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PREFACE

Technology has progressed to a point where digital design has entered a new
realm that requires design techniques and concepts that baffle even some of the
most seasoned digital system designers. The fact is that state-of-the-art digital
systems such as personal computers cannot be designed without a thorough under-
standing of advanced signal integrity. As computer technology evolves, high-
speed interconnect phenomena that designers historically have ignored begin to
dominate performance, and unforeseen problems arise that dramatically increase
the complexity of design. Consequently, every new generation of computer design
requires an understanding of new signal integrity issues that were previously not
critical and new design techniques that were previously not necessary. In mod-
ern and future systems, an incomplete understanding of high-speed interconnect
phenomena will literally result in the progress of digital computing coming to a
standstill.

In this book we leverage theory and techniques from fields such as applied
physics, communications, and microwave engineering and apply them to the field
of high-speed digital design, creating an optimal combination between theory and
practical applications. Although some basic material is covered, we assume that
readers are well acquainted with basic electromagnetic theory, vector calculus,
differential equations, statistics, and transmission-line analysis. In this book we
build on the traditional knowledge base and discuss advanced topics ranging
from electromagnetic theory for signal integrity to equalization methods that
compensate for signal integrity problems with circuitry as required to design
modern and future digital systems. Detailed theory is presented in the context
of real-life design examples so that it can be applied immediately by practicing
engineers, yet provides more than enough technical content to facilitate complete
understanding of the concepts.

xv
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Features

1. Visual description of theoretical concepts wherever possible, so each
chapter includes numerous figures to help reinforce the concepts discussed.

2. Rigorous coverage of theory and use of practical examples to demonstrate
how to use the theory in practical, real-world applications.

3. Summary of the electromagnetic theory concepts required to comprehend
signal integrity.

4. Rigorous development of transmission-line and crosstalk theory to build
a fundamental understanding and then apply the theory to real-world
problems.

5. Development of physically consistent dielectric and conductor models
to account for frequency-dependent properties, surface roughness, and
physical anomalies due to manufacturing and environmental effects.

6. Description of differential signaling at a practical and a theoretical level.
7. Explanation of the mathematical limits of models such as causality, pas-

sivity, stability, and reality that must be obeyed to ensure that simulations
remain consistent with nature.

8. Full description of network theory, including S -parameters and frequency-
domain analysis.

9. Coverage of topics such as nonideal current return paths, tabular modeling,
and via resonance.

10. Covers the basics of I/O design and channel equalization.
11. Methods for modeling and budgeting of timing jitter and noise.
12. System analysis techniques for handling large numbers of variables using

response surface modeling.

Contemporary signaling systems continue to offer new problems to solve.
Engineers who can solve these problems will define the future. This book will
equip readers with the necessary practical understanding to contend with con-
temporary problems in high-speed digital design and with enough theory to see
beyond the book to solve problems that the authors have not yet encountered.
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1.1 COMPUTING POWER: PAST AND FUTURE

It is estimated that sometime between the years 2025 and 2050, commonplace
personal computers will exceed the calculation power of a human brain. Fur-
ther extrapolation based on historical trends indicates that a single commonplace
computer could exceed the computational power of the human race sometime
between 2060 and 2100. Are such vast increases in computational power possi-
ble in less than 100 years? We cannot say for certain because it is impossible
to predict the future. However, hindsight is always 20/20, and if we subscribe
to the notion that history tends to repeat itself, we can look at the progress of
computational capabilities over the last century to see if historical data support
a rate sufficient to achieve such performance. Hans Moravec, a researcher from
the Robotics Institute at Carnegie Melon University, estimated that a computer
would require 100 million megainstructions per second (MIPS) to mimic suffi-
ciently closely the behavior of a human brain [Moravec, 1998]. Based on the

Advanced Signal Integrity for High-Speed Digital Design, By Stephen H. Hall and Howard L. Heck
Copyright  2009 John Wiley & Sons, Inc.
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Figure 1-1 Historical computational power and extrapolation into the future. (Adapted
from Moravec [1998].)

number of neurons, he was also able to compare the current state of computer
technology to the estimated computational power of animal brains. These data
points outline a particularly interesting way to examine the history of computa-
tional power while level-setting computer performance against the brainpower of
common animals.

Figure 1-1 plots the computational power for mechanical and electrical com-
puters used over the last 100 years. Some of the more interesting data points are
labeled on the plot, ranging from hand calculation (ca. 1/100,000,000 MIPS) to
the Pentium 4 processor of 2002 (10,000 MIPS), which is only two orders of
magnitude away from the estimated brain power of a monkey (1,000,000 MIPS).
As the plot indicates, computers comparable to the human brain could appear as
early as the 2020s based on the extrapolation of personal computer (PC) perfor-
mance over the last three decades. If the historical data for the entire twentieth
century are used, the time frame is extended to 2050. The predictions get even
more outrageous if we extend the extrapolation to the estimated computational
power of all humans presently on Earth (ca. 6 billion), which would require
6 × 1017 MIPS. Such a computer could exist by 2060, as shown in Figure 1-2.
The question is: Can the historical pace of development be sustained? Observa-
tion of the data indicates that the historical trend shows no sign of slowing. In
fact, the rate appears to be increasing.

However, one often encounters articles by knowledgeable people in the com-
puter industry who believe that the trend cannot be sustained and that the decades
of exponential growth must stop. In 1998 it was estimated in such an article that
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commonplace printed circuit boards (PCBs) built on an FR4 dielectric could not
support bus speeds faster than 300 MHz [Porter, 1998]. Current designs using
FR4 substrates exceed that bus speed in commonplace personal computers by
almost 10-fold (PCI Express Gen 2 buses run at 5 giga-transfers per second,
which has a fundamental frequency of 2.5 GHz). History is filled with “experts”
who mispredicted the future:

Heavier-than-air flying machines are impossible.
—Lord Kelvin, British mathematician and physicist, president of the British Royal

Society, 1895

Fooling around with alternating current is just a waste of time. Nobody will use it,
ever.

—Thomas Edison, American inventor, 1889

Rail travel at high speed is not possible because passengers, unable to breathe,
would die of asphyxia.
—Dr Dionysys Larder (1793–1859), professor of natural philosophy and

astronomy, University College London

In the mid-1970s, integrated circuits held approximately 10,000 components,
which was enough to construct an entire computer with devices as small as 3 µm.
Experienced engineers worried that semiconductor technology had reached its
pinnacle. Three micrometers was barely larger than the wavelength of the light
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used to sculpt the chip. Interactions between ever-closer wires were about to
ruin the signals. Chips would soon generate so much heat that they would be
impossible to cool without a refrigeration unit. The list goes on [Moravec, 1998].

A look at the computer growth graph shows that the industry found solutions
to all those problems. Chip progress not only continued— it sped up. Technol-
ogy companies, motivated by the potential of high profits, dedicated tremendous
resources to making the “impossible” possible: developing more efficient transis-
tor designs, better heat sinks, new manufacturing processes, and more advanced
analysis techniques. History indicates that the rate of performance will continue
to grow at exponential rates.

Historically, the mechanism for advancing computation has been to miniaturize
components, allowing more devices to fit in and operate in a smaller space, thus
producing more performance per unit volume. First, the gears in mechanical
calculators shrunk, which allowed them to spin faster. Then the relays in electro-
mechanical machines became smaller, which allowed them to switch faster. Next,
the switches in digital machines evolved from shotgun shell–sized vacuum tubes,
to pea-sized transistors, to tiny integrated-circuit chips [Moravec, 1998]. Each of
these technological advancements came with a price: New problems that were
never before considered arose that needed to be solved .

How does this relate to signal integrity? The field of signal integrity arose
directly from the exponential growth of computing power. A computer system is
comprised of many integral components in addition to the processor, such as the
memory, cache, and chip set. The interconnections between these parts within a
computer system are known collectively as system buses . Essentially, a bus is an
integrated set of interconnections used to transfer data between different parts of
a digital system. Accordingly, to capitalize on the benefits of increased processor
power, system buses must also operate at higher data transfer rates. For example,
if the memory bus fails to transmit data at a sufficiently fast rate, the processor
simply sits idle until data are available. This bottleneck would negate much of
the performance gained from a more powerful processor. Subsequently, it is vital
that the bus performance scale correspondingly with processor performance.

1.2 THE PROBLEM

The two mechanisms used historically to scale bus design to feed the growing
performance of computer processors have been speed and width. Speed facilitates
higher information transfer rates by sending more bits in a given amount of time.
Width facilitates more information transfer by sending more bits in parallel. From
now on, the rate of information transfer on a bus will be referred to as the bus
bandwidth .

Increasing the bus speed to overcome bandwidth limitations becomes prob-
lematic for many reasons. As bus frequencies increase in speed, the pathways
that comprise the bus, called interconnects , begin to exhibit high-frequency
behavior, which thoroughly puzzles many conventional digital designers. What is
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required is complete comprehension of the relevant analog techniques and theory
commonly used in microwave system and radio designs applied carefully to the
digital realm. As the operating frequencies of digital systems increase, these ana-
log effects become more prevalent and severely impede the overall performance
if not resolved properly. Furthermore, increased bus speed usually requires more
power, which is a precious commodity, especially in mobile designs such as
laptops, which rely on battery power.

Increasing the bus width to overcome bandwidth roadblocks is self-limiting.
Practical mechanical limitations arise quickly due to increased pin counts on
packages, sockets, connectors, and the shortcomings of PCB technology. Further-
more, interactions between closely spaced interconnects lower the signal-to-noise
level, making clean data transmission more difficult. Since Moore’s law results
in computer performance doubling every 18 months, and the bus bandwidth must
scale in proportion, doubling the number of signals in the bus to facilitate the
required bandwidth provides a solution to the problem that lasts less than two
years. Increasing the width of the bus is simply a short-term “band-aid.” At some
point, faster bus speeds will be required.

The problem is that as bus designs become both wider and faster and form
factors shrink to provide more computational power per unit volume, the
assumptions used for past designs become outdated and new techniques must
be developed. As a result, the field of signal integrity is evolving continuously
to encompass new effects that were not relevant to earlier designs. Modern
bus designs have become so fast that the designer must calculate the voltage
and timing numbers to a resolution as small as a few picoseconds and a
few millivolts. This degree of resolution was unheard of in computer designs
just a few years ago. Just to put this problem in perspective, the light that
is reflected off your nose takes a little over 85 ps to travel to the surface
of your eye, which is well over 10 times the required timing resolution of
some modern bus designs. This dramatic decrease in bus timing requirements
leads to several problems. First, the number of effects that must be accounted
for in the design stage increases. This is because effects that were either
second order, or ignored completely in previous designs, begin to dominate the
performance. Consequently, the total number of variables that must be accounted
for increases, which makes the problem more difficult. Furthermore, the new
variables are often very difficult or impossible to model using conventional
methods. So we have not only many more variables to worry about, but most
of the new variables are very difficult to model correctly. Finally, to top it off,
the laboratory equipment currently available is often insufficient to resolve these
small timing variations, making it difficult or impossible to verify the completed
design or to correlate the models to reality.

1.3 THE BASICS

As the reader undoubtedly knows, the basic idea in digital design is to commu-
nicate information with signals representing 1’s or 0’s. Typically, this involves
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sending and receiving series of trapezoidal voltage signals in which a high voltage
is a 1 and a low voltage is a 0. The conductive paths carrying the digital sig-
nals are known as interconnects . The interconnect includes the entire electrical
pathway from the chip sending a signal to the chip receiving the signal. This
includes the chip packages, connectors, sockets, transmission lines, and vias. A
group of interconnects is referred to as a bus . The region of voltage where a
digital receiver distinguishes between a high and a low voltage is known as the
threshold region . Within this region, the receiver will either switch high or switch
low. On the silicon, the actual switching voltages vary with temperature, supply
voltage, silicon process, and other variables. From the system designer’s point
of view, there are usually high- and low-voltage thresholds, known as Vih and
Vil , associated with the receiving silicon, above and below which a high or low
value is guaranteed to be received under all conditions. Thus, the designer must
guarantee that the system can, under all conditions, deliver high voltages that
do not, even briefly, fall below Vih, and low voltages that remain below Vil , to
ensure the integrity of the data.

To maximize the speed of operation of a digital system, the timing uncertainty
of a transition through the threshold region must be minimized. This means that
the rise or fall time of the digital signal must be as fast as possible. Ideally,
an infinitely fast edge rate would be used, although there are many practical
problems that prevent this. Realistically, edge rates as fast as 35 ps are encoun-
tered in real systems. The reader can use Fourier analysis to verify that the
quicker the edge rate, the higher the frequencies that are found in the spec-
trum of the signal. Herein lies a clue to the difficulty. Every conductor has a
frequency-dependent capacitance, inductance, conductance, and resistance. At a
high-enough frequency, none of these things are negligible. Thus, a wire is no
longer a wire but a distributed, frequency-dependent parasitic element that has
delay and a transient impedance profile that can cause distortions and glitches
to manifest themselves on the waveform propagating from the driving chip
to the receiving chip. The wire is now an element that is coupled to every-
thing around it, including power and ground structures, heat sinks, other traces,
and even the wireless network. The signal is not contained in the conductor
itself but is, instead, carried in the local electric and magnetic fields around
the conductor. The signals on one interconnect will affect, and be effected
by, the signals on another. The inductance, capacitance, and resistance of all
the structures in the vicinity of the interconnect have vital roles in the simple
task of guaranteeing proper signaling transitions with appropriate timing at the
receiver.

One of the most difficult aspects of high-speed design is the fact that there are
many codependent variables that affect the outcome of a digital design. Some
of the variables are controllable, and others force the designer to live with the
random variation. One of the difficulties in high-speed design is how to han-
dle the many variables, whether they are controllable or uncontrollable. Often,
simplifications can be made by neglecting or assuming values for variables,
but this can lead to unknown failures down the road for which it will not be
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possible after the fact to locate the root cause. As timing becomes more con-
strained, the simplifications of the past are rapidly dwindling in utility to the
modern designer. In this book we also show how to incorporate a large num-
ber of variables that would otherwise make the problem intractable. Without
a methodology for handling the large number of variables, a design ultimately
incorporates some guesswork, no matter how much the designer understands the
system physically. The final step in handling all the variables is often the most
difficult part and the one most readily ignored by designers. A designer crippled
by the inability to handle large numbers of variables will ultimately resort to
proving a few “point solutions” instead and hope that they plausibly represent
all known conditions. Although such methods are sometimes unavoidable, this
can be a dangerous guessing game. Of course, a certain amount of guesswork
is always present in design, but the goal of the system designer should be to
minimize uncertainty.

1.4 A NEW REALM OF BUS DESIGN

Technology has progressed to a point where digital design has entered a new
realm, where new design techniques and concepts are required that baffle even
the most seasoned digital system designers. The fact is that present and future
state-of-the-art digital systems, such as personal computers, cannot be designed
without a thorough understanding of the principles outlined in this book. Why
hasn’t this been a problem before? The answer is that digital designers didn’t
need to understand these things. But digital circuits are reaching speeds where
design will not be possible without an understanding of this subject. Seasoned
engineers face the threat of becoming a legacy if they do not adapt to the new
design space. This book will help practicing engineers adapt.

From the Monroe calculator to the Pentium, from punch cards to flash memory,
from vacuum tubes to integrated circuits, computer performance is increasing at
an exponential rate. In this book we address the needs of the contemporary digital
designer as he or she encounters the numerous new challenges with modern and
future high-speed digital systems and is forced to learn material previously not
needed. As the conventional digital designer transitions to faster designs, he or
she will indeed experience a completely different view of logic signals at high
speeds. This book will help to make sense of the ugly, distorted, and smeared
waveforms produced in a high-speed digital system.

1.5 SCOPE OF THE BOOK

This book was written to be an advanced study in signal integrity. Although some
basic material is covered, it is assumed that the reader is well acquainted with
basic electromagnetic theory, vector calculus, differential equations, statistics,
and transmission-line analysis. The book builds on the traditional knowledge
base and covers topics required to design present and future digital systems.
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1.6 SUMMARY

All of this leads to the present situation: There are new problems to solve. Engi-
neers who can solve these problems will define the future. This book will equip
readers with the necessary practical understanding to contend with contemporary
problems of modern high-speed digital design with enough theory to see beyond
this book and solve problems that the authors have not yet encountered.

ERRATA

Inevitably, some errors will slip past the layers of review. Although they
will be remedied in subsequent printings, it is useful to summarize the
corrections in one place. The errors, along with the corrections, will be posted
at ftp://ftp.wiley.com/public/sci tech med/high speed design.
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Much of signal integrity is based heavily in electromagnetic theory. Various
aspects of this theory are found in numerous books on a variety of topics, such
as microwaves, electromagnetics, optics, and mathematics. To rely on these books
to form a basis of the fundamental understanding of signal integrity would result
in a confusing disarray of conflicting assumptions, notations, and conventions.
Although it is assumed that readers have a basic understanding of electromag-
netics, the presentation of Maxwell’s equations and subsequent solutions in the
form most often used in signal integrity will minimize confusion and help readers
extract the relevance from the haze of mathematical calculation often encountered
in generalized electromagnetic textbooks. It is also convenient to summarize, in
one place, the underlying physics that forms the basis of succeeding chapters. In
this section we present Maxwell’s equations and the underlying electromagnetic
theory needed for signal integrity. The concepts are used and expanded on in
several subsequent chapters. This analysis does not constitute a complete theo-
retical study; however, it does present the fundamental electromagnetic concepts
needed to develop the basis of signal integrity theory. As the book progresses,
this material will be built on to describe more advanced concepts as they are
applied to real-world examples.

Initially, the most common vector operators are reviewed briefly. This is
important because Maxwell’s equations will be presented in differential form
and a fundamental understanding of the vector operators will allow readers to
visualize the behavior of electromagnetic fields. Next, the equations that gov-
ern a plane wave propagating in free space are derived directly from Maxwell’s
equations. Then the concepts of wave propagation, intrinsic impedance, and the
speed of light are derived. Next, the theory of electrostatics and magnetostatics
is covered to explain the physical meaning of an electric and a magnetic field,
the energy they contain, and how they relate to specific circuit elements, such
as inductance and capacitance, used in later chapters. Finally, we discuss the
power carried by electromagnetic waves and how they react when propagating
into different materials, such as metal or other dielectric regions. Other aspects of
electromagnetic theory are covered in later chapters, but the basis of that analysis
is defined here.

2.1 MAXWELL’S EQUATIONS

Electromagnetic theory is described by Maxwell’s equations, published originally
in 1873. In this section we outline the fundamentals of electromagnetic theory
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that we will need for the remainder of the book. Since a broad study of Maxwell’s
equations is beyond our scope in this text, we present only the necessary infor-
mation that applies directly to the specific problems addressed here. Note that it
is assumed that readers have completed basic electromagnetic theory classes as
a prerequisite to this material.

The differential form of Maxwell’s equations in SI units is summarized
in equations (2-1) through (2-4). The equivalent integral forms of Maxwell’s
equations are presented throughout when necessary; however, emphasis is
placed on the differential forms when convenient because they lend themselves
to better intuitive understanding:

∇ × �E + ∂ �B
∂t

= 0 (Faraday’s law) (2-1)

∇ × �H = �J + ∂ �D
∂t

(Ampère’s law) (2-2)

∇ · �D = ρ (Gauss’s law) (2-3)

∇ · �B = 0 (Gauss’s law for magnetism) (2-4)

where �E = electric field intensity (V/m)
�H = magnetic field intensity (A/m), where

�H =
�B

µ0
− �M (2-5)

�M = magnetization density (A/m)
�B = magnetic flux intensity (Wb/m2)
�J = current density (A/m2)
ρ = charge density (C/m3)
�D = electric flux density (C/m2) where

�D = ε0 �E + �P (2-6)

�P = electric polarization density (C/m2)
ε0 = permittivity of free space (8.85 × 10−12 F/m)
µ0 = permeability of free space (4π × 10−7 H/m)

Electromagnetic fields are derived from the movement of charge, so �J and
ρ are the ultimate sources that induce the electric and magnetic fields, while
the other quantities are responses. Note that the magnetization density, �M , does
not exist in nature, as it is a mere mathematical convenience. Realistic sources
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of magnetic current are caused by an electric current loop, as opposed to the
flow of a magnetic charge, which is discussed in detail in Section 2.5. The mag-
netization density is included here only for completeness, as it is typically not
used for the applications covered in this book. The constants ε0 and µ0 dic-
tate the electromagnetic properties of free space, such as the speed of light
and the intrinsic impedance, both of which are discussed in more detail in
Section 2.3.

Equations (2-1) through (2-6) are not sufficient to describe the electromagnetic
properties of general materials; they must be supplemented with relations that
comprehend the properties of media other than free space. Specifically, equation
(2-7) comprehends the finite conductivity of metal, equation (2-8) accounts for the
magnetic properties of a material, and equation (2-9) describes how the dielectric
will respond to an applied electric field:

�J = σ �E (2-7)

�B = µrµ0 �H = µ �H (2-8)

�P = ε0(εr − 1) �E (2-9)

where �J is the current density (A/m2), σ the conductivity of a medium (e.g., a
metal) (S/m), µr the relative permeability, and εr the relative permittivity (also
known as the relative dielectric constant). Note that both µr and εr are unitless
quantities. The convention used in this book is to represent the equivalent relative
permittivity and permeability as

µ = µrµ0 (2-10a)

ε = εrε0 (2-10b)

For use in high-speed digital design, materials included typically have descriptive
coefficients σ , µr , and εr that are linear , meaning that they do not change as a
function of the applied field. However, for many realistic dielectric materials used
to construct circuit boards in digital designs, the descriptive coefficients are not
homogeneous (independent of position) or isotropic (independent of direction),
meaning that extreme care must be taken to ensure that the material properties
are accounted for properly, which is explored in detail in Chapter 6. Furthermore,
the descriptive coefficients often exhibit strong frequency dependence, the nature
of which is explored throughout the book.

Although this brief review of Maxwell’s equations may initially seem intim-
idating, throughout the book the theory will be simplified and applied directly
to the solution of practical real-world problems, allowing readers to extract the
important concepts from the haze of mathematical calculations so that an intuitive
understanding can be conveyed.
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2.2 COMMON VECTOR OPERATORS

Maxwell’s equations are presented in differential form using many vector oper-
ators, which simplifies their representation. The vector operators describe the
behavior of the fields and how they interact, so a full understanding of the mean-
ing behind these operators will allow readers to visualize the problem, which
will lead to an intuitive understanding. In engineering, the most valuable tool is
a comprehensive understanding of the concept. In electromagnetics and signal
integrity, the concept is often best understood through visualization of the fields.
The vector operators used in this book are reviewed here, with an emphasis on
how they affect the fields visually.

2.2.1 Vector

In physics and in vector calculus, a vector is a concept characterized by a mag-
nitude and a direction. A component of a vector is the influence of that vector
in a given direction. A vector is often described by a fixed number of compo-
nents that sum uniquely to the total vector. When used in this role, the choice of
directions is dependent on the particular coordinate system being used: Cartesian
coordinates, spherical coordinates, or polar coordinates. A common example of
a vector is force, because it has a magnitude and a direction. Whenever possible,
the problems and analysis are presented in rectangular (Cartesian) coordinates.
When the geometry of the problem dictates coordinate transformation into a
spherical or cylindrical coordinate system, the relevant transformations are given
in Appendix A.

Recall that if the vector �A was located at the point in space P (x,y,z), with
the components �axA1, �ayA2, and �azA3, where �am is a unit vector along the axis
m, the expression for �A could be written

�A = �axAx + �ayAy + �azAz (2-11a)

where the magnitude of the vector is shown as

A =
√

A2
x + A2

y + A2
z (2-11b)

This vector is shown graphically in Figure 2-1.

2.2.2 Dot Product

The dot product of two vectors �A and �B is a metric of how much parallelism
exists between vectors:

�A · �B ≡ AB cosφ (2-12)

where φ is the angle between �A and �B. Note that if φ is 90◦, then �A · �B = 0,
and if φ is 0◦ (the vectors are parallel), then �A · �B = AB, which is simply the
product of their magnitudes.
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y

z

P(Ax, Ay, Az)

ayAy

axAx

azAz

A

Figure 2-1 Graphical representation of a vector in rectangular coordinates.

If the vectors �A and �B are expressed in terms of their generalized orthogonal
components as in (2-11) and the expression is expanded, the dot product can be
calculated as

�A · �B = AxBx + AyBy + AzBz (2-13)

2.2.3 Cross Product

Similarly, the cross product of �A and �B is a measure of how orthogonal the
vectors are, as shown by

�A × �B ≡ (AB sin φ)�an (2-14)

where �an is a unit vector normal to the plane containing �A and �B. If φ is 0◦,
then �A × �B = 0, and if φ is 90◦ (the vectors are at a right angle to each other),
then �A × �B = AB�an with a direction perpendicular to both �A and �B, with the
ambiguity of direction resolved by means of the right-hand rule, as shown in
Figure 2-2. If the angle between �A and �B is something other than 0◦ or 90◦, the
following determinant form of the cross product applies:

�A × �B =
∣∣∣∣∣∣
�ax �ay �az

Ax Ay Az

Bx By Bz

∣∣∣∣∣∣ (2-15)

which simplifies to

A × B = �ax(AyBz − AzBy) + �ay(AzBx − AxBz) + �az(AxBy − AyBx) (2-16)
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A × B

B × A

B = axBx + ayBy + azBz

A = axAx + ayAy + azAz

Figure 2-2 Graphical representation of the cross product.

2.2.4 Vector and Scalar Fields

In electromagnetic theory, a field is defined as a mathematical function of space
and time. Fields can be classified as either scalar or vector. A scalar field has a
specific value (magnitude) at every point in a region of space at each instance in
time. Figure 2-3 shows two examples of a scalar field, temperature in a block of
material and the voltage across a resistive strip. Note that each point P (x,y,z),
there exists a corresponding temperature T (x,y,z) or voltage v(x) at any instant
in time. Other examples of scalar fields are pressure and density. A vector field
has a variable magnitude and direction at any point in time, as illustrated with
Figure 2-4. Note that the velocity and direction of the fluid inside the pipe changes
in the vicinity of the neck-down region, so the magnitude and direction (phase)
of the vectors that describe the motion of the fluid at a given instant in time are a
function of the position in space. Other examples of vector fields are acceleration
and electric and magnetic fields.

2.2.5 Flux

A vector field, �F (x,y,z,t), can be represented graphically by depicting a large
number of individual vectors with a specific magnitude and phase (direction);
however, this is cumbersome. A more useful method for representation of a
vector field is to use the concept of flux. Flux is a measure of how many field
vectors pass though a surface in space, as depicted in Figure 2-5a. The net flux
of vector field �F through surface S is shown as

ψ =
∫

S

�F · d�s (2-17)
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Figure 2-3 Examples of scalar fields: (a) temperature; (b) voltage.
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Figure 2-4 Example of a vector field: fluid velocity.

A flux plot can replace vectors with a system of flux lines that are created in
accordance with the following rules:

1. The transverse density of the flux lines agrees with the magnitudes of the
vectors. So, in Figure 2-5b, the velocity of the fluid is slower near the pipe
wall, necessitating that the flux lines be drawn farther apart than in the
middle, where the fluid flow is faster.

2. The direction of the flux lines must agree with the direction of the vectors.
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Surface (S)

Vector field

Flux is a measure of how
many vector field lines

pass through a surface S

(a)

Fluid velocity flux field 

(b)

Figure 2-5 (a) Definition of flux; (b) example of a flux field.

Flux is, however, useful for more than just simplifying a vector field. If a
surface S is drawn in a region of space that includes flux lines, the number of
flux lines passing through that surface is a measure of several physical quantities,
such as current or power flow. Note that if (2-17) is integrated over a closed
surface, the net flux will always be zero, assuming that no sources exist within
the volume of the closed surface. This is because the same number of flux lines
enter the volume as exit it.

To illustrate the utility of the flux concept with an example, consider current
flow in a wire. Suppose that a wire contains electric charges of density ρ(C/m3)
in a region and the charges have a velocity ν(m/s). The current density in the
region is calculated as

�J = ρ�ν A/m2 (2-18)

the instantaneous rate of charge flow per unit cross-sectional area at point P in
space. For n points in space with charge densities ρi and velocities νi , the current
density becomes

�J =
n∑

i=1

ρi�νi A/m2 (2-19)

Therefore, the total current flowing through a surface (e.g., the cross section of
the wire) is the sum of all the current density functions within the area of the
surface times the surface area. This calculates the total number of vectors ( �J )
passing though the cross-sectional surface S of the wire, which is flux. Therefore,
the flux of the current density function is the current flowing through area S and
is calculated as

ψi = i =
∫

S

�J · d�s A (2-20)



18 ELECTROMAGNETIC FUNDAMENTALS FOR SIGNAL INTEGRITY
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Figure 2-6 Current flux through a wire.

Example 2-1 If a current of 1 mA is measured flowing through a wire with a
radius of 5 mm, calculate the current density. See Figure 2-6.

SOLUTION Assume that the current density is constant in the cross section so
that �J = �azJ = Jz and A is the cross-sectional area of the wire.

i =
∫

S

Jz · �az ds = Jz

∫
S

ds = JzA = Jz(πr2)

Therefore,

Jz = i

πr2
≈ 12.7 A/m2

2.2.6 Gradient

The vector operator ∇, pronounced del , is shorthand for the gradient of a scalar
field. In simple terms, the gradient is the space rate of change of a scalar field .
In rectangular coordinates, the gradient of a function f is

∇f = �ax

∂f

∂x
+ �ay

∂f

∂y
+ �az

∂f

∂z
(2-21)

Subsequently, the gradient constructs a vector field from a scalar field.

2.2.7 Divergence

The divergence of a vector field �F is a measure of the outward flux per unit
volume. For example, if �F is represented by a continuous system of unbroken flux
lines in a volume region, the region is said to be source-free and divergenceless.
However, if �F is discontinuous through the volume region or contains broken
flux lines, the region contains sources of flux fields and has a nonzero divergence.
The divergence of �F (x,y,z,t) is

∇ · �F(x, y, z, t) = ∂Fx

∂x
+ ∂Fy

∂y
+ ∂Fz

∂z
(2-22)
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y

x

Figure 2-7 (a) Example of a divergence-free flux plot (incoming flux = outgoing flux);
(b) flux plot with nonzero divergence (outgoing flux is greater than incoming flux, indi-
cating that there are sources in the test region).

Figure 2-7a is an example of the flux plot for a divergence-free field. Inspection
reveals why the divergence is zero because the vectors do not seem to converge
or emerge from any source points. Additionally, a test closed surface (the box)
placed in the region will have zero net flux emanating from it, because the flux
lines going into the test region equal the flux lines leaving it. Figure 2-7b has
nonzero divergence. Note that the emergence or convergence of the field vectors
from source points is a common characteristic of a field with finite divergence.
Simply put, if a region contains a source of a field, it will have a positive
divergence. In Figure 2-7b, the nonzero divergence is evident from inspection
because discontinuous flux lines are required to represent the increasing density
with x, yielding a net nonzero flux. In other words, there are more flux lines
emanating from the closed surface than are entering it, meaning that a source of
the field must exist inside the test region.

An understanding of the meaning of divergence allows us to gain some insight
into Gauss’s laws:

∇ · �D = ρ (Gauss’s law) (2-3)

∇ · �B = 0 (Gauss’s law for magnetism) (2-4)

Note that the divergence of �D, which equals ε �E, is nonzero and equal to the
charge density, which implies that the source of the electric field is an electrical
charge. Equivalently, if the electric field terminates abruptly, the termination must
be an electric charge. Conversely, the divergence of �B is zero, indicating that
there is no magnetic equivalent to the electric charge and that the magnetic field
is always source-free. For a test surface, the number of flux lines entering the
surface must equal the flux leaving it, and there are no abrupt terminations of
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the magnetic field. Therefore, the flux lines of a magnetic field consist of closed
lines.

2.2.8 Curl

Historically, the concept of curl comes from a mathematical model of hydro-
dynamics. Early work by Helmholtz studying the vortex motion of fluid led
ultimately to Maxwell’s and Faraday’s conceptions of electric fields induced by
time-varying magnetic fields, which is shown in equation (2-1) [Johnk, 1988]. To
visualize the concept of the curl, consider a paddle wheel immersed in a stream
of water, with a velocity field as shown in Figure 2-8. In Figure 2-8a, the paddle
is oriented along the z-axis perpendicular to the water flow, and since the velocity
of the fluid is larger on the top of the paddle, the paddle will rotate clockwise,
and therefore has a finite curl along the z-axis, with a direction pointing into the
page as determined using the right-hand rule. Similarly, if the paddle is rotated so
that it is oriented along the x-axis, as in Figure 2-8b, the paddle will not rotate,
and the curl is zero.

The curl of �F (x,y,z,t) in determinant form (in rectangular coordinates) is
shown as

∇ × �F(x, y, z, t) =

∣∣∣∣∣∣∣
�ax �ay �az

∂

∂x

∂

∂y

∂

∂z
Fx Fy Fz

∣∣∣∣∣∣∣ (2-23)

which simplifies to

∇ × �F = �ax

(
∂Fz

∂y
− ∂Fy

∂z

)
+ �ay

(
∂Fx

∂z
− ∂Fz

∂x

)
+ �az

(
∂Fy

∂x
− ∂Fx

∂y

)
(2-24)

y

z
(a) (b)

y

z
x x

n n

Figure 2-8 (a) The fluid velocity field causes the paddle wheel to rotate when it is
oriented orthogonal to the field, giving it a nonzero curl with a direction pointing into the
page (−z ); (b) when the paddle wheel is parallel to the field it has a zero curl because
the field will not make it rotate.
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Simply put, if the curl is finite, a field will be induced that possesses circulation.
This allows us intuitively to understand Faraday’s and Ampère’s laws:

∇ × �E + ∂ �B
∂t

= 0 (Faraday’s law)

∇ × �H = �J + ∂ �D
∂t

(Ampère’s law)

Faraday’s law says that a time-varying magnetic field will induce an electric field
that possesses circulation around �B. More intuitively, if we examine Ampère’s
law for a steady-state current, it reduces to

∇ × �H = �J (2-25)

Equation (2-25) implies that a current flowing in a wire will induce a magnetic
field that circulates around the wire, which is consistent with Gauss’s law for
magnetism (2-4), which implies that the flux lines of a magnetic field must consist
of closed lines.

Example 2-2 Calculate the magnetic field of a current I flowing through an
infinitely long wire of radius a. Show that the current flowing in the wire induces
a magnetic field that circulates around the z-axis. See Figure 2-9.

SOLUTION To solve this problem it is necessary to present the integral form
of Ampère’s law for static fields:

∮
l

�B
µ0

· dl =
∫

S

�J · ds = i (2-26)

Switching to a cylindrical coordinate system, �B = aφBφ and dl = aφrdφ, yield-
ing

∫ 2π

0

Bφ

µ0
rdφ = 2πrBφ

µ0
= i

Bφ(r>a) = iµ0

2πr
for r > a

To calculate the magnetic field inside the conductor, only the amount of current
passing through a percentage of the wire area must be considered. This is achieved
by expressing the current in terms of an area ratio:

∫ 2π

0

Bφ

µ0
r dφ = 2πrBφ

µ0
= i

πr2

πa2

Bφ(r<a) = iµ0r

2πa2
for r < a
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I

Bf(r<a)

Bf(r >a)

Bf(r >a)

Bf(r<a)

Bf(r >a)

Bf(r >a)

Bf(r<a)

a

r

a
r

0

az z

Figure 2-9 How the magnetic field will rotate around a wire carrying current.

The analysis above shows that the magnetic field has only a φ-component that
is perpendicular to the current flow, proving that the magnetic field will wrap
around the wire. Since the current flow is inducing the magnetic field, its intensity
will increase until r becomes greater than the wire radius a. When examining
fields outside the wire radius (where no current is flowing), the magnetic fields
will decrease, as shown in Figure 2-9.

We can confirm that �B circulates around the wire by calculating the curl. The
curl of the magnetic field inside the wire can be calculated using the differential
form of Ampère’s law for the static case:

∇ × �H = ∇ ×
�B

µ0
= �J

The curl of �F in cylindrical coordinate is (from Appendix A)

∇ × �F = �ar

[
1

r

∂Fz

∂φ
− ∂Fφ

∂z

]
+ �aφ

[
∂Fr

∂z
− ∂Fz

∂r

]
+ �az

[
1

r

∂(rFφ)

∂r
− 1

r

∂Fr

∂φ

]

The solution of the integral form of Ampère’s law shows that the only component
of the magnetic field in the φ-direction is a function of r . Consequently, the curl
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becomes

∇ × �B =




�az

[
1

r

∂(rBφ)

∂r

]

�az

[
1

r

∂
(
r(µ0ir/2πa2)

)
∂r

]
= µ0i

πa2
�az for r < a

which says that the magnetic field with a φ-component will be induced that
circulates around a wire when current I is flowing in the z-direction.

For r > a, the curl becomes

∇ × �B = �az

[
1

r

∂ (r(µ0i/2πr))

∂r

]
= 0

The curl of the magnetic field outside the wire is zero. This does not mean
that the magnetic field does not circulate around the wire outside the conductor
(it certainly does). The zero curl result is simply due to the fact that the area
outside the conductor does not contain any current density ( �J = 0), and therefore
Ampère’s law states that the curl of the magnetic field must be zero.

2.3 WAVE PROPAGATION

When studying Maxwell’s equations, it becomes apparent that Faraday’s and
Ampère’s laws (the two curl equations), which state, respectively, that a chang-
ing magnetic field will produce an electric field and a changing electric field
will produce a magnetic field, are responsible for the propagation of an electro-
magnetic wave. In this section we derive equations that regulate electromagnetic
wave propagation in a simple source-free medium. In the study of signal integrity,
the propagation of waves in packages, on printed circuit boards, though cables,
and between power and ground planes constitutes a very large portion of the
discipline. In fact, communication between components in a high-speed digital
design necessitates the intentional propagation of electromagnetic waves guided
by transmission lines and the prevention of energy propagation across unin-
tentional pathways (such as crosstalk) or in unwanted signal propagation modes.
Without a detailed study of wave propagation, the study of signal integrity would
become impossible.

2.3.1 Wave Equation

In subsequent chapters it will become necessary to analyze electromagnetic wave
propagation only in terms of magnetic or electric fields because they are related
directly to the voltage and current propagating on transmission lines, through
vias, or across planes. The wave equation forms the basis for calculating critical
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electrical properties, such as crosstalk, reflections, standing waves, and differ-
ent modes of propagation in multiconductor systems (e.g., a bus). We begin by
manipulating Faraday’s and Ampère’s laws using some useful vector identities:

∇ × �E + ∂ �B
∂t

= 0 (Faraday’s law) (2-1)

∇ × �H = �J + ∂ �D
∂t

(Ampère’s law) (2-2)

Taking the curl of (2-1) produces

∇ × (∇ × �E) = −∇ × ∂ �B
∂t

Since �B = µrµ0 �H [from (2-8)], the equation above can be written in terms of
the electric field by substituting (2-2) into the right-hand part:

∇ × (∇ × �E) = −∇ × ∂ �B
∂t

= −∂(∇ × µ �H)

∂t
= −µ

∂

∂t

(
�J + ∂ �D

∂t

)

where µ = µrµ0.
If it is assumed that the region of wave propagation is source-free, the current

density �J is zero. Combining equations (2-6) and (2-9) yields the relation �D =
εrε0 �E = ε �E and allows the equation to be expressed only in terms of �E:

∇ × (∇ × �E) = −µε
∂2 �E
∂t2

The formula can be simplified further by using the following vector identity (see
Appendix A):

∇ × (∇ × �E) = ∇(∇ · �E) − ∇2 �E
Since we have assumed a source-free medium, the charge density is zero (ρ = 0),
Gauss’s law reduces to ∇ · �E = 0, yielding equation (2-27), which is known as
the wave equation for the electric field :

∇2 �E − µε
∂2 �E
∂t2

= 0 (2-27)

Using the identical technique, the wave equation for the magnetic field can be
derived:

∇2 �H − εµ
∂2 �H
∂t2

= 0 (2-28)

Note that equations (2-27) and (2-28) are similar except that the order of mul-
tiplication of µε is reversed. The order of multiplication for this derivation was
preserved because it will become important when using matrices to calculate the
solution for waves propagating on multiple transmission lines in Chapter 4.
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2.3.2 Relation Between E and H and the Transverse Electromagnetic Mode

The wave equations (2-27) and (2-28) are presented in their most general form,
where the fields have components in four dimensions: x, y, z, and time. However,
for the vast majority of signal integrity analysis, the wave equations (and all of
Maxwell’s equations) can be simplified so that the fields have only one nonzero
component that varies with one spatial coordinate. For example, the electric field
�E(x, y, z, t) can be reduced to �axEx(z, t). A good example of this is the magnetic
field that was calculated in Example 2-2, where the magnetic flux intensity �B
had only one component in the φ-direction.

Although the wave equations (2-27) and (2-28) were derived separately, they
are coupled and interdependent. For example, if the electric field is restricted so
that �E = �axEx(z, t), similar restrictions on the magnetic field cannot be chosen
arbitrarily. In this case, since (2-27) was derived using the entire set of Maxwell’s
equations, once the electric field is restricted, the magnetic field is already deter-
mined. Thus, the proper way to calculate the magnetic field is to derive it from
the electric field. For example, if a wave is propagating in a source-free medium
in the z-direction and its electric field only has a component in the x-direction
[ �E = �axEx (z,t)], the magnetic field can be calculated from(2-1) and (2-2):

∇ × �E + ∂ �B
∂t

= 0 (2-1)

Since we have restricted �E so that it varies only with z (∂ �E/∂x = ∂ �E/∂y = 0),
equation (2-24) shows that the curl of �E can only produce components in the x-
and y-directions.

�ay

∂Ex

∂z
+ �ax

∂Bx

∂t
+ �ay

∂By

∂t
= 0

Since �B = µ �H ,

�ay

∂Ex

∂z
+ �axµ

∂Hx

∂t
+ �ayµ

∂Hy

∂t
= 0

Grouping into vector components yields

�ay

∂Ex

∂z
+ �ayµ

∂Hy

∂t
= 0

�axµ
∂Hx

∂t
= 0

From Ampère’s law (2-2),

∇ × �H = �J + ∂ �D
∂t
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Ex

y

x

z

Hy

Figure 2-10 How the electric and magnetic fields are related as a TEM electromagnetic
pulse propagates through space along the z -axis.

where �J = 0 for a source-free medium and �D = ε �E (for now, we assume that
�P = 0):

�ay

∂Hx

∂z
− �ax

∂Hy

∂z
= 0 + �axε

∂Ex

∂t

Grouping into vector components yields

−�ax

∂Hy

∂z
= �axε

∂Ex

∂t

�ay

∂Hx

∂z
= 0

The nonzero components of the equations above can be grouped to see the con-
tributions in both the x- and y-directions.

�ay

(
∂Ex

∂z
= −µ

∂Hy

∂t

)
(2-29)

�ax

(
ε
∂Ex

∂t
= −∂Hy

∂z

)
(2-30)

Equations (2-29) and (2-30) symbolize an important concept used throughout sig-
nal integrity analysis, which is that the electric and magnetic fields are orthogonal
and there are no components in the z-direction . When waves propagate in this
manner, it is called the transverse electromagnetic mode (TEM). Figure 2-10
depicts the relationship between the electric and magnetic fields as the TEM
electromagnetic pulse propagates along the z-axis.

It should be noted that waves are not always restricted to propagate only in
TEM mode because some structures (such as a microstrip) distort the wave-
form so that a small portion of the fields will have a z-component that lies
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outside the x –y plane. However, the relationship between the wavelength and
the structure sizes in practical systems allows us to assume that the waves are
propagating in TEM mode until very high frequencies. Measurements have con-
firmed that the TEM assumption remains valid to at least 50 GHz for typical
transmission-line structures used in contemporary digital designs. The validity of
the TEM assumption for transmission lines is discussed further in Chapter 3.

2.3.3 Time-Harmonic Fields

A simplification of Maxwell’s equations can be made if the time variation is
assumed to be steady-state sinusoidal or time harmonic in nature. Although per-
fect sinusoidal waveforms are rarely encountered in digital design, the trapezoidal
digital pulses usually employed can be constructed from a series of sinusoidal
waveforms via the Fourier transform, making this general simplification partic-
ularly useful. Time-harmonic electromagnetic fields will be generated whenever
their charge and current sources also have densities that have a sinusoidal vari-
ation with time. Assuming that the sinusoidal sources are steady state permits
the assumption that both �E and �B also reach steady state and vary according to
cos(ωt + θE) and cos(ωt + θB), where ω = 2πf and θ is the phase of either the
electric or the magnetic field.

Generally, a sinusoidal waveform can be represented as

cosφ + j sin φ = ejφ (2-31)

so the sinusoidal form of a time-harmonic field will vary according to the complex
exponential factor ejωt , which leads to a reduction of Maxwell’s equations from
a function space and time to simply space:

�E(x, y, z, t) = �E(x, y, z)ejωt (2-32a)

�B(x, y, z, t) = �B(x, y, z)ejωt (2-32b)

Equations (2-32) allow Maxwell’s equations to be rewritten as

∇ × ( �Eejωt ) + ∂ �B(ejωt )

∂t
= 0

∇ × ( �Hejωt ) = �Jejωt + ∂( �Dejωt )

∂t

∇ · ( �Dejωt ) = ρejωt

∇ · ( �Bejωt ) = 0

The curl and the gradient affect only space-dependent functions, and the ejωt is
operated on only by the partial time derivatives. Therefore, after canceling all
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the extraneous ejωt terms, the time-harmonic form of Maxwell’s equations , where
time has been eliminated, is shown.

∇ × �E + jω �B = 0 (2-33)

∇ × �H = �J + jω �D (2-34)

∇ · �D = ρ (2-35)

∇ · �B = 0 (2-36)

Note that the time variation of the fields can be restored by multiplying by ejωt

and taking the real part:

�F(x, y, z, t) = Re[ �F(x, y, z)ejωt ] (2-37)

2.3.4 Propagation of Time-Harmonic Plane Waves

As will be demonstrated in subsequent chapters, the propagation of time-harmonic
plane waves is of particular importance for the study of transmission-line or other
guided-wave structures. This allows us to study a simplified subset of Maxwell’s
equations where propagation is restricted to one direction (usually along the
z-axis) and time is removed as described in Section 2.3.3. A plane wave is
defined so that propagation occurs in only one direction (z) and the fields do
not vary with time in the x- and y-directions. If the fields were observed at an
instant in time, they would be constant in the x –y plane for any given point z

and would change for different values of z or t . Figure 2-11 depicts a plane wave
propagating in the z-direction.

To study the behavior of time-harmonic plane waves, it is necessary to
re-derive the wave equation from the time-harmonic form of Maxwell’s

x

y

z

Direction of
propagation

Figure 2-11 Plane wave propagating in the z -direction.
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equations using the procedure employed in Section 2.3.1. Again, assume a
source-free, linear, homogeneous medium:

∇ × (∇ × �E) = −jωµ(∇ × H)

The formula can be further simplified by using the following vector identity
(Appendix A):

∇ × (∇ × �E) = ∇(∇ · �E) − ∇2 �E

Since we have assumed a source-free medium, the charge density is zero (ρ = 0)
and Gauss’s law reduces to ∇ · �E = 0, yielding

∇2 �E + j 2ω2µε �E = ∇2 �E − ω2µε �E = 0 (2-38)

Substituting γ 2 = ω2µε yields

∇2 �E − γ 2 �E = 0 (2-39)

which is the time-harmonic plane-wave equation for the electric field, where γ

is known as the propagation constant.
If the solution is limited to plane waves propagating in the z-direction that have

an electric field component only in the x-direction, the wave equation becomes
(see Appendix A)

∇2 �E = ∂2Ex

∂x2
+ ∂2Ex

∂y2
+ ∂2Ex

∂z2
= ∂2Ex

∂z2
− γ 2Ex = 0

∂2Ex

∂z2
− γ 2Ex = 0

(2-40)

which is a second-order ordinary differential equation with the general solution

Ex = C1e
−γ z + C2e

γ z (2-41)

where C1 and C2 are determined by the boundary conditions of the particular
problem.

As discussed in Chapter 3, equation (2-41) and its magnetic field equiva-
lent will prove to be particularly important for signal integrity because they
describe the propagation of a signal on a transmission line. The first term,
C1e

−γ z, describes completely the forward-traveling part of the wave propagating
in the z-direction (i.e., down the length of the transmission line), and the second
term, C2e

+γ z, describes the propagation of the rearward-traveling wave in the
−z-direction. Observing equation (2-41) allows the definition of an important
term, the propagation constant :

γ = α + jβ (2-42)
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The terms in (2-42) have special meanings used throughout the book to describe
the medium where the electromagnetic wave is propagating, whether it is in free
space, is an infinite dielectric, or is a transmission line. Specifically, α is the loss
term , which describes signal attenuation as it propagates through the medium. The
loss term accounts for the fact that real-world metals are not infinitely conductive
(except superconductors) and dielectrics are not perfect insulators (except free
space), both of which are discussed in detail in Chapters 5 and 6. The imaginary
portion of (2-42), β, called the phase constant , essentially dictates the speed at
which the electromagnetic wave will travel in the medium. To visualize these
waves propagating as described in (2-41), it is necessary first to recover the time
dependency removed in Section 2.3.3. Considering only the forward-propagating
component of a wave in a vacuum, replacing C1 with the magnitude of the electric
field, restoring the time dependency as in (2-37), and applying the identity of
equation (2-31) yields

E(z, t) = Re(E+
x e−γ zejωt ) = Re(E+

x e−αze−jβzejωt ) = e−αzE+
x cos(ωt − βz)

(2-43)

Assuming that the loss term is zero (α = 0), Figure 2-12 depicts successive
snapshots of a wave propagating though space. To determine how fast the wave is
propagating, it is necessary to observe the cosine term for a small duration of time
�t . Since the wave is propagating, a small change in time will be proportional to a
small change in distance �z, which means that an observer moving with the wave
will experience no phase change because she is moving at the phase velocity (νp).
Setting the term inside the cosine of (2-43) to a constant (ωt − βz = constant)
and differentiating allows the definition of the phase velocity from the cosine
term in (2-43):

νp = dz

dt
= ω

β
m/s (2-44)

at t = t1

at t = t2

E +
x cos (wt − bz)

at t = t0

∆t

∆t∆z
∆z = νp

l

Figure 2-12 Snapshots in time of a plane wave propagating along the z -axis, showing
the definition of phase velocity.
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The relationship between the frequency and its wavelengths is calculated based
on the speed of light, which is the phase velocity (νp) in a vacuum:

f = c

λ
hertz (2-45)

Since ω = 2πf and c is the speed of light in a vacuum (ca. 3×108 m/s), equation
(2-45) can be substituted into (2-44) to obtain a useful formula for β in terms of
the wavelength λ:

c = ω

β
= 2πc

βλ
→ β = 2π

λ
rad/m (2-46)

The speed of light in a vacuum is defined as the inverse of the square root of the
product of the permeability and the permittivity of free space:

c ≡ 1√
µ0ε0

m/s (2-47)

Calculation of λ in terms of (2-47) allows the phase constant β to be rewritten
in terms of the properties of free space:

β = 2πf
√

µ0ε0 = ω
√

µ0ε0 rad/m (2-48)

This is expanded on later in this chapter to include propagation of a wave in a
dielectric medium.

Now that the propagation constant has been defined, (2-43) can be rewritten
in physical terms, assuming free space (which is lossless, so α = 0):

E(z, t) = Re(E+
x e−jωz

√
µ0ε0ejωt ) = E+

x cos(ωt − ωz
√

µ0ε0) (2-49)

Since (2-49) is a solution to the wave equation, the magnetic field is found simply
by using Faraday’s law (∇ × �E + jω �B = 0):

∂

∂z
(E+

x e−jωz
√

µ0ε0)ejωt = −jωµ0H
+
y

H+
y =

√
µ0ε0

µ0
E+

x e−jωz
√

µ0ε0ejωt = 1

η0
E+

x e−jωz
√

µ0ε0ejωt (2-50)

= 1

η0
E+

x cos(ωt − ωz
√

µ0ε0)

where η0 is the intrinsic impedance of free space and has a value of 377 �:

η0 ≡
√

µ0

ε0
= 377 � (2-51)
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Equations (2-49) and (2-50) describe how a plane wave propagates in free space.
The intrinsic impedance and the speed of light are constants that describe how
the electromagnetic wave will propagate through the medium. The speed of light
defines the phase delay of the wave, and the intrinsic impedance describes the
relationship between the electric and magnetic fields. However, for wave prop-
agation in other media, such as the dielectric of a printed circuit board (PCB),
the speed of light and the intrinsic impedance are calculated using the relative
permittivity εr and relative permeability µr , which simply describe the properties
of the material relative to free-space values. Note that both µr and εr are unitless
values that are real numbers for loss-free media but become complex for lossy
media, as described in Chapters 5 and 6. The speed of light (referred to as the
phase velocity for media other than free space) and the intrinsic impedance in a
medium is calculated as

νp = 1√
µrµ0εrε0

= c√
µrεr

m/s (2-52)

η ≡
√

µrµ0

εrε0
=

√
µ

ε
= E

H
ohms (2-53)

Note that for free space, µr and εr are both defined to be unity.
Equations (2-54) and (2-55) summarize the TEM plane waves of both the

electric and magnetic fields in general form, with the time dependency removed:

Ex(z) = E+
x e−γ z + E−

x eγ z (2-54)

Hy(z) = 1

η
(E+

x e−γ z − E−
x eγ z) (2-55)

where γ = α + jβ is the propagation constant; α describes how the signal is
attenuated by conductor and dielectric losses, described in full detail in Chapters
5 and 6; and β is the phase constant, as defined by (2-46) when the phase
velocity in (2-52) is substituted for the speed of light in a vacuum (c). Note that
the second term in (2-55) is negative. This is because the sign of the exponent
for the reverse traveling wave does not cancel the negative sign in Faraday’s law
as it did for the forward-traveling wave in equation (2-50) when the derivative
with respect to z was calculated. The terms E+

x and E−
x describe the directions

of each component of a propagating wave. For example, the total propagating
wave could have a portion of the electric field propagating in the +z-direction
and another propagating in the −z-direction. Figure 2-13 depicts a time-harmonic
TEM plane wave propagating along the z-axis.

2.4 ELECTROSTATICS

Electrostatics is the study of stationary charge distributions. A complete under-
standing of electrostatics is essential for the high-speed digital designer because
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Ex(z,t ) = E+
xe−gz

Hy(z,t ) =     E+
xe−gz1

h
y

z

x

Figure 2-13 Time-harmonic TEM plane wave propagating down the z -axis.

it forms the basis of fundamental signal integrity theory and promotes an intu-
itive understanding of how electric fields behave. In this chapter we (1) define
the electric field, (2) describe how energy is stored in the electric field, and (3)
define capacitance, which is the circuit element used in circuit models to repre-
sent the energy stored in an electric field. The vast majority of signal integrity
analysis performed in the industry today uses electrostatic techniques to calculate
critical design variables such as transmission-line impedance, phase velocities,
and effective dielectric permittivities. The concepts introduced in this section are
expanded on in later chapters to describe a myriad of concepts.

When a weightlifter hoists a barbell over his head, the energy expended (or the
work done against the gravitational field) is stored in the form of potential energy.
The gravitational potential energy can be recovered by lowering the barbell to the
ground. Similarly, when two infinitely separated charges of the same polarity are
brought together, the charges will experience a repulsive force whose magnitude
depends on the distance between the charges. The existence of this force is
described by saying that a charge q with units of coulombs (C) produces an
electric field in the region surrounding it. When the electric fields of two charges
of the same polarity begin to interact, a force will be generated that will push the
charges apart. Therefore, the region surrounding a charge is permeated by a force
field known as the electric field , defined fundamentally as force per unit charge,
with units of newtons per coulomb (N/C). Note that because a volt is defined as
joules per coulomb (J/C), newtons per coulomb is equivalent to volts per meter
(V/m), which are the units commonly used to describe an electric field.

V = J

C
→ C = J

V

1J = 1kg · m2/s2

1N = 1kg · m/s2

N

C
= N · V

J
= 1kg · m/s2 · V

1kg · m2/s2
= V

m
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The description above makes the argument that an electric field is a field
of force. If that force field acts upon a body to move it, work is done. The
energy used to perform the work must either be dissipated by losses (friction
in mechanical systems) or stored in the form of kinetic or potential energy. For
example, if a test charge q is moved to different positions in an electric field
produced by a fixed charge Q, either work must be performed to keep the charges
separated (in the case of opposite charges) or work must be performed to bring
the charges closer together (in the case of the same polarity charges). In this
case, no energy is dissipated (in a loss-free system) because the energy in stored
in the separated configuration and the energy can be recovered if the charges are
allowed to return to the initial positions. The stored energy is potential energy
because it depends on the position of the charges within the field. The concept
of scalar electric potential , which will now be derived, provides a metric to
describe the work or energy required to move charges from one point to another
inside an electrostatic field.

The discussion above describes how an electric field is produced when two
charges are brought into the vicinity of each other. If we assume that one charge
(Q) is stationary and the other charge (q) is moved toward the stationary charge
from point a to point b, the work can be calculated as force × distance. To
calculate the work done while moving the charge along a path, the following line
integral is used:

�Wa→b = −
∫ b

a

�F · d�l joules (2-56)

Note that the minus sign is necessary because (2-56) represents work being done
against the field. The dot product accounts for the fact that it takes zero work to
move the charge perpendicular to the field because there is no opposing force in
that direction.

Since a fundamental unit of an electric field is newtons per coulomb (described
above), the force field in (2-56) can be rewritten in terms of the electric field as

�E =
[ �F

q

]
a→b

N/C or V/m (2-57)

[
W

q

]
a→b

= v(b) − v(a) = −
∫ b

a

�E · d�l V (2-58)

where q is a test charge being moved from point a to point b within the vicinity of
a fixed charge Q, with units of coulombs. To calculate the electric field generated
by a point charge, the integral form of Gauss’s law is used:

∮
S

ε �E · d�s =
∫

V

ρ dV = Qenc (2-59)
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4pe0 r 
2 

QEr =

Q

r

E = arEr

Figure 2-14 Electric field generated by a point charge Q .

where is the volume density of the charge within volume V in C/m3 and Qenc

is the total charge enclosed by the surface S and contained in the volume V in
units of coulombs.

As shown in Figure 2-14, a point charge has an electric field that radiates
out in all directions, necessitating the use of spherical coordinates. In spherical
coordinates, the φ and θ omponents of the electric field are zero, leaving only
an r component directed outward from the point charge. Therefore, since the
surface area of a sphere is 4πr2, the electric field around a point charge in free
space is derived from (2-59):

�E = �arEr = Q

4πε0r2
V/m (2-60)

Substituting (2-60) into (2-58) allows the calculation of the work done per unit
charge when a charge is moved along r from point a to point b in an electrostatic
field. Note that if the test charge was moved along φ or θ , there would be no work
done because �E · d�l = 0; however, along the radial component, �E · d�l = Erdr .

[
W

q

]
a→b

= −
∫ b

a

�E · d�l = −
∫ b

a

Q

4πε0r2
dr

= Q

4πε0

(
1

rb

− 1

ra

)
= �(a) − �(b) V

(2-61)

Therefore, we can define the electrostatic potential as work done to move a charge
in an electrostatic field from point a to point b:

�ab = Q

4πε0rab

V (2-62)
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where rab denotes the radial distance that the stationary charge moved and �ab

is known as the electrostatic potential or voltage between points a and b (don’t
confuse the symbol for potential � with the polar coordinate variable φ).

2.4.1 Electrostatic Scalar Potential in Terms of an Electric Field

For electrical engineers, it is often convenient to think of fields in terms of
more familiar circuit concepts, which are usually described in terms of potential
differences (i.e., voltage) between points in a circuit. Therefore, a relationship
between the electrostatic potential and the electric fields that is described in terms
of a scalar function will prove to be useful in the study of signal integrity. To
derive this relationship, it is convenient to sidestep the complexities of spherical
coordinates and think in terms of simple rectangular coordinates. From equations
(2-61) and (2-62) it is obvious that the differential amount of work done in
moving a charge in an electrostatic field is directly proportional to the potential
difference:

dW = q�(x + �x, y + �y, z + �z) − q�(x, y, z)

= q

(
∂�

∂x
�x + ∂�

∂y
�y + ∂�

∂x
�z

) (2-63)

However, from equation (2-58),

W = −
∫ b

a

q �E · d�l → dW = −q �E · d�l

In rectangular coordinates, d�l = �ax�x + �ay�y + �az�z. Thus, (2-63) can be sim-
plified using the definition of the dot product in (2-13).

dW = q

(
∂�

∂x
�x + ∂�

∂y
�y + ∂�

∂x
�z

)
= −q �E · d�l

= q

(
�ax

∂�

∂x
+ �ay

∂�

∂y
+ �az

∂�

∂z

)
· (�ax�x + �ay�y + �az�z)

= −q �E · (�ax�x + �ay�y + �az�z)

�E = −
(

�ax

∂�

∂x
+ �ay

∂�

∂y
+ �az

∂�

∂z

)
(2-64)

Note that the form of the last term in (2-64) is identical to (2-21), which is the
gradient, which gives a very useful relation between the electric field and the
electrostatic potential:

�E = −∇� (2-65)
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Also note that (2-65) can be derived using vector identities, which is significantly
simpler but does not provide any intuition. The alternative derivation is shown
here because we employ a similar technique when studying magnetostatics in the
next section.

For an electrostatic field, Ampère’s law is reduced to ∇ × �E = 0 because the
field does not vary with time. For any differentiable scalar function, the following
vector identity holds true (from Appendix A):

∇ × ∇ψ = 0

Therefore, since ∇ × �E = 0, �E must be derivable from the gradient of a scalar
function. Since (2-61) shows a relationship between the electrostatic potential and
the electric field, a leap of logic says that the scalar function in the vector identity
must be the electrostatic potential:

∇ × �E = ∇ × (−∇�) = 0 (2-66)

Equation (2-65), known as the electrostatic scalar potential , is used often when
solving electrostatic problems such as transmission-line impedance or calculating
the effective dielectric constant of a microstrip, as we demonstrate in Chapter 3.

2.4.2 Energy in an Electric Field

To calculate the energy stored in an electric field, it is necessary to begin with
a stationary charge (q1) in free space that is infinitely far way from any other
charges. It takes no work to move the first charge into position (W1 = 0) because
there are no other nearby charges to provide electrostatic repulsion. Then we
calculate how much work it takes to bring another charge (q2) into the vicinity
of the first charge using (2-61) and (2-62):

W2 = q2�12 = q1q2

4πε0r12
(2-67)

If we bring another charge, q3, into the vicinity of q1 and q2, the work is calculated
as

W3 = q3(�13 + �23) = q3
1

4πε0

(
q1

r13
+ q2

r23

)

Thus, the total work done to bring the three charges together is

Wtot = W1 + W2 + W3 = 0 + q1q2

4πε0r12
+ q3

4πε0

(
q1

r13
+ q2

r23

)

= 1

4πε0

(
q1q2

r12
+ q1q3

r13
+ q2q3

r23

)
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which can be generalized into the following double summation to account for n

charges:

Wtot = 1

4πε0

n∑
i=1

n∑
j=1

j>i

qiqj

rij

(2-68)

The limit on the j term exists to ensure that terms are not counted twice. For
example, without the limit the term �12 would be counted twice because �12 =
�21, which simply means that it takes the same amount of work to move q1 into
the vicinity of q2 as it does to move q2 into the vicinity of q1. Equation (2-68)
can be simplified by allowing the terms to be counted twice and dividing by 2
to compensate for the double counting of terms:

Wtot = 1

2




1

4πε0

n∑
i=1

n∑
j=1

j �=i

qiqj

rij


 = 1

2

n∑
i=1

n∑
j=1

j �=i

qi�ij (2-69)

Equation (2-69) is the work it takes to assemble n charges. It is interesting to
consider where the energy is stored in an accumulation of charges. It is analogous
to a mechanical system of a compressed spring with a weight on each end. If
the weights are forced together, the energy is stored in the stressed state of the
spring. Therefore, just like the spring example, the charges, which will tend to
repel each other, will have stored energy that is a function of the proximity of
the charges and the properties of an electric field.

To calculate the energy stored in a continuous charge distribution, and thus
an electric field, it is more convenient to express the charge in terms of the unit
volume, the potential in terms of a continuous function, and to take the limit as
n → ∞, which allows us to write (2-69) in terms of an integral,

Wtot = We = 1
2

∫
V

ρ(r)�(r) dV joules (2-70)

where ρ (r) is the charge density in units of C/m3.
It is useful to express (2-70) in terms of the electric field. To do this, Gauss’s

law is used to express the charge density in terms of the electric field:

∇ · �D = ∇ · ε �E = ρ → We = 1
2

∫
V

(∇ · ε �E)�(r) dV (2-71)

This equation can be simplified using the flowing vector identity (Appendix
A):

∇ · ψ �a = �a · ∇ψ + ψ(∇ · �a) → ψ(∇ · �a) = ∇ · ψ �a − �a · ∇ψ
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The identity can be rewritten in terms of the electrostatic vector potential, sub-
stituting ψ = � and �a = ε �E:

We = ε

2

∫
V

(∇ · �E − E · ∇�) dV

Since �E = −∇�, the equation can be simplified further:

We = ε

2

∫
V

(∇ · � �E + �E · �E) dV (2-72)

The divergence theorem of vector calculus states (Appendix A) that

∫
V

(∇ · �F) dV =
∮

S

�F · d�s

allowing further simplification of (2-72):

We = ε

2

∮
S

� �E · �n ds + ε

2

∫
V

( �E · �E)
dV (2-73)

where �n is a unit vector normal to the surface.
Equation (2-73) describes the total energy in an electric field that is induced

by a volume of charges. If we expand the volume of integration to include
all space, any contribution of (2-73) outside the charge distribution will con-
tribute nothing to the work done since there are no charges in that space.
Also note that if the volume of integration is chosen to be infinity, the sur-
face integral disappears. To understand why, remember that the surface integral
sums all the contributions evaluated at the surface. Since � ∝ 1/r [equation
(2-62)], E ∝ 1/r2 [equation (2-60)], and ds ∝ r2, the limit of � �E · �nds is pro-
portional to (1/r)(1/r2)r2, whose limit goes to zero when r is infinity and the
surface integral disappears. The volume integral includes contributions over the
entire volume, not only on the surface. Subsequently, equation (2-73) can be
reduced to (2-74), which is the work done by accumulating charges to create an
electric field:

We = ε

2

∫
all space

(E2) dV joules (2-74)

This leads to the definition of the volume energy density , which expresses the
stored energy in a charge distribution in terms of the electric field:

we = ε

2
E2 joules/m3 (2-75)
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2.4.3 Capacitance

In circuit terms, the quantity associated with storing energy in an electric field is
capacitance. To define capacitance, imagine two conductors, with a charge of +Q

on one and of −Q on the other. If we assume that the voltage is constant over
each conductor, the potential difference (voltage) between them is calculated as

v(b) − v(a) = −
∫ b

a

�E · d�l V (2-58)

We show that �E is proportional to Q:

�E = �arEr = Q

4πε0r2
V/m (2-60)

Since �E is proportional to both Q and v, we can define a constant of proportion-
ality that relates Q and v. The constant of proportionality is defined to be the
capacitance:

C ≡ Q

v
farads (2-76)

where Q is the total charge in coulombs and v is the voltage potential between the
conductors, given in units of farads, defined as 1 coulomb per volt. Capacitance
depends purely on the geometry of the structures and the value of the dielectric
permittivity. Note that v is defined as the potential of the positive conductor
minus the negative conductor and that Q is the charge on the positive conductor.
Therefore, capacitance is always a positive value.

Example 2-3 Consider the case where two conductive plates of area A are
oriented parallel to each other separated by a distance d . Assume that we place
a charge of +Q on the top plate and −Q on the bottom plate and assume that
the charges will spread out evenly (a reasonable assumption, assuming a good
conductor). Then the surface charge density becomes

ρ = Q/A (C/m2). Calculate the capacitance.

SOLUTION Using the integral form of Gauss’s law (2-59), we can calculate
the electric field: ∮

s

ε �E · d�s =
∫

V

ρ dV

where dV in this case refers to the volume. Since we are considering the charge
distribution on a surface, d�s = dV = �nA (where �n is the unit normal vector
to the plate), we can write the electric field in terms of the area and dielectric
permittivity:

εEA = Q

A
A → E = Q

εA
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The voltage is evaluated with equation (2-58), where dl = x(a) − x(b) = d ,
which is the distance between the plates:

v =
∫ b

a

�E · d�l = Q

εA
d

Therefore, the capacitance between two parallel plates is

C = Q

v
= Q

(Q/εA) d
= εA

d
farads

where A is the area of the parallel plates, v the voltage, and d the distance
between them.

2.4.4 Energy Stored in a Capacitor

The process of storing energy in a capacitor involves electric charges of equal
magnitude, but opposite polarity, building up on each plate. As long as the
capacitor holds a charge, it is storing energy. To calculate how much energy is
stored in a capacitor, consider how much energy it would take to transport a
single charge from the positive plate to the negative plate. From equation (2-58)
we know that voltage is the work done to move a charge from point a to b,[

W

q

]
a→b

= v

and capacitance is defined as

C ≡ Q

v
farads (2-76)

Therefore, the amount of work needed to move one charge q of the total charge
Q from plate a to plate b is

dW = v dq = q

C
dq

To calculate the total work done to charge up the capacitor to a value of Q, all
charges must be moved:

W =
∫ Q

0

q

C
dq = 1

2

Q2

C

However, from (2-69), Q = Cv. Therefore, the energy stored in a capacitor with
a final potential of v is

W = 1

2
Cv2 joules (2-77)



42 ELECTROMAGNETIC FUNDAMENTALS FOR SIGNAL INTEGRITY

2.5 MAGNETOSTATICS

In Section 2.4 we discussed the problem of classical electrostatics, where we
defined the electric field in terms of the force that a collection of charges exert
on each other. In the case of electrostatics, we considered only cases where the
charges are at rest. Now it is time to consider the forces that exist between
charges in motion.

To begin this discussion, let’s consider an experiment that most people per-
formed in high school physics class. If you recall, direct current (dc) (from a
battery) driving through a coil will produce an electromagnet. The magnetic field
produced by such a configuration can be descried by Ampère’s law, ∇ × �H = �J .
Note that the time dependence of the electric field (∂D/∂t) has been elimi-
nated because we are considering only a dc flow. Ampère’s law tells us that
a steady-state current �J will induce a magnetic field �H that circulates around
the wire. As described in Example 2-2, the direction of the circulation can be
determined using the right-hand rule. If the thumb points in the direction of the
current flow, the fingers of the right hand will curl around in the direction of the
magnetic field. Subsequently, it is easy to imagine the form of the magnetic field
from a single loop of current in our electromagnet, as shown in Figure 2-15a.

Now consider a tiny elemental loop of current circulating around a point that
will induce a small magnetic field as shown in Figure 2-15b. This small current
loop will produce a small magnetic field that is analogous to an electric charge. In
fact, historically, scientists initially speculated that there was a magnetic charge
analogous to the electric charge described earlier. However, experimental evi-
dence suggests overwhelmingly that magnetic charges do not exist. Magnetic
fields are not generated by the forces that magnetic charges exert on each other;
rather, magnetic fields are generated by current loops.

Similar to our description of the forces between charges in electrostatics,
consider an isolated tiny current loop (l0) which will induce a magnetic field
and behave like a small electromagnet. Now, bring another tiny current loop
(l1) from infinity into the magnetic field of l0. If the orientations of the current
loops are similar, it will take work to push them together because magnets exert
forces on one another similar to electric charges. Like poles will repel each other,
and unlike poles will attract. Each “electromagnet” has its own north and south

dll

(a) (b)

B

B

B

Figure 2-15 (a) Magnetic field generated by a loop of current; (b) elemental current
loop analogous to an electric charge.
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poles. It is interesting to note that the fundamental source of the magnetic field
is the moving charge Q that constitutes the steady-state current. Subsequently,
when l1 is moved into the proximity of l0, the force induced between the two
electromagnets is caused by the charge (Q) of l1 moving in the magnetic field
of l0 and is described by the Lorenz force law:

�Fm = Q(�ν × �B) (2-78a)

A charge moving in the presence of both an electric and a magnetic field produces
a force calculated as

�Fm = Q( �E + �ν × �B) (2-78b)

The implications of (2-78) are that the force is perpendicular to both the velocity
�ν of the charge q and the magnetic field �B. The magnitude of the force is
F = qvB sin θ , where θ is the angle between the velocity vector and the magnetic
field. Because sin(0) = 0, this implies that the magnetic force on a stationary
charge or a charge moving parallel to the magnetic field is zero.

From the force relationship in (2-78) it can be deduced that the units of
magnetic field are newton · seconds/coulomb · meter or newtons/ampere · meter.
This unit is named the tesla. It is a large unit, and the smaller unit gauss is
used for small fields such as Earth’s magnetic field. A tesla is 10,000 G. Earth’s
magnetic field is on the order of 0.5 G.

To make this concept more apparent, the force can be defined in terms of the
current, which is the flow of 1 C of charge per second:

1A = 1C/s (2-79)

If we consider the current flowing along on a differential slice of a wire (dl ), we
can write (2-78) in terms of the current. Since Qν has units of C (m/s), which
is the same as A · m, Qν can be simplified to I dl :

Qν = Q
�l

s
= Q

dl

s
→ Idl

This allows us to write the force in terms of both the current and the magnetic
field:

�Fm =
∫

( �I × �B) dl (2-80)

Equation (2-80) says that the force caused by the magnetic field will be perpen-
dicular to the current flow and the magnetic field.

When deriving the energy in an electric field in Section 2.4, we calculated
the amount of work done against the electric field to bring an accumulation of
charges together. However, when calculating the energy in the magnetic field, a
different approach must be taken because of a unique feature of equation (2-78).
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If a charge Q moves an amount d�l = �ν dt in a magnetic field, the amount of
work done is

dWm = �Fm · d�l = Q(�ν × �B) · �ν dt = 0 (2-81)

Note that �ν × �B is perpendicular to the flow of the current, which follows the
path of d�l. In other words, the work done by the magnetic field is zero because
the force is perpendicular to the moving charge. Therefore, the magnetic field
can change the direction of the moving particle, but it cannot speed it up or slow
it down. This concept may be confusing, especially when considering the simple
electromagnets that we all played with in high school, because we all know that
we can use an electromagnet to pick up a paper clip. Since we are moving the
mass of the paper clip against Earth’s gravitational field, we know that work is
being done. However, if the work is not being done by the magnetic field, what
is doing the work? The answer is demonstrated in the following example.

Example 2-4 Consider a long wire carrying current I1 in the presence of a rigid
rectangular loop carrying current I2, as shown in Figure 2-16. The long wire will
generate a magnetic field as calculated in Example 2-2:

B1 = I1µ0

2πr

Calculate the magnetic force.

A

l1

l2

D

b

y

x

z

a

B C

F F F

F

F1

Figure 2-16 Forces generated on a wire loop in the vicinity of a magnetic field generated
from a wire.
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SOLUTION According to equation (2-80), the force exerted on the loop car-
rying current I2 in the presence of �B1 is

�Floop =
∫

( �I2 × �B1) dl = I2
I1µ0

2π

(∫ B

A

�ax dx × �ay

x
+

∫ C

B

�az dz × �ay

b

+
∫ D

C

−�ax dx × �ay

x
+

∫ A

D

−�az dz × �ay

a

)

Note that the segments AB and CD are equal but opposite, so they cancel.

�Floop = I2
I1µ0

2π

(∫ C

B

�az dz × �ay

b
+

∫ A

D

−�az dz × �ay

a

)

From the right-hand rule, the cross products are as follows:

�az × �ay = −�ax

−�az × �ay = �ax

Therefore, the force is reduced to

�Floop = I2
I1µ0

2π

[
−�ax

1

b
(B − C) + �ax

1

a
(D − A)

]

Since segments BC = DA, we can call this length d:

�Floop = �axI2
I1µ0 d

2π

(
1

a
− 1

b

)

Therefore, the loop will be pushed away from the wire in the direction of �ax .
Note that the magnetic force has caused the wire loop to move. Since work

is force × distance, it would be easy to conclude that the magnetic force has
performed work. However, equation (2-81) explicitly states that the magnetic field
can do no work. What is performing work? To answer this question, consider
the force vector on a single segment of the loop as soon as it begins to move.
Remember that the force is perpendicular to the direction of the current flow, and
the current flow is defined by the movement of charge. When the loop moves, the
direction of the current flow I2 will be altered. To understand this, Figure 2-17
shows that the direction in which a single charge in the loop will travel when
the loop is moved in the +x-direction. Instead of moving from right to left, it is
moved up and to the left because the loop is moving in the +x-direction. This
will cause the force vector, which must remain perpendicular to the current flow,
to tilt to the right, as shown in Figure 2-17. When the force vector tilts, the
component �azFz opposes the charge flow of the current I2 in the loop. For I2 to
remain constant, the source of the current must overcome this force. This leads
us to the conclusion that the power source is performing the work! The magnetic
field simply alters the direction of the force vector.
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I
Q (t = t0)

Q (t = t1)

Q (t = t2)

Direction of loop
movement

axIx

−azIz

l1

l2

F

B1

Figure 2-17 Forces generated on a wire loop in the vicinity of a magnetic field generated
from a wire.

2.5.1 Magnetic Vector Potential

Because magnetic fields can do no work, we cannot calculate the energy stored
in a magnetic field in the same manner as we did for the electric field (i.e.,
by calculating the work done to accumulate a distribution of elemental current
loops), so another approach is needed. In this section we develop the concept of
the magnetic vector potential . The magnetic vector potential is used to calculate
inductance, which is in turn used to calculate the energy stored in a magnetic
field.

The basic laws that rule magnetostatics are the time-invariant forms of
Ampère’s and Gauss’s laws for magnetism:

∇ × �H = �J (2-82a)

∇ · �B = 0 (2-82b)

If the following vector identity is applied (from Appendix A),

∇ · (∇ × �A) = 0

it implies that �B can be written in terms of the curl of a vector �A. This is called
the magnetic vector potential , which sometimes helps to simplify calculations
such as inductance:

�B = ∇ × �A (2-83)

To calculate the form of �A, it is first necessary to introduce the most basic law of
magnetostatics, the Biot–Savart law , which describes how the �B field at a given
point is produced by the moving charges in the vicinity of that point. During
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application of this law, we consider currents that are either static or very slowly
varying with time. The Biot–Savart law is given by [Inan and Inan, 1998]

d �Bp = µ0Id�l × �R
4πR2

(2-84)

where I is the current, �R a unit vector pointing from the location of the differ-
ential current element Id�l to the point P , and R = |�r − �r ′| the distance between
the current element and point P . Note that a primed quantity represents the posi-
tion vector or the coordinates of the source points and the unprimed quantities
represent the position vector or the coordinates of the point where �B is being
evaluated. Note that the cross product in (2-84) indicates that d �B is perpendicular
to both Id�l′ and �R, with the orientation being described by the right-hand rule.
Also note that the field generated by Id�l′ will fall off with the square of the
distance.

Note that the current element Id�l′ is a small part of a closed current loop and
that an arbitrarily shaped loop can be constructed by the superposition of many
such closed elemental loops of current, as shown in Figure 2-18. Subsequently,
the Biot–Savart law can be written in terms of an integral:

�B = µ0

4π

∮
C

Id�l′ × �R
R2

(2-85)

Careful observation of (2-85) allows us to calculate the form of the magnetic
vector potential �A. Equation (2-83) states that the magnetic field is the curl of �A.
The trick is to manipulate (2-85) into the form of a curl so that �A can be found.
The right-hand term of (2-85) has a term that can be equated to the gradient of
1/R in spherical coordinates (see Appendix A):

∇
(

1

R

)
= �R ∂

∂R

(
1

R

)
+ �θ 1

R

∂

∂θ

(
1

R

)
+ �φ 1

R sin θ

∂

∂φ

(
1

R

)
= − �R 1

R2
(2-86)

dl

I

Figure 2-18 Any current loop can be constructed from many elemental current loops dI .
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Substituting (2-86) into (2-85) gives

�B = µ0

4π

∮
C

−Id�l′ × ∇
(

1

R

)
(2-87)

The del operator (∇) does not operate on source variables and therefore does not
affect Id�l′. Therefore, it is acceptable to rewrite (2-87) in the form of a curl:

�B = ∇ × µ0I

4π

∮
C

d�l′
R

(2-88)

Also note that the negative sign has been eliminated because it indicates current
direction, which is comprehended by the vector Id�l′. Comparing (2-88) to the
definition of the magnetic vector potential in (2-83), we can deduce the form
of �A:

�A = µ0I

4π

∮
C

d�l
R

(2-89)

2.5.2 Inductance

Suppose that two current loops are in close proximity to each other as shown
in Figure 2-19. If a steady-state current (I1) is flowing in loop 1, it produces
a magnetic field B1, as predicted by (2-85). If some of the magnetic field lines
pass though loop 2, the flux passing through loop 2 is calculated using the form
of equation (2-17):

ψ2 =
∫

�B1 · d�s2 (2-90)

Note that the flux in loop 2 is proportional to �B1 and is therefore also proportional
to I1. This allows us to define a constant of proportionality, more commonly
known as the mutual inductance:

L21 ≡ ψ2

I1
(2-91)

Substituting the (2-83) into (2-90) gives the flux passing through loop 2 in terms
of the magnetic vector potential, where s2 is the surface enclosed by loop 2:

ψ2 =
∫

(∇ × A1) · d�s2 (2-92)

Now we can simplify using Stokes’ theorem and substitute (2-89) for �A [Jackson,
1999]:

ψ2 =
∫

(∇ × A1) · d�s2 =
∮ (

µ0I1

4π

∮
C

d�l1
R

)
· d�l2 = µ0I1

4π

∮ (∮
d�l
R

)
· d�l2
(2-93)
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I

I1

s1

s2

y2

B1

Figure 2-19 Mutual inductance caused by magnetic flux from loop 1 passing though
loop 2.

Since ψ2 = L21I1 [from (2-91)], the mutual inductance between loops 1 and 2
is determined by dividing (2-93) by the current in loop 1:

L21 = µ0

4π

∮ ∮
d�l1 · d�l2

R
(2-94)

Equation (2-94), called the Neumann formula , involves integration around both
loops 1 and 2. Note two very important concepts that can be derived from
equation (2-94).

1. The mutual inductance is a function of the size, shape, and distance between
the two loops.

2. The mutual inductance from loop 1 to loop 2 (L21) is identical to the
mutual inductance from loop 2 to loop 1 (L12).

If we consider the implications of Faraday’s law (∇ × �E + ∂ �B/∂t = 0),
another very important concept used throughout signal integrity can be surmised.
For simplification, let’s assume that we only have a component of the electric
field in the x-direction and it is propagating along z so that �E = �axEx(z, t).
Faraday’s law is then reduced to

∇ × �E + ∂ �B
∂t

= �ay

∂Ex

∂z
+ ∂ �B

∂t
= 0 (2-95)

Equation (2-95) says that a time-varying magnetic flux �B generated from loop
1 and passing through loop 2 will induce an electric field and subsequently a
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dt
dI2L12

dt
dI2L2dt

dI1L21

dt
dI1L1

+−

+−

−+ −+

+−

V1
I1

I2
B1

Figure 2-20 Voltage sources induced by the time-varying currents in loop 1.

voltage in loop 2. Faraday’s law can be rewritten in terms of circuit parameters:

v2 = −dψ2

dt
= −L21

dI1

dt
(2-96)

Therefore, every time you change the current in loop 1, an electromotive force
(i.e., a voltage) is induced in loop 2, which causes current to flow. In addition to
inducing a voltage on loops in the vicinity, changing current in loop 1 will change
the magnetic flux flowing through itself and, consequently, induce a voltage in
itself. This is called the self-inductance:

L11 ≡ ψ1

I1
(2-97)

Similar to the mutual inductance, if the current changes a voltage is induced in
the loop:

v = −L11
dI1

dt
(2-98)

By observing (2-98), the units of inductance are determined to be volt · seconds
per ampere, also known as henries. Figure 2-20 shows the voltage elements
superimposed on the magnetically coupled loops corresponding to the mutual and
self-inductance values calculated with (2-96) and (2-98). Note that the voltage
sources were chosen to be positive and the negative sign is accounted for with
the direction of current flow.

Example 2-5 Equivalent Circuit of a Magnetically Coupled System The mag-
netically coupled circuit can be understood more easily if conventional circuit
theory is applied. Figure 2-21 shows the circuit for the magnetically coupled
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dt
dI1L1

dt
dI2L12 dt

dI1L21

dt
dI2L2

RLV1

Rw Rw
I1 I2

+
−

+
−

+
−

+
−

+
−

Figure 2-21 Circuit for Example 2-5, showing magnetically coupled loops.

loops, assuming that the second loop is terminated in a resistor RL and each
wire has a resistance of Rw. Kirchhoff’s voltage relations can be written for each
loop:

Loop 1:

v1 = RwI1 + L1
dI1

dt
+ L12

dI2

dt

Loop 2:

(Rw + RL)I2 + L2
dI2

dt
+ L21

dI1

dt
= 0

Note that inductance is always a positive quantity that can be compared to
a mass in a mechanical system. Large masses are difficult to move, making it
difficult to accelerate in any direction. Similarly, the greater the inductance, the
more difficult it is to change the current because of the back emf (back voltage)
generated in a direction to oppose the current, which is enforced by the negative
sign in (2-98). This is called Lenz’s law .

2.5.3 Energy in a Magnetic Field

If a circuit has a finite amount of inductance, it takes energy to make a current
flow because it requires work to overcome the back EMF voltage described by
Lenz’s law. The work done on a charge against this back EMF is —v , from
(2-98). The negative sign dictates that it is work being done against the EMF,
not work done by the EMF. Since current is charge flow per unit time, the work
done per unit time is derived from (2-58) and given by

W = −vq → dW

dt
= −vI = −

(
L

dI

dt

)
I (2-99)
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Integrating the second half of (2-99) will provide the total work done and thus
energy in the magnetic field in terms of the current and the inductance:

W = −LI

2

2

joules (2-100)

Note that (2-100) only depends on the loop geometry (which is where the induc-
tance comes from) and the steady-state current.

It is often useful to represent the total energy in terms of the magnetic field.
To translate inductance, which is a circuit quantity to a field quantity, equation
(2-97) is used.

L = ψ

I
→ ψ = LI (2-101)

Recalling equations (2-90) and (2-92) and invoking Stoke’s theorem as in (2-93),
the flux can be equated as follows:

ψ = LI =
∫

�B · d�s =
∫

(∇ × �A) · d�s =
∮

�A · d�l (2-102)

Therefore, the work calculated in (2-100) can be rewritten

W = 1
2LI 2 = 1

2I

∮
�A · d�l = 1

2

∮
( �A · �I ) dl (2-103)

Expressing (2-103) in a volume integral allows us to use Ampère’s law (∇ ×
�B/µ0 = �J ) in place of I :

W = 1

2

∮
( �A · �I ) dl = 1

2

∫
V

( �A · �J ) dV = 1

2

∫
V

(
�A · ∇ ×

�B
µ0

)
dV (2-104)

Conjuring up more mathematical trickery from Jackson [1999] allows us to
rewrite (2-104) in a simplified form using the following vector identity:

∇ · ( �A × �B) = �B · (∇ × �A) − �A · (∇ × �B) (2-105)

Rearranging the terms and utilizing the definition of the vector magnetic poten-
tial,

�A · (∇ × �B) = �B · (∇ × �A) − ∇ · ( �A × �B)

∇ × �A = �B
�A · (∇ × �B) = �B · �B − ∇ · ( �A × �B)

allows the work to be expressed in terms of the magnetic fields:

Wm = 1

2µ0

∫
V

[ �B · �B − ∇ · ( �A × �B)] dV
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which can be simplified:

Wm = 1

2µ0

∫
all space

B2 dV (2-106)

This leads to the definition of the volume energy density , which expresses the
stored energy in a magnetic field:

wm = B2

2µ0
joules/m3 (2-107)

2.6 POWER FLOW AND THE POYNTING VECTOR

As electromagnetic waves propagate through space, they carry power. The goal
of this section is to derive a relationship between the electric and the magnetic
field vectors and the power transferred. To begin this derivation, the energy stored
in both the electric and magnetic fields must be quantified within a volume of
space. Consider Figure 2-22, which depicts a cubic volume of space with an
electromagnetic plane wave propagating through it. To quantify the total power,
which is the transfer of energy over time, propagating through the cube, all
sources of energy must be accounted for. The power balance equation can be
expressed as

PA = PS − PL − PEM (2-108)

where PA is the power flowing through the surface of the far end of the cube of
space with area A, as shown in Figure 2-22, PS represents any sources of power
within the cube, PL represents the losses within the cube that dissipate power as
heat (such as resistive losses), and PEM represent the power contained within the
electromagnetic waves that propagate into the cube. If we assume a source-free
and loss-free medium, the power flowing into the cube must equal the power
flowing out of the cube, where the minus sign convention is chosen because the
power is flowing out of the surface:

PA = −PEM (2-109)

x

Power in
Power out

PA
PEM

y

Surface area=A

z

z1 z2

Figure 2-22 Volume of space used to calculate power flow and the Poynting vector.
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To quantify (2-109) in terms of the electric and magnetic fields, we begin with
the volume energy densities for an electric and a magnetic field, which were
derived earlier and listed here for convenience.

we = ε

2
E2 joules/m3 (2-75)

wm = B2

2µ0
joules/m3 (2-107)

Integrating the sum of (2-75) and (2-107) over the volume of the cube will give
total energy:

WEM = A

∫ z2

z1

1

2

(
ε0E

2 + 1

µ0
B2

)
dz (2-110)

Since power is energy transfer per unit time interval, PEM is calculated by taking
the time derivative:

∂

∂t
WEM = ∂

∂t
A

∫ z2

z1

1

2

(
ε0E

2 + 1

µ0
B2

)
dz (2-111)

Defining the fields in time-harmonic form lets us express (2-111) in terms of the
partial time derivatives:

E = E0e
−jωt

∂

∂t
E = −jωE0e

−jωt

∂

∂t
E2 = −j2ωE2

0e
−j2ωt = 2E0e

−jωt (−jωE0e
−jωt ) = 2E0e

−jωt

(
∂

∂t
E0e

−jωt

)
∂

∂t
E2 = 2E

∂

∂t
E

Similarly,
∂

∂t
B2 = 2B

∂

∂t
B

which allows (2-111) to be rewritten as

∂

∂t
WEM = A

∫ z2

z1

(
ε0E

∂

∂t
E + 1

µ0
B

∂

∂t
B

)
dz (2-112)

Now, for a plane wave propagating in the z-direction, the contributions of the
fields in the y-direction were calculated earlier with equation (2-29):

�ay

(
∂Ex

∂z
= −µ

∂Hy

∂t

)
= �ay

(
∂Ex

∂z
= −∂By

∂t

)
(2-29)
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and the contributions in the x-direction are given by

�ax

(
ε
∂Ex

∂t
= −∂Hy

∂z

)
= �ax

(
µε

∂Ex

∂t
= −∂By

∂z

)
(2-30)

Note that �J = 0 since it is assumed that there are no sources in the volume under
consideration.

Substituting (2-29) and (2-30) into (2-112) allows us to simplify the equation:

∂

∂t
WEM = A

∫ z2

z1

[
ε0Ex

(
− 1

µ0ε0

∂By

∂z

)
+ 1

µ0
By

(
−∂Ex

∂z

)]
dz

= −A

∫ z2

z1

[
Ex

(
∂Hy

∂z

)
+ Hy

(
∂Ex

∂z

)]
dz

(2-113)

Note that the form of the integrand in (2-113) looks like a curl multiplied by a
vector. This tells us that (2-113) might be simplified if we use the vector identity
introduced earlier:

∇ · ( �E × �H) = �H · (∇ × �E) − �E · (∇ × �H) (2-105)

Note that from (2-24), �ax(∂Hy/∂z) = −∇ × �H and �ay(∂Ex/∂z) = ∇ × �E.
Therefore,

�E · (∇ × �H) = −∂Hy

∂z

�H · (∇ × �E) = ∂Ex

∂z

This allows us to rewrite (2-113) in terms of the cross product of the electric and
magnetic fields:

PEM = −A

∫ z2

z1

( �H · ∇ × �E − �E · ∇ × �H) dz = −A

∫ z2

z1

∇ · ( �E × �H) dz

(2-114)
Note that the final term in (2-114) is equivalent to a volume integral, where
A dz = dV . This allows us to use the divergence theorem to eliminate the del
operator:∫

V

(∇ · �F) dV =
∮

S

�F · d�s (divergence theorem)

PEM = −A

∫ z2

z1

(∇ · ( �E × �H)) dz = −
∫

V

∇ · ( �E × �H) dV

= −
∮

S

( �E × �H) · d�s
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This allows us to define the Poynting vector , which represents the flow of power
per unit area through a surface S at an instant in time.

�S = �E × �H W/m2 (2-115)

Note that the direction of the power flow is perpendicular to both �E and �H .

2.6.1 Time-Averaged Values

When considering the electromagnetic power delivered by a sinusoidal
time-varying field, practical measurement considerations tend to favor the
time-averaged value of the power rather than the instantaneous value described
in (2-115). This is because the time-averaged power entering a passive network,
as measured with a watt-meter, is a measure of the power dissipated by heat
in all the resistive circuit elements. In the laboratory, the time average of
a time-harmonic function is taken over an interval of many periods. For a
steady-state sinusoidal function, the average of one period will be the same
as the average over many periods, since each period looks identical. The time
average of the Poynting vector is defined as the area under the function for one
period, divided by the duration of the cycle:

�Save = Aperiod

Tperiod
= 1

T

∫ T

0

�S(x, y, z, t) dt (2-116)

Although the math is not shown here, Jackson [1999] shows the derivation of
the time average value for the Poynting vector:

�Save = 1
2Re( �E × �H ∗) W/m2 (2-117)

where the star represents the complex conjugate.
It is sometimes useful to represent the magnitude of the Poynting vector in

terms of the electric or magnetic fields and the intrinsic impedance defined in
equation (2-53). Integrating sinusoidal functions as described in (2-116) will yield
the time-averaged Poytning vector in terms of the �E and �H fields [Johnk, 1988]:

�E = �axE
+ cos(ωt − βz) (2-118)

�H = �ay

H+

η
cos(ωt − βz) (2-119)

�S = �E × �H = [�axE
+ cos(ωt − βz)] ×

[
�ay

E+

η
cos(ωt − βz)

]

= �az

(E+)

η

2

cos2(ωt − βz) (2-120)
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To obtain the time-averaged value of (2-120), remember that sin2 θ + cos2 θ = 1.
Therefore, over a complete cycle, the average of cos2 θ is equal to the average
of sin2 θ and sin2 θ = cos2 θ = 1

2 . Subsequently, the time-averaged value of a
cosine-squared term over a complete cycle is 1

2 :

�Save = �az

(E+)2

2η
(2-121)

Similarly, the Poynting vector can be expressed in terms of the magnetic field:

�S = �E × �H = [�axηE+ cos(ωt − βz)] × [�ayH
+ cos(ωt − βz)]

= �azη(H+)2 cos2(ωt − βz) (2-122)

�Save = �azη
(H+)2

2

2.7 REFLECTIONS OF ELECTROMAGNETIC WAVES

So far, we have considered the propagation of electromagnetic waves in a sim-
ple, infinitely large medium. However, most practical problems involve waves
propagating in multiple dielectric media. Since each medium will have different
electric characteristics, it is essential to understand how a propagating electro-
magnetic wave will behave when it enters a region where the properties of the
medium change.

Generally, when an electromagnetic plane wave propagating in medium A

enters region B, where the properties of the dielectric change, two things happen:
(1) a portion of the wave is reflected away from region B, and (2) a portion
of the wave is transmitted into region B. When these plane waves encounter
planar interfaces, both the reflected and transmitted waves are also planar, so
their directions, amplitudes, and phase constants can easily be calculated. The
simultaneous existence of both the transmitted and reflected waves is a direct
result of the boundary conditions that must be satisfied when solving Maxwell’s
equations at the interface between the two regions. We begin with a plane wave
incident on a perfect conductor.

2.7.1 Plane Wave Incident on a Perfect Conductor

Consider a plane wave propagating in medium A in the z-direction. Assume
that the medium in region A is a simple, loss-free medium and medium B is
a perfectly conducting metal plane, as shown in Figure 2-23. Assume that the
electric field is oriented in the x-direction, necessitating that the magnetic field
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Figure 2-23 Incident electromagnetic wave propagating in dielectric region A and
impinging on a perfect conductor.

be oriented in the y-direction. The incident fields propagating in medium A are
given by

�Ei(z) = �axEie
−jωz

√
µ0ε0 (2-123)

�Hi(z) = �ay

1

η
Eie

−jωz
√

µ0ε0ejωt (2-124)

Since the boundary is normal to the incident waves, the reflected portion will be
reflected back in the −z-direction. Subsequently, the reflected electric field will
have the form

�Er(z) = �axEre
−jω(−z)

√
µ0ε0 = �axEre

+jωz
√

µ0ε0 (2-125)

Since the electric field of the reflected wave is propagating in the −z-direction,
the magnetic field must also flip and point in the −y-direction, to maintain the
proper relationship between the electric and magnetic fields:

�Hr(z) = −�ay

1

η
Ere

+jωz
√

µ0ε0ejωt (2-126)

To calculate the values of the reflected and transmitted waves we must consider
what happens when an electromagnetic field impinges on a perfect conductor.
Equation (2-7) implies that an electric field impinging on a conductor with con-
ductivity σ will produce a current density �J :

�J = σ �E (2-7)
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For a perfect conductor, σ = ∞. However, since the real world limits currents
to finite densities, equation (2-7) implies that infinite conductivity will produce
infinite currents inside a perfect conductor, which is impossible; therefore, the
electric field inside the perfect conductor must be zero. If the electric field is zero,
the magnetic fields must also be zero. This allows us to deduce the boundary
conditions for both �E and �H at the interface between a dielectric medium and a
perfect electrical conductor (PEC). Since the fields in region A are finite and the
fields in region B (the PEC) are zero, we can deduce that the wave impinging
on the conductor must induce a wave equal but opposite to the incident wave
at the surface, so the fields in the conductor are zero. The boundary condition
at the surface (z = 0) of the PEC requires that the tangential electric field must
vanish for all x and y to ensure that the electric field inside the conductor is zero.
Applying the boundary conditions to both the incident and the reflected portions
of the electric field gives

�E(z = 0) = �Ei(z = 0) + �Er(z = 0) = �axEi + �axEr = 0

which produces the relationship between the incident and reflected electric fields
for a electromagnetic wave impinging on a PEC:

�axEi = −�axEr (2-127)

This means that when an electromagnetic wave is incident normal to a perfect
electrical conducting plane traveling in the +z-direction, it will experience a
100% reflection back toward the −z-direction with the same magnitude as the
incident wave with a negative amplitude. This is the same as saying that the
magnitude of the reflected wave will remain constant but the phase will be shifted
by 180◦. This is shown in Figure 2-24.
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Figure 2-24 Incident electromagnetic wave propagating in dielectric region A and
impinging on a perfect conductor, showing that 100% of the wave is reflected back
in the −z -direction.
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Figure 2-25 Incident electromagnetic wave propagating in dielectric region A and
impinging on dielectric region B , showing that a portion of the wave is reflected back in
the −z -direction and a portion is transmitted in the +z -direction.

2.7.2 Plane Wave Incident on a Lossless Dielectric

In Section 2.7.1 we considered the special case where a propagating electromag-
netic plane wave was incident on a plane boundary where the second medium
was a perfect conductor. Now we consider the more general case where the sec-
ond medium is a lossless dielectric. When a plane wave impinges on an area
with a different dielectric, a portion of the wave is reflected and a portion of the
wave in transmitted into the new medium, where it continues to propagate, as
shown in Figure 2-25.

If we assume that the incident fields are represented by phasors, we can sep-
arate the total plane wave into three parts:

1. Incident wave:

�Ei(z) = �axEie
−jβAz

�Hi(z) = �ay

1

η
A

Eie
−jβAz

2. Reflected wave:

�Er(z) = �axEre
+jβAz

�Hr(z) = −�ay

1

η
A

Ere
+jβAz
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3. Transmitted wave:

�Et(z) = �axEte
−jβBz

�Ht(z) = �ay

1

η
B

Ete
−jβBz

where βA = ω
√

µAεA, βB = ω
√

µBεB , ηA = ω
√

µA/εA, and ηB = ω
√

µB/εB

(where µx = µrxµ0 and εx = εrxε0) are the phase constants and intrinsic
impedances of regions A and B, respectively.

When a wave intersects a boundary between two lossless dielectric regions,
the tangential components of both the electric and magnetic fields across the
interface must remain continuous. In other words, the tangential component of
the fields cannot change instantaneously. In our particular scenario, the plane
wave is propagating in TEM mode in the z-direction, so both the electric and
magnetic fields are oriented parallel (i.e., tangent) to the boundary of the dielectric
interface. Subsequently, we can say that at the interface (z = 0), the sum of the
incident and reflected waves must equal the transmitted wave:

�Et(z = 0) = �Ei(z = 0) + �Er(z = 0) → Et = Ei + Er (2-128)

�Ht(z = 0) = �Hi(z = 0) + Hr(z = 0) → Et

η2
= Ei

η1
− Er

η1
(2-129)

Since the incident waves are known, we can solve (2-128) and (2-129) simulta-
neously for the transmitted and reflected portions of the wave:

Et = Ei

2η
B

η
B

+ η
A

(2-130)

Er = Ei

η
B

− η
A

η
B

+ η
A

(2-131)

Equations (2-130) and (2-131) lead to the definition of the reflection and trans-
mission coefficients:

� ≡ Er

Ei

= η
B

− η
A

η
B

+ η
A

(2-132)

T ≡ Et

Ei

= 2η
B

η
B

+ η
A

= 1 + � (2-133)

The reflection coefficient is a measure of how much of the wave is reflected
back off the intersection between the two media, and the transmission coeffi-
cient tells how much of the wave is transmitted. If the reflection coefficient is
zero, it means that the intrinsic impedance in the two regions is identical. If the
intrinsic impedances are not equal, the reflection coefficient will be finite. These
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equations are used heavily in Chapter 3 when analyzing multiple reflections on
transmission-line structures.
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PROBLEMS

2-1 For a TEM plane wave traveling in the z-direction where Ex = 60 V/m, if
λ = 20 cm and ν = 1.5 × 108, determine the frequency of the wave, the
relative dielectric permittivity (εr ), the phase constant, and the intrinsic
impedance.

2-2 For the wave in Problem 2-1, write formulas for the time-domain expres-
sions for the E and H fields, and plot them.

2-3 For the plane wave in Problem 2-1, how much power is being transported?
2-4 If a wire with a diameter of 1 in. is carrying a dc current of 1000 A, how

much power would be delivered to the 100-� resistive load in the loop
shown in Figure 2-26?

I = 1000 A

R = 100 ohms

1 meter

1 meter

10 meter

Figure 2-26

2-5 If two identical point charges are separated by 10 in. in free space and
are experiencing a repulsion force of 1 N, what is the magnitude of each
charge?
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2-6 Assume that two infinitely long parallel wires are separated by a distance
of 5 in. with currents that are equal but opposite. Find the current if the
force per unit length is 0.25 N/m.

2-7 Determine the energy needed to assemble three point charges in free space
from infinity to the following (x,y,z) coordinates: (0,0,0), (1 mm, 0, 0),
(−1 mm, 0, 0).

2-8 For a parallel-plate capacitor in free space (εr = 1) with total change Q

on one plate and—Q on the other with plate areas of A separated by
the distance d , calculate the external force required to keep the plates
stationary.

2-9 If a plane wave is propagating in the z-direction in free space and it
impinges on a planar dielectric medium where εr = 9.6, how much of the
wave is propagated? How much is reflected? If the electric field incident
on the boundary has a value of 60 V/m, how much power is carried in the
initial wave? How much power is reflected and transmitted? Show that
power is conserved.

2-10 If the electric field in an area of space is known to be �E = br3�ar (where
b is a constant) in spherical coordinates, find the charge density ρ and the
total charge within a sphere of diameter d .
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Transmission lines are simple electrical structures that consist of an insulating
layer of dielectric material sandwiched between two layers of metal (usually, a
nonferrous metal such as copper). In high-speed digital design, transmission lines
are used for communicating between electrical components, such as a micropro-
cessor and a memory module, or chip set. In modern designs such as computer
systems, the data transfer rates are so high that the width (in time) of the digital
pulses are small compared to the time it takes to propagate a signal from one end
of a transmission line to another. As a result, it is quite common to have more
than one bit of information propagating on the transmission line at any given
instant in time, where the transmission line is essentially “storing” information
before the receiving circuitry can latch the data. Consequently, to preserve the
quality of the digital pulse stream to a degree where it can be captured with
no errors at the receiving agent, great attention must be given to the construc-
tion and design of the transmission lines so that the electrical characteristics are
controlled and predictable. Designing a successfull bus for high-data-rate infor-
mation transfer requires a thorough understanding of how the signals propagate
on transmission lines. In this chapter we introduce basic transmission-line struc-
tures typically used in digital systems and present fundamental transmission-line
theory for the ideal case.

3.1 TRANSMISSION-LINE STRUCTURES

Transmission lines come in many shapes and sizes. One of the most common
transmission lines is the coaxial cable, which is used with cable television. When
designing a high-speed digital system, transmission lines are usually manufac-
tured on a printed circuit board (PCB) or a multichip module (MCM), which
typically consists of conductive traces buried in or attached to a dielectric with
one or more reference power and ground planes. The metal typically used is
copper (although the copper is often electroplated with silver or nickel to prevent
corrosion) and the dielectric is often FR4, a fiberglass–resin composite discussed
in detail in Chapter 6. The two most common types of transmission lines used
in digital designs are microstrips and striplines. A microstrip is routed on an
outside layer of the PCB and has only one reference plane. There are two types
of microstrips, buried and nonburied. A buried (sometimes called embedded )
microstrip is simply a transmission line that is embedded into the dielectric but
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w

w

Figure 3-1 Typical application of transmission lines in a digital design.

still has only one reference plane. A stripline is routed on an inside layer and has
two reference planes. Figure 3-1 represents a PCB with traces routed between the
various components on both internal (stripline) and external (microstrip) layers.
The accompanying cross section is taken at the given mark so that the position of
the transmission lines relative to the ground and power planes can be seen. Trans-
mission lines in the book are often represented in cross-section form because they
are useful for calculating and visualizing the various transmission-line parameters
described.

Multiple-layer PCBs such as the one depicted in Figure 3-1 can provide
a variety of stripline and microstrip structures. Control of the conductor and
dielectric layers (which is referred to as the stackup) is required to make the
electrical characteristics of the transmission line predictable. These basic electri-
cal characteristics are defined in this chapter and referred to as transmission-line
parameters . Figure 3-2 shows several transmission-line structures discussed in
the text [Hall, 2000].

3.2 WAVE PROPAGATION ON LOSS-FREE TRANSMISSION LINES

Transmission lines are designed to guide electromagnetic waves from one point
to another for the purpose of information transfer. For practical applications, the
electromagnetic wave can be approximated as planar because the wavelength is
usually much larger than the electrical delay across the width of the transmis-
sion line. This means that there will be no variation in the electric or magnetic
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(a) (b)

(c) (d)

(e) (f)

Figure 3-2 Common transmission-line structures: (a) balanced stripline; (b) asymmet-
rical stripline; (c) microstrip line; (d) buried microstrip line; (e) coaxial line; (f) slotline.

fields across the width of the transmission line. The approximation of a planar
electromagnetic wave will become inadequate when the transmission-line width
is no longer small compared to the wavelength. For a typical transmission line
on a common PCB used in motherboard designs for personal computers, the
bandwidth of the plane-wave approximation can be estimated using (2-45) and
(2-52) by calculating the frequency where the wavelength equals the width of the
conductor. For typical applications, the dielectric constant of FR4 (εr = 4) and
a trace width of 5 mils (127 µm) can be used to calculate the frequency where
the wavelength equals the width of the transmission-line signal conductor:

fplane = c/
√

εr

λ
= 3.0 × 108 m/s/

√
4

127 × 10−6 m
= 1181 GHz

The fundamental frequency of the fastest digital design in a product at the time
of this writing is less than 20 GHz. Consequently, the analysis of electromagnetic
plane waves described in Section 2.3 applies for digital transmission lines because
f � fplane.

3.2.1 Electric and Magnetic Fields on a Transmission Line

On a transmission line, information is transferred from one component to the
other by guiding electromagnetic energy from point A to point B. To gain an
intuitive understanding of how a signal propagates on a transmission line, we
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must understand how the electric and magnetic field patterns are distributed. To
do this, we first derive the boundary conditions of the electric field at the interface
between a dielectric and a perfect conductor, which allows us to draw the electric
field patterns for typical transmission line cross sections in a uniform dielectric.
Next, we explore how the electric field behaves at a dielectric boundary, such as
the interface between the air and the board material in a microstrip transmission
line. Finally, we use the relationships for a TEM wave derived in Chapter 2 to
obtain the magnetic field pattern from the electric field.

When a voltage is applied between the signal conductor and the reference plane
on one end of a transmission line, an electric field is established as described
in Section 2.4. The voltage is calculated by the line integral of the electric field
between the signal conductor and the reference plane:

v = −
∫ b

a

�E · d�l (3-1)

As discussed in Section 2.3.2, once the electric field is established, the properties
of the magnetic field can be calculated using Faraday’s and Ampère’s laws (2-1)
and (2-2). From Section 2.3.2, the relationship between the electric and magnetic
fields was shown always to remain orthogonal:

�ay

(
∂Ex

∂z
= −µ

∂Hy

∂t

)
(2-29)

�ax

(
ε
∂Ex

∂t
= −∂Hy

∂z

)
(2-30)

Note that since we are applying a voltage source to generate the electric field,
and voltage is defined in terms of the work done per unit charge, equation (2-58)
implies that charges must be present on both the signal and the reference con-
ductors: [

W

q

]
a→b

= v(b) − v(a) = −
∫ b

a

�E · d�l (2-58)

Furthermore, Gauss’s law (∇ · ε �E = ρ) states that the divergence of ε �E is
nonzero and equal to the charge density, which implies that the sources of
the electric field are the electrical charges. Equivalently, if the electric field
terminates abruptly, the termination must be an electric charge. To understand
how the electric field behaves at the interface between the dielectric and a
conducting surface, we use the integral form of Gauss’s law to calculate the
boundary conditions:

∮
S

ε �E · d�s =
∫

V

ρdV = Qenc (2-59)
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Figure 3-3 Surface used to calculate the boundary conditions at the dielectric–
conductor interface.

First, we must choose a surface to integrate and compare the normal components
of ε �E on both sides of the conductor–dielectric boundary. A convenient surface
is a cylinder, as depicted in Figure 3-3. Since we are observing the behavior of
fields at the surface, the height (h) of the cylinder can be made infinitely small,
reducing (2-59) to

∮
S

ε �E · d�s =
∮

S

ε1 �E1 · d�s1 +
∮

S

ε2 �E2 · d�s2 = (�n · ε1 �E1)A + (−�n · ε2 �E2)A = ρA

(3-2)

where ε1 is the dielectric permittivity of the dielectric in region 1 and ε2 describes
the dielectric permittivity of region 2, which in this example is a perfect con-
ductor. To interpret this equation, recall the discussion in Section 2.7.1, where it
was shown that the electric field ( �E2 in this case) must be zero inside a perfect
conductor. Setting �E2 = 0 allows us to simplify (3-2) for the special case of a
boundary between a dielectric and a perfect conductor:

�n · ε �E = ρ C/m2 (3-3)

Equation (3-3) means that the electric field must emanate normal from and ter-
minate normal to the conductor surface. Since equations (2-29) and (2-30) say
that the magnetic field must be orthogonal to the electric field, we can conclude
that the magnetic field must be tangential to the conductor surface. These two
rules make it easy to visualize electric and magnetic fields on transmission-line
structures with perfect electrical conductors. Simply draw the electric field lines
so that they are always perpendicular to the conductor surface, emanating from
the high and terminating in the low potential conductor, and then draw the mag-
netic field lines so that they are always perpendicular to the electric field lines
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Figure 3-4 Electric and magnetic field patterns for homogeneous dielectrics in (a) a
stripline and (b) a microstrip.

er = 1

er > 1

Figure 3-5 How the electric field behaves at a dielectric boundary.

and tangential to the conductor surfaces. If we assume that the voltage is applied
with the positive value on the signal conductors as shown in Figure 3-4, we
can draw the electric and magnetic fields for various transmission-line structures
assuming a homogeneous dielectric.

When the dielectric is not homogeneous, as is almost always the case with
microstrip transmission lines, the field lines are distorted as they cross dielectric
boundaries. Figure 3-5 illustrates how the electric field lines are bent away from
the normal to the dielectric boundary when the relative dielectric permittivity on
the top half of the structures is smaller than that on the bottom.

To understand why the field lines are distorted, we must examine how elec-
trostatic fields behave at the boundaries between two dielectric regions. First,
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we can recycle equation (3-2) to derive the boundary conditions of the normal
components of the electric field at the interface between two dielectrics:

(�n · ε1 �E1) − (�n · ε2 �E2) = ρ (3-4)

If the surface charge density between the dielectric layers is assumed to be zero
(usually, a valid assumption), the relationships between the electric fields in both
regions is described by

�n · ε1 �E1 = �n · ε2E2 (3-5)

Equation (3-5) means that the normal component of the electric field is not con-
tinuous across a dielectric boundary .

In Section 2.7.2 it was mentioned that the tangential component of the electric
field must remain continuous across a dielectric boundary. This can be shown
with the integral form of Faraday’s law for the electrostatic case:∮

l

�E · d�l = 0 (3-6)

If we integrate (3-6) around a closed differential contour that encompasses the
dielectric boundary such as that shown in Figure 3-6, we can calculate the tan-
gential components of the electric field:

∮
l

�E · d�l =
∫ b

a

�E · d�l +
∫ c

b

E · dl +
∫ d

c

E · dl +
∫ a

d

E · dl (3-7)

Since we are considering the behavior at the surface (�h → 0), segments da and
bc can be eliminated. Furthermore, the tangential segments ab and cd are equal
but opposite, which means that (3-7) can be simplified to

(E1t − E2t )�l = 0 → E1t = E2t (3-8)

Equation (3-8) means that the tangential components of the electric field across
a dielectric boundary must remain continuous .

Assume that an electric field �E1 is incident on a boundary between two
dielectrics as shown in Figure 3-7. The change in the orientation of the electric

a

e1

e2

b

d c

∆l

∆h

Figure 3-6 Differential contour encompassing a dielectric boundary.
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Figure 3-7 Change in the orientation of an electric flux line at a dielectric boundary.

flux lines across the interface can be calculated by using the boundary conditions
for the normal and tangential components of the electric field derived in (3-5)
and (3-8). When θ1 = 0, the boundary conditions of (3-5) apply. Consequently,
we need a function of θ1 that will satisfy (3-5) when the electric field is normal to
the boundary. Since cos(0) = 1, the following equation will satisfy the boundary
conditions for the normal components of the electric field:

ε1E1 cos θ1 = ε2E2 cos θ2 (3-9)

Similarly, when θ1 = 90◦, the boundary conditions of (3-8) apply, and since
sin(90◦

) = 1, the following equation will satisfy the boundary conditions for the
tangential components of the electric field:

E1 sin θ1 = E2 sin θ2 (3-10)

If E1 is calculated from (3-10) and substituted into (3-9), the change in orientation
that the electric fields experience at a dielectric boundary can be calculated:

θ2 = tan−1
(

ε2

ε1
tan θ1

)
(3-11)

Equation (3-11) means that the field lines will be bent farther away from the
normal to the dielectric interface in the medium with the higher permittivity .

3.2.2 Telegrapher’s Equations

So far, we have concentrated primarily on the derivation and calculation of the
electric and magnetic fields. However, since this is a book targeted primarily at
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engineers, we want to express the effect of the fields in terms that allow us to use
circuit theory. The telegrapher’s equations express the properties of the electric
and magnetic fields of transmission lines with simple equivalent circuits. This
simplifies the analysis dramatically and provides a well-known mechanism for
engineers to understand transmission-line behavior.

Since a transmission line is a structure intended to guide a planar electromag-
netic wave down a specific path, we begin the derivation of the telegrapher’s
equations by observing the relationships described in Section 2.3.2 for a plane
wave propagating in the z-direction in the TEM mode. First, let’s examine
equation (2-29), which says that a time-varying magnetic field will produce an
electric field:

�ay

(
∂Ex

∂z
= −µ

∂Hy

∂t

)
(2-29)

Equation (2-29) is a written in general terms assuming that the electromagnetic
wave is propagating in an infinite space. In reality, the electric and magnetic fields
are confined to an area dictated by the transmission-line geometry, so (2-29) can
be simplified by calculating the equivalent-circuit parameters. First, we calculate
the voltage between the signal conductor and the reference plane from the electric
field using equation (3-1), assuming that point a is on the signal conductor and
point b is the position on the reference plane directly below.

v =
∫ b

a

�Ex · d�l

Consequently, for given transmission-line geometry, the left-hand part of (2-29)
is equivalent to the partial derivative of the voltage between the signal conductor
and the reference plane with respect to z:

∂Ex

∂z
→ ∂

∫ �E · d�l
∂z

= ∂v(z, t)

∂z

Similarly, the right-hand side of equation (2-29) can be related to the inductance
as discussed in Section 2.5.2. Since �B = µ �H and the magnetic flux is a function
of �B,

ψ =
∫

�B · d�s

(where d�s is defined by the transmission-line geometry), equation (2-97) can be
used to write the magnetic flux in terms of the current and inductance (ψ = IL):

L11 ≡ ψ1

I1
(2-97)
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Therefore, for a given transmission-line geometry, the right-hand side of (2-29)
can be written in terms of circuit parameters, where L is the series inductance
of the transmission line per unit length:

∂µHy

∂t
→ ∂

∫ �By · d�s
∂t

= ∂ψ

∂t
= L

∂i

∂t

Don’t get confused by the fact that the units of ∂µHy/∂t are HA/m2 (henry ·
amperes per square meter) and those of L(∂i/∂t) are H · A/m. Equation (2-29)
is in terms of generalized electric and magnetic fields. When the fields are repre-
sented by circuit parameters, the units change. Therefore, the circuit equivalent
of (2-29) is

∂v(z, t)

∂z
= −L

∂i(z, t)

∂t
(3-12)

Note that equation (3-12) is simply the classic response of an inductor from
circuit theory.

Similarly, equation (2-30) says that a time-varying electric field will produce
a magnetic field:

�ax

(
ε
∂Ex

∂t
= −∂Hy

∂z

)
(2-30)

Note that the form of the numerator on the left-hand side of equation (2-30)
(εE) has units of F · V/m2 (farad · volts per square meter), which indicates that
the equivalent-circuit form should be in terms of a capacitance and a voltage.
From the integral form of Gauss’s law (2-59) we can calculate the left-hand side
of (2-30) in terms of the charge, assuming that the signal conductor is an infinite
thin strip: ∮

S

ε �E · d�s =
∫

V

ρdV → εExA = QA

A
→ εEx = Q

A
(3-13a)

where dV refers to volume. For a given transmission-line geometry, the voltage
between the conductors from point a on the signal conductor to point b on the
reference plane is calculated with (3-1), which has units of volts:

v =
∫ b

a

�Ex · d�l = Q

εA
d = Exd (3-13b)

where A is the area of the conductors where the electric field is established and d

is the distance between the signal conductor and the reference plane. Therefore,
since Q = Cv,

εEx = Q

A
→ Cv

A
= C

(∫ b

a

�Ex · d�l
)

1

A
= CExd

A
= C

l
v → Cv (3-14)
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where C is normalized to length with units of farads per meter. As a result, for
a specific transmission-line geometry, we can write the left-hand side of (2-30)
in terms of the capacitance:

ε
∂Ex

∂t
→ C

∂v

∂t
(3-15)

To derive the circuit equivalent of the right side of (2-30), recall from equation
(2-79) that current is the rate of charge flow per second:

i = dQ

dt
(3-16)

Substituting Q = Cv into equation (3-16) produces the current in terms of the
voltage and capacitance:

i = C
dv

dt
(3-17)

which is equal to equation (3-15). Therefore, (2-30) can be rewritten in terms of
circuit parameters:

∂i(z, t)

∂z
= −C

∂v(z, t)

∂t
(3-18)

Note that (3-18) is the classic response of a capacitor from circuit theory.
Equations (3-12) and (3-18) are the loss-free forms of the telegrapher’s
equations, which describe the electrical characteristics of a transmission line.

3.2.3 Equivalent Circuit for the Loss-Free Case

Although signal integrity is largely a study in electromagnetic theory, application
of the discipline is performed almost entirely using circuit parameters because
they are more intuitive to most engineers. Consequently, it is necessary to derive
a model for the transmission line in terms of the equivalent inductance L and
the capacitance C per unit length. In this section the equivalent circuit of a
transmission line is developed for the loss-free case. The model is refined in
Chapters 5 and 6 to include loss from nonperfect dielectrics and finite conductivity
conductors.

To begin, consider a differential element of transmission line with a length
of �z as shown in Figure 3-8, which represents a section of a transmission line
with a signal conductor and a reference conductor. If we assume that current
is traveling down the signal conductor and returning on the reference conductor
(remember from circuit theory that current must always complete a loop along
a return path), it can be represented by a series of differential current elements,
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Figure 3-8 Segment of a transmission line showing the magnetic and electric fields, the
associated differential current loops, and the voltage potentials at each conductor.

as was shown in Figure 2-18. When representing the total current as a series
of small loops, the adjacent vertical components of the current elements cancel
each other out, leaving a net current of �I on the signal conductor and �(−I )
on the reference conductor. As described in equation (2-97), a current change
in a loop will change the magnetic flux and will thus induce a self-inductance.
Consequently, the magnetic field of a transmission line is represented by a series
inductor in the circuit model . The value of the equivalent-circuit inductance is
given by

L�z = �zL (3-19)

where �z is the length of the differential section of transmission line and L is
the inductance per unit length.

Similarly, when a voltage is applied to the transmission line between the signal
conductor and the reference plane as shown in Figure 3-8 (v = V + − Vref), an
electric field is established in units of volts per meter:

v(b) − v(a) = −
∫ b

a

�E · d�l (2-58)

The presence of an electric field implies that charges exist on the conduc-
tors and consequently implies the existence of a capacitance (as described in
Section 2.4.3). Therefore, the electric field of a transmission line is represented
by a shunt capacitor in the circuit model . The value of the equivalent-circuit
capacitance is given by

C�z = �zC (3-20)
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C∆z

Figure 3-9 (a) Model for a differential element of a transmission line; (b) full model.

where �z is the length of a differential section of transmission line and C is the
capacitance per unit length.

Figure 3-9a shows the equivalent-circuit model of a differential element of
transmission line. However, to make use of the model, we need a practical
methodology to represent transmission lines that are much longer than �z. Sim-
ply increasing �z to scale the inductance and capacitor values for longer lengths
will not produce a legitimate model unless the resonance of the LC circuit is
much higher than the maximum frequency to be simulated:

1

2π
√

C�zL�z

� fsimulation (3-21)

If equation (3-21) is not satisfied, the equivalent circuit will behave like an LC
filter circuit instead of like a transmission line. The equivalent circuit of a trans-
mission line can be represented by a series inductance and a shunt capacitor only
if the LC resonant frequency is significantly greater than the maximum frequency
of interest .

The correct method to scale the transmission-line model for long lengths is
to cascade a sufficient number of small LC segments together until the correct
overall length is achieved, as shown in Figure 3-9b. Each LC segment represents
a small transmission-line section of length �z. The trick is to choose the correct
value of �z to achieve adequate model accuracy. If the value of �z is too small,
it will take an inordinate amount of time to perform SPICE simulations. However,
if it is too large, the model will not exhibit realistic transmission-line properties.
A good “rule of thumb” is to choose �z so that the delay of each segment is
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approximately one-tenth the signal rise time if working in the time domain,

�z ≤ trc

10
√

εr

(3-22a)

or one-tenth the wavelength that corresponds to the maximum frequency of inter-
est if working in the frequency domain,

�z ≤ λf,max

10
(3-22b)

where tr is the signal rise or fall time, c the speed of light in a vacuum (3 × 108

m/s), εr the dielectric permittivity, and λf,max = c/(fmax
√

εr) the wavelength
that corresponds to the highest frequency of interest in the simulation.

When using a distributed LC model for modeling transmission lines, the num-
ber of segments for time-domain simulations is determined by

Ns = l

�z
= 10l

√
εr

trc
(3-23a)

For frequency-domain simulations,

Ns = l

�z
= 10l

λf,max
(3-23b)

where Ns is the minimum number of segments required to model a transmis-
sion line of length l. Therefore, the capacitance and inductance per segment are
given by

C�z = lC

Ns

(3-24a)

L�z = lL

Ns

(3-24b)

where C and L are the per unit length values of the capacitance and inductance.

Example 3-1 Create a transmission-line model for the 20-cm transmission line
shown in Figure 3-10a assuming the following inductance and capacitance values
and a dielectric permittivity of εr = 4.5.

L = 3.54 × 10−7 H/m

C = 1.41 × 10−10 F/m
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0.498 nH
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(b)

(a)

20 cm
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er = 4.5

1421

0.198 pF

0.498 nH

0.198 pF

0.498 nH

0.198 pF

Reference 
Conductor100 ps100 ps

Figure 3-10 Equivalent circuit of a transmission line.

SOLUTION Since the digital waveform has rise and fall times of 100 ps (tr =
tf = 100 ps), equations (3-22) and (3-23) give the required values for the model:

�z = 100 ps(3.0 × 108)

10
√

4.5
= 1.41 × 10−3 m

Ns = l

�z
= 0.2

1.41 × 10−3
= 141.8 segments

Since it is inconvenient to build an equivalent-circuit model with 141.8 segments,
Ns is rounded up to 142. The inductance and capacitance values for each segment
are calculated with equations (3-24):

C�z = (0.2)(1.41 × 10−10)

142
= 1.98 × 10−13 F

L�z = (0.2)(3.54 × 10−7)

142
= 4.98 × 10−10 H

Figure 3-10b shows the equivalent circuit for this transmission line.

3.2.4 Wave Equation in Terms of LC

The wave equations, which were used as the basis for analyzing propagating
electromagnetic fields, were derived in Section 2.3.1. To analyze transmission
lines in terms of circuit parameters, we rederive the wave equation from the
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telegrapher’s equations (3-12) and (3-18):

∂v(z, t)

∂z
= −L

∂i(z, t)

∂t
(3-12)

∂i(z, t)

∂z
= −C

∂v(z, t)

∂t
(3-18)

Assuming that the digital signals can be decomposed into sinusoidal harmon-
ics using the Fourier transform, the telegrapher’s equations can be expressed in
time-harmonic form where the voltage and current have the forms v(t) = V0e

jωt

and i(t) = I0e
jωt . Similar representations for the time-harmonic fields were dis-

cussed in Section 2.3.3. Consequently, the time-harmonic forms of the telegra-
pher’s equations are

dv(z)

dz
= −jωLi(z) (3-25)

di(z)

dz
= −jωCv(z) (3-26)

Taking the derivative of (3-25) with respect to z produces

d2v(z)

dz2
= −jωL

di(z)

dz
(3-27)

and substituting (3-26) into (3-27) allows us to write an equation only in terms
of voltage,

d2v(z)

dz2
+ ω2LCv(z) = 0 (3-28)

which is the loss-free transmission-line wave equation for voltage. Equa-
tion (3-28) is a second-order differential equation with the general solution
given by

v(z) = v(z)+e−jzω
√

LC + v(z)−ejzω
√

LC (3-29)

The term v(z)+e−jzω
√

LC describes the voltage propagating down the transmis-
sion line in the +z-direction and v(z)−ejzω

√
LC describes the voltage propagating

in the −z-direction. Note the similarity of (3-29) and (2-41), which is the solu-
tion equivalent to the wave equation for the electric field. In Section 2.3.4, a
propagation constant for a wave traveling in an infinite medium was defined that
completely describes the medium where the electromagnetic wave is propagating:

γ = α + jβ (2-42)
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Comparing the solution to the electromagnetic wave equation (2-41) to equa-
tion (3-29) allows us to draw direct parallels for the propagation constant of a
wave propagating on a loss-free transmission line:

γ = α + jβ = 0 + jω
√

LC → β = ω
√

LC (3-30)

Equation (3-30) is the phase constant of a transmission line. Notice that for the
loss-free transmission line, the attenuation constant (α) is zero. In Chapters 5
and 6 we describe how to calculate the losses for a transmission line and subse-
quently, α.

3.3 TRANSMISSION-LINE PROPERTIES

With the phase constant defined by (3-30), we can calculate the transmission-line
properties using the techniques described in Section 2.3.4 for the propagation of
a time-harmonic plane wave.

3.3.1 Transmission-Line Phase Velocity

Substitution of the propagation constant defined in equation (3-30) into equation
(2-46) allows us to calculate the phase velocity of a harmonic component traveling
on a transmission line in terms of L and C:

νp = ω

β
= 1√

LC
m/s (3-31)

were L and C are the per unit length values. Note that phase velocity can also
be calculated from the dielectric properties:

νp = c√
µrεr

(2-52)

where c is the speed of light in a vacuum (3 × 108 m/s), µr the relative magnetic
permeability of the dielectric (it is almost always unity for practical dielectrics),
and εr the relative permittivity of the dielectric.

3.3.2 Transmission-Line Characteristic Impedance

In Chapter 2 we showed that the electric and magnetic fields were interdependent.
Therefore, if the values of one field were known, the other could be calculated
using Maxwell’s equations. Similarly, for particular transmission-line geometry,
if the voltage is known, the current can be calculated using the telegrapher’s
equations. For example, if we assume that a voltage is propagating along an
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infinitely long transmission line along the z-axis, the current can be calculated
by differentiating the voltage and substituting into (3-25):

v(z) = v(z)+e−jzω
√

LC

dv(z)

dz
= −jω

√
LC e−jzω

√
LC v(z)+ = −jωLi(z)+ (3-32)

i(z)+ =
√

LC e−jzω
√

LC

L
v(z)+ =

√
C

L
v(z)+e−jzω

√
LC

Since the units of C are F/m = A · S/m and L is in units of H/m = V · S/A, the
term

√
C/L has units of A/V, which is the same as siemens. Therefore, the quan-

tity
√

L/C must be similar to the intrinsic impedance defined in Section 2.3.4.
The characteristic impedance of a loss-free transmission line in ohms is given by

Z0 =
√

L

C
(3-33)

Just as the intrinsic impedance describes the relationship between the elec-
tric and magnetic fields, the characteristic impedance describes the relationship
between the voltage and current on a transmission line. Thus, we can write the
transmission-line equation for the current in terms of the voltage equation:

i(z) = 1

Z0
v(z)+e−jzω

√
LC + 1

Z0
v(z)−ejzω

√
LC (3-34)

3.3.3 Effective Dielectric Permittivity

As described in Section 3.3.1, electrical signals propagating along a transmis-
sion line will travel at a speed that is dependent on the dielectric permittivity
of the surrounding medium and the geometry of the transmission-line cross
section. Although this concept is relatively simple, it becomes complicated when
a transmission line is built with a nonhomogeneous dielectric. The most com-
mon example of this is a microstrip transmission line. For example, consider
Figure 3-11a, which shows the electric field of a signal on a microstrip transmis-
sion line built on an FR4 dielectric, which has a relative dielectric permittivity of
approximately εr = 4.0. Note that a percentage the electric field is propagating
simultaneously in the dielectric and in the air, where the latter has a relative
dielectric permittivity of approximately εr = 1.0. Consequently, the propagation
velocity will depend on an “effective” dielectric permittivity, which is a weighted
average of how much electric field is fringing through the air versus how much
stays contained within the dielectric material. When the electric field is contained
completely within the board, as in the case of a stripline as shown in Figure 3-11b,
the effective dielectric constant will be equal to the dielectric permittivity of the
insulating material, and the signals will propagate more slowly than microstrip
traces. When signals are routed on the external layers of the board, as in the case
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Figure 3-11 Electric fields of (a) a microstrip and (b) a stripline.

of a microstrip line, the electric field fringes through both the dielectric material
and the air, which lowers the effective dielectric constant; thus, the signals will
propagate more quickly than those on an internal layer. Note that this description
assumes that the relative magnetic permeability of the dielectric material under
consideration is unity (µr = 1).

In Sections 3.4.3 and 3.4.4 we describe how to derive the effective dielec-
tric permittivity of a microstrip using quasistatic approximations of Maxwell’s
equations. Furthermore, there are many commercially available two-dimensional
electromagnetic field solvers available which will produce accurate results. How-
ever, in the absence of a field solver, equation (3-35) has been shown to produce
results of reasonable accuracy [Hammerstad and Jensen, 1980] for structures
where the conductor thickness t is much smaller than the dielectric thickness h.

a = 1 + 1

49
ln

[
u4 + (u/54)2

u4 + 0.432

]
+ 1

18.7
ln

[
1 +

( u

18.1

)3
]

b = 0.564

(
εr − 0.9

εr + 3

)0.053

(3-35)

εeff(u, εr) = εr + 1

2
+ εr − 1

2

(
1 + 10

u

)−ab

where u = w/h and the dimensions are defined in Figure 3-12a.
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Figure 3-12 Dimensions used in the impedance and effective dielectric constant for-
mulas: (a) microstrip line; (b) stripline.

3.3.4 Simple Formulas for Calculating the Characteristic Impedance

For maximum accuracy it is necessary to use one of the many commercially avail-
able two-dimensional electromagnetic field solvers to calculate the impedance of
the PCB or MCM traces for design purposes. The solvers will typically provide
the impedance, propagation velocity, and the L and C elements per unit length
using many of the concepts that will be presented in Section 3.4. In the absence
of a field solver, the formulas presented here will provide approximations to the
impedance values of typical transmission lines as a function of the trace geometry
and the dielectric constant εr , where the dimensions are as shown in Figure 3-12.

Microstrip: Infinitely Thin Conductors (t � h) [Hammerstad and Jensen,
1980]

Z0 = η

2π
ln


ξh

w
+

√
1 +

(
2h

w

)2



ξ = 6 + (2π − 6)e−(30.666h/w)0.7528

η = 377√
εeff

(3-36a)

Microstrip: Finite Thickness [Collins, 1992] The formulas below are accurate
for 1 < εr ≤ 16 and 0.25 ≤ w/h ≤ 6. Note that εeff in this equation set accounts
for the finite thickness of the signal conductor when calculating the effective
dielectric constant for the microstrip. The term we is an effective width that
accounts for the extra capacitance caused by the finite thickness of the signal
conductor. Since electric field lines will be established between the edge of the
conductor and the reference plane, thicker signal conductors will exhibit increased
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capacitance. The effective width we is slightly wider than the physical width w,
to account for the extra capacitance.

Z0 =
√

ε0µ0

εeff

1

Ca

we =




w + 0.398t

(
1 + ln

4πw

t

)
w

h
≤ 1

2π

w + 0.398t

(
1 + ln

2h

t

)
w

h
>

1

2π

Ca =




2πε0

ln(8h/we + we/4h)

we

h
≤ 1

ε0

[we

h
+ 1.393 + 0.667 ln

(we

h
+ 1.444

)] we

h
> 1

εeff = εr + 1

2
+ εr − 1

2

(
1 + 12

h

we

)−1/2

+ ξ − 0.217(εr − 1)
t√
weh

ξ =




0.02(εr − 1)
(
1 − w

h

)2 w

h
< 1

0
w

h
> 1

(3-36b)

Symmetrical Stripline (h1 = h2) [IPC, 1995]

Zo = 60√
εr

ln
1.9(2h + t)

0.8w + t

0.1 <
w

h
< 2.0

t

h
< 0.25 1 < εr < 15

(3-36c)

Asymmetrical Stripline (h1 > h2) [IPC, 1995]

Z0 = 80√
εr

ln
1.9(2h2 + t)

0.8w + t

(
1 − h2

4h1

)

0.1 <
w

h2
< 2.0

t

h2
< 0.25 1 < εr < 15

(3-36d)

3.3.5 Validity of the TEM Approximation

The assumptions of how the electric and magnetic fields are related for a
propagating electromagnetic wave were discussed in Section 2.3.2. One of
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Figure 3-13 The electric field develops a z -component when propagating down a
microstrip transmission line, due to the nonhomogeneous dielectric.

the fundamental concepts used throughout signal integrity analysis is that the
electric and magnetic fields are orthogonal and there are no components in the
z-direction . When waves propagate in this manner, it is called the transverse
electromagnetic mode (TEM). However, when discussing the concept of an
effective dielectric permittivity in Section 3.3.3, where the component of the
electric field propagating through the air travels faster than the component
propagating in the board material, it becomes obvious that the electric field is
no longer restricted to a single component. For example, consider Figure 3-13,
which depicts the side view of an electric field established in the x-direction at
t = 0 on a microstrip transmission line between the signal conductor and the
reference plane. As the signal begins to propagate down the line, the electric field
lines in the air will travel at a faster speed than those in the board, effectively
tilting the electric field in the z-direction. Consequently, the electric field devel-
ops a component in the z-direction which violates the assumption of the TEM
approximation.

Furthermore, as the frequencies increase, the electric field will become more
confined to the region between the microstrip and the reference plane, result-
ing in less fringing through the air, causing the effective dielectric permittivity
to increase. To understand this, refer to Figure 3-14. When a dc voltage is
applied between the signal conductor and the reference plane, the charge will
be distributed uniformly across the cross section of the signal conductor. As the
frequency of the signal is increased, the charge will tend to concentrate at the bot-
tom of the signal conductor closest to the reference plane because that is the area
of highest field concentration. This means that for a microstrip transmission line,
the electric field will tend to concentrate in the board material, which increases the
effective dielectric permittivity with increasing frequency . The charge distribution
in transmission lines is discussed in more detail in Sections 3.4.4 and 5.1.2.
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Figure 3-14 At high frequencies, the proximity of the fields concentrates the charge in
the bottom of the strip nearest the reference plane.

The frequency-dependent nature of the effective permittivity in a microstrip
will cause the spectral components of the digital waveform (as calculated with a
Fourier transform) to travel at different speeds, which will distort the waveform.
This is known as dispersion . A relatively simple formula for calculating how
the effective dielectric permittivity for a microstrip changes with frequency due
to the nonhomogeneous nature of the dielectric was developed empirically by
[Collins 1992], and is given by

εeff(f ) = εr − εr − εeff(f = 0)

1 + (f/fa)m
(3-37)

where

fa = fb

0.75 + (0.75 − 0.332ε−1.73
r )(w/h)

fb = 47.746

h
√

εr − εeff(f = 0)
tan−1

[
εr

√
εeff(f = 0) − 1

εr − εeff(f = 0)

]

m = m0mc ≤ 2.32

m0 = 1 + 1

1 + √
w/h

+ 0.32

(
1 +

√
w

h

)−3

mc =




1 + 1.4

1 + w/h

(
0.15 − 0.235e−0.45(f/fa)

) w

h
≤ 0.7

1
w

h
> 0.7

where εeff(f = 0) is calculated with (3-35), f is in gigahertz, and the units of w

and h are millimeters.∗

∗Fortunately, a frequency-dependent effective dielectric permittivity does not pose significant obsta-
cles to modeling transmission lines. In Chapter 10, techniques that employ frequency-dependent
equivalent circuits using tabular SPICE models are described that allow a unique value of the
transmission-line parameters to be described at every frequency point.
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Figure 3-15 Effective dielectric permittivity compared to the quasi-TEM approximation
for a 12-in. microstrip.

For most practical applications encountered in high-speed digital design, the
TEM approximations are valid and the frequency-dependent nature described
by (3-37) is ignored. For microstrip lines and other nonhomogeneous struc-
tures, when TEM propagation is assumed, it is referred to as the quasi-TEM
approximation . To demonstrate the conditions when the quasi-TEM approxima-
tion breaks down, equation (3-37) was used to calculate the frequency variation
of the relative effective dielectric permittivity εeff for two cases, a thick and a thin
dielectric, as shown in Figure 3-15. The thin dielectric example (h = 2.5 mils)
represents the transmission-line dimensions typically used to design buses on
conventional motherboards for personal computers. The thick dielectric example
(h = 25 mils) is an exaggerated case chosen to demonstrate when the TEM
approximation breaks down (however, similar dimensions are sometimes used in
radio-frequency (RF) applications where density is not as much of a concern).
Equation (3-35) was used to calculate the frequency-invariant quasistatic TEM
value for εeff, and equation (3-37) was used to estimate the variation of εeff with
frequency. Note that for the thin case, the deviation from the quasi-TEM approx-
imation is small up to very high frequencies, but the thick case begins to deviate
much earlier.

To evaluate when the quasi-TEM approximation breaks down, we choose a
metric of 1% error in total delay. Since the changes in εeff will alter the velocity
as shown in equation (2-52), the errors will accumulate for longer line lengths. If
we choose a line length, the valid frequency range of the TEM approximation can
be calculated. Figure 3-16 shows the percent error in propagation delay caused by
the quasi-TEM approximation for a 12-in. microstrip. Note that for the thick case,
the quasi-TEM will induce a 1% error in delay at about 8 GHz, and the thin case
remains accurate to about 80 GHz. Consequently, for typical transmission-line
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Figure 3-16 Bandwidth where the quasi-TEM approximation induces a 1% error in the
delay for a 12-in. microstrip.

dimensions used in contemporary digital design, the quasi-TEM approximation
for the transmission-line parameters is valid.

3.4 TRANSMISSION-LINE PARAMETERS FOR THE LOSS-FREE CASE

Earlier, we discussed how an electromagnetic wave propagates on a transmis-
sion line by drawing parallels to a plane wave in free space and developed
an equivalent circuit that was constructed from inductance and capacitance ele-
ments. In this section we discuss a variety of methods to calculate the equivalent
inductance and capacitance values per unit length for various transmission-line
structures. Although in practice, a commercial two-dimensional field solver is
usually employed to calculate the equivalent-circuit parameters, it is vital for the
engineer to understand the approximations and methodologies typically used.

Note that the solutions in this chapter assume that the electrostatic solutions to
Maxwell’s equations are adequate approximations for high-speed digital design
purposes. This is known as the quasistatic approximation . This technique allows
significant simplification over the full-wave solution, where no approximations
are assumed. Indeed, at high frequencies (above a few hundred megahertz),
the quasistatic approximation breaks down because the equivalent-circuit
parameters have significant frequency dependence. Nonetheless, virtually all
two-dimensional field solvers used in the industry are quasistatic in nature.
Full-wave solvers, which do not assume quasistatic fields are in theory more
accurate. However, in practice they require too many computational resources
and too much time to be of practical use for modeling transmission lines in a
digital design. Fortunately, the errors caused by the quasistatic approximation
can be corrected relatively painlessly with excellent accuracy up to very
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high frequencies (at least 50 GHz), as discussed in Chapters 5, 6, 8, and 10.
Consequently, the methodologies in this book for modeling transmission lines
are based on a quasistatic approach, and corrections are applied in later chapters
to recover the frequency-dependent behavior.

3.4.1 Laplace and Poisson Equations

In Section 2.4 we show that the behavior of an electrostatic field can be described
by the differential equations

∇ · �D = ρ (2-3)

�E = −∇� (2-65)

the latter coming from the fact that Ampère’s law is zero for an electrostatic field
(∇ × �E = 0). If (2-65) is substituted into (2-3),

∇ · (−∇�) = ρ

ε

we arrive at Poisson’s equation:

∇2� = −ρ

ε
(3-38)

In a medium that lacks any charge density, Poisson’s equation is reduced to
Laplace’s equation ,

∇2� = 0 (3-39)

Poisson’s and Laplace’s equations are particularly useful for solving quasistatic
transmission-line problems, as demonstrated in the remainder of this chapter.

3.4.2 Transmission-Line Parameters for a Coaxial Line

Assume that a pair of long, coaxial, circular conductors are statically charged
with the inner conductor at the potential � = V relative to the outer conductor,
which is held at zero potential (ground), where the cross section is as shown in
Figure 3-17. The region between the conductors has a dielectric permittivity of
ε = ε0εr and a relative magnetic permeability of µr = 1.

The first step is to calculate the capacitance per unit length. If we make the
assumption that the dielectric is charge free (very reasonable; see Chapter 6), the
capacitance can be derived by solving Laplace’s equation (3-39) in cylindrical
coordinates. From Appendix A we get

∇� = �ar

∂�

∂r
+ �aφ

1

r

∂�

∂φ
+ �az

∂�

∂z
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Figure 3-17 Cross section of a coaxial transmission line.

Assuming TEM, there will be no variation of the electric field in the z-direction,
and because of the symmetry, there should be no variation with φ. Therefore,

∇2� = ∇ · (∇�) = 1

r

∂

∂r

(
r
∂�

∂r

)
= 0

Integrating ∂[(r(∂�/∂r)]/∂r produces r(∂�/∂r) = C1, and a second integration
yields the solution:

�(r) = C1 ln(r) + C2 (3-40)

The boundary conditions must be applied to (3-40) to determine the values of
C1 and C2. The boundary conditions are:

• When r = b, � = 0.
• When r = a, �(a) = V .

Applying the first boundary condition yields

�(b) = 0 = C1 ln(b) + C2

C2 = −C1 ln(b)

which is substituted back into (3-40):

�(r) = C1 ln(r) − ln(b)C1 = C1 ln
r

b

Applying the second boundary condition produces the following:

�(a) = V = C1 ln
a

b
→ C1 = V

ln(a/b)
→ C1 = − V

ln (b/a)
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Note that ln(a/b) = − ln(b/a), which is done here as a convenience:

�(r) = − V

ln(b/a)
ln(r) + V

ln(b/a)
ln(b) = V

ln(b/a)
ln

b

r

The electric field is computed using (2-65):

�E = −∇� = −∇
[

V

ln(b/a)
ln

b

r

]
= −�ar

∂

∂r

[
V

ln(b/a)
ln

b

r

]
= �ar

V

r ln(b/a)

(3-41)

The next step is to find the total surface charge on the signal conductor using
(3-3), which describes the boundary conditions between a dielectric and a perfect
conductor:

�n · ε �E = ρ C/m2 (3-3)

At r = a (the inner conductor surface), the surface charge is calculated with

εE = εV

a ln(b/a)
= ρ C/m2 (3-42)

Multiplying (3-42) by the circumference of the inner conductor will give the
equivalent surface charge per unit length:

Q

l
= ρ2πa = 2πεV

ln(b/a)
C/m (3-43)

Using (2-76) we can get the capacitance per unit length of a coaxial transmission
line:

C = Q/l

V
= 2πε

ln(b/a)
F/m (3-44)

To find the inductance per unit length, we exploit the relationship between the
magnetic and electric fields:

νp =




1√
µrµ0εrε0

= c√
µrεr

m/s (2-52)

ω

β
= 1√

LC
m/s (3-31)

which allows us to write (assuming µr = 1)

c√
εr

= 1√
LC

(3-45)

Since µr = 1, the dielectric properties do not influence the inductance. Conse-
quently, since the speed of light in a vacuum is constant, the inductance can be
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calculated from (3-45) if the capacitance is calculated with εr = 1:

L = 1

c2Cεr=1
(3-46)

where c is the speed of light in a vacuum and Cεr=1 is the capacitance with the
relative dielectric permittivity εr set to 1. Substituting (3-44) into (3-46) with
εr = 1 gives the value of the inductance per unit length for a coaxial line:

L = ln(b/a)

c22πε0
H/m (3-47)

3.4.3 Transmission-Line Parameters for a Microstrip

To derive the impedance of a microstrip transmission line, we begin with the
solution to Laplace’s equation. To begin the derivation, consider Figure 3-18,
which shows the boundary conditions that we must satisfy when solving the
differential equations. Note that the microstrip is surrounded by a box with con-
ducting walls at x = ±d/2, y = 0, and y = ∞. This is a valid placement of
the boundary conditions only if d � h, where h is the height of the dielectric.
In this case, the partial differential equations are solved using a method called
separation of variables , as described by Jackson [1999]. The rectangular nature
of the microstrip geometry allows us to remain in rectangular coordinates, which
gives the two-dimensional Laplace equation the form

∇2� = ∂2�

∂x2
+ ∂2�

∂y2
= 0 (3-48)

y

x

2
w

2
w−

2
d

2
d−

h er

∞ e0

Figure 3-18 Dimensions used to derive microstrip transmission-line parameters from
Laplace’s equation.
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The solution to this partial differential equation can be found in terms of two
ordinary differential equations, assuming that the potential can be represented by
the product of a function for each coordinate [Jackson, 1999]:

�(x, y) = X(x)Y (y) (3-49)

If equation (3-49) is substituted back into (3-48) and then divided by �, the
result is

1

XY

d2XY

dx2
+ 1

XY

d2XY

dy2
= 1

X

d2X

dx2
+ 1

Y

d2Y

dy2
= 0 (3-50)

where the partial derivatives are replaced by total derivatives because each term
involves only one variable. This allows us to write two separate ordinary differ-
ential equations:

1

X

d2X

dx2
= −β2 (3-51)

1

Y

d2Y

dy2
= β2 (3-52)

The constant β must satisfy the conditions β2 + (−β2) = 0 to satisfy Laplace’s
equation. The differential equations in (3-51) and (3-52) are solved by finding
the roots of the characteristic equations:

X(x) = C1ne
jβx + C2ne

−jβx = C1n(cosβx + j sin βx)

+C2n(cos βx − j sin βx) (3-53)

Y (y) = C′
1ne

βy + C′
2ne

−βy = C′
1n(cosh βy + sinh βy)

+C′
2n(cosh βy − sinh βy) (3-54)

The potential is then calculated by substituting (3-53) and (3-54) into (3-49):

�(x, y) = X(x)Y (y) = [C1n(cos βx + j sin βx) + C2n(cos βx − j sin βx)]

· [C′
1n(cosh βy + sinh βy) + C′

2n(cosh βy − sinh βy)] (3-55)

Note that since the solution is periodic, β must be an integer. The boundary
conditions that must be applied to solve (3-55) are

�(x, y) = 0 when x = ±d

2
(3-56)

which is the potential at the sidewalls and

�(x, y) = 0 when y = 0, ∞ (3-57)



96 IDEAL TRANSMISSION-LINE FUNDAMENTALS

which is the potential at the ground plane and at a point infinitely far away. This
means that we must consider two different solutions: region 1, which exists from
y = 0 to h (in the dielectric), and region 2, which exists from y = h to infinity
(in the air), where the potentials must be equal at the boundary of these regions.

Looking at X(x) in (3-55), the boundary condition in (3-56) is met if C1n =
C2n and β is chosen so that the cosine term equals zero when x = ±d/2. When
C1n = C2n, X(x) is reduced to

X(x) = C1n cosβx

and when β = nπ/d for odd n and x = ±d/2,

X(x) = 0

yielding an appropriate form for X(x):

X(x) = C1n cos
(nπ

d
x
)

(3-58)

The second term Y (y) in (3-55) will satisfy the boundary condition in (3-57) at
y = 0 if C′

1n = −C′
2n, yielding

Y (y) = C′
2n sinh βy = C′

2n sinh
(nπ

d
y
)

(3-59)

At y = ∞, the boundary condition (3-57) is satisfied when C′
1n = 0:

Y (y) = C′
2n(coshβy − sinh βy) = C′

2ne
−βy (3-60)

This allows us to write equations for the potential that satisfies the boundary
conditions by multiplying X(x) and Y (y) for the appropriate boundary conditions,
where the product of the constants have been renamed An and Bn for clarity.

�(x, y) =




∞∑
n=1
odd

An cos
(nπ

d
x
)

sinh
(nπ

d
y
)

when 0 ≤ y < h (region 1)

(3-61a)
∞∑

n=1
odd

Bn cos
(nπ

d
x
)

e−(nπ/d)y when h ≤ y < ∞ (region 2)

(3-61b)

The potential at the signal conductor (y = h) must be continuous, so

An cos
(nπ

d
x
)

sinh
(nπ

d
h
)

= Bn cos
(nπ

d
x
)

e−(nπ/d)h
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yielding

Ane
(nπ/d)h sinh

(nπ

d
h
)

= Bn

which allows the equations for the potential to be written in terms of An alone:

�(x, y) =




∞∑
n=1
odd

An cos
(nπ

d
x
)

sinh
(nπ

d
y
)

when 0 ≤ y < h

(3-62a)
∞∑

n=1
odd

An sinh
(nπ

d
h
)

cos
(nπ

d
x
)

e−(nπ/d)(y−h) when h ≤ y < ∞

(3-62b)

To get the electric field between the signal conductor and the ground plane, we
apply equation (2-65), Ey = −∇φ = −∂�/∂y. Since d(sinh ax)/dx = a cosh ax

and d(eax)/dx = aeax , the electric fields become

Eyn = − ∂

∂y
An cos

(nπ

d
x
)

sinh
(nπ

d
y
)

= −nπAn

d
cos

(nπ

d
x
)

cosh
(nπ

d
y
)

for region 1 and

Eyn = − ∂

∂y
An sinh

(nπ

d
h
)

cos
(nπ

d
x
)

e−(nπ/d)(y−h)

= nπAn

d
sinh

(nπ

d
h
)

cos
(nπ

d
x
)

e−(nπ/d)(y−h)

for region 2, yielding

Ey(x, y) =




−
∞∑

n=1
odd

nπAn

d
cos

(nπ

d
x
)

cosh
(nπ

d
y
)

when 0 ≤ y < h

(3-63a)
∞∑

n=1
odd

nπAn

d
sinh

(nπ

d
h
)

× cos
(nπ

d
x
)

e−(nπ/d)(y−h) when h ≤ y < ∞

(3-63b)
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To calculate the coefficient An, we must assume a charge distribution on the signal
conductor. As a first-order approximation, it can be assumed that the charge (ρ)
is spread out uniformly across the signal conductor at y = h. Consequently, there
will be no variation of ρ with x on the strip, but it will be zero off the strip.

ρ(x) =
{

1 when |x| < w/2

0 when |x| > w/2
(3-64)

From equation (3-4), the electric fields above and below the signal conductor are
equated to the charge density:

ρ(x) = (ε0Ey1) − (ε0εrEy2) =
∞∑

n=1
odd

ε0nπAn

d
cos

(nπ

d
x
)

×
[
sinh

(nπ

d
h
)

+ εr cosh
(nπ

d
h
)]

(3-65)

If we temporarily assign all terms in (3-65) that are not a function of x (except
An) to a constant term k as in (3-66), it is easy to see that it takes the form
similar to the Fourier series shown in (3-68) when a0 and bm are zero:

ρ(x) =
∞∑

n=1
odd

Ank cos
(nπ

d
x
)

(3-66)

k = ε0
nπ

d

[
sinh

(nπ

d
h
)

+ εr cosh
(nπ

d
h
)]

(3-67)

f (x) = 1

2
a0 +

∞∑
n=1

am cos
(mπ

d
x
)

+
∞∑

n=1

bm cos
(mπ

d
x
)

(3-68)

This allows the use of Fourier series techniques to solve for the coefficient, An:

∫ w/2

−w/2
ρ(x) cos

(mπ

d
x
)

dx =
∫ d/2

−d/2
Ank cos

(nπ

d
x
)

cos
(mπ

d
x
)

dx

Setting m = n, we arrive at

∫ w/2

−w/2
ρ(x) cos

(nπ

d
x
)

dx =
∫ d/2

−d/2
Ank cos2

(nπ

d
x
)

dx (3-69)
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After substituting (3-67) for k, integration of both sides of (3-69) yields

2d

nπ
sin

nπw

2d
= Ankd

2

An = 4 sin(nπw/2d)

ε0[(nπ)2/d]
[
sinh((nπ/d)h) + εr cosh ((nπ/d)h)

] (3-70)

The voltage of the signal conductor can now be calculated with respect to the
ground plane at x = 0 using (3-1) and (3-63a):

v = −
∫ b

a

�E · d�l = −
∫ h

0
Ey(x = 0, y) dy =

∞∑
n=1
odd

An sinh
(nπ

d
h
)

(3-71)

The total charge is calculated with

Q =
∫ w/2

−w/2
ρ(x)dx = w (3-72)

So the capacitance per unit length is calculated from (3-71) and (3-72) using
(2-76):

C = Q

v
= w∑∞

n=1
odd

An sinh[(nπ/d)h]
(3-73)

and the inductance per unit length is calculated using (3-46) by first calculating the
capacitance with (3-73) with a relative dielectric permittivity of unity (εr = 1):

L = 1

c2Cεr=1
(3-46)

With (3-73) and (3-46), we can calculate several useful quantities, such as the
phase constant (3-30), the characteristic impedance (3-33), and the effective rel-
ative dielectric permittivity (εeff). To understand how to calculate εeff, we can
examine the formulation of a parallel-plate capacitor, as derived in Example 2-3:

Cεr,eff

Cεr=1
= ε0εr,effA/d

ε0A/d
= εr,eff (3-74)

Consequently, the effective permittivity is determined by calculating the capac-
itance of the microstrip with (3-73) using the correct value of the dielectric
constant and dividing by the capacitance calculated with (3-73) when εr = 1.
Since the dimensions that determine the capacitance remain identical, all that
remains is the effective dielectric permittivity.
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The accuracy of (3-73) and (3-74) is reasonable, but two approximations made
during the derivation degrade the accuracy. First, we assumed that the signal
conductor is infinitely thin, which is not realistic because microstrip transmission
lines manufactured on printed circuit boards often have conductor thicknesses
of dimensions similar to the dielectric height. There is little benefit of deriving
a finite thickness formula here because the most useful method would employ
numerical solutions that are not covered in this book. Second, the charge distri-
bution on the signal conductor is not uniform. The charge distribution near sharp
edges is derived in Section 3.4.4 and applied to this formulation.

3.4.4 Charge Distribution near a Conductor Edge

The approximation made in the analysis of Section 3.4.3 assumed that charge dis-
tribution on the signal conductor on the microstrip was uniform. Realistic charge
distributions tend to increase significantly near the corners on the conductors,
which will alter the capacitance and subsequently the effective permittivity of
the transmission line. To begin the derivation of the charge distribution, consider
Figure 3-19, which shows two intersecting planes at an angle of θ . The two cases
of interest are when θ = 270◦, which will yield the charge distribution near a
sharp corner, and when θ = 360◦, which will yield the charge distribution near
the edge of a very thin strip. The derivation assumes that the conducting planes
are kept at a potential V with respect to a point far away. Since we are interested

P

Φ = V

q
f

x

y

Edges of a conductor

r

Figure 3-19 Two conducting planes held at a potential V with respect to a far-off point
intersecting at an angle.
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in the behavior of the fields only close to the edge, the details of the reference
conductor far away are not considered.

We begin the derivation with Laplace’s equation in cylindrical coordinates:

∇2� = 1

r

∂

∂r

(
r
∂�

∂r

)
+ 1

r2

∂2�

∂φ2
= 0 (3-75)

Similar to the solution of the microstrip transmission line, the solution to this
partial differential equation is found using separation of variables. The problem
is reduced to two ordinary differential equations, assuming that the potential can
be represented by the product of a function for each coordinate [Jackson, 1999]:

�(r, φ) = R(r)Y (φ) (3-76)

Substitution of (3-76) into (3-75) and dividing each side by R(r)Y (φ)/r2

produces

r2

RYr

∂

∂r

(
r
∂RY

∂r

)
+ r2

RYr2

∂2RY

∂φ2
= r

R

∂

∂r

(
r
∂R

∂r

)
+ 1

Y

∂2Y

∂φ2
= 0 (3-77)

Since the sum of the ordinary differential equations must equal zero, we can
solve each one separately:

r
d

dr

(
r
dR

dr

)
= β2R (3-78)

d2Y

dφ2
= −β2Y (3-79)

For the solution of (3-78), try R = krl :

r
d

dr

(
r
d(krl)

dr

)
= r

d

dr
(rklrl−1) = r

d

dr
klrl = kl2rl

Setting the solution above to β2R yields

β2R = β2(krl) = l2(krl)

l = ±β

Hence, the solution to (3-78) is shown:

R(r) = arβ + br−β (3-80)

The solution to (3-79) is found by solving the roots of the characteristic equation

Y (D2 + β2) = 0
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yielding

Y (φ) = A cosβφ + B sin βφ (3-81)

Since (3-81) is composed of periodic functions, β must be an integer. Substituting
(3-80) and (3-81) into (3-76) yields the general solution for the potential when
β = 0:

�(r, φ) = arβA cosβφ + arβB sin βφ + br−βA cosβφ + br−βB sin βφ

(3-82)

The boundary conditions that must be satisfied are:

• � = V when φ = θ .
• � = V when φ = 0.

If β = nπ/θ , the sin terms in (3-82) become zero when n is odd. Since sin(0) =
0, the choice of β allows us to write a function for the potential that satisfies the
boundary conditions by setting the constant A = 0, and combining the constants
αn = aB and α′

n = bB:

�(r, φ) = V +
∞∑

n=1
odd

αnr
nπ/θ sin

(nπ

θ
φ
)

+ α′
nr

−nπ/θ sin
(nπ

θ
φ
)

(3-83)

The φ component of the electric field is calculated from equation (2-65) ( �E =
−∇�). From Appendix A we get

∇� = �ar

∂�

∂r
+ �aφ

1

r

∂�

∂φ
+ �az

∂�

∂z

yielding

Eφ = −1

r

∂�

∂φ
=

∞∑
n=1
odd

[
−nπαn

θ
r(nπ/θ)−1 cos

(nπ

θ
φ
)

+ nπα′
n

θ
r−(nπ/θ+1) cos

(nπ

θ
φ
)]

(3-84)
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Finally, the charge can be calculated with (3-3):

�n · ε �E = ρ

ρ(r, φ) = εEφ =
∞∑

n=1
odd

[
−nπεαn

θ
r(nπ/θ)−1 cos

(nπ

θ
φ
)

+ nπεα′
n

θ
r−(nπ/θ+1) cos

(nπ

θ
φ
)]

Since we are interested in the behavior of the charge in the immediate vicinity of
the edge, r is small and therefore only the first term, the summation, is important
(n = 1). Also, since for a flat plane the dependence on r should vanish and
the last term shows dependence on r for θ = π and n = 1, it is necessary that
α′

n = 0.

ρ(r, φ) = −πεα1

θ
r0 cos

(π

θ
φ
)

+ πεα′
1

θ
r−2 cos

(π

θ
φ
)

This yields the surface charge density as a function of the angle between two
conducting planes in the near vicinity of the corner:

ρ(r, φ) = −πεα1

θ
r(π/θ)−1 cos

(π

θ
φ
)

(3-85)

For a sharp corner, θ = 3π/2, as shown in Figure 3-20, 3.85 reduces to

ρ(r, φ = 3π/2) = 2εα1

3
r−1/3 (3-86)

Since we are concerned with the charge density on the metal planes, φ will be
either θ or 0, meaning that the cosine term will equal 1 or -1.

Equation (3-86) means that for a transmission line built with a square con-
ductor, the charge density increases dramatically near the corner, as shown in
Figure 3-20. In fact, for a perfectly sharp edge, the charge density becomes
singular as r approaches zero. For the edge of a thin strip, θ = 2π and (3-85)
reduces to

ρ(r, φ = 2π) = εα1

2
r−1/2 (3-87)

Equation (3-87) means that for an infinitely thin metal strip, as was assumed in
the derivation for the microstrip line in Section 3.4.3, the charge density also
approaches infinity near the edge. Since infinitely thin sheets or infinitely sharp
corners do not really exist in nature, the trends of (3-86) and (3-87) are what must
be understood. The charge density increases dramatically near sharp corners on
metal conductors . The coefficients αn are dependent on the initial conditions
remote from the corner, which are not solved here.
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Φ = V

q = 270° = 3p
2

 

r = 0
r

C
ha

rg
e 

de
ns

ity
, r

Figure 3-20 Charge distribution near a sharp corner.

3.4.5 Charge Distribution and Transmission-Line Parameters

Now that the behavior of the charge in the near vicinity of the edge is understood,
it is easy to imagine what the total charge distribution should look like across
the signal conductor of a transmission line. The charge density should be almost
uniform near the center of the strip but will increase dramatically near the edges,
as predicted by (3-85). A useful formula to predict the current distribution for a
microstrip, which works well for a variety of dimensions, was derived by Collins
[1992] using conformal mapping techniques:

ρ(x) = 2Q

πw
√

1 − x2(w

2

)2

(3-88)

where Q is the total charge, x the distance from the conductor center, and w
the width of the signal conductor. Figure 3-21 shows an example of a realistic
current distribution in the signal conductor of a microstrip transmission line, as
calculated with (3-88) and normalized so that the center of the conductor has a
charge density of 1.

To understand how the charge distribution will influence the transmission-line
parameters such as delay and impedance, the equations for the microstrip trans-
mission line derived in Section 3.4.3 can be improved by applying a more realistic
charge distribution to the signal conductor and solving (3-69) for An:∫ w/2

−w/2
ρ(x) cos

(nπ

d
x
)

dx =
∫ d/2

−d/2
Ank cos2

(nπ

d
x
)

dx (3-69)
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Figure 3-21 Charge distribution across a microstrip signal conductor.

The problem arises that (3-88) is singular at x = w/2, so it cannot be integrated.
Fortunately, we can circumvent this problem by choosing a well-behaved function
to approximate (3-88) that can be integrated:

ρ(x) = 2Q

πw
√

1 − x2(w

2

)2

∼= Q(axm + c) (3-89)

where a, m, and c should be chosen so that the polynomial approximates the real-
istic charge distribution. If the total charge is to remain the same as in (3-72), and
the width of the transmission line is normalized to w = 1, the charge distribution
must satisfy

Q =
∫ w/2

−w/2
ρ(x)dx = 1 (3-90)

Furthermore, the order of the polynomial must be high to approximate the sharp
increase in the charge density near the edges. If the order of (3-89) is chosen to
get a reasonable fit (m = 6), the polynomial will satisfy (3-90) when a = 100
and c = 0.77 for a strip width of 1,

ρ(x) ≈ 100x6 + 0.77 (3-91)

where ∫ 0.5

−0.5
(100x6 + 0.77) dx ≈ 1.
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Figure 3-22 Comparison of the charge distribution calculated analytically and the non-
singular polynomial approximation.

TABLE 3-1. Effect of Charge Distribution on the Impedance and Effective
Relative Permittivitya

Z0(�)/εeff

w/h

ρ(x) =
{

1 when |x| < w/2

0 when |x| > w/2
ρ(x) = 100x6 + 0.77

Two-Dimensional
Numerical Field
Solver Results

4 37.6/3.26 31.6/3.37 32.5/3.38
2 59.7/3.02 52.6/3.08 51.4/3.13
1 84.8/2.86 77.0/2.90 74.6/2.96
0.667 99.9/2.81 92.1/2.83 89.3/2.89
0.5 110.8/2.78 99.1/2.76 99.9/2.84
ad = 100h, widths normalized to 1, εr = 4.0, n = 5000.

Figure 3-22 shows a comparison between the charge distribution approximated
with (3-91), which is not singular, and (3-88). Plugging (3-91) into (3-69) and
solving for An will provide a formula for the microstrip transmission line that
accounts for a realistic charge distribution on the signal conductor. Unfortunately,
the integration gets messy and the final form of An is ungainly and therefore is not
shown here. Mathematica was programmed to perform the integration and solve
(3-69) for An when the charge distribution was approximated with (3-91). Com-
parisons between the calculated impedance and the effective dielectric constant
assuming a uniform charge distribution using (3-64) and a realistic distribution
calculated with (3-88) and approximated with (3-91) is shown in Table 3-1. Note
that when a realistic charge distribution is used, the quasistatic approximations
are significantly more accurate when compared to a commercial two-dimensional
numerical field solver.
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3.4.6 Field Mapping

So far, we have used Laplace’s equation to calculate the transmission-line param-
eters. Next we explore a graphical method for solving general two-dimensional
electrostatic problems. The chief merit of this method is that it provides unique
insight into the field patterns for complex geometries. Additionally, the method
is applicable to systems where the analytical approach is either extremely dif-
ficult or impossible. It also demonstrates a methodology where the structure is
meshed, which is similar to techniques used by many numerical field solving
techniques. A full understanding of this method is useful because it will allow
the signal integrity engineer to develop an intuitive understanding of how fields
are distributed and how transmission-line geometries affect impedance and the
effective dielectric permittivity.

For any two-dimensional system possessing a uniform charge distribution
along the z-axis, the same electrostatic field sketch can be applied to every cross
section. An example of the field sketch for an arbitrary cross section possessing
the charges q and −q in every length l is shown in Figure 3-23. Equation (3-3)
tells us that the electric field lines must terminate on a perfect conductor nor-
mal to the surface. This means that if a line is drawn on a two-dimensional
field sketch so that it is always perpendicular to the electric fields, and that
line is extended into the page, the surface created must be a constant potential,
as shown in Figure 3-23. These constant potential surfaces can be treated as

Φ = 0Φ = V

Equal potential surface 

Electric field flux 

Figure 3-23 Electrostatic field sketch of two arbitrary conductors.
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infinitely thin sheets of “virtual” conducting foil. Using the constant potential
surfaces, the capacitance per unit length of a two-dimensional system can be
found with reasonable accuracy from a careful field sketch. For example, con-
sider the cross section of a coaxial line as shown in Figure 3-24, where electric
field flux lines originate from a charge q distributed over a length l on the inner
conductor and terminate on −q in the same length on the outer conductor. If
equal potential lines are drawn between the inner and outer conductors, the total

C0

C0

C0

−q

+q

(a)

(b)

Φ = V

∆C

Φ = 0

Φ = 0Φ = V

Figure 3-24 Field map of a coaxial line showing (a) series capacitance between equal
potential surfaces and (b) capacitance per unit cell.
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capacitance is simply the series combination of the capacitance between equal
potential lines as shown in Figure 3-24a. If the equal potential lines are chosen
so that each capacitance is the same and ns denotes the number of elements in
series, the total capacitance is

C = C0

ns

(3-92)

Furthermore, each of the series capacitors in Figure 3-24a can be subdivided
into parallel capacitance values with a value of �C for each cell, as shown
in Figure 3-24b. Assuming np parallel elements, C0 = np�C, yielding a total
capacitance

C = np

ns

�C (3-93)

In order to use (3-93), we need to calculate the cell capacitance �C. Assuming
that the charge �q and −�q are present on the top and bottom of each cell wall,
we can write the cell capacitance in terms of the potential difference between the
boundaries using (2-76) and (3-1):

�C = �q∫ �E · d�l (3-94)

If the problem is simplified by drawing the field lines such that each cell is
approximately the same size, the capacitance can be written in terms of the
average electric fields,

�C = �q

Eave�have
(3-95)

where �have is the average height of a cell and Eave is the average electric field
for a cell.

Equation (3-95) can be simplified to eliminate the electric field using the
integral form of Gauss’s law, (2-59),

∮
S
ε �E · d�s = ∮

S
�D · d�s = q:

�C = �q

Eave�have
= ε�q

Dave�have
= ε�q

(�q/l�wave)�have
= ε�wave

�have
l (3-96)

where �wave is the average cell width and ds = l�wave is the area of the cell
surface for the transmission line length l. If the cells can be drawn so that
�wave ≈ �have, the total capacitance is calculated by substituting (3-96) into
(3-93):

C

l
= ε

np

ns

F/m (3-97)

Example 3-2 Use field mapping techniques to calculate the impedance of a coax-
ial transmission line shown in Figure 3-25, where b/a = 2 and the permittivity
of the dielectric is εr = 2.3.
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a

b = 2a

1

1
1

1

1
1

1

1

V

Figure 3-25 Field map used to calculate the capacitance in Example 3-2, showing one
quadrant divided up into two series sections and four parallel sections.

SOLUTION Since the cross section of the coaxial line is symmetrical, we can
take advantage of symmetry and draw the field lines for only one quadrant, as
shown in Figure 3-25. In this sketch, the quadrant was divided into two series
sections using a single equal potential line, and four parallel sections yielding
ns = 2 and np = (4)(4) = 16. Therefore, equation (3-97) yields

C = εrε0
np

ns

= (2.3)(8.85 × 10−12)

(
16

2

)
= 162.8 × 10−12 F/m

To calculate the impedance of the coaxial line, we must first recalculate the
capacitance for εr = 1 and calculate the inductance from (3-46),

Cεr=1 = ε0
np

ns

= 8.85 × 10−12
(

16

2

)
= 70.78 × 10−12F/m

L = 1

c2Cεr=1
= 1

(3 × 108)2(70.78 × 10−12)
= 156.9 × 10−9H/m

yielding the characteristic impedance calculated from (3-33):

Z0,fieldmap =
√

156.9 × 10−9

162.8 × 10−12
= 31.0 �

This can be compared directly to the results derived in Section 3.4.2.

C = 2πε

ln(b/a)
= 2π(2.3)(8.85 × 10−12)

ln(2)
= 184.5 × 10−12 F/m
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Again, to calculate the impedance, we must first recalculate the capacitance for
εr = 1.

C = 2πε

ln(b/a)
= 2π(1)(8.85 × 10−12)

ln(2)
= 80.2 × 10−12 F/m

L = 1

c2Cεr=1
= 1

(3 × 108)2(80.2 × 10−12)
= 138.5 × 10−9 H/m

Z0 =
√

138.5 × 10−9

184.5 × 10−12
= 27.3 �

Comparing this result to Z0,fieldmap shows reasonable accuracy but demonstrates
the inherent errors that are inevitable when using hand sketches.

Example 3-3 Use field mapping techniques to calculate the impedance and
the effective dielectric permittivity of the microstrip transmission line shown in
Figure 3-26, where w/h = 1 and the permittivity of the dielectric material is
εr = 4.0.

SOLUTION It is inherently more difficult to apply mapping techniques to a
microstrip because the fields are difficult to draw accurately and the dielec-
tric is not homogeneous. Figure 3-26 shows a drawing of the field lines. Note

1

1

0.5

1

1

1

1

w
1

1

0.5

1 10.5 1
1 1 1

11

1 1

11

1

1

1 1 1

1

1

1

1

11

1

1

0.5
1

h

er = 1

er = 4

Figure 3-26 Field map used to calculate the effective dielectric permittivity and the
impedance of a microstrip.
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that the authors were not able to draw the cells to be all the same size; how-
ever, we will still assume an average electric field strength for each cell, which
will induce some error. Since some cells are small and some cells are large,
the errors induced by the cell size discrepancy will partially average out and
should give reasonable results. For this example, symmetry was used and only
half of the field lines were drawn. The distortion of the electric field lines at
the dielectric boundary was ignored, which will induce an additional, although
small error.

Initially, we must calculate the effective dielectric permittivity. In Section 3.3.3
we explained that the effective permittivity was due to the weighted average of
the fields fringing through the air and the dielectric. By counting the number of
cells in the air and in the board, we can use a weighted average to calculate
the effective permittivity. Counting the cells in Figure 3-26 yields nine cells in
the air and 27 cells in the dielectric. Note that some of the cells were divided
up between the air and the dielectric material. Therefore, the effective dielectric
permittivity is calculated:

εeff ≈ 9

9 + 27
(1) + 27

9 + 27
(4) = 3.25

The results from the two-dimensional field solver in Table 3-1 shows εeff = 2.96
for w/h = 1, so the result above is not a bad approximation.

The field plot was divided into five series sections, and seven parallel sections
for one-half of the structure, yielding ns = 5 and np = (2)(7) = 14 (due to the
symmetry). Using, εr = εeff = 3.25, equation (3-97) yields

C = εrε0
np

ns

= (3.25)(8.85 × 10−12)

(
14

5

)
= 80.53 × 10−12 F/m

and the impedance is calculated as in Example 3-2:

Cεr=1 = ε0
np

ns

= (8.85 × 10−12)

(
14

5

)
= 24.77 × 10−12 F/m

L = 1

c2Cεr=1

= 1

(3 × 108)2(24.77 × 10−12)
= 448.5 × 10−9 H/m

Z0 =
√

448.5 × 10−9

80.53 × 10−12
= 74.6 �

Comparison to the numerically calculated results from the two-dimensional field
solver in Table 3-1 show Z0 = 74.6 �. The fact that the exact answer was
obtained as the two-dimensional solver is serendipity.



TRANSMISSION-LINE REFLECTIONS 113

3.5 TRANSMISSION-LINE REFLECTIONS

So far, we have considered the propagation of signals on a single transmission
line. However, most practical problems involve signals propagating on a series of
cascaded transmission lines, such as those built on a motherboard, a daughtercard,
and a chip package. In addition, digital designs often utilize transmission-line
topologies that branch out from one driver to multiple receivers. Since each
transmission line will have different electric characteristics, and topologies will
affect signal integrity dramatically, it is essential to understand how a propagating
electromagnetic wave will behave when it enters a region where the properties
of the transmission line and/or the topology of the interconnection change.

3.5.1 Transmission-Line Reflection and Transmission Coefficient

Generally, when an electromagnetic plane wave propagating on transmission line
A transitions to line B, where the characteristic impedance changes, two things
happen: (1) a portion of the wave is reflected away from the impedance dis-
continuity back toward the source, and (2) a portion of the wave is transmitted
onto transmission line B, as shown in Figure 3-27. The simultaneous existence
of both the transmitted and reflected waves is a direct result of the boundary
conditions that must be satisfied when solving Maxwell’s equations at the inter-
face between the two regions. These boundary conditions are identical to those
derived in Section 2.7 for a plane wave impinging on a region with different
properties. The parallels between a plane wave propagating in free space and a
wave propagating on a transmission line were shown in Section 3.2, where the
wave equation was derived in terms of the transmission-line circuit parameters
(L and C).

If we assume that the values are represented by phasors, we can separate the
total plane wave into three parts: the incident, the reflected, and the transmitted.

Line A

Incident wave

Reflected wave

Line B

Transmitted wave

Z01 Z02

R
∼

Figure 3-27 When a signal propagating on transmission line A encounters an impedance
discontinuity, part will be reflected back toward the source and part will be transmitted
onto transmission line B .
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1. Incident wave:

vi(z) = v+
i e−jβ1z

ii(z) = 1

Z01
v+

i e−jβ1z

2. Reflected wave:

vr(z) = v−
r e+jβ1z

ir (z) = − 1

Z01
v−

r e+jβ1z

3. Transmitted wave:

vt (z) = v+
t e−jβ2z

it (z) = 1

Z02
v+

t e−jβ2z

where β1 = ω
√

L1C1, β2 = ω
√

L2C2, Z01 = √
L1/C1, and Z02 = √

L2/C2 are
the phase constants and characteristic impedances of transmission line A and
region B, respectively.

When the wave intersects a boundary between the transmission lines, the tan-
gential components of both the electric and magnetic fields across the interface
must remain continuous, as shown with equation (3-8). In other words, the tan-
gential component of the fields cannot change instantaneously. In our particular
scenario, the plane wave is propagating in the TEM mode in the z-direction, so
both the electric and magnetic fields are oriented parallel (i.e., tangent) to the
boundary of the dielectric interface. Subsequently, we can say that at the interface
(z = 0), the sum of the incident and reflected waves must equal the transmitted
wave.

vt (z = 0) = vi(z = 0) + vr(z = 0) → vt = vi + vr (3-98)

it (z = 0) = ii(z = 0) + ir (z = 0) → it

Z02
= ii

Z01
− ir

Z01
(3-99)

Since the incident waves are known, we can solve (3-98) and (3-99) simultane-
ously for the transmitted and reflected portions of the wave:

vt = vi

2Z02

Z02 + Z01
(3-100)

vr = vi

Z02 − Z01

Z02 + Z01
(3-101)
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Following the method used to derive equations (2-132) and (2-133) leads to the
definition of the reflection and transmission coefficients:

� ≡ vr

vi

= Z02 − Z01

Z02 + Z01
(3-102)

T ≡ vt

vi

= 2Z02

Z02 + Z01
= 1 + � (3-103)

The reflection coefficient is a measure of how much is reflected back off the inter-
section between the two impedance regions, and the transmission coefficient tells
how much of the wave is transmitted . If the reflection coefficient is zero, it means
that the characteristic impedances in the two regions are identical. If the charac-
teristic impedances are not equal, the reflection coefficient will be finite. If the
impedance discontinuity is infinite, such as an open circuit, the signal propagating
on transmission line A will be reflected 100%, as shown in Figure 3-28a. This
is easy to show simply by taking the limit of (3-102) as Z02 goes to infinity:

�open = 1 (3-104)

(a)

Incident wave

Reflected wave

Z0

R

Incident wave

Reflected wave

Z0

R

(b)

Γ = 1

Γ = −1

∼

∼

Figure 3-28 Reflections caused by (a) open- and (b) short-circuit termination.
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If the impedance discontinuity is shorted to ground, as shown in Figure 3-28b,
the signal propagating on transmission line A will also be reflected 100%, but
the reflected wave will be out of phase from the incident by 180◦, yielding

�short = −1 (3-105)

The reason for the phase shift is explained in Section 2.7.1, for a plane wave
incident on a perfect conductor.

3.5.2 Launching an Initial Wave

When a driver launches a signal onto a transmission line, the magnitude of the
initial voltage (vi) seen on the transmission line at t = 0 will be governed by
the voltage divider between the source resistance and the line impedance (see
Figure 3-29):

vi = vs

Z0

Z0 + Rs

(3-106)

If the end of the transmission line is terminated with an impedance that exactly
matches the characteristic impedance of the line, the signal with amplitude vi

will be terminated to ground and the voltage vi will remain on the line until the
signal source switches again. If the end of the transmission line is terminated
with a resistance different than the characteristic impedance of the line, a portion
of the signal will be terminated to ground and the remainder of the signal will
be reflected back down the transmission line toward the source.

3.5.3 Multiple Reflections

As described above, when a signal is reflected from an impedance discontinuity
at the end of the line, a portion of the signal will be reflected back toward
the source. The amount of signal reflected back is determined by the reflection
coefficient between the transmission-line impedance (Z0) and the termination
resistance (Rt ) and calculated with (3-102), where Z02 = Rt . When the incident
wave hits the termination, Rt , a portion of the signal, vi�t , is reflected back

t = 0
Vi

υs Rs Rt
l

zo

viΓt
t = td

v (t = τd) = vi + viΓt

v (t = 2td) = vi + viΓt + vi Γt Γs

t = 2td

vi Γt Γs

Figure 3-29 Initial voltage launched onto a transmission line and subsequent reflections.
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toward the source and is added to the incident wave to produce a total magnitude
on the line of vi�t + vi , as shown in Figure 3-29. The reflected component (vi�t )
will then travel back to the source and will generate another reflection if Z0 = Rs .
Obviously, if Z0 = Rs , there will be no reflection at the source.

If an impedance discontinuity exists on both sides of the transmission line,
the signal will bounce back and forth between the driver and receiver until the
reflections eventually reach steady state at the dc solution. For example, consider
Figure 3-29, which shows one example for a time interval of a few τd , where τd

is the time delay for the signal to propagate from one end of the transmission
line to the other, which is derived from equation (3-31) and calculated by

τd = l

νp

= l
√

LC seconds (3-107)

where l is the length of the transmission line and L and C are the inductance
and capacitance values per unit length.†

When the source transitions from 0 volts to vs , the initial voltage on the line at
t = 0 is vi , determined by (3-106). At time t = τd , the incident voltage vi arrives
at the load Rt . At this time a reflected component is generated with a magni-
tude of vi�t , where �t is the reflection coefficient looking into the terminating
load):

�t = Rt − Z0

Rt + Z0

The reflected component is added to the incident voltage vi , creating a total
voltage at the load of vi�t + vi . The reflected portion of the wave vi�t then
travels back to the source and at time t = 2τd generates a reflection off the
source determined by vi�t�s , where

�s = Rs − Z0

Rs + Z0

is the reflection coefficient looking into the source. At this time the voltage seen
at the source will be the previous voltage (vi) plus the voltage from the reflection
(vi�t ) plus the reflected wave (vi�t�s). This reflecting and counter reflecting will
continue until the line voltage has approached the steady-state dc value. As the
reader can see, the reflections could take a long time to reach equilibrium if the
termination and source resistors do not have values similar to the characteristic
impedance of the transmission line.

†Note that the phase velocity, υp , calculated in (3-31) is a frequency-domain variable that is valid only
at a single frequency. The time delay will change with frequency because of non-TEM propagation
(Section 3.3.5) and realistic dielectric behavior, as discussed in Chapter 6. However, for the purposes
here, it is valid to assume frequency-invariant dielectric properties, which allows (3-107) to be applied
over the broad range of frequencies contained in a trapezoidal digital waveform.
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It is apparent from the example above that hand calculation of multiple reflec-
tions can be rather tedious. An easier way to predict the effect of reflections on
a signal is to use a lattice diagram.

3.5.4 Lattice Diagrams and Over- or Underdriven Transmission Lines

A lattice diagram (sometimes called a bounce diagram) is a graphical technique
used to solve the multiple reflections on a transmission line with linear loads.
Figure 3-30 shows a sample lattice diagram for the transmission line shown
in Figure 3-29. The left- and right-hand vertical lines represent the source end
(z = 0) and load end (z = l) of the transmission line. The diagonal lines contained
between the vertical lines represent the signal bouncing back and forth between
the source and the load. The diagram progressing from top to bottom represents
increasing time. Notice that the time increment is equal to the time delay τd of
the transmission line as calculated with (3-107), and the reflection coefficients
looking into the source and into the load are labeled at the top of the vertical bars.
The lowercase letters represent the magnitude of the reflected signal traveling on
the line. The uppercase letters represent the voltages seen at the source, and the
primed uppercase letters represent the voltage seen at the load end of the line.
For example, referring to Figure 3-30, the near end of the line will be held at

0

0 l

z

t

 

vB

vA

va

vA′

vB′

Γs Γt

td

4td

3td

2td

vb

vc

vd

vC

Figure 3-30 Structure of a lattice diagram for the transmission line in Figure 3-29.
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a voltage of vA volts for a duration of 2τd . The voltage va is simply the initial
voltage vi , which will remain constant until the reflection from the load reaches
the source and is calculated with (3-106):

vA = va = vs

Zo

Zo + Rs

The voltage va will propagate down the transmission line toward the source.
The voltage v′

A is the voltage va plus the voltage reflected off the load, vb,
where

vb = va�t

v′
A = va + vb

The voltage vB is the sum of the incident voltage va plus the signal reflected
from the load vb and the signal reflected off the source vc:

vB = va + vb + vc

where

vc = vb�s

The reflections on the line eventually reach the steady-state voltage of the source,
vs , if the line is open. However, if the line is terminated with a resistor Rt , the
steady-state voltage is computed with the voltage divider between the source and
the load (assuming that the transmission line is loss-free):

vsteady state = vs

Rt

Rt + Rs

Example 3-4 Multiple Reflections for Rs > Z0 Consider the transmission-line
system and lattice diagram shown in Figure 3-31. The initial voltage launched
onto the transmission line will be governed by the voltage divider between the
source impedance Rs and the line impedance Z0:

vi = vs

Z0

Z0 + Rs

= 2 · 50

50 + 75
= 0.8 V

The initial signal, va = 0.8 V, will travel down the line until it reaches the load.
In this particular case, the load is open and thus has a reflection coefficient of 1.
Subsequently, the entire signal is reflected back toward the source and is added
to the incident signal of 0.8 V. So at time t = τd , or 250 ps in this specific
example, the signal seen at the load is vA′ = va + vb = 0.8 + 0.8 = 1.6 V. The
0.8-V reflected signal vb will then propagate down the line toward the source.
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Figure 3-31 (a) Example of an underdriven transmission line; (b) lattice diagram; (c)
digital waveform.

When vb reaches the source, part of the signal will be reflected back toward the
load, as determined with the reflection coefficient looking into the source using
(3-102):

�source = 75 − 50

75 + 50
= 0.2

The value reflected back toward the load is vc = vb�s = (0.2)(0.8) = 0.16 V.
The reflected signal will be added to the signal already present on the line, which
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will give a total magnitude at the source end vB = va + vb + vc = 0.8 + 0.8 +
0.16 = 1.76 V, with the reflected portion vc of 0.16 V traveling toward the load.
This process is repeated until the voltage reaches a steady-state value of 2 V. If
the same procedure is applied to the falling edge of a digital waveform, the signal
integrity of a digital pulse propagating on this system can be calculated, as shown
in Figure 3-31c. Notice how the reflections give the waveform a “stair-step”
appearance at the receiver (node B), even though the unloaded output of the
voltage source is a square wave. This effect occurs when the source impedance
(Rs) is larger than the characteristic impedance (Z0) and is referred to as an
underdriven transmission line.

Example 3-5 Multiple Reflections for Rs < Z0 When the characteristic
impedance of the transmission line is greater than the source impedance, as
shown in Figure 3-32a, the reflection coefficient looking into the source will be
negative:

�source = 25 − 50

25 + 50
= −1

3

When the lattice diagram is solved, as shown in Figure 3-32b, it is easy to
show that a negative reflection at the source will produce a “ringing” effect.
This is known as an overdriven transmission line. The resulting distorted digital
waveform is shown in Figure 3-32c. Since the procedure for solving the lattice
diagram is identical to Example 3-3, the exercise is left to the reader.

3.5.5 Lattice Diagrams for Nonideal Topologies

Real bus designs rarely employ only a single transmission line. For example,
even in point-to-point designs, the silicon driver is connected to the main bus
through a package, which often employs transmission lines anywhere from 0.25
to 1.0 in. long. Also, many high-speed designs use add-in cards, where two
separately manufactured printed circuit boards are interfaced through a connector.
Furthermore, it is not uncommon to encounter designs where one driver is sending
data to multiple receivers, such as a front-side bus of a multiprocessor system,
necessitating the solution of multiple reflections in parallel. Consequently, it
is important to explore techniques for understanding and solving systems with
multiple transmission-line segments in a variety of topologies.

Cascaded Topologies Consider the transmission-line structure depicted in
Figure 3-33, which consists of two transmission-line segments cascaded in
series. The first section is of length l1 and has a characteristic impedance of
Z01 ohms. The second section is of length l2 and has an impedance of Z02

ohms. Finally, the structure is terminated with a value of Rt . When the signal
encounters the Z01: Z02 impedance junction, part of the signal (vc) will be
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Figure 3-32 (a) Example of an overdriven transmission line; (b) lattice diagram; (c) dig-
ital waveform.

reflected, as governed by the reflection coefficient (3-102) looking into line 2
from line 1,

�2 = Z02 − Z01

Z02 + Z01

and part of the signal (vb) will be transmitted, as governed by the transmission
coefficient, as defined in equation (3-103):

T2 = 2Z02

Z02 + Z01
= 1 + �2
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Γ4

0

vB

va

vA′

vB′

Γ1 Γ2 Γ3

T2 T3

td

4td

3td

2td

vc vb

vd ve

vf
vg

vh vi

vC

vs Rs Rt

l1

z01

l2

z02

Figure 3-33 Lattice diagram for two cascaded transmission lines with different
impedance values and identical lengths (l1 = l2).

Figure 3-33 also depicts how a lattice diagram can be used to solve for multiple
reflections on a transmission-line system with a series of transmission lines with
more than one characteristic impedance. Note that the transmission lines in this
example are of equal length (l1 = l2), which simplifies the problem because the
reflections from each section will be in phase. For example, in Figure 3-33,
the transmitted portion of ve adds directly to the reflection, vf . When the two
transmission lines are of different lengths, the reflections from one section will
not be in phase with the reflections from the other section, which complicates
the diagram drastically. When the signal reaches the termination, the reflection
is governed by the reflection coefficient looking into the termination resistance
at the load (�4):

�4 = Rt − Z02

Rt + Z02

The portion of the signal reflected off the termination resistor will travel back
toward the source and experience another reflection when it reaches the junction
between transmission lines,

�3 = Z01 − Z02

Z01 + Z02

where �3 is the reflection looking into line 1 from line 2. Part of the signal will
be reflected back toward the load as calculated by �3 and part transmitted toward
the source, as dictated by the transmission coefficient T3:

T3 = 1 + �3
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The portion of the signal transmitted through the junction toward the source will
experience another reflection when it arrives at Rs :

�1 = Rs − Z01

Rs + Z01

The signal will subsequently bounce back and forth between the source and the
termination load until equilibrium is reached. The voltage levels are calculated in
the same manner as the single-line lattice diagram with a little more accounting.
The initial voltage launched onto the line is

va = vs

Z01

Z01 + Rs

and the voltage levels of the reflections on the line are

vb = vaT2

vc = va�2

vd = vc�1

ve = vb�4

vf = vd�2 + veT3

vg = ve�3 + vdT2

vh = vf �1

vi = vg�4

giving source-side voltages of

vB = va + vc + vd

vC = va + vc + vd + vf + vh

and load voltages of

vA′ = vb + ve

vB ′ = vb + ve + vg + vi

where the remaining reflections are left for the reader to calculate.

Multireceiver Topologies So far in this book we have covered many issues
that deal with an interconnect connecting two components. However, this is not
always the case. Often, it is required that a single driver be connected to two or
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Figure 3-34 Signal integrity of a T-topology when the leg lengths and characteristic
impedances are equal.

more receivers. In these cases, the topology of the interconnect can affect system
performance dramatically. For example, consider Figure 3-34, which is a case
where one driver is connected to two receivers. In this example, the impedance of
the base (Z01) is equal to the impedance of the two legs (Z02), and the legs are of
equal length (l2 = l3). When the signal propagates to the junction, it will see an
effective impedance of Z02/2, resulting in the waveform in the figure that steps
up toward the final value in the same manner as an underdriven transmission line
as calculated in Example 3-4. When the impedance of the legs is twice that of
the base (Z02 = 2Z01), the effective impedance the signal will see at the junction
will be equal to the base, so that no reflections are generated.

When the structure is unbalanced, as in the case where one leg is longer than
the other, the signal integrity will deteriorate dramatically because the reflections
will arrive at the junction at different times. To gain an intuitive understanding
of how the multiple reflections from different legs interact, it is useful to solve
a multiple-legged lattice diagram at least once, which is demonstrated in the
following example.

Example 3-6 Calculate the first few reflections of the unbalanced T-topology
shown in Figure 3-35 assuming that Z0 = Rs = 50 �, l1 and l3 are lengths that
corresponds to a propagation delay of 250 ps, and l2 has a delay of 125 ps.

SOLUTION Referring to the lattice diagram in Figure 3-35, the first and sec-
ond vertical lines represents the electrical pathway between the driver and the
junction, the third vertical line represents the pathway between the junction and
the end of the short line (receiver 1), and the fourth vertical line represents the
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Figure 3-35 Lattice diagram of a T-topology when the leg lengths are not equal.

end of the long line (receiver 2). The initial voltage step launched onto line 1 is

vi = vs

Z0

Z0 + Rs

= 2 · 50

50 + 50
= 1

The reflection and transmission coefficients looking from line 1 into the junc-
tion is

�2 = (Z0/2) − Z0

(Z0/2) + Z0
= 25 − 50

25 + 50
= −1

3

T2 = 1 + �2 = 2

3

Consequently, the initial voltage launched into both legs (lines 2 and 3) is

va = T2vi = 2

3

This voltage (va) travels down each leg and doubles when it arrives at the open
circuit (�4 = �5 = 1). Therefore, the voltage at receiver 1 (vα) occurs at t = 375
ps, which is the delay of line 1 plus line 2 (the short leg).

vb = va�4 = 2
3

vα = va + vb = 4
3
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The voltage at receiver 2 (vA) occurs at t = 500 ps, which is the delay of line 1
plus line 2 (the long leg):

vA = va + vg = va + va�5 = 4
3

For both legs, a reflection of vb = vg = 2
3 is reflected from the open circuit at

the receivers; however, they will arrive at the junction at different times. As seen
by the lattice diagram, at t = 500 ps, vb will arrive at the junction. Part of vb

will be reflected back toward receiver 1,

�3 = (Z0/2) − Z0

(Z0/2) + Z0
= 25 − 50

25 + 50
= −1

3

vc = vb�3 = 2

3

(
−1

3

)
= −2

9

and part will be transmitted onto line 1 toward the source and onto line 3 toward
receiver 2:

T3 = 1 + �3 = 2

3

The voltage at receiver 1 at t = 625 ps (vβ) is calculated:

vd = �4vc = −2

9

vβ = vα + vc + vd = 4

3
− 2

9
− 2

9
= 8

9

To calculate the voltage at receiver 1 at t = 875 ps (vψ ), it is necessary to account
for the portion of the signal reflected from receiver 2 at 500 ps and transmitted
into the junction at 750 ps that travels toward receiver 1. This combination of
reflections can be seen by observing the lattice diagram, where reflection g arrives
at the junction simultaneously with reflection d .

ve = �3vd = −2

9

(
−1

3

)
= 2

27

vf = �4ve = 2

27

vg = 2

3
(from above)

vψ = vβ + ve + vf + vgT3 + vgT3�4

= 8

9
+ 2

27
+ 2

27
+ 2

3

(
2

3

)
+ 2

3

(
2

3

)
(1) = 52

27
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By observing the lattice diagram, we see that the voltage at receiver 2 at t = 750
ps is calculated by accounting for the voltage reflected from receiver 1 at t = 375
ps and transmitted into the junction at t = 500 ps:

vB = vA + T3vb + T3vb�5 = 4

3
+ 2

3

(
2

3

)
+ 2

3

(
2

3

)
(1) = 20

9

This process can be continued until the waveform has reached steady state. The
complete waveforms for this example are shown in Figure 3-36, with the first
few reflections (just calculated) labeled. Note that the complicated interactions
between the reflections from each leg severely degrade the integrity of the signal.
As more legs are added to the topology, it becomes more sensitive to differences
in the electrical length of the legs. Furthermore, a mismatch between the source
resistance and the characteristic impedance of line, differences between receiver
loads, and impedance deltas between each leg will cause similar instabilities.
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Figure 3-36 Signal integrity of a T-topology when the leg lengths are not equal.
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So what can we learn form this? The answer is: symmetry . Whenever a topol-
ogy is considered, the primary area of concern is symmetry. Make certain that
the topology looks symmetrical from the point of view of any driving agent. This
is usually accomplished by ensuring that the lengths, impedances, and loading
are identical for each leg of the topology. The secondary concern is to minimize
the impedance discontinuities at the topology junctions, although this may be
impossible in some designs.

3.5.6 Effect of Rise and Fall Times on Reflections

The rise and fall times of real digital waveforms begin to have a significant
effect on the wave shape when they become less than twice the delay (2τd)
of the transmission line. Figures 3-37 and 3-38 show the effect that finite rise
and fall times have on over- and underdriven transmission lines. Notice how
significantly the wave shape changes as the rise time exceeds twice the delay
of the line. When the edge rate exceeds twice the line delay, the reflections are
masked because the amount of time that it takes to transition from a low state to
a high state (or vice versa) exceeds the period of the reflections.

3.5.7 Reflections from Reactive Loads

In real systems, there are rarely cases where the loads are purely resistive. The
input to a CMOS gate, for example, tends to be capacitive. Additionally, bond
wires, vias, lead frames of the chip packages, chip sockets, and daughtercard
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Figure 3-37 (a) Overdriven transmission line; (b) example of how increased rise and
fall times mask the reflections.
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Figure 3-38 (a) Underdriven transmission line; (b) example of how increased rise and
fall times mask the reflections.

connectors tend to be inductive. This makes it necessary to understand how
these reactive elements affect the reflections in a transmission-line system. In
this section we briefly introduce the effect that capacitors and inductors have on
reflections.

Reflection from a Capacitive Load When a transmission line is terminated in a
reactive element such as a capacitor, the shape of the waveforms at the driver
and the load will be dependent on the value of the capacitor, the characteristic
impedance of the transmission line, and any resistive terminations that may be
present. Essentially, a capacitor is a time-dependent load that will look initially
like a short circuit when the signal reaches the capacitor and will then look like
an open circuit after the capacitor is fully charged. Let’s consider the reflection
coefficient at time t = τd (the delay of the transmission line). At time t = τd ,
which is the time when the signal has propagated down the line and has reached
the capacitive load, the capacitor will not be charged and will look like a short
circuit. As described earlier in the chapter, a short circuit will have a reflection
coefficient of −1. This means that the initial wave of magnitude vi will be
reflected off the capacitor with a magnitude of −vi , yielding an initial voltage of
0 V. The capacitor will then begin to charge at a rate dependent on τ , which is the
time constant of an RC circuit, where C is the termination capacitor value and
R is the characteristic impedance of the transmission line. Once the capacitor is
fully charged, the reflection coefficient will be 1 since the capacitor will resemble
an open circuit. Equation (3-108), which is the step response of a simple network
with a time constant τ , approximates the voltage at the end of a transmission
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line terminated with a capacitor beginning at time t = τd ,

vcapacitor = vss
(
1 − e−(t−τd )/τ ]) t > τd (3-108)

where τ = CZ0 is the time constant, τd the time delay of the transmission line
as given by (3-107), and vss the steady-state voltage determined by the voltage
source vs and the voltage divider between the source resistance Rs and the ter-
mination resistance Rt . Note that (3-108) is an approximation because it assumes
a step function with an infinite edge rate (i.e ., the rise time is infinitely fast).
Figure 3-39 shows the response of a line terminated with a capacitive load. The
waveform shape at node B follows equation (3-108). Notice that the waveform
at the source (node A) dips toward zero at t = 500 ps (which is 2τd) because the
capacitor initially looks like a short circuit, so the reflection coefficient is −1.
Note that the shape of this wave at node A is also dictated by (3-108) when the
exponent term is e−[(t−2τd )/τ ], which simply shifts the time. The voltage reflected
back toward the source is initially vi , where vi is the initial voltage launched
onto the transmission line. After the capacitor is fully charged, it will look like
an open and have a reflection coefficient of +1. Consequently, the reflected wave-
form at the receiver will double. As seen in Figure 3-39b, the waveform at the
receiver (B) reaches a steady-state value of 2 V after about three time constants
[3τ = 3(50 �)(2 pF = 300 ps] after arriving at the receiver, just as circuit theory
predicts.

If the line is terminated with a parallel resistor and capacitor, as depicted in
Figure 3-40, the voltage at the capacitor will be dependent on the time constant
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Figure 3-39 (a) Transmission line terminated with a capacitive load; (b) step response
showing reflections from the capacitor.
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vs Rs Rt

CL
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td

Figure 3-40 Transmission line terminated in a parallel RC network.

between CL and the parallel combination of Rt and Z0:

τ1 = CLZ0Rt

Rt + Z0
(3-109)

Reflection from an Inductive Load In the real world, when a transmission line
is terminated, there is usually a series inductance caused by the physical connec-
tion between the transmission line and the resistor. Some common examples of
this inductive connection are bond wires, lead frames, and vias. When a series
inductor appears in the electrical pathway of a transmission-line termination, as
depicted in Figure 3-41a, it will also act as a time-dependent load. Initially, at
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Figure 3-41 (a) Transmission line terminated with a series LR load; (b) step response
showing reflections from the inductor.
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time t = τd , the inductor will resemble on open circuit. When a voltage step is
applied initially, no current flows across the inductor. This produces a reflection
coefficient of 1, causing an inductive spike seen as a reflection at node A in
Figure 3-41b. The value of the inductor will determine how long the reflection
coefficient will remain 1. If the inductor is large enough, the signal will double in
magnitude. Eventually, the inductor will discharge its energy at a rate dependent
on the time constant τ of an LR circuit. For the circuit depicted in Figure 3-41a,
the wave shape of the rising edge at node B is calculated:

vinductor = vss

(
1 − exp

[
− (t − τd)(Z0 + Rt)

L

])
t > τd (3-110a)

Note that the wave shape calculated by (3-110a) will also be valid for the falling
edge of the inductive spike, shown at node B in Figure 3-41b, if τd is adjusted to
shift the waveform to the correct position in time (2τd ), the waveform is inverted,
and dc is shifted to the appropriate level:

vinductor = vss

(
1 + exp

[
− (t − 2τd)(Z0 + Rt)

L

])
(3-110b)

Filtering Effects of Reactive Components Figures 3-39b and 3-41b show how
the series inductor and the shunt capacitor affect the signal integrity. The series
inductance will cause an inductive spike, which is seen as a positive reflection,
the capacitance will cause a capacitive dip, which is seen as a negative reflection,
and both will smooth the rising and falling edges seen at the receiver (node B).
To understand why the edges are smoothed, we must explore how an inductor
or a capacitor will filter the harmonics of a digital waveform. In Chapter 8 it
will be shown that high-frequency harmonics are associated with the rising and
falling edges of a digital waveform. Consequently, if the higher-frequency har-
monics are filtered out by the capacitive or inductive loads, the rising and falling
times will be increased. Equation (3-111) shows that the impedance of the shunt
capacitor will decrease with frequency, which means that the higher-order har-
monics of the digital waveform will be shunted to ground, increasing the rise and
fall times:

Zcap = 1

jωC
(3-111)

where ω = 2πf .
Similarly, (3-112) shows that the series impedance of an inductor will increase

with frequency, which will also tend to filter out the higher harmonics because
they will experience larger impedances than the lower-frequency harmonics.

Zind = jωL (3-112)
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Consequently, for a digital pulse, reactive components such as inductors and
capacitors will low-pass-filter the waveform, resulting in increased rise and fall
times. The exception to this statement is when specific filters are constructed using
reactive components to equalize a channel, which is described is Chapter 12.

3.6 TIME-DOMAIN REFLECTOMETRY

In practice, it is often necessary to measure a system of transmission lines in
a digital system to ensure compliance with design guidelines, to understand the
equivalent circuit of a component, or simply to verify that the simulations are pre-
dicting the transient response correctly. One measurement method often used is
called time-domain reflectrometry (TDR). A TDR measurement uses the premise
of multiple reflections discussed in Section 3.5 to derive an impedance profile of
the device under test (DUT). Figure 3-42 depicts a generic TDR setup where a
step function is driven onto the DUT through a 50-� cable. A sampling oscil-
loscope is used to observe the waveform at A, which depicts the voltage profile
of the reflected waves. The voltage profile is converted to an impedance profile,
which can be used to measure the characteristic impedance and propagation delay
of a transmission line, estimate inductance and capacitance values of structures
such as vias, bond wires, and lead frames, and deduce the form of an equivalent
circuit for many applications.

3.6.1 Measuring the Characteristic Impedance and Delay of a Transmission
Line

One of the most common uses for TDR measurements is to determine the char-
acteristic impedance of transmission lines. The impedance profile is calculated

DUT

Oscilloscope

Sampler

Step generator

vs Rs = 50 Ω
Z0 = 50 Ω

A

Voltage 
profile

Figure 3-42 Generic time-domain reflectometry measurement setup.
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from the voltage by rearranging equation (3-102),

� ≡ vr

vi

= ZDUT − Z0

ZDUT + Z0
(3-113)

ZDUT = Z0
vi + vr

vi − vr

where vi is the incident voltage transmitted and vr is the voltage reflected from the
DUT. Figure 3-43 depicts the TDR waveforms of a 60-� transmission line with
a length that corresponds to a delay of 250 ps. The impedance of the transmission
line under test is calculated from the first voltage step that occurs at 500 ps using
equation (3-113):

ZDUT = 50 · 1 + 0.091

1 − 0.091
= 60 �

We can also calculate the delay of the transmission line. Since a TDR is essentially
a reflected voltage at the driver, the reflection of the DUT remains for the time it
takes the signal to propagate to the end of the DUT and return to the source from
the open circuit. Consequently, the duration of the reflection will correspond to
twice the delay of the transmission line under test, as shown in Figure 3-43.
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Figure 3-43 TDR waveform measuring a 60-� transmission line with a length that
corresponds to a delay of 250 ps.
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Figure 3-44 TDR profile for Example 3-7.

Example 3-7 Calculate the equivalent L and C per unit length of the 2-in.
transmission line measured with TDR profile shown in Figure 3-44.

SOLUTION The impedance is calculated from the step voltage at 1.2 V, which
corresponds to the reflections from the transmission line under test.

vr = 1.2 − 1.0 = 0.2 V

vi = 2Z0

Z0 + Rs

= 1 V

ZDUT = Z0
vi + vr

vi − vr

= 50 · 1 + 0.2

1 − 0.2
= 75 �

The delay is calculated from the duration of the step:

τd = 1
2 (1.1 ns − 0.5 ns) = 300 ps

The distributed inductance and capacitance values are calculated by solving the
impedance and delay equations simultaneously:

Z0 =
√

L

C
= 75 �

τd = l
√

LC = 300 ps
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The inductance per unit length is calculated by normalizing the delay to line
length of the transmission line under test and multiplying by the impedance:

τd

2 in.
=

√
LC = 150 ps/in.

L =
√

L

C

√
LC = 75(150 × 10−12) = 11.25 nH/in.

The capacitance is calculated by dividing the normalized delay by the impedance:

C =
√

LC√
L/C

= 150 × 10−12

75
= 2.0 pF/in.

3.6.2 Measuring Inductance and Capacitance of Reactive Structures

In Section 3.5.7 we discussed reflections from reactive loads. In this section
we show how to estimate the value of the capacitance or the inductance from a
measured TDR profile. The analysis presented here is somewhat idealized because
it assumes an ideal step for a source. In reality, ideal steps are impossible to
generate. However, modern TDR measurement equipment allows the generation
of very fast rise times that vary anywhere between 9 and 35 ps, which are fast
enough to approximate a step function for a variety of applications.

Inductive Structures In a TDR measurement, narrow spikes such as those
depicted in Figure 3-41 are indicative of an inductive component such as a
bond wire, a connector pin, or a package lead frame. Assuming that the input
step has a sufficiently fast rise time, the value of the inductor can be estimated
by measuring the area under the inductive spike, as shown in Figure 3-45. The
area is calculated by integrating equation (3-110b) after subtracting the dc offset
and assuming that Rt = Z0:

vss = vs

Rt

Rt + Rs

= 50

50 + 50
= vs

2

Aind =
∫ ∞

2τd

vs

2

(
1 + e

−
[

(t−2τd )(Z0+Rt )

L

])
− vs

2
dt

= vs

2

∫ ∞

0
e−(2Zo/L)t ′dt ′ = vsL

4Z0
(3-114)

L = 4Z0Aind

vs

Therefore, through careful measurement of the area under the inductive spike, we
can achieve a good approximation of the inductance. The accuracy is maximized
when the rise time is very fast compared to the duration of the inductive spike.
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Figure 3-45 The area under the reflection can be used to estimate the inductance.
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Figure 3-46 The area under the reflection can be used to estimate the capacitance.

For long rise times or very small inductance values, the area under the curve will
be masked by a rise time similar to the reflections in Figure 3-37.

Capacitive Structures In a TDR measurement, narrow dips such as that depicted
in Figure 3-46 are indicative of an capacitive component such as a probe pad or
a via pad. Assuming that the input step has a sufficiently fast rise time, the value
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of the capacitance can be estimated by measuring the area under the capacitive
dip. The area is calculated by integrating equation (3-108) after subtracting the
dc offset, assuming that Rt = Z0 where τ = Z0C/2

vcapacitor = vs

2
(1 − e−[2(t−2τd )/ZoC])

Acap =
∫ ∞

2τd

vs

2
− vs

2
(1 − e−[2(t−2τd )/Z0C])dt

= vs

2

∫ ∞

0
e−2t ′/Z0Cdt ′ = vsCZ0

4
(3-115)

C = 4Acap

vsZ0

Example 3-8 Calculate the value of the shunt capacitance for the waveform in
Figure 3-47 assuming the circuit shown in Figure 3-46.

SOLUTION A fine grid was overlaid on the waveform in Figure 3-47 so that
the area under the curve can be estimated. The total number of squares under the
capacitive dip is about 60. The area per square is

Asquare = (0.04)(0.01 × 10−9) = 4 × 10−13

The total area is therefore

Atot = 60Asquare = 2.4 × 10−11
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Figure 3-47 TDR waveform for Example 3-8.
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0-2 V

A

L = 2 nH

C = 1 pF

td = 250 ps

Z0 = 30 Ω

td = 250 ps

Figure 3-48 TDR profile showing the relationship between the waveform and the indi-
vidual circuit components.

yielding an estimated capacitance of

C = 4Acap

vsZ0
= 4(2.4 × 10−11)

2(50)
= 0.96 × 10−12 F

which is very reasonable because the waveform for this example was simulated
using a capacitance value of 1.0 pF. More accuracy could be obtained by using
a finer grid.

3.6.3 Understanding the TDR Profile

Another very useful application of a TDR measurement is to deduce the form of
the equivalent circuit. For example, consider the TDR waveform in Figure 3-48.
The initial reflections from t = 0 to t = 0.5 ns correspond to the first 50-�
transmission line with a propagation delay τd of 250 ps. The capacitive dip at
t = 0.5 ns corresponds to the capacitor, the peak at about t = 0.55 ns corresponds
to the reflection from the inductor, and the flat portion that begins at about t = 0.7
ns corresponds to the 30-� transmission line with a propagation delay of 250 ps.
Notice how the lumped elements (L and C) significantly filter the edge and add
an extra delay to the circuit, reducing the accuracy of the TDR measurement for
structures following the reactive elements.
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PROBLEMS

3-1 For the cross section in Figure 3-49, calculate the correct conductor width
w to achieve 50-� characteristic impedance, effective dielectric permittiv-
ity, propagation delay for a 10-in.-long line, and the equivalent inductance
and capacitance per meter.

w

h = 3.9

t = 1.7er = 1

er = 3.78

Figure 3-49 Cross section for Problem 3-1.

3-2 For the circuit shown in Figure 3-50 and the transmission line designed
in Problem 3-1, use a lattice diagram to calculate the waveforms at nodes
A and B when driven with a 1-V step.

vs 10 inches
Z0 = 50 Ω

A B
0-1 V

75 Ω35 Ω

Figure 3-50 Circuit for Problem 3-2.

3-3 For the 50-� cross section in Problem 3-1, use field mapping techniques
to calculate the effective dielectric permittivity, the propagation delay for a
10-in.-long line, and the equivalent inductance and capacitance per meter.
Compare your answers to the results from Problem 3-1 to determine your
accuracy.

3-4 Beginning with Laplace’s equation, derive a formula for the characteristic
impedance of the stripline shown in Figure 3-51. Assume an infinitely
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thin conductor with a uniform charge distribution. Compare the accuracy
against equation (3-36c).

h

w

h

εr

Figure 3-51 Cross section for Problem 3-4.

3-5 For the stripline in Problem 3-4, derive the impedance assuming real-
istic charge distribution. How does the charge distribution change the
impedance?

3-6 For the stripline in Problem 3-4, calculate the characteristic impedance
using field mapping techniques. Compare your answer to those obtained
in Problems 3-4 and 3-5.

3-7 For the 50-� microstrip line designed in Problem 3-1, estimate the fre-
quency where the dispersion due to the nonhomogeneous dielectric can
no longer be ignored.

3-8 For the circuit shown in Figure 3-52, sketch the TDR waveform assuming
a 2-V input step. Show all your calculations.

vs td = 250 ps
Z0 = 50 Ω

td = 320 ps
Z0 = 70 Ω

td = 160 ps
Z0 = 35 Ω

TDR0-2 V

Rs = 50 Ω

3 pF

2 nH

Figure 3-52 Circuit for Problem 3-8.

3-9 Draw the response of the circuit in Figure 3-53, where the device under
test is (a) a 2-pF capacitor shunted to ground, (b) a series 2-pF capacitor,
(c) a 4-nH series inductor, (d) a 4-nH inductor shunted to ground, and
(e) a 1-in.-long 75-� transmission line with εr = 4.0.
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vs td = 250 ps
Z0 = 50 Ω

TDR0-2 V

50 Ω 50 Ω
DUT

Figure 3-53 Circuit for Problem 3-9.

3-10 For the microstrip transmission line designed in Problem 3-1, develop the
equivalent circuit assuming that the input pulse is 100 ps wide with 25-ps
rise and fall times. Perform a virtual TDR using the circuit in SPICE and
confirm that the impedance and delay match the values expected.

3-11 Calculate the first few reflections of the stub topology shown in
Figure 3-54 at nodes A, B, and C using a lattice diagram. Use the
equivalent circuit in Problem 3-10 to simulate the structure in SPICE.
Confirm the results of your lattice diagram.

td = 250 ps

Z
0  = 50 Ω

vs td = 600 ps

Z0 = 50 Ω

td = 100 ps

Z0 = 50 Ω
A B

C

0-2 V

50 Ω

Figure 3-54 Topology for Problem 3-11.

3-12 For the topology in Figure 3-55, determine a set of design rules to ensure
that the waveforms at node B, C, or D do not ring back below 0.7 V or
above 0.3 V, and the rising and falling edges are linear between 0.3 and
0.7 V. Design the proper microstrip transmission-line cross sections to
achieve proper impedance values for each segment, assuming a dielectric
thickness of 4 mils and a relative dielectric permittivity εr = 4.2. Based
on component placement requirements determined by a layout engineer,
the length of line 1 (l1) can be as short as 1.5 in., l2 can be as short as 3 in.,
but it is impossible to route l3 shorter than 5.5 in. The design guidelines
should produce limits on the lengths and impedance values of each leg as
well as any other conditions needed to solve the problem. Do not design
a point solution. Determine a solution space that guarantees proper signal
integrity. Create equivalent circuits and verify the validity of your design
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guidelines through SPICE simulations. State all assumptions. Comment
on the practicality of your design rules.

vs L = 3 inches
Z0

l3

l2

l1

A
B

D

C

0-2 V

50 Ω

Figure 3-55 Topology for Problem 3-12.
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As described in Section 3.2, a signal propagates along an interconnect in the
form of an electromagnetic wave established between two (or more) conductors.
When neighboring transmission structures are in close proximity, the electric and
magnetic fields from the signal will fringe and interact with adjacent conductors.
The interaction of fields induces the coupling of energy from one transmission
structure to another when a stimulus is applied. This is called crosstalk . Since
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most digital systems use signaling interfaces in which large numbers of transmis-
sion lines are routed in parallel through packages, connectors, and printed circuit
boards, crosstalk can play an important role in determining the performance of the
system. Trends toward smaller and faster systems will drive increased crosstalk
levels in the future, resulting in two major impacts. First, crosstalk will affect sig-
nal integrity and timing by modifying the propagation characteristics of the lines
(characteristic impedance and propagation velocity). Second, crosstalk couples
noise onto lines, which harms signal integrity and reduces noise margins.

We will see that signals on interconnects propagate in modes that are a function
of the switching patterns and of the self- and mutual capacitances and inductances
in the system. As was the case for isolated lines in Section 3.2.4, signals prop-
agating in a coupled multiconductor transmission-line system are described by
the wave equation. Whereas the solution to the isolated line system resulted
in a pair of forward- and backward-traveling waves, for the coupled system
with n signals there will be n forward- and n backward-traveling waves. Each
forward–backward wave pair constitutes a mode, and we can analyze the behav-
ior of the system in terms of the modes.

In this chapter we introduce the mechanism that causes crosstalk, develop a
mathematical formulation of the coupled wave equations, describe techniques for
analyzing and modeling coupled systems, and discuss the impact of crosstalk on
system performance.

4.1 MUTUAL INDUCTANCE AND CAPACITANCE

From a circuit point of view, crosstalk is caused by mutual inductances and
mutual capacitances between conductors. These two phenomena couple energy
between lines via the magnetic (for mutual inductance) and electric (mutual
capacitance) fields. We next examine each in more detail.

Mutual inductance LM induces current from a driven line onto a quiet line by
means of the magnetic field, as shown in Figure 4-1. Conceptually, if the “victim”
trace is in close enough proximity to a driven line such that its magnetic flux
lines intersect the victim trace, a current will be induced on that line. The mutual
inductance creates a voltage noise on the victim in proportion to the rate of
change of the current on the driven line according to

�vL = LM

di

dt
(4-1)

In equation (4-1), �vL is the voltage coupled by the mutual inductance LM , in
response to the transient current i.

Mutual capacitance CM is the coupling of conductors via the electric field.
Conceptually, if the victim trace is in close enough proximity to a driven line
such that its electric field lines intersect the victim trace, a current is induced
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E

H

Figure 4-1 Coupled PCB transmission lines.

onto the victim line in proportion to the rate of change of voltage on the driven
line:

�iC = CM

dv

dt
(4-2)

In equation (4-2), �iC is the amount of current coupled through the mutual
capacitance CM , when driven by the voltage signal v.

I/O circuit rise and fall times decrease as data transfer rates increase, so (4-1)
and (4-2) predict that both inductive and capacitive crosstalk will play a signif-
icant role in high-speed digital applications. Thus, we must account for mutual
capacitance and inductance in our modeling and analysis of coupled systems, and
we now proceed to examine each in more detail.

4.1.1 Mutual Inductance

We start our discussion of mutual inductance by studying the simple inductive
circuit shown in Figure 4-2. Given transient currents i1 and i2 injected into on
lines 1 and 2, respectively, we can write expressions for v1 and v2 from Faraday’s
law,

v1 = L0
di1

dt
+ LM

di2

dt
(4-3)

v2 = L0
di2

dt
+ LM

di1

dt
(4-4)

where L0 is the self-inductance and LM is the mutual inductance between lines
1 and 2. From (4-3) and (4-4) we note that the potential differences v1 and v2

depend on both input currents and on the self- and mutual inductances. We can
better understand the impact of mutual inductance by analyzing the situations
where the input currents are equal (i1 = i2) and where they are opposite (i1 =
−i2). In the equal-current case we assume that their transition times are equal,
so that di1/t = di2/dt = di/dt . Applying these signals leads to

v1 = v2 = (L0 + LM)
di

dt
(4-5)



148 CROSSTALK

+ −

LM

−+

v1

v2

L0

L0
i1

i2

Figure 4-2 Coupled inductor circuit.

Looking next at the opposing current flow case, with the assumption that the
transition time of current i1 is equal to that of i2, we have di1/dt = −di2/dt =
di/dt , and derive

v1 = −v2 = (L0 − LM)
di

dt
(4-6)

When the two inputs are equal, we say that the system is being driven in
even mode; in the case of opposite polarity inputs, we say that the system is
driven in odd mode. Notice that the effective inductance of the system as seen
by our input signals is changed by the mutual inductance and is a function
of the switching pattern. In particular, the even-mode inductance is increased
relative to the self-inductance by an amount equal to the mutual inductance. Cor-
respondingly, the odd-mode inductance is decreased by the mutual inductance,
giving us a relative comparison of self-, even-mode, and odd-mode inductances,
Leven > L0 > Lodd..

As a first step toward developing a general expression for the inductance, we
write the equation for the voltage across the inductive elements as a function of
inductances and input currents in matrix form:

[
v1

v2

]
=
[

L0 LM

LM L0

] [
di1/dt

di2/dt

]
(4-7)

If we add a third line to our system, as shown in Figure 4-3, we can extend
equation (4-7): 

v1

v2

v3


 =


L11 L12 L13

L21 L22 L23

L31 L32 L33




di1/dt

di2/dt

di3/dt


 (4-8)

In equation (4-8), the diagonal elements L11, L22, and L33 represent the
self-inductances on lines 1, 2, and 3, respectively. The mutual inductances are
represented by Lij , where i and j correspond to the lines coupled by the mutual
inductance. The inductance matrix is symmetric. In other words, the mutual
inductances between lines do not depend on the direction, so that Lij = Lji .
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L11
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L22

L33
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v3+

v2

i1

i2

i3
−

−

Figure 4-3 Circuit with three coupled inductors.

As a final step, we can generalize equation (4-8) to n inductively coupled
lines, 


v1

v2
...

vn


 =




L11 L12 · · · L1n

Ln1 L22 L2n

...
. . .

...

Ln1 Ln2 · · · Lnn






di1/dt

di2/dt
...

din/dt


 (4-9)

where Lii are the self-inductances and Lij are the mutual inductances.

4.1.2 Mutual Capacitance

Our discussion of mutual capacitance follows a similar line of reasoning as for
mutual inductance, beginning with the capacitive circuit shown in Figure 4-4.
Given the input signals v1 and v2 on lines 1 and 2, we write expressions for the
currents i1 and i2:

i1 = Cg

dv1

dt
+ CM

(
dv1

dt
− dv2

dt

)
= (Cg + CM)

dv1

dt
− CM

dv2

dt
(4-10)

i2 = Cg

dv2

dt
+ CM

(
dv2

dt
− dv1

dt

)
= (Cg + CM)

dv2

dt
− CM

dv1

dt
(4-11)

In analyzing the behavior of the circuit, let us first look at the case where line 1 has
a transient signal dv /dt applied to it, whereas line 2 has no signal (dv2/dt = 0).
Applying these inputs to (4-10) and (4-11) gives

i1 = (
Cg + CM

) dv

dt
(4-12)

i2 = −CM

dv1

dt
(4-13)
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i1
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+

−

−

Figure 4-4 Coupled capacitor circuit.

Examination of equation (4-12) reveals that the effective capacitance of line 1
when it is driven in isolation is equal to the sum of the capacitance to ground and
the mutual capacitance between lines 1 and 2. Conceptually, (4-12) says that the
voltage signal applied to line 1 must charge up both the capacitance to ground and
the capacitance between lines. Therefore, the sum of the capacitance to ground
plus the mutual capacitance gives the total capacitance of line 1. Equation (4-13)
indicates that signal in line 1 will impress an unwanted signal (i.e., crosstalk
noise) on line 2 through the mutual capacitance. These effects are represented
conceptually by the capacitance sketch for the three-conductor PCB (two signals
plus a ground) shown in Figure 4-5.

We can also further our insight into the impact of mutual capacitance by
analyzing the even-mode (v1 = v2) and odd-mode (v1 = −v2) cases. For the
even mode, since v1 = v2, we assume that the rise times (or fall times) are equal,
and therefore that dv1/dt = dv2/dt = dv/dt . Substitution into (4-10) and (4-11)
leads to

i1 = i2 = Cg

dv

dt
(4-14)

For the odd mode we use dv1/dt = −dv2/dt = dv/dt , and find that

i1 = −i2 = (
Cg + 2CM

) dv

dt
(4-15)

Cm

Cg Cg

1 2

Figure 4-5 Coupled capacitances on a printed circuit board.
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Equations (4-14) and (4-15) show that the effective capacitance of the system as
seen by our input signals is changed by the mutual capacitance and is a function
of the switching pattern. In particular, the even-mode capacitance is decreased
relative to the total capacitance, by an amount equal to the mutual capacitance.
Correspondingly, the odd-mode capacitance is increased by the mutual capaci-
tance, giving us the relationship Ceven < Ctotal < Codd, where the total capacitance
is Ctotal = C0 + CM .

In developing a general expression for the capacitance, we write the equation
for the current flow in the capacitive elements as a function of capacitances and
input voltages in matrix form:

[
i1
i2

]
=
[
Cg + CM −CM

−CM Cg + CM

] [
dv1/dt

dv2/dt

]
(4-16)

If we add a third line to our system, as shown in Figure 4-6, we can extend
equation (4-16): 

i1
i2
i3


 =


 C11 −C12 −C13

−C21 C22 −C23

−C31 −C32 C33




dv1/dt

dv2/dt

dv3/dt


 (4-17)

In equation (4-17), the diagonal elements C11, C22, and C33 represent the total
capacitances on lines 1, 2, and 3, respectively. The total capacitance is the sum
of the capacitance to ground (e.g., C1g for line 1) plus the mutual capacitances
between lines. The mutual capacitances are represented by Cij , where i and j

correspond to the lines coupled by the mutual capacitance. In other words,

Ci = Ci +
∑
j �=i

∣∣Cij

∣∣
As is the case with the inductance matrix, the capacitance matrix is symmetric
since the capacitance does not depend on the polarity of the electric field.

We can generalize equation (4-17) to handle n capacitively coupled lines,




i1
i2
...

in


 =




C11 −C12 · · · −C1n

−C21 C22 −C2n

...
. . .

...

−Cn1 −Cn2 · · · Cnn






dv1/dt

dv2/dt
...

dvn/dt


 (4-18)

where the Cii are the total capacitances and the Cij are the mutual capacitances,
with Cij = Cji . Remember that total capacitance of line i is equal to sum of the
capacitance to ground for line i and the mutual capacitances between line i and
all of the other lines in the system.

A feature of the capacitance matrix that immediately stands out is that the
off-diagonal entries are negative. Although this may seem counterintuitive, it is
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Figure 4-6 Circuit with three coupled capacitors.

simply a direct consequence of the fact that we defined the diagonal elements to
be the total capacitance of the individual traces. This is necessary to simplify the
mechanics of our circuit calculations while guaranteeing correct results, as we
illustrate with an example.

Example 4-1 Equivalent Capacitance for a Coupled Pair We apply equation
(4-18) to the two-line case, so that

C =
[

C11 −C12

−C21 C22

]

Driving the lines with dv1/dt = dv/dt and dv2/dt = 0 gives i1 = C11 (dv/dt)
and i2 = −C21(dv/dt). Recalling that C11 = C1g + C12, we confirm that our
solution matches the result given in equations (4-12) and (4-13). Additional anal-
ysis of the odd- and even-mode cases will also confirm our earlier results, and
is left as an exercise for the reader.

4.1.3 Field Solvers

The capacitance and inductance matrices are typically obtained as the output
from an electromagnetic field solver. These tools model the electromagnetic fields
between transmission lines in a multiconductor system, providing the basis for
equivalent circuit models and the inputs to transmission-line simulators such as
HSPICE. Field simulators fall into two general categories, two-dimensional (2D)
quasistatic and three-dimensional (3D) full-wave solvers. Examples of commer-
cially available tools include Linpar [Djordjevic et al., 1999] for the 2D quasistatic
case, and HFSS for 3D full-wave solvers.

Quasistatic tools use techniques similar to those outlined in Chapter 3, where
Laplace’s equation is solved to calculate the capacitance for a given set of
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boundary conditions. The inductance is then calculated from the capacitance
using the speed of light as a conversion mechanism. Most 2D quasistatic tools
will give the inductance and capacitance matrices (along with the resistance and
conductance matrices) per unit of conductor length, under the assumption that the
physical geometries and materials are uniform along the length of the transmis-
sion structures. They are typically easy to use and execute in a matter of seconds,
but because of the length uniformity assumption, they cannot handle complex 3D
transmission structures. Because they are static field solvers, they typically do
not calculate frequency-dependent effects such as internal inductance and skin
effect resistance. This is not a significant obstacle for printed circuit boards since
the transmission structures are often uniform, and we can use other methods
for including frequency dependence (refer to Chapters 5 and 6). The quasistatic
assumption also requires that the signals propagate in transverse electromagnetic
(TEM) mode, which means that the electric and magnetic fields are perpendic-
ular and there is no field component in the direction of wave propagation, as
described in Section 2.3.2. The TEM assumption is geometry dependent, but for
typical PCB traces used to design high-speed digital systems (50 �, trace width
about 5 mils), it is valid for frequencies well past 20 GHz.

Full-wave 3D solvers, on the other hand, are capable of simulating complex
physical structures and will predict frequency-dependent losses, internal induc-
tance, dispersion, and most other electromagnetic phenomena, including radiation.
These tools essentially solve Maxwell’s equations directly for an arbitrary geom-
etry. Complex structures such as edge connectors and packages may require 3D
tools to model their effects accurately at high data rates. The disadvantage of
full-wave solvers is that they require more expertise to use, and simulations typ-
ically take hours or days rather than seconds. Additionally, the output from a
full-wave simulator is often in the form of S-parameters, which typically require
additional processing in order to use them for interconnect simulations for digi-
tal applications. As a result, design engineers typically employ 2D field solvers
whenever possible, making use of 3D full-wave tools only where necessary.

4.2 COUPLED WAVE EQUATIONS

Before proceeding with the analysis of coupled systems, we first derive the wave
equations, to reinforce the notion of wave propagation and to allow us to study
the effects of mutual inductance and capacitance. The wave equation is central
to our analysis of transmission lines, and extension to coupled systems will lend
insight into the effects of crosstalk on the propagation of signals in a coupled
system.

4.2.1 Wave Equation Revisited

We start our derivation of the transmission-line equations by focusing on the
isolated line case shown in Figure 4-7. The circuit must satisfy Kirchhoff’s laws.
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Figure 4-7 Differential circuit subsection for a lossless transmission line.

Application of Kirchhoff’s voltage law (KVL) gives the voltage drop across the
incremental inductance:

v(z) − v(z + dz) = −jωL0i(z) dz (4-19)

where jωL0dz is the frequency-dependent impedance of the inductor. Equation
(4-19) contains a frequency term, ω, implying a sinusoidal input which has the
form v(t) = V0e

jωt . A sinusoidal signal has the property that its derivative is
a scaled version of the original signal, dv(t)/dt = d(V0e

jωt )/dt = jωV0e
jωt =

jωv(t). Note that the current, i(z,t), is also a sinusoid, so that di(t)/dt = jωi(t).
Equation (4-19) is equivalent to Faraday’s law for the response of an induc-

tor to a transient current [�v = L(di/dt)]. The analysis that follows is equally
applicable for a digital input, since such a signal is composed of the superposition
of multiple sinusoids, although the wave equation requires a separate solution for
each frequency in the envelope of the driven signal. The next steps are to divide
(4-19) through by dz , followed by differentiation with respect to z:

dv

dz
= −jωL0i (4-20)

d2v

dz2
= −jωL0

di

dz
(4-21)

Looking now at the incremental capacitance of the subsection, we apply Kirch-
hoff’s current law to find the change in current, as shown in equation (4-22),
where (jωC0 dz)−1 is the impedance of the capacitor:

i(z + dz) − i(z) = −jωC0v(z) dz (4-22)

Equation (4-22) is equivalent to �i = C0(dv/dt) in the time domain. Dividing
through by dz gives

di

dz
= −jωC0v(z) (4-23)

Substituting (4-23) into (4-21) to get an expression in terms of v yields the
voltage wave equation:

d2v

dz2
+ ω2L0C0v = 0 (4-24)
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The same approach will give the wave equation for the current:

d2i

dz2
+ ω2L0C0i = 0 (4-25)

Equations (4-24) and (4-25) should be familiar as the wave equations for a
uniform lossless transmission line.

4.2.2 Coupled Wave Equations

Our goal now is to generalize equations (4-24) and (4-25) to the n-coupled-line
case. Figure 4-8 describes the circuit for a subsection of a pair of coupled lines.
Our derivation follows the same method that we used above for the isolated
transmission line. We start by applying KVL to develop equation (4-26). Note
that the voltage drop on line 1 depends on the mutual inductance LM and the
current on the adjacent line i2(z), in addition to the line self-inductance L and
driving current i1(z). We can also create a corresponding expression (4-27) for
the voltage drop on line 2:

v1(z) − v1(z + dz) = −jωL0i1(z) dz − jωLMi2(z) dz

= −jω[L0i1(z) + LMi2(z)] dz (4-26)

v2(z) − v2(z + dz) = −jω[L0i2(z) + LMi1(z)] dz (4-27)

We can write the equations for the voltage drop across the coupled subcircuit in
compact matrix form, where the boldface symbols represent the compact matrix:

dv
dz

= −jωLi (4-28)

where

dv
dz

= 1

dz

[
v1(z) − v1(z + dz)

v2(z) − v2(z + dz)

]
taken in the limit as dz → 0

L =
[

L0 LM

LM L0

]

i =
[
i1(z, t)

i2(z, t)

]

Applying the isolated line method to the current change caused by the capaci-
tances of the coupled line yields

i1(z) − i1(z + dz) = −jω(Cg + CM)v1(z) dz + jωCMv2(z) dz

= −jω[(Cg + CM)v1(z) − CMv2(z)] dz (4-29)
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Figure 4-8 Differential circuit subsection for two lossless coupled transmission lines.

i2(z) − i2(z + dz) = −jω[(Cg + CM)v2(z) − CMv1(z)] dz (4-30)

di
dz

= −jωCv (4-31)

where

di
dz

= 1

dz

[
i1(z) − i1(z + dz)

i2(z) − i2(z + dz)

]
taken in the limit as dz → 0

C =
[
Cg + CM −CM

−CM Cg + CM

]

v =
[
v1(z)

v2(z)

]

Notice in equations (4-29) and (4-30) that the current change on line 1 caused
by v1 is proportional to the sum of the capacitance to ground Cg and the mutual
capacitance between lines CM . This is consistent with our earlier discussion of
mutual capacitance. We can also reassure ourselves that this is correct by con-
sidering the response to a potential stimulus. Let us first assume that a potential,
v, is applied to line 1 (relative to ground), while no potential is applied to line 2.
In this case, we must charge up both the capacitance to ground and the mutual
capacitance between lines, a result that (4-29) predicts. In the second case we
assume that the same potential is applied to both lines. In this situation, lines 1
and 2 remain at the same potential, so that no charge is stored in the electric
field between the lines. Therefore, line 1 need charge up only the capacitance to
ground, a result that is also predicted by (4-29).

Returning to our derivation, we differentiate (4-28) with respect to z to get

d2v
dz2

= −jωL
di
dz

(4-32)

Substituting for di/dz from (4-31) results in the coupled voltage wave equation

d2v
dz2

= ω2LCv (4-33)
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Following our method, we can also derive the current wave equation for the
coupled lines:

d2i
dz2

= ω2CLi (4-34)

Equations (4-33) and (4-34) comprehend wave propagation on each line in the
system due to the source on the line itself and to sources being coupled from
other lines through the electromagnetic fields. Notice also that they bear a striking
similarity to equations (4-24) and (4-25). In fact, (4-24) and (4-25) reduce to
(4-33) and (4-34) for the case n = 1.

A couple of additional observations about (4-33) and (4-34) are worth pointing
out. First, in equation (4-34) the order of multiplication of the L and C matrices
is reversed from that of (4-33). Since they are matrices, the product LC is not
necessarily equal to CL. Second, the compact matrix equations are extensible
to an arbitrary number of coupled transmission lines, providing the means for
analyzing practical systems, as we demonstrate in the sections that follow.

4.3 COUPLED LINE ANALYSIS

In Section 4.1 we demonstrated that the effective capacitance and inductance will
change with different switching patterns in systems where there is significant
coupling between lines. This implies that the effective characteristic impedance
and propagation delay will also be a function of the switching patterns. We
also showed that coupling between lines can result in the appearance of noise
on quiet lines. Therefore, both effects can have switching-dependent impacts on
signal quality and timing characteristics of a coupled system, and we need to
develop methods for quantifying them.

4.3.1 Impedance and Velocity

In this section we explain the effects that crosstalk-induced impedance and veloc-
ity changes have on signal integrity and timing, and provide a simple method
for analyzing multiconductor transmission lines to provide first-order estimates
of that impact. From Section 4.1, recall that the switching pattern will change the
effective capacitance and inductance on a pair of couple lines, as summarized in
Table 4-1. By inspection of the table we can easily construct equations for the
effective impedances (Z0) and propagation velocities (νp) for each case:

Z0,isolated =
√

L0

Cg + CM

(4-35)

Z0,even =
√

L0 + LM

Cg

(4-36)
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TABLE 4-1. Summary of Effective Capacitance and Inductance for a Couple Pair

Mode Line 1 Line 2 Ceffective Leffective

Even

hi

hi

lo

lo

hi

hi

lo

lo

Cg L0 + LM

Odd

hi

hi

lo

lo

hi

hi

lo

lo

Cg + 2CM L0 − LM

Quiet

hi

hi

hi

lo

lo

lo

lo
hi hi

hi hi

lo lo

lo lo

Cg + CM L0

Z0,odd =
√

L0 − LM

Cg + 2CM

(4-37)

νp,isolated = 1√
L0(Cg + CM)

(4-38)

νp,even = 1√
(L0 + LM)C0

(4-39)

νp,odd = 1√
(L0 − LM)(Cg + 2CM)

(4-40)

Equations (4-35) through (4-40) are exact for the two-line case, and they give us
a simple way to analyze a coupled pair via a lattice diagram or simulation of a
single line using the effective characteristic impedance and effective propagation
velocity. We call the models created using this method single-line equivalent
models (SLEMs) [Hall et al., 2000].

It is interesting to note that the mutual inductance is always added or sub-
tracted in the opposite manner as the mutual capacitance for odd- and even-mode
propagation. The fields in Figure 4-9 help us understand why this is true. Con-
sidering odd-mode propagation as an example, the effect of mutual capacitance
must be added because the conductors are at different potentials. Additionally,
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Electric field: Odd mode Electric field: Even mode

Magnetic field: Even modeMagnetic field: Odd mode

Figure 4-9 Odd- and even-mode electric and magnetic field patterns for a simple
two-conductor system.

since the current in the two conductors flows in opposite directions, the currents
induced on each line due to the coupling of the magnetic fields always oppose
each other and cancel the effect of the mutual inductance. Therefore, the mutual
inductance must be subtracted and the mutual capacitance must be added to cal-
culate the odd-mode characteristics. These characteristics of even- and odd-mode
propagation are due to the assumption that the signals are propagating only in
transverse electromagnetic (TEM) mode, so that the electric and magnetic fields
are always orthogonal to each other.

With homogeneous dielectrics, the product of L and C remains constant, since
fields are confined within the uniform dielectric:

LC = 1

ν2
p

I (4-41)

where I is the identity matrix. Thus, in a multiconductor homogeneous system
such as a stripline array, if L is increased by the mutual inductance, C must
be decreased by the mutual capacitance such that LC remains constant. Subse-
quently, a stripline, or buried microstrip, which is embedded in a homogeneous
dielectric, should not exhibit velocity variations due to different switching modes.
It will, however, exhibit pattern-dependent impedance variation.

In a nonhomogeneous dielectric where the electric fields fringe through more
than one dielectric material, such as an array of microstrip lines, LC is not con-
stant for different propagation modes because the electromagnetic fields travel
partially in air and partially in the board’s dielectric material. In a microstrip, the
effective dielectric constant is a weighted average between air and the dielectric
material of the board. Because the field patterns change with different propaga-
tion modes, the effective dielectric constant will change depending on the field
densities contained within the board’s dielectric material and the air. Thus, the
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0.005 in 0.005 in 0.005 in

0.005 in εr = 4.0

0.002 in

Figure 4-10 Cross section of the PCB-based coupled transmission-line pair for
Example 4-2.

LC product will be mode dependent in a nonhomogeneous system. The LC prod-
uct, however, will remain constant for a given mode. Therefore, a microstrip will
exhibit both a velocity and an impedance change, due to different switching pat-
terns. It should be noted that the description above holds for a single frequency.
The product of LC varies with frequency but remains constant at each frequency
point for a given mode.

Example 4-2 The PCB transmission lines depicted in Figure 4-10 have the
following inductances and capacitances:

L =
[
3.592 × 10−7 3.218 × 10−8

3.218 × 10−8 3.592 × 10−7

]
H/m

C =
[

8.501 × 10−11 −2.173 × 10−12

−2.173 × 10−12 8.501 × 10−11

]
F/m

Assume that the waveform is driven into the line at t = 1 ns.
We have designed the PCB traces to have a typical (isolated) characteristic

impedance of approximately 65 � with a length of 0.2794 m (11 in.). They are
driven by a 1-V 65-� source, and are terminated to ground in 65 � at the far
end. The rise and fall times are 0.1 ns. Compare the analytical results with those
from a fully coupled simulation for even- and odd-mode propagation.

SOLUTION

Step 1: Calculate the impedances and velocities for all of the switching pat-
terns.

Z0,even =
√

3.592 × 10−7 + 3.218 × 10−8 H/m

8.501 × 10−11 − 2.173 × 10−12 F/m
= 68.7 �

Z0,odd =
√

3.592 × 10−7 − 3.218 × 10−8 H/m

8.501 × 10−11 + 2.173 × 10−12) F/m
= 61.2 �
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Z0,isolated =
√

3.592 × 10−7 H/m

8.501 × 10−11 F/m
= 65.0 �

νp,even = 1√
[(35.92 + 3.218) × 10−8 H/m][(85.01 − 2.173) × 10−12 F/m]

= 1.756 × 108 m/s

νp,odd = 1√
[(35.92 − 3.218) × 10−8 H/m][(85.01 + 2.173) × 10−12 F/m]

= 1.873 × 108 m/s

νp,isolated = 1√
3.592 × 10−7 H/m 8.501 × 10−11 F/m

= 1.810 × 108 m/s

Step 2 : Calculate the even-mode waveform. Calculate the values for the initial
voltage and current waves, reflection coefficients, final voltage and current levels,
and propagation delay as preparation for a lattice diagram analysis.

v(t = 0, z = 0) = Z0,even

RS + Z0,even
VS = 68.7 �

65 � + 68.7 �
(1 V) = 0.514 V

i(t = 0, z = 0) = v(t = 0, z = 0)

Z0,even
= 0.514 V

68.7 �
= 7.48 mA

�(z = 0) = RS − Z0,even

RS + Z0,even
= 65 � − 68.7 �

65 � − 68.7 �
= −0.028

�(z = l) = RT − Z0,even

RT + Z0,even
= 65 � − 68.7 �

65 � + 68.7 �
= −0.028

v(t = ∞) = Rt

RS + Rt

VS = 65 �

65 � + 65 �
(1 V) = 0.500 V

i(t = ∞) = vS

RS + Rt

= 1.000

65 � + 65 �
= 7.69 mA

td,even = l

νp,even
= 11 in

1.756 × 108 m/s

m

39.37 in.
= 1.592 ns

The corresponding lattice diagram is shown in Figure 4-11.
Step 3 : Calculate the odd-mode waveform. Repeat the analysis for the

odd-mode propagation, with the lattice diagrams shown in Figure 4-12.

v(t = 0, z = 0) = Z0,odd

RS + Z0,odd
VS = 61.2 �

65 � + 61.2 �
(1 V) = 0.485 V



162 CROSSTALK

v (z = 0) i(z = 0) v (z = l ) i(z = l )
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Γ = −0.028Γ = −0.028

0 l
z

t

0.000 V 0.00 mA
0.000 V 0.00 mA0.514 V

−0.014 V

0.000 V

0.000 V

7.48 mA

−0.21 mA

0.01 mA

0.00 mA

0.514 V 7.14 mA

0.500 V 7.69 mA

0.500 V

0.500 V

0.500 V

7.68 mA

7.69 mA

7.69 mA

2.592 ns

4.182 ns

5.773 ns

7.364 ns

Figure 4-11 Lattice diagram for even-mode propagation of the coupled line pair for
Example 4-2.

Note that the rising edge wave will be 0.485 V, starting from 0.000 V, while the
falling edge wave will be −0.485 V, starting from 0.500 V.

i(t = 0, z = 0) = v(t = 0, z = 0)

Zodd
= 0.485 V

61.2 �
= 7.92 mA

�(z = 0) = RS − Z0,odd

RS + Z0,odd
= 65 � − 61.2 �

65 � + 61.2 �
= 0.030

�(z = l) = RT − Z0,odd

RT + Z0,odd
= 65 � − 61.2 �

65 � + 61.2 �
= 0.030

Rising edge




v(t = ∞) = Rt

RS + Rt

VS = 65 �

65 � + 65 �
(1 V) = 0.500 V

i(t = ∞) = vS

RS + Rt

= 1.000

65 � + 65 �
= 7.69 mA

Falling edge

{
v(t = ∞) = 0.000 V

i(t = ∞) = 0.00 mA

td,odd = l

νp,odd
= 0.2794 m

1.873 × 108 m/s

(
109 ns

s

)
= 1.492 ns

Step 4 : Compare the calculated results to simulated results. From Figure 4-13
we see that the results from SLEM analysis match results from fully coupled
SPICE time-domain simulations using the L and C matrices.

Having developed the SLEM approach for the two-line case, we want to gen-
eralize it to deal with an arbitrary number of coupled lines, since real systems
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Figure 4-12 (a) Rising- and (b) falling-edge lattice diagrams for odd-mode propagation
of the coupled line pair for Example 4-2.

typically contain larger numbers of coupled lines. In our earlier discussion we
noted that for even-mode switching, the effective inductance is increased by the
mutual inductances between lines, while the effective capacitance is decreased by
the mutual capacitance. We also know that for odd-mode switching, the effec-
tive inductance is decreased by the mutual inductances between lines, while
the effective capacitance is increased by the mutual capacitances. Finally, the
mutual inductances and capacitances for quiet lines do not change the effective
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Figure 4-13 Comparison of (a) even- and (b) odd-mode calculated (left) and simulated
(right) results for Example 4-2.

inductance and capacitance. With this knowledge, we can write generalized
approximations for the effective inductance and capacitance, adopting the matrix
notation that we developed in Section 4.1 .

Leff,n = Lnn +
∑

Lne −
∑

Lno (4-42)

Ceff,n = Cnn −
∑∣∣Cne

∣∣+∑∣∣Cno

∣∣ (4-43)

where Leff,n = effective inductance of line n

Lnn = self-inductance of line n∑
Lne = sum of the mutual inductances for the lines that switch in phase

with line n (which we approximate as “even” mode)∑
Lno = sum of the mutual inductances for the lines that switch out of

phase with line n (which we approximate as “odd” mode)
Ceff,n = effective capacitance of line n

Cnn = total capacitance of line n∑∣∣Cne

∣∣ = sum of the absolute values of the mutual capacitances for the
lines that switch in phase with line n∑∣∣Cno

∣∣ = sum of the absolute values of the mutual capacitances for the
lines that switch out of phase with line n
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Recall from Section 4.1 that the elements on the matrix diagonals represent
the self-inductance and total capacitance, respectively, while the off-diagonal
elements represent the mutual terms. Once we obtain the effective inductance and
capacitance, we can calculate the effective impedance and propagation velocity:

Z0,eff,n =
√

Leff,n

Ceff,n
(4-44)

νp,eff,n = 1√
Leff,nCeff,n

(4-45)

We can use equations (4-44) and (4-45) along with the physical length of the
transmission line to analyze or simulate the behavior of any line as a simple
noncoupled line while accounting for the coupling to the other lines in the system.
This technique is best used during the early design phase of a bus, when I/O
transceiver impedances and line-to-line spacing are being chosen. In addition, it
is useful only for signals traveling in the same direction. For signals traveling
in opposite directions, fully coupled simulations are required to comprehend the
effects of crosstalk.

At this point it is important to note that although the SLEM method gives
correct results for systems with two coupled lines, it is an approximation that will
not exactly match the actual modal impedances and velocities for three or more
coupled lines. As such, its use should be restricted to early design exploration
aimed at narrowing down the solution space. Final simulations should always be
done with fully coupled models. The accuracy of the SLEM model (for three
lines) is reasonable for cross sections in which the spacing/height ratio is greater
than 1. When this ratio is less than 1, the SLEM approximation should not be
used. In Section 4.4 we introduce a technique for producing exact solutions to
systems of three or more coupled lines.

4.3.2 Coupled Noise

Before describing the coupled noise mechanism and developing methods to quan-
tify the noise, we need to provide some motivation for doing so. By now it should
be clear that our goal is to transmit interchip digital data signals successfully. In
doing so, we use an active transmitter circuit to drive the data onto the intercon-
nect, where it propagates as an electromagnetic wave to a receiver circuit that
senses the signal and restores it to the appropriate logic level. It is this signal
restoration operation that can be affected by crosstalk noise (as well by any other
sources of noise).

In restoring the signals, the receivers have thresholds for distinguishing
between logic levels. Crossing over a logic threshold will cause the receiver
to switch the output state. Referring to Figure 4-14, we see a voltage transfer
characteristic for an inverting receiver. When a rising input signal crosses vIH , it
will cause the output of the receiver to switch from high to low. However, noise
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Figure 4-14 Receiver transfer characteristic and switching thresholds.

on the signal that causes an excursion back below vIL will cause erroneous
switching (Figure 4-15). It is the job of the system designer to make sure that
this does not happen.

Refer to Chapter 11 for additional details on the operation of receivers for
high-speed links.

Qualitative Description Before developing a quantitative treatment of
crosstalk-induced noise, we describe the behavior qualitatively by looking at the
propagation of the aggressor and coupled noise wave. From our discussion of
mutual inductance and capacitance it is apparent that energy is coupled from one
line to another only during signal transitions (i.e., the rising and falling edges).
Subsequently, we look at the propagation of a rising edge on the aggressor line.

Figure 4-16 shows a pair of coupled lines terminated at both ends that represent
a typical system. As the incident wave on the aggressor line is launched, it imme-
diately begins coupling over to the victim line through the mutual capacitance
and inductance. Current that couples through the mutual capacitance (iC) splits
into forward-traveling (if ) and backward-traveling (ib) components in the victim
line, as shown in Figure 4-17. Current that couples through the mutual inductance
(iL) travels back toward the source end. As a result, we have a forward-coupled
wave that is a function of the difference between the capacitively coupled current
and the inductively coupled current. Since it is based on the difference between
capacitive and inductive coupling, the amplitude may have the same polarity as



COUPLED LINE ANALYSIS 167

Time (ns)

V
ol

ta
ge

 (
V

)

vIH

vIL

Threshold violation

Clean signal

Figure 4-15 Receiver threshold violation.
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Figure 4-16 Initial launch of aggressor signal and coupling of noise.
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Figure 4-17 Coupled circuit subsection for crosstalk noise analysis.
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Aggressor: Z0, td, I

Near-end ×talk pulse at t = ½ td ⋅I

t = ½ td ⋅I

Far-end ×talk pulse at t = ½ td ⋅I

Victim: Z0, td, I

Figure 4-18 Propagation of incident aggressor signal and coupled noise pulses.

the aggressor signal, or it may have opposite polarity. The forward coupled wave
then begins to propagate toward the far end of the victim line (z = l). We also
have a backward coupled wave that is a function of the sum of the capacitively
and inductively coupled currents. The backward traveling noise will have the
same polarity as the aggressor signal, which is a direct result of the summing of
the inductive and capacitive coupling. The backward crosstalk noise propagates
toward the near end of the victim line, where it is immediately detectable.

As the incident wave on the aggressor propagates toward the far end, it contin-
ues to couple energy over to the victim line. As Figure 4-18 shows, the forward
crosstalk pulse on the victim line propagates alongside the aggressor signal. Since
coupling continues along the length of the line, the amplitude of the far-end noise
pulse grows as it propagates along the length of the coupled pair. The backward
crosstalk pulse propagates back toward the near end (z = 0).

The coupling of energy to the victim line continues as the aggressor propagates
along the line until it reaches the far end at time t = τd l, where τd is the signal
propagation delay per unit length and l is the line length. Alternatively, we
could define the time as t = l/νp , where νp is the propagation velocity of the
signal. At that point, assuming that we have a matched termination, the coupling
ceases since the aggressor does not generate reflected waves. As Figure 4-19
demonstrates, arrival of the far-end crosstalk noise occurs simultaneously with
arrival of the aggressor signal. Since the far-end crosstalk travels along with the
aggressor signal, the crosstalk noise pulse grows in amplitude but does not grow
in width. Coupling occurs only during the signal transition, so the width of the
forward coupled pulse will be approximately equal to the rise (or fall) time of

Z0, td, I

t = td ⋅I

Z0, td, I

Near-end ×talk pulse at t = td ⋅I

Far-end ×talk pulse at t = td ⋅I

Figure 4-19 Propagation of coupled noise pulses as the aggressor reaches the far end
(z = l).



COUPLED LINE ANALYSIS 169

t = 2td ⋅I

z 
=

 0

z 
=

 l

Z0

Z0 Z0

Z0, td, l

Z0, td, l

Near-end ×talk pulse at t = 2 td ⋅I

Figure 4-20 Completion of the noise pulse at the near end (z = 0).

the aggressor signal, as the figure illustrates. Even though additional energy is no
longer being coupled at this point, the backward crosstalk wave must still travel
back to the near end. This takes a full propagation delay (td = τd l) to complete
and is shown in Figure 4-20.

The shape of the near-end pulse depends on the electrical length of the coupled
lines relative to the transition time of the aggressor signal. Consider the case
for which the coupled length is less than one-half of the signal rise time. The
beginning of the signal transition will reach the far end before the rising edge at
the driving end has completed one-half of the transition. As the coupled noise
propagates back to the near end, the signal at the far end continues to change,
and therefore to couple more energy to the victim. Not until the rising-edge
transition has finished propagating all the way to the far end does coupling stop.
In that case, the near-end crosstalk pulse will have a similar shape (but different
amplitude) to the far-end pulse, as shown in Figure 4-21a.

On the other hand, if the coupled length is greater than one-half the signal rise
time, the near-end crosstalk pulse will reach maximum amplitude and will then
begin to spread in time, a phenomenon known as saturation , which is shown
in Figure 4-21b. To understand this effect, consider a case where the coupled
electrical length is equal to several rise times. For this situation, we can visualize
the signal edge as a traveling wave on the aggressor line. Recalling that the
lines couple only during the transition, we can imagine the backward crosstalk
as a train of pulses of equal magnitude with a width equal to the rise time that
propagate back to the near end. As a result, the backward noise does not grow in
magnitude, but instead, spreads out in time. Figure 4-22 illustrates the coupled
pulse propagation as just described.

As a final note, we must realize that the crosstalk pulse magnitudes and shapes
that we just described, and for which we will develop quantitative models in the
next section, are specific to the matched termination case. Terminating the lines
simplifies the analysis by eliminating the need to deal with reflected crosstalk
and crosstalk from reflected aggressor signals. In general, the characteristics of
the crosstalk noise are heavily dependent on the amount of coupling and the
termination. For cases with imperfect termination and/or complex topologies,
we recommend using a simulator to analyze the behavior of the system. Hall
et al. [2000] describe crosstalk shapes for some general nonperfect termination
schemes.
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(a)
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2 td ⋅I

tr

tr

Figure 4-21 Forward- and backward-coupled noise pulses: (a) nonsaturated; (b) sat-
urated.

Quantitative Development Having developed an intuitive understanding of
crosstalk and the characteristics of crosstalk noise, we now derive the equations
for noise at each end of a quiet transmission line (line 2 in Figure 4-17) that
is induced by coupling from an adjacent coupled line (line 1) that is actively
driven. Noise will be coupled from line 1 to line 2 through the mutual inductance
LM dz and mutual capacitance CM dz. Line 1, whose characteristic impedance
is Z0, has an incident pulse of magnitude v1 (voltage) and i1 (current), and is
terminated in its characteristic impedance at both ends. We want to come up
with expressions for the backward (�vb) and forward (�vf ) noise pulses on
line 2, which also has a characteristic impedance of Z0 with termination at both
ends. Our derivation follows the method presented by Seraphim et al. [1989].
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Figure 4-22 Summary of propagation of forward- and backward-coupled noise: (a) ini-
tial wave launch; (b) halfway down the line; (c) one full trip down the line; (d) round
trip.
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We begin the development by applying Ohm’s law at each end of line 2 to
get the amplitudes of the noise pulses at the near end (�vb) and far end (�vf ):

�vb = ibZ0 (4-46)

�vf = if Z0 (4-47)

Current is coupled from line to line through the mutual capacitance:

iC = CM dz
dv1

dt
(4-48)

The coupled current splits into separate branches on line 2 that flow in both
directions:

iC = ib + if (4-49)

Combining equations (4-46) through (4-49) gives an expression for the voltage
pulses created by the coupling through the mutual capacitance,

�vb + �vf = Z0CM dz
dv1

dt
(4-50)

Next we define the capacitive coupling coefficient as the ratio of the mutual
capacitance between lines to the total capacitance of the line:

KC ≡ CM

Cg + CM

(4-51)

Along with the capacitive coupling coefficient definition, we apply expressions
for the characteristic impedance of the line, Z0 = √

L0/Cg + CM , to equation
(4-50), resulting in

�vb + �vf =
√

L0C
2
M

Cg + CM

dz
dv1

dt
(4-52)

By substituting νp = 1/
√

L0(Cg + CM) and performing some algebra, we arrive
at the following expression for the sum of forward and backward crosstalk
induced by the mutual capacitance:

�vb + �vf = 1

νp

KC dz
dv1

dt
(4-53)

Turning now to the inductance, we note that the mutual inductance acts as a
coupling transformer. Current on line 1 induces a voltage on line 2 that travels in
the direction opposite that of the incident signal on line 1. As a result, it creates a
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voltage difference across the differential segment (dz ) which travels back toward
the source:

�vb − �vf = LM dz
di1

dt
(4-54)

In the same way that we defined a capacitive coupling coefficient, we define the
inductive coupling coefficient as the ratio of the mutual inductance between lines
to the self-inductance of the line:

KL ≡ LM

L0
(4-55)

Application of Ohm’s law at the driven end of line 1 (i1 = v1/Z0) yields

�vb − �vf = dz
LM

Z0

dv1

dt
= dz

√
L2

M(Cg + CM)

L0

L0

L0

dv1

dt

= dz

√
L0(Cg + CM)

L2
M

L2
0

dv1

dt

which reduces to another expression relating the forward and backward coupled
noise to a coupling coefficient, in this case the inductive coupling coefficient:

�vb − �vf = dz
KL

νp

dv1

dt
(4-56)

Since (4-53) and (4-56) give us two expressions with two unknowns, we can
solve them for �vb and �vf and take dz → 0 in the limit, to get

dvf

dz
= KC − KL

2νp

dv1

dt
(4-57)

dvb

dz
= KC + KL

2νp

dv1

dt
(4-58)

Forward Crosstalk Integrating (4-57) from z = 0 to z = l gives an expression
for forward crosstalk:

vf = 1

2
(KC − KL)

l

νp

dv1

dt
(4-59)

By approximating dv1/dt as the ratio of the voltage swing v and a 10 to 90%
rise time tr , we have our final expression for the forward crosstalk:

vf = 1

2
(KC − KL)

l

νp

v

tr
(4-60)
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Noting again that the forward crosstalk is a function of the difference between
capacitive and inductive coupling, we see that the coupled pulse will have the
same polarity as the aggressor signal if there is more capacitive coupling than
inductive coupling in the system, and vice versa for the case where inductive
coupling dominates. Equation (4-60) also suggests that it is possible to have no
forward crosstalk if we can find a case where KC = KL. In fact, this is always
true for coupled lines in a homogeneous dielectric (proof is left for the reader as
Problem 4-9). On the other hand, for typical transmission lines in inhomogeneous
dielectrics, such as microstrip PCB traces, the inductive coupling is generally
greater than the capacitive coupling, so that the forward crosstalk pulse has the
opposite magnitude from that of the aggressor signal.

As we described earlier, the width of the forward crosstalk pulse is

tpw,f
∼= tr (4-61)

where tr is the rise time of the signal. Note that (4-60) and (4-61) are equally
applicable for a falling-edge transition.

Reverse Crosstalk To get an expression for the reverse (near-end) crosstalk, we
must take into account the fact that the coupling region travels in the direction
opposite to the coupled waved. The output wave at the left in Figure 4-17 is a
superposition of the waves coupled at earlier times that propagate and sum at the
near end. This requires that we integrate from z = 0 to z = l while accounting
for the travel time of the wave:

vb = KC + KL

2νp

∫ l

z=0

dv(t − 2z/νp)

dt
dz (4-62)

After integration we have an expression for the coupled noise at the near end.

vb(t) = KC + KL

4

[
v1(t) − v1

(
t − 2l

νp

)]
(4-63)

The apparent reduction of the effect of the coupling coefficient after the inte-
gration of (4-62) is caused by the fact that the energy coupling of the backward
crosstalk is spread out over a pulse width of 2l/vp. The width of the backward
coupled pulse is calculated with

tpw,b = 2τd l (4-64)

where τd is the propagation delay per unit length and l is the coupled length.
Equations (4-63) and (4-64) assume that the backward crosstalk has saturated,
which is realistic for multi-Gb/s links.

Finally, we note that the equations that we derived in this section apply to
situation in which both lines are terminated at each end. Other configurations,
such as when the near end is not terminated, will have different equations to
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describe the amplitudes and shapes of the crosstalk pulses. The modified crosstalk
equations can be derived by considering the effect of reflections as described in
Section 3.5.

Example 4-3 We now analyze the coupling from an active line to a quiet line
for the PCB transmission lines from Example 4-2. Recall that the lines had the
following inductances and capacitances:

L =
[
3.592 × 10−7 3218 × 10−8

3218 × 10−8 3.592 × 10−7

]
H/m

C =
[

8.501 × 10−11 −2.173 × 10−12

−2.173 × 10−12 8.533 × 10−11

]
F/m

The 0.2794-m-long traces have a typical (isolated) characteristic impedance of
approximately 65 � and are terminated to ground in 65 � at the far end. They
are driven by a 1-V 65-� source with a 100-ps rise time. Compare the analytical
results with those from a fully coupled simulation.

SOLUTION

Step 1 : We start by calculating the impedance and propagation velocity:

Z0,isolated =
√

3.592 × 10−7 H/m

8.501 × 10−11 F/m
= 65.0 �

νp,isolated = 1√
3.592×10−7 H/m 8.501 × 10−11 F/m

= 1.810 × 108 m/s

Step 2 : Since we plan to analyze the coupled noise, we need the coupling
coefficients.

KC = 2.173 × 10−11 F/m

8.501 × 10−11 F/m
= 0.0256

KL = 3.218 × 10−8 H/m

3.593 × 10−7 H/m
= 0.0896

Step 3 : Analysis for a rising edge:

v(t = 0, z = 0) = Z0

RS + Z0
VS = 65.0 �

65 � + 65.0 �
(1 V) = 0.500 V

i(t = 0, z = 0) = v(t = 0, z = 0)

Z0
= 0.500 V

65.0 �
= 7.69 mA

�(z = 0) = RS − Z0

RS + Z0
= 65 � − 65.0 �

65 � + 65.0 �
= 0.000
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�(z = 0.2794 m) = RT − Z0

RT + Z0
= 65 � − 65.0 �

65 � + 65.0 �
= 0.000

td = l

νp

=
(

0.2794 m

1.810 × 108 m/s

)(
109 ns

s

)
= 1.544 ns

vf = 1

2
(KC − KL)

l

νp

v

tr

= 1

2
(0.0256 − 0.0896)

(
0.2794 m

1.820 × 108 m/s

)

×
(

0.500 V

100 ps

)(
1012 ps

s

)
= −0.247 V

vb = KC + KL

4

[
v(t) − v

(
t − 2

l

νp

)]

=
(

0.0256 + 0.0896

4

)
(0.500 V) = 0.014 V

tpw,f = tr = 100 ps

tpw,b = 2τd l = 2

(
11 in.

1.810 × 108 m/s

)( m

39.37 in.

)(109 ns

s

)
= 3.088 ns

Since the reflection coefficients are zero, a lattice diagram is not necessary, as
we can construct the waveform directly from our calculations.

Step 4 : Comparison to simulation. Figure 4-23 compares our calculated results
with those from SPICE time-domain simulations. We see that although waveforms
nearly match, they are not identical. In particular, the rising edge of the active
signal in the SPICE simulation has grown to approximately 200 ps at the receiver
end of the transmission line. The degradation of the rising edge of the active
signal can be attributed to the crosstalk mechanism using an energy conservation
argument. To conserve energy, the active line must give up an amount of energy
that is equal to the amount coupled to the quiet line. Recall that the reactive
nature of the coupling mechanism means that energy is coupled to the quiet line
only during signal transition, so that the rising edge is degraded as a direct result
of the coupling. In addition, the increase in rise time at the receiver causes the
width of the crosstalk pulse at the receiver end to be approximately 200 ps rather
than the 100 ps predicted by our calculation.

As the example demonstrates, the crosstalk model presented here is an approxi-
mation. This model begins to break down when the coupled length is long enough
such that the difference in propagation delay between the even and odd modes
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Figure 4-23 Comparison of (a) calculated and (b) simulated results for Example 4-3.

exceeds the rise time:
td,even − td,odd > tr

When this occurs, the forward crosstalk saturates. At that point the amplitude
ceases to grow; instead, the pulse width increases. In the next section we show
how modal analysis allows us to explain the noise coupling mechanism in terms
of modal propagation velocities and gives us the means to calculate accurately
the behavior of the system.

4.4 MODAL ANALYSIS

Earlier we introduced the notion of propagation modes in the even- and odd-mode
cases for a two-line system. When we have more than two lines, the notion of
even- and odd-mode signals does not apply directly. A system with n coupled
lines can propagate n distinct modes, each of which is a function of the electric
and magnetic field strengths (or the capacitances and inductances) and of the
driven signals on each of the lines. Each mode can have a different effective
impedance and propagation velocity. We can calculate the modal impedances
and velocities, although the mathematics is somewhat complicated.

Modal decomposition and analysis provides us with the means to model the
behavior of a coupled system using multiple single line simulations, which dra-
matically simplifies the analysis without sacrificing accuracy. To do so, we must
first express the behavior of the lines in terms of the propagation modes. The tech-
nique of modal decomposition transforms the n × n inductance and capacitance
matrices into sets of n vectors, known as eigenvectors , that are each weighted by
a constant value called an eigenvalue. What makes this technique interesting is
that the eigenvectors are orthogonal, which allows us to diagonalize the L and C
matrices so that the off-diagonal matrix entries are zero. Once we decompose the
inductance and capacitances into diagonal matrices, we can analyze the behavior
of the coupled line system as a set of n isolated transmission lines, each propagat-
ing modal voltage and modal current waves. In this approach we use the modal
inductance and capacitance matrices Lm and Cm to transform the line voltages
and currents to modal voltages and currents. The modal voltages and currents
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are then used to drive the isolated lines in a simulation or hand analysis such as
a lattice diagram. The simulated or calculated response is then converted back
from modal voltages and currents to line voltages and currents. The material that
follows describes the modal decomposition and analysis technique.

4.4.1 Modal Decomposition

If the matrices LC and CL can be diagonalized, the diagonal components are
orthogonal to each other. This allows us to represent the line voltages as a linear
combination of modal voltages. To do this it is first necessary to determine the
relationship between line voltages and modal voltages. We can use the coupled
voltage wave equation (4-33) to derive a voltage transform matrix Tv;

v = Tvvm (4-65)

where Tv is a matrix that contains the eigenvectors of LC, which translate normal
line voltages in v to modal voltages in vm. Once we have done so, we can simulate
the system as n isolated lines using vm as input rather than as n coupled lines
with v as input. Similarly, equation (4-34) for the coupled current wave is used
to derive Ti:

i = Tiim (4-66)

where Ti is a matrix that contains the eigenvectors of CL, which translate normal
line currents in i to modal currents in im. From (4-28) and (4-31), the matrix
equations for an n × n system become

d

dz

[
v
i

]
=
[

0 −jωL
−jωC 0

] [
v
i

]
(4-67)

To derive the modal inductances, we start with equation (4-28) and substitute the
modal voltages, currents, and transform matrices for the line voltage and current:

d

dz
(Tvvm) = −jωLTiim (4-68)

Multiplying both sides by T−1
v gives

d

dz
(T−1

v Tvvm) = −jωT−1
v LTiim

dvm

dz
= −jωT−1

v LTiim

(4-69)

The modal inductance matrix is defined as

Lm = T−1
v LTi (4-70)
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By following a similar approach, we can also derive the equation for modal
capacitance:

d

dz
(Tiim) = −jωCTvvm (4-71)

dim
dz

= −jωT−1
i CTvvm (4-72)

Cm = T−1
i CTv (4-73)

Lm and Cm are diagonal,

Lm =




Lm11 0 0 0 0
0 Lm22 0 0 0
0 0 · · · 0 0
0 0 0 Lm(n−1)(n−1) 0
0 0 0 0 Lmnn


 (4-74)

Cm =




Cm11 0 0 0 0
0 Cm22 0 0 0
0 0 · · · 0 0
0 0 0 Cm(n−1)(n−1) 0
0 0 0 0 Cmnn


 (4-75)

where the diagonal elements are defined by (4-70) and (4-71).
Another useful relationship that we will find useful is [Paul, 1994]

Ti = (T−1
v )T (4-76)

To carry out the modal transmission line analysis, we need to put the modal
quantities into the wave equation, starting with (4-33):

d2Tvvm

dz2
= ω2TvLmT−1

i TiCmT−1
v Tvvm = ω2TvLmCmvm

Multiplying through by T−1
v gives the wave equation expressed in terms of the

modal voltage, inductance, and capacitance:

d2vm

dz2
= ω2LmCmvm (4-77)

Following the same process with (4-15) gives

d2im
dz2

= ω2CmLmim (4-78)

Again, since the modal quantities are orthogonal, we can use them to simulate
the system as n isolated lines rather than n coupled lines.



180 CROSSTALK

4.4.2 Modal Impedance and Velocity

Transmission-line analysis requires that we determine the modal impedance and
propagation velocity of the lines. Recall that for an isolated line,

νp = ω

β
(4-79)

with the phase shift per unit length for the lossless case:

β = Im
⌊√

(R + jωL)(G + jωC)
⌋ = ω

√
LC (4-80)

leading to

νp = 1√
LC

(4-81)

By analogy, we can write an expression for the modal velocity matrix in terms
of the modal inductance and capacitance matrices:

νpm =
√

L−1
m C−1

m (4-82)

Because Lm and Cm are square, diagonal matrices, their inverses will be, too,
as will be the product of their inverses. Since the product is diagonal, the square
root in (4-82) can be evaluated to yield the result

νpm,ii = 1√
Lm,iiCm,ii

(4-83)

The subscript i represents the row and column in each matrix. By similar means,
we find an equation to express the modal impedances:

Zm,ii =
√

Lm,ii

Cm,ii

(4-84)

4.4.3 Reconstructing the Signal

The observable line voltage and currents that compose the signal propagat-
ing on the interconnect are linear combinations of the modal values. After the
system is decomposed into its orthogonal values and a set of n single lines
that correspond to each mode is analyzed to determine the modal voltage and
currents, the observable line voltage and currents must be reconstructed using
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equations (4-65) and (4-66). For example, expanding (4-65) for an n = 2 signal
conductor system yields [

v1

v2

]
=
[
Tv1 Tv2

Tv3 Tv4

] [
vm1

vm2

]
v1 = Tv1Vm1 + Tv2vm2

v2 = Tv3Vm1 + Tv4vm2

where v1 is the line voltage observed on line 1, v2 is the line voltage observed
on line 2, and vm1 and vm2 are the modal voltages calculated from the analysis
of the single transmission lines with modal impedance and velocities. Notice
that the line voltages are reconstructed from linear combinations of scaled modal
voltages.

4.4.4 Modal Analysis

In this section we outline the method for using the modal quantities.

1. Find, Tv, the eigenvectors of LC.
2. Find, Ti, the eigenvectors of CL. Tv and Ti are related by Ti = (T−1

v )T.
3. Use Tv and Ti to calculate the modal inductances, capacitances, and volt-

ages and/or currents.
4. Use the modal inductance and capacitance to calculate the modal impedance

and propagation velocity.
5. Carry out a conventional transmission-line analysis, such as a lattice dia-

gram, or a single-line simulation for each mode.
6. Convert the modal quantities back into observable line quantities.

The following examples illustrate the application of modal analysis to a cou-
pled transmission-line pair.

Example 4-4 Using the inductance and capacitance matrices and the interconnect
design from Example 4-3, calculate the line voltages for signals switching in the
odd mode using modal analysis. Compare the results to those of a fully coupled
simulation.

SOLUTION Our analysis follows the method described above.

Step 1 : Start by calculating the voltage eigenvector:

LC =
[
3.0466 × 10−17 1.9551 × 10−18

1.9551 × 10−18 3.0466 × 10−17

]
s2/m2

In finding the eigenvector of LC, we will make use of its symmetry, which has
the form

LC =
[
a b

b a

]
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Following the method of O’Neil [1983], we subtract λI:

LC − λI =
[
a b

b a

]
− λ

[
1 0
0 1

]
=
[
a − λ b

b a − λ

]

The eigenvalue Tv of LC satisfies the following relationship:

(LC − λI)Tv =
[
a − λ b

b a − λ

] [
Tv1

Tv2

]
=
[
0
0

]

Carrying out the multiplication yields

(a − λ)Tv1 + bTv2 = 0

bTv1 + (a − λ)Tv2 = 0

From inspection of the equations above, we observe that Tv will satisfy the
equation if Tv1 = −Tv2, or Tv1 = Tv2. As a result, we have a pair of eigenvectors

Tv1 =
[

1
−1

]
and Tv2 =

[
1
1

]

Combining them gives the Tv matrix:

Tv = [
Tv1 Tv2

] =
[

1 1
−1 1

]

As a final step, we normalize the voltage eigenvector, Tv:

Tv =

[
1 1

−1 1

]
√

12 + 12
=
[

0.707 0.707
−0.707 0.707

]

Step 2: The current eigenvector is equal to the transpose of the inverse of the
voltage eigenvector [O’Neil, 1983]:

Ti = (T−1
v )T =

[
0.707 0.707

−0.707 0.707

]

Note that because we derived Tv and T i from a general symmetric 2 × 2 matrix,
they are applicable to any other 2 × 2 matrix, so we do not need to recalculate
them for any other system of two coupled lines. This is true only for the 2 × 2
case. Whereas the matrices will be symmetrical for larger numbers of coupled
lines, the eigenvectors will change as a function of the values of matrix entries.
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Step 3: The modal inductances and capacitances are calculated from equations
(4-70) and (4-73).

Lm = T−1
v LTi

=
[

0.707 0.707
−0.707 0.707

]−1 [
3.592 × 10−7 3.218 × 10−8

3.218 × 10−8 3.592 × 10−7

]
H/m

×
[

0.707 0.707
−0.707 0.707

]

=
[
3.270 × 10−7 0

0 3.914 × 10−7

]
H/m

Cm = T−1
i CTv

=
[

0.707 0.707
−0.707 0.707

]−1 [
8.501 × 10−11 −2.173 × 10−11

−2.173 × 10−11 8.501 × 10−11

]
F/m

×
[

0.707 0.707
−0.707 0.707

]

=
[
8.718 × 10−11 0

0 8.284 × 10−11

]
F/m

To calculate the modal voltage, we must first have the voltage inputs. For the
odd mode, the input on line 1 is 1 V and line 2 is −1 V. Therefore, the input
voltage matrix is

vin =
[

1
−1

]

and solving (4-65) for the modal voltages yields

vm =
[

0.707 0.707
−0.707 0.707

]−1 [−1
1

]
=
[

vodd

veven

]
=
[
1.414

0

]

Note that there is no voltage propagating in the even mode, which is expected
since we drove the system in the odd mode.

Step 4: The modal impedance and propagation velocity are calculated from
(4-83) and (4-84).

Zm =



√

Lm11

Cm11√
Lm22

Cm22


 =

[√
3.270 × 10−7 H/m/8.718 × 10−11 F/m√
3.914 × 10−7 H/m/8.284 × 10−11 F/m

]

=
[
61.25
68.74

]
ohms
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z 
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 0
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Figure 4-24 Equivalent modal circuit for the transmission-line pair in Example 4-4.

νpm =




1√
Lm11Cm11

1√
Lm22Cm22


 =




1√
(3.270 × 10−7 H/m)(8.718 × 10−11 F/m)

1√
(3.914 × 10−7 H/m)(8.284 × 10−11 F/m)




=
[
1.873 × 108

1.756 × 108

]
m/s

This gives us the information that we require to construct the modal circuit for
the odd mode, as shown in Figure 4-24.

Step 5: Transmission-line analysis . Beginning with the low-to-high transition
at the voltage source, we use the odd-mode equivalent circuit in Figure 4-24
to calculate the voltage and current waves that are launched, assuming that the
rising edge occurs at time t = 1 ns.

v(t = 1, z = 0) = (1.414 V)
61.25 �

61.25 � + 65 �
= 0.686 V

i(t = 1, z = 0) = v(t = 0, z = 0)

Zm

= 0.686 V

61.25 �

(
A

V/�

)(
mA

A

)
= 11.20 mA

The propagation delay to the far end (z = l = 0.254 m) is

td,odd = length

νpm,odd
= 0.254 m

1.873 × 108 m/s

(
109 ns

s

)
= 1.356 ns

The voltage reflection coefficient at the far end is

� = 65 � − 61.25 �

65 � + 61.25 �
= 0.030

The voltage reflection coefficient at the source end is

� = 65 � − 61.25 �

65 � + 61.25 �
= 0.030
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Figure 4-25 Odd-mode lattice diagram for Example 4-4.

The final steady-state voltage and current for the odd mode are

v(t = ∞) = (1.414 V)
65 �

65 � + 65 �
= 0.707 V

i(t = ∞) = 1.414

65 � + 65 �
= 10.88 mA

We now have enough information to construct the odd-mode lattice diagram
analysis shown in Figure 4-25.

Step 6: We now convert the modal voltages and currents back to line voltages
and currents. In converting back to line voltages and currents, we use (4-65) and
(4-66) along with the values calculated in the odd-mode lattice diagram analysis.

v = Tvvm with vm =
[
from lattice

0

]

i = Tiim with im =
[
from lattice

0

]

For example, the first voltage level on the odd-mode lattice diagram is 0.686 V.
The equivalent observable line voltages are calculated as

v1 = Tv1Vm1 + Tv2vm2 = 0.707(0.686) + 0.707(0) = 0.485 V

v2 = Tv3Vm1 + Tv4vm2 = −0.707(0.686) + 0.707(0) = −0.485 V
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Translating each point on the odd-mode lattice diagram to line voltage and cur-
rents allows us to construct the lattice diagrams for lines 1 and line 2, as shown
in Figure 4-26a and b.

As a final check, we compare waveforms that we calculated from lattice dia-
grams created using modal analysis against a fully couple simulation, using a
100-ps rise time, as shown in Figure 4-27a and b. Note that the results are
identical.

Example 4-5 For the transmission-line pair used in Example 4-4, calculate the
crosstalk noise on line 2 when line 1 is driven with a IV, 100 ps rise time step.

SOLUTION The solution for the problem of coupling from an active line to
a quiet line requires that we carry out the model analysis for both modes (even
and odd). To calculate the modal voltage, we must first have the voltage inputs.
For this example, the input on line 1 is 1 V and on line 2 is 0 V. Therefore, the
input voltage matrix is

vin =
[
1
0

]

and solving (4-65) for the modal voltages using the matrix Tv from Example 4-4
yields

vm =
[

0.707 0.707
−0.707 0.707

]−1 [−1
1

]
=
[

vodd

veven

]
=
[
0.707
0.707

]

Note that there is voltage propagating in both the even and odd modes. Table 4-2
summarizes the relationship between the modal and line voltages for the odd,
even, and quiet cases.

Since the modal voltages for the case where line 1 is switching and line 2 is
held low are

vm =
[
0.707
0.707

]

TABLE 4-2. Modal Voltages for the Coupled PCB Transmission-Line Pair of
Example 4-5

Case Line 1 Line 2 vin (V) vm (V)

Even mode Low → high Low → high

[
1
1

] [
0.707 0.707

−0.707 0.707

]−1 [
1
1

]
=
[

0
1.414

]

Odd mode Low → high High → low

[
1

−1

] [
0.707 0.707

−0.707 0.707

]−1 [−1
1

]
=
[
1.414

0

]

Quiet Low → high Low → low

[
1
0

] [
0.707 0.707

−0.707 0.707

]−1 [
1
0

]
=
[
0.707
0.707

]
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Figure 4-26 Line voltage–current lattice diagram for Example 4-4: (a) line 1 (rising
edge); (b) line 2 (falling edge).

we start by calculating the propagation delays for both the odd and even modes:

td,even = l

νpm,even
= 0.2794 m

1.756 × 108 m/s
= 1.446 ns

td,odd = l

νpm,odd
= 0.2794 m

1.873 × 108 m/s
= 1.356 ns
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Figure 4-27 Comparison of Odd Mode Transient Waveforms for Example 4-4: (a) line
1 (low-to-high transition); (b) line 2 (low-to-high transition). Left, model analysis; right,
coupled simulation.

Next we calculate the launch voltage and current for each mode:

veven(t = 1, z = 0) = vm,even
Zm,even

Zm,even + Rs

= (0.707)
68.74 �

68.74 � + 65 �
= 0.363 V

ieven(t = 1, z = 0) = veven(t = 1, z = 0)

Zm,even
= 0.363 V

68.74 �

(
A

V/�

)(
mA

A

)
= 5.29 mA

vodd(t = 1, z = 0) = vm,odd
Zm,odd

Zm,odd + Rs

= (0.707)
61.25 �

61.25 � + 65 �
= 0.343 V

iodd(t = 1, z = 0) = vodd(t = 1, z = 0)

Zm,odd
= 0.343 V

61.25 �

(
A

V/�

)(
mA

A

)
= 5.60 mA

We also want to know the final voltages for each mode:

veven(t = ∞) = vm,even
RT

RT + RS

= (0.707)
65 �

65 � + 65 �
= 0.354 V

vodd(t = ∞) = vm,odd
RT

RT + RS

= (0.707)
65 �

65 � + 65 �
= 0.354 V
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Figure 4-28 Lattice diagrams for coupling onto a quiet line in Example 4-5: (a) odd
mode; (b) even mode.

ieven(t = ∞) = iodd(t = ∞) = 0.354 V

65 �

(
A

V/�

)(
mA

A

)
= 5.45 mA

We now perform lattice diagram analysis for each of the modes, as shown in
Figure 4-28a and b.
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Figure 4-29 Comparison of coupling to a quiet line for the pair in Example 4-5: (a)
model analysis calculation; (b) HSPICE W-element simulation.

Finally, we convert the modal voltages from the odd- and even-mode lattice
diagrams back to line voltages while taking into account the difference in propa-
gation delays for the two modes. In converting back to line voltages and currents,
we use (4-65) and (4-66) along with the values calculated in the odd-mode lat-
tice diagram analysis. For example, the first voltage level on the odd-mode lattice
diagram is 0.343 V, and the first voltage level on the even-mode lattice diagram
is 0.363 V. The equivalent observable line voltages are calculated as

v1 = Tv1vm1 + Tv2vm2 = (0.707)(0.343) + (0.707)(0.363) = 0.499 V

v2 = Tv3vm1 + Tv4vm2 = (−0.707)(0.343) + (0.707)(0.363) = 0.014 V

In matrix form, this is represented as

vline =
[
v1

v2

]
=
[
0.499
0.014

]

This amounts to a merging of the even- and odd-mode lattice diagrams in
Figure 4-28a and b, as shown in the fourth column of Table 4-3. The modal
voltages are converted to the transmission-line signals, vline, contained in the
fifth column of the table using equation (4-65). The table contains the neces-
sary information for constructing the waveforms on each line. Figure 4-29 shows
that the waveforms calculated with modal analysis match results from simula-
tion, giving a much more accurate result than did analysis using equations (4-60)
through (4-64). Modal analysis predicts correctly not only the magnitude for the
far-end crosstalk, but also the rise-time degradation of the signal and the shapes
and duration of both forward and backward coupled noise pulses.

Study of Figure 4-30 reveals some additional insight into the nature of the
forward coupled noise. In particular, the far-end noise pulse exists over the
time interval between the arrival of the odd-mode signal and the arrival of the
even-mode signal. In effect, far-end crosstalk noise is a function of the difference
in propagation velocity between odd mode and even mode. The effect is illustrated
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TABLE 4-3. Modal and Line Voltages for the Coupled PCB Transmission-Line
Pair of Example 4-5

Event Location t (ns) vm (V) vline = TVvm(V) Notes

Waveform launch z = 0 1.000

[
0.000
0.000

] [
0.000
0.000

]
t = 0

z = 0 1.100

[
0.343
0.363

] [
0.499
0.014

]
t = tr

Odd-mode incident wave z = l 2.492

[
0.000
0.000

] [
0.000
0.000

]
t = td,odd

z = l 2.592

[
0.352
0.000

] [
0.249

−0.249

]
t = td,odd + tr

Even-mode incident wave z = l 2.592

[
0.352
0.000

] [
0.249

−0.249

]
t = td,even

z = l 2.692

[
0.352
0.353

] [
0.499

−0.0007

]
t = td,even + tr

Odd-mode first reflection z = 0 3.984

[
0.343
0.363

] [
0.499
0.014

]
t = 2td,odd

z = 0 4.084

[
0.354
0.363

] [
0.507
0.006

]
t = 2td,odd + tr

Even-mode first reflection z = 0 4.182

[
0.354
0.363

] [
0.507
0.006

]
t = 2td,even

z = 0 4.282

[
0.354
0.354

] [
0.499
0.000

]
t = 2td,even + tr

Odd-mode second reflection z = l 5.476

[
0.352
0.353

] [
0.499

−0.0007

]
t = 3td,odd

z = l 5.576

[
0.354
0.353

] [
0.500

−0.0007

]
t = 3td,odd + tr

Even-mode second reflection z = l 5.773

[
0.354
0.353

] [
0.500

−0.0007

]
t = 3td,even

z = l 5.873

[
0.354
0.354

] [
0.501
0.000

]
t = 3td,even + tr

for this example in Figure 4-30. In the figure, the line voltage contributions from
each mode are calculated at the far end of line 2 (the quiet line).
Odd-mode component:

vodd = Tv3vm1 = −0.707vm1

Even-mode component:

veven = Tv4vm2 = 0.707vm2
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Figure 4-30 Far-end crosstalk generation due to even- and odd-mode propagation veloc-
ity differences.

Voltage on line 2:

v2 = Tv3vm1 + Tv4vm2 = −0.707vm1 + 0.707vm2 = veven + vodd

When the even- and odd-mode components are summed to produce the observ-
able line voltage, a pulse occurs at the far end when the modal velocities differ
because each component arrives at a different time. Note that this same phe-
nomenon will induce a ledge in the received waveform on the driving line that
can be seen when the rise time is short compared to the difference between even-
and odd-mode propagation delays. We also note that the description of crosstalk
as a function of the difference in even and odd propagation velocities correctly
predicts zero far-end crosstalk for coupled lines in homogeneous dielectrics, since
the even and odd velocities will be equal.

As a final note on modal analysis, we acknowledge the difficulty of solving
for the eigenvectors by hand. We encourage the use of computer tools in finding
the eigenvectors wherever possible. Commercially available math packages such
as Mathcad and Mathematica contain routines for calculating eigenvectors and
eigenvalues. For readers who are interested in developing their own code, a book
by Press et al. [1989] provides fully documented and widely used routines that are
easily capable of handling the relatively small matrices that are part of coupled
transmission-line analysis.

4.4.5 Modal Analysis of Lossy Lines

Although our discussion has focused on the application of modal analysis to
lossless coupled lines, it is equally valid for analyzing lossy lines. When including
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the loss terms, equations (4-65) and (4-66) still apply, but we start from the lossy
coupled line equations [Paul, 1994]:

d

dx

[
v(z)

i(z)

]
=
[

0 −Z
−Y 0

] [
v(z)

i(z)

]
(4-85)

Z = R + jωL (4-86)

Y = G + jωC (4-87)

In essence, we calculate the eigenvectors Tv and Ti from the product (R +
jωL)(G + jωC) for the lossy case. Recalling from our example that we calcu-
lated Tv and Ti from the product LC, we realize that it is equivalent to using
(R + jωL)(G + jωC) with R = G = 0.

4.5 CROSSTALK MINIMIZATION

Since all of the major components in an interconnect system (i.e., PCB, packages,
connectors) can have enough crosstalk to harm system performance, we present
some crosstalk reduction guidelines in this section. Because it is often not pos-
sible to reduce crosstalk without affecting system cost, we include discussion of
trade-offs along with reduction techniques in Table 4-4. In particular, we note
that in cost-sensitive applications such as desktop personal computers, adding
layers in the printed circuit board represents significant added cost to the system.

Another technique that sometimes finds use is the placement of guard traces
between signals. These are connected to the ground return layers using plated
via holes in the board. This technique requires careful attention to the design to
provide the desired crosstalk benefit. Inductance of the traces will tend to create
a potential difference at points that are a significant distance from the ground
vias. When this occurs, the guard traces can radiate the coupled energy, thereby

s w

Dielectric (er)

M1: Signal

M2: Ground

M3: Signal

M4: Signal

M6: Signal

M5: VCC

h

Figure 4-31 PCB layer stackup for Example 4-6.
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TABLE 4-4. Crosstalk Reduction Techniques and Trade-offs

Approach Trade-off

Increase the spacing, s, between the
PCB and package traces.

Can add cost by requiring additional layers in
PCBs and/or packages to route all traces.

Decrease the thickness of the
dielectric, h, between the ground
(return) layer and the signal layer
in PCBs and packages to couple
the transmission lines more
tightly to the return layer and
reduce the coupling to adjacent
signals.

Operating limits for characteristic impedance
may limit the minimum acceptable thickness
(recall that Z0 decreases as h decreases).
The minimum manufacturable dielectric
thickness may also limit the effectiveness of
this approach.

Use differential signaling. Can add cost by requiring additional layers in
PCBs and/or packages to route all traces,
since each signal requires two traces. Can
also add cost to packages, sockets, and
connectors, due to increased pin counts.

Route traces on adjacent PCB signal
layers orthogonally to each other.

Can add cost by requiring additional layers in
PCBs and/or packages to route all traces,
since restricting signal routing direction may
decrease routing efficiency.

Route the signals in PCBs and
packages using striplines or
embedded microstrips to
eliminate velocity variations.

Striplines require at least six layers in the PCB.
Refer to Figure 4-31.

Minimize parallel run lengths
between signals in PCBs and
packages.

Can add cost by requiring additional layers in
PCBs and/or packages to route all traces,
since restricting signal routing direction may
decrease routing efficiency.

Reduce signal edge rates. May limit the maximum performance, since
rise and fall times typically must scale with
data rate.

Insert power/ground pins between
signal I/O pins in connectors,
sockets, and packages.

Cost increases with pin count.

defeating their purpose. As a result, the guard traces must be connected to the
ground layer at multiple points. The distance allowed between vias is inversely
proportional to the frequency content of the signals, making it impractical for
multigigabit per second data rates.

4.6 SUMMARY

In this chapter we described the coupling mechanisms that cause crosstalk in
digital systems. The SLEM modeling technique and the equations for coupled
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noise provide the means to make first-order engineering estimates of the impacts
of crosstalk on high-speed systems, while modal decomposition provides a more
accurate analytical technique that does not require the use of coupled simulations.
Guidelines for crosstalk reduction provide designers with a toolbox for managing
coupled noise.
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PROBLEMS

4-1 Use the SLEM method to calculate the effective even- and odd-mode
impedances and propagation velocities for the coupled striplines whose
capacitance and inductance matrices are shown below. Estimate the
impacts of crosstalk on the propagation delay for a 0.5-m coupled length.

L =
[
3.480 × 10−7 1.951 × 10−8

1.951 × 10−8 3.480 × 10−7

]
H/m

C =
[

1.271 × 10−10 −7.213 × 10−12

−7.213 × 10−12 1.271 × 10−10

]
F/m
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4-2 For coupled striplines from Problem 4-1, calculate the near- and far-end
noise for the isolated switching case, and compare your results against
simulation with each line terminated at both ends in the characteristic
impedance calculated.

4-3 Use the SLEM method to calculate the effective impedance and propa-
gation velocity for the coupled striplines shown whose capacitance and
inductance matrices are shown below when all three lines switch in the
same direction. Compare the propagation delay for a 0.5-m coupled length
when only the middle line switches.

L =

3.480 × 10−7 5.268 × 10−8 1.687 × 10−8

5.268 × 10−8 3.461 × 10−7 5.268 × 10−8

1.687 × 10−8 5.268 × 10−8 3.480 × 10−7


 H/m

C =

 1.087 × 10−10 −1.172 × 10−11 −7.918 × 10−11

−1.172 × 10−11 1.105 × 10−10 −1.172 × 10−11

−7.918 × 10−11 −1.172 × 10−11 1.087 × 10−10


 F/m

4-4 Estimate crosstalk pulse amplitudes and pulse widths on the middle lines
of the three-line system from Problem 4-3 when the two outer lines are
switching from low to high. Assume that each line is terminated at both
ends in its characteristic impedance. Compare your results against a fully
coupled simulation.

4-5 Sketch the far-end crosstalk pulse for a two-line case with no termination
at the near end, and matched termination at the far end.

4-6 Use the inductance and capacitance matrices below to determine the
switching activity on lines 1 and 2, given the waveform on line 3 in
Figure 4-32.

L =

3.544 × 10−7 1.914 × 10−8 5.161 × 10−9

1.914 × 10−8 3.826 × 10−7 1.914 × 10−8

5.161 × 10−9 1.914 × 10−8 3.544 × 10−7


 H/m

C =

 8.266 × 10−11 −1.108 × 10−11 −2.354 × 10−11

−1.108 × 10−11 1.001 × 10−10 −1.108 × 10−11

−2.354 × 10−11 −1.108 × 10−11 8.266 × 10−11


 F/m

4-7 Use the inductance and capacitance matrices from Problem 4-6 to deter-
mine the switching activity on lines 1 and 3 given the waveform on line
2 in Figure 4-33.



PROBLEMS 197

−0.16

−0.14

−0.12

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

0.02

−1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0

Time (ns)

V
ol

ta
ge

 (
V

)

v (l = 0)

v (l = 0.254m)

Figure 4-32 Transient response for Problem 4-6.
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Figure 4-33 Transient response for Problem 4-7.

4-8 The circuit in Figure 4-34 uses transmission lines that have the induc-
tance and capacitance matrices given in Problem 4-1. In this problem,
line 1 undergoes a rising-edge transition at z = 0; simultaneously, line 2
undergoes a falling-edge transition at the other end of the pair (z = l). Cal-
culate the waveform on line 1 at the receiving end (z = l) for a 0.254-m
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coupled length, and compare your results to those from a fully coupled
simulation.

Line 1

z 
=

 0

z 
=

 I

Line 2

63 Ω 63 Ω

63 Ω
Vs1 = 1 volt 
tr 1 = 100 ps Vs 2 = 1 volt 

tf 2 = 100 ps63 Ω

Figure 4-34 Coupled line system for Problem 4-8.

4-9 Prove that a coupled pair in a homogeneous medium has no forward
crosstalk noise.

4-10 Use modal analysis to determine the resistor values required to terminate
both even and odd modes using a pi network for a two-transmission-line
system.

4-11 Calculate modal reflection coefficients for the two lines in Problem 4-1
when they are terminated in 50 � at each end.

4-12 The PCB transmission lines depicted in Figure 4-35 have the following
inductances and capacitances:

Line 1

z 
=

 0

z 
=

 I

Line 2

65 Ω 65 Ω

65 Ω
Vs1 = 1 volt 
tr 1 = 100 ps

65 Ω

0.005 in 0.005 in

0.005 in

0.005 in

0.002 in

er = 4.0

(b)

(a)

Figure 4-35 PCB-based coupled transmission-line pair for Problem 4-12: (a) schematic;
(b) cross section.
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L =
[
3.537 × 10−7 9.559 × 10−8

9.559 × 10−8 3.537 × 10−7

]
H/m

C =
[

8.533 × 10−11 −1.205 × 10−11

−1.205 × 10−11 8.533 × 10−11

]
F/m

The traces have a length of 0.254 m (10 in.) and are terminated to ground
with 65 �. They are driven by a 1-V 65-� source, with 100-ps rise
and fall times. Analyze the crosstalk noise using the approximate model
from Section 4.3.2 and modal analysis, and compare your results with
simulation. Do all of the results agree? If not, why not?

4-13 Use modal analysis to:

(a) Calculate the modal impedance and velocity for the three-coupled-line
case in Problem 4-3.

(b) Simulate a 0.5-m coupled length and compare your results to those
obtained using SLEM analysis.

4-14 Develop expressions for the forward and backward crosstalk amplitudes
for the circuit shown in Figure 4-17, in which the victim line is open
circuited at the near end.

4-15 Use modal analysis to derive equations for the near- and far-end crosstalk
amplitudes for the terminated coupled pair shown in Figure 4-22.

4-16 Project : Develop a tool (Matlab, C++, etc.) to perform modal analysis for
an arbitrary number of coupled lines, using the inductance and capacitance
matrices as input.
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As digital systems evolve and technology pushes for smaller and faster designs,
the geometric dimensions of the physical platform are shrinking. Smaller dimen-
sions and higher data transmission rates necessitate the use of proper techniques
to model both the frequency dependent resistive losses and inductance. With-
out proper models that accurately predict these quantities, simulation-based bus
design for multigigabit data rates is not possible. Frequency-dependent resistive
losses, for example, will affect bus performance by decreasing the signal ampli-
tude and slowing edge rates, which in turn affects voltage and timing margins,
respectively. In addition, frequency dependent inductance models are required to
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preserve causality , which is discussed in Chapter 8 and Appendix E. In prior days
it was possible to utilize simpler conductor models for digital designs because
bandwidth demands were much lower. However, as digital data rates increase, the
assumptions and approximations of traditional conductor models begin to break
down. Consequently, the signal integrity engineer is now required to learn new
techniques that compensate for variables that were insignificant in past designs.

So far in this book we have covered the topics of electromagnetic theory
for signal integrity engineers, transmission-line fundamentals, and crosstalk. Up
to this point, the conductors were assumed to be infinitely conductive and the
dielectric was assumed to be a perfect insulator. In this chapter we develop
modeling techniques to predict properly the electrical behavior of conductors
used to design transmission lines on printed circuit boards, multichip modules,
and chip packages. First, classic electromagnetic theory will be used to derive the
frequency dependence of resistance and inductance for smooth conductors with
finite conductivity. Next, three different methodologies for modeling the effects
of rough copper on the electrical parameters of the transmission lines will be
introduced. Detailed analysis of how currents flow on a rough surface will give
physical insights into the mechanisms of surface roughness losses. Finally, a new
circuit model for a transmission line that accounts for realistic conductors will
be introduced along with a modified version of the telegrapher’s equations that
account for realistic conductor losses.

5.1 SIGNALS PROPAGATING IN UNBOUNDED CONDUCTIVE MEDIA

The topic of uniform plane waves propagating in a lossless media was discussed
in Section 2.3, where the influences of the material properties µ and ε were
observed. In Chapter 3 we described how the waves propagated when confined
to the physical dimensions of a transmission line, yet the problem was still
idealized because it was assumed that the dielectric was a perfect insulator and
the conductor was infinitely conductive. To derive the equations that govern
the propagation of waves on realistic transmission lines, it is first necessary to
comprehend how an electromagnetic wave propagates in unbounded, conductive
media.

5.1.1 Propagation Constant for Conductive Media

To derive the equations that govern electromagnetic waves propagating in conduc-
tive or lossy media, we begin with the loss-free forms of Maxwell’s differential
equations presented in Chapter 2 and modify them appropriately to obtain a
wave equation that accounts for loss. To begin, the time-harmonic forms of
Maxwell’s equations are repeated here:

∇ × �E + jω �B = 0 (2-33)

∇ × �H = �J + jω �D (2-34)
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∇ · �D = ρ (2-35)

∇ · �B = 0 (2-36)

where �J = σ �E, �D = ε �E, and �B = µ �H , as derived from equations (2-6) through
(2-9).

Simplification of Ampère’s law (2-34) by replacing the current density term
with σ �E and �D = ε �E yields

∇ × �H = σ �E + jωε �E = jω

(
σ

jω
+ ε

)
�E = jω

(
ε − j

σ

ω

)
�E (5-1)

Comparison to the solution of Ampère’s law in a loss-free medium (∇ × �H =
jωε �E) allows us to define the complex permittivity for a conductive or lossy
media by analogy:

ε = ε − j
σ

ω
= ε′ − jε′′ (5-2)

where the real component is the dielectric permittivity discussed in Chapters 2
and 3 (ε′ = ε0εr ) and the imaginary component accounts for the losses in the
medium where the wave is propagating. The term σ can be thought of as the
conductivity of the material, which will be quite high for a metal and quite low
for a dielectric. If (5-2) is inserted into the time-harmonic solution of the electric
field derived in Section 2.3.4,

Ex(z, t) = E+
x e−γ z + E−

x eγ z (2-54)

then the complex propagation constant for a lossy media can be derived. The
complex propagation constant for a plane wave was derived in Section 2.3.4:

γ = α + jβ (2-42)

As discussed extensively in Chapter 2, if the wave is propagating in a loss-free
medium (where α = 0 ), (2-42) reduces to

jβ = ω
√

µε rad/m (5-3)

where ε = εrε0 and µ = µrµ0. Substitution of the complex permittivity (5-2)
into (5-3) provides the form of the complex propagation constant of an electro-
magnetic wave traveling in a conductive medium:

γ = ω

√
µ
(
ε′ − j

σ

ω

)
(5-4)

Setting (5-4) equal to (2-42) and separating into real and imaginary components
yields the general form of the attenuation constant α and the phase constant β for
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an electromagnetic wave propagating in a conductive media with a conductivity
of σ :

α = ω
√

µε′
√

2

[√
1 +

( σ

ε′ω

)2 − 1

]1/2

Np/m (5-5)

β = ω
√

µε′
√

2

[√
1 +

( σ

ε′ω

)2 + 1

]1/2

rad/m (5-6)

Note that µ = µ0 for virtually every practical digital design because the con-
ductors are almost always constructed from copper, which is not magnetic. Both
α and β have units of 1/m; however, the dimensionless terms neper (Np) and
radian (rad) are used to communicate the attenuation and phase meanings in the
wave equation.

5.1.2 Skin Depth

As described in Section 2.3.4, α is the attenuation constant, which will modify
a wave propagating in the z-direction as described by

E(z, t) = Re
(
E+

x e−γ zejωt
) = Re

(
E+

x e−αze−jβzejωt
)

= e−αzE+
x cos(ωt − βz) (2-43)

The factor e−αz is known as the wave decay for a wave propagating in the
+z-direction. The wave attenuation in a conductive region is governed by the term
1 + (σ/ε′ω)2, as shown in equation (5-5). As the conductivity of the medium is
increased, the attenuation constant α becomes larger and the wave decay increases
with distance and time. Consequently, for a good conductor such as copper, the
wave will decay very rapidly. The decay of an electromagnetic wave propagating
into a conductor is measured in terms of the skin depth . The skin depth, denoted
δ, is simply the distance of penetration where the settling exponent −αz of the
wave decay factor is −1 (e−αz = e−1). The skin depth is therefore given in units
of meters:

δ = 1

α
(5-7)

Since the term �J = σ �E in Ampère’s law (2-34) is no longer neglected, a
current density �J must accompany the electric field �E in the conductive region:

J+
x (z, t) = e−αzσE+

x cos(ωt − βz) (5-8)

Therefore, at a penetration distance of one skin depth (1/α), the field intensity
and the current density have been attenuated by a factor of e−1, or approximately
36.7%, meaning that approximately 63.6% of the current density exists within a
distance of δ from the conductor surface. Note that for a perfect conductor, the
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Figure 5-1 Penetration depth δ associated with the amplitude attenuation of the current
density for a plane wave propagating into a conductive region.

conductivity σ is infinite and therefore α is also infinite. If α is infinite, equation
(5-7) says that δ must be infinitely small. Therefore, for a perfect conductor, the
current only flows on the surface and the wave cannot penetrate the conductor .
Figure 5-1 shows how the current density decays as the wave propagates into a
conductive medium. Note that although the magnitude of the current density is
oscillatory, it remains within the envelope defined by the exponential decay of
the skin depth.

If a good conductor is defined such that σ/εω � 1, (5-5) reduces to

α =
√

ωµσ

2
(5-9)

Therefore, the skin depth for a metal with conductivity σ at a frequency (ω =
2πf ) is given by (5-10) in units of meters:

δ = 1

α
=
√

2

ωµσ
(5-10)

Figure 5-2 shows the magnitude of the skin depth in copper as a function of
frequency. Note that even at 1 GHz, the skin depth is only 2 µm, meaning that
most of the current is flowing in a very small area.

5.2 CLASSIC CONDUCTOR MODEL FOR TRANSMISSION LINES

Classic conductor models are derived on the assumption of perfectly smooth
surfaces. Although realistic conductors used to construct printed circuit boards
(PCBs), packages, and multichip modules for high-speed digital designs rarely
employ smooth conductors, a study of classical transmission-line losses will
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Figure 5-2 Skin depth δ in copper as a function of frequency.

provide the theoretical basis needed to derive frequency-dependent physically
consistent models of real-world conductors, which are often purposely rough-
ened to promote adhesion to dielectric layers during the manufacturing process.
The resistive loss induced by general transmission-line conductors can be broken
down into two components: low frequency, or dc, and high frequency, or ac.
First, the dc losses will be derived and the formulas will be modified to include
the frequency-dependent effects of ac resistance at high frequencies.

5.2.1 DC Losses in Conductors

Dc losses are of particular concern in small-geometry conductors, very long lines,
and multiload (also known as multidrop) buses . Long copper telecommunication
lines, for example, must have repeaters every few miles to receive and retransmit
the data because of signal degradation. Additionally, designs of multiprocessor
computer systems with long buses experience resistive drops that can encroach
on the logic threshold levels and reduce the noise margins.

The dc loss of a transmission line depends primarily on two factors: the con-
ductivity of the metal and the cross-sectional area of the conductor where the
current is flowing. Figure 5-3 shows the current distribution in a transmission
line at dc. Traditionally, dc resistance is defined to be the value at 0 Hz. How-
ever, for the purposes of this chapter, dc will be assumed to be valid for all
frequencies where the skin depth is larger than the conductor thickness t , which

w

t

At dc, current flows 
through entire area 
of the cross section where 
Area = A = wt

Figure 5-3 Current distribution in a microstrip at dc.
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ensures almost uniform current density through the cross section of the signal
conductor.

At dc the current will spread out as much as possible and flow through the
entire cross section of the conductor, and the resistive loss can be found with

Rdc = l

σAcross section
= l

σwt
ohms (5-11)

where l is the length, w the width, t the thickness of the signal conductor, and
σ the conductivity of the metal. Note that (5-11) has neglected the dc losses of
the current return path in the reference plane. This is an adequate approximation
because at dc, the current will spread out and flow through the entire plane, which
is several orders of magnitude larger than the signal conductor. Consequently,
the cross-sectional area where the current flows in the return path will be much
larger and the associated resistance will be much smaller.

5.2.2 Frequency-Dependent Resistance in Conductors

By extending the dc equation (5-11), the frequency dependence of the resistance
in a transmission line can be approximated. Frequency-dependent resistance will
be referred to as ac resistance or skin effect resistance in the remainder of the
book. At low frequencies, the ac resistance will be identical to the dc resistance
because the skin depth will be much greater than the thickness of the conductor.
The ac resistance will remain equal to the dc resistance until the frequency
increases to a point where the skin depth is smaller than the conductor thickness.

Microstrip Conductor Losses (Smooth Conductors) Figure 5-4 depicts the cur-
rent distribution on a microstrip line at high frequencies. Notice that the current
distribution is concentrated on the bottom edge of the transmission line. This is
because the fields between the signal line and the ground plane pull the charge to
the bottom edge, and the skin depth is much smaller than the conductor thickness.
Also notice that the current density is greater near the corners of the conductor.
This is because the charge density increases significantly in the proximity of a
sharp edge, as described in Sections 3.4.4 and 3.4.5, and the current density along
the conductor will vary in the same way. Furthermore, there is still significant
field concentration along the thickness (the t dimension in Figure 5-4) of the
conductor.

d (Skin depth)
t

Reference plane

w

h

Figure 5-4 Current distribution in a microstrip with an ideal reference plane at high
frequencies where the skin depth δ is small compared to the thickness t .
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The skin effect will cause the cross-sectional area where the current is flowing
to decrease as the frequency increases. Consequently, the frequency-dependent
losses in the conductor can be approximated using the dc resistance formula by
setting t = δ:

Rac = l

σwδ
= l

σw
√

2/ωµσ
= l

w

√
πµf

σ
ohms (5-12)

Note that the approximation is valid only when the skin depth is smaller than the
conductor thickness. Notice that the ac resistance is directly proportional to the
square root of the frequency f and inversely proportional to the conductivity σ .

Equation (5-12) assumes that all the current is flowing in the first skin depth,
which is not correct. Section 5.1.2 defines the skin depth such that only about
63% of the current density is contained in this depth. To test the validity of
equation (5-12), the effective area of an exponential decay can be calculated by
integrating e−αz from z = 0δ to z = ∞δ and comparing it to the case where all
the current is confined to one skin depth. To visualize the differences, refer to
Figure 5-5, which plots penetration depth into a conductive medium in terms of
skin depths versus the total current density. If 100% of the current is assumed
to flow within one skin depth, the area under the curve is Jδ = 1, where J is
the current density and δ is the skin depth. Integrating the wave decay term e−αz

from z = 0δ to z = ∞δ, the area under the curve also yields Jδ:

J

∫ z=∞δ

z=0δ

e−αz dz = J

α
= Jδ

Since the effective areas under each curve are identical, it is a valid approximation
to assume that all the current is flowing in an area confined by the conductor width

0
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Figure 5-5 If all the current is approximated to be in one skin depth, the total area
under the curve is identical to the realistic behavior, where the current density decays
exponentially with increasing skin depths.
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Figure 5-6 Frequency-dependent resistance of a microstrip transmission line with an
ideal reference plane.

and a single skin depth . As this section progresses, more accurate methods of
calculating the losses will be presented.

Figure 5-6 plots the total resistance of a transmission line over a wide fre-
quency range. Note that the resistance will remain at approximately the dc value
until the frequency where the skin depth is smaller than the thickness of the
conductor, after which the ac resistance begins to take effect and increases
proportional to

√
f . Note that the discontinuity shown in Figure 5-6 is artifi-

cial and drawn for instructional purposes. In reality, current is not completely
confined to a single skin depth, so the transition from Rdc to Rac is more
gradual and not discontinuous. The discontinuity generally will not have any
ill effects on simulated waveforms; however, if it is desirable to smooth the
curve to provide more realistic behavior, a root-sum-square function can be
used:

Rtotal ≈
√

R2
dc + R2

ac (5-13)

The resistance of the signal conductor, however, is only one part of the total
ac resistance. The portion that is not included in equation (5-12) is the resis-
tance of the return current on the reference plane. The return current will flow
underneath the signal line in the reference plane, will be largely concentrated
in one skin depth, and will spread out perpendicular to the trace direction with
the highest amount of current concentrated directly beneath the signal conduc-
tor. Equation (5-14) was derived by Collins [1992] using conformal mapping



210 NONIDEAL CONDUCTOR MODELS

−3h −2h −1h 0 1h 2h 3h

h

w

Distance from center, d

Reference plane

J(d)

J(d)∝
J0

1 +
2

d
h

Figure 5-7 Current distribution in the reference plane of a microstrip.

techniques and shows how the current density varies with increasing distance
from the signal conductor center:

J (d) ∝ J0

1 + (d/h)2
(5-14)

where d is the distance from the conductor center and h is the height above
the ground plane and J0 is the total current density. Figure 5-7 is a graphical
representation of this current density distribution.

An approximation of the ground plane resistance can be derived using a tech-
nique similar to that used to find the ac resistance of the signal conductor. First,
assume that all the current will be confined to one skin depth δ. Next, an effective
width weff where the current will flow must be determined. Integrating (5-14)
from −∞ to +∞ with h = 1,

∫ ∞

−∞

1

1 + (d/1)2
dd = tan−1(d)|∞−∞ = π

allows us to determine that (5-14) must be normalized by π so that the total
current density is unity for an infinite plane. If the effective width is chosen
somewhat arbitrarily at ±3h from the center of the conductor and the normalized
current density function is integrated,

J0

π

∫ 3

−3

1

1 + (d/1)2
d d = J0

π
2 tan−1(3) = 0.795J0 (5-15)

it can be shown that about 80% of the total current density is contained within
a distance of ±3h of the signal conductors center. Using this approximation,
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weff = 6h and an approximate formula can be derived for the ground-plane resis-
tance in a microstrip transmission line in units of ohms:

Rac, ground ≈ l

σweffδ
= l

6h

√
πµf

σ
(5-16)

The total resistance is the sum of (5-12) and (5-16) in ohms:

Rac, micro = l

w

√
πµf

σ
+ l

6h

√
πµf

σ
=
√

πµf

σ

(
1

w
+ 1

6h

)
(5-17)

Equation (5-17) should be considered a good “back of the envelope” estimation
of the ac resistance for a microstrip transmission line [Hall et al., 2000] A more
exact formula for the ac resistance of a microstrip was derived using conformal
mapping techniques by Collins [1992] and is shown in equation set (5-18). This
formula is significantly more cumbersome than (5-17), but should yield the most
accurate results.

Rtrace = LR

(
1

π
+ 1

π2
ln

4πw

t

)
Rs

w

where LR is given by

LR =




1 when
w

h
≤ 1

2

0.94 + 0.132
w

h
− 0.0062

(w

h

)2
when

1

2
<

w

h
≤ 10

Rground =
(

w/h

(w/h) + 5.8 + 0.03(h/w)

)
Rs

w
when

1

10
≤ w

h
≤ 10 (5-18)

where

Rs =
√

ωµ

2σ

Rac, micro = Rtrace + Rground

For practical micristrip lines, formulas based on smooth conductors should simply
be used as an approximation because realistic conductor surfaces are generally
rough, which will increase the conductor losses significantly at frequencies where
the skin depth begins to approach the magnitude of the roughness profile. The
extra losses caused by surface roughness are calculated in Section 5.3.

Example 5-1 Calculate the approximate frequency where ac resistance must be
used to calculate the ohmic losses of a microstrip transmission line constructed
with a copper conductor with a conductivity of σ = 5.8 × 107(
 · m)−1 and the
following cross-sectional dimensions: w = 5 mils, h = 3 mils, t = 2.1 mils.
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SOLUTION

The ac resistance will exist when the frequency gets high enough so that
the skin depth is smaller than the conductor thickness. Above this frequency, dc
resistance ceases to exist; only ac (skin effect) resistance is present. The frequency
can be calculated by setting a skin depth equal to the conductor thickness using
(5-10) and solving for the frequency:

δ = 2.1 mils =
√

2

ωµσ

Since ω = 2πf, µ = µ0 = 12.56 × 10−7 H/m and 2.1 mils = 55.3 × 10−6 m:

f = 2

2πσµ0(53.3 × 10−6)

2

= 1.53 × 106 Hz

Therefore, at 1.53 MHz, dc resistance does not exist and ac resistance begins to
increase with

√
f .

Stripline Losses (Smooth Conductors) In a stripline transmission line, the cur-
rents of a high-frequency signal are concentrated in the upper and lower edges
of the conductor. The current density will be dependent on the proximity of
the local reference planes. If the stripline is referenced equidistant from both
planes, the current will be divided equally in the upper and lower portions of
the conductor as depicted in Figure 5-8. In an offset transmission line, the cur-
rent densities on the upper and lower edges of the transmission line will be
dependent on the relative distances between the ground planes and the con-
ductor (h1 and h2 in Figure 5-8). The current density distributions in each
stripline reference plane will be governed by an equation similar to equation

J(d )∝ 1

1 +
2

d
hx d (Skin depth)

Reference plane

Reference plane

w
h1

t

h2

d

Figure 5-8 Current distribution in the signal; conductor and reference planes of a
stripline.
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(5-14) and will differ only in the magnitude, which is a function of the respec-
tive distances between the reference planes and the strip (h1 and h2). Thus,
the resistance of a stripline can be approximated by the parallel combination of
the resistance in the top and bottom portions of the conductor. The resistance
equations for the upper and lower sections of the stripline may be obtained by
applying equation (5-17) or (5-18) for the appropriate value of h. These two
resistance values must then be put in parallel to obtain the total resistance for a
stripline:

Rac, strip = (R(h1)ac, micro)(R(h2)ac, micro)

R(h1)ac, mico + R(h2)ac, micro
(5-19)

5.2.3 Frequency-Dependent Inductance

Section 5.1 describes how the skin effect will force high-frequency current to flow
primarily in a small layer near the periphery of the conductor, and Section 5.2
describes how this translates into frequency-dependent resistance. Another conse-
quence of the skin effect is a frequency-dependent inductance. To conceptualize
where this frequency dependence comes from, consider two filaments of current
that form a loop with the return plane immediately below the conductor over a
differential length of transmission line �z, as depicted in Figure 5-9. Loop (a)
passes through the center of the signal conductor, and loop (b) exists only on the
conductor surfaces. As described in Section 2.5.2, the inductance is proportional
to the loop area,

L11 ≡ ψ1

I1
(2-97)

where ψ1 is the magnetic flux, which depends on the loop area. Therefore, loop
(a) will have a higher inductance than loop (b) simply because the loop is larger.
At low frequencies, the skin depth will be large compared to the conductor thick-
ness and there will be significant current flowing in the interior of the conductor,

Signal 
Conductor

Reference 
Conductor

∆Iinternal ∆Iexternal

length = ∆z

(a) (b)

length = ∆z

Figure 5-9 Loops for a filament of current: (a) in the center of the conductor; (b) on
the surface of the conductor.
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similar to loop (a). As frequency increases, the skin effect will begin to force
the current to flow on the periphery of the conductor, so internal currents will
decrease. At very high frequencies, there will be almost no current flowing in
loop (a) because the skin effect has forced all the current to flow on the sur-
face, causing the inductance of loop (b) to dominate. The inductance associated
with loop (a), where the currents are flowing internal to the conductor, is com-
monly known as the internal inductance. The inductance associated with loop
(b), where all currents are flowing on the surface of the conductor, is commonly
known as the external inductance. The total inductance is the sum of the external
and internal parts:

Ltotal = Linternal + Lexternal (5-20)

As frequency increases, the skin effect causes the current to flow very close to
the surface, with minimal current flowing interior to the conductor. At infinite
frequencies, all the current is flowing on the surface and the internal contribution
is zero. Consequently, as frequency increases, the effect of Linternal will decrease
and Ltotal will asymptote to Lexternal.

The external inductance is calculated with quasistatic techniques assuming that
all the charge is on the surface of the conductor and solving Laplace’s equation
as shown in Sections 3.4.2, 3.4.3, and 3.4.6. The internal inductance is derived
by observing Ampère’s (2-34) and Faraday’s (2-33) laws for a good conductor.
For a good conductor , the conduction current �J will be much larger than the
displacement current jω �D, and therefore Ampère’s law reduces to

∇ × �H ≈ �J = σ �E (5-21)

Faraday’s law is repeated here:

∇ × �E + jωµ �H = 0 (2-33)

Taking the curl of (2-33) yields the following equation:

∇ × (∇ × �E) = −jωµ∇ × �H (5-22)

If it is assumed that the free charge is negligible and the source of the electric field
is the time-varying magnetic field, Gauss’s law reduces to ∇ · ε �E = 0, allowing
the use of the vector identity (see Appendix A)

∇ × (∇ × �ψ) = ∇(∇ · �ψ) − ∇2 �ψ
∇ × (∇ × �E) = 0 − ∇2 �E = −jωµ∇ × �H

to simplify the equation, which reduces to

∇2 �E = jωµ∇ × �H (5-23)
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Substituting Ampère’s law (5-21) into (5-23) and multiplying each side by σ

allows us to write (5-23) in terms of the current density (since �J = σ �E):

∇2σ �E = jωµσσ �E → ∇2 �J = jωµσ �J (5-24)

Equation (5-24) is known as the diffusion equation for the current density. Similar
equations govern the electric and magnetic fields. Assuming a z-directed current,
the solution to (5-24) is found using standard techniques.

d2 �Jz

dx2
= jωµσ �Jz(

d2

dx2
− jωµσ

)
�Jz = 0

The roots of the characteristic equation yield

±
√−4(−jωµσ)

2
= ±

(√
ωµσ

2
+ j

√
ωµσ

2

)
= ±(1 + j)

√
ωµσ

2

Comparing to equation (5-10), note that
√

ωµσ/2 = 1/δ, giving a solution to the
diffusion equation for current density of

�Jz = �J0e
−(1+j)x/δ (5-25)

where only the negative exponent is a valid solution because the current density
decreases as the electromagnetic wave penetrates into the conductor. Equation
(5-25) says that the current density will decrease very rapidly into the surface of
the conductor and is essentially confined to a layer at the surface equal to a few
skin depths, as depicted in Figure 5-10.

The total current can be found by integrating (5-25):

�JT =
∫ ∞

0

�J0e
−(1+j)x/δdx = −1

2
�J0δ(j − 1) (5-26)

J0z

x

J0 J0

m, s

d

Figure 5-10 Diffusion of currents into a semi-infinite conductive material.
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The surface impedance can be defined as the ratio of the electric field at the
surface and the total current density:

�Zs =
�E0

�JT

(5-27)

Substituting (5-26) into (5-27) and expressing the current density in terms of the
conductivity and the electric field ( �J0 = σ �E0) yields

�Zs =
�E0

− 1
2σ �E0δ(j − 1)

= (1 + j)
1

σδ
ohms/square (5-28)

The surface impedance is expressed in terms of an area of unit width and unit
length, so the term ohms/square is used. Note the similarity of the real part of
(5-28) to equation (5-12), which was the series resistance caused by the skin effect
of a transmission line. For the case where l = w, the real part of equations (5-28)
and (5-12) are identical. If the real part of (5-28) is resistance, the imaginary part
must therefore be reactance (the impedance of inductance). Since the impedance
of inductance is jωL, (5-28) can be expressed in terms of a series resistance
(due to the skin effect) and a series inductance (the internal inductance):

Zs = Rac + jωLinternal (5-29)

Therefore, the internal inductance can be calculated directly from the ac resis-
tance:

Linternal = Rac

ω
(5-30)

Equation (5-30) highlights an important relationship between the skin effect resis-
tance (ac resistance) and the internal inductance. As the skin effect forces the
current to the periphery of the conductor, the resistance increases; however,
since current ceases to flow in the interior of the conductor, the inductance must
decrease. Figure 5-11 plots both the internal inductance and the ac resistance.
Note that when the ac resistance becomes significant, the internal inductance is
almost negligible.

Example 5-2 Calculate the total inductance and the resistance at 2 GHz of a
microstrip transmission line constructed with copper of conductivity σ = 5.8 ×
107(
 · m)−1, a dielectric constant of εr = 4.0 and the following cross-sectional
dimensions: t = 0.5 mil, h = 2 mils, w = 3 mils.

SOLUTION

Step 1: Determine if the ac or dc resistance should be used. The methodology
presented in Example 5-1 could be used, however, it is easier simply to calculate
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Figure 5-11 Example of how the skin effect changes resistance and internal inductance
with frequency for a copper microstrip as shown in Figure 5-6.

the skin depth in copper at 2 GHz using (5-10) and compare it to the conductor
thickness t :

δ =
√

2

2πf µ0σ
≈ 1.41 µm

Since t = 0.5 mil = 12.7 µm, δ < t , so the ac resistance must be used.
Step 2: The impedance and effective dielectric permittivity must be calculated

using equation (3-36b), which assumes a perfect conductor. If it is unknown
whether a particular impedance formula includes the effect of a realistic conduc-
tor, the lack of a metal conductivity or a magnetic permeability variable indicates
the assumption of infinite conductivity. From (3-36b), Z0 ≈ 55 
 and εeff ≈ 2.95.

Step 3: Calculate the phase velocity with (2-52):

νp = c√
µrεeff

= 3 × 108 m/s√
(1)(2.95)

= 1.75 × 108 m/s

Step 4: The external inductance is solved with (3-31) and (3-33). Since (3-36b)
assumes a perfect conductor, the inductance is the external value.

νp = 1√
LC

= 1.75 × 108 →
√

LC = 5.73 × 10−9 s/m

≈ 146 × 10−12 s/in.

Z0 =
√

L

C
= 55 


Lexternal = L =
√

L

C
·
√

LC = 55(146 × 10−12) = 8.03 nH/in.
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Step 5: Calculate the ac resistance at 2 GHz using (5-17). Note that (5-18)
could be used as well.

Rac, micro =
√

πµ0f

σ

(
1

w
+ 1

6h

)

= 0.0117

(
1

(3 mils)(25.4 × 10−6 m/mil)

+ 1

6(2 mils)(25.4 × 10−6 m/mil)

)

= 191.3 
/m = 4.86 
/in.

Step 6: Calculate the internal inductance using (5-30).

Linternal = Rac

ω
= 4.86 
/in.

2π(2 × 109 Hz)
= 0.387 nH/in.

Step 7: Calculate the total inductance using (5-20).

Ltotal = Linternal + Lexternal = 8.03 + 0.387 = 8.42 nH/in.

5.2.4 Power Loss in a Smooth Conductor

In high-speed digital design, surface treatment of the copper foils used to con-
struct printed circuit boards (PCBs) significantly affects the power losses experi-
enced by a signal propagating on a transmission line. In this section, the power
losses of an electromagnetic wave impinging on a flat, smooth plane are exam-
ined. In later sections we explore the consequences of rough conductor surfaces.

First, we assume that the fields in the vicinity of a good but not perfect con-
ductor will behave approximately the same as for a perfect conductor. In Section
3.2.1 it was shown that the electric fields terminate normal to a perfect conduct-
ing surface and the magnetic fields are tangential to the surface. Furthermore, in
Section 5.1.2 it was shown that fields inside a conductor will attenuate exponen-
tially and are measured in terms of the skin depth δ. At high frequencies, the
boundary condition shown in (3-3) is true for a good conductor, except for a thin
transitional layer.

To derive an equation to predict the loss for a smooth plane, we first assume
that just outside the conductor there exists only a normal component of the
electric field ( �E⊥) and a tangential component of the magnetic field ( �H‖), which
are the identical boundary conditions used for perfect conductors. Following
the approach outlined by Jackson [1999], Maxwell’s equations are then used to
calculate the fields within the transition layer.

If a tangential �H‖ exists just outside the surface, the same �H‖ must exist just
inside the conductor surface. With the neglect of the displacement current, (2-33)
and (2-34) become
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∇ × �Ec + jωµ �Hc = 0 (5-31)

∇ × �Hc = �J = σ �Ec (5-32)

where �Ec and �Hc denote the field values inside the conductor. If it is assumed
that �n is the normal vector pointing outward from the conductor surface and
z is the normal coordinate inward into the conductor, the gradient operator is
∇ ≈ −�n(∂/∂z), reducing Maxwell’s equations to

�Hc = j
�n × ∂ �Ec/∂z

µω
(5-33)

�Ec = − �n × ∂ �Hc/∂z

σ
(5-34)

These equations can be solved to yield the fields inside the conductor. The first
step is to take the partial derivative of (5-34):

∂ �Ec

∂z
= − 1

σ
�n × ∂2 �Hc

∂z2
(5-35)

Next is to take the cross product of (5-33) with the unit vector,

�n × �Hc = j

µω
�n ×

(
�n × ∂ �Ec

∂z

)

so the vector identity from Appendix A can be used to simplify the math,

a × (b × c) = (a · c)b − (a · b)c

�n × �Hc = j

µω

{(
�n · ∂ �Ec

∂z

)
�n − (�n · �n)

∂ �Ec

∂z

}

where �n · ∂ �Ec/∂z = 0 because when (5-35) is substituted, the form becomes pro-

portional to �n ·
(
�n × ∂2 �Hc/∂z2

)
, which is zero. Furthermore, �n · �n = 1, yielding

n × �Hc = − j

µω

∂ �Ec

∂z

Next, equation (5-35) is substituted for ∂ �Ec/∂z, yielding

�n × �Hc = j

µω

(
1

σ
�n × ∂2 �Hc

∂z2

)

= j

µωσ

∂2

∂z2

(
�n × �Hc

)
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After rearranging the equation, we get a more manageable form:

−jµωσ
(
�n × �Hc

)
= ∂2

∂z2

(
�n × �Hc

)

Since µωσ = 2/(2/µωσ) = 2/δ2, the equation can be written in terms of the
skin depth,

−j
2

δ2

(
n × �Hc

)
= ∂2

∂z2

(
�n × �Hc

)

which yields the differential equation

∂2

∂z2

(
�n × �Hc

)
+ 2j

δ2

(
�n × �Hc

)
= 0 (5-36)

To solve (5-36), we reasonably assume that the field inside the conductor is a
function of the external applied field,

�Hc = �H||f (z) (5-37)

where f (z = 0) = 1, which says that at the surface of the conductor, �Hc = �H||.
This allows us to substitute (5-37) into (5-36) and solve the equation for f (z).

∂2

∂z2
f (z) + 2j

δ2
f (z) = 0 (5-38)

The solution to (5-38) is
f (z) = Ae−z/δe−jz/δ

where f (z = 0) = 1 = A, yielding

�Hc = �H||e−z/δe−jz/δ (5-39)

where �H|| is the tangential magnetic field applied to the surface of the conductor.
The electric field inside the conductor is calculated from (5-34):

�Ec = − �n × ∂ �Hc/∂z

σ
= − 1

σ
�n ×

(
−1

δ
(1 + j) �H||e−z/δe−jz/δ

)

= 1 + j

σδ

(
�n × �H||

)
e−z/δe−jz/δ

= (1 + j)

√
ωµ

2σ

(
�n × �H||

)
e−z/δe−jz/δ (5-40)
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Since the tangential component of the electric field must remain continuous, as
shown in equation (3-8), the electric field just outside the conductor surface can
be calculated with (5-40) evaluated at z = 0:

�E|| = (1 + j)

√
ωµ

2σ

(
�n × �H||

)
(5-41)

Section 3.2.1 says the electric field must terminate normal to a perfectly con-
ducting surface, however, equation (5-41) shows that for a good conductor, a
tangential component of �E must exist just outside the conductor . Since (5-40)
describes the electric field decaying with increasing depth z into the surface, there
must be power flow into the conductor. The time-averaged value of the Poynting
vector described in Section 2.6.1 is used to calculate the power absorbed per unit
area:

�Save = �az

(E+)2

2η
(2-121)

The intrinsic impedance (2-53) at the surface of the conductor, ηs , is calculated
with (5-37) and (5-41):

ηs(z = 0) =
�Ec

�Hc

= (1 + j)

√
ωµ

2σ
(5-42)

It is interesting to note that since
√

µω/2σ = 1/σδ, (5-42) reduces to equation
(5-28), which is the series impedance of a transmission line:

(1 + j)

√
ωµ

2σ
= (1 + j)

1

σδ

Finally, the power flow per unit area into the conductor is calculated using
equation (2-121):

�Save =

∣∣∣ �Ec

∣∣∣2
2η

= ωµ

4σ

∣∣∣ �H||
∣∣∣2
√

2σ

ωµ
= ωµ

4σ

∣∣∣ �H||
∣∣∣2
√

2σ 2

ωµσ

From (5-10), δ = √
2/ωµσ , yielding (5-43), which is the time-averaged power

absorbed by a flat conducting plane per unit area:

�Save = Pplane =
ωµδ

∣∣∣ �H||
∣∣∣2

4
W/m2 (5-43)

Equation (5-43) will allow for the solution of the resistive power losses of a good
conducting plane provided that the applied magnetic field �H|| has been solved
for the idealized case of a perfect conducting plane.
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The power loss from a plane can also be put in more intuitive form. Equation
(2-7), which is simply Ohm’s law, can be used to calculate the current density
from (5-40):

�J = σ �Ec = σ

√
µω

2σ
(1 + j)

(
�n × �H||

)
e−z/δe−jz/δ

Again, since
√

µω/2σ = 1/σδ, the equation can be rewritten as

�J = σ �Ec = 1

δ
(1 + j)

(
�n × �H||

)
e−z/δe−jz/δ (5-44)

Equation (5-44) simply says that most of the current density will be confined to
a very small thickness, as described in Section 5.1.2. Note that the cross product
in (5-44) implies that the current will flow perpendicular to the magnetic field.

To derive a more intuitive form of the power dissipated by a flat plane, it
is first necessary to define an effective surface current. If the current density
(5-44) is integrated to get the total current, an equivalent surface current can be
calculated for use in the classic time-averaged power equation P = 1

2RI 2:

�Jeff =
∫ ∞

0

�Jdz amperes (5-45)

Equation (5-45) simply calculates the total current that is decaying exponentially
into the conductor surface. To calculate the power per unit area, we make the
approximation that all the current exists on the surface and use the real part of
the surface impedance in (5-28):

Pplane = 1

2
RI 2 = 1

2σδ

∣∣∣ �Jeff

∣∣∣2 W/square (5-46)

5.3 SURFACE ROUGHNESS

To account properly for the frequency variation of Linternal and Rac, the nonideal
effects of the copper surface must be considered. The problem is that most (if not
all) commercial 2D field solvers calculate the resistance and inductance assum-
ing smooth conductors. Real copper surfaces, however, are purposely roughened
to promote adhesion to the dielectric when manufacturing printed circuit boards.
The resulting copper surfaces have a “tooth structure” as depicted in Figure 5-12.
When the tooth height is comparable to the skin depth, the smooth copper assump-
tions break down. The root-mean-square (RMS) tooth height of common copper
foils used to manufacture printed circuit boards range from approximately 0.3
to 5.8 µm, with peak heights exceeding 11 µm [Brist et al., 2005]. The skin
depth in copper at 1 GHz is about 2 µm, indicating that for many copper foils,
most of the current will be flowing in the tooth structure for multigigabit designs
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Trace

Skin depth

Ground Plane

Figure 5-12 Realistic conductors used to manufacture transmission lines exhibit a rough
surface often called the “tooth structure.” When the skin depth is similar to the tooth size,
power dissipation is increased.

[Hall et al., 2000]. Since the rough copper surface affects current flow, it will
also affect power dissipation, and thus insertion loss.

Insertion loss, which is described extensively in Chapter 9, is a common way
to measure the frequency-dependent losses in the form of a transfer function by
injecting a sinusoidal waveform at port 1 (such as the input to a transmission
line) and measuring at port 2 (such as the output). Expressed in terms of power,
the insertion loss is

S21(f ) = 20 log

√
P2(f )

P1(f )
dB

where S21 is the insertion loss in decibels, P2 is the power measured at the
output of the transmission line, and P1 is the power injected into the input of the
transmission line. Insertion loss is a convenient method to evaluate the power
loss of a transmission line. Note that the ratio of powers reduce to a ratio of
voltages when the port impedances are identical, as shown in equation (9-21),
which is why the form 20 log is used instead of 10 log to calculate the magnitude
in decibels [Hall et al., 2000].

Figure 5-13 shows the measured results of two identical transmission lines built
with rough and relatively smooth copper. The copper foil used to construct the test
boards was characterized with an optical profilometer prior to lamination yielding
an RMS tooth height of hRMS = 1.2 µm for the smoother copper and hRMS =
5.8 µm for the rough copper. Note the significant increase in insertion losses, and
therefore power losses, due to increased roughness profile. At high frequencies,
surface roughness will increase the ohmic losses of a transmission-line conductor
significantly .

5.3.1 Hammerstad Model

The traditional way to account for surface roughness losses in a transmission-line
model is to use the Hammerstad equation:

Rac = KHRs

√
f (5-47)
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Figure 5-13 Measured results of identical 7-in. transmission lines with relatively smooth
(hRMS = 1.2 µm) and rough (hRMS = 5.8 µm) copper showing how surface roughness
affects losses.

where Rs

√
f is the classic skin resistance for a smooth conductor as calculated

in (5-17) and (5-18) and KH is the Hammerstad coefficient:

KH = 1 + 2

π
arctan

[
1.4

(
hRMS

δ

)2
]

(5-48)

where hRMS is the root-mean-square value of the surface roughness height and
δ is the skin depth [Hammerstad and Jensen, 1980; Brist et al., 2005]. The
Hammerstad coefficient is used to model the extra losses caused by the copper
surfaces on a transmission line that are often purposely roughened to promote
adhesion to the dielectric.

The frequency dependence of the skin effect resistance and total inductance
using the Hammerstad correction for surface roughness is implemented with†

RH(f ) =
{

KHRs

√
f when δ < t

Rdc when δ ≥ t
(5-49a)

LH(f ) =




Lexternal + RH(f )

2πf
when δ < t

Lexternal + RH(fδ=t )

2πfδ=t

when δ ≥ t

(5-49b)

†Note that the method shown here for calculating the internal portion of the inductance (Linternal =
Rac/ω) for a rough conductor is an approximation based on the result for a smooth conductor. The
approximation will induce causality errors that tend to be small enough to ignore, so this method is
generally acceptable. For the interested reader, Appendix E derives the internal inductance using a
more rigorous approach based on the discussion in Chapter 8.
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where KH is calculated with (5-48), t is the conductor thickness, δ the skin
depth, and fδ=t the frequency where the skin depth equals the thickness of the
conductor. When the skin depth (δ) is larger than the conductor thickness, the
dc value of the resistance and low-frequency inductance where the skin depth is
equal to the conductor thickness should be used.

This approach has been shown to be accurate by comparison to vector network
analyzer measurements of insertion loss for copper surface roughness profiles less
than approximately 2 µm (RMS). Figure 5-14 shows the accuracy of the Ham-
merstad model by comparing measured transmission-line structures constructed
with relatively smooth and very rough copper to simulations using (5-49). Notice
that the Hammerstad model is considerably less accurate for the rough copper
case for frequencies greater than about 5 GHz.

To understand why the accuracy breaks down for some copper types, it is
useful to explore the assumptions behind (5-48), which assumes a 2D corrugated
surface similar to that shown in Figure 5-15 [Pytel, 2007]. The first published
work providing a theoretical investigation into the power loss from copper rough-
ness was in 1948 by Samuel Morgan (Bell Laboratories), who studied the effects
up to 10 GHz providing loss equations for current flow transverse and parallel
to corrugated structures similar to that depicted in Figure 5-15. He concluded

Measurement
Hammerstad Model
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Figure 5-14 Example of the Hammerstad model accuracy for (a) relatively smooth
(hRMS = 1.2 µm) and (b) rough (hRMS = 5.8 µm) copper foils; 7-in. microstrip line.
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Figure 5-15 Two-dimensional corrugated surface assumption behind the Hammerstad
equation.
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that power loss is proportional to the surface area of the roughness structure,
current flow transverse to the corrugated surface could increase the power losses
by 100%, and current flow parallel to the grooves increases losses by about 30%.
In 1975, a Norwegian scientist named Erik Hammerstad used Morgan’s work to
fit the data to an arctan function, producing the Hammerstad equation shown in
(5-48), which became the standard equation in industry to account for the effects
of surface roughness [Pytel, 2007]. The model assumes that at high frequencies,
when the skin depth becomes small compared to the tooth height, the current
will begin to follow the contour of the corrugated surface, which will increase
the losses.

To understand why the Hammerstad equation breaks down for some rough-
ness profiles, the surfaces of relatively smooth and rough copper surfaces were
measured using an optical profilometer. The surface shown in Figure 5-16a [Hall
et al., 2007] can be described as corrugated with sparse protrusions on the sur-
face, suggesting that the Hammerstad equation (5-48) might be adequate for
approximating the surface roughness losses for a transmission line manufactured
with this copper foil. Figure 5-14a depicts a measurement of a transmission line
that was constructed with the copper foil depicted in Figure 5-16a compared to
a model created using (5-47) and (5-48). Note that the model and measurement

(a)

(b)

Figure 5-16 Surface profile measurement of (a) relatively smooth and (b) rough copper
foil used to construct PCBs.



SURFACE ROUGHNESS 227

correlate very nicely until about 15 GHz, indicating that the Hammerstad model
is adequate to model the losses for this case.

Conversely, Figure 5-16b depicts an optical profilometer measurement of
a very rough copper foil. Note the significant difference between the corru-
gated surface assumed by the Hammerstad equation and the surface depicted
in Figure 5-16b, suggesting that (5-48) will not work well for this type of 3D
surface profile. Figure 5-14b depicts the measurement of a transmission line con-
structed with the rough copper sample shown in Figure 5-16b compared to a
model created with (5-47) and (5-48). Note that the accuracy breaks down after
about 5 GHz, indicating that an alternative modeling methodology is needed for
losses induced by this surface profile.

Example 5-3 Assuming the transmission line in Example 5-2, calculate the
frequency where surface roughness begins to affect the losses for an RMS tooth
height of 1.8 µm, calculate the ac resistance and total inductance at an operating
frequency of 2 GHz, and determine how surface roughness changes the resistance
and inductance compared to the smooth case.

SOLUTION

Step 1: To determine the approximate frequency where the surface roughness
will begin to affect the ac losses, the skin depth must be set equal to the RMS
roughness height, and the frequency is calculated using (5-10):

fr = 2

2πσµ0(1.8 × 10−6)2
= 1.34 × 109 Hz

Since this is close to the operating frequency of 2 GHz, the surface roughness
will be significant and cannot be ignored. Note that the roughness will influence
the losses at frequencies below fr ; however, if fr � f , the surface roughness
will have no significant effect, and it can be ignored.

Step 2: Calculate the ac resistance at 2 GHz using (5-47) and (5-48).
The ac resistance at 2 GHz for a smooth surface was calculated in
Example 5-2.

R = KHRs

√
f = KH

√
πµ0f

σ

(
1

w
+ 1

6h

)
= KH · 4.86 
/in.

Since the RMS roughness height is less than 2 µm, (5-48) is suitable to correct
the smooth formula to estimate the extra losses due to the rough surface.

δ(2 GHz) =
√

2

2πf µ0σ
≈ 1.41 µm
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KH = 1 + 2

π
arctan

[
1.4

(
1.8 × 10−6

1.41 × 10−6

)2
]

= 1.73

Therefore, the ac resistance including the surface roughness is

R = KH · 4.86 
/in. = (1.73)(4.86) = 8.4 
/in.

Step 3: Calculate the internal inductance using (5-30).

Linternal = Rac

ω
= 8.4 
/in.

2π(2 × 109 Hz)
= 0.669 nH/in.

Step 4: Calculate the total inductance using (5-20), where Lexternal is as cal-
culated in Example 5-2.

Ltotal = Linternal + Lexternal = 8.03 + 0.669 = 8.7 nH/in.

Step 5: Compare the values to the smooth case in Example 5-2. Note that
the surface roughness increases the resistance and internal portion of the induc-
tance significantly compared to the identical values for a smooth conductor from
Example 5-2.

Smooth conductor Ltotal = 8.42 nH/in. Rac = 4.86 
/in.
Rough conductor (hRMS = 1.8 µm) Ltotal = 8.7 nH/in. Rac = 8.4 
/in.

5.3.2 Hemispherical Model

The rough surface depicted in Figure 5-16b can be characterized as random
protrusions sitting on a flat plane, which precludes rigorous derivation of an
analytical formula to calculate the extra losses due to current flowing in the
tooth structure. Subsequently, for the rough copper, an approximation of the
tooth structure is required so that an analytical solution can be derived. As a first
approximation, a hemispherical boss sitting on a plane can be used to represent
the individual surface protrusions as shown in Figure 5-17 [Hall et al., 2007].
The complete surface is modeled using N hemispheres randomly distributed on
a flat plane. A TEM (transverse electromagnetic) wave is assumed incident on
the hemisphere at a grazing angle of 90◦ with respect to the flat plane and with
the H field (the magnetic field intensity) tangential to the surrounding plane
as shown in Figure 5-17. To find the power dissipated by the structure, the
absorption and scattering of the incident TEM wave on the hemisphere must be
calculated. The problem of scattering of a plane wave from the hemispherical
protrusion on the flat surface can be approximated using superposition. First the
power losses of a sphere are calculated and then divided in half because the
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Figure 5-17 Simplified hemispherical shape approximating a single surface protrusion:
top and side views; current direction and applied TEM field orientations shown.

structure is a hemisphere, and then the power loss of the flat plane surrounding
the hemisphere is calculated. The total power dissipated is then calculated simply
by adding the results.

For a good conducting protrusion (as opposed to a perfect electrical conductor
protrusion) a plane electromagnetic wave incident on a conducting sphere will
be partly scattered and partly absorbed. The total power scattered and absorbed
from a sphere divided by the incident flux is known as the total cross section
and is calculated by Jackson [1999] (with units of square meters) as

σtot = − π

k2

∑
m

(2m + 1) Re[α(m) + β(m)] (5-50)

where k = 2π/λ, λ = c/f
√

ε′, c is the speed of light, and the scattering coeffi-
cients are approximated assuming that kr � 1, where r is the sphere radius, and
are given by [Jackson, 1999]

α(1) = −2j

3
(kr)3

1 − (δ/r)(1 + j)

1 + (δ/2r)(1 + j)
(5-51a)

β(1) = −2j

3
(kr)3

1 − (4j/k2rδ)[1/(1 − j)]

1 + (2j/k2rδ)[1/(1 − j)]
(5-51b)
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The Poynting vector, which was described in Section 2.6, gives the power of an
electromagnetic wave in units of watts per square meter:

| �S| =
∣∣∣ 12 Re( �E0 × �H ∗

0 )

∣∣∣ = 1
2η|H0|2 (5-52)

Subsequently, the total power absorbed or scattered is calculated by multiplying
(5-50) and (5-52) and dividing by 2 so the results are for that of a hemisphere:

Phemisphere = 1

2

(
1

2
η|H0|2σtot

)
= −Re

[
1

4
η|H0|2 3π

k2
(α(1) + β(1))

]
(5-53)

where η = √
µ0/ε0ε

′ and H0 is the magnitude of the applied magnetic field. Note
that reasonable accuracy (at least up to 30 GHz) can be obtained when only the
first term (m = 1) in (5-50) is considered when calculating (5-53).

Equation (5-53) calculates the power loss of a hemisphere. Now, the
losses of the flat plane surrounding the protrusion must be accounted for.
The time-averaged power absorbed by a flat conducting plane per unit area is
calculated from equation (5-43):

dPplane

da
= µ0 ωδ

4
|H0|2 (5-54)

To approximate the losses of a single hemispherical boss sitting on a flat plane
of finite conductivity, the power loss of the hemisphere is added to the loss of
the plane less the base area of the hemisphere:

Ptot =
∣∣∣∣−Re

[
1

4
η|H0|2 3π

2k2
(α(1) + β(1))

]∣∣∣∣+ µ0 ωδ

4
|H0|2(Atile − Abase)

(5-55)
where Atile is the tile area of the plane surrounding the protrusion (see Figure
5-17) and Abase is the base area of the hemisphere. Note that (5-55) is an approx-
imation because it assumes that the magnetic field (H0) on the tile is not affected
by the presence of the hemisphere and the loss of the surrounding plane is simply
a function of the area.

To gain an intuitive understanding of how a propagating electromagnetic wave
behaves in the presence of a protrusion, it is useful to observe the fields and solve
for the surface currents on a PEC (perfect electrical conducting) sphere, which is
a good approximation of how the current will flow at very high frequencies when
the skin depth is small compared to the sphere. In Section 3.2.1 the boundary
conditions for a PEC were described; the electric field must emanate from and
terminate normal to a perfectly conducting surface, and the magnetic field must be
tangential to the conductor surface. First consider Figure 5-18a, which depicts the
front cross-sectional view of a hemispherical protrusion sitting on a conducting
plane where the current flow is out of the page. Note that the electric fields are
drawn perpendicular to the conductor surface and the magnetic fields are tangent
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Figure 5-18 (a) Front view of fields and current showing the normal electric field and
tangential magnetic field; (b) current streamlines flowing over the top of a single surface
protrusion.

to the surface. Figure 5-18b shows the top view of the same protrusion with
the current flowing from the left to the right. If TEM is assumed, the magnetic
field will be perpendicular to the electric field as described is Section 2.3.2.
The magnetic field intensity lines depicted in Figure 5-18b are those near the
surface of the plane and not on the sphere. Note that these fields bend around
the protrusion because they must satisfy the boundary conditions and remain
tangent to the PEC hemisphere. Furthermore, equation (5-44) says that lines of
constant magnetic field intensity are orthogonal to the lines of surface current
flow, indicating that if the magnetic field bends around the hemisphere, an area
of low current density perpendicular to the current flow will be induced. The
surface current density on the hemisphere (Jeff) (in A/m2) can be derived by
defining the magnetic field in terms of a magnetic scalar potential [Orlando and
Delin, 1991; Huray et al., 2007; Huray, 2008]:

Jeff = −Re
( 3

2H0 sin θmejωt
)

(5-56)

where θm is the angle between the applied magnetic field and the current flow
(see Figure 5-17). If the uniform current streamlines on the plane are matched
with those calculated with (5-56), the influence of a hemisphere sitting on a plane
can be observed. Figure 5-18b depicts how current will flow in the presence of a
spherical protrusion. Note that the current on the flat portion of the plane is drawn
toward the protrusion with the highest density on the top and minimal current
density on the side perpendicular to the current flow. The current crowding at the
top of the protrusion effectively decreases the area where current flows, increases
the path length, and thus helps explain the physical mechanisms that cause extra
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losses on a rough surface. It also appears to support Morgan’s claim that the
surface area is the key factor to surface roughness losses.

To calculate a new correction factor for use in (5-47), the ratio of the power
absorbed with and without a good conducting protrusion present must be derived.
This is accomplished simply by dividing (5-55) by (5-54):

Ptot

Pplane
= Ks

=
∣∣Re

[ 1
4η|H0|2(3π/k2)(α(1) + β(1))

]∣∣+ (µ0 ωδ/4)|H0|2(Atile − Abase)

µ0 ωδ

4 |H0|2Atile

This equation can be simplified to eliminate the variable of the magnetic field,
yielding

Ks =
∣∣Re

[
η(3π/4k2)(α(1) + β(1))

]∣∣+ (µ0 ωδ/4)(Atile − Abase)

(µ0ωδ/4)Atile
(5-57)

Note that (5-57) becomes invalid when the skin depth is greater than the surface
protrusion height. At these frequencies the power dissipated by a flat plane with an
area equal to the base of the protrusion will be greater than the power dissipated
by the protrusion. Subsequently, a knee frequency can be defined when Ks = 1,
where the roughness begins to affect the losses significantly. Below the knee
frequency, the correction factor, Ks , is unity. Subsequently, implementation of
this correction factor is shown as

Khemi =
{

1 when Ks ≤ 1

Ks when Ks > 1
(5-58)

To implement (5-58) accurately, the surface shown in Figure 5-16b must some-
how be represented by equivalent hemispheres. The additional surface area of
simple hemisphere bosses are insufficient to account for the measured surface
roughness losses. This is not surprising when one compares the additional hemi-
sphere model area to the 3D surface of the rough copper sample shown in
Figure 5-16b. To account for additional surface area the root mean square (RMS)
volume of the rough surface must be calculated, and volume equivalent hemi-
spheres are created to determine Abase. The RMS distance between peaks in the
roughness profile is used to calculate the tile area, Atile. To obtain these input
parameters, the surface is measured using a profilometer, as shown in Figure
5-19. To facilitate the volume equivalent model, the tooth shape is approximated
as one-half of a prolate spheroid instead of a hemisphere, because it more closely
resembles the shape of the protrusion. A prolate spheroid is a surface of revo-
lution obtained by rotating an ellipse about its major axis. A symmetrical egg
(i.e., with the same shape at both ends) would approximate a prolate spheroid
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Figure 5-19 Example of a surface profilometer measurement of a rough copper sample
showing peak heights that range from 0.7 to 8.5 µm. The flat surface is assumed to be at
0.5 µm.

[Mathworld, n.d.]. The spheroid volume is in turn equal to one-half the volume
of a sphere to calculate the radius of a hemisphere with the same volume as the
hemispheroid-shaped surface protrusion:

re = 3

√
htooth

(
bbase

2

)2

(5-59)

where bbase is the tooth base width, htooth the tooth height, and re the radius of
a hemisphere with equivalent tooth volume. The base area of the hemisphere,
Abase, is then calculated:

Abase = π

(
bbase

2

)2

(5-60)

The square tile area of the surrounding flat plane is calculated based on the
distance between peaks:

Atile = d2
peaks (5-61)

If the RMS values of dpeaks, htooth, and bbase values are calculated, the surface
shown in Figure 5-16b and measured in Figure 5-19 can be represented as the
equivalent surface in Figure 5-20.

A comparison between the correction factor calculated from the Hammerstad
model (5-48) and the hemispherical model (5-58) with the modified equivalent
volume is shown in Figure 5-21. Note that the hemisphere model saturates at
a much higher value than Hammerstad, which will always saturate at a value
of 2. The implementation shown in (5-58) causes a nonphysical discontinuity
at the frequency where the model transitions from dc to ac behavior, which is
the point where the surface of the flat plane with an area equal to the base
of the hemisphere has more loss than the hemisphere. Some engineers may
be concerned that the discontinuity may induce nonphysical glitches into the
time-domain responses. However, simulations of pulses as fast as 30 Gb/s were
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Figure 5-20 Equivalent surface represented by hemispheres with the same RMS volume
as that of the measured surface profile.
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Figure 5-21 Hammerstad correction factor (5-48) compared to the hemisphere model
(5-58). RMS roughness: hRMS = 5.8 µm, dpeaks,RMS = 9.4 µm.

performed using this method in HSPICE and Nexxim with no apparent nonphys-
ical aberrations observed.

The frequency dependence of the skin effect resistance and total inductance
using the hemisphere correction for surface roughness is implemented with
(5-62a) and (5-62b).† When the skin depth δ is larger than the conductor
thickness (which includes the roughness profile), the dc value of the resistance
and low-frequency inductance where the skin depth is equal to the total
conductor thickness should be used:

†Just as with equation (5.49b), the method shown here for calculating the internal portion of the
inductance (Linternal = Rac/ω) for a rough conductor is an approximation based on the result for a
smooth conductor. The approximation will induce causality errors that tend to be small enough to
ignore, so this method is generally acceptable. Appendix E derives the internal inductance using a
more rigorous approach based on the discussion in Chapter 8.
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Figure 5-22 Accuracy of the hemisphere surface roughness model (5-58); 7 in.
microstrip; εr/ tan δ = 3.9/0.0073 at 1 GHz; RMS roughness of copper foil
hRMS = 5.8 µm, dpeaks,RMS = 9.4 µm. (Adapted from Hall et al. [2007].)

Rhemi(f ) =
{

KhemiRs

√
f when δ < t

Rdc when δ ≥ t
(5-62a)

Lhemi(f ) =




Lexternal + Rhemi(f )

2πf
when δ < t

Lexternal + Rhemi(fδ=t )

2πfδ=t

when δ ≥ t

(5-62b)

where Khemi is calculated with (5-58), t is the conductor thickness, δ is the skin
depth, and fδ=t is the frequency where the skin depth equals the thickness of the
conductor.

Figure 5-22 depicts the accuracy of the hemisphere model for very rough
copper. The small deviation that occurs between the model and the measurement
in Figure 5-22 is because (5-57) essentially uses superposition to combine the
losses of the tile and protrusion and does not account for the interaction between
the hemisphere and the plane. Consequently, the formula is very accurate (1) at
low frequencies where the skin depth is large compared to the protrusion and
the loss is due primarily to the plane, and (2) at high frequencies where the
skin depth is small compared to the protrusion and the loss is due primarily to
the roughness. At intermediate frequencies, where the skin depth is on the same
order as the roughness height, an error is introduced. Additionally, the roughness
shape was approximated with a spheroid and the interactions between spheres
were neglected. Nonetheless, for very rough copper surfaces, Figure 5-22 shows
that the methodology produces very reasonable accuracy over a wide bandwidth
with a simple, easy-to-use formula. More important, it provides valuable intuition
into the mechanisms that cause surface roughness losses.

Note that the method of calculating the surface roughness correction factor
K should be chosen carefully. If relatively smooth copper is being used, with
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a RMS value of the surface roughness less than about 2 µm, Hammerstad’s
formula (5-48) has been shown to adequately approximate the surface roughness
losses. However, for very rough copper (which is often preferred by PCB vendors
due to its decreased tendency of delaminating), equation (5-58) using equivalent
volume hemispheres will approximate the surface roughness losses with more
accuracy.

Example 5-4 Calculate the surface roughness correction factor of the microstrip
transmission line in Example 5-2 at 5 GHz. The RMS value of the tooth height
htooth = 5.8 µm, the RMS base width of the tooth structures is bbase = 9.4 µm,
and the distance between peaks dpeaks = 9.4 µm.

SOLUTION

Step 1: Use equations (5-59) through (5-61) to calculate a sphere with the
same volume as a spheroid-shaped surface protrusion:

re = 3

√
htooth

(
bbase

2

)2

= 5 µm

Abase = π

(
bbase

2

)2

= 69.4 µm2

Atile = d2
peaks = 88.4 µm2

Note that the diameter of the equivalent volume hemisphere (10 µm) is actually
larger than the edge length of the tile (9.4 µm), meaning that the hemispheres
will overlap. This is not a concern since it is understood that the surface rough-
ness shape is not hemispherical in nature and the shape of the protrusion is
assumed to be a spheroid. However, the equivalent volume hemisphere allows
for a much simpler solution to the electromagnetic fields without sacrificing much
accuracy.

Step 2: Use (5-57) to calculate the correction factor at 5 GHz. To calculate
the intrinsic impedance η = √

µ0/ε0ε
′, the value of the dielectric permittivity

directly under the rough surface should be used and not the effective value for
the microstrip as calculated in Example 5-2.

η =
√

µ0

ε0ε
′ = 377√

ε′ = 377√
4

= 188.5 


δ(5 GHz) =
√

2

2πf µ0σ
≈ 0.935 µm
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λ = c

f
√

ε′ = 3 × 108

5 × 109
√

4
= 0.03 m

k = 2π

λ
= 209.3 m−1

α(1) = −2j

3
(kre)

3 1 − (δ/re)(1 + j)

1 + (δ/2re)(1 + j)

= −2j

3
[209.3(5 × 10−6)]3




1 − 0.935 × 10−6

5 × 10−6
(1 + j)

1 + 0.935 × 10−6

2 · 5 × 10−6
(1 + j)




= −j0.764 × 10−9
[

1 − 0.187(1 + j)

1 + 0.0935(1 + j)

]

= −1.78 × 10−10 − j5.53 × 10−10

For this example, it can be shown that β(1) is negligible, so it is ignored.

Ks =
∣∣Re

[
η(3π/4k2)α(1)

]∣∣+ (µ0ωδ/4)(Atile − Abase)

(µ0ωδ/4)Atile

= 1.8 × 10−12 + 1.75 × 10−13

8.15 × 10−13
= 2.42

In this case, the series resistance of a transmission line manufactured with a cop-
per conductor with this roughness profile would be approximately 2.42 times
as high at 5 GHz as the same transmission line constructed with a smooth
conductor.

5.3.3 Huray Model

In 2006 at the University of South Carolina, Paul G. Huray was researching new
wideband modeling techniques for surface roughness that would provide better
accuracy than both the Hammerstad and hemisphere models. Upon observation
of scanning electron microscope (SEM) photographs of copper foil samples used
to manufacture printed circuit boards (PCBs), he observed that the structures
appeared to be constructed of conducting “snowballs,” as shown in Figure 5-23.
Subsequently, he formed a material and physical basis of a theoretical model that
is composed of a distribution of spherical shapes [Olufemi, 2007; Hurray, 2009].

Printed circuit boards are a “stackup” of layers of copper conductors and inter-
vening layers of an insulating propagating medium such as FR4 joined under heat
and pressure. To assure that the copper sheets do not delaminate from the dielec-
tric layers, manufacturers typically electrodeposit an additional surface layer of
copper on a relatively smooth copper foil that creates irregular features as large as
11 µm, to promote good adhesion. The electroplated copper produces a surface



238 NONIDEAL CONDUCTOR MODELS

Figure 5-23 SEM photograph of rough copper at 5000× magnification at a 30◦ angle.

roughness profile that can be described as spherical particles, joined together in
a network to form a distorted surface, as shown in Figure 5-24. An individual
snowball is located a distance xi below a flat copper surface, has radius ai , and,
when it experiences an external electromagnetic field intensity, as it would in
the region below the copper trace when a signal is propagating on a transmis-
sion line, it will dissipate power similar to the hemisphere described in equation

xi

Electrodeposited
copper spheres

ai

Flat Copper Plane

Figure 5-24 Cross section of a distribution of copper spheres that create a 3D rough
surface in the form of copper “pyramids” on a flat conductor.
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(5-53) with twice the magnitude since it is a whole sphere:

Psphere = 1

2
η|H0|2σtot = −Re

[
1

2
η|H0|2 3π

k2
(α(1) + β(1))

]
(5-63)

For a distribution of copper spheres such as the pyramidal configuration that cre-
ates 3D copper roughness profiles shown in Figures 5-23 and 5-24, superposition
of the sphere losses can be used to calculate the total losses of the structure
[Olufemi, 2007; Huray, 2009]. Since roughness losses are proportional to the
surface area of the tooth structure, the number and size of the spheres can be
chosen to approximate the surface roughness correction factor very accurately. To
do this, the general tooth shape must be approximated, the average snowball size
must be measured, and the number of spheres that correspond to the surface area
of the protrusion must be calculated. If SEM photographs are analyzed exten-
sively, it may be possible to build a model with multiple snowball sizes that very
closely replicated the actual tooth shape. However, since electron microscopes
are typically not available, profilometers will provide approximate tooth shapes,
and a reasonable model can be constructed.

The total power dissipated by the tooth structure is simply the sum of the
power dissipated from the total number of spheres (N ) required to replicate the
surface area of the tooth structure:

PN,spheres = −
N∑

n=1

Re

[
1

2
η|H0|2 3π

k2
(α(1) + β(1))

]
n

(5-64)

where α(1) and β(1) are calculated with (5-51a) and (5-51b),η = √
µ0/ε0ε

′, and
H0 is the magnitude of the applied magnetic field.

To calculate a new surface roughness correction factor for use in (5-47), the
ratio of the power absorbed with and without surface roughness must be derived
using (5-65) and (5-54):

KHuray = Pflat + PN,spheres

Pflat

= (µ0ωδ/4)Atile +∑N
n=1 Re

[ 1
2η(3π/k2)(α(1) + β(1))

]
n

(µ0ωδ/4)Atile
(5-65)

To calculate the total number of spheres (N ) needed to represent the surface area
of the roughness profile, it is useful to choose a geometric shape that resem-
bles a typical tooth. If one-half of a spheroid (a hemispheroid) is chosen as the
approximate tooth shape, laboratory data indicate that reasonable accuracy can
be obtained. However, the SEM photograph in Figure 5-23 clearly shows that a
spheroid is only an approximation because the real tooth shape has more surface
area. Consequently, this assumption is expected to slightly underpredict the sur-
face roughness losses at high frequencies. A detailed statistical analysis of the
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SEM photograph could provide a more accurate representation of the specific size
and number of spheres; however, the spheroid assumption produces reasonable
results compared to measured surfaces.

To construct a Huray surface roughness model, the surface is measured as
in Figure 5-19 and the RMS values of bbase and htooth are calculated. Next, the
surface area of a hemispheroid is calculated with a base bbase and a height htooth.
An appropriate snowball radius is chosen (usually between 0.5 and 1 µm), and
the total number of copper spheres (N ) are calculated so that the total surface
area of all N spheres is equal to that of the hemispheroid constructed using the
RMS values measured with the profilometer. The procedure is demonstrated with
the following example.

Example 5-5 Calculate the surface roughness correction factor using the Huray
equation at 5 GHz. The RMS value of the tooth height htooth = 5.8 µm, the RMS
base width of the tooth structures bbase = 9.4 µm, and the distance between peaks
dpeaks = 9.4 µm.

SOLUTION

Step 1: Calculate the number of spheres required. If profiliometer measure-
ments indicate that the RMS value of the tooth height htooth = 5.8 µm with
an RMS spacing between protrusions of bbase = 9.4 µm and the tooth shape is
approximated as a hemispheroid, the number of spheres can be calculated. The
lateral surface area of a hemispheroid is given by

Alat = πhtooth
bbase

2


htooth

arcsin
(√

1 − (bbase/2)2/(htooth)2
)

√
1 − (bbase/2)2

(htooth)2

+ bbase

2




Plugging in the values for bbase and htooth yields the surface area:

Alat = 161 µm2

Assuming a 0.8-µm sphere radius, the surface area of a single sphere is calcu-
lated:

Asphere = 4πa2 = 8 µm2

The number of spheres that would have the same surface area as the hemi-
spheroid is

Alat

Asphere
= 161

8
= 20.125

Step 2: Calculate the correction factor at 5 GHz. Since the peak–peak distance
is 9.4 µm, Atile = (9.4 µm)2 is chosen for the tile area. However, any tile size
could be used as long as the total number of spheres that equals the surface area of
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the profile within the tile size is calculated. The sphere radius a = 0.8 µm. From
Example 5-4, k = 209.3 m−1, η = √

µ0/ε0ε′ = 377/
√

ε′ = 377/
√

4 = 188.5 
,
and δ(5 GHz) = √

2/2πf µ0σ ≈ 0.935 µm.
The scattering coefficient is calculated from equation (5-51a). For this

example, it can be shown that β(1) is negligible, so it is ignored.

α(1) = −2j

3
(ka)3

1 − (δ/a)(1 + j)

1 + (δ/2a)(1 + j)

= −2j

3
[209.3(0.8 × 10−6)]3




1 − 0.935 × 10−6

0.8 × 10−6
(1 + j)

1 + 0.935 × 10−6

2 · 0.8 × 10−6
(1 + j)




= −1.93 × 10−12 − j1.05 × 10−12

The Huray surface roughness correction factor is calculated with (5-66) at 5 GHz:

KHuray = Pflat + PN spheres

Pflat

= (µ0ωδ/4)Atile +∑N
n=1 Re

[ 1
2η(3π/k2)(α(1) + β(1))

]
n

(µ0ωδ/4)Atile

= (µ0ωδ/4)Atile + 20 Re
[ 1

2η(3π/k2)α(1)
]

(µ0ωδ/4)Atile

= 8.15 × 10−13 + 7.8 × 10−13

8.15 × 10−13
= 1.95

Therefore, the Huray model predicts that the series resistance of a transmission
line manufactured according to the roughness profile defined above would be
approximately 1.95 times higher than the same transmission line constructed
with a smooth conductor at a frequency of 5 GHz.

Figure 5-25 shows a comparison of the insertion losses of a transmission line
constructed with rough copper modeled using the Huray equation compared to
measured results. Note that the Huray model correctly predicts the shape of the
insertion loss curve with less than 1.5 dB of error at 30 GHz. Simulations show
that if 23 spheres are used in this example, the model fits the measured results
almost exactly [Olufemi, 2007]. However, aside from detailed statistical analysis
of the SEM photographs, there is no known deterministic methodology to arrive
at the perfect fit. The methodology presented allows the use of a profilometer
and produces reasonable wideband results.

Figure 5-26 shows the Huray equation (5-65) constructed with twenty 0.8-µm
spheres as calculated in Example 5-5, compared to the Hammerstad and hemi-
sphere models for the roughness profile assumed in Examples 5-4 and 5-5. Note
that the Hammerstad equation saturates at 2, which does not provide enough loss
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Figure 5-25 Accuracy of the Huray surface roughness model (5-65) constructed with
N = 20 spheres with a radius of a = 0.8 µm, assuming a hemispheroid tooth shape;
7-in. microstrip; εr/ tan δ = 3.9/0.0073 at 1 GHz; RMS roughness of copper foil
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Figure 5-26 Surface roughness correction factors for rough copper; Huray model
(5-65), hemisphere model (5-58), and Hammerstad model (5-48); RMS roughness:
hRMS = 5.8 µm, dpeaks,RMS = 9.4 µm.

for rough copper. The hemisphere model overpredicts at middle frequencies and
slightly underpredicts at high frequencies. As demonstrated by Figure 5-25, a
properly constructed Huray model predicts a realistic correction curve.

The frequency dependence of the skin effect resistance and total inductance
using the Huray equation for surface roughness is implemented with (5-66a) and
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(5-66b).∗ When the skin depth (δ) is larger than the conductor thickness, the dc
value of the resistance and low-frequency inductance where the skin depth is
equal to the conductor thickness should be used:

RHuray(f ) =
{
KHurayRs

√
f when δ < t

Rdc when δ ≥ t
(5-66a)

LHuray(f ) =




Lexternal + RHuray(f )

2πf
when δ < t

Lexternal + RHuray(fδ=t )

2πfδ=t

when δ ≥ t

(5-66b)

where KHuray is calculated with (5-65), t is the conductor thickness, δ is the skin
depth, and fδ=t is the frequency where the skin depth equals the thickness of the
conductor.

5.3.4 Conclusions

For rough copper, Figure 5-14b shows that the Hammerstad model slightly
overpredicts surface roughness losses at low frequencies and significantly under-
predicts losses at high frequencies. However, Figure 5-14a shows that the Ham-
merstad method works well for copper profiles that are relatively smooth with a
corrugated surface profile. The Hammerstad model should be used only for RMS
copper roughness profiles less than about 2 µm.

The hemisphere model is an improvement over Hammerstad for rough cop-
per but still overpredicts the losses at middle frequencies and underpredicts the
losses at high frequencies, which causes the “belly” in the simulated results in
Figure 5-22. The major benefit gained by studying the hemisphere model is a
physical understanding of how the fields and surface currents behave in the pres-
ence of a protrusion. The hemisphere is the simplest geometry that can be solved
analytically to predict the impact of a rough surface compared to a smooth sur-
face. Furthermore, the hemisphere model is not appropriate for smoother copper
profiles that are corrugated in nature. The hemisphere model is valid only for
copper profiles that can be characterized by a distribution of distinct protrusions,
such as the surfaces shown in Figures 5-16b and 5-23.

The Huray approach is the most diverse and accurate modeling methodology
for surface roughness. It can be used for any type of copper as long as a detailed
image of the surface profile can be obtained with a profilometer or a scanning
electron microscope. The surface area of the roughness profile prior to lamination
must be determined, and the number of appropriately sized spheres less than 1µm

∗Just as with equations (5.49b) and (5.62b), the method shown here for calculating the internal
portion of the inductance (Linternal = Rac/ω) for a rough conductor is an approximation based on the
result for a smooth conductor. The approximation will induce causality errors that tend to be small
enough to ignore, so this method is generally acceptable. Appendix E derives the internal inductance
using a more rigorous approach based on the discussion in Chapter 8.
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in radius must be calculated so that the total surface area is equal to that of the
roughness profile.

5.4 TRANSMISSION-LINE PARAMETERS FOR NONIDEAL
CONDUCTORS

As bus data rates increase and physical implementations of high-speed digi-
tal designs shrink, the transmission-line losses become more important. Con-
sequently, the engineer must have the ability to calculate the response of a
transmission line successfully and account for realistic conductor behavior. The
next two sections will (1) describe how to include ac resistance and internal
inductance in an equivalent circuit, and (2) modify telegrapher’s equations to
comprehend realistic conductors.

5.4.1 Equivalent Circuit, Impedance, and Propagation Constant

In deriving the equivalent circuit for a transmission line in Section 3.2.3, which
is shown in Figure 3-9, the conductor was considered to be infinitely conductive,
meaning that all the current flows only on the surface because the skin depth
δ = 0, as shown by taking the limit of (5-10):

limσ→∞[δ] = limσ→∞

[√
2

ωµσ

]
= 0

Furthermore, the assumption of perfect conductors did not allow the calculation
of a resistive term or an internal inductance term because there was no field pen-
etration into the conductor. As described in Section 5.1.2, physical conductors
manufactured with metals of finite (although good) conductivity behave very
similar to perfect conductors except for a small transition region where inter-
nal currents exist that are mostly confined to a few skin depths. As described
in Sections 5.2.2 and 5.2.3, the skin effect leads directly to frequency-dependent
resistance and internal inductance terms that must be comprehended in the equiv-
alent circuit.

Fortunately, the form of the equivalent circuit derived in Section 3.3 is also
applicable to a line whose conductors have finite conductivity. To begin this
derivation, the series impedance of an ideal transmission line with infinite con-
ductivity is calculated in units of ohms.

�Zexternal = jωLexternal (5-67)

The idealized parameters must be modified to include the surface impedance
(also known as the internal impedance):

�Zs = Rac + jωLinternal (5-29)
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The total inductance was calculated in (5-20):

Ltotal = Linternal + Lexternal (5-20)

indicating that the series impedance contribution from the inductance is
simply jω(Linternal + Lexternal). To calculate the total series impedance of a
transmission-line segment, the resistive component is added:

Zseries = Rac + jω(Linternal + Lexternal)

= Rac + jωLtotal ohms (5-68)

leading to the equivalent circuit for a transmission line with a conductor of finite
conductivity, as shown in Figure 5-27, where Ns is the number of segments,
C�z = �z C and L�z = �z Ltotal, as calculated in Section 3.2.3, and R�z =
�z Rac, where �z is the length of the differential section of transmission line
and C, Ltotal, and Rac are the capacitance, inductance, and resistance per unit
length.

The characteristic impedance, which was defined in equation (3-33), can be
calculated by dividing the series impedance as defined by (5-68) by the parallel
admittance of the capacitance, Yshunt = jωC, for a short section of transmission
line of length �z.

Z0 =
√

Zseries

Yshunt
=
√

RAC + jωLtotal

jωC
ohms (5-69)

Note that the units in (5-69) are
√

ohms/(1/ohms) =
√

(ohms)2 = ohms.
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Figure 5-27 (a) Model for a differential element of a transmission line; (b) full model.
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The propagation constant can be derived by inserting the complex values of
the series impedance and shunt admittance into the loss-free formula that was
derived in Section 3.2.4, which takes the form

γ = α + jβ = 0 + jω
√

LC =
√

(jωL)(jωC) =
√

ZlosslessYlossless

Substitution of Zseries and Yshunt in place of the loss-free values of the series
impedance and the parallel admittance yields the propagation constant for a
transmission line with an ideal dielectric and a conductor with a finite con-
ductivity, as shown in

γ = α + jβ =
√

ZseriesYshunt =
√

(RAC + jωLtotal)jωC (5-70)

Equations (5-69) and (5-70) account for realistic conductor effects, such as skin
effect resistance, internal inductance, and surface roughness, as outlined through-
out this chapter.

5.4.2 Telegrapher’s Equations for a Real Conductor and a Perfect Dielectric

The time-harmonic forms of the telegrapher’s equations for a transmission line
with a perfect dielectric and perfect conductor were shown in equations (3-25)
and (3-26):

dv(z)

dz
= −jωLi(z) (3-25)

di(z)

dz
= −jωCv(z) (3-26)

To adjust these formulas to account for a realistic conductor with a finite con-
ductivity, the equivalent circuit must be observed. Notice that the right-hand side
of equation (3-25) is simply the impedance of an inductor. Therefore, the series
impedance of a differential slice of an ideal transmission line of length dz is
based on external inductance since a perfect conductor has infinite conductivity.
To account for the realistic conductor effects, the series impedance of a realistic
conductor as defined in equation (5-68) is simply substituted into the right hand
of (3-25):

dv(z)

dz
= −[Rac + jω(Linternal + Lexternal)]i(z) (5-71)

Consequently, the classic form of the telegrapher’s equations for a perfectly insu-
lating dielectric and a realistic conductor are

∂v(z, t)

∂z
= −

(
Rac + Ltotal

∂

∂t

)
i(z, t) (5-72a)

∂i(z, t)

∂z
= −C

∂v(z, t)

∂t
(5-72b)
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PROBLEMS

5-1 Draw the resistance, inductance, and impedance curves from 0 to 10
GHz for a microstrip transmission line constructed with copper that
has the parameters w = 5 mils, h = 3 mils, t = 2.1 mils, εr = 4.1, bbase =
10.2 µm, htooth = 4.5 µm, dpeaks = 12 µm, and σ = 5.8 × 108 S/m.
Assume a general tooth shape that is hemispheroid in nature. Create the
model with the hemisphere model and the Huray model. Discuss the
physical mechanisms that cause the differences between the curves.

5-2 Create an equivalent-circuit model valid at 15 GHz of the transmission
lines defined in Problem 5-1.

5-3 For the transmission-line description in Problem 5-1, under what condi-
tions is the Hammerstad approximation valid?

5-4 For the transmission line defined in Problem 5-1, when do ac losses over-
take dc losses?
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5-5 What causes internal inductance? Is internal inductance larger or smaller
for a thick conductor line versus a thin conductor? What is the relationship
between inductance and resistance? In physical terms, explain why the
relationship must hold.

5-6 For a stripline transmission line with the parameters w = 5 mils, h1 =
h2 = 6 mils (refer to Figure 5-8), t = 0.7 mil, εr = 4.1, bbase = 10.2 µm,
htooth = 0.9 µm, and dpeaks = 15 µm, calculate the resistance and induc-
tance at 1 GHz.

5-7 For the transmission-line models defined in Problem 5-1, when do the
surface roughness losses become significant?

5-8 For a periodic roughness pattern such as that shown in Figure 5-20, how
will the current flow between and on top of the surface protrusions?
Assuming TEM fields, draw the magnetic and electric fields and the
associated current. What is significant about the periodic pattern? What
assumptions break down for a periodic pattern?

5-9 For a 10-in. transmission line with the parameters w = 5 mils, h = 3
mils, t = 2.1 mils, εr = 4.1, and σ = 5.8 × 108S/m, sourced with 5 mA
of current, what is the total power per unit area dissipated by the reference
plane?

5-10 For the transmission line described in Problem 5-1, how much error would
be introduced by neglecting surface roughness at 10 GHz?

5-11 For the transmission line described in Problem 5-1, how much surface
roughness would be required to double the power loss of the transmission
line?

5-12 For a plane wave impinging onto an infinitely thick slab of a good-
conducting medium, draw the electric field outside the conductor and
the magnetic fields inside the conductor. Compare and contrast this to the
boundary conditions for a perfect conductor.
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As the speed of digital systems continues to increase with Moore’s law, the elec-
trical performance of the dielectric layers of the printed circuit board, package,
or multichip modules becomes significantly more important. Dielectric materi-
als that worked perfectly well for slower designs become increasingly difficult
to design with because new phenomena, such as frequency-dependent dielec-
tric permittivity and loss tangents, environmental factors, and localized interac-
tions between the electromagnetic signal and the fiber weave reinforcement of
the board, become significant and can no longer be ignored. Without properly
accounting for the high-speed dielectric phenomena, it becomes impossible to
properly predict phase delay and signal losses, leading to nonphysical behavior
of the transmission line model. In short, simulation-based digital bus designs
exceeding 3 to 5 GHz are not possible without accounting for the effects covered
in this chapter.

Dielectrics , more commonly called insulators , are substances whose charges
in the molecules and atoms are bound and therefore cannot move over macro-
scopic distances under the influence of an applied field. Ideal dielectrics do not
contain any free charge (such as in conductors), and chemical structure is macro-
scopically neutral. When a field is applied to a dielectric, the bound charges do
not move to the surface of the material as they would in a conductor, but the elec-
tron clouds associated with the atomic and molecular structures of the dielectric
can be distorted, reoriented, or displaced, inducing electric dipoles. When this
happens, the dielectric is said to be polarized . The polarizability of a dielectric
leads directly to the definition of the relative permittivity, dielectric losses, and
the relationship between energy propagation and losses.

6.1 POLARIZATION OF DIELECTRICS

For a metal, conductivity is caused by the redistribution of free charges over
a macroscopic distance. For example, Figure 5-4 shows how the current, and
therefore the charge are largely contained within one skin depth on the bottom
of the conductor. For dielectrics, the applied field only displaces a few electrons
per atom over very small, subatomic distances. In a dielectric, the electrons are
tightly bound to the atoms, and only a negligible number of electrons are available
for conduction of electric current. The difference in electrical behavior of a
conductor versus a dielectric is essentially the difference between free and bound
charges.

6.1.1 Electronic Polarization

When a dielectric material constructed of nonpolar molecules is exposed to an
external electric field, the electrons react by shifting with respect to the nucleus
opposite the applied field. This establishes numerous small electric dipoles that
align with the electric field. When the external electric field is removed, the
electric dipoles return to the neutral position, as shown in Figure 6-1a. Essentially,
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Figure 6-1 (a) Atoms with no external electric field applied; (b) electric dipoles induced
as the externally applied electric field distorts the electron cloud.

the electron clouds of the atoms are distorted by the applied electric field, similar
to stretching a spring as depicted in Figure 6-1b. This gives the material the
ability to store electric energy (as potential energy).

To demonstrate the relationship between the applied electric field and the
distortion of the electron cloud, a very simplified model of an atom can be
employed by assuming a point positive charge of qe+ representing the nucleus
encompassed by a sphere, with a charge of qe− representing the electron cloud.
When an electric field is applied, the electron cloud is displaced until the attractive
force between the positively charged nucleus and the negatively charged sphere
is equal to the force of the applied electric field. By equating these two forces,
the displacement of the electron cloud can be estimated. Note that this model
assumes that the electron cloud remains spherical when it is displaced. In reality,
when the electron cloud is moved by the external electric field, it is elongated
and stretched. However, this simple derivation will provide valuable insight into
the mechanisms that cause electronic polarization.

Consider the spherical cloud of uniform charge density as in Figure 6-2a. The
charge density per unit volume is

ρ = Q

V
= Q

4
3πr3

e

where Q is the total charge distributed over the volume of the sphere V and re

is the radius of the electron cloud. The electric field is solved using the integral
form of Gauss’s law (2-59):∮

S

ε �E · d�s =
∫

V

ρ dV = Qenclosed

In this case, only the electric field inside the sphere is relevant because the force
required to move the electron cloud away from the positive nucleus must be
calculated. Assuming that the electron cloud encompasses free space, ε = ε0,
Gauss’s law reduces to

ε0Er4πr2 = 4
3πr3ρ
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Figure 6-2 (a) Atom with no external electric field applied; (b) the applied electric field
displaces the electron cloud a distance r , inducing an electric dipole.

and for surfaces with a radius of less than re,

ε0Er4πr2 = Q

(
r

re

)3

→ Er = Qr

4πε0r3
e

Assuming the total charge Q = qe, the force required to move the electron cloud
a distance of r is calculated with equation (2-57):

�F = qe
�Er = q2

e r

4πε0r3
e

(6-1)

Consequently, if an external electric field with a magnitude equal but opposite
to Er is applied to the atom, it will move the electron cloud center a distance of
r with respect to the nucleus, polarizing the atom, as shown in Figure 6-2b.

The electric dipole moment (or electric dipole for short) is a measure of the
polarity of a system of electric charges. In the simple case of two point charges,
one with charge +qe and one with charge −qe, the electric dipole moment is

⇀
p = qe�r (6-2)

where �r is the displacement vector pointing from the negative charge to the
positive charge. This implies that the electric dipole moment vector points in the
same direction as the electric field.

Solving (6-1) for qe and multiplying by r produces the dipole moment of a
single atom in units of coulomb-meters per atom:

⇀
p = qe�r = 4πε0r

3
e Er (6-3)

Note that (6-3) indicates that the polarization is directly proportional to the electric
field strength. For a volume of dielectric that has N atoms, the dipole moment
per unit volume is

�P = N �p (6-4)
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where �P is the polarization vector . To simplify the notation, (6-3) is often
denoted as

⇀
p = αeEr (6-5)

where αe = 4πε0r
3
e and is called the electronic polarizability of the material.

6.1.2 Orientational (Dipole) Polarization

If the material contains polar molecules, such as liquid water, which possess a
permanent dipole moment, the orientation of the molecules is usually randomized
by thermal agitation so that the dipoles are oriented in random directions, as
shown in Figure 6-3a. When the material is exposed to an applied electric field,
the polar molecules will tend to orient themselves with the electric field, as shown
in Figure 6-3b. The orientational polarizability of the material is denoted αo. An
analysis similar to that shown in section 6.1.1 can be performed to derive αo,
but it is more involved and generally not practical because a detailed analysis of
the intermolecular distances must be known. A more detailed discussion may be
found in a book by Elliott [1993].

6.1.3 Ionic (Molecular) Polarization

Polarization of a dissolved ionic substance may be considered to be a special
case, because the solution, unlike the ideal dielectric described above, consists of
mobile, dissociated positive and negative charged particles, or ions. For example,
NaCl dissolved in water exists principally as individual Na+ and Cl− ions rather
than as neutral ion pairs. Each ion is associated with several of the neutral but
polar water molecules, where the latter are oriented in a “sphere of hydration”
surrounding each ion, as illustrated in Figure 6-4a for a positive sodium ion.
Note that the partial negative charge on the oxygen of the water molecule is
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Figure 6-3 (a) Polar molecules with no applied electric field, showing somewhat ran-
domized orientation due to thermal agitation; (b) the applied electric field tends to align
the polar molecules due to orientational polarization.
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Figure 6-4 (a) In the absence of an external electric field, polar molecules and ions will
tend to arrange themselves so that the total polarity is neutral. Example depicts the positive
sodium ion associated with and surrounded by the polar water molecule. (b) When an
external electric field is applied, the positive and negative ions will be displaced relative
to each other, inducing ionic or molecular polarization.

oriented toward the positive sodium and that the hydrated ion maintains a net
positive charge. When this solution is exposed to an external electric field,
the positive ions are displaced with respect to the negative ones, resulting in
physical migration—and separation—of the oppositely charged hydrated ions,
as shown in Figure 6-4b. If the poles of the applied field represent an electron
sink and source, and if the applied potential is sufficiently high, oxidation
and reduction (redox) reactions occur at the poles and there is net current in
the circuit. In the absence of the physical requirements for electron transfer
(i.e., redox reactions), only displacement occurs in response to the applied
field. In a solid material (such as NaC1), the individual ions are not able
to dissociate. However, when an electric field is applied, the electrons
associated with the molecule will be displaced with respect to the Na
and C1 nuclei over subatomic distances creating a dipole moment. This is
called ionic polarizability , is denoted as αi , and is also known as molecular
polarizability . For a detailed discussion, see the books by Elliott [1993] and
Pauling [1948].

6.1.4 Relative Permittivity

The discussion above was primarily for instructional purposes. In general, the
polarizability of a material is not calculated directly, because it would require
precise knowledge of the atomic dimensions for each atom or molecule in the
material. For practical applications, the phenomenon is measured indirectly by
looking at the behavior of the dielectric permittivity versus frequency.
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To derive the relationship between the polarizability of a material and the
dielectric permittivity , the total polarization per unit volume is observed:

�P = N(αe + αi + αo) �Etot (6-6)

where N is the number of dipoles per unit volume. The electric field �Etot in
(6-6) consists of the externally applied field plus the molecular field created by
the alignment of the electric dipoles. If the dielectric material were removed, the
value of the applied electric field �E0 could be measured and the electric flux
density would be given by

�D0 = ε0 �E0 (6-7)

When the dielectric material is included, the effect of the polarization on the
electric field is added and the electric flux density becomes

�D = ε0 �E0 + ⇀

P (6-8)

Because �P and therefore �Etot in (6-6) is proportional to the applied electric field,
�E0, as implied by (6-3), a constant of proportionality can be chosen to relate
�D and �E0. This value, the dielectric permittivity ε, has been used throughout
the book:

�D = ε �E0 (6-9)

Comparing (6-8) and (6-9) allows us to choose another constant to relate �P to
the applied electric field, �E0:

�D = ε0 �E0 + ⇀

P = ε0(1 + χ) �E0 (6-10)

where

χ =
�P

ε0 �E0
(6-11)

where χ is known as the electric susceptibility and is dimensionless. Comparing
(6-9) and (6-10) shows that the dielectric permittivity can be expressed in terms
of χ :

ε = ε0(1 + χ) (6-12)

Furthermore, in Section 2.1 the dielectric permittivity is defined as

ε = εrε0 (2-10b)

indicating that the relative dielectric permittivity εr can be defined in terms of χ

and therefore the polarizability of the material:

εr = 1 + χ (6-13)

This means that the relative dielectric permittivity is a direct result of how the
material reacts to an applied electric field.
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6.2 CLASSIFICATION OF DIELECTRIC MATERIALS

In Section 5.1.1 it was shown that when a plane wave propagates in a conductive
medium such as a metal, Ampère’s law reduces to

∇ × �H = jω
(
ε − j

σ

ω

)
�E (6-14)

In the case of a conductor, which was the topic of Chapter 5, the conductivity
term σ represented the metal losses. Conductivity implies the movement of free
charges within a material. In the case of a good dielectric, the charges are bound.
However, as discussed in Section 6.1, the interaction between the molecular
or atomic structure of the dielectric and the applied electric field changes the
orientation of the bound charges within the material. As an example, equation
(6-1) calculated the force required to displace the electron cloud of an atom.
Consequently, as the electric dipoles within a material attempt to remain aligned
with the time-varying electric field, energy is consumed, which manifests itself
as dielectric losses. Subsequently, the term σ in (6-14) can be thought of as the
equivalent conductivity of the dielectric, which represents the losses due to the
polarization of the material. This allows the definition of the complex permittivity
for a lossy dielectric, as was done for conductors in Chapter 5:

ε = ε′ − j
σdielectric

ω
= ε′ − jε′′ (6-15)

The imaginary portion of the complex dielectric permittivity represents the dielec-
tric losses, and the real portion represents the dielectric permittivity ε′ = εrε0,
discussed throughout this book. For most practical purposes, materials are clas-
sified by the real part of (6-15) divided by the permittivity of free space:

εr = ε′

ε0
(6-16a)

which is known as the relative dielectric permittivity, and the loss tangent,

tan |δ| = ε′′

ε′ (6-16b)

which is simply the ratio of the imaginary and real components of (6-15).

6.3 FREQUENCY-DEPENDENT DIELECTRIC BEHAVIOR

In Section 6.1 we showed that when a dielectric is subjected to an external elec-
tric field, the positive and negative charges bound to the atoms and molecules
are displaced relative to their average positions, causing electric dipoles to be
formed which are quantified using the polarization vector �P . Furthermore, the
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relative dielectric permittivity εr was introduced to account for the presence of
�P in a dielectric. When the applied fields begin to alternate in polarity, the polar-
ization vector �P , and subsequently the dielectric permittivity, is affected. Since
the electric dipoles in a material will not align instantaneously with the applied
time-varying fields, the polarization and relative permittivity are a function of
the frequency of the alternating field. In this section we explore the frequency
dependence of dielectric materials and derive useful models that can be used to
simulate these effects.

6.3.1 DC Dielectric Losses

Dc losses imply a dielectric with conduction electrons that are free to move
according to Ohm’s law:

�J = σd
�E (6-17)

where �J is the current density and σd is the conductivity of the dielectric. Assum-
ing a time-harmonic field, substitution of (6-17) into Ampère’s equation gives

�∇ × �H = �J (�x, t) + ∂ �D(�x, t)

∂t

= σd
�E(�x) + jω[ε′ − jε′′] �E(�x)

= jωε0

(
ε′
r − jε′′

r − j
σd

ε0ω

)
�E(�x) (6-18)

Rearranging (6-18) yields the dependence of Ampère’s equation on permittivity
by adding the term σd/ε0ω to (6-15) to account for the conduction electrons.
Do not get σd in (6-18) confused with the term σdielectric in (6-15), which is the
effective conductivity of the dielectric due to the energy it takes to polarize the
electric dipoles in the material. The term σd used in (6-18) is true conductivity,
similar to that of a metal where electrons are not bound and are free to move. Note
that a pole is created at ω = 0 based on the rearrangement of (6-18), rendering
the equation invalid at dc. Since the dielectric conductivity σd is very small
in practical dielectrics (σd/ε0ω � 1), the dc term is almost always neglected
[Huray, 2009].

6.3.2 Frequency-Dependent Dielectric Model: Single Pole

Following the derivation in Section 6.1.1, assume that an atom in the absence
of an applied electric field is represented by a positive nucleus and a negative
electric cloud with centers that coincide. Since protons and neutrons are much
heavier than electrons, we assume that when the external electric field is applied,
the nucleus remains stationary and the electron cloud moves. Therefore, when
the electric field is applied, the electron cloud is displaced, and when the field
is removed, the electron cloud returns to its original position, similar to the
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m
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F

Figure 6-5 Analogy to an electron cloud in the presence of an electric field: When
the mass (electron) is pulled downward by a force (electric field), it stretches the spring
(displaces the electron cloud), displacing the mass (electron) by x through a medium with
damping factor b. The spring constant is k .

spring and mass system shown in Figure 6-5. When the electric field is applied
(the mass is pulled downward, stretching the spring by �F ), the electron (the
mass) is displaced by a distance of x and an electric dipole is created. When
the electric field is removed (the mass is no longer being pulled downward), the
electron cloud returns to its neutral position (the spring is no longer stretched).
This analogy suggests that a simple mechanical spring model can be used to
model the polarization and therefore the dielectric permittivity as a function of
frequency [Huray, 2009].

The classic differential equation that governs the solution of a damped driven
harmonic oscillator (and therefore a damped spring, as shown in Figure 6-5) is

(
m

d2x

dt2
+ b

dx

dt
+ kx

)
= Fejωt

where m is the mass, b the damping factor, k the spring constant, and Fejωt the
driving force. The spring equation can be rewritten in terms of the applied electric
field and the electron mass. From equation (2-57), the force can be written in
terms of the electric field and the charge, �F = q �E, where q is the charge of the
dipole, m the mass of the negative charge relative to the stationary nucleus, and
x the displacement distance:

d2x

dt2
+ b

m

dx

dt
+ k

m
x = qE0

m
ejωt (6-19)

The homogeneous solution to (6-19) is uninteresting because it is heavily damped
and will not contribute to the steady-state solution. The particular solution is
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solved assuming that x takes the form x = Aejωt . Therefore,

dx

dt
= jAωejωt

d2x

dx2
= −ω2Aejωt

which are substituted back into (6-19), so the coefficient A can be solved for:

− ω2Aejωt + j
b

m
Aωejωt + k

m
Aejωt = qE0

m
ejωt

A

(
−ω2 + j

b

m
ω + k

m

)
= qE0

m

A = qE0/m

−ω2 + j (b/m)ω + k/m

Therefore,

x = Aejωt = (qE0/m)ejωt

−ω2 + j (b/m)ω + k/m

Dropping the time-harmonic function and rearranging yields

x = qE0/m

(k/m − ω2) + j (b/m)ω
(6-20)

The natural (resonant) frequency of the oscillator is defined when, ω2 = k /m ,
which allows the definition of ω0:

ω2
0 = k

m
(6-21)

Therefore, (6-20) can be simplified:

x = qE0/m

ω2
0 − ω2 + j (b/m)ω

(6-22)

From equation (6-2), the electric dipole moment is

�p = q �x = q2E0/m

ω2
0 − ω2 + j (b/m)ω

(6-23)

and subsequently, the polarization vector is

�P = N �p = N(q2E0/m)

ω2
0 − ω2 + j (b/m)ω
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and the electric susceptibility is defined from (6-11):

χ =
�P

ε0E0
= N(q2/ε0m)

ω2
0 − ω2 + j (b/m)ω

leading to an expression for the relative dielectric constant from (6-13) [Huray,
2009]:

εr = 1 + χ = 1 + N(q2/ε0m)

ω2
0 − ω2 + j (b/m)ω

(6-24)

The real and imaginary parts are shown as [Balanis, 1989]

ε′
r = 1 + N(q2/ε0m)(ω2

0 − ω2)

(ω2
0 − ω2)2 + (ω(b/m))2

(6-25a)

ε′′
r = N

q2

ε0m

ω(b/m)

(ω2
0 − ω2)2 + (

ω b
m

)2
(6-25b)

Equations (6-24) and (6-25) calculate the frequency response for a material that
exhibits an atomic or molecular structure with only one natural or resonant fre-
quency, an example of which is shown in Figure 6-6. At the natural (i.e., resonant)
frequency of the harmonic oscillator, the imaginary portion of the complex per-
mittivity will peak, which in turn dramatically increases the dielectric losses,
which are quantified with the loss tangent (6-16). Also note that the real por-
tion of the dielectric permittivity is almost constant until the operating frequency
approaches the resonant frequency of the oscillator, which in this case is an
atomic structure. In the vicinity of the natural frequency, the real portion begins
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Figure 6-6 Frequency response for a pure material that exhibits an atomic or molecular
structure with only one natural or resonant frequency.
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to drop and the imaginary portion begins to increase, implying a relationship
between the real and imaginary parts of the complex permittivity. This relation-
ship is discussed in detail in Section 6.4. Finally, the value of the permittivity
settles out at a new level after the operating frequency ω has surpassed the natural
frequency ω0.

6.3.3 Anomalous Dispersion

Perhaps the most interesting part of the curve shown in Figure 6-6 is the area
where the relative dielectric permittivity drops below 1. This area is often referred
to as anomalous dispersion . When this is first encountered, it often causes great
confusion, as demonstrated by observing the definition of the speed of light in a
vacuum, which was introduced in Section 2.3.4 in units of meters per second:

c ≡ 1√
µ0εrε0

when εr = 1

This implies that if εr < 1, the velocity will exceed the speed of light in a
vacuum (c ≈ 3 × 108 m/s). One of the consequences of Einstein’s theory of
special relativity is that speeds greater than c are not attainable, yet the phase
velocity of a wave traveling at frequencies where εr < 1 in Figure 6-6 appears
to break this fundamental law of physics.

The apparent conflict with the laws of special relativity comes from a widely
mistaken assumption that all quantities with units of velocity must obey this rule.
In fact, special relativity only places an upper value on the speed of material
bodies that include signals, or information. Since a single-frequency harmonic
plane wave is not a material body and is not a signal, it cannot be used to transmit
information by itself. To understand this, the definition of phase velocity must
be examined from Chapter 2. To determine how fast the wave is propagating, it
is necessary to observe the cosine term for a small duration of time, �t . Since
the wave is propagating, a small change in time will be proportional to a small
change in distance �z, which means that an observer moving with the wave will
experience no phase change because she is moving at the phase velocity (νp).
However, the only way to measure the velocity of a signal is to turn on the
transmitter, time how long it takes for a response to arrive at the receiver, and
divide by the distance. When velocity is measured in this way, it cannot exceed
c. To understand why, consider the propagation of information, such as a digital
pulse. If the pulse is decomposed into its Fourier components, each will propagate
with its own velocity, some slower than c and some faster than c; however, when
all components are combined, the total velocity of the pulse cannot exceed the
speed of light . A question that often arises when this subject is discussed is the
possibility of modulating a narrowband signal with a frequency that coincides
with an area of anomalous dispersion to sidestep the laws of special relativity and
transmit information faster than c. However, a single-frequency plane wave still
cannot carry information unless another signal is combined with it. For example,
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if a narrowband signal was simply turned on and off as a simplistic form of
modulation, this is equivalent to convolving the narrowband signal with a step
response, which contains an infinite number of Fourier components.

The proof that the velocity of a signal used to transmit information cannot
exceed the speed of light is too complicated to address here. However, Brillouin
[1960] showed that a signal propagating in a realistic dielectric medium cannot
exceed c.

6.3.4 Frequency-Dependent Dielectric Model: Multipole

As discussed in Section 6.1, the polarization of a realistic dielectric may consist
of any number of ionic, orientational, and electronic mechanisms, depending on
the molecular and atomic structure of the material. In general, ε′ and ε′′ depend on
frequency in complicated ways, exhibiting several resonances over a wide range.
To account for this, a separate harmonic oscillator model is constructed for each
molecular or atomic resonance, and the results are combined using superposition.
Thus, for a material with n natural frequencies, the relative dielectric permittivity
is represented by summing the responses from n independent harmonic oscillator
models:

εr = 1 +
n∑

i=1

Ni(q
2/ε0m)

ω2
i − ω2 + j (bi/m)ω

(6-26)

An example is shown in Figure 6-7, where three harmonic oscillator models were
chosen arbitrarily with natural frequencies ω1 = 20 GHz, ω2 = 100 GHz, and
ω3 = 400 GHz. Note how the permittivity tends to “stair-step” down to smaller
values as the frequency increases, separated by areas of anomalous dispersion,
producing a change in the steady-state value (�ε′

r ) at frequencies higher than
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Figure 6-7 Example of a frequency response for a material that exhibits three atomic
or molecular resonances at 20, 100, and 400 GHz.
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the resonance. The summation indicates that even low-frequency values of the
permittivity depend on the high-frequency resonances.

Although (6-26) is quite useful for developing an understanding of the physical
mechanisms that cause the dielectric to vary with frequency, it does not lend itself
well to simulating dielectrics for digital designs because minuscule details of the
molecular structure are required. A more pragmatic approach is to represent
(6-26) in terms of measured permittivity. If (6-26) is multiplied by ε0 and the
right-hand term is simplified by dividing the top and bottom by 1/ω2

0, the top
part, (1/ω2

0)[N(q2/m)], has units of farads per meter:

1 F = s4 · A2

m2 · kg

1 C = A · s

1

ω2
0

(
N

q2

m

)
→ s2

(
1

m3

A2 · s2

kg

)
= F/m

which are the same units as ε′, allowing (6-26) to be rewritten as

ε = ε′
∞ +

n∑
i=1

�ε′
i

1 − ω2/ω2
1i + jω/ω2i

− j
σd

ε0ω
(6-27)

where ω1i and ω2i[(1/ω2
i )(b/m)ω = ω/ω2i] are the frequencies where the

dielectric variations are occurring, ω = 2πf is the operating frequency, �ε ′ the
variation of dielectric permittivity over the frequency of interest, σd the true
conductivity of the dielectric material, ε′

∞ the dielectric permittivity value at
very high frequencies in the area of interest, and ε0 the permittivity of free
space. The term j (ω/ω2i ) accounts for the damping of the molecular dipoles
(orientational polarization) in the mid-frequency ranges, the term ω2/ω2

1i

accounts for resonance of induced atomic and molecular dipoles (ionic and
electronic polarization), and the final term, j (σd/ε0ω) (derived in Section 6.3.1),
accounts for the low-frequency loss of the dielectric, which is usually ignored.

Figure 6-8 shows a conceptualized plot of the real and imaginary dielectric
permittivity as a function of frequency. It should be noted that the figure does
not represent any particular dielectric material; rather, it is simply a guide to
help the reader conceptualize when the different forms of polarization begin to
become significant. For most dielectric materials used in digital design, labora-
tory measurements show that the permittivity is dominated by the damping factor
in (6-27)(the jω/ω2i term) and not resonances (the ω2/ω2

1i term). For orienta-
tional polarization (where polar molecules attempt to remain aligned with the
time varying electric field), the damping factor tends to be high. Consequently,
the classic model is derived from the concept of orientational polarization even
though other forms may affect the damping. When the high frequency resonance
term is ignored, the dielectric equation reduces to (6-28), which is applicable for
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Figure 6-8 Conceptual complex dielectric permittivity variations as a function of fre-
quency, showing approximate regions where each polarization mechanism exists.

most practical high-speed digital platforms built on commonly available dielectric
materials.

ε = ε′
∞ +

n∑
i=1

�ε′
i

1 + j (ω/ω2i )
(6-28)

Note that equation (6-28) is identical to the well-known Debye equation and is
often curve-fit to measured data to build a very accurate dielectric model library,
used for designing high-speed digital systems.

There is evidence based on laboratory measurements that dielectric resonances
can exist as low as 30 GHz in FR4 dielectrics, which may affect some very high
frequency designs. When designing digital systems with significant harmonics
past about 20 GHz, care should be taken to examine carefully the measured
phase delay and loss characteristics of transmission lines built on a representative
dielectric so that any resonance can be accounted for. In Chapter 9 we describe
methodologies for extracting the loss characteristics and the phase velocity from
S-parameter measurements. A dramatic narrowband increase in the loss accom-
panied by a simultaneous increase in the phase velocity is a telltale sign that a
dielectric resonance exists in the frequency of interest.

Equations (6-27) and (6-28) are much more useful than (6-26) for one very
important reason: They can be fit empirically . Since equation (6-26) requires
intimate knowledge of the atomic substructure, it is not very useful for practi-
cal applications. However, the dielectric permittivity can be measured using the
phase delay (see Chapter 9 for details), the results of which can be fit to (6-27)
by choosing the appropriate poles (ω1i and ω2i), ε′

∞ and �ε′, to essentially
curve-fit the dielectric behavior to a physically consistent model. The particu-
lar implementation of (6-27) is dependent on the characteristics of the material.
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Figure 6-9 Measured dielectric response curve fit to equation (6-27).

Subsequently, for a generic material, the most straightforward usage requires a
measured response of εr and tan δ so the damping poles and resonant peaks can
be identified.

Example 6-1 Use equation (6-27) to create an empirical model for the dielectric
measured in Figure 6-9.

SOLUTION Figure 6-9 depicts the measured value of the real and imaginary
permittivity of a dielectric sample between 15 and 35 GHz. Note that the mea-
sured data shows small ε′′

r peaks in the vicinity of 19 and 32 GHz, indicating the
presence of two resonant induced dipoles, which are probably ionic or molecular
in nature. Consequently, ignoring the dc term, the implementation of (6-27) for
this material over the frequency range 15 to 35 GHz is

ε = ε∞ + �ε1

1 + j (ω/ω1) − ω2/ω2
2

+ �ε2

1 + j (ω/ω3) − ω2/ω2
4

where ω1 = 2π(20 GHz), ω2 = 2π(19 GHz), ω3 = 2π(63 GHz), ω4 = 2π

(32 GHz), �ε1 = 0.0163, �ε2 = 0.012, and ε∞ = 3.8. The resonant terms ω2

and ω4 were chosen at the peaks, �ε1 and �ε2 are the variations in the real part
of the dielectric constant in the vicinity of the peaks, and ω1 and ω3 are damping
terms that were varied until the width and the height of the peaks match the
data measured. In this case, the dielectric model is valid only between 15 and 35
GHz, which are the limits of the measured data [Hall et al., 2007].
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6.3.5 Infinite-Pole Model

Most high-speed digital platform designers do not have the luxury of wideband
complex permittivity measurements that allow a reasonable fit to (6-27).
Consequently, a methodology is required that will allow the frequency
dependence of the complex dielectric permittivity to be calculated from a
single data point obtained from the vendor-provided material data sheet, which
usually lists the dielectric constant (εr ) and loss tangent (tan δ) at 1 GHz
and/or 10 GHz. To do this, it is first necessary to assume that the primary
source of frequency dependent dielectric behavior is from damping, as in
equation (6-28), which is a reasonable approximation for frequencies below 20
GHz, and is often valid to much higher frequencies. Equation (6-28) can be
simplified using the method described by Djordjevic et al. [2001] by increasing
the number of terms and assuming that ω2i decreases linearly on the logarithmic
scale. The variation �ε′ is assumed to be the total variation of ε′ between the
lower frequency of interest, ω1 = 10m1, and the upper frequency of interest,
ω2 = 10m2, which is assumed to be distributed uniformly over the logarithm of
frequency so that �ε′/(m2 − m1) is the variation per decade, which is a linear
decay of ε′ on a logarithmic scale. By taking an infinite number of terms, the
sum in (6-28) becomes (6-29), which is referred to as the infinite pole model :

n∑
i=1

�ε′

1 + j (ω/ω2i )
→ �ε′

m2 − m1

∫ m2

x=m1

dx

1 + j (ω/10x)

= �ε′

m2 − m1

ln[(ω2 + jω)/(ω1 + jω)]

ln(10)

ε′ − jε′′ = ε∞ + �ε′

m2 − m1

ln[(ω2 + jω)/(ω1 + jω)]

ln(10)
(6-29)

By comparing the results to laboratory measurements, it has been shown that
(6-29) is reasonably accurate for typical dielectrics used to design modern digital
platforms under dry and nominal environmental conditions (0 to about 50% rel-
ative humidity). However, for dielectric materials that have an affinity to absorb
water (such as FR4) when exposed to very humid environmental conditions
(i.e., 95% relative humidity), the model breaks down for frequencies greater
than 10 GHz and (6-28) must be curve fit to measured data to achieve realistic
dielectric behavior. More details on how dielectric properties change with the
environment is discussed in Section 6.6.

To calculate the wideband dielectric permittivity and the loss tangent from a
single-frequency data point, it is necessary to know the value of εr and tan δ at
that frequency, which allows the calculation of ε′ and ε′′ using

ε = ε − j
σdielectric

ω
= ε′ − jε′′ (6-15)

tan |δ| = ε′′

ε′ (6-16b)
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Equating the real and imaginary terms of the permittivity to the real and imaginary
components of (6-29) allows the calculation of �ε′ and ε′∞, which can then be
inserted into (6-29) so the response at all other frequencies can be calculated.

Recall that for a complex number, z = a + jb = rejθ , where r = √
a2 + b2

and ln(z) = ln(r) + j (θ + 2πk), where k is an integer. This allows the log term
in (6-29) to be simplified assuming that ω1 � ω � ω2:

Re

(
ln

ω2 + jω

ω1 + jω

)
= ln

√
ω2 + ω2

2

ω2 + ω2
1

≈ ln
ω2

ω

allowing the real part of (6-29) to be approximated as

ε′ ≈ ε′
∞ + �ε′

m2 − m1

ln(ω2/ω)

ln(10)
(6-30a)

The imaginary part is simplified by noting that for the assumption ω1 � ω � ω2,
the logarithm function in (6-29) is almost constant at a value of −π/2, allowing
the imaginary part of (6-29) to be approximated as [Pytel, 2007]

ε′′ ≈ �ε′

m2 − m1

−π/2

ln(10)
(6-30b)

Figure 6-10 depicts an example of the modeled and measured relationship
between the loss tangent and the dielectric permittivity as calculated with (6-29)
and measured with a Fabry–Perot open-cavity resonator. The modeled response
was calculated from a known data point at 1 GHz, where εr/ tan δ = 3.9/0.0073,
which was measured using a split post resonator. Note the deviation between
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Figure 6-10 Measured dielectric response compared to the response calculated from a
single data point at 1 GHz using the infinite-pole model (6-29).
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the measured tan δ data points and that the model has a maximum error of only
0.0009 at 30 GHz with a maximum error less than 0.01 for εr at 20 GHz [Hall
et al., 2007].

Example 6-2 Calculate the frequency dependence of the dielectric permittivity
using the infinite-pole Debye model (6-29) assuming a nominal relative humidity
of 30% and a measured data point at 1 GHz where tan δ = 0.0073 and εr = 3.9
to 10 GHz.

SOLUTION

Step 1: Calculate the infinite-pole variables ε′
∞ and �ε′. Choose a lower and

an upper frequency limit that are well beyond the frequency of interest. We
choose 10 rad/s (1.6 Hz) for the lower limit and 100 Grads/s (16 GHz) for the
upper limit:

ω1 = 101 → m1 = 1 and ω2 = 1011 → m2 = 11

The real part of the complex permittivity at 1 GHz is ε′ = εrε0 = 3.9ε0. The
imaginary part of the complex permittivity is calculated with (6-16):

tan |δ| = ε′′

ε′

ε′′ = ε′ tan |δ| = (3.9)(0.0073) = 0.028

The imaginary part of the permittivity is substituted into (6-30b) and �ε′ is
calculated:

0.028 = �ε′

11 − 1

−π/2

ln(10)
→ �ε′ = −0.417

where the negative sign is ignored because it is already included in (6-15). Next,
ε′∞ is calculated using (6-30a):

3.9 ≈ ε′
∞ + 0.417

11 − 1

ln(1011/2π(109))

ln(10)
→ ε′

∞ = 3.85

Step 2: Calculate the complex frequency-dependent dielectric properties using
(6-30a) and (6-30b):

ε′(f ) ≈ 3.85 + 0.0178 ln
1011

2πf

tan |δ| = ε′′

ε′ = 0.028

3.85 + 0.0178 ln(1011/2πf )
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Figure 6-11 Dielectric properties versus frequency from Example 6-2.

Figure 6-11 shows a plot of the dielectric properties versus frequency. As a
double check, it can be confirmed that at 1 GHz, the relative permittivity is 3.9
and the loss tangent is 0.0073.

6.4 PROPERTIES OF A PHYSICAL DIELECTRIC MODEL

For a dielectric model to remain physical, it must predict correctly the frequency-
dependent behavior observed in real life. A common mistake in digital design
is to use transmission-line models that have frequency-invariant dielectric prop-
erties. Although this approximation works fine for low frequencies, as system
data rates increase past about 2 Gb/s, such methods will introduce large errors
into the simulations, rendering the analysis almost useless. In this section we
describe the properties that must be satisfied to ensure a physically realizable
model. Although the focus here is on dielectric models, any model is required to
pass these tests to ensure behavior consistent with nature. First, the relationship
between the dielectric permittivity and the loss tangent is discussed, and then
specific mathematical tests are introduced to ensure a model that obeys the laws
of physics.

6.4.1 Relationship Between ε′ and ε′′

In Section 5.2.3, specific relationships were shown to exist between the real and
imaginary parts of the series impedance of a transmission line in the form of
ac resistance and internal inductance. There is a similar relationship between the
real and imaginary portions of the complex permittivity, which in turn implies
a relationship between the relative dielectric permittivity εr and the loss tan-
gent tan δ. To conceptualize the relationship, assume that the frequency range
is below 20 GHz, where measurements have shown that damping is the domi-
nant dielectric response. In this region, large polar molecules are attempting to
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align themselves with the time-varying electric field (e.g., orientational polariza-
tion), which consumes energy and therefore dissipates power. As the frequency
increases, it becomes more difficult for the polar molecules to follow the elec-
tric field, meaning that more energy is consumed at higher frequencies. Think
of pulling a paddle through the water when rowing a boat. If you increase the
rate of paddling, it becomes more difficult to move the oar though the water,
increasing the amount of energy used. Following this analogy, the dielectric loss,
and therefore the loss tangent, should tend to increase with frequency. If the
definition of the volume energy density from Section 2.4.2 is observed, it shows
that the energy stored in a charge distribution is proportional to ε:

we = ε

2
E2 J/m3 (2-75)

If energy (and therefore power) is being dissipated by the polarization of
the molecules, the total energy stored (power transmitted through the dielectric)
must decrease proportionally. Since ε dictates how much energy can be stored
in an electric field, the permittivity must therefore decrease with a corresponding
increase in the loss tangent. This general trend is demonstrated in Figures 6-10
and 6-11. Note that as the frequency of operation approaches the frequency of a
pole or a resonance in the dielectric models derived earlier, this analogy breaks
down. However, for the majority of high-speed digital designs that are built on
common PCB materials, this analogy holds true. The analogy above hints toward
a specific relationship between the real and imaginary parts of the dielectric
permittivity that must be accounted for properly during the design of high-speed
buses. To demonstrate this, the single-pole Debye model (6-31) can be separated
into real and imaginary parts:

ε′ − jε′′ = ε′
∞ + �ε′

1 + j (ω/ω0)
(6-31a)

ε′ = ε′
∞ + �ε′

1 + (ω/ω0)2
(6-31b)

ε′′ = �ε′(ω/ω0)

1 + (ω/ω0)2
(6-31c)

Next, (6-31b) and (6-31c) are combined to yield

ε′ = ε′
∞ + ε′′ω0

ω
(6-32a)

ε′′ = (ε′ − ε′
∞)

√
�ε′

ε′ − ε′∞
− 1 (6-32b)

Note that the real part of the permittivity (ε′) is a function of the imaginary part
(ε′′), and vice versa. Equations (6-32) show that a specific relationship governs
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Figure 6-12 When a harmonic oscillator is being driven at a frequency much larger
than its natural or resonant frequency (ω0 < ω), the losses vanish. This example plots the
loss generated from the Debye equation (6-28) with a pole at ω0 = ω2i = 5 GHz.

the real and imaginary parts of the complex permittivity . Furthermore, if ω0 
 ω,
the loss tangent reduces to

tan |δ| ≈ ω

ω0

(
1 − ε∞

ε∞ + �ε′

)
(6-33)

which indicates an increase in the loss tangent with frequency. So for dielectrics
that can be described by the Debye equation, equation (6-32) shows that ε′ (and
subsequently εr ) will decrease with frequency, and (6-33) shows that the loss
tangent will increase with frequency.

A question arises regarding the very high frequency response of the Debye
model. If the model is subjected to a very high frequency oscillatory forcing
function, where ω0 < ω, there will be no time for the system to respond before
the forcing function has switched direction, so the losses will vanish as ω becomes
large, as is demonstrated by Figure 6-12, which has a pole at ω0 = 5 GHz.

6.4.2 Mathematical Limits

For a transmission-line model to be physically consistent with the laws of
nature, certain mathematical limits must be obeyed. Presently, the vast majority
of engineers utilize models to design high-speed digital systems that employ
frequency-invariant values of the dielectric permittivity and loss tangent. This
assumption, although perfectly valid at low frequencies, induces amplitude
errors and phase miscalculations for digital data rates faster than 1 to 2 Gb/s
propagating on transmission lines because realistic dielectric materials have
frequency-dependent properties that must be modeled correctly. As data rates
increase, the spectral content of the digital pulse trains also increase and errors
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induced by the frequency-invariant approximation are amplified, especially for
longer line lengths. When models are used that do not obey these rules, incorrect
solutions are determined, lab correlation becomes difficult or impossible, and
the design time is increased significantly. In this section we introduce specific
limitations that dielectric models must obey to remain physically consistent with
nature. Specifically, the conditions of causality, analytic functions, reality , and
passivity are explored.

Causality An in-depth analysis of the relationship between the real and imag-
inary parts of complex permittivity was done by Ralph Kronig and Hendrik
Anthony Kramers in the early twentieth century [Balanis, 1989]. They devel-
oped the Kramers–Kronig relations, which describe the relationships between
the real and imaginary parts of any complex function that is analytic in the upper
half-plane:

ε′(ω) = 1 + 2

π

∫ ∞

0

ω′ε′′
r (ω

′)
(ω′)2 − ω2

dω′ (6-34a)

ε′′(ω) = 2ω

π

∫ ∞

0

1 − ε′
r (ω

′)
(ω′)2 − ω2

dω′ (6-34b)

The Kramers–Kronig formalism is applied to response functions. In physics, a
response function χ(t − t ′) describes how a property P(t) of a physical system
responds to an applied force F(t ′). For example, P(t) could be the angle of a
pendulum and F(t ′) the applied force of a motor driving the pendulum motion.
The response χ(t − t ′) must be zero for t < t ′ since a system cannot respond
to a force before it is applied. Such a function is said to be causal . From a
commonsense point of view, it makes sense that an effect cannot precede its
cause, which is the fundamental principle of causality that every physical model
must respect, as expressed mathematically by

h(t) = 0 when t < 0 (6-35)

The causality requirement is described mathematically in Chapter 8.

Analytic Functions The response of a dielectric to an applied electric field is
quantified in terms of ε, and therefore a causal dielectric model cannot respond
prior to the electric field being applied, which makes sense for a physical system.
It can be shown that this causality condition implies that the Fourier transform of
the complex dielectric permittivity ε(ω) is analytic [Jackson, 1998], which in turn
implies a specific relationship between the real ( ε′) and imaginary ( ε′′) parts .

For a complex function f (x + jy) = u(x, y) + jv(x, y), if u and v have con-
tinuous first partial derivatives and satisfy the Cauchy–Riemann equations, f

is said to be analytic [LePage, 1980]. The Cauchy–Riemann equations dictate
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specific relationships between the real and imaginary parts of such a complex
function:

∂u

∂x
= ∂v

∂y
(6-36a)

∂u

∂y
= −∂v

∂x
(6-36b)

It can be shown that the dielectric models presented earlier in the book satisfy the
Cauchy–Riemann equations assuming that the dielectric response is a function
of complex frequency. For example, if ω = ωR + jωI is inserted into the Debye
model in (6-31),

ε(ωR + jωI ) = ε′
∞ + �ε′

1 + j [(ωR + jωI )/ω0]
= ω0�ε′(ω0 − ωI )

(ω0 − ωI )2 + ω2
R

− j
ω0�ε′ωR

(ω0 − ωI )2 + ω2
R

it can be shown that

∂Re(ε)

∂ωR

= ∂Im(ε)

∂ωI

∂Re(ε)

∂ωI

= −∂Im(ε)

∂ωR

Therefore, the real and imaginary parts of a realistic dielectric model are inter-
related, meaning that the imaginary response can be calculated from the real
response, and vice versa.

Reality Another constraint is that a physical model must produce a response that
is real in the time domain , as discussed briefly in Section 2.3.3. If a function is
real in the time domain, its Fourier transform must satisfy the complex-conjugate
rule [LePage, 1980]:

F(−ω) = F(ω)∗ (6-37a)

For example, consider Gauss’s law:

∇ · �D = ∇ · ε �E = ρ

If �D and �E are real functions in the time domain, they must satisfy the complex
conjugate rule in (6-37a) and therefore so must the permittivity [Jackson, 1998]:

ε(−ω) = ε(ω)∗ (6-37b)
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Passivity A physical system is denoted as passive when it is unable to generate
energy. For example, an n-port network is said to be passive if

∫ t

−∞
vT(τ ) · i(τ ) dτ ≥ 0 (6-38)

where vT(τ ) is the transpose of a matrix containing the port voltages and i(τ )

a matrix containing the currents. Integral (6-38) represents the cumulative net
energy (power) absorbed by the system up to time t . In a passive system, this
energy must be positive for all t . This requirement is satisfied if (1) the system
absorbs more energy than it generates, and (2) any generation of energy happens
after the absorption. A noncausal system that generates energy before it absorbs
it would be considered to be nonpassive.

Summary It has been shown that a realistic dielectric model must be:

1. Causal , meaning that the model cannot respond to a stimulus until some
time after it has been applied.

2. Analytic, which says that the function must satisfy the Cauchy–Riemann
equations, meaning that the real and imaginary parts of the permittivity are
related.

3. Real in the time domain, which means that its Fourier transform must
satisfy the complex-conjugate rule (6-37).

4. Passive, which means that the model cannot generate energy.

The dielectric models derived in Section 6.3 satisfy these mathematical con-
straints.

6.5 FIBER-WEAVE EFFECT

As described briefly in Section 3.1, printed circuit boards (PCBs) are most com-
monly constructed from an FR4-type material. Many dielectric materials used
in the electronics industry, including FR4, have been treated historically as a
homogeneous dielectric medium for the propagation of digital signals in PCBs.
As data rates for system buses push into the multi-Gb/s range, the composi-
tion of FR4, in which woven fiberglass bundles are embedded in epoxy resin,
causes this assumption to break down. At high frequencies, local variations in
dielectric constants create spatially dependent values of the time delay τd and the
characteristic impedance Z0. If not controlled properly, the spatially dependent
transmission-line parameters can severely degrade voltage and timing margins,
especially in differential signal-based buses, described in detail in Chapter 7. In
this section we demonstrate how PCB physical structures create local, system-
atic dielectric constant variation, and describe material and design options for
mitigating the effect.
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Figure 6-13 Physical structure of FR4 dielectric; note how the physical position of the
transmission line with respect to the fiberglass weave dictates the impedance.

6.5.1 Physical Structure of an FR4 Dielectric and Dielectric Constant
Variation

FR4 dielectric is a composite material made from a matrix of woven bundles of
fiberglass embedded in an epoxy resin. The physical structure of FR4 is illus-
trated in Figure 6-13, which demonstrates how local material variation makes
the homogeneous dielectric assumption inaccurate when propagating signals with
multi-GHz frequency content. The reinforcing fiberglass bundles have a dielectric
constant (εr ) of approximately 6, whereas εr is close to 3 for the epoxy resin in
which the bundles are embedded. The bulk dielectric constant is dependent on
the glass/resin volume ratio:

εr = εrsnVrsn + εglsVgls (6-39)

where εrsn and εgls are the dielectric permittivities and Vrsn and Vgls are the volume
ratios of the epoxy resin and glass.

From Figure 6-13 we see that there is a significant gap between bundles over
which a signal trace may be routed. This creates the opportunity for a differential
pair to be routed such that one trace (a) is located over a fiberglass bundle, while
the other (b) is routed above the gap between bundles. The result is that a signal
on trace a will see a higher effective dielectric permittivity (εr,eff) and a lower
impedance then trace b. Furthermore, it should be noted that this is a statistically
likely scenario, since the fiber weave is usually manufactured so that the bundles
are parallel to the edge of the board. The most common layout methodology is to
route the transmission lines of the system buses at either 0◦ or 90◦ with respect to
the board edges, which maximizes the chance that spatially dependent effective
dielectric permittivity (εr,eff) will be observed.

The effective dielectric permittivity variability can be shown experimentally
by using a test board structure as shown in Figure 6-14. If the structures are
designed with a center–center trace distance (xt ) slightly larger than the expected
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Figure 6-14 Depiction of transmission lines in relation to the fiber bundles in a printed
circuit board.

distance between adjacent fiberglass bundles (xw), routing several traces parallel
to the fiberglass bundles across a large section of a PCB, the relative signal trace
location with respect to the fiberglass bundles will varied in a systematic fashion
to allow determination of the worst-case difference in εr,eff between traces.

Figure 6-15 shows effective dielectric permittivity extracted from time-domain
reflectometry (TDR) measurements on test structures similar to Figure 6-14. The
effective dielectric permittivity is calculated from the measured time delay τd

of the transmission line, which is determined from the TDR profile similar to
Example 3-7. Next, equation (2-52) is used to calculate the effective permittivity
where µr = 1 and εr = εr,eff:

νp = c√
µrεr,eff

→ 1

νp

= τd =
√

εr,eff

c

→ εr,eff = (cτd)
2 (6-40)

Note that the effective dielectric constant is a composite function of the glass
cloth, epoxy resin, and surrounding air for microstrip transmission-line structures.
Since the relative location of the traces is slowly varied across the PCB, the
worst-case difference in effective dielectric constant is equal to the difference
between minimum and maximum measured εr,eff. The example in Figure 6-15
shows a worst-case difference in the effective dielectric constant to be �εr,eff ∼
0.23 for microstrip structures using 2116-type fiberglass cloth for the board,
which corresponds to an actual dielectric permittivity difference for the material
(�εr ) of approximately 1.5 to 2.25�εr,eff, based on empirical observations of
measured data. Empirical data from numerous FR4-based test boards indicate that
the differences in the measured effective dielectric permittivity for a microstrip
structure can be as high as �εr,eff = 0.4, leading to a material value of �εr ∼
0.8 to 0.9. Although these spatial variations might seem small, the analysis in
Chapter 7 will demonstrate that it can have a severe impact for relatively short
differential transmission lengths at data rates of 5 to 10 Gb/s.

6.5.2 Mitigation

Routing pairs at angles relative to the direction of weave will average out the
fiber-weave effect by constantly changing the relative position of the traces
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Figure 6-15 Example of εr , eff variations due to the fiber-weave effect for 64 parallel
transmission lines routed parallel to a board edge constructed with FR4 dielectric material.
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Figure 6-16 Example of the reduction in εr , eff variations from the fiber-weave effect
for 64 parallel transmission lines routed 45◦ with respect to a board edge constructed with
FR4 dielectric material.

relative to the bundles. As Figure 6-16 shows, routing at 45◦ angles minimizes
the impact. It has been shown that offsets as small as 5 to 10◦ are adequate to
mitigate most of the spatial effects.

6.5.3 Modeling the Fiber-Weave Effect

The preceding discussion indicates that the traditional approach of modeling a
transmission line using a uniform dielectric constant throughout the dielectric
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Figure 6-17 Two-dimensional fiber-weave modeling structure.

layer is no longer sufficient. We need to modify our approach to comprehend
the localized dielectric variation. Figure 6-17 shows the profile of the cross-
sectional geometry description used as 2D field solver input for calculating the
transmission-line parameters. Simple in principle, this new approach is compli-
cated by the fact that the effective dielectric constant measured results from
the combined effect of multiple dielectrics: resin, fiberglass, solder mask, and
air. As a starting point, the effective dielectric constant of the FR4 material in
each region can be estimated from measured data using the method described in
equation 6-39 for multicomponent dielectrics. To determine the actual values of
εr1 and εr2 (see Figure 6-17), they should be varied until the delay of the 2D
simulation is equal to the measured response from the test board. Alternatively,
accurate representation of the cross section, including proper glass/resin height
ratios and solder mask thickness using a 2D electromagnetic field solver will
yield correct values of the effective dielectric permittivity.

Example 6-3 From the spatial εr,eff variations shown in Figure 6-15, calculate the
actual (noneffective) dielectric permittivity for a trace over a bundle and between
bundles for a microstrip transmission line with a w/h ratio of 2 and t � h.

SOLUTION

Step 1: Use equation (3-35) to estimate the relationship between εr and εr,eff.

a = 1 + 1

49
ln

24 + (2/54)2

24 + 0.432
+ 1

18.7
ln

[
1 +

(
2

18.1

)3
]

b = 0.564

(
εr − 0.9

εr + 3

)0.053

εeff(u, εr) = εr + 1

2
+ εr − 1

2

(
1 + 10

2

)−ab

The relationships between εr and εr,eff are plotted in Figure 6-18a. The value of
εr that corresponds to the minimum and maximum values of εr,eff in Figure 6-15
are chosen to create equivalent cross sections to represent the case where the
trace is over a bundle and between bundles.
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Figure 6-18 (a) Relationship between εr and εr , eff; (b) equivalent cross sections for a
trace directly over a bundle and between bundles for Example 6-2.

Trace between bundles:

εr,eff = 3.5 (from Figure 6-15) and εr ∼ 4.6 (from Figure 6-18a)

Trace over a bundle:

εr,eff = 3.72 and εr ∼ 4.95

Step 2: Create the equivalent cross sections, as shown in Figure 6-18b.

6.6 ENVIRONMENTAL VARIATION IN DIELECTRIC BEHAVIOR

One problem often overlooked in high-speed digital design is the impact that the
relative humidity (RH) of the environment has on the electrical performance of a
dielectric material. The electrical properties of a dielectric are partially a function
of the amount of moisture in the material. The extent to which a material absorbs
moisture is characterized by its moisture diffusivity and saturated moisture
concentration. Moisture diffusivity describes the rate of change of a material’s
moisture concentration. The saturated moisture concentration provides an
expression for the limit to the amount of moisture that a material can contain.
It is important to note that both are a function of temperature and relative
humidity. Another measure of a material’s susceptibility to moisture is its
maximum moisture uptake. This is typically reported on material data sheets as %
weight and is related to the saturated moisture concentration. If a printed circuit
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board (PCB) constructed with a dielectric that tends to absorb moisture (such
as FR4) is exposed to a humid environment (such as Malaysia) for a significant
amount of time, both the loss tangent and the dielectric permittivity will increase.
To demonstrate this, Figure 6-19 shows an example of the insertion losses of an
identical structure measured in a dry environment such as an Arizona winter
(15% RH and 60◦F) and a humid environment such as Malaysia (95% RH and
95◦F). As explained in Chapter 9, this dramatic increase in insertion losses cor-
responds to an increase in dissipated power. In linear terms, the example in
Figure 6-19 represents approximately 50% more losses due to the dielectric at
10 GHz. Figure 6-20 depicts measured values of the same dielectric material
for both low- and high-humidity environments. Note that at about 7.5 GHz, the
increase in the loss tangent is greater than 50%. Conversely, Figure 6-21 shows
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Figure 6-19 Example of the impact of the environment on PCB losses for a microstrip
structure constructed on an FR4 dielectric.
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Figure 6-20 Example of the measured variation in tanδ for 7628-FR4 dielectric for
different environmental extremes.
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Figure 6-21 Example of the measured variation in εr for 7628-FR4 dielectric for dif-
ferent environmental extremes.

a relatively small increase of less than 5% in the dielectric permittivity for the
environmental extremes [Hamilton et al., 2007].

The mechanism that explains this dramatic increase in losses and the minor
increase in permittivity is probably a combination of orientational and ionic polar-
ization. The water molecule is relatively heavy, and it therefore takes a significant
amount of energy for the molecule to follow the external time-varying electric
field, as shown in Figure 6-3. Furthermore, the relative dielectric permittivity of
distilled water is εr ∼ 81. Since the dielectric permitivity of the FR4 dielectric
does not change much (∼5%) between dry and humid conditions whereas the
loss tangent changes dramatically (∼50%), it indicates that (1) a relatively small
amount of water is absorbed by the dielectric, and (2) a small amount of absorbed
water (per unit volume of dielectric) has a large impact on the dielectric losses.

6.6.1 Environmental Effects on Transmission-Line Performance

The absorption of water in an FR4 dielectric can be observed with vector network
analyzer (VNA) measurements. Using linear values for S21 and S11, the power
loss of a transmission line as derived in Chapter 9 is

αloss = 1 − S2
21 − S2

11

where αloss is a measure of the power dissipated by the transmission line from
conductor, dielectric, and radiation losses. The humidity-induced change in αloss
is defined as the difference between the measured loss of a transmission line in
a dry state (αloss,dry) and the measured loss of a transmission line that has been
exposed in a humid environment for a significant amount of time (αloss,humid).
This humidity-induced change in αloss from the dry state is termed �αhumid:

�αhumid = αloss,humid − αloss,dry (6-41)
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Figure 6-22 Example of how a humid environment will change the losses of 7628-FR4
dielectric. (Adapted from Hamilton et al. [2007].)

Hamilton et al. [2007] detail several experiments where the relative humidity
was controlled with an environmental chamber and measurements were taken
with a vector network analyzer (VNA) to determine how dry and wet environ-
ments influence dielectric losses. Figure 6-22 depicts an example of a measure-
ment showing how humidity changes the loss characteristics of a test board built
on an FR4 dielectric. The dry case (αloss,dry) was preconditioned in an environ-
mental chamber to bake out the moisture already absorbed by the dielectric and
then stored in a dry box at 20◦C and 10% RH. The wet case (αloss,humid) was
conditioned in an environment of 37◦C and 95% RH for 55 days. Note that
�αhumid peaks at about 5 GHz and then decreases to almost zero at high fre-
quencies. The peak is caused by the increase in power dissipation caused by the
affinity of the dielectric material to absorb water from a humid environment as
demonstrated by the increased slope of �αhumid prior to the peak. After 5 GHz,
the insertion loss (S21) for both humid and dry conditions will increase (meaning
that the transmitted power decreases), causing both �αloss,humid and �αloss,dry to
approach unity. Consequently, �αhumid will initially peak because �αloss,humid

will increase faster than �αloss,dry, then approach zero. This measurement high-
lights how a transmission line can exhibit a significant increase in dissipated
power losses if the dielectric material has an affinity to absorb water from a
humid environment.

For design purposes, the question arises of how long it takes for moisture
to diffuse into the dielectric. Obviously, each dielectric material will exhibit
its own moisture absorption characteristics. For example, Teflon (PTFE) gen-
erally exhibits very little or no tendency to absorb moisture, whereas common
solder-mask materials exhibit a very high tendency to absorb moisture. For the
purposes of this discussion, we concentrate on an FR4 dielectric sample.

Figure 6-23 shows the measured change in insertion loss (S21) at 10 GHz for a
microstrip transmission line built on 7628-FR4 dielectric that was preconditioned
to a dry state by baking the moisture out of the sample and then exposed to humid
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Figure 6-23 Insertion loss at 10 GHz of a transmission line built on 7628-FR4 dielectric,
showing how losses change with time exposed to a humid environment. (Adapted from
Hamilton et al. [2007].)

conditions in an environmental chamber and measured at specific intervals for
55 days. In this example, the dielectric transmission-line losses at 10 GHz were
−6.3 dB under dry conditions at t = 0. When the structure was exposed to
a humid environment, the dielectric became almost fully saturated within the
first 7 days, increasing the loss to −8.9 dB. Finally, the transmission-line loss
stabilized to a value of −9.3 dB of loss at t = 48 days.

Stripline transmission lines tend to absorb moisture at a significantly slower
rate than microstrip lines because there is much less dielectric surface area
exposed to the surrounding environment. Hamilton et al. [2007] report exper-
imental data for striplines built on 7628-FR4 dielectric with 90% coverage of the
dielectric material by copper planes, showing that it takes about 5 months for
the stripline to reach the same loss value as a microstrip does in 7 days under
identical conditions. This means that striplines are not immune to environmental
conditions; however, they absorb moisture at a significantly slower rate.

6.6.2 Mitigation

Unfortunately, there are very few practical methods for mitigating the effect of
the environment on transmission-line performance. In consumer products such
as laptop or desktop mother boards, the full range of environmental conditions
must be accounted for in the design to ensure that performance specifications are
maintained in both dry and humid environments (such as a dry Arizona winter
or a humid Florida summer). This means that an FR4-based transmission-line
model used in the design must comprehend as much as a 50% or more variation
in the loss tangent, which can significantly reduce solution spaces, particularly for
long bus lengths and high data rates. Generally, the use of stripline transmission
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lines does not cure the effect of the environment because products are generally
designed to operate under all reasonable conditions, and it must be assumed that
there will be periods where the digital design is powered down long enough
for the dielectric to absorb enough water to increase the loss tangent. How-
ever, striplines can help mitigate the problem under certain conditions because
it takes a very long time for the dielectric contained between copper layers to
absorb water.

In some cases, the product usage model may allow mitigation of the environ-
mental effects by not allowing large changes in relative humidity for normal
operation. For example, computer servers are often operated in a controlled
temperature/humidity room, allowing engineers to design for minimum environ-
mental variation, thus increasing the performance of the platform. Additionally,
some computers are often powered on continuously. In this case, the heat gener-
ated by the CPU and the movement of air by the fan will produce a low-humidity
environment inside the computer chassis. However, in this case, the engineer must
understand that if the computer is powered down for any significant amount of
time, the board dielectric material may begin to absorb moisture. The absorbed
moisture will increase the loss of the transmission lines and decrease the perfor-
mance of the high-speed buses until the absorbed moisture diffuses out, which
could take several hours to several days, depending on the dielectric mate-
rial and the environmental conditions inside the chasses during operation and
transmission-line structure.

6.6.3 Modeling the Effect of Relative Humidity on an FR4 Dielectric

The modeling method employed to simulate the effect of moisture absorption in a
dielectric material is entirely dependent on the dielectrics affinity to absorb water,
how the absorbed moisture interacts with the chemical structure of the dielectric,
and the frequency range of interest. The dielectric most commonly used in the
electronics industry is FR4, which readily absorbs moisture. To understand how
to account properly for environmental variations in the relative humidity, we
consider how to model FR4 dielectric for two cases:

1. Low frequencies (below 2 GHz). Below 2 GHz, the effect of moisture
absorption has very little effect on total transmission-line losses (at least
for FR4 dielectrics). This behavior is demonstrated in Figure 6-19, where
the difference in insertion loss is minimal until approximately 2 GHz. This
is because at low frequencies, the total loss is usually dominated by the
skin effect resistance of the signal conductor, as described in Section 5.2.
For typical transmission lines, the losses of the dielectric begin to dominate
above about 1 to 2 GHz.

2. High frequencies (2 to 50 GHz). For this frequency range, the dry
and nominal environmental corners (up to approximately 50% relative
humidity for FR4) can be modeled with the infinite-pole Debye model, as
described in Section 6.3.5 and shown in equation (6-29). However, for
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high-humidity conditions, the assumptions used to derive the infinite-pole
model break down at frequencies greater than about 10 GHz. Specifically,
the approximation that ω2i in equation (6-28) decreases linearly on the
logarithmic scale is no longer valid for a dielectric that has absorbed a
significant amount of moisture. Therefore, for humid conditions (above
50% relative humidity) and frequencies above approximately 10 GHz,
FR4 dielectric must be fit empirically to a multipole model as described
in Section 6.3.4 with equation (6-27) and demonstrated in Example 6-1. It
is sometimes necessary to account for induced dipole resonances with the
squared term in equation (6-27) (ω2/ω2

1i ).

6.7 TRANSMISSION-LINE PARAMETERS FOR LOSSY DIELECTRICS
AND REALISTIC CONDUCTORS

As bus data rates increase and physical implementations of high-speed digital
designs shrink, transmission-line losses become more important. Consequently,
the engineer must have the ability to calculate the response of a transmission line
successfully and account for realistic conductor and dielectric behavior. In the
next two sections we build on the equivalent circuit derived in Section 5.4, which
included nonideal conductor effects, and describe how to include dielectric losses
in the equivalent circuit and modify the telegrapher’s equations to comprehend
dielectric losses.

6.7.1 Equivalent Circuit, Impedance, and Propagation Constant

Building directly on Section 5.4.1, where we developed the equivalent circuit,
impedance, and propagation constant for a transmission line with a realistic con-
ductor, we can complete the transmission-line model by adding the effects of
dielectric losses. The assumption of a perfect dielectric did not allow calcula-
tion of a loss term. Fortunately, the form of the equivalent circuit derived in
Section 3.2 is also applicable to a line whose dielectrics have an imaginary term
as in equation (6-15), and therefore losses. To begin this derivation, the shunt
admittance of an ideal transmission line with a loss-free dielectric is calculated as

Yshunt = jωC (6-41)

which has units of siemens. The equivalent circuit is easily modified to include
a shunt resistor with a conductance G with units of siemens, in parallel with the
capacitance to account for the dielectric losses, as shown in Figure 6-24, where Ns

is the number of segments, C�z = �z C and L�z = �z Ltotal, as calculated from
Section 3.23 and R�z = �z Rac from Section 5.4.1 and G�z = �z G, where �z

is the length of the differential section of transmission line and C, Ltotal, Rac,
and G are the capacitance, inductance, resistance, and conductance per unit
length.
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Figure 6-24 (a) Model for a differential element of a transmission line; (b) full model.

For this equivalent circuit, equation (6-42) calculates the shunt admittance by
adding a conductance term G:

Yshunt = G + jωC (6-42)

The formula for G can be derived by

ε = ε′ − j
σdielectric

ω
= ε′ − jε′′ (6-15)

tan |δ| = ε′′

ε′ (6-16b)

which show clearly that the dielectric losses will be proportional to ε′′ and tan |δ|,
and therefore G.

Furthermore, we know from Section 6.4.1 that the real and imaginary parts
of the dielectric permittivity must be related. Consequently, there must also be a
relationship between the conductance G and the capacitance C. If the dielectric
losses are treated as an equivalent conductivity, we can say that the dielectric
carries a current of �J = σdielectric �E [equation (2-7)]. Equation (3-1) says that the
voltage between the signal conductor and the reference plane is v = − ∫ b

a
�E · d�l

and that the total current is calculated from (2-20) as i = ∫
S

�J · d�s. Therefore, in
circuit terms, the conductance G can be written

G = i

v
=

∫
S

�J · d�s
− ∫ b

a
�E · d�l

= σdielectric
∫
S

�E · d�s
− ∫ b

a
�E · d�l

(6-43a)
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Similarly, from equations (2-76), (2-59) and (3-1), we can write the capacitance
in the form

C = Q

v
= ε

∫
S

�E · d�s
− ∫ b

a
�E · d�l

(6-43b)

Dividing (6-43a) by (6-43b) yields the following ratio:

G

C
= σdielectric

ε
(6-44)

From (6-15) and (6-16b),

σdielectric = tan |δ|ε′ω

which is substituted into (6-44) to yield

G(ω) = tan |δ|ωC (6-45)

where G(ω) is the frequency-dependent conductance in units of siemens per unit
length, ω = 2πf , and C is the capacitance per unit length for the transmission
line.

The characteristic impedance, which was defined in equation (3-33), can be
calculated by dividing the series impedance as defined by (5-68) by the parallel
admittance defined by (6-42) for a short section of transmission line of length �z:

Z0 =
√

Zseries

Yshunt
=

√
Rac + jωLtotal

G + jωC
ohms (6-46)

Note that the units in (6-46) are
√

ohms/(1/ohms) =
√

(ohms)2 = ohms.
The propagation constant can be derived by inserting the complex values of

the series impedance and shunt admittance into the loss-free formula derived in
Section 3.2.4 in (3-30), which takes the form

γ = α + jβ = 0 + jω
√

LC =
√

(jωL)(jωC) =
√

ZlosslessYlossless

Substitution of Zseries and Yshunt in place of the loss-free values of the series
impedance and the parallel admittance yields the propagation constant for a trans-
mission line with a lossy dielectric and a conductor with a finite conductivity:

γ = α + jβ =
√

ZseriesYshunt =
√

(R + jωL)(G + jωC) (6-47)
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If the loss parameters of equation (6-47) are small compared to jωLtotal and
jωC, which is the case for most practical transmission lines, (6-47) can be
approximated [Johnk, 1988]:

γ ≈ α + jβ = 1

2

(
R

√
C

L
+ G

√
L

C

)
+ jω

√
LC (6-48a)

α ≈ 1

2

(
R

√
C

L
+ G

√
L

C

)
(6-48b)

β ≈ ω
√

LC (6-48c)

As described in Section 3.2.4, the voltage propagating on a loss-free transmission
(α = 0) line can be written

v(z) = v(z)+e−jzw
√

LC + v(z)−ejzw
√

LC (3-29)

However, for a lossy transmission line, the voltage is described by multiplying
equation (3-29) by the decay factor e−αz:

v(z) = v(z)+e
−

(
α+jw

√
LC

)
z + v(z)−e

(
α+jw

√
LC

)
z = v(z)+e−γ z + v(z)−eγ z

(6-49)
Equation (6-49) describes the voltage propagating on a lossy transmission line.

Example 6-4 Calculate the frequency-dependent voltage at the output of a 0.5-m
transmission line that is perfectly terminated in its characteristic impedance with
the following properties: Lext = 2.5 × 10−7 H/m, Cquasistatic = 1.5 × 10−10 F/m,
σ = 5.8 × 107 S/m, µ = 4π × 10−7 H/m, l = 0.5 m, and w = 100 × 10−6 m,
εr,eff = 3.32, and tan δ = 0.0205 at 1 GHz.

SOLUTION

Step 1: Calculate the frequency-dependent parameters of the conductor. The
resistance can be calculated approximately using equation (5-12), and is plotted
in Figure 6-25a.

Rac = l

w

√
πµf

σ

The inductance is calculated with equations (5-20) and (5-30) and plotted in
Figure 6-25b.

Ltotal = Linternal + Lexternal (5-20)

Linternal = Rac

ω
(5-30)
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Figure 6-25 Frequency-dependent transmission-line parameters for Example 6-4.

Step 2: Calculate the frequency-dependent parameters of the dielectric. First,
the real and imaginary parts of the dielectric constant must be found:

ε′ = εr = 3.32

tan δ = ε′′

ε′ = 0.0205

ε′′ = 0.068

ε = ε′ − jε′′ = 3.32 − j0.068

Equations (6-30a) and (6-30b) are solved simultaneously to get �ε′ and ε′∞:

3.32 = ε′
∞ + �ε′

m2 − m1

ln(ω2/ω)

ln(10)

0.068 = �ε′

m2 − m1

−π/2

ln(10)

where m1 = 1 and m2 = 11 are chosen to correspond to a frequency range of
10 rad/s to 100 Grad/s, ω is 2π(1 GHz), and ω2 = 1011.

�ε′ = 0.997

ε′
∞ = 3.2
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The frequency-dependent capacitance is calculated by dividing Cquasistatic by
the quasistatic value of the effective dielectric permittivity and multiplying by
the frequency-dependent dielectric permittivity calculated by equation (6-30a).
The frequency-dependent capacitance is plotted in Figure 6-25c:

C(ω) = Cquasistatic

εr,eff

[
ε′
∞ + �ε′

m2 − m1

ln(ω2/ω)

ln(10)

]

where m1 = 1 and m2 = 11 are chosen to correspond to a frequency range of
10 rad/s to 100 Grad/s.

The conductance, G(ω), is calculated using equation (6-45) and plotted in
Figure 6-25d:

G(ω) = tan |δ|ωC(ω) (6-45)

where the loss tangent is calculated with (6-30a) and (6-30b):

tan |δ = |ε
′′

ε′ ≈
�ε′

m2 − m1

−π/2

ln(10)

ε′∞ + �ε′

m2 − m1

ln(ω2/ω)

ln(10)

Step 3: Calculate the frequency-dependent voltage. Since the transmission line
is perfectly terminated, no reflections will be generated. Therefore, the loss-free
voltage wave will behave as described by equation (6-49) with v(z)− = 0.

vout = vine
−αze−jβz = vine

−γ z

Therefore, using equation (2-31) to simplify,

vout = vine
−αz[cos(−βz) + j sin(−βz)]

where γ is defined by equation (6-47) and z is the line length:

γ (ω) = α + jβ =
√

(R + jωL)(G + jωC) (6-47)

Next, the magnitude of the voltage is calculated:

vout,mag =
√

Re(vout)2 + Im(vout)2

and is plotted in Figure 6-26 assuming that vin = 1 V.
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Figure 6-26 Magnitude of voltage at the output of a 0.5-m transmission line of
Example 6-4.

6.7.2 Telegrapher’s Equations for Realistic Conductors and Lossy
Dielectrics

The time-harmonic forms of the telegrapher’s equations for a transmission line
with a perfect dielectric and perfect conductor were shown in Section 3.2.4:

dv(z)

dz
= −jωLi(z) (3-25)

di(z)

dz
= −jωCv(z) (3-26)

These formulas were adjusted in Section 5.4.2 to account for a realistic conductor
with a finite conductivity. The classic form of the telegrapher’s equations for a
perfectly insulating dielectric and a realistic conductor are

∂v(z, t)

∂z
= −

(
Rac + Ltotal

∂

∂t

)
i(z, t) (5-72a)

∂i(z, t)

∂z
= −C

∂v(z, t)

∂t
(5-72b)

To include the effects of a lossy dielectric, equation (5-72) must be modified
to include the conductance G, as defined in equation (6-45). Notice that the
right-hand side of equation (3-26) is simply the inverse impedance of a capacitor
(i.e., the conductance). To account for the dielectric losses, G is simply added
into the right-handside of (3-26):

di(z)

dz
= −[G + jω(C)]v(z) (6-50)
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Consequently, the classic form of the telegrapher’s equations for a lossy dielectric
and a realistic conductor are

∂v(z, t)

∂z
= −

(
Rac + Ltotal

∂

∂t

)
i(z, t) (5-72a)

∂i(z, t)

∂z
= −

(
G + C

∂

∂t

)
v(z, t) (6-51)
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PROBLEMS

6-1 If the dielectric permittivity of a dielectric is known to be εr = 4.2 and
tan δ = 0.021 at 1 GHz, plot the frequency dependent values εr(f ) and
tan δ(f ) from 1 MHz to 20 GHz.

6-2 Given the plot of the dielectric permittivity in Figure 6-27a and the loss
tangent plot in Figure 6-27b, derive an equation for a frequency-dependent
dielectric model.

6-3 Given the real part of the dielectric permittivity in Figure 6-28, calculate
the loss tangent.
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Figure 6-27 (a) Permittivity data and (b) loss tangent data for Problem 6-2.
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6-4 Show that the Debye dielectric model [equation (6-28)] satisfies the
Cauchy–Riemann equations for i = 1:

ε = ε′
∞ +

n∑
i=1

�ε′
i

1 + j (ω/ω2i )
(6-28)

6-5 Given the cross section in Figure 6-29, estimate the bulk value of the
dielectric permittivity. Assume that εr,glass = 6.1 and εr,epoxy = 3.2.

Glass bundle

3.8 mils

Epoxy

2.1 mils

13 mils

6.2 mils

Figure 6-29 Cross section for Problem 6-5.

6-6 Assume that a series of 1-in.-long parallel transmission lines routed adja-
cent to each other are measured. The TDR waveforms are shown in
Figure 6-30. Estimate the variation in the dielectric permittivity due to
the fiber-weave effect.
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Figure 6-30 TDR for Problem 6-6.

6-7 Assuming a conductor width of 5 mils and a loss-free dielectric thick-
ness of 4 mils, create an equivalent-circuit model of the corner cases in
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Problem 6-6. Simulate them to show that the model matches the TDR
measurements.

6-8 What is the best way to minimize losses for a given cross section of
a transmission line with constant impedance? What is the best way to
minimize losses if constant impedance is not required? Plot the voltage
magnitude versus frequency for a 10-in.-long transmission line to prove
your theory for each case.

6-9 Given the relationship between the fiber-weave and transmission-line
dimensions shown in Figure 6-31, determine the minimum angle needed
to mitigate the impedance and velocity swings caused by the fiber-weave
effect. Assume that the maximum and minimum delay cases of the
TDR measurements of Figure 6-30 correspond to the cross sections of
Figure 6-31.

Glass

10 mils

5 mils
10 mils

Epoxy

8 mils

10 mils

8 mils

Figure 6-31 Cross sections for Problem 6-9.

6-10 For the cross section shown in Figure 6-32, plot the frequency-dependent
R, L, C,G, Z0, and τd from 100 MHz to 20 GHz. Assume that the surface
of the copper is specified to have a RMS tooth height of 0.8µm.

5 t = 1.2

er = 3.78, tan d = 0.022 at 7 GHz

4

Figure 6-32 Cross section for Problem 6-10.
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When the interconnections between drivers and receivers on a bus are imple-
mented with a dedicated transmission line for each bit, the signaling scheme is
said to be single ended . Buses designed with single-ended signaling generally
work well up to approximately 1 to 2 Gb/s. As data rates increase, it becomes
increasingly difficult to maintain adequate signal integrity because digital systems
are notoriously noisy. For example, large arrays of I/O circuits used to drive dig-
ital information onto the bus induce noise on the power and ground planes called
simultaneous switching noise (for a complete description, see a book by Hall
et al. [2000]). There are many other sources of noise that can severely distort the
integrity of the digital waveform such as crosstalk (as discussed in Chapter 4)
and nonideal current return paths (as discussed in Chapter 10). With single-ended
signaling, each data bit is transmitted on a single transmission line and latched
into the receiver with the bus clock. The decision of whether the bit is a 0 or a
1 is determined by comparing the received waveform to a reference voltage vref.
If the received waveform has a voltage greater than vref, the signal is latched
in as a 1, and if it is below vref, it is latched in as a logic 0. Noise coupled
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298 DIFFERENTIAL SIGNALING

onto the driver, receiver, transmission lines, reference planes, or clock circuits
will degrade the ideal relationship between the transmitted waveform and vref.
If the magnitude of the noise is large enough, the incorrect digital states will be
latched into the receiver, and bit errors will occur. Figure 7-1 depicts how noise
can make the determination of a logic 0 or 1 uncertain.
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Figure 7-1 How system noise can severely degrade signal integrity on single-ended
buses. The ideal versus noisy receiver voltages compared to the reference voltage.
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Figure 7-2 Differential signaling where each bit is transmitted from the driver to a
receiver using a pair of transmission lines driven in the odd mode. The signal is recovered
at the receiver with a differential amplifier.
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A strategy that reduces the effect of the system noise dramatically is to dedicate
a pair of transmission lines for each bit on the bus. The two transmission lines
are driven 180◦ out of phase (in the odd mode), and the differences between the
voltages are used to recover the signal at the receiver using a differential amplifier.
This technique is called differential signaling and is depicted in Figure 7-2.

7.1 REMOVAL OF COMMON-MODE NOISE

Differential signaling is very effective for removing common-mode noise, which
is defined as noise present on both legs of the differential pair. If the bus is
designed properly so that the legs of the differential pairs are in close proximity
to each other, the noise on D+ will be approximately equal to the noise on D−.
Therefore, assuming that the receiver’s differential amplifier has a reasonable
common-mode rejection ratio, the noise will be eliminated. For example, assume
that there is noise with a magnitude of vnoise coupled equally onto both legs of
a differential pair. The output of a differential amplifier with unity gain is

vdiff = (vD+ + vnoise) − (vD− + vnoise) = vD+ − vD− (7-1)

which removes the common-mode noise.
Figure 7-3 shows an example of a differential interconnect with noise present

on the ground plane (vnoise). In this case, the noise is common to both legs of
the driver. Figure 7-4a shows a simulated stream of data bits at the input to a
differential amplifier with significant common-mode noise. Note that the digital
state of the single-ended waveforms vD+ and vD− is indeterminable because the
noise is so large. However, since the noise is common mode, the bit stream can be
recovered when the signals are subtracted by a differential amplifier (vD+ − vD−),
as shown in Figure 7-4b.

+
−

idrive

vD+

vD−

Zdiff

vnoise

RR

D D

R

R

Figure 7-3 Differential driver and interconnect with common-mode noise present on the
ground. Noise on both the power and ground planes is very common in digital designs.
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Figure 7-4 Example of how common-mode noise is eliminated with differential signal-
ing: (a) single-ended waveforms at each leg of a differential receiver showing common-
mode noise; (b) differential waveform.

7.2 DIFFERENTIAL CROSSTALK

Although crosstalk noise on a differential pair has a significant common-mode
component, it also has a differential component because the distance between an
aggressor and each side of the pair differs (in some cases, if the aggressor is
on another layer, the crosstalk could be 100% common mode, but this is rare).
Consequently, each leg will experience slightly different crosstalk, which will not
be rejected by the differential amplifier. Nonetheless, under certain conditions,
differential signaling can reduce crosstalk significantly.

If the crosstalk between single-ended lines is compared to the crosstalk
between differential pairs, the differential crosstalk will be less if the spacing is
similar. The drawback is that the differential pair will occupy significantly more
board area. Additionally, if the single-ended pairs are spaced far enough apart
so that the same board area as the differential pairs is occupied, the single-ended
crosstalk is typically lower simply because the signals are spaced so far apart.
For example, consider Figure 7-5, which shows three cases:

1. Two single-ended coupled transmission lines spaced 10 mils apart
(Figure 7-5a).

2. Two differential pairs with an interpair spacing of 10 mils (Figure 7-5b).
Note that the spacing between pairs is identical to the spacing between
single-ended signals in case 1.

3. Two single-ended coupled transmission lines spaced 28 mils apart
(Figure 7-5c), which occupies the same board area as the differential pairs
of case 2.

Figure 7-6 shows the far end crosstalk for each case when the aggressors
are driven with 100-ps-wide pulses and line voltages of 0.5 V. The differential
crosstalk is calculated as the difference between V + and V −:

vdifferential = (V +) − (V −)
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Figure 7-5 Cross sections used to compare differential versus single-ended crosstalk:
(a) two single-ended signals; (b) two differential pairs with the same pair spacing as that
of the single-ended signals in (a); (c) two widely spaced single-ended signals that occupy
the same board area as the differential pairs (dimensions in mils).
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Figure 7-6 Crosstalk for the cross sections in Figure 7-5 demonstrating that differential
signaling does not reduce crosstalk compared to single-ended signaling if the same board
area is used. However, if the spacing between differential pairs is similar to the spacing
between single-ended signals, crosstalk in reduced (5-in. microstrip).
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Note that the differential crosstalk (case 2) is less than the identically spaced
single-ended crosstalk (case 1), but greater than a single-ended case that occupies
the same board space as two differential pairs (case 3). This scenario is typical
for modern printed circuit boards, but is not necessarily always true. The benefit
of differential signaling for crosstalk is dependent on the specific geometries and
dielectric properties of the design.

7.3 VIRTUAL REFERENCE PLANE

Another advantage of differential signaling is that the complementary nature of
the electric and magnetic fields creates a virtual reference plane that provides a
continuous return path for the current. Figure 7-7 shows the field patterns for a dif-
ferential pair driven in the odd mode. Note that halfway between the conductors
there exists a plane that is normal to the electric fields and tangent to the magnetic
fields. These conditions are consistent with Section 3.2.1, which describes the
boundary conditions of a perfectly conducting plane. Therefore, for a differential
pair, there exists a virtual reference plane between the conductors . The existence
of the virtual reference plane is extremely helpful for cases when a nonideal ref-
erence exists that helps preserve signal integrity. Some common examples of a
nonideal reference include connector transitions, via fields, layer transitions, and
routing over a slot in the reference plane. In Chapter 10 we describe in detail the

Electric field is perpendicular
to the virtual plane

Magnetic field is tangent to the
virtual plane

Magnetic field

Electric field

Virtual reference plane

Figure 7-7 For an odd-mode (or differential) signal, the fields orient so that an ideal
virtual reference plane existed between the conductors. When the physical plane is inter-
rupted, the virtual plane provides a continuous reference for a differential signal and helps
preserve signal integrity.
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ill effects of nonideal reference planes. Additionally, when the fields are confined
between the conductors (i.e., strongly coupled to the virtual reference plane), they
are less apt to fringe out to other signals, which helps reduce crosstalk.

7.4 PROPAGATION OF MODAL VOLTAGES

For a multiconductor system, in Chapter 4 we discussed how all digital signal
states are composed of linear combinations of the modal voltages. For a single
differential pair, the two modes are the even and odd modes. Ideally, the differ-
ential pair is driven with lines 1 and 2 180◦ out of phase so that all of the energy
is contained solely in the odd mode. However, if common-mode noise is cou-
pled onto the differential pair, some energy will exist simultaneously in the even
mode. This is easy to show mathematically using modal analysis, as discussed
in Section 4.4. For example, consider a differential pair with line voltages vD+
and vD−, which are composed of linear combinations of the odd- and even-mode
voltages: [

vD+
vD−

]
= [TV ]

[
vodd

veven

]
(7-2)

where [TV ] is a matrix containing the eigenvectors of the product LC as devel-
oped in Section 4.4.1.

If the differential pair is driven exactly 180◦ out of phase and there is no noise
present, the odd- and even-mode voltages are calculated, where

[TV ] =
[

0.707 0.707
−0.707 0.707

]

from Example 4-4: [
1

−1

]
=

[
0.707 0.707

−0.707 0.707

] [
vodd

veven

]
(7-3)

resulting in

vodd = 1.41443 V

veven = 0 V

which proves that all the energy is contained on the odd mode.
However, if common-mode noise is present, energy is introduced into the even

mode. If vnoise is the voltage noise introduced to each leg of the pair, the even
and odd modes are calculated:[

1 + vnoise

−1 + vnoise

]
=

[
0.707 0.707

−0.707 0.707

] [
vodd

veven

]
(7-4a)

vodd = 1.41443 V (7-4b)

veven = 1.41443vnoise V (7-4c)
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Therefore, the common-mode noise propagates in the even mode.
The voltage present on each leg of the differential pair can be calculated from

the modal voltages by solving (7-2):

vD+ = 0.707vodd + 0.707veven = 1 + 0.707(1.41443vcm) = 1 + vcm

vD− = −0.707vodd + 0.707veven = −1 + 0.707(1.41443vcm) = −1 + vcm

In a differential bus, the line voltages are subtracted with a differential amplifier
at the receiver which eliminates the noise.

vD+ − vD− = (1 + vcm) − (−1 + vcm) = 2

To summarize, a differential signaling scheme eliminates energy in the even mode.

7.5 COMMON TERMINOLOGY

For systems with more than two signal conductors, the terms even mode and
odd mode are no longer applicable. When analyzing differential buses, it is
common to refer to a pair being driven with two signals 180◦ out of phase
as the differential mode and two signals driven in phase as the common mode.
The differential- and common-mode terms are simply naming conventions and
are not technically modes at all. Analysis of the modal voltages propagating on
multiconductor systems as described in Section 4.4 will show that the digital
states do not correspond directly to modal voltages for systems with more than
two signal conductors.

The differential-mode impedance is defined as twice the odd mode, and the
common-mode impedance is one-half the even mode. The odd- and even-mode
impedance values are described in Section 4.3.1.

Zdifferential = 2Zodd (7-5a)

Zcommon = Zeven

2
(7-5b)

It should be noted that equations (7-5a) and (7-5b) are typically used for the
purpose of specifying design guidelines. The actual impedance of a differential
pair may not correspond directly to Zdifferential if there is significant coupling to
adjacent pairs. Equations (7-5a) and (7-5b) are representative of the true pair
impedance values only if the interpair coupling is weak. Remember: In a mul-
ticonductor system with N signal conductors, there will be N unique modal
impedance values.

It is also true that for a system with N signal conductors, there will be N modal
propagation velocities. If the transmission lines are routed in a homogeneous
dielectric (such as a stripline), all the modal velocities will be identical. However,
for a nonhomogeneous dielectric (such as a microstrip), the differential- and
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common-mode propagation velocities are approximately equal to the odd- and
even-mode velocities if the interpair coupling is weak. Odd- and even-mode
velocities are defined in Section 4.3.1:

νdifferential ≈ νodd (7-6a)

νcommon ≈ νeven (7-6b)

To quantify the voltage propagating in the differential and common modes, the
following definitions are often used:

Vdm = V − V (7-7a)

Vcm = V + V

2
(7-7b)

where Vdm is the voltage propagating in the differential mode, Vcm is the volt-
age propagating in the common mode, V represents the voltage propagating
on line 1 (the same as vD+ used in the two-signal-conductor example), and V

represents the complementary signal propagating on line 2 (vD− used in the
two-signal-conductor example).

7.6 DRAWBACKS OF DIFFERENTIAL SIGNALING

Differential signaling is a powerful tool used to design high-speed digital buses
that dramatically reduces the amount of common-mode noise seen at the receiver,
which allows higher data rates to be realized. However, differential signaling is
not a panacea. Most obviously, a differential bus consumes significantly more
area on the printed circuit board than does a single-ended bus. Sometimes, dif-
ferential buses are so large that they force designers to use printed circuit boards
with more layers, which increases cost. The increased number of signals drives
package, socket, and connector pin counts to higher levels, which complicates
designs and further increases system costs. Also, the impedance tolerance of
differential pairs tends to be lower than single ended because the variations in
etching and plating profiles of the conductors affect mutual inductance and capac-
itance and, consequently, differential impedance. Furthermore, small asymmetries
in the differential pair can have a large impact on signal integrity if not controlled
properly.

7.6.1 Mode Conversion

In Section 7.4 we showed how common-mode noise coupled onto a differen-
tial pair causes voltage to propagate in the even mode, which is rejected by
the receiver assuming that the common-mode rejection ratio is high enough.
Another mechanism that causes even-mode voltage to propagate are phase errors
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between V and V . Ideally, the phase difference between the waveforms propa-
gating on V and V is 180◦, which keeps the energy in the odd mode. However,
if the phase relationship between V and V deviates from 180◦ as the signals
propagate toward the receiver, some of the energy will be converted from odd
mode to even mode. This phenomenon has many names, including mode conver-
sion, differential-to-common mode conversion , and ac common-mode conversion
(ACCM conversion). In this text we use the term ACCM conversion .

ACCM conversion is caused by asymmetry between V and V in the dif-
ferential pair. The asymmetry can be caused by length differences, coupling
differences, etching differences, proximity effects, termination differences, bends,
or anything else that would make one leg of the pair look electrically different
from the other. Some of these examples are shown in Figure 7-8. To demonstrate
how intrapair asymmetry affects voltage and timing noise, consider the simple
(but very common) example where lengths of lines 1 and 2 in the pair are not
equal, as shown in Figure 7-8a. Assuming that the signal is launched differen-
tially, the difference in propagation delay between lines 1 and 2 will change the
phase relationship at the receiver because the voltage propagating on one leg of
the pair will arrive early, converting part (or all) of the differential signal to com-
mon mode. Figure 7-9 shows how a perfect differential signal at the transmitter
(Tx) is distorted at the receiver (Rx) when asymmetry exists in the pair. The dis-
tortion is proportional to the amount of voltage that exists in the common mode.

The amount of signal that is converted to common mode depends on the
length of the pair, the difference in propagation delays, and the frequency. This

∆l

(a) (b)

(c) (d)

V V

V

V

V

VZ01

Z02

line 1

line 2

S1

VV

l2

l1

S2

Figure 7-8 Examples of asymmetry in a differential pair that can cause differential to
common-mode conversion: (a) routing-length differences; (b) impedance differences due
to etching variation; (c) crosstalk differences; (d) length differences due to bends.
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Figure 7-9 When asymmetry exists in the differential pair, part of the signal gets con-
verted to common mode at the receiver.

can be shown by calculating the voltage on each leg of the transmission line at
the receiver when the signals are launched 180◦ (π) out of phase:

V (ω, l1) = v+
1 e−αl1ej (ωt−βl1) (7-8a)

V (ω, l2) = v+
2 e−αl2ej (ωt+π−βl2) (7-8b)

where β is the propagation constant as defined in equation (6-48c), α the atten-
uation constant as defined in equation (6-48b), l1 the length of line 1, and l2 the
length of line 2. Note that since there is no backward-propagating component
(v−), all reflections are perfectly terminated in this example.

The differential-to-common mode conversion (ACCM) is calculated from
(7-8a) and (7-8b) with α = 0:

ACCM = V (z = l1) + V (z = l2)

V (z = 0) − V (z = 0)
= v+

1 ej (ωt−βl1) + v+
2 ej (ωt+π−βl2)

v+
1 ej (ωt) − v+

2 ej (ωt+π)

= v+
1 e−jβl1 + v+

2 e−jβl2

v+
1 − v+

2

(7-9)

where V (z = l1) and V (z = l2) are the voltages at the receiver, and V (z = 0)

and V (z = 0) are the voltages at the driver.
At low frequencies where the wavelength is large, the phase delay difference

between lines 1 and 2 is small, so the numerator of (7-9) is approximately zero.
However, as the frequency increases, the phase difference becomes large. When
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the phase difference reaches 180◦(π), the differential signal launched at the driver
is converted completely to a common-mode signal at the receiver, and equation
(7-9) is unity.

Example 7-1 For the differential pair shown in Figure 7-10, calculate the fre-
quency where the differential signal injected at the driver is 100% converted to
a common-mode signal at the receiver.

SOLUTION

Step 1: Calculate the propagation constant of the transmission lines. Equation
(2-46) defines the propagation constant in terms of the wavelength:

β = 2π

λ
rad/m

equation (2-45) defines wavelength in the terms of the frequency where the speed
of light in a vacuum has been replaced with the speed of light in the media (νp):

f = νp

λ
Hz

and equation (2-52) calculates the speed of light in the media (assuming that
µr = 1):

νp = c√
εr

m/s

Therefore, the propagation constant is calculated as a function of frequency:

β = 2πf
√

εr

c
= (41.866 × 10−9)f rad/s

Step 2: Use equation (7-9) to plot the differential-to-common mode conversion.
Since V (z = 0) = 1 and V (z = 0) = −1, the terms v+

1 = 1 and v+
2 = −1. The

plot is shown in Figure 7-11. When ACCM = 1, the phase error due to the length
mismatch equals 180◦ and the differential signal launched at the driver shows

Driver

V(z = 0) = 1 V(z = l1)

V(z = 0) = −1

Receiver

εr = 4.0

l1 = 0.254 meters

l2 = 0.260 meters

V(z = l2)

Figure 7-10 Figure for Example 7.1.
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Figure 7-11 Differential common-mode conversion plotted for Example 7-1 showing
that a differential signal launched at the driver becomes common mode at the receiver
when the frequency is about 12.5 GHz.

up as a common-mode signal at the receiver. Therefore, the frequency where the
differential-to-common mode conversion is 100% is 12.5 GHz.

In a differential system, only the difference between V (z = l1) and V (z = l2)

is recovered. Consequently, the percentage of differential energy converted to
common mode looks like loss to the differential bus in the frequency domain.
In Example 7-1 the differential receiver would see no signal at 12.5 GHz. At
4 GHz, approximately 50% of the energy has been converted to the common
mode and only one-half the signal would be sensed by the differential receiver.

Note that the differential-to-common mode conversion in Example 7-1
decreases after 12.5 GHz. Do not be tempted to operate the bus in this frequency
range. The phase difference between signals on the differential pairs will continue
to increase until they are 360◦ out of phase, where (7-9) predicts zero mode
conversion. If a digital bus were operated so that the phase difference was 360◦

at the receiver, bit 1 on line 1 would align with bit 2 on line 2 and the incorrect
data would be latched into the receiver. This can easily be demonstrated by
observing the real portion of V (z = l1) and V (z = l2) as calculated with (7-8a)
and (7-8b). Figure 7-12a shows the differential-to-common mode conversion
(ACCM) for the differential pair in Example 7-1 when l1 = 0.254 m and
l2 = 0.340 m. Figure 7-12b shows the real part of V (z = l1) and V (z = l2) at
the receiver. Note that at low frequencies, the waveforms are 180◦ out of phase
and the differential-to-common mode conversion is zero. At about 880 MHz,
the differential-to-common mode conversion is 100%, and the waveforms in
Figure 7-12b are in phase. At ∼1.75 GHz, the ninth peak of V (z = l1) is 180◦

out of phase with the seventh peak of V (z = l2), and equation (7-9) predicts
that ACCM = 0. Although the magnitude of the differential-to-common mode
conversion begins to decrease after it peaks, the phase error is large, so the bus
will not function properly.
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Figure 7-12 The differential-to-common mode conversion peaks when the difference
in phase delay between lines 1 and 2 in a differential pair is 180◦. As the phase delay
difference increases with frequency, the ACCM becomes zero again, but the phase error
is so large that the bus will not operate properly.

7.6.2 Fiber-Weave Effect

In Section 6.5.1 we described how FR4 and similar dielectrics are composite
materials made from a matrix of woven bundles of fiberglass embedded in an
epoxy resin. Figure 7-13 depicts how it is possible for one leg of the differen-
tial signal to be routed between glass bundles and the other to be routed over
a glass bundle that effectively gives each trace a unique propagation velocity.
The reinforcing fiberglass bundles have a dielectric permittivity εr of approxi-
mately 6, whereas εr is close to 3 for the epoxy resin in which the bundles are
embedded. When a differential pair is aligned with the reinforcing fiber matrix
of the dielectric in this manner, it causes an imbalance in the differential pair that
causes differential-to-common mode (ACCM) conversion. Even if the lines are
routed symmetrically, the difference in the dielectric permittivity will make the
electrical delay shorter in one line versus the other. Figure 7-13 depicts a cross
section of a differential pair that is asymmetric due to the fiber-weave effect.
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Figure 7-13 The fiber-weave matrix used to construct composite dielectrics such as
FR4 can cause differential signals to be asymmetric due to the differences in permittivity
of the glass weave (εr ∼ 6) and the epoxy (εr ∼ 3). The glass pitch shown is typical for
many glass weaves used in the printed circuit board industry.

Unless specific measures are used to eliminate the alignment of the differential
pair with the fiber weave, the traditional approach of modeling the transmission
line using a uniform dielectric permittivity throughout the dielectric layer is no
longer sufficient. The approach must be modified to comprehend the localized
dielectric variation. Figure 7-14 shows the profile of the cross-section geometry
description used as 2D field solver input for calculating the transmission-line
parameters. Simple in principle, this approach is complicated by the fact that
the measured effective dielectric permittivity results from the combined effect
of multiple dielectrics: resin, fiberglass, solder mask, and air. As a starting
point, the effective dielectric permittivity of the FR4 material in each region
can be calculated using the measured value of the propagation delay as in
Figure 6-15, and the actual dielectric differences can be estimated as described in
Section 6.5.1. Alternatively, the results from a 2D field simulation with a cross
section that describes the composite nature of the dielectric can be used if suffi-
cient information is available. Many commercial field solvers have this capability,
including Ansoft’s Q2D. Nonetheless, once reasonable values for εr1 and εr2 are
estimated, the fiber-weave effect can be approximated by generating the appro-
priate transmission-line parameters for each leg of the pair using a cross section
similar to that shown in Figure 7-14.

The differential-to-common mode (ACCM) conversion due to dielectric per-
mittivity variations can be calculated using the same procedure that was used to
derive equation (7-9). The only difference is that the line length (l) stays constant

h

between bundlesover a bundle

w
S

between bundlesover a bundle

w
SSpair

er 1 er 2 er 2er 1

Figure 7-14 Cross section for modeling the fiber-weave effect in differential pairs. The
dielectric permittivity is adjusted to account for a trace routed over a glass bundle or over
an epoxy pool.
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Figure 7-15 Waveforms for Example 7-2: (a) length = 5 in. (b) length = 10 in.

and the propagation constant (β) changes:

ACCM = V (z = l) + V (z = l)

V (z = 0) − V (z = 0)
= v+

1 e−jβ1l + v+
2 e−jβ2l

v+
1 − v+

2

(7-10)

where β1 = 2πf
√

εr,eff1/c, β2 = 2πf
√

εr,eff2/c, l the differential pair length, and
v+

1 and v−
1 are the driving voltages.

Example 7-2 Determine the frequency where the differential-to-common mode
conversion is 100% for a 10-in. (0.254-m) and a 5-in. (0.178-m) differential pair
routed where one leg is over a bundle and one leg is between glass bundles. Use
the measured data shown in Figure 6-15.

SOLUTION

Step 1: Determine the maximum spread in the effective dielectric permittivity.
From Figure 6-15 the spread is 0.23:

�εeff ≈ 3.73 − 3.5 = 0.23

Step 2: Calculate β1 and β2:

β1 = 2πf
√

εr,eff1

c
= 2πf

√
3.73

3 × 108
= f · 40.429 × 10−9 rad/s

β2 = 2πf
√

εr,eff2

c
= 2πf

√
3.5

3 × 108
= f · 39.163 × 10−9 rad/s

Step 3: Plot the differential-to-common mode conversion using (7-10).
The plots are shown in Figure 7-15a and b. When the length is 10 in., the
differential-to-common mode conversion is 100% at about 10 and 20 GHz for
5 in.

Mitigation of the fiber-weave effect was discussed briefly in Section 6.5.2.
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PROBLEMS

7-1 Assume that a differential pair is routed so that the fiber-weave effect
occurs similar to Figure 7-16. Assume that the line is 7 in. long
and the metal is copper with a surface roughness of 0.5µm. If the
differential-to-common mode conversion is calculated with losses, how
does the answer differ from the case where it is calculated with no losses?
Which answer better predicts the percentage of the signal converted to
the common mode?

V V
10 mils

16.7 mils

Epoxy

w = 5 mils

h = 4 mils Glass Glass

Figure 7-16 The permittivity/loss tangent for the glass weave is
εr = 6/tan δ = 0.0002 and the epoxy εr = 3/tan δ = 0.025.

7-2 Derive metrics based on line lengths that will help predict the magnitude
of the voltage noise on a digital signal when the fiber-weave effect is
present. Use the results of Problem 7-1 for the derivation.

7-3 How would the differential pair of Problem 7-1 affect the timing of a
digital signal? (Hint: Consider the phase noise.)

7-4 Describe three different methods for mitigating differential-to-common
mode conversion.

7-5 Derive a formula to predict differential-to-common mode conversion for
the case where the impedance of each leg does not match.

7-6 Use modal analysis described in Section 4.4 to calculate the differential
waveform expected for a 10-in. transmission line with a cross section of
Figure 7-16.
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7-7 Show that the modal voltages correspond to specific digital states for two
signal conductors. Use the following L and C matrices:

L =
[
3.77 × 10−7 5.18 × 10−8

5.18 × 10−8 3.77 × 10−7

]
H/m

C =
[

8.21 × 10−11 −4.26 × 10−12

−4.26 × 10−12 8.21 × 10−11

]
F/m

7-8 Show that the modal voltages do not correspond to specific digital states
for three or more signal conductors. Use the following L and C matrices:

L =

3.77 × 10−7 5.17 × 10−8 1.08 × 10−8

5.17 × 10−8 3.77 × 10−7 3.21 × 10−8

1.08 × 10−8 3.21 × 10−8 3.77 × 10−7


 H/m

C =

 8.21 × 10−11 −4.25 × 10−12 −3.74 × 10−12

−4.25 × 10−12 8.21 × 10−11 −4.25 × 10−12

−3.74 × 10−12 −2.04 × 10−12 8.19 × 10−11


F/m

7-9 Use modal analysis to calculate the far-end (forward) crosstalk between
two single-ended lines using the matrices in Problem 7-7, and compare it
to the crosstalk from a differential pair to a single-ended line using the
matrices from Problem 7-8.

7-10 Create a SPICE model that proves how routing guidelines that force signal
lines to be routed at 10◦ or greater angles with respect to the board edge
mitigate the fiber-weave effect. (Hint : Review Chapter 6.)
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Modern high-speed digital design requires extensive signal integrity simulations
to assess the electrical performance of the system prior to fabrication of pro-
totypes. To ensure accurate results from the simulations, careful attention must
be given to system component models such as transmission lines, vias, con-
nectors, and packages. For a model to be physically consistent with the laws
of nature, certain mathematical constraints must be obeyed to ensure proper
balance between signal propagation, energy storage, and losses. For example,
the vast majority of engineers designing high-speed digital systems today uti-
lize simplified modeling techniques that employ frequency-invariant values of
dielectric permittivity, loss tangent, and inductance for transmission-line mod-
els. A review of Chapters 5 and 6 will remind the reader that transmission-line
models have frequency-dependent properties that must be modeled correctly if a

Advanced Signal Integrity for High-Speed Digital Design, By Stephen H. Hall and Howard L. Heck
Copyright  2009 John Wiley & Sons, Inc.
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realistic response is expected. Such assumptions, although valid at low frequen-
cies or for very short electrical structures, induce amplitude and phase errors for
digital data rates faster than 1 to 2 Gb/s. In fact, the computer currently being
used to write this chapter was designed using traditional modeling techniques,
which assume frequency-invariant electrical properties of dielectrics and conduc-
tors. Such assumptions, however, cease to produce valid results for higher data
rates. As data rates increase, bandwidth demands skyrocket, form factors shrink,
and new phenomenan that were insignificant in past designs become significant.
When the correct model assumptions are not used, incorrect solution spaces are
determined, lab correlation becomes difficult or impossible, and the design time
is increased significantly. In this chapter we outline some of the most important
techniques used to determine if a physical channel model is adequate for the
design at hand. First, the fundamentals of calculating the channel response and
methods of implementing frequency-domain phenomena in time-domain simu-
lations are explored. Next, the mathematical requirements for a channel that is
consistent with nature are explained, and methodologies for testing these require-
ments are defined. It is not always necessary for a model to obey these physical
rules if the error is small enough; however, it is an important concept for the
modern-day digital designer to understand to ensure full comprehension of the
modeling assumptions.

8.1 FREQUENCY-DOMAIN EFFECTS IN TIME-DOMAIN
SIMULATIONS

Although high-speed digital design is focused largely on the signal integrity of
time-domain digital waveforms, many of the phenomena that heavily influence
the propagation of signals on interconnects are best described in the frequency
domain. Examples covered in previous chapters include skin effect resistance,
surface roughness, internal inductance, and frequency-dependent dielectric prop-
erties. Consequently, it is important for the digital engineer to understand the rela-
tionship between a time-domain waveform and its equivalent frequency-domain
representation. In fact, many modern buses have component specifications in
terms of frequency-domain parameters because it is the most convenient way to
describe the wideband behavior. In this section we outline some of the funda-
mental principles for linear time-invariant systems that will allow the engineer
to translate between the frequency and time domains.

8.1.1 Linear and Time Invariance

A system is linear if the relationship between the input and output of the system
satisfies the superposition property. For example, if the input to the system is the
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sum of two component signals,

x(t) = c1x1(t) + c2x2(t)

where c1 and c2 are constants, the output of the system will be

y(t) = c1y1(t) + c2y2(t)

where yn(t) is the output resulting from the input xn(t) (n = 1 and 2). To gener-
alize, a linear system with input

x(t) =
∑

n

cnxn(t)

will have output

y(t) =
∑

n

cnyn(t)

for any constants cn and where the output yn(t) results from the input xn(t).
Time invariance means that whether an input to the system is applied at t = 0

or t = τ , the output will be identical except for a time delay of τ . For example,
if the output due to input x(t) is y(t), the output due to input x(t − τ ) is y(t − τ ).
Simply put, a time delay at the input should produce a corresponding time delay
at the output .

8.1.2 Time- and Frequency-Domain Equivalencies

Any time-domain waveform in an LTI system has an equivalent spectrum in the
frequency domain. This means that any time-domain signal, such as a digital
waveform, can also be described fully in terms of its frequency-domain parame-
ters. This concept is important because it allows the frequency-dependent nature
of electromagnetic models to be integrated into time-domain waveforms so that
the signal integrity of digital bits propagating on a bus can be analyzed. The
relationship between a time-domain signal and its frequency-domain equivalent
is described with the Fourier transform:

F(ω) =
√

|b|
(2π)1−a

∫ ∞

−∞
f (t)ejbωt dt (8-1a)

f (t) =
√

|b|
(2π)1+a

∫ ∞

−∞
F(ω)e−jbωt dω (8-1b)
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where (8-1a) translates a time-domain signal into a frequency-domain
representation and (8-1b) translates the frequency-domain representation into a
time-domain waveform. When using the Fourier transform, it is important to
ensure that the correct conventions are used. Different technical and scientific
fields have different conventions that can confuse the analysis if consistency is
not maintained. The conventions are based on the choices for a and b. Some
popular conventions are (a = 0, b = −1) for modern physics, (a = 1, b = −1)
for systems engineering, (a = −1, b = 1) for classical physics, and (a = 0,
b = −2π) for signal processing [Wolfram, 2007]. In this chapter we utilize both
the systems engineering and signal processing conventions, depending on the
application.

The Fourier transform simply relates a time-domain waveform to a frequency
response by superimposing an infinite number of sinusoidal functions to recon-
struct the original waveform. For example, if the Fourier expansion of a 50%
duty cycle square wave is calculated,

f (t) = A

2
+ 2A

π

∑
n=1,3,5. . .

1

n
sin(n2πf t) (8-2)

the wave shape can be approximated by superimposing several individual har-
monics, as demonstrated in Figure 8-1. As the harmonic n is increased, the
reconstructed waveform better approximates the original.

The Fourier transform shown in equation (8-1a) can be used to calculate the
real and imaginary parts of the individual sinusoids needed to reconstruct the
time-domain waveform, which is known as the spectrum of the waveform . For
example, the frequency spectrum of a perfect square pulse, with a width of 2
time units as shown in Figure 8-2a, is calculated using the systems engineering
convention (a = 1, b = −1).

F(ω) =
∫ ∞

−∞
f (t)e−jωt dt

n = 1 (frequency of first  harmonic) n = 1, 3

n = 1, 3, 5 n = 1, 3, 5, 7

Figure 8-1 Fourier expansion for a 50% duty cycle square wave.
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Figure 8-2 (a) Square wave f (t), which is the most primitive approximation of a digital
bit; (b) frequency-domain equivalent spectrum of the square wave.

=
∫ 1

−1
e−jωt dt

= j
e−jωt

ω

∣∣∣∣
t=1

t=−1
= − j

ω
(ejω − e−jω)

However, since (ejω − e−jω)/2j = sin ω, the frequency spectrum can be
simplified:

F(ω) = − j

ω
sin ω 2j

= 2
sin ω

ω
= 2 sinc ω (8-3)

Equation (8-3) is the frequency spectrum of a square-wave pulse and is plotted
in Figure 8-2b. This means that the frequency-domain representation of a square
wave takes the form of a sinc function, and vice versa. Note that for a perfect step
or pulse, an infinite number of harmonics is required to reproduce the waveform.

The centering of the square wave around t = 0 in Figure 8-2a simplifies the
mathematics by eliminating the imaginary portion of the transform. For a realistic
digital pulse with only positive time values, the spectrum becomes complex. For
example, the Fourier transform of a square pulse with a width of 2 time units
is shown in Figure 8-3 calculated with system engineering conventions (a = 1,
b = −1). Note that the spectrum contains both real and imaginary components.

The examples shown in Figures 8-2 and 8-3 demonstrate three very impor-
tant concepts that link the time-domain waveform to its frequency-dependent
equivalent.

1. The spectrum of the time-domain waveform has both positive and negative
frequency components.
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Figure 8-3 (a) Square wave f (t) with only positive time values; (b) frequency-domain
equivalent spectrum of the square wave. Note that the spectrum has both real and imagi-
nary values.

2. The spectrum of a time-domain waveform with only positive time values
is complex.

3. Since time-domain signals that are physically observable have no imaginary
component, they must be real. Reality in the time domain is guaranteed
when the positive frequencies of the Fourier transform are the complex
conjugate of the negative frequencies [LePage, 1980]:

F(−ω) = F(ω)∗ (8-4)

The behavior of equation (8-4) can be observed in Figure 8-3b. For example,
at the frequency ω = −2 rad/s, the spectrum has a value of

F(−2) = −0.4 + j0.74

and at ω = 2 rad/s, the spectrum has a value of

F(2) = −0.4 − j0.74

Since F(−2) = F(2)∗, the spectrum is for a real time-domain waveform.
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Figure 8-4 Frequency response of a trapezoidal wave compared to an ideal square wave.

8.1.3 Frequency Spectrum of a Digital Pulse

Although a square pulse is a first-order approximation of a digital bit, a bet-
ter approximation is a trapezoid. Figure 8-4 shows the frequency response of
a trapezoidal wave compared to an ideal square wave. Notice the shape of the
trapezoid’s frequency response is very similar to that of a square wave, except
that the magnitude of the harmonics are smaller, especially at high frequencies.
This demonstrates another important concept: The rise and fall times of a dig-
ital waveform determine the magnitude of the high-frequency harmonics in the
frequency-domain spectrum .

Figure 8-4 also indicates that the spectrum of a trapezoid can be derived by
applying a low-pass filtering function to the spectrum of a square wave. This
allows a relationship to be defined between the spectral content of a digital
waveform and the rise and fall times. To begin the derivation of this relation-
ship, some unique properties of the square-wave spectrum need to be observed.
Equation (8-3) shows that the harmonics of a square wave are a sinc func-
tion. Taking the limits of the sinc function allows the frequency spectrum to be
generalized:

sin ω

ω
≈

{
1 when ω is small

1/ω when ω is large
(8-5)

The quantity 2/ω is compared to the spectrum calculated with equation (8-3) in
Figure 8-5. Note that the quantity 1/ω is equivalent to a slope of 20 dB/decade
on a log-log plot:

20 log
1/10ω

1/ω
= −20 dB/decade

meaning that the spectral content of a square wave will fall off at a rate of
−20 dB/decade.

One way to approximate the spectrum of a trapezoidal wave is to apply a
low-pass filtering function to the harmonics of a square wave until the desired
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Figure 8-5 The spectrum of a square wave fits within the envelope of 2/ω at high
frequencies.

rise and fall times are realized. The easiest way to apply this filtering is to use
a simple low-pass one-pole filtering response, such as an RC network. The step
response of a simple one-pole filter is

vout

vinput
= 1 − e−t/τ (8-6)

where vinput is the input voltage to the filter, vout the output voltage, and τ the time
constant. If the rise times are defined with the 10% and 90% voltage magnitude
points, the time constant required to degrade a step to a specific t10–90% can be
calculated. The rise time of a unit step after it passes though a one-pole filter
with a time constant of τ is calculated as

t10–90% = t90% − t10% = 2.3τ − 0.105τ = 2.195τ (8-7)

Note that t10% and t90% are calculated from 0.1 = 1 − e−t10%/τ and 0.9 = 1 −
e−t90%/τ . An example is shown in Figure 8-6, where the time constant was cal-
culated assuming an RC network with R = 50 � and C = 5 pf.

The 3-dB bandwidth of a one-pole filter is

f3dB = 1

2πτ

→ τ = 1

2πf3dB

Solving for τ and substituting into (8-7) produces the well-known relationship
between the spectral content of an edge and the rise time:

t10–90% = 2.195τ = 2.195

2πf3dB
≈ 0.35

f3dB
(8-8)
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Figure 8-6 If a unit step is driven into a single-pole network with time constant τ , the
resulting 10 to 90% rise time can be calculated.

Equation (8-8) is a good “back of the envelope” calculation that estimates the
spectral bandwidth of a digital signal with a rise/fall time of t10−90%.

Equations (8-5) and (8-8) can be used to estimate the spectral envelope of
a trapezoidal digital signal. The spectrum of a square wave will fall off at
−20 dB/decade, as described by (8-5). When the frequency (f3dB) that corre-
sponds to the bandwidth of an edge with rise and fall times of t10−90% is reached,
the low-pass filtering function becomes significant, and also falls off at a rate of
−20 dB/decade. This allows us to draw the approximate spectral envelope of a
digital pulse, as shown in Figure 8-7.
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Figure 8-7 Approximation of the spectral envelope of a digital pulse.
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8.1.4 System Response

When a system is linear and time invariant, the output and input can be repre-
sented with a convolution , where bold face type indicates a matrix:

y(t) = h(t) ∗ x(t) =
∫ ∞

−∞
h(t − τ)x(τ ) dτ (8-9a)

where h(t) is the system impulse response matrix, and each element hij (t) is the
response at port i when Dirac’s delta function (an ideal impulse) is applied at
port j with all other inputs set to zero. This is an important concept, because if
the impulse response of a system is known, the response of the system with any
input, x(τ ), can be determined.

When the system impulse response is represented in the frequency domain, it
is referred to as the transfer function H (ω):

Y(ω) = H(ω)X(ω) (8-9b)

where Y(ω) is the frequency response matrix of the of the system output and X(ω)
is the frequency response of the system input. It is usually much more convenient
to analyze systems using transfer functions in the frequency domain rather than
impulse responses in the time domain. However, due to the equivalency between
a time-domain waveform and a frequency-domain spectrum, the inverse Fourier
transform of the transfer function is the impulse response:

h(t) = F−1{H(ω)} (8-10)

The relationship of (8-10) is convenient because it is generally much easier to
measure the transfer function in the laboratory using a vector network analyzer
(VNA) than to measure the impulse response because an ideal impulse is
impossible to produce. In fact, in Chapter 9 we describe methods to obtain the
impulse response from S-parameters which can be measured in the laboratory
using a vector network analyzer. It should be noted that since real laboratory
instruments do not provide measured values for negative frequencies, the
relationship of equation (8-4) must be used to construct the negative frequency
response from the complex conjugate of the positive (measured) frequency
response.

Another useful property is that convolution in the time domain is equivalent to
multiplication in the frequency domain. Generally, it is much simpler to handle
the convolution of an input and an impulse response in the frequency domain
by multiplying the spectrums and performing an inverse Fourier transform to
convert back to the time domain.

Example 8-1 Determine the wave shape of an ideal, 2-ns-wide square wave
propagating through the low-pass RC filter shown in Figure 8-8a. Assume that
R = 50 �, C = 5 pF, and the amplitude of the square wave is 1 V.
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Figure 8-8 (a) Spectrum of a 2-ns-wide square wave for example 8-1; (b) transfer
function of an RC filter with R = 50 � and C = 5 pF.

SOLUTION

Step 1: Calculate the spectrum of the square wave using equation (8-1a). For
this example, system engineering conventions (a = 1, b = −1) were chosen.

X(ω) =
∫ ∞

−∞
x(t)e−jωt dt

=
∫ ∞

−∞
us(t + 1 × 10−9)us(−t + 1 × 10−9)e−jωt dt

=
∫ 1×10−9

−1×10−9
e−jωt dt

= j
e−jωt

ω

∣∣∣∣
t=1×10−9

t=−1×10−9

= 2 sin[ω
(
1 × 10−9

)
]

ω

X(ω) is plotted in Figure 8-8a.
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Step 2: Calculate the spectrum of the filter. The response of the RC filter can
be calculated using basic circuit techniques where the impedance of a capacitor
is Zc = 1/jωC:

H(ω) = 1/jωC

R + 1/jωC
= 1

jωRC + 1

The filter response is plotted in Figure 8-8b. H (ω) represents the transfer func-
tion in the frequency domain and the impulse response if converted to the time
domain.

Step 3: Calculate the response of the output using equation (8-9b), which is
plotted in Figure 8-9a:

Y (ω) = X(ω)H(ω) = 2 sin
[
ω

(
1 × 10−9

)]
jω2RC + ω

Y (ω) is the frequency-domain equivalent of the pulse after it has passed though
the filter. This operation is identical to convolving the filter’s impulse response
with the square pulse in the time domain.

Step 4: Convert Y (ω) back to the time domain using equation (8-1b) and
system engineering conventions:

y(t) = F−1{Y (ω)}

The inverse Fourier transform was evaluated using Mathematica and plotted in
Figure 8-9b.

An alternative to the impulse response of a system is the step response.
Often, the step response is more conducive to laboratory measurements because
time-domain reflection (TDR) instruments are widely available and are capable

F−1{Y(ω)}
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Figure 8-9 (a) Spectrum of the driving function for example 8-1 convolved with the
filter response; (b) output of the filter when driven with a square wave.
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of injecting rise times as fast as 9-25 ps into a test structure, which can approxi-
mate a step function. The unit step function is the integral of the impulse function
(Dirac delta function),

us(τ ) =
∫ t

−∞
δ(t) dt (8-11a)

dus(t)

dt
= δ(t) (8-11b)

where δ(t) is the impulse function and us(t) is the unit step function.

8.1.5 Single-Bit (Pulse) Response

Perhaps the most useful means to characterize a channel in the time domain
is to use the single-bit response, also known as the pulse response. The utility
of the pulse response, as opposed to the impulse response, is that it is directly
measurable in the laboratory. The pulse response is obtained by driving a system
with a waveform that corresponds to a single digital bit of information for the
system being designed.

The data rate (DR) is defined as the maximum number of bits per seconds
the system will support. This means that the maximum data rate is determined
by the width of a single bit:

DR = 1

�tbit
(8-12a)

where �tbit is the width of a single data bit, as shown in Figure 8-10a. Some-
times, �tbit is referred to as a unit interval (UI). This means that the maximum
fundamental frequency of the digital pulse train, where alternating bits of 1 and
0 are transmitted sequentially, is half the data rate, as shown in Figure 8-10b:

ffundamental = 1

2�tbit
(8-12b)

The pulse response is more practical than the impulse response for two reasons.
First, the pulse response will give the engineer an intuitive feeling of how the
bus will operate because it represents how the system will respond to an actual
waveform that will be propagating on the bus. Second, it can be used to calcu-
late the worst-case eye and the worst-case bit pattern using the peak distortion
analysis, which is described in Chapter 13.

Analytically, the pulse response is calculated by convolving the input wave-
form with the system impulse response in the time domain. It is usually more
convenient to perform the convolution in the frequency domain,

Y (ω) = F{xpulse(t)} · H(ω) (8-13a)
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Figure 8-10 Definitions used to calculate (a) the maximum data rate and (b) the fun-
damental frequency of a bit stream.

where Y (ω) is the response in the frequency domain, F{xpulse(t)} is the Fourier
transform of the input pulse and H (ω) is the transfer function of the system.
The pulse response is then computed by taking the inverse Fourier transform
of Y (ω):

y(t) = F−1{Y (ω)} (8-13b)

Example 8-2 Calculate the 10-Gb/s pulse response of the 0.5-m transmission
line calculated in Example 6-4. Assume that the input pulse has rise and fall
times of 33 ps and a magnitude of 1 V.

SOLUTION

Step 1: Calculate the real and imaginary parts of the transmission-line transfer
function in the frequency domain. This is done with the equation derived in
Example 6-4:

vout = vine
−αz[cos(−βz) + j sin(−βz)]

where γ is defined by equation (6-47) and z is the line length,

γ (ω) = α + jβ =
√

(R + jωL)(G + jωC)

and the frequency-dependent values of R, L, C, and G are as calculated in
Example 6-4. Next the transfer function is calculated:

H(ω) = vout

vin
= e−αz[cos(−βz) + j sin(−βz)]
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Figure 8-11 (a) Transfer function of the transmission line for example 8-2 (b) impulse
response calculated with the inverse Fourier transform of the transfer function.

Using the values derived in Example 6-4, the real and imaginary parts of the
transfer function are plotted in Figure 8-11a.

Step 2: Calculate the impulse response by taking the inverse Fourier transform
of H(ω) using equation (8-10):

h(t) = F−1{H(ω)}

The impulse response is plotted in Figure 8-11b. Due to the complexity of the
integration, for this example the fast Fourier transform (FFT) was used instead
of the Fourier integral to evaluate the spectral response of the waveforms. The
FFT is a numerical method used to calculate the Fourier transform of an arbi-
trary waveform. The FFT was equated by sampling the positive and negative
frequency response 2000 times in steps of 100 MHz, which gives a time-domain
resolution of

�t = 1

N�f
= 1

2000(100 × 106)
= 5 × 10−12 s

where �f = 100 × 106 Hz and N = 2000. The FFT is described by Press et al.
[2005] and is built into many commercial tools, such as Mathematica, Matlab,
Mathcad, and even Microsoft Excel.
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Figure 8-12 (a) Waveform driving the transmission line for example 8-2; (b) Fourier
transform of the input waveform.

Step 3: Calculate the Fourier transform of the input waveform shown in
Figure 8-12a:

X(ω) = F{xpulse(t)}

The Fourier transform of the input waveform is plotted for positive frequencies
in Figure 8-12b. Note that it takes the familiar form of a sinc function. Again,
the FFT was used in this example.

Step 4: Calculate the pulse response. First, the spectrum of the pulse response
Y (ω) is calculated using equation (8-9b):

Y (ω) = X(ω)H(ω)

Finally, the pulse response is calculated by taking the inverse Fourier transform
of Y (ω):

y(t) = F−1{Y (ω)}

The pulse response, which depicts the input waveform after it has propagated
from one end of the transmission line to the other, is plotted in Figure 8-13.

Note that the pulse arrives at approximately 3.1 ns. This result can be verified
by estimating the total delay from the quasistatic values of the inductance given
in Example 6-4 and capacitance using equation (3-107):

τd = l
√

LC = 0.5
√

(2.5 × 10−7)(1.5 × 10−10) = 3.06 × 10−9 s

The quasistatic approximation will not be identical to the delay calculated with
frequency-dependent parameters, but it should be close. Therefore, the delay of
the waveform in Figure 8-13 passes the sanity check.

It is interesting to note how the transmission line distorts the pulse as it prop-
agates down the transmission line. For example, the amplitude of the waveform
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Figure 8-13 Pulse response of the transmission line for Example 8-2.

in Example 8-2 (Figure 8-13) is degraded significantly due to the conductor and
dielectric losses. Furthermore, the output pulse is wider than the input pulse
because the frequency components of the digital waveform (as calculated with a
Fourier transform) will travel at different speeds due to the frequency-dependent
dielectric permittivity used to calculate the capacitance. The velocity differences
between each harmonic will distort the waveform by spreading it out in time,
which is known as dispersion .

8.2 REQUIREMENTS FOR A PHYSICAL CHANNEL

In this section we introduce specific limitations that channel models of a LTI
system must obey to remain physically consistent with nature. Specifically, the
conditions of causality, passivity , and stability are described and defined by the
appropriate mathematical conditions that must be met to ensure physical behavior.
The analysis is restricted to linear and time-invariant electrical networks, which
is appropriate for all passive components used in modern bus design, such as
transmission lines, vias, packages, connectors, and so on.

8.2.1 Causality

One seemingly obvious requirement of a model that obeys the laws of nature
is that an output cannot precede its input. In other words, in the real world we
live in, an effect cannot precede its cause. This fundamental principle is called
causality . Mathematically, a linear time-invariant system is causal only if for
every input all the elements of its impulse response hij vanish for t < 0:

h(t) = 0 when t < 0 (8-14a)
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Figure 8-14 Simulated pulse response for a 20-in. transmission line, showing the out-
puts of a causal and a noncausal model. Note how the noncausal waveform arrives
early.

But more generally, if a system has known delay [τ ], the system is causal if

h(t) = 0 when t < [τ ] (8-14b)

An example of a causal and a noncausal pulse response is shown in Figure 8-14,
where a pulse response was simulated by driving a 100-ps-wide digital pulse into
a causal and a noncausal 20-in. transmission-line model.† Note that the noncausal
pulse response has a component that arrives early, which is a telltale sign of a
nonphysical model. In this example, the noncausal transmission-line model was
created using frequency-invariant values of the loss tangent and the dielectric
permittivity. The causal model was created using the infinite-pole dielectric model
presented in Chapter 6.

Unfortunately, it is not always easy to ascertain whether a model is causal
by observing the pulse response. Furthermore, it is not always obvious if it
matters. For example, a very short transmission line may be noncausal, but the
error could be so small that it would not affect the final result significantly.
However, if numerous noncausal models are cascaded together to simulate a bus,
the causality errors could accumulate and significant waveform miscalculations
could be realized. Fortunately, it is not very difficult to create a causal model by
ensuring that the dielectric and conductor properties outlined in Chapters 5 and
6 are followed.

The discussion above prompts an inevitable question: What are the mathe-
matical conditions that specify whether or not a system is causal? To begin, the
frequency response of the model is observed. If the Fourier transform of the

†Don’t get the pulse response confused with the impulse response [h(t)]. Since pulse responses are
more representative of a realistic digital driver, they are often used to analyze interconnects.
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impulse response h(t) is equated, the frequency-domain equivalent H (ω) can be
used to test for the conditions of causality:

F{h(t)} = H(ω)

The properties of the Fourier transform can be used to make some initial con-
clusions about the causality of a system.

1. If h(t) is real, H(−ω) = H(ω)∗, where ∗ indicates the complex conjugate
[LePage, 1980]. Since time-domain waveforms are always real, this is a
necessary requirement.

2. If h(t) is real and odd, H (ω) is imaginary and odd [O’Neil, 1991].
3. If h(t) is real and even, H (ω) is real and even [O’Neil, 1991].

As a reminder, odd and even functions obey the following rules: Let f (t) be
a real-valued function of a real variable. Then f is even if

f (t) = f (−t)

and odd if

−f (t) = f (−t)

This means that if h(t) is even or odd, there will exist a nonzero value for t < 0,
which violates the definition of causality as expressed in equation (8-14a).

Another useful property is that the vector space of all real-valued functions
is the direct sum of the subspaces of even and odd functions. In other words,
every function can be written uniquely as the sum of an even function and an
odd function:

f (x) = fe(x) + fo(x) = f (x) + f (−x)

2
+ f (x) − f (−x)

2

Therefore, a causal function [where h(t) = 0 for t < 0] must be the sum of an
even function he(t) and an odd function ho(t).

h(t) = he(t) + ho(t) = 1
2

[
h(t) + h(−t)

] + 1
2

[
h(t) − h(−t)

]
(8-15)

Consequently, for h(t) to be causal, h(t) must be composed of both odd and even
functions. Therefore, based on Fourier transform properties 2 and 3 above, H (ω)
must have both a real and an imaginary part. For an impulse response h(t) to be
real and causal , H (ω) must be complex and satisfy the complex-conjugate rule
shown in condition 1 above.
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However, just because H (ω) is complex obviously does not guarantee causal-
ity. Equation (8-15) shows how the negative time components of the odd and
even functions must cancel each other out to ensure a causal response. Since
the odd and even values of h(t) are generated from imaginary and real parts of
H (ω), respectively, causality requires a specific relationship between Re[H (ω)]
and Im[H (ω)].

To demonstrate the relationship between Re[H (ω)] and Im[H (ω)], consider
a simple causal system with the impulse response h(t) = us(t)e

−pt , where us(t)

is a unit step function with a value of 0 for t ≤ 0 and a value of 1 for t > 0
and p > 0. Following equation (8-15), the odd and even functions of h(t) can be
written:

he(t) = 1
2us(t)e

−pt + 1
2us(−t)ept

ho(t) = 1
2us(t)e

−pt − 1
2us(−t)ept

The functions he(t), ho(t), and h(t) and are plotted in Figure 8-15. Note that
when ho(t) = he(t) for t > 0 and ho(t) = −he(t) for t < 0, the output h(t) is
zero for t < 0 and therefore causal. This allows the odd function to be written
in terms of the even component:

ho(t) = sgn(t)he(t) (8-16)
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Figure 8-15 The odd and even functions are summed to produce the final causal impulse
response h(t).



REQUIREMENTS FOR A PHYSICAL CHANNEL 335

where sgn(t) = 1 and sgn(−t) = −1. Now the causal impulse response can be
written in terms of only the even component:

h(t) = he(t) + sgn(t)he(t) (8-17)

In the frequency domain, H (ω) can also be written in terms of the even function
using the property that multiplication in the time domain is the same as con-
volution in the frequency domain and F{sgn(t)} = −j (1/πω) using the signal
processing convention (a = 0, b = −2π) of equation (8-1a):

H(ω) = F{he(t)} + (F{sgn(t)} ∗ F{he(t)}) = He(ω) − j

(
1

πω
∗ He(ω)

)
(8-18)

Equation (8-18) can be simplified by using the definition of a Hilbert transform ,
which is the convolution of a function g(ω) and 1/πω:

ĝ(ω) = g(ω) ∗ 1

πω
= 1

π

∫ ∞

−∞

g(ω′)
ω − ω′ dω′ (8-19)

Therefore, equation (8-18) can be written in terms of the Hilbert transform of
the even function:

Ĥe(ω) = 1

πω
∗ He(ω)

(8-20)
H(ω) = He(ω) − jĤe(ω)

where Ĥe(ω) denotes the Hilbert transform of He(ω).
Equation (8-20) demonstrates two very important properties of a system that

will produce a real, linear, and causal response in the time domain.

1. The imaginary part of the frequency response is determined by the Hilbert
transform of the real part. Knowledge of the real part is sufficient to define
the entire function.

2. Causality can be tested by performing the Hilbert transform of the real part
and ensuring that it is identical to the imaginary part.

Note that the real part of a causal signal can be derived from its imaginary
part also. It is interesting to note that the Kramers–Kronig relations mentioned
in Chapter 6 are another form of the Hilbert transforms that relate the real and
imaginary parts of the complex dielectric permittivity to each other.

ε′(ω) = 1 + 2

π

∫ ∞

0

ω′ε′′
r (ω

′)
(ω′)2 − ω2

dω′ (6-34a)

ε′′(ω) = 2ω

π

∫ ∞

0

1 − ε′
r (ω

′)
(ω′)2 − ω2

dω′ (6-34b)
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As described in Section 6.4.1, there is a specific relationship between ε′(ω) and
ε′′(ω) that must be enforced to ensure realistic behavior. If the dielectric models
do not satisfy the Kramers–Kronig relations, the system will be noncausal.

Example 8-3 Use the Hilbert transform to prove that the waveform shown in
Figure 8-16a is noncausal and the waveform depicted in Figure 8-16b is casual.

SOLUTION

Step 1a: Calculate the Fourier transform of the noncausal waveform
(Figure 8-16a) using the signal processing convention (a = 0, b = −2π) of
equation (8-1a):

f (t) = us(t + 1)us(−t + 2)

F (ω) = cosπω sin 3πω

πω
− j

sin πω sin 3πω

πω

Step 2a: Calculate the Hilbert transform of the real part of F (ω) and compare
it to the imaginary part:

F̂Re(ω) = Re[F(ω)] ∗ 1

πω
= F−1

(
F

(
cosπω sin 3πω

πω

)
F

(
1

πω

))

= (3 + 2 cos 2πω) sin(πω)2

πω

Since Im[F(ω)] �= −F̂Re(ω), the waveform depicted in Figure 8-16a is noncausal.
Of course, simple observation of the waveform for this example is proof of
noncausality since it exhibits nonzero values for t < 0.
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Figure 8-16 (a) Noncausal and (b) causal waveforms for Example 8-3.
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Step 1b: Calculate the Fourier transform of the causal waveform
(Figure 8-16b):

f (t) = us(t)us(−t + 3)

F (ω) = sin 6πω

2πω
− j

sin(3πω)2

πω

Step 2b: Calculate the Hilbert transform of the real part of F (ω) and compare
it to the imaginary part:

F̂Re(ω) = Re[F(ω)] ∗ 1

πω
= F−1

(
F

(
sin 6πω

2πω

)
F

(
1

πω

))
= sin(3πω)2

πω

Since Im[F(ω)] = −F̂Re(ω), the waveform depicted in Figure 8-16b is causal. Of
course, simple observation of the waveform for this example is proof of causality
since it exhibits only zero values for t < 0.

During bus design, commercial simulation tools are used to implement the
models and generate a system response used to evaluate the signal integrity.
Each simulator will have its own assumptions, approximations, and numerical
methods that may affect causality. The methods detailed above should be used
to verify that causal models are being generated. A practical method of judging
causality is to observe the rising edge of a pulse response to see if a portion
of the signal is arriving early, as demonstrated in Figure 8-14. If a portion of
the pulse is arriving early, the system is noncausal. Although this method is less
reliable than the rigorous methods defined above, it will provide a general idea
if the model is causal.

Example 8-4 Use the Hilbert transform to determine the causality of a trans-
mission line with a length of z = 2.0 in. (∼0.05 m) that is terminated perfectly
with a relative dielectric permittivity of εr = 4.0, µr = 1, and a decay factor of
α = 0.00000001|f |.

SOLUTION

Step 1: Calculate the transfer function of the transmission line. Since the trans-
mission line is perfectly terminated, no reflections will be generated. Therefore,
the loss-free voltage wave will behave as described by equation (3-29). However,
since this is not a loss-free network, the voltage equation must be multiplied by
the decay factor e−αz:

vout = vine
−αze−βz = vine

−γ z

Therefore, using equation (2-31) to simplify, the voltage is

vout = vine
−αz[cos(−βz) + j sin(−βz)]
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From equations (2-45), (2-46), and (2-52), the propagation constant is calculated:

f = c

λ

λ = c

f
√

εr

= 3.0 × 108

2f

β = 2π

λ
= 4πf

3.0 × 108

and the transfer function is calculated:

H(f ) = vout

vin
= e−0.00000001|f |z

(
cos

−4πf

3.0 × 108
z + j sin

−4πf

3.0 × 108
z

)

The real and imaginary parts of H (f ) are plotted in Figure 8-17a.
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Figure 8-17 (a) Transfer function of the transmission line for Example 8-4; (b) Hilbert
transform of the real part of H (f ) compared to the imaginary part of H (f ), showing that
the model is noncausal.
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Step 2: Calculate the Hilbert transform of the real part of H (f ) compare it to
the imaginary part of H (f ).

ĤRe(f ) = Re[H(f )] ∗ 1

πf
= F−1

(
F

(
e−0.00000001|f |z cos

−4πf

3.0 × 108

)
F

(
1

πω

))

The quantity −ĤRe (f ) and the imaginary part of H (f ) are plotted in
Figure 8-17b. Since Im[H(f )] �= −ĤRe(ω), the transmission-line model is
noncausal. The noncausal nature of this model can also be observed by looking
at the impulse response, which is calculated by taking the inverse Fourier
transform of H (f ):

F−1{H(f )} = h(t)

and is plotted in Figure 8-18. Note how the impulse response rises prematurely.
The theoretical delay of this transmission line can be calculated from the length,
the speed of light, and the relative dielectric permittivity.

√
εr

c
= 6.66 × 10−9s/m

τd = 169.333 × 10−12s/in.

Since the transmission line is 2 in. long, the pulse should arrive at
τd = (169.333 × 10−12)(2.0) = 339 ps. It is obvious that the waveform has
components arriving much earlier than 339 ps, indicating that the model is
noncausal and is not obeying the limits placed on the speed of light.

The causality problems associated with the transmission line in Example 8-4
are caused by the assumption of frequency-independent dielectric properties. In
Chapter 6 we described numerous dielectric models that show how the dielectric
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Figure 8-18 Noncausal impulse response of the transmission line of Example 8-4.
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permittivity is frequency dependent. Furthermore, the relationship between the
dielectric permittivity and the dielectric losses must be maintained; otherwise,
energy will propagate when it should be attenuated, inducting noncausal errors.
The dielectric models described in Chapter 6 will produce causal responses when
used to simulate transmission lines. Unfortunately, many commercially available
simulators do not account properly for the frequency dependence of the dielectric.
Consequently, the engineer should be very wary of prepackaged transmission-line
models to ensure that physical behavior is being observed in the simulations.

In reality, performing the Hilbert transform analytically is difficult, and numer-
ical methods have to be used. Also, with bandlimited frequency responses, the
Hilbert transform may not be a good check for causality, due to aberrations in
the time-domain waveform, which is discussed briefly in Example 9-8.

8.2.2 Passivity

A physical system is passive when it is unable to generate energy from within.
For example, an n-port network is said to be passive if

∫ t

−∞
vT(τ ) · i(τ ) dτ ≥ 0 (8-21)

where vT(τ ) is the transpose of a matrix containing the port voltages and i(τ ) is
a matrix containing the currents. The integral (8-21) represents the cumulative
net power absorbed by the system up to time t . In a passive system, this quantity
must be positive for all t .

A more useful approach for digital designers would be to test the passivity in
terms of the incident (ai) and exiting (bi) power waves at each port, as defined
in Section 9.3 and shown in Figure 8-19.

|ai |2 = power incident to node i

|bi |2 = power flow out of node i

This approach is particularly useful because in Section 9.3.1 it will be developed
into a practical passivity test using S-parameters.

Since power must be conserved, the power absorbed by the network (Pa) is
equal to the power driven into the network minus the power flowing out:

∑(|ai |2 − |bi |2
) = Pa (8-22)

where Pa ≥ 0 for a passive network. If Pa < 0, the network is generating power
and the system would be considered nonpassive.

When working in the frequency domain, the power waves ai and bi will be
complex. Since power is real, equation (8-22) must be implemented using the
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Figure 8-19 Power waves for an n-port system.

Hermitian transpose, where the complex conjugate of each term is taken, and
then the matrix is transposed. For example, consider matrix A:

A =
[
a − jb c + jd

e + jf g − jh

]

where the Hermitian transpose is AH:

AH =
[
a + jb e − jf

c − jd g + jh

]

This allows equation (8-22) to be written in terms of the power wave matrices
that will produce a real value for the power absorbed by the network. A system
is passive if

aHa − bHb ≥ 0 (8-23)

where a is a matrix that contains all the power waves incident to each port and
b contains the power waves coming out of each port. The product of a matrix
with complex values and its Hermitian transpose produces a real value. Therefore,
equation (8-23) simply ensures that the total power absorbed in a network is
greater than or equal to zero.

In the frequency domain, (8-23) is evaluated at each frequency point. In the
time domain, the passivity requirement is essentially the same, except that the
function must be integrated:

∫ t

−∞
a(τ )Ta(τ ) − b(τ )Tb(τ ) dτ ≥ 0 (8-24)

where the transpose is used instead of the Hermitian transpose because time-
domain signals are always real. Equations (8-21), (8-23), and (8-24) represent
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the cumulative energy absorbed by the system. A system is passive only if the
following requirements are met:

1. The system absorbs more energy than it generates.
2. Generation of energy happens after the absorption. A noncausal system that

generates energy before it absorbs it would be considered to be nonpassive.

Example 8-5 Determine if the transmission-line system depicted in Figure 8-20
is passive.

SOLUTION

Step 1: Calculate the power waves. The incident wave is a1(t). The reflected
wave b1(t) is determined from the reflection coefficient between the termination
resistor Rt and the transmission-line impedance Z0. Using equation (3-102), the
reflection coefficient is calculated:

� = Rt − Z0

Rt + Z0

Therefore, the reflected wave is calculated as

b1(t) = �a1(t − 2τd)

which arrives at the input at t = 2τd , which is twice the electrical length of the
transmission line as defined in equation (3-107).

Step 2: Test for passivity. Since this example is in the time domain,
equation (8-24) is used:

∫ t

−∞
[a1(τ )]2 − �2[a1(t − 2τd)]

2 dτ ≥ 0

Z0

Z0 Rt

a1(t)

b1(t)

�

Figure 8-20 Power waves for Example 8-5.
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It is easy to see that the integral above will be positive as long as the square of
the reflection coefficient is less than or equal to 1 (�2 ≤ 1). This puts a limitation
on the termination resistance Rt .

�2 =
(

Rt − Z0

Rt + Z0

)2

≤ 1

The only condition where �2 > 1 is when Rt is negative. Therefore, the system
is passive as long as Rt ≥ 0.

8.2.3 Stability

A model of a passive component such as a transmission line, via, connector, or
package must remain stable in order to mimic real-world behavior successfully.
For the purposes of this book, stability will be defined so that the output of
a system y(t) is stable for all bounded inputs x(t). Using this definition, the
stability of a linear time-invariant system is guaranteed only if all the elements
in the impulse response matrix [h(t)] satisfy [Triverio et al., 2007]∫ ∞

−∞
|hij (t)| dt < ∞ (8-25)

Example 8-6 Determine the conditions of stability of a mass–spring system
similar to that used to derive the frequency dependence of the dielectric permit-
tivity in Section 6.3.2. Assume that the system is subjected to a sharp impulse
at time t = τ . The spring equation is given:

(
m

d2x

dt2
+ b

dx

dt
+ kx

)
= δ(t − τ)

SOLUTION

Step 1: Solve the differential equation and compute the impulse response. For
simplicity sake, assume initially that m = 1, b = 3, and k = 2. Since the inverse
Laplace transform of the transfer function is the impulse response, it is easiest
to solve this problem by converting to the Laplace domain:

s2Y (s) + 3sY (s) + 2Y (s) = e−τs

where the Laplace transform of the input is L[δ(t − τ)] = e−τs . From equa-
tion (8-9b), Y (s) is solved, where X(s) = e−τs :

Y (ω) = H(ω)X(ω) (8-9b)

Y (s) = H(s)e−τs
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and H (s) is the transfer function, which is determined from the roots of the
characteristic equation:

H(s) = 1

(s + 1)(s + 2)
= 1

s + 1
− 1

s + 2

The inverse Laplace transform of H (s) yields the impulse response in the time
domain:

h(t) = L−1[H(s)] = e−t − e−2t

Step 2: Check the stability criteria. The system is stable of the integral of
equation (8-25) converges:

∫ ∞

−∞
|e−t − e−2t | dt =

{
0 if − ∞ < t < τ∣∣ 1
2e−2(t−τ) − e−(t−τ)

∣∣ if t ≥ τ

At t = ∞, the integral is zero, so the integral converges and the system is stable.
The impulse response to the system can be plotted by multiplying h(t) by the
unit step function us(t − τ), which occurs at time t = τ :

y(t) = L−1[e−τsH(s)] = h(t − τ)us(t − τ)

Assuming that τ = 1, Figure 8-21a shows the response of this system.
Now consider the case where the damping coefficient b is negative, which

means that the system must generate energy, which is clearly not possible for
a damped mass–spring system. Assume that that m = 1, b = −3, and k = 2,
which yields

s2Y (s) − 3sY (s) + 2Y (s) = e−τs

2 4 6 8 10
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0.10
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0.20

0.25

y
(t

)

Time, t

2 4 6 8 10

0.5

1.0

1.5

2.0

2.5

3.0

Time, t

y
(t

)

×106

(b)(a)

Figure 8-21 Impulse response of a mass–spring system (Example 8-6) with (a) a pos-
itive damping coefficient that is stable and (b) a negative damping coefficient that is
divergent and therefore unstable.
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The roots of the characteristic equation give the following transfer function:

H(s) = 1

(s − 1)(s − 2)
= 1

s − 2
− 1

s − 1

which yields

h(t) = L−1[H(s)] = e2t − et

When plugged into equation (8-25) to test for stability, it clearly does not con-
verge and therefore is unstable when the damping coefficient b is negative.
Assuming that τ = 1, Figure 8-21b shows the response of this system.

During bus design, simulators such as HSPICE are generally used to imple-
ment the models and generate a system response used to evaluate the signal
integrity. Each simulator will have its own assumptions, approximations, and
numerical methods that will affect stability. Consequently, a practical method
of testing stability is to generate a pulse response by driving the model with
an ideal trapezoid with edge rates approximating those of realistic drivers. The
transient simulation should be evaluated for a time period much longer than the
time constant of the model. For example, if the propagation delay of a 10-in.
bus is 1.5 ns, the reflections should have diminished to zero within two or three
round trips (3 to 4.5 ns). However, the simulation should be evaluated for at least
10 round trips (30 to 45 ns) to ensure that the system remains stable.
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PROBLEMS

8-1 Derive an equation and draw a plot that approximates the spectral band-
width for a digital waveform with 20 to 80% rise times.

8-2 If a perfect step was driven onto a 50-� transmission line terminated in
a 5-pF capacitor, what would the rise time be?
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8-3 How many harmonics are necessary to adequately represent the bandwidth
of a 10-Gb/s pulse with 25-ps rise and fall times?

8-4 For a causal waveform, derive the real part of the spectrum from the
imaginary part.

8-5 For an arbitrary time-domain waveform, devise a test to determine if the
waveform is causal. Implement your causality tester in a program such as
Mathematica or Matlab. Prove that your causality tester works using ideal
square-wave inputs.

8-6 Create a causal and a noncausal microstrip model for a 50-� transmission
line built on FR4 (εr at 1 GHz = 3.9, tan δ = 0.019) with a 5-mil-wide
smooth copper signal conductor (no surface roughness). Evaluate the
causality of your models with the tester developed in Problem 8-5.

8-7 Would the noncausal model of Problem 8-6 cause significant error for a
10-Gb/s bus design with transmission-line lengths of 15 in.? If so, how
did you determine the impact of the causality error?

8-8 For the transmission line described in Problem 8-6, how does surface
roughness influence the causality of the system?

8-9 For the transmission line described in Problem 8-6, what has more of an
effect on the causality of the model, the conductor characteristics or the
dielectric characteristics? Demonstrate how each affects the causality.

8-10 Is it possible for a real, causal time-domain waveform to have only real
frequency components? Show proof of your answer.

8-11 For a loss free system, do the capacitance and inductance matrices need
to be frequency dependent to guarantee causality? Show proof of your
answer.
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Historically, the techniques used to analyze signal integrity for digital designs
required the use of equivalent circuits to describe components such as vias, con-
nectors, sockets, and even transmission lines for low-data-rate applications. At
low frequencies where the interconnects between the components of a digital
system are small compared to the wavelength of the signal, the circuits can be
described with lumped elements using resistors, capacitors, and inductors. In
general, circuit theory works well for these types of problems because there is

Advanced Signal Integrity for High-Speed Digital Design, By Stephen H. Hall and Howard L. Heck
Copyright  2009 John Wiley & Sons, Inc.

347



348 NETWORK ANALYSIS FOR DIGITAL ENGINEERS

negligible phase change in the voltage and current across the circuit. In other
words, the signal frequency is low enough so that the electrical delay of the cir-
cuit is small compared to the switching rate of the digital waveforms. However, as
system data rates increase, the delay of the interconnects becomes significant. In
fact, in many modern digital designs, such as in high-speed computers, the delay
of the system interconnects is so long compared to the width of a single bit of
digital information that many bits can be propagating on the bus simultaneously.
In this case, the phase changes of the voltage and current across the interconnects
are very significant. As a result, digital engineers have turned to new tech-
niques for describing and analyzing circuits at high frequencies, called network
analysis .

Network analysis is a method used traditionally by microwave and radio-
frequency engineers to characterize devices such as waveguides, cables, cou-
plers, and antennas. They are used to describe completely the behavior of linear
time-invariant systems using only parameters evaluated at the input and output
ports. Network analysis is a frequency domain methodology that allows discrete
characterization of a linear network at each frequency. The question often arises:
Why would a digital engineer use frequency-domain analysis when a digital sys-
tem uses time-domain pulses? The answer is simple: It is often easier to analyze
and characterize systems in the frequency domain. In Chapter 8 we discussed
methods to describe a system in terms of its impulse response. Although this
is a fine theoretical concept, the problem remains that it is impossible to create
or measure a true impulse physically. Furthermore, as described with equation
(8-10), the impulse response can be calculated from the transfer function, which
is a measurable frequency-domain parameter. Additionally, many of the con-
cepts described in the book, such as skin effect resistance and loss tangents,
are best analyzed in the frequency domain. In fact, the validity of a model in
the time domain is sometimes judged using frequency-domain techniques, as
described in Section 8.2. In short, network analysis is a useful tool for char-
acterizing system interconnects, specifying component performance and creating
portable, tool-independent models .

Although general network theory is presented in this chapter, the main area
of concentration will be on the derivation and use of the scattering matrix, more
commonly known as S-parameters . S-parameters are quickly gaining acceptance
in the electronics industry for specifying the performance of digital compo-
nents such as transmission lines, CPU sockets, and connectors. Furthermore,
methodologies have developed that allow the use of S-parameters as a portable
“black box” model that can be included in the simulation environments of several
commercial tools. The problem is that most digitally oriented engineers are not
familiar with the concept of network theory or S-parameters because it is tradi-
tionally taught in microwave, electromagnetic interference, or radio engineering
curricula. In this chapter we discuss the applications and usage models of net-
work analysis that are most applicable to the design and validation of high-speed
digital systems.
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9.1 HIGH-FREQUENCY VOLTAGE AND CURRENT WAVES

As a prerequisite to describing network theory, it is required to understand how
voltage and current waves propagating on an interconnect will interact with dif-
ferent loads. Many of these concepts were covered partially in Chapter 3 when
lattice diagrams and the reflection coefficient at an impedance junction were dis-
cussed. In this chapter we build on those concepts to calculate the reflection
coefficient looking into a network, such as a transmission line terminated in a
load that is not equal to the characteristic impedance. Similarly, the impedance
looking into a terminated network is also calculated. These concepts are important
for the development of network theory.

9.1.1 Input Reflection into a Terminated Network

The reflection coefficient looking into a network with a finite electrical length
is different from the reflection coefficient looking into an impedance junction
because it has a phase component that will change with electrical length and
frequency. Equation (3-102) from Section 3.5.1 defines the reflection coefficient
looking into an impedance junction:

� ≡ vr

vi

= Z02 − Z01

Z02 + Z01
(3-102)

where vr and vi are the reflected and incident voltage values, respectively. In
the case of equation (3-102) the reflection occurs immediately, so there is zero
phase delay between the incident and reflected waves. However, consider the case
shown in Figure 9-1, where there is a significant distance between the point where
the reflection is being evaluated and the impedance discontinuity. The reflection
coefficient at the load, �(z = 0), can be calculated with equation (3-102):

�0 = Rl − Z0

Rl + Z0

However, consider �(z = −l), which is the reflection coefficient looking into
the input of the network. After a signal is driven onto the network, the reflection
will not arrive back at the input until the signal propagates down the network,
reflects off the impedance discontinuity at z = 0 (defined by �0), and propagates
back to the source. Depending on when the reflections arrive at the receiver, the
incident and reflected waves will combine at specific frequencies and interact
either constructively or destructively. If the incident and reflected waves interact
destructively, the reflection coefficient will be minimized (and vice versa). This
means that the reflection coefficient looking into the network will be influenced by
propagation delay, characteristic impedance, termination impedance, length, and
frequency .
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Incident wave

Reflected waveR = Z0
V

z = 0z = −I

Γ (z = −I) Γ (z = 0)

Rl
Z0

Figure 9-1 The reflection looking into a network is dependent on the distance between
the point where the reflection is being evaluated and the impedance discontinuity.

The reflection coefficient looking into a network can be derived from equa-
tions (6-49) and (3-102):

v(z) = v(z)+e−γ z + v(z)−eγ z

Let v(z)+ = vi and v(z)− = vr . Then

v(z) = vie
−γ z + vre

γ z = vi(e
−γ z + �0e

γ z) = vie
−γ z[1 + �(z)] (9-1)

where

�(z) ≡ vre
γ z

vie−γ z
= �0e

2γ z = Rl − Z0

Rl + Z0
e2γ z

Equation (9-1) describes the reflection coefficient looking into a transmission
line with characteristic impedance Z0, length z, termination impedance Rl , and
propagation constant γ .

In Section 3.5 the concept of lattice diagrams was introduced to demonstrate
how time-domain signals propagate on transmission lines. An important concept
demonstrated was that the period of transmission-line “ringing” was dependent on
the electrical length of the line. In frequency-domain analysis, the same principles
apply; however, it is more useful to calculate the frequency when the reflection
coefficient is either maximum or minimum, which is dependent on both the
electrical length of the structure and the frequency of the input stimulus. To
demonstrate this concept, consider the case of a loss-free transmission line as
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defined by

v(z) = v(z)+e−jzw
√

LC + v(z)−ejzw
√

LC (3-29)

γ = α + jβ = 0 + jω
√

LC → β = ω
√

LC (3-30)

Beginning with equation (9-1), the reflection coefficient looking into a terminated
transmission line with a length of −l is calculated and expanded using equa-
tion (2-31):

cos φ + j sin φ = ejφ (2-31)

�0e
2γ (−l) = �0e

j2β(−l) = �0e
−j2ωl

√
LC

= �0(cos 4πf l
√

LC − j sin 4πf l
√

LC) (9-2)

where a negative length convention is chosen for convenience.
Since the real and imaginary parts of (9-2) are periodic, the frequencies where

the function is only real or imaginary can be calculated. The reflection look-
ing into a nonperfectly terminated transmission line is purely imaginary when
4πf l

√
LC = nπ/2 for odd n because it will force the cosine term to be zero.

Solving for the frequency where the reflection is imaginary produces

f�(imaginary) = n

8l
√

LC

∣∣∣∣
n=1,3,5,. . .

(9-3a)

Similarly, the frequencies where equation (9-2) is purely real can be calculated
for the conditions where the sine term is zero: 4πf l

√
LC = nπ . The frequency

where the reflection is real is shown by

f�(real) = n

4l
√

LC

∣∣∣∣
n=1,2,3,. . .

(9-3b)

Equations (9-3) demonstrate that when the real part of the input reflection is zero,
the imaginary portion is maximum, and vice versa, as plotted in Figure 9-2. This
periodic behavior can be used to extract out useful information about the device
under test.

Example 9-1 Calculate the propagation delay, characteristic impedance, and the
dielectric permittivity from the input reflection coefficient plot in Figure 9-2,
assuming a circuit similar to Figure 9-1 with a length of 2.28 in. (0.058 m) and
termination impedance Rl of 50 �.

SOLUTION

Step 1: To begin, consider the real portion of Figure 9-2. According to equa-
tion (9-3b), the frequencies will be purely real at multiples of n. Examination of
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Γ(
z 

=
 −

l)

0.775 GHz 2.29 GHz

Figure 9-2 When the real part of the reflection coefficient looking into a network is
maximum, the imaginary part is zero.

Figure 9-2 shows that the period of the real portion can be measured at 0.775
and 2.29 GHz. Since these peaks are the first and the third frequencies, where the
reflection coefficient is purely real, they correspond to n = 1 and n = 3. Using
equation (9-3b) and subtracting produces an equation in terms of the frequency
difference between positive real peaks and the electrical delay:

fn=3 − fn=1 = 3

4l
√

LC
− 1

4l
√

LC
= 1

2l
√

LC
= 2.29 GHz − 0.775 GHz

= 1.515 GHz

where τd = l
√

LC, from equation (3-107). Therefore, the propagation delta can
be calculated:

τd = l
√

LC = 1

2(fn=3 − fn=1)
= 1

2(1.515 GHz)
= 330 ps

Note that the propagation delay calculated using this technique is the average
value between 0.775 and 2.29 GHz. Due to the frequency dependence of the
dielectric permittivity described in Chapter 6, the actual value actually changes
across the bandwidth.

Step 2: To calculate the dielectric permittivity, the propagation delay must
first be translated into a velocity:

νp = 1

l
√

LC
l = 0.058

330 ps
= 1.75 × 108 m/s
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Next, equation (2-52) with µr = 1 is used to calculate the relative dielectric
permittivity.

νp = 3.0 × 108

√
εr

= 1.75 × 108

εr = 2.9

Step 3: Calculate the characteristic impedance using the peak values of the
reflection coefficient. When the imaginary term is zero, the real term will peak
because the cosine term of equation (9-2) will equal 1 at frequencies predicted
by (9-3b). Therefore, the easiest way to calculate the characteristic impedance is
to use the value of the reflection coefficient measured at a real peak.

The first real peak at 0.775 GHz shows a maximum reflection coefficient
of 0.2. The characteristic impedance can be calculated by setting the reflection
coefficient equal to equation (9-2) at 0.775 GHz and solving for Z0.

cos 4πf l
√

LC = cos[4π(0.775 × 109)(330 × 10−12)] ≈ −1

sin 4πf l
√

LC = sin[4π(0.775 × 109)(330 × 10−12)] ≈ 0

0.2 = �0(cos 4πf l
√

LC − j sin 4πf l
√

LC) = Rl − Z0

Rl + Z0
[−1]

= −50 − Z0

50 + Z0
→ Z0 = 75 �

Step 1 in Example 9-1 demonstrates a very useful relationship between the
periodicity of the input reflection coefficient looking into a network and the
propagation delay. If the distance between peaks (fn=3 − fn=1) is represented as
�f and τd = l

√
LC, the time delay can be calculated using

τd = 1

2�f
(9-4)

The utility of equation (9-4) will become apparent when analyzing S-parameters
in Section 9.2.2.

In summary, the reflection coefficient looking into a network is dependent on
(1) the impedance discontinuities, (2) the frequency of the stimulus, and (3) the
electrical length between discontinuities.

9.1.2 Input Impedance

Not surprisingly, if the reflection coefficient looking into a network is a function
of length, impedance discontinuities, and frequency, the input impedance looking
into the network must be a function of the same variables. Following a proce-
dure similar to that used to derive equation (9-1), the impedance looking into a



354 NETWORK ANALYSIS FOR DIGITAL ENGINEERS

0.5 1.0 1.5 2.0 2.5 3.0

60

70

80

90

100

110

Frequency, GHz

Z
in

50

0.775 GHz 2.29 GHz

Figure 9-3 Impedance looking into a 75-� 2.28-in. transmission line terminated in
50 �. Z in varies significantly with frequency due to the constructive and destructive
combinations of the input stimulus and the reflected waves.

transmission line of length z terminated with Rl , as depicted in Figure 9-1, is
easily derived, where �(z)is equated with equation (9-1):

v(z) = vie
−γ z + vre

γ z = vi(e
−γ z + �0e

γ z) = vie
−γ z[1 + �(z)]

i(z) = 1

Z0
(vie

−γ z − vre
γ z) = 1

Z0
(vie

−γ z[1 − �(z)])

Zin = Z(z) = v(z)

i(z)
= vie

−γ z[1 + �(z)]

1/Z0(vie−γ z[1 − �(z)])
= Z0

1 + �(z)

1 − �(z)
(9-5)

Figure 9-3 shows the input impedance as a function of frequency for the ter-
minated transmission line in Example 9-1. Note that although the characteristic
impedance and the termination value are constant, the input impedance varies
significantly with frequency, due to the constructive and destructive combina-
tions of the input stimulus and the reflected waves. At frequencies where the
reflection is real and the imaginary term is zero, the reflected wave is aligned
with the incident wave, causing the input impedance to peak.

9.2 NETWORK THEORY

Network theory is based on the property that a linear time-invariant system can
be characterized completely by parameters evaluated only at the input and output
ports, without regard to the contents of the system. This allows the behavior of
a system to be described fully in a frequency-dependent matrix that relates input
stimuli to the output responses of the system. Networks can have any number
of ports; however, consideration of a two-port network is sufficient to explain
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the theory. The discussion begins with the most intuitive method of describing a
network, which is the impedance matrix.

9.2.1 Impedance Matrix

Consider the two-port network depicted in Figure 9-4. If the voltage and current
are measured at the input and output ports, the system can be characterized in
terms of its impedance matrix. The impedance from port 1 to port 2 is calculated
by measuring the open-circuit voltage at port 2 when current is injected into
port 1:

Z21 = vopen,port2

iport1

∣∣∣∣
iport2=0

(9-6a)

Similarly, the input impedance looking into port 1 is measured by injecting
current into port 1 and measuring the voltage at port 1:

Z11 = vopen,port1

iport1

∣∣∣∣
iport2=0

(9-6b)

Using the definition shown in equations (9-6a) and (9-6b), a set of linear equations
can be written to describe the network in terms of its port impedances:

v1 = Z11i1 + Z12i2

v2 = Z21i1 + Z22i2

which is expressed more efficiently in matrix form:

∣∣∣∣v1

v2

∣∣∣∣ =
∣∣∣∣Z11 Z12

Z21 Z22

∣∣∣∣ ·
∣∣∣∣i1i2

∣∣∣∣ (9-7)

More generally, the elements of an impedance matrix are described in equa-
tion (9-8) for an arbitrary number of ports,

Zij = vi

ij
= open-circuit voltage measured at port i

current injected into port j
(9-8)

Two Port Networkv1 v2
+
−

+
−

i2i1

Port 1 Port 2

Figure 9-4 Two-port network used to generate the impedance matrix.
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with ik = 0 for all k �= j . If the impedance matrix of a system is known, the
response of the system can be predicted for any input.

Example 9-2 Calculate the impedance matrix at 1 GHz for the circuit shown in
Figure 9-5a, where R1 = 50 �, R2 = 50 �, and C = 5 pF.

SOLUTION

Step 1: Calculate the input impedance (Z11) by injecting a current into port 1
and measuring the voltage at port 1, as shown in Figure 9-5b. The impedance of
the capacitor at 1 GHz is Zc = 1/j2πf C = 31.8 �.

v1 = i1(R1 + Zc) = i1(50 + 31.8)

Z11 = v1

i1
= R1 + Zc = 81.8 �

Step 2: Calculate the through impedance (Z21) by injecting a current into
port 1 and measuring the voltage at port 2, as shown in Figure 9-5c.

v2 = v1
Zc

R1 + Zc

= i1(Zc + R1)
Zc

R1 + Zc

= i1Zc

Z21 = v2

i1
= Zc = 31.8 �

Step 3: Construct the impedance matrix at 1 GHz. Since the circuit is sym-
metrical, Z12 = Z21 and Z22 = Z11.

Z =
[

81.8 31.8

31.8 81.8

]

v2

+

−

(b)

R1 R2

Cv1i1
+

−

(a)

R1 R2

C

(c)

R1 R1

Cv1i1
+

−

Figure 9-5 (a) General circuit to be analyzed in Example 9-2; (b) calculating Z 11; (c)
calculating Z 21.
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The admittance matrix is very similar to the impedance matrix except that it
is characterized with short-circuit currents instead of open-circuit voltages. The
admittance matrix is the inverse of the impedance matrix:

Y = Z−1 (9-9)

Although the impedance and admittance matrices are intuitive and relatively easy
to understand, they have severe drawbacks for the high-frequency characterization
of interconnects. The problem is that at high frequencies, open and short circuits
are very difficult to realize. Open circuits invariably have finite capacitances,
and short circuits have inductance that can significantly affect the accuracy of
the measurements. Consequently, as a measurement technique, these methods are
applicable only for low frequencies.

Example 9-3 Calculate Z21 for the circuit analyzed in Example 9-2, assuming
that the current was injected into port 1 and the voltage was measured at port 2
with a probe that has a capacitance of C = 0.3 pF, according to the instrument
specifications.

SOLUTION

Step 1: Draw the equivalent circuit of the circuit and the probes, as depicted
in Figure 9-6. From Example 9-2, R1 = 50 �, R2 = 50 �, C = 5 pF, and Zc =
1/j2πf C = 31.8 �. The impedance of the probe at 1 GHz is

Zprobe = 1

2π(1 × 109)(0.3 × 10−12)
= 530.8 �

Step 2: Solve the circuit for Z11 and Z21:

Z11 = v1

i1
= (Zc||(R2 + Zprobe) + R1)||Zprobe = 69.6 �

Z21 = v2

i1
=

(
v1

Zc

Zc + R1

)
Zprobe

Zprobe + R2
= 24.7 �

where v1 = Z11i1. Since the circuit is symmetrical, Z12 = Z21 and Z22 = Z11.

R1 R2

Cprobe CprobeCi1 v1

+

−
v2

+

−

Figure 9-6 Equivalent circuit used for Example 9-3 showing probe capacitance.
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Step 3: Compare the matrix measured with a realistic probe to the ideal case:

[Z]ideal =
[
81.8 31.8

31.8 81.8

]
[Z]probed =

[
69.6 24.7

24.7 69.6

]

Note that even for a relatively low capacitance value of the probe, it makes
a significant difference in the impedance matrix. This is because the voltage
measured at port 2 is not across an open circuit; it is across a small capacitance.
The fact is that at high frequencies, true short and open circuits do not really
exist for small dimensions. There will always be a certain amount of parasitic
capacitance or inductance with finite impedance.

9.2.2 Scattering Matrix

In the previous section we discussed some of the problems associated with
measuring high-frequency voltage and current waves, where short and open cir-
cuits do not practically exist due to parasitic inductance and capacitance values.
The scattering matrix is the most common form of network parameters used in
high-speed digital design. Instead of measuring voltages and currents at the ports,
it relates the power waves incident on each port to those reflected from the ports.
The scattering matrix, more commonly known as S-parameters , can be measured
in the laboratory using a vector network analyzer (VNA). Once the S-parameters
are known, conversion to other matrix parameters, such as the impedance or
admittance matrices, can be done algebraically.

Traditionally, S-parameters have been a tool used primarily by microwave
and RF engineers to design antennas, waveguides, and other high-frequency
narrowband applications. Higher speed data transmission on system buses is caus-
ing a convergence of two disciplines in industry today: microwave and digital
engineering. Microwave engineers tend to concentrate mostly on high-frequency
multi-GHz waveguides, resonators, and couplers, whereas digital engineers con-
centrate on binary signaling. Over the past decade, S-parameters have become
much more common in the world of digital design and are often used for the
dissemination of electrical models to design teams. In fact, most contemporary
software suites used to design modern systems have built-in capabilities to handle
S-parameter models.

S-parameters can be very confusing, as unlike the impedance matrix, they
are not intuitive. In this chapter we focus on the most important aspects of
S-parameters that the digital engineer needs for signal integrity analysis of mod-
ern, high-speed buses. Emphasis is given to both the theoretical development of
S-parameters and intuitive techniques that will allow the engineer to interpret
data quickly, share models, and estimate channel performance.

Definition Consider the two-port network in Figure 9-7. If a power wave is
injected into port 1, the power must either be reflected back toward port 1,
propagate through the network to port 2, or be dissipated as thermal or radiation
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a1 a2

Two Port NetworkPort 1 Port 2
b1

Figure 9-7 Two-port model used to define S -parameters.

losses. Similar to the derivation of the Poyting vector in Section 2.6, the power
balance equation can be expressed as

Pout = Pinput − Ploss − Pradiated (9-10)

where Pinput is the total power injected into all ports, Pout is the total power
flowing out of all ports, Ploss is the power dissipated through ohmic losses (skin
effect, loss tangent, etc.), and Pradiated is the power radiated into free space.

The incident and reflected power waves are calculated from voltage and current
waves. The voltage waves are obtained from equation (6-49),

v(z) = v(z)+e−γ z + v(z)−eγ z

and the current wave is derived by dividing the voltage wave by the characteristic
impedance of the structure,

i(z) = v(z)+e−γ z

Z0
− v(z)−eγ z

Z0

where v(z)+ is the voltage traveling in the +z-direction and v(z)− is the voltage
traveling in the −z-direction. The power wave propagating on the network is
calculated by multiplying the current and voltage waves:

P(z) = [v(z)+e−γ z]2

Z0
+ [v(z)−eγ z]2

Z0
(9-11)

If it is defined so that at port j , z = 0, the voltage at a port can be calculated where
v(0) = vi and i(0) = ii , which are the incident voltage and current, respectively:

v+ = 1
2 (vi + Rii)

v− = 1
2 (vi − Rii)

(9-12)

where R is the termination values at the ports of the network.
Since equation (9-10) says that the power must be balanced, the amount of

power delivered to the network or radiated is defined simply as the input power
minus the output power:

Pinput − Pout = Ploss + Pradiated
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From equation (9-12), the power going into a node can be calculated using the
power relation P = v2/R:

Pinput = (v+)2

R
(9-13a)

and the power coming out can be calculated as

Pout = (v−)2

R
(9-13b)

meaning that the power delivered to the network is calculated as

Pinput − Pout = Pnetwork (9-13c)

Equations (9-13) allow the definition of terms that describe the power wave
propagating into port j and the power wave propagating out of port j :

aj = v(z)+√
R

= √
Pinput (9-14a)

bj = v(z)−√
R

=
√

Pout (9-14b)

where aj is the square root of the power propagating into port j and bj is the
square root of the power propagating out of port j , as shown in Figure 9-7 for
a two-port network. Equations (9-14a) and (9-14b) are known as the scattering
coefficients . Since they are defined in terms of the square root of power, ratios of
the scattering coefficients simplify into ratios of voltage as long as the termination
impedance of each port (R) is the same.

S-parameters are derived from the ratios of scattering coefficients. For
example, referring to Figure 9-7, the term S11 is calculated by the root of the
reflected and incident power ratio at port 1, which is written in terms of the
scattering coefficients:

S11 = b1

a1
(9-15a)

Similarly, the term S21 is calculated by injecting power into port 1 and measuring
at port 2.

S21 = b2

a1
(9-15b)

Using the definition shown in equations (9-15a) and (9-15b), a set of linear
equations can be written to describe the network in terms of its scattering coef-
ficients:

b1 = S11a1 + S12a2

b2 = S21a1 + S22a2
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which is more efficiently expressed in matrix form as∣∣∣∣b1

b2

∣∣∣∣ =
∣∣∣∣S11 S12

S21 S22

∣∣∣∣ ·
∣∣∣∣a1

a2

∣∣∣∣ (9-16)

More generally, the elements of a scattering matrix are described in equa-
tion (9-17) for an arbitrary number of ports,

Sij = bi

aj

=
√

power measured at port i

power injected into port j
(9-17)

and an arbitrary-sized scattering matrix takes the form

b = Sa (9-18)

If the scattering matrix of a system is known, the response of the system can be
predicted for any input.

Return Loss Consider the circuit depicted in Figure 9-8. In this case there will
be no reflections from the far end because the line is perfectly terminated with
the characteristic impedance. However, the source impedance is not equal to the
characteristic impedance, indicating that a portion of the power wave incident to
port 1 will be reflected. This scenario allows the simplest definition of S11, which
is simply the reflection coefficient between the source resistor and the impedance
of the transmission line. Note that a2 = 0 because there is no source at port 2.

S11 =
∣∣∣∣b1

a1

∣∣∣∣
a2=0

= v−
1 /

√
R

v+
1 /

√
R

= v−
1

v+
1

= vreflected

vincident
= �0 = Z0 − R

Z0 + R
(9-19)

The term S11 is often referred to as the return loss , because it is a measure of
power reflected, or returned to the source.

The calculation of S11 becomes more complex when the far end of the network
is not perfectly terminated because the reflection arriving at the source will have

Z0 − R
Z0 + RS11 =

R
V

Γ = 0

RI = Z0Z0

∼

Figure 9-8 Return loss for the special case when the network is perfectly terminated in
its characteristic impedance.
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(a)

R
V

RZ0

Zin = Z11

∼

∼

(b)

R
V

Zin − R
Zin + RS11 =

Zin

Figure 9-9 Return loss for the more general case where the network is not perfectly
terminated in its characteristic impedance: (a) input impedance looking into the network;
(b) equivalent circuit for the return loss.

contributions from both the impedance discontinuity at the source and at the
far-end termination. This means that the input impedance looking into the network
from the source will be dependent on frequency. The return loss for a nonperfectly
terminated structure such as the circuit shown in Figure 9-9a is calculated as

S11(f ) = Zin(f ) − R

Zin(f ) + R
(9-20)

where Zin(f ) is calculated for a transmission line with equation (9-5) for the
general case. An intuitive understanding of the return loss can be achieved by
constructing a simple equivalent circuit as shown in Figure 9-9b. Since Zin (or
Z11) is dependent on both the propagating delay and the impedance of the struc-
ture, both can be calculated from S11, as demonstrated in Example 9-4.

Example 9-4 Using the measured return loss of a transmission line shown in
Figure 9-10, calculate the characteristic impedance and the propagation delay.
Assume that the source and termination impedance values are 50 �.

SOLUTION

Step 1: Determine the propagation delay. This is easily calculated from the
periodic behavior of S11 using equation (9-4). The distance between peaks is
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Figure 9-10 Return loss (S 11) for Example 9-4.

used to calculate �f .

τd = 1

2�f
= 1

2(2.29 GHz − 0.775 GHz)
= 330 ps

Note that τd is the average propagation delay over the frequency range.
Step 2: Calculate the input impedance using equation (9-20). When the return

loss (S11) is maximum, the imaginary part is zero. Therefore, it is convenient to
measure S11 at a peak to simplify the analysis:

S11(0.775 GHz) = 0.38 = Zin − 50

Zin + 50

Zin = 111.3 �

Step 3: Determine the polarity of the phase term. The polarity of the phase
term e2γ z in equation (9-1) must be determined so that the input impedance can
be properly related to the characteristic impedance. Since S11 is being evaluated
at a peak, the imaginary term of e2γ z is zero, so the real part will either be 1 or
−1. Since the propagation delay has been calculated, the polarity of the phase
term can be evaluated using the real part of equation (9-2):

Re(e−j2ωl
√

LC) = cos 4πf l
√

LC

where τd = l
√

LC = 330 ps and

cos 4πf τd = cos[4π(0.775 × 109)(330 × 10−12)] ≈ −1
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Step 4: Calculate the characteristic impedance from equation (9-5):

Zin = Z0
1 + �(z)

1 − �(z)

Since the phase term calculated in step 3 is −1, the input reflection coefficient
at 0.775 GHz is calculated from equation (9-1) with e2γ z = −1:

�(z) = Rl − Z0

Rl + Z0
(−1)

Zin = Z0
[1 + (50 − Z0)/(50 + Z0)](−1)

[1 − (50 − Z0)/(50 + Z0)](−1)

= 111.3 = Z2
0

50

Z0 = 74.6 �

Insertion Loss When power is injected into port 1 and measured at port 2, the
square root of the power ratio reduces to a voltage ratio. S21, the measure of the
power transmitted from port 1 to port 2, is called the insertion loss:

S21 =
∣∣∣∣b2

a1

∣∣∣∣
a2=0

= v−
2 /

√
R

v+
1 /

√
R

= v−
2

v+
1

= vtransmitted

vincident
(9-21)

which is shown in Figure 9-11 for a transmission line. In digital system design,
the insertion loss is the most commonly used parameter of the scattering matrix
because it is a measure of both delay and amplitude as seen at the receiving
agent.

R

Vincident Vtransmitted

S21 = Vincident

Vtransmitted

V
RZ0

∼

Figure 9-11 Insertion loss (S 21) of a transmission line.
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The frequency-dependent delay can be calculated from the phase of the inser-
tion loss,

τp = θS21

360◦f
(9-22)

where

θS21 = arctan
Im(S21)

Re(S21)
(9-23)

Note that equation (9-22), called the phase delay , has a slightly different meaning
than that of the propagation delay of a digital pulse on a transmission line.
Since a digital pulse is composed of numerous harmonics, and realistic dielectrics
have values that vary with frequency, the propagation delay of a time-domain
pulse will have numerous frequency components, each propagating with a unique
phase velocity. The propagation delay of a digital pulse can be thought of as a
group of harmonics propagating simultaneously and is sometimes called the group
delay . The phase delay, as described with (9-22), is associated with only a single
frequency.

Figure 9-12a shows an example of the phase of S21 for a 1-in. transmission-line
model constructed with a realistic frequency-dependent dielectric, as described in
Chapter 6. To calculate the phase delay, the phase must be unwrapped, as shown
in the figure. Figure 9-12b is the phase delay calculated from the unwrapped
phase using equation (9-22). Note the frequency-dependent nature of the delay,
which is required for a causal transmission-line model.

For a loss-free network, the total power exiting the N ports must equal the
total incident power. This means that for a two-port loss-free network, the power
transmitted from port 1 to port 2 plus the power reflected from port 1 must be
conserved:

Preflected,port1

Pincident
+ Ptransmitted,port1−port2

Pincident
= 1 (9-24)

Essentially, equation (9-24) says that if the power is not transmitted from port 1
to port 2, it must be reflected. This allows us to write an equation that relates the
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Figure 9-12 (a) Phase of the insertion loss (S 21) for a 1-in. causal transmission line
model; (b) phase delay.
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Figure 9-13 Insertion and return loss for a 2-in. loss-free transmission line.

insertion loss and the return loss for a loss-free system†:

S11S
∗
11 + S21S

∗
21 = 1 (9-25)

where S∗
ij represents the complex conjugate of the term. Since Sij is the square

root of power measured at port i and injected at port j , the power ratio is S2
ij .

However, since power is a real quantity, the squaring function is replaced with
the complex conjugate to ensure that the imaginary part is zero.

Figure 9-13 shows the insertion and return loss for the loss-free transmission
line used in Example 9-4 terminated with 50-� reference impedances. Note that
when the return loss (S11) peaks, the insertion loss (S21) dips, as described by
(9-25). Since the imaginary part is zero when the terms peak and the real part is
zero when the terms dip, it is easy to show that the power is conserved when the
insertion loss is maximum and the return loss is minimum simply by squaring
the terms, which is equivalent to the complex conjugate for these conditions. For
example, at the first S11 peak,

S2
11 + S2

21 = (0.384)2 + (0.923)2 = 1

which proves that power is conserved.
For the realistic case where the transmission line is lossy, an extra term, Ploss,

is added to the power balance equation to account for conductor, dielectric, and

†The terms insertion loss and return loss should not be confused with ohmic or radiation losses .
When a system is said to be loss free, it means that the power lost through heat, such as conductor
and dielectric losses, does not exist. It also means that no energy is being lost through radiation into
free space.
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radiation losses:

Preflected,port1

Pincident
+ Ptransmitted,port1−port2

Pincident
+ Ploss

Pincident
= 1 (9-26)

Therefore, equation (9-25) can be rewritten to account for finite power losses:

S11S
∗
11 + S21S

∗
21 = 1 − Ploss

Pincident
(9-27)

Figure 9-14 shows an example of the insertion and return losses for a lossy
transmission line. The power absorbed by the network can be calculated using
(9-27). At the first peak (770 MHz),

S2
11 + S2

21 = (0.379)2 + (0.909)2 = 0.970

meaning that the power absorbed by the system or radiated into space is 1 −
0.970 = 0.03, or 3% of the total power. Of course, the absorbed power percentage
will increase with frequency because both skin effect resistance and dielectric
losses increase. For example, at 5.25 GHz, the total power absorbed by the
network is 9.6%.

S2
11 + S2

21 = (0.35)2 + (0.833)2 = 0.9035

1 − 0.9035 = 0.096

Since properly designed transmission lines are very inefficient radiators, it is a
valid assumption that very little or none of the power loss is due to radiation
into free space. Of course, if there is significant coupling (crosstalk) to adjacent
structures, the power will be affected, which is covered in the next section.
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Figure 9-14 Insertion and return loss for a 2-in. lossy transmission line.
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Figure 9-15 Two-transmission-line system for evaluating crosstalk using S -parameters.

Forward (Far-End) Crosstalk When power is injected into port 1 and measured
at port 4, as shown in Figure 9-15, it is called forward crosstalk , as described in
Chapter 4 and defined by

S41 =
∣∣∣∣b4

a1

∣∣∣∣
a2=0

= v−
4 /

√
R

v+
1 /

√
R

= v−
4

v+
1

(9-28)

Note that forward crosstalk is often called far-end crosstalk . As detailed in
Section 4.4, any bit pattern propagating on a bus with N signal conductors
can be decomposed into N orthogonal modes. Section 4.4.2 describes how each
mode will have a unique impedance and velocity. If a two-signal conductor sys-
tem is considered, such as that shown in Figure 9-15, all digital bit patterns will
be a linear superposition of the even and odd modes, which are described in
Section 4.3.

In Section 4.4.4, forward crosstalk for a two-signal conductor system was
shown to be caused by the difference in propagation velocity between the even
and odd modes. This knowledge can be used to predict the general behavior of
the forward crosstalk in the frequency domain. To begin, consider the magnitude
of S41 for a pair of coupled transmission lines, as shown in Figure 9-15. Using the
concept of modal analysis, where the driving signal is decomposed into one-half
even mode and one-half odd mode, the launch voltages at ports 1 and 3 can be
constructed. For the case where port 1 is being driven with a signal and port 3
is quiet, the even- and odd-mode components are in phase at port 1 and 180◦

out of phase at port 3 and shown in Figure 9-16. Consequently, the sum of the
modal voltages equals the driving voltage at port 1 and zero at port 3.

If the transmission-line pair is constructed with a homogeneous dielectric, the
even- and odd-mode propagation velocities are identical and will therefore arrive
at the far end simultaneously. In this case, forward crosstalk will be zero because
the odd- and even-mode components propagating on line 2 will still be 180◦

out of phase at node 4. However, if the transmission line is constructed with a
nonhomogeneous dielectric such as a microstrip, the even and odd propagation
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Figure 9-16 Modal decomposition of launch voltages when port 1 is driving as shown
in Figure 9-15.

tp,odd tp,even

R 1 2
V

R
∼

R

3 4 R

(veven + vodd) ≠ 01
2

veven
1
2

vodd
1
2θ ≠ 180°

Figure 9-17 Modal decomposition of voltages at node 4 when port 1 is driving, showing
that the odd- and even-mode components of the signal arrive at different times when the
dielectric media is nonhomogeneous, causing forward crosstalk to be finite.

velocities will differ. Therefore, the odd and even components of the signal will
arrive at node 4 at different times and will no longer be 180◦ out of phase.
Consequently, for a nonhomogeneous dielectric, the forward crosstalk will be
finite, as depicted in Figure 9-17. The propagation delay of the mode is calculated
from the modal velocities using equation (4-81):

νp,odd = 1√
LoddCodd

= c√
εeff,odd

νp,even = 1√
LevenCeven

= c√
εeff,even
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where the phase delay per unit length is simply τp = 1/νp. This means that
the magnitude of the forward crosstalk is dependent on the difference in delay
between the odd and even modes. Since equation (9-22) relates the delay to the
phase, if the velocity of each mode is known, the frequency where the phase
difference between the odd and even modes is 180◦ can be calculated:

τp,even − τp,odd = 180◦

360◦f180◦

f180◦ = 1

2(τp,even − τp,odd)
(9-29)

When f = f180◦ , the odd- and even-mode voltage components will be perfectly
out of phase on line 1 and in phase on line 2, which is the opposite of the launch
conditions as depicted in Figure 9-18. This means that at f180◦ , S21 = 0 and
S41 = 1, and the coupling to the adjacent line is 100% .

Example 9-5 Calculate the frequency where the insertion loss is minimum and
the forward crosstalk is maximum for a 10-in. loss-free transmission line where
εeff,even = 4.0 and εeff,odd = 3.5 for the circuit shown in Figure 9-15.

SOLUTION

Step 1: Calculate the propagation delay for the odd and even modes where
10 in. = 0.254 m and c = 3 × 108m/s:

τp,odd = l
√

εeff,odd

c
= 0.254

√
3.5

3 × 108
= 1.58 × 10−9 s

τp,even = l
√

εeff,even

c
= 0.254

√
4.0

3 × 108
= 1.69 × 10−9 s

Step 2: Calculate the frequency where the phase delay between odd and even
modes is 180◦:

f180◦ = 1

2(τp,even − τp,odd)
= 1

2(1.69 × 10−9 − 1.58 × 10−9)
= 4.41 × 109 Hz

At 4.41 GHz, the insertion loss (S21) will be minimum and the forward crosstalk
(S41) will be maximum. A simulation of this case is shown in Figure 9-19 for a
10-in. pair of coupled transmission lines with εeff,even = 4.0, εeff,odd = 3.5, Zodd =
25 �, and Zeven = 100 �.
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Figure 9-18 Modal decomposition of voltages at nodes 2 and 4 when port 1 is driving,
showing that at f = f180◦ the insertion loss (S 21) is zero and the forward crosstalk (S 41)
is maximum. At this frequency, the coupling to the adjacent line is 100%.
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Figure 9-19 Insertion loss (S 21) and forward crosstalk (S 41) for the transmission-line
pair in Figure 9-15, showing 100% coupling at f180◦ .
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Figure 9-20 Modal decomposition of launch voltages when port 1 is driving as shown
in Figure 9-15.

Reverse (Near-End) Crosstalk When the power is injected into port 1 and mea-
sured at port 3 for the circuit in Figure 9-15, it is called reverse crosstalk , as
described in detail in Chapter 4. Reverse crosstalk is often referred to as near-end
crosstalk . In terms of the scattering matrix, reverse crosstalk is defined as

S31 =
∣∣∣∣b3

a1

∣∣∣∣
a2=0

= v−
3 /

√
R

v+
1 /

√
R

= v−
3

v+
1

(9-30)

To explain how reverse crosstalk behaves in the frequency domain, consider a
transmission-line pair built in a homogeneous dielectric that is perfectly termi-
nated with its characteristic impedance, so the forward crosstalk and reflections
can be neglected. At dc, the crosstalk is zero because the coupling mechanism is
dependent on Lm(∂i/∂t) and Cm(∂v/∂t) as described in Section 4.1. However,
as the frequency starts to increase, energy will be coupled onto a victim line. As
described in Section 9.1, the peak will occur when the imaginary part is zero as
described by

f�(real) = n

4l
√

LC

∣∣∣∣
n=1,2,3,. . .

(9-3b)

The peak value of the reverse crosstalk can be evaluated by decoupling the
circuit into odd- and even-mode equivalents and driving the system with a current
idrive as shown in Figure 9-20. The voltages propagating in the odd and even
modes are calculated with the modal impedances:

vodd = idriveZodd

veven = idriveZeven

For the case where port 1 is driven and both odd and even modes are perfectly
terminated,† the line voltages propagating on each line when the imaginary part

†This can be done with the appropriate T or pi termination network, as described by Hall [2000].
Another method is to choose the appropriate values of Zodd and Zeven, so the network is terminated.
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is zero are given by

vline1 = 1
2 (veven + vodd) = 1

2 idrive(Zeven + Zodd) (9-31a)

vline2 = 1
2 (veven − vodd) = 1

2 idrive(Zeven − Zodd) (9-31b)

Since the voltage across the 50-� resistor at port 2 is vport2 = 50idrive, the insertion
loss can be calculated:

S21 = vport2

vline1
= 100

Zeven + Zodd
(9-32a)

and the peak value of the reverse crosstalk is the ratio of the voltage coupled
onto line 2 and the voltage propagating on line 1:

S31 = vline2

vline1
= Zeven − Zodd

Zeven + Zodd
(9-32b)

Example 9-6 Calculate the frequency where the insertion loss will be minimum
and the reverse crosstalk will be maximum for a 10-in. loss-free homogeneous
transmission line where εr = 4.0, with a circuit as shown in Figure 9-15. Assume
that Zeven = 100 �, Zodd = 25 �, and all ports are terminated in 50 �.

SOLUTION

Step 1: Calculate the propagation delay for the odd and even modes where
10 in. = 0.254 m and c = 3 × 108 m/s:

τp = l
√

εr

c
= 0.254

√
4.0

3 × 108
= 1.69 × 10−9 s

Step 2: Use equation (9-3a) to calculate the frequency of the first hump in
S31, where τp = l

√
LC:

f�(real) = 1

4τp

∣∣∣∣
n=1

= 147 × 106 Hz

Step 3: Calculate the maximum value of the crosstalk:

S31 = Zeven − Zodd

Zeven + Zodd
= 100 − 25

100 + 25
= 0.6

Step 4: Calculate the minimum value of the insertion loss. Since this is a
loss-free transmission line, the insertion loss (S21) will be minimum when the
input reflections and crosstalk are maximum. Both the input reflections (S11) and
the reverse crosstalk (S31) will peak when the frequency is equal to f�(real), as
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Figure 9-21 Insertion loss and reverse crosstalk for Example 9-6.

described by equation (9-3b). Consequently, when S11 and S31 are maximum,
S21 must be minimum and is calculated with equation (9-32a):

S21 = 100

Zeven + Zodd
= 100

100 + 25
= 0.8

A simulation of this case is shown in Figure 9-21.

Relationship Between S- and Z-Parameters Perhaps the most intuitive form of
network analysis are the Z-parameters, which were explained in Section 9.2.1.
The disadvantage of using an impedance (or admittance) matrix is simply that
they are impossible to measure directly at high frequencies. Fortunately, it is
relatively easy to convert Z-parameters into S-parameters and vice versa. The
derivation is shown here.

In matrix form, let’s begin with the voltage at port n of an N -port system,
which is composed of an ingoing wave (v+) and an outgoing wave (v−):

vn = v+
n + v−

n

where the current is calculated from the port voltage and the port (reference)
impedance Zn:

in = i+n − i−n = (v+
n − v−

n )
1

Zn
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In matrix form this becomes

v = v+ + v− = Zi = Zv+ 1

Zn

− Zv− 1

Zn

(9-33)

where Z is the impedance matrix. Assuming that the port impedance values are
identical, equations (9-14) and (9-17) can be combined to show that the S-matrix
can be calculated from v+ and v−:

Sij = bi

aj

= v−
i

v+
j

Therefore, the scattering matrix can be calculated by solving (9-33) for
(v−)(v+)−1:

v+ + v− = Zv+ 1

Zn

− Zv− 1

Zn

S = (v−)(v+)−1 = (Z + ZnU)−1(Z − ZnU) (9-34)

where U is the identity or unit matrix and Zn is the termination impedance of
each port. The derivation assumes that each port is terminated in the same value.
Equation (9-34) converts Z-parameters to S-parameters.

Solving (9-34) for Z allows the conversion from S-parameters to Z-parameters
for an arbitrary-sized matrix:

Z = Zn(U + S)(U − S)−1 (9-35)

Equations (9-34) and (9-35) are solved for a two-port network and summarized
in Table 9-1.

Impulse Response Section 8.1 we introduced the concept of an impulse response
matrix to completely describe the behavior of a system. If the systems impulse

TABLE 9-1. Conversions Between S- and Z-Parameters for a Two-Port Network

[
S11 S12

S21 S22

] 


(Z11 − Zn)(Z22 + Zn) − Z12Z21

(Z11 + Zn)(Z22 + Zn) − Z12Z21

2Z12Zn

(Z11 + Zn)(Z22 + Zn) − Z12Z21

2Z21Zn

(Z11 + Zn)(Z22 + Zn) − Z12Z21

(Z11 + Zn)(Z22 − Zn) − Z12Z21

(Z11 + Zn)(Z22 + Zn) − Z12Z21




[
Z11 Z12

Z21 Z22

] 


Zn

(1 + S11)(1 − S22) + S12S21

(1 − S11)(1 − S22) − S12S21

2ZnS12

(1 − S11)(1 − S22) − S12S21

2ZnS21

(1 − S11)(1 − S22) − S12S21
Zn

(1 − S11)(1 + S22) + S12S21

(1 − S11)(1 − S22) − S12S21






376 NETWORK ANALYSIS FOR DIGITAL ENGINEERS

matrix is known, it can be convolved with any arbitrary input (such as a pulse
or a bit stream) and the signal integrity can be evaluated. It is impossible to
measure the impulse response in the laboratory because it requires a driver
capable of driving a Dirac delta function that has infinitely fast rise and fall
times. Furthermore, even when a fast pulse is generated in the laboratory, induc-
tance and capacitive loading of the probes introduces into the measured response
unwanted noise, filtering, and resonances that are not associated with the electrical
behavior of the device under test. Consequently, experimental evaluation of the
impulse response in the laboratory using time-domain techniques is an impractical
endeavor.

For most practical purposes, the impulse response of the system interconnects
can be measured indirectly using a vector network analyzer (VNA), which is a
device used to evaluate the scattering matrix as a function of frequency in the
laboratory. Standard techniques to remove the parasitic inductance and capaci-
tance effects of the probes and test fixtures from the measured scattering network
are achieved through proper instrument calibration. Once the scattering matrix is
measured, the impulse response can be calculated by taking the inverse Fourier
transform, described in Section 8.1.4:

h(t) = F−1{S(ω)} (9-36a)

where S(ω) is the scattering matrix measured with a VNA.
To calculate the impulse response, the scattering matrix must contain values for

negative frequencies that obey the complex-conjugate rule to ensure a real-valued
time-domain response, as described in Section 8.2.1. Since VNA measurements
only provide values for the positive frequencies, the negative frequency values
must be calculated from the positive values as

S(−f ) = S(f )∗ (9-36b)

When calculating the impulse response using the fast Fourier transform (FFT), the
negative values are appended to the end of the positive values, as demonstrated
in Example 9-7.

Example 9-7 Calculate the impulse response from the measured values of S21

shown in Figure 9-22a.

SOLUTION

Step 1: Calculate the negative frequency values of S21 using (9-36b) as shown
in Figure 9-22b.

S(−f ) = S(f )∗

Step 2: Append the negative frequency values to the positive frequency values
to create a continuous spectrum with both positive and negative frequencies.
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Figure 9-22 For Example 9-7: (a) measured values of S 21 for positive frequencies;
(b) negative frequency values constructed from the complex conjugate of the positive
frequencies.

The magnitude of the continuous spectrum is shown in Figure 9-23a. Don’t
get confused by the data format required by the FFT, which assumes that the
input samples are periodic, resulting in a frequency response that looks more
intuitive if proper windowing of the periodic response is chosen, as shown in
Figure 9-23b.

Step 3: Calculate the inverse FFT of the complex frequency spectrum to
obtain the pulse response. In this case, the frequency data shown in Figure 9-22
were sampled at 100-MHz sample intervals for 1000 points for a bandwidth of
100 GHz. The final spectrum with the negative frequency values appended to
the positive values has a total of 2000 sample points. Mathematica was used to
perform the inverse FFT on the frequency data to produce the impulse response
shown in Figure 9-24.

Although infinite bandwidth is required to produce a true impulse response
with infinitely fast rise and fall times, the pulse response (i.e., single-bit response)
as described in Section 8.1.5 can still be calculated with high accuracy if the
harmonic bandwidth of the pulse is small compared to the bandwidth of the
measurement. For example, if an 8-Gb/s single-bit response is calculated with
rise and fall times of 35 ps, the bandwidth of the VNA used to evaluate the
transfer function of the interconnects would need to be greater than 10 GHz, as
calculated with Equation (8-8):

fVNA,BW >
0.35

35 × 10−12
= 10 × 109 Hz

Furthermore, properties of the FFT place specific requirements on the frequency-
domain bandwidth to generate minimum granularity in the time domain. If a min-
imum granularity of �t is required for the time-domain waveform, the maximum
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Figure 9-23 For Example 9-7: (a) magnitude of the frequency spectrum constructed
by appending the measured positive frequency values of S 21 and the complex conjugate
to create the negative frequency values; (b) FFT periodic treatment of the sampled data
allows a more intuitive look at the magnitude of the frequency response when windowed
properly.
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Figure 9-24 Impulse response calculated from the inverse FFT of the S 21 data shown
in Figure 9-23.
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positive frequency bandwidth of the measurement is defined by

fmax = 1

2�t
(9-37a)

To support a time-domain step size of �t , the frequency sample size must be

�f = 1

2n �t
(9-37b)

and the maximum valid time-domain signal would be

tmax = 1

2�f
(9-37c)

where n is the number of samples for the positive frequency values .
For example, if a time-domain granularity of 5 ps is required, the maxi-

mum bandwidth required using 1000 positive frequency sample points would
be 100 GHz:

fmax = 1

2(5 × 10−12)
= 100 × 109 Hz

Consequently, a time-domain waveform constructed from a frequency-domain
measurement requires significant bandwidth if fine granularity is required. Unfor-
tunately, it becomes very difficult to perform VNA measurements above about
20 GHz. Both the calibration techniques and equipment costs become prohibitive.

Fortunately, there are mathematic ways to sidestep the lack of high-frequency
measured data without losing time-domain granularity. As long as the spectral
bandwidth of the digital waveforms propagating on the system interconnects
are significantly lower than fmax, extrapolation or zero padding of the measured
scattering matrix can be used to increase granularity with only a small degradation
in accuracy. For example, consider a driving digital waveform with rise and fall
times of 25 ps. The spectral bandwidth of this waveform is approximated by
equation (8-8):

f3dB ≈ 0.35

25 × 10−12
= 14 × 109 Hz

Common bandwidths currently available on VNAs range from 20 to 110 GHz,
which are equivalent to pulses with rise and fall times of about 3 to 18 ps.

t10–90% =




0.35

20 × 109
= 17.5 × 10−12 s

0.35

110 × 109
= 3.18 × 10−12 s



380 NETWORK ANALYSIS FOR DIGITAL ENGINEERS

Therefore, measurements taken using a standard 20-GHz VNA would have ade-
quate bandwidth to resolve rise and fall times as fast as 17.5 ps. Although a
bandwidth of 20 GHz is sufficient to resolve the edge rate, the granularity of
the time-domain waveform calculated using the FFT is only 25 ps, as calculated
by (9-37a):

�t = 1

2fmax
= 1

2(20 × 109)
= 25 × 10−12 s

Consequently, extrapolation or zero padding is required to ensure reasonable
granularity in the time-domain waveform, as demonstrated in Example 9-8.

Example 9-8 Assume that the complex values of S21 used in Example 9-7
have been measured to 20 GHz. Calculate the impulse response with a resolution
of 5 ps.

SOLUTION

Step 1: Calculate fmax using equation (9-37a):

fmax = 1

2�t
= 1

2(5 × 10−12)
= 100 × 109 Hz

Step 2: Calculate the negative frequency values from −20 GHz to dc using
equation (9-36b):

S(−f ) = S(f )∗

Step 3 : Calculate the sample interval of the frequency-domain data assuming
1000 samples of the measurable positive frequency values:

�f = 1

2n�t
= 1

2(1000)(5 × 10−12)
= 100 × 106 Hz

Step 4: Calculate the number of zero points that need to be added to the
spectrum. At a sample rate of 100 MHz, the number of samples up to 20 GHz is

20 × 109 Hz

100 × 106 Hz/sample
= 200 samples

Therefore, 800 zero points need to be added to both the positive and negative
spectra to achieve ±100-GHz bandwidth.

Step 5: Append the positive and negative spectrums together as shown in
Figure 9-25.

Step 6: Perform an inverse FFT on the zero-padded spectrum to get the impulse
response, as shown in Figure 9-26.
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Figure 9-25 Zero-padded spectrum. Bandwidh of measured response is 20 GHz and
zero-padded to 100 GHz to ensure 5-ps resolution in the time domain.
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Figure 9-26 Impulse response calculated from the inverse FFT of the 20-GHz padded
to 100-GHz S 21 data shown in Figure 9-25.

Note that the zero padding has introduced a small amount of ringing into the
impulse response. The error is caused by the discontinuous spectrum where the
measured data stops and the zero padding begins. This error can be minimized
by increasing the bandwidth of the measured data, extrapolating the real and
imaginary parts of the measured data instead of zero padding or smoothing the
zero-padding discontinuity.
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Figure 9-27 Two-port network used to describe ABCD parameters.

9.2.3 ABCD Parameters

Consider the two-port network depicted in Figure 9-27. If the voltage and current
are measured at the input and output ports, the system can be characterized
in terms of its ABCD matrix. The ABCD parameters have several advantages
over other network parameters. They allow the full description of a network in
terms of input and output voltage and current, which makes them convenient for
cascading circuits; they are easily related to equivalent circuits; and they provide
a convenient basis for writing specialized programs that allow voltage and current
sources to drive channels constructed from cascaded ABCD elements. Two-port
ABCD parameters are developed here.

One significant difference between the ABCD matrix and the impedance matrix
is the direction of i2, which is pointing out of, not into, port 2. This allows easy
cascading of networks (which is addressed in Section 9.2.4). The ABCD values
are evaluated as

A = v1

v2

∣∣∣∣
i2=0

B = v1

i2

∣∣∣∣
v2=0

C = i1

v2

∣∣∣∣
i2=0

D = i1

i2

∣∣∣∣
v2=0

(9-38)

Using the definition shown in equations (9-38), a set of linear equations can be
written to describe the network:

v1 = Av2 + Bi2

i1 = Cv2 + Di2

which is more efficiently expressed in matrix form:

∣∣∣∣v1

i1

∣∣∣∣ =
∣∣∣∣A B

C D

∣∣∣∣ ·
∣∣∣∣v2

i2

∣∣∣∣ (9-39)

Consequently, if the ABCD matrix of a system is known, the response of the
system can be predicted for any input.

Since the ABCD parameters are evaluated with short and open circuits as
shown in equation (9-38), they are not practical to measure directly. However,
relationships exist that allow the ABCD matrix to be calculated directly from the
S-parameters as will be shown later.
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Figure 9-28 Deriving the ABCD parameters for a T -topology equivalent circuit.

Relationship to Common Circuit Parameters The ABCD parameters can be used
to create equivalent-circuit models for common circuit topologies. For example,
consider the T-circuit shown in Figure 9-28. To determine A, port 2 must be
open (since i2 = 0) while port 1 is driven with v1.

A = v1

v2

∣∣∣∣
i2=0

v2 = v1
Z3

Z3 + Z1

A = Z3 + Z1

Z3
(9-40a)

The term B is determined by shorting port 1 (since v2 = 0):

B = v1

i2

∣∣∣∣
v2=0

A current divider is used to calculate i2, which is substituted into the equation
for B:

i2 = i1
Z3

Z3 + Z2

B = v1

i1[Z3/(Z3 + Z2)]
= v1

i1

Z3 + Z2

Z3

Since v1/i1 is equal to the impedance looking into port 1, B can be simplified:

B = (Z1 + Z2||Z3)
Z3 + Z2

Z3
= Z1 + Z2 + Z1Z2

Z3
(9-40b)

To determine C, port 2 must be open (since i2 = 0) while port 1 is driven with v1.

C = i1

v2

∣∣∣∣
i2=0

v2 = v1
Z3

Z3 + Z1
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i1 = v1

Z1 + Z3

C = i1

v2
= v1/(Z1 + Z3)

v1[Z3/(Z3 + Z1)]
= 1

Z3
(9-40c)

To determine D, port 2 must be short (since v2 = 0) while port 1 is driven:

D = i1

i2

∣∣∣∣
v2=0

i2 = i1
Z3

Z3 + Z2

D = i1

i2
= Z3 + Z2

Z3
(9-40d)

Therefore, for a T-circuit like the one depicted in Figure 9-28, the ABCD matrix
takes on the form

[
A B

C D

]
T-circuit

=




Z3 + Z1

Z3
Z1 + Z2 + Z1Z2

Z3
1

Z3

Z3 + Z2

Z3


 (9-41)

The ABCD parameters of a lossy transmission line can be derived for the case
where the line is terminated is its characteristic impedance. This conversion is
particularly useful for extracting transmission-line parameters such as Z0 and γ

from measurements. For the case where the termination impedance is not equal
to the characteristic impedance, the matrix can be renormalized as described in
Section 9.2.6.

To begin the derivation, consider the transmission line in Figure 9-29:

A = v1

v2

∣∣∣∣
i2=0

R = Z0

Port 1 Port 2

R = Z0Z0
g

Z = −I Z = 0

V

Figure 9-29 Deriving the ABCD parameters for a lossy transmission line.
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Since i2 = 0, port 2 is open. Therefore, the voltage at port 2 will have an incident
and a reflected component. For convenience, the total voltage at port 2 is set
equal to 1:

v2 = v+ + v− = 1

v+ = v− = 1
2

The voltage at port 1 is calculated using equation (6-49) with z = −l.

v1 = v(z = −l) = v+eγ l + v−e−γ l = eγ l + e−γ l

2

The ratio of v1 and v2 is used to calculate A:

A = eγ l + e−γ l

2
= cosh γ l (9-42a)

The term C is also calculated with i2 = 0.

C = i1

v2

∣∣∣∣
i2=0

The current i1 is calculated at z = −l using the characteristics impedance.

i1 = i(z = l) = 1

Z0
v+eγ l − 1

Z0
v−e−γ l = 1

Z0

eγ l − e−γ l

2

The ratio of i1 and v2 is used to calculate C:

C = 1

Z0

eγ l − e−γ l

2
= 1

Z0
sinh γ l (9-42b)

Terms B and D are calculated with v2 = 0:

B = v1

i2

∣∣∣∣
v2=0

Since v2 = 0, port 2 is shorted:

v2 = v+ + v− = 1

2
− 1

2
= 0

i2 = v+

Z0
− v−

Z0
= 1/2

Z0
− −1/2

Z0
= 1

Z0

v1 = v(z = −l) = v+eγ l + v−e−γ l = eγ l − e−γ l

2
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The ratio of v1 and i2 is used to calculate B:

B = Z0
eγ l − e−γ l

2
= Z0 sinh γ l (9-42c)

D = i1

i2

∣∣∣∣
v2=0

i2 = 1

Z0

i1 = i(z = l) = 1/2

Z0
eγ l − −1/2

Z0
e−γ l = 1

Z0

eγ l + e−γ l

2

The ratio of i1 and i2 is used to calculate D:

D = eγ l + e−γ l

2
= cosh γ l (9-42d)

Therefore, the ABCD matrix for a lossy transmission line.

[
A B

C D

]
lossy transmssion line

=

 cosh γ l Z0 sinh γ l

1

Z0
sinh γ l cosh γ l


 (9-43a)

Using the same procedure, the ABCD parameters for a loss-free line can easily
be derived where γ = jβ:

[
A B

C D

]
loss-free transmssion line

=

 cosβl jZ0 sin βl

j

Z0
sin βl cosβl


 (9-43b)

Table 9-2 depicts the relationship between common circuits and the ABCD
parameters. These common forms are useful for extracting equivalent circuits
from S-parameter measurements. Of course, a methodology is needed to convert
S-parameters into an ABCD matrix, which is covered in the next section.

Relationship Between ABCD and S-Parameters To take advantage of the rela-
tionships between the ABCD matrix and common circuit forms, it is necessary
to determine the relationship between the ABCD and S-parameters. The most
straightforward derivation is first to define the transformation of ABCD parame-
ters into a two-port Z-matrix and then use equation (9-34) to get the S-parameters.

Beginning with the definition of Z11 from equation (9-8),

Z11 = v1

i1

∣∣∣∣
i2=0
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TABLE 9-2. Relationship Between Common Circuits and the ABCD Parameters

Circuit ABCD Matrix

Z1

Z3

i1 2i

v2v1

Z2




Z3 + Z1

Z3
Z1 + Z2 + Z1Z2

Z3

1

Z3

Z3 + Z2

Z3




R=Z0V Z0 R=Z0

z=0z=-l


 cosh γ l Z0 sinh γ l

1

Z0
sinh γ l cosh γ l




Z
i1 i2

v2v1

[
1 Z

0 1

]

Y

i1 i2

v2v1

[
1 0

Y 1

]

Y3

Y1

i1 i2

v2v1 Y2




1 + Y2

Y3

1

Y3

Y1 + Y2 + Y1Y2

Y3
1 + Y1

Y3




the ABCD equations reduce to

v1 = Av2

i1 = Cv2

resulting in

Z11 = v1

i1
= A

C
(9-44a)

The definition of Z12 is

Z12 = v1

i2

∣∣∣∣
i1=0

so the ABCD equations reduce to

v1 = Av2 + Bi2

0 = Cv2 + Di2

Solving the equations above for v1/i2 produces

v1

i2
= BC − AD

C
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However, the convention for an ABCD matrix assumes that i2 is flowing out of
port 2, and a Z matrix assumes that it is flowing into port 2. Consequently, the
sign of i2 must be changed, which results in the definition of Z12 in terms of
ABCD parameters:

Z12 = AD − BC

C
(9-44b)

The terms Z21 and Z22 are derived using a similar procedure.

Z21 = v2

i1

∣∣∣∣
i2=0

v1 = Av2

i1 = Cv2

Z21 = 1

C
(9-44c)

Z22 = v2

i2

∣∣∣∣
i1=0

v1 = Av2 + Bi2

0 = Cv2 + Di2

Z22 = D

C
(9-44d)

The final relationship between a two-port Z-matrix and the ABCD matrix is
shown as

[
Z11 Z12

Z21 Z22

]
=




A

C

AD − BC

C

1

C

D

C


 (9-45)

To derive the transformation of the ABCD to S-parameters, the results of (9-45)
are substituted into equation (9-34). The final solution is summarized in (9-46),
where Zn is the termination impedance at the ports, which are all assumed to be
equal.

[
S11 S12

S21 S22

]
=




B − Zn(D − A + CZn)

B + Zn(D + A + CZn)

2Zn(AD − BC)

B + Zn(D + A + CZn)

2Zn

B + Zn(D + A + CZn)

B − Zn(A − D + CZn)

B + Zn(D + A + CZn)


 (9-46)

Similar techniques are used to derive the transformation of S into ABCD param-
eters. The complete sets of transformations are summarized in Table 9-3.
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TABLE 9-3. Relationships Between Two-Port S and ABCD Parametersa

[
S11 S12

S21 S22

] 


B − Zn(D − A + CZn)

B + Zn(D + A + CZn)

2Zn(AD − BC)

B + Zn(D + A + CZn)

2Zn

B + Zn(D + A + CZn)

B − Zn(A − D + CZn)

B + Zn(D + A + CZn)




[
A B

C D

] 


(1 + S11)(1 − S22) + S12S21

2S21
Zn

(1 + S11)(1 + S22) − S12S21

2S21

1

Zn

(1 − S11)(1 − S22) − S12S21

2S21

(1 − S11)(1 + S22) + S12S21

2S21




aZn is the termination impedance at the ports.

(a) (b)

Port 1

Port 2

Via pad

Barrel Port 1 Port 2

Lbarrel

Cpad Cpad

Figure 9-30 Via and equivalent circuit for Example 9-9.

Example 9-9 Extract an equivalent circuit for the via shown in Figure 9-30a from
the following S-parameter matrix measured at 5 GHz assuming port impedance
values (Zn) of 50 �:

[
S11 S12

S21 S22

]
=

[−0.1235 − j0.1516 0.7597 − j0.6190
0.7597 − j0.6190 −0.1235 − j0.1516

]

SOLUTION

Step 1: Transform the S-matrix into ABCD parameters using the relations in
Table 9-3.

[
A B

C D

]
=

[
0.790 j22.22

j0.01686 0.790

]

Step 2 : Choose the form of the equivalent circuit. A signal propagating through
the via will experience the capacitance of the via pad, the inductance of the barrel,
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and then the capacitance of the second pad. This configuration fits the pi model
in Table 9-2 as shown in Figure 9-30b.

Step 3: Use the relations in Table 9-2 to calculate the admittance of each
segment in the pi model:

B = 1

Y3
= j22.22

Y3 = −j0.045

A = 0.790 = 1 + Y2

Y3
= 1 + Y2

−j0.045

Y2 = j0.00945

Due to symmetry in the circuit, Y1 = Y2.
Step 4: Calculate the circuit values:

Y3 = −j0.045 = 1

jωL
= 1

j2π(5 × 109Lbarrel)

→ Lbarrel = 0.7 × 10−9 H

Y1 = Y2 = j0.00945 = jωC = j2π(5 × 109Cpad)

→ Cpad = 0.3 × 10−12 F

9.2.4 Cascading S-Parameters

One of the most useful aspects of network analysis is the ability to cascade inde-
pendently measured structures. For example, if the S-parameters are measured
independently for a transmission line, via, package, and connector, the engineer
has the ability to create the response of an entire channel from the individual
measurements. This allows S-parameter files to be used as portable models, gives
the designer the ability to evaluate different topologies, and provides the mecha-
nism to deembed or calibrate out unwanted items in the measurements. The two
most common methods of cascading S-parameters are with the ABCD parameters
and the T-matrix.

Cascading with the ABCD Matrix For two-port networks, the most common
cascading methodology is to use the ABCD parameters. Cascading is achieved
simply by multiplying the ABCD matrices. This is possible because of the current
convention that flows outward at port 2, as shown in Figure 9-27. For example,
consider the ABDC parameters of the two cascaded circuits shown in Figure 9-31.
The equations that describe the port voltage and currents of circuits 1 and 2 can
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v1 v2 v3

i1 i2 i3

B

DC

A

circuit1

B

DC

A

circuit2

Figure 9-31 ABCD parameters are cascaded though multiplication.

easily be written.

[
v1

i1

]
=

[
A B

C D

]
circuit1

[
v2

i2

]
[
v2

i2

]
=

[
A B

C D

]
circuit2

[
v3

i3

]

Note that the output of circuit 1 is v2 and i2, which is the input of circuit 2. This
allows the simple substitution of

[
v2

i2

]
with

[
A B

C D

]
circuit2

[
v3

i3

]

resulting in

[
v1

i1

]
=

[
A B

C D

]
circuit1

[
A B

C D

]
circuit2

[
v3

i3

]

Therefore, two-port S-parameters can be cascaded by converting to ABCD
parameters and multiplying . The cascaded scattering matrix is then calculated
by converting the cascaded ABCD matrix back to S-parameters using Table 9-3.
The procedure is demonstrated in Example 9-10.

Example 9-10 Using the two independently measured values of S-parameters
for a via and a loss-free transmission line at 5 GHz, calculate the, equivalent
S-parameters that would be measured if the two circuits were cascaded as shown
Figure 9-32. Assume that the termination impedance is 50 �.

[
S11 S12

S21 S22

]
via

=
[−0.1235 − j0.1516 0.7597 − j0.6190

0.7597 − j0.6190 −0.1235 − j0.1516

]
[
S11 S12

S21 S22

]
t-line

=
[
0.00325 − j0.00323 −1.00 − j0.003

−1.00 − j0.003 0.00325 − j0.00323

]
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(a) (b)

R Z0 b

Z = −I Z = 0

R

R

R

(c)

Z0 b

R

R

Figure 9-32 For Example 9-10: (a) configuration of the independently measured via;
(b) transmission line; (c) via cascaded with the transmission line.

SOLUTION

Step 1: Convert to ABCD parameters using Table 9-3:[
A B

C D

]
via

=
[

0.790 j22.22
j0.01686 0.790

]
[
A B

C D

]
t-line

=
[ −1 j0.3228
j0.000129 −1

]

Step 2: Multiply the ABCD matrices:[
A B

C D

]
cascade

=
[
A B

C D

]
via

[
A B

C D

]
t-line

=
[

0.790 j22.22
j0.01686 0.790

]
·
[ −1 j0.3228
j0.000129 −1

]

=
[ −0.790 −j21.965

−j0.01686 −0.795

]

Step 3: Convert

[
A B

C D

]
cascade

back to S-parameters using Table 9-3 where

Zn = 50 � (the termination impedance)[
S11 S12

S21 S22

]
cascade

=
[−0.1259 − j0.1553 −0.7635 + j0.6186
−0.7645 + j0.6182 −0.1200 − j0.1565

]

The cascaded S-matrix is equivalent to what would be measured if the via was
cascaded with the transmission line, as shown in Figure 9-32c.
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Cascading with the T -Matrix Another method commonly used to cascade
S-parameters is the T-matrix , sometimes called transmission parameters .
The T -parameters are derived simply by rearranging the equations for the
S-parameters. Equation (9-18) describes the relationship between the incident
power waves a and the exiting power waves b:

[
b1

b2

]
=

[
S11 S12

S21 S22

] [
a1

a2

]

To facilitate the cascading of networks by simple matrix multiplication, the
equation needs to be rearranged so that the ingoing and outgoing waves of port 1
can be described in terms of the waves at port 2. This is done with the T -matrix.
A two-port T -matrix is

[
a1

b1

]
=

[
T11 T12

T21 T22

] [
b2

a2

]
(9-47)

If the output of circuit A is attached to the input of circuit B, the total response
can be calculated simply by multiplying the T -matrices, because the power wave
exiting circuit A is b2, which feeds into the input of circuit B, which is a3.
Therefore, b2 = a3 and a2 = b3, as shown in Figure 9-33.

[
a1

b1

]
=

[
T11 T12

T21 T22

]
A

[
b2

a2

]
[
a3

b3

]
=

[
T11 T12

T21 T22

]
B

[
b4

a4

]
[
a1

b1

]
=

[
T11 T12

T21 T22

]
A

[
T11 T12

T21 T22

]
B

[
b4

a4

]

Therefore, S-parameters can be cascaded by converting to T -parameters and
multiplying . The cascaded scattering matrix is then calculated by converting the
product of the T -matrices back to S-parameters.

Conversion between the T - and S-parameters (and vice-versa) requires simple
algebraic manipulation of the equations, which can be done for any number of

b1

a1

a2 a4b3

b2 a3 b4

[T ]circuit1
[T ]circuit2

Figure 9-33 T -parameters are cascaded through multiplication.
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ports. The conversion from S- to T -parameters is derived here for a two-port sys-
tem to demonstrate the process. To begin, the equations that relate the incoming
power waves to the outgoing are written

b1 = S11a1 + S12a2

b2 = S21a1 + S22a2

and equation (9-47) is expressed in algebraic form:

a1 = T11b2 + T12a2

b1 = T21b2 + T22a2

From the equations above, the individual T -parameters can be defined in terms
of the S-parameters:

T11 = a1

b2

∣∣∣∣
a2=0

b2 = S21a1 + S22(0)

T11 = 1

S21
(9-48a)

T22 = b1

a2

∣∣∣∣
b2=0

0 = S21a1 + S22a2 → a1 = −S22a2

S21

b1 = S11a1 + S12a2 =
(

S12 − S11S22

S21

)
a2

T22 = S12 − S11S22

S21
(9-48b)

T12 = a1

a2

∣∣∣∣
b2=0

0 = S21a1 + S22a2

a1 = −S22a2

S21

T12 = −S22

S21
(9-48c)
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TABLE 9-4. Relationships Between T - and
S-Parameters for Two-Ports

[
T11 T12

T21 T22

] 


1

S21
−S22

S21

S11

S21
S12 − S11S22

S21




[
S11 S12

S21 S22

] 


T21

T11
T22 − T21T12

T11

1

T11
−T12

T11




T21 = b1

b2

∣∣∣∣
a2=0

b1 = S11a1

b2 = S21a1

T21 = S11

S21
(9-48d)

A very similar analysis is used to transform the T -parameters back into
S-parameters, which is left to an exercise for the reader. The transformations
for two ports are summarized in Table 9-4.

The four-port T -matrix takes the form




a1

a3

b1

b3


 =




T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44







b2

b4

a2

a4


 (9-49)

for the network shown in Figure 9-34. The transformations between T - and
S-parameters for n-ports is developed in an identical manner, which is shown in
Appendix B.

9.2.5 Calibration and De-embedding

Very often in digital design it is desirable to measure a component such as a trans-
mission line, a CPU socket, or a daughter-card connector using a vector network
analyzer (VNA). The measurement can be used to create an equivalent-circuit
model, validate the modeling methodologies used to simulate the channel, or
estimate the performance of a component. Practicality dictates that the device
under test (DUT) is usually mounted in a fixture and connected to the VNA
with a cable using probes or SMA connectors. Consequently, methodologies are
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a1

a3

Port 1

Port 3

Port 2

Port 4

b2

b2

b1

b3

a2

a2

4 port network

Figure 9-34 Four-port network.

needed to separate the S-parameters of the DUT from the test fixture, cables,
or probes. In this section we introduce the basic calibration and deembedding
methodologies so that the concept will be understood. Since each measurement
setup requires a specialized calibration and deembedding procedure, the breadth
of the topic is too wide to be covered here.

The terms calibration and deembedding refer to the same concept: remstepov-
ing an unwanted part of the measurement. More specifically, calibration refers
to removing the effect of the VNA cables and probes, and deembedding refers
to removing unwanted portions of the DUT, such as a via, a test fixture, or a
cable connector. A VNA measures S-parameters as ratios of complex voltage
amplitudes. The reference for the measurement is some place within the VNA,
not at the cable ends which are attached to the DUT, so the measurement will
include the losses and phase delays of the cables, connectors, and probes used
to connect the DUT to the analyzer. Calibration refers to the removal of these
unwanted effects from the measured response so that only the measured response
of the DUT remains. Figure 9-35 demonstrates this concept.

For calibration purposes, it is convenient to work with ABCD parameters. For
example, the measurement setup in Figure 9-35 can be represented by cascaded
ABCD matrices:

[
A B

C D

]
measured

=
[
A B

C D

]
errorport1

[
A B

C D

]
DUT

[
A B

C D

]−1

errorport2

(9-50)

Note that the ABCD matrix for port 2 is inverted because the VNA drives into
the port and measures the responses at all other ports. The inversion simply
ensures that it represents current flowing from port 2 into the DUT and not the
other way around. Equation (9-50) suggests that if the ABCD matrices of the
errors are known, the ABCD matrix (and thus the S-parameters) of the DUT can
be calculated. In short, the calibrated measurement is simply the error-corrected
S-parameters.

The most straightforward method to remove the errors and calibrate a VNA
is to use three or more carefully controlled loads, such as a short, open, and
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VNA

Desired measurement 
reference planes

Actual measurements are referenced internal to the VNA
and include cable, probe and connector losses and phase delays

RR DUTErrorPort1

DUT

ErrorPort2

Figure 9-35 Calibration removes the unwanted parts of the measurement, such as the
cable and probe effects.

L

Error Port1

b2

ZL

a1

Γin

b1 a2

Figure 9-36 The simplest way to calibrate a VNA is to characterize the port error by
driving different loads (Z L): an open, a short, and a resistive load.

precision resistive load. For example, consider Figure 9-36, which represents
one port of a VNA driving a load ZL. The equations for the S-parameters can be
written in terms of the reflection coefficient at the load where the incoming wave
at port 2 (a2) is simply the reflected portion of the exiting wave (b2) a2 = b2�L.

b1 = S11a1 + S12a2 = S11a1 + S12b2�L

b2 = S21a1 + S22a2 = S21a1 + S22b2�L

b2(1 − S22�L) = S21a1 → b2 = S21a1

1 − S22�L

(9-51a)

b1 = S11a1 + S12
S21a1

1 − S22�L

�L (9-51b)
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The input reflection �in is the ratio of the reflected wave b1 to the incident
wave a1:

�in = b1

a1
= S11 + S12S21�L

1 − S22�L

If it is assumed that the error term is reciprocal, S21 = S12, the input reflection
equation can be simplified:

�in = b1

a1
= S11 + S2

12�L

1 − S22�L

(9-52)

To calibrate the effect of the errors out of the measurement, the S-parameters
must be found. This is done by considering three known values for the load, ZL:
a short, an open, and a perfectly matched resistor. When the load is shorted, the
reflection at the load is �L = −1, which reduces (9-52) to

�in, short = S11 − S2
12

1 + S22
(9-53a)

When the load is open and perfectly impedance matched, the reflection at the
load is �L = 1 and �L = 0 respectively, producing

�in, open = S11 + S2
12

1 − S22
(9-53b)

�in, matched = S11 (9-53c)

By measuring the open, short and matched loads, the three equations above can
be solved simultaneously for S11, S12, and S22:

S12 = S21 =
√

(�in, matched − �in,short)(1 + S22) (9-54a)

S22 = 2�in, matched − �in,short − �in, open

�in,short − �in,open
(9-54b)

S11 = �in,matched (9-54c)

The equations above are then used to create a scattering matrix for the errors at
the ports: [

S11 S12

S21 S22

]
short,open,load

⇒
[
A B

C D

]
errorport

(9-55)

Finally, the measurements of the DUT are calculated by multiplying by the
inverse of the error terms:[

A B

C D

]
DUT

=
[
A B

C D

]−1

errorport1

[
A B

C D

]
measured

[
A B

C D

]
errorport2

(9-56)
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The calibrated S-parameters are obtained by converting the ABCD matrix of the
DUT calculated with (9-56) using Table 9-3.

[
A B

C D

]
DUT

⇒
[
S11 S12

S21 S22

]
DUT

(9-57)

Basic deembedding principles utilize the same concepts to remove unwanted
parts of the measurement. For example, Figure 9-32c shows a case where a via is
cascaded with a transmission line. If it is desired to obtain only the measurements
of the transmission line, the effects of the via must be deembedded. If the test
board contains suitable structures to measure the S-parameters of the via in
isolation, it can be effectively deembedded from the measurements using the
same procedure shown in (9-56):

[
A B

C D

]
T-line

=
[
A B

C D

]−1

via

[
A B

C D

]
measured

(9-58)

Using the concept of cascaded matrices, any number of structures can be deem-
bedded from the measured data as long as the S-parameters for the structures are
known.

9.2.6 Changing the Reference Impedance

S-parameters are dependent on the reference impedance of the VNA. If the port
impedance values change, the S-parameters change. It is generally standard to
measure S-parameters assuming a reference impedance of 50 � at each port.
However, sometimes the port impedance values need to be adjusted after the
measurements are performed. For example, perhaps the port impedance of the
VNA was determined to be something other than 50 �, or the engineer wished
to examine the performance of the circuit referenced to an impedance consistent
with the transmission lines used in a specific board design. When an S-parameter
is measured with a reference impedance at the ports of Zn, it is said to be
normalized to that impedance.

To renormalize the S-matrix from Zn1 to Zn2, the definition of the
Z-parameters from equation (9-35) is used:

Z = Zn(U + S)(U − S)−1 (9-35)

Since the impedance matrix is not dependent on the port impedance, it can be
used to renormalize the S-matrix.

Zn1(U + S1)(U − S1)
−1 = Zn2(U + S2)(U − S2)

−1
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Solving for S2 yields

S2 =
[
Zn1

Zn2
(U + S1)(U − S1)

−1 + U
]−1 [

Zn1

Zn2
(U + S1)(U − S1)

−1 − U
]
(9-59)

Example 9-11 Renormalize the following S-matrix measured with a 50-� ref-
erence load to 75 �:

S50� =
[

0.385 j0.923
j0.923 0.385

]

SOLUTION Using equation (9-59), the S-matrix can be manipulated so that it
looks like it was measured with a 75-� reference impedance.

S75� =
[

50

75

([
1 0
0 1

]
+

[
0.385 j0.923
j0.923 0.385

])([
1 0
0 1

]
−

[
0.385 j0.923
j0.923 0.385

])−1

+
[
1 0
0 1

]]−1

·
{

50

75

([
1 0
0 1

]
+

[
0.385 j0.923
j0.923 0.385

])

×
([

1 0
0 1

]
−

[
0.385 j0.923
j0.923 0.385

])−1

−
[
1 0
0 1

]}
=

[
0 −j

−j 0

]

Therefore, the magnitude of the renormalized S-matrix is

|S75�| =
[
0 1
1 0

]

meaning that the transmission line is loss free with a characteristic impedance
of 75 � since there is no reflection (S11 = 0) and the insertion loss is unity
(S21 = 1).

9.2.7 Multimode S-Parameters

In Chapter 4 differential signaling was explained. Since many of the high-speed
buses being designed in modern computing systems consist of differential pairs,
it is often convenient to describe the behavior of the interconnects in terms
of multimode S-parameters. The multimode S-matrix breaks the signal on a
differential pair into terms of differential (i.e., odd mode) and common (i.e.,
even mode) signaling states. A multimode matrix for two modes can be derived
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R Port 1

Port 3 Port 4

Port 2 R

R R

∼

Figure 9-37 A pair of coupled transmission lines is a common example of a four-port
network that is conveniently described with a multimode S -matrix.

directly from the four-port S-parameters. For example, the S-parameters of the
four-port system pictured in Figure 9-34 are shown as follows:




b1

b2

b3

b4


 =




S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44







a1

a2

a3

a4


 (9-60)

An example of a four-port system is two coupled transmission lines, as shown
in Figure 9-37. To derive the multimode matrix, it is first necessary to calculate
the S-parameters for each mode.

The differential S-parameters, where the energy is being transmitted in the
odd mode, are calculated by driving the four-port network with +v on port 1
and −v on port 3 when ports 2 and 4 are not being driven. This allows (9-60)
to be simplified.




b1

b2

b3

b4


 =




S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44







v

0
−v

0


 (9-61)

The differential return loss at port 1 can then be calculated algebraically where
bd1 = b1 − b3 and ad1 = a1 − a3 = v − (−v) = 2v.

Sdd11 = bd1

ad1

∣∣∣∣
a2=a4=0

= 1
2 (S11 + S33 − S13 − S31) (9-62a)

Sdd11 is a measure of the differential energy reflected, or returned to the source.
Similarly, the differential insertion loss is calculated where bd2 = b2 − b4 and
ad1 = a1 − a3 = v − (−v) = 2v.

Sdd21 = bd2

ad1

∣∣∣∣
a2=a4=0

= 1
2 (S21 + S43 − S23 − S41) (9-62b)
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Sdd21 is a measure of the differential energy transmitted across the network from
port 1 to port 2.

Identical analysis can be used to calculate the common-mode S-parameters,
where the energy is being transmitted in the even mode, by driving the four-port
network with +v on port 1 and +v on port 3 when ports 2 and 4 are not being
driven. This allows (9-60) to be simplified where bc1 = b1 + b3, bc2 = b2 + b4,
and ac1 = a1 + a3 = v + v = 2v.


b1

b2

b3

b4


 =




S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44







v

0
v

0


 (9-63)

The common-mode S-parameters are easily obtained algebraically from (9-63):

Scc11 = bc1

ac1

∣∣∣∣
a2=a4=0

= 1
2 (S11 + S33 + S13 + S31) (9-64a)

Scc21 = bc2

ac1

∣∣∣∣
a2=a4=0

= 1
2 (S21 + S23 + S41 + S43) (9-64b)

Equations (9-64a) and (9-64b) describe how much energy is being reflected and
transmitted when the four-port system is being driven with a common-mode
source (i.e., the system is being driven in the even mode).

As described in Chapter 4, for a system with two signal conductors, the volt-
ages at the ports are combinations of odd and even modes. Consequently, for a
perfectly symmetric system (where each leg of the differential pair is electrically
identical), if the system is driven differentially, all the energy will be contained
within the odd mode. However, if the pair exhibits any asymmetry, a portion of
the energy will be flowing in the even mode. The multimode matrix also accounts
for the differential-to-common mode conversion , which describes the amount of
energy being transformed into the even mode when the system is being driven
differentially and the common mode-to-differential conversion, which tells how
much energy is being converted to the odd mode when driven commonly. Since
most high-speed buses are driven differentially, the differential-to-common mode
conversion is the most important parameter of the two.

The differential-to-common mode S-parameters , where the energy is being
transmitted in the odd mode and received in the even mode, are calculated by
driving the four-port network differentially at the driver and sensing in common
mode at the receiver. The differential-to-common mode coefficients are bc1 =
b1 + b3, bc2 = b2 + b4, and ad1 = a1 − a3 = v − (−v) = 2v.


b1

b2

b3

b4


 =




S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44







v

0
−v

0


 (9-65)
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Scd11 = bc1

ad1

∣∣∣∣
a2=a4=0

= 1
2 (S11 − S13 + S31 − S33) (9-66a)

Scd21 = bc2

ad1

∣∣∣∣
a2=a4=0

= 1
2 (S21 − S23 + S41 − S43) (9-66b)

The common mode-to-differential S-parameters , where the energy is being trans-
mitted in the even mode and received in the odd mode, are calculated by driving
the four-port network in the common mode and sensing differentially at the
receiver. The derivation is left to the reader.

The multimode S-parameters for a four-port system can be combined to create
the multimode matrix


bd1

bd2

bc1

bc2


 =




Sdd11 Sdd12 Sdc11 Sdc12

Sdd21 Sdd22 Sdc21 Sdc22

Scd11 Scd12 Scc11 Scc12

Scd21 Scd22 Scc21 Scc22







ad1

ad2

ac1

ac2


 (9-67a)

Note that each quadrant of the multimode matrix represents unique parameters.
For example, the upper left quadrant is the differential S-parameter matrix,

[
bd1

bd2

]
=

[
Sdd11 Sdd12

Sdd21 Sdd22

] [
ad1

ad2

]

= [Sdd ]

[
ad1

ad2

] (9-67b)

which assumes that all the energy is sourced and sensed in a differential manner.
Consequently, the multimode matrix takes the form




bd1

bd2

bc1

bc2


 =

[
[Sdd] [Sdc]
[Scd] [Scc]

]


ad1

ad2

ac1

ac2


 (9-67c)

where each matrix describes a specific driving and receiving configuration:

Sdd : Driver and receiver are differential.
Scc: Driver and receiver are common mode.
Sdc: Driver is common mode and receiver is differential.
Scd : Driver is differential mode and receiver is common mode.

The format of (9-67c) allows the four-port S-parameters to be reduced to an
equivalent simple two-port system for specific circumstances. For example, in
high-speed differential buses, each pair is driven and received assuming that all
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Figure 9-38 Unbalanced differential pairs cause energy to be converted from the odd
mode to the even mode, which looks like additional differential insertion loss.

energy is in the odd mode, which means that for all practical purposes, equation
(9-67b) is sufficient for design purposes.

Invariably, a question is asked: If there is significant energy in the even mode,
doesn’t the common mode matrix need to be accounted for? The answer is that
it is already included in the differential matrix of (9-67b). If an asymmetrical
four-port system is driven differentially, the energy that is converted to common
mode will simply look like differential insertion loss. For example, consider the
loss-free unbalanced differential transmission line pair being driven in the odd
mode in Figure 9-38. Since the system is being driven differentially (in the odd
mode), and the odd-mode impedance is equal to the termination, there will be no
reflections. However, since it is unbalanced, it is expected that a portion of the
energy will be transferred to the even mode. From a differential receiver’s point
of view, this will look like extra channel loss.

To demonstrate this concept, consider the case where the difference in length
between the legs of the differential pair (�l) is 200 mils with a delay of 27.77 ps
(refer to Figure 9-38). If the initial phase difference between v+ and v− at the
driver is of 180◦, when the signals arrive at the receiver, the phase difference
will no longer be equal to 180◦, due to the extra length on the second leg. The
actual phase difference at the receiver can be calculated using equation (9-22)
as a function of frequency. For example, at 1 GHz the phase difference at the
receiver will be

180◦ + θ = 180◦ + (360◦
)(27.77 × 10−12)(1 × 109) = 190◦

meaning that since the signals are no longer exactly 180◦ out of phase, and some
of the energy is being dumped into the even mode.

As the frequency increases, the phase difference due to the extra delay will
approach 180◦. When θ = 180◦, the differential signal at the driver has been
fully transformed into a common-mode signal at the receiver. When the delay
difference between the legs of the differential pair is 27.77 ps, the frequency
where the signal is 100% common mode at the receiver is 18 GHz:

θ = (360◦
)(27.777 × 10−12)(f180) = 180◦

⇒ f180 = 18 × 109
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Figure 9-39 As the frequency increases, small asymmetries in a differential pair will
cause larger phase differences between signals propagating on each leg, causing energy
to be converted from odd to even mode. This shows up as differential insertion loss. In
this case the differential signal is 100% converted to common mode at 18 GHz.

So at 18 GHz, the phase difference at the receiver will be

180◦ + θ = 180◦ + (360◦
)(27.77 × 10−12)(18 × 109) = 360◦

Therefore, at 18 GHz the differential insertion loss is zero because there is no
longer any differential energy being transmitted to the receiver because all the
energy has been converted to the common mode.

Figure 9-39 shows the S-parameters for the loss-free perfectly terminated
asymmetrical transmission line with a interleg delay difference of 27.77 ps. Note
that the differential energy transferred from port 1 to port 2 (Sdd21) decreases
until 18 GHz, after which it begins to increase again. At 1 GHz (where θ =
190◦), Scd21 = 0.1, which means that 10% of the differential energy is lost to the
common mode. At 18 GHz, Scd21 = 1.0, so 100% of the energy is lost to the
common mode. It is easy to see that the decrease in Sdd21 corresponds with the
increase in Scd21.

Do not falsely conclude that differential signals can be transmitted properly
at frequencies above f180 (18 GHz in this example). Although Sdd21 increases,
the phase difference between signals on each leg approaches 540◦ (3 · 180◦), not
the ideal value of 180◦. For a digital signal, this means that the bit on line 1 is
180◦ out of phase with the next bit in the digital pulse train on line 2. Therefore,
even though the common-mode conversion is small, the data are invalid.

When loss is included in the transmission line, the Scd21 curve will peak at a
lower frequency that does not correspond to the point where the differential-to-
common mode conversion is 100%, as shown in Figure 9-40. Be careful not
to misinterpret the differential S-parameter data. The mode conversion is 100%
when Sdd21 is zero, not necessarily when Scd21 is maximum.
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Figure 9-40 For a loss-free case, the differential-to-common mode conversion curve
will be maximum when the phase difference between legs is 180◦. However, for a lossy
case, the S cd21 curve will peak at a lower frequency, due to losses from the conductors
and dielectrics.

9.3 PROPERTIES OF PHYSICAL -PARAMETERS

S-parameters are a valuable tool in digital design. They can be used to analyze the
performance of a component, extract equivalent-circuit models, or be employed
as a tool-independent portable model. The problem arises that S-parameters are
difficult to generate accurately. For example, proper calibration of a vector net-
work analyzer to high frequencies is both a science and an art. If probe effects are
not removed or test fixtures are deembedded improperly, the S-parameters could
contain significant errors that are difficult to detect. Additionally, when compo-
nent models (i.e., for a connector or CPU socket) are distributed to engineers
in the form of a frequency-dependent S-parameter file, the assumptions of how
the model was constructed are lost, so it is impossible to judge correctness or
applicability. Fortunately, even though it is impossible to judge the accuracy of
S-parameters without comparison to measurements or examination of the under-
lying model, the concepts outlined in Chapter 8 can be used to look for gross
errors that blatantly violate the laws of physics.

9.3.1 Passivity

As defined in Section 8.2.2, a physical system is passive when it is unable to
generate energy. For digital design, S-parameters are used to analyze the physical
components of the bus, such as the transmission lines, sockets, and connectors,
none of which generate energy. Therefore, in digital design, if an S-parameter
measurement or model is shown to be nonpassive, either the VNA was not
calibrated correctly or the underlying assumptions of the modeling methodology
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are wrong. A practical test for the passivity of S-parameters can be developed
directly from equations (8-22) and (8-23)[Ling, 2007].

Since power must be conserved, the power absorbed by the network (Pa) is
equal to the power driven into the network less power flowing out:∑

(|ai |2 − |bi |2) = Pa (8-22)

where Pa ≥ 0 for a passive network. If Pa < 0, the network is generating power
and the system would be considered nonpassive. This allows equation (8-22) to
be written in terms of the power wave matrices that will produce a real value for
the power absorbed by the network. A system is passive if

aHa − bHb ≥ 0 (8-23)

where a is a matrix that contains all the power waves incident to each port, b
contains the power waves coming out of each port, and xH indicates the conjugate
transpose (sometimes called the Hermitian transpose), which is calculated by
taking the transpose of x and then taking the complex conjugate of each entry.

Using the definition of S-parameters from equation (9-18), the passivity
requirement of (8-23) can be rewritten as

b = Sa,bH = SHaH

aHa − SHaHSa ≥ 0 (9-68)

aH(U − SHS)a ≥ 0

where U is the unity (identity) matrix. Equation (9-68) leads to the general
requirement for passivity:

U − SHS ≥ 0 (9-69)

If SHS is greater than 1, the requirement of (8-22) is violated and the system is
not passive.

A quick test to ensure passivity can be derived based on the eigenvalues of
SHS. The eigenvectors ζ and eigenvalues λ are determined from the solution of
the equation

SHSξ = λξ

Techniques for calculating the eigenvectors and eigenvalues are detailed by
O’Neil [1991]; however, there are many software packages that can be used,
such as Mathematica or Matlab.

The eigenvectors can be formed into an N × N matrix,

V = [ξ1 ξ2 · · · ξN ] =




ζ11 ζ21 · · · ζN1

ζ12 ζ22 · · · ζN2
... · · · . . .

ζ1N
ζ2N

· · · ζNN
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with the property that VVT = U. The matrix SHS can be diagonalized into its
eigenvalues with

SHS = VλVT = V




λ1 0 · · · 0
0 λ2 · · · 0
... · · · . . .

...

0 0 · · · λN


VT (9-70)

The definitions above allow (9-68) to be rewritten in terms of the eigenvalues:

aH(VVT − VλVT)a ≥ 0

aHV(U − λ)aVT ≥ 0 (9-71)

Equation (9-71) leads to a simple test for passivity [Ling, 2007]. Since U − λ

must be greater or equal to zero and nonnegative, the system is passive if all the
eigenvalues are between 0 and 1. The test for passivity is shown as

0 ≤ λi ≤ 1 (9-72)

Some tools employ the strategy of applying correction algorithms for the nonpas-
sive cases. Generally, the use of a passivity-corrected model or measurement is
an unwise strategy because nonpassivity indicates an incorrect model or calibra-
tion. The best strategy is to reevaluate the method for equating the S-parameters
and fix the problem.

9.3.2 Reality

Time-domain signals that are used to analyze digital interconnect are real. In
other words, there is no imaginary part of a time-domain signal that can exist
in nature. As mentioned in Section 8.2.1, the mathematical requirement for a
frequency-domain response to ensure a real time-domain waveform is

Sij (−ω) = Sij (ω)∗ (9-73)

where∗ indicates the complex conjugate and j and i represent the driving and
receiving ports of the S-parameters. Most S-parameter data are presented only
with positive frequency-domain data, and the tools construct the negative fre-
quency portion from (9-73). However, if the negative frequency values of the
S-parameters are available, (9-73) is a useful check.

9.3.3 Causality

As covered in Section 8.2.1, one seemingly obvious requirement of a model
or measurement is that its output cannot precede its input. In other words, an
effect cannot precede its cause. This fundamental principle is called causality .
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Very often, VNA calibration problems or incorrect model assumptions generate
S-parameters that are not causal. This error becomes especially critical when
S-parameters are used to represent the behavior of physical channel components
when simulating system performance. Causality errors will introduce delay and
amplitude errors in the time-domain responses, as well as distort waveforms to
such a degree that signal integrity may be falsely predicted, which can lead to
false solution spaces, incorrect equalization settings, and incorrect understanding
of bus performance. Many commercially available tools create models that are
noncausal simply because of the assumptions of a frequency-invariant dielectric
model where εr and tan δ are not properly related. Figure 8.14 is a good example
of how a noncausal model can distort the waveform of a single bit. The errors
depicted in Figure 8.14 will be amplified for very long channel lengths and high
frequencies. Many of the digital designs created in the past were designed using
noncausal models that assume frequency-invariant dielectric parameters. At low
data rates (below about 1 to 2 Gbit/s) and short lengths (a few inches), causality
errors do not appreciable affect signal integrity. However, at high frequencies
and/or long lengths, they can completely destroy the model’s ability to predict
realistic behavior.

Causality requirements are often difficult to judge by looking directly at
S-parameters because the phase errors are small compared to the propagation
delay of the structure. Furthermore, even if the causality errors of a single com-
ponent such as a connector or via are small in isolation, when numerous models
are cascaded in a complete channel simulation the errors become cumulative.
Consequently, it is important to check the causality of each component as well
as the system response for the entire channel.

As described fully in Section 8.2.1 and demonstrated in Examples 8-3 and
8-4, causality can be tested by performing the Hilbert transform of the real part
and ensuring that it is identical to the imaginary part . If it is not identical, the
model is not causal. However, care should to be taken when performing this test
because for bandlimited data, the Hilbert transform can exhibit truncation errors.

Equation (8-19) is adapted to calculate the Hilbert transform of the real part
of the S-parameter data,

ŜRe,ij (f ) = Re[Sij (f )] ∗ 1

πf
(9-74)

where ŜRe,ij (f ) denotes the Hilbert transform of the real portion of the
S-parameter, Sij (f ) is an S-parameter where port j is driving and port i is
receiving, and ∗ denotes convolution. The S-parameter is causal when (9-75) is
satisfied:

ŜRe,ij (f ) = Im[Sij (f )] (9-75)

To implement (9-74), it is often necessary to reconstruct the negative frequency
components of the response using

S(−f ) = S(f )∗ (9-36b)
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Figure 9-41 Classic impulse response behavior of a severely noncausal S -parameter.
Note the precursor error, where part of the energy is arriving too early.

The most straightforward way to calculate the Hilbert transform is to use the
Fourier transform (usually in the form of the fast Fourier transform), as demon-
strated in Examples 8-3 and 8-4.

ŜRe,ij (f ) = F−1
[
F(Re[SRe,ij (f )])F

(
1

πf

)]
(9-76)

If the fast Fourier transform is used, the negative frequency values must be
appended to the end of the positive values, as demonstrated in Example 9-7.
A less rigorous way to evaluate the causality is to transform the S-parameters
into an impulse response, as described in 9.2.2. If there is no distinct point at
which the pulse arrives, it is an indication of a noncausal response, as shown in
Figure 9-41.

9.3.4 Subjective Examination of S-Parameters

Often, it is desirable to recognize the trustworthiness of S-parameter data without
the rigor of the mathematical analysis above. Understanding the basic properties
of S-parameter data will allow an intuitive analysis. For example, a gross passivity
violation can often be seen by observing the magnitude of the insertion loss.
Figure 9-42 shows an example of measured insertion loss for a transmission line.
Note that the scale often used with VNA measurements is, in decibels,

dB = 20 log(mag) (9-77)

where mag is the magnitude of the complex S-parameter value. Notice how
S21 in Figure 9-42 rises above zero at the lower frequencies, indicating that
the transmission line has gain and is therefore producing energy and nonpassive
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Figure 9-42 Bad S -parameter measurement of a transmission line, showing passivity
violations due to incorrect VNA calibration.
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Figure 9-43 Bad S -parameter measurement of a transmission line, showing passivity
violations at high frequencies where the VNA calibration breaks down.

(0 dB is equal to an insertion loss of 1 on a linear scale). In this case, the
passivity violation was a result and an incorrect calibration of the vector network
analyzer. Another example of a severe passivity violation is shown in Figure 9-43,
where the calibration breaks down after about 17 GHz. Even below 17 GHz this
measurement looks questionable, due to the significant amount of nonperiodic
ripples on the waveform. Periodic ripples would probably be a result of reflections
or crosstalk, but nonperiodic noise on S21 indicates an inaccurate measurement.

Figure 9-44 shows an example of a good measurement of a 5-in. microstrip
transmission line on a FR4 substrate. Note that the insertion loss does not rise
above 0 dB and that it does not contain any nonperiodic noise. It should be noted
that the S-parameters could still be nonpassive even if S21 does not rise above
0 dB. Passivity can only be verified using the techniques outlined in Section 9.3.1;
however, simple observation of S21 is often sufficient to catch gross errors.

The periodic behavior of S11 can also be used to get an intuitive feeling
about the validity of the S-parameters by ensuring reasonable phase delays. If
the structure under test is a transmission line, the return loss (S11) should be
periodic and the distance between peaks (or dips) is related to the time delay
with equation (9-4). The propagation delay can be double-checked at various
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frequencies. From Figure 9-44 the propagation delays are calculated:

τd1 = 1

2�f1
= 1

2(0.67 × 109)
= 746 × 10−12 s

⇒ τd1

5 in.
= 149 ps/in.
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Figure 9-44 Good S -parameter measurement with no obvious problems.
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Figure 9-45 Good S -parameter measurement with no obvious problems, showing the
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Since the delay of a typical microstrip line on FR4 is about 140 to 160 ps/in.,
the result seems reasonable.

At higher frequencies, the same test can be applied. From Figure 9-44, �f2 =
0.7 GHz.

τd2 = 1

2�f2
= 1

2(0.7 × 109)
= 714 × 10−12 s

⇒ τd1

5 in.
= 142 ps/in.

Note that the delay is less that it was at the lower-frequency test. This confirms
the validity of the measurement because the dielectric constant, and therefore the
propagation delay, should decrease with frequency, as described in Chapter 6.

Finally, the relationships between the real and imaginary parts of S21 can
be examined. Figure 9-45 shows the real and imaginary parts of the insertion
loss for the 5-in. transmission line measured in Figure 9-44. As discussed in
Section 9.1.1, when the real part peaks, the imaginary part should be zero.
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PROBLEMS

9-1 Consider the measured S-parameters of a transmission line shown in
Figure 9-46. What is the propagation delay of the transmission line? What
is the characteristic impedance of the transmission line assuming that the
port impedances are 50 �? Is the measurement valid? How can you tell?

9-2 Consider the S-parameters shown in Figure 9-47 of a transmission line.
Are these S-parameters valid? How can you tell?

9-3 Consider the measured S-parameters of a transmission line shown in
Figure 9-48. Are these S-parameters valid? How can you tell?

9-4 Derive the conversion from T -parameters back into S-parameters for two
ports.

9-5 Derive the formulas to extract R, L, C, and G from a transmission line
with arbitrary impedance. Prove that the method is accurate by extracting
the frequency-dependent R, L, C, and G from a simulated transmission
line.

9-6 Calculate the common-mode matrix and the common mode-to-differential
conversion matrix of a four-port S-matrix.
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Figure 9-46 Figure for Problem 9-1.
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Figure 9-47 Figure for Problem 9-2.

9-7 If a differential pair has 10% of its energy transformed into the common
mode when driven differentially, is 10% of its energy transformed into
the differential mode when driven commonly? Show the math to support
your answer.

9-8 Derive the ABCD matrix for the pi circuit shown in the bottom of
Table 9-2.

9-9 For the differential pair in Figure 9-49, at what frequency will the ACCM
be 100%? Assume that the effective permittivities are εr,odd = 3.5 and
εr = 4.0.
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Figure 9-49 Figure for Problem 9-9.

9-10 Derive the equations to renormalize the S-matrix measured with 50-�
loads at each port to arbitrary and different reference impedances at each
port.

9-11 Derive the two-port S-parameters for a frequency-dependent, causal 10-in.
transmission line from 10 Hz to 100 GHz. Using a tool such as Mathe-
matica or Matlab, plot the S-parameters and prove that they are passive
and causal.

9-12 From the S-parameters calculated from the transmission line in Problem
9-11, calculate the pulse (single-bit) response for a 15-Gbit/s data rate.

9-13 Create the S-matrices for 4- and 10-in. transmission lines using the method
derived in Problem 9-11. Cascade the S-parameters to get the equivalent
S-matrix for a 14-in. transmission line. Compare the cascaded S-matrix
to that of a single 14-in. transmission line.
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So far, we have covered numerous topics that are required for the design of
modern high-speed digital systems. There are a few important topics, however,
that do not fit nicely into the flow of the other chapters. This section covers a few
critical aspects of digital design that are important to understand. First, a method-
ology for creating frequency-dependent tabular transmission-line models is pre-
sented. The tabular format is a convenient way to model the frequency-dependent
nature of the conductor and dielectrics described in Chapters 5 and 6. Next, the
problem of nonideal current return paths is explored so that the engineer will
understand how they affect signal integrity. Finally, the signal integrity impact
of transitioning between layers using plated-through-hole vias is discussed.

Advanced Signal Integrity for High-Speed Digital Design, By Stephen H. Hall and Howard L. Heck
Copyright  2009 John Wiley & Sons, Inc.
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10.1 CREATING A PHYSICAL TRANSMISSION-LINE MODEL

Digital design is typically performed using circuit simulators. Fortunately, most
commercially available tools have transmission-line models that can be inte-
grated with the digital circuitry to perform system-level bus simulations. Problems
arise, however, when the assumptions built into the models break down or
are simply not known by the engineer. For example, many simulators employ
transmission-line models with frequency-invariant dielectric permittivity and loss
tangents. Although these models are perfectly adequate for very short bus lengths
or data rates below about 1 Gbit/s the incorrect relationship between εr and
tan δ induces causality errors (such as the model in Example 8-4) that can
render the simulations almost useless. Additionally, few commercial simulators
account properly for such things as surface roughness or internal inductance.
Consequently, it is usually desirable for the digital designer to create custom
transmission-line models that use the methodologies presented in Chapters 3
through 6 to ensure accurate results.

10.1.1 Tabular Approach

A convenient method of implementing user-defined transmission-line models
is to use a tabular approach, which is simply a lookup table that defines the
transmission-line equivalent-circuit parameters at each frequency. Fortunately,
user-definable tabular models are available in many commercial simulators. A
tabular methodology allows calculation of the system transfer function in the
frequency domain. An inverse Fourier transform can then be used to get a
time-domain impulse response, which can be convolved with an arbitrary input
waveform to evaluate signal integrity.

A practical and efficient approach to incorporate surface roughness, internal
inductance, and wideband frequency-dependent dielectric properties into printed
circuit board (PCB) transmission-line models is defined here as a two-step proce-
dure. In the first step, quasistatic RLGC matrices in the transmission line model
are generated at a single reference frequency (ωref), using a 2D transmission-line
calculator or analytically with the methods outlined in Chapters 3 through 6. In
this step it is important that the value of εr and tan δ be known at the reference
frequency. This model will reflect the single-valued frequency response of the
transmission-line geometry and configuration but will not yet account for the
frequency dependence of surface roughness losses, internal inductance, and
dielectric properties. The matrices calculated during this step will be known
as the reference values R(ωref), L(ωref), C(ωref), and G(ωref). In the second
step, the reference values are modified to account for frequency-dependent
material properties, internal inductance, and surface roughness [Liang et al.,
2006].
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10.1.2 Generating a Tabular Dielectric Model

The real portion of the dielectric permittivity, as calculated with

ε′(ω) ≈ ε′
∞ + �ε′

m2 − m1

ln(ω2/ω)

ln(10)
(6-30a)

is used to determine the frequency-dependent capacitance C(ω) by dividing
C(ωref) by the value of the dielectric permittivity calculated at the reference fre-
quency ε′(ωref) and multiplying by the frequency-dependent value using equation
(10-1), where boldfold type indicates a matrix for the multiconductor case:

C(ω) = C(ωref)
ε′(ω)

ε′(ωref)

→ C(ω) = C(ωref)ε
′(ω)ε′−1(ωref) (10-1)

To implement equation (10-1), the effective dielectric permittivity must be cal-
culated from the reference values. As detailed in equation (3-74), the effective
permittivity can be calculated by dividing the capacitance of each value in C
by the corresponding value in Cair, which is calculated by setting the dielectric
permittivity to unity (εr = 1).

Cεr,eff

Cεr=1
= εr,eff (3-74)

As described in Chapter 3, the values in Cair can be calculated directly from
the inductance using equation (3-46), assuming that the magnetic permeability is
unity (µr = 1), which is almost always the case because copper is usually the
metal of choice.

L = 1

c2Cεr=1
(3-46)

Equations (3-74) and (3-46) lead to equation (10-2), which is the value of the
dielectric permittivity at the reference frequency:

ε′(ωref) = C(ωref)C
−1
air = c2[C(ωref)L(ωref)] (10-2)

The frequency-dependent loss tangent is calculated as

ε′′(ω) ≈ �ε′

m2 − m1

−π/2

ln(10)
(6-30b)
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tan |δ| = ε′′

ε′ (6-16b)

The definition of G(ω) in shown in equation (6-45):

G(ω) = tan δ ωC (6-45)

The reference value of the loss tangent is calculated by rearranging equation
(6-45):

tan δ(ωref) = G(ωref)

C(ωref)ωref

→ tan δ(ωref) = G(ωref)C−1(ωref)

ωref
(10-3)

For a microstrip line, the values extracted would be the effective dielectric
constant and effective loss tangent. This is an easy way to handle with nonho-
mogeneous dielectrics, such as in a microstrip configuration. For a stripline, the
values extracted would be equal to the bulk properties of the material, including
any nonhomogenous structures such as the fiber weave.

Next, G(ωref) is scaled by the frequency-dependent loss tangent and permit-
tivity, leading to (10-4), which is the frequency-dependent conductance of a
transmission line.

G(ω) = G(ωref)
ε′(ω)

ε′(ωref)

tan δ(ω)

tan δ(ωref)

ω

ωref

→ G(ω) = [tan δ−1(ωref) ε′−1
(ωref)]G(ωref)ε

′(ω)tan δ(ω)
ω

ωref
(10-4)

Using this procedure, equations (10-1) and (10-4) can be used to create the
tabular transmission-line parameters that represent a frequency-dependent causal
dielectric model that is valid for the conditions described during the derivation
of the infinite-pole model in Section 6.3.5. However, it should be noted that
a transmission line using any dielectric model can be implemented using this
technique, providing the frequency-dependent behavior of ε′ and ε′′ are known.

10.1.3 Generating a Tabular Conductor Model

When creating a frequency-dependent conductor model for a transmission line,
Chapter 5 will remind the reader of the four effects that must be accounted for
properly:

1. External inductance
2. Internal inductance
3. Dc resistance
4. Ac (skin effect) resistance
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Quasistatic techniques, which are used by most commercial transmission-line
calculators, provide reasonable values of the external inductance. Furthermore,
many tools also provide realistic values of the skin effect and dc resistance as
well as the internal inductance for ideal smooth conductors. Problems arise when
creating models of realistic conductors, which are usually purposely roughened
during the PCB manufacturing process to ensure adhesion of the metal traces
to the dielectric substrate. Fortunately, the shortcomings of frequency-invariant
quasistatic techniques can easily be overcome by using a tabular transmission-line
model.

Similar to the tabular model for the dielectric outlined in Section 10.1.2, the
easiest methodology is to use a conventional 2D transmission-line calculator that
assumes perfectly smooth conductors, and modify the output to establish the
proper frequency-dependent relationships between values R(ω) and L(ω). The
output of the transmission-line calculator will provide the values of the reference
matrices R(ωref) and L(ωref). The reference values for each entry in the matrix
are then scaled according to

R(f ) =

KSR(f )Rs

√
f

fref
when δ < t

Rdc when δ ≥ t

(10-5)

L(f ) =




Lexternal + R(f )

2πf
when δ < t

Lexternal + R(fδ=t )

2πfδ=t

when δ ≥ t

(10-6)

where the frequency-dependent surface roughness correction factor KSR(f ) is
calculated with one of the modeling methods presented in Chapter 5 [i.e., Ham-
merstad equation (5-48), the hemispherical model in equation (5-58), or the Huray
model in equation (5-66)], Rs

√
f is the skin effect resistance assuming perfectly

smooth conductors, t is the conductor thickness, δ is the skin depth, fδ=t is the
frequency where the skin depth equals the thickness of the conductor, and fref is
the reference frequency where the seed values are calculated [Hall et al., 2007].

If the 2D transmission-line calculation does not include the internal inductance,
the value of the reference frequency (fref) is immaterial because all the current
is assumed to reside on the surface of the conductor and the internal inductance
is zero. However, if the calculation includes the internal inductance, as described
in Section 5.2.3, the reference frequency should be high enough that most of the
current is confined to a small layer near the surface, so that the internal inductance
is minimized. This simplifies the problem so that the reference inductance can
be considered to be purely external and the internal portion can simply be added.
Note that even at relatively low frequencies, the skin depth in copper is small
compared to the thickness of the trace. For example, at 1 GHz, the skin depth
is 2 µm, meaning that for a typical PCB trace thickness of about 1 to 2 mils
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(25 to 50 µm), most of the current is confined near the surface and the inductance
is mostly external.

10.2 NONIDEAL RETURN PATHS

So far, we have covered many of the advanced topics associated with high-speed
digital design. Each topic has been rigorously covered analytically, beginning
with fundamental theory and ending with a practical method that can be used for
design. Now it is time to focus on what is often considered the most ambiguous
concept of high-speed design: nonideal return paths. Many of the effects detailed
in this section are very difficult or impossible to model analytically, or even
with circuit simulators. Although 3D electromagnetic simulators are capable of
capturing full effects for small structures, they require too much computational
power to simulate the effects reliably for an entire system. Subsequently, in
this section we will focus less on specific modeling techniques and more on
the general impact, physical mechanisms, and trends that nonideal return current
paths have on signal integrity. As a general rule, great care should be taken to
ensure that nonideal current return paths are minimized.

10.2.1 Path of Least Impedance

As discussed in Chapter 3, a signal on a transmission line propagates between the
signal trace and the reference plane in the form of an electromagnetic wave. Con-
sequently, the physical characteristics of the reference plane are just as important
as that of the signal trace. A very common mistake, even for experienced design-
ers, is to focus on providing a very clean and controlled signal trace with no
thought whatsoever of the reference plane. Remember that any current injected
into a system must return to the source. It will do so through the path of least
impedance. Figure 10-1a depicts a CMOS output buffer driving a microstrip line.
The currents shown represent the instantaneous values that occur when the driver
switches from a low state to a high state. Just prior to the transition (time t = 0−)
the line is grounded through the NMOS. Immediately after the transaction (time
t = 0+) the buffer switches to a high state and current flows onto the line until
it is charged up to VDD. As the current propagates down the line, a mirror cur-
rent is induced on the reference plane, which flows in the opposite direction as
described in Section 3.2.3 and shown in Figure 3-8. To complete the loop, the
current must find the path of least impedance, which in the case of Figure 10-1a
is the voltage supply VDD .

A nonideal return path occurs when (1) a discontinuity in the reference plane
causes return current to diverge from the ideal path, or (2) the return current
must flow through a region of increased impedance, such as bond wires, antipads
in breakout areas, or socket pins. A few examples are shown in Figure 10-1b.
When a physical discontinuity exists in the return path that forces the current to
diverge from the ideal path, the total area of the current loop is increased. An
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Figure 10-1 (a) Example of an ideal return current path of a ground-referenced trans-
mission line driven by a CMOS buffer; (b) examples of common nonideal return paths.

increase in the loop area leads to an increase in inductance, which degrades the
signal integrity. Subsequently, the most fundamental effect of a discontinuity in
the return path is an effective increase in the series inductance with a magnitude
that depends on the distance the current must diverge. When a high-impedance
region such as a bond wire or inductive socket pin occurs in the return current
path, it is similar to having the discontinuity in the signal path.

10.2.2 Transmission Line Routed over a Gap in the Reference Plane

To demonstrate the effect of a nonideal return current path, refer to Figure 10-2,
which depicts a microstrip line traversing a gap in the reference plane. This is a
convenient return path discontinuity to analyze because it is a simple structure,
the return current path is well understood, and it has similar trends in the more
complicated structures. As the signal current travels down the transmission line,
the return current is induced on the reference plane. When the signal reaches the
gap, a small portion of the return current propagates across the gap through the
gap capacitance, and the other portion is forced to travel around the gap. The extra
path length of the return current causes the total current loop area to increase,
which increases the inductance. This means that from the driver’s point of view,
the gap looks inductive. To demonstrate this, consider Figure 10-3, which is a
TDR measurement of a 65-� microstrip transmission line traversing a 25-mil
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Figure 10-2 Driving and return currents when a signal passes over a gap in the ground
plane.
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Figure 10-3 Measured TDR profile of a microstrip traversing a gap in the reference
plane, showing the inductive nature of the nonideal return path.

gap in the reference plane. Notice how the gap appears inductive in the TDR
profile.

The receiver waveform will be filtered by the low-pass nature of an induc-
tor, and a portion of the signal will be delayed due to the finite time it takes
the return current to propagate around the gap. A simulation of how a nonideal
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Figure 10-4 Simulated step response of the waveform at the receiver of a microstrip
traversing a gap in the reference plane, showing how different return path divergent lengths
D affect the waveform received.

return path can affect the receiving waveform is shown in Figure 10-4 using a
loss-free transmission line. If the distance of the current return path (2D) is small
compared to the edge rate, the gap will simply look like a series inductance in
the middle of the transmission line. The extra inductance will filter out some of
the high-frequency components of the signal, degrade the edge rate, and round the
corners. When the electrical length of the return path, becomes longer than
the rise or fall times, however, a ledge will appear in the waveform. The length
of the ledge (in time) will be dependent on the distance the return current must
travel around the discontinuity [Hall et al., 2000].

Since the width of the gap will govern the bridging capacitance and thus
the portion of current shunted across the gap, the height of the ledge will be
dependent on the gap width, as shown in Figure 10-5. The larger the gap width,
the less the capacitive coupling and the lower the height of the ledge.

Equivalent Circuit An equivalent circuit of a transmission line traversing
a slot in the reference plane can be surmised by careful observation of the
behavior described earlier. First, consider the measured TDR response shown in
Figure 10-3. At the point where the transmission line crosses the slot, the TDR
shows a voltage spike that represents the high-impedance, or inductive, section
of the interconnect. As described earlier, the voltage spike is a function of the
distance that the return current must diverge. Figure 10-6 shows how the return
current flows parallel to the slot until it reaches a low-impedance pathway,
where it can complete the loop (such as a short or a bridging capacitor). When
current flows on one side of the slot, it induces a mirror current on the opposite
side, an electric field is established, and a transmission line is formed. This type
of transmission line, called a slotline, is shown in Figure 3-2. Therefore, the
equivalent circuit must contain a transmission line to represent the microstrip, a
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Figure 10-6 The current that diverges around the slot causes energy to propagate, allow-
ing the slot to be modeled as a transmission line.

transmission line to represent the slot, and a coupling mechanism to model the
energy transferred from the microstip to the slotline.

Since a transmission-line analogy can be used to represent the slot instead
of discrete L and C, the voltage spike seen in the TDR and ledge height at
the receiver can be calculated by determining how much of the total current
diverges around gap using a simple current divider. Consider the transmission
line traversing a slot shown in Figure 10-6, where the driving transmission line
is perfectly terminated in its characteristic impedance to simplify the analyses.
The current flowing around the gap is dependent on the slotline impedance and
is calculated with a current divider as in

igap = idrive
2Z0

2Z0 + 1
2Zgap

(10-7)
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where Z0 is the impedance of the transmission line, Zgap the impedance of the
slotline, and idrive the current launched onto the transmission line:

idrive = vi

Z0
= v[Z0/(Z0 + Rs)]

Z0

On both sides of the slot the desired current path exists that is perfectly termi-
nated. The current that does not jump the slot will flow around it, which represents
the alternative return path. Since the transmission line is routed over the center
section of the slot, current will flow in both directions, and the effective gap
impedance will be Zgap/2.

The voltage spike seen in the TDR waveform is calculated using the portion
of the current that jumped the gap:

vspike = (idrive − igap)Z0 (10-8)

The width of the voltage spike is equal to twice the delay of the distance the
current must diverge, which can be calculated from the propagation delay of
the slotline. Although some formulas exist to calculate the impedance and prop-
agation delay of a simple slotline, the stackup geometry of real boards varies
significantly, so an electromagnetic simulator should be used.

The ledge at the receiver is dependent on the current flowing in the gap. The
ledge will stay constant for a duration that equals twice the delay of the current
return path divergence:

vledge = igapZ0 (10-9)

An equivalent circuit that mimics the behavior described above can be constructed
as shown in Figure 10-7. The top circuit line represents the sourcing transmission
line that crosses a gap. The voltage-controlled voltage source (VCVS) represents
the physical location where the transmission line crosses the slot. The bottom
circuit is a transmission line that represents the slot and the current-controlled
current source (CCCS) is placed at the physical location on the slot where the
transmission line crosses. The current in the VCVS is mirrored into the CCCS
on the slotline, which represents the current diverging around the gap. In turn,
the current sourced into the gap produces a voltage, which is mirrored back into
the VCVS and accurately predicts both the inductive voltage spike seen at the
driver and the ledge seen at the receiver.

Although this simulation method is quite simple, it works very well and can be
used to predict the signal integrity of one or more lines crossing a slot in a refer-
ence plane. An example of the model accuracy compared to a TDR measurement
is shown in Figure 10-8.

Example 10-1 Calculate the step response of a 50-� microstrip transmission
line traversing from a ground plane to a VDD island as shown in Figure 10-9.
Assume that the gap acts like a slotline with an impedance of 90 �. Since it is
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Figure 10-7 Equivalent circuit of a transmission line routed over a slot in the reference
plane.
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Figure 10-8 Comparison of a slot model compared to a measured response on a test
board.

generally not a good idea to short VDD to ground, 1-nF decoupling capacitors
are used to create a high-frequency low-impedance path for the return current.

SOLUTION

Step 1: Estimate the electrical delays of the microstrip and the slotline assum-
ing a board dielectric permittivity of 4. Since both the slotline and the microstrip
will have part of the electric fields in the air and part in the dielectric, we esti-
mate that the effective relative dielectric permittivity for both is εeff = 3.15. This
value can be calculated rigorously using the techniques outlined in Chapter 3,
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Figure 10-9 Transmission line routed onto a floating power island—a common
occurrence.

or an electromagnetic simulator can be used. However, for the purposes of this
example, the estimation is adequate. The propagation delay is therefore calculated
for both the microstrip and slotline:

td =
√

εeff

c
=

√
3.15

3 × 108 m/s
⇒ 150 × 10−12 s/in.

Step 2: Create the equivalent circuit. Using the propagation delay, the electrical
length of each segment is calculated. The total length of the slot is the segment
between the decoupling capacitors. Since the capacitors are large, they will look
like a short for high-frequency return current. In the equivalent circuit, they are
placed at the end of the slot. The equivalent circuit is shown in Figure 10-10.

Step 3: Simulate the circuit model. The step response is shown in Figure 10-11.
The TDR is the waveform seen at the driver and the TDT is the waveform seen
at the termination resistor at the far end of the line (as labeled in Figure 10-10).
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Figure 10-10 Equivalent circuit of the structure shown in Figure 10-9.
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Figure 10-11 Simulated waveform of a transmission line routed onto a floating power
island.

The width of the voltage spike and the ledge should be twice the return-path
divergence length, which is 2 · 150 ps = 300 ps. The values of the initial voltage
step in the TDR and the ledge in the TDT can be calculated to double-check the
simulation using equations (10-7) through (10-9):

idrive = vi

Z0
= v[Z0/(Z0 + Rs)]

Z0
= 0.5[50/(50 + 50)]

50
= 5×10−3 A

igap = idrive
2Z0

2Z0 + 1
2Zgap

= 5 × 10−3
(

100

100 + 45

)
= 3.448 × 10−3 A

The voltage of the spike in the TDR is

vspike = (idrive − igap)Z0 = (5 × 10−3 − 3.448 × 10−3)50

= 77.5 × 10−3 V

and the ledge in the receiver waveform is

vledge = igapZ0 = 3.448 × 10−3 · 50 = 172.4 × 10−3 V

which agrees with the simulated waveform in Figure 10-11.

Nonideal Return Paths and Crosstalk Another consequence of many nonideal
return paths is a dramatic increase in crosstalk. Conventional crosstalk is caused
by mutual inductance and capacitance. For the case of a transmission line
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traversing a split in the reference plane, the coupling mechanism is the slot
itself. A voltage is established between each side of the slot and propagates via
the slotline transmission mechanism from the sourcing line to the victim, where
it couples onto the line with much more efficiency than conventional crosstalk.

Figure 10-12a shows an example of two transmission lines routed over a
slot in the ground plane, and Figure 10-12b shows a measured response of
a test board with a pair of 65-� microstrip transmission lines 1.4 in. apart
traversing a 25-mil gap. Note that the coupling coefficient is approximately
20% (0.05 mV/0.25 mV), which is much higher than what would be expected
between the two microstrips routed over a solid reference plane.

The structure shown in Figure 10-12a can be modeled similar to the way
it was done for the single line crossing a slot, as shown in Figure 10-13. The
top circuit line represents the sourcing transmission line that crosses a gap. The
voltage-controlled voltage source (VCVS) represents the physical location where
the transmission line crosses the slot. The middle circuit is a transmission line
that represents the slot and the current-controlled current sources (CCCSs) are
placed at the physical location on the slot where the transmission lines cross. The
current flowing through the VCVS on the sourcing line is mirrored into the CCCS
on the slotline, which represents the current diverging around the gap. The same
circuit is duplicated for the victim transmission line, which effectively models
the coupling by means of the slotline. Figure 10-14 shows a simulated example
of loss-free slotline coupled crosstalk, where D = 0.462 in. and S = 1.0 in. with
50-� microstrips. Note that the coupled voltage is about 22% of the voltage
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Figure 10-12 (a) Two transmission lines passing over a slot in the reference plane used
to develop an equivalent circuit; (b) measurement of coupled voltage when S = 1.4 in.,
slot width = 25 mils , and 65 -� microstrip transmission lines on FR4.
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launched on the sourcing line (250 mV). If multiple lines are crossing a gap in
the reference plane, a significant amount of noise would be coupled onto the bus,
which can destroy signal integrity.

Differential Differential signaling is much more immune to the harmful effects
of nonideal return paths because the adjacent transmission line provides a rela-
tively low-impedance path for the current to return. From a mathematical point of
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Figure 10-15 TDR of a single-ended and a differential transmission line traversing a gap
in a reference plane, showing that differential routing significantly reduces the negative
impact of a nonideal return path. Note the decreased inductive spike seen in the differential
response.

view, the virtual reference plane that exists between the conductors in a differen-
tial pair can be thought of as the return path, as shown in Figure 7-7 and discussed
in Section 7.3. The increased immunity of a differential signal to a nonideal return
path is demonstrated in Figure 10-15, which shows both a single-ended and a
differential TDR waveform for a signal traversing a 25-mil-wide gap in the ref-
erence plane. Note that the inductive spike is much smaller for the differential
case. The step response seen at the receiver is shown in Figure 10-16, where the
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Figure 10-16 Step response at the receiver of a single-ended and a differential trans-
mission line traversing a gap in the reference plane, showing that differential routing
significantly reduces the negative impact of a nonideal return path.
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differential response shows almost no ill effects. Differential routing will also
reduce significantly the crosstalk seen between pairs because much less current
is forced to flow around the gap.

10.2.3 Summary

Section 10.2.2 we used the example of a transmission line traversing a gap in
the reference plane to demonstrate the general behavior seen with any nonideal
current return path. In summary, the signal integrity of a bus with nonideal return
path(s) will exhibit the following attributes:

1. Appear as an inductive discontinuity in a TDR waveform
2. Slow the edge rate at the receiver
3. Severely distort the waveform at the receiver if the electrical delay of the

current divergence path is longer than the rise and fall times
4. Create unwanted transmission paths that can increase coupling or loss sig-

nificantly

Differential signaling is much more immune to the effects of a nonideal return
path because the adjacent signal (or the virtual reference plane) provides a contin-
uous reference for the fields. Hall et al. [2000] discuss numerous other nonideal
current return paths.

10.3 VIAS

For high data rates, vias can, if not designed, properly degrade the signal integrity
of a binary bit stream significantly. For single-ended signaling, if a suitable return
path via is not placed in close proximity to every signal via, a nonideal return path
is created. For differential signaling, if a ground via placement is not symmetrical
with respect to each leg of the differential pair, asymmetry can be introduced,
resulting in differential energy being converted to common mode (as described
in Section 7.6.1). Finally, stubs associated with plated-through-hole vias can
resonate, causing severe distortion of waveforms. In this section we cover the
largest pitfalls of via design and discuss ways to mitigate the ill effects through
proper design.

10.3.1 Via Resonance†

To begin, consider the cross section of an eight-layer printed circuit board (PCB)
shown in Figure 10-17. The figure shows a signal routed on signal layer 1 transi-
tioning through a plated-through-hole (PTH) via to signal layer 4. The ground via

†The authors would like to thank Guy Barnes of Ansoft Corporation for performing the 3D simula-
tions used in this section. His technical knowledge, modeling expertise, and patience were invaluable.
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Stub 
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i

−i
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Via pad

Figure 10-17 Cross section a a backdrilled PTH via with a stub showing the nonideal
current return path through the ground via.

is included to provide a low-impedance path for the return current. Standard PTH
vias are constructed by drilling a hole in the board and plating the walls with
metal. A consequence of this manufacturing process is a “stub” that hangs off
the via for all cases except when the signal transitions thorough the entire board
(layers 1 to 8 in Figure 10-17). As will be shown later, the via stub has negative
effects on the signal integrity. A common design practice is to shorten the length
of the stub with precision depth backdrilling, as also depicted in Figure 10-17.

If a current i is driven into port 1 in Figure 10-17, it will propagate down
the transmission line on signal layer 1, pass through the via down to signal layer
4, and terminate at port 2. The return current −i will be mirrored on reference
plane 2. Since the nearest return path from port 1 to port 2 is through the ground
via, the return current must diverge away from the ideal path. The magnitude
of the via inductance is therefore a function of the length of the via transition
from signal layer 1 to signal layer 2 and the distance between the signal via and
the ground via. The capacitance of the via will be dependent on the area of the
via pads, the distance between the via pads and the closest reference layer, the
capacitance of the via barrel to the adjacent planes it is passing through, and
the capacitance of the stub. These observations make it possible to deduce two
different forms of an equivalent circuit.

Figure 10-18a shows the equivalent circuit of a via for the case where the
stub length is zero and reference layers 2 and 3 are very far apart. In this sce-
nario, which is almost always the case with standard four-layer PCBs, the via
capacitance is dominated by the pads, so a very simple pi model can be used.
Figure 10-18b shows an equivalent circuit where reference layers 2 and 3 are
close in proximity and a stub may or may not exist. In this case, the barrel and
stub capacitances are no longer negligible and are simply combined with the pad
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(a)

Cpad Cpad

Lbarrel

(b)

LbarrelCvia

Figure 10-18 Equivalent-circuit approximations of vias: (a) thick-core model, where
the capacitance between reference layers is very low and can be ignored; (b) when the
reference planes are close together, as reference layers 2 and 3 in Figure 10-17, the
capacitance between layers can no longer be ignored and the equivalent circuit changes.

capacitance. Regardless of the specific configuration, the inductance and capac-
itance of the via structures forms a tank circuit that will resonate at its natural
frequency:

f0 = 1

2π
√

LbarrelCvia
(10-10)

For long via stubs, the resonant frequency can easily be low enough to influence
significantly the signal integrity of the digital waveforms.

To demonstrate how vias behave at high frequencies, consider Figure 10-19,
which shows the simulated insertion loss of a plated-through-hole via for a struc-
ture similar to Figure 10-17 with different stub lengths. The simulations were
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S
21

, d
B
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Figure 10-19 Via resonance as a function of stub length for the cross section in
Figure 10-17.
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TABLE 10-1. HFSS-Predicted Resonance Compared to Tank
Circuit Approximation

Stub HFSS-Predicted Q3D- Q3D- Tank
Length Resonance Predicted Predicted Resonance
(mils) (GHz) L (nH) C (pF) (GHz)

56.6 12 0.139 0.636 16.9
44.1 15.5 0.141 0.586 17.5
37.8 22 0.141 0.419 20.7

performed using Ansoft’s HFSS 3D electromagnetic simulator with loss-free
dielectrics and perfect conducting metals. The longer stub lengths exhibit more
capacitance and therefore resonate at lower frequencies.

The problem with simple circuit models is that it can be very difficult to cal-
culate the via capacitance and inductance for all but the simplest configurations.
Consequently, it is necessary to extract the parasitic inductance and capacitance
values from measurements or simulate them with a 3D electromagnetic simu-
lator, such as Ansoft’s Q3D. Table 10-1 shows the extracted parasitic values
using Q3D and the tank circuit resonance calculated with equation (10-10) for
the structures simulated in Figure 10-19.

Note that the tank circuit only approximates the actual resonance within a few
gigahertz. The discrepancy between the HFSS and tank circuit results is due to the
electrical delay of the physical geometry of the structure. Although the extracted
inductance and capacitance are true values, a simple tank circuit approximation
does not account for the physical delay of the return current diverging to the
ground via. As the ground via is moved farther away, the inductance will increase.
However, the peaks seen in the S-parameters created from the 3D simulation are
due to both the resonance between the inductance and capacitance and the phase
delay of the return current, so the resonant points will change accordingly.

The approximation of the resonance using a tank circuit approach is extremely
useful and accurate enough for most practical purposes. If a design has via
stubs that are resonating anywhere near the frequency of operations, the primary
concern is to fix the design by decreasing the length of the stubs using layout
rules, microvias, or backdrilling.

10.3.2 Plane Radiation Losses

At the via stub resonance frequency, the stubs act like small antennas and “radi-
ate” energy into the dielectric layers sandwiched between reference planes. For
example, the cross section shown in Figure 10-17 will radiate a significant amount
of power into the dielectric layers confined by the reference planes, where it
will propagate in TEM parallel-plate waveguide mode. The energy transfer into
the parallel-plate mode will be maximum at the resonant frequency. A simu-
lation of the electric and magnetic fields between reference layers 2 and 3 in
Figure 10-17 at the resonant frequency was performed in Ansoft’s HFSS. The
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Z E

H

Figure 10-20 When a via does not have adequate current return paths, energy can radiate
into the layers between reference planes in the TEM parallel-plate waveguide mode. Via
stubs exacerbate this effect.

fields are shown in Figure 10-20. Note how the electric and magnetic fields are
orthogonal to each other (and therefore TEM) and are propagating outward in a
circular pattern. From the signal’s point of view, the energy being sourced into
the plane will look like loss. Additionally, as the energy propagates through the
planes, it will be picked up by other vias similar to antennas, which can increase
crosstalk dramatically. Note that this phenomenon is a direct result of a nonideal
return path and is very similar to the slot example described in Section 10.2.2.
The return current must diverge from the ideal path, so it can flow through
the ground via, increasing the loop area, leading to an increased inductance. In
Section 10.2 it was shown that energy was transferred to the slotline, where it
propagated and coupled to other transmission lines crossing the gap. Similarly, in
this case, the energy is transferred to the parallel-plate mode, where it propagates
and could be picked up by other vias, resulting in increased crosstalk.

Figure 10-21 shows the simulated S-parameters of a signal propagating
through a via with a 37.8-mil stub. Since both the dielectric and the conductors
are loss-free, the percentage of the power radiated into the plane (Pplane) is
calculated by rearranging equation (9-27) to yield
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Figure 10-21 At resonance, a large percentage of the total power can be radiated into
the layers between reference planes. This example shows the S -parameters and the power
radiated into the plane for a 37.8-mil via stub, as shown in Figure 10-17.

1 − S11S
∗
11 − S21S

∗
21 = Ploss

Pincident
(10-11a)

where

Pplane = Ploss

Pincident
(10-11b)

Note that as the frequency nears resonance, the energy transfer into the plane is
most efficient.

Figure 10-22 shows an equivalent circuit and its response. The resistor repre-
sents the losses due to energy being sourced into the parallel-plate mode between
reference layers 2 and 3. The L and C values were extracted from Ansoft Q3D,
and the resistor value was varied until the value of S21 matched the HFSS result.
Note that this circuit is only a crude approximation of the via behavior. The only
methodology that can model this effect accurately is to use a 3D field simulator
such as Ansoft’s HFSS.

10.3.3 Parallel-Plate Waveguide

To promote the understanding of how the energy propagates between reference
layers after it has been sourced from a resonant via structure, it is useful to
derive the equations that govern the parallel-plate waveguide. A parallel-plate
waveguide is formed from two flat plates, as shown in Figure 10-23. For this
analysis it is assumed that the width w is much larger than the vertical separation
between the plates h, so that any fringing fields at the edges can be ignored. Since
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Figure 10-22 A simple equivalent circuit can crudely approximate the effect of the via
resonance using the extracted L and C . More accurate models require a 3D electromagnetic
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Figure 10-23 Dimension used to derive the electric and magnetic fields of a parallel-
plate waveguide.

the propagation mode discussed in Section 10.3.2 is TEM, that mode is the focus
of this derivation.

As was done in Section 3.4.3 for the microstrip transmission line, we begin
with Laplace’s equation:

∇2� = ∂2�

∂x2
+ ∂2�

∂y2
= 0 (3-48)

The boundary conditions for this problem are given by

�(x = 0, y) = 0 (10-12a)

�(x = h, y) = vs (10-12b)
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Since it is assumed that w 
 h, the variation in the y-direction is assumed
constant. Therefore, the variation with y drops out of (3-48), and the general
solution is given by

�(x, y) = C1 + C2x (10-13)

The electric field is calculated using the electrostatic potential shown as discussed
in Section 2.4.1.

�E = −∇�(x, y) = −�ax

vs

h
(10-14)

Therefore, the electric field propagating in the z-direction is

�E(x, y, z) = �axEe−jβz = −�ax

vs

h
e−jβz (10-15)

where the propagation constant is as defined in Section 2.3.4:

β = 2πf
√

µε = ω
√

µε rad/m (10-16)

The magnetic field is calculated by dividing (10-15) by the intrinsic impedance
of the waveguide as described in Section 2.3.4.

η ≡
√

µ

ε
(10-17)

�H(x, y, z) = �ay

1

η

vs

h
e−jβz (10-18)

The propagation velocity is calculated from

νp = 1√
µrµ0εrε0

= c√
µrεr

m/s (2-52)

where µr is almost always unity for practical digital designs.
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PROBLEMS

10-1 For a transmission line in a bus specified to operate at 10 Gb/s with 50-ps
rise and fall times, how high in frequency should the tabular model be
constructed?

10-2 Derive an analytical formula to approximate the inductance and capac-
itance of a via. (Hint: Use the transmission-line techniques detained in
Chapter 3.)

10-3 Derive the S-parameters directly from a tabular RLCG model. (Hint:
Remember the telegrapher’s equations?)

10-4 Derive the characteristic impedance for a parallel-plate waveguide with a
width of w.

10-5 Create a model to estimate the crosstalk between two differential pairs
traversing a slot in the ground plane.

10-6 For an 8-bit-wide bus crossing a slot in the ground plane, what techniques
can be used to minimize the nonideal return paths? Create a model for
each option and simulate it in SPICE to demonstrate.

10-7 Can the slot be used as a bus? If so, what would the architecture and
topology look like? What would the advantages of this type of bus be?
Create a model of the bus and simulate the pulse response.

10-8 Approximate the voltage across a via 1 in. away if E and H are launched
in the TEM mode. (Hint: E · dl.)
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So far we have discussed the behavior of high-speed interconnects and have
provided techniques for analyzing and modeling the key physical phenomena
that affect signal quality at multi-Gb/s data rates. To fully analyze and understand
the behavior of high-speed signaling links, we must include the I/O circuits that
transmit and receive the digital data. Design of high-performance links demands
that the circuits and interconnects be jointly optimized as a unified system. To do
so successfully, the signal integrity engineer must be able to communicate with
the circuit designer.

In this chapter we describe the operation and modeling of contemporary
high-speed I/O circuits, including transmitters, receivers, and on-die terminations.
We do not attempt to provide a complete treatment on how to design high-speed
I/O; instead, we wish to give the SI engineer insight into the behavior and sen-
sitivities of modern transceivers. This insight is fundamental to developing a
sufficient understanding of the interactions between I/O circuits and physical
interconnects in order to optimize a signaling system. In this chapter we identify
the design parameters of the circuits for use in analyzing and optimizing designs,
and describe techniques for modeling I/O circuits. In addition, we introduce the
Bergeron diagram, a useful tool analyzing the time-domain behavior of a com-
plete signaling system. Finally, we acknowledge that transceivers can be designed
using either bipolar or MOSFET devices, although throughout this chapter we
focus on MOSFET-based circuits.

11.1 I/O DESIGN CONSIDERATIONS

The function of a transmitter is to launch a signal representing digital data onto an
interconnect for propagation to a receiver circuit. To maximize performance, engi-
neers typically must use design techniques to provide controlled output impedance
and rise and fall times. In addition, transmitters (often abbreviated as Tx) can
be designed for either singled-ended or differential transmission, and to operate
either as a voltage or a current source. In this section we use the term transmitter
interchangeably with driver and output buffer , all of which are commonly used
in the industry.
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A range of complexity for modeling transmitters is possible. At its simplest,
the model can be a simple transient voltage in series with an output resistance
or a current source in parallel with an output resistance. Since they use simple
circuit elements, variation of linear model parameters for the purposes of
identifying a working solution and understanding sensitivity to design and
process variation is extremely easy. In addition, they are easy to analyze and
provide the fastest simulation times. As a result, linear models are very useful
for the initial stage of the design process, when large numbers of simulations
are performed in order to identify the potential solution space.

More complex nonlinear behavioral transmitter models provide improved
accuracy over linear models by comprehending the nonlinear relationship
between the output voltage and output current, staged switching of the output
devices to control rise and fall times, and parasitic capacitances. Parametric model
variation is more difficult than with linear models, but is still possible. Nonlinear
behavioral models are widely used (via IBIS, the I/O Buffer Information Spec-
ification) because they allow component suppliers to provide accurate models
without divulging the specifics of the circuit design and manufacturing process.

Finally, achieving maximum accuracy may require the use of full transistor
models. These models are typically used only as a final check of the design,
since they are more complex to construct and they require significantly more
simulation time. In addition, suppliers are often reluctant to provide transistor
models because they can divulge proprietary design and process information. As
a result, in this chapter we focus on linear and nonlinear behavioral modeling
rather than transistor-level modeling.

Options for modeling receiver circuits follow the same progression as for
transmitters. Simple receiver models include only the termination resistors and
input capacitance. Nonlinear behavioral models include the voltage versus current
characteristics of the ESD protection circuitry and of terminations that are imple-
mented using transistor devices. Full transistor models incorporate all device
effects. Requirements and trade-offs for the various model types are summarized
in Table 11-1.

In our modeling discussions in this chapter we focus heavily on linear models
due to their extreme usefulness in the early design stages. We also discuss the

TABLE 11-1. Summary of Modeling Approaches and Trade-offs

Model Type Elements Intellectual Property Speed Sweepability

Linear Voltage and/or current
sources and resistors

None Fastest Most

Nonlinear Current vs. voltage curves,
voltage vs. time curves

Little Fast Some

Full transistor All devices, including
pre-driver, compensation
circuits, etc.

Design and process Slow Very limited
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limitations of such models and give guidance for when to use nonlinear behavioral
models.

11.2 PUSH–PULL TRANSMITTERS

11.2.1 Operation

The simplest type of output circuit is a push–pull transmitter, which can be
implemented using a simple CMOS inverter (paired with a receiver that is also an
inverter in order to preserve the logic state), as shown in Figure 11-1. Push–pull
transmitters were popular in the early days of CMOS ICs due to their ease of
implementation and low power consumption. They can be used in interconnect
systems without termination, with series termination, and/or with parallel ter-
mination. A comprehensive description of the operation of CMOS transistors
and inverters is provided in a book by Rabaey et al. [2003]. We offer a brief
overview here to make sure that the reader understands the fundamentals of
push–pull transmitter operation.

We start by providing the expression relating the current conducted by a MOS
transistor, iD , as a function of the voltage potential applied across the terminal
nodes:

ID =




0 vGS − vT < 0 (subthreshold)

k

(
W

L

) [
(vGS − vT )vDS − v2

DS

2

]
(1 + λvDS) 0 ≤ vDS < vGS − vT (triode)

k

2

(
W

L

)
(vGS − vT )2(1 + λvDS) 0 < vGS − vT ≤ vDS (saturation)




(11-1)

voutvin

VDD

VSS

MP1

MN2
iout

Figure 11-1 CMOS inverter transmitter circuit. (From Dabral and Maloney [1998].)
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where k = process transconductance (A/V2)
W = device width (µm)
L = gate length (µm)

vGS = potential difference between the transistor gate and source nodes
(V)

vT = transistor threshold voltage (V)
vDS = potential difference applied across the source and drain (V)

λ = channel length modulation parameter (V·m)

The process transconductance is

k = µεox

tox
(11-2)

where µ is the device mobility (m2/V·s), εox the oxide permittivity (F/m), and
tox the oxide thickness (m). The oxide permittivity εox is equal to 3.97ε0, and
the oxide thickness tox is 5.7 nm for the MOSIS 0.25-µm process. Equation
(11-1) describes three distinct regions of operation. In the subthreshold region,
where vGS − vT ≤ 0, the device conducts only a very small amount of leakage
current. In the triode region, the relationship between the device current and the
drain–source potential is approximately linear. In the saturation region, the device
enters a high-impedance state, acting like a (nearly) constant current source.

Figure 11-2 shows iD versus vDS curves for various gate–source potentials
(vGS) that were created from HSPICE simulation using the SPICE level 3 model
for the MOSIS 0.25-µm process that is contained in Appendix F. The dimensions
of the devices used to produce the figure are a width W of 222µm and length L

equal to 1µm for the NMOS transistor and W/L = 845 µm/1 µm for the PMOS
transistor. In the case of the PMOS device, vDS is less than zero since vout is less
than VDD . As a result, the current flows from the supply (source) to the drain,
so that iD is also less than zero. For the NMOS transistor, the polarities for vDS

and iD are both positive. Note from the figure that positive current is defined
as flowing back into the transistor device. We follow this convention throughout
this chapter, although it is equally valid to define positive current flowing in the
opposite direction, as long as consistency is maintained.

The voltage transfer characteristic of the inverter shown in Figure 11-3a was
created from HSPICE simulation using a SPICE level 3 model for the MOSIS
0.25-µm process with device dimensions identical to those in Figure 11-2. The
figure shows how the output signal varies as a function of the input signal level.
When the input signal vin is at ground (VSS), the NMOS transistor, MN2, does
not conduct current, while the PMOS device, MP1, conducts current accord-
ing to equation (11-1). As a result, the output signal vout is pulled up to VDD

(2.5 V for the 0.25-µm process) through MP1. As the input is raised to VDD ,
the output drops to ground. At approximately one-half of VDD , the inverter
enters a high-gain region in which vout changes rapidly as a function of vin.
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Figure 11-2 Example transmitter pull-up and pull-down i D versus vDS curves:
(a) NMOS (W = 222 µm, L = 1.0 µm); (b) PMOS (W = 845 µm, L = 1.0 µm).

Figure 11-3b shows the transient response of the inverter when driving a 1-pF
load.

11.2.2 Linear Models

The simplest push–pull transmitter model, shown in Figure 11-4, is the linear
model. Here the transmitter behavior is modeled by a transient voltage source
in series with a resistor (i.e., a Thévenin equivalent circuit). The voltage source
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Figure 11-3 Example CMOS transmitter input–output characteristics: (a) voltage trans-
fer characteristic; (b) transient response driving a 1-pF load.
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Figure 11-4 Linear (Thévenin) equivalent model for a CMOS transmitter (a) basic
model; (b) with output capacitance, C S .
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Figure 11-5 Example transient response for a linear transmitter model.

is typically a pulse or a piecewise linear source, characterized by minimum and
maximum voltage levels (VSS and vS in the figure) and rise and fall times, as
illustrated by Figure 11-5. The resistor represents the effective output impedance
of the transmitter. The ability to change the behavior of linear models by mod-
ifying the output resistance and/or rise and fall times makes them particularly
useful for exploring the potential working solution space for a design. In addition,
since they require only a couple of passive elements, simulations that make use
of them execute with maximum speed. As a final note, the model may include a
capacitor at the output to account for the capacitance of the transmitter, as shown
in Figure 11-4b.

Limitations of the linear model The nonlinear relationship between output cur-
rent and node voltages for real MOS transistors creates the potential for significant
behavioral differences between the linear model and a real transmitter, which we
illustrate by example.

Example 11-1 Load-Line Analysis Using a Linear Transmitter Model We com-
pare the falling-edge behavior of interconnect circuit shown in Figure 11-6a with
that of the linear model in Figure 11-6b. The current versus voltage character-
istic for the pull-down transistor is described in Figure 11-2a for vGS = 2.5 V.
To calculate the actual impedance of the transmitter, we use a technique known
as a load-line plot [Rabaey et al., 2003] We start with a plot of output current
versus output voltage for the NMOS transistor. Recognizing that the falling-edge
transition for this circuit begins from a state in which no current flows (i = 0)
and the voltage is 2.5 V, we construct a load line for the transmission line that
expresses the output current as a function of the output voltage using Ohm’s
law:

2.5 V − vout = 50 � · iout

The current versus voltage plots for both the transistor and transmission line are
shown in Figure 11-7. The intersection of the two lines gives the values for the
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VDD = 2.5 V

vGS = 2.5 V
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ioutW/L = 845
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0 V 2.5 V
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Figure 11-6 Interconnect circuit for Example 11-1: (a) circuit with push–pull transmit-
ter; (b) linear model.

voltage and current at the transmitter output when driving the transmssion line
for the falling edge (0.650 V, 37 mA). The NMOS transistor was sized to conduct
50 mA across a potential of 2.5 V, which would provide an output impedance RS

of 50 �. However, as the figure demonstrates, the transmitter actually conducts
more than 95% of the maximum current by the time the output swing has reached
one-half of the maximum value (1.25 V). As a result, the transmitter has an
effective output impedance of approximately 0.65 V/37 mA = 18 � as seen by
the transmission line.

For the linear model, we construct the voltage–current plot using Ohm’s law.

vout = 50 � · iout
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Figure 11-7 Load-line plot for Example 11-1.
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The linear model provides an initial output voltage and current of 1.250 V and
25 mA when driving the 50-� transmission line. Thus, the linear model is a clear
source of inaccuracy for modeling an interconnect system, although it may be
good enough for low-speed designs or for use in the early design stages of a
high-speed link.

We have two options at our disposal if a better match between design and
model is required. The first is to modify the transmitter design to give it a more
linear current–voltage relationship. This is most easily accomplished by placing a
resistive element in series with the output transistor. From Example 11-1 we note
that the transmitter actually conducts more than 95% of the maximum current by
the time the output swing has reached one-half of the maximum value (1.25 V).
As a result, the transmitter has an effective output impedance of approximately
25 � across the output voltage range 0 to 1.25 V (the linear region of operation)
and a very high impedance from 1.25 to 2.5 V (the saturation region). By adding
a 25-� resistor in series with the effective 25 � of the transistor, we can better
approximate the desired 50-� impedance, as shown in Figure 11-8.

Since it requires modifying the design, this approach is typically taken only
when a constant impedance over the entire voltage swing is critical to the design
[Esch and Chen, 2004]. An example is the AGP4X interface, which used a
series-terminated interconnect to transmit graphics data at 266 Mb/s. The interface
relied on the transmitter to provide the termination, which required linearization
of the voltage–current relationship [Intel, 2002].
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Figure 11-8 Comparison of push–pull transmitter current versus voltage characteristics
to a linear model.
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11.2.3 Nonlinear models

The other option for improving accuracy is to use a nonlinear model. In addi-
tion to the nonlinear current–voltage characteristic, this type of model can also
comprehend the shape of the rising and falling edges of the output. The basic
push–pull nonlinear model consists of an output current versus output voltage
curve for both pull-up and pull-down devices and an output voltage versus time
curve for both the rising and falling edges (Figure 11-9). In addition to the curves,
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Figure 11-9 Nonlinear behavioral model components: (a) pull-up i out versus vout;
(b) pull-down i out versus vout; (c) rising edge vout versus time; (d) falling edge vout

versus time. (Continued)
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a nonlinear behavioral model typically contains the load conditions under which
the curves were constructed. Simulation tools use this information, typically in the
form of an IBIS model (see Section 11.10), to adjust the model for the differing
load conditions encountered when it is used in simulations of real interconnect
systems.

The device capacitance may also be included, if it is not already comprehended
in the transient voltage versus time curves of the model. However, models created
from either transistor-based simulations or from measurements typically include
the effects of the capacitance, in which case it should not be explicitly called out
in the model. Construction of the iout versus vout curves is discussed further in
Section 11.10.
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In general, simulation tools create multiple i –v curves to account properly
for the transient nature of the input signal to the model. Stated another way,
a time-varying input signal, vin, to the circuit in Figure 11-1 causes the
device gate-to-source potential, vgs , to also be transient, so that the output
current–voltage relationship varies with time as well. This effect is shown in
Figure 11-10 and Table 11-2 for an inverting transmitter. The rising-edge input
signal starts at a value of 0.0 V, which corresponds to vgs = 0.0 V for the
NMOS device and to vgs = −2.5 V for the PMOS device. As the input edge
rises, the vgs values for each device change. For example, when vin is equal to
1.0 V, vgs is 1.0 V for the NMOS device and −1.5 V for the PMOS device. We
see that for the case of a rising-edge input signal, as the PMOS device moves
from the vgs = −2.5 V curve to the vgs = 0 V curve, the NMOS device is
transitioning from the curve for vgs = 0 V to that for vgs = 2.5 V.

As a final note, we point out that the i –v data in the model should extend well
beyond the expected operating range for the device to ensure proper operation
in the event of significant signal overshoot. For example, if the signal swing
expected ranges from 0 to VDD , the IBIS specification expects that the i –v data
span a range from −VDD to 2VDD.

11.2.4 Advanced Design Considerations

In this section and in the counterpart sections for other transceiver types, we
touch briefly on several of the issues that face circuit designers when developing
transmitter circuits. For more extensive discussions of the issues and techniques,
we refer the reader to books by Dabral and Maloney [1998] and Dally and Poulton
[1998].

Overlap current control When the transmitter circuit of Figure 11-1 makes a
rising or falling transition, the PMOS and NMOS devices will conduct current
simultaneously for a brief period of time. The magnitude of this overlap current
(also known as “crowbar” current) is sufficiently high that designers usually
design the transmitter such that the initially conducting device turns off before
the other device turns on. This is typically implemented with “pre-driver” control
logic.

Tristate function Systems in which multiple devices can drive a common sig-
nal, such as a multiprocessor bus, require that the transmitter be placed in a
high-impedance state when it is not actively driving the system. This is also
accomplished with pre-driver logic, as shown in Figure 11-11. The circuit uses
the enable signals, en/en, to control whether the transmitter is connected and
can actively drive the bus, or is disconnected and presents a high impedance, as
described by Table 11-3.

Process and environmental compensation When fabricating large numbers
of components, the physical features (e.g., gate length, oxide thickness) and
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TABLE 11-2. Relation Between vin and vGS for the
Pull-up and Pull-down Devices of an Inverting
Transmitter

vGS (V)

vin (V) NMOS PMOS

0.0 0.0 −2.5
0.5 0.5 −2.0
1.0 1.0 −1.5
1.5 1.5 −1.0
2.0 2.0 −0.5
2.5 2.5 0.0

TABLE 11-3. Logic Table for a Tristate Transmitter

en/en vin vout

0/VDD X High Z

VDD /0 VDD 0
VDD /0 0 VDD

MP1

MN2

vin vout

en

en

Figure 11-11 Tristate push–pull driver.

electrical characteristics will vary due to normal statistical variations in
the manufacturing process. In addition, MOSFET currents are sensitive to
environmental factors such as supply voltage (iD increases as the VDD increases)
and device temperature (iD decreases with increasing T ). As a result, the
current–voltage relationship for transistors can vary by a factor of 2 to 3 across
the process and environmental extremes, leading to wide swings in the output
impedance and rise–fall time. In the case of microprocessor-based systems,
where yearly volumes reach into the hundreds of millions, excessive variation in
the electrical characteristics can lead to failure of some of the systems to operate
at full performance. Compensation refers to techniques that minimize the
variation between different parts operating in different environments. Designers
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can implement compensation using both digital and analog techniques, which
are used most often to provide carefully controlled impedance and/or rise and
fall times. Although a detailed discussion of those techniques is beyond our
scope, we present an example of digital impedance compensation to illustrate
application of the concept.

Example 11-2 Digital Impedance Compensation The circuit shown in
Figure 11-12 will provide controlled impedance for either the output of a
transmitter or for on-die termination resistors (see Section 11.5). The circuit
adjusts the impedance to closely match a desired value by comparing the
strength of a binary weighted on-die replica circuit (PMOS transistors MP0

through MPN) with that of an external precision resistor (typically controlled to
±1%). Both are connected to identical reference current sources (iref), forming
voltage dividers whose levels are fed into the clocked comparator at the bottom
of the figure. The output from the comparator is used to increment/decrement
an up/down counter. The output signals (S0 to S2) from the counter control the
turn on–turn off of devices MP0 to MPN , which decreases or increases the
impedance of the control network to achieve the desired impedance. Signals S0

to SN are also connected to the transmitter circuits, each of which contains a
similar structure, thus providing the controlled impedance characteristic.

Since it operates from a clock, the circuit can adjust the impedance dynami-
cally to compensate for variation in the supply voltage and device temperature
during operation. In this case the clock is a low-frequency clock that is updated
about every millisecond. In addition, the design should also ensure that the con-
trol bits do not change while the circuit is actively driving in order to avoid noise
on the signals due to changing impedance [Gabara and Nauer, 1992]. Achieving
tighter impedance control is simply a matter of adding additional binary weighted
devices.

+
−

CLK

irefiref

S0
S1

Sn

On-chip

Off-chip

To 
Transmitter

MP1
2Wref

MPN
2n−1Wref

Rref

MP0
Wref

VDD

Up/ Down 
Counter

Figure 11-12 Digital impedance compensation circuit.
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11.3 CMOS RECEIVERS

The most basic receiver for interchip signaling circuits is the inverter. The sim-
plicity, low power consumption, and ease of implementation of inverters made
them the receiver of choice for full-swing CMOS-based interfaces through much
of the 1990s. Receivers are characterized by timing parameters (setup and hold)
and by logic thresholds, which influence system noise margin and noise immu-
nity. Our discussion of the operation of merits of receivers for high-speed signal
transmission will focus on these characteristics.

11.3.1 Operation

The CMOS receiver is a low-gain inverting amplifier that provides full rail-to-rail
output swings, which allows for fairly large noise margins at speeds into the
hundreds of Mb/s. Figure 11-13a illustrates the voltage transfer characteristic for
an example inverting receiver, which specifies the output signal as a function
of the input. The input thresholds vil and vih are determined by the unity gain
points (dvout/dvin = −1) of the transfer characteristic. The region in between
vil and vih is a high-gain region in which the output signal level is extremely
sensitive to variations in the input signal, making it a forbidden “keep out” area
for steady-state signals.

Large noise margins provide tolerance to noise sources, and so are desirable to
guarantee robust operation. As Figure 11-13b demonstrates, the high-side noise
margin, vNMh, is the difference between the minimum output signal when driving
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Figure 11-13 CMOS receiver response characteristics: (a) voltage transfer characteris-
tics; (b) noise margin.
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high and the minimum signal that the receiver recognizes as the high logic
state. Conversely, the low-side noise margin, vNMl , is the difference between the
maximum output signal when driving low and the maximum signal recognized
by the receiver as the logic low state. Note from the figure that the receiver input
specs must comprehend variations in the signal levels caused by variability in
the fabrication process. Mathematically, the noise margins are expressed as

vNMl = vil,min − vol,max (11-3a)

vNMh = voh,min − vih,max (11-3b)

11.3.2 Modeling

The CMOS inverter presents a high impedance to the input signal, limited only by
the input capacitance of the gate. As such, we typically model a CMOS receiver
as a simple capacitance to ground.

11.3.3 Advanced design considerations

Though the relatively large swing results in high noise margins, voltage mode
signaling systems possess multiple noise sources that degrade the noise immunity
of the system [Dally and Poulton, 1998]. For example, process variations such
as device thresholds and transconductance can cause inverter thresholds to vary
by more than 10% of the signal swing (>20% if supply voltage variation is
included), a phenomenon known as receiver offset . Other sources include power
supply noise, crosstalk, reflections, and transmitter offset.

These effects may be countered by designing additional noise tolerance into
the receiver through hysteresis. An example is a Schmitt trigger, which we show
in Figure 11-14a [Wang, 1989]. The MP1/MN2 and MP3/MN4 transistors form a
sequential pair of inverters. The hysteresis is created by feeding the output vout

back to the gates of MP5 and MN6, which shifts the voltage transfer characteristic,
making it more difficult for a noise pulse to put the circuit into the keep-out zone,
as Figure 11-14b shows.

11.4 ESD PROTECTION CIRCUITS

Transceiver designs include electrostatic discharge (ESD) protection circuits to
prevent catastrophic failure due to breakdown of the MOSFET gates of the I/O
and core circuits. ESD damage can occur at any point during the manufacture,
assembly, test, and operation of a silicon chip, including handling and transport.
An example would be a technician wearing rubber-soled shoes on a test floor. The
insulating characteristics of the rubber can cause the technician to accumulate a
substantial static charge, which may discharge into any component with which he
or she may come into contact, damaging the component. An example ESD event
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Figure 11-14 CMOS receiver with hysteresis: (a) Schmitt trigger receiver circuit;
(b) voltage transfer characteristic.

based on a human body model can have a 3000 to 5000-V potential spike with
a sub-10-ns rise time, 1 to 2-A peak current, and 100 to 200-ns duration [Dabral
and Maloney, 1998]. The device oxide will break down at field strengths in excess
of about 7 × 108 V/m, which translates to voltages in excess of approximately
4.0 V for a 25-µm silicon process. So an ESD event can exceed the process limits
by several orders of magnitude, necessitating the inclusion of ESD protection in
the I/O circuitry.

11.4.1 Operation

ESD protection circuits such as the one shown in Figure 11-15 protect active cir-
cuits by limiting the voltage excursions so that they do not exceed the breakdown
voltage of the receiver MOSFET gates, and by limiting the amount of current
that flows into the transmitter device terminals. The function of the ESD diodes
is to limit the voltage so that it does not exceed the gate oxide breakdown volt-
age and to steer the ESD current away from the internal circuits. If the voltage
at the pad will be greater than a diode voltage drop (VD,on) beyond the VDD

supply, the upper diode will turn on, shunting the current away from the I/O
device and clamping it to VDD + VD,on. A negative excursion will be clamped to
a value of VSS − VD,on. The series resistor limits the amount of current that flows
through the transceiver devices to prevent performance degradation due to device
threshold shifts caused by “hot” electron tunneling [Dally and Poulton, 1998].

11.4.2 Modeling

The diodes add parasitic capacitance to the transceiver, which we include in
our linear model. The series resistance is typically several hundred ohms, and
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Figure 11-15 CMOS receiver with ESD protection.

does not require explicit modeling. Nonlinear models must take into account
the current–voltage relationship of the diode, which is given by the ideal diode
equation:

idiode = iS(evdiode/φT − 1) (11-4)

where idiode is the current through the diode; iS , the diode saturation current, is
proportional to the diode area; vdiode is the bias voltage across the diode; and φT

is the thermal voltage (26 mV at room temperature).
Figure 11-16 presents an example current–voltage characteristic calculated

using equation (11-4) with φT equal to 26 mV and a saturation current of 10 pA.
We can further approximate the diode behavior for manual analysis by setting
the diode current to zero below the “turn-on” voltage (approximately 0.6 V in the
figure) and allowing it to approach infinity at the turn-on voltage. This is shown

−10

0

10

20

30

40

50

60

70

80

90

100

−2.5 −2 −1.5 −1 −0.5 0 0.5 1

i D
 (m

A
) 

vD (V) 

Ideal diode 
equation

Quasilinear 
model

Figure 11-16 Example diode current–voltage characteristic and quasilinear appro-
ximation.



ON-CHIP TERMINATION 463

as the quasilinear model in the figure. We illustrate the use of the quasilinear
model in Problem 11.6.

11.4.3 Advanced design considerations

The circuit shown in Figure 11-15 is but a simple example of ESD protection.
In reality, designers have many options for implementing ESD protection, and
often go to great lengths to design structures that provide sufficient protection
while minimizing the parasitic capacitance for high-speed operation. We refer
the reader to the books by Dally and Poulton [1998] and Dabral and Maloney
[1998] for comprehensive treatment of the topic.

11.5 ON-CHIP TERMINATION

On-chip (a.k.a. on-die) termination has become the method of choice as signaling
speeds continue to increase, since it eliminates a source of reflections by removing
the transmission-line stub that is required to connect off-die termination.

11.5.1 Operation

Termination resistors are typically implemented using FETs. An example is shown
in Figure 11-17, in which PMOS and NMOS devices are connected in parallel
to create a 50-� termination to VDD (2.5 V for the 0.25-µm process). The
PMOS gate is connected to ground (vgs = −2.5 V) and NMOS to VDD (vgs =
2.5 V) to keep the transistors in the triode region for as long as possible in order
to make the current–voltage relationship as linear as possible. As the figure
shows, this configuration provides a termination of approximately 46 to 58 �

over the entire range of operation for nominal device characteristics and operating
conditions. Figure 11-17b shows the waveforms obtained when using the circuit
to terminate a 50-� transmission line when driven with a 2.5-V 12.5-� linear
transmitter. The FET termination provides nearly equivalent performance to a
perfect 50-� resistive termination. We also note that our choice to terminate
to the positive supply rail rather than ground was also based on making the
termination as linear as possible. FET termination is typically combined with
the digital impedance compensation technique described in Section 11.2.4 to
provide a controlled impedance termination across process, voltage, and operating
temperature.

11.5.2 Modeling

The basic model for on-chip termination is a simple resistor connected to the
appropriate termination supply. However, as we showed earlier, on-chip termi-
nation can exhibit significantly nonlinear response, in which case we need to
model the termination as a table of current and voltage values using a nonlinear
modeling format such as IBIS (refer to Section 11.10).
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Figure 11-17 Example on-chip termination using parallel FETs: (a) FET termination
circuit and resistance as a function of line voltage; (b) example waveform.

11.5.3 Advanced design considerations

The primary motivation for implementing on-chip termination is to minimize
reflections by eliminating the transmission line stub that is typically required
when terminating on the printed circuit board. To fully realize the potential
benefit of on-chip termination, automatic impedance control similar to the
impedance-matching technique described in Section 11.2.4 is commonly used.
In addition, designers may implement techniques to improve the linearity of the
on-chip termination [Dally and Poulton, 1997].
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11.6 BERGERON DIAGRAMS

At this point we take a slight detour from our survey of transceivers to introduce
the Bergeron diagram, a technique that will allow us to analyze the behavior of
interconnects with nonlinear transmitter and receiver characteristics by graphi-
cally solving the simultaneous current–voltage relationships of the components
of a signaling system. We introduce this technique as it is useful for furthering
our understanding of transmission-line basics. We demonstrate and develop the
technique through a simple example.

Example 11-3 Bergeron Diagram for a Linear Interconnect Circuit In this
example we analyze the rising behavior for the circuit shown in Figure 11-18.
The transmitter is a 2.5-V push–pull driver with symmetrical pull-up and
pull-down impedances. The receiver has a resistive termination to a 2.5-V
termination supply.

We start the analysis by plotting the current versus voltage relationships for
the transmitter and receiver. The easiest way to do so is to draw the equivalent
circuits and write the Ohm’s law expressions. This is shown in Figure 11-19
along with the load-line plot. Note that we were careful to account correctly for
the direction of the current flow in all of the equivalent circuits and that we
chose to use milliamperes as the units for the y-axis. Note from the plot that
the intersection of the transmitter pull-down and the receiver load lines gives the
voltage and current (0.357 V and 28.6 mA) for the circuit at the steady state when
driven low. Since the circuit is at steady state, this is the potential and current
flow at all points on the transmission line. This gives us the starting point for
our analysis, since we are studying a rising-edge transition.

Our next step is to find the initial voltage and current for the rising edge
at the transmitter. We do this by drawing a load line representing the 50-�
transmission line, starting at the intersection of the transmitter pull-down and
receiver (steady-state low) and extending until it intersects with the load line
for the transmitter pull-up. This load line has a slope equal to −1/Z0, since the
transmission line also obeys Ohm’s law and the load line is a plot of current
versus voltage. In effect, the load line for the transmission line is graphically
depicting the Ohms’ law equation:

v − v0 = Z0(i − i0) (11-5)

i
12.5 Ω

tr = 100 ps

50 Ω, 2 ns

2.5 V

75 Ω

0 V 2.5 V

Figure 11-18 Interconnect circuit for Example 11-3.
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(a) transmitter pull-up; (b) transmitter pull-down; (c) receiver; (d) load-line plot.

where v0 and i0 are the steady-state voltage and current for the system when
driven low. The slope of the line is negative because the rising-edge transition
causes current to flow from the transmitter into the transmission line, while we
have defined positive current as flowing from the line back into the transmitter.

The transmitter also follows Ohm’s law, so that the intersection between the
transmission line and the transmitter pull-up lines gives the initial voltage and
current at the transmitter for the rising edge. Figure 11-20a illustrates this, giving
an initial voltage and current of 2.357 V and −11.4 mA.

The next step is to draw another load line for the transmission line. The line
starts at the previous point (2.357 V, −11.4 mA), has a slope equal to 1/Z0,
and extends until it intersects with the load line for the receiver, as shown in
Figure 11-20b. This gives us the voltage and current at the receiver after the
first propagation delay, and comprehends both the initial and reflected waves.
It works because we are again satisfying simultaneous Ohm’s law expressions
for the transmission line and the receiver, while taking into account the previous
voltage and current levels. Ohm’s law gives us the relationships that allow us to
solve for the signal values given the constraints imposed by Kirchhoff’s circuit
laws. Since the transmission line is connected to the receiver, Kirchhoff’s circuit
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laws tell us that they will have equal voltages at the connection and equal currents
flowing through them. Thus, our Bergeron diagram gives us the solution to two
simultaneous Ohm’s law equations in two unknowns (the voltage and current)
via graphical means.

By continuing to draw load lines for the transmission lines with slopes that
alternate between ±1/Z0 we can find the voltage and current levels at each end
of the line as the waves propagate back and forth. For example, Figure 11-20c
shows the extension of the next transmission load line back to the transmitter
load line, which gives the signal levels at the transmitter after a round-trip
propagation delay. The transient wave components are becoming small enough
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Figure 11-20 Bergeron diagram construction sequence for Example 11-3: (a) initial
wave at transmitter (t = 0); (b) receiver (t = td ); (c) transmitter (t = 2td ); (d) close-up:
transmitter (t = 2td). (Continued)
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Figure 11-20 (Continued )

at this point that they are difficult to discern, so Figure 11-20d shows a close-up
view of the diagram.

The process of drawing load lines continues until the changes in voltage and
current become small enough to suit our need. We can then construct voltage and
current waveforms by reading the values from the Bergeron diagram. We must
keep in mind that points that occur at intersections with the transmitter load line
contribute to the transmitter waveform, and points that occur at intersections with
receiver load line contribute to the waveform at the receiver. The full Bergeron
diagram is shown in Figure 11-21 along with the voltage and current waveforms.

At this point we note that we generated the voltage and current numbers shown
in the waveforms by repetitively solving simultaneous Ohm’s law equations
subject to initial voltages and currents—the analytical equivalent of the Bergeron
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Figure 11-21 Complete Bergeron diagram and resulting waveforms for Example 11-3:
(a) Bergeron diagram; (b) voltage waveform; (c) current waveform.
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diagram. In practice, drawing a Bergeron diagram with better than 5 mV, 0.5 mA
accuracy is difficult, which limits its use primarily to initial, first-order estimates.

11.6.1 Theory and method

The Bergeron diagram works by using Kirchhoff’s circuit laws at the connections
between the transmission line and the transmitter and receiver components,
along with the current versus voltage relationships. For the transmission line,
the current and voltage are related by Ohm’s law. The linear transmitter and
receiver models that we used in our previous example also obey Ohm’s law,
although nonlinear models will obey the more complex relationships described
by equations (11-1) and (11-4). The Bergeron diagram also works with nonlinear
transceivers, as we show in the next section.

In describing the theory behind the Bergeron diagram, we use the generalized
circuit shown in Figure 11-22 with a rising signal. We start at the steady state
prior to the rising transition. Under steady-state conditions a lossless transmission
line is a short circuit, so that the output of the transmitter is connected effectively
directly to the receiver. In our discussion here, when we refer to the transmitter
and receiver we mean the equivalent circuits for each, as shown in Figure 11-22.
At steady state, we know that the current flowing out of the equivalent circuit for
the transmitter is equal to the current flowing into the equivalent circuit for the
receiver from Kirchhoff’s current law. From Kirchhoff’s voltage law we know
that the voltage at the output of the transmitter equivalent circuit is equal to
the voltage at the input of the receiver equivalent circuit. We also know that
the relationship between the current and voltage at the output of the transmitter
follows Ohm’s law, as does the current–voltage relationship at the input of the
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Figure 11-22 General linear circuit for Bergeron analysis.
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receiver. By equating the voltages and currents and applying Ohm’s law, we
create a set of two simultaneous equations in two variables:

v(t < 0) = i(< 0)RTX,lo (11-6)

VT T − v(t < 0) = i(t < 0)RT T (11-7)

The Bergeron diagram solves the equations graphically to give the steady-state
current and voltage.

To find the voltage and current values for the initial transition at the transmitter
end of the circuit, we recognize that the output of the transmitter is connected
to one end of the transmission line. By applying the circuit laws in the same
manner as above, we calculate the initial voltage and current wave magnitudes
at the transmitter. However, the Ohm’s law expression for the transmission line
must comprehend the initial current and voltage flowing through the line:

v(0) − VDD = i(0)RTX,hi (11-8)

v(t < 0) − v(0) = [i(0) − i(t < 0)]Z0 (11-9)

Note from equation (11-9) that the slope of the load line for the transmission
line is equal to −1/Z0, just as we constructed it in our example. So the Berg-
eron diagram again solves the simultaneous equations while accounting for the
steady-state potential and current flow that existed on the line prior to the tran-
sition.

When the initial wave reaches the connection between transmission line and
receiver, we again apply the circuit laws and account for the current and voltage
of the incident wave:

VT T − v(t = td) = i(t = td )RT T (11-10)

v(t = td) − v(t = 0) = [i(t = td) − i(t = 0)]Z0 (11-11)

The slope of this load line for the transmission line is 1/Z0 because it relates
the current and voltage for the reflected wave, and since we must account for the
current and voltage of the incident wave, it starts at the current and voltage,
i(t = 0) and v(t = 0), that we calculated in the preceding step.

The next step in the analysis returns back to the transmitter end of the system
using a load line with slope −1/Z0 starting from the receiver voltage and current
(i.e., the intersection between the previous transmission line load line and that
of the receiver). In this case the load-line slope is negative because we are
accounting for the reflected voltage and current waves at the transmitter. Since
the waves flow away from the transmitter and toward the receiver, the sign of
the current wave is negative.

The analysis continues in this fashion, alternating between transmitting and
receiving load lines using transmission load lines with alternating slopes of
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−1/Z0 and 1/Z0, until it approaches steady state. So we see that the Berg-
eron is simply a graphical technique for repeatedly solving the simultaneous
equations arising from circuit laws that describe the transient voltage and current
signals at both ends of a transmission line. We now illustrate the application of
the technique to a system with nonlinear transceiver characteristics.

Example 11-4 Bergeron Diagram with Nonlinear Transceivers In this example
we analyze the falling edge for the circuit shown in Figure 11-23, which uses a
CMOS push–pull transmitter with no termination at the receiver end. The system
relies on the output impedance of the transmitter to provide source termination,
and the transistors are sized to provide a 50-� output impedance to match the
target impedance of the transmission line. The load-line plot shows the nonlinear
transistor behavior discussed in Section 11.2.1. The load line for the receiver is
simply a zero-current (infinite-impedance) line that represents the open circuit
at that end. We know that the characteristic impedance of the transmission lines
may vary by up to ±20% due to manufacturing tolerances. Thus, for our example
we choose a 60-� characteristic impedance for the transmission line. With this
information, we step through the analysis as follows:

1. The Bergeron diagram begins at the load-line intersection of the transmitter
pull-up and the receiver. The potential and current are 2.5 V and 0 mA,
respectively.

2. From that point we draw the load line for a transmission line with slope
equal to −0.0167 �−1(−1/60 �), extending it until it intersects the nonlin-
ear curve for the transmitter pull-down device at 0.80 V and 28.3 mA, which
are the initial values at the transmitter after the falling-edge transition.

3. Draw a load line from the previous point, with slope equal to 0.0167 �−1

until it intersects with the receiver load line at i = 0, which gives the volt-
age at the receiver (−0.90 V) after the first incident wave reaches it. A sim-
ple means of checking the result at this point is to consider the magnitudes
of the incident and reflected voltage waves. The incident-wave magnitude
is equal to 0.80 V −2.50 V, or −1.70 V. The reflected wave is also equal to
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Figure 11-23 Push–pull transmitter circuit and nonlinear i –v characteristics.
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−1.70 V (−0.90 V −0.80 V). Since the transmission line is open-circuited
at the receiver end, this is exactly the result that we expect to find.

4. Draw the next load line, starting at −0.900 V and 0 mA with slope equal
to −0.0167 �−1 until it intersects the transmitter pull-down curve, which
yields the voltage (−0.25) and current (−10.8) at the transmitter after the
first reflected wave from the receiver reaches it.

5. Continue the analysis until reaching steady state (0.00 V, 0 mA).

The resulting voltage waveforms at both ends of the line are shown in
Figure 11-24b.
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Figure 11-24 (a) Bergeron diagram and (b) transient waveforms for Example 11-4.
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11.6.2 Limitations

As mentioned earlier, the accuracy of Bergeron diagrams is typically around
5 mV and 0.5 mA, limiting their use to the earliest stage of the design process.
In addition, they can only handle impedance discontinuities at the ends of the
lines, so they are not suitable for analysis of more realistic (and complex) topolo-
gies. Finally, they only work for lossless transmission lines, which limits their
application to data rates in which losses may be ignored. Despite these limita-
tions, Bergeron diagrams provide a means of evaluating the impact of I/O circuit
nonlinearity, making them a helpful tool in the arsenal of the signal integrity
engineer.

11.7 OPEN-DRAIN TRANSMITTERS

A second type of transmitter circuit is the open-drain transmitter, which is shown
in Figure 11-25. An example is Gunning transceiver logic (GTL) [Gunning et al.,
1992] As the figure shows, open-drain systems are typically designed using only
NMOS pull-down transistors, so that the PMOS pull-up device is eliminated.
Ensuring proper function requires the addition of pull-up resistors. The resis-
tors may be added as external components, but state-of-the-art designs typically
include them on the silicon die. Note the presence of a termination supply, VT T ,
which is typically a low voltage in the range 1.2 to 1.5 V, as open-drain systems
are usually implemented with signal swings in the range 800 to 1000 mV.

11.7.1 Operation

When the open-drain transistor is turned off, the transmitter is effectively dis-
connected from the interconnect, which is pulled up to the termination supply
through the termination resistor, RT T . No current flows when the interconnect
is in the high state, since it is open circuited. When the open-drain transistor is
turned on, it effectively creates a voltage-divider circuit by creating a path for

RTT

vout

vin
iout

VTT

Figure 11-25 Open-drain signaling circuit.
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current flow from the VT T supply through the termination resistor and the NMOS
transistor. As a result, open-drain systems do not use “rail-to-rail” signal swings,
since the signal level does not reach ground when driving low.

Benefits Open-drain designs offer multiple potential benefits that have made
them a popular design choice over the past two decades. The use of parallel
termination reduces reflections for higher-speed applications, and elimination of
the PMOS pull-up output transistors reduces the amount of die area consumed,
which creates the potential to reduce the cost of the silicon. Since open-drain
designs do not dissipate power in the high state, they are typically defined as
being active low , in order to achieve zero power consumption when idle. In
addition, in contrast to push-pull circuits, the small signal swing reduces active
switching power. These features combine to make open drain a popular choice
for low-power designs.

Another benefit of open-drain systems is their ability to interface components
that are manufactured on different processes that have differing maximum voltage
supply limits. Use of the low-voltage external termination supply allows us to
decouple the signaling values from the component supplies. For example, GTL
uses a 1.2-V external supply, and signals swing from 0.4 V to 1.2 V. This would
allow us to connect a component that uses a 3.3-V supply rail with one that uses
a 2.5-V rail.

Finally, open-drain systems provide a “wired-OR” function for multiprocessor
systems, in which any one of multiple agents can assert an active signal on the
bus interface (see Figure 11-26). An example is the MCERR# (machine check
error) signal on the Intel Xeon processor system bus interface (a.k.a. front-side
bus). MCERR# is asserted (driven low) to indicate an unrecoverable error. Since
multiple agents may drive this signal at the same time, it is a wired-OR signal
that must connect the corresponding pins of all processor front-side bus agents
[Intel, 2005]. Wired-OR connections are susceptible to “glitches” that can occur
when multiple agents drive the bus low simultaneously. In Problem 11-10 we
explore this phenomenon in more detail.

CPU CPU CPU CPU

RTT

VTT

Memory 
Controller

RTT

VTT

Figure 11-26 Multiprocessor system with open-drain wired-OR connection.
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Limitations Despite the use of parallel termination, GTL is susceptible to ring-
ing on rising-edge transitions. The reason for this is that when the device turns
off, the transmission line is open circuited at the transmitting end. Any reflec-
tions on the interconnect that travel back to the transmitter will undergo a full
reflection, as we show with an example.

Example 11-5 Rising-Edge Reflections in an Open-Drain Interconnect The
interconnect circuit in Figure 11-27 has an impedance discontinuity between
boards 1 and 2. To analyze the behavior of the rising edge, we follow the
current-mode analysis method [Hall et al., 2000]. We model the open-drain device
as an effective resistance, RS , with a switch. The analysis starts with the circuit
at steady state when driven low. Prior to t = 1 ns, the switch is closed, and a
steady-state current flows:

iS,Slo = VT T

RS + RT T

= 1 V

12.5 � + 50 �
= 16 mA

The switch opens at t = 1 ns, creating an open circuit at z = 0. The open circuit
requires that the net current flow is zero at that point. The consequence of this
is that a −16-mA current wave is launched onto the 75-� line, creating a 1.2-V
voltage wave. From that point we can carry out the analysis using a lattice
diagram, which we shown in Figure 11-27b. Figure 11-27c shows the resulting
waveform at the transmitter and at the receiver, which demonstrates the ringing
at both ends of the system, despite the fact that the termination matches the
impedance of the second line.

11.7.2 Modeling

A linear model for an open-drain circuit requires a resistor and a switch, as shown
in Figure 11-28. In addition, a termination supply and termination resistor are
required to complete the open-drain system. The means for modeling the switch
will vary between different simulation tools. In HSPICE, the easiest method
is to use a voltage-controlled resistor [Synopsis, 2006]. Nonlinear models for
open-drain transmitters look similar to those for push–pull transmitters, except
that the current–voltage relationship for the pull-up is a straight line at i = 0.

11.7.3 Advanced Design Considerations

As discussed above, the finite output impedance of an open-drain transmitter
provides some damping of reflections when driving low. However, the transmitter
will fully reflect any incoming signals on the rising edge as the open-drain device
enters the high-impedance state. A straightforward way to address the ringing
caused by the impedance mismatch is to add a termination resistor to provide
impedance matching at the transmit end of the system, as shown in Figure 11-29.
Although this technique will eliminate the excessive ringing that was caused by
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Figure 11-28 Open-drain transmitter linear model.
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Figure 11-29 Open-drain interconnect with termination at both ends.

the open circuit, it does not come for free. To maintain the same signal swing we
must reduce the output impedance of the transmitter, which increases the power
dissipation and the die area consumption. Another source of ringing on the rising
transition is transient current flow through parasitic package inductance. Gunning
et al. [1992] used a control circuit implementation to slow the rise time through
the use of an analog feedback loop (Figure 11-30) in their open-drain interface,
known as Gunning transceiver logic (GTL).
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Figure 11-30 GTL transmitter circuit with analog slew rate control.
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11.8 DIFFERENTIAL CURRENT-MODE TRANSMITTERS

11.8.1 Operation

Differential current-mode transmitters are often used for high-speed data trans-
mission. In this case, the transmitter operates by injecting a current onto the
transmission line. Figure 11-31a depicts a simple differential transmitter design.
The transmitter uses complementary input signals, vin and vin, which ensure that
only one side of the circuit is in the conducting state at any given time. Thus,
the transmitter uses the differential input signals to steer the current from the
constant current source, iS , to the desired side of the circuit. The flow of cur-
rent creates a voltage drop across the source termination resistor, RT T , on one
side of the circuit, while the side that has no current flow is pulled up to VDD ,
thereby creating the output signal levels vout and vout. The relationship between
input and output signals is summarized in Table 11-4. The table demonstrates
that the differential signal swing has a magnitude (2iTx RT T ) that is twice that of
the singled-ended swing.
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RTT
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RTT
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Figure 11-31 (a) Differential current mode simple transmitter design; (b) linear model.

TABLE 11-4. Relationship Between Differential
Transmitter Input and Output Signals

vin/vin

Low/High High/Low

vout VDD VDD − iTx RT T

vout VDD − iTx RT T VDD

vdiff = vout − vout iTx RT T −iTx RT T
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Benefits As we demonstrated in Chapter 7, differential signal transmission
improves signal-to-noise ratio (SNR), which offers a path to higher data rates.
Part of the reason for the improved SNR is that the differential signal swing is
twice that of a single-ended signal. In addition, the differential transmitter cir-
cuit draws a nearly constant current, which drastically reduces the simultaneous
switching noise (SSN). In addition, differential receivers reject the vast major-
ity of common-mode noise. All of these factors combine to provide substantial
performance headroom over single-ended signaling.

11.8.2 Modeling

As shown in Figure 11-31b, a linear model of a differential current source
transmitter consists simply of a pair of complementary transient current sources
connected to bias/termination transistors, along with any parasitic capacitance.
Nonlinear models look similar to those for push–pull transmitters, except that
the current–voltage relationships follow a saturated profile rather than the more
linear characteristic of the push–pull circuit.

11.8.3 Advanced Design Considerations

In its simplest form, a current-mode transmitter is a MOSFET device operating
in the saturation region (vDS ≥ vGS − vT ), as shown in Figure 11-31. However,
to limit the variation in output current, current-mode transmitter designs typically
include additional circuitry to compensate for process and environment effects.
For an example, we refer to Figure 11-32, which shows a transmitter design for
use in a low-voltage differential signaling (LVDS) interface [Granberg, 2004].
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Figure 11-32 LVDS current mode transmitter circuit with controlled current reference.
(From Gabara [1997].)
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The circuit contains a reference current generator on the left-hand side of the
figure that is used to bias the output buffer on the right-hand side of the circuit
in order to produce a tightly controlled output current. The external resistor
connects to the on-die reference circuit to generate a 4-mA reference current
which establishes the bias levels, vp,bias and vn,bias. The bias voltages feed the
output buffer in order to produce the LVDS output swing (1.0 to 1.4 V) when
connected by a 100-� load resistor, when the differential input signals are applied.

It is worth pointing out that current-mode transmission does not require dif-
ferential signaling but can be applied to high-speed single-ended signals as well.
Low-swing current-mode transmission systems in general provide better noise
immunity and power dissipation than does voltage mode rail-to-rail signaling
[Dally and Poulton, 1998]. An example of a single-ended current-mode interface
is the Direct Rambus DRAM technology [Lau et al., 1998; Granberg, 2004].

11.9 LOW-SWING AND DIFFERENTIAL RECEIVERS

We treat the input receivers for low-swing and differential signaling techniques
in the same section, as they both typically employ differential amplifiers, which
provide fast transient response to small signal swings.

11.9.1 Operation

In principle, the differential amplifier design is the same for single-ended
low-swing and differential signaling applications. In the single-ended application,
one input is connected to a reference signal, vref, while the other is connected
to the data signal. For differential signals, the amplifier inputs are connected to
the complementary data signals. Examples of each are shown in Figure 11-33.

VDD

(a)

vout

vrefvin

VDD

(b)

vout

vinvin

Figure 11-33 Example receiver circuits for low-swing and differential signaling:
(a) single-ended; (b) differential.
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The single-ended receiver is the original design for use with GTL signaling
and was designed to switch within vref ± 50 mV across process, voltage, and
operating temperature in order to provide a high noise margin with an 800-mV
swing [Gunning et al., 1992]. The differential receiver is a self-biasing Chappell
amplifier that uses an internal feedback signal to adjust the bias voltage for
proper operation [Chappell et al., 1998].

As mentioned above, differential amplifiers respond to small changes in input
signals, as their symmetry gives low-input offset voltages and makes them rela-
tively insensitive to power supply fluctuations. Differential receivers also reject
common-mode noise, with typical common-mode rejection ratios (CMRRs) of
−20 dB or more.

11.9.2 Modeling

We model differential amplifier–based receivers in the same fashion as we model
single-ended receivers. The simplest model is simply a capacitance to ground in
conjunction with the termination. With differential signals, we have multiple
options for termination, as Figure 11-34 shows. Note that the termination for dif-
ferential signals is typically implemented on the silicon die, resulting in nonlinear
current versus voltage characteristics that we may need to include in a behav-
ioral model. In addition, we need to include the parasite effects and nonlinear
characteristics of the ESD protection devices.

(a)

Zodd

Zodd

+

−

(b)

2Zodd

+

−

Figure 11-34 Termination options for differential signals: (a) single-ended termination;
(b) differential termination.
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11.9.3 Advanced Design Considerations

The examples in Section 11.9.1 are intended to illustrate the concepts, and repre-
sent only two of a wide range of choices for high-performance receiver designs. In
practice, designers have multiple options for improving the various performance
aspects of the receiver, such as common-mode range and input offset voltage.
We refer interested readers to Dally and Poulton [1997] for more information on
receiver design options and techniques.

11.10 IBIS MODELS

As we mentioned in Section 11.1, silicon suppliers do not like to provide transistor
models for their I/O circuits. However, simple linear models often do not satisfy
the accuracy requirements of high-speed signaling links. To meet this need, the
industry has developed the I/O Buffer Information Specification (IBIS). As the
name suggests, IBIS is a format for specifying I/O circuit information. Created
in the early 1990s, it is now an industry standard owned by the IBIS Forum
and is supported by approximately 60 companies. The diverse membership has
allowed IBIS to evolve to meet the changing needs of signal integrity and I/O
design engineers. In this section we give a brief overview of the IBIS standard,
highlighting the major components and providing a high-level description of the
model development process. The major features of IBIS include:

• Nonlinear current versus voltage curves for transmitters, ESD devices, and
on-chip termination

• Separate nonlinear voltage versus time curves for transmitter pull-up and
pull-down devices

• Pad capacitance for I/O circuits
• Models for minimum, typical, and maximum cases within a single model
• Description for multiple types of I/O, including differential pins, open-drain

output, tristate outputs, and receivers with hysteresis
• Inclusion of signal quality specifications, including input logic thresholds,

overshoots, and so on
• The Golden Parser, a tool that checks model syntax for conformance to the

standard
• Backward compatibility with models created under previous revision of the

standard

For further details we refer readers to the IBIS specification [IBIS, 2006] and
model development “cookbook” [IBIS, 2005].

11.10.1 Model Structure and Development Process

The basic structure of an IBIS-compliant model is shown in Figure 11-35. The
i –v and v– t curves are specified in table format, with columns for the minimum,
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Pull-up 
i vs. v

Power 
clamp 
i vs. v

Power 
clamp 
i vs. v

Pull-down 
i vs. v

Pull-down 
v vs. t

Transmitter Receiver

Grount
clamp 
i vs. v

Grount
clamp 
i vs. v

Cpad Cpad

Pull-up 
v vs. t

Figure 11-35 Basic structure of an IBIS model.

typical, and maximum case. The power clamp and ground clamp tables contain
both ESD clamp information and the behavior of any parasitic diodes which
are part of the pull-up and pull-down transistor structures. Since the clamp cir-
cuitry is always active, the i –v data for the power and ground clamp models
can be combined with the i –v data for the transmitter or receiver circuit to
provide a single data table. This same property allows on-die termination resis-
tance to be incorporated into the clamp models for transmitters and receivers, as
well.

The development process includes four major steps [IBIS, 2005]:

1. Determine required model features, complexity, and operating range.
2. Obtain the simulated or measured model data (i –v and v– t curves,

parasitic capacitances). We treat these in more detail in subsequent
sections.

3. Put it into IBIS format and check the file using the Golden Parser. This
tool checks the model for syntax compliance with the IBIS standard and is
available from the IBIS Forum website.

4. Validate the model. Initially, this is typically done by comparing the tran-
sient response of the IBIS model to the original transistor model when
driving a reference load. Eventually, the model should be correlated against
real silicon.

The data extraction and IBIS formatting can be done manually, though auto-
mated tools are available [Varma et al., 2003]. The model process works for both
single ended and differential I/O, though it must be modified somewhat to handle
the complementary outputs, and to extract both common mode and differential
mode data, including capacitances.
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11.10.2 Generating Model Data

Current Versus Voltage (i –v) Curves In constructing the i –v curves for a
transmitter circuit, the output is connected to an independent voltage source,
as shown in Figure 11-36. The current flow into the pad is then measured as the
source is swept across a range from −VDD to 2VDD. IBIS uses the convention
that current flow into the transmitter is positive. Separate curves are required
for pull-up and pull-down devices. For example, the input to an inverter-based
push–pull transmitter would be set to ground to obtain the curve for the pull-up
device.

The circuit setup for characterizing a receiver or ESD clamp is identical except
that the independent voltage source is connected to the input node. As mentioned
earlier, incorporating on-chip termination in an IBIS model is accomplished by
including it in the i –v curves for the clamp circuits. This can be accomplished
by including it with the clamp circuit during the data extraction process or by
extracting the curves separately and adding them together.

The data tables should use enough data points around sharply curved areas
of the i –v characteristics to describe the curvature accurately. IBIS does not
require equally spaced points in the models, so in linear regions there is no need
to include unnecessary data points. Also, as Figure 11-37 demonstrates, the i –v

curves for pull-ups and power clamps are VDD referenced, while pull-downs and
ground clamps are referenced to ground.

Voltage Versus Time Curves Transmitter output waveforms are described with
tables that specify the output voltage versus time (v– t). These v– t tables are
created when the transmitter is driving into a test load, which is usually a 50-�
resistor that is connected to the appropriate supply, as described below. The actual
v– t data are generated by simulating rising and falling edges, with the output of
the transmitter to each rail through the test load, as shown in Figure 11-38. For a

Pull-up

i
Sweep from 

−VDD to 2VDD

Sweep from 

−VDD to 2VDD

Sweep from 

−VDD to 2VDD

Pull-down Clamp

v

V
D

D

i

i

v

i

v

i i

Figure 11-36 i –v curve extraction process.
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VDD - v(extracted) = v(relative)
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Extracted i-v curve VDD relative i-v curve

Pull-up
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v v
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Figure 11-37 Construction of V DD relative i –v curves.
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Figure 11-38 Voltage versus time curves for a push–pull IBIS model.

push–pull transmitter, a minimum of four v– t curves is desired, as shown in the
figure. All of the curves must be time correlated, which means that they start from
the same reference point in time. By specifying the curves in this manner, IBIS
models are able to capture the effects of separate switching for the pull-up and
pull-down devices. This is particularly useful for modeling “break-before-make”
circuits, such as the one studied in Problem 11.1, and also allows the support of
“multistaged” output drivers, which are described below.

Multistage drivers control the rise and fall times of the output by spreading out
switching of the pull-up and pull-down devices over time (Figure 11-39). These
models break the circuit into multiple pull-up and pull-down devices, which
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P1

N1

P2 P3

N2 N3

vout

vin

Figure 11-39 Multistage controlled-rise-time transmitter.

requires multiple sets of v– t and i –v curves to properly model the behavior of
the circuit. IBIS provides a keyword to allow scheduling of the application of
the multiple curves to reflect the staged switching behavior.

IBIS supports up to 1000 v– t points per table, and the time step used in the
table should be minimized to provide maximum resolution. The test load that is
used in generating the v– t tables must be described in the model. The signal
integrity simulation tool will use this information from the model to reconcile
the output waveform to reflect the behavior when driving the actual system load.
As with the i –v curves, IBIS accommodates separate v– t curves for minimum,
typical, and maximum cases.

I/O Capacitance The capacitance of the I/O circuit includes the transistors,
on-die interconnect, and die pad, and can have separate values for minimum,
typical, and maximum cases. Designers have multiple options at their disposal
for extracting the I/O capacitance values. We describe one of them here. We
connect the circuit to an ac voltage source at the I/O pad so that we capture all
the contributors to the capacitance, as shown in Figure 11-40. By measuring the
current flow into the circuit, we can calculate the capacitance using

Ccomp = −Im(iac)

2πf vac
(11-12)

where f is the frequency of the ac source, vac is the amplitude of the source,
and Im(iac) is the imaginary portion of the current flowing into the ac source.

If the I/O capacitance may be affected by the bias (dc) voltage of the circuit, we
must include a dc offset in the ac source. In addition, I/O capacitance typically
varies with frequency and applied voltage, so performing multiple extractions
while sweeping both of those parameters is recommended. For a given model,
simply choose the capacitance value that corresponds to expected switching
frequency and bias voltage of the application [IBIS, 2005].
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vac

iac

Figure 11-40 Circuit for extracting I/O capacitance.

11.10.3 Differential I/O Models

The IBIS standard includes the ability to specify models for differential
transceivers, although the process is more complex than for singled-ended
circuits. A differential model is specified as using a driver pair along with a
series model, in the manner shown in Figure 11-41a. This structure allows
the models to comprehend the differential and common-mode characteristics
of a differential I/O circuit. Proper modeling requires specification of the
common-mode and differential-mode i –v tables. As a result, the common-mode
and differential-mode currents must be must be extracted and separated. Extrac-
tion of the v– t tables uses the same techniques as for single-ended transmitters,
with the addition of a current source in between the output pins to cancel differ-
ential currents inside the transistor model, as shown in Figure 11-41b. The I/O
capacitance must include the differential capacitance between the two signals,
as Figure 11-41c shows, with the differential and total capacitance expressed as

Cdiff = −Im(idc)

2πf vac

(11-13)

Ccomp = −Im(idc) − Im(iac)

2πf vac

(11-14)

where idc is the current measured through the dc voltage source, iac is the
current measured through the ac voltage source, and vac is the amplitude of the
ac source. The current through the dc source will have an imaginary portion
only if there is a reactive path between the two pads of the differential signal.

As a final thought, we note that multi-Gb/s differential signaling is still in
the early stages of deployment and that the IBIS specification has not yet fully
comprehended the needs of those high-performance links, although the standard
will continue to evolve to do so in the near future.
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Figure 11-41 (a) IBIS differential model structure; (b) v– t extraction fixture; (c) capac-
itance extraction fixture.
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11.10.4 Example of an IBIS File

In this section we provide an example of a very basic IBIS model file, which
contains a model for a push–pull transmitter. The IBIS keywords are enclosed
in brackets. Note that IBIS also includes provision for specifying package
information and to enable post-layout analysis by including both package and
pinlist associations with buffer data, although we have elected not to specify it
in this example.

|******************************************************
[IBIS Ver] 2.1
[File name] sample.ibs
[File Rev] 0.0
[Date] August 31, 1999
[Source] Data Book
[Notes] Default model for source.
[Disclaimer] This information is modeling only.

|******************************************************
[Component] Driver
[Manufacturer] Generic
[Package]
| typ min max
R pkg 0 NA NA
L pkg 5.0nH NA NA
C pkg 2.0pF NA NA
[Pin] signal name model name R pin L pin C pin
1 UNKNOWN out NA NA NA

|******************************************************
[Model] out
Model type Output
Polarity Non-Inverting
Vmeas = 1.5V
Cref = 15pF
Rref = 500
Vref = 0.0
| typ min max
C comp 5.5pF 2.0pF 8.0pF

|******************************************************
| typ min max
[Voltage range] 3.3V 3.0V 3.6V

|******************************************************
[Pulldown]
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| Voltage I(typ) I(min) I(max)
0 0 0 0
1 0.150 0.075 0.225
2 0.230 0.115 0.345
. . . . . . . . . . . .

3 0.270 0.135 0.405
[Pullup]
| Voltage I(typ) I(min) I(max)
0 0 0 0
1 −0.240 −0.120 −0.360
2 −0.320 −0.160 −0.480
. . . . . . . . . . . .

3 −0.340 −0.170 −0.510
[GND clamp]
| Voltage I(typ) I(min) I(max)
−1.0 −0.100 −0.050 −0.150
−0.5 −0.020 −0.010 −0.030
−0.4 0 0 0
. . . . . . . . . . . .

0 0 0 0
[POWER clamp]
| Voltage I(typ) I(min) I(max)
−1.0 0.100 0.050 0.150
−0.5 0.020 0.010 0.030
−0.4 0 0 0
. . . . . . . . . . . .

0 0 0 0

|******************************************************

[Ramp]
| variable typ min max
dV/dt r 1.980/3.300n 1.800/3.750n 2.16/2.900n
dt/dt f 1.980/3.250n 1.800/3.550n 2.16/2.860n
R load = 50
|
[Falling Waveform]
| typ min max
R fixture = 50
V fixture = 3.3
V fixture min = 3.15
V fixture max = 3.45
0.000ns 3.300 3.150 3.450
0.300ns 3.250 3.110 3.390
. . . . . . . . . . . .
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5.000ns 0.000 0.000 0.000
|
[Rising Waveform]
‖ typ min max
R fixture = 50
V fixture = 3.3
V fixture min = 3.15
V fixture max = 3.45
0.000ns 0.000 0.000 0.000
0.300ns 0.050 0.040 0.060
. . . . . . . . . . . .

5.000ns 3.300 3.150 3.450
|
|******************************************************
[End]

11.11 SUMMARY

In this chapter we described the operation and modeling of contemporary
high-speed I/O circuits, including transmitters, receivers, and on-die terminations.
Insight into the behavior of these circuits is critical to designing successful
high-speed signaling solutions. The signal integrity engineer who gains sufficient
understanding to interact successfully with his or her I/O circuit counterpart will
have a key tool for optimizing a signaling system design for high-speed operation.
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PROBLEMS

Use the device parameters in Table 11-5 when solving these problems.

TABLE 11-5. Device Parameters for a 0.25µm
Process

NMOS PMOS

VT 0 (V) 0.43 −0.4
γ (V1/2) 0.4 −0.4
VD,SAT (V) 0.63 −1
k (A/V2) 115 × 10−6 −30 × 10−6

λ (V−1) 0.06 −0.1

Source: Rabaey et al. [2003].

11-1 Describe operation of the break-before-make circuit shown in Fig-
ure 11-42.

vin vout

Figure 11-42 Break-before-make push–pull transmitter circuit.

11-2 Construct the i –v curve(s) and use them to calculate output impedance
for the push–pull transmitter shown in Figure 11-43.

11-3 Explain how the staged circuit in Figure 11-39 provides a controlled rise
time at the output of the circuit. Sketch the output waveform expected.

11-4 Describe the operation of the Schmitt trigger receiver shown in Fig-
ure 11-14.

11-5 Use a Bergeron diagram to analyze the falling-edge response of the circuit
in Figure 11-18.

11-6 Use a Bergeron diagram to analyze the rising edge for the circuit shown
in Figure 11-44.
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Figure 11-43 Push-pull transmitter for Problem 11-2.
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Figure 11-44 Diode-terminated circuit for Problem 11-6.

11-7 Describe how the GTL transmitter circuit shown in Figure 11-30 slows
the rising-edge transition to reduce ringing due to parasitic package
inductance.

11-8 Use a Bergeron diagram to analyze the far-end-terminated open-drain
circuit in Figure 11-45.

11-9 Analyze the two open-drain circuits in Figure 11-45. How do the resulting
waveforms differ? Which is likely to be capable of supporting a higher
data transfer rate?

11-10 Wired-OR glitch: The circuit in Figure 11-46 contains transmitters at
each end, with a receiver circuit near the middle. Initially, the right-hand
transmitter pulls the circuit low while the transmitter on the left is turned
off. At time t = 0 the left-hand transmitter turns on and the right-hand
transmitter turns off. Sketch the waveform at the receiver.

11-11 Use the device parameters in Table 11.5 to calculate the current versus
voltage curve for the on-die termination circuit shown in Figure 11-47
and estimate the effective termination resistance.
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Figure 11-45 Open-drain circuits for Problem 11-8.
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t = 0 t = 0
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Figure 11-46 Wired-OR circuit for Problem 11-10.

11-12 Discuss the potential advantages and disadvantages of the single-ended
and differential termination schemes shown in Figure 11-34.
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Figure 11-47 FET termination circuit for Problem 11-11.

11-13 Complete a Bergeron diagram using the transmitter and receiver load
lines shown in Figure 11-48, which are used in conjunction with a 70-�
transmission line.
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Figure 11-48 Load lines for Problem 11-13.
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We have already discussed the impact of Moore’s law, which drives the interchip
data bandwidth to continually increasing performance levels. We have also shown
that nonideal aspects of transmission lines, such as crosstalk and losses, can have
a significant impact on signal integrity and timing. These impacts dominate at
multi-Gb/s speeds, causing “smearing” of signals so that their energy is spread
over multiple bit positions, a phenomenon known as intersymbol interference
(ISI). The impact of ISI is an increase in the jitter that degrades the timing
margin and a distortion in the signal levels that degrades the voltage margin of
the interchip signaling link. Equalization is a circuit technique that reduces the
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ISI-induced timing jitter and voltage margin loss by compensating for nonideal
aspects, in particular the loss of interconnects at high speed.

In this chapter we adopt a communications channel–based approach to analyz-
ing our signaling interfaces. Communications engineers view the I/O circuits and
the interconnect (also known as the channel ) as filters, as shown in Figure 12-1.
In previous chapters we noted the low-pass filtering effect of the I/O and inter-
connect. By viewing the system as a series of filters, including the equalizer, we
can determine the desired characteristics for a given equalizer.

12.1 ANALYSIS AND DESIGN BACKGROUND

Before considering equalization analysis and design, we must cover some
necessary background material. We first offer some motivation for employing
equalizers in high-speed signaling systems by examining the requirements for
maximizing data transfer rates. We then present the notion of linear time-invariant
(LTI) systems and show how to use their characteristics to analyze the behavior
of high-speed signals. Finally, we contrast the characteristics of an ideal
interconnect with that of a physically realizable interconnect.

12.1.1 Maximum Data Transfer Capacity

Shannon’s capacity theorem [Shannon, 1949] describes the upper limit on the
information rate that can be transmitted over a communications channel. The
theorem is widely accepted in the scientific community and has never been
exceeded in practice. We provide a heuristic derivation of the capacity equation
with the motivation of developing an understanding of how closely we can
approach the theoretical maximum with conventional interconnects, and we then
demonstrate how equalization techniques allow us to come closer to achieving
the maximum rates.

We start by defining the data transfer rate in bits per second as the product
of the number of symbols transmitted per second (S) and the number of bits per
symbol (B):

D = SB (12-1)

The symbol transfer rate is related directly to the channel bandwidth by the
Nyquist rate [Nyquist, 1928]:

S = 2BW (12-2)

where BW is the bandwidth in hertz. To develop an intuitive feeling for
(12-2), consider a simple binary nonreturn-to-zero (NRZ) signaling scheme. In
Figure 12-2 we show a periodic pulse train with a repetition frequency f and a
random data sequence with the same fundamental frequency. A single symbol is
contained within successive edge positions, each positioned a width of Tsymbol

apart, and the full cycle is twice the symbol width. For the periodic signal, the
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Figure 12-1 Communications channel view of a high-speed signaling interface.
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Figure 12-2 Symbol rate illustration for a binary NRZ signal.

bandwidth of the signal is equal to the repetition frequency.† Thus, we have two
symbols per cycle.

One of the outcomes of Shannon’s work states that the maximum number of
bits per symbol, B, that can be transmitted without error is given by

B = 1

2
log2

(
1 + Ps

Pn

)
(12-3)

where Ps is the average signal power and Pn is the noise power. The quantity
Ps/Pn is also known as the signal-to-noise ratio (SNR). Equation (12-3) assumes
that the noise is Gaussian, meaning that it is constant at all frequencies within
the channel bandwidth, which is a reasonable approximation for digital systems
[Sklar, 2001].

Combining the preceding equations gives the Shannon–Hartley theorem ,
which expresses the maximum data transfer rate in bits per second (b/s) as a
function of the interconnect channel bandwidth and the SNR:

D = BWlog2(1 + SNR) (12-4)

Equation (12-4) shows that we can increase throughput across an interchip
interconnect either by increasing the signal-to-noise ratio or by increasing the

†A real digital signal contains energy at harmonic frequencies above the fundamental, which we can
estimate from the rise time (BW ∼= 0.35/tr ) as derived in Section 8.1.3. In this analysis, however,
we are considering only the fundamental frequency.
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bandwidth of the signal. However, the lossy nature of PCB transmission lines
will tend to nullify the benefit of increasing the signal bandwidth since the
content at high frequencies will be attenuated by the interconnect, thereby
limiting the usable bandwidth. We look to equalization as a technique to counter
the low-pass effect of the transmission-line system so that we can realize the
performance benefit of increasing signal bandwidth.

12.1.2 Linear Time-Invariant Systems

Before discussing the design and analysis of equalizers we need to introduce
the notion of linearity and time invariance. Since our stated intent is to use
equalization to counter the low-pass effect of the transmission lines, we examine
the behavior of the equalizer and the interconnect in the frequency domain. The
assumptions of linearity and time invariance give us the flexibility to analyze the
system in either the time or frequency domain to suit our needs.

In a linear system, the output of the system, y(t), depends linearly on the
input, x(t). Mathematically, this is expressed as

y(t) = f [cx(t)] = cf [x(t)] (12-5)

In addition, linearity also means that the relationship between the input and the
output of the system satisfies the superposition property. That is, if the system
input can be expressed as the sum of multiple input components, x(t) = ∑

i xi(t),
the output is equal to the sum of the output values that are obtained for each of
the input components:

y(t) =
∑

i

f [xi(t)] =
∑

i

yi(t) (12-6)

These are interesting results that we will use many times in analyzing multi-Gb/s
systems, but we have only begun to scratch the surface. Additional aspects of
LTI systems that we will exploit are the notions of the impulse response, transfer
function, and equivalence between the time and frequency domains. In the time
domain, the impulse response of the system, h(t), relates the input to the output
via convolution:

y(t) =
∫ ∞

t=−∞
h(t − τ)x(τ) dτ = h(t) ∗ x(t) (12-7)

where ∗ signifies the convolution operation. The impulse response is the response
of the system to an impulse function. The impulse function δ(t) has the properties
that it is zero everywhere except at t = 0 and that the area under it is equal to 1
(see Figure 12-3):

δ(t) =
{

0, t �= 0
∞, t = 0

and
∫ ∞

t=−∞
δ(t) dt = 1 (12-8)
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Figure 12-3 Impulse function.

Examination of equation (12-7) reveals the convolution operation to be an integral
equation that may be difficult to solve. A simpler alternative is to perform the
operation in the frequency domain, where it becomes a simple multiplication:

Y (f ) = H(f )X(f ) (12-9)

where Y (f ), H(f ), and X(f ) are the frequency-domain representations of
y(t), h(t), and x(t).

We obtain the frequency-domain forms by applying the Fourier transform:

H(f ) =
∫ ∞

t=−∞
h(t)e2πjf t dt (12-10)

where f is the frequency in hertz. Notice that the units of H(f ) will be the units
of h(t) multiplied by seconds. For example, if h(t) is dimensionless, H(f ) has
units of seconds. Restoring results back to the time domain requires application
of the inverse Fourier transform:

h(t) =
∫ ∞

f =−∞
H(f )e−2πjf t df (12-11)

The time–frequency equivalence and the relationships between input and output
are summarized in Figure 12-4. Note that the frequency-domain representa-
tion of the impulse response H(f ) is known as the transfer function . In gen-
eral, the frequency-domain representations will be complex quantities, whereas
time-domain quantities are real.

Example 12-1 Transfer Function for a PCB Differential Transmission-Line Pair
Figure 12-5 shows the transfer function for a 0.381-m-long differential pair on a
printed circuit that has the following characteristics at a reference frequency, f0,
of 1 GHz:

L =
[
3.299 0.407
0.407 3.299

]
nH/cm C =

[
1.098 0.085
0.085 1.098

]
pF/cm

R =
[
509.1 60.63
60.64 509.1

]
m�/cm G =

[
0.131 0.012
0.012 0.131

]
mS/cm
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Figure 12-5 Frequency response for a PCB-based lossy differential transmission-line
pair: (a) magnitude; (b) phase.

The differential transfer function is calculated from equation (6-49) assuming
no reflections and the odd-mode values for the propagation constant using the
method described by Johnson and Graham [2003], which gives

HPCB(f ) = vout

vin
= e−γ (f )l (12-12)
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Figure 12-6 Impulse response for a PCB-based lossy differential transmission-line pair.

where

γ (f ) =
√

[Rodd(f ) + j2πf Lodd(f )][Godd(f ) + j2πf Codd(f )] (12-13)

The frequency-dependent transmission-line parameters in equation (12-13) are
calculated using the causal modeling methodology presented in Chapter 10.
Equation (12-12) assumes that the line is perfectly terminated so that there is
no reflected wave.† The plot in Figure 12-5a shows the magnitude of the transfer
function plotted in decibels:

|HPCB| = 20 log[
√

Re(HPCB)2 + Im(HPCB)2] dB

Figure 12-5b shows the phase angle formed by the imaginary and real compo-
nents:

∠HPCB = tan−1 Im(HPCB)

Re(HPCB)
rad

Figure 12-6 shows the impulse response for the differential pair that was calcu-
lated from equation (12-11).

†The transfer function for a terminated transmission line is equal to

1(
1 + RTx

RRx

)
eγ l+e−γ l

2 +
(

Z0
RRx

+ RTx
Z0

)
eγ l−e−γ l

2

where RTx and RRx are the termination values at the transmitter and receiver, respectively, and
Z0 is the frequency-dependent characteristic impedance. If we assume that RTx = RRx = Z0, the
transfer function becomes 1

2 e−γ l . The differential transfer function will have twice the swing, so that
H(f ) = e−γ l .
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12.1.3 Ideal Versus Practical Interconnects

Now that we can analyze the behavior of a signaling system in either the time
or frequency domain, we are ready to consider the impacts of transmission-line
losses on their performance. Once we have done so, we will be ready to begin
our study of equalization concepts and designs. We begin by examining the
characteristics of an ideal interconnect.

An ideal interconnect channel passes signals from source (transmitter circuit)
to destination (receiver circuit) without distortion. Signal distortion takes two
forms, amplitude distortion and phase distortion. Amplitude distortion results
from the unequal attenuation of the different frequency components of the signal.
Phase distortion is induced by frequency dependence of the propagation velocity,
which causes the phase relationship of the frequency components of the signal
to change as it propagates on the transmission line. Amplitude distortion shows
up clearly in a plot of the transfer function magnitude, while phase distortion is
evident from a plot of the phase of the transfer function versus frequency.

Distortion-free transmission is demonstrated in Figure 12-7, which shows the
transfer function and impulse response for the differential transmission lines of
the example from the preceding section, except that conductor and dielectric
losses have been eliminated and the dielectric permittivity is constant across all
frequencies. Since losses have been eliminated, the magnitude of the transfer
function is equal to 1 (or to 0 dB) at all frequencies. In addition, the impulse
response shows a very sharp peak with almost no tail.

Example 12-2 Maximum Data Rate Capacity of an Ideal Interconnect In this
example we use the Shannon–Hartley theorem to calculate the theoretical maxi-
mum transfer capacity of a channel possessing ideal transmission characteristics
up to a frequency of 10 GHz, with the assumption that the signal transmitted
contains no energy above 10 GHz. Recalling the Shannon–Hartley theorem,

D = BW log2

(
1 + Ps

Pn

)

we see that we have the bandwidth information, but we also need the power
spectral densities for the signal and noise.

We assume that the noise on the channel is white noise, so that it is spread uni-
formly across the entire frequency band [Sklar, 2001]. A reasonable figure for the
noise spectrum in terms of the voltage is Vnoise = 10−7 V · s0.5. The power spec-
trum can then be approximated as Pnoise = V 2

noise = 10−14 V2 · s (since power
is proportional to V2, P = V 2/R). Since our goal is to estimate the theoretical
maximum data rate, we assume that the signal is spread uniformly across the
entire band with a 1-V amplitude. The signal spectrum is equal to

Vs = 1 V√
10 GHz

= 10−5V · s0.5
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Figure 12-7 Transfer function and impulse response for a lossless, dispersionless
PCB-based differential transmission line pair: (a) transfer function magnitude in deci-
bels; (b) transfer function phase in radians; (c) impulse response; (d) impulse response
(close-up).
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The power spectrum of the signal is proportional to Ps = V 2
s = 10−10 V2 · s.

The maximum data transfer capacity is then

D = (10 GHz) log2

(
1 + 10−10V2 · s

10−14V2 · s

)
∼= 133 Gb/s

The assumption of ideal interconnect in this example means that the maximum
data rate is independent of physical length. Since a real system will experience
per unit length signal attenuation that degrades the signal-to-noise ratio, the the-
oretical limit will depend on the length of the transmission line. In addition,
since the attenuation increases with frequency, the calculated capacity can also
be increased by dividing the signal band into subbands, each of which has a
unique SNR. Doing so allows realization of the full benefit of the higher SNR
at low frequencies while using reduced-SNR, high-frequency subbands to carry
some of the data.

The frequency- and time-domain responses shown in Figure 12-7 represent the
desired (ideal) behavior of a high-speed interconnect. Real interconnects, such as
FR4 printed circuit boards, do not resemble the ideal behavior, as Figure 12-8
illustrates. The magnitude plot in Figure 12-8a† indicates that the lossy line from
our previous example attenuates the signal by 50% (−6 dB) at approximately
2.1 GHz, which is the fundamental frequency for a 4.2-Gb/s signal. In the next
section we demonstrate that the loss on this interconnect channel will completely
close the eye of a 4.2-Gb/s data signal.

The phase response in Figure 12-8b also indicates that phase distortion is
significant, and a plot of the propagation velocity in Figure 12-8c reveals an
approximate 9% variation from low frequency up to 4 GHz. Both of these effects
are apparent in a comparison of the impulse response for the ideal and real cases.
Notice that the peak of the ideal impulse response from Figure 12-8d is many
times greater than that of the lossy response shown in Figure 12-8e and the
tail is much shorter in duration. In essence, the ideal interconnect gives a result
that much more closely resembles an impulse function than does the nonideal
interconnect, which attenuates and spreads the signal energy.

Two other aspects of the impulse response plots are worth noting. First, the area
under the ideal impulse response is greater than that of the nonideal response.
Numerical integration of the lossless impulse response gives a value of 1 for
the area. This is the result expected, since the definition of the impulse function
specifies that it has an area equal to 1. On the other hand, numerical integration of
the nonideal interconnect gives a value that is less than 1, which we expect since
the lossy transmission line for the nonideal interconnect attenuates the impulsive
input signal.

†The figure plots the magnitude of the transfer function as a power ratio in decibels as
20 log[H(f )/H0], where H (f ) is the voltage transfer function at frequency f and H0 is equal
to 1.
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Figure 12-8 Comparison of ideal versus practical interconnect response in both the
time and frequency domains: (a) transfer function magnitude; (b) transfer function phase;
(c) propagation velocity; (d) ideal interconnect impulse response; (e) nonideal interconnect
impulse response. (Continued)
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Figure 12-8 (Continued )

The second feature that we note is the oscillatory nature of the impulse
response for the ideal interconnect. This is due to the fact that the ideal intercon-
nect essentially behaves like an ideal rectangular filter with a minimum frequency
at zero and a maximum frequency fmax. The impulse response of an ideal rect-
angular filter is given by the sinc function [Sklar, 2001], which is shown below
and in Figure 12-9.

h(t) = 2fmax
sin[2πf (t − t0)]

2πf (t − t0)
= 2fmax sinc 2πf (t − t0)
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12.1.4 Equalization Overview

Our study of high-frequency interconnects has established that they typically
impart a low-pass effect on high-speed signals, which causes amplitude and
phase distortion. The typical result is that the interconnect channel closes the data
“eye.” An eye diagram is constructed by superimposing numerous consecutive
bits in a data stream. The opening of the eye is a metric often used to judge the
quality of the signal integrity; an open eye generally indicates a recoverable bit
stream, and a closed eye indicates a distorted bit stream that is not recoverable.
The eye diagram is discussed fully in Chapter 13. Figure 12-10a shows an open
eye at the output of a transmitter. Figure 12-10b shows the eye at the receiver
after the data stream has propagated across a lossy interconnect. Note that the
interconnect has reduced the area of eye opening dramatically. To develop our
conceptual understanding further, we consider the waveforms in Figure 12-11.
Figure 12-11a shows the transmitter output for a bit pattern that contains sections
with alternating logic levels for each consecutive bit, along with sections that
maintain a given logic level for multiple bit positions. As a result, the signal
power spectrum spans a wide range of frequencies, with significant content from
dc to beyond the 5-GHz fundamental frequency. The high-frequency components
get attenuated much more severely than do the low-frequency and dc components,
as Figure 12-11b demonstrates. A bit pattern of alternating logic states (101010)
will have a fundamental frequency that is higher than that of bit patterns that
have fewer transitions (such as 110011001100).

Since losses increase with frequency, bit patterns that have a higher frequency
content will be attenuated more. In other words, for fast bit patterns, the time it
takes for the signal to “charge up the interconnect” and transition to its maximum
value is greater than the switching rate of the transmitter. This is the intersymbol
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Figure 12-10 Example interconnect channel impact on a 10-Gb/s data eye: (a) trans-
mitter output; (b) receiver input.

interference (ISI). Since the disparity of losses between low and high frequencies
is what causes ISI, the slope of the loss curve tends to outweigh its magnitude.

We want the equalizer to counter the low-pass effect of the interconnect, which
causes the high-frequency signal content to be attenuated much more severely
than the low-frequency content. Thus, the desired operation of the equalizer is to
amplify the signal in such a way as to perfectly counter the attenuation at each
frequency. This is expressed mathematically as

Heq(f ) = H−1
channel(f ) (12-14)

Simply stated, the ideal equalizer has a transfer function that is the inverse of the
channel transfer function, making it a high-pass filter. Figure 12-12 illustrates
this concept, showing that the ideal equalizer counters not only the ampli-
tude distortion caused by the interconnect, but the phase distortion as well. As
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Figure 12-11 Example interconnect channel impact on a 10-Gb/s signal waveform:
(a) transmitter output; (b) receiver input.

Figures 12-13 and 12-14 demonstrate, an idealized equalizer would completely
reverse the effects of the interconnect, restoring the signal to its original form,
exactly matching the waveform and eye at the transmitter output.

In practice, power and device count limitations make the design of a perfect
equalizer impractical. However, we do not require ideal implementation in order
to realize the benefits of equalization, as we shall see in the remaining sections
of this chapter. In subsequent sections we explore the design, operation, and
limitations of the different types of equalizers that find use in multi-Gb/s sig-
naling systems now and in the future. Equalization is an area in which there is
considerable ongoing research and one that has many possible implementations.
Although we present some representative examples, the nuances of equalizer
design implementations are beyond our scope. Instead, we focus on developing a
solid understanding of their behavior in terms of fundamental building blocks so
that we may use them effectively to maximize the performance of our signaling
systems.

12.2 CONTINUOUS-TIME LINEAR EQUALIZERS

Continuous-time linear equalizers (CTLEs) are analog in nature, operating con-
tinuously as the name implies. This is in contrast to discrete-time equalizers,
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Figure 12-12 Transfer function of an ideal equalizer: (a) magnitude; (b) phase.

which we discuss in subsequent sections. CTLEs do not require digital devices
for implementation but are constructed from simple analog components, both
passive (resistors, capacitors, inductors) and active (amplifiers). In this section
we use the CTLE to expand on our previous discussion of equalizer behaviors,
and we develop an understanding of their operation through the presentation of
some representative designs.

12.2.1 Passive CTLEs

An example of a passive CTLE is shown in Figure 12-15. As the name suggests,
this type of equalizer does not amplify any components of the signal that pass
through it. Instead, to achieve the desired high-pass effect the equalizer attenuates
the low-frequency signal components. The main sections of the equalizer are the
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Figure 12-13 Waveform showing the restoration of the lossy signal from Figure 12-11
after processing with an ideal equalizer.
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Figure 12-14 Impact of an ideal equalizer on the data eye from Figure 12-10.
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termination, high-pass filter, and dc power-limiting filter. Termination is provided
by the single resistor RT T , which is matched to the transmission-line impedance.
The high-pass filter is composed of the parallel capacitance and resistance, CHP

and RHP, whose values are chosen to give the desired frequency response. Finally,
CL and RL prevent the system from dissipating excess power at dc while pro-
viding a high-frequency path for the termination. The transfer function for this
circuit is

Heq(f ) = ZL

RT T + ZHP + ZL

(12-15)

where

ZL(f ) = RL

1 + j2πfRLCL

(12-16)

ZHP(f ) = RHP

1 + j2πfRHPCHP
(12-17)

From (12-15) through (12-17) we can plot the frequency response of the
equalizer, which is shown in Figure 12-16 for RT T = 100 �, RHP = 5 k�,
CHP = 100 fF, RL = 2.5 k�, and CL = 20 fF. In addition to the equalizer, the
figure shows the transfer function for the printed circuit board interconnect from
Example 12-1 and the combined response of the PCB–equalizer system. From
the transfer function we see that compared to the PCB alone, the passive equalizer
reduces the overall loss variation between dc and 10 GHz by 5.2 dB. The signifi-
cance of this reduced variation between minimum and maximum signals becomes
apparent when we consider that 6 dB of loss at the fundamental frequency is
sufficient to close the eye completely (see Figure 12-17). This means that if the
slope of the loss curve is such that high-frequency bit patterns (101010) are
attenuated 6 dB or more relative to low-frequency bit patterns (111000111000),
the eye will close. To comprehend the benefit of equalization, consider
Figure 12-16a, which shows that the magnitude of the equalized channel is more
lossy, but the total variation in the loss decreased from −18.3 dB to −23.5
dB. The reduction in the loss variation in our example doubles the frequency
at which the eye closes completely from approximately 2 to 4 GHz. The
nonequalized eye will close at −6 dB, and the equalized eye will close when
there is −6 dB of variation from the −7-dB peak. Thus, the equalizer provides
an increase in usable bandwidth simply by flattening the slope of the loss curve
that will allow us to extract more performance from the system by running
at a substantially higher data rate. Assuming that the noise power spectrum
is unaffected by the equalizer, the Shannon–Hartley theorem predicts that the
equalizer would allow a doubling of the maximum data rate. In terms of the
expected performance demand trend, an equalizer can extend the useful life of a
given interconnect by approximately two years. (Of course, the exact benefit for
a given system will depend on the specifics of the channel loss characteristics,
the equalizer design, and actual performance demand.)
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Figure 12-16 Passive CTLE transfer function: (a) magnitude; (b) phase.

The other impact of the equalizer is that the overall swing is reduced in order to
achieve the reduction in minimum-to-maximum loss for the system. This “flatten-
ing” of the magnitude of the frequency response is a good qualitative way to view
the benefit of equalization. Even though we reduce the maximum signal swing of
the system, we realize a net gain because we have reduced the variation between
the maximum signal swing (low frequency) and the minimum signal swing (high
frequency). Figures 12-17 through 12-19 each illustrate this concept in slightly
different ways. In Figure 12-17 we see that a 6-dB loss is sufficient to completely
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Figure 12-17 Impact of 6-dB loss on the eye for a sinusoidal signal: (a) lossless; (b)
6-dB loss.

close the eye of a sinusoid. Note that we chose a 1-V swing, 1-GHz signal for
illustration, but that the 6-dB rule is independent of swing and frequency. What
does depend on frequency is where the 6-dB loss point actually occurs.

Figure 12-18 portrays the eye diagram for a 10-Gb/s signal traveling across
the 0.381-m-long differential PCB transmission-line pair from Example 12-1.
Given a 500-mV signal swing and a 300-bit random sequence at the transmitter
output, we find that the eye at the receiver in Figure 12-18a is completely closed.
Figure 12-18b shows that the equalizer improves the situation considerably, pro-
viding an eye opening of approximately 55 ps and 40 mV. Comparison of the
eyes shows that the equalizer reduces the maximum signal swing from 430 mV
at the receiver (Figure 12-18a) input to 250 mV at the output of the equalizer
(Figure 12-18b).
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Figure 12-18 Received eye diagram with passive CTLE (a) before and (b) after
equalization.

Finally, Figure 12-19a shows the signal waveform for the same bit pattern as
in Figure 12-11a. The waveform at the receiver in Figure 12-19b shows the nature
of the behavior that leads to the closed data eye. The signal shows a maximum
range of approximately −210 mV to approximately 200 mV. However, the mini-
mum swings for the low-to-high and high-to-low transitions reach only 5 mV and
−5 mV, respectively. So for this abbreviated bit pattern, there is only a 10-mV
eye opening. A longer bit sequence will further degrade the eye to the point
where it is completely closed. Moving to the passively equalized signal in
Figure 12-19c reveals a maximum range of approximately −105 mV to approx-
imately 125 mV. The minimum swings for the low-to-high and high-to-low
transitions reach 30 mV and −20 mV, respectively. So while the equalizer reduces
the maximum signal swing from 410 mV to 230 mV, it increases the minimum
eye from 10 mV to 50 mV. Clearly this is a favorable trade-off.

Before moving to discussion of additional CTLE design options, we pause
to note that the transfer function for our passive equalizer does not come close
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Figure 12-19 Example signal waveforms with passive CTLE: (a) transmitter output;
(b) received input; (c) equalized output.

to providing perfect equalization (compare Figures 12-12 and 12-16). However,
the equalizer compensates sufficiently for the loss of the 0.381-m PCB trace to
increase the eye height by more than 400% for a 10-Gb/s data signal (from 10
to 50 mV).

Another example of a passive equalizer from Sun et al. [2005] based on a
high-pass RLC filter is shown in Figure 12-20. In this case we show versions
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Figure 12-20 Alternate passive CTLE implementation: (a) single-ended; (b) differential.

for both singled-ended and differential signals. Analysis of this equalizer is left
as a problem at the end of the chapter. Passive equalizers offer the advantage
of improved performance with no additional power consumption. In addition,
multi-Gb/s data rates drive smaller, higher-frequency passive devices, making
integration into the silicon an attractive design option. However, they demand
tighter control of the components values than for typical digital applications.
In addition, the frequency response of passive equalizer circuits is not directly
tunable without additional active control circuitry, which will tend to degrade the
power benefit.

12.2.2 Active CTLEs

Equalizers can also be constructed with active components (amplifiers) to provide
some signal gain. This type of equalizer is often done using a split-path approach,
as shown in Figure 12-21 [Liu and Ling, 2004]. The incoming signal is fed into
a unity-gain path and a high-frequency boost path, which are then summed to
create the output. The transfer function for this equalizer is

H(f ) = 1 + R2/R3

1 + 1/2πf R1C1
+ 1 (12-18)

The high-pass filter has a voltage gain of 1 + R2/R3, with a corner frequency
equal to 1/R1C1. The equalizer transfer function for a high-pass filter voltage
gain of −3.5 dB and a 5-GHz corner frequency is plotted along with that of the
passive equalizer in Figure 12-22. The magnitude plots for the two equalizers
show a very similar shape, with an offset of approximately 5 dB. The resulting
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data eye for the equalized 200-bit random pattern is shown in Figure 12-23.
As expected, the equalizer gives an open data eye with approximately twice the
signal amplitude and eye height than those of the data eye from the passive
equalizer in Figure 12-18.

A potential source of confusion that merits discussion is the use of power gain
versus that of voltage gain. In our transfer function plots, we use power gain.
Since power is a function of the square of the voltage (or current) signal,

gainpower(dB) = 10 log
Pout

Pin
(12-19)

Conversely, amplifier manufacturer datasheets often specify gain in terms of the
voltage:

gainvoltage(dB) = 20 log
Vout

Vin
(12-20)

The moral here is that when working with gain figures, be sure to know whether
you are dealing with voltage or power gains, as mixing the two can lead to
erroneous results.

Active CTLEs provide gain, so they must dissipate some power, although
careful design can keep the power to less than 10 mW. In addition, active CTLEs
can be designed using higher-order high-pass filters, but the performance gain
typically may not justify the additional power consumed depending on the channel
response of the specific application. The active CTLE has some fundamental
limitations, notably the limited bandwidth of the amplifier and phase mismatch
between the two amplifier paths. For example, Kudoh et al., [2003] show −3-dB
bandwidths of 3 GHz for a conventional feedback amplifier and 10 GHz for an
improved design. Finally, tailoring the frequency response and the gain of the
filter requires the inclusion of additional control circuitry, just as it did with the
passive equalizer.

12.3 DISCRETE LINEAR EQUALIZERS

In Section 12.2 we dealt with equalizers that were completely analog in nature.
Contemporary high-speed components such as microprocessors, graphics proces-
sors, or memory controllers are manufactured using processes that are highly
optimized for digital circuit applications. Whereas the equalization problem is
very analog in nature, the discrete linear equalizer makes use of a combination
of digital and analog techniques. This allows us to better utilize the economies
of scale provided by Moore’s law, thus satisfying the performance demand at
minimum cost. As such, they find wider use in computing equipment than do
their analog counterparts.

The linear time-invariant nature of our signaling system has another aspect that
we have not yet covered that will give us flexibility in implementing equalizer
solutions. In particular, the response of an LTI system does not depend on the
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Figure 12-23 Eye diagram results for the active equalizer.
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Figure 12-24 Equalizer location options: (a) in the interconnect channel; (b) integrated
into the receiver; (c) integrated into the transmitter.

order in which the filtering operations are carried out. This allows us to locate
the equalizer within the system to meet our needs, as Figure 12-24 shows. To
minimize the cost of the system, the equalizers are typically integrated with the
transmitter circuits or receiver circuits, as demonstrated by Figure 12-24b and c.
Although the location of the equalizer does not matter in theory, we will see that
there are trade-offs associated with placement that affect design decisions.
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Figure 12-25 Finite impulse response filter.

12.3.1 Transmitter Equalization

The basic architecture of a discrete linear equalizer is the transversal filter , also
known as a finite impulse response (FIR) filter , which is shown in Figure 12-25.
In the figure the rectangles represent delay elements, such as the stages of a
shift register. The circles represent the filter taps . In this filter, input samples
(typically, voltage samples), xk , propagate through the delay elements, each of
which has a delay value of T , which is also known as the tap spacing . At each
stage, the input samples are multiplied by the filter tap coefficient, Ci , where
i is simply the index into the tap subscripts. With each cycle the outputs from
the taps are then summed to provide the filter output, yk . In effect, the current
and past values of the signal are linearly weighted with the equalizer coefficients
(also known as tap weights) and then summed to produce the output.

The figure shows a total of 2N taps in the filter, numbered from −N to N .
The main contribution comes from the cursor tap, C0. This tap is intended to
amplify the main portion of the signal. Filter taps with negative coefficients are
known as precursor taps; those with positive coefficients are called postcursor
taps . Figure 12-25 shows symmetry in the number of precursor and postcursor
taps, but equalizers are typically designed with unequal numbers of precursor and
postcursor taps. Precursor taps compensate for dispersion-induced phase distor-
tion, which typically requires only a single tap. Postcursor taps compensate for
the ISI caused by amplitude distortion and may require multiple taps, depending
on the length of the channel with respect to the width of a data bit.

The output of the equalizer, y(k), is expressed as the discrete convolution of
the input signal, x(k), with the equalizer filter coefficients:

y(k) =
N∑

k=−N

x(k − n)cn (12-21)

where k is the sample number of the discretely sampled signal (i.e., the time
position of a given sample is tk = kT , where T is the tap spacing of the equalizer).
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Example 12-3 Transmit DLE Operation To further develop our understanding,
we step through operation of the discrete linear equalizer shown in Figure 12-26
for the case in which it is presented with a lone pulse input of 600 mV amplitude
and 1 ns width. For this example we use a tap delay T of 1 ns and the following
values for the tap weights: C−1 = −1/12, C0 = 2/3, C1 = −1/6, and C2 = 1/12.

1. The pulse arrives at the input to the filter, where it is multiplied by C−1,
generating a precursor pulse of −50 mV amplitude and 1 ns duration.

2. After a delay of 1 ns, the pulse appears at the second tap and is multiplied
by C0, generating a 400-mV 1-ns cursor pulse.

3. One nanosecond later, the pulse is at the third tap, where it is weighted
with C1, generating the first postcursor pulse of −100 mV amplitude and
1 ns duration.

4. After an additional 1-ns delay, the input comes to the final tap, where
it undergoes multiplication with C2, creating a +50-mV, 1-ns postcursor
pulse.

The summing element operates during the entire sequence. Since our input is
a lone pulse, the signal inputs to the filter taps on either side of our pulse do
not generate any “echoes,” so that the output from the equalizer is a linearly
weighted time-delayed version of the original input, as Figure 12-26b shows.

Equalization at the transmitter is often called transmitter preemphasis to reflect
the effect of the filter operation. As we have discussed, the function of the
equalizer is to provide a high-pass filtering effect to the signal. In a digital
signal, the highest-frequency content is contained in rapid transitions between
logic states, while low-frequency content is contained in portions of the signal
that do not make transitions. The manifestation in a discrete linear equalizer is
increased amplitude for the first bit after a logic transition relative to successive
bits. This effect is shown in Figure 12-27 for a 500-mV transmitter with 20%
equalization:

vmax.swing − vmin.swing

vtotal swing
× 100 = 500 mV − 300 mV

500 mV
× 100

= 20% = −13.97 dB

The full signal swing occurs for the case when the signal transitions between logic
states for at least two successive bit positions. It ranges from −100 mV on the
low side to 400 mV on the high side, for a total of 500 mV. To find the minimum
swing we look at the waveform regions that contain multiple consecutive zeros
(0 mV) and 1’s (300 mV). The variation in swing from 500 mV maximum to
300 mV minimum corresponds to 20% equalization.

High-speed signaling systems typically use as much drive current as possible in
order to maximize speed, the limitation being the maximum voltage swing that
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Figure 12-26 Transmitter equalization filter operation: (a) propagation through the filter;
(b) output signal creation.

the process will support. Leading-edge digital silicon manufacturing processes
are pushing the maximum swing below 1.0 V. As a result, designers most often
implement transmit equalization by attenuating the low-frequency bits rather than
by amplifying the high-frequency bits. This is often called deemphasis rather
than preemphasis, to reflect the fact that the equalization is done by reducing the
amplitude of the repetitive bits.

The maximum signal swing limit (for both pre- and deemphasis) places a
constraint on the coefficient settings for an equalizer according to

∑
i

|ci | = 1 (12-22)
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Figure 12-27 Example preemphasized transmitter output.

Satisfying the equation guarantees that the output signal swing does not exceed
the maximum swing that the manufacturing process can accommodate.

Having developed an understanding of transmitter preemphasis operation, we
can turn to the questions of how many taps are needed to equalize a given system
and how to determine the coefficient settings. We begin the discussion with an
example.

Example 12-4 Effect of the Number of Taps for a 10-Gb/s Interface We com-
pare the performance of the 0.381-m-long differential pair operating at 10 Gb/s
for different numbers of equalizer taps. Once again we use the PCB interconnect
from Example 12-1, which has the following odd-mode quantities at a refer-
ence frequency, f0, of 1 GHz: C = 1.184 pF/cm, L = 2.892 nH/cm, R = 448.2
m�/cm, and G = 0.144 mS/cm. We drive the interconnect using a ±2.5-mA
0.5-pF differential transmitter with perfect termination. Without equalization the
worst-case eye at the receiver for the system shown in Figure 12-18b is closed
completely (eye height = −34 mV), as calculated using the peak distortion anal-
ysis method (see Chapter 13).

Simulated results for a number of equalizer configurations are shown in
Figure 12-28. Conservative timing and voltage specs for a 10-Gb/s differential
system would require approximately 65 ps and 80 mV minimum at the receiver,
and we use them to assess the adequacy of the equalizer designs.

In calculating the response of the equalizer, we use the expression for the
transfer function of the equalizer (the derivation of which is left as a problem at
the end of the chapter):

H(f ) =
Npost∑

k=−Npre

cke
−j2πf (k−Npre)T (12-23)
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Figure 12-28 Worst-case received eyes as a function of equalizer design for
Example 12-4.

The results for two tap designs (cursor tap, co, plus one postcursor tap, c1) are
connected via lines on the figure and show that a two-tap design will meet the
specs proposed when the postcursor tap coefficient (c1) is −0.25. In fact, the
effectiveness of the equalizer increases up to a value of approximately −0.30 to
−0.32. Beyond that, the eye margin begins to degrade. The question of which
coefficient value works best will depend on whether voltage margin or timing
margin is more important to the design. If we were to assume that they are equally
important, we could evaluate the results by calculating the product of the eye
height and width. This trend is plotted in Figure 12-29 for the two-tap equalizer,
which shows that −0.31 gives the best results for this criterion, providing a
minimum eye height of 101 mV and width of 76 ps.

Figure 12-28 also shows that adding taps can improve the voltage and timing
margin, although it will not necessarily do so. In particular, the addition of
a second postcursor (c2) tap offers very little benefit, as shown in the figure.
Adding a precursor tap (c−1) provides incremental improvement in the eye size
(101 mV, 83 ps). With a third postcursor tap the eye increases to 109 mV and
81 ps. All of these results assume that we can optimize the equalizer coefficients
with a step size (granularity) of 0.01. Note that all equalizer configurations meet
the criteria specified by equation (12-22).
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Figure 12-29 Worst-case eye trend for the two-tap equalizer for Example 12-4.

In summary, the two-tap equalizer is capable of meeting the voltage and
timing specs proposed, with some room for adjustment. Addition of a precursor
improves the margins by 7.5% for eye height and 3.8% for eye width. Addition
of the additional postcursor taps provides an additional 2.4% increase in eye
width but no improvement in eye height.

The final step in this example is to use the results to decide how many taps
to include in the equalizer design. The two-tap design provides a sufficient eye
to meet the design specs, and it can be implemented with a very simple design.
In general, designers will choose the simplest equalizer design that meets the
requirements for a given application. In our case, the two-tap equalizer will work
just fine. Longer channels will typically have more attenuation, causing the ISI to
intrude on additional postcursor bit positions and may therefore require additional
equalizer taps. Higher data rates may also require more taps.

12.3.2 Coefficient Selection

At this point the question of how to determine the tap coefficients seems appropri-
ate to consider. In this section we present a method that can be used to establish
coefficient values based on specific performance criteria. The method, called a
zero forcing solution (ZFS), sets the tap coefficients to force the equalizer output
to match the values desired at all sample points. [Qureshi, 1985; Sklar, 2001].
Development of the algorithm follows.

Given a pulse response input to the equalizer, we start by extracting samples
from the input stream xi , where i runs from −npre to npost, with npre being
the number of precursor taps and npost the number of postcursor taps in the
equalizer. This gives a total of npre + npost + 1 samples. We can express the
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input samples in matrix form:

x =




x(0) x(−1) · · · x(−npre) 0 · · · 0

x(1) x(0) · · · x(−npre + 1) x(−npre) 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. 0

x(npost) x(npost − 1)
.
.
. x(−npre + 1) x(−npre)

0 x(npost)
.
.
. x(−npre + 2) x(−npre + 1)

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 · · · x(npost) x(npost − 1) · · · x(0) x(−1)

0 · · · 0 x(npost) · · · x(1) x(0)




(12-24)

The columns of x represent the taps of the equalizer and the rows represent con-
secutive time steps with an interval between steps that is equal to the tap spacing
of the equalizer. The matrix is square with npre + npost + 1 rows and columns. In
this form, x shows the propagation of the input samples through the equalizing
filter. For example, x(0) appears in the first row and the first column, which
indicates that it is at the first tap at the first time sample. It also appears in the
second row and second column, which corresponds to the second tap and second
time sample. This is exactly what we expect for a discrete linear equalizer.

In matrix form, equation (12-21) is written

y = xc (12-25)

where y is the vector containing the output from the equalizer and c is the
vector of equalizer tap coefficients. The number of elements in both y and c is
npre + npost + 1. We have essentially expressed the discrete convolution of the
data stream and equalizer as a matrix multiplication, which we now apply to our
problem.

By transmitting a lone pulse, we define the expected output results from the
equalizer according to Nyquist’s first method for the elimination of ISI [Nyquist,
1928; Couch, 1987]:

ytarget =
{
0 for k �= 0
1 for k = 0

(12-26)

In (12-26) the expected value is 1 for the cursor sample and zero for all others.
The equalizer coefficients that give the zero forcing solution are then

cZFS = x−1ytarget (12-27)

The coefficients calculated are not constrained by power or by the maximum
signal swing that can be achieved. Application of such constraints requires that
the coefficients be adjusted using equation (12-22), as we illustrate next.
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Example 12-5 Zero Forcing Solution We wish to find the coefficients for an
equalizer with a single precursor tap and three postcursor taps that give the zero
forcing solution for the PCB differential pair from Example 12-1 when operating
at 10 Gb/s. In Example 12-3 we saw that the worst-case eye height without
equalization is −34 mV for this interconnect. Using the 5-mA transmitter from
our earlier example gives a differential swing of ±250 mV. The driving pulse is
100 ps wide, corresponding to a single bit of data in a 10-Gb/s data stream.

From the simulated differential pulse response in Figure 12-30, we extract the
input sample vector for a tap spacing of 100 ps:

xin =




−214
−20

−152
−213
−232


 mV

The expected output from the equalizer with npre = 1 and npost = 3 is

ytarget =




0
1
0
0
0




In order to apply equations (12-26) and (12-27), we must apply a level shift to
the differential signal so that the minimum output voltage at the transmitter is
zero. We do this by adding one-half of the differential swing (250 mV) to the
input vector to produce an adjusted input sample vector:

−300

−250

−200

−150

−100

−50

0

6800 7300 7800 8300

V
ol

ta
ge

 (
m

V
)

Time (ps)

Figure 12-30 Differential pulse response before equalization for Example 12-5.
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xin,adj =




36
230
97
37
18


 mV

We then construct the input sample matrix and calculate the equalizer coeffi-
cients:

x =




230 36 0 0 0
97 230 36 0 0
37 97 230 36 0
18 37 97 230 36
0 18 37 97 230


 mV

c = x−1ytarget =




−0.77
4.93

−1.98
0.14

−0.13




We apply the maximum signal swing constraint by using equation (12-22) to
adjust the equalizer coefficients:

cZFSi
= ci∑ |ci | =




−0.097
0.624

−0.250
0.017

−0.016




Figure 12-31 shows the resulting equalized pulse response, which demonstrates
the effect of the zero forcing equalizer. Since the width of the nonequalized
pulse in Figure 12-30 is much wider than a single bit (which is 100 ps wide),
significant ISI is expected. The equalized pulse response is much more narrow and
the ISI has been removed (i.e., forced to be zero) at the equalizer sample points.
However, the figure also reveals the fact that the ZFS approach eliminates the ISI
only at the sampling points that correspond to the equalizer taps. The equalized
pulse shows ISI in the intervals between the sample points and at sample points
outside the equalizer.

The simulated output from the ZFS equalizer in Figure 12-32 shows an eye
opening of approximately 110 mV and 85 ps for a 300-bit pseudorandom bit
sequence. In addition, the worst-case data eye calculated from peak distortion
analysis on the equalized pulse response is 107 mV high and 80 ps wide. As we
can see, the zero forcing equalizer provides significant improvement in this case
over that of the nonequalized channel.
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Figure 12-32 Equalized differential data eye for Example 12-5.

The chief limitation of the zero forcing approach is that for a finite-length
equalizer, minimization of the ISI is guaranteed only if the eye is initially open, a
condition that is not necessarily true for long, lossy channels such as backplanes.
An approach that avoids the limitation of the ZFS algorithm is the minimum
mean-square error (MMSE) algorithm. This approach sets the equalizer coeffi-
cients such that the mean-square error of the ISI is minimized at the output of
the equalizer. Examination of the MMSE equalizer is left for Problem 12-7, and
a thorough treatment of both the ZFS and MMSE methods is given by Proakis
[2001].
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12.3.3 Receiver Equalization

As we showed in Section 12.1.2, the equalizer may be located anywhere in the
channel under the LTI assumption. Although equalization is often implemented
at the transmitter, it may also be done at the receiver. The main reason that
discrete linear equalizers are most often located at the transmitter is ease of
implementation. Figure 12-33 provides a block-level diagram of a discrete linear
equalizer implementation at the receiver which shows that the equalizer looks
like the transmit equalizer with the addition of a sample-and-hold circuit on the
front of the equalizer (represented by the switch in the figure). The input to the
receiver equalizer is an analog voltage waveform rather than a binary data pattern.
In addition, transmitter equalization can be accomplished in a straightforward
manner by using a multiplexer to multiply the tap coefficient by the bit value.
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Figure 12-33 Receiver equalization filter operation: (a) propagation through the equal-
izer; (b) output signal creation.
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Figure 12-34 Noise enhancement in a linear equalizer.

12.3.4 Nonidealities in DLEs

Thus far we have assumed that the equalizers operate with ideal characteristics
in our analysis. Of course, since real implementations will not behave in an
ideal fashion, we offer a brief discussion of the limitations of discrete linear
equalizers. We begin by pointing out that a practical equalizer implementation
has limited resolution on the tap coefficients. Our previous analysis has assumed
that we can set the tap coefficients with resolution down 0.001. Tap coefficient
values are often set using current digital-to-analog converters (DACs) that bias
the transmitter tail currents [Dally and Poulton, 1997]. Achieving a tap resolution
of 0.001 would entail using a 10-bit binary weighted DAC, which is likely to
consume excessive silicon area and power. As a point of comparison, Jaussi
et al. [2005] used a 6-bit DAC for a four-tap equalizer that achieved 8 Gb/s
over a 102-cm PCB-based channel. Other nonidealities include errors in the
sampled voltage due to sampling jitter and charge leakage, quantization noise of
the analog-to-digital conversion, nonlinearity of the equalizer taps and summing
circuits, and offset currents due by device mismatch. [Jaussi et al., 2005].

Finally, discrete linear equalizers do not distinguish between signal and noise,
so they filter both the signal and noise, as shown in Figure 12-34. As a result,
DLEs do not improve signal/noise ratio. Instead, the performance gain is due
to the increase in usable bandwidth provided by the flattening of the frequency
response, as discussed earlier.

12.3.5 Adaptive Equalization

At intermediate data rates, the equalizer coefficients are often set based on the
average characteristics of the interconnect channel. For example, the PCI Express
interface calls for −3.5 dB of equalization for PCB-based interconnects of up
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to 15 in. in length [Coleman et al., 2004; PCI-Sig 2005]. However, effectively
equalizing channels that may exhibit wide variation in frequency-dependent loss
(e.g., a range of PCB lengths) requires that the equalizer design contain the
flexibility to set the equalizer coefficients adaptively to minimize the ISI. Such
an equalizer, called an adaptive equalizer , was invented by Lucky in 1964 to
improve data transmission rates over telephone lines from 1200 b/s (using non-
adaptive equalizers based on average channel characteristics) to 9600 b/s [Lucky,
2006].

The benefit of adaptive equalization is the flexibility to accommodate a range
of interconnect lengths and/or data rates. It does, however, add significant com-
plexity to the design and consumes more power and chip real estate. A high-level
schematic of the adaptive equalizer structure is shown in Figure 12-35. The intent
of the adaptation is illustrated in Figure 12-36. The figure depicts the deviation
of the equalized signal from desired value as a function of equalizer coefficients.
The deviation is plotted as a set of error contours in which the error is the dif-
ference in the equalized output, y(t), from the training data, ŷ(t). The error is a
convex function of the equalizer coefficients, so that it has a global minimum.
The goal of the adaptive algorithm is to converge on a set of coefficient values
that minimize the error in a small number of iterations. The general approach of
an adaptive equalizer to updating the equalizer tap coefficient is

cnew = cold + (step size)(error function)(input function) (12-28)

The error function is typically based on the difference between the actual equal-
ized signal y and the desired equalizer output �y. The input function is based
on the signal at the input to the equalizer, and step size is a design parameter.
Designers have many options for implementing adaptive equalizers, the range of
which extends beyond our scope. However, we present a pair of examples to
provide some insight into the operation of adaptive equalizers.

The first example is the adaptive implementation of the zero forcing equalizer.
In this approach a known data pattern (a.k.a. training sequence) of equal or larger
length than that of the equalizer is transmitted and equalized. The coefficients
are updated from the equalized results using

ck(n + 1) = ck(n) + �k[ŷ(n) − y(n)]x(n − k) (12-29)

Linear
Equalizer

Coefficient
Update

in

Training Data

x (t ) y (t )

+
∧
y (t )

Figure 12-35 Adaptive linear equalizer.
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Figure 12-36 Adaptive equalization error “contour” and coefficient convergence.

where ck(n) is the value of the kth coefficient at time t = nT , y(n) the equalized
signal, ŷ(n) the training signal, and �k a scaling factor that controls the rate of
coefficient adjustment. The adaptive ZFS approach has the advantage that it is
very easy to implement but has the drawback that it does not comprehend ISI
that occurs outside the length of the equalizer.

Another class of adaptive algorithms is the least mean square (LMS) set of
algorithms. They attempt to minimize the mean square error of the equalizer
output at all times and are commonly used in adaptive equalizers because they
typically achieve better performance than ZFS algorithms and are relatively easy
to implement. An example is the sign–sign least mean square approach [Kim
et al., 2005]. Sign–sign LMS updates the equalizer coefficients based on the
sign of the error of the equalized signal and the sign of the input signal, as
described by

ck(n + 1) = ck(n) + µ sign[y(n) − ŷ(n)] sign[x(n − kT )] (12-30)

where y(n) is the estimated signal (the output from the equalizer), ŷ(n) the
reference signal, x(n − kT ) the input to the equalizer, and µ the scaling factor.

Example 12-6 Adaptive Equalizer Operation We now compare the behavior of
the adaptive ZFS and sign–sign LMS algorithms for a two-tap equalizer (cursor
plus postcursor) as they apply to the same differential PCB channel that we
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have studied in previous examples in this chapter. The input samples and desired
output values are

x = [6, 36, 233, 99, 37, 18, 11, 7, 5, 4, 3, 2, 2, 2, 1] mV

ytarget = [0, 0, 150, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] mV

For the ZFS equalizer we choose � = 12, and for the sign–sign LMS equalizer
we set µ equal to −0.025. Applying equations (12-29) and (12-30) iteratively
gives the results shown in Figure 12-37, which shows the trajectories of each
algorithm in terms of the mean square error of the equalizer output. The mean
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Figure 12-37 Adaptive algorithm convergence for Example 12-6: (a) adaptive ZFS;
(b) adaptive sign–sign LMS.
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square error is calculated as

MSE =
n∑

i=0

[y(i) − ŷ(i)]2 (12-31)

Note that by applying the maximum voltage swing constraint of equation (12-22),
which makes C0 and C1 interdependent for the two-tap equalizer, we make the
optimization problem a function of a single variable.

12.4 DECISION FEEDBACK EQUALIZATION

As mentioned in Section 12.3, the chief drawback of linear equalizers is that
they are not effective at dealing with most types of noise. In this section we
describe briefly a technique, decision feedback equalization, which is effective
at minimizing sources of noise.

The decision feedback equalizer (DFE), as shown in Figure 12-38, is a non-
linear filter that uses previously detected symbols to subtract ISI from the input
stream. As the figure shows, the DFE uses a linear feedforward filter in con-
junction with a feedback filter. The input to the feedback filter consists of the
sequence of decisions from previously detected symbols, which it uses to remove
the portion of the intersymbol interference that was caused by those symbols. This
implies that the DFE can only remove postcursor ISI. In addition, at high data
rates the feedback loop may not be able to respond quickly enough to cancel the
ISI of the first postcursor sample, although the “loop unrolling” technique can
alleviate the problem [Kasturia and Winters, 1991].

Another limitation of the DFE is that it assumes that past symbol decisions
are correct. Incorrect decisions from the symbol detector corrupt the filtering of
the feedback loop. This is the reason for inclusion of the DLE on the front end,
which helps to minimize the probability of error. Using a DFE, the equalized
output is expressed as

yk =
0∑

i=−nDLE

cDLEi
xk−i +

nFBF∑
i=1

cFBFi
bk−i (12-32)

Symbol
DetectorDLE

FBF

xk

yk
bk+

Figure 12-38 Decision feedback equalization.
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where yk is the input to the symbol detector, cDLEi
the coefficients of the feed-

forward filter, cFBFi
the coefficients of the feedback filter, and xk the input to the

DFE. The previously detected symbols, bk , are expressed as

bk =
{
0 if yk < ythreshold

1 if yk > ythreshold
(12-33)

where ythreshold is the decision threshold.
Decision feedback equalization is often used to remove ISI that is caused by

reflections due to impedance mismatch and may also use zero forcing and LMS
adaptive algorithms [Proakis, 2001]. Note that because of the nonlinearity of the
DFE response, it must be modeled in the time domain.

Example 12-7 DFE Operation for a 10-Gb/s Signaling Link We now apply
a DFE to the differential transmission lines that we have used throughout this
chapter. To guarantee successful operation at 10 Gb/s, the system must meet
minimum differential received specs of 80 mV and 80 ps for the height and width,
respectively. Our system, shown in Figure 12-39, uses 5.057-mA current-mode
transmitters with 5 M� output resistance and 0.5 pF output capacitance. The
lines are terminated to ground in 50 �, and the receiver has an input capacitance
of 0.5 pF. The model for the differential pair is generated using the methodology
presented in Chapter 10 from the distributed transmission-line parameters listed
below that were calculated at a reference frequency of 1 GHz:

L =
[
3.299 0.407
0.407 3.299

]
nH/cm C =

[
1.098 0.085
0.085 1.098

]
pF/cm

R =
[

509.1 60.63
60.64 509.1

]
m�/cm G =

[
0.131 0.012
0.012 0.131

]
mS/cm

As the figure shows, the system employs the linear equalizer at the transmitter.
The transmit equalization does not include adaptive capability, and is set based on
an expected channel loss characteristic. However, while the transmit equalizer
coefficients open the data eye, they are too strong for this particular system,

50 Ω
0.381 m

+
−

0.008

5M Ω 0.5 pF

5M Ω 0.5 pF 50 Ω

0.5 pF

0.5 pF

0.020
CFBF  =

0.65

−0.35
CDLE  =

iTx

iTx

FBF
+

+

Figure 12-39 Differential signaling system for Example 12-7.
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leading to overequalization. The DFE taps, on the other hand, are adaptive, based
on the zero forcing criteria for the first two postcursor samples.

Figure 12-40 compares the pulse responses and the worst-case data eyes for
the system without equalization, with the transmitter preemphasis only, and with
DFE. As before, the worst-case data eyes are calculated using the peak distortion
analysis method. The figure shows that without equalization, the data eye is closed
completely. Transmit equalization opens the eye, providing a 96-mV minimum
height and 76-ps minimum width, which meets the specs for eye height but not
for width. The DFE allows the system to meet the specification requirements by
trading off eye height margin by approximately 6% in order to obtain an 11.5%
improvement in eye width. This results in minimum eye height and width of
90 mV and 88 ps.

As in the case of the linear equalizer, further improvements in both eye height
and width are possible with the addition of taps to the DFE. For example, a 10-tap
zero forcing DFE provides a minimum eye of 95 mV and 91 ps. However, since
the system meets the specifications, the additional taps are not likely to justify
the additional design complexity and power that they would add to the design.

12.5 SUMMARY

In this chapter we described the application of equalization to signaling
systems whose performance is limited by intersymbol interference caused by
frequency-dependent interconnect losses. Passive and active continuous linear
equalizers and discrete linear equalizers all reduce ISI by flattening the frequency
response of the interconnect system. By flattening the frequency response,
equalization increases the usable bandwidth of the interconnect, making it
possible to increase data transfer rates. Decision feedback equalizers can further
cancel ISI by using information from symbol decisions as input to a feedback
filter, and adaptive equalization offers a way to improve performance further by
optimizing filter performance based on the data rate and the characteristics of
the interconnect system. Equalization may be incorporated into the transmitter
or the receiver, or is split between both.
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PROBLEMS

12-1 Given the channel transfer function shown in Figure 12-41, calculate the
maximum achievable data rate, assuming a signaling scheme that uses a
10-GHz bandwidth. Use the same signal and noise power spectra figures
as in Example 12-2.
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Figure 12-41 Channel transfer function for Problem 12-1.

12-2 Given the sampled differential voltages at the receiver input and the
coefficients for the discrete linear equalizer shown below, calculate the
values of the output samples:

x =




−246
−190
−31

−165
−218
−235
−242
−245
−247
−248




mV and c =




−0.05
−0.20

0.70
−0.05




12-3 Given the received pulse response below, use the ZFS algorithm to cal-
culate the coefficients for a five-tap discrete linear equalizer that has one
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precursor and three postcursor taps. Calculate the sample values of the
resulting equalized response.

y =




−75
−74
−74
−68

18
−41
−62
−68
−71
−72
−72
−73
−73
−74
−74




mV

12-4 Using the received pulse response from Problem 12-3 and the coefficients
for the DLE and DFE below, calculate the sample values of the equalized
output response.

CDLE =
[

0.65
−0.35

]
CDFE =

[
0.010
0.005

]

12-5 Derive the transfer function for a discrete linear equalizer, starting from
equation (12-21). The time-shift property of the Fourier transform will
prove useful: If y(t) has transform F [y(t)](f ) = Y (f ), then∫ ∞

−∞
y(t − t0)e

−2πjf t dt = e−2πjf t0Y (f )

12-6 Derive the transfer function of the alternate passive equalizer shown in
Figure 12-20.

12-7 An alternative to the ZFS approach is the minimum mean square
error (MMSE) equalizer. Finding the coefficients using the MMSE
requires first calculating the autocorrelation matrix, Rxx = xTx, and the
cross-correlation matrix, Rxz = xTy. The equalizer coefficients are then
calculated as c = R−1

xx Rxz. Use the pulse response input samples from
the Problem 12-3 to calculate the coefficients for a linear equalizer with
one precursor and three postcursor taps using the MMSE algorithm.
Calculate the sample values of the resulting equalized response.

12-8 Given the pulse response in Problem 12-3, calculate the equalizer coef-
ficient progression obtained using the adaptive ZFS algorithm.
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12-9 Given the pulse response in Problem 12-3, calculate the equalizer coeffi-
cient progression obtained using the adaptive sign–sign LMS algorithm.

12-10 Determine the output from a DFE applied to a 1-V signaling system
whose sampled voltages at the receiver are

x =




−0.12
0.9
0.1

−0.05
0.02


V and cDFE =


−0.090

0.030
−0.001
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This chapter ties together the concepts presented in previous chapters with the
intent of providing the reader with a method for managing timing noise and
voltage noise successfully in order to create a successful multi-Gb/s design. We
start by introducing the eye diagram as a tool for evaluating the performance of
a signaling interface, introducing eye width and eye height as key metrics. The
eye diagram is also a fundamental prerequisite to understanding the bit error rate
(BER) of a link. Modern high-speed interfaces are designed to a specified BER
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and data rate, which often determines the amount of voltage and timing noise
allowed on a link. Accordingly, the chapter is centered on the concept of bit
error rate, and we relate each of the analysis techniques described in the chapter
to the BER to provide a useful design methodology.

Following the introduction to bit error rate, we discuss sources of timing
variation, known as jitter , that degrade the eye width, and describe the method
creating a jitter budget. We follow that with a description of the sources of
voltage noise that degrade the eye height, and describe a method for analyzing
and creating a system noise budget. We then present the peak distortion analysis
(PDA) technique for comprehending voltage and timing noise in determining the
worst-case received eye from the pulse response of a high-speed interconnect
channel. In providing a method for determining the maximum jitter and voltage
noise, PDA accounts for intersymbol interference (ISI) caused by losses and
reflections, and for degradation of the data eye due to crosstalk.

13.1 EYE DIAGRAM

Most high-speed designs use the eye diagram to evaluate system performance. We
show an example eye diagram for a 10-Gb/s 100-bit data sequence in Figure 13-1.
An eye diagram is constructed by slicing the time-domain signal waveform into
sections that are a small number of symbols in length, and overlaying them.
The horizontal axis of the eye diagram represents time and is typically one or
two symbols wide, while the vertical axis represents the amplitude of the signal.
Figure 13-2 illustrates the eye diagram construction process for both a “perfect”
eye and one that is distorted by losses and/or reflections.

As the figures show, distortion of the signal causes the data eye to close.
Conceptually, we want the eye to be as “open” as possible, as a larger eye opening
implies that we have more margin to the voltage and timing requirements. From a
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Figure 13-1 Example received eye diagram for a 10-Gb/s 100-bit data sequence.



EYE DIAGRAM 551

0 0 0

10 0

1 10

10 0

1 00

1 10

11 0

1 1 1

Undistorted
Width

0 0 0

10 0

1 10

10 0

1 00

1 10

11 0

1 1 1

Distorted 
Width

U
nd

is
to

rt
ed

H
ei

gh
t

Undistorted 
Width

U
nd

is
to

rt
ed

H
ei

gh
t

D
is

to
rt

ed
H

ei
gh

t

Distortion Free Eye Eye With Distortion

Bit Pattern Bit Pattern

Figure 13-2 Eye diagram construction process and the impact of signal distortion.

quantitative standpoint, the minimum height and width of the data at the receiver
are key metrics for evaluating link performance. The eye must be wide enough to
provide adequate time to satisfy the setup and hold requirement of the receiver,
and have sufficient height to ensure that the voltage levels meet vih and vil

requirements in a system that may possess multiple sources of noise. This allows
the receiver to resolve the input signals successfully into digital values.

Using the eye diagram properly is critical, as we cannot assess performance
simply by comparing the eye diagram to the receiver’s setup and hold window
and vih and vil requirements. In addition to the signal distortion induced by the
interconnect channel, we must also comprehend the variations in the voltage
and timing induced by the clock used to capture data at the receiver and by the
transmitter and transmit clock in order to ensure proper operation. We discuss the
sources of the timing uncertainties (jitter) and voltage uncertainties (noise), and
provide methods for creating jitter and noise budgets in Sections 13.3 and 13.4.
A widely used method for evaluating whether or not the eye meets the system
timing and noise requirements is to apply an eye mask , as shown in Figure 13-3.
The mask represents a forbidden region that the actual eye must not cross, and
it includes the receiver setup and hold window and voltage specs, and all jitter
and noise terms. With it we can evaluate the performance of a given design by
comparing it to worst-case eye obtained using the peak distortion analysis (PDA)
method described in Section 13.5. PDA is a deterministic method for finding the
minimum received eye height and width in a signaling system that has significant
sources of distortion, such as loss, reflections, and crosstalk.

We can also use the eye to estimate the probability of receiving erroneous
bits, which is known as the bit error rate (BER) or bit error ratio. The BER
is expressed as the ratio of the number of erroneous received bits to the total
number of transmitted bits over a sufficiently long interval:

BER(ts , vs) = lim
N→∞

Nerr(ts, vs)

N
(13-1)
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Figure 13-3 Example eye diagram and spec eye mask.

where (ts , vs) represents the relative voltages and times at which the signal is
sampled, Nerr is the number of erroneous bits received, and N is the number of
bits transmitted over the same time interval.

Equation (13-1) suggests that the BER depends on when we sample the data
and at what voltage level (i.e., the sampling point position). By varying the sample
point, we can generate a diagram that consists of a set of contours at a set of
BER values, as shown in Figure 13-4. Ideally, the receiver will sample the data
signal in the center of the eye. However, jitter and noise can cause nonideal data
sampling, which can result in transmission errors. For example, if the receiver
samples in the middle of the data eye, at the point corresponding to 50 mV and
50 ps in the figure, the error rate is less than 1 bit in 100 trillion (10−14). On the
other hand, sampling at the edge of the eye, such as 10 mV and 10 ps, gives a
BER in excess of 1 bit per million (10−6). At a transmission rate of 10 Gb/s, a
BER of 10−14 will produce one error in approximately 2 hours and 45 minutes,
while the 10−6 BER results in 10,000 errors per second! Communicating at high
bit error ratios requires that error detection and correction capabilities be designed
into the I/O circuits, which adds complexity and consumes power. Errors also
degrade performance, as they must be detected and then the data re-transmitted.
We discuss BER estimation in Section 13.2.

As a final thought, we note that the eye diagram applies to both single-ended
and differential interfaces. In the case of a differential interface, the eye diagram
should plot the differential voltage (vdiff = v − v) at the receiver.

13.2 BIT ERROR RATE

13.2.1 Worst-Case Analysis

Historically, timing analysis for signaling interfaces in PC systems has employed
a worst-case methodology. In this approach, all sources of timing uncertainty that
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would degrade the eye opening are treated as bounded sources that do not exceed
a specified amount. An example of an interface design based on the worst-case
approach is the AGP 8X mode interface, which we describe here [Intel, 2002].

The AGP 8X mode is a 533-Mb/s source synchronous interface, which is
shown in Figure 13-5a. The AGP source synchronous transmitter sends a clock
signal along with a group of 16 data signals. The delay line in the transmitting
chip offsets the clock signal by 90◦ from the data signal in order to center it
in the data eye. Source synchronous designs achieve high performance by pre-
serving the clock-to-data phase relationship. Doing so requires that the delays of
the data signals be matched to those of the clock signal, which is accomplished
by using identical transmitters and by matching the interconnect lengths. In the-
ory, the maximum transmission rate of a source synchronous system is limited
only by the setup-and-hold window of the receiver, which is described by Dally
and Poulton [1998]. In practice, however, variation in the delay of the trans-
mitters, interconnects, and receivers will reduce maximum achievable rate to a
substantially lower value. For example, sources of variation in the transmitter
delay include differences in the clock distribution path to the various circuits,
process variation within the chip, and noise. Timing variation terms for source
synchronous interfaces are typically specified as relative delays between the data
and clock signals, so they include variations of each.
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Figure 13-5 AGP 2.0 8X mode source synchronous system timings: (a) system config-
uration; (b) worst-case timing budget.

The worst-case timing equations for the AGP source synchronous link are

tmarSu = UI

2
− �tTxSu − �tchanSu − �tRxSu (13-2)

tmarH = UI

2
− �tTxH − �tchanH − �tRxH (13-3)

where tmarSu and tmarH = timing margins for the setup and hold
conditions (ps)

UI = unit interval, which is the width of a single bit
(ps)

� tTxSu and � tTxH = variation in transmitter delay relative to the
clock path for the setup and hold cases (ps)

� tIntSu and tIntH = variation in interconnect delay relative to the
clock path for the setup and hold cases (ps)

� tRxSu and � tRxH = variation in receiver delay relative to the clock
path for the setup and cases (ps)

At 533 Mb/s, the length of a single bit, known as the unit interval (UI),
is 1875 ps. The AGP 8X specification at the receiver is 85 ps for the setup
case and 210 ps for the hold case. The spec budgets 410 ps for the worst-case
variation of the transmitter delay for the data edge that precedes the clock (the
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setup case), and 460 ps of worst-case transmitter delay variation for the data edge
that follows the clock (hold case). The spec allows for 442.5 ps and 267.5 ps
of interconnect delay variation in the setup and hold cases, respectively. The
timings are depicted graphically in Figure 13-5b. The total window for setup and
hold time at the receiver is 295 ps. This defines a minimum UI that would give
a maximum transfer rate of approximately 3.4 Gb/s if there were no variation in
the transmitter and interconnect delays. However, the transmitter and interconnect
delay variations add a total of 1560 ps to the unit interval, degrading the maximum
transfer rate to the 533 Mb/s final value.

Although the worst case approach treats the sources of timing variation as
though they are bounded, in reality this is a faulty assumption. Some sources,
for example channel induced jitter due to intersymbol interference, are in fact
bounded. Others, however, such as phase-locked loop (PLL) jitter induced by
power supply noise, are random in nature. These sources are not bounded, but
instead typically fit a Gaussian distribution, in which the timing uncertainty is
described by

RJ(t) = 1√
2π σRJ

e−t2/2σ 2
RJ (13-4)

where RJ(t) is the probability of having a timing jitter of t ps due to a random
source and σRJ is the root-mean-square timing uncertainty (a.k.a. jitter) (ps).

With a Gaussian distribution, even very large uncertainties have a nonzero
(although extremely small) probability of occurrence, as Figure 13-6 shows. This
has the consequence of rendering the notion of worst-case timings meaningless.
Instead, we must interpret the timings in terms of the bit error rate, which is really
just a probability that the timing uncertainties exceed the width of the unit inter-
val. The significance of this discussion is that it implies that prior system designs
based on worst-case timings were not really designed to a worst case, since it
has no meaning. Why, then, did these designs work? The truth is that worst-case
timing-based systems were in reality designed to achieve immeasurably low BER.

To illustrate, we examine the mean time between errors for the AGP 8X
interface, assuming a BER of 10−18. The AGP data bus is 32 bits wide, running
at 533 Mb/s. At the specified bit error rate, the mean time between errors would
be approximately two and one-half years for the entire bus (assuming that errors
on different data lines are uncorrelated). The 2.5-year estimate also assumes
continuous operation and 100% bus utilization. If we assume that the system is
a personal computer, and is only in use half of the time, the mean time between
errors increases to five years. If we assume further that the average traffic on
the bus is unlikely to exceed 50%, the mean time between errors increases to 10
years, which far exceeds the expected lifetime of the computer.

13.2.2 Bit Error Rate Analysis

As signaling speeds continue to increase, maintaining sufficient margins to guar-
antee immeasurable bit error rates becomes prohibitive. As a result, high-speed
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plot; (b) semilog plot.

links are moving to a BER-based budgeting approach. Our discussion proceeds
with the premise that future high-speed signaling links will be designed to achieve
a finite bit error rate. As such, we need to develop a method for calculating the
BER from the timing distributions. We start by formulating an expression for the
bit error rate as a function of the distribution of timing jitter:

BER(t) = ρT

∫ ∞

−∞
J (t) dt (13-5)
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where ρT is the transition density, which is the ratio of the number of logic
transitions to the total number of bits transmitted (typically, ρT is equal to 0.5),
and J (t) is the jitter distribution. The equation is the cumulative distribution
function of the timing jitter, which takes into account the probability of actually
making a transition on any given bit (since the jitter will be zero if the signal
remains at a given level).

To calculate the BER we need a model for the jitter distribution. We can
use equation (13-4) for the random jitter sources, but it will not be accurate
for systems that also include deterministic (bounded) jitter sources such as ISI,
as Figure 13-7 demonstrates. In particular, the jitter histograms extracted from
the zero crossing points of the eye show bimodal distributions, which suggests
that the jitter is comprised of a combination of deterministic and Gaussian jitter
sources. So we need a model for deterministic jitter that we can combine with
the Gaussian random jitter model.

Deterministic jitter sources can fit a variety of distributions, examples of
which are shown in Figure 13-11 and described in the next section. In creating
system-level jitter budgets, we employ the dual Dirac model in equation (13-6) to
express the probability density function (PDF) of the deterministic jitter, DJ(t):

DJ(t) = δ (t − DJδδ/2)

2
+ δ (t + DJδδ/2)

2
(13-6)

where DJδδ is the dual Dirac deterministic jitter (ps) and δ(t) is the Dirac delta
function,

δ(t) =
{

0 t �= 0

1 t = 0

As the equation shows, the dual Dirac model, which is widely used in industry,
treats the deterministic jitter as though it is equally distributed at extreme values.
The deterministic jitter in real systems does not fit a dual delta distribution
function. The usefulness of the model is that it allows us easily to combine
the deterministic and random jitter distributions. The reason that the dual Dirac
model works is that we really only need to be accurate in estimating the jitter at
low BER, which is governed by the random jitter. As a result, we can use the
dual Dirac distribution model to shift the “tails” of the jitter distributions (the RJ)
to their proper locations. Conceptually, the dual Dirac model gives us a Gaussian
approximation to the outer edges of the jitter distribution when displaced by DJδδ .
For a more in-depth treatment of jitter distributions and the dual Dirac model,
we refer the reader to a report by Stephens [2004] and a book by Li [2008]. We
provide an example that demonstrates the application of the dual Dirac model in
Section 13.3.

The total jitter PDF, JT(t), is created by convolving the DJ and RJ models:

JT(t) = RJ(t) ∗ DJ(t) =
∫ ∞

−∞

[
1√

2π σRJ
e−t2/2σ 2

RJ

](
t − DJδδ

2
+ t + DJδδ

2

)
dt
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We can use the convolution property of the delta function,
∫ ∞
−∞ f (t)δ(t − a) dt

= f (a), to simplify the total jitter model:

JT(t) = 1

2
√

2π σRJ

[
e−(t−DJδδ/2)/2σ 2

RJ + e−(t+DJδδ/2)/2σ 2
RJ

]
(13-7)

The resulting jitter distribution is bimodal and is composed of a pair of Gaussian
distributions with equal variance (σ 2

RJ) whose mean values are separated by DJδδ .
As an example, we return to the timings for the AGP 8X interface. To illus-

trate the distributions, we assume that DJδδ = 1000 ps and σRJ = 50 ps, which
includes the jitter contributions of the transmitter, receiver, and interconnect. We
allocated the jitter distributions so that the sum of the DJ plus 17.5 × σRJ is equal
to the unit interval, which will result in a BER of approximately 10−19. The dual
Dirac model jitter distributions for the leading edge of the data eye are shown in
Figure 13-8.

Using the probability density function for the total system jitter, we calculate
the bit error rate as the area under the PDF. The expression for the bit error rates
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Figure 13-8 Hypothetical jitter PDF models for AGP 8X interface (UI = 1.875 ns).
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of the leading and trailing edges of the eye are given by

BERlead(t) = 0.5

[
erfc

(
t − DJδδ/2√

2 σRJ

)
+ erfc

(
t + DJδδ/2√

2 σRJ

)]
(13-8)

BERtrail(t) = 0.5

[
erfc

(
UI − t − DJδδ/2√

2 σRJ

)
+ erfc

(
UI − t + DJδδ/2√

2 σRJ

)]
(13-9)

where erfc(t) is the complementary error function, which is defined as

erfc(t) = 2√
π

∫ ∞

t

e−x2
dx

Note that in developing the equation for the leading-edge BER, we calculate the
cumulative density function (CDF) moving from right to left (toward decreasing
time values), while we move in the positive time direction when calculating the
trailing-edge CDF. This explains the difference in the sign of the time argument
in the two equations.

Using the equations, we can plot the bit error rate as a function of the horizontal
position in the data eye. We call this plot a BER “bathtub plot” and show an
example in Figure 13-9 using the AGP 8X timing distributions that we just
developed. The plot has flat regions near the edges of the eye in which the BER
is dominated by deterministic jitter and sections with steep slope near the center
of the eye that are dominated by random jitter. We can use the plot to assess the
ability of a given design to meet the BER requirements by finding the rate at
which the two curves intersect. For the example in the figure, the crossing point
is 10−18, which represents the minimum BER that the design can meet.

13.3 JITTER SOURCES AND BUDGETS

In this section we expand our discussion of jitter to provide a fuller understand-
ing of the various sources of jitter and how they propagate through a signaling
system so that we can budget for their effects. To start with, we define jitter as
the deviation of a signal timing event from its ideal position. This is what causes
the “smearing” of a data eye along the time axis. Any component that trans-
mits, propagates, or receives a signal can contribute to jitter. As such, we first
categorize the types of jitter and their origins, followed by an analysis of how
the different components combine to produce the jitter signature for the entire
system.
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Figure 13-9 Hypothetical BER bathtub plot for AGP 8X interface.

13.3.1 Jitter Types and Sources

We have already introduced the notions of deterministic jitter (DJ) and random
jitter (RJ) in Section 13.2. They constitute the two major categories, and all the
types of jitter that relate to specific causes that we present in this section are
subcategories of either DJ or RJ. The key characteristics of deterministic and
random jitter sources are described in Figure 13-10 and are discussed in detail
below.

As we have shown, RJ is expressed as a Gaussian distribution which is
described by a mean value, µ (typically equal to zero), and a standard devi-
ation, σRMS. As a result, RJ is not bounded, although the probability of having
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Figure 13-10 Summary of jitter types and their characteristics.

random jitter values at several standard deviations from the mean is extremely
low. Random jitter is caused by device effects such as thermal noise and shot
noise (see Section 13.4.1). Random jitter shows up as the “tails” of the jitter
distribution, and we use it to budget peak-to-peak jitter as a function of BER, as
we describe in the material that follows. As we shall see, the amount of RJ (in
terms of the number of sigma) that we must take into account increases as we
decrease the target BER.

Deterministic jitter traces to specific causes and is bounded, meaning that the
probability of exceeding the peak-to-peak maximum value is equal to zero. We
can categorize DJ in terms of sinusoidal or periodic jitter (PJ) and sources of
data-dependent jitter (DDJ). Data-dependent jitter, as its name suggests, depends
on the data pattern that is being transmitted. Prominent types of DDJ include
duty-cycle distortion (DCD), intersymbol interference (ISI), and crosstalk. We
describe each source in the paragraphs that follow.

Periodic Jitter PJ repeats at a fixed frequency and is caused by modulating
effects, such as spread-spectrum clocking. For a system with multiple periodic
sources, we model the total periodic jitter as

PJ(t) =
∑

i

Ai cos(ωit + θi) (13-10)
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where Ai is the amplitude of source i, ωi the frequency of source i, and θi the
phase of source i. The probability density function for an individual periodic
jitter source is given by (see Figure 13-11a):

PDFPJ(t) =



1

π
√

A2 − t2
A > |t |

0 A ≤ |t |
(13-11)
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Figure 13-11 Jitter distributions for Example 13-1: (a) periodic jitter (20 ps amplitude);
(b) duty cycle distortion jitter ω/αDCD = 10%); (c) ISI jitter with no equalization; (d) ISI
jitter with equalization; (e) random jitter (σ RJ = 2.5 ps); (f) system deterministic jitter;
(g) system total jitter. (Continued)
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Figure 13-11 (Continued )

where A is the amplitude of the periodic jitter and t is the time relative to the
ideal edge position.

Duty Cycle Distortion (DCD) Duty cycle distortion results from variation in the
amount of time that the signal spends in the logic states, such as rise and fall
time mismatch. The probability density function for jitter caused by duty cycle
distortion is the sum of two delta functions:

PDFDCD(t) = 1

2

[
δ
(
t − αDCD

2

)
+ δ

(
t + αDCD

2

)]
(13-12)

In equation (13-12), αDCD is the peak-to-peak duty cycle distortion and t is
the time relative to the ideal edge position. The PDF for duty cycle distortion
jitter is shown in Figure 13-11b.
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Intersymbol Interference As we have seen, ISI is caused by losses, dispersion,
and reflections on the transmission lines that make up the interconnect channel.
We show examples of probability density functions for channels with and without
equalization in Figure 13-11c and d. In general, the ISI PDF for a nonequalized
channel has multiple peaks, whereas that for an equalization channel looks like
a truncated Gaussian distribution.

Bounded Uncorrelated Jitter BUJ is deterministic jitter that is not aligned in
time to the data stream. The most common source of BUJ is crosstalk. Recall that
we have shown that crosstalk affects signal delay and amplitude through coupling
of signals between neighboring transmission lines. As a result, crosstalk can be
a significant source of jitter in high-speed systems. Crosstalk-induced jitter is
correlated to the data on neighboring signal, but is not correlated to the data
pattern on the signal itself. Hence, it is uncorrelated. The key characteristics of
deterministic and random jitter types are described in Figure 13-10.

Example 13-1 Jitter Distributions for a 10-Gb/s Interface We now present an
example running at 10 Gb/s to demonstrate multiple aspects of system jitter and
bit error rate calculations. We start by showing how the various jitter sources
combine to give the total system jitter. We then develop the dual Dirac model
parameters and show how the model provides a suitable approximation of the
system jitter at low error rates.

Our system contains sources for periodic jitter, duty cycle distortion (DCD)
jitter, ISI jitter, and random jitter. The amplitude of the periodic jitter is 20 ps,
and it has the PDF in Figure 13-11a. The DCD jitter is caused by a 10% duty
cycle variation (αDCD = 0.1), and the resulting PDF is shown in Figure 13-11b.
The ISI jitter in our example is obtained from a signaling system that is based
on the design that is presented in Section 14.2. This particular case is an 84-	
differential pair that is driven by a 5-mA current source with 40-	 termination
at each end. The system uses a single tap equalizer with a coefficient value of
−0.27. The resulting ISI PDFs for the nonequalized and equalized cases are
shown in Figure 13-11c and d, respectively. For this analysis we focus on the
equalized case, which has a distribution that lies between ±6 ps.

The random jitter has an RMS value of 2.5 ps, resulting in the Gaussian jitter
PDF shown in Figure 13-11e. We calculate the PDFs for the system-level DJ and
total jitter via convolution using equations (13-13) and (13-14). The resulting
distributions are shown in Figure 13-11f and g.

PDFDJ(t) = PDFPJ(t) ∗ PDFDCD(t) ∗ PDFISI(t) (13-13)

PDFTJ(t) = PDFDJ(t) ∗ PDFRJ(t) (13-14)

Our next step is to use the distribution in Figure 13-11f to find the maximum
(peak-to-peak) deterministic jitter. By plotting the PDF on a log scale, as shown
in Figure 13-12, we see that distribution shows a steep slope at the lower and
upper jitter extremes. This indicates that we have reached the bounds of the
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Figure 13-12 Extraction of system-level deterministic jitter for Example 13-1.

DJ distribution, which allows us to estimate that the peak-to-peak deterministic
jitter is 62 ps. We can check the accuracy of the system DJ distribution by
comparing the peak-to-peak DJ against the sum of the peak-to-peak jitter for
the individual DJ components. The sum of PJ (±20 ps), ISI (±6 ps), and DCD
(±5 ps) components also equals 62 ps, indicating that our system DJ distribution
is accurate.

To estimate the DJδδ terms we must look at the PDF for the total system jitter.
Recall that the dual Dirac model treats the DJ as being distributed as a pair of
delta functions. The model works by setting DJδδ such that the tails of the total
jitter distribution model accurately reflect the tails of the actual distribution. We
start by converting the probability values from the total jitter PDF to Q-scale
values. The Q scale, denoted as QBER, specifies the amount of eye closure due
to random jitter that we must account for at a given BER and is described by

QBER(BER) =
√

2 erf−1
(

1 − BER

ρT

)
(13-15)

Values of QBER over a wide range of error rates are listed in Table 13-1.
Figure 13-13 shows the QBER versus jitter plot. The utility of the plot is that it is
approximately linear at low error rates, with a slope equal to ±σ −1

RJ . We obtain
the deterministic jitter term for the dual Dirac model by extrapolating the linear
slope starting at very small BER. The DJδδ is simply the jitter value obtained via
the linear extrapolation to a BER value of 1. From the figure we calculate that
the values are −28.5 ps and 27.7 ps for the left- and right-hand side of the plots,
so that DJδδ = 56.2 ps.
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TABLE 13-1. QBER as a Function of the Bit Error Rate

BER QBER BER QBER BER QBER

1 × 10−3 6.180 1 × 10−10 12.723 1 × 10−17 16.987
1 × 10−4 7.438 1 × 10−11 13.412 1 × 10−18 17.514
1 × 10−5 8.530 1 × 10−12 14.069 1 × 10−19 18.026
1 × 10−6 9.507 1 × 10−13 14.698 1 × 10−20 18.524
1 × 10−7 10.399 1 × 10−14 15.301 1 × 10−21 19.010
1 × 10−8 11.224 1 × 10−15 15.882 1 × 10−22 19.484
1 × 10−9 11.996 1 × 10−16 16.444 7.7 × 10−24 20.000
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Figure 13-13 Extraction of DJδ − δ for Example 13-1.

As a final step, we create a total jitter PDF for the dual Dirac model by
applying our DJδδ and σRJ to equation (13-7) and then compare it against the
actual total jitter PDF obtained via convolution of the individual PDFs at low
error rates. If we are truly operating in the region of the plot that is dominated
by RJ, we expect exact agreement. Figure 13-14 shows good, though not perfect
agreement between the model and the actual system distribution. The error in the
comparison is attributed to numerical errors in our frequency-domain convolution
algorithm. We have thus illustrated the application of the dual Dirac model for
estimating the jitter of high-speed signaling systems. Finally, we can use the
model to estimate the total jitter as a function of bit error rate. For example, in
Figure 13-13 we show that the total jitter is approximately 91 ps for a BER of
10−12( 1

2QBER = 7.034), leaving us with 9 ps of margin in our design.
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Figure 13-14 Comparison of the dual Dirac and actual system TJ PDFs at the low BER
tail for Example 13-1.

13.3.2 System Jitter Budgets

At the system level we allocate the deterministic and random jitter for a given
BER using equation (13-16):

UI = DJδδ(sys) + QBERσRMS(sys) (13-16)

Applying the dual Dirac model, we can approximate the convolution of the
individual jitter distribution by adding the deterministic jitter components linearly,
so that the total DJ for the system is

DJδδ(sys) =
∑

i

DJδδ(i) (13-17)

The convolution of random jitter components results in a root-sum-of-squares
relationship, leading to the following equation for the system RJ:

σRMS(sys) =
√∑

i

σ 2
RMS(i) (13-18)

As mentioned, any component that transmits, propagates, or receives signals will
add jitter to the system. Although specific implementations will vary, all signaling
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systems include data transmitters and receivers, interconnect channels, and clock
sources. In designing a system, we must account for the DJ and RJ from each.

Example 13-2 2.5-Gb/s PCI Express System Jitter Budget To illustrate, we
use the system jitter budget for the first-generation PCI Express (PCIe) interface.
Figure 13-15a depicts the main components of a PCIe link. PCI Express systems
do not distribute a global high-frequency I/O clock, but instead, use I/O clocks
that are locally generated from a low-frequency reference clock, often using
phase-locked loops (PLLs). In addition, a clock-and-data recovery (CDR) circuit
at the receiver handles synchronization of the data signals [Martwick, 2005].

Figure 13-15b contains a block diagram that describes the system model for
the generation and propagation of jitter in a PCI Express link. The 100-MHz
reference clock generates jitter, TJrefclk, which enters the phase-locked loops for
both the transmitter and receiver. The PLLs act as high-pass filters that allow
high-frequency jitter to pass through them. In addition, each will also act as
a source of additional jitter (TJTx,gen and TJRx,gen) caused by noise introduced
both locally (e.g., thermal noise) and by the system (e.g., supply noise). The
channel adds jitter (TJchan) due to ISI and crosstalk, but is assumed not to filter
the incoming jitter noticeably. The comparator function reflects the fact that both
PLLs track the jitter, so that the jitter propagation due to the transmitter and
receiver is a function of the difference in their transfer functions. Intuitively, if
both PLLs have the same impulse response, they will pass identical jitter, given
the same input, TJrefclk. As a result, the receiver will tend to track the jitter passed
by the transmitter, and the total jitter from the reference clock that gets passed
by the PLLs is determined by the difference in their transfer functions. Finally,
the CDR circuit will also filter the jitter.

Having identified the main sources of jitter, we can write expressions for the
system DJ and RJ:

DJδδ(sys) = DJδδ(Tx) + DJδδ(channel) + DJδδ(Rx) + DJδδ(clock) (13-19)

σRMS(sys) =
√

σ 2
RMS(Tx) + σ 2

RMS(channel) + σ 2
RMS(Rx) + σ 2

RMS(clock)

(13-20)

Equations (13-10), (13-13), and (13-14) provide the fundamental jitter relations
that we use to budget the jitter for a PCI Express system, which is shown in
Table 13-2. What they do not do, however, is to tell us how to use them to develop
a jitter budget that results in a successful system design. Doing so successfully
requires that we use the equations within the context of a design methodology.
We offer an example of a contemporary design methodology in Figure 13-16 and
we describe the individual steps below.

Step 1: Negotiate initial targets. The targets are most often based on engineer-
ing judgment and experience with prior designs. In addition to providing the I/O
and signal integrity engineers with targets for their designs, they also provide the
team with the means for making trade-offs in order to keep the budget balanced
as the design proceeds.
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Figure 13-15 PCI Express system and jitter model: (a) physical architecture; (b) jitter
generation and propagation.

Step 2: Evaluate design options for each of the individual components in order
to satisfy the targets for jitter and other design metrics, such as received voltage
(see Section 13.4). This typically involves performing a number of simulations
that yield insight into sensitivity of the jitter to variation in the design parame-
ters. Current design practice typically involves using statistical analysis methods,
which we discuss in Chapter 14.

Step 3: Once the exploratory work is done, the predicted jitter is compared
against the targets. Some trade-offs between individual components may be
required, based on the analysis. At this point, it may not be possible to show
that the jitter budget can meet the BER target at the data rate planned. That is
not necessarily cause for alarm, as long as the owners of the components have
plans for improving the timings as the design proceeds. As the figure shows, this
stage may require multiple iterations between steps 2 and 3, although a solid
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TABLE 13-2. PCI Express 2.5-Gb/s Jitter Budget at 10−12 BER

Component Term σRJ (ps) DJδδ (ps) TJ (ps)

Reference clock TJ clock 4.7 41.9 108
Transmitter TJ TX 2.8 60.6 100
Channel TJ channel 0 90 90
Receiver TJ Rx 2.8 120.6 147
Linear TJ 458
RSS TJ 86.5 313.1 399.6
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Figure 13-16 System design flow.

understanding of the design behavior provided by statistical analysis methods is
especially helpful in minimizing the number of iterations.

Step 4: The component and board designs are completed after closing the
budget. This includes layout, design rule check, and extraction of final models
from the board, package, and I/O circuit designs.

Step 5: A final set of simulations with the extracted models for verification
purposes is recommended prior to building hardware. This step provides the
design team with a final chance to identify and correct design issues. Finding
issues in simulation is faster and less expensive than waiting until hardware is
in the lab.

Step 6: As was the case with the exploratory analysis, it may be necessary
to adjust the timing targets or to modify some parts of the system design at this
stage, although the use of statistical analysis methods reduces the likelihood that
changes will be required at this stage.

Step 7: Finally, we reach the last major step in the process: hardware building
and measurement. The design process is structured to minimize the risk of finding
issues at this stage, but the ultimate measure of success is functioning systems.
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Although it is beyond our scope here, we note that the hardware measurement
step can be quite extensive. For example, statistical techniques may be employed
to extrapolate the measured behavior for the purpose of validating that the design
will meet the timing requirements at the extremes of the manufacturing process
[Norman, 2003].

13.4 NOISE SOURCES AND BUDGETS

As discussed in Chapter 12, voltage noise limits the maximum achievable per-
formance of a high-speed signaling system by reducing the signal-to-noise ratio
according to the Shannon–Hartley theorem:

B = 1
2 log2(1 + SNR) (12-3)

In addition, bit error rates are also a function of noise on the signal [Buchs et al.,
2004]. Following an approach similar to the one that we used to develop the
BER as a function of timing jitter, we can produce the following equation, which
expresses bit error rate as a function of deterministic and random noise sources:

BER(v) = 0.5 erfc

(
v − DNmax/2√

2 σRN

)
(13-21)

where DNmax is the maximum deterministic noise (V) and σRJ is the root-
mean-square Gaussian noise (V). Finally, voltage noise is a chief source of tim-
ing noise (jitter) and therefore limits the maximum data rates that we can achieve
in practice. We describe the main sources of voltage noise in the next section.

13.4.1 Noise Sources

The primary sources of noise in digital signaling systems include crosstalk, inter-
symbol interference, supply noise, circuit input offsets and resolution, thermal
noise, and shot noise. We discuss crosstalk and ISI extensively elsewhere in the
book, so we focus on the remaining sources in this section.

Supply Noise As discussed in Chapter 10, power supply noise as it applies to
high-speed signals arises from two sources. The first is externally generated sup-
ply noise, which occurs in the distribution system between the voltage regulator
and the local I/O circuits. This external supply noise is typically on the order
of 5 to 10% of the nominal supply. Current-mode transmitters typically have a
large-impedance connection to the power supply, effectively isolating them from
the supply noise.

The second source is local supply noise generated by transient current in the
I/O circuits. Because it depends on the transient current demand according to
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vPS,noise = −L(di/dt), the characteristics of single-ended and differential signal-
ing systems will be dramatically different. In particular, the current transients can
be very large for single-ended systems, causing local supply noise of approxi-
mately 10% of the supply voltage for the signals. By contrast, since current-mode
differential transmitters draw constant current locally, they generate essentially
zero local supply noise. In addition, supply noise is largely a common-mode
source, which means that we rely on the differential I/O circuits to reject most
of the noise.

Receiver Offset and Sensitivity Variation in the threshold voltage of a receiver
circuit is caused by process variation that results in device mismatch, which we
treat as a static noise source. For a single-ended inverter, the source of the vari-
ation is the dependence on the ratio of NMOS and PMOS device characteristics
(gate length and width, mobility, etc.), which can be largely independent of one
another. We calculate the offset by finding the variation in the inverter threshold
voltage, vt,inv, which is given by [Dally and Poulton, 1998]

vt,inv = vT N + √
βP /βN(VDD + vT P )

1 + √
βP /βN

volts (13-22)

where vT N is the NMOS device threshold voltage (V), βP is the PMOS device
transconductance parameter (µA/V2), βN is the NMOS device transconductance
parameter (µA/V2), VDD is the supply voltage (V), and vT P is the PMOS device
threshold voltage (V).

The device transconductance is a function of the process transconductance and
the device dimensions:

β = k
W

L
(13-23)

where k is the process transconductance (µA/V2), W the device width (µm),
and L the device length (µm).

Equation (13-22) demonstrates that the source of the threshold variation is the
dependence on the ratio of NMOS and PMOS device transconductance parame-
ters, which can be largely independent of one another. The maximum offset will
occur when either the NMOS or PMOS device is at a process extreme (usually
called a “fast” or “slow” corner), while the other is at the opposite extreme. We
approximate the device variations for the fast and slow corner cases by

β
fast
slow

= (k ± �k)
W ± �W

L ∓ �L
(13-24)

where �k is the worst-case variation in the process transconductance (µA/V2),
�W the worst-case variation in the device width (µm), and �L the worst-case
variation in the device length (µm).
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We can then estimate the offset for the inverter as the average offset from the
typical case:

voffset = vt,inv(max) − vt,inv(min)

2
(volts) (13-25)

With differential amplifiers the input offsets depend on matching of devices of
the same type. The transconductance parameters for devices of the same type will
be much more closely matched, leading to much smaller offsets in the differential
receiver. The input offset for a differential receiver that is based on an NMOS
source coupled pair is given by

voffset = �vT N + 2(vGS − vT N)

(
�kN

kN

�W

W

L

�L

)
volts (13-26)

Receiver sensitivity is the amount of input voltage swing that is required to get a
specified output swing [Dally and Poulton, 1998]. Reasonable sensitivity values
for designs on a 0.25- µm process are 200 to 250 mV for a CMOS inverter-based
receiver and approximately 10 mV for a differential receiver.

Example 13-3 Input Offsets for Single-Ended and Differential Receivers In
this example we calculate the input offsets for an inverter and a differential
receiver that are designed on a 0.25- µm process, whose parameters and variation
are summarized in Table 13-3.

The worst-case device-length variation, �L, does not scale with the length.
As a result, the inverter design can reduce the impact of the length variation on
the input offset by using 0.5- µm gate lengths. The NMOS and PMOS design
widths are 1.12 and 4µm, respectively. Table 13-4 summarizes the parameter
conditions for the minimum and maximum inverter threshold cases. Note that the
table includes variation in the supply voltage. This is because equation (13-22)
shows that the inverter threshold depends directly on the supply voltage. Since
the supply voltage may vary by up to ± 10%, we choose to include the variation
in our offset calculation. To calculate the input offsets for the inverter, we use

TABLE 13-3. Example Device Parameters and Variation for a 0.25-µm Process

Parameter Typical Value Variation

VT N (V) 0.43 ± 0.01
VT P (V) −0.4 ± 0.01
kN ( A/V2) 115 × 10−6 ±12 × 10−6

kP (A/V2) 30 × 10−6 ±3 × 10−6

W (µm) ±0.025
L (µm) ±0.025
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the values in the table in conjunction with equations (13-22) through (13-25):

βP,typ = (30 µA/V2)

(
4 µm

0.5 µm

)

= 240.000 µA/V2

βP,min = [(30 − 3) µA/V2]

[
(4 − 0.025) µm

(0.5 + 0.025) µm

]

= 204.429 µA/V2

βP,max = 279.632 µA/V2

βP,typ = (115 µA/V2)

(
1.12 µm

0.5 µm

)

= 257.600 µA/V2

βN,min = 215.871 µA/V2

βN,max = 304.932 µA/V2

vt,typ = vT N,typ + √
βP,typ/βN,typ (VDD + VT P,typ)

1 + √
βP,typ/βN,typ

= 0.43 V +
√

257.600 µA/V2/240.000 µA/V2(2.5 V + 0.4 V)

1 +
√

257.600 µA/V2/240.000 µA/V2

= 1.250 V

vt,min = vT N,min + √
βP,min/βN,max (VDD,min + VT P,min)

1 + √
βP,min/βN,max

=
[(0.43 − 0.01) V] +

√
204.429 µA/V2/304.932 µA/V2

[(2.5 − 0.25 + 0.4 − 0.01) V]

1 +
√

204.429 µA/V2/304.932 µA/V2

= 1.059 V

vt,max = vT N,max + √
βP,max/βN,min(VDD + VT P,max)

1 + √
βP,max/βN,min

=
[(0.43 + 0.01) V] +

√
279.632 µA/V2/215.871 µA/V2

[(2.5 + 0.25 + 0.4 + 0.01) V]

1 +
√

279.632 µA/V2/215.871 µA/V2

= 1.462 V

From the calculations, we see that the inverter has an input offset of approxi-
mately ±201 mV.
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TABLE 13-4. 0.25- µm Process Parameter Variation
for Inverter Offset Estimation

vt,min vt,max

vT N (V) 0.042 0.044
vT P (V) 0.039 0.041
kN (µA/V2) 127 103
kP (µA/V2) 27 33
WN (µm) 0.87 1.37
WP (µm) 3.75 4.25
LN (µm) 0.25 0.75
LP (µm) 0.75 0.25
VDD (V) 2.25 2.75

Equation (13-26) shows that the offset of the differential receiver depends
on the ratio of variation in device width to device length. As a result, feature
size variations will cancel each other. This allows us to reduce the offset by
designing the receiver with the minimum gate length, which has the added benefit
of minimizing the device area and input capacitance. We can also reduce the
receiver offset by increasing the device width. Choosing a device width of 1 µm
with a minimum length gives us an estimated offset of ±30 mV for the differential
receiver, for an input gate bias, vGS − vT N , of 400 mV:

voffset = �vT N + 2(vGS − vT N)

(
�kN

kN

�W

W

L

�L

)

= 0.01 V + 2(0.4 V − 0.01 V)

[
(12 µA/V2)(0.025 µm)(0.25 µm)

(115 µA/V2)(1 µm)(0.025 µm)

]
= 30 mV

VREF Noise As we described in Chapter 12, we can use differential amplifiers to
receive signal-ended signals by connecting one of the inputs to a reference voltage
(see Figure 11-33). Examples of high-speed single-ended interfaces that employ
this approach include the GTL + technology used with Intel microprocessors
and the stub series terminated logic (SSTL) interface used with dual-data-rate
(DDR) memory devices [Intel, 1997; JEDEC, 2002]. The reference voltage is
often generated as part of a low current voltage regulator and distributed to
the on-chip circuits through the printed circuit board and packages, making it
susceptible to noise from nearby signals and reference planes. Typical ac noise
specifications are ±2% of the reference voltage. In addition, some standards allow
for dc offset in the reference voltage. For example, the high-speed transceiver
logic (HSTL) specification allows the dc value of the reference to vary between
0.68 and 0.90 V from a nominal value of 0.75 V while restricting the ac noise
to a maximum of ±2% of the actual reference (e.g., 18 mV for Vref = 0.9 V)
[EIA, 1995].
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Equalizer Quantization Error Discrete linear equalizers typically use D/A con-
verters (DACs) to generate the equalizer coefficients. A DAC has a finite resolu-
tion that is a function of the number of bits, which leads to a minimum step size
(granularity) in setting the tap coefficients. For a current steering DAC used in
transmit equalization of differential signals, we estimate the minimum resolution
of the output current to be limited to the least significant bit (LSB) of the DAC:

ires = iDAC

2nDAC
(amperes) (13-27)

where iDAC is the maximum output current and nDAC is the number of bits in
the DAC.

We treat the limited resolution as a voltage “noise” on an output voltage signal,
whose value is equal to one-half of the resolution:

veq,noise = iDAC

2nDAC+1
Z0 volts (13-28)

Equation (13-28) is an approximation that does not account for other nonidealities
in DACs. An example is the differential nonlinearity, which is the difference
between the ideal and the measured output responses for successive DAC codes.
A thorough treatment of the sources of nonidealities in DACs is provided by
Razavi [1995].

Example 13-4 Equalizer DAC Noise Estimation A current-mode differential
transmitter with a single postcursor equalization tap is designed to have a maxi-
mum tap coefficient of −0.2. The transmitter is a 5-mA transmitter that drives a
differential transmission pair whose differential impedance is 100 	. The equal-
izer uses a 4-bit DAC to set the coefficient value. The differential voltage swing
is vswing = (5 mA)(100 	) = 0.500 V. The noise due to the DAC resolution is
veq,noise = [0.2(5 mA)/25](100	) = 3.1 mV, which is 0.6% of the total signal
swing.

Thermal Noise and Shot Noise Thermal and shot noise are random in nature
and so are modeled as Gaussian sources [Gray et al., 2001]. Thermal noise, also
known as Johnson noise, is a result of power dissipation in devices, and has a
root-mean-square (RMS) power spectral density of

PSDtherm = 4kBTR V2/
√

Hz (13-29)

where kB is Boltzmann’s constant (1.38 × 10−23 J/K), T the temperature (K),
and R the device resistance (	). Over a given bandwidth, we calculate the RMS
thermal voltage noise with equation (13-3):

σtherm =
√

4kBTR�f volts (13-30)

where �f is the bandwidth over which the noise is measured (Hz).
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Shot noise arises from the quantization of device current to individual device
carriers and has a current spectral density i2 of

i2 = 2qi A2/
√

Hz (13-31)

where q is the charge of an electron (1.6 × 10−19 C) and i is the current through
the device.

Shot noise arises from current fluctuations caused by quantization of current
to individual charges. The RMS voltage due to shot noise generated by a device
with current i flowing through an effective resistance R over a bandwidth �f is

σshot =
√

2qi�f R volts (13-32)

Since thermal noise and shot noise are Gaussian in nature, we must treat them in
a probabilistic fashion when creating a noise budget. Gaussian noise sources are
described by the normal probability density function (PDF), which has the form

P(v) = 1√
2π σnoise

e−v2/2σ 2
noise (13-33)

Equation (13-33) yields the probability of having noise of a given value. The
probability that the noise does not exceed a given amount is

P(vnoise < v) < 1 − e−v2/2σ 2
noise (13-34)

Example 13-5 Estimation of Thermal and Shot Noise We have a 2.5-V 50-	
transmitter driving a 50-	 transmission line at 10 Gb/s (5 GHz fundamental
frequency). The circuit operates at room temperature (300 K). From load-line
analysis we can show that the output current is

iTx = 2.5 V

50 	 + 50 	
= 25 mA

50 Ω 50 Ω

2.5 V

Figure 13-17 Circuit for Example 13-5.
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The RMS thermal noise is

σtherm =
√

4
(
1.38×10−23 J/K

)
(300 K)(50 	)(5 × 109 Hz)

= 6.43 × 10−5 V

The RMS shot noise is

σshot =
√

2(1.6 × 10−19 C)(0.025 A)(5 × 109 Hz)(50 	) = 3.16 × 10−4 V

The two noise sources combine in an RMS relationship:

σtotal =
√

(6.43 × 10−5 V)2 + (3.16 × 10−4 V)2 = 3.23 × 10−4 V

From equation (13-34) we find that the probability that the noise from thermal
and shot sources at any instant is less than 1 mV:

P(vnoise < v) < 1 − e−(1 mV)2/2(0.323 mV)2 = 0.992 = 99.2%

The small value suggests that thermal noise and shot noise are generally not sig-
nificant sources of noise for single-ended signaling systems, which have relatively
large signal swings.

13.4.2 Noise Budgets

The existence of so many noise sources in a high-speed signaling system demands
that they be managed to ensure proper operation. The method for managing noise
is to construct a noise budget and use it to design sufficient noise margin into the
system. Most of the sources that we have discussed are bounded, and in construct-
ing a budget we assume that each of them is at the worst-case value. In practice,
this is a conservative approach, since the probability of all noise sources being
at their worst-case extremes is remote. The benefit of the worst-case approach
is that by satisfying such a conservative budget, we minimize the probability of
having a noise problem in our system, and noise issues can be exceeding difficult
to diagnose.

Thermal noise and shot noise, which are Gaussian sources, do not directly
fit the worst-case noise method. However, we can calculate an approximate
worst-case value for Gaussian sources by choosing a maximum probability of
exceeding the worst-case value that we are willing to tolerate. We then use the
probability curve shown in Figure 13-18 to determine how many standard devia-
tions we must take into account. This is similar in concept to the BER calculation
from the preceding section. (Of course, BER applies to signal amplitudes as well
as timing. Noise-based BER calculation is left as a problem at the end of the
chapter.) For example, if we choose a maximum probability of exceeding the
worst-case noise of 1 in 1 trillion (10−12), we set the noise to a minimum of
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Figure 13-18 Probability curve for Gaussian noise sources.

7.4 times the RMS noise voltage. Using the RMS noise that we calculated earlier
(σtotal = 0.233 mV), gives an estimated worst-case Gaussian noise of 1.7 mV.

We usually do not include crosstalk and ISI as explicit terms in the noise bud-
get, since we comprehend them in our signal integrity simulations. As a general
comment, we recommend simulation as the preferred means for comprehend-
ing noise sources wherever we have accurate models and sufficient computing
power. The ability to simulate (and correlate to measurement) gives us a better
understanding of the behavior of the system, which allows us to reduce margins,
resulting in higher performance designs at lower cost.

Example 13-6 Noise Budgets We want to construct noise budgets and compare
the noise margins and noise immunity of a pair of hypothetical signaling systems,
which we show in Figure 13-19. The single-ended system in Figure 13-19a is
designed to operate at 1 Gb/s with a 2.0-V single swing created by a voltage-mode
transmitter. The swing is centered around a reference voltage of 1.0 V that has an
allowed dc shift of up to ±5% along with ±2% ac noise. The reference voltage is
connected to one input of the differential receiver. Since we are demonstrating the
budget process without performing simulations, we explicitly budget for crosstalk
and ISI at 10% of the signal swing for each. We power the circuit with a 2.5-V
supply and budget the supply noise budget at 10% of the supply value.
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(a)

+

−

50 W2.5 V 
12.5 W

50 W Vref

(b)

Zodd = 50 W

50 W

50 W

0↔10 mA 
200 W

Zodd  = 50 W

+

−

Figure 13-19 Circuits for Example 13-6: (a) single-ended system; (b) differential
system.

The differential signaling system shown in Figure 13-19b is designed to oper-
ate at 5 Gb/s over a lossy interconnect that requires equalization. It employs a
10-mA current-mode transmitter to provide a singled swing of 400 mV when
driving the parallel combination of transmitter impedance and transmission line.
The differential circuit also uses a 2.5 V supply with a 10% budget for supply
noise. However, the combination of high transmitter impedance and the differ-
ential receiver is expected to reject more than 99% of the supply noise. The
crosstalk budget is reduced to 5% of the signal swing due to reduced coupling of
the differential transmission lines and the common-mode rejection of the receiver.
The ISI budget remains at 10% of the signal swing. The equalizer uses a 4-bit
DAC and is designed to provide a maximum of 20% equalization. The receivers
for both designs are differential and have similar offsets and sensitivities which
we estimate at 35 and 10 mV, respectively. Finally, we include thermal and shot
noise in both interfaces, specifying that the probability of exceeding the budgeted
noise cannot exceed 10−12.

Table 13-5 summarizes the contributions of the individual noise sources that
we discussed above. From the table we see that the projected worst-case noise is
835 mV for the single-ended system and 114 mV for the differential system. A
widely used metric for judging the noise characteristics of a digital system is the
noise margin, which we introduced in Chapter 12. We can use equations (12-3a)
and (12-3b) to develop a system noise margin:

vNM = vNMl + vNMh = (voh,min − vol,max) − (vih,max − vil,min)



582 MODELING AND BUDGETING OF TIMING JITTER AND NOISE

TABLE 13-5. Noise Budget Analysis for Example 13-6

Source Single-Ended Differential

Supply noise (V) 0.250 0.003
Crosstalk (V) 0.200 0.020
ISI (V) 0.200 0.040
Rx offset + sensitivity (V) 0.045 0.045
Gaussian noise (V) 0.000 0.001
Vref noise (V) 0.140 —
Equalizer resolution (V) — 0.005
Total noise (V) 0.835 0.114
Signal swing (V) 2.000 0.400
Noise margin (V) 1.165 0.286
Noise immunity 2.4 : 1 3.5 : 1

where vNMl and vNMh are the noise margins for the low and high sides, vol,max

and voh,min the minimum and maximum transmitter output levels, and vih,min and
vih,max the minimum and maximum required levels at the receiver. Recognizing
that the difference between minimum and maximum output levels is equal to
the signal swing and that the difference between minimum and maximum input
levels at the receiver is equivalent to the worst-case noise, we can express the
system noise margin as

vNM = vswing − vnoise (13-35)

Since the single-ended system swing is five times greater than for the differ-
ential system, it has a much higher noise margin (1165 versus 286 mV). From
these figures we might be tempted to conclude that the single-ended system
offers superior noise performance to the differential system. However, the noise
margin metric has a serious limitation; it does not account for the relative dif-
ference between the signal swing and the noise. Several of the biggest noise
sources (e.g., crosstalk, supply noise, ISI) increase in proportion to the signal
swing, while the low swing differential system typically reduces the nonpro-
portional sources (e.g., offset, sensitivity, common-mode rejection). This implies
that despite potentially higher noise margins, increasing signal swing does not
guarantee improved noise performance. An alternate metric, the noise immunity,
addresses this limitation by taking the ratio of the signal swing to the worst-case
noise:

rNI = vswing

vnoise
(13-36)

If we take the worst case noise to be a measure of the minimum signal swing
required for successful operation, the noise immunity expresses the ratio of the
actual signal to the required swing. The differential system has a noise immunity
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Figure 13-20 Noise immunity comparison for Example 13-6.

ratio of 3.5:1, as opposed to 2.4:1 for the single-ended system. Figure 13-20 shows
that the singled-ended system has a minimum required swing that is 41.7% of
the actual swing, while the differential system requirements a minimum swing
that is only 28% of the actual. Viewed in this light, the differential system offers
improved noise performance over single-ended signaling [Dally and Poulton,
1998].

13.5 PEAK DISTORTION ANALYSIS METHODS

Since our primary focus in this book is signal integrity, we now describe a method
for assessing the peak jitter and noise caused by the system interconnect. Recall
that the jitter and noise caused by crosstalk and ISI are deterministic, so that we
can budget them using worst-case values. The method that we use to obtain the
worst-case values is called peak distortion analysis (PDA) [Casper et al., 2002].

13.5.1 Superposition and the Pulse Response

We start by elaborating on the linear time invariance (LTI) concept that we intro-
duced in Chapter 12. In particular, we make use of the superposition property,
which says that if the system input can be expressed as the sum of multiple input
components,

x(t) =
∑

i

xi(t)
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Figure 13-21 Superposition of pulses on an interconnect.

the output is equal to the sum of the output values obtained for each input
component according to

y(t) =
∑

i

f [xi(t)] =
∑

i

yi(t) (13-37)

The equation allows us to use superposition to calculate the received signal
waveform for an arbitrary bit pattern using only the response of the system to a
single pulse. Figure 13-21 illustrates the application of superposition to construct
the waveform for a 0 101 000 pattern from a pair of pulse responses simply by
summing them at each point.

Using superposition, building a mathematical model for constructing the
received waveforms for arbitrary bit patterns from a received pulse response is
a straightforward matter. First, we express the transmitted pulse signal for the
ith bit position as

xi(t) = x(t − i · UI) (13-38)

where UI, the unit interval, is equal to the width of a data bit. We can then write
an equation for the transmitted waveform for an n-bit data sequence as

x′(t) =
n−1∑
i=0

bix(t − i · UI) (13-39)

where bi is the logical value of the ith bit.
We express the received signal waveform of the same n -bit data sequence as

y′(t) =
n∑

i=0

biy(t − i · UI) (13-40)
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where y(t) is the received pulse response. Equation (13-40) represents the super-
position of pulse responses, in which the response for an individual bit is shifted
in time by an amount equal to the bit position multiplied by the unit interval.
Let’s illustrate with an example.

Example 13-7 Superposition of Pulse Response Waveforms Figure 13-22a
shows a simple interconnect circuit operating at 1 Gb/s. The transmission line
is lossless with a characteristic impedance of 50 	 and a 1-ns electrical length.
Impedance mismatches at the ends of the line cause reflections on the waveform
shown in Figure 13-22b. We want to find the received response at the far end of
the line when stimulated with the following pattern:

Bit Value

0 0
1 0
2 1
3 0
4 1
5 0
6 0
7 0
8 0
9 0

10 0
11 0
12 0
13 0

Figure 13-23a provides a graphical representation of the superposition of
pulses in order to construct the desired waveform. In this case we copy the pulse
response and shift it two bit positions to the right. We then add the two pulse
responses together using the voltage values extracted from the pulse response at
each bit position, which are listed in the second column of Table 13-6. The third
column of the table contains the shifted pulse response values, and the final col-
umn contains the resulting values for the desired waveform. Figure 13-23b shows
the waveform generated using the superposition calculation, while Figure 13-23c
contains the waveform obtained by explicitly simulating the bit pattern desired.
The two waveforms give an exact match, and we have thus demonstrated the
applicability of superposition for analyzing high-speed signaling interfaces.

13.5.2 Worst-Case Bit Patterns and Data Eyes

Having demonstrated the applicability of superposition, we now show how we
can use it to find the worst-case bit pattern and resulting data eye for a high-speed
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Figure 13-22 Example circuit and pulse response for superposition application: (a) cir-
cuit and signal characteristics; (b) 1-Gb/s pulse response.

signaling system. The obvious approach would be to create each of the possi-
ble waveforms for the system based on our knowledge of the pulse response.
To illustrate, we reexamine the pulse response from the previous example in
Figure 13-24. We have annotated the figure to show deviations in the pulse
response from the ideal case. For example, the second bit position after the pulse
has a value of −0.247 V. Ideally, the pulse response would be zero at all bit
positions except for the one at the interval from 2 to 3 ns. We call that position
the cursor , which identifies it as the bit position of interest. The positions that
follow it are called postcursor positions, and those that precede the cursor are
precursor positions. From the figure we see that the pulse shows deviations from
ideal that cause intersymbol interference out to the twelfth postcursor bit. The
bits after that one are all equal to zero and will not affect any signal waveform
that we generate from the pulse response.

Covering all possible combinations would require that we create 213 different
waveforms in order to comprehend the cursor bit plus the 12 postcursors. Once
we generate them, we then have to analyze each to find the pattern that gives
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Figure 13-23 Example use of superposition to calculate the waveform for a bit pattern
from the pulse response in Figure 13-22: (a) superposition of pulses to emulate the bit
pattern for Example 13-7; (b) waveform calculated from superposition; (c) waveform from
simulated bit pattern.
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TABLE 13-6. Superposition of Pulses for Example 13-7

Pulse (V)

Bit Original Shifted Sum (V)

0 0.000 0.000 0.000
1 0.000 0.000 0.000
2 1.111 0.000 1.111
3 0.000 0.000 0.000
4 −0.247 1.111 0.864
5 0.000 0.000 0.000
6 0.055 −0.247 −0.192
7 0.000 0.000 0.000
8 −0.012 0.055 0.043
9 0.000 0.000 0.000

10 0.003 −0.012 −0.009
11 0.000 0.000 0.000
12 −0.001 0.003 0.002
13 0.000 0.000 0.000

us the minimum eye opening. Further, for a complex, lossy signaling channel,
the worst-case bit pattern may be different for different locations within the eye.
So while this approach is technically feasible, it does not seem terribly efficient.
Fortunately, by using superposition in a different way, we can find both the
worst-case bit pattern and minimum eye opening without having to create the
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Figure 13-24 Pulse response with ISI terms.

8000+ waveforms. To begin to understand how we can use superposition, we
present another example.

Example 13-8 Using Superposition to Find the Worst-Case Bit Pattern Refer-
ring to Figure 13-24, we observe that if we were to transmit a second pulse at
t = 4 ns (the second postcursor position), superposition will cause the signal level
of the second pulse to be reduced by the amount of negative ISI at that position.
As a result, the value of the second pulse is 1.111 V − 0.247 V = 0.864 V. This
tells us that the worst-case pattern for a logical 1 should include a 101 subpattern.

If we launch a third pulse starting at t = 8 ns (the sixth postcursor position),
it will be affected negatively by the − 0.247-V ISI from the second pulse and
by the − 0.012-V ISI from the first pulse, degrading it to a value of 0.852 V.
Thus, we expand the worst-case bit pattern so that it now includes 1000101.

Launching a fourth pulse at the tenth postcursor position adds an additional
1 mV of degradation to a logical 1 signal. The pulse shows no negative ISI beyond
the tenth postcursor, so we don’t need to carry the analysis any further. The
waveform for a worst-case pattern will contain 10001000101. We demonstrate
the analysis graphically in Figure 13-25a. The voltage will be

1.111 V − 0.247 V − 0.012 V − 0.001 V = 0.851 V

which corresponds to the value of a worst-case 1.
We find the pattern that results in the worst-case zero using the same approach.

However, in this case, we focus on the bit positions that exhibit positive ISI. The
fourth, eighth, and twelfth postcursors have positive ISI of 0.055, 0.003, and
0.0001 V, respectively. Figure 13-25b shows the analysis and the worst-case bit
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Figure 13-25 Construction of the worst-case eye waveforms: (a) superposition of pulse
to create a worst-case 1; (b) superposition of pulses to create a worst-case 0; (c) worst-case
waveforms; (d) worst-case eye diagram; (e) close-up view of eye at the trailing edge.
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Figure 13-25 (Continued )

pattern for a zero (1000100010000). The voltage value of the worst-case zero is
0.055 V + 0.003 V + 0.0001 V = 0.058 V.

We show the waveforms for both worst-case patterns in Figure 13-25c, and
the resulting eye diagram in Figure 13-25d. From the eye diagram we see that
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the worst-case ISI noise is 58 mV for both the low and high signal cases, giving
a minimum height of 794 mV. In addition, from the close-up view of the trailing
edge of the eye in Figure 13-25e, we find that the ISI-induced jitter is ±61 ps,
corresponding to a minimum eye width of 878 ps.

At this point we note that our analysis used a very simple example, since our
system did not contain any ISI within the unit interval (we accomplished this
by making the line lossless and choosing the length such that the ISI lined up
with bit boundaries). A more realistic response will include losses, reflections, and
crosstalk, and therefore exhibit ISI variation within each bit boundary. At a result,
the worst-case bit pattern can vary as a function of the position within the unit
interval. The close-up view of the first two postcursor bit positions for the lossy
system in Figure 13-26a illustrates this effect. Examination of the close-up plot
in Figure 13-26b shows that the value of the first postcursor bit that corresponds
to a worst-case signal for a logical 1 is equal to 1 from 0.720 to 0.795 ns, and
is equal to zero from 0.795 to 0.820 ns. However, the corresponding value of
the second postcursor bit is zero from 0.820 to 0.872 ns, and 1 from 0.872 to
0.920 ns. This pulse response implies, therefore, that we have multiple potential
worst-case patterns to comprehend.

Clearly, the situation has become much more complicated. As Figure 13-26
illustrates, the positional dependence of the worst-case bit pattern makes the
analysis for a realistic channel too complex to carry out in the manual fashion
that we have described. Fortunately, we can translate the method into a set of
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Figure 13-26 Example pulse response containing ISI within the bit: (a) pulse response;
(b) close-up view of first and second postcursor positions.

equations that implement the peak distortion calculation of the worst-case wave-
forms given the pulse response at the receiver [Casper et al., 2002]. Equations
(13-41) and (13-42) describe the waveforms for the worst-case 1 and zero, respec-
tively, including the ISI due to losses and reflections. The equations, along with
determination of the worst-case bit patterns (left as a problem for the reader),
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comprise the peak distortion analysis (PDA) method.

WC1(t) = y(t) +
∞∑

k=−∞
k �=0

y(t − kT )|y(t−kT )<vss0 (13-41)

WC0(t) = vss0 +
∞∑

k=−∞
k �=0

y(t − kT )|y(t−kT )〉vss0 (13-42)

where WC1(t) = signal waveform representing the worst-case logical 1

WC0(t) = signal waveform representing the worst-caselogical zero

y(t) = received pulse response

T = symbol period

vss0 = steady-state system response when driving low

In equations (13-41) and (13-42), k is an index into the data stream that
represents the number of bit positions away from the cursor position (k = 0 rep-
resents the cursor position). The PDA equations operate by conditionally adding
the ISI at multiples of the unit interval to the value of the waveform at the
current sample point. For a worst-case 1, the samples that contain negative ISI,
y(t − kT ) < vss0, are added to the pulse response. For the worst-case zero cal-
culation, the samples containing positive ISI, y(t − kT ) > vss0, are added to the
steady-state low response. Note that although the bit position index k extends
from minus infinity to plus infinity, in a real system the length of the analysis
must be limited. There is no need to carry out the analysis beyond the point
at which the system reaches the steady-state value (either before or after the
cursor).

By applying the equations at each sample in the received pulse response,
we can deterministically calculate the worst waveforms. The repetitive nature of
the calculation clearly suggests that we can use a computer program to automate
the process. In Figure 13-27 we show the worst-case eye calculated by apply-
ing the PDA approach to the pulse response of Figure 13-26. The figure also
depicts the received eye for a 200-bit pseudorandom data sequence. The figure
shows clearly that the PDA approach yields a smaller eye than does the random
sequence, thus providing a better estimate of the worst-case noise and jitter from
a single simulation!

13.5.3 Peak Distortion Analysis Including Crosstalk

In Chapter 4 we showed that crosstalk also affects the behavior of signals in
a coupled channel. As a consequence, our methodology must include potential
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Figure 13-27 Comparison of eyes for a 200-bit random sequence and the worst case
from peak distortion analysis.

impacts of crosstalk on the data eye to make sure that it is comprehended in the
system jitter and noise margin estimates. Fortunately, the superposition principle
makes it possible to extend the PDA method to include crosstalk using the same
approach that we employed for a single signal.

To illustrate the concept, we return to the coupled system from Example 4-2.
Shown in Figure 13-28, the system contains a 0.2794-m-long coupled pair that is
terminated with 65 	 at each end. The lossless, single-ended signals are driven
by a 1-V source with a 100-ps rise time and 1-Gb/s switching rate. The signals
are detected by a high-speed differential receiver that has one end connected to
a reference voltage of 0.25 V. To perform peak distortion analysis, we again
simulate the system pulse response, which is shown in Figure 13-29a. When
including crosstalk, we apply the active pulse to the line of interest (the “aggres-
sor”) and capture the pulse response at the receiver for all signals in the coupled
system.

We start by using PDA to calculate the worst-case signal waveforms that
account for ISI from the pulse response on the aggressor line. To incorporate the
effect of crosstalk, we use the response on the victim line in the same manner
as we did for the ISI calculation. That is, we conditionally add the crosstalk
at multiples of the unit interval to the worst-case signals that include ISI at
the current sample point. For a worst-case 1, the samples that contain negative
crosstalk are added to the pulse response. For the worst-case zero calculation, the
samples containing positive crosstalk are added to the steady-state low response.
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Figure 13-28 Coupled system from Example 4-2.

This method is illustrated in Figure 13-29b and shown as follows:

WC1(t) = y(t) +
∞∑

k=−∞
k �=0

y(t − kT )|y(t−kT )<vss0

+
n∑

i=1

∞∑
k=−∞

yi(t − kT − ti )|yi (t−kT −ti )<vss0
(13-43)

WC0(t) = vss0 +
∞∑

k=−∞
k �=0

y(t − kT )|y(t−kT )>0vss0

+
n∑

i=1

∞∑
k=−∞

yi(t − kT − ti )|yi (t−kT −ti )>vss0
(13-44)
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where yi(t − kT − ti) is the pulse response received on line i (i.e., crosstalk
source), also known as co-channel interference (CCI), and ti is the relative sample
point of each crosstalk source.

Note that in incorporating crosstalk into our analysis, we are taking advantage
of the symmetry of the L and C matrices for the transmission-line model. Because
the matrices are symmetric with respect to the mutual (off-diagonal) terms, the
coupling between traces is also symmetric. Therefore, the crosstalk pulse that
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Figure 13-29 Pulse response and PDA for the coupled system of Example 13-3: (a)
pulse response for aggressor and victim traces; (b) worst-case eyes calculated via PDA;
(c) pulse response and PDA eye with +25 ps of transmit skew; (d) PDA eye with +25
ps of transmit skew. (Continued)
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we saw on the quiet line (line 2), when driven by line 1 in our example will
also show up on line 1 if driven by line 2. As a result, we can use the crosstalk
response on line 2 when driven by line 1 to determine the impact of crosstalk on
line 1.

The relative sample point ti allows us to find the worst-case data eye, including
crosstalk in the presence of skew on the data signal transmitter outputs. For
example, Figure 13-29c shows the pulse response and resulting data eye under
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the condition that the transmitter for the second data line has a +25-ps skew
relative to line 1.

13.5.4 Limitations

PDA is a powerful tool for analyzing the jitter and noise characteristics of a
high-speed signaling link. However, it has limitations that we must comprehend
to ensure robust products while minimizing overdesign. We summarize them
briefly below.

Linearity Assumption As discussed, peak distortion analysis explicitly assumes
that the signaling system is linear. However, the transceiver circuits may show
significant nonlinearity. This suggests that PDA results should be checked for
accuracy. The easiest way to do so would be to run some check simulations
using full transistor or IBIS transceiver models using the worst-case bit patterns
obtained via the PDA algorithm.

Dual Dirac Model The treatment of the channel jitter distribution as though it
were a delta function located at the maximum value is an approximation. For a
random data stream, the channel jitter will actually be distributed across a range
that extends from zero to the maximum value calculated by PDA. As a result,
treating the channel jitter as though it is distributed only at the extreme values
obtained from PDA is inherently conservative. Although it is certainly possible to
calculate the actual channel jitter distribution and to incorporate the distribution
into the total system jitter model (e.g., Casper et al. [2002] and Sanders et al.
[2004]), we leave it as an advanced design project for the student.

Differential Signaling Although not a limitation, we note that the PDA method
works equally well for both differential and single-ended signals. Use with dif-
ferential signals requires that the differential voltage signal be calculated from
the individual signal components on the pair prior to applying PDA.

Simulation Noise Some simulators may leave small voltage fluctuations on the
line due to numerical error or convergence effects that last for many unit intervals.
These fluctuations can artificially close the data eye, leading to highly pessimistic
results. A simple means of eliminating the problem is to apply a “noise floor”
to the PDA calculation that effectively ignores any value that falls closer to the
steady-state value than the noise floor.

Jitter Amplification Due to the lossy nature of the interconnect channel, it will
tend to amplify any jitter that the transmitter circuit injects onto the channel.
Since the PDA method that we presented uses only a single pulse in calculating
the worst-case jitter, it does not comprehend the amplification of the transmit
jitter. Techniques to comprehend the amplification of transmitter jitter by the
channel are an area of active research [Casper et al., 2007].
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13.6 SUMMARY

Contemporary high-speed signaling links specify performance in terms of both
the maximum data rate and the bit error rate. In this chapter we introduced the
concept of bit error rate and described the necessary mathematics for relating the
BER to timing jitter and voltage noise. We described the various types of jitter
and noise that are present in systems, along with their sources, and developed
methods for creating system jitter and noise budgets. Finally, we described the
peak distortion analysis technique for evaluating the worst-case jitter and noise
caused by the interconnect channel over which high-speed signals propagate.
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PROBLEMS

13-1 Explain how the BER contour in Figure 13-4 works. Why is the bit error
rate lowest at the center of the eye, with increasing BER as we move
away from the center in either the horizontal or vertical direction?

13-2 Estimate the BER that we can achieve for a 10-Gb/s link, given DJ = 40
ps and σRJ = 3.5 ps. Assuming that the DJ and RJ contributions remain
constant, what is the maximum data rate at which we can operate if the
maximum tolerable BER is 10−12?

13-3 Estimate the PDFs for deterministic and total jitter for a 5-Gb/s system
containing the following sources:

• Periodic jitter with 30 ps of amplitude
• 10% duty cycle jitter
• Random jitter with σRJ = 6 ps
• ISI jitter in the form of a truncated Gaussian with σ = 20 ps and

−50 ps ≤ DJ ISI ≤ 50 ps

13-4 Create a dual Dirac model for the total jitter distribution of Problem
13-3, and use it to estimate the maximum bit error rate for the system.

13-5 Explain why the DAC-induced equalizer noise is equal to one-half of the
DAC resolution.

13-6 Develop a noise budget for the 10-Gb/s differential system shown in
Figure 13-30. Include all deterministic and random noise sources fol-
lowing the guidelines presented in Section 13.4.

13-7 Use the noise budget developed in Problem 13-6 to estimate the bit error
rate for the system in Figure 13-30.
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Figure 13-30 Open-drain signaling system for Problem 13-6.

13-8 Use the pulse response data from the second column of Table 13-6 to
calculate the waveform for a 1101000 pattern.

13-9 An interesting aspect of the PDA equations is that they account automat-
ically for the positional dependence of the worst-case bit pattern without
explicitly determining the actual patterns. However, sometimes we may
wish to know the worst-case pattern(s). Develop an algorithm for finding
the bit patterns that result in the worst-case signal waveform for both a
logical zero and a logical 1.

13-10 Calculate the actual total jitter distribution for the PCI Express system in
Example 13-2. Use the DJ and RJ values from Table 13-2, assume that
the individual DJ components fit a dual Dirac distribution, and convolve
the DJ distributions to find the total TJ.

13-11 Explain why PDA is not applicable for the open-drain system shown in
Figure 13-31.

vout

ioutRS

VTT

RTT

Figure 13-31 Open-drain signaling system for Problem 13-11.

13-12 Use peak distortion analysis to determine the worst-case waveform from
the pulse response shown in Figure 13-32.

13-13 Outline the method that you would use to perform peak distortion analysis
on a differential system, including the effects of crosstalk.

13-14 Propose a method for performing peak distortion analysis using the step
response rather than the pulse response. What would be the advantage
of using the step response?
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13-15 Project: Develop a software tool to perform peak distortion analysis from
a received pulse response.

13-16 Project: Casper et al. [2002] outline a probabilistic approach to determin-
ing the ISI and crosstalk jitter and noise distributions from the received
pulse response. Develop a software tool to perform the probabilistic chan-
nel analysis.
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By this point, we have covered a wide range of important topics for the study and
design of high-speed signaling systems. We now understand the fundamentals
of transmission line behavior, including losses and crosstalk, modeling of I/O
circuits, equalization, and modeling of jitter and noise. In this chapter we tie
those concepts together with a method for analyzing and predicting the behavior
of high-speed signaling interfaces using response surface modeling (RSM). Once
we have added RSM to our repertoire, we will possess the necessary ingredients
for the successful design of signaling systems operating at multi-Gb/s speeds.

Advanced Signal Integrity for High-Speed Digital Design, By Stephen H. Hall and Howard L. Heck
Copyright  2009 John Wiley & Sons, Inc.
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14.1 MODEL DESIGN CONSIDERATIONS

Our understanding of channel noise and jitter modeling, combined with the peak
distortion analysis technique, gives us nearly all the tools we need in order
to design a multi-Gb/s signaling interface. However, we still need a method
that allows us to understand how our design behaves as the physical and elec-
trical characteristics of the system components change. Without the means to
evaluate the signal behavior in a systematic fashion as the system characteris-
tics vary, finding a combination of transmitter, package, PCB, termination, and
receiver characteristics that result in a functional and reliable system becomes an
intractable problem at multi-Gb/s rates.

In addition, we must also account for the impacts of manufacturing large
volumes of high-speed systems. The variation that is an inherent part of all man-
ufacturing processes means that different systems will behave differently, even if
they were built from the same design. For example, the differential impedance of
signal traces on our printed circuit boards may show as much as ±20% variation
around the nominal value. This manufacturing variability may manifest itself as a
variation in electrical performance. In particular, we are interested in the impact
of manufacturing variation on eye height and width. If we do not comprehend
these variations in our design, a significant percentage of our systems may fail
to operate properly. The impact of such a poor design is typically increased cost,
due either to returns from customers or to yield loss during manufacture.

Fortunately, the response surface modeling (RSM) technique provides a tool
that gives us the ability to model the behavior of our signaling system as the
circuit and interconnect characteristics vary. RSM works by fitting a statistical
model of the output response as a function of changes in the input variables. For
example, a useful RSM would provide predictions of the eye height and width as a
function of board impedance, termination resistance, line length, and equalization.
Response surface modeling is a broad topic for which entire textbooks exist
[Myers and Montgomery, 1995]. As such, we cannot provide a comprehensive
treatment here. Instead, we endeavor to provide a sufficient overview to allow
the reader to begin applying RSM techniques in the design of signaling links.

The basic idea behind RSM is to apply linear regression techniques to create
a statistical model that predicts the system response (output) as the inputs vary.
We do this by first creating a set of observed outputs in response to specific sets
of input conditions that we determine via a designed experiment. The system
model is a linear equation that is constructed by fitting the observed responses
and inputs via the least squares fitting technique. Once the model is created, we
can use it to predict the output of the system in response to arbitrary combinations
of inputs.

Since the model represents a statistical fit, we expect that there may be some
error in the values predicted. As a result, understanding how well the model
fits the observed data and determining how much uncertainty exists in the pre-
dicted responses become important topics that we must also comprehend in our
analysis. Before describing the creation and use of the response surface model,



RSM CONSTRUCTION BY LEAST SQUARES FITTING 607

we introduce an example signaling link that we use throughout the chapter to
demonstrate the application and benefit of the RSM approach.

14.2 CASE STUDY: 10-GB/S DIFFERENTIAL PCB INTERFACE

We want to develop a pair of response surface models that estimate the eye
height and eye width for a 10-Gb/s differential link. Our ultimate goal is to
use the models to identify a working solution that accommodates the desired
range of trace lengths, comprehends the expected manufacturing variation, and
meets a defect rate of less than 1000 parts per million (ppm). We have complete
system budgets for timing and noise that require our interconnect channel to
meet minimum specs of 60-mV eye height and 70-ps eye width as determined
from peak distortion analysis in order to achieve a 10−12 bit error rate. We use
this example system throughout the remainder of the chapter to illustrate the
model-fitting process, analysis of the model fit, and application to prediction of
design limits and defect rates.

The system characteristics are summarized in Figure 14-1 and Table 14-1. We
will fit our model to the five input variables listed in Table 14-1. The variability
in the models for termination and characteristic impedance represent the expected
variation due to the manufacturing process. The range of the transmission-line
lengths is based on experience with prior systems, which indicates the need to
accommodate a range of trace lengths from 10 to 20 in. Finally, the link uses
a two-tap equalizer with a coefficient range from −0.30 to −0.10, which was
determined from results of initial simulations. The equalizer is not adaptive, so the
tap weights must be set prior to operation. The weights are controlled by a 4-bit
digital-to-analog converter, so that the granularity between adjacent taps settings
is equal to 0.0133. The valid equalizer settings are summarized in Table 14-2.

The differential transmission-line characteristics are calculated from the phys-
ical cross-sectional dimensions using a 2D field solver. To generate the eye data,
we first simulate the pulse response in the frequency domain using the causal
transmission-line modeling method (Chapter 8) and frequency-domain equalizer
(Chapter 12) model. After transformation to the time domain, we determine the
worst-case eye width and height for each observation using peak distortion anal-
ysis (Chapter 13), which we show in columns 7 and 8 in Table 14-3.

14.3 RSM CONSTRUCTION BY LEAST SQUARES FITTING

The general form of the response surface model is

y = β0 + β1x1 + β2x2 + · · · + βkxk + ε (14-1)

where y is the system response (output), βi the model fit coefficients, xi the
system inputs, k the number of terms in the model, and ε the error in the predic-
tion from the model. The response surface model is a linear function of the fit
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Figure 14-1 Signaling system for construction of a response surface model: (a) system
simulation model; (b) transmitter model.

coefficients. As such, it is highly flexible, allowing us to fit curved response sur-
faces by using higher-order combinations of input variables (e.g., x2

1 ). In general,
second-order models are sufficient for high-speed signaling links. They have the
form

y = β0 +
nvar∑
i=1

βixi +
nvar∑
i=1

βiix
2
i +

nvar∑
i=1

nvar∑
j �=i

βij xixj (14-2)

where nvar is the number of independent input variables.



RSM CONSTRUCTION BY LEAST SQUARES FITTING 609

TABLE 14-1. System Input Variables for the Signaling Example of Chapter 14

Model Term Minimum Typical Maximum

Transmitter termination, RTx(�) 40 50 60
Receiver termination, RT T (�) 40 50 60
Differential impedance, Zdiff(�) 84.0 100.3 117.9
Trace length, L (m) 0.254 0.381 0.508
Equalization coefficient, EQ −0.1 −0.2 −0.3

TABLE 14-2. Valid Equalization Settings

Setting bit3 bit2 bit1 bit0 EQ

0 0 0 0 0 −0.3000
1 0 0 0 1 −0.2867
2 0 0 1 0 −0.2733
3 0 0 1 1 −0.2600
4 0 1 0 0 −0.2467
5 0 1 0 1 −0.2333
6 0 1 1 0 −0.2200
7 0 1 1 1 −0.2067
8 1 0 0 0 −0.1933
9 1 0 0 1 −0.1800

10 1 0 1 0 −0.1667
11 1 0 1 1 −0.1533
12 1 1 0 0 −0.1400
13 1 1 0 1 −0.1267
14 1 1 1 0 −0.1133
15 1 1 1 1 −0.1000

The number of terms in the second-order model, k, is

k = 1 + 2nvar + nvar(nvar − 1)

2
(14-3)

In creating the model, we use response data from multiple observations that are
generated from different combinations of model inputs. The number of obser-
vations and choice of input combinations is typically determined via the design
of experiments (DOE) approach. As its name implies, DOE is a discipline that
allows us to design experiments that will result in the creation of accurate mod-
els that require a minimal number of observations to obtain a good fit. The
latter characteristic is particularly important for analyzing and designing signal-
ing links. Simulations for fully coupled interconnects with nonlinear transceiver
models can take several minutes to complete. With that in mind, a technique that
minimizes the number of simulations needed to create a reliable response surface
model will reduce development time and CAD infrastructure costs. As was the
case with response surface modeling, DOE is a topic for which entire textbooks
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TABLE 14-3. Model Fitting Observations

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Predicted Residual

Eye Eye Eye Eye Eye Eye
Height Width Height Width Height Width

Run R′
Tx Z′

diff R′
T T L′ EQ′ (mV) (ps) (mV) (ps) (mV) (ps)

0 0 0 0 0 1 79.43 77 80.61 73.87 −1.18 3.13
1 −1 −1 1 1 1 30.93 52 29.93 52.65 1.00 −0.65
2 1 1 −1 −1 1 118.70 91 119.35 91.15 −0.65 −0.15
3 1 −1 1 −1 1 148.40 89 149.25 89.15 −0.86 −0.15
4 −1 1 1 −1 1 133.38 90 133.72 89.66 −0.34 0.34
5 1 −1 −1 −1 −1 76.89 88 77.63 87.37 −0.74 0.63
6 0 0 −1 0 0 83.83 90 85.44 89.86 −1.61 0.14
7 −1 −1 −1 1 −1 56.80 84 55.69 83.87 1.11 0.13
8 1 1 −1 1 −1 58.40 79 58.23 79.33 0.17 −0.33
9 −1 1 1 1 −1 72.24 83 71.75 82.84 0.48 0.16

10 0 0 0 −1 0 127.60 92 123.36 95.83 4.24 −3.83
11 0 0 1 0 0 105.96 89 104.71 89.08 1.25 −0.08
12 0 0 0 1 0 57.13 78 61.73 74.12 −4.60 3.88
13 1 −1 −1 1 1 17.43 40 16.77 41.18 0.66 −1.18
14 1 1 1 1 1 21.64 45 21.57 46.05 0.07 −1.05
15 −1 0 0 0 0 90.41 89 93.30 90.90 −2.90 −1.90
16 −1 1 −1 −1 −1 68.65 88 68.88 86.94 −0.24 1.06
17 0 −1 0 0 0 93.19 89 94.20 88.92 −1.01 0.08
18 −1 −1 −1 −1 1 107.62 91 107.40 90.68 0.22 0.32
19 −1 1 −1 1 1 32.63 62 31.56 62.61 1.07 −0.61
20 1 −1 1 1 −1 79.85 84 79.82 84.34 0.03 −0.34
21 −1 −1 1 −1 −1 93.97 87 94.38 85.84 −0.41 1.16
22 0 0 0 0 0 96.24 89 95.52 89.11 0.72 −0.11
23 0 0 0 0 0 96.24 89 95.52 89.11 0.72 −0.11
24 0 0 0 0 −1 82.02 85 81.20 88.08 0.82 −3.08
25 1 1 1 −1 −1 106.52 86 107.75 85.38 −1.23 0.62
26 1 0 0 0 0 100.64 89 98.10 87.05 2.54 1.95
27 0 1 0 0 0 95.09 90 94.44 90.03 0.65 −0.03

are available, and the details of DOE theory are beyond our scope. However,
those readers who adopt the RSM methodology will undoubtedly wish to acquire
a more in-depth understanding of DOE fundamentals. We refer them to books by
Myers and Montgomery [1995], Steppan et al. [1998], and Montgomery [2005]
for further study.

The response surface model is a linear function of the model coefficients. For
a given model-fitting experiment, the input variables have predetermined values.
As a result, we can replace each of the higher-order terms with single variables
that have the same values without affecting the fit. For example, if our response
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model is

ŷ = β0 + β1x1 + β2x2 + β11x
2
1 + β22x

2
2 + β12x1x2 + ε

we can create an equivalent representation

ŷ = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + ε

by defining

β11 ≡ β3, β22 ≡ β4, β12 ≡ β5, x
2
1 ≡ x3, x

2
2 ≡ x4, andx1x2 ≡ x5

By expressing the model this way, we can recast it in matrix form:

y = Xβ + ε (14-4)

where

y =




y1

y2
...

yn


 is the n × 1 vector of observed responses

X =




1 x11 x12 · · · x1k

1 x21 x22 · · · x2k

...
...

...
...

1 xn1 xn2 · · · xnk


 is the n × k matrix of inputs

β =




β0

β1
...

βk


 is the k × 1 vector of model coefficients

ε =




ε1

ε2
...

εn


 is the n × 1 vector of random errors

and n is the number of observations for fitting the model and k is the number of
model terms.

Each column of the input matrix corresponds to a model term. The first column
represents the intercept for the model, from which the β0 coefficient is estimated.
Each row of the input matrix corresponds to an experimental observation. The
response vector contains a row for each observation, as does the residual vector.
The model coefficient vector contains a row for each term in the model.
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With the form of the model established, we can fit it to the experimental data.
The most widely used fitting technique is known as the method of least squares ,
which calculates the coefficients from the system response and inputs such that
the sum of the squares of the errors (εi) is minimized. Omitting the derivation,
the least squares fit algorithm yields the following equation, which provides an
estimate of β that satisfies the least squares criterion:

b = (XTX)−1XTy (14-5)

where b is the k × 1 vector containing an estimate of β, the vector of true model
fit coefficients. The fitted regression model is then expressed as

ŷ = Xb (14-6)

where ŷ is the vector of estimated system responses for the given input matrix,
X, and vector of estimated fit coefficients, b.

When fitting the model, we have multiple choices for the form of the model
factors and responses. Rather than fitting to the raw data, regression tools often
fit the model to a transformed version of the data. Throughout this chapter we
fit the model to input variables that are coded according to

x′
ik = round

[
2(xik − xk)

xk,max − xk,min

]
(14-7)

where xik is the value of the ith observation of the input for the kth model
term, xk the mean value of the observations for the kth model term, xk,max the
maximum value of the observations for the kth model term, xk,min the minimum
value of the observations for the kth model term, and round(x) rounds x to the
nearest integer.

The variable coding maps the input variables such that the minimum, nominal,
and maximum values for each variable correspond to coded values of −1, 0,
and 1, respectively. By fitting the model to the coded variables, we reduce the
variation in magnitude of the individual coefficients to avoid instabilities in the
model.

Case Study Application We now apply the least squares fitting procedure to
our case study. A frequently used experiment design for second-order response
surface models is a central composite design [Montgomery, 2005]. For a set of
five input variables, the central composite experiment requires a total of n = 28
observations, which are summarized in the first eight columns of Table 14-3.
Since we have five independent variables, equation (14-3) specifies that the input
matrix will have 21 columns. The form of the input matrix is shown in equation
(14-8), and the expressions for the individual columns are defined in Table 14-4.
For example, the term x1,1 would be equal to the R′

Tx value of zero from run 0 in
Table 14-3, x1,2 would be equal to the R′

Tx value of −1 from run 1, x1,3 would
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be equal to the R′
TX value of 1 from run 2, and so on. To carry out the least

squares fit, we put the observations from the table into the coded input matrix
(X) and response vectors (yeyeH and yeyeW). Note that the eye height and width
are expressed in units of mV and ps, respectively.

X =

∣∣∣∣∣∣∣∣∣

1 x1,1 x2,1 · · · x20,1

1 x1,2 x2,2 · · · x20,2
...

...
...

. . .
...

1 x1,28 x2,28 · · · x20,28

∣∣∣∣∣∣∣∣∣
(14-8)

With the observations in matrix form, application of the model fitting equations

beyeH = (XTX)−1XTyeyeH (14-9)

beyeW = (XTX)−1XTyeyeW (14-10)

gives the estimated fit coefficient vectors:

beyeH=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

95.51799
2.32444
0.12056
9.55222

−30.81556
−0.28778

0.18751
−2.18063
−1.19749

1.26063
−2.43813
−0.44249
−3.88563
−0.02937
−4.43812
−2.97249
−1.77437

0.22937
−2.11688

−20.42063
−14.61249

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

beyeW=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

89.10651
−1.94444

0.55556
−0.44444

−10.83333
−7.05556
−0.13314
−0.56250

0.36686
1.18750

−1.56250
0.36686

−1.93750
0.56250
0.31250

−4.13314
−1.56250

1.43750
−0.56250
−8.93750
−8.13314

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Before proceeding further, it makes sense that we should apply the estimated
fit coefficients, beyeH and beyeW, to the input observed using equation (14-6) to
obtain estimates of the response. These estimates are shown in columns (9) and
(10) of Table 14-3. Comparing the predicted and observed responses, we see that
our models agree to within approximately ±4 mV and ±4 ps.
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TABLE 14-4. Model Terms for the RSM Examplea

Model Model Model Model
Term Expression Term Expression Term Expression Term Expression
x1 R′

Tx x6 (R′
Tx)

2 x11 (R′
T T )2 x16 R′

TxEQ′

x2 Z′
diff x7 R′

TxZ
′
diff x12 R′

TxL
′ x17 Z′

diffEQ′

x3 R′
T T x8 (Z′

diff)
2 x13 Z′

diffL
′ x18 R′

T T EQ′

x4 L′ x9 R′
TxR

′
T T x14 R′

T T L′ x19 L′EQ′

x5 EQ′ x10 Z′
diffR

′
T T x15 (L′)2 x20 (EQ′)2

aR
′
Tx, Z

′
diff, R

′
T T , L′, and EQ′ are calculated using equation (14-7).
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Figure 14-2 Comparison of actual versus predicted values for eye height and width.

The plots in Figure 14-2 demonstrate an alternative way to look at the agree-
ment between prediction and observation. For the predictions to match the model
perfectly, we expect the plot to show a linear relationship with a slope equal to
1 and intercept at zero (i.e., y = ŷ). In addition, we would expect the value of
R-squared (R2), which is a measure of the proportion of variability explained by
the linear relationship of the sample data, to be nearly equal to 1. In subsequent
sections we develop metrics, including a revised definition of R2 for a multiple
variable regression, to assess whether the agreement between model and obser-
vation is good enough to allow us to predict the response with enough confidence
use it in the design of a high-speed signaling interface.

The ability to predict the system response for an arbitrary set of input variables
is a very powerful tool. Using our model fit equations, we can explore a potential
design space in order to find the working solution limits, or we can use it to
project the rate at which systems will fail to meet our performance specifications.
However, before doing so, we need to develop the metrics to assess the accuracy
and limitations of models generated using the RSM technique so that we use the
models properly when making design decisions.
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14.4 MEASURES OF FIT

The metrics that allow us to evaluate the accuracy of the response surface model,
known as measures of fit , are explained in this section.

14.4.1 Residuals

We start exploring model accuracy by examining the errors, known as residuals ,
which we obtain when we apply the model to the same set of inputs that we used
in generating the model coefficients. The residual vector is simply the difference
between the vector of estimated responses and the vector of responses observed:

e = ŷ − y (14-11)

If the model contains no systematic errors, we expect a plot of the residuals as
a function of the responses observed to be randomly scattered with no apparent
correlation. In addition, we can glean some idea as to how well the model fits the
data by using the standardized residuals, d, to look for outliers. The standardized
residual is a scaled version of the raw residual which has zero mean and unit
variance. As a result, we expect that most of the standardized results will fall
within the interval −3 ≤ di ≤ 3. The standardized residual vector is defined as

d = e
σ̂

(14-12)

The estimate of the root-mean-square error, σ̂ , is

σ̂ =
√∑n

i=1 (ŷi − y)2

n − (k + 1)
(14-13)

where y is the mean of the observed responses.
The numerator of equation (14-13) is the error sum of squares, while the

denominator is the associated degrees of freedom:

SSerror =
n∑

i=0

(ŷi − y)2 = yTy − bTxTy (14-14)

dFerror = n − (k + 1) (14-15)

For the model to fit the observed data, we expect the residuals to be distributed
normally with zero mean and to fall within ±3 standard deviations.
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Figure 14-3 Residuals for the response surface model: (a) scatterplots of residuals (eH ,
eW ) versus actuals (yH , yW ); (b) standardized residual histograms (dH , dW ).

Case Study Application The residuals for our model are summarized in
columns 11 and 12 of Table 14-3 and are plotted against the observed responses
in Figure 14-3a, while the histograms of standardized residuals are shown in
Figure 14-3b. The residual scatterplot shows no apparent correlation to the
responses observed, and the histogram meets our expectation that it be normally
distributed with zero mean and residuals that lie within 3 standard deviations
of the mean. So the residuals give us our first indication that we have a good
model.

14.4.2 Fit Coefficients

A common metric for the quality of model fit is the coefficient of multiple
determination, R2. It describes the amount of variability of the response that is
explained by the model, and is equal to the ratio of the model sum of squares to
the total sum of squares:

R2 = SSmodel

SStotal
= 1 − SSerror

SStotal
(14-16)
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where SSmodel is the sum of squares of the model, SSerror the sum of squares of
the residual, and SStotal the total sum of squares.

Since the response of the system is determined by the combined effect of
the model and the error in estimation, we know that the sum of squares for the
system (SStotal) is made up of the model sum of squares and the error sum of
squares. These quantities are expressed as

SStotal = yTy −
(∑n

i=1 yi

)2

n
(14-17)

SSmodel = SStotal − SSerror = bTxTy −
(∑n

i=1 yi

)2

n
(14-18)

Equation (14-16) suggests that a perfect model fit will have SSerror = 0, result-
ing in R2 = 1. Although a near-unity value of R2 is a good sign, it does not
guarantee that the model is good. This is because adding a term to the model
will always increase R2, even if the term is not statistically significant (we dis-
cuss significance testing in Section 14.5). An additional correlation metric that
is frequently employed is the adjusted coefficient

R2
adj = SSerror/dFerror

SStotal/dFtotal
= 1 − n − 1

n − k − 1
(1 − R2) (14-19)

where
dFtotal = n − 1 (14-20)

We can use (14-15) and (14-20) to calculate the number of degrees of freedom
of the model as

dFmodel = k − 1 (14-21)

The inclusion of the degrees of freedom of the system and the error means that
the adjusted R2 statistic can decrease if an insignificant term is added to the
model. Thus, dramatically different values of R2 and R2

adj indicate that the model
may contain unnecessary terms.

For signaling systems, we recommend using R2 ≥ 0.95 and R2
adj ≥ 0.90 as fit

criteria. Systems that contain significant nonlinearity in response due to physical
effects such as reflections may have difficulty in meeting these criteria, requiring
either adjustment to the criteria or adjustments to the model.

A final check that we often use is to check that the root-mean-square error
(RMSE):

RMSE =
√

SSerror

dFerror
(14-22)

is less than one-tenth of the difference between the minimum and maximum
responses observed.
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TABLE 14-5. Summary of Model Fit Results

Eye Height Eye Width

SSerror 71.823 62.62
SSmodel 28,435.558 5344.06
SStotal 28,507.381 5406.68
R2 0.9975 0.9884
R2

adj 0.9899 0.9537
RMSE 3.203 2.991
Range 130.97 52.00

Case Study Application For our example the degrees of freedom are dFtotal = 27
and dFerror = 7. The coefficient calculations are shown in Table 14-5, includ-
ing the sum-of-squares terms. We can calculate the RMSE metrics from the
sum-of-squares values in Table 14-5 and extract the ranges of observed responses
from Table 14-3. The RMSE values are 3.203 mV and 2.991 ps for eye height
and width, respectively, while the corresponding ranges from Table 14-3 are
130.97 mV and 52.00 ps. The calculated values of R2, R2

adj, and RMSE for our
example system all meet the fit criteria for both eye height and width.

14.5 SIGNIFICANCE TESTING

Thus far we have shown that our response surface model fits the data. A good
fit does not, however, guarantee that the model has a significant impact on the
response of the system, nor does it indicate that all of the model terms are
statistically significant. Drawing conclusions about the significance of the model
is a matter of determining whether or not the model equation is meaningful
compared with the error. Stated in simple terms, the significance of a model
term determines whether or not the term can be removed from the model without
degrading the results. Answering these questions requires the use of tests for
the significance of the model (F -test) and of the individual model coefficients
(t-test).

14.5.1 Model Significance: The F -Test

To test the significance of the regression, we first calculate the F -ratio:

F0 = SSmodel/dFmodel

SSerror/dFerror
(14-23)

The F -ratio is used to determine whether or not any of the model inputs contribute
significantly to the model. In other words, the test for significance of regression
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evaluates whether or not there is a linear relationship between the response and
some subset of the model terms. We do this by using F0 in a hypothesis test:

H0: βi = 0 for all i

H1: βi �= 0 for at least one i
(14-24)

In equation (14-23), H0 is the null hypothesis , which states that none of the model
terms are significant since their fit coefficients are all statistically indistinguishable
from zero. The null hypothesis is essentially a statement that the model is not
useful because the response of the model cannot be distinguished from the noise.
The alternative hypothesis , H1, is that at least one of the coefficients is nonzero.
Rejection of the null hypothesis means that at least one of the terms in the model
has a significant contribution to the model response.

We reject the null hypothesis if the F0 that we calculate for our model meets the
requirement in equation (14-25), which indicates that the component of variance
from the model is significantly greater than the component of variance from the
error:

F0 > Fα,k,n−k−1 (14-25)

where Fα,k,n−k−1 is the critical value for the F -distribution, α = 1 − conf = 1
minus the desired confidence level, k = dfmodel = the model degrees of freedom,
and n − k − 1 = dferror = the error degrees of freedom. For high-speed signaling
systems we often want a 95% confidence level, so we typically set α = 0.05.

An alternative, perhaps more intuitive way to look at the test for significance
of regression is that rejection of the null hypothesis tells us that the response
from the model is determined largely by the model, rather than by the error, at
a given level of confidence. This is exactly what we want for the model to be
useful.

Case Study Application The values for SSmodel, SSerror, F0, and F0.5,20,7 are
listed in Table 14-6. The value of F0.5,20,7 is obtained from Appendix C. The
F -ratio values far exceed the critical value for both eye height and eye width.
As a result, we reject H0 for both eye width and eye height and conclude that at
least one of the model terms contributes significantly to the response with 95%
confidence. Before moving on to discuss parameter significance, we summarize
the model fit and significance metrics and criteria in Table 14-7.

14.5.2 Parameter Significance: Individual t-Tests

The methods described in previous sections provide measures of how well the
model fits the data, which is important if we are to have high confidence in
the predictions that we make using the model. However, to optimize a system
through use of the model, we also need a method for determining which terms
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TABLE 14-6. F -Test Results for the Model Fit Example

Eye Height Eye Width

Sum of Mean F -Ratio Sum of Mean F -Ratio
Source dF Squares Square Squares Square

Model 20 28,435.56 1,421.78 138.568 5,344.06 267.203 29.869
Error 7 71.823 10.26 62.62 8.946
Total 27 28,507.381 5,406.679

F0.25,20,7 = 3.445

TABLE 14-7. Summary of Model Fit and Significance Criteria

Metric Criteria

R2 ≥ 0.95
R2

adj ≥ 0.90
RMSE < Range(y)/10
Residuals Normally distributed

Mean ∼= 0
Residuals within mean ±3 standard deviations

F0 ≥ Fα,k,n−k−1

in the model have a significant effect on the response. To so do, we again use a
hypothesis test. In this case, the hypotheses that we test are

H0: βi = 0
(14-26)

H1: βi �= 0

We can perform the test on any or all of the coefficients in the model. In essence,
failure to reject the null hypothesis for a given model term means that the term
can be deleted without significantly degrading the predictive capability of the
model. The t-statistic used to test the hypothesis is

t0i = bi√
σ̂ 2Cii

= bi

SEi

(14-27)

where t0i is the t-statistic for the ith term in the model; bi is the estimated fit
coefficient for the ith term; Cii is the diagonal element of the covariance matrix
(XTX)−1, which corresponds to bi ; and σ̂ 2 is the estimated variance of the model
error, which is equal to the ratio of the sum of squares of the error and its
associate degrees of freedom:

σ̂ 2 = SSerror

dFerror
(14-28)
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The denominator of equation (14-27) is also known as the standard error of
regression (SEi) for coefficient bi . So the t-statistic is the ratio of the fit coefficient
to the standard error for a given model term.

For this test we reject the null hypothesis for coefficient bi if

|t0i | > tα/2,n−(k+1) (14-29)

where tα/2,n−k−1 is the critical value for the t-distribution at a confidence level
1 − α with n − k − 1 degrees of freedom.

In essence, we are testing whether or not the fit coefficient, the numerator
of (14-27), has a greater effect on the model response than does the error (the
denominator) introduced by a given model term. If it does, we reject the null
hypothesis and conclude that the term has a significant effect. If not, we conclude
that the term does not have a significant effect and can exclude it from the model.
Appendix D provides critical values for the t-distribution at various confidence
levels and degrees of freedom.

Case Study Application Hypothesis testing involves calculating the individual
t-statistic for 21 fit coefficients each for the eye height and eye width, the details
of which are omitted. (Clearly, this suggests the use of a computer tool to auto-
mate the process!) We have actually already calculated the values for σ̂ 2 in
Section 14.5.1. They are the mean-squared-error terms in Table 14-6, which have
values of 10.260 and 8.946 for the eye height and width, respectively. Table 14-8
summarizes the calculations for the individual t-statistics. The diagonal elements
of the covariance matrix Ci,i , listed in the second column of the table, are used
along with the error variance terms to calculate the standard error for each term.
The t-ratios are calculated from the estimated fit coefficients and standard errors
according to equation (14-27).

At a 95% confidence level, the critical value for the t-statistic is 2.365 obtained
from Appendix D. Results of the hypothesis tests are listed in the rightmost
columns of the table, which show that 11 of the 20 model terms are significant for
the eye height model, while seven terms are significant for the eye width model.
All other terms can be removed from the model without significant degradation
in the model fit (see Problems 14-1 and 14-2).

14.6 CONFIDENCE INTERVALS

Our model allows us to estimate the predicted response to a given set of input
conditions. In creating the model, we have assumed that the errors are random,
uncorrelated, and fit a normal distribution. It follows that any prediction ŷ will
also be a random variable that has an associated probability distribution. In fact,
the value predicted is the mean of a probability distribution that is determined
by the experiment design, the mean-squared error, and the set of input values for
which we are predicting the response.
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As a result, we must account for the error sources when using the model to
make decisions based on the responses predicted. The way in which we do so
is to determine a confidence interval around the response, which is estimated
from the t- distribution at a specified confidence level (1 − α) and the number of
degrees of freedom associated with the error. In simple terms, a 95% confidence
interval accounts for 95% of the statistical variation in the prediction. Intuitively,
requiring increased confidence that a prediction falls within the calculated confi-
dence interval means that the width of the interval must also increase, so that it
accounts for more of the statistical variability.

Since the confidence interval depends on the input values, we start by con-
structing the input vector from the independent variables using the method out-
lined in Section 14.3:

xin = |1, x′
1, x

′
2, . . ., x ′

k| (14-30)

The predicted value ŷ is
ŷ = xin · b (14-31)

We calculate the confident interval CIŷ from the t-distribution, estimated error
variance, input vector, and the covariance matrix:

CIŷ = tα/2,n−k−1

√
σ̂ 2[1 + xT

in(X
TX)−1xin] (14-32)

In equation (14-32), the term under the square root is the standard error of
prediction. At a given confidence level, the predicted response has a confidence
interval of

ŷ − CIŷi
≤ y ≤ ŷ + CIŷi

(14-33)

We can also calculate confidence intervals on the mean response for the experi-
mental observations using

CIy = tα/2,n−k−1

√
σ̂ 2[xT

in(X
TX)−1xin] (14-34)

The confidence interval around the response observed is smaller than those around
the responses predicted. Figure 14-2 includes confidence intervals calculated with
(14-34) for our example signaling system.

14.7 SENSITIVITY ANALYSIS AND DESIGN OPTIMIZATION

As stated in Section 14.1, the power of the response surface model is that it
provides a tool for understanding the behavior of a complicated system so that we
can adjust the design to create a working solution. This involves identifying the
factors that have the greatest influence on system performance and adjusting them,
within the limits of the manufacturing capability, to maximize the robustness of
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the design. Developing an understanding of the sensitivities suggest that we make
use of graphical techniques wherever possible. We develop several of them in this
section and use them to help us to identify a working solution for our example
system.

Prediction Profiles The JMP software package includes a prediction profiler
that shows how the responses predicted change as each factor is varied while
holding the others constant. Figure 14-4 shows an implementation of the pre-
diction profile capability. The figure depicts the response trends when the input
parameters are set at nominal values (RT T = 50 �, Zdiff = 100 �, RT T = 50 �,
L = 0.381 m, and EQ = −0.20. The figure indicates that the eye height increases
in a roughly linear fashion as a function of RTx and RT T and decreases linearly as
the length increases. It shows nonlinear dependence on Zdiff and the equalization
setting (justifying our choice of a second-order model). The eye width plots also
show linear dependence on RTx and RT T (although with opposite slopes), and
nonlinear variation with Zdiff. Another feature to notice from the figure is that the
confidence intervals tend to get wider as we move toward the edges of the model
space.

Now that we have an initial feeling for the behavior of the system, our next
step is to look for our “worst case.” Since we have two responses, the height and
width of the eye, we can very easily end up with different conditions that cause
the worst-case response for each. Since both eye width and height show strong
dependence on the differential trace length, and since we know that some designs
will require the maximum length, we start by setting the length to 0.508 m in the
model. At this condition the model predicts 61.7 mV and 74.1 ps for height and
width.

Next, we see that RT T has a strong influence on eye height but affects eye
width only weakly. Setting RT T = 40 � further degrades the eye height to 56 mV.
Continuing in this way, we end up with a worst-case condition that has RT T =
40 �, RTx = 40 �, and Zdiff = 84 � for a 0.508-m-long system, resulting in eye
height and width of 53 mV and 76 ps, respectively. At this corner, the system
exhibits a 7-mV violation of the 60-mV minimum eye height spec.

However, we can improve the eye height by adjusting the equalization coeffi-
cient. So far, we have set our model conditions to their worst-case values either
because of design requirement (trace length) or because they are variables that
contain natural sources of variation in manufacturing (RT T ,RTx, Zdiff). Equaliza-
tion, however, is a design feature that we control and can thus use to optimize
the system response. After some trial and error, we can find that we maximize
the eye height by setting the equalization coefficient to a value of −0.26 (see
Figure 14-5). At this condition, the worst-case eye height that we predict is equal
to 58.3 mV, which still does not meet the spec.

From Table 14-2 we see that −0.26 exactly matches a valid equalization
setting. In addition, we allocate ±1 bit of error to accommodate inaccuracies
cause by nonideal effects in the equalizer. As a result, we must make sure that
we can meet our defect rate requirements over an equalization range of −0.2467
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Figure 14-4 Prediction profiles for the example system with all dependent variables set
at their nominal values.
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Figure 14-5 Prediction profiles for the example system with the dependent variables
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to −0.2733. Repeating the process to find the worst-case corner for eye width,
we find that the worst-case corner is RT T = 60 �, RTx = 40 �, and Zdiff = 84 �

for the 0.508-m length. At an equalization setting of −0.2467, the worst-case eye
width is greater than 74 ps, which meets the spec.

Before moving on, we note that an alternative approach to finding the
worst-case corner would be to look at the worst-case observations from the
original experiment. They will often provide insight into the system trends and
response sensitivities.

Contour Plots Another technique for visualizing the behavior of the system
that provides insight into the interactions between variables is the contour plot.
We show an example in Figure 14-6, in which the impedances are set at the
worst-case values that we determined previously. As the figure shows, there is
a clear interaction between the equalization setting and the length of the system
in determining the eye height. The longer the trace length, the more equalization
we need in order to maximize the eye height. (This is, of course, what we expect
for a lossy transmission-line pair.) The contour plot confirms our conclusion that
we want the equalization value to be set at −0.26 for the maximum-length case.
It also shows that even though a setting of −0.26 is not optimum for shorter
lengths, the eye widths still improve as the length decreases.
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Figure 14-6 Contour plot at the worst-case corner for the example system.
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14.8 DEFECT RATE PREDICTION USING MONTE CARLO
SIMULATION

At this point we have identified the worst-case corners and the optimum equalizer
settings. We have also seen that our worst-case corner does not meet the eye
height spec, which means that we do not yet have a working design. However,
we can use our response surface model to evaluate whether or not our design
can meet the 1000-ppm defect rate target through the Monte Carlo simulation
method. In Monte Carlo simulation, we generate random samples that adhere to
the input sample distributions for a large number of cases of each input variable.
To do so, we require knowledge of the probability distributions of the input
variables. We then use the fitted RSM equations to calculate the predicted output
responses. By doing so for a large number of samples (we use 500,000 for our
examples), we generate distributions for the responses from which we can then
estimate the defect rates.

For our example system, the circuits that provide the on-die termination for
both transmitter and receiver are identical designs with built-in impedance control
features that limit the variation to ±10 �. Characterization of the impedance
variability due to process shows that it is normally distributed with a 50-� mean
and a 4-� standard deviation. The way that the impedance control circuit works
is to “clamp” the impedance of any circuit that would exceed the limits to the
corresponding limiting value. For example, if the termination impedance that
occurs for a given part due to natural variation were 38 �, the circuit will set the
actual impedance to 40 �. Without this control, approximately 1.2% of the parts
would fall outside ±10 �. This type of distribution is called a censored normal
distribution .

In addition, characterization of the printed circuit board differential impedance
reveals that it is normally distributed with a mean of 100 � and a standard
deviation of 6.78 �. This distribution results in approximately 1.3% of the product
failing to meet the 84- to 117.9-� design window that we specify. However, the
PCB vendor can screen all product and remove any parts that fall outside our
specs. This type of distribution is called a truncated normal distribution . The
screening process requires that the PCB vendor add an impedance test to the
process flow and throw away parts that don’t meet the specs, which increases
the cost of the boards by approximately $1 each. We may wish to simulate our
system with and without truncation to see whether or not the benefit justifies the
cost. We will set the trace length to the maximum value (0.508 m), since it is the
design case of interest. We will estimate the defect rates at multiple equalization
settings in order to obtain an understanding of the sensitivity of defect rate to the
amount of equalization.

Histograms showing the distribution of the input variables for 500,000 cases
are shown in Figure 14-7. The distributions for RT T and RTx appear normal, with
deviations at the edges that are creating by the impedance control. The “censor-
ing” has the effect of taking the tails of the distribution that would fall beyond
50 � ± 10 � and stacking them at the extremes. The differential impedance
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distribution also appears normal, except that it is truncated so that no values
fall below 84 � or above 117.9 �. This is because our PCB vendor has imple-
mented a “screen” to ensure that their boards comply with our specifications. The
screen, which involves the use of time-domain reflectometry measurements, is
a labor-intensive process. The extra processing step adds $1 to the cost of each
board. To reduce our cost we would like to eliminate the screen, if possible. Later
in our analysis we will use our RSM model to determine whether or not we can
eliminate the screen and still meet our performance and defect rate targets.
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Figure 14-7 Input variable distributions from 500,000-case Monte Carlo simula-
tion: (a) RTx (normal censored); (b) Zdiff (normal truncated); (c) RTT (normal cen-
sored).(Continued )
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Figure 14-7 (Continued )

Next, we apply the RSM fit equations to the input variables that we generated
for each of the 500,000 cases with length set at the worst case (0.508 m) and
equalization at the optimum (−0.26). The resulting eye height and eye width
distributions are shown in Figure 14-8. Each appears to be normally distributed.
As expected, the eye width distribution shows significantly more margin in the
spec than that for the eye height distribution. Distribution statistics for the three
input variables and two responses are summarized in Table 14-9.

Our defect rate is the number of parts that fall below the lower spec limit. We
estimate it in parts per million:

Dppm = 1

2

1 + erf[(LSL − µ)/
√

2σ ]

1,000,000
(14-35)

where erf(x) is the error function, LSL the lower spec limit, µ the distribution
mean, and σ the standard deviation of the distribution. Table 14-9 includes both
the actual defect rate from the Monte Carlo simulation and the estimated defect
rate, showing that we meet the 1000-ppm target for an equalizer.

Repeating the analysis at multiple values for the equalization coefficient allows
us to plot the defect rate as a function of the equalization setting, which we show
in Figure 14-9. The figure shows that our design has sub-1000 ppm fallout for a
range of equalization values from approximately −0.285 to −0.245. As a result,
we conclude that it will meet our defect rate targets for an equalization setting
of −0.26, including the error in the equalization.

As a final step, we repeat the analysis without the impedance screening to
assess our ability to eliminate the PCB impedance screen. Figure 14-10 shows
that although the defect rates increase slightly, we can still meet the target without
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Figure 14-8 Response distributions from 500,000-case Monte Carlo simulation: (a) eye
height; (b) eye width.

TABLE 14-9. Example Distribution and Defect Rate Statistics for L = 0.508 m
and EQ = −0.26

Eye Eye
RTx(�) Zdiff (�) RT T (�) Height (mV) Width (ps)

Mean 50.004 100.36 49.996 68.682 80.905
Standard deviation 3.959 6.46 3.961 2.361 1.212
Actual defect rate (ppm) 544 0
Estimated defect rate (ppm) 484 < 10−10
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Figure 14-9 Defect-rate trend from Monte Carlo simulation (0.508-m trace length).
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Figure 14-10 Comparison of defect rates predicted with and without PCB impedance
screening.

screening, thus saving us $1 per system. If this seems like a small savings,
consider that many systems sell hundreds of thousands or million of units (e.g.,
personal computers and laptops). A signal integrity engineer can therefore save
his or her company millions of dollars per year by findings ways to reduce the
cost of each system that he or she designs by $1 per system shipped.
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14.9 ADDITIONAL RSM CONSIDERATIONS

As this chapter is intended to provide an introduction to the application of
response surface modeling to high-speed signaling systems, our treatment does
not attempt to cover all aspects of the technique. Before closing the chapter,
we note some additional aspects of the modeling process that interested readers
may find useful. These aspects are covered in detail by Myers and Montgomery
[2005].

In practical applications the RSM construction process is often carried out in a
number of steps. The process often starts with a screening experiment, in which
a first-order experimental design is used to determine which input variables have
a significant impact on the response. Subsequent experiments fit higher-order
models using only the important variables. Finally, a more accurate model may
be created, if necessary, by fitting over a smaller region of interest.

Response surface models also have additional statistics to describe:

Goodness of Fit Along with the metrics we presented, there are other ways of
looking at the residuals, such as the prediction error sum of squares (PRESS).

Prediction Variance The confidence interval for a predicted value is a function
of both the location of the input variables within the design space and of the
model itself. The scaled prediction variance quantifies the variability across the
design:

Var[ŷ(x)] = NxT
0 (XTX)−1x0 (14-36)

Experimental Error versus True Lack-of-Fit The error of any statistical model
can be dissected into a component from random noise (pure error) and residuals
from functional dependencies not accounted for by the model (lack of fit). The
functional relationship between the error components is

SSerror = SSpure error + SSlack of fit (14-37)

Our model is based on simulated results, which are repeatable, so that there is
no experimental error and all of the error is attributed to lack of fit.

14.10 SUMMARY

In this chapter we presented the response surface model, a powerful tool that
allows us to model the behavior of a high-speed signaling system and to use the
model to optimize system cost and performance. Next we summarize the process
for creating and using the response surface model in the design of a high-speed
signaling link:
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1. Design the experiment. Although we did not cover this step in any depth,
it is where the process starts. A good design ensures the construction of a
model that fits the data without requiring excessive numbers of observa-
tions. We recommend using a software package, such as JMP [SAS, 2007]
or Essential Experimental Design [Steppan, et al., 1998] when designing
experiments.

2. Perform the regression. This step creates the model, fit metrics, and signif-
icance parameters. It is also typically done via statistical software package,
since high-speed systems may have 10 or more significant variables, which
means more than 60 model terms.

3. Check the model. Before using the model, we need to make sure that it
fits the data (residuals, R2, R2

adj), has a significant impact on the predicted
results (F -test for significance of regression), and contains the appropriate
variables (t-test for parameter significance).

4. Use the model. Use the prediction profile to develop a working solution
by identifying the worst-case conditions for uncontrolled variables and the
optimum settings for design parameters. If needed, apply Monte Carlo
simulation to the model to estimate defect rates.

Limitations The RSM should only be used over the ranges of input variables to
which the model was fit. Response surface models are essentially Taylor series
approximations, and as such they are not guaranteed to fit outside the experimen-
tal range.
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PROBLEMS

14-1 Re-fit the eye height response surface model presented in this chapter
with nonsignificant parameters removed, and compare the results against
the original model presented in the text.

14-2 Re-fit the eye width response surface model presented in this chapter with
nonsignificant parameters removed, and compare the results against the
original model presented in the text.

14-3 Create a response surface model for the differential impedance of a
differential pair on a printed circuit using the cross section shown in
Figure 14-11 and the data in Table 14-10.

h2

t

ww s

er

h1

Figure 14-11 PCB cross section for Problem 14-3.
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TABLE 14-10. PCB Geometrical Data for Problem 14-3

Parameter Minimum Typical Maximum

h1 (in.) 0.004 0.005 0.006
h2 (in.) 0.004 0.005 0.006
W (in.) 0.004 0.005 0.006
S (in.) 0.006 0.008 0.010
T (in.) 0.0005 0.001 0.0015
εr 3.5 4.0 4.5

14-4 Project: Using suitable analysis software, carry out your own response
surface model fitting project for a signaling system with more than five
input variables.

14-5 Project: Develop a response surface modeling software tool using your
choice of language (e.g., Matlab, Mathematic, Mathcad). Include the cal-
culation of fit coefficients, measures of fit, confidence intervals, parameter
significance testing.

14-6 Project: Develop a tool for modeling and optimizing signaling systems
using the artificial neural network (ANN) approach, using the article by
Beyene [2007] as a starting point.



APPENDIX A

USEFUL FORMULAS, IDENTITIES,
UNITS, AND CONSTANTS

Constants

Speed of light in a vacuum : c = 2.99792 × 108 m/s

Permittivity of free space : ε0 = 8.854 × 10−12 F/m

Permeability of free space : µ0 = 4π × 10−7 H/m

Decibels

Voltage: dB = 20 log10
v2

v1

Current: dB = 20 log10
i2

i1

Power: dB = 10 log10
P2

P1

Units

Time

picosecond (ps) = 1 × 10−12 s

nanosecond (ns) = 1 × 10−9 s

Advanced Signal Integrity for High-Speed Digital Design, By Stephen H. Hall and Howard L. Heck
Copyright  2009 John Wiley & Sons, Inc.
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Frequency

megahertz (MHz) = 1 × 106 Hz

gigahertz (GHz) = 1 × 109 Hz

Length

1 micron (µm) = 1 × 10−6 m

1 mil = 1 × 10−3 in.

1 mil = 25.4µm

1 inch = 0.0254 m

1 millimeter (mm) = 1 × 10−3 m

1 millimeter = 39.37 mils

Circuits

picohenry (pH) = 1 × 10−12 H

nanohenry (nH) = 1 × 10−9 H

picofarad (pf) = 1 × 10−12 F

Vector Formulas

�A · ( �B × �C) = �A · ( �C × �A) = �C · ( �A × �B)

�A × ( �B × �C) = ( �A · �C) �B − ( �A · �B) �C
( �A × �B) · ( �C × �D) = ( �A · �C)( �B · �D) − ( �A · �D)( �B · �C)

∇ × ∇ψ = 0

∇ · (∇ × �A) = 0

∇ × (∇ × �A) = ∇(∇ · �A) − ∇2 �A
∇ × (ψ �A) = ∇ψ × �A + ψ∇ × �A
∇( �A · �B) = ( �A · ∇) �B + ( �B · ∇) �A + �A × (∇ × �B) + �B × (∇ × �A)

∇ · ( �A × �B) = �B · (∇ × �A) − �A · (∇ × �B)

∇ × ( �A × �B) = A(∇ · B) − B(∇ · A) + (B · ∇)A − (A · ∇)B

∇ · (ψ �A) = �A · ∇ψ + ψ∇ · �A
Theorems from Vector Calculus∫

V

(∇ · �F) dV =
∮

S

�F · d�s (divergence theorem)

∫
S

(∇ × �F) · d�s =
∮

l

�F · d�l (Stokes’s theorem)
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Explicit Forms of Vector Operations

Cartesian (x, y, z)

∇f = �ax

∂f

∂x
+ �ay

∂f

∂y
+ �az

∂f

∂z

∇ · �F = ∂Fx

∂x
+ ∂Fy

∂y
+ ∂Fz

∂z

∇ × �F = �ax

(
∂Fz

∂y
− ∂Fy

∂z

)
+ �ay

(
∂Fx

∂z
− ∂Fz

∂x

)
+ �az

(
∂Fy

∂x
− ∂Fx

∂y

)

∇2f = ∂2f

∂x2
+ ∂2f

∂y2
+ ∂2f

∂z2

Cylindrical (r , φ, z)

∇f = �ar

∂f

∂r
+ �aφ

1

r

∂f

∂φ
+ �az

∂f

∂z

∇ · �F = 1

r

∂(rFr)

∂r
+ 1

r

∂Fφ

∂φ
+ ∂Fz

∂z

∇ × �F = �ar

[
1

r

∂Fz

∂φ
− ∂Fφ

∂z

]
+ �aφ

[
∂Fr

∂z
− ∂Fz

∂r

]
+ �az

[
1

r

∂(rFφ)

∂r
− 1

r

∂Fr

∂φ

]

∇2f = 1

r

∂

∂r

(
r
∂f

∂r

)
+ 1

r2

∂2f

∂φ2
+ ∂2f

∂z2

Spherical (r , θ , φ)

∇f = �ar

∂f

∂r
+ �aθ

1

r

∂f

∂θ
+ �aφ

1

r sin θ

∂f

dφ

∇ · �F = 1

r2

∂(r2Fr)

∂r
+ 1

r sin θ

∂(sin θFθ )

∂θ
+ 1

r sin θ

∂Fφ

∂φ

∇ × �F = �ar

[
1

r sin θ

(
∂ sin θFφ

∂θ
− ∂Fθ

∂φ

)]
+ �aθ

[
1

r sin θ

∂Fr

∂φ
− 1

r

∂(rFφ)

∂r

]

+ �aφ

1

r

[
∂(rFθ)

∂r
− ∂Fr

∂θ

]

∇2f = 1

r2

∂

∂r

(
r2 ∂f

∂r

)
+ 1

r2 sin θ

∂ (sin θ(∂f/∂θ))

∂θ
+ 1

r2 sin2 θ

∂2f

∂φ2

1

r2

∂

∂r

(
r2 ∂f

∂r

)
≡ 1

r

∂2(rf )

∂r2
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Coordinate Transformations

Rectangular to Cylindrical

�ax �ay �az

�ar cosφ sin φ 0
�aφ − sin φ cosφ 0
�az 0 0 1

Rectangular to Spherical

�ax �ay �az

�ar sin θ cosφ sin θ sin φ cos θ

�aθ cos θ cos φ cos θ sin φ − sin θ

�aφ − sin φ cosφ 1

Cylindrical to Spherical

�ar �aφ �az

�ar sin θ 0 cos θ

�aθ cos θ 0 − sin θ

�aφ 0 1 0
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FOUR-PORT CONVERSIONS
BETWEEN T -AND S -PARAMETERS

Port 2Port 1

Port 3 Port 44 port network

Figure B-1 Port naming convention.

Figure B-1 shows the port labeling convention used with these conversions.

T-to-S Conversions

s11 = t22t31 − t21t32

−t12t21 + t11t22

s21 = t22

−t12t21 + t11t22

s31 = t22t41 − t21t42

−t12t21 + t11t22

Advanced Signal Integrity for High-Speed Digital Design, By Stephen H. Hall and Howard L. Heck
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s41 = t21

t12t21 − t11t22

s12 = t13t22t31 − t12t23t31 − t13t21t32 + t11t23t32 + t12t21t33 − t11t22t33

t12t21 − t11t22

s22 = t13t22 − t12t23

t12t21 − t11t22

s32 = t13t22t41 − t12t23t41 − t13t21t42 + t11t23t42 + t12t21t43 − t11t22t43

t12t21 − t11t22

s42 = t13t21 − t11t23

−t12t21 + t11t22

s13 = t12t31 − t11t32

t12t21 − t11t22

s23 = t12

t12t21 − t11t22

s33 = t12t41 − t11t42

t12t21 − t11t22

s43 = t11

−t12t21 + t11t22

s14 = t14t22t31 − t12t24t31 − t14t21t32 + t11t24t32 + t12t21t34 − t11t22t34

t12t21 − t11t22

s24 = t14t22 − t12t24

t12t21 − t11t22

s34 = t14t22t41 − t12t24t41 − t14t21t42 + t11t24t42 + t12t21t44 − t11t22t44

t12t21 − t11t22

s44 = t14t21 − t11t24

−t12t21 + t11t22

S-to-T Conversions

t11 = s43

−s23s41 + s21s43

t21 = s41

s23s41 − s21s43

t31 = s13s41 − s11s43

s23s41 − s21s43

t41 = s33s41 − s31s43

s23s41 − s21s43
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t12 = s23

s23s41 − s21s43

t22 = s21

−s23s41 + s21s43

t32 = s13s21 − s11s23

−s23s41 + s21s43

t42 = s23s31 − s21s33

s23s41 − s21s43

t13 = s23s42 − s22s43

−s23s41 + s21s43

t23 = s22s41 − s21s42

−s23s41 + s21s43

t33 = s13s22s41 − s12s23s41 − s13s21s42 + s11s23s42 + s12s21s43 − s11s22s43

−s23s41 + s21s43

t43 = s23s32s41 − s22s33s41 − s23s31s42 + s21s33s42 + s22s31s43 − s21s32s43

s23s41 − s21s43

t14 = s24s43 − s23s44

s23s41 − s21s43

t24 = s24s41 − s21s44

−s23s41 + s21s43

t34 = s14s23s41 − s13s24s41 − s14s21s43 + s11s24s43 + s13s21s44 − s11s23s44

s23s41 − s21s43

t44 = s24s33s41 − s23s34s41 − s24s31s43 + s21s34s43 + s23s31s44 − s21s33s44

−s23s41 + s21s43
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CRITICAL VALUES
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APPENDIX D

CRITICAL VALUES
OF THE T -STATISTIC

df 0.4 0.25 0.1 0.05 0.025 0.01 0.005 0.0005

1 0.32492 1 3.077684 6.313752 12.7062 31.82052 63.65674 636.6192
2 0.288675 0.816497 1.885618 2.919986 4.30265 6.96456 9.92484 31.5991
3 0.276671 0.764892 1.637744 2.353363 3.18245 4.5407 5.84091 12.924
4 0.270722 0.740697 1.533206 2.131847 2.77645 3.74695 4.60409 8.6103
5 0.267181 0.726687 1.475884 2.015048 2.57058 3.36493 4.03214 6.8688
6 0.264835 0.717558 1.439756 1.94318 2.44691 3.14267 3.70743 5.9588
7 0.263167 0.711142 1.414924 1.894579 2.36462 2.99795 3.49948 5.4079
8 0.261921 0.706387 1.396815 1.859548 2.306 2.89646 3.35539 5.0413
9 0.260955 0.702722 1.383029 1.833113 2.26216 2.82144 3.24984 4.7809

10 0.260185 0.699812 1.372184 1.812461 2.22814 2.76377 3.16927 4.5869
11 0.259556 0.697445 1.36343 1.795885 2.20099 2.71808 3.10581 4.437
12 0.259033 0.695483 1.356217 1.782288 2.17881 2.681 3.05454 4.3178
13 0.258591 0.693829 1.350171 1.770933 2.16037 2.65031 3.01228 4.2208
14 0.258213 0.692417 1.34503 1.76131 2.14479 2.62449 2.97684 4.1405
15 0.257885 0.691197 1.340606 1.75305 2.13145 2.60248 2.94671 4.0728
16 0.257599 0.690132 1.336757 1.745884 2.11991 2.58349 2.92078 4.015

(continued overleaf)
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648 APPENDIX D

(Continued )

df 0.4 0.25 0.1 0.05 0.025 0.01 0.005 0.0005

17 0.257347 0.689195 1.333379 1.739607 2.10982 2.56693 2.89823 3.9651
18 0.257123 0.688364 1.330391 1.734064 2.10092 2.55238 2.87844 3.9216
19 0.256923 0.687621 1.327728 1.729133 2.09302 2.53948 2.86093 3.8834
20 0.256743 0.686954 1.325341 1.724718 2.08596 2.52798 2.84534 3.8495
21 0.25658 0.686352 1.323188 1.720743 2.07961 2.51765 2.83136 3.8193
22 0.256432 0.685805 1.321237 1.717144 2.07387 2.50832 2.81876 3.7921
23 0.256297 0.685306 1.31946 1.713872 2.06866 2.49987 2.80734 3.7676
24 0.256173 0.68485 1.317836 1.710882 2.0639 2.49216 2.79694 3.7454
25 0.25606 0.68443 1.316345 1.708141 2.05954 2.48511 2.78744 3.7251
26 0.255955 0.684043 1.314972 1.705618 2.05553 2.47863 2.77871 3.7066
27 0.255858 0.683685 1.313703 1.703288 2.05183 2.47266 2.77068 3.6896
28 0.255768 0.683353 1.312527 1.701131 2.04841 2.46714 2.76326 3.6739
29 0.255684 0.683044 1.311434 1.699127 2.04523 2.46202 2.75639 3.6594
30 0.255605 0.682756 1.310415 1.697261 2.04227 2.45726 2.75 3.646
∞ 0.253347 0.67449 1.281552 1.644854 1.95996 2.32635 2.57583 3.2905



APPENDIX E

CAUSAL RELATIONSHIP
BETWEEN SKIN EFFECT
RESISTANCE AND INTERNAL
INDUCTANCE FOR ROUGH
CONDUCTORS

To derive a causal relationship between the skin effect resistance calculated with
rough copper and the internal inductance, we start with the equation for the
surface impedance, which was derived in equation (5-29):

Zs(ω) = Rac(ω) + jωLinternal(ω) (5-29)

For a function to be causal, it must be zero for negative time, as described in
Section 8.2.1.†. To be causal, the function must obey the relationship.

h(t) = he(t) + sgn(t)he(t) (8-17)

From Section 8.2.1, equation (8-20) shows that the function H (ω) [which is the
Fourier transform of h(t)] can be written in terms of only the even part:

H(ω) = He(ω) − jĤe(ω) (8-20)

whereĤe(ω) is the Hilbert transform of the even part of the function.

†For practical purposes, it can also be said that a system is not causal if a portion of energy is
traveling faster than the propagation velocity in the board allows

(
vp = c/

√
εr

)
. This means that

time t = 0 is defined by the length of the interconnect and the speed of light in the material.
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650 APPENDIX E

The similarity of (8-20) and (5-29) allows us to conclude thatHe = Rac and
−Ĥe = ωLinternal. So, quite simply, the internal inductance for a causal relation-
ship is

Linternal = − R̂ac

ω
(E-1)

where the hat indicates the Hilbert transform of the skin resistance.
The Hilbert transform can be implemented in many ways. Some tools, such as

Matlab, have a convenient Hilbert transform function. Otherwise, two possible
ways of implementing the Hilbert transform are:

1. Solve the integral directly:

R̂ac(ω) = 1

π

∫ ∞

−∞

Rac(ω
′)

ω − ω′ dω′

2. Use the fast Fourier transform (FFT) to convolve Rac(ω) and 1/πω:

R̂ac(ω) = 1

πω
∗ Rac(ω) = FFT−1

[
FFT

{
1

πω

}
· FFT

{
Rac(ω)

}]

Care must be taken when using an FFT to solve the Hilbert transform. At
ω = 0 the term 1/πω is infinite. This means that the Fourier transform is an
improper integral, so the Cauchy principal value must be considered when imple-
menting the FFT. Since singular functions are not often considered during signal-
ing analysis, care must be taken to ensure that the singularity at ω = 0 is handled
properly by the software being used. Furthermore, the analysis above assumes
that the signal processing convention (a = 0, b = −2π) of the Fourier integral
(8-1a) is used (as explained in Section 8.2.1). Since different tools may assume
different conventions for the Fourier transform, consistency must be ensured.

When calculating the internal inductance of a rough conductor, it is important
to test the implementation of the Hilbert transform to ensure that it is behaving
correctly. This can be done by calculating the internal inductance with (E-1),
assuming a smooth conductor (where Rac is proportional to

√
f ) and comparing

the result to the internal inductance calculated directly from the diffusion equation
in Section 5.2.3 [equation (5-30)]. Therefore, for a smooth conductor, Linternal =
−R̂ac/ω = Rac/ω. For a rough conductor, this relationship is not true (although
it is often very close).

When using this method to calculate the frequency-dependent properties of a
transmission line, the conductor thickness must be accounted for, as shown in
Chapter 5. When the skin depth is larger than the conductor thickness, then the
dc value of the resistance and low-frequency inductance where the skin depth is
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equal to the conductor thickness should be used:

R(f ) =
{

KRs

√
f when δ < t

Rdc when δ ≥ t
(E-2)

LH (f ) =




Lexternal + R̂ac(f )

2πf
when δ < t

Lexternal + R̂ac(fδ=t )

2πfδ=t

when δ ≥ t

(E-3)

where K is the frequency-dependent surface roughness correction factor calcu-
lated in Sections 5.3.1, 5.3.2, or 5.3.3, t is the conductor thickness, δ is the
skin depth, fδ=t is the frequency where the skin depth equals the thickness of
the conductor, Rs

√
f is the classic skin resistance for a smooth conductor as

calculated in (5-17) and (5-18), Rac(f ) = KRs

√
f , and R̂ac(f ) is the Hilbert

transform ofRac(f ). Note that for a smooth conductor, K = 1.



APPENDIX F

SPICE LEVEL 3 MODEL FOR 0.25 µM
MOSIS PROCESS

F-1 DEVICE MODELS

The device models used in the text were supplied by MOSIS, a supplier of pro-
totyping and small-volume production services for VLSI circuit development.
Since 1981, MOSIS has fabricated more than 50,000 circuit designs for commer-
cial firms, government agencies, and research and educational institutions around
the world. MOSIS provides access to a wide variety of semiconductor processes
offered by multiple silicon foundries.

The NMOS and PMOS level 3 device models shown below were used for all
transistor level simulation and analysis examples and problems in this text.

*
* DATE: Jun 11/01
* LOT: T14Y WAF: 03
* DIE: N Area Fring DEV: N3740/10
* Temp= 27
.MODEL CMOSN NMOS ( LEVEL = 3
+ TOX = 5.7E-9 NSUB = 1E17 GAMMA = 0.4317311
+ PHI = 0.7 VTO = 0.4238252 DELTA = 0
+ UO = 425.6466519 ETA = 0 THETA = 0.1754054
+ KP = 2.501048E-4 VMAX = 8.287851E4 KAPPA = 0.1686779
+ RSH = 4.062439E-3 NFS = 1E12 TPG = 1
+ XJ = 3E-7 LD = 3.162278E-11 WD = 1.232881E-
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8
+ CGDO = 6.2E-10 CGSO = 6.2E-10 CGBO = 1E-10
+ CJ = 1.81211E-3 PB = 0.5 MJ = 0.3282553
+ CJSW = 5.341337E-10 MJSW = 0.5 )

.MODEL CMOSP PMOS ( LEVEL = 3
+ TOX = 5.7E-9 NSUB = 1E17 GAMMA = 0.6348369
+ PHI = 0.7 VTO = -0.5536085 DELTA = 0
+ UO = 250 ETA = 0 THETA = 0.1573195
+ KP = 5.194153E-5 VMAX = 2.295325E5 KAPPA = 0.7448494
+ RSH = 30.0776952 NFS = 1E12 TPG = -1
+ XJ = 2E-7 LD = 9.968346E-13 WD = 5.475113E-
9
+ CGDO = 6.66E-10 CGSO = 6.66E-10 CGBO = 1E-10
+ CJ = 1.893569E-3 PB = 0.9906013 MJ = 0.4664287
+ CJSW = 3.625544E-10 MJSW = 0.5 )

REFERENCE

The MOSIS Service, SPICE Level 3 Model Parameters for Classroom Instructional
Purposes TSMC (0.25micron), available at http://www.mosis.com/Technical/Testdata/
t14y tsmc 025 level3.txt.



INDEX

ABCD parameters, 382–393
Accelerated graphics port (AGP), 452, 553–555,

559–560
ac common mode conversion (ACCM),

306–309, 310
ac resistance, see Resistance, frequency

dependent
Adaptive equalizer, 536–540
Adjusted coefficient of multiple determination,

617–618, 620, 634
Admittance matrix, 357
Alpha, loss term, 30, 204, 288
Ampere’s law, 11, 21, 24, 214, 256
Amplitude distortion, 506, 512, 525
Analytic functions, 272, 273, 274
Anomalous dispersion, 260, 261–262

BER (bit error rate)
bathtub plot, 560–561, 561
contour, 552–553

Bergeron diagram, 465–474
Biot-Savart law, 46
Bit error rate (BER) (a.k.a. Bit error ratio),

549–553, 555–557, 560–562, 566–567,
570, 572, 579, 600, 607

Bounce diagram, 118. See also Lattice diagram
Boundary conditions

perfect conductor, 59, 70, 218, 221, 302
dielectric-conductor, 70–73

Bounded uncorrelated jitter, 562, 565
Bus speed, 4
Bus width, 4

Advanced Signal Integrity for High-Speed Digital Design, By Stephen H. Hall and Howard L. Heck
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Calibration (VNA), 395–399
Capacitance, 76, 77

definition, 40–41
energy storage, 41

Cauchy-Riemann, 272–273
Causality, 272, 274, 331–340, 408–410,

649–651
Characteristic impedance, 83, 85, 86, 106, 110,

146, 157, 158, 160, 161, 165, 170, 172,
175, 196, 246, 607, 285–287, 465,
505, 607

formulas, 85–86
Charge density, 11, 17, 88, 251
Charge distribution

effect on effective permittivity, 106
effect on impedance, 106
microstrip, 104–106
near conductor edges, 100–104

CMOS
inverter, 446–448, 459–460
receiver, 459–463

Coefficient of multiple determination, 614,
616–618, 620, 634

Common mode, 304
Common mode noise, 299–300
Common mode to differential conversion, 402
Conductive media, propagation, 202
Conductor losses

microstrip, 207–212
stripline, 212–213

Conductor model, 205, 420
Confidence interval, 614, 621, 623
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Continuous time linear equalizer (CTLE),
513–522

Coupling
capacitive, 166
inductive, 166

Cross product, 14
Crosstalk, 23, 368–374

backward, 166, 168–175
differential, 300–302
far end, 168–175
forward, 166, 168–175
minimization, 193–194
near end, 166, 168–175
noise, 146, 150, 157, 165–177, 186, 190, 195
saturated, 169–175

Cumulative distribution function, 556–557, 560
Curl, 20–23
Current

density, 11, 12, 17, 208, 215, 222, 231
distribution, 206, 207, 208
loop, 47, 77
mode transmitter, 481–482

Data dependent jitter, 562
Data rate, 327
dc losses, see Resistance, dc
Debye equation, 264, 270
Decibels (dB), 637
Decision feedback equalizer (DFE), 540–542
De-embedding, see Calibration
Design-of-experiments (DOE), 609–610, 634
Design optimization, 623–627
Deterministic jitter, 557–559, 561–569
Deterministic noise, 572
Dielectric, 250

dc losses, 257
environmental variations, 279–285
nonhomogeneous, 83–85

Dielectric model
frequency dependent, 257–261, 262–265,

266–269, 419–420
infinite pole, 266–269
properties of a physical model, 269–271

Dielectric permittivity, 258, 260, 262, 264, 269,
272, 275, 276, 335, 419

effective, 83–85, 88, 99, 112, 275, 276, 419
Differential

to common mode conversion, 306, 309, 402
I/O model, 488–489
impedance, 304, 606, 609–610, 614, 624,

628–629, 631
mode, 304
receiver, 481–483
signal, 521, 532

signaling, 297–313, 400, 404, 405, 406, 552,
599

transmitter, 479–481
Diffusion

currents, 215
equation, 215

Digital-to-analog converter (DAC), 536, 607
Dirac delta function, 324, 557
Discrete linear equalizer (DLE), 513, 522–540,

542–544, 546
Dispersion, 88, 331
Divergence, 18–20
Divergence theorem, 55
DJDD, 557–559, 566–569
Dot product, 13
Dual Dirac jitter model, 557, 566–567, 599
Duty cycle distortion, 562, 564–565

Earth magnetic field, 43
Eigenvalue, 182, 407
Eigenvector, 178, 181–182, 407
Electric

dipole moment, 252, 253
field, 11, 33
flux density, 11
potential, 34
susceptibility, 255, 260

Electromagnet, 42
Electron cloud, 251, 252, 258
Electrostatic potential, 35
Electrostatics, 32
Electrostatic scalar potential, 36–37
Energy in electric field, 37–39
Energy in a magnetic field, 51–53
Environmental effects on transmission line

performance, 281–283
Equalization, 499–547, 607, 609, 612–614, 627,

630–632
Equal potential surface, 107
Equivalent circuit(transmission line)

with losses, 244–246, 285–291
loss free, 76–80

Errata, 8
ESD protection circuitry, 460–463, 482
Even mode, 148, 150–153–157–158, 160–164,

176–177, 183, 186, 192, 196, 305
Eye

diagram, 511, 516, 518, 549–552,
558, 561

height, 606–607, 610, 613, 616,
618–621–622, 624–627, 631, 635

mask, 551
width, 606–607, 610, 613, 616, 618,

621–622, 624–627, 631, 635
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Faraday’s law, 11, 21, 24, 42, 69, 214
Fast Fourier transform (FFT), 329, 377, 379, 650
Fiber weave effect, 274–279, 310–312
Field

mapping, 107–112
solver, 152–153

Filtering from reactive components, 133
Finite impulse response (FIR) filter, 525
Flux, 15–18, 48, 49, 74, 213
Fourier transform, 317, 318, 324, 326, 328, 330,

333, 336, 337, 339, 376, 410, 503,
546–547, 649

FR4, 264, 266, 274, 281, 282, 283, 310, 311,
413, 508

F -ratio, 618–620
Frequency domain, 316, 348
Frequency spectrum, 318–327
F -test, 618–620, 634

Gauss, 43
Gaussian distribution, 555–556, 561–562
Gauss’s law, 11, 19, 34, 40, 69, 75, 109, 251,

273
Goodness-of-fit, 615–618, 633
Gradient, 18
Gunning transceiver logic (GTL), 474, 478

Helmholtz, 20
Hermitian transpose, 341, 407
Hilbert transform, 335–340, 409, 650
Historical trends, 1
Homogeneous, 12
Hysteresis, 460–461

I/O
buffer information spec. (IBIS), 445,

454–455, 463, 483–492
capacitance, 487–488
circuit compensation, 450, 455–458

Ideal diode equation, 462–463
Impedance matrix, 355–358, 374–373, 382,

386–388
Impulse response, 324, 326, 329, 330, 331, 333,

339, 375–382, 502–503, 505–510
Inductance, 48–51, 74, 75, 77, 224

internal, 213–218, 224, 234, 235, 242–243,
420, 421, 649, 650, 651

external, 214, 218, 224, 235, 243, 420, 421,
651

Input impedance, 353–354, 362
Insertion loss, 223, 364–368
Insulator, see Dielectric
Interconnect, 4, 6

Intersymbol interference (ISI), 499, 511–512,
525, 533–534, 541–542, 550, 562, 565,
569, 588–589, 592–595

Intrinsic impedance, 31–32
Isotropic, 12
i-v curve, 446–448, 453–456, 483–486

Jitter, 550–572
amplification, 599
budget, 568–572
probability density function (PDF), 555–559,

563–567

Kirchholff’s circuit laws, 466, 470
Kramers-Kronig, 272, 335

Laplace’s equation, 91, 94, 101, 107
Lattice diagram, 118–129, 161–163, 176, 178,

181, 185–187, 189, 350, 477
Launching a wave, 116
Least mean squared (LMS) equalizer, 538–539
Least squares fitting, 606–607, 612
Lenz’s law, 51
Linear I/O models, 445, 448–452, 461, 476, 480
Linear time invariance, 316–317, 331
Linear time-invariant (LTI) systems, 500,

502–503, 522
Load-line analysis, 450–451, 465–466
Lorenz force law, 43
Loss tangent, 256, 419, 420
Low voltage differential swing (LVDS), 480–481

Magnetic
charge, 42
field, 11
vector potential, 46–48, 52

Magnetization density, 11
Magnetostatics, 42
Mathematical requirements of a model, 271,

316–345
Maximum moisture uptake, 279
Maxwell’s equations, 10–12
Microstrip, 66, 67, 87, 88
Minimum mean-square error (MMSE) equalizer,

534, 547
Modal

analysis, 177–193
decomposition, 368–372
voltages, 303–304, 372, 373

Mode conversion, 305–310
Model coefficient, 607–608, 610–613, 615,

618–620, 622–623
Moisture diffusity, 279, 282
Monte Carlo analysis, 628–634
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Moore’s law, 499, 522
MOSFET, 444, 446–451, 455–464, 472,

474–475, 480, 494, 496
Multidrop, multiload, 26
Multimode matrix, 403
Multiple reflections, 116–121
Mutual inductance, 49

Network
analysis, 348
theory, 354

Neumann formula, 49
Noise

budget, 579–583
margin, 459–460, 582–583

Nonideal topologies
cascaded transmission lines, 121, 123
multireceiver, 124–129
t-topology, 125, 126, 128

Nonlinear I/O models, 445, 453–455, 462, 476,
480

Nonreturn-to-zero (NRZ) signaling, 500
Normal distribution, 615, 620, 628–630

Odd and even functions, 333, 334
Odd and even modes, 369–374
Odd mode, 148, 150, 153, 157–158, 160–164,

176–177, 183, 186–192, 196, 305
Ohm’s law, 450–451, 465–468, 470–471
On-chip termination, 463–464
Open drain transmitter, 474–478
Overdriven transmission line, 121, 122, 129

Parallel plate waveguide, 439–441
Passivity, 272, 274, 331, 340–343, 406–408, 411
PCI express, 569–571
Peak distortion analysis (PDA), 550–551,

583–600, 607
Periodic jitter, 562–563
Permeability of free space, 11, 637
Permittivity

complex, 203, 264, 269, 272, 289, 335
effective, 83–85, 88, 99, 112, 275, 276, 419
of free space, 11, 637
relationship, real and imaginary, 269–271,

272
relative, 254–255, 256

Personal computers, 1
Phase

constant, 30, 288
delay, 365
distortion, 506, 508, 511–512, 525
unwrapped, 365
velocity, 30, 32, 82, 82, 117, 261

Phase locked loop (PLL), 555, 569–570
Plane wave, 28–32, 68
Poisson’s equation, 91
Polarizability, 250
Polarization, 250–254, 262, 263

density, 11, 12
electronic, 250–252, 258, 263
ionic (molecular), 253–, 250–252, 258, 263
orientational (dipole), 253, 263, 269
vector, 253, 256, 257, 259

Power balance, 366–367. See also Poynting
vector

Power losses of a smooth plane, 218–222, 230
Power supply noise, 555, 572–573
Power waves, 340, 341, 358, 359
Poynting vector, 53–57, 221, 230
Preemphasis/deemphasis, 526–528, 542
Printed circuit board (PCB), 66, 67, 85, 146,

150, 153, 160, 174–175, 186, 191, 146,
150, 153, 160, 174–175, 186, 191,
193–194, 464, 502–505, 507–508,
517–518, 520, 528, 532, 536–538, 606,
628–630, 632, 635–636

Propagation
constant, 29, 32, 203, 246, 285–288
delay, 89, 353, 365, 369, 373
velocity, 83, 146, 157–161, 165, 168, 175,

177, 180–181, 183–184, 187–188, 190,
194, 506, 508–509

Pulse response, 327–331, 332, 530, 532, 534,
543, 607

Push-pull transmitter, 446–458
Q scale, QBER, 566–568

Quantization noise, 577
Quasi-static approximation, 90, 421
Quasi-TEM, 89

Random (Gaussian) jitter, 555, 557, 561–562,
568–569

Random (Gaussian) noise, 572
Reality, 272, 273, 274, 333, 408
Receiver, 606, 609–610

circuit, 445, 459–463
equalization, 535, 545
input threshold, 459–460
offset, 460–461, 573–576
sensitivity, 573–576

Reference voltage (VREF) noise, 577
Reflection coefficient, 61, 113, 115, 117, 349
Reflections

from capacitive load, 130–132
from inductive load, 132–133
from a network, 349–353
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from perfect conductor, 57–59
from reactive loads, 129, 137
rise and fall times, 129

Relative permeability, 12
Residual error, 615–616, 620
Resistance

dc, 206–207
frequency dependent, 207–213, 420

Response surface modeling (RSM), 605–636
Return loss, 361–364, 366, 367
Return path, non-ideal, 422–434

crosstalk, 430–434
differential, 432–434
equivalent circuit, 425–434
gap in plane, 423–434
path of least impedance, 422–423

Root-mean-square (RMS) error, 615, 617–618,
620

Root mean square (RMS) jitter (sRJ), 555, 557,
559–560, 565, 568–569

Saturated moisture saturation, 279
Scalar electric potential, 34
Scalar field, 15
Scattering coefficients, 360
Scattering matrix, see S-parameters
Schmitt trigger, 460–461
Self inductance, 50
Shannon capacity theorem, 500
Shannon-Hartley theorem, 501, 506, 508, 516
Shot noise, 577–579
Signal-to-noise ratio (SNR), 501, 508, 536, 572
Sinc function, 510–511
Single bit response, see Pulse response
Single ended, 297, 300
Single line equivalent model (SLEM), 158, 165,

195–196
Sinusoidal jitter, see Periodic jitter
Skin depth, 204–207, 208, 209, 210, 212, 213,

218, 220, 222, 223, 224, 235, 242, 250,
421, 650

Skin effect, 207, 212, 213, 216, 217, 224, 246,
420

S-parameters, 348, 358–413, 641
cascading, 390–395
changing the reference impedance, 399–400
multimode, 400–406
properties, 406–413
reference impedance, 399

Speed of light, 31, 261, 637
Spice circuit model, 447
Stability, 331, 343–345
Stackup, 67
Steady state voltage, 119

Step response, 326–327
Stoke’s theorem, 52
Stripline, 66, 67
Superposition, 583–588, 590–592
Surface impedance, 216–218, 245, 649
Surface roughness, 222–243, 418, 421, 650
Surface roughness model

Hammerstad, 223–228, 234, 243, 421
hemisphere, 228–237, 243, 244, 421
Huray, 237–243, 244, 421

Surface roughness profile, 226, 233, 234, 238,
239

System response, 327
t-distribution, 623

TDR (time domain reflectometry), 134–137,
276, 277

capacitance, 138–139
gap in plane, 424–428
impedance, 134–137
inductance, 137–138
profile, 140
time delay, 134–137

Telegrapher’s equations, 73–76, 81, 247,
291–292

TEM, 25–27, 32, 69, 74, 86–90, 153, 228, 231
Termination, 606–607, 609–610, 612–614, 624,

627–631
Tesla, 43
Thermal (Johnson) noise, 577–579
Threshold region, 6
Time/frequency domain equivalency, 317–321
Time delay, 117
Time harmonic fields, 27–28
Time harmonic Maxwell’s equations, 28
Timing, 5
T-matrix, see Transmission parameters
Tooth structure, 222
Total cross section, 229
Transfer function, 324, 329, 502–509, 512,

516–517, 519–521, 523, 528, 545–547
Transmission coefficient, 61, 113, 115
Transmission line, 23, 66, 67, 82, 83, 90

model, 418–422
parameters, 67, 90, 90–100, 104, 285–291
properties, see Transmission line, parameters

Transmission matrix, see Transmission
parameters

Transmission parameters, 393–395, 641–643
Transmit equalization, 525–530, 541–544
Transmitter, 606, 609–610
Transmitter circuit, 444, 446–458
Transversal filter, 525
Transverse electromagnetic mode, see TEM
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Tristate I/O circuit, 455, 457
t-statistic (t-ratio), 620–622

Under-driven transmission line, 120,
121, 130

Unit interval (UI), 327, 554, 584

Vector, 13
Vector calculus theorems, 638
Vector field, 15
Vector formulas, 638
Vector network analyzer (VNA), 358, 376
Vector operations, 639
Vias

backdrill, 435–436
equivalent circuit, 435–436, 440

parallel plate losses, 437–439
resonance, 434–437

Virtual reference plane, 302–303
Volume energy density, 39, 53, 54
v-t curve, 453–456, 483–486

Wave decay, 204
Wave equation, 23–25, 31, 80–82
Wavelength, 31
White (Gaussian) noise, 501, 506
Wired-OR signaling, 475

Zero forcing solution (ZFS) equalizer, 530–534,
537–539

Zero padding, 379–381
Z-parameters, see Impedance matrix
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