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Abstract—The turbo decoder is the most challenging component
in a digital HSDPA receiver in terms of computation requirement
and power consumption, where large block size and recursive algo-
rithm prevent pipelining or parallelism to be effectively deployed.
This paper addresses the complexity and power consumption
issues at algorithmic, arithmetic and gate levels of ASIC design, in
order to bring power consumption and die area of turbo decoders
to a level commensurate with wireless application. Realized in
0.13 m CMOS technology, the turbo decoder ASIC measures
1.2 mm� excluding pads, and can achieve 10.8 Mb/s throughput
while consuming only 32 mW.

Index Terms—Channel decoding, early termination, HSDPA,
low power, turbo codes, 3G mobile communication.

I. INTRODUCTION

M ODERN wireless communication standards rely on
powerful channel coding to ensure reliable (error free)

transmission. Channel coding introduces a controlled amount
of redundancy into the transmitted data stream, which is then
exploited in the receiver to correct transmission errors induced
by noise or interference present in the wireless channel. Turbo
codes, first proposed in 1993 [1], represent a breakthrough in
channel coding techniques, since they have the potential to en-
able data transmission at rates close to the Shannon limit. They
have been adopted for error control coding in the high speed
downlink packet access (HSDPA) standard by the third-gener-
ation partnership project (3GPP), which considerably enhance
the throughput for data-centric 3G modems.

The excellent performance of turbo codes however, comes at
the expense of significant computational complexity and con-
sequently high power consumption at the receiver for proper
decoding. Indeed, the computational burden of the turbo de-
coder far exceeds that of any other component in an HSDPA re-
ceiver, especially for the higher data rate classes up to 10.8 Mb/s.
This places a considerable strain on the total power consump-
tion which must be capped in a mobile device and efficient re-
alization of turbo decoders for HSDPA has been the subject of
considerable research in recent years. Publications to date in-
dicate that two distinct approaches are being pursued: one fo-
cuses on realizing turbo decoders for 3GPP on general pur-
pose digital signal processors (DSP) ([2]–[4]). Such realizations
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have so far failed to reach the high end of HSDPA throughput
(10.8 Mb/s1) despite prohibitively high power consumption and
hardware complexity of a fully programmable architecture. The
second approach relies on dedicated circuits for the turbo de-
coding operation with some built-in flexibility to handle the dif-
ferent code-block sizes specified by the 3GPP standard [6]–[9].
Even among these circuits only one [6] met the highest HSDPA
throughput, at a staggering 1 W power consumption with a core
area of 14 mm .

Typically, the throughput of digital circuits can be increased
by architectural and circuit-level transformations such as
pipelining or parallel processing. For turbo decoders, the appli-
cability of pipelining is limited due to the presence of feedback
loops and the accompanying extra registers increase the energy
consumption. Parallel processing, on the other hand, is limited
by both data dependencies and the access bandwidth of stan-
dard memories, which causes considerable area overhead.

In this work, we pursue the increase of throughput via opti-
mization and simplification at algorithm, arithmetic, as well as
the gate level to limit the hardware requirements that give rise
to higher power consumption and larger silicon area.

A. Outline

The paper is organized as follows. In Section II the fundamen-
tals of the turbo decoding algorithm are revisited. In Section III
the high-level architecture of the turbo decoder ASIC realized
in this work is presented and the key ideas for optimization
and complexity reduction are described. Section IV is dedicated
to adapting the decoding effort to the radio link quality to re-
duce the power consumption of the implemented circuit. Fi-
nally, measurement results are presented and compared to ref-
erence and prior-art implementations in Section V. Section VI
concludes the paper.

II. ALGORITHM OVERVIEW

HSDPA employs a rate 1/3 parallel concatenated turbo code.
The corresponding encoder is comprised of two rate 1/2 re-
cursive systematic convolutional encoders, as shown in Fig. 1.
The first component encoder receives uncoded (systematic) data
bits in natural order and outputs a set of parity bits .
The second component encoder receives a permutation of the
data bits from a block interleaver and outputs a second set of
parity bits . The systematic bits and the two sets of parity

1Ref. [5] specifies a maximum raw data rate of 14.4 Mb/s with 16QAM mod-
ulation and a maximum code rate of 3/4.
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Fig. 1. Channel encoder specified for HSDPA.

Fig. 2. Simplified block diagram of a turbo decoder.

bits are then modulated onto an analog waveform (according
to the employed communication standard) and sent over the
radio channel. On the other side of the wireless link, a demodu-
lator is responsible for the reconstruction of the transmitted bits
from the received signal. However, since this signal is usually
distorted by noise and interference, the demodulator can only
obtain estimates of the systematic and two sets of parity bits.
These estimates are provided to the subsequent turbo decoder
in the form of log-likelihood ratios (LLRs) , , and
which express the ratio between the probabilities of the trans-
mitted bits being 0 and being 1, given the received analog signal.

A. The Turbo Decoding Algorithm

The basic idea behind the turbo decoding algorithm is to
iterate between two soft-input soft-output (SISO) component
decoders as illustrated in Fig. 2. A turbo-iteration corresponds
to one pass of the first component decoder followed by a pass
of the second component decoder. The operation performed by
a single component decoder is referred to as a half-iteration.

The component decoders compute a-posteriori probabilities
of the transmitted systematic bits from the LLRs of the

(interleaved) systematic bits, the associated parity bits and the
a-priori information . The latter is set to zero for the first
half-iteration in the first turbo iteration. In subsequent iterations,
each component decoder uses the so-called extrinsic informa-
tion output of the other component decoder in the pre-
ceding half-iteration as a-priori information:

Fig. 3. Example of the calculation of the forward and backward state metrics
� ��� and � �� �.

With each half-iteration, the bit error rate (BER) performance
improves, with diminishing returns after 6 to 8 turbo iterations.

B. The Maximum A-Posteriori (MAP) Algorithm

In the turbo-decoder under consideration in this paper, the
maximum a-posteriori (MAP) algorithm of Bahl, Cocke, Jelinek
and Raviv [10] (BCJR algorithm) is used for the SISO compo-
nent decoders, because it shows the best error rate performance.
Unfortunately, the exact MAP algorithm requires the computa-
tion of the log of sums of exponential functions, which is clearly
not suitable for integration in hardware. Hence, we shall only
consider a slightly suboptimal, low-complexity variation known
as max-log-MAP algorithm in the following.

The operation of this max-log-MAP algorithm is similar to
the Viterbi algorithm. The decoder traverses a trellis diagram
in which the nodes represent the 8 possible states of the speci-
fied encoder and the branches indicate the admissible state tran-
sitions. For the code under consideration, each transition from
a state to a state is associated with one of four possible
transition metrics2

(1)

The max-log-MAP algorithm traverses the trellis in both for-
ward and backward directions to compute the state metrics

and . Loosely speaking, these two metrics reflect
the probabilities that the encoder has taken a particular path to
arrive at a state or has continued from a state to the end of the
trellis, respectively. In the max-log-MAP algorithm the state
metric update is simplified compared to the computations in
the MAP algorithm using a max-log approximation [11]. The
resulting forward and backward state metric recursion requires
only add-compare-select (ACS) operations to compute

(2)

(3)

where and are the two possible predecessor states of in
the forward direction and where and are the two successor

2Since only the difference between these transition metrics is relevant for the
max-log-MAP algorithm, one of the four possible values [11] of � �� � �� can
be turned into a zero by subtracting it from the other transition metrics.
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Fig. 4. Architecture of the implemented turbo decoder with max-log-MAP decoder core.

states of in the backward direction. An example for the pro-
cedure is shown in Fig. 3.

In order to avoid storing all and of the entire
code-block, small sub-blocks (windows) are usually processed
in a max-log-MAP decoder realization. In the forward recur-
sion the state metrics at the end of a specific window can be
used as initial probabilities for the next window. Because the
backward state metrics are computed in the opposite direction,
a dummy-backward recursion must be performed on some
trellis steps in advance to generate a reliable set of state metrics
as starting points. The constraint length of the convolutional
encoder hereby defines a lower bound for the required number
of trellis steps. Simulations have shown that for the codes in
HSDPA a dummy-backward recursion on less than 24 bits
degrades decoding performance significantly. As an alternative
to the dummy-backward recursion, the starting points for each
window between subsequent turbo iterations can be stored
[12]. However, this approach is less attractive for HSDPA with
code-block sizes of up to 5114 due to the remarkable memory
demand.

Once all and of a particular window have been
obtained, the a-posteriori output of the max-log-MAP de-
coder can be computed. To this end, the decoder must consider
the state transitions associated with and the ones
associated with separately and then computes

(4)

C. Extrinsic Scaling

The approximation used in the max-log-MAP algorithm
causes an overestimation of the extrinsic information in the
turbo decoder, which results in a decoding performance degra-
dation (c.f., Section V). This error can be reduced by attenuating

the extrinsic information with a scaling factor smaller than one
[13]. Furthermore, the corresponding multiplication between
subsequent half-iterations reduces the correlation between the
inputs of the component decoders.

III. TURBO DECODER ASIC ARCHITECTURE

With low power and small chip size in mind, our realization
of the 10.8 Mb/s HSDPA turbo decoder is based on the archi-
tecture shown in Fig. 4. In this design, three input RAMs, each
with a size of 25 kb, store one block of the LLRs of the sys-
tematic and both sets of parity bits using a 5-bit quantization.
In each clock cycle, a pair of inputs consisting of the LLR of
a systematic bit and the LLR of an associated parity bit enter
the max-log-MAP decoder core together with the corresponding
a-priori information obtained from a fourth RAM that stores the
extrinsic information that is passed between the successive com-
ponent decoder iterations. The max-log-MAP decoder outputs
the a-posteriori information and the extrinsic information. The
a-posteriori information is used to derive the binary output of the
turbo decoder and to check criteria for early termination (c.f.,
Section IV) of the turbo decoding process. The extrinsic infor-
mation is multiplied with a 6 bit scaling factor (Section II-C).
The result of this scaling is then written back to the 30 kb3

extrinsic information memory which must be run at twice the
clock rate of the max-log-map decoder to allow for a read- and
a write-operation in each system clock cycle.

A. Max-Log-MAP Decoder Core

The high-level architecture of the max-log-MAP decoder is
similar to what has been described in [14]. It is designed to
process, on average, one trellis step per clock cycle using three
state metric recursion units as shown in Fig. 4. These three
units perform the forward, backward and dummy-backward
calculations on three successive windows in parallel. To be

3Note that simulations show that without scaling the word length, the extrinsic
memory needs to be 7-bit instead of 6-bit wide, which would result in 5 kb more
on-chip memory.
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Fig. 5. Comparison of add-compare-select unit implementation in the state
metric recursions.

on the safe side a conservative approach with a window size
of 40 trellis steps has been adopted in our design to guar-
antee reliable results from the dummy-backward computation
(c.f., Section II-B). Similar to what is described in [14], a
cache-memory is employed to overcome the memory-access
bandwidth bottleneck to the input and the extrinsic-information
memories. However, in contrast to the design described in [14],
the present implementation first computes and
stores only this intermediate result together with [15]
in three single-port -RAMs. Compared to storing all three
individual terms ( , , and ) that contribute to
the computation of the -metrics in (1), this measure reduces
cache memory storage requirements and avoids redundant
computations. The forward state metrics are computed on one
window in advance and stored in the A-RAM, making them
available for the LLR output computation when the backward
state metrics of the particular window are calculated. To achieve
a decoding rate of 1 bit/cycle, the A-RAM must operate at twice
the clock rate to enable a read- and a write-operation in each
system clock cycle.

1) ACS Units: In high-speed MAP decoder implementations
the maximum operating frequency is usually limited by the
recursive state metric computation, which can not simply be
pipelined or parallelized due to the presence of the feedback
loop. Hence, we shall focus on measures for reducing the
complexity of the state metric recursions to shorten the critical
path and to reduce area and power consumption. A prior-art
implementation of the ACS unit for state metric recursions ([7])
is shown in Fig. 5(a), where an error correction term is selected
from a look-up table (LUT) and added to the output of the ACS
unit to mitigate the performance loss associated with the use
of the max-log approximation. Because state metrics increase
with time, normalization is performed by subtracting a bias
that is computed outside the ACS recursion, further increasing
complexity.

The present realization avoids the significant cost of the
lookup table approach by using extrinsic-scaling to close
the error rate performance gap between the MAP and the
max-log-MAP algorithm. To solve the problem of increasing

state metrics, the max-log-MAP algorithm has been im-
plemented with modulo normalization [16] using a 12-bit
quantization for the state metrics (c.f., [17]). This technique,
known from Viterbi decoder implementations, achieves the
renormalization with a controlled overflow in the data path and
requires only an additional 3-input XOR gate in each ACS unit.
In summary, the reduced-complexity state metric recursion with
the ACS implementations shown in Fig. 5(b) achieves a 50%
improvement in speed at a 45% reduction in area compared to
the prior-art implementation in Fig. 5(a).

B. Interleaver

Interleavers for turbo codes scramble the data in a
pseudo-random order to minimize the correlation between
the outputs of component encoders. Hence, by design, the inter-
leaved address pattern specified for HSDPA [18] exhibits little
regularity. Not surprisingly, the rules for generating interleaved
addresses require complex, hardware expensive operations. The
complexity of the address generation rule is compounded by
the need to support large code-block sizes up to 5114 bits per
block. Hence, simply storing the interleaved order of addresses
requires up to 65 kb of dedicated interleaver address memory
[6] and separate logic to load this memory quickly when the
code-block size (i.e., the interleaver address pattern) changes.

In order to avoid such overhead, our design relies on
on-the-fly address generation that is more economic in terms
of area and that facilitates fast switching between different
code-block sizes. Unfortunately, implementation of such a
real-time address generator typically introduces a timing
bottleneck for the turbo decoder, which has to be removed.

In the interleaver specification for the turbo codes in HSDPA,
an interleaver matrix with , 10 or 20 rows and

, depending on the code-block size, is first filled
with ascending numbers. Then, intra-row and inter-row permu-
tations are performed to generate the desired interleaved order
of addresses, which can be read out of the matrix column-by-
column. The interleaver matrix does not have to be precomputed
and stored, because a closed-form expression for the interleaved
address at a specific position in the matrix can be
derived from

(5)

using standard-specific patterns Q and T that are stored in
lookup tables. The derivation requires a preparatory phase,
in which a prime number is derived
directly from the code-block size, the base-sequence for the
intra-row permutation is computed and stored in a 256 9b
s-RAM, and the sequence of R permuted 7 bit prime numbers
is pre-calculated and stored in registers to be available during
the on-the-fly address generation.

Our solution to the main challenge of the preprocessing block,
the recursive generation of , is to exploit interdependencies
and irregular calculation rules given by the standard, as de-
scribed in [19]. The preparatory phase in our turbo decoder
ASIC can be completely hidden during the first non-interleaved
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Fig. 6. Low-complexity implementation of the interleaver address generation.

max-log-MAP decoder run and therefore does not slow down
the decoding process when the code-block size is switched.

During the on-the-fly address generation the computation of
addresses X for the s-RAM access is resource intensive due to
the 9b 7b multiplication and 15b 9b modulo operation (c.f.
(5)). Our solution to this critical speed bottleneck uses a similar
approach to that used in the processor-based turbo decoder re-
cently published in [8].

With , the distributivity of the modulo opera-
tion

(6)

can be exploited together with the fact, that is an incre-
menting counter, to reduce the generation of X to a recursive
structure :

:
:

(7)

With a maximum of 20 different , which repeat with the
incrementing row counter , the modulo operation for gen-
erating can be realized with a simple recursive subtraction in
the preparatory phase. The pre-computed are stored in a reg-
ister bank as can be seen in Fig. 6. According to (7) the modulo
operation in of (5) can then be replaced with an ACS struc-
ture for updating and a register bank for storing the addresses.

The resulting address generator provides 1 address per
system clock cycle and consumes 1/3 of the logic gates of the
turbo decoder. The share of the interleaver’s power consump-
tion is considerably lower, less than 2% of the total power,
thanks to logic depth reduction by the arithmetic transforma-
tions described above, as well as extensive gating of unused
sub-blocks.

IV. SNR DEPENDENT ENERGY SAVING TECHNIQUES

In wireless communication systems the decoding effort
required to achieve reliable transmission strongly depends on
the quality of the radio link. Due to the iterative nature of turbo

Fig. 7. Frame error rate decoding performance of the implemented turbo de-
coder for different � .

decoders, controlling the maximum number of turbo iterations
enables the decoding effort to be adjusted in discrete

steps. With and the decoder throughput required for
a transmission data rate, the system clock frequency and the
associated minimum supply voltage, as well as the resulting
power consumption of the turbo decoder are defined.

In turbo decoding, the number of decoding iterations is intrin-
sically linked to the SNR performance. Under higher SNR con-
ditions, the number of iterations needed to achieve a given target
frame error rate (FER) of the decoded code-blocks (frames) is
reduced. However, the actual number of iterations required for
a particular code-block to be decoded is not known until the
decoding process is finished.

We introduce an SNR-dependent constraint to set a limit for
, above which the probability of the needed number of

iterations to achieve a given FER becomes negligible. In Fig. 7
the decoding performance of our turbo decoder implementation
is shown with different . It can be seen that required
for a specific FER is indeed a strong function of the SNR. An
example of an FER limit is shown by the dashed line against
which can be adjusted according to the SNR. An FER
limit of 0.5% will satisfy the HSDPA requirements as specified
in [20].

Setting an adaptive limit to that is SNR-dependent,
allows the frequency and voltage to be scaled according to the
needed decoding effort and thus, the energy efficiency of the
turbo decoder can be improved. Nevertheless, due to the fact
that the noise in a radio link is distributed randomly, many code-
blocks require less iterations than to be decoded. Using an
on-line stopping criterion to judge when further turbo iterations
are redundant enables early termination to be performed before

and the power to be subsequently gated off until the next
code-block is available for decoding.

One of the stopping criteria suitable for silicon integration
is the hard-decision aided (HDA) stopping criterion, where the
hard-decisions of the a-posteriori decoder core output after sub-
sequent turbo iterations are compared. When all of them match,
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TABLE I
EXAMPLE OF TURBO DECODER CONFIGURATION FOR MINIMUM ENERGY DISSIPATION AT A THROUGHPUT OF � � ���� ����

AND AN ADJUSTED NUMBER OF TURBO ITERATIONS �

it is assumed that no changes will occur with further turbo iter-
ations and early termination is performed [21]. In a variant of
the HDA criterion, the hash HDA criterion, the hard-decisions
are fed into a linear feedback shift register (LFSR) to generate
a hash sum, which is compared with the hash sum computed in
the previous iteration.

In our turbo decoder a 16 bit LFSR with the characteristic
polynomial has been implemented for the
hash HDA stopping criterion. With regards to the influence of
early termination, the difference between the HDA and the hash
HDA criterion implemented in our ASIC is negligible. This
is true in terms of the BER and average number of iterations

at which the decoding process is stopped. Choosing a
hash HDA stopping criterion reduces design complexity for the
turbo decoder output stage. The implementation requires only
two 16-bit register banks, one for generating the hash sum and
a further one for storing the hash sum of the previous iteration.
Furthermore, decoding is stopped only after half-iterations
in natural order, where the bits are always in correct order
and no final re-alignment of out-of-order data needs to be
performed. Compared to the prior-art implementation with the
HDA criterion, more than 5 kb of memory has been saved.

The combination of an economic stopping criterion imple-
mentation and the new approach of setting a variable limit to
the number of turbo iterations to minimize the clock frequency
and the associated supply voltage reduces energy dissipation
significantly. Setting the SNR-dependent constraint on is
supported by our turbo decoder implementation, however, con-
trolling according to the SNR estimation is performed on
system level. The proposed sequence of steps used to configure
the turbo decoder for minimum energy dissipation is summa-
rized in Table I via an example.

V. IMPLEMENTATION RESULTS

Power measurements of fabricated chips (see Fig. 9) have
been performed on a digital tester and on a circuit board test
environment. The fixed-point simulation model of the imple-
mented design has been verified in the test environment through
matching intermediate and final soft-outputs in a debug mode
and the decoded binary bitstream during normal operation.

In Fig. 8 the BER of the integrated turbo decoder is com-
pared with the simulated BER of floating-point models of
turbo decoders using the MAP algorithm, the max-log-MAP
algorithm and the implemented max-log-MAP with extrinsic
scaling. It can be seen that the turbo decoder with extrinsic
scaling performs 0.3 dB better than the turbo decoder with the

Fig. 8. Bit error rate decoding performance comparison of MAP algorithms
and the implemented turbo decoder.

Fig. 9. Die photo of the implemented turbo decoder.

max-log-MAP algorithm and lies within only 0.1 dB of the
turbo decoder with the optimum MAP algorithm. Further, an
implementation loss of less than 0.02 dB has been achieved
with proper quantization and the use of modulo normalization
to avoid saturation in the state metric recursions.

The first column in Table II provides a summary of the key
characteristics of our preferred implementation of turbo decoder
ASIC, while column two shows an alternative serving as ref-
erence point for comparison. Both designs are implemented in
the same 0.13 m CMOS technology and based on the max-
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TABLE II
COMPARISON OF THE IMPLEMENTED TURBO DECODER WITH REFERENCE DESIGN AND PRIOR ART

Fig. 10. Average power consumption of the implemented turbo decoder as a
function of early termination and with scaling the frequency and supply voltage.

log-MAP algorithm and use the same high-level VLSI architec-
ture of the turbo decoder and decoder core.

A. Comparison With Reference Design

The reference design in column two achieves the required
throughput of 10.8 Mb/s at the nominal supply voltage of 1.2 V.
However, the width of the input RAMs and the width of the
extrinsic RAM have been chosen more conservatively (8 in-
stead of 5 bits and 7 instead of 6 bits, respectively). In addi-
tion to this, the design provides no support for early termination
and does not employ the algorithm optimizations discussed in
Section III-B. When neglecting the influence of the increased
RAM size mm , the die area and power
of this design are comparable to the preferred ASIC implemen-
tation. However, the preferred turbo decoder shows a better de-
coding performance (extrinsic scaling) and provides significant
timing-margin to allow voltage scaling. As can be seen from the
comparison in the table, the gain in speed is achieved without
suffering an increase in area and power as a result of the low-
complexity implementation discussed in Section III-B. The im-
provement in maximum frequency permits the supply voltage
to be scaled down for the target throughput to 0.87 V, which re-
duces the power consumption by almost 50% to only 32 mW.

B. Comparison With Prior Art

In the last three columns of Table II other published 3GPP-
compliant turbo decoder ASICs are shown. In [6] two trellis
steps are computed in each clock cycle to achieve high through-
puts. Therefore, the chip can easily provide the fastest HSDPA
throughput of 10.8 Mb/s, but the immense overhead in logic
cells and memory causes a high power consumption and a large
die size. The unified Viterbi/turbo decoder ASIC in [7] and
the processor-based turbo decoder in [8] can not achieve the
high throughput requirements for HSDPA. Even with scaling the
throughput to 0.13 m CMOS with a scaling factor of per
technology generation,4 10.8 Mb/s can barely be achieved with
maximum 6 turbo iterations by [8]. The present turbo decoder
implementation provides far more than the required HSDPA
throughput at the smallest die size, lowest power consumption
and best energy efficiency of all designs.

C. Average Power Consumption Over SNR

Fig. 10 shows the average power consumption of the imple-
mented turbo decoder as a function of the . In the first
curve, and have been fixed to 1.0 V and 7.5 itera-
tions respectively, to show the effect of early termination alone.
The power consumption decreases with , because the turbo
decoder is shut down instead of performing unnecessary turbo
iterations.5 In the second and third curve, additionally the fre-
quency and both, the frequency and the supply voltage are re-
duced according to the SNR-dependent constraint on fol-
lowing the dashed line in Fig. 7. E.g., the power consumption
drops from 58 mW to 20 mW at due to early
termination and to only 8 mW with an additional scaling of the
frequency and voltage.

VI. CONCLUSIONS

Turbo coded data transmission greatly enhances reliable data
throughput but its real-time application requires exceptional
computational power, which often drives integrated circuits
performing such a task to the most advanced CMOS technology

4A detailed table with all designs scaled to 0.13 �m CMOS technology has
been given in [19].

5The average power consumption as a function of the � �� has been ob-
tained as the product of the measured power consumption per turbo-iteration
and the number of iterations � obtained from bit-true fixed-point simula-
tions.
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to contain power and silicon area consumption. In an HSDPA
digital receiver the turbo decoder is the most challenging
component, where large block size and recursive algorithm pre-
vent pipelining or parallelism to be effectively deployed. The
complexity and power consumption issues of HSDPA turbo
decoding have been addressed in this paper at algorithmic,
arithmetic and gate levels of ASIC design, in order to bring its
power consumption and die area down to a level commensurate
with wireless application. Extrinsic scaling has been introduced
to allow the max-log-MAP algorithm to retain its simplicity,
yet come close to SNR performance of the MAP algorithm.
The use of modulo normalization minimizes complexity in
the ACS units. Interleaver address generation takes advantage
of the fact that the inputs of the address generator follow a
regular pattern, and hence large multiply-modulo stages can
be avoided. Dynamic assignment of maximum number of
iterations according to radio link SNR quality allows clock fre-
quency to be adjusted dynamically, and supply voltage scaled
down when clock frequency is low. Within a given frequency
early stopping criterion has been implemented to help gate off
power when not needed, and the hash sum implementation of
the stopping criterion proves to be both effective and elegant in
its simplicity.

Without going to the state-of-the-art CMOS technology,
the 0.13 m CMOS realization of the HSDPA turbo decoder
demonstrates 30 mW power consumption and 1.2 mm die size
are sufficient to achieve 10.8 Mb/s throughput, the highest in
its class.
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