Geus82] A. J. de Geus and R. A. Rohrer. A new circuit simulation program based on a

tree-link approach. In Proceedings of the International Symposium on Circuits and Sys-
tems (ISCAS), pp. 702-704, May 1982.

[Lelarasmee82] E. Lelarasmee, A. E. Ruehli, and A. L. Sangiovanni-Vincentelli. The
waveform relaxation method for the time-domain analysis of large scale integrated cir-
cuits. IEEE Transactions on Computer-Aided Design of ICs and Systems, vol. CAD-1(3),
pp- 131-145, July 1982.

[White83] J. White and A. L. Sangiovanni-Vincentelli, RELAX2: a new waveform relax-
ation approach for the analysis of LSI MOS circuits. In Proceedings of the International
Symposium on Circuits and Systems (ISCAS), May 1983.

[Newton84] A. R. Newton and A. L. Sangiovanni-Vincentelli. Relaxation based electrical
simulation. IEEE Transactions on Computer-Aided Design of ICs and Systems, vol. CAD-
3(4), pp. 308-330, October 1984.

[Chen84] C-F. Chen, C-Y. Lo, H. N. Nham, and P. Subramaniam. The second generation
MOTIS mixed-mode simulator. In Proceedings of the 21st Design Automation Confer-
ence, pp. 10-16, 1984.

[de Geus84] A. J. de Geus. SPECS: simulation program for electronic circuits and sys-

tems. In Proceedings of the International Symposium on Circuits and Systems, pp. 534-
537, May 1984.

[Sze85] S. M. Sze. Semiconductor devices, physics and technology. John Wiley and Sons,
1985.



358 Timing Simulation

[Hennion85] B. Hennion and P. Senn. A new algorithm for third generation circuit simula-
tors: the one-step relaxation method. In Proceedings of the 22nd Design Automation Con-
ference, pp. 137-143, June 1985.

[Tsao85] D. Tsao and C-F. Chen. A fast timing simulator for digital MOS circuits. I[EEE
International Conference on Computer-Aided Design (ICCAD), pp. 185-187, November
1985.

[Sakallah85] K. A. Sakallah and S. W. Director. SAMSON?2: an event driven VLSI circuit
simulator. J[EEE Transactions on Computer-Aided Design of ICs and Systems, vol. 4(4),
pp. 668-684, October 1985.

[Mokari-Bolhassan85] M. E. Mokari-Bolhassan, D. Smart, and T. N. Trick. A new robust
relaxation technique for VLSI circuit simulation. IEEE International Conference on Com-
puter-Aided Design, pp. 26-28, November 1985.

[Vidigal86] L. M. Vidigal, S. R. Nassif, and S. W. Director. CINNAMON: coupled inte-
gration and nodal analysis of MOS networks. In Proceedings of the 23rd Design Automa-
tion Conference, pp. 179-185, June 1986.

[Muller86] R. S. Muller and T. 1. Kamins. Device electronics for integrated circuits. John
Wiley and Sons, 1986.

[Dumlugol86] D. Dumlugol, P. Odent, J. Cockx, and H. de Man. The segmented wave-
form relaxation method for mixed-mode switch electrical simulation of digital MOS VLSI

and its hardware acceleration on parallel computers. IEEE International Conference on
Computer-Aided Design (ICCAD), pp. 84-87, November 1986.

[Bryant87] R. E. Bryant, et al. COSMOS: A COmpiled Simulator for MOS circuits. In
Proc. 24th Design Automation Conference, pp. 9-16, 1987.

[Ruan88] G. Ruan, J. Viach, and J. A. Barby. Current-limited switch-level timing simula-
tor for MOS logic networks. IEEE Transactions on Computer-Aided Design of ICs and
Systems, vol. CAD-7(6), pp. 659-667, June 1988.

[Visweswariah89] C. Visweswariah and R. A. Rohrer. Piecewise approximate circuit sim-
ulation. IEEE International Conference on Computer-Aided Design (ICCAD), November
1989.

[Nguyen89] T. V. Nguyen, P. Feldmann, S. W. Director, and R. A. Rohrer. SPECS simula-
tion validation with efficient transient sensitivity computation. IEEE International Confer-
ence on Computer-Aided Design (ICCAD), pp. 252-255, November 1989.



References 359

[Kim89] Y. H. Kim, S. H. Hwang, and A. R. Newton. Electrical-logic simulation and its
applications. IEEE Transactions on Computer-Aided Design of ICs and Systems, vol.
CAD-8(1), pp. 8-22, January 1989.

[Roulston90] D. J. Roulston. Bipolar Semiconductor Devices. McGraw Hill, 1990.

[Ruan90] G. Ruan, J. Vlach, and J. A. Barby. Logic simulation with current-limited
switches. IEEE Transactions on Computer-Aided Design of ICs and Systems, vol. CAD-
9(2), pp. 133-141, February 1990.

[Visweswariah90] C. Visweswariah, P. Feldmann, and R. A. Rohrer. Incorporation of
inductors in piecewise approximate circuit simulation. IEEE International Conference on
Computer-Aided Design (ICCAD), pp. 162-165, November 1990.

[Feldmann91] P. Feldmann, T. V. Nguyen, S. W. Director, and R. A. Rohrer. Sensitivity
computation in piecewise approximate circuit simulation. IEEE Transactions on Com-
puter-Aided Design of ICs and Systems, vol. CAD-10(2), pp. 171-183, February 1991,

[Visweswariah91a] C. Visweswariah and R. A. Rohrer. Piecewise approximate circuit
simulation. /EEE Transactions on Computer-Aided Design of ICs and Systems, vol. CAD-
10(7), pp. 861-870, July 1991.

[Visweswariah91b] C. Visweswariah and R. A. Rohrer. Efficient simulation of bipolar
digital integrated circuits. In Proceedings of the 28th Design Automation Conference, pp.
32-37, June 1991.

[Visweswariah93] C. Visweswariah and J. A. Wehbeh. Incremental event-driven simula-
tion of digital FET circuits. In Proceedings of the 30th Design Automation Conference,
pp- 737-741, June 1993.

[Lin93] S. Lin, E. S. Kuh, and M. Marek-Sadowska. Stepwise equivalent conductance cir-
cuit simulation technique. IEEE Transactions on Computer-Aided Design of ICs and Sys-
tems, vol. CAD-12(5), pp. 672-683, May 1993,

[Devgan94] A. Devgan and R. A. Rohrer. Adaptively controlled explicit simulation. IEEE
Transactions on Computer-Aided Design of ICs and Systems, vol. CAD-13(6), pp. 746-
762, June 1994,






Appendix A Tree/Link
Analysis

This appendix provides an introduction to the graph and circuit theory concepts related to
Tree/Link Analysis (TLA), or Hybrid Analysis, and includes the derivation of the tree/link
circuit equations. Sections A.1, A.2, and A.3 introduce graph concepts [Deo74, Bondy76]
and Section A.4 applies these concepts to derive Sparse Tableau and Reduced Tableau cir-
cuit equations [Hachtel71, Weeks73]. Finally, Tree/Link Analysis and tree selection pro-
cedures are addressed in Sections A.5, A.6, and A.7 [Kuh65, Rohrer70, Russo71,
Chua75]. Tree/Link Analysis is the basis of circuit equation formulation in the timing sim-
ulator described in Section 11.7.

A.1 Graphs

A (linear) graph G = (V, E) consists of a set of objects V = {vi» vps .., v, } called ver-
tices or nodes, and another set E = {e, e,, ..., e,} of edges or branches, such that each
edge e, is identified with an unordered pair (v, vj) of vertices.

Branches with ends that fall on a node are said to be incident at that node. If a branch is
incident at the same node at both ends, it is called a self-loop. Self-loops are uncommon in
electrical circuits, since those edges can be removed from the graph representing the cir-
cuit without affecting the operation of the circuit. The number of edges incident on a node
i (with self-loops counted twice) is the degree of node i. A graph with branches that are
oriented is called an oriented or a directed graph. Electrical circuits are mapped to ori-
ented graphs.

A subgraph is a subset of the branches and nodes of a graph. The subgraph is said to be
proper if it consists of strictly less than all the branches and nodes of the graph.

Figure A.2 shows examples of an undirected and directed graph. In Figure A.2(a),
branch 1 is a self-loop. The incidence of node n4 is 3 and that of node n2 is 4. In Figure
A.2(b), branch 3 is incident on nodes n1 and n3, and Figure A.1 shows a proper subgraph.

A path is defined as a finite, ordered, alternating sequence of nodes and branches,
beginning and ending with nodes, such that each branch is incident at the nodes preceding
and following it. No branch or node appears more than once in a path. Note the following:

361



362 Tree/Link Analysis

Figure A.1 Proper subgraph of the graph in Figure A.2(b).

@ nZ/Xﬁ @
\\2 w5

/ (03 5 ()

4

(@) (b)
Figure A.2 Example of (a) an undirected graph and (b) a directed graph.

A path is a subgraph of the original graph.
The degree of all internal nodes of the subgraph is 2.
The degree of the terminal nodes of the subgraph is 1.

A

No proper subgraph of the path, having the same two terminal nodes, has properties
(2) and (3) above.

In Figure A.2(b), {nl1,2,n2,4,n3,6,n4} is a path, asis {#n3,3, nl,2,n2,5n4} . A
path is often designated by only a series of branches since the nodes are then obvious.

A graph is connected if there exists at least one path between any two nodes.

A loop is a connected subgraph of a graph at each node of which are incident exactly
two branches of the subgraph. Clearly, the algebraic sum of branch voltages around any
loop of a circuit is zero (as we will see later, this statement is an alternative way of
expressing KVL). In Figure A.2(b), {3,2,4} isaloop, as is 12,4,6,1}.

A tree is a connected subgraph of a graph that contains all the nodes of the graph but no
loops.



Fundamental Loops and Cutsets 363

In Figure A2(b), {1,5,6} isatree,asis {3,2,5}. {1,3, 6} is not a tree because it
contains a loop, and {1,5} is not a tree because it does not contain node n3. Branches
comprising the tree are called tree branches. The complement of the tree subgraph is

called the cotree. Branches comprising the cotree are called cotree links or just links. Note
the following:

* There is one and only one path between every pair of nodes in a tree.

Proof: If there were two paths (or more), their union would form a loop and the tree
would be invalid.

* Ifin a graph there is one and only one path between every pair of vertices, the graph
is a tree.

Proof: Clearly the graph is connected. Further, any loops would imply more than
one path between two nodes; hence there are no loops.

* A graph with (n+ 1) nodes has a tree with n branches.
Proof: The proof is by induction:
a) The proposition is true for n = 1, 2.
b) Consider a graph with (k+ 1) nodes. The part with k nodes has a tree that con-
sists of (k- 1) branches by the induction hypothesis. The tree for the (k+ 1)

node graph has at least one node at which only one tree branch is incident. If that
node and tree branch are removed, it leaves behind a k node graph with (k- 1)

tree branches. Hence the tree of the (k+ 1) node graphhas k— 1+ 1 = %
branches.

A.2 Fundamental Loops and Cutsets

Figure A.3 shows an example of a directed graph. The branches shown in solid lines have
been selected to form the tree.

Given a graph G, choose a tree and remove the links. Replace one link . By definition,
it forms a loop, called a fundamental loop. A fundamental loop is a loop that consists of
one link and all other tree branches. In Figure A.3, the fundamental loops are as follows:

* corresponding to link 5: {-2, +3}
¢ corresponding to link 4: {+2, +1}
* corresponding to link 6: {-1,+2,+3}

The orientation of the fundamental loop is determined by the orientation of the link that
defines the loop. Tree branches that share the same orientation have been designated with
a + sign above, and tree branches with the opposite orientation as the loop with a — sign.

In a connected graph G, a cutset is a set of edges whose removal from G leaves G dis-



364 Tree/Link Analysis

Figure A.3 Graph with tree shown in solid lines.

connected, provided removal of no proper subset of these edges disconnects G. In Figure
A3, the cutsets are {2,3,4}, {3,5,6}, {1,2,5}, {4, 1,6}, {3,2,1,6},
{3,5,1,4}, and {2,4,5,6}. A cutset can be thought of as a “Gaussian surface.”
Clearly, the algebraic sum of the branch currents of any cutset of a circuit is zero (this
statement is an alternate way of expressing KCL). Note the following:

+ Every edge of a graph that is a tree is a cutset of that graph.

» Every cutset in a connected graph G must contain at least one branch of every tree
of G.

» Inaconnected graph G, every loop has an even number of branches in common
with any cutset. As shown in Figure A .4, a loop can either be exclusively in part 1
(in which case it shares 0 branches with the cutset) or exclusively in part 2 (in which
case it shares O branches with the cutset) or include branches from both part 1 and
part 2. In the latter case, it must cross over from one part to another an even number
of times.

part 1 part 2
cutset

Figure A.4 Branches in common between loops and cutsets.



Fundamental Loops and Cutsets 365

Consider a connected graph G as shown in Figure A.5 with a tree T. Consider one
branch of T, t. Branch ¢ is a cutset of T. Now add all the links of G back. It is clear that
the cutset of G including ¢ is unique, and may contain other links.

tree branch ¢

part 1 : part 2

cutset

Figure A.5 Fundamental cutsets.

A fundamental cutset is a cutset that consists of one tree branch and all other links. In
Figure A.3, the fundamental cutsets are:

* corresponding to tree branch 1: {-4,+6}
» corresponding to tree branch 2: {+5,+6,-4}
» corresponding to tree branch 3: {-5,-6}

The orientation of the cutset is defined by the tree branch (as being “into” or “out of”
the Gaussian surface). A link that shares the orientation of the cutset is indicated with a +
sign, while a link that has a direction opposite to that of the cutset is indicated with a -
sign. Note the following:

* (Consider a fundamental cutset including a tree branch ¢ and all other links
{1, 1,,...,1.} asshown in Figure A.6. The fundamental loop of each of those links

includes t. Further, the orientation of each link in the fundamental cutset and the
tree branch in the corresponding fundamental loop are opposite.

* Consider a fundamental loop including a link ! and all other tree branches. The fun-
damental cutsets of each of these tree branches includes !. Further, the orientation of
each tree branch in the fundamental loop and the link in the corresponding funda-
mental cutset are opposite.

The above two intuitive graph theoretic concepts will be revisited in a more rigorous fash-
ion in terms of the F matrix in Section A.5.

A circuit can be mapped to a graph and the concepts of loops and cutsets can be used to
restate Kirchhoff’s laws in an alternative but equivalent form:
Kirchhoff’s Current Law (KCL): The algebraic sum of the currents in any cutset of a cir-
cuit is zero at any instant of time. The set of branches incident at each node form the sim-



366 Tree/Link Analysis

cutset
Figure A.6 Common branches between fundamental loops and cutsets.
plest cutsets, and MNA is based upon writing KCL for these cutsets.

Kirchhoff s Voltage Law (KVL): The algebraic sum of branch voltages in any loop of a cir-
cuit is zero at any given instant of time.

A.3 The Incidence Matrix

For an (n+ 1) node, b branch graph without self-loops, the complete incidence matrix

A, = [ay] isan (n+1) xb rectangular matrix whose elements have the following val-
ues: ’

* ga, = 1 if branch j is incident at node i and oriented away from it.
« a,, = —1 if branch j is incident at node i and oriented towards it.

* a_ = 0 if branch j is not incident at node i.

| 2 3 4 5 6 «<—— branches
nl |0
A n2|1 -1 0
n3 |0
nd |—1 0 0

[

nodes

(A.3.1)

Note the following:



The Incidence Matrix 367

* Everycolumnhasa +1 anda —1.
* The degree of a node i is the number of nonzeros in row i.

* The sum of all the rows is a row with all zeros, implying that the rows are linearly
dependent.

Foran (n+ 1) node b branch connected graph, the rank of 4 , is n.

Proof: Let us postulate that the rank of A is less than n. Then some nontrivial combi-
nation of n rows must result in a row of all zeros. Let k of the coefficients of this combi-
nation be nonzero. Let G, be the set of nodes corresponding to those k rows and G, the
remaining nodes. Since the graph is connected, there is at least one branch connecting G,
and G,, causing a *1 in that column among the G, rows and a ¥1 in that column among
the G, nodes and zeros in the rest of the column. Then the postulated linear combination
yields a nonzero result in that column. Hence the rank cannot be k < n. However, the rank
is at most #n. Therefore the rank of A , is exactly n.

Alternative (matrix-style) proof: Order the columns of A to have tree branches first.
Eliminate any one row of A . Pick one tree branch that was incident at the eliminated row
(there has to be at least one) and consider the other end of that branch. The determinant of
the (nXn) submatrix of A is +1 times the cofactor of that element. The matrix associ-
ated with this cofactor corresponds to a connected subgraph with (n—1) nodes; this
matrix contains neither of the rows in which the eliminated column has nonzero elements.
Since this subgraph is connected, it must have at least one tree branch incident at the elim-
inated row, and that column has only one other nonzero. Hence the determinant of the
submatrix is =1 times the cofactor of the associated (n—2 X n —2) submatrix. Continue
this procedure until one node is remaining, and the cofactor is again +1 because the graph
is connected. Hence, an (n X n) submatrix of A, whose columns correspond to tree
branches and rows to all nodes but one is nonsingular. Therefore, the rank of A , is at least
n. But we know that the rank of A, is less than (n + 1) . Hence the rank of A  is exactly
n.

The reduced incidence matrix A of a graph is obtained by eliminating any one row i
from its incidence matrix. The rank of A is n and node i is called the datum (or ground)
node. In electrical circuits, one node needs to be designated as a reference node (ground)
and the voltage of all other nodes is expressed in terms of this reference potential.

KCL can be conveniently written in terms of the reduced incidence matrix as follows:

Ai, = 0 (A3.2)

Equation (A.3.2) assumes that the order of the branches in the columns of A is the same
as the order of branches in the column vector of branch currents, i,. Clearly, each row
represents the branches incident on that node, so when combined with the branch currents,
equation (A.3.2) simply states that the sum of currents leaving (entering) every node is
zero.

KVL can also be conveniently written in terms of the reduced incidence matrix as fol-
lows:



368 Tree/Link Analysis

v, = ATy, (A:3.3)

Again, the order of nodes in the vector of node voltages in v, is the same as the order of
rows in A and the order of branch voltages in v, is the same as the columns of A. The i
equation of (A.3.3) basically asserts that

Vo

v (A.3.4)

=V -
; from ~node; to — node,;

A.4 Sparse Tableau and Reduced Tableau Analysis

Equations (A.3.2) and (A.3.3) comprise (n+b) equations in (n+ 2b) unknowns. The
other b equations are the branch constitutive relations (BCRs) relating branch voltages
and currents:

ov, +pi, =y (A.4.1)

where o and P are (bxb) matrices. These three sets of (n+2b) unknowns in
(n+ 2b) unknowns constitute a complete set of sparse equations called the Sparse Tab-
leau equations. The rationale behind Sparse Tableau Analysis (STA) is that even though
the number of equations is much larger than MNA, the added sparsity of the equations
render them efficient to solve. As with MNA, matrix stampings for various types of ele-
ments can be derived to formulate the equations efficiently. The STA equations can be
represented in matrix form as follows:

b b n
b |1 0 —AT Vb b 0o
210 A 0 [li,e = |0n (A.4.2)
sl B0 v ln Yl 6

The dimensions of the various submatrices in (A.4.2) have been indicated along the mar-
gins of the matrices.

In Reduced Tableau Analysis, the KVL equations are substituted into the BCRs to get
(b +n) equations in (¥ +n) unknowns (n node voltages and & branch currents) as fol-
lows:

ﬂ i (A4.3)



Loop and Cutset Matrices 369

A.5 Loop and Cutset Matrices

Find a tree in a graph. Partition the following vectors and matrices:

A= [At AJ (A5.1)
v, = (A5.2)
i, = (A5.3)

where the subscript ¢ indicates tree branches and [ indicates links.
Constructa (b~—n) Xn matrix F,,,, such that each row represents a fundamental cut-
set. For example, considering the graph in Figure A.3,

1 2 3 €«— Tree branches

4 1 1 0
F loop =5 0 -1 1 (A.5.4)
6 -1 -1 1

Links

The last row of (A.5.4) indicates that the fundamental loop corresponding to link 6 con-
sists of tree branch 3 in the same direction as the loop direction defined by link 6 and of
tree branches 1 and 2 in the opposite direction.

KVL can be written in terms of the loop matrix as follows:

v, = _Floopvt (A.5.5)
or equivalently,
v, 1
Vy = | =l v, (A.5.6)
v, —F loo

Construct an n X (b—n) matrix F such that each row represents a fundamental

cutset



370 Tree/Link Analysis

cutset. For the example in Figure A.3,

4 5 6 «— Links

1l-1 0 1
Fcutset = 2 |-1 1 1 (A.5.7)
;0 -1 -1

!

Tree branches

The first row of (A.5.7) implies that the fundamental cutset corresponding to tree branch 1
consists of link 4 in the opposite direction as the cutset and link 6 in the same direction.
KCL can be written in terms of the cutset matrix as follows:

i = —F ;. (A.5.8)

' cutser*l

or

(A.5.9)

1iF

curserl B = O (A.5.10)
Notice the similarity between (A.5.10) and (A.3.2). This similarity will be exploited in
devising a method to find a tree in Section A.7.

We know that the instantaneous power in any circuit is zero -- the power delivered to
the circuit by the sources is dissipated by the circuit in the resistive elements, and energy is
neither created nor destroyed. The conservation of energy in a circuit is expressed as

D voiy = viip = 0 (A5.11)

(A.5.11) is actually one way of expressing a more general theorem called Tellegen’s theo-
rem. Using this formula, let us try to relate F,,,, and F Substituting for v, and i, in
(A.5.11), we get

cutset®

loo

1 —F et : “F yiser
( ............. V;} _________________ i = vI[1 | -FT | i,=0 (A5.12)



Circuit Equations in Terms of Loops and Cutsets 371
which leads to
_v?[Fcutset-}-Fl?;mJ il =0 (A.5.13)
or
Fcutset+FlT00p =0 (A.5.14)
Define a (b—n) X n matrix F such that
~F|o0, = F ;e =F (A.5.15)

Fundamental cutsets can be determined by the rows of F and fundamental loops by the
columns, as shown in (A.5.16). Thus the relation between the fundamental loops and cut-

sets as alluded to in Section A.2 has been mathematically shown.

Links
3 —
5 Fundamental
= cutsets
F=¢ (A.5.16)
Kal
(%)
& |
Fundamental
loops
A.6 Circuit Equations in Terms of Loops and Cutsets
The n KCL equations can be written in any of the three forms below:
it - _Fil
-F
by = | 9 (A6.1)
1

The (b —n) KVL equations can be written in any of the three forms below:



372 Tree/Link Analysis

v, = FTv,
1
Vp = Vs (A.6.2)
FT
[—FT 1]"1: =0

Tree/Link Analysis treats the circuit in terms of branch quantities rather than node volt-
ages (node voltages can be derived after the analysis is complete using a matrix called the
path matrix which specifies a path to ground from each node consisting of only tree
branches). It turns out that there are numerical advantages to treating nonlinear elements
on a branch basis rather than trying to solve for node voltages that are dictated by the non-
linearities of multiple elements. Given the n tree branch voltages, all branch voltages can
easily be computed using the fundamental loops. Given the (b—n) link currents, all
branch currents can easily be computed using the fundamental cutsets. So Tree/Link Anal-
ysis chooses tree branch voltages and link currents as a set of basis variables. Hence Tree/
Link Analysis is also called Hybrid Analysis because it solves for some currents and some
voltages. There are b branch currents and b branch voltages that are unknown. We have
b KCL and KVL equations. The other b equations are derived from BCRs. Let us assume
that it is possible to write BCRs in the following form for trees and links:

v,=Ri,+V,

) (A.6.3)
i, =Gv,+1,

The first of these implies that tree branches are modeled as a generalized set of composite
branches in Thevenin equivalent form as shown in Figure A.7. The second set of equa-
tions in (A.6.3) implies a generalized set of composite branches in Norton equivalent form
for the links, as shown in Figure A.8. The set of tree branch voltages is sufficient to deter-
mine all branch voltages in the circuit, and likewise with link currents. Hence it helps to
write the BCRs in the above form, with tree branch voltages and link currents being
expressed in terms of other quantities.

Figure A.7 Tree branches are modeled as Thevenin equivalents.



Circuit Equations in Terms of Loops and Cutsets 373

G
_ AVAVAY
i
R v
+ - o]

Figure A.8 Links are modeled as Norton equivalents.

In the extreme, a tree branch may be purely an independent voltage source, with
R = 0. A link could be purely an independent current source, with G = 0. Of course,
either branch type may be source free and represent a pure resistance or conductance ele-
ment. Finally, off-diagonal entries in the R or G matrices can represent current-controlled
voltage sources or voltage-controlled current sources, respectively. The other two kinds of
controlled sources will be considered later. We should recognize the desirability of treat-
ing such composite branches as arising from the companion models that must be used for
nonlinear iteration and time domain integration.

Substituting for #, and v, in terms of i, and v, from the KCL and KVL equations, we
get

v, = —RFi,+V, (A.6.9)
and
i, = GF'v,+1, (A6.5)
or
v,+RFi,=V,
~GF'v,+i,=1, (A.66)
or

[ L RF v, = £ (A.6.7)
~GF" 1| I,

We could solve the hybrid set of b equations in » unknowns directly, or we could con-
sider reducing it further. Note that the ones on the diagonal could be good choices for piv-
ots provided that the nonzero-valued elements in the R and G matrices were small. We
thus have a hint that it would be numerically advantageous to include large resistors
(small Gs) in the cotree links and small resistances in the tree branches. Note too that pure



374 Tree/Link Analysis

independent voltage or current sources (R = 0 or G = 0) are easily accounted for in this
hybrid formulation of the circuit equations, and that they produce trivial equations. Unlike
MNA, this formulation treats independent voltage and current sources on an equal footing,
which is an advantage. It does require that all independent voltage sources be assigned to
the tree and all independent current sources to the cotree. However, this requirement does
not pose any real restrictions. The only time independent voltage sources could not all be
assigned to a tree is when they form a loop. But a loop of independent voltage sources is
nonphysical, and the tree selection process should flag such a situation as an error. The
same is true for a cutset of independent current sources.
We can substitute (A.6.5) into (A.6.4) to obtain

v, = —RF (GF'v,+I) +V, (A.6.8)

or

(1+RFGF")v, = V,—RFI, (A.6.9)

This set of n equations in n unknowns is called the set of generalized cutset equations for
the circuit. Some texts prefer the form

(R'+FGFv, = R'V,-FI, (A.6.10)

but we don’t, because it precludes the possibility of a singular R matrix.
Returning once again to equations (A.6.4) and (A.6.5) but this time substituting the first
of these into the second we obtain

i, = GF' (~RFi,+ V) +I, (A.6.11)

aor

(1+GF'RF)i, = GF'V,+1, (A6.12)

This set of (b—n) equations in (b —n) unknowns is called the set of generalized loop
equations for the circuit. Again, some texts prefer the form

(G'+F RF)i, = F'V,+G™I, (A.6.13)

but we do not so as to entertain the possibility of a singular G matrix.

The cutset equations are like nodal equations, only they employ » independent tree
branch voltages as basis variables. The loop equations are like mesh equations, but they do
not require circuit (graph) planarity. Each of the (b —n) link currents defines a topologi-



Circuit Equations in Terms of Loops and Cutsets 375

cally independent loop current. Usually n < (b - n) , so we might prefer to work with the
smaller set of cutset equations. As in the case of MNA, matrix stamps can be derived to
populate the appropriate matrices efficiently. Two examples are shown below.

Example 1: Stamp of a conductance G to the matrix FGFT:

(i, i) termis incremented by G if tree branch i is in G’s fundamental loop, else the
diagonal term is unchanged;

(i,j) term is incremented by G if G’s fundamental loop includes the i** and ;™
tree branches in the same orientation;

(i,/) term is decremented by G if G’s fundamental loop includes the i/ and j*
tree branches in the opposite orientation;

(i,j) termis unchanged if G’s fundamental loop does not include both the i and
j™ tree branches.

Example 2: Stamp of a resistance R to the matrix F'RF:

(i, 1) termis incremented by R if link i is in R’s fundamental cutset, else the diag-
onal term is unchanged;

(i,j) term is incremented by R if R’s fundamental cutset includes the i** and j*
links in the same direction;

(,J) term is decremented by R if R’s fundamental cutset includes the i and ;™
links in the opposite direction;

(i,j) term is unchanged if R’s fundamental cutset does not include both the i and
j™* Tinks.

In order to be able to accommodate all four kinds of controlled sources, we generalize
the BCRs of (A.6.3):

v,=Ri,+V,+ov,

. A.6.14
Substituting for i, and v, in terms of i, and v,, we get
v,=—RFi,+V,+oFy,

(A.6.15)

i,= GF"v,+I,- BFi,

or



376 Tree/Link Analysis

T
1-aF”  RF H _ H A6
~GFT  1+PF|i I

Substituting for i,, we get generalized cutset equations:

[1 -~ oFT+RF (1+BF) “IGFT] v, = V,—~RF (1+BF)7'I, (A.8.17)

Substituting instead for v, in (A.6.16), we get generalized loop equations:

[1+BF + GFT(1-oFT) RFJi, = I,+GFT(1-oF")”'V, (A6.18)

A.7 Tree Selection Procedure

This section describes how to select a tree, given a prioritized order of the elements we
would like to have in the tree. The order of priority for inclusion in the tree is:

1. Independent voltage sources

Capacitances

Resistances or conductances (including dependent sources)
Inductances

Independent current sources.

IR I

Of course, all independent voltage sources must be in the tree and all independent current
sources must be in the cotree or we could not proceed with the analysis in any case. To the
extent possible, capacitances should be in the tree and inductances in the cotree. As noted
in Chapter 4, companion models for capacitors in Thevenin form are preferable for situa-
tions with specified initial conditions or when dealing with small time steps. Similarly,
companion models for inductors in Norton form are preferable, so we try to include as
many inductances as possible in the cotree. With small time steps, note that both the resis-
tance in the Thevenin companion model of a capacitor and the conductance in the Norton
companion model of an inductor become smaller, leading to better numerical conditioning
of the circuit equations. At the outset we allow resistances, conductances, and controlled
sources to be in the tree or the cotree as dictated by circuit topology. Again, smaller resis-
tances are preferred in the tree for numerical reasons.

Consider a fundamental cutset &. Let it divide a graph G into two sets of nodes, G, and
G,. Add up the nodal KCL equations for all the nodes in G,. Clearly, the current of any
branch completely within G, will cancel out because its “from” node and “t0” node are
both within G,. Hence the sum of the nodal KCL equations for G, will result in the fun-



Tree Selection Procedure 377

damental cutset equation corresponding to §. Likewise for G,. This concept is demon-
strated on an example in Figure A.9.

@  i+igti;=0
@) Bmigtig=0 Y Dij+ij+iy =0

Figure A.9 Relation of nodal KCL equations to fundamental cutset equations.

Thus we recognize that if we can manipulate the nodal KCL equations
Aiy, =0 (A.7.1)

into the tree/link form

[1F|i =0 (A.7.2)

then we will have determined the tree and also all the fundamental cutsets and loops in
terms of the F matrix. We use i, to indicate the permutation of the original i, vector that
may be necessary to obtain the specific form |:1 pj . The manipulation should be possible
by using only the following simple operations on the A matrix:

* adding or subtracting one row from another

* negating a row

* exchanging the order of the elements in i,, which is equivalent to swapping col-
umns of A

Figure A.10 shows a sample graph with the branches ordered in terms of tree priority.
This graph has four nodes and therefore three tree branches. But we cannot use branches
1, 2, and 3 to form the tree, since they form a loop. Start with the reduced incidence matrix
in tree branch priority order:



378 Tree/Link Analysis

Figure A.10 Sample graph to illustrate tree-finding procedure.

1 2 3 4 5

nlil 1 0 0
A= p -1 1 1 0 (A.7.3)

30 0 0 -1 1

The first column already matches the required identity matrix. Moving on to the second
column, add row 2 to row 1 and then muitiply row 2 by -1:

(‘2) 1 0 1 1 O
A7 =101 -1 -1 0 (A7.4)
0 0 0 -1 1

We cannot work with column 3 because it has a zero in row 3, indicating that branch 3
cannot be a tree branch if branches 1 and 2 are tree branches as well. So, we move on to

column 4 and add row 3 to row 1, subtract row 3 from row 2, and finally multiply row 3 by
-1:

tree branches

Vol v

e |10 10
A7 =10 1 -1 0 -1 (A.7.5)
0 0 0 1 -l
N

possible column interchange

Columns 3 and 4 could possibly be interchanged to make the first three columns of A 2
into an identity matrix.



Tree Selection Procedure

379
What we have now are the KCL cutset equations
i)
1 0 1 0 1|l o
0 1 -1 0 -1{{i=1{0 (A.7.6)
0 0 0 1 -1 0
3
corresponding to the tree shown in Figure A.11.
Figure A.11 Tree in sampie graph.
As mentioned earlier, we can exchange columns 3 and 4 to obtain
1 0 ¢ 1 1
A9 =10 1 0 -1 -1 (A7.7)
0 01 0 -1
What we have now are the KCL cutset equations
i,
1 0 0i 1 1|k o
0 1 0:-1 -1l =]0
A.7.8
0 0 1i0 -]y o @18

Since we need only work with 0 and +1 valued elements and there are no carries, we



380 Tree/Link Analysis

can perform the transformation from A to [1 F] very efficiently with integer -- or even
logical -- operations on packed data.

The elementary operations that we performed above can be represented as the applica-
tion to the reduced incidence matrix A of a sequence of elementary matrices as shown
below.

Add row 2 to row 1 and multiply row 2 by -1:

1 1 0 1 0 0
& =10 1 0 &E£E=10 -1 0 (A.7.9)
0 0 1 0 0 1
so that
A? =eeA (A.7.10)
Add row 3 to row 1, subtract row 3 from row 2, and multiply row 3 by -1:
1 0 1 1 0 O 1 0 0
&, =10 1 O €, =10 1 -1 Es=10 1 O (A.7.11)
0 0 1 0 0 1 0 0 -1
so that
AP =eeeA® =eeeee A (A7.12)
Then exchange columns 3 and 4
1 0 0 0 o
0 1 0 0 0O
=10 0 0 1 O (A.7.13)
0 o1 0 O
o 0 0 0 1
so that
AY =49 =eeeeeAl =1 F| (A7.18)

Note that if we omit the column (3 and 4) interchange, we get equally valid cutset equa-
tions without the branch current permutation



Tree Selection Procedure 381

tree branches

Vv R
1 0 1 0 1|/ o
EE 8,88 A1, =10 1 -1 0 -1 is| = |0 (A.7.15)
0 0 o0 1 -1 iy 0
0 is
columns of Fj\ .
We can look at the column permutation as follows.
(1 | Flis=Ai,=0
£4€,E,€,€, A1, = £.8,8,6,€ Ai, = 0 (A.7.16)

Therefore, €, represents the permutation of i » that is necessary to manipulate A so that

the first n columns are tree branches. Given the above, we can find the permuted branch
voltages from

. 1 T T T T T T.T
Dy = L&v, = §,A €\ 8,8;8,8.7, (A.7.17)

Again, if we do not insist on permuting the branch voltage vector so that the tree branches

. AT
are numbered first, we can ignore € :

r 1. 7.7T.T.T

v, = A € E,€,€,EV, (A.7.18)
We recall that
v, = Ay, (A7.19)
50
v, = EIEJEIEIE, (A.7.20)

If we want ultimately to find the node voltages, we can push the premultiplying elemen-
tary matrices onto a LIFO stack in the order that we find them. Then to obtain v, from v,
we pop their transposes from that stack in inverse order to apply sequentially to v, once it



382 Tree/Link Analysis

has been computed. Note that the elementary matrices are sparse, simple, and only come
in three types, so we can code, store, and manipulate them efficiently.

Other than to identify the tree branches, we need not worry about the identity partition
of [1 F] . We can obtain the F partition merely by applying the elementary matrix opera-
tions to the potential link-related columns of A at any stage of the tree-finding process.

As a digression, we consider the possibility of having ideal switch elements in the cir-
cuit. A switch is a simple and useful generalization of many nonlinear elements. When the
switch is open, it is equivalent to a zero-valued independent current source, and must be a
link. When it is closed, it acts like a zero-valued independent voltage source and must be a
tree branch, as shown in Figure A.12.

- A . 5 < -

(a) open switch must be a link (b) closed switch must be a tree branch

Figure A.12 Ideal switches in Tree/Link Analysis.

As switches open and close, we must dynamically change tree/link partitioning priorities.
Even though finding a tree for the first time may entail some effort, new trees can dynami-
cally be found on subsequent passes in an incremental manner. The procedure is as fol-
lows: |

e Make initially closed switches lowest priority among the independent voltage
sources of the circuit.

* Make initially open switches highest priority among the independent current sources
of the circuit.

« Store elementary operations or matrices during the original tree determination pro-
cedure on a stack.

* Any time that a switch changes state, change the position of that column of the A
matrix as dictated by the new priorities. Then pop elementary matrices off the stack
until the one(s) that dealt with the column corresponding to that particular switch.
These operations are now useless and must be redone. However, operations that are
left on the stack are still useful and need not be redone. Then the elementary matri-
ces required to find the new tree are computed and pushed back on the stack to help
find the new tree next time one of the switches changes state.

For example, in the graph of Figure A.10, any of the new tree priority orders {1,2,3,5,4},
{1,2,5,3,4}, {1,5,2,3,4} and {5,1,2,3,4} results merely in branch 5 becoming a tree branch
and branch 4 a link.



References 383

Note that there are other methods to determine a tree given the priority ordering of the
branches. The matrix method presented in this section has an asymptotic order of com-
plexity that is superlinear in the size of the graph. It also requires the incidence matrix to
be stored, which can take up a lot of memory for large circuits. However, the technique
can be used to find the tree as well as the F matrix. The elementary matrix method is
equivalent to the matrix method, and would only be used in a situation where the tree had
to be dynamically reformulated frequently. If we had to implement elementary matrices in
a computer program, we would not actually store entire matrices and carry out full matrix
multiplication -- there are implementation techniques that are more efficient and compact.
There are also graph searching methods [Deo74] of finding trees that have linear compu-
tational complexity. Once the tree has been determined, fundamental loops and cutsets can
also be identified by graph-searching methods. Depending on the application, circuit
equations may be formulated directly by means of stamps. Hence the implementation of
tree-determination and the construction of the F matrix is often application-dependent.

A.8 References

[Kuh65] E. S. Kuh and R. A. Rohrer. The State Variable Approach to Network Analysis.
Proceedings of the IEEE, vol. 53, pp. 672-686, July 1965.

[Rohrer70] R. A. Rohrer. Circuit Theory: An Introduction to the State Variable Approach.
McGraw-Hill, 1970.

[Hachtel71] G. D. Hachtel, R. K. Brayton, and F. G. Gustavson. The Sparse Tableau
Approach to Network Analysis and Design. IEEE Transactions on Circuit Theory, vol.
CT(18), pp. 101-118. January 1971.

[Russo71] P. M. Russo and R. A. Rohrer. The Tree-link Analysis Approach to Network
Analysis. IEEE Transactions on Circuit Theory, vol. CT-18(3), pp. 400-403, May 1971.

[Weeks73] W. T. Weeks, A. J. Jimenez, G. W. Mahoney, D. Mehta, H. Quassemzaheh, and
T. R. Scott. Algorithms for ASTAP - a Network Analysis Program. IEEE Transactions on
Circuit Theory, vol. CT(20), pp. 628-634, November 1973.

[Deo74] N. Deo. Graph Theory with Applications to Engineering and Computer Science.
Prentice-Hall, 1974.

[Chua75] L. O. Chua and P. M. Lin. Computer-aided Analysis of Electronic Circuits:
Algorithms and Computational Techniques. Prentice-Hall, 1975.



384 Tree/Link Analysis

[Bondy76] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. North Hol-
land, 1976.



Index

A

ac analysis 2, 17
complex admittances 17-18
flowchart 19
frequency extremes 18
MOSFET model 28
nodal equations 30
small signal 2, 19, 141145
small signal equivalent circuit 17,
144
SPICE 18
ACES 346-349
quiescent states 346
time step selection 349
update derivative 346
Adaptive error control 352
Adaptively Controlled Explicit Simula-
tion, see ACES
Adjoint
self-adjoint elements 266
Admittance matrix
complex 148
indefinite 9
Admittances
complex 30, 142
Ammeter
for sensitivity analysis 271
ideal 36
Associated reference directions 2
power 3

385

Asymptotic Waveform Evaluation
(AWE) 161-185

B

Bipolar Junction Transistors
amplifier circuit 36, 141
current gain 301
inverter circuit 37
nonlinear model equations 301-303
saturation current 301
BIT, see Bipolar Junction Transistor
Bode plot 144
Branch relations 200
sensitivities 241

C

Capacitors
charge conservation 44
cutsets 43

floating modeled as grounded 322
frequency domain 145
linearizing nonlinear 322
nonlinear 308
Circuit simulation 317
Conservation of energy 370
Controlled sources 36
sensitivities 246
Convolution integral 125
Critical path 317



386

Current sources
current-controlled 36
cutsets 42
voltage-controltled 27-28

Cutset analysis 369-376

D

dc analysis
linear 2
nonlinear 2, 11, 16, 287
dc bias point 141
dc gain 155
dc operating point 143
Device models 15
Diodes 11
equation 12
i-vcurve 11
nonlinear iteration 13
sensitivity analysis 274
stamps 15
Dominant poles 158—160
moment matching 161-165
Dynamic simulation 316, 317

E

Ebers-Moll model 36-37, 142, 301
Elmore delay 150, 151

dominant pole 159

RC tree analysis 152-153
ELogic 330-331

device models 331
Elogic

events 330
Event processing 330, 336
Event-driven simulation 326

F
False paths 317

Field Effect Transistor, see MOSFET

Forbenius

matrix form 172
Frequency domain

complex 145

ideal delay 149
Frequency response 27, 146

G

Gate-level simulation 321
Gaussian Elimination 10, 47, 49
Back Substitution 50
complexity 189
ladder circuit example 48
normalization 48
partial pivoting 63
pivot conditioning 58-62
pivoting for accuracy 59
round-off errors 58
sparse matrix complexity 189
Graphs 361-363
degree of a node 361
directed 361
incidence 361
links 363
nodes 361
path 361
self-loop 361
subgraphs 361
trees 362
vertices 361
Ground
datum node 5
reference node 5



Index

387

H

Homogeneous solution 89-90
Hybrid equations 120
Hybrid matrix 118

|

Ideal switch 382
Immittance 142
Impedances
complex 142
Impulse excitations 94
Incidence matrix 366-368
reduced 367
Inductors
ac analysis 143
frequency domain 145
loops 44
Iterated timing analysis 356
Iteration
linear solution refinement 64—67

K

KCL 4
at a node 4
equations 200
graph theoretic definition 365
tree/link analysis 364
Kron's method 218-224
branch tearing 226
link-at-a-time algorithm 226
KVL 4
equations 200
graph theoretic definition 366

L

Laplace Transform 122, 145
state equations 147-148

Latency 236, 324, 329
spatial 324
temporal 324

Linear elements
two-terminal 3

Logic simulation 321
events 321
selective trace 321
time wheel 321

Loop analysis 369-376

LU factorization 10, 50-51
annihilation 58
Back Substitution 51
complexity 189
example 53
Forward Substitution 51
full pivoting 65
how it works 54
partial pivoting 62-64
pivot conditioning 58-62
pivot elements 55
pivoting for accuracy 59
round-off errors 58
sparse matrices 191
sparse matrix complexity 189
terminology 55
upper triangular form 192

M

Matrices
conditioning 58



388

Index

Matrices, contd.
Cramer's rule 148
determinants 63, 123
diagonalizing 136
eigenvalues 123, 137, 173
eigenvalues of state matrix 147
Forbenius form 172
Jacobian 295
Jordan canonical form 136
loop and cutset matrix 369
lower triangular form 244
modal 136, 172
power series 122
sparsity 190
Taylor series 128
upper triangular form 48
Vandermonde 171, 175
Matrices, see Sparse matrices
Miller effect 322
Mixed-mode simulation 329
MNA, see Modified Nodal Analysis
Modified Nodal Analysis 7, 30-31, 33
Moment matching 154-155
dominant poles 161-165
frequency scaling 177-178
frequency shifting 178-180
generalized 169-175
instability 176
moment shifting 181-182
numerical considerations 175-182
pole convergence 181
sensitivity analysis 182-185
Moments
first 150
generalized circuits 165-169
impulse response 149-151, 153-
155
probability theory 151
RC tree 156-158

Moments, contd.
sensitivities 183
MOSFET 27
amplifier example 28
nonlinear capacitances 311
nonlinear model equations 303-305
sensitivity analysis 275
small-signal gain 27
small-signal model 28
transconductance 27, 304
MOTIS 325-328
body effect 325
device models 325
event-driven 326
i-v table models 325
Muller's algorithm 148

N

Natural frequencies 123, 146
Netlist 6
Newton-Raphson 12, 288-291
circuit example 296
convergence 13, 288
damped 291-294
diode circuit example 290
equivalent circuit 13, 15
linearization 13-16, 288
multi-dimensional 14, 295-297
voltage limiting 292
Nodal Analysis 4
conventional 34
dc 10
supernodes 34
voltage source transportation 35
voltage sources 34
when equations fail 42

Nodal Analysis, see Modified Nodal

Analysis



Index

389

Nodal equations
matrix form 5
sparsity 189
Nonlinear
transient analysis 25
Nonlinear analysis
dc 11
device model bypass 313
ideal switch 382
multi-terminal elements 297-305
successive secant iterations 294
transient 24, 306-307
Nonlinear, see Newton-Raphson
Numerical integration
A-stable 138
Backward Euler 77, 81, 98, 129-130
Backward Euler accuracy 103-104
Backward Euler error 130
Backward Euler stability 108, 138
capacitors 81-82
companion model 21, 80
difference approximations 76
divided difference approximations
of error 109-113, 134
explicit 79
Forward Euler 76, 80-81, 96, 128—
129
Forward Euler accuracy 100-103
Forward Euler error 129
Forward Euler stability 107-108,
137
illegal loops 139
implicit 21, 78
inductor companion model 23
inductors 8285
local truncation error 87
multi-step approaches 87
nonlinear energy storage elements
308-313

Numerical integration, contd.
one-step approximations 75, 87
region of stability 137
single RC circuit example 87-113
SPICE 21
stability 105-106, 134-137
trapezoidal 20, 77, 82, 99, 130-134
trapezoidal accuracy 104-105
trapezoidal companion model 22
trapezoidal error 132
trapezoidal stability 108-109, 138

O

One step relaxation 354-355
Operational amplifiers 4041
gain 40
ideal 40
inverting amplifier 42
Nodal Analysis equations 40
sensitivity analysis 264

P

Padé approximation 175
instability 176
Partitioning
node tearing 227-231
tearing multiple nodes 231-237
Piecewise linear waveforms 125-127,
307
Pole/zero analysis 2, 145-146
Muller's algorithm 148
Poles 123, 146
dominant 158-160
positive 176
residues 146
right half plane 177
sensitivities 185
Port variables 119



390

Index

R

RC tree analysis 152-153
Elmore delay 152-153
RC trees
computing moments 156-158
Reduced Tableau Analysis 368
Relaxation methods 349
Gauss-Jacobi 352
Gauss-Seidel 353
successive over-relaxation 352
Residues 146

S

SAMSON 329
Secant approximation 328
Self-adjoint 266
Sensitivity analysis 68
adding a resistor between two nodes
218-227
adjoint 239
adjoint circuit 251-266
adjoint circuit example 258
adjoint method 68-74
adjoint via matrix 249-250
applications 274-277
branch tearing 226
direct 239
direct circuit example 243
direct differentiation 241
direct method 68
direct via circuit 240-243, 246-249
direct via matrix 244-246
finite differences 217
frequency domain 277-280
Householder's formula 224
incremental 239
Kron's formula 224
large change sensitivities 217

Sensitivity analysis, contd.
perturbation methods 73
small change sensitivities 239
Sparse Tableau Analysis 267~273
SPECS 344
time domain 280--283

Sensitivity circuit 241

Sensitizable paths 317

Slack 316

Small signal
capacitance 17
diode model 17
energy storage elements 17
nodal equations 30

Sparse matrices
annihilations 193
diagonal pivoting 196
dynamic pivoting scheme 198
fill-in 192-193
full pivoting 196
Markowitz ordering 196, 204
numerical conditioning 198-200
NZLC 196, 199, 205
NZUR 196, 199, 205
ordering for sparsity 194—198
partial pivoting 196
pivot row 198
pivoting 196
potential fill-in 197
suboptimal ordering 198

Sparse matrix 10

Sparse Tableau
Reduced Tableau 368

Sparse Tableau Analysis 200-214, 368
equations 200-204
modeling considerations 210
relation to MNA 206
sensitivity analysis 267-273

SPECS 332-346



Index

391

SPECS, contd.
device models 332-333
events 336
loops of capacitors 343
MOSFET models 336
overview 333
pseudo-segment 343
sensitivity analysis 344
sphere of influence 339
steady state 342
timing error estimation 340
SPICE 1, 6
.NODESET 13, 313
.OPTIONS 314
convergence 285
device modeling restrictions 288
Newton-Raphson 288
nonlinear analysis 285-286
numerical integration 21
sparse matrix ordering 205
time step too small 22, 285
Stamps 7
diodes 15
nodal admittance equations 6
voltage-controlled current source 29
State equations 147-148
differential equations 121, 124
generalized 117-121
homogeneous equations 121
RLC circuit example 115-117
State variables 147
Static simulation 316
Static timing analysis 316-317
Stiff circuits 346
Strongly connected components (SCCs)
319, 351
Substitution theorem 220
Switch-level simulation 319
compiled 320

Switch-level simulation, contd.
storage node strength 320
strength 320
unit delay 320

T

Tellegen's theorem 251, 273, 281, 370
Timing simulation 318

piecewise approximate 332-349
Transfer functions 153

rational form 154
Transient analysis

flowchart 25

large signal 2, 18

linear 2, 18, 23

nonlinear 24-25, 306-307
Transient analysis, see Numerical inte-

gration

Tree/link analysis 333, 361

cutsets 363

fundamental cutsets 365

fundamental loops 363

tree selection 376382

trees 363

\%

Vandermonde
matrix 171
Vectors
connection 219
dyad 224
outer product 224
Voltage sources
adding a current variable 31
current-controlled 39
example 33
floating 31



392

Index

Voltage sources, contd.
illegal loops 32, 42
independent 31
Nodal Analysis 31
voltage-controlled 38, 40
Voltages
open circuit 219
Voltmeter
for sensitivity analysis 271
ideal 28

W

Waveform relaxation 349-354
overlapped 353
scheduling 351
segmented 353
time windows 351

Z

z parameters 232-234
Zero-input response 90-91, 125
Zero-state response 91, 125, 146



About the Authors

Lawrence T. PiLLAGE is an associate professor of Electrical and
Computer Engineering at the University of Texas, Austin, and
a Temple Endowed Faculty Fellow in Engineering. He was an
integrated circuit and system designer at Westinghouse
Research and Development from 1984 to 1986, where he was
recognized with the corporation’s highest engineering
achievernent award.

RonaLD A. RoHRER is the Wilkoff University Professor of
Electrical and Computer Engineering at Carnegie-Mellon
University. In addition to prior academic positions, he has been
involved in a variety of research and development, marketing,
and management positions in the electronic design automation
industry.

CHANDRAMOULI VISWESWARIAH is a research staff member at IBM's
T. J. Watson Research Center in Yorktown Heights, New York.
His research interests include circuit and timing simulation,
modeling, circuit optimization, and mixed mode simulation.



	sparse tableau

	Chapter 10.Simulation of Nonlinear Circuits


