Analog Front-End Design for Gb/s Wireline Receivers

Elad Alonelad@eecs.berkeley.edu

Dept. of Electrical Engineering and Computer Sciences University of California, Berkeley

Importance of Wireline Links

- П Wireline I/O performance and power increasingly critical differentiators
	- an
Ma Chassis can contain tens of 1000's of these links

Images from eetimes.com

The High-Speed Wireline Challenge

- **Din** \square Deliver as much throughput as possible
	- Multiple Tb/s for the whole chip
- \Box Using as little power as possible
	- \sim 1pJ/bit or less
- □ While dealing with "badness" of the channels

Focus of this Tutorial: RX

□ By definition, TX knows the data, RX doesn't

- Tends to place more stringent constraints on RX circuit design
- \Box RX impedance levels tend to be higher more efficient to implement signal processing there

 \Box Knowledge of RX design techniques maps directly to TX design too

Tutorial Outline

□ RX AFE Basics

□ RX AFE Circuits & Power Analysis

□ Practical Issues and Common Gotchas

\square Key Lessons

Tutorial Outline

□ RX AFE Basics

- **The Co** Basic AFE requirements
- RX Equalizers

□ RX AFE Circuits & Power Analysis □ Practical Issues and Common Gotchas \Box Key Lessons

Most Basic RX

□ Most basic RX really is "just" a comparator

- **Service Service** Converts potentially small, analog voltages on the "wire" into digital levels
- □ What can go wrong?

Key Constraint: Bit Error Rate

\Box BER = Bit Error Rate

Average # of wrong received bits / total transmitted bits

 \square Simplified example: (voltage only)

$$
BER = \frac{1}{2} erfc\left(\frac{V_{in,ampl} - V_{off}}{\sqrt{2}\sigma_{noise}}\right)
$$

$$
V_{off} = 7\sigma_{no}
$$

$$
BER = 10-12: (Vin,ampl - Voff) = 7σn
$$

 BER = 10⁻²⁰: (V_{in,ampl} - V_{off}) = 9.25σ_n

Noise Not the Only Source of Errors: ISI

Equalization

\Box Basic goal is to "flatten" channel response I.e., in time domain, get back our nice clean pulse

More Complete RX AFE

 \Box Let's look at the types of equalizers we will need

- Note that equalization is also often done on TX
- an
Ma But equalization burden is increasingly moving to RX

Continuous Time Linear Equalizer (CTLE)

 \Box Basic idea: build an analog circuit that approximates the inverse of the channel

 \Box Can't (and don't need to) exactly invert – finite gain @ high *f*

 \mathbb{R}^3 **CTLE bandwidth set by data-rate: typically** \sim **2/3*(1/T_{bit})**

CTLE Implementation, Limitations (1)

 \Box Often implemented using implicit or explicit negative feedback:

- \Box Low-pass filter usually built out of R's and C's
	- Easy & efficient way to implement large time constants
	- Most effective with small $#$ of poles & zeros
- \Box May be hard to match complicated channels Usually combined with a discrete-time equalizer

CTLE Implementation, Limitations (2)

PL R

- \Box Implication of feedback:
	- \mathbb{R}^3 Equalization is actually achieved by throwing away gain at DC…

The Fundamental Issue: Noise

- \square Linear equalizers can eliminate ISI
	- \mathbb{R}^3 But increase magnitude of noise (and high-*f* crosstalk) relative to signal
- \Box Particularly bad on channels with notches \mathbb{R}^3
	- Equalizer needs large atten./gain

Good News: There is Another Way

- \square Once you know which bit was transmitted
	- an
Ma You also know exactly what ISI that bit will cause
- **10.8**Amplitude **Amplitude 0.6 0.40.200 2 4 6 8 10 12 14 16 18 Sym bol tim ^e**

 \Box Why not directly cancel the ISI you know is coming?

Decision Feedback Equalization

- Feedback is based on "perfect" digital bits
- ISI subtracted based on those bits

Key Constraint: Timing

 \Box Need to do all of the following in at most 1 T_{bit}:

- Resolve the (small) input voltage
- Scale the bit by the coefficient
- Sum the new analog value

Complete Signal Chain

- □ VGA sometimes included to ensure DFE processes its input linearly
	- So that a linear FIR filter can be used to cancel the ISI
	- More later

Tutorial Outline

E RX AFE Basics

□ RX AFE Circuits & Power Analysis

- **E** Comparator
- **CTLE**
- **N** VGA
- **DFE**

□ Practical Issues and Common Gotchas \Box Key Lessons

Comparator Circuit Design

Comparator Power Consumption

 \Box Comparator core and latch typically just like digital gates:

$$
P_{core,latch} = C_{sw,tot} V_{DD}^2 f_{clk}
$$

 \Box Let's look more carefully at preamp power

Preamp Power Consumption (1)

□ Single-ended equiv. circuit:

 \Box Reminder and definition:

$$
\frac{g_m}{C_{self}+C_L} = A_V \omega_{bw}
$$

$$
C_{self} = \gamma \frac{g_m}{\omega_T}
$$

 \Box So:

$$
g_m = \frac{A_V \omega_{bw} C_L}{1 - A_V \omega_{bw} / (\omega_T / \gamma)}
$$

Preamp Power Consumption (2)

- □ Single-ended $A_\nu \omega_{\scriptscriptstyle\! L \nu} C$ $\omega_{\scriptscriptstyle{\iota}}$ V^{ω} bw V^{ω} *m g* =equiv. circuit: $1\!-\!A_{\scriptscriptstyle V} \bm{\omega}_{\scriptscriptstyle bw}/\! \left(\bm{\mathit{\omega}}_{\scriptscriptstyle T} / \gamma \right)$ *A* $\left| \omega_{\hbox{\tiny{pw}}}\right| \left(\left| \omega_{\tau}\right| \gamma \right)$ − V^{ω} bw / \mathcal{C}^{ω} *T* $V^* \equiv \frac{I}{I}$ * *D* R_L \equiv $\stackrel{D}{-{\hspace{-2mm}}\rightharpoonup}$ (diff. pair) *g m* $\mathbf{V_{out}}$ $\mathcal{C}_{\mathsf{self}} \overleftarrow{\mathcal{C}_{\mathsf{L}}}$ * $A_{\nu} \omega_{\nu} V^{\nu} C$ $\omega_{\scriptscriptstyle{\iota}}$ V_{in} V^{ω} bw^{ι} ι *I* =*bias* $\left(\left. \omega_{_{\! T}}/\gamma \right) \right.$ 1*A* $-A_{\nu} \omega_{\nu}$ / (ω_{ν} γ V^{ω} bw / \mathcal{C}^{ω}
	- \Box Typical 20Gb/s numbers in 65nm: **A**_v = 2, ω_{bw} = 80Grps, V^{*} = 200mV, C_L = 10fF, ω_T = 400Grps \mathbb{R}^3 **Ibias = 533** μ **A**

CTLE Circuit Design

 \Box Most common design: source-degenerated Excellent linearity – more later

CTLE Design Equations (Simplified)

CTLE Power Consumption

 \Box Identical equation as preamp:

$$
I_{bias} = \frac{A_{pk}\omega_{bw}V^{*}C_{L}}{1 - A_{pk}\omega_{bw}/(\omega_{T}/\gamma)}
$$

 \Box (Remember, CTLE is just an amplifier with gain reduced at low frequencies)

VGA Implementation and Power

 \Box Many possible implementations

- \square Source degeneration again attractive:
	- an
Ma Better linearity when gain is low
	- (Ideally) no extra loading on signal path
- \Box Equation for power once again identical to preamp
	- an
Ma Set by max. achievable gain

DFE Implementation (1)

- □ Mixed-signal FIR filter:
	- $\mathcal{L}_{\mathcal{A}}$ Digital delay
	- Analog scaling/summation

DFE Implementation (2)

 \Box Design driven by feedback latency constraint

 $\mathcal{L}_{\mathcal{A}}$ Summer output must settle within one bit time

DFE Summer Design

an
Ma **Typically want** \sim **4t for** \sim **98% settling**

A Reminder: Self-Loading

$$
I_{bias} = \frac{A_V \omega_{bw} V^* C_L}{1 - A_V \omega_{bw} / (\omega_T / \gamma)}
$$

- \Box Creates bandwidth limit
	- an
Ma No matter how much power you spend
- \Box DFE has increased "self-loading" due to taps…

DFE Summer Power Consumption

Implication

 \square There is a maximum M_{DFE} you can achieve

- \Box Don't forget that every tap has to handle worst-case possible ISI
	- Implies max. number of taps (in given tech.)

\Box What if you need more taps/larger M_{DEF} ?

Current Integrating Summer[5]

Why Current Integration Helps

Example DFE Power Numbers

□ 20Gb/s 10-tap DFE in 65nm (same process/bias as preamp example)

■
$$
M_{DFE} = 2.5
$$
, $V_{cursor} = 75$ mV, $t_{dig} = 25$ ps,
 $A_v = 1$, $C_L = 30$ fF

- **LI** Current integration summer power: \sim 337 μ A
- \Box Digital power (flip-flops, XORs, etc.): \sim 2mA w/1V V_{DD} **Typically** \sim **10fF switching cap/tap**

Tutorial Outline

E RX AFE Basics □ RX AFE Circuits & Power Analysis

□ Practical Issues and Common Gotchas

\Box Key Lessons

Comparator Offset Cancellation

- \Box Never fight offset with sizing
	- 4X penalty in capacitance and hence power for 2X reduction in offset
	- \Box Preamp is a convenient point to cancel offset
		- an
Ma Keeps cancellation DAC parasitics off of the signal path

CTLE Design Issues (1)

Cause:

 \Box \square Finite input device r_{o}

Effects:

- \Box Couples source and drain dynamics
- \Box Makes precise setting of poles/zeros more difficult

CTLE Design Issues (2)

Cause: \Box \square Tail device r_{o} , C_{par}

Effects:

- \Box r_olimits maximum A_{pk}/A_{DC}
- \Box $\mathsf{C}_{\mathsf{par}}$ limits maximum ω_{p}
	- an
Ma I.e., pole @ source associated with ω_{zero}

DFE Design: Closing the First Tap

- \square First tap timing often the most challenging
	- an
Ma Other taps already have digital inputs
	- $\mathcal{O}(\mathbb{R}^d)$ First tap must resolve/amplify small analog input signal
		- \rightarrow Larger "t_{dig}"

Option 1: Split Summation^[6]

 \Box Faster summer (less self-loading) for 1st tap

□ Watch out for non-linearity

First summer (later taps) may distort the signal

Option 2: Loop Unrolling^[7]

- \square Pushes feedback loop into digital domain
- \Box Watch out for later taps (if there are any) though MUX adds extra latency

Option 3: All CML Design^[8]

 \Box Reduces required comparator gain \Box [9] demonstrated over 20Gb/s in 65nm CMOS

DFE Physical Design

 \Box Tap DACs must be high resolution, hence large

- D Don't want DACs to increase size (cap) of signal path
	- DACs placed far away

 \Box □ Result: large C_{par} …

Impact of Tap Tail Capacitance

- \Box Leads to signal-dependent glitches in DFE response
- \Box Good news: adaptation can & will correct these errors[4]

Complete Signal Path: Linearity

Tutorial Outline

E RX AFE Basics

□ RX AFE Circuits & Power Analysis

□ Practical Issues and Common Gotchas

\square Key Lessons

Key Take-Home Lessons (1)

- \Box Receiver AFE circuit power easy to predict
	- Calculate power early and often feed back to system design
- \Box Analog circuits themselves can be very low power
	- Even for many taps (DFE)
	- Power often dominated by large number of high-speed digital structures (flops)

Key Take-Home Lessons (2)

- \Box Minimize dynamic range on the high-speed signal path
	- **Service Service** Watch out for block ordering
	- Keep DACs for e.g. offset cancellation, channel adaptation off the signal path
- \square Think about the whole system!
	- Often opportunities to save power by moving functionality/problems from one place to another

ISSCC 2014 Papers to Check Out

- \Box Papers 2.1, 26.1: Front-end design issues within state-of-the-art 20 - 28Gb/s transceivers
- \Box Papers 2.4, 2.5: Extremely energy-efficient 16-25Gb/s front-ends based on currentintegration and charge domain techniques

Acknowledgements

- \Box These slides include material from:
	- **PROF. Vladimir Stojanovic (UC Berkeley)**
	- Jared Zerbe (Apple)
	- an
M Prof. Borivoje Nikolic (UC Berkeley)

Selected References

[1] J. Zerbe et al., "Equalization and Clock Recovery for a 2.5 – 10Gb/s 2-PAM/4-PAM Backplane Transceiver Cell," *IEEE JSSC*, Dec. 2003

[2] V. Stojanovic et al., "Modeling, Analysis, and Design of High-Speed Links," Ph.D. thesis, Stanford University, Dec. 2004.

[3] S. Shekhar et al., "Design Considerations for Low-Power Receiver Front-End in High-Speed Data Links," *IEEE CICC*, Sept. 2013

[4] C. Thakkar et. Al, "A 10Gb/s 45mW Adaptive 60GHz Baseband in 65nm CMOS," *IEEE JSSC*, Apr. 2012

[5] M. Park et. al., "A 7Gb/s 9.3mW 2-Tap Current-Integrating DFE Receiver," *IEEE ISSCC*, Feb. 2007

[6] B. Leibowitz, et al., "A 7.5Gb/s 10-Tap DFE Receiver with First Tap Partial Response, Spectrally Gated Adaptation, and 2nd-Order Data-Filtered CDR," *IEEE ISSCC*, Feb. 2007

[7] K. K. Parhi, "High-speed architectures for algorithms with quantizer loops," *IEEE ISCAS*, May 1990

[8] H. Wang et al., "A 21-Gb/s 87-mW transceiver with FFE/DFE/linear equalizer in 65-nm CMOS technology ," *IEEE JSSC*, Apr. 2010