BSIM4.5.0 MOSFET Model

- User's Manual

Xuemei (Jane) Xi, Mohan Dunga, Jin He, Weidong Liu, Kanyu M. Cao, Xiaodong Jin, Jeff J. Ou, Mansun Chan, Ali M. Niknejad,

Chenming Hu

Department of Electrical Engineering and Computer Sciences University of California, Berkeley, CA 94720

> **Copyright © 2004 The Regents of the University of California All Rights Reserved**

Developers:

BSIM4.5.0 Developers:

- **•** Professor Chenming Hu (**project director**), UC Berkeley
- **•** Professor Ali M. Niknejad(**project director**), UC Berkeley
- **•** Dr. Xuemei (Jane) Xi , UC Berkeley
- **•** Mr. Mohan Dunga, UC Berkeley

Developers of BSIM4 Previous Versions:

- **•** Dr. Weidong Liu, Synopsys
- **•** Dr. Xiaodong Jin, Marvell
- **•** Dr. Kanyu (Mark) Cao, UC Berkeley
- **•** Dr. Jeff J. Ou, Intel
- **•** Dr. Jin He, UC Berkeley
- **•** Dr. Xuemei (Jane) Xi, UC Berkeley
- **•** Professor Chenming Hu, UC Berkeley

Web Sites:

BSIM4 web site with BSIM source code and documents:

http://www-device.eecs.berkeley.edu/bsim3/~bsim4.html

Compact Model Council: **http://www.eigroup.org/~CMC**

Technical Support:

Dr. Xuemei (Jane) Xi: JaneXi@eecs.berkeley.edu

Acknowledgement:

The development of BSIM4.5.0 benefited from the input of many BSIM users, especially the Compact Model Council (CMC) member companies. The developers would like to thank Keith Green, Tom Vrotsos, Suhail Murtaza, David Zweidinger, Britt Brooks and Doug Weiser at TI, Joe Watts and Richard Q Williams at IBM, Yu-Tai Chia, Ke-Wei Su, Chung-Kai Chung, and Y-M Sheu at TSMC, Rainer Thoma, Ivan To, Young-Bog Park and Colin McAndrew at Motorola, Paul Humphries, Geoffrey J. Coram and Andre Martinez at Analog Devices, Andre Juge and Gilles Gouget at STmicroelectronics, Mishel Matloubian at Mindspeed, Judy An at AMD, Bernd Lemaitre, Joachim Assenmacher, Laurens Weiss and Peter Klein at Infinion, Ping-Chin Yeh and Dick Dowell at HP, Shiuh-Wuu Lee, Wei-Kai Shih, Paul Packan, Sivakumar P Mudanai and Rafael Rio at Intel, Xiaodong Jin at Marvell, Weidong Liu at Synopsys, Marek Mierzwinski at Tiburon-DA, Jean-Paul MALZAC at Silvaco, Min-Chie Jeng, Ping Chen, Jushan Xie, and Zhihong Liu at Cadence, Mohamed Selim and Ahmed Ramadan at Mentor Graphics, Peter Lee, Kazunori Onozawa at Renesas, Toshiyuki Saito and Shigetaka Kumashiro at NEC, Richard Taylor at NSC, for their valuable assistance in identifying the desirable modifications and testing of the new model.

The BSIM project is partially supported by SRC, and CMC.

Table of Contents

Chapter 1: Effective Oxide Thickness, Channel Length and Channel Width 1-1

1.1 Gate Dielectric Model 1-1

1.2 Poly-Silicon Gate Depletion 1-2

1.3 Effective Channel Length and Width 1-5

Chapter 2: Threshold Voltage Model 2-1

2.1 Long-Channel Model With Uniform Doping 2-1

2.2 Non-Uniform Vertical Doping 2-2

2.3 Non-Uniform Lateral Doping: Pocket (Halo) Implant 2-5

2.4 Short-Channel and DIBL Effects 2-6

2.5 Narrow-Width Effect 2-9

Chapter 3: Channel Charge and Subthreshold Swing Models 3-1 3.1 Channel Charge Model 3-1 3.2 Subthreshold Swing *n* 3-5

Chapter 4: Gate Direct Tunneling Current Model 4-1

4.1 Model selectors 4-2 4.2 Voltage Across Oxide *Vox* 4-2 4.3 Equations for Tunneling Currents 4-3

5.9 New Current Saturation Mechanisms: Velocity Overshoot and Source End Velocity Limit Model 5-17

Chapter 6: Body Current Models 6-1

6.1 *Iii* Model 6-1 6.2 *IGIDL* Model 6-2

Chapter 7: Capacitance Model 7-1

7.1 General Description 7-1

7.2Methodology for Intrinsic Capacitance Modeling 7-3

7.3Charge-Thickness Capacitance Model (CTM) 7-9

7.4Intrinsic Capacitance Model Equations 7-13

7.5Fringing/Overlap Capacitance Models 7-19

Chapter 8: High-Speed/RF Modelsm 8-1

8.1Charge-Deficit Non-Quasi-Static (NQS) Model 8-1 8.2Gate Electrode Electrode and Intrinsic-Input Resistance (IIR) Model 8-6 8.3Substrate Resistance Network 8-8

Chapter 9: Noise Modeling 9-1

9.1 Flicker Noise Models 9-1 9.2Channel Thermal Noise 9-4 9.3 Other Noise Sources Modeled 9-7

Chapter 10: Asymmetric MOS Junction Diode Models 10-1 10.1Junction Diode IV Model 10-1 10.2Junction Diode CV Model 10-6

Chapter 11: Layout-Dependent Parasitics Model 11-1 11.1 Geometry Definition 11-1 11.2Model Formulation and Options 11-3

Chapter 12: Temperature Dependence Model 12-1 12.1Temperature Dependence of Threshold Voltage 12-1

12.2Temperature Dependence of Mobility 12-1

12.3Temperature Dependence of Saturation Velocity 12-2

12.4Temperature Dependence of LDD Resistance 12-2

12.5Temperature Dependence of Junction Diode IV 12-3

12.6Temperature Dependence of Junction Diode CV 12-5

12.7Temperature Dependences of Eg and ni 12-8

Chapter 13: Stress Effect Model 13-1

13.1 Stress effect model development 13-1

13.2 Effective SA and SB for irregular LOD 13-2

Chapter 14: Well Proximity Effect Model 14-1

14.1 Well Proximity effect model development 14-1 14.2 Extraction of Instance Parameters (for post-layout simulation) 14-2

Chapter 15: Parameter Extraction Methodology 15-1

15.1Optimization strategy 15-1

15.2 Extraction Strategy 15-2

15.3Extraction Procedure 15-3

Appendix A: Complete Parameter List A-1

A.1BSIM4.0.0 Model Selectors/Controllers A-1 A.2 Process Parameters A-3 A.3Basic Model Parameters A-5 A.4Parameters for Asymmetric and Bias-Dependent *Rds* Model A-10 A.5Impact Ionization Current Model Parameters A-11 A.6Gate-Induced Drain Leakage Model Parameters A-11 A.7Gate Dielectric Tunneling Current Model Parameters A-12 A.8Charge and Capacitance Model Parameters A-15 A.9High-Speed/RF Model Parameters A-17 A.10Flicker and Thermal Noise Model Parameters A-18 A.11Layout-Dependent Parasitics Model Parameters A-19 A.12Asymmetric Source/Drain Junction Diode Model Parameters A-20 A.13Temperature Dependence Parameters A-23

A.14*dW* and *dL* Parameters A-25 A.15Range Parameters for Model Application A-26 A.16 Notes 1-8 A-26

Appendix B: Core Parameter List for General Parameter Extraction B-1

Appendix C: References C-1

 ϵ

Chapter 1: Effective Oxide Thickness, Channel Length and Channel Width

BSIM4, as the extension of BSIM3 model, addresses the MOSFET physical effects into sub-100nm regime. The continuous scaling of minimum feature size brought challenges to compact modeling in two ways: One is that to push the barriers in making transistors with shorter gate length, advanced process technologies are used such as non-uniform substrate doping. The second is its opportunities to RF applications.

To meet these challenges, BSIM4 has the following major improvements and additions over BSIM3v3: (1) an accurate new model of the intrinsic input resistance for both RF, high-frequency analog and high-speed digital applications; (2) flexible substrate resistance network for RF modeling; (3) a new accurate channel thermal noise model and a noise partition model for the induced gate noise; (4) a non-quasi-static (NQS) model that is consistent with the Rg-based RF model and a consistent AC model that accounts for the NQS effect in both transconductances and capacitances. (5) an accurate gate direct tunneling model for multiple layer gate dielectrics; (6) a comprehensive and versatile geometrydependent parasitics model for various source/drain connections and multi-finger devices; (7) improved model for steep vertical retrograde doping profiles; (8) better model for pocket-implanted devices in Vth, bulk charge effect model, and Rout; (9) asymmetrical and bias-dependent source/drain resistance, either internal or external to the intrinsic MOSFET at the user's discretion; (10) acceptance of either the electrical or physical gate oxide thickness as the model input at the user's

choice in a physically accurate maner; (11) the quantum mechanical charge-layerthickness model for both IV and CV; (12) a more accurate mobility model for predictive modeling; (13) a gate-induced drain/source leakage (GIDL/GISL) current model, available in BSIM for the first time; (14) an improved unified flicker (1/f) noise model, which is smooth over all bias regions and considers the bulk charge effect; (15) different diode IV and CV charatistics for source and drain junctions; (16) junction diode breakdown with or without current limiting; (17) dielectric constant of the gate dielectric as a model parameter; (18) A new scalable stress effect model for process induced stress effect; device performance becoming thus a function of the active area geometry and the location of the device in the active area; (19) A unified current-saturation model that includes all mechanisms of current saturation- velocity saturation, velocity overshoot and source end velocity limit; (20) A new temperature model format that allows convenient prediction of temperature effects on saturation velocity, mobility, and S/D resistances.

1.1Gate Dielectric Model

As the gate oxide thickness is vigorously scaled down, the finite charge-layer thickness can not be ignored [1]. BSIM4 models this effect in both IV and CV. For this purpose, BSM4 accepts two of the following three as the model inputs: the electrical gate oxide thickness *TOXE*¹ , the physical gate oxide thickness *TOXP*, and their difference *DTOX* = *TOXE - TOXP*. Based on these parameters, the effect of effective gate oxide capacitance $C_{\alpha x \in \alpha}$ on IV and CV is modeled [2].

^{1.} Capital and italic alphanumericals in this manual are model parameters.

High- k gate dielectric can be modeled as SiO_2 (relative permittivity: 3.9) with an equivalent $SiO₂$ thickness. For example, 3nm gate dielectric with a dielectric constant of 7.8 would have an equivalent oxide thickness of 1.5nm.

BSIM4 also allows the user to specify a gate dielectric constant (*EPSROX*) different from 3.9 (SiO_2) as an alternative approach to modeling high- k dielectrics.

Figure 1-1 illustrates the algorithm and options for specifying the gate dielectric thickness and calculation of the gate dielectric capacitance for BSIM4 model evaluation.

Figure 1-1. Algorithm for BSIM4 gate dielectric model.

1.2 Poly-Silicon Gate Depletion

When a gate voltage is applied to the poly-silicon gate, e.g. NMOS with n^+ polysilicon gate, a thin depletion layer will be formed at the interface between the polysilicon and the gate oxide. Although this depletion layer is very thin due to the high doping concentration of the poly-silicon gate, its effect cannot be ignored since the gate oxide thickness is small.

Figure 1-2 shows an NMOSFET with a depletion region in the n^+ poly-silicon gate. The doping concentration in the n⁺ poly-silicon gate is *NGATE* and the doping concentration in the substrate is *NSUB*. The depletion width in the poly gate is X_p . The depletion width in the substrate is X_d . The positive charge near the interface of the poly-silicon gate and the gate oxide is distributed over a finite depletion region with thickness X_p . In the presence of the depletion region, the voltage drop across the gate oxide and the substrate will be reduced, because part of the gate voltage will be dropped across the depletion region in the gate. That means the effective gate voltage will be reduced.

Figure 1-2. Charge distribution in a MOSFET with the poly gate depletion effect. The device is in the strong inversion region.

The effective gate voltage can be calculated in the following manner. Assume the doping concentration in the poly gate is uniform. The voltage drop in the poly gate *Vpoly* can be calculated as

(1.2.1)
\n
$$
V_{poly} = 0.5X_{poly}E_{poly} = \frac{qNGATE \cdot X_{poly}^2}{2\mathbf{e}_{si}}
$$

where E_{poly} is the maximum electrical field in the poly gate. The boundary condition at the interface of poly gate and the gate oxide is

(1.2.2)
\n
$$
EPSROX \cdot E_{ox} = \mathbf{e}_{si} E_{poly} = \sqrt{2q \mathbf{e}_{si} NGATE \cdot V_{poly}}
$$

where E_{ox} is the electric field in the gate oxide. The gate voltage satisfies

$$
V_{gs} - V_{FB} - \Phi_s = V_{poly} + V_{ox}
$$
\n
$$
(1.2.3)
$$

where V_{ox} is the voltage drop across the gate oxide and satisfies $V_{ox} = E_{ox}TOXE$. From $(1.2.1)$ and $(1.2.2)$, we can obtain

$$
(1.2.4)
$$

$$
a(V_{gs} - V_{FB} - \Phi_s - V_{poly})^2 - V_{poly} = 0
$$

where

(1.2.5) 2 2 2*q NGATE TOXE* $a = \frac{EPSROX}{\sqrt{Var(X)}}$ $_{si}NGATE \cdot$ *e*

By solving (1.2.4), we get the effective gate voltage V_{gse} which is equal to

=

(1.2.6)
\n
$$
V_{gse} = VFB + \Phi_s + \frac{qe_{si}NGATE \cdot TOXE^2}{EPSROX^2} \left(\sqrt{1 + \frac{2EPSROX^2 (V_{gs} - VFB - \Phi_s)}{qe_{si}NGATE \cdot TOXE^2}} - 1 \right)
$$

1.3 Effective Channel Length and Width

The effective channel length and width used in the drain current model are given below where XL and XW are parameters to account the channel length/width offset due to mask/etch effect

(1.3.1)
\n
$$
L_{eff} = L_{drawn} + XL - 2dL
$$
\n
$$
W_{eff} = \frac{W_{drawn}}{NF} + XW - 2dW
$$
\n
$$
W_{eff} = \frac{W_{drawn}}{NF} + XW - 2dW
$$
\n(1.3.2b)
\n
$$
W_{eff} = \frac{W_{drawn}}{NF} + XW - 2dW
$$

The difference between (1.3.2a) and (1.3.2b) is that the former includes bias dependencies. *NF* is the number of device fingers. *dW* and *dL* are modeled by

(1.3.3)
\n
$$
dW = dW' + DWG \cdot V_{\text{s} \text{st} \text{eff}} + DWB \left(\sqrt{\Phi_s - V_{\text{b} \text{seff}}} - \sqrt{\Phi_s} \right)
$$
\n
$$
dW' = WINT + \frac{WL}{L^{\text{WLN}}} + \frac{WW}{W^{\text{WWN}}} + \frac{WWL}{L^{\text{WLN}}W^{\text{WWN}}}
$$

$$
dL = LINT + \frac{LL}{L^{LLN}} + \frac{LW}{W^{LWN}} + \frac{LWL}{L^{LLN}W^{LWN}}
$$
\n
$$
(1.3.4)
$$

WINT represents the traditional manner from which "delta *W*" is extracted (from the intercept of straight lines on a $1/R_{ds}$ ^{\sim}*W*_{*drawn*} plot). The parameters *DWG* and *DWB* are used to account for the contribution of both gate and substrate bias effects. For *dL*, *LINT* represents the traditional manner from which "delta *L*" is extracted from the intercept of lines on a $R_{ds}L_{drawn}$ plot).

The remaining terms in *dW* and *dL* are provided for the convenience of the user. They are meant to allow the user to model each parameter as a function of *Wdrawn*, *Ldrawn* and their product term. By default, the above geometrical dependencies for *dW* and *dL* are turned off.

MOSFET capacitances can be divided into intrinsic and extrinsic components. The intrinsic capacitance is associated with the region between the metallurgical source and drain junction, which is defined by the effective length (*Lactive*) and width (*Wactive*) when the gate to source/drain regions are under flat-band condition. *Lactive* and *Wactive* are defined as

$$
(1.3.5)
$$

$$
L_{active} = L_{drawn} + XL - 2dL
$$

(1.3.6)

$$
W_{active} = \frac{W_{drawn}}{NF} + XW - 2dW
$$

(1.3.7)

$$
dL = DLC + \frac{LLC}{L^{LLN}} + \frac{LWC}{W^{LWN}} + \frac{LWLC}{L^{LLN}W^{LWN}}
$$

$$
dW = DWC + \frac{WLC}{L^{WLN}} + \frac{WWC}{W^{WWN}} + \frac{WWLC}{L^{WLN}W^{WWN}}
$$
\n(1.3.8)

The meanings of *DWC* and *DLC* are different from those of *WINT* and *LINT* in the I-V model. Unlike the case of I-V, we assume that these dimensions are biasdependent. The parameter *dLeff* is equal to the source/drain to gate overlap length plus the difference between drawn and actual POLY CD due to processing (gate patterning, etching and oxidation) on one side.

The effective channel length *Leff* for the I-V model does not necessarily carry a physical meaning. It is just a parameter used in the I-V formulation. This *Leff* is therefore very sensitive to the I-V equations and also to the conduction characteristics of the LDD region relative to the channel region. A device with a large *Leff* and a small parasitic resistance can have a similar current drive as another with a smaller *Leff* but larger *Rds*.

The *Lactive* parameter extracted from capacitance is a closer representation of the metallurgical junction length (physical length). Due to the graded source/drain junction profile, the source to drain length can have a very strong bias dependence. We therefore define *Lactive* to be that measured at flat-band voltage between gate to source/drain. If *DWC*, *DLC* and the length/width dependence parameters (*LLC*, *LWC*, *LWLC*, *WLC*, *WWC* and *WWLC*) are not specified in technology files, BSIM4 assumes that the DC bias-independent *Leff* and *Weff* will be used for the capacitnace models, and *DWC*, *DLC, LLC*, *LWC*, *LWLC*, *WLC*, *WWC* and *WWLC* will be set to the values of their DC counterparts.

BSIM4 uses the effective source/drain diffusion width *Weffcj* for modeling parasitics, such as source/drain resistance, gate electrode resistance, and gateinduced drain leakage (GIDL) current. *Weffcj* is defined as

$$
(1.3.9)
$$
\n
$$
W_{\text{effcj}} = \frac{W_{\text{drawn}}}{NF} - 2 \cdot \left(DWJ + \frac{WLC}{L^{WLN}} + \frac{WWC}{W^{WWN}} + \frac{WWLC}{L^{WLN}W^{WWN}} \right)
$$

Note: Any compact model has its validation limitation, so does BSIM4. BSIM4 is its own valid designation limit which is larger than the warning limit, shown in following table. For users' reference, the fatal limitation in BSIM4 is also shown.

Parameter name	Designed Limitation(m)	Warning Limitation(m)	Fatal Limitation(m)
Leff	$1e-8$	$1e-9$	θ
LeffCV	$1e-8$	$1e-9$	Ω
Weff	$1e-7$	$1e-9$	Ω
WeffCV	$1e-7$	$1e-9$	Ω
Toxe	$5e-10$	$1e-10$	θ
Toxp	$5e-10$	$1e-10$	Ω
Toxm	$5e-10$	$1e-10$	Ω

Table 1-1. BSIM4.5.0 Geometry Limitation

Chapter 2: Threshold Voltage Model

2.1 Long-Channel Model With Uniform Doping

Accurate modeling of threshold voltage *Vth* is important for precise description of device electrical characteristics. V_{th} for long and wide MOSFETs with uniform substrate doping is given by

$$
(2.1.1)
$$

$$
V_{th} = VFB + \Phi_s + g \sqrt{\Phi_s - V_{bs}} = VTH0 + g(\sqrt{\Phi_s - V_{bs}} - \sqrt{\Phi_s})
$$

where *VFB* is the flat band voltage, *VTH0* is the threshold voltage of the long channel device at zero substrate bias, and γ is the body bias coefficient given by

$$
g = \frac{\sqrt{2qe_{si}N_{substrate}}}{C_{oxe}}
$$
 (2.1.2)

where $N_{substrate}$ is the uniform substrate doping concentration.

Equation (2.1.1) assumes that the channel doping is constant and the channel length and width are large enough. Modifications have to be made when the substrate doping concentration is not constant and/or when the channel is short, or narrow.

Consider process variation, a new instance parameter DELVTO is added to VTH0 as:

(a) If VTH0 is given,

(2.1.3)

VTH 0 **=** *VTH* 0 **+** *DELVTO*

(a) If VTH0 isn't given,

(2.1.4)

VTH $0 = VFB + \mathbf{F}$, $+ \mathbf{g} \sqrt{\mathbf{F}}$, $VFB = VFB + DELVTO$

2.2 Non-Uniform Vertical Doping

The substrate doping profile is not uniform in the vertical direction and therefore γ in (2.1.2) is a function of both the depth from the interface and the substrate bias. If *Nsubstrate* is defined to be the doping concentration (*NDEP*) at X_{dep0} (the depletion edge at $V_{bs} = 0$), V_{th} for non-uniform vertical doping is

$$
(2.2.1)
$$

$$
V_{th} = V_{th, NDEP} + \frac{qD_0}{C_{oxe}} + K1_{NDEP} \left(\sqrt{\int \int_{s}^{t} -V_{bs} - \frac{qD_1}{\mathbf{e}_{si}}} - \sqrt{\int \int_{s}^{t} -V_{bs}} \right)
$$

where $K1_{NDEP}$ is the body-bias coefficient for $N_{substrate} = NDEP$,

$$
V_{th,NDEP} = VTH0 + K1_{NDEP} \left(\sqrt{\boldsymbol{j}_{s} - V_{bs}} - \sqrt{\boldsymbol{j}_{s}} \right)
$$
\n(2.2.2)

with a definition of

$$
\boldsymbol{j}_{s} = 0.4 + \frac{k_{B}T}{q} \ln \left(\frac{NDEP}{n_{i}} \right)
$$

where n_i is the intrinsic carrier concentration in the channel region. The zero-th and 1st moments of the vertical doping profile in (2.2.1) are given by $(2.2.4)$ and $(2.2.5)$, respectively, as

(2.2.3)

$$
(2.2.4)
$$
\n
$$
D_0 = D_{00} + D_{01} = \int_0^{X_{dep0}} (N(x) - NDEP) dx + \int_{X_{dep0}}^{X_{dep}} (N(x) - NDEP) dx
$$
\n
$$
(2.2.5)
$$
\n
$$
D_1 = D_{10} + D_{11} = \int_0^{X_{dep0}} (N(x) - NDEP) x dx + \int_{X_{dep0}}^{X_{dep}} (N(x) - NDEP) x dx
$$

By assuming the doping profile is a steep retrograde, it can be shown that D_{01} is approximately equal to $-C_{01}V_{bs}$ and that D_{10} dominates D_{11} ; C_{01} represents the profile of the retrograde. Combining (2.2.1) through (2.2.5), we obtain

$$
(2.2.6)
$$

$$
V_{th} = VTH0 + K1(\sqrt{\Phi_s - V_{bs}} - \sqrt{\Phi_s}) - K2 \cdot V_{bs}
$$

where $K2 = qC_{01} / C_{oxe}$, and the surface potential is defined as

$$
\Phi_s = 0.4 + \frac{k_B T}{q} \ln \left(\frac{NDEP}{n_i} \right) + PHIN
$$
\n(2.2.7)

where

$$
PHIN = -qD_{10}/e_{si}
$$

*VTH*0, *K*1, *K*2, and *PHIN* are implemented as model parameters for model flexibility. Appendix A lists the model selectors and parameters.

Detail information on the doping profile is often available for predictive modeling. Like BSIM3v3, BSIM4 allows *K*1 and *K*2 to be calculated based on such details as *NSUB*, *XT*, *VBX*, *VBM*, etc. (with the same meanings as in BSIM3v3):

$$
K1 = g_2 - 2K2\sqrt{\Phi_s - VBM}
$$
\n
$$
K2 = \frac{(g_1 - g_2)(\sqrt{\Phi_s - VBX} - \sqrt{\Phi_s})}{2\sqrt{\Phi_s}(\sqrt{\Phi_s - VBM} - \sqrt{\Phi_s}) + VBM}
$$
\n(2.2.9)

where γ_1 and γ_2 are the body bias coefficients when the substrate doping concentration are equal to *NDEP* and *NSUB*, respectively:

(2.2.10) $(2.2.11)$ *oxe si C qe NDEP g* 2 $\frac{1}{1}$ = *oxe si C qe NSUB g* 2 $2 =$

VBX is the body bias when the depletion width is equal to *XT*, and is determined by

(2.2.12)

$$
\frac{qNDEP \cdot XT^2}{2\mathbf{e}_{si}} = \Phi_s - VBX
$$

2.3 Non-Uniform Lateral Doping: Pocket (Halo) Implant

In this case, the doping concentration near the source/drain junctions is higher than that in the middle of the channel. Therefore, as channel length becomes shorter, a *Vth* roll-up will usually result since the effective channel doping concentration gets higher, which changes the body bias effect as well. To consider these effects, V_{th} is written as

$$
(2.3.1)
$$
\n
$$
V_{th} = VTH0 + K1(\sqrt{\Phi_s - V_{bs}} - \sqrt{\Phi_s}) \cdot \sqrt{1 + \frac{LPEB}{L_{eff}}} - K2 \cdot V_{bs}
$$
\n
$$
+ K1(\sqrt{1 + \frac{LPE0}{L_{eff}}} - 1)\sqrt{\Phi_s}
$$

In addition, pocket implant can cause significant drain-induced threshold shift (DITS) in long-channel devices [3]:

$$
\Delta V_{th}(DITS) = -nv_t \cdot \ln \left(\frac{\left(1 - e^{-V_{ds}/v_t}\right) \cdot L_{eff}}{L_{eff} + DVTP0 \cdot \left(1 + e^{-DVTP1V_{ds}}\right)} \right)
$$
(2.3.2)

For *Vds* of interest, the above equation is simplified and implemented as for temp $Mod = 1$:

$$
\mathbf{D}V_{th}(DITS) = -nv_t \times \ln \mathbf{E} \frac{L_{eff}}{\mathbf{E}L_{eff} + DVTP0 \times (1 + e^{-DVTP W_{ds}})} \frac{\ddot{\mathbf{o}}}{\mathbf{E}L_{eff}} \tag{2.3.3a}
$$

for temp $Mod = 2$:

$$
(2.3.3b)
$$

$$
\mathbf{D}V_{th}(DITS) = -nv_{\text{inom}} \times \ln \underbrace{\mathbf{E}_{\text{eff}} - L_{\text{eff}}}_{\mathbf{E}L_{\text{eff}}} + DVTP \times (1 + e^{-DVTP \times \mathbf{E}_{\text{eff}}}) \frac{\ddot{\mathbf{o}}}{\mathbf{s}}
$$

Note: when tempMod =2, drain-induced threshold voltage shift (DITS) due to pocket implant has no temperature dependence, so nominal temperature (TNOM) is used as equation(2.3.4). when tempMod=0 or 1, equation(2.3.3) is used.

$$
\mathbf{D}V_{th}(DITS) = -nv_{\text{from}} \times \ln \mathbf{\mathcal{E}} \frac{E_{\text{eff}}}{\mathbf{\mathcal{E}}L_{\text{eff}}} + DVTP0 \times \left(1 + e^{-DVTP \cdot |\mathbf{W}_{ds}}\right) \frac{1}{\mathbf{\mathcal{E}}}
$$

2.4 Short-Channel and DIBL Effects

As channel length becomes shorter, *Vth* shows a greater dependence on channel length (SCE: short-channel effect) and drain bias (DIBL: draininduced barrier lowering). V_{th} dependence on the body bias becomes weaker as channel length becomes shorter, because the body bias has weaker control of the depletion region. Based on the quasi 2D solution of the Poisson equation, *Vth* change due to SCE and DIBL is modeled [4]

$$
\Delta V_{th} \left(\text{SCE}, \text{DIBL} \right) = -\boldsymbol{q}_{th} \left(L_{\text{eff}} \right) \cdot \left[2(V_{bi} - \boldsymbol{\Phi}_s) + V_{ds} \right] \tag{2.4.1}
$$

where $V_{b,i}$, known as the built-in voltage of the source/drain junctions, is given by

(2.4.2)

$$
V_{bi} = \frac{k_B T}{q} \ln \left(\frac{NDEP \cdot NSD}{n_i^2} \right)
$$

where *NSD* is the doping concentration of source/drain diffusions. The short-channel effect coefficient $\theta_{th}(L_{eff})$ in (2.4.1) has a strong dependence on the channel length given by

$$
\mathbf{q}_{th}(L_{\text{eff}}) = \frac{0.5}{\cosh\left(\frac{L_{\text{eff}}}{l_{\text{f}}}\right) - 1}
$$
\n(2.4.3)

 l_t is referred to as the characteristic length and is given by

h e ⋅ \cdot TOXE \cdot = *EPSROX TOXE X* $l_t = \sqrt{\frac{\mathbf{c}_{si} \cdot \mathbf{1} \mathbf{O} \mathbf{A} \mathbf{L} \cdot \mathbf{A}_{dep}}{\mathbf{E} \mathbf{D} \mathbf{S} \mathbf{D} \mathbf{Q} \mathbf{V} \cdot \mathbf{A}}}$

with the depletion width *Xdep* equal to

t

(2.4.5)

(2.4.4)

$$
X_{\text{dep}} = \sqrt{\frac{2\mathbf{e}_{\text{si}}(\Phi_{\text{s}} - V_{\text{bs}})}{qNDEP}}
$$

 X_{dep} is larger near the drain due to the drain voltage. X_{dep} / η represents the average depletion width along the channel.

Note that in BSIM3v3 and [4], $\theta_{th}(L_{eff})$ is approximated with the form of

$$
\mathbf{q}_{th}(L_{\text{eff}}) = \exp\left(-\frac{L_{\text{eff}}}{2l_{t}}\right) + 2\exp\left(-\frac{L_{\text{eff}}}{l_{t}}\right)
$$
\n(2.4.6)

which results in a phantom second V_{th} roll-up when L_{eff} becomes very small (e.g. *Leff* < *LMIN*). In BSIM4, the function form of (2.4.3) is implemented with no approximation.

To increase the model flexibility for different technologies, several parameters such as *DVT*0, *DVT*1, *DVT*2, *DSUB*, *ETA*0, and *ETAB* are introduced, and SCE and DIBL are modeled separately.

To model SCE, we use

(2.4.7)

$$
\boldsymbol{q}_{th}(\text{SCE}) = \frac{0.5 \cdot DVT0}{\cosh(DVT1 \cdot \frac{L_{eff}}{l_t}) - 1}
$$

$$
\Delta V_{th}(\text{SCE}) = -\mathbf{q}_{th}(\text{SCE}) \cdot (V_{bi} - \Phi_s)
$$
 (2.4.8)

with l_t changed to

$$
l_{t} = \sqrt{\frac{\mathbf{e}_{si} \cdot TOXE \cdot X_{dep}}{EPSROX}} \cdot (1 + DVT2 \cdot V_{bs})
$$
\n(2.4.9)

To model DIBL, we use

(2.4.10)

$$
\boldsymbol{q}_{th}(\text{DIBL}) = \frac{0.5}{\cosh\left(DSUB \cdot \frac{L_{eff}}{l_{to}}\right) - 1}
$$

$$
\Delta V_{th}(\text{DIBL}) = -\boldsymbol{q}_{th}(\text{DIBL}) \cdot (ETA0 + ETAB \cdot V_{bs}) \cdot V_{ds}
$$
\n(2.4.11)

and l_0 is calculated by

$$
l_{t0} = \sqrt{\frac{\mathbf{e}_{si} \cdot TOXE \cdot X_{dep0}}{EPSROX}}
$$
 (2.4.12)

with

$$
X_{dep0} = \sqrt{\frac{2\mathbf{e}_{si}\Phi_s}{qNDEP}}
$$
 (2.4.13)

*DVT*1 is basically equal to $1/(\eta)^{1/2}$. *DVT*2 and *ETAB* account for substrate bias effects on SCE and DIBL, respectively.

2.5 Narrow-Width Effect

The actual depletion region in the channel is always larger than what is usually assumed under the one-dimensional analysis due to the existence of fringing fields. This effect becomes very substantial as the channel width decreases and the depletion region underneath the fringing field becomes comparable to the "classical" depletion layer formed from the vertical field. The net result is an increase in *Vth*. This increase can be modeled as

 $(2.5.1)$

$$
\frac{\mathbf{p}qNDEP \cdot X_{\text{dep,max}}^{2}}{2C_{\text{oxe}}W_{\text{eff}}} = 3\mathbf{p}\frac{TOXE}{W_{\text{eff}}} \Phi_{s}
$$

This formulation includes but is not limited to the inverse of channel width due to the fact that the overall narrow width effect is dependent on process (i.e. isolation technology). V_{th} change is given by

$$
(2.5.2)
$$

$$
\Delta V_{th} (Narrow_width1) = (K3 + K3B \cdot V_{bs}) \frac{TOXE}{W_{eff} + W0} \Phi_s
$$

In addition, we must consider the narrow width effect for small channel lengths. To do this we introduce the following

$$
\Delta V_{th} \left(\text{Narrow_width2} \right) = -\frac{0.5 \cdot DVT0W}{\cosh \left(DVT1W \cdot \frac{L_{eff}W_{eff}}{l_{tw}} \right) - 1} \cdot \left(V_{bi} - \Phi_s \right)
$$

with *l tw* given by

(2.5.4)
\n
$$
l_{rw} = \sqrt{\frac{e_{si} \cdot TOXE \cdot X_{dep}}{EPSROX} \cdot (1 + DVT2W \cdot V_{bs})}
$$

The complete V_{th} model implemented in SPICE is

 $(2.5.5)$

$$
V_{th} = VTH0 + \left(K_{\text{lox}} \cdot \sqrt{\Phi_s - V_{\text{bseff}}} - K1 \cdot \sqrt{\Phi_s} \right) \left(1 + \frac{LPEB}{L_{\text{eff}}} - K_{\text{2ox}} V_{\text{bseff}}\right)
$$

+
$$
K_{\text{lox}} \left(\sqrt{1 + \frac{LPE0}{L_{\text{eff}}}} - 1 \right) \sqrt{\Phi_s} + \left(K3 + K3B \cdot V_{\text{bseff}} \right) \frac{TOXE}{W_{\text{eff}}' + W0} \Phi_s
$$

- 0.5 \cdot \left[\frac{DVT0W}{\cosh(DVT1W \frac{L_{\text{eff}}W_{\text{eff}}}{l_{\text{iv}}}) - 1} + \frac{DVT0}{\cosh(DVT1 \frac{L_{\text{tf}}}{l_{\text{t}}}) - 1} \right] \left(V_{\text{bi}} - \Phi_s\right)

where *TOXE* dependence is introduced in model parameters *K*1 and *K*2 to improve the scalibility of *Vth* model over *TOXE* as

 $(2.5.6)$

$$
K_{\text{lox}} = K1 \cdot \frac{TOXE}{TOXM}
$$

and

 $(2.5.7)$

$$
K_{2ox} = K2 \cdot \frac{TOXE}{TOXM}
$$

Note that all V_{bs} terms are substituted with a $V_{b\text{seff}}$ expression as shown in (2.5.8). This is needed in order to set a low bound for the body bias during simulations since unreasonable values can occur during SPICE iterations if this expression is not introduced.

Narrow-Width Effect

$$
(2.5.8)
$$

$$
V_{bseff} = V_{bc} + 0.5 \cdot \left[(V_{bs} - V_{bc} - \mathbf{d}_{1}) + \sqrt{(V_{bs} - V_{bc} - \mathbf{d}_{1})^{2} - 4\mathbf{d}_{1} \cdot V_{bc}} \right]
$$

where $\delta_1 = 0.001$ V, and V_{bc} is the maximum allowable V_{bs} and found from $dV_{th}/dV_{bs} = 0$ to be

 $(2.5.9)$

$$
V_{bc} = 0.9 \left(\Phi_s - \frac{K1^2}{4K2^2} \right)
$$

For positive V_{bs,} there is need to set an upper bound for the body bias as:

(2.5.10)

$$
\boldsymbol{V}_{\text{bseff}} = 0.95\boldsymbol{\Phi}_s - 0.5\left(0.95\boldsymbol{\Phi}_s - \boldsymbol{V}_{\text{bseff}}' - \boldsymbol{d}_1 + \sqrt{(0.95\boldsymbol{\Phi}_s - \boldsymbol{V}_{\text{bseff}}' - \boldsymbol{d}_1)^2 + 4\boldsymbol{d}_1.0.95\boldsymbol{\Phi}_s}\right)
$$

Chapter 3: Channel Charge and Subthreshold Swing Models

3.1 Channel Charge Model

The channel charge density in subthreshold for zero V_{ds} is written as

(3.1.1) $\overline{}$ $\left(\frac{1}{2} \right)$ $\overline{}$ l $\left(V_{_{\varrho_{\mathit{se}}}-V_{\mathit{th}}-1\right)$ ⋅ Φ = *t gse th t s* $\mathbf{z}_{\text{chsubs0}} = \sqrt{\frac{q_I \mathbf{v}_{\text{DL}} \mathbf{c}_{\text{si}}}{2 \Phi_{\text{s}}}} v_t \cdot \exp\left(-\frac{g_s e^{-v_t h}}{n v}\right)$ $V_{\text{osc}} - V_{\text{th}} - V_{\text{off}}$ $Q_{\text{chsub30}} = \sqrt{\frac{qNDEPe_{si}}{2}v_i \cdot \exp\left(\frac{V_{gse} - V_{th} - Voff}{2} \right)}$ $\sqrt[0]{}$ $\sqrt[0]{}$ 2 *e*

where

$$
Voff' = VOFF + \frac{VOFFL}{L_{\text{eff}}}
$$

VOFFL is used to model the length dependence of *Voff*' on non-uniform channel doping profiles.

In strong inversion region, the density is expressed by

$$
Q_{\text{chso}} = C_{\text{oxe}} \cdot \left(V_{\text{gse}} - V_{\text{th}} \right) \tag{3.1.2}
$$

(3.1.1a)

A unified charge density model considering the charge layer thickness effect is derived for both subthreshold and inversion regions as

(3.1.3)

$$
Q_{\text{ch0}} = C_{\text{axeff}} \cdot V_{\text{gsteff}}
$$

where $C_{\emph{oxeff}}$ is modeled by

(3.1.4)
\n
$$
C_{\text{o}x\text{eff}} = \frac{C_{\text{o}x\text{e}} \cdot C_{\text{cen}}}{C_{\text{o}x\text{e}} + C_{\text{cen}}} \quad \text{with } C_{\text{cen}} = \frac{\mathbf{e}_{\text{si}}}{X_{\text{DC}}}
$$

and *XDC* is given as

$$
X_{DC} = \frac{1.9 \times 10^{-9} \text{ m}}{1 + \left(\frac{V_{\text{ssteff}} + 4(VTHO - VFB - \Phi_s)}{2TOXP}\right)^{0.7}}
$$
(3.1.5)

In the above equations, V_{gsteff} the effective ($V_{\text{gse}}-V_{th}$) used to describe the channel charge densities from subthreshold to strong inversion, is modeled by

(3.1.6a)
\n
$$
V_{g\text{steff}} = \frac{nv_t \ln\left\{1 + \exp\left[\frac{m^* \left(V_{g\text{se}} - V_{th}\right)}{nv_t}\right]\right\}}{m^* + nC_{\text{oxe}} \cdot \sqrt{\frac{2\Phi_s}{qNDE\text{Pe}}}\exp\left[-\frac{\left(1 - m^*\right)\left(V_{g\text{se}} - V_{th}\right) - V_{\text{Off}}}{nv_t}\right]}
$$

where

$$
m^* = 0.5 + \frac{\arctan(MINV)}{p}
$$
\n(3.1.6b)

Channel Charge Model

MINV is introduced to improve the accuracy of *G*_{*m*}, *G*_{*m*} $/I_d$ and G_m^2/I_d in the moderate inversion region.

To account for the drain bias effect, The *y* dependence has to be included in (3.1.3). Consider first the case of strong inversion

(3.1.7)
\n
$$
Q_{chs}(y) = C_{oxeff} \cdot (V_{gse} - V_{th} - A_{bulk}V_F(y))
$$

 $V_F(y)$ stands for the quasi-Fermi potential at any given point *y* along the channel with respect to the source. $(3.1.7)$ can also be written as

$$
Q_{\text{chs}}(y) = Q_{\text{chs0}} + \Delta Q_{\text{chs}}(y)
$$
\n(3.1.8)

The term $\Delta Q_{chs}(y) = -C_{\alpha x \in \mathcal{U}} A_{bulk} V_F(y)$ is the incremental charge density introduced by the drain voltage at *y*.

In subthreshold region, the channel charge density along the channel from source to drain can be written as

(3.1.9)
\n
$$
Q_{\text{chsubs}}(y) = Q_{\text{chsubs0}} \cdot \exp\left(-\frac{A_{\text{bulk}}V_F(y)}{nv_t}\right)
$$

Taylor expansion of (3.1.9) yields the following (keeping the first two terms)

$$
Q_{\text{chsubs}}(y) = Q_{\text{chsubs0}} \left(1 - \frac{A_{\text{bulk}} V_F(y)}{n v_t} \right)
$$
\n(3.1.10)

Similarly, (3.1.10) is transformed into

$$
Q_{\text{chsubs}}(y) = Q_{\text{chsubs0}} + \Delta Q_{\text{chsubs}}(y)
$$
\n(3.1.11)

where $\Delta Q_{chsubs}(y)$ is the incremental channel charge density induced by the drain voltage in the subthreshold region. It is written as

$$
\Delta Q_{\text{chsubs}}(y) = -Q_{\text{chsubs0}} \cdot \frac{A_{\text{bulk}} V_F(y)}{n v_t}
$$
\n(3.1.12)

To obtain a unified expression for the incremental channel charge density $\Delta Q_{ch}(y)$ induced by V_{ds} , we assume $\Delta Q_{ch}(y)$ to be

(3.1.13)
\n
$$
\Delta Q_{ch}(y) = \frac{\Delta Q_{chs}(y) \cdot \Delta Q_{chsubs}(y)}{\Delta Q_{chs}(y) + \Delta Q_{chsubs}(y)}
$$

Substituting $\Delta Q_{ch}(y)$ of (3.1.8) and (3.1.12) into (3.1.13), we obtain

(3.1.14)

$$
\Delta Q_{ch}(y) = -\frac{V_F(y)}{V_b} Q_{ch0}
$$

where $V_b = (V_{gsteff} + nv_t) / A_{bulk}$. In the model implementation, *n* of V_b is replaced by a typical constant value of 2. The expression for V_b now becomes

$$
V_b = \frac{V_{\text{gsteff}} + 2v_t}{A_{\text{bulk}}}
$$
\n(3.1.15)

(3.1.16)

A unified expression for $Q_{ch}(y)$ from subthreshold to strong inversion regions is

$$
Q_{ch}(y) = C_{o x e f f} \cdot V_{g s t e f f} \cdot \left(1 - \frac{V_F(y)}{V_b}\right)
$$

3.2 Subthreshold Swing *n*

The drain current equation in the subthreshold region can be expressed as

$$
I_{ds} = I_0 \left[1 - \exp\left(-\frac{V_{ds}}{v_t}\right) \right] \cdot \exp\left(\frac{V_{gs} - V_{th} - V_{off}}{nv_t}\right)
$$
\n(3.2.1)

where

$$
I_0 = \mathbf{m} \frac{W}{L} \sqrt{\frac{q \mathbf{e}_{si} NDEP}{2\Phi_s}} v_t^2
$$
 (3.2.2)

 v_t is the thermal voltage and equal to $k_B T/q$. V_{off} ^{*} = *VOFF* + *VOFFL* / L_{eff} is the offset voltage, which determines the channel current at $V_{gs} = 0$. In (3.2.1), *n* is the
subthreshold swing parameter. Experimental data shows that the subthreshold swing is a function of channel length and the interface state density. These two mechanisms are modeled by the following

$$
(3.2.3)
$$

$$
n = 1 + NFACTOR \cdot \frac{C_{dep}}{C_{oxe}} + \frac{Cdsc_Term + CIT}{C_{oxe}}
$$

where *Cdsc-Term*, written as

$$
Cdsc_Term = (CDSC + CDSCD \cdot V_{ds} + CDSCB \cdot V_{bseff}) \cdot \frac{0.5}{\cosh(DVT1 \frac{L_{eff}}{l_t}) - 1}
$$

represents the coupling capacitance between drain/source to channel. Parameters *CDSC*, *CDSCD* and *CDSCB* are extracted. Parameter *CIT* is the capacitance due to interface states. From (3.2.3), it can be seen that subthreshold swing shares the same exponential dependence on channel length as the *DIBL* effect. Parameter *NFACTOR* is close to 1 and introduced to compensate for errors in the depletion width capacitance calculation.

Chapter 4: Gate Direct Tunneling Current Model

As the gate oxide thickness is scaled down to 3nm and below, gate leakage current due to carrier direct tunneling becomes important. This tunneling happens between the gate and silicon beneath the gate oxide. To reduce the tunneling current, high-k dielectrics are being studied to replace gate oxide. In order to maintain a good interface with substrate, multi-layer dielectric stacks are being proposed. The BSIM4 gate tunneling model has been shown to work for multi-layer gate stacks as well. The tunneling carriers can be either electrons or holes, or both, either from the conduction band or valence band, depending on (the type of the gate and) the bias regime.

In BSIM4, the gate tunneling current components include the tunneling current between gate and substrate (*Igb*), and the current between gate and channel (*Igc*), which is partitioned between the source and drain terminals by *Igc = Igcs + Igcd*.

The third component happens between gate and source/drain diffusion regions (*Igs* and *Igd*). Figure 4-1 shows the schematic gate tunneling current flows.

Figure 4-1. Shematic gate current components flowing between NMOST terminals in version.

4.1 Model selectors

Two global selectors are provided to turn on or off the tunneling components. *igcMod* = 1, 2 turns on *Igc*, *Igs*, and *Igd*; *igbMod* = 1 turns on *Igb*. When the selectors are set to zero, no gate tunneling currents are modeled. When tempMod = 2, following Vt (= kT/q) will be replaced by Vtnom(=kTnom/q)

4.2 Voltage Across Oxide *Vox*

The oxide voltage V_{ox} is written as $V_{ox} = V_{oxacc} + V_{oxdepinv}$ with

$$
(4.2.1a)
$$
\n
$$
V_{\text{exacc}} = V_{\text{fbzb}} - V_{\text{FBeff}}
$$
\n
$$
(4.2.1b)
$$

$$
V_{\text{oxdepinv}} = K_{1\text{ox}} \sqrt{\Phi_s + V_{\text{gsteff}}}
$$

(4.2.1) is valid and continuous from accumulation through depletion to inversion. V_{fbzb} is the flat-band voltage calculated from zero-bias V_{th} by

(4.2.2)

$$
V_{fbzb} = V_{th}|_{zeroV_{bs} and V_{ds}} - \Phi_s - K1\sqrt{\Phi_s}
$$

and

(4.2.3)
\n
$$
V_{Fleft} = V_{f0zb} - 0.5 \left[\left(V_{f0zb} - V_{gb} - 0.02 \right) + \sqrt{\left(V_{f0zb} - V_{gb} - 0.02 \right)^2 + 0.08 V_{f0zb}} \right]
$$

4.3 Equations for Tunneling Currents

Note: when tempMod = 2, nominal temperature(TNOM) is used to replace the operating temperature in following gate tunneling current equations. When tempMod=0, or 1, operating temperature is still used.

4.3.1 Gate-to-Substrate Current (*Igb = Igbacc + Igbinv***)**

Igbacc, determined by ECB (Electron tunneling from Conduction Band), is significant in accumulation and given by

(4.3.1)

Igbacc =
$$
W_{eff} L_{eff} \cdot A \cdot T_{oxRatio} \cdot V_{gb} \cdot V_{aux}
$$

\n $\cdot \exp[-B \cdot TOXE(AIGBACC-BIGBACC \cdot V_{oxacc}) \cdot (1+CIGBACC \cdot V_{oxacc})]$

where the physical constants A = 4.97232e-7 A/ V^2 , B = 7.45669e11 (g/F- $(s^2)^{0.5}$, and

$$
T_{oxRatio} = \left(\frac{TOXREF}{TOXE}\right)^{NTOX} \cdot \frac{1}{TOXE^2}
$$

$$
V_{aux} = NIGBACC \cdot v_t \cdot \log\left(1 + \exp\left(-\frac{V_{gb} - V_{fbzb}}{NIGBACC \cdot v_t}\right)\right)
$$

Igbiny, determined by EVB (Electron tunneling from Valence Band), is significant in inversion and given by

(4.3.2)

Igbinv =
$$
W_{eff}L_{eff} \cdot A \cdot T_{oxRatio} \cdot V_{gb} \cdot V_{aux}
$$

\n $\cdot \exp[-B \cdot TOXE(AIGBINV - BIGBINV \cdot V_{oxdepinv}) \cdot (1 + CIGBINV \cdot V_{oxdepinv})]$

where A = 3.75956e-7 A/V², B = 9.82222e11 (g/F-s²)^{0.5}, and

$$
V_{aux} = NIGBINV \cdot v_t \cdot \log\left(1 + \exp\left(\frac{V_{\text{oxdepinv}} - EIGBINV}{NIGBINV \cdot v_t}\right)\right)
$$

4.3.2 Gate-to-Channel Current (*Igc0***) and Gate-to-S/D (***Igs* **and** *Igd***)**

Igc0, determined by ECB for NMOS and HVB (Hole tunneling from Valence Band) for PMOS at Vds=0, is formulated as

 $(4.3.3)$

$$
Igc0 = W_{eff} L_{eff} \cdot A \cdot T_{oxRatio} \cdot V_{gse} \cdot V_{aux}
$$

$$
exp[-B \cdot TOXE(AIGC - BIGC \cdot V_{oxdepin}) \cdot (1 + CIGC \cdot V_{oxdepin})]
$$

where A = 4.97232 A/ V^2 for NMOS and 3.42537 A/ V^2 for PMOS, B = 7.45669e11 (g/F-s²)^{0.5} for NMOS and 1.16645e12 (g/F-s²)^{0.5} for PMOS, and for igcMod $= 1$:

$$
V_{aux} = NIGC \cdot v_t \cdot \log\left(1 + \exp\left(\frac{V_{gse} - VTH0}{NIGC \cdot v_t}\right)\right)
$$

for igcMod $= 2$:

$$
V_{aux} = NIGC \times v_t \times \log_{\text{C}}^{\text{2e}} 1 + \exp_{\text{C}}^{\text{2e}} \times \frac{1}{\text{C}} \times \frac
$$

Igs **and** *Igd* -- *Igs* represents the gate tunneling current between the gate and the source diffusion region, while *Igd* represents the gate tunneling current between the gate and the drain diffusion region. *Igs* and *Igd* are determined by ECB for NMOS and HVB for PMOS, respectively.

(4.3.4)

$$
Igs = W_{eff} DLCIG \cdot A \cdot T_{oxRatioEdg} \cdot V_{gs} \cdot V_{gs}
$$

\n
$$
\cdot \exp \left[-B \cdot TOXE \cdot POXEDGE \cdot (AIGSD - BIGSD \cdot V_{gs}) \cdot (1 + CIGSD \cdot V_{gs})\right]
$$

and

 $(4.3.5)$

$$
Igd = W_{eff} DLCIG \cdot A \cdot T_{oxRatioEdg} \cdot V_{gd} \cdot V_{gd}
$$

\n
$$
\cdot \exp\left[-B \cdot TOXE \cdot POXEDGE \cdot \left(AIGSD - BIGSD \cdot V_{gd}\right) \cdot \left(1 + CIGSD \cdot V_{gd}\right)\right]
$$

where A = 4.97232 A/ V^2 for NMOS and 3.42537 A/ V^2 for PMOS, B = 7.45669e11 (g/F-s²)^{0.5} for NMOS and 1.16645e12 (g/F-s²)^{0.5} for PMOS, and

$$
T_{oxRatioEdg} = \left(\frac{TOXREF}{TOXE \cdot POXEDGE}\right)^{NTOX} \cdot \frac{1}{(TOXE \cdot POXEDGE)^2}
$$

$$
V_{gs} = \sqrt{(V_{gs} - V_{fbsd})^2 + 1.0e - 4}
$$

$$
V_{gd} = \sqrt{(V_{gd} - V_{fbsd})^2 + 1.0e - 4}
$$

Vfbsd is the flat-band voltage between gate and S/D diffusions calculated as If *NGATE* > 0.0

$$
V_{fbsd} = \frac{k_B T}{q} log \bigg(\frac{NGATE}{NSD} \bigg) + VFBSDOFF
$$

Else $V_{\text{fbsd}} = 0.0$.

4.3.3 Partition of *Igc*

To consider the drain bias effect, *Igc* is split into two components, *Igcs* and *Igcd*, that is *Igc = Igcs + Igcd*, and

(4.3.6)
\n
$$
Igcs = Igc0 \cdot \frac{PIGCD \cdot V_{dseff} + \exp(-PIGCD \cdot V_{dseff}) - 1 + 1.0e - 4}{PIGCD^2 \cdot V_{dseff}^2 + 2.0e - 4}
$$

and

(4.3.7)
\n
$$
I g c d = I g c 0 \cdot \frac{1 - (PIGCD \cdot V_{dseff} + 1) \cdot \exp(-PIGCD \cdot V_{dseff}) + 1.0e - 4}{PIGCD^2 \cdot V_{dseff}^2 + 2.0e - 4}
$$

Where Igc0 is Igc at $V_{ds}=0$.

If the model parameter *PIGCD* is not specified, it is given by

(4.3.8) $\overline{1}$ λ I I l ſ ⋅ $=\frac{B \cdot TOXE}{2} \left(1-\right)$ *gsteff dseff* \int_{gsteff}^{2} $\begin{bmatrix} 7 & 2 \cdot V \end{bmatrix}$ *V V* $PIGCD = \frac{B \cdot TOXE}{2}$ $\frac{12}{2}$ $1-\frac{1}{2}$

Chapter 5: Drain Current Model

5.1 Bulk Charge Effect

The depletion width will not be uniform along channel when a non-zero V_{ds} is applied. This will cause *Vth* to vary along the channel. This effect is called bulk charge effect.

BSIM4 uses *Abulk* to model the bulk charge effect. Several model parameters are introduced to account for the channel length and width dependences and bias effects. *Abulk* is formulated by

(5.1.1)

$$
A_{bulk} = \left\{ 1 + F_doping \cdot \left[\frac{A0 \cdot L_{eff}}{L_{eff} + 2\sqrt{XJ \cdot X_{dep}}} \cdot \frac{L_{eff}}{L_{eff} + 2\sqrt{XJ \cdot X_{dep}}} \right]^2 \right\} + \frac{B0}{W_{eff} + B1} \cdot \left[\frac{1}{1 + KETA \cdot V_{bseff}} \cdot \frac{L_{eff}}{L_{eff} + 2\sqrt{XJ \cdot X_{dep}}} \right]^2
$$

where the second term on the RHS is used to model the effect of non-uniform doping profiles

(5.1.2)
\n
$$
F_{\perp} \text{ doping} = \frac{\sqrt{1 + LPEB/L_{\text{eff}}K_{\text{lox}}}}{2\sqrt{\Phi_s - V_{\text{bseff}}}} + K_{\text{2ox}} - K3B \frac{TOXE}{W_{\text{eff}} + W0} \Phi_s
$$

Note that *Abulk* is close to unity if the channel length is small and increases as the channel length increases.

5.2 Unified Mobility Model

A good mobility model is critical to the accuracy of a MOSFET model. The scattering mechanisms responsible for surface mobility basically include phonons, coulombic scattering, and surface roughness. For good quality interfaces, phonon scattering is generally the dominant scattering mechanism at room temperature. In general, mobility depends on many process parameters and bias conditions. For example, mobility depends on the gate oxide thickness, substrate doping concentration, threshold voltage, gate and substrate voltages, etc. [5] proposed an empirical unified formulation based on the concept of an effective field *Eeff* which lumps many process parameters and bias conditions together. E_{eff} is defined by

$$
E_{\text{eff}} = \frac{Q_B + (Q_n/2)}{\mathbf{e}_{si}} \tag{5.2.1}
$$

 \mathcal{E}

The physical meaning of *Eeff* can be interpreted as the average electric field experienced by the carriers in the inversion layer. The unified formulation of mobility is then given by

$$
\mathbf{m}_{\text{eff}} = \frac{\mathbf{m}_0}{1 + (E_{\text{eff}}/E_0)^{\mathbf{n}}} \tag{5.2.2}
$$

For an NMOS transistor with n-type poly-silicon gate, (5.2.1) can be rewritten in a more useful form that explicitly relates E_{eff} to the device parameters

(5.2.3)

$$
E_{\text{eff}} \approx \frac{V_{\text{gs}} + V_{\text{th}}}{6TOXE}
$$

BSIM4 provides three different models of the effective mobility. The *mobMod* = 0 and 1 models are from BSIM3v3.2.2; the new $\textit{mobMod} = 2$, a universal mobility model, is more accurate and suitable for predictive modeling.

$$
\mathbf{m}_{\text{g}_{\text{f}}} = \frac{U0 \cdot f(L_{\text{eff}})}{1 + (UA + UCV_{\text{bseff}}) \left(\frac{V_{\text{gsteff}} + 2V_{\text{th}}}{TOXE}\right) + UB \left(\frac{V_{\text{gsteff}} + 2V_{\text{th}}}{TOXE}\right)^2 + UD \left(\frac{V_{\text{a}} \cdot TOXE}{V_{\text{gsteff}} + 2V_{\text{th}}}\right)^2}
$$

• $mobMod = 1$

• $mobMod = 0$

$$
\mathbf{m}_{\text{eff}} = \frac{U0 \cdot f(L_{\text{eff}})}{1 + \left[UA\left(\frac{V_{\text{s\tiny{step}}f} + 2V_{\text{th}}}{TOXE}\right) + UB\left(\frac{V_{\text{s\tiny{step}}f} + 2V_{\text{th}}}{TOXE}\right)^{2}\right](1 + UC \cdot V_{\text{b\tiny{step}}f}) + UD\left(\frac{V_{\text{th}} \cdot TOXE}{V_{\text{s\tiny{step}}f} + 2V_{\text{th}}}\right)^{2}
$$

•
$$
mobMod = 2
$$

(5.2.6)

(5.2.5)

$$
\mathbf{m}_{\text{eff}} = \frac{U \ 0}{1 + \left(UA + UC \cdot V_{\text{bseff}} \sqrt{\frac{V_{\text{gsteff}} + C_0 \cdot (VTHO - VFB - \Phi_s)}{TOXE}}\right)^{EU}}
$$

where the constant $C_0 = 2$ for NMOS and 2.5 for PMOS.

$$
f(L_{\text{eff}}) = 1 - UP \cdot \exp\left(-\frac{L_{\text{eff}}}{L P}\right)
$$
\n(5.2.7)

5.3 Asymmetric and Bias-Dependent Source/ Drain Resistance Model

BSIM4 models source/drain resistances in two components: bias-independent diffusion resistance (sheet resistance) and bias-dependent LDD resistance. Accurate modeling of the bias-dependent LDD resistances is important for deepsubmicron CMOS technologies. In BSIM3 models, the LDD source/drain resistance $R_{ds}(V)$ is modeled internally through the I-V equation and symmetry is assumed for the source and drain sides. BSIM4 keeps this option for the sake of simulation efficiency. In addition, BSIM4 allows the source LDD resistance $R_s(V)$ and the drain LDD resistance $R_d(V)$ to be external and asymmetric (i.e. $R_s(V)$) and R_d (V) can be connected between the external and internal source and drain nodes, respectively; furthermore, $R_s(V)$ does not have to be equal to $R_d(V)$). This feature makes accurate RF CMOS simulation possible. The internal $R_{ds}(V)$ option can be invoked by setting the model selector *rdsMod* = 0 (**interna**l) and the external one for $R_s(V)$ and $R_d(V)$ by setting $rdsMod = 1$ (external).

 $rdsMod = 0$ (Internal $R_{ds}(V)$)

$$
R_{ds}(V) = \left\{\begin{bmatrix} RDSWMIN + RDSW \\ PRWB \cdot \left(\sqrt{\Phi_s - V_{bseff}} - \sqrt{\Phi_s}\right) + \frac{1}{1 + PRWG \cdot V_{gsteff}} \end{bmatrix}\right\} / \left(\begin{matrix} 1 \in \mathbb{G} \cdot W_{eff} \end{matrix}\right)^{WR}
$$

• *rdsMod* = 1 (External R_d (V) and R_s (V))

 $(5.3.1)$

(5.3.2)
\n
$$
R_{d}(V) = \left\{ \left[-PRWB \cdot V_{bd} + \frac{1}{1 + PRWG \cdot (V_{gd} - V_{fbsd})} \right] \right\} / \left([1e6 \cdot W_{effcj})^{WR} \cdot NF \right]
$$
\n
$$
R_{s}(V) = \left\{ \left[\left[-PRWB \cdot V_{bs} + \frac{1}{1 + PRWG \cdot (V_{gs} - V_{fbsd})} \right] \right] \right/ \left([1e6 \cdot W_{effcj})^{WR} \cdot NF \right]
$$
\n(5.3.3)

Vfbsd is the calculated flat-band voltage between gate and source/drain as given in Section 4.3.2.

The following figure shows the schematic of source/drain resistance connection for $rdsMod = 1$.

The diffusion source/drain resistance R_{sdiff} and R_{ddiff} models are given in the chapter of layout-dependence models.

5.4 Drain Current for Triode Region

5.4.1 $R_{ds}(V) = 0$ or $rdsMod = 1$ ("intrinsic case")

Both drift and diffusion currents can be modeled by

$$
I_{ds}(y) = WQ_{ch}(y)\mathbf{m}_{he}(y)\frac{dV_F(y)}{dy}
$$
\n(5.4.1)

where $u_{ne}(y)$ can be written as

(5.4.2)

$$
\mathbf{m}_{e(y)} = \frac{\mathbf{m}_{\text{ff}}}{1 + \frac{E_y}{E_{\text{sat}}}}
$$

Substituting $(5.4.2)$ in $(5.4.1)$, we get

(5.4.3)

$$
I_{ds}(y) = WQ_{ch0}\left(1 - \frac{V_F(y)}{V_b}\right) \frac{\mathbf{m}_{eff}}{1 + \frac{E_y}{E_{sat}}} \frac{dV_F(y)}{dy}
$$

(5.4.3) is integrated from source to drain to get the expression for linear drain current. This expression is valid from the subthreshold regime to the strong inversion regime

(5.4.4)

$$
I_{ds0} = \frac{Wm_{eff}Q_{ch0}V_{ds}\left(1 - \frac{V_{ds}}{2V_b}\right)}{L\left(1 + \frac{V_{ds}}{E_{sat}L}\right)}
$$

5.4.2 $R_{ds}(V) > 0$ and $rdsMod=0$ ("Extrinsic case")

The drain current in this case is expressed by

(5.4.5)

 $(5.5.1)$

$$
I_{ds} = \frac{I_{dso}}{1 + \frac{R_{ds}I_{dso}}{V_{ds}}}
$$

5.5 Velocity Saturation

Velocity saturation is modeled by [5]

 $\mathbb{E} \geq \mathbb{E}_{\mathit{sat}}$ *sat sat* $\frac{F_{eff}E}{E/E}$ $E < E$ *E E E* $v = \frac{v_{eff}E}{1 - E/E}$ $E <$ + = 1 *m*

where E_{sat} corresponds to the critical electrical field at which the carrier velocity becomes saturated. In order to have a continuous velocity model at $E = E_{sat}$, E_{sat} must satisfy

BSIM4.5.0 Manual Copyright © 2005 UC Berkeley 5-7

(5.5.2)

$$
E_{sat} = \frac{2VSAT}{m_{\text{eff}}}
$$

5.6 Saturation Voltage *Vdsat*

5.6.1 Intrinsic case

In this case, the LDD source/drain resistances are either zero or non zero but not modeled inside the intrinsic channel region. It is easy to obtain *Vdsat* as [7]

$$
V_{dsat} = \frac{E_{sat}L(V_{gsteff} + 2v_t)}{A_{bulk}E_{sat}L + V_{gsteff} + 2v_t}
$$
\n
$$
(5.6.1)
$$

5.6.2 Extrinsic Case

In this case, non-zero LDD source/drain resistance *Rds*(V) is modeled internally through the I-V equation and symetry is assumed for the source and drain sides. *Vdsat* is obtained as [7]

$$
V_{dsat} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}
$$
 (5.6.2a)

where

(5.6.2b) (5.6.2c) (5.6.2d) (5.6.2e) J $\overline{}$ $\left(\frac{1}{2}-1\right)$ l $= A_{bulk}^2 W_{eff} VSAT C_{oxe} R_{ds} + A_{bulk} \left(\frac{1}{2} - 1 \right)$ $a = A_{bulk}^2 W_{eff} VSATC_{oxe} R_{ds} + A_{bulk} \left(\frac{1}{R} \right)$ $(V_{\text{seteff}} + 2v_t)$ $(V_{\text{steff}} + 2v_{\text{t}})W_{\text{eff}}VSATC_{\text{c}r\text{}}R_{\text{ds}}$ $\overline{}$ $\overline{}$ J \mathbf{I} ŀ L L L L $+3A_{bulk}$ $(V_{\text{seteff}}+$ $|+$ $\overline{}$ $\left(\frac{2}{1}-1\right)$ l $+ 2v_t \left(\frac{2}{7} - \right)$ = − *bulk* \mathbf{v} *gsteff* \mathbf{v} $\mathcal{L}\mathbf{v}_t$ $\mathbf{v}\mathbf{v}$ *eff* \mathbf{v} $\mathcal{L}\mathbf{v}_t$ \mathbf{v}_t $\mathcal{L}\mathbf{v}_{\text{oxe}}$ \mathbf{v}_t \mathbf{v}_s $g\text{steff}$ $\left\{ \begin{array}{cc} \Delta V_t \end{array} \right\}$ $\left\{ \begin{array}{cc} 1 & 1 \end{array} \right\}$ bulk Δ_{sat} Δ_{eff} $A_{bulk}^{\prime}(V_{\text{ex\textit{reff}}} + 2v_{\textit{r}}^{\prime})W_{\text{eff}}^{\prime}V\text{SAT}C_{\text{over}}^{\prime}R$ $V_{\text{esteff}} + 2v_t \left| \frac{2}{\lambda} - 1 \right| + A_{\text{bulk}} E_{\text{sat}} L$ *b* $3A_{bulk}$ $(V_{\text{esteff}} + 2)$ $2v_t\sqrt{\frac{2}{1}-1}$ *l* $c = \left(V_{gsteff} + 2 v_t \right) \! E_{sat} L_{eff} + 2 \! \left(V_{gsteff} + 2 v_t \right)^{\!2} W_{eff} V \! S \! A T \! C_{oxe} R_{ds}$ $I = A1V_{\text{esteff}} + A2$

 λ is introduced to model the non-saturation effects which are found for PMOSFETs.

5.6.3 *Vdseff* **Formulation**

An effective V_{ds} , V_{dseff} , is used to ensure a smooth transition near V_{dsat} from trode to saturation regions. *Vdseff* is formulated as

(5.6.3)
\n
$$
V_{dseff} = V_{dsat} - \frac{1}{2} \left[(V_{dsat} - V_{ds} - d) + \sqrt{(V_{dsat} - V_{ds} - d)^2 + 4d \cdot V_{dsat}} \right]
$$

where δ (*DELTA*) is a model parameter.

BSIM4.5.0 Manual Copyright © 2005 UC Berkeley 5-9

5.7 Saturation-Region Output Conductance Model

A typical I-V curve and its output resistance are shown in Figure 5-1. Considering only the channel current, the I-V curve can be divided into two parts: the linear region in which the current increases quickly with the drain voltage and the saturation region in which the drain current has a weaker dependence on the drain voltage. The first order derivative reveals more detailed information about the physical mechanisms which are involved in the device operation. The output resistance curve can be divided into four regions with distinct R_{out} ^{\sim} V_{ds} dependences.

The first region is the triode (or linear) region in which carrier velocity is not saturated. The output resistance is very small because the drain current has a strong dependence on the drain voltage. The other three regions belong to the saturation region. As will be discussed later, there are several physical mechanisms which affect the output resistance in the saturation region: channel length modulation (CLM), drain-induced barrier lowering (DIBL), and the substrate current induced body effect (SCBE). These mechanisms all affect the output resistance in the saturation range, but each of them dominates in a specific region. It will be shown

Saturation-Region Output Conductance Model

next that CLM dominates in the second region, DIBL in the third region, and SCBE in the fourth region.

Figure 5-1. General behavior of MOSFET output resistance.

The channel current is a function of the gate and drain voltage. But the current depends on the drain voltage weakly in the saturation region. In the following, the Early voltage is introduced for the analysis of the output resistance in the saturation region:

$$
I_{ds}\left(V_{gs}, V_{ds}\right) = I_{dsat}\left(V_{gs}, V_{dsat}\right) + \int_{V_{dsat}}^{V_{ds}} \frac{\partial I_{ds}\left(V_{gs}, V_{ds}\right)}{\partial V_{d}} \cdot dV_{d}
$$
\n
$$
= I_{dsat}\left(V_{gs}, V_{dsat}\right) \cdot \left[1 + \int_{V_{dsat}}^{V_{ds}} \frac{1}{V_{A}} \cdot dV_{d}\right]
$$
\n(5.7.1)

BSIM4.5.0 Manual Copyright © 2005 UC Berkeley 5-11

where the Early voltage *V^A* is defined as

(5.7.2)

$$
V_A = I_{dsat} \cdot \left[\frac{\partial I_{ds} (V_{gs}, V_{ds})}{\partial V_d} \right]^{-1}
$$

We assume in the following analysis that the contributions to the Early voltage from all mechanisms are independent and can be calculated separately.

5.7.1 Channel Length Modulation (CLM)

If channel length modulation is the only physical mechanism to be taken into account, the Early voltage can be calculated by

(5.7.3)

$$
V_{ACLM} = I_{dsat} \left[\frac{\partial I_{ds} (V_{gs}, V_{ds})}{\partial L} \cdot \frac{\partial L}{\partial V_d} \right]^{-1}
$$

Based on quasi two-dimensional analysis and through integration, we propose *VACLM* to be

$$
V_{ACLM} = C_{clm} \cdot (V_{ds} - V_{dsat})
$$
\n^(5.7.4)

where

$$
(5.7.5)
$$
\n
$$
C_{\text{clm}} = \frac{1}{PCLM} \cdot F \cdot \left(1 + PVAG \frac{V_{\text{gsteff}}}{E_{\text{sat}} L_{\text{eff}}} \right) \left(1 + \frac{R_{ds} \cdot I_{\text{dso}}}{V_{\text{desff}}} \right) \left(L_{\text{eff}} + \frac{V_{\text{dsat}}}{E_{\text{sat}}} \right) \cdot \frac{1}{lit}
$$

and the *F* factor to account for the impact of pocket implant technology is

(5.7.6)

$$
F = \frac{1}{1 + FPROUT \cdot \frac{\sqrt{L_{eff}}}{V_{gsteff} + 2v_t}}
$$

and *litl* in (5.7.5) is given by

(5.7.7)

$$
litl = \sqrt{\frac{e_{si}TOXE \cdot XJ}{EPSROX}}
$$

PCLM is introduced into *VACLM* to compensate for the error caused by *XJ* since the junction depth *XJ* can not be determined very accurately.

5.7.2 Drain-Induced Barrier Lowering (DIBL)

The Early voltage V_{ADIBLC} due to DIBL is defined as

$$
V_{ADIBL} = I_{dsat} \cdot \left[\frac{\partial I_{ds} (V_{gs}, V_{ds})}{\partial V_{th}} \cdot \frac{\partial V_{th}}{\partial V_{d}} \right]^{-1}
$$
\n
$$
(5.7.8)
$$

Vth has a linear dependence on *Vds*. As channel length decreases, *VADIBLC* decreases very quickly

$$
V_{ADIBL} = \frac{V_{gsteff} + 2v_t}{q_{rou} \left(1 + PDIBLCB \cdot V_{bseff}\right)} \left(1 - \frac{A_{bulk} V_{dsat}}{A_{bulk} V_{dsat} + V_{gsteff} + 2v_t}\right) \cdot \left(1 + PVAG \frac{V_{gsteff}}{E_{sat} L_{eff}}\right)
$$

BSIM4.5.0 Manual Copyright © 2005 UC Berkeley 5-13

where *qrout* has a similar dependence on the channel length as the DIBL effect in V_{th} , but a separate set of parameters are used:

(5.7.10)

$$
\mathbf{q}_{\textit{rout}} = \frac{PDIBLC1}{2\cosh\left(\frac{DROUT \cdot L_{\textit{eff}}}{l\textit{10}}\right) - 2} + PDIBLC2
$$

Parameters *PDIBLC*1, *PDIBLC*2, *PDIBLCB* and *DROUT* are introduced to correct the DIBL effect in the strong inversion region. The reason why *DVT*0 is not equal to *PDIBLC*1 and *DVT*1 is not equal to *DROUT* is because the gate voltage modulates the DIBL effect. When the threshold voltage is determined, the gate voltage is equal to the threshold voltage. But in the saturation region where the output resistance is modeled, the gate voltage is much larger than the threshold voltage. Drain induced barrier lowering may not be the same at different gate bias. *PDIBLC*2 is usually very small. If *PDIBLC*2 is put into the threshold voltage model, it will not cause any significant change. However it is an important parameter in *VADIBLC* for long channel devices, because *PDIBLC*2 will be dominant if the channel is long.

5.7.3 Substrate Current Induced Body Effect (SCBE)

When the electrical field near the drain is very large $(> 0.1$ MV/cm), some electrons coming from the source (in the case of NMOSFETs) will be energetic (hot) enough to cause impact ionization. This will generate electron-hole pairs when these energetic electrons collide with silicon atoms. The substrate current I_{sub} thus created during impact ionization will

increase exponentially with the drain voltage. A well known *Isub* model [8] is

(5.7.11)
\n
$$
I_{sub} = \frac{A_i}{B_i} I_{ds} (V_{ds} - V_{dsat}) \exp\left(-\frac{B_i \cdot litl}{V_{ds} - V_{dsat}}\right)
$$

Parameters A_i and B_i are determined from measurement. I_{sub} affects the drain current in two ways. The total drain current will change because it is the sum of the channel current as well as the substrate current. The total drain current can now be expressed as follows

(5.7.12)
\n
$$
I_{ds} = I_{ds-w/o-Isub} + I_{sub} = I_{ds-w/o-Isub} \cdot \left[1 + \frac{V_{ds} - V_{dsat}}{\frac{B_i}{A_i} \exp\left(\frac{B_i \cdot \text{lit}}{V_{ds} - V_{dsat}}\right)}\right]
$$

The Early voltage due to the substrate current *VASCBE* can therefore be calculated by

$$
V_{ASCBE} = \frac{B_i}{A_i} \exp\left(\frac{B_i \cdot litl}{V_{ds} - V_{dsat}}\right)
$$
\n(5.7.13)

We can see that V_{ASCBE} is a strong function of V_{ds} . In addition, we also observe that V_{ASCBE} is small only when V_{ds} is large. This is why SCBE is important for devices with high drain voltage bias. The channel length and gate oxide dependence of *VASCBE* comes from *Vdsat* and *litl*. We replace *Bⁱ* with *PSCBE*2 and A_i/B_i with *PSCBE1/L*_{eff} to get the following expression for *VASCBE*

(5.7.14)
$$
\frac{1}{V_{ASCBE}} = \frac{PSCBE2}{L_{eff}} \exp\left(-\frac{PSCBE1 \cdot litl}{V_{ds} - V_{dsat}}\right)
$$

5.7.4 Drain-Induced Threshold Shift (DITS) by Pocket Implant

It has been shown that a long-channel device with pocket implant has a smaller R_{out} than that of uniformly-doped device [3]. The R_{out} degradation factor F is given in $(5.7.6)$. In addition, the pocket implant introduces a potential barrier at the drain end of the channel. This barrier can be lowered by the drain bias even in long-channel devices. The Early voltage due to DITS is modeled by

(5.7.15)
\n
$$
V_{ADITS} = \frac{1}{PDITION} \cdot F \cdot [1 + (1 + PDITION \cdot L_{eff}) \exp(PDITSD \cdot V_{ds})]
$$

5.8 Single-Equation Channel Current Model

The final channel current equation for both linear and saturation regions now becomes

$$
I_{ds} = \frac{I_{ds0} \cdot NF}{1 + \frac{R_{ds}I_{ds0}}{V_{dseff}}} \left[1 + \frac{1}{C_{clm}} \ln \left(\frac{V_A}{V_{Asat}} \right) \right] \cdot \left(1 + \frac{V_{ds} - V_{dseff}}{V_{ADIBL}} \right) \left(1 + \frac{V_{ds} - V_{dseff}}{V_{ADIBL}} \right) \left(1 + \frac{V_{ds} - V_{dseff}}{V_{ADITS}} \right)
$$

where *NF* is the number of device fingers, and

BSIM4.5.0 Manual Copyright © 2005 UC Berkeley 5-16

VA is written as

(5.8.3)

(5.8.2)

$$
V_A = V_{Asat} + V_{ACLM}
$$

where *VAsat* is

$$
(5.8.4)
$$
\n
$$
V_{Asat} = \frac{E_{sat}L_{eff} + V_{dsat} + 2R_{ds}vsatC_{oxe}W_{eff}V_{gsteff} \cdot \left[1 - \frac{A_{bulk}V_{dsat}}{2(V_{gsteff} + 2v_t)}\right]}{R_{ds}vsatC_{oxe}W_{eff}A_{bulk} - 1 + \frac{2}{I}}
$$

 V_{Asat} is the Early voltage at $V_{ds} = V_{dsat}$. V_{Asat} is needed to have continuous drain current and output resistance expressions at the transition point between linear and saturation regions.

5.9 New Current Saturation Mechanisms: Velocity Overshoot and Source End Velocity Limit Model

5.9.1 Velocity Overshoot

In the deep-submicron region, the velocity overshoot has been observed to be a significant effect even though the supply voltage is scaled down

according to the channel length. An approximate non-local velocity field expression has proven to provide a good description of this effect

(5.9.1)

$$
v = v_d \left(1 + \frac{\mathbf{I}}{E} \frac{\partial E}{\partial x}\right) = \frac{\mathbf{I} \mathbf{E}}{1 + E / E_c} \left(1 + \frac{\mathbf{I}}{E} \frac{\partial E}{\partial x}\right)
$$

This relationship is then substituted into (5.8.1) and the new current expression including the velocity overshoot effect is obtained:

 $(5.9.2)$

$$
\boldsymbol{I}_{DS,HD} = \frac{\boldsymbol{I}_{DS} \cdot \left(1 + \frac{\boldsymbol{V}_{dseff}}{\boldsymbol{L}_{\text{eff}} \boldsymbol{E}_{\text{sat}}}\right)}{1 + \frac{\boldsymbol{V}_{ds\text{eff}}}{\boldsymbol{L}_{\text{eff}} \boldsymbol{E}_{\text{sat}}^{OV}}}
$$

where

$$
E_{_{sat}}^{ov} = E_{sat} \left[1 + \frac{LAMBDA}{L_{eff} \cdot \mathbf{m}_{ff}} \cdot \frac{\left(1 + \frac{V_{ds} - V_{dseff}}{Esat \cdot litl} \right)^2 - 1}{\left(1 + \frac{V_{ds} - V_{dseff}}{Esat \cdot litl} \right)^2 + 1} \right]
$$
(5.9.3)

LAMBDA is the velocity overshoot coefficient.

5.9.2 Source End Velocity Limit Model

When MOSFETs come to nanoscale, because of the high electric field and strong velocity overshoot, carrier transport through the drain end of the channel is rapid. As a result, the dc current is controlled by how rapidly carriers are transported across a short low-field region near the beginning of the channel. This is known as injection velocity limits at the source end of the channel. A compact model is firstly developed to account for this current saturation mechanism .

Hydro-dynamic transportation gives the source end velocity as :

$$
v_{\rm sHD} = \frac{I_{\rm DS, HD}}{Wq_s}
$$

where qs is the source end inversion charge density. Source end velocity limit gives the highest possible velocity which can be given through ballistic transport as:

$$
v_{sBT} = \frac{1-r}{1+r} VTL
$$
\n(5.9.5)

where *VTL*: thermal velocity, r is the back scattering coefficient which is given:

$$
r = \frac{L_{\text{eff}}}{X N \cdot L_{\text{eff}} + LC} \quad XN \ge 3.0
$$

BSIM4.5.0 Manual Copyright © 2005 UC Berkeley 5-19

(5.9.4)

(5.9.6)

The real source end velocity should be the lower of the two, so a final Unified current expression with velocity saturation, velocity overshoot and source velocity limit can be expressed as :

(5.9.7)

$$
I_{DS} = \frac{I_{DS,HD}}{\left[1 + \left(v_{sHD} / v_{sBT}\right)^{2MM}\right]^{1/2MM}}
$$

where MM=2.0.

Chapter 6: Body Current Models

In addition to the junction diode current and gate-to-body tunneling current, the substrate terminal current consists of the substrate current due to impact ionization (I_{ii}) , and gateinduced drain leakage current (*IGIDL*).

6.1 *Iii* **Model**

The impact ionization current model in BSIM4 is the same as that in BSIM3v3.2, and is modeled by

(6.1.1)
\n
$$
I_{ii} = \frac{ALPHA0 + ALPHA1 \cdot L_{eff}}{L_{eff}} (V_{ds} - V_{dseff}) \exp\left(\frac{BETA0}{V_{ds} - V_{dseff}}\right) I_{dsNoSCBE}
$$

where parameters *ALPHA*0 and *BETA*0 are impact ionization coefficients; parameter $ALPHA1$ is introduced to improves the I_{ii} scalability, and

$$
I_{\text{dsNoSCEE}} = \frac{I_{\text{ds0}} \cdot NF}{1 + \frac{R_{\text{ds}} I_{\text{ds0}}}{V_{\text{dseff}}}} \left[1 + \frac{1}{C_{\text{clm}}} \ln \left(\frac{V_A}{V_{\text{Asat}}} \right) \right] \cdot \left(1 + \frac{V_{\text{ds}} - V_{\text{dseff}}}{V_{\text{ADIBL}}} \right) \cdot \left(1 + \frac{V_{\text{ds}} - V_{\text{dseff}}}{V_{\text{ADITS}}} \right)
$$

6.2 *IGIDL and IGISL* **Model**

The GIDL/GISL current and its body bias effect are modeled by [9]-[10]

 $(6.2.1)$ $(6.2.2)$ 3 $\exp\left(-\frac{3 \cdot T_{oxe} \cdot BGIDL}{\sqrt{3}}\right)$. $3 \cdot T_{\text{oxe}}$ $V_{ds} - V_{gse} - EGIDL$ $CGIDL + V_{db}^3$ *db ds gse oxe oxe ds gse* $GIDL = FQIDL + V_{effCI}$ $V_y = 3 \cdot T_{osc}$ $V_{ds} = V_{sg} - EGIDL$ $\overline{CGIDL} + V_{c}$ *V* $V_{ds} - V_{\text{gse}} - EGIDL$ $T_{\alpha ee} \cdot BGIDL$ *T* $V_{ds} - V_{esc} - EGIDL$ $I_{GIDI} = AGIDL W_{effCI} \cdot Nf$ + **├** $\overline{1}$ λ $\overline{}$ l ſ $-V_{\scriptscriptstyle \rho s e}$ – $\cdot \exp\left(-\frac{3 \cdot T_{oxe} \cdot}{\sqrt{2\cdot T_{oxe} \cdot T_{oxe$ ⋅ $-V_{\scriptscriptstyle \rm osc}$ – $= AGIDL W_{effCI} \cdot Nf$. 3 $\exp\left(-\frac{3 \cdot T_{oxe} \cdot BGIDL}{T_{oxe} \cdot BGIDL}\right)$ $3 \cdot T_{\alpha xe}$ $-V_{ds} - V_{gde} - EGDL$ $CGDL + V_{sb}^3$ *sb ds gde oxe oxe ds gde* $\frac{G}{G}$ $\frac{G}{G}$ *V* $V_{ds} - V_{gde} - EGIDL$ $T_{\alpha ee}$ **BGIDL** *T* $V_{ds} - V_{gde} - EGIDL$ $I_{GISL} = AGIDL \cdot W_{effCI} \cdot Nf$ + ⋅ $\overline{}$ λ $\overline{}$ l ſ $-V_{ds} - V_{\textit{ode}} \cdot \exp\left(-\frac{3 \cdot T_{\text{oxe}}}{T_{\text{oxe}}}\right)$ ⋅ $-V_{ds} - V_{\rho de} = AGIDL \cdot W_{effCl} \cdot Nf$.

where *AGIDL*, *BGIDL*, *CGIDL*, and *EGIDL* are model parameters and explained in Appendix A. *CGIDL* accounts for the body-bias dependence of *IGIDL and IGISL*. *WeffCJ* and *Nf* are the effective width of the source/drain diffusions and the number of fingers. Further explanation of *WeffCJ* and *Nf* can be found in the chapter of the layout-dependence model.

Chapter 7: Capacitance Model

Accurate modeling of MOSFET capacitance plays equally important role as that of the DC model. This chapter describes the methodology and device physics considered in both intrinsic and extrinsic capacitance modeling in BSIM4.0.0. Complete model parameters can be found in Appendix A.

7.1 General Description

BSIM4.0.0 provides three options for selecting intrinsic and overlap/fringing capacitance models. These capacitance models come from BSIM3v3.2, and the BSIM3v3.2 capacitance model parameters are used without change in BSIM4. except that separate *CKAPPA* parameters are introduced for the source-side and drain-side overlap capacitances. The BSIM3v3.2 $capMod = 1$ is no longer supported in BSIM4. The following table maps the BSIM4 capacitance models to those of BSIM3v3.2.

BSIM4 capacitance models	Matched <i>capMod</i> in BSIM3v3.2.2
$capMod = 0$ (simple and piece- wise model)	Intrinsic $capMod = 0 + overlap/fringing capMod = 0$
$capMod = 1$ (single-equation model)	Intrinsic $capMod = 2 + overlap/fringing capMod = 2$
$capMod = 2$ (default model; singel-equation and charge- thickness model	Intrinsic $capMod = 3 + overlap/fringing capMod = 2$

Table 7-1. BSIM4 capacitance model options.

BSIM4 capacitance models have the following features:

- **•** Separate effective channel length and width are used for capacitance models.
- *capMod* = 0 uses piece-wise equations. *capMod* = 1 and 2 are smooth and single equation models; therefore both charge and capacitance are continous and smooth over all regions.
- **•** Threshold voltage is consistent with DC part except for *capMod* = 0, where a longchannel V_{th} is used. Therefore, those effects such as body bias, short/narrow channel and DIBL effects are explicitly considered in $capMod = 1$ and 2.
- **•** Overlap capacitance comprises two parts: (1) a bias-independent component which models the effective overlap capacitance between the gate and the heavily doped source/drain; (2) a gate-bias dependent component between the gate and the lightly doped source/drain region.
- **•** Bias-independent fringing capacitances are added between the gate and source as well as the gate and drain.

7.2 Methodology for Intrinsic Capacitance Modeling

7.2.1 Basic Formulation

To ensure charge conservation, terminal charges instead of terminal voltages are used as state variables. The terminal charges Q_g , Q_b , Q_s , and Q_d are the charges associated with the gate, bulk, source, and drain termianls, respectively. The gate charge is comprised of mirror charges from these components: the channel charge (Q_{inv}) , accumulation charge $(Q_{\textit{acc}})$ and substrate depletion charge $(Q_{\textit{sub}})$.

The accumulation charge and the substrate charge are associated with the substrate while the channel charge comes from the source and drain terminals

$$
\begin{cases}\nQ_g = -(Q_{sub} + Q_{inv} + Q_{acc}) \\
Q_b = Q_{acc} + Q_{sub} \\
Q_{inv} = Q_s + Q_d\n\end{cases}
$$
\n(7.2.1)

The substrate charge can be divided into two components: the substrate charge at zero source-drain bias (*Qsub*⁰), which is a function of gate to substrate bias, and the additional non-uniform substrate charge in the presence of a drain bias (*dQsub*). *Q^g* now becomes

$$
Q_{g} = -(Q_{inv} + Q_{acc} + Q_{sub0} + dQ_{sub})
$$
\n(7.2.2)

BSIM4.5.0 Manual Copyright © 2005 UC Berkeley 7-3

The total charge is computed by integrating the charge along the channel. The threshold voltage along the channel is modified due to the nonuniform substrate charge by

$$
(7.2.3)
$$

$$
V_{th}(y) = V_{th}(0) + (A_{bulk} - 1)V_{y}
$$

(7.2.4)

$$
\begin{cases}\nQ_c = W_{active} \int_0^{L_{active}} q_c dy = -W_{active} C_{ove} \int_0^{L_{active}} (V_{gt} - A_{bulk} V_y) dy \\
Q_s = W_{active} \int_0^{L_{active}} q_s dy = W_{active} C_{ove} \int_0^{L_{active}} (V_{gt} + V_{th} - V_{FB} - \Phi_s - V_y) dy \\
Q_b = W_{active} \int_0^{L_{active}} q_b dy = -W_{active} C_{oxe} \int_0^{L_{active}} (V_{th} - V_{FB} - \Phi_s + (A_{bulk} - 1)V_y) dy\n\end{cases}
$$

where $V_{gt} = V_{gse} - V_{th}$ and

$$
dy = \frac{dV_y}{E_y}
$$

where E_y is expressed in

$$
(7.2.5)
$$

$$
I_{ds} = \frac{W_{active} \mathbf{m}_{eff} C_{ove}}{L_{active}} \left(V_{gt} - \frac{A_{bulk}}{2} V_{ds} \right) V_{ds} = W_{active} \mathbf{m}_{eff} C_{ove} \left(V_{gt} - A_{bulk} V_{y} \right) E_{y}
$$

All capacitances are derived from the charges to ensure charge conservation. Since there are four terminals, there are altogether 16 components. For each component

(7.2.6)

$$
C_{ij} = \frac{\partial Q_i}{\partial V_j}
$$

where *i* and *j* denote the transistor terminals. C_{ij} satisfies

$$
\sum_i C_{ij} = \sum_j C_{ij} = 0
$$

7.2.2 Short Channel Model

The long-channel charge model assume a constant mobility with no velocity saturation. Since no channel length modulation is considered, the channel charge remains constant in saturation region. Conventional longchannel charge models assume $V_{dsat,CV} = V_{gt} / A_{bulk}$ and therefore is independent of channel length. If we define a drain bias, *Vdsat,CV*, for capacitance modeling, at which the channel charge becomes constant, we will find that $V_{dsat,CV}$ in general is larger than V_{dsat} for I-V but smaller than the long-channel $V_{dsat} = V_{gt}/A_{bulk}$. In other words,

$$
(7.2.7)
$$
\n
$$
V_{dsat,IV} < V_{dsat,CV} < V_{dsat,IV} \Big|_{Lactive \to \infty} = \frac{V_{gsteff,CV}}{A_{bulk}}
$$

and *Vdsat,CV* is modeled by

(7.2.8)

$$
V_{dsat,CV} = \frac{V_{gsteff,CV}}{A_{bulk} \cdot \left[1 + \left(\frac{CLC}{L_{active}}\right)^{CLE}\right]}
$$

BSIM4.5.0 Manual Copyright © 2005 UC Berkeley 7-5

$$
V_{\text{sseff,CV}} = NOFF \cdot nv_t \cdot \ln\left[1 + \exp\left(\frac{V_{\text{sse}} - V_{th} - VOFFCV}{NOFF \cdot nv_t}\right)\right]
$$
\n(7.2.9)

Model parameters *CLC* and *CLE* are introduced to consider the effect of channel-length modulation. *Abulk* for the capacitance model is modeled by

$$
A_{bulk} = \left\{ 1 + F_doping \cdot \left[\frac{A0 \cdot L_{\text{eff}}}{L_{\text{eff}} + 2\sqrt{XJ \cdot X_{\text{dep}}}} \cdot + \frac{B0}{W_{\text{eff}} + B1} \right] \cdot \right\} \frac{1}{1 + KETA \cdot V_{\text{bseff}}}
$$

where

$$
F_doping = \frac{\sqrt{1 + LPEB/L_{eff}K_{\text{lox}}}}{2\sqrt{\Phi_s - V_{bseff}}} + K_{2ox} - K3B \frac{TOXE}{W_{eff} + W0} \Phi_s
$$

7.2.3 Single Equation Formulation

Traditional MOSFET SPICE capacitance models use piece-wise equations. This can result in discontinuities and non-smoothness at transition regions. The following describes single-equation formulation for charge, capacitance and voltage modeling in $capMod = 1$ and 2.

(a) Transition from depletion to inversion region

The biggest discontinuity is at threshold voltage where the inversion capacitance changes abruptly from zero to *Coxe*. Concurrently, since the substrate charge is a constant, the substrate capacitance drops abruptly to
zero at threshold voltage. The BSIM4 charge and capacitance models are formulated by substituting V_{gst} with $V_{gsteff,CV}$ as

(7.2.11)

$$
\mathcal{Q}(V_{_{gst}})\mathcal{=Q}(V_{_{gsteff,CV}})
$$

For capacitance modeling

$$
C(V_{\text{gst}}) = C(V_{\text{gsteff},CV}) \frac{\partial V_{\text{gsteff},CV}}{V_{\text{g,d,s,b}}}
$$
(7.2.12)

(b) Transition from accumulation to depletion region

An effective smooth flatband voltage V_{FBeff} is used for the accumulation and depletion regions.

$$
(7.2.13)
$$

$$
V_{FBeff} = V_{fbzb} - 0.5 \left[\left(V_{fbzb} - V_{gb} - 0.02 \right) + \sqrt{\left(V_{fbzb} - V_{gb} - 0.02 \right)^2 + 0.08 V_{fbzb}} \right]
$$

where

$$
V_{fbzb} = V_{th}|_{zeroV_{bs} and V_{ds}} - \Phi_s - K1\sqrt{\Phi_s}
$$
 (7.2.14)

A bias-independent V_{th} is used to calculate V_{fbzb} for $capMod = 1$ and 2. For $capMod = 0$, *VFBCV* is used instead (refer to Appendix A).

(c) Transition from linear to saturation region

An effective V_{ds} , V_{cveff} , is used to smooth out the transition between linear and saturation regions.

 $(7.2.15)$

$$
V_{\text{cveff}} = V_{\text{dsatCV}} - 0.5 \left[V_4 + \sqrt{V_4^2 + 4d_4 V_{\text{dsatCV}}} \right] \quad \text{where} \quad V_4 = V_{\text{dsatCV}} - V_{\text{ds}} - d_4; \quad d_4 = 0.02 V
$$

7.2.4 Charge partitioning

The inversion charges are partitioned into $Q_{inv} = Q_s + Q_d$. The ratio of Q_d to *Qs* is the charge partitioning ratio. Existing charge partitioning schemes are 0/100, 50/50 and 40/60 (*XPART* = 1, 0.5 and 0).

50/50 charge partition

This is the simplest of all partitioning schemes in which the inversion charges are assumed to be contributed equally from the source and drain terminals.

40/60 charge partition

This is the most physical model of the three partitioning schemes in which the channel charges are allocated to the source and drain terminals by assuming a linear dependence on channel position *y*.

(7.2.16)

$$
\begin{cases} Q_s = W_{active} \int\limits_{0}^{L_{active}} q_c \left(1 - \frac{y}{L_{active}} \right) dy \\ Q_d = W_{active} \int\limits_{0}^{L_{active}} q_c \frac{y}{L_{active}} dy \end{cases}
$$

0/100 charge partition

In fast transient simulations, the use of a quasi-static model may result in a large unrealistic drain current spike. This partitioning scheme is developed to artificially suppress the drain current spike by assigning all inversion charges in the saturation region to the source electrode. Notice that this charge partitioning scheme will still give drain current spikes in the linear region and aggravate the source current spike problem.

7.3 Charge-Thickness Capacitance Model (CTM)

Current MOSFET models in SPICE generally overestimate the intrinsic capacitance and usually are not smooth at V_{fb} and V_{th} . The discrepancy is more pronounced in thinner T_{ox} devices due to the assumption of inversion and accumulation charge being located at the interface. Numerical quantum simulation results in Figure 7-1 indicate the significant charge thickness in all regions of operation.

Figure 7-1. Charge distribution from numerical quantum simulations show significant charge thickness at various bias conditions shown in the inset.

CTM is a charge-based model and therefore starts with the DC charge thicknss, X_{DC} . The charge thicknss introduces a capacitance in series with C_{ox} as illustrated in Figure 7-2, resulting in an effective *Coxeff*. Based on numerical self-consistent solution of Shrodinger, Poisson and Fermi-Dirac equations, universal and analytical X_{DC} models have been developed. $C_{\alpha \text{reff}}$ can be expressed as

(7.3.1)

$$
C_{\text{oreff}} = \frac{C_{\text{oxp}} \times C_{\text{cen}}}{C_{\text{oxp}} + C_{\text{cen}}}
$$

where

$$
C_{cen} = \frac{\mathbf{e}_{si}}{X_{DC}}
$$

Figure 7-2. Charge-thickness capacitance concept in CTM. *Vgse* **accounts for the poly depletion effect.**

(i) *XDC* **for accumulation and depletion**

The DC charge thickness in the accumulation and depletion regions can be expressed by

(7.3.2)
\n
$$
X_{DC} = \frac{1}{3} L_{debye} exp \left[ACDE \left(\frac{NDEP}{2 \times 10^{16}} \right)^{0.25} \cdot \frac{V_{gse} - V_{bseff} - V_{FBeff}}{TOXP} \right]
$$

where L_{debye} is Debye length, and X_{DC} is in the unit of cm and $(V_{gse} - V_{bseff} - V_{FBeff})$ / *TOXP* is in units of MV/cm. For numerical statbility, (7.3.2) is replaced by (7.3.3)

$$
(7.3.3)
$$
\n
$$
X_{DC} = X_{\text{max}} - \frac{1}{2} \left(X_0 + \sqrt{X_0^2 + 4d_x X_{\text{max}}} \right)
$$

where

$$
X_{0} = X_{\text{max}} - X_{DC} - \boldsymbol{d}_{x}
$$

and $X_{max} = L_{debye} / 3$; $\delta_x = 10^3 \text{T} OXE$.

(ii) X_{DC} of inversion charge

The inversion charge layer thichness can be formulated as

(7.3.4) $(VTH0-VFB-\Phi_{s})\big)^{0.7}$ 9 2 4(*VTH* 0 1 1.9×10^{-9} m $\overline{}$ $\left(\frac{1}{2} \right)$ $\overline{}$ l $\int V_{\text{esteff}} + 4(VTH0 - VFB - \Phi)$ + $=\frac{1.9\times}{4.0}$ − *TOXP* $V_{\text{esteff}} + 4(VTHO - VFB)$ *X* $gsteff$ \top \top \top \top \top \bot \top \top \top \top \top \top \top *DC*

Through the *VFB* term, equation (7.3.4) is found to be applicable to N^+ or P^+ poly-Si gates and even other future gate materials.

(iii) Body charge thickness in inversion

In inversion region, the body charge thickness effect is modeled by including the deviation of the surface potential Φ_s (bias-dependence) from $2\Phi_B$ [2]

$$
\boldsymbol{j}_{d} = \boldsymbol{\Phi}_{s} - 2\boldsymbol{\Phi}_{B} = \boldsymbol{n}_{t} \ln \left(1 + \frac{V_{\text{ssetffCV}} \cdot (V_{\text{ssetffCV}} + 2K_{\text{lox}} \sqrt{2\boldsymbol{\Phi}_{B}}}{M O I N \cdot K_{\text{lox}}^{2} \boldsymbol{n}_{t}} \right)
$$
(7.3.5)

The channel charge density is therefore derived as

$$
q_{\text{inv}} = -C_{\text{axeff}} \times \left[V_{\text{gsteff,CV}} - j_d \right]_{\text{eff}} \tag{7.3.6}
$$

where

$$
\left(V_{\text{s\tiny stef\textit{ECV}}}-\mathbf{j}_d\right)_{\text{eff}} = 0.5 \cdot \left[\left(V_{\text{s\tiny stef\textit{ECV}}}-\mathbf{j}_d - 0.001\right) + \sqrt{\left(V_{\text{s\tiny stef\textit{ECV}}}-\mathbf{j}_d - 0.001\right)^2 + V_{\text{s\tiny stef\textit{ECV}}}\cdot 0.004\right]
$$
\n
$$
\left(V_{\text{t\tiny stef\textit{ECV}}}-\mathbf{j}_d\right)_{\text{eff}} = 0.5 \cdot \left[\left(V_{\text{t\tiny stef\textit{ECV}}}-\mathbf{j}_d - 0.001\right) + \sqrt{\left(V_{\text{t\tiny stef\textit{ECV}}}-\mathbf{j}_d - 0.001\right)^2 + V_{\text{t\tiny stef\textit{ECV}}}\cdot 0.004\right] \right]
$$

7.4 Intrinsic Capacitance Model Equations

7.4.1 $capMod = 0$

Accumulation region

$$
Q_{g} = W_{active}L_{active}C_{oxe}(V_{gs} - V_{bs} - VFBCV)
$$

$$
Q_{sub} = -Q_{g}
$$

$$
Q_{inv} = 0
$$

Subthreshold region

$$
Q_{sub0} = -W_{active}L_{active}C_{oxe} \cdot \frac{K_{1ox}^{2}}{2} \left(-1 + \sqrt{1 + \frac{4(V_{gs} - VFBCV - V_{bs})}{K_{1ox}}}\right)
$$

$$
Q_{g} = -Q_{sub0}
$$

$$
Q_{inv} = 0
$$

 l \cdot **Strong inversion region**

$$
V_{dsat,cv} = \frac{V_{gs} - V_{th}}{A_{bulk}^{\prime}}
$$

$$
A_{bulk}^{\prime} = A_{bulk} \left(1 + \left(\frac{CLC}{L_{eff}} \right)^{CLE} \right)
$$

$$
V_{th} = VFBCV + \Phi_{s} + K_{lox} \sqrt{\Phi_{s} - V_{bseff}}
$$

$$
Q_{g} = C_{oxe}W_{active}L_{active} \left(V_{gs} - VFBCV - \Phi_{s} - \frac{V_{ds}}{2} + \frac{A_{bulk}V_{ds}^{2}}{12\left(V_{gs} - V_{th} - \frac{A_{bulk}V_{ds}^{2}}{2}\right)}\right)
$$

$$
Q_{b} = C_{oxe}W_{active}L_{active} \left(VFBCV - V_{th} - \Phi_{s} + \frac{(1 - A_{bulk})V_{ds}}{2} - \frac{(1 - A_{bulk})A_{bulk}V_{ds}^{2}}{12\left(V_{gs} - V_{th} - \frac{A_{bulk}V_{ds}^{2}}{2}\right)}\right)
$$

50/50 partitioning:

$$
Q_{inv} = -C_{ox}W_{active}L_{active} \left(V_{gs} - V_{th} - \Phi_s - \frac{A_{bulk}^{\dagger}V_{ds}}{2} + \frac{A_{bulk}^{\dagger 2}V_{ds}^2}{12(V_{gs} - V_{th} - \frac{A_{bulk}^{\dagger}V_{ds}}{2})}\right)
$$

$$
Q_s = Q_d = 0.5Q_{inv}
$$

40/60 partitioning:

$$
Q_{d} = -C_{oxe}W_{active}L_{active} \left(\frac{V_{gs} - V_{th}}{2} - \frac{A_{bulk}V_{ds}}{2} + \frac{A_{bulk}V_{ds} \left[\frac{(V_{gs} - V_{th})^{2}}{6} - \frac{A_{bulk}V_{ds} (V_{gs} - V_{th})}{8} + \frac{(A_{bulk}V_{ds})^{2}}{40} \right]}{12(V_{gs} - V_{th} - \frac{A_{bulk}V_{ds}}{2})^{2}} \right)
$$

$$
Q_{s} = -(Q_{s} + Q_{b} + Q_{d})
$$

0/100 partitioning:

$$
Q_d = -C_{oxe}W_{active}L_{active} \left(\frac{V_{gs} - V_{th}}{2} + \frac{A_{bulk}V_{ds}}{4} - \frac{(A_{bulk}V_{ds})^2}{24}\right)
$$

$$
Q_s = -(Q_g + Q_b + Q_d)
$$

Saturation region

$$
Q_{g} = C_{oxe} W_{active} L_{active} \left(V_{gs} - VFBCV - \Phi_{s} - \frac{V_{dsat}}{3} \right)
$$

$$
Q_{b} = -C_{oxe} W_{active} L_{active} \left(VFBCV + \Phi_{s} - V_{th} + \frac{(1 - A_{bulk})V_{dsat}}{3} \right)
$$

50/50 partitioning:

$$
Q_s = Q_d = -\frac{1}{3} C_{ox} W_{active} L_{active} (V_{gs} - V_{th})
$$

40/60 partitioning:

$$
Q_d = -\frac{4}{15} C_{oxe} W_{active} L_{active} (V_{gs} - V_{th})
$$

$$
Q_s = -\left(Q_s + Q_b + Q_d\right)
$$

 $\ddot{}$

0/100 partitioning:

$$
Q_d = 0
$$

$$
Q_s = -\left(Q_g + Q_b\right)
$$

7.4.2 $capMod = 1$

$$
Q_{g} = -(Q_{inv} + Q_{acc} + Q_{sub0} + dQ_{sub})
$$

$$
Q_{b} = -(Q_{acc} + Q_{sub0} + dQ_{sub})
$$

$$
Q_{inv} = Q_{s} + Q_{d}
$$

$$
Q_{acc} = -W_{active}L_{active}C_{oxe} \cdot (V_{FBeff} - V_{fbzb})
$$

$$
Q_{sub0} = -W_{active}L_{active}C_{oxe} \cdot \frac{K_{lox}^{2}}{2} \cdot \left[-1 + \sqrt{1 + \frac{4(V_{gse} - V_{FBeff} - V_{ssteff} - V_{bseff})}{K_{lox}^{2}} \right]
$$

$$
V_{dsat, cv} = \frac{V_{ssteffcv}}{A_{bulk}}
$$

$$
Q_{inv} = -W_{active}L_{active}C_{oxe} \cdot \left[V_{\text{g}setff,cv} - \frac{1}{2} A_{bulk}V_{\text{cveff}} + \frac{A_{bulk}V_{\text{cveff}}^2 V_{\text{cveff}}^2}{12 \cdot \left(V_{\text{g}setff,cv} - \frac{A_{bulk}V_{\text{cveff}}^2}{A_{bulk}V_{\text{cveff}}^2}\right)}\right]
$$

$$
dQ_{sub} = W_{active}L_{active}C_{oxe} \cdot \left[\frac{1 - A_{bulk}V_{\text{cveff}}^2 V_{\text{cveff}} - \frac{(1 - A_{bulk}V) \cdot A_{bulk}V_{\text{cveff}}^2}{12 \cdot \left(V_{\text{g}setff,cv} - \frac{A_{bulk}VV_{\text{cveff}}^2}{A_{bulk}V_{\text{cveff}}^2}\right)}\right]
$$

50/50 charge partitioning:

$$
Q_{\rm S}=Q_{\rm D}=-\frac{W_{active}L_{active}C_{\rm occ}}{2} \left[V_{\rm g\it{steff,cv}} -\frac{1}{2}A_{bulk}^{\dagger}V_{\rm cveff} +\frac{A_{bulk}^{}{}^{2}V_{\rm cveff}^{2}}{12\left(\left(V_{\rm g\it{steff,cv}}-A_{bulk}^{\dagger}V_{\rm cveff}\right)^{2}\right)}\right]
$$

40/60 charge partitioning:

$$
Q_{S} = -\frac{W_{active}L_{active}C_{oxe}}{2(V_{\text{s}reff,cv} - A_{bulk}V_{cveff} \t)} \left[V_{\text{s}reff,cv}^{3} - \frac{4}{3}V_{\text{s}reff,cv}^{2} A_{bulk}V_{cveff} V_{cveff} \right]
$$
\n
$$
Q_{D} = -\frac{W_{active}L_{active}C_{oxe}}{2(V_{\text{s}reff,cv} - A_{bulk}V_{cveff} \t)} \left[V_{\text{s}reff,cv}^{3} - \frac{5}{3}V_{\text{s}reff,cv}^{2} A_{bulk}V_{cveff} V_{cveff} \t) \right]
$$
\n
$$
Q_{D} = -\frac{W_{active}L_{active}C_{oxe}}{2(V_{\text{s}reff,cv} - A_{bulk}V_{cveff} \t)} \left[V_{\text{s}reff,cv}^{3} - \frac{5}{3}V_{\text{s}reff,cv}^{2} A_{bulk}V_{cveff} V_{cveff} \t) \right]
$$

Intrinsic Capacitance Model Equations

0/100 charge partitioning:

$$
Q_{s} = -\frac{W_{active}L_{active}C_{oxe}}{2} \cdot \left[V_{\text{g}steff,cv} + \frac{1}{2} A_{bulk} V_{\text{cveff}} - \frac{A_{bulk} V_{\text{cveff}}^{2}}{12 \cdot \left(V_{\text{g}steff,cv} - \frac{A_{bulk} V_{\text{cveff}}^{2}}{A_{bulk} V_{\text{cveff}}^{2}} \right) \right]
$$

$$
Q_{D} = -\frac{W_{active}L_{active}C_{oxe}}{2} \cdot \left[V_{\text{g}steff,cv} - \frac{3}{2} A_{bulk} V_{\text{cveff}} + \frac{A_{bulk} V_{\text{cveff}}^{2} V_{\text{cveff}}^{2}}{4 \cdot \left(V_{\text{g}steff,cv} - \frac{A_{bulk} V_{\text{cveff}}^{2}}{A_{bulk} V_{\text{dveff}}^{2}} \right) \right]
$$

7.4.3 $capMod = 2$

$$
Q_{acc} = W_{active} L_{active} C_{oxeff} \cdot V_{photo}
$$

$$
V_{gbacc} = \frac{1}{2} \cdot \left[V_0 + \sqrt{V_0^2 + 0.08 V_{fbzb}} \right]
$$

$$
V_0 = V_{fbzb} + V_{bseff} - V_{gs} - 0.02
$$

$$
V_{\text{cveff}} = V_{\text{dsat}} - \frac{1}{2} \cdot \left(V_1 + \sqrt{V_1^2 + 0.08 V_{\text{dsat}}} \right)
$$

$$
V_1 = V_{\text{dsat}} - V_{\text{ds}} - 0.02
$$

$$
V_{\text{dsat}} = \frac{V_{\text{ssteff,cv}} - \mathbf{j} \cdot \mathbf{d}}{A_{\text{bulk}}},
$$

$$
\mathbf{j} \cdot \mathbf{d} = \Phi_s - 2\Phi_B = \mathbf{n}_t \ln \left(1 + \frac{V_{\text{ssteffCV}} \cdot (V_{\text{ssteffCV}} + 2K_{\text{lox}} \sqrt{2\Phi_B}}{M O I N \cdot K_{\text{lox}}^2 \mathbf{n}_t} \right)
$$

 $\overline{1}$

 λ

$$
\left(V_{\text{g}steffCV} - \mathbf{j}_d\right)_{\text{eff}} = 0.5 \cdot \left[\left(V_{\text{g}steffCV} - \mathbf{j}_d - 0.001\right) + \sqrt{\left(V_{\text{g}steffCV} - \mathbf{j}_d - 0.001\right)^2 + V_{\text{g}steffCV} \cdot 0.004}\right]
$$
\n
$$
Q_{\text{sub0}} = -W_{\text{active}} L_{\text{active}} C_{\text{o}x\text{eff}} \cdot \frac{K_{\text{lox}}^2}{2} \cdot \left[-1 + \sqrt{1 + \frac{4\left(V_{\text{g}x} - V_{\text{Feeff}} - V_{\text{b}x\text{eff}} - V_{\text{g}steff,cv}\right)}{K_{\text{lox}}^2}} \right]
$$

$$
Q_{inv} = -W_{active}L_{active}C_{o x e f f} \times \mathbf{\hat{e}}_{\mathbf{\hat{e}}}
$$

\n
$$
\mathbf{\hat{e}}_{\mathbf{\hat{e}}}
$$
\n
$$
\mathbf{\hat{e}}_{\mathbf{\hat{e}}}
$$
\n
$$
\mathbf{\hat{e}}_{\mathbf{\hat{e}}}
$$
\n
$$
\mathbf{\hat{e}}_{\mathbf{\hat{e}}}
$$
\n
$$
\mathbf{\hat{e}}_{\mathbf{\hat{e}}}
$$
\n
$$
12 \times \mathbf{\hat{e}}_{\mathbf{\hat{e}}}(V_{\text{set,fer}} - \mathbf{\hat{J}}_{\mathbf{d}})_{\text{eff}} - \frac{A_{bulk}V_{\text{cveff}}}{2} \mathbf{\hat{f}}_{\mathbf{\hat{e}}}
$$

$$
\boldsymbol{dQ}_{sub} = W_{active} L_{active} C_{oveff} \cdot \left[\frac{1 - A_{bulk}^{\dagger}}{2} V_{cveff} - \frac{\left(1 - A_{bulk}^{\dagger}\right) \cdot A_{bulk}^{\dagger} V_{cveff}^2}{12 \cdot \left(V_{gsteff, cv} - \boldsymbol{j}_{d} - \frac{A_{bulk}^{\dagger} V_{cveff}^2}{4} \right)} \right]
$$

50/50 partitioning:

$$
Q_{\rm S} = Q_{\rm D} = -\frac{W_{active}L_{active}C_{o\textrm{-ref}}}{2}\hat{\mathbf{e}}_{\textrm{g\textrm{-ref}}_{\textrm{g\textrm{-ref}}}}^{\textrm{c}} - \mathbf{j}_{\textrm{d}} - \frac{1}{2}A_{bulk}V_{\textrm{c\textrm{-ref}}}_{\textrm{c\textrm{-ref}}}\n+ \frac{A_{bulk}V_{\textrm{c\textrm{-ref}}}}{12 \mathbf{x}_{\textrm{g\textrm{-ref}}_{\textrm{g\textrm{-ref}}_{\textrm{g\textrm{-ref}}}}^{\textrm{u\textrm{-ref}}}\n- \mathbf{j}_{\textrm{d}}\n- \mathbf{k}_{bulk}V_{\textrm{c\textrm{-ref}}_{\textrm{g\textrm{-ref}}}}\n- \mathbf{j}_{\textrm{u\textrm{-ref}}_{\textrm{u\textrm{-tr}}_{\textrm{u\textrm{-tr}}_{\textrm{u\textrm{-tr}}_{\textrm{u\textrm{-tr}}_{\textrm{u\textrm{-tr}}_{\textrm{u\textrm{-tr}}_{\textrm{u\textrm{-tr}}_{\textrm{u\textrm{-tr}}_{\textrm{u\textrm{-tr}}_{\textrm{u\textrm{-tr}}_{\textrm{u\textrm{-tr}}_{\textrm{u\textrm{-tr}}_{\textrm{u\textrm{-tr}}_{\textrm{u\textrm{-tr}}_{\textrm{u\textrm{-tr}}_{\textrm{u\textrm{-tr}}_{\textrm{u\textrm{-tr}}_{
$$

Fringing/Overlap Capacitance Models

40/60 partitioning:

$$
Q_{s} = -\frac{W_{active}L_{active}C_{o x e f f}}{2\left(V_{g s t e f f, c v} - \mathbf{j} d^{-\frac{A_{bulk}V_{c v e f f}}{2}}\right)^{2}\left[\frac{(V_{g s t e f f, c v} - \mathbf{j} d)^{3} - \frac{4}{3}(V_{g s t e f f, c v} - \mathbf{j} d)^{2} A_{bulk}V_{c v e f f}}{15\left(A_{bulk}V_{c v e f f}\right)^{3}}\right]}
$$
\n
$$
Q_{D} = -\frac{W_{active}L_{active}C_{o x e f f}}{2\left(V_{g s t e f f, c v} - \mathbf{j} d^{-\frac{A_{bulk}V_{c v e f f}}{2}}\right)^{2}\left[\frac{(V_{g s t e f f, c v} - \mathbf{j} d)^{3} - \frac{5}{3}(V_{g s t e f f, c v} - \mathbf{j} d)^{2} A_{bulk}V_{c v e f f}}{15\left(A_{bulk}V_{c v e f f}\right)^{3}}\right]}
$$
\n
$$
Q_{D} = -\frac{W_{active}L_{active}C_{o x e f f}}{2\left(V_{g s t e f f, c v} - \mathbf{j} d^{-\frac{A_{bulk}V_{c v e f f}}{2}}\right)^{2}\left[\frac{(V_{g s t e f f, c v} - \mathbf{j} d)^{3} - \frac{5}{3}(V_{g s t e f f, c v} - \mathbf{j} d)^{2} A_{bulk}V_{c v e f f}}{15\left(A_{bulk}V_{c v e f f}\right)^{3}}\right]
$$

0/100 partitioning:

$$
Q_{s} = -\frac{W_{active}L_{active}C_{o x e f f}}{2} \cdot \left[V_{\text{g} s t e f f, cv} - \mathbf{J}_{d} + \frac{1}{2} A_{bulk} V_{\text{c} v e f f} - \frac{A_{bulk} V^{2} V_{\text{c} v e f f}}{12 \cdot \left(V_{\text{g} s t e f f, cv} - \mathbf{J}_{d} - \frac{A_{bulk} V V_{\text{c} v e f f}}{12} \right)} \right]
$$

$$
Q_{\scriptscriptstyle D} = -\frac{W_{\scriptscriptstyle active}L_{\scriptscriptstyle active}C_{\scriptscriptstyle overlap}}{2}\times\overset{\mathring{\mathbf{e}}}{\underset{\mathring{\mathbf{e}}}{\mathring{\mathbf{e}}}}\times\overset{\mathring{\mathbf{e}}}{\underset{\mathring{\mathbf{e}}}{\mathring{\mathbf{e}}}}V_{\scriptscriptstyle {s\textrm{-}t\acute{e},\acute{e}t}} -\overset{3}{\mathbf{j}}_{\scriptscriptstyle \mathbf{d}}\Big)_{\scriptscriptstyle eff}} -\frac{3}{2}A_{\scriptscriptstyle bulk}V_{\scriptscriptstyle{c\textrm{-}t\acute{e}f}} + \frac{A_{\scriptscriptstyle bulk}V^2V_{\scriptscriptstyle{c\textrm{-}t\acute{e}f}}^2}{4\pi\overset{\mathring{\mathbf{e}}}{\mathring{\mathbf{e}}}}V_{\scriptscriptstyle {s\textrm{-}t\acute{e}f\acute{e}t}} -\overset{4}{\mathbf{j}}_{\scriptscriptstyle \mathbf{d}}\Big)_{\scriptscriptstyle eff}} -\frac{A_{\scriptscriptstyle bulk}V^2V_{\scriptscriptstyle{c\textrm{-}t\acute{e}f}}^2}{4\pi\overset{\mathring{\mathbf{e}}}{\mathring{\mathbf{e}}}}V_{\scriptscriptstyle {s\textrm{-}t\acute{e}f\acute{e}t}} -\overset{4}{\mathbf{j}}_{\scriptscriptstyle \mathbf{d}}\Big)_{\scriptscriptstyle eff}} -\frac{A_{\scriptscriptstyle bulk}V_{\scriptscriptstyle a\textrm{-}t\acute{e}f}}}{2}\overset{\mathring{\mathbf{e}}}{\mathring{\mathbf{e}}}
$$

7.5 Fringing/Overlap Capacitance Models

7.5.1 Fringing capacitance model

The fringing capacitance consists of a bias-independent outer fringing capacitance and a bias-dependent inner fringing capacitance. Only the biasindependent outer fringing capacitance (*CF*) is modeled. If *CF* is not given, it is calculated by

 $(7.5.1)$ $CF = \frac{2 \cdot EPSROX \cdot \varepsilon_c}{2 \cdot EPSROX \cdot \varepsilon_c}$ $\frac{2 \cdot EPSROX \cdot \varepsilon_0}{\pi} \cdot \log \left(1 + \frac{4 \text{ O}e - 7}{TOXE}\right)$ $=\frac{2 \cdot EPSKOX \cdot \varepsilon_0}{\pi} \cdot \log \left(1 + \frac{4 \cdot 0e - Y}{TOXE}\right)$

7.5.2 Overlap capacitance model

An accurate overlap capacitance model is essential. This is especially true for the drain side where the effect of the capacitance is amplified by the transistor gain. In old capacitance models this capacitance is assumed to be bias independent. However, experimental data show that the overlap capacitance changes with gate to source and gate to drain biases. In a single drain structure or the heavily doped S/D to gate overlap region in a LDD structure the bias dependence is the result of depleting the surface of the source and drain regions. Since the modulation is expected to be very small, we can model this region with a constant capacitance. However in LDD MOSFETs a substantial portion of the LDD region can be depleted, both in the vertical and lateral directions. This can lead to a large reduction of the overlap capacitance. This LDD region can be in accumulation or depletion. We use a single equation for both regions by using such smoothing parameters as $V_{gs,overlap}$ and $V_{gd,overlap}$ for the source and drain side, respectively. Unlike the case with the intrinsic capacitance, the overlap capacitances are reciprocal. In other words, *Cgs,overlap* = *Csg,overlap* and $C_{gd,overlap} = C_{dg,overlap}$.

If capMod is non-zero, BSIM4 uses the bias-dependent overlap capacitance model; otherwise, a simple bias-independent model will be used.

Bias-dependent overlap capacitance model

(i) Source side

$$
\frac{Q_{overlaps}}{W_{active}} = CGSO \cdot V_{gs} + CGSI \left(V_{gs} - V_{gs, overlap} - \frac{CKAPPAS}{2} \left(-1 + \sqrt{1 - \frac{4V_{gs, overlap}}{CKAPPAS}} \right) \right)
$$

 $(7.5.2)$

(7.5.4)

$$
V_{gs, overlap} = \frac{1}{2} \left(V_{gs} + \boldsymbol{d}_1 - \sqrt{(V_{gs} + \boldsymbol{d}_1)^2 + 4\boldsymbol{d}_1} \right) \quad \boldsymbol{d}_1 = 0.02V
$$
\n(7.5.3)

(ii) Drain side

I $\overline{}$ $\overline{}$ Ì I I l ſ I I $\overline{}$ $\left(\right)$ I I l ſ = ⋅ + − − − + − *CKAPPAD* $\left[\frac{C\epsilon}{CGDO \cdot V_{sd} + CGD\epsilon} \right] V_{sd} - V_{sd\,overline{V}^{c}lap} - \frac{CKAPPAD}{2} \left[\frac{1}{2} + \sqrt{1 - \frac{4V}{\epsilon^2}} \right]$ *W* Q_{overlapl} $GCDO, V, GCDI$ V, V V, V $CKAPPAD$ $\Big|_{1}$ $\Big|_{1}$ $4V_{\text{gd,overlapl}}$ $_{gd}$ τ **CODH** v_{gd} σ $v_{gd,overlap}$ *active overlapd* $GCDO V$, $GCDV$ V V V $CADV$ $(1, 1, 1, 1)$ $(1, 1, 1)$, $\frac{d\omega}{dt} = CGDO \cdot V_{\textit{ed}} + CGDL \Big[V_{\textit{ed}} - V_{\textit{edoverlap}} - \frac{CKAPPAD}{2} \Big] - 1 + \sqrt{1 - \frac{4}{\epsilon^2}}$ 2

(7.5.5)
\n
$$
V_{gd,overlap} = \frac{1}{2} \left(V_{gd} + \mathbf{d}_1 - \sqrt{(V_{gd} + \mathbf{d}_1)^2 + 4\mathbf{d}_1} \right), \quad \mathbf{d}_1 = 0.02V
$$

(iii) Gate Overlap Charge

$$
Q_{\text{overlap},g} = -\left(Q_{\text{overlap},d} + Q_{\text{overlap},s} + (CGBO \cdot L_{\text{active}}) \cdot V_{gb}\right)
$$
\n(7.5.6)

where *CGB*O is a model parameter, which represents the gate-to-body overlap capacitance per unit channel length.

Bias-independent overlap capacitance model

If $capMod = 0$, a bias-independent overlap capacitance model will be used. In this case, model parameters *CGSL*, *CGDL*, *CKAPPAS* and *CKAPPD* all have no effect.

The gate-to-source overlap charge is expressed by

$$
Q_{overlap,s} = W_{active} \cdot CGSO \cdot V_{gs}
$$

The gate-to-drain overlap charge is calculated by

$$
Q_{\text{overlap},d} = W_{\text{active}} \cdot \text{CGDO} \cdot V_{\text{gd}}
$$

The gate-to-substrate overlap charge is computed by

 $Q_{\text{overlap},b} = L_{\text{active}} \cdot CGBO \cdot V_{\text{gb}}$

Default *CGSO* **and** *CGDO*

If *CGSO* and *CGDO* (the overlap capacitances between the gate and the heavily doped source/drain regions, respectively) are not given, they will be calculated. Appendix A gives the information on how *CGSO*, *CGDO* and *CGBO* are calculated.

Chapter 8: High-Speed/RF Models

As circuit speed and operating frequency rise, the need for accurate prediction of circuit performance near cut-off frequency or under very rapid transient operation becomes critical. BSIM4.0.0 provides a set of accurate and efficient high-speed/RF (radio frequency) models which consist of three modules: charge-deficit non-quasi-static (NQS) model, intrinsic-input resistance (IIR) model (bias-dependent gate resistance model), and substrate resistance network model. The charge-deficit NQS model comes from BSIM3v3.2 NQS model [11] but many improvements are added in BSIM4. The IIR model considers the effect of channel-reflected gate resistance and therefore accounts for the first-order NQS effect [12]. Thus, the charge-deficit NQS model and the IIR model should not be turned on simultaneously. These two models both work with multi-finger configuration. The substrate resistance model does not include any geometry dependence.

8.1 Charge-Deficit Non-Quasi-Static (NQS) Model

BSIM4 uses two separate model selectors to turn on or off the charge-deficit NQS model in transient simulation (using *trnqsMod*) and AC simulation (using *acnqsMod*). The AC NQS model does not require the internal NQS charge node that is needed for the transient NQS model. The transient and AC NQS models are developed from the same fundamental physics: the channel/gate charge response to the external signal are relaxation-time (t) dependent and the transcapacitances and transconductances (such as G_m) for AC analysis can therefore be expressed as functions of *jwt*.

MOSFET channel region is analogous to a bias-dependent RC distributed transmission line (Figure 8-1a). In the Quasi-Static (QS) approach, the gate capacitor node is lumped with the external source and drain nodes (Figure 8-1b). This ignores the finite time for the channel charge to build-up. One way to capture the NQS effect is to represent the channel with *n* transistors in series (Figure 8-1c), but it comes at the expense of simulation time. The BSIM4 charge-deficit NQS model uses Elmore equivalent circuit to model channel charge build-up, as illustrated in Figure 8-1d..

Figure 8-1. Quasi-Static and Non-Quasi-Static models for SPICE analysis.

8.1.1 The Transient Model

The transient charge-deficit NQS model can be turned on by setting *trnqsMod* = 1 and off by setting *trnqsMod* = 0.

Figure 8-2 shows the RC sub-circuit of charge deficit NQS model for transient simulation [13]. An internal node, $Q_{def}(t)$, is created to keep track of the amount of deficit/surplus channel charge necessary to reach equilibrium. The resistance *R* is determined from the RC time constant (*t*). The current source $i_{cheq}(t)$ represents the equilibrium channel charging effect. The capacitor C is to be the value of C_{fact} (with a typical value of 1×10^{-9} Farad [11]) to improve simulation accuracy. Q_{def} now becomes

(8.1.1)

$$
Q_{def}(t) = V_{def} \times C_{fact}
$$

Figure 8-2. Charge deficit NQS sub-circuit for transient analysis.

BSIM4.5.0 Manual Copyright © 2005 UC Berkeley 8-3

Considering both the transport and charging component, the total current related to the terminals D, G and S can be written as

(8.1.2)

$$
i_{D,G,S}(t) = I_{D,G,S}(\text{DC}) + \frac{\partial Q_{d,g,s}(t)}{\partial t}
$$

Based on the relaxation time approach, the terminal charge and corresponding charging current are modeled by

$$
Q_{def}(t) = Q_{cheq}(t) - Q_{ch}(t)
$$
\n
$$
(8.1.3)
$$

and

(8.1.4a)
\n
$$
\frac{\partial Q_{def}(t)}{\partial t} = \frac{\partial Q_{cheq}(t)}{\partial t} - \frac{Q_{def}(t)}{t}
$$
\n
$$
\frac{\partial Q_{d,g,s}(t)}{\partial t} = D, G, S_{xpart} \frac{Q_{def}(t)}{t}
$$
\n(8.1.4b)

where *D,G,Sxpart* are charge deficit NQS channel charge partitioning number for terminals D, G and S, respectively; $D_{\text{xpart}} + S_{\text{xpart}} = 1$ and G_{xpart} $=-1.$

The transit time *t* is equal to the product of R_{ii} and $W_{\text{eff}}L_{\text{eff}}C_{\text{oxe}}$, where R_{ii} is the intrinsic-input resistance [12] given by

$$
\frac{1}{R_{ii}} = XRCRG1 \cdot \left(\frac{I_{ds}}{V_{dseff}} + XRCRG2 \cdot \frac{W_{eff} \mathbf{m}_{eff} C_{oxeff} k_B T}{qL_{eff}}\right)
$$
\n(8.1.5)

where C_{oxeff} is the effective gate dielectric capacitance calculated from the DC model. Note that R_{ii} in (8.1.5) considers both the drift and diffusion componets of the channel conduction, each of which dominates in inversion and subthreshold regions, respectively.

8.1.2 The AC Model

Similarly, the small-signal AC charge-deficit NQS model can be turned on by setting $acngsMod = 1$ and off by setting $acngsMod = 0$.

For small signals, by substituting (8.1.3) into (8.1.4b), it is easy to show that in the frequency domain, $Q_{ch}(t)$ can be transformed into

(8.1.6)

$$
\Delta Q_{ch}(t) = \frac{\Delta Q_{cheq}(t)}{1 + j\mathbf{wt}}
$$

where **w** is the angular frequency. Based on (8.1.6), it can be shown that the transcapacitances C_{gi} , C_{si} , and C_{di} (*i* stands for any of the G, D, S and B terminals of the device) and the channel transconductances G_m , G_{ds} , and G_{mbs} all become complex quantities. For example, now G_m have the form of

BSIM4.5.0 Manual Copyright © 2005 UC Berkeley 8-5

$$
(8.1.7)
$$

(8.1.8)

$$
G_m = \frac{G_{m0}}{1 + \mathbf{w}^2 \mathbf{t}^2} + j \left(-\frac{G_{m0} \cdot \mathbf{wt}}{1 + \mathbf{w}^2 \mathbf{t}^2} \right)
$$

and

$$
C_{dg} = \frac{C_{dg0}}{1 + \mathbf{w}^2 \mathbf{t}^2} + j \left(-\frac{C_{dg0} \cdot \mathbf{wt}}{1 + \mathbf{w}^2 \mathbf{t}^2} \right)
$$

Those quantities with sub "0" in the above two equations are known from OP (operating point) analysis.

8.2 Gate Electrode Electrode and Intrinsic-Input Resistance (IIR) Model

8.2.1 General Description

BSIM4 provides four options for modeling gate electrode resistance (biasindependent) and intrinsic-input resistance (IIR, bias-dependent). The IIR model considers the relaxation-time effect due to the distributive RC nature of the channel region, and therefore describes the first-order non-quasistatic effect. Thus, the IIR model should not be used together with the charge-deficit NQS model at the same time. The model selector *rgateMod* is used to choose different options.

8.2.2 Model Option and Schematic

 $\textit{rgateMod} = 0$ (zero-resistance):

In this case, no gate resistance is generated.

 $\textit{rgateMod} = 1$ (constant-resistance):

In this case, only the electode gate resistance (bias-independent) is generated by adding an internal gate node. Rgeltd is give by

(8.1.9)

$$
Rgeltd = \frac{RSHG \cdot \left(XGW + \frac{W_{eff}}{3NGCON}\right)}{NGCON \cdot \left(L_{drawn} - XGL\right) \cdot NF}
$$

Refer to Chapter 7 for the layout parameters in the above equation.

rgateMod = 2 (IIR model with variable resistance):

BSIM4.5.0 Manual Copyright © 2005 UC Berkeley 8-7

In this case, the gate resistance is the sum of the electrode gate resistance (8.1.9) and the intrinsic-input resistance R_{ii} as given by (8.1.5). An internal gate node will be generated. $trngsMod = 0$ (default) and $acngsMod =$ 0 (default) should be selected for this case.

 (IIR model with two nodes):

In this case, the gate electrode resistance given by (8.1.9) is in series with the intrinsic-input resistance R_{ii} as given by (8.1.5) through two internal gate nodes, so that the overlap capacitance current will not pass through the intrinsic-input resistance. *trnqsMod* = 0 (default) and $acngsMod = 0$ (default) should be selected for this case.

8.3 Substrate Resistance Network

8.3.1 General Description

For CMOS RF circuit simulation, it is essential to consider the high frequency coupling through the substrate. BSIM4 offers a flexible built-in substrate resistance network. This network is constructed such that little simulation efficiency penalty will result. Note that the substrate resistance parameters as listed in Appendix A should be extracted for the total device, not on a per-finger basis.

8.3.2 Model Selector and Topology

The model selector *rbodyMod* can be used to turn on or turn off the resistance network.

$\mathit{r} \mathit{bodyMod} = 0$ (Off):

No substrate resistance network is generated at all.

$\mathit{rbodyMod} = 1$ (On):

All five resistances in the substrate network as shown schematically below are present simultaneously.

A minimum conductance, *GBMIN*, is introduced in parallel with each resistance and therefore to prevent infinite resistance values, which would otherwise cause poor convergence. In Figure 8-3, *GBMIN* is merged into each resistance to simplify the representation of the model topology. Note that the intrinsic model substrate reference point in this case is the internal body node **bNodePrime**, into which the impact ionization current I_{ii} and the GIDL current I_{GIDL} flow.

rbodyMod = 2 (On : Scalable Substrate Network):

The schematic is similar to $\mathit{rbodyMod} = 1$ but all the five resistors in the substrate network are now scalable with a possibility of chosing either five resistors, three resistors or one resistor as the substrate network.

The resistors of the substrate network are scalable with respect to channel length (*L*), channel width (*W*) and number of fingers (*NF*). The scalable model allows to account for both horizontal and vertical contacts.

The scalable resistors *RBPS* and *RBPD* are evaluated through

(8.1.11) *RBPSNF RBPSL RBPSW NF ^L ^W RBPS RBPS* • • = • −6 − 6 10 10 0 *RBPDNF RBPDL RBPDW NF ^L ^W RBPD RBPD* • • = • −6 −6 10 10 0

The resistor *RBPB* consists of two parallel resistor paths, one to the horizontal contacts and other to the vertical contacts. These two resistances are scalable and *RBPB* is given by a parallel combination of these two resistances.

 $(8.1.10)$

(8.1.12) *RBPBNF RBPBXL RBPBXW NF ^L ^W RBPBX RBPBX* • • = • −6 −6 10 10 0 *RBPBX RBPBY RBPBX RBPBY RBPB* + • = *RBPBYNF RBPBYL RBPBYW NF ^L ^W RBPBY RBPBY* • • = • −6 −6 10 10 0

The resistors *RBSB* and *RBDB* share the same scaling parameters but have different scaling prefactors. These resistors are modeled in the same way as *RBPB*. The equations for *RBSB* are shown below. The calculation for *RBDB* follows *RBSB*.

(8.1.13) *RBSDBXNF RBSDBXL RBSDBXW NF ^L ^W RBSBX RBSBX* • • = • −6 − 6 10 10 0 *RBSBX RBSBY RBSBX RBSBY RBSB* + • = *RBSDBXNF RBSDBXL RBSDBXW NF ^L ^W RBSBX RBSBX* • • = • −6 − 6 10 10 0

The implementation of $\mathit{rbodyMod} = 2$ allows the user to chose between the 5-R network (with all five resistors), 3-R network (with *RBPS*, *RBPD* and *RBPB*) and 1-R network (with only *RBPB*).

If the user doesn't provide both the scaling parameters *RBSBX0* and *RBSBY0* for *RBSB* **OR** both the scaling parameters *RBDBX0* and *RBDBY0* for *RBDB*, then the conductances for both *RBSB* and *RBDB* are set to *GBMIN*. This converts the 5-R schematic to 3-R schematic where the substrate network consists of the resistors *RBPS*, *RBPD* and *RBPB*. *RBPS, RBPD* and *RBPB* are then calculated using (8.1.10), (8.1.11) and (8.1.12).

If the user chooses not to provide either of *RBPS0* or *RBPD0*, then the 5-R schematic is converted to 1-R network with only one resistor *RBPB*. The conductances for *RBSB* and *RBDB* are set to *GBMIN*. The resistances *RBPS* and *RBPD* are set to 1e-3 Ohm. The resistor *RBPB* is then calculated using (8.1.12).

In all other situations, 5-R network is used with the resistor values calculated from the equations aforementioned.

Substrate Resistance Network

Chapter 9: Noise Modeling

The following noise sources in MOSFETs are modeled in BSIM4 for SPICE noise ananlysis: flicker noise (also known as 1/f noise), channel thermal noise and induced gate noise and their correlation, thermal noise due to physical resistances such as the source/ drain, gate electrode, and substrate resistances, and shot noise due to the gate dielectric tunneling current. A complete list of the noise model parameters and explanations are given in Appendix A.

9.1 Flicker Noise Models

9.1.1 General Description

BSIM4 provides two flicker noise models. When the model selector *fnoiMod* is set to 0, a simple flicker noise model which is convenient for hand calculations is invoked. A unified physical flicker noise model, which is the default model, will be used if $fnoiMod = 1$. These two modes come from BSIM3v3, but the unified model has many improvements. For instance, it is now smooth over all bias regions and considers the bulk charge effect.

9.1.2 Equations

• $fnoiMod = 0$ (simple model)

The noise density is

(9.1.1)

$$
S_{id}(f) = \frac{KF \cdot I_{ds}}{C_{oxe}L_{eff}^{2}f^{EF}}
$$

where f is device operating frequency.

• $fnoiMod = 1$ (unified model)

The physical mechanism for the flicker noise is trapping/detrapping-related charge fluctuation in oxide traps, which results in fluctuations of both mobile carrier numbers and mobilities in the channel. The unified flicker noise model captures this physical process.

In the inversion region, the noise density is expressed as [14]

$$
(9.1.2)
$$
\n
$$
S_{id,m}(f) = \frac{k_B T q^2 \mathbf{m}_{g} I_{ds}}{C_{ox} (L_{ef} - 2 \cdot LINTNOD^2 A_{bulk} f^f \cdot 10^{10}} \left(NOLA \log \left(\frac{N_0 + N^*}{N_1 + N^*} \right) + NOIB \left(N_0 - N_1 \right) + \frac{NOIC}{2} \left(N_0^2 - N_1^2 \right) \right) + \frac{k_B T I_{ds}^2 \Delta L_{dm}}{W_{ef} \cdot (L_{ef} - 2 \cdot LINTNOD^2 f^f \cdot 10^{10}} \cdot \frac{NOIA + NOIB \cdot N_1 + NOIC \cdot N_1^2}{\left(N_1 + N^* \right)^2}
$$

where m_{eff} is the effective mobility at the given bias condition, and L_{eff} and *Weff* are the effective channel length and width, respectively. The parameter N_0 is the charge density at the source side given by

(9.1.3)

(9.1.6)

$$
N_0 = C_{oxe} \cdot V_{\text{gsteff}} / q
$$

The parameter N_l is the charge density at the drain end given by

(9.1.4)
\n
$$
N_{l} = C_{oxe} \cdot V_{gsteff} \cdot \left(1 - \frac{A_{bulk}V_{dseff}}{V_{gsteff} + 2\mathbf{n}_{t}}\right) / q
$$

*N ** is given by

$$
N^* = k_B T \cdot (C_{oxe} + C_d + CIT) / q^2
$$
\n(9.1.5)

where *CIT* is a model parameter from DC IV and C_d is the depletion capacitance.

*DL*_{clm} is the channel length reduction due to channel length modulation and given by

$$
\Delta L_{\text{clm}} = Litl \cdot \log \left(\frac{V_{ds} - V_{dseff}}{Litl} + EM \right)
$$

$$
E_{sat} = \frac{2VSAT}{m_{eff}}
$$

In the subthreshold region, the noise density is written as

(9.1.7)

$$
S_{id,subVt}(f) = \frac{NOIA \cdot k_B T \cdot I_{ds}^{2}}{W_{eff} L_{eff} f^{EF} N^{*2} \cdot 10^{10}}
$$

The total flicker noise density is

(9.1.8)
\n
$$
S_{id}(f) = \frac{S_{id,inv}(f) \times S_{id,subvt}(f)}{S_{id,subvt}(f) + S_{id,inv}(f)}
$$

9.2 Channel Thermal Noise

There are two channel thermal noise models in BSIM4. One is a chargebased model (default model) similar to that used in BSIM3v3.2. The other is the holistic model. These two models can be selected through the model selector *tnoiMod*.

• *(charge based)* The noise current is given by

$$
\overline{i_d^2} = \frac{4k_B T \Delta f}{R_{ds}(V) + \frac{L_{\text{eff}}^2}{m_{\text{eff}} |Q_{\text{inv}}|}} \cdot N T N O I
$$
\n(9.2.1)

where $R_{ds}(V)$ is the bias-dependent LDD source/drain resistance, and the parameter *NTNOI* is introduced for more accurate fitting of short-channel devices. *Qinv* is modeled by

Channel Thermal Noise

$$
Q_{inv} = W_{active} L_{active} C_{oreff}.NF \cdot \left[V_{gsteff} - \frac{A_{bulk} V_{dseff}}{2} + \frac{A_{bulk}^2 V_{dseff}}{12 \cdot \left(V_{gsteff} - \frac{A_{bulk} V_{dseff}}{2} \right)} \right]
$$

Figure 9-1a shows the noise source connection for **the iMod** = 0.

(holistic)

In this thermal noise model, all the short-channel effects and velocity saturation effect incorporated in the IV model are automatically included, hency the name "holistic thermal noise model". In addition, the amplification of the channel thermal noise through G_m and G_{mbs} as well as the induced-gate noise with partial correlation to the channel thermal noise are all captured in the new "noise partition" model. Figure 9-1b shows schematically that part of the channel thermal noise source is partitioned to the source side.

The noise voltage source partitioned to the source side is given by

(9.2.3)

$$
\overline{v_d^2} = 4k_B T \cdot \mathbf{q}_{\text{mol}}^2 \cdot \frac{V_{\text{dseff}} \Delta f}{I_{\text{ds}}}
$$

and the noise current source put in the channel region with gate and body amplication is given by

$$
(9.2.4)
$$
\n
$$
\overline{i_d}^2 = 4k_B T \frac{V_{dseff} \Delta f}{I_{ds}} [G_{ds} + \bm{b}_{moi} \cdot (G_m + G_{mbs})]^2
$$
\n
$$
-\overline{v_d}^2 \cdot (G_m + G_{ds} + G_{mbs})^2
$$

where

$$
\mathbf{q}_{\text{moi}} = \text{RNOIB} \cdot \left[1 + \text{TNOIB} \cdot L_{\text{eff}} \cdot \left(\frac{V_{\text{ssteff}}}{E_{\text{sat}} L_{\text{eff}}} \right)^2 \right]
$$
\n(9.2.5)

and

$$
\mathbf{b}_{\text{moi}} = \text{RNOIA} \cdot \left[1 + \text{TNOIA} \cdot L_{\text{eff}} \cdot \left(\frac{V_{\text{g} \text{seff}}}{E_{\text{sat}} L_{\text{eff}}} \right)^2 \right]
$$
\n(9.2.6)

where *RNOIB* and *RNOIA* are model parameters with default values 0.37 and 0.577 respectively.

9.3 Other Noise Sources Modeled

BSIM4 also models the thermal noise due to the substrate, electrode gate, and source/drain resistances. Shot noise due to various gate tunneling components is modeled as well.
Chapter 10: Asymmetric MOS Junction Diode Models

10.1 Junction Diode IV Model

In BSIM4, there are three junction diode IV models. When the IV model selector *dioMod* is set to 0 ("resistance-free"), the diode IV is modeled as resistance-free with or without breakdown depending on the parameter values of *XJBVS* or *XJBVD*. When *dioMod* is set to 1 ("breakdown-free"), the diode is modeled exactly the same way as in BSIM3v3.2 with current-limiting feature in the forward-bias region through the limiting current parameters *IJTHSFWD* or *IJTHDFWD*; diode breakdown is not modeled for *dioMod* = 1 and *XJBVS*, *XJBVD*, *BVS*, and *BVD* parameters all have no effect. When *dioMod* is set to 2 ("resistance-and-breakdown"), BSIM4 models the diode breakdown with current limiting in both forward and reverse operations. In general, setting *dioMod* to 1 produces fast convergence.

10.1.1 Source/Body Junction Diode

In the following, the equations for the source-side diode are given. The model parameters are shown in Appendix A.

• *dioMod =* **0 (resistance-free)**

$$
I_{bs} = I_{sbs} \left[\exp\left(\frac{qV_{bs}}{NJS \cdot k_B TNOM}\right) - 1 \right] \cdot f_{breakdown} + V_{bs} \cdot G_{\min}
$$

where I_{sbs} is the total saturation current consisting of the components through the gate-edge (J_{swgs}) and isolation-edge sidewalls (J_{sws}) and the bottom junction (J_{ss}) ,

(10.1.1)

$$
I_{\mathit{obs}} = A_{\mathit{seff}} J_{\mathit{ss}}(T) + P_{\mathit{seff}} J_{\mathit{ssws}}(T) + W_{\mathit{effcj}} \cdot NF \cdot J_{\mathit{sswgs}}(T)
$$
\n(10.1.2)

where the calculation of the junction area and perimeter is discussed in Chapter 11, and the temperature-dependent current density model is given in Chapter 12. In (10.1.1), *fbreakdown* is given by

(10.1.3)
\n
$$
f_{\text{breakdown}} = 1 + XJBVS \cdot \exp\left(-\frac{q \cdot (BVS + V_{bs})}{NJS \cdot k_B T NOM}\right)
$$

In the above equation, when $XJBVS = 0$, no breakdown will be modeled. If *XJBVS* < 0.0, it is reset to 1.0.

• *dioMod =* **1 (breakdown-free)**

No breakdown is modeled. The exponential IV term in (10.1.4) is linearized at the limiting current *IJTHSFWD* in the forward-bias model only.

(10.1.4)

$$
I_{bs} = I_{sbs} \left[\exp \left(\frac{qV_{bs}}{NJS \cdot k_B TNOM} \right) - 1 \right] + V_{bs} \cdot G_{\min}
$$

• *dioMod =* **2 (resistance-and-breakdown):**

Diode breakdown is always modeled. The exponential term (10.1.5) is linearized at both the limiting current *IJTHSFWD* in the forward-bias mode and the limiting current *IJTHSREV* in the reverse-bias mode.

(10.1.5)

$$
I_{bs} = I_{sbs} \left[\exp\left(\frac{qV_{bs}}{NJS \cdot k_B TNOM}\right) - 1 \right] \cdot f_{breakdown} + V_{bs} \cdot G_{min}
$$

For $di\omega Mod = 2$, if $XJBVS \le 0.0$, it is reset to 1.0.

10.1.2 Drain/Body Junction Diode

The drain-side diode has the same system of equations as those for the source-side diode, but with a separate set of model parameters as explained in detail in Appendix A.

• *dioMod =* **0 (resistance-free)**

 $(10.1.6)$

$$
I_{bd} = I_{sbd} \left[exp \left(\frac{qV_{bd}}{NJD \cdot k_B TNOM} \right) - 1 \right] \cdot f_{breakdown} + V_{bd} \cdot G_{min}
$$

where I_{sbd} is the total saturation current consisting of the components through the gate-edge (*Jsswgd*) and isolation-edge sidewalls (*Jsswd*) and the bottom junction (J_{sd}) ,

$$
I_{\rm sbd} = A_{\rm def} J_{\rm sd}(T) + P_{\rm def} J_{\rm sswd}(T) + W_{\rm effcj} \cdot NF \cdot J_{\rm sswgd}(T)
$$
\n(10.1.7)

where the calculation of the junction area and perimeter is discussed in Chapter 11, and the temperature-dependent current density model is given in Chapter 12. In (10.1.6), *fbreakdown* is given by

(10.1.8)
\n
$$
f_{\text{breakdown}} = 1 + XJBVD \cdot \exp\left(-\frac{q \cdot (BVD + V_{bd})}{NJD \cdot k_B TNOM}\right)
$$

In the above equation, when $XJBVD = 0$, no breakdown will be modeled. If $XJBVD < 0.0$, it is reset to 1.0.

• *dioMod =* **1 (breakdown-free)**

No breakdown is modeled. The exponential IV term in (10.1.9) is linearized at the limiting current *IJTHSFWD* in the forward-bias model only.

$$
I_{bd} = I_{sbd} \left[\exp\left(\frac{qV_{bd}}{NJD \cdot k_B T NOM}\right) - 1 \right] + V_{bd} \cdot G_{\min}
$$
 (10.1.9)

• *dioMod =* **2 (resistance-and-breakdown):**

Diode breakdown is always modeled. The exponential term (10.1.10) is linearized at both the limiting current *IJTHSFWD* in the forward-bias mode and the limiting current *IJTHSREV* in the reverse-bias mode.

(10.1.10)

$$
I_{bd} = I_{sbd} \left[exp \left(\frac{qV_{bd}}{NJD \cdot k_B TNOM} \right) - 1 \right] \cdot f_{breakdown} + V_{bd} \cdot G_{min}
$$

For $di\omega Mod = 2$, if $XJBVD \le 0.0$, it is reset to 1.0.

10.1.3 Total Junction Source/Drain Diode Including Tunneling

Total diode current including the carrier recombination and trap-assisted tunneling current in the space-charge region is modeled by:

$$
(10.1.11)
$$

$$
I_{bs_total} = I_{bs}
$$

\n
$$
-W_{effcj} \cdot NF \cdot J_{tswgs} (T) \cdot \left[exp \left(\frac{-V_{bs}}{NJTSSWG (T) \cdot Vtm0} \cdot \frac{VTSSWGS}{VTSSWGS - V_{bs}} \right) - 1 \right]
$$

\n
$$
-P_{s,deff} J_{tswss} (T) \left[exp \left(\frac{-V_{bs}}{NJTSSW (T) \cdot Vtm0} \cdot \frac{VTSSWS}{VTSSWS - V_{bs}} \right) - 1 \right]
$$

\n
$$
-A_{s,deff} J_{tss} (T) \left[exp \left(\frac{-V_{bs}}{NJTS (T) \cdot Vtm0} \cdot \frac{VTSS}{VTSS - V_{bs}} \right) - 1 \right] + g_{min} \cdot V_{bs}
$$

$$
(10.1.12)
$$

$$
I_{bd_total} = I_{bd}
$$

\n
$$
-W_{effcj} \cdot NF \cdot J_{sswgd}(T) \cdot \left[exp \left(\frac{-V_{bd}}{NJTSSWG(T) \cdot VtmO} \cdot \frac{VTSSWGD}{VTSSWGD - V_{bd}} \right) - 1 \right]
$$

\n
$$
-P_{d,defj}J_{sswd}(T) \left[exp \left(\frac{-V_{bd}}{NJTSSW(T) \cdot VtmO} \cdot \frac{VTSSWD}{VTSSWD - V_{bd}} \right) - 1 \right]
$$

\n
$$
-A_{d,defj}J_{tsd}(T) \left[exp \left(\frac{-V_{bd}}{NJTS(T) \cdot VtmO} \cdot \frac{VTSD}{VTSD - V_{bd}} \right) - 1 \right] + g_{min} \cdot V_{bd}
$$

BSIM4.5.0 Manual Copyright © 2005 UC Berkeley 10-5

Junction Diode IV Model

10.2 Junction Diode CV Model

Source and drain junction capacitances consist of three components: the bottom junction capacitance, sidewall junction capacitance along the isolation edge, and sidewall junction capacitance along the gate edge. An analogous set of equations are used for both sides but each side has a separate set of model parameters.

10.2.1 Source/Body Junction Diode

The source-side junction capacitance can be calculated by

$$
(10.2.1)
$$
\n
$$
C_{bs} = A_{\text{seff}} C_{\text{jbs}} + P_{\text{seff}} C_{\text{jbssw}} + W_{\text{effcj}} \cdot NF \cdot C_{\text{jbsswg}}
$$

where C_{jbs} is the unit-area bottom S/B junciton capacitance, C_{jbssw} is the unit-length S/B junction sidewall capacitance along the isolation edge, and C_{jbsswg} is the unit-length S/B junction sidewall capacitance along the gate edge. The effective area and perimeters in (10.2.1) are given in Chapter 11.

Cjbs **is calculated by**

if V_{bs} < 0

(10.2.2) (T) (T) *MJS* $\mathcal{L}_{obs} = CJS(T) \cdot \left(1 - \frac{v_{bs}}{PBS(T)}\right)$ $C_{ibs} = CJS(T) \cdot \left(1 - \frac{V_0}{T} \right)$ − $\overline{}$ $\left(\frac{1}{2} \right)$ $\overline{}$ l $= CJS(T) \cdot \int 1 -$

otherwise

$$
C_{jbs} = CJS(T) \cdot \left(1 + MJS \cdot \frac{V_{bs}}{PBS(T)}\right)
$$
\n(10.2.3)

Cjbssw **is calculated by**

$$
if V_{bs} < 0
$$

$$
C_{jbssw} = CJSWS(T) \cdot \left(1 - \frac{V_{bs}}{PBSWS(T)}\right)^{-MJSWS}
$$
\n(10.2.4)

otherwise

$$
C_{\text{jbssw}} = CJSWS(T) \cdot \left(1 + MJSWS \cdot \frac{V_{\text{bs}}}{PBSWS(T)}\right)
$$
\n(10.2.5)

Cjbsswg **is calculated by**

if V_{bs} < 0

$$
C_{jbsswg} = CJSWGS(T) \cdot \left(1 - \frac{V_{bs}}{PBSWGS(T)}\right)^{-MJSWGS}
$$
\n(10.2.6)

otherwise

$$
(10.2.7)
$$
\n
$$
C_{\text{jbsswg}} = CJSWGS(T) \cdot \left(1 - \frac{V_{\text{bs}}}{PBSWGS(T)}\right)^{-MJSWGS}
$$

10.2.2 Drain/Body Junction Diode

The drain-side junction capacitance can be calculated by

(10.2.8) $C_{bd} = A_{def}C_{jbd} + P_{deff}C_{jbdsw} + W_{effcj} \cdot NF \cdot C_{jbdswg}$

where C_{jbd} is the unit-area bottom D/B junciton capacitance, C_{jbdsw} is the unit-length D/B junction sidewall capacitance along the isolation edge, and C_{jbdswg} is the unit-length D/B junction sidewall capacitance along the gate edge. The effective area and perimeters in (10.2.8) are given in Chapter 11.

Cjbd **is calculated by**

if $V_{bd} < 0$

$$
C_{\substack{jbd}} = CJD(T) \cdot \left(1 - \frac{V_{bd}}{PBD(T)}\right)^{MJD}
$$

otherwise

(10.2.10)

(10.2.9)

$$
C_{jbd} = CJD(T) \cdot \left(1 + MJD \cdot \frac{V_{bd}}{PBD(T)}\right)
$$

Cjbdsw **is calculated by**

if $V_{bd} < 0$

(10.2.11)

$$
C_{\text{jbdsw}} = CJSWD(T) \cdot \left(1 - \frac{V_{\text{bd}}}{PBSWD(T)}\right)^{-MJSWD}
$$

otherwise

$$
C_{jbdsw} = CISWD(T) \cdot \left(1 + MISWD \cdot \frac{V_{bd}}{PBSWD(T)}\right)
$$
\n(10.2.12)

Cjbdswg **is calculated by**

if $V_{bd} < 0$

$$
C_{jbdswg} = CJSWGD(T) \cdot \left(1 - \frac{V_{bd}}{PBSWGD(T)}\right)^{-MJSWGD}
$$
\n(10.2.13)

otherwise

$$
(10.2.14)
$$
\n
$$
C_{\text{pdswg}} = CJSWGD(T) \cdot \left(1 + MJSWGD \cdot \frac{V_{bd}}{PBSWGD(T)}\right)
$$

Chapter 11: Layout-Dependent Parasitics Model

BSIM4 provides a comprehensive and versatile geometry/layout-dependent parasitcs model [15]. It supports modeling of series (such as isolated, shared, or merged source/ drain) and multi-finger device layout, or a combination of these two configurations. This model have impact on every BSIM4 sub-models except the substrate resistance network model. Note that the narrow-width effect in the per-finger device with multi-finger configuration is accounted for by this model. A complete list of model parameters and selectors can be found in Appendix A.

11.1 Geometry Definition

Figure 11-1 schematically shows the geometry definition for various source/drain connections and source/drain/gate contacts. The layout parameters shown in this figure will be used to calculate resistances and source/drain perimeters and areas.

Figure 11-1. Definition for layout parameters.

11.2 Model Formulation and Options

11.2.1 Effective Junction Perimeter and Area

In the following, only the source-side case is illustrated. The same approach is used for the drain side. The effective junction perimeter on the source side is calculated by

If (*PS* is given) if $(\textit{perMod} == 0)$ $P_{\text{seff}} = PS$ else $P_{\text{seff}} = PS - W_{\text{effcj}} \cdot NF$

Else

 Pseff computed from *NF*, *DWJ*, *geoMod*, *DMCG*, *DMCI*, *DMDG*, *DMCGT*, and *MIN*.

The effective junction area on the source side is calculated by

```
If (AS is given)
  A_{\text{seff}} = ASElse
   Aseff computed from NF, DWJ, geoMod, DMCG, DMCI, DMDG,
    DMCGT, and MIN.
```
In the above, P_{seff} and A_{seff} will be used to calculate junction diode IV and CV. *Pseff* does not include the gate-edge perimeter.

11.2.2 Source/Drain Diffusion Resistance

The source diffusion resistance is calculated by

```
If (number of source squares NRS is given)
   R_{\text{sdiff}} = NRS \cdot RSHElse if (<b><i>recoMod</i></b> == 0)Source diffusion resistance R_{\text{sdiff}} is not generated.
Else
   Rsdiff computed from NF, DWJ, geoMod, DMCG, DMCI, DMDG,
   DMCGT, RSH, and MIN.
```
where the number of source squares *NRS* is an instance parameter. Similarly, the drain diffusion resistance is calculated by

```
If (number of source squares NRD is given)
R_{ddiff} = NRD ⋅ RSH
Else if (r\text{geo}Mod == 0)
  Drain diffusion resistance R_{ddiff} is not generated.
Else
   Rddiff computed from NF, DWJ, geoMod, DMCG, DMCI, DMDG,
   DMCGT, RSH, and MIN.
```
11.2.3 Gate Electrode Resistance

The gate electrode resistance with multi-finger configuration is modeled by

(11.2.1)

$$
Regelt d = \frac{RSHG \cdot \left(XGW + \frac{W_{eff}}{3NGCON}\right)}{NGCON \cdot \left(L_{drawn} - XGL\right) \cdot NF}
$$

BSIM4.5.0 Manual Copyright © 2005 UC Berkeley 11-4

11.2.4 Option for Source/Drain Connections

Table 11-1 lists the options for source/drain connections through the model selector *geoMod*.

Table 11-1. *geoMod* **options.**

For multi-finger devices, all inside S/D diffusions are assumed shared.

11.2.5 Option for Source/Drain Contacts

Talbe 11-2 lists the options for source/drain contacts through the model selector *rgeoMod*.

Model Formulation and Options

rgeoMod	End-source contact	End-drain contact
	No R_{sdiff}	No R_{ddiff}
	wide	wide
	wide	point
	point	wide
	point	point
	wide	merged
	point	merged
	merged	wide
	merged	point

Table 11-2. *rgeoMod* **options.**

Chapter 12: Temperature Dependence Model

Accurate modeling of the temperature effects on MOSFET characteristics is important to predict circuit behavior over a range of operating temperatures (*T*). The operating temperature might be different from the nominal temperature (*TNOM*) at which the BSIM4 model parameters are extracted. This chapter presents the BSIM4 temperature dependence models for threshold voltage, mobility, saturation velocity, source/drain resistance, and junction diode IV and CV.

12.1 Temperature Dependence of Threshold Voltage

The temperature dependence of V_{th} is modeled by

$$
V_{th}(T) = V_{th}(TNOM) + \left(KT1 + \frac{KT1L}{L_{eff}} + KT2 \cdot V_{bseff}\right) \left(\frac{T}{TNOM} - 1\right)
$$
\n
$$
V_{fb}(\mathbf{T}) = V_{fb}(\mathbf{TNOM}) - KT1 \times \frac{\mathbf{a} \cdot T}{\mathbf{c} TNOM} - 1 \frac{\mathbf{a}}{\mathbf{a}}
$$
\n
$$
(12.1.2)
$$
\n
$$
V_{fb}(\mathbf{T}) = V_{fb}(\mathbf{TNOM}) - KT1 \times \frac{\mathbf{a} \cdot T}{\mathbf{c} TNOM} - 1 \frac{\mathbf{b}}{\mathbf{a}}
$$
\n
$$
(12.1.3)
$$
\n
$$
VOFF(\mathbf{T}) = VOFF(\mathbf{TNOM}) \times [1 + TVOFF \times (\mathbf{T} - TNOM)]
$$

 $(12.1.1)$

(12.1.4)

(12.2.3)

() () *VFBSDOFF T VFBSDOFF TNOM* **=** \times [1 + TVFBSDOFF \times **(T** - TNOM)]

12.2 Temperature Dependence of Mobility

The BSIM4 mobility model parameters have the following temperature dependences depending on the model selected through **TEMPMOD.**

If **TEMPMOD** = 0 ,

$$
(12.2.1)
$$
\n
$$
U0(T) = U0(TNOM) \cdot (T/TNOM)^{UTE}
$$
\n
$$
(12.2.2)
$$
\n
$$
UA(T) = UA(TNOM) + UA1 \cdot (T/TNOM - 1)
$$

$$
UB(T) = UB(TNOM) + UB1 \cdot (T/TNOM - 1)
$$

$$
UC(T) = UC(TNOM) + UC1 \cdot (T/TNOM - 1)
$$
\n
$$
(12.2.4)
$$

and

$$
UD(T) = UD(TNOM) + UD1 \times (T/TNOM - 1)
$$
\n(12.2.5)

If **TEMPMOD** = 1,

(12.2.6)

$$
U0(T) = U0(TNOM) \cdot (T/TNOM)^{UTE}
$$

(12.2.7)

 $UA(T) = UA(TNOM)[1 + UA1 \cdot (T - TNOM)]$

(12.2.8)

UB(*T*) = *UB*(*TNOM*)[1+*UB*1⋅(*T* −*TNOM*)]

(12.2.9) *UC*(*T*) =*UC*(*TNOM*)[1+*UC*1⋅(*T* −*TNOM*)]

and

(12.2.10)

 $UD(T) = UD(TNOM)[1 + UD1 \times (T - TNOM)]$

12.3 Temperature Dependence of Saturation Velocity

If **TEMPMOD** = 0, the temperature dependence of *VSAT* is modeled by

$$
(12.3.1)
$$

$$
VSAT(T) = VSAT(TNOM) - AT \cdot (T/TNOM - 1)
$$

If **TEMPMOD** = 1, the temperature dependence of *VSAT* is modeled by

(12.3.2) $VSAT(T) = VSAT(TNOM)[1 - AT \cdot (T - TNOM)]$

12.4 Temperature Dependence of LDD Resistance

If **TEMPMOD** = 0 ,

• *rdsMod* **= 0 (internal source/drain LDD resistance)** (12.4.1) $RDSW(T) = RDSW(TNOM) + PRT \cdot (T/TNOM - 1)$

$$
RDSWMIN(T) = RDSWMIN(TNOM) + PRT \cdot (T/TNOM - 1)
$$

- **•** *rdsMod* **= 1 (external source/drain LDD resistance)**
	- (12.4.3) $RDW(T) = RDW(TNOM) + PRT \cdot (T/TNOM - 1)$

$$
(12.4.4)
$$

RDWMIN (T) = RDWMIN (TNOM)+ PRT · (T/TNOM -1)

$$
RSW(T) = RSW(TNOM) + PRT \cdot (T/TNOM - 1)
$$
\n(12.4.5)

and

$$
(12.4.6)
$$

RSWMIN (T) = RSWMIN (TNOM) + PRT · (T/TNOM -1)

If **TEMPMOD** = 1 ,

• *rdsMod* **= 0 (internal source/drain LDD resistance)** (12.4.7) $RDSW(T) = RDSW(TNOM)[1 + PRT \cdot (T - TNOM)]$

(12.4.8) $RDSWMIN(T) = RDSWMIN(TNOM)[1 + PRT \cdot (T - TNOM)]$

• *rdsMod* **= 1 (external source/drain LDD resistance)**

(12.4.9) $RDW(T) = RDW(TNOM)[1 + PRT \cdot (T - TNOM)]$

(12.4.10) $RDWMIN(T) = RDWMIN(TNOM)[1 + PRT \cdot (T - TNOM)]$

(12.4.11) $RSW(T) = RSW(TNOM)[1 + PRT \cdot (T - TNOM)]$

and

$$
(12.4.12)
$$

RSWMIN(T) = RSWMIN(TNOM)[1 + PRT · (T - TNOM)]

12.5 Temperature Dependence of Junction Diode IV

• Source-side diode

The source-side saturation current is given by

$$
I_{\text{obs}} = A_{\text{seff}} J_{\text{ss}}(T) + P_{\text{seff}} J_{\text{ssws}}(T) + W_{\text{effcj}} \cdot NF \cdot J_{\text{ssws}}(T)
$$
\n(12.5.1)

where

(12.5.2)
\n
$$
J_{ss}(T) = JSS(TNOM) \cdot \exp\left(\frac{E_g(TNOM)}{v_t(TNOM)} - \frac{E_g(T)}{v_t(T)} + XTIS \cdot \ln\left(\frac{T}{TNOM}\right)\right)
$$

(12.5.3)
\n
$$
J_{\text{sws}}(T) = JSSWS(TNOM) \cdot \exp\left(\frac{\frac{E_s(TNOM)}{v_t(TNOM)} - \frac{E_s(T)}{v_t(T)} + XTIS \cdot \ln\left(\frac{T}{TNOM}\right)}{NJS}\right)
$$

and

(12.5.4)
\n
$$
J_{sswgs}(T) = JSSWGS(TNOM) \cdot exp \left(\frac{E_g(TNOM)}{k_b \cdot TNOM} - \frac{E_g(T)}{k_b \cdot T} + XTIS \cdot ln \left(\frac{T}{TNOM} \right) \right)
$$

where E_g is given in Section 12.7.

• Drain-side diode

The drain-side saturation current is given by

(12.5.5)
\n
$$
I_{sbd} = A_{deff} J_{sd}(T) + P_{deff} J_{sswd}(T) + W_{effcj} \cdot NF \cdot J_{sswgd}(T)
$$

where

(12.5.6)
\n
$$
J_{sd}(T) = JSD(TNOM) \cdot exp\left(\frac{E_g(TNOM)}{k_b \cdot TNOM} - \frac{E_g(T)}{k_b \cdot T} + XTID \cdot ln\left(\frac{T}{TNOM}\right)\right)
$$

(12.5.7)
\n
$$
J_{sswd}(T) = JSSWD(TNOM) \cdot exp\left(\frac{E_g(TNOM)}{k_b \cdot TNOM} - \frac{E_g(T)}{k_b \cdot T} + XTID \cdot ln\left(\frac{T}{TNOM}\right)\right)
$$

and

(12.5.8)

$$
J_{sswgd}(T) = JSSWGD(TNOM) \cdot exp \left(\frac{\frac{E_s(TNOM)}{k_b \cdot TNOM} - \frac{E_s(T)}{k_b \cdot T} + XTID \cdot ln \left(\frac{T}{TNOM} \right)}{NJD} \right)
$$

• trap-assisted tunneling and recombination current

$$
J_{tsswgs}(T) = J_{tsswgs}(TNOM) \cdot exp\left[\frac{-Eg(TNOM)}{k_B T} \cdot X_{tsswgs} \cdot \left(1 - \frac{T}{TNOM}\right)\right]
$$
\n(12.5.9)

$$
J_{\text{tssws}}(T) = J_{\text{tssws}}(TNOM) \cdot exp\left[\frac{-Eg(TNOM)}{k_B T} \cdot X_{\text{tssws}} \cdot \left(1 - \frac{T}{TNOM}\right)\right]
$$

(12.5.10)

$$
J_{\text{tss}}(T) = J_{\text{tss}}(TNOM) \cdot \exp\left[\frac{-Eg(TNOM)}{k_B T} \cdot X_{\text{tss}} \cdot \left(1 - \frac{T}{TNOM}\right)\right]
$$
\n(12.5.11)

$$
J_{\text{tsswgd}}(T) = J_{\text{tsswgd}}(TNOM) \cdot \exp\left[\frac{-Eg(TNOM)}{k_B T} \cdot X_{\text{tsswgd}} \cdot \left(1 - \frac{T}{TNOM}\right)\right]
$$
\n(12.5.12)

$$
J_{\text{tsswd}}(T) = J_{\text{tsswd}}(TNOM) \cdot \exp\left[\frac{-Eg(TNOM)}{k_B T} \cdot X_{\text{tsswd}} \cdot \left(1 - \frac{T}{TNOM}\right)\right]
$$

$$
J_{sd}(T) = J_{sd}(TNOM) \cdot exp\left[\frac{-Eg(TNOM)}{k_B T} \cdot X_{tsd} \cdot \left(1 - \frac{T}{TNOM}\right)\right]
$$
\n
$$
(12.5.15)
$$
\n
$$
NJTSSW(T) = NJTSSW(TNOM) \cdot \left[1 + TNJTSSW\left(\frac{T}{TNOM} - 1\right)\right]
$$
\n
$$
(12.5.16)
$$
\n
$$
NJTSW(T) = NJTSSW(TNOM) \cdot \left[1 + TNJTSSW\left(\frac{T}{TNOM} - 1\right)\right]
$$
\n
$$
(12.5.17)
$$
\n
$$
NJTS(T) = NJTS(TNOM) \cdot \left[1 + TNTJS\left(\frac{T}{TNOM} - 1\right)\right]
$$

12.6 Temperature Dependence of Junction Diode CV

• Source-side diode

The temperature dependences of zero-bias unit-length/area junction capacitances on the source side are modeled by

$$
(12.6.1)
$$

\n
$$
CJS(T) = CJS(TNOM) \cdot [1 + TCJ \cdot (T - TNOM)]
$$

\n
$$
(12.6.2)
$$

\n
$$
CJSWS(T) = CJSWS(TNOM) + TCJSW \cdot (T - TNOM)
$$

and

$$
(12.6.3)
$$

$$
CJSWGS(T) = CJSWGS(TNOM) \cdot [1 + TCJSWG \cdot (T - TNOM)]
$$

The temperature dependences of the built-in potentials on the source side are modeled by

$$
PBS(T) = PBS(TNOM) - TPB \cdot (T - TNOM)
$$
\n(12.6.4)

$$
(12.6.5)
$$
\n
$$
PBSWS(T) = PBSWS(TNOM) - TPBSW \cdot (T - TNOM)
$$

and

$$
(12.6.6)
$$
\n
$$
PBSWGS(T) = PBSWGS(TNOM) - TPBSWG \cdot (T - TNOM)
$$

• Drain-side diode

The temperature dependences of zero-bias unit-length/area junction capacitances on the drain side are modeled by

$$
CJD(T) = CJD(TNOM) \cdot [1 + TCJ \cdot (T - TNOM)]
$$
\n(12.6.7)

$$
(12.6.8)
$$

$$
CJSWD(T) = CJSWD(TNOM) + TCJSW \cdot (T - TNOM)
$$

and

$$
(12.6.9)
$$

$$
CJSWGD(T) = CJSWGD(TNOM) \cdot [1 + TCJSWG \cdot (T - TNOM)]
$$

The temperature dependences of the built-in potentials on the drain side are modeled by

$$
(12.6.10)
$$
\n
$$
PBD(T) = PBD(TNOM) - TPB \cdot (T - TNOM)
$$
\n
$$
(12.6.11)
$$

$$
PBSWD(T) = PBSWD(TNOM) - TPBSW \cdot (T - TNOM)
$$

and

$$
(12.6.12)
$$
\n
$$
PBSWGD(T) = PBSWGD(TNOM) - TPBSWG \cdot (T - TNOM)
$$

12.7 Temperature Dependences of E_g **and** n_i

• **Energy-band gap of Si** (E_g) The temperature dependence of E_g is modeled by

(12.7.1)

$$
E_g(TNOM) = 1.16 - \frac{7.02 \times 10^{-4} TNOM^2}{TNOM + 1108}
$$

and

(12.7.2)

$$
E_g(T) = 1.16 - \frac{7.02 \times 10^{-4} T^2}{T + 1108}
$$

• Intrinsic carrier concentration of Si (*nⁱ* **)** The temperature dependence of n_i is modeled by

(12.7.3) $(TNOM)$ $\overline{}$ J $\overline{}$ L L L ⋅ $= 1.45e10 \cdot \frac{2146m}{200} \cdot \sqrt{\frac{2166m}{200}}$ · exp 21.5565981 $k_{\scriptscriptstyle R} T$ *TNOM* \boxed{TNOM} $\boxed{Q_1 \leq \leq \leq CQQ_1}$ $qE_g(TNOM)$ $n_i = 1.45e$ *B g* $\sqrt{300.15}$ $\sqrt{300.15}$ $\sqrt{21.5505561}$ 2 exp 21.5565981 300.15 300.15 $1.45e10$

Chapter 13: Stress Effect Model

CMOS feature size aggressively scaling makes shallow trench isolation(STI) very popular active area isolatiohn process in advanced technologies. Recent years, strain channel materials have been employed to achieve high device performance. The mechanical stress effect induced by these process causes MOSFET performance function of the active area size(OD: oxide definition) and the location of the device in the active area. And the necessity of new models to describe the layout dependence of MOS parameters due to stress effect becomes very urgent in advance CMOS technologies.

Influence of stress on mobility has been well known since the 0.13um technology. The stress influence on saturation velocity is also experimentally demonstrated. Stress-induced enhancement or suppression of dopant diffusion during the processing is reported. Since the doping profile may be changed due to different STI sizes and stress, the threshold voltage shift and changes of other second-order effects, such as DIBL and body effect, were shown in process integration.

BSIM4 considers the influence of stress on mobility, velocity saturation, threshold voltage, body effect, and DIBL effect.

13.1Stress Effect Model Development

Experimental analysis show that there exist at least two different mechanisms within the influence of stress effect on device characteristics. The first one is mobilityrelated and is induced by the band structure modification. The second one is Vthrelated as a result of doping profile variation. Both of them follow the same 1/LOD trend but reveal different L and W scaling. We have derived a phenomenological model based on these findings by modifying some parameters in the BSIM model. Note that the following equations have no impact on the iteration time because there are no voltage-controlled components in them.

13.1.1 Mobility-related Equations

This model introduces the first mechanism by adjusting the U0 and Vsat according to different W, L and OD shapes. Define mobility relative change due to stress effect as :

$$
\mathbf{r}_{\mathbf{m}_{ff}} = \Delta \mathbf{m}_{ff} / \mathbf{m}_{ffo} = (\mathbf{m}_{ff} - \mathbf{m}_{ffo}) / \mathbf{m}_{ffo} = \frac{\mathbf{m}_{ff}}{\mathbf{m}_{ffo}} - 1
$$
 (13.1.1)

So,

$$
\frac{\mathbf{m}_{\text{ff}}}{\mathbf{m}_{\text{ffo}}} = 1 + \mathbf{r}_{\mathbf{m}_{\text{ff}}} \tag{13.1.2}
$$

Figure(13.1) shows the typical layout of a MOSFET on active layout surrounded by STI isolation. SA, SB are the distances between isolation edge to Poly from one and the other side, respectively. 2D simulation shows that stress distribution can be expressed by a simple function of SA and SB.

Fig. (13.1) shows the typical layout of a MOSFET

Fig. (13.2) Stress distribution within MOSFET channel using 2D simulation

BSIM4.5.0 Manual Copyright © 2005 UC Berkeley 13-3

Assuming that mobility relative change is propotional to stress distribution. It can be described as function of SA, SB(LOD effect), L, W, and T dependence:

(13.1.3)

$$
\mathbf{r}_{\text{mff}} = \frac{KU0}{Kstress_u0} \cdot (Inv_sa + Inv_sb)
$$

Where:

$$
Inv - sa = \frac{1}{SA + 0.5 \cdot L_{drawn}} \qquad Inv - sb = \frac{1}{SB + 0.5 \cdot L_{drawn}}
$$
\n
$$
Kstress - u0 = \left(1 + \frac{LKUO}{\left(L_{drawn} + XL\right)^{LLODKUO}} + \frac{WKUO}{\left(W_{drawn} + XW + WLOD\right)^{WLODKUO}} + \frac{PKUO}{\left(L_{drawn} + XL\right)^{LLODKUO} \cdot \left(W_{drawn} + XW + WLOD\right)^{WLODKUO}}\right) \times \left(1 + TKU0 \left(\frac{Temperature}{TNOM} - 1\right)\right)
$$

So that:

(13.1.4)

$$
\mathbf{m}_{\text{eff}} = \frac{1 + \mathbf{r}_{\text{mff}}(SA, SB)}{1 + \mathbf{r}_{\text{mff}}(SA_{\text{ref}}, SB_{\text{ref}})} \mathbf{m}_{\text{ffo}}
$$

(13.1.5)

$$
\mathbf{u}_{\text{satemp}} = \frac{1 + KVSAT \cdot \mathbf{r}_{\text{mff}}(SA, SB)}{1 + KVSAT \cdot \mathbf{r}_{\text{mff}}(SA_{\text{ref}}, SB_{\text{ref}})} \mathbf{u}_{\text{sattempo}}
$$

Where m_{effo} , \mathbf{u}_{sato} are low field mobility, saturation velocity at SA_{ref}, SB_{ref}

and SAref , SBref are reference distances between OD edge to poly from one and the other side.

BSIM4.5.0 Manual Copyright © 2005 UC Berkeley 13-4

13.1.2Vth-related Equations

Vth0, K2 and ETA0 are modified to cover the doping profile change in the devices with different LOD. They use the same 1/LOD formulas as shown in section(13.1.1), but different equations for W and L scaling:

$$
VTH0 = VTH0_{original} + \frac{KVTH0}{Kstress_vth0} \cdot (Inv_{sa} + Inv_{sb} - Inv_{sa_{ref}} - Inv_{sb_{ref}})
$$
 (13.1.6)

$$
K2 = K2_{original} + \frac{STK2}{Kstress_vth0^{100K2}} \cdot (Inv_sa + Inv_sb - Inv_sa_{ref} - Inv_sb_{ref})
$$
 (13.1.7)

$$
ETA0 = ETA0_{original} + \frac{STETAO}{Kstress_vthO^{LODETAO}} \cdot (Inv_sa + Inv_sb - Inv_sa_{ref} - Inv_sb_{ref}) \quad (13.1.8)
$$

Where:

$$
Inv_{-}sa_{ref} = \frac{1}{SA_{ref} + 0.5 \cdot L_{drawn}}
$$
\n
$$
Inv_{-}sb_{ref} = \frac{1}{SB_{ref} + 0.5 \cdot L_{drawn}}
$$
\n
$$
Kstress_{-}vth0 = 1 + \frac{LKVTH0}{(L_{drawn} + XL)^{LLODKVTH}} + \frac{WKVTH0}{(W_{drawn} + XW + WLOD)^{WLODKVTH}}
$$
\n
$$
+ \frac{PKVTH0}{(L_{drawn} + XL)^{LLODKVTH} \cdot (W_{drawn} + XW + WLOD)^{WLODKVTH}}
$$

13.1.3 Multiple Finger Device

For multiple finger device, the total LOD effect is the average of LOD effect to every finger. That is(see Fig.(13.3) for the layout for multiple finger device):

Inv
$$
-sa = \frac{1}{NF} \sum_{i=0}^{NF-1} \frac{1}{SA + 0.5 \cdot L_{drawn} + i \cdot (SD + L_{drawn})}
$$

\n*Inv*
$$
-sb = \frac{1}{NF} \sum_{i=0}^{NF-1} \frac{1}{SB + 0.5 \cdot L_{drawn} + i \cdot (SD + L_{drawn})}
$$

Fig. (13.3) Layout of multiple finger MOSFET

13.2 Effective SA and SB for Irregular LOD

General MOSFET has an irregular shape of active area shown in Fig.(13.4). To fully describe the shape of OD region will require additional instance parameters. However, this will result in too many parameters in the net lists and would massively increase the read-in time and degrade the readability of parameters. One way to overcome this difficulty is the concept of effective SA and SB similar to ref. [16].

Stress effect model described in Section(13.1) allows an accurate and efficient layout extraction of effective SA and SB while keeping fully compatibility of the LOD model. They are expressed as:

$$
\frac{1}{SA_{\text{eff}} + 0.5 \cdot L_{\text{draw}n}} = \sum_{i=1}^{n} \frac{SW_i}{W_{\text{draw}n}} \cdot \frac{1}{SA_i + 0.5 \cdot L_{\text{draw}n}}
$$
(13.2.1)

$$
\frac{1}{\text{SB}_{\text{eff}} + 0.5 \cdot L_{drawn}} = \sum_{i=1}^{n} \frac{\text{SW}_i}{W_{drawn}} \cdot \frac{1}{\text{SD}_i + 0.5 \cdot L_{drawn}}
$$
(13.2.2)

Fig.(13.4) A typical layout of MOS devices with more instance parameters (swi, sai and sbi) in addition to the traditional L and W

Chapter 14: Well Proximity Effect Model

Retrograde well profiles have several key advantages for highly scaled bulk complementary metal oxide semiconductor(CMOS) technology. With the advent of high-energy implanters and reduced thermal cycle processing, it has become possible to provide a relatively heavily doped deep nwell and pwell without affecting the critical device-related doping at the surface. The deep well implants provide a low resistance path and suppress parasitic bipolar gain for latchup protection, and can also improve soft error rate and noise isolation. A deep buried layer is also key to forming triple-well structures for isolated-well NMOSFETs. However, deep buried layers can affect devices located near the mask edge. Some of the ions scattered out of the edge of the photoresist are implanted in the silicon surface near the mask edge, altering the threshold voltage of those devices[17]. It is observed a threshold voltage shifts of up to 100 mV in a deep boron retrograde pwell, a deep phosphorus retrograde nwell, and also a triple-well implementation with a deep phosphorus isolation layer below the pwell over a lateral distance on the order of a micrometer[17]. This effect is called well proximity effect.

BSIM4 considers the influence of well proximity effect on threshold voltage, mobility, and body effect. This well proximity effect model is developed by Compact Model Council[18].
14.1 Well Proximity Effect Model

Experimental analysis[17] shows that well proximity effect is strong function of distance of FET from mask edge, and electrical quantities influenced by it follow the same geometrical trend. A phenomenological model based on these findings has been developed by modifying some parameters in the BSIM model. Note that the following equations have no impact on the iteration time because there are no voltage-controlled components in them.

14.1.1 Equations for Threshold Voltage, Body Effect, and Mobility

Due to the well proximity effect, their new equations can be described as:

$$
(14.1.1)
$$

\n
$$
Vth0 = Vth0_{org} + \text{KVTHOWE} \rightarrow \text{(SCA + WEB} \cdot \text{SCB + WEC} \cdot \text{SCC)}
$$

\n
$$
K2 = K2_{org} + \text{K2WE} \times \text{(SCA + WEB} \times \text{SCB + WEC} \times \text{SCC})
$$

\n
$$
\mathbf{m}_{ff} = \mathbf{m}_{ff,org} \times (1 + \text{KUOWE} \times \text{(SCA + WEB} \times \text{SCB + WEC} \times \text{SCC}))
$$

where SCA, SCB, SCC are instance parameters that represent the integral of the first/second/third distribution function for scattered well dopant.

14.2 Extraction of Instance Parameters (Preliminary for post-layout simulation)

14.2.1SCA, SCB, SCC calculation

Figure(14.1) shows the typical layout of a MOSFET with an irregular shape well surrounded by other retrograde implanted wells. The measurement for SCi and Wi and Li could be done by the projection of channel region (overlap of OD and PO).

Fig. (14.1) the typical layout of a MOSFET

SCA, SCB, SCC can be calculated through:

Extraction of Instance Parameters (Preliminary for post-layout simulation)

$$
SCA = \frac{\mathbf{i}}{\mathbf{i}} \frac{W_{drawn}}{w_{drawn}} \times L_{drawn}
$$

\n
$$
SCA = \frac{\mathbf{i}}{\mathbf{i}} \mathbf{e}_{n} \mathbf{e}_{n} \mathbf{e}_{S_{i}^{T}} \times L_{drawn}
$$

\n
$$
\frac{\mathbf{i}}{\mathbf{i}} \times \mathbf{e}_{n} \mathbf{e}_{i} \mathbf{e}_{i} \times \mathbf{e}_{i} \mathbf{e}_{j} \mathbf{e}_{j} \times L_{drawn}
$$

\n
$$
\frac{\mathbf{i}}{\mathbf{i}} \times \mathbf{e}_{i} \mathbf{e}_{i} \mathbf{e}_{j} \times \mathbf{e}_{j} \mathbf{e}_{j} \times L_{drawn}
$$

\n
$$
\frac{\mathbf{i}}{\mathbf{i}} \times \mathbf{e}_{j} \mathbf{e}_{i} \mathbf{e}_{j} \times \mathbf{e}_{j} \mathbf{e}_{j} \times \mathbf{e}_{j} \mathbf{e}_{j} \times \mathbf{e}_{j} \times L_{drawn}
$$

\n
$$
\frac{\mathbf{i}}{\mathbf{i}} \times \mathbf{e}_{j} \mathbf{e}_{i} \times \mathbf{e}_{j} \mathbf{e}_{j} \times \mathbf{e}_{j} \times L_{drawn}
$$

\n
$$
\frac{\mathbf{i}}{\mathbf{i}} \times \mathbf{e}_{j} \mathbf{e}_{i} \times \mathbf{e}_{j} \times L_{drawn}
$$

\n
$$
f_{A}(u) = \frac{SC_{ref}^{2}}{u^{2}}
$$

$$
(14.2.2)
$$

 $(14.2.3)$

$$
SCB = \begin{array}{c} \mathbf{i} & \mathbf{u} \\ \mathbf{i} \\ \mathbf{j} \\ \mathbf{k} \\ \mathbf{k} \\ \mathbf{i} \\ \mathbf{k} \\ \mathbf{j} \\ \mathbf{k} \\ \mathbf{k} \end{array}
$$
\n
$$
SCB = \begin{array}{c} \mathbf{i} & \mathbf{u} \\ \mathbf{j} \\ \mathbf{k} \\ \mathbf{k} \\ \mathbf{k} \\ \mathbf{k} \\ \mathbf{k} \\ \mathbf{k} \end{array}
$$
\n
$$
SCB = \begin{array}{c} \mathbf{i} & \mathbf{i} \\ \mathbf{j} \\ \mathbf{k} \\ \mathbf{k} \\ \mathbf{k} \\ \mathbf{k} \\ \mathbf{k} \end{array}
$$
\n
$$
SC_{i} + L_{down}
$$
\n
$$
C_{i} + L_{down}
$$

$$
\begin{array}{ll}\n\mathbf{i} & \mathbf{j} & \mathbf{u} \\
\mathbf{i} & \mathbf{w}_{drawn} \times L_{drawn} & \mathbf{i} \\
\mathbf{j} & \mathbf{v}_{drawn} & \mathbf{j} \\
\mathbf{k} & \mathbf{v}_{i} \\
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\mathbf{j} & \mathbf{k} & \mathbf{k} \\
\mathbf{k} & \mathbf{j} & \mathbf{k} \\
\mathbf{k} & \mathbf{j} & \mathbf{k} \\
\mathbf{k} & \mathbf{k} & \mathbf{k} \\
\
$$

(n is the number of segments in the projection of L direction. And m is the number of segments in the project of W direction.)

The impact of scattered dopants from well corners outside the projection regions can be calculated (see Fig. 14.2) as:

BSIM4.5.0 Manual Copyright © 2005 UC Berkeley 14-4

Extraction of Instance Parameters (Preliminary for post-layout simulation)

Fig. (14.2) layout for corner terms calculation

14.2.2SC Definition (for Pre-layout Simulation)

SC is defined as "The distance to a single well edge used in calculations of SCA, SCB and SCC when layout information is not available". If SCA, SCB and SCC are not given due to lack of detailed layout information, their estimation can be made by simulators based on the assumption that for most of layouts(Fig.14.3), the devices are close to only one well edge:

SCA =
$$
\frac{SC_{ref}}{W_{drawn}} \times \frac{20}{6} \times C = \frac{1}{SC_{ref}} \times SC \times \exp{\frac{20}{6}} = 10 \times \frac{SC}{SC_{ref}} \frac{30}{6} + \frac{SC_{ref}}{100} \exp{\frac{20}{6}} = 10 \times \frac{SC}{SC_{ref}} \frac{30}{6} + \frac{SC_{ref}}{100} \times \frac{20}{6} \times \frac{20}{6} = 10 \times \frac{20}{6} \times \frac{20}{6} = \frac{20}{6} \times \frac{20}{6} \times \frac{20}{6} = \frac{20}{6} \times \frac{20}{6} \times \frac{20}{6} = \frac{20}{6} \times \frac{20}{6} \times \frac{20}{6} \times \frac{20}{6} = \frac{20}{6} \times \frac{20}{6} \times \frac{20}{6} \times \frac{20}{6} \times \frac{20}{6} = \frac{20}{6} \times \frac{20}{6
$$

BSIM4.5.0 Manual Copyright © 2005 UC Berkeley 14-6

Extraction of Instance Parameters (Preliminary for post-layout simulation)

Fig. (14.3) layout for SCA, SCB, SCC estimation

For multi-finger case, still assuming there is only one well edge close to the multifinger devices as shown in Fig. 14.4, the calculation of SCA, SCB and SCC can be $(14.2.5).$

Fig. (14.4) layout for SCA, SCB, SCC estimation with multi-finger case

CHAPTER 15: Parameter Extraction Methodology

Parameter extraction is an important part of model development. The extraction methodology depends on the model and on the way the model is used. A combination of a local optimization and the group device extraction strategy is adopted for parameter extraction.

15.1 Optimization strategy

There are two main, different optimization strategies: global optimization and local optimization. Global optimization relies on the explicit use of a computer to find one set of model parameters which will best fit the available experimental (measured) data. This methodology may give the minimum average error between measured and simulated (calculated) data points, but it also treats each parameter as a "fitting" parameter. Physical parameters extracted in such a manner might yield values that are not consistent with their physical intent.

In local optimization, many parameters are extracted independently of one another. Parameters are extracted from device bias conditions which correspond to dominant physical mechanisms. Parameters which are extracted in this manner might not fit experimental data in all the bias conditions. Nonetheless, these extraction methodologies are developed specifically with respect to a given parameter's physical meaning. If properly executed, it should, overall, predict

device performance quite well. Values extracted in this manner will now have some physical relevance.

15.2 Extraction Strategy

Two different strategies are available for extracting parameters: single device extraction strategy and group device extraction strategy. In single device extraction strategy, experimental data from a single device is used to extract a complete set of model parameters. This strategy will fit one device very well but will not fit other devices with different geometries. Furthermore, single device extraction strategy can not guarantee that the extracted parameters are physical. If only one set of channel length and width is used, parameters related to channel length and channel width dependencies can not be determined.

It is suggested that BSIM4 use group device extraction strategy. This requires measured data from devices with different geometries. All devices are measured under the same bias conditions. The resulting fit might not be absolutely perfect for any single device but will be better for the group of devices under consideration. In the following, a general extraction methodology is proposed for basic BSIM4 model parameters. Thus, it will not cover other model parameters, such as those of the gate tunneling current model and RF models, etc.

15.3.1Extraction Requirements

One large size device and two sets of smaller-sized devices are needed to extract parameters, as shown in Figure 13-1.

Figure 13-1. Device geometries used for parameter extraction

The large-sized device (W \geq 10 μ m, L \geq 10 μ m) is used to extract parameters which are independent of short/narrow channel effects and parasitic resistance. Specifically, these are: mobility, the large-sized device

threshold voltage *VTH*0, and the body effect coefficients *K*1 and *K*2 which depend on the vertical doping concentration distribution. The set of devices with a fixed large channel width but different channel lengths are used to extract parameters which are related to the short channel effects. Similarly, the set of devices with a fixed, long channel length but different channel widths are used to extract parameters which are related to narrow width effects. Regardless of device geometry, each device will have to be measured under four, distinct bias conditions.

(1) I_{ds} vs. V_{gs} @ $V_{ds} = 0.05$ V with different V_{bs} . (2) I_{ds} vs. V_{ds} @ $V_{bs} = 0$ V with different V_{gs} . (3) I_{ds} vs. V_{gs} @ $V_{ds} = V_{dd}$ with different V_{bs} . (4) I_{ds} vs. $V_{ds} \otimes V_{bs} = V_{bb}$ with different V_{gs} . ($|V_{bb}|$ is the maximum body bias).

15.3.2Optimization

The optimization process recommended is a combination of Newton-Raphson's iteration and linear-squares fit of either one, two, or three variables. A flow chart of this optimization process is shown in Figure 13- 2. The model equation is first arranged in a form suitable for Newton-Raphson's iteration as shown in (14.3.1):

(14.3.1)

$$
f_{\exp}(P_{10}, P_{20}, P_{30}) - f_{sim}(P_1^{(m)}, P_2^{(m)}, P_3^{(m)}) = \frac{\text{1f}_{sim}}{\text{1f}_{P_1}} DP_1^m + \frac{\text{1f}_{sim}}{\text{1f}_{P_2}} DP_2^m + \frac{\text{1f}_{sim}}{\text{1f}_{3}} DP_3^m
$$

The variable f_{sim} () is the objective function to be optimized. The variable f_{exp} () stands for the experimental data. P_{10} , P_{20} and P_{30} represent the

desired extracted parameter values. $P_1^{(m)}$, $P_2^{(m)}$ and $P_3^{(m)}$ represent parameter values after the *m*th iteration.

Figure 13-2. Optimization flow.

To change (14.3.1) into a form that a linear least-squares fit routine can be used (i.e. in a form of $y = a + bx_1 + cx_2$), both sides of (14.3.1) are divided

by ∂f_{sim} / ∂P_1 . This gives the change in P_1 , $\Delta P_1^{(m)}$, for the next iteration such that:

$$
P_i^{(m+1)} = P_i^{(m)} + DP_i^{(m)}
$$
\n(14.3.2)

where $i=1, 2, 3$ for this example. The $(m+1)$ parameter values for P_2 and P_3 are obtained in an identical fashion. This process is repeated until the incremental parameter change in parameter values $\Delta P_i^{(m)}$ are smaller than a pre-determined value. At this point, the parameters P_1 , P_2 , and P_3 have been extracted.

15.3.3Extraction Routine

Before any model parameters can be extracted, some process parameters have to be provided. They are listed below in Table 13-1:

Table 13-1. Prerequisite input parameters prior to extraction process.

The parameters are extracted in the following procedure. These procedures are based on a physical understanding of the model and based on local optimization. (Note: *Fitting Target Data* refers to measurement data used for model extraction.)

Step 2

Step 4

Step 5

Extracted Parameters & Fitting Target Data	Devices & Experimental Data
RDSW, PRWG, PRWB, WR	R_{ds} (RDSW, W, V_{gs} , V_{bs})
Fitting Target Exp. Data: R_{ds} (RDSW, W, V_{gs} , V_{bs}	

Step 7

Step 8

Step 10

Step 13

Step 14

Step 15

Step 17

Step 18

Step 20

Step 21

Step 23

Step 24

Appendix A: Complete Parameter List

A.1 BSIM4.5.0 Model Selectors/Controllers

A.2 Process Parameters

Process Parameters

A.4 Parameters for Asymmetric and Bias-Dependent *Rds* **Model**

A.5 Impact Ionization Current Model Parameters

A.6 Gate-Induced Drain Leakage Model Parameters

A.7 Gate Dielectric Tunneling Current Model Parameters

Gate Dielectric Tunneling Current Model Parameters

A.8 Charge and Capacitance Model Parameters

Charge and Capacitance Model Parameters

A.9 High-Speed/RF Model Parameters

High-Speed/RF Model Parameters

BSIM4.5.0 Manual Copyright © 2005 UC Berkeley A-19

A.10 Flicker and Thermal Noise Model Parameters

Flicker and Thermal Noise Model Parameters

A.11 Layout-Dependent Parasitics Model Parameters

Layout-Dependent Parasitics Model Parameters

A.12 Asymmetric Source/Drain Junction Diode Model Parameters

BSIM4.5.0 Manual Copyright © 2005 UC Berkeley A-24

Asymmetric Source/Drain Junction Diode Model Parameters

Asymmetric Source/Drain Junction Diode Model Parameters

CJSWS= 5.0e-10 F/m

No -

No -

 \mathbb{N}_0 | \Box

No -

CJSWD =CJSWS

CJSWGS =CJSWS

CJSWGD =CJSWS

MJSWGS =MJSWS

MJSWGD =MJSWS

PBD=PBS

Asymmetric Source/Drain Junction Diode Model Parameters

Isolation-edge sidewall junction

Gate-edge sidewall junction capaci-

Gate-edge sidewall junction capaci-

PB Bottom junction built-in potential PBS=1.0V

tance grading coefficient

capacitance per unit area

tance per unit length

CJSWS CJSWD

CJSWGS CJSWGD

MJSWGS MJSWGD

Asymmetric Source/Drain Junction Diode Model Parameters

A.13 Temperature Dependence Parameters

Temperature Dependence Parameters

A.14 Stress Effect Model Parameters

BSIM4.5.0 Manual Copyright © 2005 UC Berkeley A-31

Stress Effect Model Parameters

A.15 Well-Proximity Effect Model Parameters

A.16 *dW* **and** *dL* **Parameters**

Range Parameters for Model Application

A.17 Range Parameters for Model Application

A.18 Notes 1-8

Note-1: If γ_1 is not given, it is calculated by

$$
\boldsymbol{g}_1 = \frac{\sqrt{2q\boldsymbol{e}_{si}NDEP}}{C_{oxe}}
$$

If γ_2 is not given, it is calculated by

$$
\boldsymbol{g}_2 = \frac{\sqrt{2q\boldsymbol{e}_{si}} NSUB}{C_{oxe}}
$$

Note-2: If *NDEP* is not given and γ_1 is given, *NDEP* is calculated from

$$
NDEP = \frac{{\bf g}_1^2 C_{oxe}^2}{2q{\bf e}_{si}}
$$

If both γ_1 and *NDEP* are not given, *NDEP* defaults to 1.7e17cm⁻³ and γ_1 is calculated from *NDEP*.

Note-3: If *VBX* is not given, it is calculated by

$$
\frac{qNDEP \cdot XT^2}{2\mathbf{e}_{si}} = \Phi_s - VBX
$$

Note-4: If *VTH*0 is not given, it is calculated by

 $VTH0 = VFB + \Phi_s + K1 \sqrt{\Phi_s - V_{bs}}$

where *VFB* = -1.0. If *VTH*0 is given, *VFB* defaults to

$$
VFB = VTH0 - \Phi_s - K1 \sqrt{\Phi_s - V_{bs}}
$$

BSIM4.5.0 Manual Copyright © 2005 UC Berkeley A-36

Note-5: If K_1 and K_2 are not given, they are calculated by

$$
K1 = g_2 - 2K2\sqrt{\Phi_s - VBM}
$$

$$
K2 = \frac{(g_1 - g_2)(\sqrt{\Phi_s - VBX} - \sqrt{\Phi_s})}{2\sqrt{\Phi_s}(\sqrt{\Phi_s - VBM} - \sqrt{\Phi_s}) + VBM}
$$

Note-6: If *CGSO* is not given, it is calculated by

If (*DLC* is given and > 0.0) if (*CGSO* < 0.0), *CGSO* = 0.0 Else $CGSO = DLC \cdot C_{oxe} - CGSL$

 $CGSO = 0.6 \cdot XJ \cdot C_{\text{ave}}$

If *CGDO* is not given, it is calculated by

If (*DLC* is given and > 0.0)

 $CGDO = DIC \cdot C_{oxe} - CGDL$

if $(CGDO < 0.0)$, $CGDO = 0.0$

Else

 $CGDO = 0.6 \cdot XJ \cdot C_{\text{ave}}$

If *CGBO* is not given, it is calculated by

 $CGBO = 2 \cdot DWC \cdot C_{ove}$

BSIM4.5.0 Manual Copyright © 2005 UC Berkeley A-37

Notes 1-8

Note-7: If *CF* is not given, it is calculated by

$$
CF = \frac{2 \cdot EPSROX \cdot \varepsilon_0}{\pi} \cdot \log \left(1 + \frac{4.0e - 7}{TOXE} \right)
$$

Note-8:

For $di\omega Mod = 0$, if $XJBVS < 0.0$, it is reset to 1.0. For $di\omega Mod = 2$, if $XJBVS \le 0.0$, it is reset to 1.0. For $di\omega Mod = 0$, if $XJBVD < 0.0$, it is reset to 1.0. For $di\omega Mod = 2$, if $XJBVD \le 0.0$, it is reset to 1.0.

Appendix B: CORE PARAMETERS

Appendix C: References

- [1] Y. C. King, H. Fujioka, S. Kamohara, K. Chen, and Chenming Hu, "DC electrical oxide thickness model for quantization of the inversion layer in MOSFETs", *Semicond. Sci. Technol*., vol. 13, pp. 963-966, 1998.
- [2] Weidong Liu, Xiaodong Jin, Yachin King, and Chenming Hu, "An efficient and accurate compact model for thin-oxide-MOSFET intrinsic capacitance considering the finite charge layer thickness", *IEEE Trans. Electron Devices*, vol. ED-46, May, 1999.
- [3] Kanyu M. Cao, Weidong Liu, Xiaodong Jin, Karthik Vasanth, Keith Green, John Krick, Tom Vrotsos, and Chenming Hu, "Modeling of pocket implanted MOSFETs for anomalous analog behavior," *Tech. Dig. of IEDM* , pp. 171-174, 1999.
- [4] Z.H. Liu, C. Hu, J.H. Huang, T.Y. Chan, M.C. Jeng, P.K. Ko, and Y.C. Cheng,"Threshold Voltage Model For Deep-Submicrometer MOSFETs," *IEEE Tran. Electron Devices*, vol. 40, pp. 86-95, 1993.
- [5] J.A. Greenfield and R.W. Dutton, "Nonplanar VLSI Device Analysis Using the Solution of Poisson's Equation," *IEEE Trans. Electron Devices*, vol. ED-27, p.1520, 1980.
- [6] H. S. Lee, "An Analysis of the Threshold Voltage for Short-Channel IGFET's," *Solid-State Electronics*, vol.16, p.1407, 1973.
- [7] Yuhua Cheng and Chenming Hu, "MOSFET Modeling & BSIM3 User's Guide," Kluwer Academic Publishers, 1999.
- [8] C. Hu, S. Tam, F.C. Hsu, P.K. Ko, T.Y. Chan and K.W. Kyle, "Hot-Electron Induced MOSFET Degradation - Model, Monitor, Improvement," *IEEE Trans. Electron Devices*, vol. 32, pp. 375-385, 1985.
- [9] T. Y. Chen, J. Chen, P. K. Ko, C. Hu, "The impact of gate-induced drain leakage current on MOSFET scaling," *Tech. Digest of IEDM*, pp. 718-721, 1987.
- [10] S. A. Parke, E. Moon, H-J. Wenn, P. K. Ko, and C. Hu, "Design for suppression of gate-induced drain leakage in LDD MOSFETs using a quasi 2D analytical model," *IEEE Trans. Electron Devices*, vol. 39, no. 7, pp 1694-1703, 1992.
- [11] Weidong Liu, Xiaodong Jin, J. Chen, M. Jeng, Z. Liu, Y. Cheng, K. Chen, M. Chan, K. Hui, J. Huang, R. Tu, P. Ko, and Chenming Hu, "BSIM3v3.2 MOSFET Model and Users' Manual," http://wwwdevice.eecs.berkeley.edu/~bsim3.
- [12] Xiaodong Jin, J-J Ou, C-H Chen, Weidong Liu, Paul Gray, and Chenming Hu, "An effective gate resistance model for CMOS RF and noise modeling," *Tech. Dig. of IEDM*, pp. 961-964, 1998.
- [13] Mansun Chan, K. Hui, R. Neff, C. Hu, P. Ko, " A Relaxation time Approach to Model the Non-Quasi-Static Transient Effects in MOSFETs," *Tech. Dig. of IEDM* , pp. 169-172, 1994.
- [14] K.K. Hung, P. Ko, C. Hu, and Y. C. Cheng, "A Physics-Based MOSFET Noise Model for Circuit Simulators," *IEEE Trans. Electron Devices*, vol. 37, no. 5, pp. 1323-1333, 1990.
- [15] Weidong Liu, Kanyu M. Cao, Xiaodong Jin, and Chenming Hu, "BSIM4.0.0 Technical Notes," http:// www-device.eecs.berkeley.edu/~bsim3/bsim4.html.
- [16] R.A.Bianchi, G.Bouche and O.Roux-dit-Buisson, "Accurate Modeling of Trench Isolation Induced Mechanical Stress Effect on MOSFET Electrical Performance," IEDM 2002, pp. 117-120.
- [17] Hook, T.B.; Brown, J.; Cottrell, P.; Adler, E.; Hoyniak, D.; Johnson, J.; Mann, R., "Lateral ion implant straggle and mask proximity effect", *IEEE Trans. Electron Devices*, Volume 50, no 9, pp 1946- 1951, Sept. 2003
- [18] Yi-Ming Sheu, Ke-Wei Su, Sheng-Jier Yang, Hsien-Te Chen, Chih-Chiang Wang, Ming-Jer Chen, and Sally Liu, "Modeling Well Edge Proximity Effect on Highly-Scaled MOSFETs", CICC 2005