Analog Front-End Design for Gb/s Wireline Receivers

Elad Alon elad@eecs.berkeley.edu

Dept. of Electrical Engineering and Computer Sciences University of California, Berkeley

Importance of Wireline Links

- Wireline I/O performance and power increasingly critical differentiators
 - Chassis can contain tens of 1000's of these links

Images from eetimes.com

The High-Speed Wireline Challenge

- Deliver as much throughput as possible
 - Multiple Tb/s for the whole chip
- Using as little power as possible
 - ~1pJ/bit or less
- While dealing with "badness" of the channels

Focus of this Tutorial: RX

□ By definition, TX knows the data, RX doesn't

- Tends to place more stringent constraints on RX circuit design
- RX impedance levels tend to be higher more efficient to implement signal processing there

Knowledge of RX design techniques maps directly to TX design too

Tutorial Outline

□ RX AFE Basics

□ RX AFE Circuits & Power Analysis

Practical Issues and Common Gotchas

Key Lessons

Tutorial Outline

RX AFE Basics

- Basic AFE requirements
- RX Equalizers

RX AFE Circuits & Power Analysis Practical Issues and Common Gotchas Key Lessons

Most Basic RX

□ Most basic RX really is "just" a comparator

- Converts potentially small, analog voltages on the "wire" into digital levels
- □ What can go wrong?

Key Constraint: Bit Error Rate

BER = Bit Error Rate

Average # of wrong received bits / total transmitted bits

Simplified example:(voltage only)

 \square BER = 10⁻¹²: (V_{in ampl} -

$$BER = \frac{1}{2} erfc \left(\frac{V_{in,ampl} - V_{off}}{\sqrt{2}\sigma_{noise}} \right)$$
$$V_{off} = 7\sigma_{n}$$

□ BER =
$$10^{-20}$$
: (V_{in,ampl} - V_{off}) = $9.25\sigma_n$

Noise Not the Only Source of Errors: ISI

Equalization

Basic goal is to "flatten" channel response I.e., in time domain, get back our nice clean pulse

More Complete RX AFE

□ Let's look at the types of equalizers we will need

- Note that equalization is also often done on TX
- But equalization burden is increasingly moving to RX

Continuous Time Linear Equalizer (CTLE)

Basic idea: build an analog circuit that approximates the inverse of the channel

Can't (and don't need to) exactly invert – finite gain @ high f

CTLE bandwidth set by data-rate: typically ~2/3*(1/T_{bit})

CTLE Implementation, Limitations (1)

Often implemented using implicit or explicit negative feedback:

- Low-pass filter usually built out of R's and C's
 - Easy & efficient way to implement large time constants
 - Most effective with small # of poles & zeros
- May be hard to match complicated channels
 Usually combined with a discrete-time equalizer

CTLE Implementation, Limitations (2)

CTLE

- Implication of feedback:
 - Equalization is actually achieved by throwing away gain at DC...

The Fundamental Issue: Noise

- □ Linear equalizers can eliminate ISI
 - But increase magnitude of noise (and high-f crosstalk) relative to signal
- Particularly bad on channels with notches
 Equalizer needs large atten./gain

Good News: There is Another Way

- Once you know which bit was transmitted
 - You also know exactly what ISI that bit will cause
- 1 0.8 Amplitude 0.6 0.4 0.2 0 2 Δ 8 10 12 0 6 Symbol time

Why not directly cancel the ISI you know is coming?

Decision Feedback Equalization

- □ Key advantage: no noise penalty
 - Feedback is based on "perfect" digital bits
 - ISI subtracted based on those bits

Key Constraint: Timing

 \Box Need to do all of the following in at most 1 T_{bit}:

- Resolve the (small) input voltage
- Scale the bit by the coefficient
- Sum the new analog value

Complete Signal Chain

- VGA sometimes included to ensure DFE processes its input linearly
 - So that a linear FIR filter can be used to cancel the ISI
 - More later

Tutorial Outline

RX AFE Basics

RX AFE Circuits & Power Analysis

- Comparator
- CTLE
- VGA
- DFE

Practical Issues and Common Gotchas Key Lessons

Comparator Circuit Design

Comparator Power Consumption

Comparator core and latch typically just like digital gates:

$$P_{core,latch} = C_{sw,tot} V_{DD}^2 f_{clk}$$

□ Let's look more carefully at preamp power

Preamp Power Consumption (1)

Single-ended equiv. circuit:

Reminder and definition:

$$\frac{g_m}{C_{self} + C_L} = A_V \omega_{bw}$$

$$C_{self} = \gamma \frac{g_m}{\omega_T}$$

So:

$$g_{m} = \frac{A_{V}\omega_{bw}C_{L}}{1 - A_{V}\omega_{bw}/(\omega_{T}/\gamma)}$$

Preamp Power Consumption (2)

- $\Box \text{ Single-ended equiv. circuit:} \qquad g_m = \frac{A_V \omega_{bw} C_L}{1 A_V \omega_{bw} / (\omega_T / \gamma)}$ $R_L \downarrow V^* \equiv \frac{I_D}{g_m} \text{ (diff. pair)}$ $V_{\text{in}} I \downarrow \nabla^{\mathbf{C}_{\text{self}}} \stackrel{\mathbf{C}_L}{\stackrel{\mathbf{C}_L}} \qquad I_{bias} = \frac{A_V \omega_{bw} V^* C_L}{1 A_V \omega_{bw} / (\omega_T / \gamma)}$
 - Typical 20Gb/s numbers in 65nm:
 A_v = 2, ω_{bw} = 80Grps, V* = 200mV, C_L = 10fF, ω_T = 400Grps
 I_{bias} = 533μA

CTLE Circuit Design

Most common design: source-degenerated

Excellent linearity – more later

CTLE Design Equations (Simplified)

System	Circuit
$A_{pk} = g_m R_L$	$g_m = A_{pk} \omega_{bw} C_L$
$\omega_{bw} = \frac{1}{R_L C_L}$	$R_L = \frac{1}{\omega_{bw}C_L}$
$\frac{A_{pk}}{A_{DC}} = \left(1 + g_m R_s\right)$	$R_{s} = \left(\frac{A_{pk}}{A_{DC}} - 1\right) \frac{1}{g_{m}}$
$\omega_{zero} = \frac{1}{R_s C_s}$	$C_{s} = \frac{g_{m}}{\omega_{zero}} \frac{A_{DC}}{\left(A_{pk} - A_{DC}\right)}$

CTLE Power Consumption

□ Identical equation as preamp:

$$I_{bias} = \frac{A_{pk} \omega_{bw} V^* C_L}{1 - A_{pk} \omega_{bw} / (\omega_T / \gamma)}$$

(Remember, CTLE is just an amplifier with gain reduced at low frequencies)

VGA Implementation and Power

Many possible implementations

- Source degeneration again attractive:
 - Better linearity when gain is low
 - (Ideally) no extra loading on signal path
- Equation for power once again identical to preamp
 - Set by max. achievable gain

DFE Implementation (1)

- □ Mixed-signal FIR filter:
 - Digital delay
 - Analog scaling/summation

DFE Implementation (2)

Design driven by feedback latency constraint

Summer output must settle within one bit time

DFE Summer Design

Typically want $\sim 4\tau$ for $\sim 98\%$ settling

A Reminder: Self-Loading

$$I_{bias} = \frac{A_V \omega_{bw} V^* C_L}{1 - A_V \omega_{bw} / (\omega_T / \gamma)}$$

- Creates bandwidth limit
 - No matter how much power you spend
- DFE has increased "self-loading" due to taps...

DFE Summer Power Consumption

Implication

There is a maximum M_{DFE} you can achieve

10Gb/s DFE

- Don't forget that every tap has to handle worst-case possible ISI
 - Implies max. number of taps (in given tech.)

What if you need more taps/larger M_{DFE}?

Current Integrating Summer^[5]

Why Current Integration Helps

Example DFE Power Numbers

20Gb/s 10-tap DFE in 65nm (same process/bias as preamp example)

$$M_{DFE} = 2.5, V_{cursor} = 75mV, t_{dig} = 25ps, A_v = 1, C_L = 30fF$$

- \Box Current integration summer power: ~337µA
- Digital power (flip-flops, XORs, etc.): ~2mA w/1V V_{DD}
 Typically ~10fF switching cap/tap

Tutorial Outline

RX AFE Basics RX AFE Circuits & Power Analysis

Practical Issues and Common Gotchas

Key Lessons

Comparator Offset Cancellation

- Never fight offset with sizing
 - 4X penalty in capacitance and hence power for 2X reduction in offset
 - Preamp is a convenient point to cancel offset
 - Keeps cancellation DAC parasitics off of the signal path

CTLE Design Issues (1)

Cause:

Finite input device r_o

Effects:

- Couples source and drain dynamics
- Makes precise setting of poles/zeros more difficult

CTLE Design Issues (2)

Cause:

□ Tail device r_o, C_{par}

Effects:

- \Box r_o limits maximum A_{pk}/A_{DC}
- \Box C_{par} limits maximum ω_p
 - I.e., pole @ source associated with ω_{zero}

DFE Design: Closing the First Tap

- □ First tap timing often the most challenging
 - Other taps already have digital inputs
 - First tap must resolve/amplify small analog input signal
 - \rightarrow Larger "t_{dig}"

Option 1: Split Summation^[6]

□ Faster summer (less self-loading) for 1st tap

□ Watch out for non-linearity

First summer (later taps) may distort the signal

Option 2: Loop Unrolling^[7]

- Pushes feedback loop into digital domain
- Watch out for later taps (if there are any) though
 MUX adds extra latency

Option 3: All CML Design^[8]

Reduces required comparator gain
 [9] demonstrated over 20Gb/s in 65nm CMOS

DFE Physical Design

Tap DACs must be high resolution, hence large

- Don't want DACs to increase size (cap) of signal path
 - DACs placed far away

□ <u>Result</u>: large C_{par}...

Impact of Tap Tail Capacitance

- Leads to signal-dependent glitches in DFE response
- Good news: adaptation can & will correct these errors^[4]

Complete Signal Path: Linearity

Tutorial Outline

RX AFE Basics

□ RX AFE Circuits & Power Analysis

Practical Issues and Common Gotchas

Key Lessons

Key Take-Home Lessons (1)

- Receiver AFE circuit power easy to predict
 - Calculate power early and often feed back to system design
- Analog circuits themselves can be very low power
 - Even for many taps (DFE)
 - Power often dominated by large number of high-speed digital structures (flops)

Key Take-Home Lessons (2)

- Minimize dynamic range on the high-speed signal path
 - Watch out for block ordering
 - Keep DACs for e.g. offset cancellation, channel adaptation off the signal path
- □ Think about the whole system!
 - Often opportunities to save power by moving functionality/problems from one place to another

ISSCC 2014 Papers to Check Out

- Papers 2.1, 26.1: Front-end design issues within state-of-the-art 20 - 28Gb/s transceivers
- Papers 2.4, 2.5: Extremely energy-efficient 16-25Gb/s front-ends based on currentintegration and charge domain techniques

Acknowledgements

- These slides include material from:
 - Prof. Vladimir Stojanovic (UC Berkeley)
 - Jared Zerbe (Apple)
 - Prof. Borivoje Nikolic (UC Berkeley)

Selected References

[1] J. Zerbe et al., "Equalization and Clock Recovery for a 2.5 – 10Gb/s 2-PAM/4-PAM Backplane Transceiver Cell," *IEEE JSSC*, Dec. 2003

[2] V. Stojanovic et al., "Modeling, Analysis, and Design of High-Speed Links," Ph.D. thesis, Stanford University, Dec. 2004.

[3] S. Shekhar et al., "Design Considerations for Low-Power Receiver Front-End in High-Speed Data Links," *IEEE CICC*, Sept. 2013

[4] C. Thakkar et. Al, "A 10Gb/s 45mW Adaptive 60GHz Baseband in 65nm CMOS," *IEEE JSSC*, Apr. 2012

[5] M. Park et. al., "A 7Gb/s 9.3mW 2-Tap Current-Integrating DFE Receiver," *IEEE ISSCC*, Feb. 2007

[6] B. Leibowitz, et al., "A 7.5Gb/s 10-Tap DFE Receiver with First Tap Partial Response, Spectrally Gated Adaptation, and 2nd-Order Data-Filtered CDR," *IEEE ISSCC*, Feb. 2007
[7] K. K. Parhi, "High-speed architectures for algorithms with quantizer loops," *IEEE ISCAS*, May 1990

[8] H. Wang et al., "A 21-Gb/s 87-mW transceiver with FFE/DFE/linear equalizer in 65-nm CMOS technology," IEEE JSSC, Apr. 2010