
Design Compiler®

User Guide
Version D-2010.03-SP2, June 2010

Design Compiler User Guide, version D-2010.03-SP2 ii

Copyright Notice and Proprietary Information
Copyright © 2010 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary
information that is the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and
may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may
be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without
prior written permission of Synopsys, Inc., or as expressly provided by the license agreement.

Right to Copy Documentation
The license agreement with Synopsys permits licensee to make copies of the documentation for its internal use only.
Each copy shall include all copyrights, trademarks, service marks, and proprietary rights notices, if any. Licensee must
assign sequential numbers to all copies. These copies shall contain the following legend on the cover page:

“This document is duplicated with the permission of Synopsys, Inc., for the exclusive use of
__ and its employees. This is copy number __________.”

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks (®)
Synopsys, AMPS, Astro, Behavior Extracting Synthesis Technology, Cadabra, CATS, Certify, CHIPit, Design Compiler,
DesignWare, Formality, HAPS, HDL Analyst, HSIM, HSPICE, Identify, Leda, MAST, ModelTools, NanoSim, OpenVera,
PathMill, Physical Compiler, PrimeTime, SCOPE, Simply Better Results, SiVL, SNUG, SolvNet, Syndicated, Synplicity,
Synplify, Synplify Pro, Synthesis Constraints Optimization Environment, TetraMAX, the Synplicity logo, UMRBus, VCS,
Vera, and YIELDirector are registered trademarks of Synopsys, Inc.

Trademarks (™)
AFGen, Apollo, Astro-Rail, Astro-Xtalk, Aurora, AvanWaves, BEST, Columbia, Columbia-CE, Confirma, Cosmos,
CosmosLE, CosmosScope, CRITIC, CustomExplorer, CustomSim, DC Expert, DC Professional, DC Ultra, Design
Analyzer, Design Vision, DesignerHDL, DesignPower, DFTMAX, Direct Silicon Access, Discovery, Eclypse, Encore,
EPIC, Galaxy, Galaxy Custom Designer, HANEX, HapsTrak, HDL Compiler, Hercules, Hierarchical Optimization

Technology, High-performance ASIC Prototyping System, HSIM
plus

, i-Virtual Stepper, IICE, in-Sync, iN-Tandem, Jupiter,
Jupiter-DP, JupiterXT, JupiterXT-ASIC, Liberty, Libra-Passport, Library Compiler, Magellan, Mars, Mars-Rail, Mars-Xtalk,
Milkyway, ModelSource, Module Compiler, MultiPoint, Physical Analyst, Planet, Planet-PL, Polaris, Power Compiler,
Raphael, Saturn, Scirocco, Scirocco-i, Star-RCXT, Star-SimXT, StarRC, System Compiler, System Designer, Taurus,
TotalRecall, TSUPREM-4, VCS Express, VCSi, VHDL Compiler, VirSim, and VMC are trademarks of Synopsys, Inc.

Service Marks (SM)
MAP-in, SVP Café, and TAP-in are service marks of Synopsys, Inc.

SystemC is a trademark of the Open SystemC Initiative and is used under license.
ARM and AMBA are registered trademarks of ARM Limited.
Saber is a registered trademark of SabreMark Limited Partnership and is used under license.
All other product or company names may be trademarks of their respective owners.

Contents

What’s New in This Release . xviii

About This Manual . xviii

Customer Support. xxi

1. Introduction to Design Compiler

Design Compiler and the Design Flow . 1-2

Design Compiler Family . 1-3

DC Expert . 1-4

DC Ultra . 1-4

HDL Compiler Tools. 1-5

DesignWare Library . 1-5

DFT Compiler . 1-5

Power Compiler . 1-5

Design Vision. 1-5

2. Design Compiler Basics

The High-Level Design Flow. 2-2

Running Design Compiler . 2-4

Design Compiler Interfaces . 2-5

Setup Files. 2-5

Starting Design Compiler. 2-7

Exiting Design Compiler . 2-8

Opening and Closing the GUI in dc_shell . 2-8
iii

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Getting Command Help . 2-9

Using Command Log Files . 2-10

Using the Filename Log File . 2-10

Using Script Files. 2-10

Support for Multicore Technology . 2-11

Support for Multicorner-Multimode Designs . 2-12

Working With Licenses . 2-12

Listing the Licenses in Use . 2-12

Getting Licenses . 2-13

Enabling License Queuing. 2-13

Releasing Licenses . 2-14

Following the Basic Synthesis Flow . 2-15

A Design Compiler Session Example . 2-20

3. Preparing Design Files for Synthesis

Managing the Design Data . 3-2

Controlling the Design Data. 3-2

Organizing the Design Data. 3-2

Partitioning for Synthesis . 3-4

Partitioning for Design Reuse . 3-4

Keeping Related Combinational Logic Together . 3-5

Registering Block Outputs . 3-6

Partitioning by Design Goal . 3-7

Partitioning by Compile Technique. 3-7

Keeping Sharable Resources Together . 3-8

Keeping User-Defined Resources With the Logic They Drive 3-8

Isolating Special Functions . 3-9

HDL Coding for Synthesis. 3-10

Writing Technology-Independent HDL . 3-11
Inferring Components . 3-11
Using Synthetic Libraries . 3-13
Designing State Machines . 3-15

Using HDL Constructs . 3-16
General HDL Constructs. 3-17
Using Verilog Macro Definitions . 3-20
Contents iv

Design Compiler User Guide Version D-2010.03-SP2
Using VHDL Port Definitions. 3-20

Writing Effective Code . 3-21
Guidelines for Identifiers . 3-21
Guidelines for Expressions . 3-22
Guidelines for Functions . 3-23
Guidelines for Modules . 3-24

4. Working With Libraries

Selecting a Semiconductor Vendor. 4-2

Understanding the Library Requirements . 4-2

Technology Libraries . 4-2

Symbol Libraries . 4-4

DesignWare Libraries . 4-4

Specifying Libraries . 4-5

Specifying Technology Libraries . 4-5
Target Library . 4-5
Link Library . 4-5

Specifying DesignWare Libraries. 4-7

Specifying a Library Search Path . 4-8

Loading Libraries . 4-8

Listing Libraries. 4-8

Reporting Library Contents. 4-9

Specifying Library Objects . 4-9

Directing Library Cell Usage . 4-10

Excluding Cells From the Target Library . 4-10

Specifying Cell Preferences. 4-10

Library-Aware Mapping and Synthesis . 4-11

Generating the ALIB file. 4-12

Using the ALIB library . 4-12

Removing Libraries From Memory . 4-13

Saving Libraries . 4-13

5. Working With Designs in Memory

Design Terminology . 5-2
Chapter 1: Contents
1-vContents v

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
About Designs . 5-2
Flat Designs . 5-2
Hierarchical Designs. 5-2

Design Objects . 5-2
Relationship Between Designs, Instances, and References 5-4
Reporting References. 5-5
Using Reference Objects . 5-5

Reading Designs . 5-6

Commands for Reading Design Files . 5-6
Using the analyze and elaborate Commands. 5-6
Using the read_file Command . 5-8

Reading HDL Designs . 5-10

Reading .ddc Files . 5-11

Reading .db Files. 5-11

Listing Designs in Memory . 5-11

Setting the Current Design . 5-12

Using the current_design Command . 5-13

Linking Designs . 5-13

Locating Designs by Using a Search Path. 5-15

Changing Design References . 5-15

Listing Design Objects . 5-16

Specifying Design Objects . 5-17

Using a Relative Path . 5-17

Using an Absolute Path . 5-18

Creating Designs . 5-19

Copying Designs. 5-19

Renaming Designs . 5-20

Changing the Design Hierarchy . 5-21

Adding Levels of Hierarchy . 5-22
Grouping Cells Into Subdesigns . 5-22
Removing Levels of Hierarchy . 5-25

Ungrouping Hierarchies Explicitly During Optimization 5-27

Ungrouping Hierarchies Automatically During Optimization 5-28

Merging Cells From Different Subdesigns . 5-30
Contents vi

Design Compiler User Guide Version D-2010.03-SP2
Editing Designs. 5-31

Translating Designs From One Technology to Another. 5-33

Procedure to Translate Designs. 5-33

Restrictions on Translating Between Technologies . 5-34

Removing Designs From Memory . 5-34

Saving Designs. 5-35

Commands to Save Design Files. 5-35
Using the write Command . 5-35
Using the write_milkyway Command . 5-36

Saving Designs in .ddc Format . 5-36

Ensuring Name Consistency Between the Design Database and the Netlist . . 5-37
Naming Rules Section of the .synopsys_dc.setup File. 5-37
Using the define_name_rules -map Command . 5-37
Resolving Naming Problems in the Flow . 5-38

Working With Attributes . 5-40

Setting Attribute Values . 5-41
Using an Attribute-Specific Command . 5-41
Using the set_attribute Command . 5-41

Viewing Attribute Values . 5-42

Saving Attribute Values . 5-42

Defining Attributes . 5-43

Removing Attributes . 5-43

The Object Search Order. 5-43

6. Defining the Design Environment

Defining the Operating Conditions . 6-3

Determining Available Operating Condition Options . 6-3

Specifying Operating Conditions . 6-4

Defining Wire Load Models. 6-4

Hierarchical Wire Load Models . 6-5

Determining Available Wire Load Models . 6-7

Specifying Wire Load Models and Modes . 6-8

Modeling the System Interface . 6-9

Defining Drive Characteristics for Input Ports . 6-10
The set_driving_cell Command . 6-10
Chapter 1: Contents
1-viiContents vii

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
The set_drive and set_input_transition Commands 6-11

Defining Loads on Input and Output Ports. 6-12

Defining Fanout Loads on Output Ports. 6-13

Setting Logic Constraints on Ports . 6-13

Defining Ports as Logically Equivalent. 6-14

Defining Logically Opposite Input Ports. 6-14

Allowing Assignment of Any Signal to an Input . 6-15

Specifying Input Ports Always One or Zero . 6-15
Tying Input Ports to Logic 1 . 6-16
Tying Input Ports to Logic 0 . 6-16

Specifying Unconnected Output Ports. 6-17

Specifying Power Intent . 6-17

Power Intent Concepts. 6-18

UPF Commands in Synopsys Tools . 6-19
upf_version . 6-21
set_scope . 6-21
load_upf . 6-21
save_upf . 6-22

Support for Multicorner-Multimode Designs . 6-22

7. Defining Design Constraints

Design Compiler Constraint Types . 7-2

Design Rule Constraints . 7-3

Design Rule Cost Function . 7-4

Maximum Transition Time . 7-4
Defining Maximum Transition Time. 7-5
Specifying Clock-Based Maximum Transition . 7-5

Maximum Fanout . 7-6
Maximum Fanout Calculation Example . 7-6
Defining Maximum Fanout . 7-7
Defining Expected Fanout for Output Ports . 7-8

Maximum Capacitance . 7-8
Defining Maximum Capacitance . 7-9
Specifying Frequency-Based Maximum Capacitance 7-9

Minimum Capacitance . 7-10
Defining Minimum Capacitance . 7-10

Cell Degradation . 7-11
Contents viii

Design Compiler User Guide Version D-2010.03-SP2
Connection Class. 7-12

Managing Design Rule Constraint Priorities . 7-12
Precedence of Design Rule Constraints. 7-12
Design Rule Scenarios . 7-13

Disabling Design Rule Fixing on Special Nets. 7-14

Summary of Design Rule Commands and Objects . 7-14

Optimization Constraints. 7-15

Optimization Cost Function . 7-15

Timing Constraints. 7-15
Maximum Delay . 7-16
Minimum Delay . 7-17

Maximum Area. 7-18
Cost Calculation . 7-18
Defining Maximum Area . 7-19

Managing Constraint Priorities . 7-19

Reporting Constraints . 7-21

Propagating Constraints in Hierarchical Designs . 7-22

Characterizing Subdesigns . 7-22
Using the characterize Command . 7-22
Removing Previous Annotations. 7-24
Optimizing Bottom Up Versus Optimizing Top Down 7-24
Deriving the Boundary Conditions . 7-24
Limitations of the characterize Command . 7-25
characterize Command Calculations . 7-26
Characterizing Subdesign Port Signal Interfaces . 7-29
Characterizing Subdesign Constraints . 7-32
Characterizing Subdesign Logical Port Connections 7-33
Characterizing Multiple Instances. 7-33
Characterizing Designs With Timing Exceptions . 7-34

Propagating Constraints up the Hierarchy . 7-36
Methodology for Propagating Constraints Upward 7-37
Handling of Conflicts Between Designs . 7-37

8. Optimizing the Design

The Optimization Process. 8-2

Architectural Optimization . 8-2

Logic-Level Optimization . 8-3
Chapter 1: Contents
1-ixContents ix

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Gate-Level Optimization . 8-3

Selecting and Using a Compile Strategy . 8-4

Top-Down Compile . 8-5

Bottom-Up Compile . 8-7

Mixed Compile Strategy. 8-11

Resolving Multiple Instances of a Design Reference . 8-11

Uniquify Method. 8-13

Compile-Once-Don’t-Touch Method . 8-14

Ungroup Method . 8-16

Preserving Subdesigns. 8-17

Understanding the Compile Cost Function . 8-18

Performing Design Exploration . 8-19

Performing Design Implementation. 8-20

Optimizing High-Performance Designs . 8-20

Optimizing for Maximum Performance. 8-21
Creating Path Groups . 8-21
Fixing Heavily Loaded Nets . 8-23
Automatically Ungrouping Hierarchies on the Critical Path 8-24
Performing a High-Effort Compile . 8-24
Performing a High-Effort Incremental Compile . 8-25

Optimizing for Minimum Area. 8-25
Disabling Total Negative Slack Optimization. 8-26
Optimizing Across Hierarchical Boundaries . 8-26

Optimizing Data Paths . 8-27

9. Using Interface Logic Models

Overview of Interface Logic Models (ILMs). 9-2

General Guidelines for Creating ILMs. 9-4

Controlling the Logic Included in ILMs . 9-5

Basic ILM Logic Content . 9-5

Controlling the Fanins and Fanouts of Chip-Level Networks 9-6

Controlling the Number of Latch Levels. 9-7

Controlling Side-Load Cells . 9-8

Methodology for Creating and Saving ILMs . 9-9
Contents x

Design Compiler User Guide Version D-2010.03-SP2
Instantiating and Using ILMs in the Top-Level Design . 9-12

Using the create_ilm Command Options . 9-15

Using ILMs with Multicorner-Multimode Designs . 9-16

Reporting Information About ILMs . 9-16

Summary of Commands for ILMs . 9-19

10. Using Design Compiler Topographical Technology

Overview of Topographical Technology. 10-3

Starting Design Compiler Topographical Mode . 10-7

Inputs and Outputs in Design Compiler Topographical Mode. 10-7

Specifying Libraries . 10-9

Specifying Logical Libraries . 10-9

Specifying Physical Libraries . 10-10

Verifying Library Consistency . 10-11

Using TLUPlus for RC Estimation . 10-13

Support for Black Boxes . 10-14

Using Floorplan Physical Constraints . 10-15

Physical Constraints Overview . 10-15

Extracting Physical Constraints From IC Compiler Using
the write_def Command . 10-16

Importing Physical Constraints From an IC Compiler DEF Formatted File 10-17
Importing a DEF Floorplan Overview . 10-17
Imported DEF Constraints . 10-18
Importing Incremental DEF Information Using

the extract_physical_constraints Command . 10-24
Matching Names of Macros and Ports . 10-25

Exporting Physical Constraints From IC Compiler Using
the write_floorplan Command . 10-26

Importing Physical Constraints From an IC Compiler
write_floorplan Formatted File . 10-26
Incremental Floorplan Modifications Using the

read_floorplan Command . 10-28
Matching Names of Macros and Ports . 10-28

Manually Defining Physical Constraints. 10-29
Defining Physical Constraints Overview . 10-30
Defining the Die Area With the create_die_area Command. 10-31
Chapter 1: Contents
1-xiContents xi

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Defining the Core Placement Area With the
create_site_rows Command . 10-33

Defining Placement Area With the set_aspect_ratio
and set_utilization Commands . 10-33

Defining Port Locations. 10-34
Defining Macro Location and Orientation . 10-36
Defining Placement Blockage. 10-37
Defining Voltage Area . 10-37
Defining Placement Bounds . 10-38
Creating Wiring Keepouts. 10-41
Creating Preroutes . 10-41

Specifying Relative Placement . 10-44
Benefits of Relative Placement. 10-45
Methodology for the Relative Placement Flow . 10-46
Summary of Relative Placement Commands . 10-48
Creating Relative Placement Using Compiler Directives 10-49
Creating Relative Placement Groups . 10-49
Anchoring Relative Placement Groups. 10-51
Applying Compression to Relative Placement Groups 10-51
Specifying Alignment . 10-52
Adding Objects to a Group . 10-54
Querying Relative Placement Groups . 10-61
Checking Relative Placement Constraints . 10-62
Saving Relative Placement Information . 10-63
Removing Relative Placement Group Attributes. 10-64
Sample Script for a Relative Placement Flow. 10-65

Placement Options: Magnet Placement . 10-66

Resetting Physical Constraints . 10-67

Saving Physical Constraints Using the write_floorplan Command 10-67

Reporting Physical Constraints . 10-68

Performing Automatic High-Fanout Synthesis . 10-68

Test Synthesis in Topographical Mode . 10-68

Using Power Compiler in Topographical Mode . 10-69

Multivoltage Designs. 10-71

Compile Flows in Topographical Mode . 10-72

Performing an Incremental Compile . 10-73

Performing a Bottom-up or Hierarchical Compile . 10-74
Overview of Bottom-Up Compile . 10-75
Contents xii

Design Compiler User Guide Version D-2010.03-SP2
Compiling the Subblock . 10-77
Compiling the Design at the Top Level . 10-79
Performing Top-Level Design Stitching . 10-81
Steps in the Top-Level Design Stitching Flow. 10-82

Supported Commands, Command Options, and Variables 10-84

Using the Design Compiler Graphical Tool . 10-84

Reducing Routing Congestion . 10-85
Routing Congestion Overview . 10-85
Viewing Congestion With the Design Vision Layout Window 10-87
Routing Congestion Reduction Flow . 10-87
Predicting, Analyzing, and Minimizing Routing Congestion 10-88
Specifying Congestion Optimization Options . 10-90
Reporting Congestion. 10-91
Summary of Routing Congestion Commands . 10-92

Improving Area Correlation and Runtime with Synopsys
Physical Guidance (SPG) . 10-92
Using Physical Guidance in Design Compiler (compile_ultra -spg) 10-93
Using Physical Guidance in IC Compiler (place_opt -spg) 10-93
Supported Flows. 10-93
Reporting Physical Guidance Information . 10-93
Physical Guidance Limitations . 10-93

Creating and Modifying Floorplans Using Floorplan Exploration. 10-94
Floorplan Exploration Overview . 10-94
Enabling Floorplan Exploration. 10-95
Using the Floorplan Exploration GUI . 10-97
Creating and Editing Floorplans . 10-98
Saving the Floorplan or Discarding Updates . 10-99
Saving the Floorplan into a Tcl Script File or DEF File. 10-99
Exiting the Session . 10-100
Incremental or Full Synthesis after Floorplan Changes 10-101
Floorplan Exploration Limitations . 10-101

Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-102

Multicorner-Multimode Concepts . 10-103

Multicorner-Multimode Feature Support . 10-104

Unsupported Features . 10-104

Concurrent Multicorner-Multimode Optimization and Timing Analysis 10-105

Basic Multicorner-Multimode Flow. 10-105

Setting Up the Design for a Multicorner-Multimode Flow 10-107
Specifying TLUPlus Files . 10-107
Chapter 1: Contents
1-xiiiContents xiii

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Specifying Operating Conditions . 10-108
Specifying Constraints . 10-108

Handling Libraries in the Multicorner-Multimode Flow. 10-109
Using Link Libraries That Have the Same PVT Nominal Values 10-109
Using Unique PVT Names to Prevent Linking Problems 10-111
Unsupported k-factors . 10-113
Automatic Detection of Driving Cell Library . 10-113
Defining Minimum Libraries . 10-113

Scenario Management Commands . 10-114
Creating Scenarios . 10-115
Defining Active Scenarios. 10-116
Scenario Reduction . 10-116
Specifying Scenario Options . 10-116
Removing Scenarios. 10-117

Power Optimization Techniques. 10-117
Optimizing for Leakage Power . 10-118
Optimizing for Dynamic Power . 10-119

Reporting Commands . 10-120
report_scenario Command. 10-121
report_scenario_options Command . 10-121
Reporting Commands That Support the -scenario Option 10-122
Commands That Report the Current Scenario . 10-123
Reporting Examples . 10-124

Supported SDC Commands . 10-129

Multicorner-Multimode Script Example . 10-129

Using ILMs in Multicorner-Multimode Designs . 10-131
Methodology for Using ILMs With Scenarios at the Top Level 10-131

11. Using a Milkyway Database

Licensing and Required Files . 11-2

Invoking the Milkyway Tool . 11-2

About the Milkyway Database. 11-2

Guidelines for Using the Milkyway Databases . 11-3

Preparing to Use the Milkyway Database . 11-4

Writing the Milkyway Database. 11-5

Important Points About the write_milkyway Command 11-5

Results of Running the write_milkyway Command . 11-6
Contents xiv

Design Compiler User Guide Version D-2010.03-SP2
Limitations When Writing Milkyway Format . 11-6

Script to Set Up and Write a Milkyway Database . 11-7

Maintaining the Milkyway Design Library . 11-7

Setting the Milkyway Design Library for Writing an Existing Milkyway Database . . . 11-7

12. Analyzing and Resolving Design Problems

Instantiating RTL PG Pins in a Non-UPF Mode . 12-2

Resolving Bus Versus Bit-Blasted Mismatches Between the RTL and Macros 12-3

Fixing Errors Caused by New Unsupported Technology File Attributes 12-3

Using Register Replication to Solve Timing QoR,
Congestion, and Fanout Problems . 12-4

Comparing Design Compiler Topographical and IC Compiler Environments 12-4

Assessing Design and Constraint Feasibility in Mapped Designs 12-5

Checking for Design Consistency . 12-6

Analyzing Your Design During Optimization . 12-7

Customizing the Compile Log . 12-8

Saving Intermediate Design Databases . 12-9

Analyzing Design Problems . 12-10

Analyzing Area . 12-10

Analyzing Timing . 12-11

Resolving Specific Problems . 12-13

Analyzing Cell Delays . 12-13

Finding Unmapped Cells . 12-14

Finding Black Box Cells . 12-15

Finding Hierarchical Cells . 12-15

Disabling Reporting of Scan Chain Violations . 12-15

Insulating Interblock Loading . 12-16

Preserving Dangling Logic. 12-16

Preventing Wire Delays on Ports . 12-16

Breaking a Feedback Loop . 12-16

Analyzing Buffer Problems. 12-17
Understanding Buffer Insertion. 12-17
Correcting for Missing Buffers. 12-21
Chapter 1: Contents
1-xvContents xv

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Correcting for Extra Buffers . 12-24
Correcting for Hanging Buffers . 12-24
Correcting Modified Buffer Networks . 12-24

Appendix A. Design Example

Design Description . A-2

Setup File . A-9

Default Constraints File. A-10

Read Script . A-10

Compile Scripts. A-11

Appendix B. Basic Commands

Commands for Defining Design Rules . B-2

Commands for Defining Design Environments . B-2

Commands for Setting Design Constraints. B-3

Commands for Analyzing and Resolving Design Problems B-4

Appendix C. Predefined Attributes

Glossary

Index
Contents xvi

Preface

This preface includes the following sections:

• What’s New in This Release

• About This Manual

• Customer Support
xvii

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
What’s New in This Release

Information about new features, enhancements, and changes, along with known problems
and limitations and resolved Synopsys Technical Action Requests (STARs), is available in
the Design Compiler Release Notes in SolvNet.

To see the Design Compiler Release Notes,

1. Go to the release notes page on SolvNet located at the following address:

https://solvnet.synopsys.com/ReleaseNotes

If prompted, enter your user name and password. If you do not have a Synopsys user
name and password, follow the instructions to register with SolvNet.

2. Select Design Compiler, then select a release in the list that appears at the bottom.

About This Manual

The Design Compiler User Guide provides basic synthesis information for users of the
Design Compiler tools. This manual describes synthesis concepts and commands, and
presents examples for basic synthesis strategies.

This manual does not cover asynchronous design, I/O pad synthesis, test synthesis,
simulation, physical design techniques (such as floorplanning or place and route), or
back-annotation of physical design information.

The information presented here supplements the Synopsys synthesis reference manuals
but does not replace them. See other Synopsys documentation for details about topics not
covered in this manual.

This manual supports version B-2008.09 of the Synopsys synthesis tools, whether they are
running under the UNIX operating system or the Linux operating system. The main text of
this manual describes UNIX operation.

Audience

This manual is intended for logic designers and engineers who use the Synopsys synthesis
tools with the VHDL or Verilog hardware description language (HDL). Before using this
manual, you should be familiar with the following topics:

• High-level design techniques

• ASIC design principles
Preface
What’s New in This Release xviii

Design Compiler User Guide Version D-2010.03-SP2
• Timing analysis principles

• Functional partitioning techniques

Related Publications

For additional information about Design Compiler, see Documentation on the Web, which is
available through SolvNet at the following address:

https://solvnet.synopsys.com/DocsOnWeb

You might also want to refer to the documentation for the following related Synopsys
products:

• Automated Chip Synthesis

• Design Budgeting

• Design Vision

• DesignWare components

• DFT Compiler

• PrimeTime

• Power Compiler

• HDL Compiler

Also see the following related documents:

• Using Tcl With Synopsys Tools

• Synthesis Master Index
Chapter 1: Preface
About This Manual 1-xix
Preface
About This Manual xix

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Conventions

The following conventions are used in Synopsys documentation.

Convention Description

Courier Indicates command syntax.

Courier italic Indicates a user-defined value in Synopsys syntax,
such as object_name. (A user-defined value that is
not Synopsys syntax, such as a user-defined value
in a Verilog or VHDL statement, is indicated by
regular text font italic.)

Courier bold Indicates user input—text you type verbatim—in
Synopsys syntax and examples. (User input that is
not Synopsys syntax, such as a user name or
password you enter in a GUI, is indicated by regular
text font bold.)

[] Denotes optional parameters, such as
pin1 [pin2 ... pinN]

| Indicates a choice among alternatives, such as
low | medium | high
(This example indicates that you can enter one of
three possible values for an option:
low, medium, or high.)

_ Connects terms that are read as a single term by
the system, such as
set_annotated_delay

Control-c Indicates a keyboard combination, such as holding
down the Control key and pressing c.

\ Indicates a continuation of a command line.

/ Indicates levels of directory structure.

Edit > Copy Indicates a path to a menu command, such as
opening the Edit menu and choosing Copy.
Preface
About This Manual xx

Design Compiler User Guide Version D-2010.03-SP2
Customer Support

Customer support is available through SolvNet online customer support and through
contacting the Synopsys Technical Support Center.

Accessing SolvNet

SolvNet includes an electronic knowledge base of technical articles and answers to
frequently asked questions about Synopsys tools. SolvNet also gives you access to a wide
range of Synopsys online services including software downloads, documentation on the
Web, and “Enter a Call to the Support Center.”

To access SolvNet, go to the SolvNet Web page at the following address:

https://solvnet.synopsys.com

If prompted, enter your user name and password. If you do not have a Synopsys user name
and password, follow the instructions to register with SolvNet.

If you need help using SolvNet, click HELP in the top-right menu bar or in the footer.

Contacting the Synopsys Technical Support Center

If you have problems, questions, or suggestions, you can contact the Synopsys Technical
Support Center in the following ways:

• Open a call to your local support center from the Web by going to
http://solvnet.synopsys.com (Synopsys user name and password required), and then
clicking “Enter a Call to the Support Center.”

• Send an e-mail message to your local support center.

• E-mail support_center@synopsys.com from within North America.

• Find other local support center e-mail addresses at
http://www.synopsys.com/Support/GlobalSupportCenters/Pages

• Telephone your local support center.

• Call (800) 245-8005 from within the continental United States.

• Call (650) 584-4200 from Canada.

• Find other local support center telephone numbers at
http://www.synopsys.com/Support/GlobalSupportCenters/Pages
Chapter 1: Preface
Customer Support 1-xxi
Preface
Customer Support xxi

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Preface
Customer Support xxii

1
Introduction to Design Compiler 1

The Design Compiler tool is the core of the Synopsys synthesis products. Design Compiler
optimizes designs to provide the smallest and fastest logical representation of a given
function. It comprises tools that synthesize your HDL designs into optimized
technology-dependent, gate-level designs. It supports a wide range of flat and hierarchical
design styles and can optimize both combinational and sequential designs for speed, area,
and power.

This chapter includes the following sections:

• Design Compiler and the Design Flow

• Design Compiler Family
1-1

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Design Compiler and the Design Flow

Figure 1-1 shows a simplified overview of how Design Compiler fits into the design flow.

Figure 1-1 Design Compiler and the Design Flow

You use Design Compiler for logic synthesis, which is the process of converting a design
description written in a hardware description language such as Verilog or VHDL into an
optimized gate-level netlist mapped to a specific technology library. The steps in the
synthesis process are as follows:

1. The input design files for Design Compiler are often written using a hardware description
language (HDL) such as Verilog or VHDL.

Constraints
(SDC)

IP DesignWare
Library

Technology
Library

SDF
PDEF

HDL

HDL Compiler

Design Compiler

Optimized netlist

Place & route

Timing & power
 analysis

Formal
verification

Back-annotation

Timing

optimization optimization optimization

optimization

Datapath Power

Area Test

synthesis

Timing

closureSymbol
Library
Chapter 1: Introduction to Design Compiler
Design Compiler and the Design Flow 1-2

Design Compiler User Guide Version D-2010.03-SP2
2. Design Compiler uses technology libraries, synthetic or DesignWare libraries, and
symbol libraries to implement synthesis and to display synthesis results graphically.

During the synthesis process, Design Compiler translates the HDL description to
components extracted from the generic technology (GTECH) library and DesignWare
library. The GTECH library consists of basic logic gates and flip-flops. The DesignWare
library contains more complex cells such as adders and comparators. Both the GTECH
and DesignWare libraries are technology independent, that is, they are not mapped to a
specific technology library. Design Compiler uses the symbol library to generate the
design schematic.

3. After translating the HDL description to gates, Design Compiler optimizes and maps the
design to a specific technology library, known as the target library. The process is
constraint driven. Constraints are the designer’s specification of timing and
environmental restrictions under which synthesis is to be performed.

4. After the design is optimized, it is ready for test synthesis. Test synthesis is the process
by which designers can integrate test logic into a design during logic synthesis. Test
synthesis enables designers to ensure that a design is testable and resolve any test
issues early in the design cycle.

The result of the logic synthesis process is an optimized gate-level netlist, which is a list
of circuit elements and their interconnections.

5. After test synthesis, the design is ready for the place and route tools, which place and
interconnect cells in the design. Based on the physical routing, the designer can
back-annotate the design with actual interconnect delays; Design Compiler can then
resynthesize the design for more accurate timing analysis.

Design Compiler Family

Synopsys provides an integrated RTL synthesis solution. Using Design Compiler tools, you
can

• Produce fast, area-efficient ASIC designs by employing user-specified gate-array, FPGA,
or standard-cell libraries

• Translate designs from one technology to another

• Explore design tradeoffs involving design constraints such as timing, area, and power
under various loading, temperature, and voltage conditions

• Synthesize and optimize finite state machines

• Integrate netlist inputs and netlist or schematic outputs into third-party environments
while still supporting delay information and place and route constraints

• Create and partition hierarchical schematics automatically
Chapter 1: Introduction to Design Compiler
Design Compiler Family 1-3
Chapter 1: Introduction to Design Compiler
Design Compiler Family 1-3

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
DC Expert
At the core of the Synopsys’ RTL synthesis solution is the DC Expert. DC Expert is applied
to high-performance ASIC and IC designs.

DC Expert provides the following features:

• Hierarchical compile (top down or bottom up)

• Full and incremental compile techniques

• Sequential optimization for complex flip-flops and latches

• Time borrowing for latch-based designs

• Timing analysis

• Buffer balancing (within hierarchical blocks)

• Command-line interface and graphical user interface

• Budgeting, the process of allocating timing and environment constraints among blocks in
a design

• Automated chip synthesis, a set of Design Compiler commands that fully automate the
partitioning, budgeting, and distributed synthesis flow for large designs

DC Ultra
The DC Ultra tool is applied to high-performance deep submicron ASIC and IC designs,
where maximum control over the optimization process is required.

In addition to the DC Expert capabilities, DC Ultra provides the following features:

• Additional high-effort delay optimization algorithms

• Advanced arithmetic optimization

• Integrated datapath partitioning and synthesis capabilities

• Finite state machine (FSM) optimization

• Advanced critical path resynthesis

• Register retiming, the process by which the tool moves registers through combinational
gates to improve timing

• Support for advanced cell modeling, that is, the cell-degradation design rule

• Advanced timing analysis
Chapter 1: Introduction to Design Compiler
Design Compiler Family 1-4

Design Compiler User Guide Version D-2010.03-SP2
HDL Compiler Tools
The HDL compiler reads HDL files and performs translation and architectural optimization of
the designs. For more information about the HDL Compiler tools, see the HDL Compiler
documentation.

DesignWare Library
A DesignWare library is a collection of reusable circuit-design building blocks (components)
that are tightly integrated into the Synopsys synthesis environment. During synthesis,
Design Compiler selects the right component with the best speed and area optimization
from the DesignWare Library. For more information, see the DesignWare Library
documentation.

DFT Compiler
The DFT Compiler tool is the Synopsys test synthesis solution. DFT Compiler provides
integrated design-for-test capabilities, including constraint-driven scan insertion during
compile. The DFT Compiler tool is applied to high-performance ASIC and IC designs that
utilize scan test techniques. For more information, see the DFT Compiler documentation.

Power Compiler
The Power Compiler tool offers a complete methodology for power, including analyzing and
optimizing designs for static and dynamic power consumption. For more information about
these power capabilities, see the Power Compiler User Guide.

Design Vision
The Design Vision tool is a graphical user interface (GUI) to the Synopsys synthesis
environment and an analysis tool for viewing and analyzing designs at the generic
technology (GTECH) level and gate level. Design Vision provides menus and dialog boxes
for implementing Design Compiler commands. It also provides graphical displays, such as
design schematics. For more information, see the Design Vision User Guide and Design
Vision Help.
Chapter 1: Introduction to Design Compiler
Design Compiler Family 1-5
Chapter 1: Introduction to Design Compiler
Design Compiler Family 1-5

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Chapter 1: Introduction to Design Compiler
Design Compiler Family 1-6

2
Design Compiler Basics 2

This chapter provides basic information about Design Compiler functions. The chapter
presents both high-level and basic synthesis design flows. Standard user tasks, from design
preparation and library specification to compile strategies, optimization, and results
analysis, are introduced as part of the basic synthesis design flow presentation.

This chapter includes the following sections:

• The High-Level Design Flow

• Running Design Compiler

• Support for Multicore Technology

• Support for Multicorner-Multimode Designs

• Working With Licenses

• Following the Basic Synthesis Flow

• A Design Compiler Session Example

Note:
Even though the following terms have slightly different meanings, they are often used
synonymously in Design Compiler documentation:

Synthesis is the process that generates a gate-level netlist for an IC design that has been
defined using a Hardware Description Language (HDL). Synthesis includes reading the
HDL source code and optimizing the design from that description.
2-1

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Optimization is the step in the synthesis process that attempts to implement a
combination of library cells that best meet the functional, timing, and area requirements
of the design.

Compile is the Design Compiler command and process that executes the optimization
step. After you read in the design and perform other necessary tasks, you invoke the
compile_ultra command or compile command to generate a gate-level netlist for the
design.

The High-Level Design Flow

In a basic high-level design flow, Design Compiler is used in both the design exploration
stage and the final design implementation stage. In the exploratory stage, you use Design
Compiler to carry out a preliminary, or default, synthesis. In the design implementation
stage, you use the full power of Design Compiler to synthesize the design.

Figure 2-1 shows the high-level design flow. The shaded areas indicate where Design
Compiler synthesis tasks occur in the flow.
Chapter 2: Design Compiler Basics
The High-Level Design Flow 2-2

Design Compiler User Guide Version D-2010.03-SP2
Figure 2-1 Basic High-Level Design Flow

Using the design flow shown in Figure 2-1, you perform the following steps:

1. Start by writing an HDL description (Verilog or VHDL) of your design. Use good coding
practices to facilitate successful Design Compiler synthesis of the design.

2. Perform design exploration and functional simulation in parallel.

Functional simulation

HDL coding

No

Yes

Design implementation

Physical design

DONE

No

Yes

No

Yes

Yes

Design exploration

Goal specification

No

Functionally

correct?

Within 15%

goals?
of timing

Met
goals?

Met
goals?
Chapter 2: Design Compiler Basics
The High-Level Design Flow 2-3
Chapter 2: Design Compiler Basics
The High-Level Design Flow 2-3

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
• In design exploration, use Design Compiler to (a) implement specific design goals
(design rules and optimization constraints) and (b) carry out a preliminary, “default”
synthesis (using only the Design Compiler default options).

• If design exploration fails to meet timing goals by more than 15 percent, modify your
design goals and constraints, or improve the HDL code. Then repeat both design
exploration and functional simulation.

• In functional simulation, determine whether the design performs the desired functions
by using an appropriate simulation tool.

• If the design does not function as required, you must modify the HDL code and repeat
both design exploration and functional simulation.

• Continue performing design exploration and functional simulation until the design is
functioning correctly and is within 15 percent of the timing goals.

3. Perform design implementation synthesis by using Design Compiler to meet design
goals.

After synthesizing the design into a gate-level netlist, verify that the design meets your
goals. If the design does not meet your goals, generate and analyze various reports to
determine the techniques you might use to correct the problems.

4. After the design meets functionality, timing, and other design goals, complete the physical
design (either in-house or by sending it to your semiconductor vendor).

Analyze the physical design’s performance by using back-annotated data. If the results
do not meet design goals, return to step 3. If the results meet your design goals, you are
finished with the design cycle.

Running Design Compiler

This section provides the basic information you need to run Design Compiler. It includes the
following sections:

• Design Compiler Interfaces

• Setup Files

• Starting Design Compiler

• Exiting Design Compiler

• Getting Command Help

• Using Command Log Files
Chapter 2: Design Compiler Basics
Running Design Compiler 2-4

Design Compiler User Guide Version D-2010.03-SP2
• Using Script Files

• Working with Licenses

Design Compiler Interfaces
Design Compiler offers two interfaces for synthesis and timing analysis: the dc_shell
command-line interface (or shell) and the Design Vision graphical user interface (GUI). The
dc_shell command-line interface is a text-only environment in which you enter commands at
the command-line prompt. Design Vision is the GUI for the Synopsys synthesis
environment; use it for visualizing design data and analysis results. For information on
Design Vision, see the Design Vision User Guide.

You can interact with the Design Compiler shell by using dctcl, which is based on the tool
command language (Tcl) and includes certain command extensions needed to implement
specific Design Compiler functionality.

The dctcl command language provides capabilities similar to UNIX command shells,
including variables, conditional execution of commands, and control flow commands. You
can execute Design Compiler commands in the following ways:

• By entering single commands interactively in the shell

• By running one or more command scripts, which are text files of commands

• By typing single commands interactively on the console command line in the Design
Vision window

You can use this approach to supplement the subset of Design Compiler commands
available through the menu interface. For more information on Design Vision, see the
Design Vision User Guide and Design Vision online Help.

Setup Files
When you invoke Design Compiler, it automatically executes commands in three setup files.
These files have the same file name, .synopsys_dc.setup, but reside in different directories.
The files contain commands that initialize parameters and variables, declare design
libraries, and so forth.

Design Compiler reads the three .synopsys_dc.setup files from three directories in the
following order:

1. The Synopsys root directory

2. Your home directory
Chapter 2: Design Compiler Basics
Running Design Compiler 2-5
Chapter 2: Design Compiler Basics
Running Design Compiler 2-5

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
3. The current working directory (the directory from which you invoke Design Compiler)

Example 2-1 shows a sample .synopsys_dc.setup file.

Example 2-1 .synopsys_dc.setup File
Define the target technology library, symbol library,
and link libraries
set target_library lsi_10k.db
set symbol_library lsi_10k.sdb
set synthetic_library dw_foundation.sldb
set link_library “* $target_library $synthetic library”
set search_path [concat $search_path ./src]
set designer "Your Name"

Define aliases
alias h history
alias rc “report_constraint -all_violators”

Table 2-1 Setup Files

File Location Function

System-wide
.synopsys_dc.setup
file

Synopsys root directory
($SYNOPSYS/admin/setup)

This file contains system variables defined
by Synopsys and general Design Compiler
setup information for all users at your site.
Only the system administrator can modify
this file.
Note: $SYNOPSYS is the path to the
Design Compiler installation directory.

User-defined
.synopsys_dc.setup
file

User home directory This file contains variables that define your
preferences for the Design Compiler
working environment. The variables in this
file override the corresponding variables in
the systemwide setup file.

Design-specific
.synopsys_dc.setup
file

Working directory from
which you started Design
Compiler

This file contains project- or design-specific
variables that affect the optimizations of all
designs in this directory. To use the file, you
must invoke Design Compiler from this
directory. Variables defined in this file
override the corresponding variables in the
user-defined and systemwide setup files.
Chapter 2: Design Compiler Basics
Running Design Compiler 2-6

Design Compiler User Guide Version D-2010.03-SP2
Starting Design Compiler
To start Design Compiler, enter dc_shell on the command line.

The resulting command prompt is

dc_shell>

You can also include numerous options in these command lines, such as

• -checkout to access licensed features in addition to the default features checked out by
the program

• -wait to set a wait time limit for checking out any additional licenses

• -f to execute a script file before displaying the initial dc_shell prompt

• -x to include a dc_shell statement that is executed at startup

• -no_init to specify that dc_shell is not to execute any .synopsys_dc.setup startup files.
Use this option only when you want to include a command log or other script file in order
to reproduce a previous dc_shell session.

• -no_home_init to specify that dc_shell is not to execute any home .synopsys_dc.setup
startup files.

• -no_local_init to specify that dc_shell is not to execute any local .synopsys_dc.setup
startup files.

For a detailed list of options, see the Design Compiler Command Line Interface Guide and
the man page for dc_shell.

At startup, dc_shell does the following tasks:

1. Creates a command log file.

2. Reads and executes the .synopsys_dc.setup files.

3. Executes any script files or commands specified by the -x and -f options, respectively,
on the command line.

4. Displays the program header and dc_shell prompt in the window from which you invoked
dc_shell. The program header lists all features for which your site is licensed.

Note:
It is important that you specify the absolute path when entering dc_shell on the command
line. If you use a relative path (..\), Design Compiler cannot access the libraries that are
located in the root directory.
Chapter 2: Design Compiler Basics
Running Design Compiler 2-7
Chapter 2: Design Compiler Basics
Running Design Compiler 2-7

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
The following example shows the correct way to indicate the Synopsys root containing
the Design Compiler installation.

/tools/synopsys/2009.06/bin/dc_shell

The following example shows the incorrect way to indicate the Synopsys root containing
the Design Compiler installation.

../../2009.06/bin/dc_shell

Exiting Design Compiler
You can exit Design Compiler at any time and return to the operating system.

Note:
By default, dc_shell saves the session information in the command.log file. However, if
you change the name of the sh_command_log_file after you start the tool, session
information might be lost.

Also, dc_shell does not automatically save the designs loaded in memory. If you want to
save these designs before exiting, use the write command. For example,

dc_shell> write -format ddc -hierarchy -output my_design.ddc

To exit dc_shell, do one of the following:

• Enter quit.

• Enter exit.

• Press Control-d, if you are running Design Compiler in interactive mode and the tool is
busy.

Opening and Closing the GUI in dc_shell
You can open or close the GUI at any time during the session. If you start dc_shell without
the GUI, you can open the GUI by entering the gui_start command at the dc_shell prompt.

To open the GUI,

• Enter the gui_start command.

dc_shell> gui_start

The -gui option opens the GUI automatically when starting dc_shell.

% dc_shell -gui
Chapter 2: Design Compiler Basics
Running Design Compiler 2-8

Design Compiler User Guide Version D-2010.03-SP2
To close the GUI, do one of the following:

• Choose File > Close GUI.

• Enter the gui_stop command.

dc_shell> gui_stop

When you are ready to use the GUI again, enter the gui_start command on the command
line interface.

When you start dc_shell with or without the -gui option, it loads GUI preferences from the
.synopsys_dv_prefs.tcl file in your home directory. When you open the GUI, dc_shell reads
and executes the .synopsys_dv_gui.tcl setup files, opens the Design Vision window, and
displays the dc_shell command-line prompt in the console.

To save GUI window images, use the gui_write_window_image command. You can
specify the format of the image as BMP, JPG, XPM, or PNG. The default format is PNG. You
can also save window images in batch mode from a script. For details, see the Design Vision
Online Help and the gui_write_window_image man page.

For information about using the GUI, see the Design Vision User Guide.

Getting Command Help
Design Compiler provides three levels of command help:

• A list of commands

• Command usage help

• Topic help

To get a list of all dc_shell commands, enter the command:

dc_shell> help

To get help about a particular dc_shell command, enter the command name with the -help
option. The syntax is

dc_shell> command_name -help

To get topic help in dc_shell, enter

dc_shell> man topic

where topic is the name of a shell command, variable, or variable group.

Using the man command, you can display the man pages for the topic while you are
interactively running Design Compiler.
Chapter 2: Design Compiler Basics
Running Design Compiler 2-9
Chapter 2: Design Compiler Basics
Running Design Compiler 2-9

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Using Command Log Files
The command log file records the dc_shell commands processed by Design Compiler,
including setup file commands and variable assignments. By default, Design Compiler
writes the command log to a file called command.log in the directory from which you invoked
dc_shell.

You can change the name of the command.log file by using the sh_command_log_file
variable in the .synopsys_dc.setup file. You should make any changes to these variables
before you start Design Compiler. If your user-defined or project-specific
.synopsys_dc.setup file does not contain the variable, Design Compiler automatically
creates the command.log file.

Each Design Compiler session overwrites the command log file. To save a command log file,
move it or rename it. You can use the command log file to

• Produce a script for a particular synthesis strategy

• Record the design exploration process

• Document any problems you are having

Using the Filename Log File
By default, Design Compiler writes the log of filenames that it has read to the filename log
file in the directory from which you invoked dc_shell. You can use the filename log file to
identify data files needed to reproduce an error in case Design Compiler terminates
abnormally. You specify the name of the filename log file with the filename_log_file
variable in the .synopsys_dc.setup file.

Using Script Files
You can create a command script file by placing a sequence of dc_shell commands in a text
file. Any dc_shell command can be executed within a script file.

In dctcl, a “#” at the beginning of a line denotes a comment. For example,

This is a comment

To execute a script file, use the source command.

For more information about script files, see the Design Compiler Command-Line Interface
Guide.
Chapter 2: Design Compiler Basics
Running Design Compiler 2-10

Design Compiler User Guide Version D-2010.03-SP2
Support for Multicore Technology

The multicore technology in Design Compiler allows you to use multiple cores to improve the
tool runtime. During synthesis, multicore functionality can divide large optimization tasks into
smaller tasks for processing on multiple cores.

Multicore technology is only supported in DC Ultra. It is not supported in DC Expert.

The following terms are used in multicore technology: threading, multithreading, and
multiple processes.

• Threading: Allows an executing program to split itself into two or more simultaneously
running tasks. Threads share the state information and address space of a single
process, while processes are independent. Switching between threads in a single
processor is easier than switching between processes.

• Multithreading: An execution model where multiple threads execute within the context of
a single process. The threads share the state and resources of a process but are able to
execute separately. This enables concurrent execution on a multiprocessor machine.

• Multiple processes (parallelization): In multiprocessing, the child processes are spawned
by the parent processes. Initially all the memory processes are shared with the parent,
but are duplicated when the data is changed in either the parent or the child processes.
Though the communication overhead is considerably higher in comparison to
multithreading functionality, most of the operations are safe by default in multiprocessing.

You enable multicore functionality in Design Compiler with the set_host_options
command. For example, to enable the tool to use six cores to run your processes, execute
the following command:

set_host_options -max_cores 6

The set_host_options command supports all compile_ultra command options.

Multicore technology supports the following design flows in Design Compiler:

• encapsulated scripts

• retiming

• clock gating

• leakage

• congestion

• incremental compile
Chapter 2: Design Compiler Basics
Support for Multicore Technology 2-11
Chapter 2: Design Compiler Basics
Support for Multicore Technology 2-11

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Note:
There might be a slowdown in the performance when the number of available cores is
less than the number you specify with set_host_options -max_cores because
predicting machine load is difficult.

If you are in multicore mode, the log file contains an information message similar to the
following message:

Information: Running optimization using a maximum of 8 cores. (OPT-1500)

When running multiple cores, the tool divides the design into many pieces and then runs
each piece in a separate process on a separate core. When all processes have finished, the
tool reassembles the design and completes the process.

For additional information about multicore technology, see SolvNet article 026392 and the
set_host_options man page.

Support for Multicorner-Multimode Designs

Designs are often required to operate under multiple modes, such as test or standby mode,
and under multiple operating conditions, sometimes referred to as corners. Such designs
are known as multicorner-multimode designs. Design Compiler Graphical can analyze and
optimize across multiple modes and corners concurrently. The multicorner-multimode
feature in Design Compiler Graphical provides compatibility between flows in Design
Compiler and IC Compiler.

To define your modes and corners, you use the create_scenario command. A scenario
definition usually includes commands that specify the TLUPlus libraries, operating
conditions, and constraints. For details on setting up multicorner-multimode analysis, see
“Optimizing Multicorner-Multimode Designs in Design Compiler Graphical” on page 10-102.

Working With Licenses

In working with licenses, you need to determine what licenses are in use and know how to
obtain and release licenses.

Listing the Licenses in Use
To view the licenses that are currently checked out, use the list_license command. To
determine which licenses are already checked out, use the license_users command. For
example,

dc_shell> license_users
Chapter 2: Design Compiler Basics
Support for Multicorner-Multimode Designs 2-12

Design Compiler User Guide Version D-2010.03-SP2
bill@eng1 Design-Compiler
matt@eng2 Design-Compiler, DC-Ultra-Opt
2 users listed.

Getting Licenses
When you invoke Design Compiler, the Synopsys Common Licensing software
automatically checks out the appropriate license. For example, if you read in an HDL design
description, Synopsys Common Licensing checks out a license for the appropriate HDL
compiler.

If you know the tools and interfaces you need, you can use the get_license command to
check out those licenses. This ensures that each license is available when you are ready to
use it. For example,

dc_shell> get_license HDL-Compiler

After a license is checked out, it remains checked out until you release it or exit dc_shell.

Note:
You must have Design Vision license to start the GUI from a dc_shell session.

Enabling License Queuing
Design Compiler has a license queuing functionality that allows your application to wait for
licenses to become available if all licenses are in use. To enable this functionality, set the
SNPSLMD_QUEUE environment variable to true. The following message is displayed:

Information: License queuing is enabled. (DCSH-18)

When you have enabled the license queuing functionality, you might run into a situation
where two processes are waiting indefinitely for a license that the other process owns.
Consider the following scenario:

• Two active processes, P1 and P2, are running Design Compiler

• You have the following licenses: Two Design Compiler licenses, a Power Compiler
license, and an HDL Compiler license.

For P1 and P2 to be active, they should have checked out one Design Compiler license
each. Assume that P1 has acquired the HDL Compiler license and P2 has acquired the
Power Compiler license. If P1 and P2 now both attempt to acquire the license held by the
other process, both processes wait indefinitely. The SNPS_MAX_WAITTIME environment
variable and the SNPS_MAX_QUEUETIME environment variable help prevent such situations.
You can use these variables only if the SNPSLMD_QUEUE environment variable is set to true.
Chapter 2: Design Compiler Basics
Working With Licenses 2-13
Chapter 2: Design Compiler Basics
Working With Licenses 2-13

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
The SNPS_MAX_WAITTIME variable specifies the maximum wait time for the first key
license that you require, for example, starting dc_shell. Consider the following scenario:

You have two Design-Compiler licenses both of which are in use and are attempting to start
a third dc_shell process. The queuing functionality places this last job in the queue for the
specified wait time. The default wait time is 259,200 seconds (or 72 hours). If the license is
still not available after the predefined time, you might see a message similar to the following:

Information: Timeout while waiting for feature ‘Design
Compiler’. (DCSH-17)

The SNPS_MAX_QUEUETIME variable specifies the maximum wait time for checking out
subsequent licenses within the same dc_shell process. You use this variable after you have
successfully checked out the first license to start dc_shell. Consider the following scenario:

You have already started Design Compiler and are running a command that requires a
DC-Ultra-Features license. The queuing functionality attempts to check out the license
within the specified wait time. The default is 28,800 seconds (or eight hours). If the license
is still not available after the predefined time, you might see a message similar to the
following:

Information: Timeout while waiting for feature
'DC-Ultra-Features'. (DCSH-17)

As you take your design through the synthesis flow, the queuing functionality might display
other status messages as follows:

Information: Successfully checked out feature
'DC-Ultra-Opt'. (DCSH-14)
Information: Started queuing for feature
'DC-Ultra-Features'. (DCSH-15)
Information: Still waiting for feature 'DC-Ultra-Features'.
(DCSH-16)

Releasing Licenses
To release a license that is checked out to you, use the remove_license command. For
example,

dc_shell> remove_license HDL-Compiler
Chapter 2: Design Compiler Basics
Working With Licenses 2-14

Design Compiler User Guide Version D-2010.03-SP2
Following the Basic Synthesis Flow

Figure 2-2 shows the basic synthesis flow. You can use this synthesis flow in both the design
exploration and design implementation stages of the high-level design flow discussed
previously.

Also listed in Figure 2-2 are the basic dc_shell commands that are commonly used in each
step of the basic flow. For example, the commands analyze, elaborate, and read_file
are used in the step that reads design files into memory. All the commands shown in
Figure 2-2 can take options, but no options are shown in the figure.

Note:
Under “Select Compile Strategy,” top down and bottom up are not commands. They refer
to two commonly used compile strategies that use different combinations of commands.

Following Figure 2-2 is a discussion of each step in the flow, including a reference to the
chapter in this manual where you can find more information.
Chapter 2: Design Compiler Basics
Following the Basic Synthesis Flow 2-15
Chapter 2: Design Compiler Basics
Following the Basic Synthesis Flow 2-15

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Figure 2-2 Basic Synthesis Flow

The basic synthesis flow consists of the following steps:

Define

Select

design environment

compile strategy

Set
design constraints

Optimize the design

Analyze and resolve
design problems

Read design

Save the
design database

Design rule constraints

Design optimization constraints

Specify libraries

Library objects

Develop HDL files

link_library

analyze

read_file
elaborate

set_operating_conditions
set_wire_load_model
set_drive
set_driving_cell
set_load
set_fanout_load

Top down
Bottom up

set_max_transition
set_max_fanout
set_max_capacitance

create_clock
set_clock_latency
set_propagated_clock
set_clock_uncertainty
set_clock_transition

compile or compile_ultra

check_design
report_area
report_constraint
report_timing

write

target_library
symbol_library
synthetic_library

set_input_delay

set_min_library

set_max_area
set_output_delay
Chapter 2: Design Compiler Basics
Following the Basic Synthesis Flow 2-16

Design Compiler User Guide Version D-2010.03-SP2
1. Develop HDL Files

The input design files for Design Compiler are often written using a hardware description
language (HDL) such as Verilog or VHDL. These design descriptions need to be written
carefully to achieve the best synthesis results possible. When writing HDL code, you need
to consider design data management, design partitioning, and your HDL coding style.
Partitioning and coding style directly affect the synthesis and optimization processes.

Note:
This step is included in the flow, but it is not actually a Design Compiler step. You do not
create HDL files with the Design Compiler tools.

See Chapter 3, “Preparing Design Files for Synthesis.”

2. Specify Libraries

You specify the link, target, symbol, and synthetic libraries for Design Compiler by using the
link_library, target_library, symbol_library, and synthetic_library commands.

The link and target libraries are technology libraries that define the semiconductor vendor’s
set of cells and related information, such as cell names, cell pin names, delay arcs, pin
loading, design rules, and operating conditions.

The symbol library defines the symbols for schematic viewing of the design. You need this
library if you intend to use the Design Vision GUI.

In addition, you must specify any specially licensed DesignWare libraries by using the
synthetic_library command. (You do not need to specify the standard DesignWare
library.)

See Chapter 4, “Working With Libraries.”

3. Read Design

Design Compiler can read both RTL designs and gate-level netlists. Design Compiler uses
HDL Compiler to read Verilog and VHDL RTL designs. It has a specialized netlist reader for
reading Verilog and VHDL gate-level netlists. The specialized netlist reader reads netlists
faster and uses less memory than HDL Compiler.

Design Compiler provides the following ways to read design files:

• The analyze and elaborate commands

• The read_file command

• The read_vhdl and read_verilog commands. These commands are derived from the
read_file -format VHDL and read_file -format verilog commands.

See Chapter 5, “Working With Designs in Memory.” For detailed information on the
recommended reading methods, see the HDL Compiler documentation.
Chapter 2: Design Compiler Basics
Following the Basic Synthesis Flow 2-17
Chapter 2: Design Compiler Basics
Following the Basic Synthesis Flow 2-17

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
4. Define Design Environment

Design Compiler requires that you model the environment of the design to be synthesized.
This model comprises the external operating conditions (manufacturing process,
temperature, and voltage), loads, drives, fanouts, and wire load models. It directly influences
design synthesis and optimization results. You define the design environment by using the
set commands listed under this step of Figure 2-2.

See Chapter 6, “Defining the Design Environment.”

5. Set Design Constraints

Design Compiler uses design rules and optimization constraints to control the synthesis of
the design. Design rules are provided in the vendor technology library to ensure that the
product meets specifications and works as intended. Typical design rules constrain
transition times (set_max_transition), fanout loads (set_max_fanout), and capacitances
(set_max_capacitance). These rules specify technology requirements that you cannot
violate. (You can, however, specify stricter constraints.)

Optimization constraints define the design goals for timing (clocks, clock skews, input
delays, and output delays) and area (maximum area). In the optimization process, Design
Compiler attempts to meet these goals, but no design rules are violated by the process. You
define these constraints by using commands such as those listed under this step in
Figure 2-2. To optimize a design correctly, you must set realistic constraints.

Note:
Design constraint settings are influenced by the compile strategy you choose. Flow steps
5 and 6 are interdependent. Compile strategies are discussed in step 6.

See Chapter 7, “Defining Design Constraints.”

6. Select Compile Strategy

The two basic compile strategies that you can use to optimize hierarchical designs are
referred to as top down and bottom up.

In the top-down strategy, the top-level design and all its subdesigns are compiled together.
All environment and constraint settings are defined with respect to the top-level design.
Although this strategy automatically takes care of interblock dependencies, the method is
not practical for large designs because all designs must reside in memory at the same time.

In the bottom-up strategy, individual subdesigns are constrained and compiled separately.
After successful compilation, the designs are assigned the dont_touch attribute to prevent
further changes to them during subsequent compile phases. Then the compiled subdesigns
are assembled to compose the designs of the next higher level of the hierarchy (any
higher-level design can also incorporate unmapped logic), and these designs are compiled.
This compilation process is continued up through the hierarchy until the top-level design is
synthesized. This method lets you compile large designs because Design Compiler does
Chapter 2: Design Compiler Basics
Following the Basic Synthesis Flow 2-18

Design Compiler User Guide Version D-2010.03-SP2
not need to load all the uncompiled subdesigns into memory at the same time. At each
stage, however, you must estimate the interblock constraints, and typically you must iterate
the compilations, improving these estimates, until all subdesign interfaces are stable.

Each strategy has its advantages and disadvantages, depending on your particular designs
and design goals. You can use either strategy to process the entire design, or you can mix
strategies, using the most appropriate strategy for each subdesign.

Note:
The compile strategy you choose affects your choice of design constraints and the values
you set. Flow steps 5 and 6 are interdependent. Design constraints are discussed in step
5.

See Chapter 8, “Optimizing the Design.”

7. Optimize the Design

You use the compile_ultra command or compile command to invoke the Design Compiler
synthesis and optimization processes. Several compile options are available with both
commands. In particular, the map_effort option of the compile command can be set to
medium or high.

In a default compile, when you are performing design exploration, you use the medium
map_effort option of the compile command. Because this option is the default, you do not
need to specify map_effort in the compile command. In a final design implementation
compile, you might want to set map_effort to high. You should use this option judiciously,
however, because the resulting compile process is CPU intensive. Often setting map_effort
to medium is sufficient.

For designs that have significantly tight timing constraints, you can invoke a single DC Ultra
command, compile_ultra, for better quality of results (QoR). The command is a
push-button solution for timing-critical, high performance designs and encapsulates DC
Ultra strategies into a single command.

See Chapter 8, “Optimizing the Design.”

8. Analyze and Resolve Design Problems

Design Compiler can generate numerous reports on the results of a design synthesis and
optimization, for example, area, constraint, and timing reports. You use reports to analyze
and resolve any design problems or to improve synthesis results. You can use the
check_design command to check the synthesized design for consistency. Other check_
commands are available.

See Chapter 12, “Analyzing and Resolving Design Problems.”
Chapter 2: Design Compiler Basics
Following the Basic Synthesis Flow 2-19
Chapter 2: Design Compiler Basics
Following the Basic Synthesis Flow 2-19

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
9. Save the Design Database

You use the write command to save the synthesized designs. Remember that Design
Compiler does not automatically save designs before exiting.

You can also save in a script file the design attributes and constraints used during synthesis.
Script files are ideal for managing your design attributes and constraints.

See the section “Exiting Design Compiler” on page 2-8 and see the chapter on using script
files in the Design Compiler Command-Line Interface Guide.

A Design Compiler Session Example

Example 2-2 on page 2-21 shows a simple dctcl script that performs a top-down compile
run. It uses the basic synthesis flow. The script contains comments that identify each of the
steps in the flow. Some of the script command options and arguments have not yet been
explained in this manual. Nevertheless, from the previous discussion of the basic synthesis
flow, you can begin to understand this example of a top-down compile. The remaining
chapters will help you understand these commands in detail.

Note:
Only the set_driving_cell command is not discussed in the section on basic synthesis
design flow. The set_driving_cell command is an alternative way to set the external
drives on the ports of the design to be synthesized.
Chapter 2: Design Compiler Basics
A Design Compiler Session Example 2-20

Design Compiler User Guide Version D-2010.03-SP2
Example 2-2 Top-Down Compile Script
/* specify the libraries */
set target_library my_lib.db
set symbol_library my_lib.sdb
set link_library [list "*" $target_library]

/* read the design */
read_verilog Adder16.v

/* define the design environment */
set_operating_conditions WCCOM
set_wire_load_model "10x10"
set_load 2.2 sout
set_load 1.5 cout
set_driving_cell -lib_cell FD1 [all_inputs]
set_drive 0 clk

/* set the optimization constraints */
create_clock clk -period 10
set_input_delay -max 1.35 -clock clk {ain bin}
set_input_delay -max 3.5 -clock clk cin
set_output_delay -max 2.4 -clock clk cout
set_max_area 0

/* map and optimize the design */
compile

/* analyze and debug the design */
report_constraint -all_violators
report_area

/* save the design database */
write -format ddc -hierarchy -output Adder16.ddc

You can execute these commands in any of the following ways:

• Enter dc_shell and type each command in the order shown in the example.

• Enter dc_shell and execute the script file, using the source command.

For example, if you are running Design Compiler and the script is in a file called run.scr,
you can execute the script file by entering the following command:

dc_shell> source run.tcl

• Run the script from the UNIX command line by using the -f option of the dc_shell
command.

For example, if the script is in a file called run.scr, you can invoke Design Compiler and
execute the script file from the UNIX prompt by entering the following commands:

% dc_shell -f run.tcl
Chapter 2: Design Compiler Basics
A Design Compiler Session Example 2-21
Chapter 2: Design Compiler Basics
A Design Compiler Session Example 2-21

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Chapter 2: Design Compiler Basics
A Design Compiler Session Example 2-22

3
Preparing Design Files for Synthesis 3

Designs (that is, design descriptions) are stored in design files. Design files must have
unique names. If a design is hierarchical, each subdesign refers to another design file, which
must also have a unique name. Note, however, that different design files can contain
subdesigns with identical names.

This chapter contains the following sections:

• Managing the Design Data

• Partitioning for Synthesis

• HDL Coding for Synthesis
3-1

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Managing the Design Data

Use systematic organizational methods to manage the design data. Two basic elements of
managing design data are design data control and data organization.

Controlling the Design Data
As new versions of your design are created, you must maintain some archival and record
keeping method that provides a history of the design evolution and that lets you restart the
design process if data is lost. Establishing controls for data creation, maintenance,
overwriting, and deletion is a fundamental design management issue. Establishing
file-naming conventions is one of the most important rules for data creation. Table 3-1 lists
the recommended file name extensions for each design data type

Organizing the Design Data
Establishing and adhering to a method of organizing data are more important than the
method you choose. After you place the essential design data under a consistent set of
controls, you can create a meaningful data organization. To simplify data exchanges and
data searches, designers should adhere to this data organization system.

Table 3-1 File Name Extensions

Design data type Extension Description

Design source code .v Verilog

.vhd VHDL

Synthesis scripts .con Constraints

.scr Script

Reports and logs .rpt Report

.log Log

Design database .ddc Synopsys internal database format
Chapter 3: Preparing Design Files for Synthesis
Managing the Design Data 3-2

Design Compiler User Guide Version D-2010.03-SP2
You can use a hierarchical directory structure to address data organization issues. Your
compile strategy will influence your directory structure. The following figures show directory
structures based on the top-down compile strategy (Figure 3-1) and the bottom-up compile
strategy (Figure 3-2). For details about compile strategies, see “Selecting and Using a
Compile Strategy” on page 8-4.

Figure 3-1 Top-Down Compile Directory Structure

Figure 3-2 Bottom-Up Compile Directory Structure

Design

src syn

script log unmapped
.con
.scr

.rpt

.log
.ddc

.vhd

.v

work

sim

.synopsys_dc.setup

mapped
.ddc

netlist
.v
.vhd

Design

src syn sim
.vhd
.v

work

.synopsys_dc.setup

script log mapped netlist
.con
.scr

.rpt

.log
.ddc .v

.vhd

pass2pass1

unmapped
.ddc

script log mapped netlist
.con
.scr

.rpt

.log
.ddc .v

.vhd

unmapped
.ddc
Chapter 3: Preparing Design Files for Synthesis
Managing the Design Data 3-3
Chapter 3: Preparing Design Files for Synthesis
Managing the Design Data 3-3

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Partitioning for Synthesis

Partitioning a design effectively can enhance the synthesis results, reduce compile time, and
simplify the constraint and script files.

Partitioning affects block size, and although Design Compiler has no inherent block size
limit, you should be careful to control block size. If you make blocks too small, you can create
artificial boundaries that restrict effective optimization. If you create very large blocks,
compile runtimes can be lengthy.

Use the following strategies to partition your design and improve optimization and runtimes:

• Partition for design reuse.

• Keep related combinational logic together.

• Register the block outputs.

• Partition by design goal.

• Partition by compile technique.

• Keep sharable resources together.

• Keep user-defined resources with the logic they drive.

• Isolate special functions, such as pads, clocks, boundary scans, and asynchronous logic.

The following sections describe each of these strategies.

Partitioning for Design Reuse
Design reuse decreases time to market by reducing the design, integration, and testing
effort.

When reusing existing designs, partition the design to enable instantiation of the designs.

To enable designs to be reused, follow these guidelines during partitioning and block design:

• Thoroughly define and document the design interface.

• Standardize interfaces whenever possible.

• Parameterize the HDL code.
Chapter 3: Preparing Design Files for Synthesis
Partitioning for Synthesis 3-4

Design Compiler User Guide Version D-2010.03-SP2
Keeping Related Combinational Logic Together
By default, Design Compiler cannot move logic across hierarchical boundaries. Dividing
related combinational logic into separate blocks introduces artificial barriers that restrict
logic optimization.

For best results, apply these strategies:

• Group related combinational logic and its destination register together.

When working with the complete combinational path, Design Compiler has the flexibility
to merge logic, resulting in a smaller, faster design. Grouping combinational logic with its
destination register also simplifies the timing constraints and enables sequential
optimization.

• Eliminate glue logic.

Glue logic is the combinational logic that connects blocks. Moving this logic into one of
the blocks improves synthesis results by providing Design Compiler with additional
flexibility. Eliminating glue logic also reduces compile time, because Design Compiler has
fewer logic levels to optimize.

For example, assume that you have a design containing three combinational clouds on or
near the critical path. Figure 3-3 shows poor partitioning of this design. Each of the
combinational clouds occurs in a separate block, so Design Compiler cannot fully exploit its
combinational optimization techniques.

Figure 3-3 Poor Partitioning of Related Logic

Figure 3-4 shows the same design with no artificial boundaries. In this design, Design
Compiler has the flexibility to combine related functions in the combinational clouds.

Critical path
Chapter 3: Preparing Design Files for Synthesis
Partitioning for Synthesis 3-5
Chapter 3: Preparing Design Files for Synthesis
Partitioning for Synthesis 3-5

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Figure 3-4 Keeping Related Logic in the Same Block

Registering Block Outputs
To simplify the constraint definitions, make sure that registers drive the block outputs, as
shown in Figure 3-5.

Figure 3-5 Registering All Outputs

This method enables you to constrain each block easily because

• The drive strength on the inputs to an individual block always equals the drive strength of
the average input drive

• The input delays from the previous block always equal the path delay through the flip-flop

Because no combinational-only paths exist when all outputs are registered, time budgeting
the design and using the set_output_delay command are easier. Given that one clock
cycle occurs within each module, the constraints are simple and identical for each module.

Critical path

set_driving_cell my_flop [all_inputs]
set_input_delay 2 -clock CLK
Chapter 3: Preparing Design Files for Synthesis
Partitioning for Synthesis 3-6

Design Compiler User Guide Version D-2010.03-SP2
This partitioning method can improve simulation performance. With all outputs registered, a
module can be described with only edge-triggered processes. The sensitivity list contains
only the clock and, perhaps, a reset pin. A limited sensitivity list speeds simulation by having
the process triggered only once in each clock cycle.

Partitioning by Design Goal
Partition logic with different design goals into separate blocks. Use this method when certain
parts of a design are more area and timing critical than other parts.

To achieve the best synthesis results, isolate the noncritical speed constraint logic from the
critical speed constraint logic. By isolating the noncritical logic, you can apply different
constraints, such as a maximum area constraint, on the block.

Figure 3-6 shows how to separate logic with different design goals.

Figure 3-6 Blocks With Different Constraints

Partitioning by Compile Technique
Partition logic that requires different compile techniques into separate blocks. Use this
method when the design contains highly structured logic along with random logic.

• Highly structured logic, such as error detection circuitry, which usually contains large
exclusive OR trees, is better suited to structuring.

• Random logic is better suited to flattening.

For more information on structuring and flattening, see “Logic-Level Optimization” on
page 8-3.

Non-
critical
path

Critical
path

Goal: Minimum area Goal: Maximum performance
Chapter 3: Preparing Design Files for Synthesis
Partitioning for Synthesis 3-7
Chapter 3: Preparing Design Files for Synthesis
Partitioning for Synthesis 3-7

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Keeping Sharable Resources Together
Design Compiler can share large resources, such as adders or multipliers, but resource
sharing can occur only if the resources belong to the same VHDL process or Verilog always
block.

For example, if two separate adders have the same destination path and have multiplexed
outputs to that path, keep the adders in one VHDL process or Verilog always block. This
approach allows Design Compiler to share resources (using one adder instead of two) if the
constraints allow sharing. Figure 3-7 shows possible implementations of a logic example.

Figure 3-7 Keeping Sharable Resources in the Same Process

For more information about resource sharing, see the HDL Compiler documentation.

Keeping User-Defined Resources With the Logic They Drive
User-defined resources are user-defined functions, procedures, or macro cells, or
user-created DesignWare components. Design Compiler cannot automatically share or
create multiple instances of user-defined resources. Keeping these resources with the logic
they drive, however, gives you the flexibility to split the load by manually inserting multiple
instantiations of a user-defined resource if timing goals cannot be achieved with a single
instantiation.

A
B

Z

D

CTL

C

+

+

CTL

A
C

B
D

+

Unshared Resources

Shared Resources

Z

Chapter 3: Preparing Design Files for Synthesis
Partitioning for Synthesis 3-8

Design Compiler User Guide Version D-2010.03-SP2
Figure 3-8 illustrates splitting the load by multiple instantiation when the load on the signal
PARITY_ERR is too heavy to meet constraints.

Figure 3-8 Duplicating User-Defined Resources

Isolating Special Functions
Isolate special functions (such as I/O pads, clock generation circuitry, boundary-scan logic,
and asynchronous logic) from the core logic. Figure 3-9 shows the recommended
partitioning for the top level of the design.

User-Defined
Resource

PARITY_ERR

User-Defined
Resource
Chapter 3: Preparing Design Files for Synthesis
Partitioning for Synthesis 3-9
Chapter 3: Preparing Design Files for Synthesis
Partitioning for Synthesis 3-9

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Figure 3-9 Recommended Top-Level Partitioning

The top level of the design contains the I/O pad ring and a middle level of hierarchy that
contains submodules for the boundary-scan logic, the clock generation circuitry, the
asynchronous logic, and the core logic. The middle level of hierarchy exists to allow the
flexibility to instantiate I/O pads. Isolation of the clock generation circuitry enables
instantiation and careful simulation of this module. Isolation of the asynchronous logic helps
confine testability problems and static timing analysis problems to a small area.

HDL Coding for Synthesis

HDL coding is the foundation for synthesis because it implies the initial structure of the
design. When writing your HDL source code, always consider the hardware implications of
the code. A good coding style can generate smaller and faster designs. This section
provides information to help you write efficient code so that you can achieve your design
target in the shortest possible time.

Topics include

• Writing technology-independent HDL

• Using HDL constructs

• Writing effective code

Top

Core logic

Clock
generation

Boundary

Middle

Pads

scan

Asynchronous
logic
Chapter 3: Preparing Design Files for Synthesis
HDL Coding for Synthesis 3-10

Design Compiler User Guide Version D-2010.03-SP2
Writing Technology-Independent HDL
The goal of high-level design that uses a completely automatic synthesis process is to have
no instantiated gates or flip-flops. If you meet this goal, you will have readable, concise, and
portable high-level HDL code that can be transferred to other vendors or to future processes.

In some cases, the HDL Compiler tool requires compiler directives to provide
implementation information while still maintaining technology independence. In Verilog,
compiler directives begin with the characters // or /*. In VHDL, compiler directives begin with
the two hyphens (--) followed by pragma or synopsys. For more information, see the HDL
Compiler documentation.

The following sections discuss various methods for keeping your HDL code technology
independent.

Inferring Components
HDL Compiler provides the capability to infer the following components:

• Multiplexers

• Registers

• Three-state drivers

• Multibit components

These inference capabilities are discussed in the following pages. For additional information
and examples, see the HDL Compiler documentation.

Inferring Multiplexers
HDL Compiler can infer a generic multiplexer cell (MUX_OP) from case statements in your
HDL code. If your target technology library contains at least a 2-to-1 multiplexer cell, Design
Compiler maps the inferred MUX_OPs to multiplexer cells in the target technology library.
Design Compiler determines the MUX_OP implementation during compile based on the
design constraints. For information about how Design Compiler maps MUX_OPs to
multiplexers, see the Design Compiler Optimization Reference Manual.

Use the infer_mux compiler directive to control multiplexer inference. When attached to a
block, the infer_mux directive forces multiplexer inference for all case statements in the
block. When attached to a case statement, the infer_mux directive forces multiplexer
inference for that specific case statement.
Chapter 3: Preparing Design Files for Synthesis
HDL Coding for Synthesis 3-11
Chapter 3: Preparing Design Files for Synthesis
HDL Coding for Synthesis 3-11

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Inferring Registers
Register inference allows you to specify technology-independent sequential logic in your
designs. A register is a simple, 1-bit memory device, either a latch or a flip-flop. A latch is a
level-sensitive memory device. A flip-flop is an edge-triggered memory device.

HDL Compiler infers a D latch whenever you do not specify the resulting value for an output
under all conditions, as in an incompletely specified if or case statement. HDL Compiler can
also infer SR latches and master-slave latches.

HDL Compiler infers a D flip-flop whenever the sensitivity list of a Verilog always block or
VHDL process includes an edge expression (a test for the rising or falling edge of a signal).
HDL Compiler can also infer JK flip-flops and toggle flip-flops.

Mixing Register Types
For best results, restrict each Verilog always block or VHDL process to a single type of
register inferencing: latch, latch with asynchronous set or reset, flip-flop, flip-flop with
asynchronous set or reset, or flip-flop with synchronous set or reset.

Be careful when mixing rising- and falling-edge-triggered flip-flops in your design. If a
module infers both rising- and falling-edge-triggered flip-flops and the target technology
library does not contain a falling-edge-triggered flip-flop, Design Compiler generates an
inverter in the clock tree for the falling-edge clock.

Inferring Registers Without Control Signals
For inferring registers without control signals, make the data and clock pins controllable from
the input ports or through combinational logic. If a gate-level simulator cannot control the
data or clock pins from the input ports or through combinational logic, the simulator cannot
initialize the circuit, and the simulation fails.

Inferring Registers With Control Signals
You can initialize or control the state of a flip-flop by using either an asynchronous or a
synchronous control signal.

For inferring asynchronous control signals on latches, use the async_set_reset compiler
directive (attribute in VHDL) to identify the asynchronous control signals. HDL Compiler
automatically identifies asynchronous control signals when inferring flip-flops.

For inferring synchronous resets, use the sync_set_reset compiler directive (attribute in
VHDL) to identify the synchronous controls.
Chapter 3: Preparing Design Files for Synthesis
HDL Coding for Synthesis 3-12

Design Compiler User Guide Version D-2010.03-SP2
Inferring Three-State Drivers
Assign the high-impedance value (1’bz in Verilog, 'Z' in VHDL) to the output pin to have
Design Compiler infer three-state gates. Three-state logic reduces the testability of the
design and makes debugging difficult. Where possible, replace three-state buffers with a
multiplexer.

Never use high-impedance values in a conditional expression. HDL Compiler always
evaluates expressions compared to high-impedance values as false, which can cause the
gate-level implementation to behave differently from the RTL description.

For additional information about three-state inference, see the HDL Compiler
documentation.

Inferring Multibit Components
Multibit inference allows you to map multiplexers, registers, and three-state drivers to
regularly structured logic or multibit library cells. Using multibit components can have the
following results:

• Smaller area and delay, due to shared transistors and optimized transistor-level layout

• Reduced clock skew in sequential gates

• Lower power consumption by the clock in sequential banked components

• Improved regular layout of the data path

Multibit components might not be efficient in the following instances:

• As state machine registers

• In small bused logic that would benefit from single-bit design

You must weigh the benefits of multibit components against the loss of optimization flexibility
when deciding whether to map to multibit or single-bit components.

Attach the infer_multibit compiler directive to bused signals to infer multibit components.
You can also change between a single-bit and a multibit implementation after optimization
by using the create_multibit and remove_multibit commands.

For more information about how Design Compiler handles multibit components, see the
Design Compiler Optimization Reference Manual.

Using Synthetic Libraries
To help you achieve optimal performance, Synopsys supplies a synthetic library. This library
contains efficient implementations for adders, incrementers, comparators, and signed
multipliers.
Chapter 3: Preparing Design Files for Synthesis
HDL Coding for Synthesis 3-13
Chapter 3: Preparing Design Files for Synthesis
HDL Coding for Synthesis 3-13

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Design Compiler selects a synthetic component to meet the given constraints. After Design
Compiler assigns the synthetic structure, you can always change to another type of structure
by modifying your constraints. If you ungroup the synthetic cells or write the netlist to a text
file, however, Design Compiler can no longer recognize the synthetic component and cannot
perform implementation reselection.

The HDL Compiler documentation contains additional information about using compiler
directives to control synthetic component use. The DesignWare Foundation Library
Databook volumes contain additional information about synthetic libraries and provide
examples of how to infer and instantiate synthetic components.

Example 3-1 and Example 3-2 use the label, ops, map_to_module, and implementation
compiler directives to implement a 32-bit carry-lookahead adder.

Example 3-1 32-Bit Carry-Lookahead Adder (Verilog)
module add32 (a, b, cin, sum, cout);
 input [31:0] a, b;
 input cin;
 output [31:0] sum;
 output cout;
 reg [33:0] temp;

always @(a or b or cin)
 begin : add1
 /* synopsys resource r0:
 ops = "A1",
 map_to_module = "DW01_add",
 implementation = "cla"; */
 temp = ({1'b0, a, cin} + // synopsys label A1
 {1'b0, b, 1'b1});
 end

assign {cout, sum} = temp[33:1];

endmodule
Chapter 3: Preparing Design Files for Synthesis
HDL Coding for Synthesis 3-14

Design Compiler User Guide Version D-2010.03-SP2
Example 3-2 32-Bit Carry-Lookahead Adder (VHDL)
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

library synopsys;
use synopsys.attributes.all;

entity add32 is
 port (a,b : in std_logic_vector (31 downto 0);
 cin : in std_logic;
 sum : out std_logic_vector (31 downto 0);
 cout: out std_logic);
end add32;

architecture rtl of add32 is
 signal temp_signed : SIGNED (33 downto 0);
 signal op1, op2, temp : STD_LOGIC_VECTOR (33 downto 0);
 constant COUNT : UNSIGNED := "01";

begin
 infer: process (a, b, cin)
 constant r0 : resource := 0;
 attribute ops of r0 : constant is "A1";
 attribute map_to_module of r0 : constant is "DW01_add";
 attribute implementation of r0 : constant is "cla";

 begin
 op1 <= '0' & a & cin;
 op2 <= '0' & b & '1';
 temp_signed <= SIGNED(op1) + SIGNED(op2); -- pragma
label A1
 temp <= STD_LOGIC_VECTOR(temp_signed);

 cout <= temp(33);
 sum <= temp(32 downto 1);
 end process infer;
 end rtl;

Designing State Machines
You can specify a state machine by using several different formats:

• Verilog

• VHDL

• State table

• PLA
Chapter 3: Preparing Design Files for Synthesis
HDL Coding for Synthesis 3-15
Chapter 3: Preparing Design Files for Synthesis
HDL Coding for Synthesis 3-15

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
If you use the state_vector and enum compiler directives in your HDL code, Design
Compiler can extract the state table from a netlist. In the state table format, Design Compiler
does not retain the casex, casez, and parallel_case information. Design Compiler does not
optimize invalid input combinations and mutually exclusive inputs.

Figure 3-10 shows the architecture for a finite state machine.

Figure 3-10 Finite State Machine Architecture

Using an extracted state table provides the following benefits:

• State minimization can be performed.

• Tradeoffs between different encoding styles can be made.

• Don’t care conditions can be used without flattening the design.

• Don’t care state codes are automatically derived.

For information about extracting state machines and changing encoding styles, see the
Design Compiler Optimization Reference Manual.

Using HDL Constructs
The following sections provide information and guidelines about the following specific HDL
constructs:

• General HDL constructs

• Verilog macro definitions

• VHDL port definitions

Primary
inputs

Primary
outputs

Next State
vector

Output
logicstate

logic flip-flops

Clock

Present

state
Next

(Mealy machines only)

state
Chapter 3: Preparing Design Files for Synthesis
HDL Coding for Synthesis 3-16

Design Compiler User Guide Version D-2010.03-SP2
General HDL Constructs
The information in this section applies to both Verilog and VHDL.

Sensitivity Lists
You should completely specify the sensitivity list for each Verilog always block or VHDL
process. Incomplete sensitivity lists (shown in the following examples) can result in
simulation mismatches between the HDL and the gate-level design.

Example 3-3 Incomplete Sensitivity List (Verilog)
always @ (A)
 C <= A | B;

Example 3-4 Incomplete Sensitivity List (VHDL)
process (A)
 C <= A or B;

Value Assignments
Both Verilog and VHDL support the use of immediate and delayed value assignments in the
RTL code. The hardware generated by immediate value assignments—implemented by
Verilog blocking assignments (=) and VHDL variables (:=)—is dependent on the ordering of
the assignments. The hardware generated by delayed value assignments—implemented by
Verilog nonblocking assignments (<=) and VHDL signals (<=)—is independent of the
ordering of the assignments.

For correct simulation results,

• Use delayed (nonblocking) assignments within sequential Verilog always blocks or VHDL
processes

• Use immediate (blocking) assignments within combinational Verilog always blocks or
VHDL processes

if Statements
When an if statement used in a Verilog always block or VHDL process as part of a
continuous assignment does not include an else clause, Design Compiler creates a latch.
The following examples show if statements that generate latches during synthesis.

Example 3-5 Incorrect if Statement (Verilog)
if ((a == 1) && (b == 1))
 z = 1;
Chapter 3: Preparing Design Files for Synthesis
HDL Coding for Synthesis 3-17
Chapter 3: Preparing Design Files for Synthesis
HDL Coding for Synthesis 3-17

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Example 3-6 Incorrect if Statement (VHDL)
if (a = ’1’ and b = ’1’) then
 z <= ’1’;
end if;

case Statements
If your if statement contains more than three conditions, consider using the case statement
to improve the parallelism of your design and the clarity of your code. The following
examples use the case statement to implement a 3-bit decoder.

Example 3-7 Using the case Statement (Verilog)
case ({a, b, c})
 3’b000: z = 8’b00000001;
 3’b001: z = 8’b00000010;
 3’b010: z = 8’b00000100;
 3’b011: z = 8’b00001000;
 3’b100: z = 8’b00010000;
 3’b101: z = 8’b00100000;
 3’b110: z = 8’b01000000;
 3’b111: z = 8’b10000000;
 default: z = 8’b00000000;
endcase

Example 3-8 Using the case Statement (VHDL)
case_value := a & b & c;
CASE case_value IS
 WHEN "000" =>
 z <= "00000001";
 WHEN "001" =>
 z <= "00000010";
 WHEN "010" =>
 z <= "00000100";
 WHEN "011" =>
 z <= "00001000";
 WHEN "100" =>
 z <= "00010000";
 WHEN "101" =>
 z <= "00100000";
 WHEN "110" =>
 z <= "01000000";
 WHEN "111" =>
 z <= "10000000";
 WHEN OTHERS =>
 z <= "00000000";
END CASE;

An incomplete case statement results in the creation of a latch. VHDL does not support
incomplete case statements. In Verilog you can avoid latch inference by using either the
default clause or the full_case compiler directive.
Chapter 3: Preparing Design Files for Synthesis
HDL Coding for Synthesis 3-18

Design Compiler User Guide Version D-2010.03-SP2
Although both the full_case directive and the default clause prevent latch inference, they
have different meanings. The full_case directive asserts that all valid input values have been
specified and no default clause is necessary. The default clause specifies the output for any
undefined input values.

For best results, use the default clause instead of the full_case directive. If the unspecified
input values are don’t care conditions, using the default clause with an output value of x can
generate a smaller implementation.

If you use the full_case directive, the gate-level simulation might not match the RTL
simulation whenever the case expression evaluates to an unspecified input value. If you use
the default clause, simulation mismatches can occur only if you specified don’t care
conditions and the case expression evaluates to an unspecified input value.

Constant Definitions
Use the Verilog `define statement or the VHDL constant statement to define global
constants. Keep global constant definitions in a separate file. Use parameters (Verilog) or
generics (VHDL) to define local constants.

Example 3-9 shows a Verilog code fragment that includes a global `define statement and a
local parameter. Example 3-10 shows a VHDL code fragment that includes a global
constant and a local generic.

Example 3-9 Using Macros and Parameters (Verilog)
// Define global constant in def_macro.v
‘define WIDTH 128

// Use global constant in reg128.v
reg regfile[WIDTH-1:0];

// Define and use local constant in module foo
module foo (a, b, c);
 parameter WIDTH=128;
 input [WIDTH-1:0] a, b;
 output [WIDTH-1:0] c;
Chapter 3: Preparing Design Files for Synthesis
HDL Coding for Synthesis 3-19
Chapter 3: Preparing Design Files for Synthesis
HDL Coding for Synthesis 3-19

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Example 3-10 Using Global Constants and Generics (VHDL)
-- Define global constant in synthesis_def.vhd
constant WIDTH : INTEGER := 128;

-- Include global constants
library my_lib;
USE my_lib.synthesis_def.all;

-- Use global constant in entity my_design
entity my_design is
 port (a,b : in std_logic_vector(WIDTH-1 downto 0);
 c: out std_logic_vector(WIDTH-1 downto 0));
end my_design;

-- Define and use local constant in entity my_design
entity my_design is
 generic (WIDTH_VAR : INTEGER := 128);
 port (a,b : in std_logic_vector(WIDTH-1 downto 0);
 c: out std_logic_vector(WIDTH-1 downto 0));
end my_design;

Using Verilog Macro Definitions
In Verilog, macros are implemented using the ̀ define statement. Follow these guidelines for
`define statements:

• Use `define statements only to declare constants.

• Keep `define statements in a separate file.

• Do not use nested `define statements.

Reading a macro that is nested more than twice is difficult. To make your code readable,
do not use nested `define statements.

• Do not use `define inside module definitions.

When you use a `define statement inside a module definition, the local macro and the
global macro have the same reference name but different values. Use parameters to
define local constants.

Using VHDL Port Definitions
When defining ports in VHDL source code, observe these guidelines:

• Use the STD_LOGIC and STD_LOGIC_VECTOR packages.

By using STD_LOGIC, you avoid the need for type conversion functions on the
synthesized design.

• Do not use the buffer port mode.
Chapter 3: Preparing Design Files for Synthesis
HDL Coding for Synthesis 3-20

Design Compiler User Guide Version D-2010.03-SP2
When you declare a port as a buffer, the port must be used as a buffer throughout the
hierarchy. To simplify synthesis, declare the port as an output, then define an internal
signal that drives the output port.

Writing Effective Code
This section provides guidelines for writing efficient, readable HDL source code for
synthesis. The guidelines cover

• Identifiers

• Expressions

• Functions

• Modules

Guidelines for Identifiers
A good identifier name conveys the meaning of the signal, the value of a variable, or the
function of a module; without this information, the hardware descriptions are difficult to read.

Observe the following naming guidelines to improve the readability of your HDL source
code:

• Ensure that the signal name conveys the meaning of the signal or the value of a variable
without being verbose.

For example, assume that you have a variable that represents the floating point opcode
for rs1. A short name, such as frs1, does not convey the meaning to the reader. A long
name, such as floating_pt_opcode_rs1, conveys the meaning, but its length might make
the source code difficult to read. Use a name such as fpop_rs1, which meets both goals.

• Use a consistent naming style for capitalization and to distinguish separate words in the
name.

Commonly used styles include C, Pascal, and Modula.

• C style uses lowercase names and separates words with an underscore, for example,
packet_addr, data_in, and first_grant_enable.

• Pascal style capitalizes the first letter of the name and first letter of each word, for
example, PacketAddr, DataIn, and FirstGrantEnable.

• Modula style uses a lowercase letter for the first letter of the name and capitalizes the
first letter of subsequent words, for example, packetAddr, dataIn, and
firstGrantEnable.

Choose one convention and apply it consistently.
Chapter 3: Preparing Design Files for Synthesis
HDL Coding for Synthesis 3-21
Chapter 3: Preparing Design Files for Synthesis
HDL Coding for Synthesis 3-21

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
• Avoid confusing characters.

Some characters (letters and numbers) look similar and are easily confused, for example,
O and 0 (zero); l and 1 (one).

• Avoid reserved words.

• Use the noun or noun followed by verb form for names, for example, AddrDecode,
DataGrant, PCI_interrupt.

• Add a suffix to clarify the meaning of the name.

Table 3-2 shows common suffixes and their meanings.

Guidelines for Expressions
Observe the following guidelines for expressions:

• Use parentheses to indicate precedence.

Expression operator precedence rules are confusing, so you should use parentheses to
make your expression easy to read. Unless you are using DesignWare resources,
parentheses have little effect on the generated logic. An example of a logic expression
without parentheses that is difficult to read is

Table 3-2 Signal Name Suffixes and Their Meanings

Suffix Meaning

_clk Clock signal

_next Signal before being registered

_n Active low signal

_z Signal that connects to a three-state output

_f Register that uses an active falling edge

_xi Primary chip input

_xo Primary chip output

_xod Primary chip open drain output

_xz Primary chip three-state output

_xbio Primary chip bidirectional I/O
Chapter 3: Preparing Design Files for Synthesis
HDL Coding for Synthesis 3-22

Design Compiler User Guide Version D-2010.03-SP2
bus_select = a ^ b & c~^d|b^~e&^f[1:0];

• Replace repetitive expressions with function calls or continuous assignments.

If you use a particular expression more than two or three times, consider replacing the
expression with a function or a continuous assignment that implements the expression.

Guidelines for Functions
Observe these guidelines for functions:

• Do not use global references within a function.

In procedural code, a function is evaluated when it is called. In a continuous assignment,
a function is evaluated when any of its declared inputs changes.

Avoid using references to nonlocal names within a function because the function might
not be reevaluated if the nonlocal value changes. This can cause a simulation mismatch
between the HDL description and the gate-level netlist. For example, the following Verilog
function references the nonlocal name byte_sel:

function byte_compare;
 input [15:0] vector1, vector2;
 input [7:0] length;

 begin
 if (byte_sel)
 // compare the upper byte
 else
 // compare the lower byte
 ...
 end
endfunction // byte_compare

• Be aware that the local storage for tasks and functions is static.

Formal parameters, outputs, and local variables retain their values after a function has
returned. The local storage is reused each time the function is called. This storage can
be useful for debugging, but storage reuse also means that functions and tasks cannot
be called recursively.

• Be careful when using component implication.

You can map a function to a specific implementation by using the map_to_module and
return_port_name compiler directives. Simulation uses the contents of the function.
Synthesis uses the gate-level module in place of the function. When you are using
component implication, the RTL model and the gate-level model might be different.
Therefore, the design cannot be fully verified until simulation is run on the gate-level
design.

The following functionality might require component instantiation or functional
implication:
Chapter 3: Preparing Design Files for Synthesis
HDL Coding for Synthesis 3-23
Chapter 3: Preparing Design Files for Synthesis
HDL Coding for Synthesis 3-23

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
• Clock-gating circuitry for power savings

• Asynchronous logic with potential hazards

This functionality includes asynchronous logic and asynchronous signals that are valid
during certain states.

• Data-path circuitry

This functionality includes large multiplexers; instantiated wide banks of multiplexers;
memory elements, such as RAM or ROM; and black box macro cells.

For more information about component implication, see the HDL Compiler
documentation.

Guidelines for Modules
Observe these guidelines for modules:

• Avoid using logic expressions when you pass a value through ports.

The port list can include expressions, but expressions complicate debugging. In addition,
isolating a problem related to the bit field is difficult, particularly if that bit field leads to
internal port quantities that differ from external port quantities.

• Define local references as generics (VHDL) or parameters (Verilog). Do not pass
generics or parameters into modules.
Chapter 3: Preparing Design Files for Synthesis
HDL Coding for Synthesis 3-24

4
Working With Libraries 4

This chapter presents basic library information. Design Compiler uses technology, symbol,
and synthetic or DesignWare libraries to implement synthesis and to display synthesis
results graphically. You must know how to carry out a few simple library commands so that
Design Compiler uses the library data correctly.

This chapter contains the following sections:

• Selecting a Semiconductor Vendor

• Understanding the Library Requirements

• Specifying Libraries

• Loading Libraries

• Listing Libraries

• Reporting Library Contents

• Specifying Library Objects

• Directing Library Cell Usage

• Library-Aware Mapping and Synthesis

• Removing Libraries From Memory

• Saving Libraries
4-1

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Selecting a Semiconductor Vendor

One of the first things you must do when designing a chip is to select the semiconductor
vendor and technology you want to use. Consider the following issues during the selection
process:

• Maximum frequency of operation

• Physical restrictions

• Power restrictions

• Packaging restrictions

• Clock tree implementation

• Floorplanning

• Back-annotation support

• Design support for libraries, megacells, and RAMs

• Available cores

• Available test methods and scan styles

Understanding the Library Requirements

Design Compiler uses these libraries:

• Technology libraries

• Symbol libraries

• DesignWare libraries

This section describes these libraries.

Technology Libraries
Technology libraries contain information about the characteristics and functions of each cell
provided in a semiconductor vendor’s library. Semiconductor vendors maintain and
distribute the technology libraries.
Chapter 4: Working With Libraries
Selecting a Semiconductor Vendor 4-2

Design Compiler User Guide Version D-2010.03-SP2
Cell characteristics include information such as cell names, pin names, area, delay arcs, and
pin loading. The technology library also defines the conditions that must be met for a
functional design (for example, the maximum transition time for nets). These conditions are
called design rule constraints.

In addition to cell information and design rule constraints, technology libraries specify the
operating conditions and wire load models specific to that technology.

Design Compiler supports logic libraries that use nonlinear delay models (NLDMs),
Composite Current Source (CCS) models (either compact or noncompact), or both. Design
Compiler automatically selects the timing model to use based on the contents of the logic
libraries. If the logic libraries contain only CCS models, the tool uses CCS models. If the
libraries contain nonlinear delay models (NLDMs) or both NLDM and Composite Current
Source (CCS) models, the tool uses the NLDM models. For optimal runtime and the level of
accuracy, the tool may not use all of the CCS data during logic synthesis and pre-route
optimizations.

Design Compiler requires the technology libraries to be in .db format. In most cases, your
semiconductor vendor provides you with .db formatted libraries. If you are provided with only
library source code, see the Library Compiler documentation for information about
generating technology libraries.

Design Compiler uses technology libraries for these purposes:

• Implementing the design function

The technology libraries that Design Compiler maps to during optimization are called
target libraries. The target libraries contain the cells used to generate the netlist and
definitions for the design’s operating conditions.

The target libraries that are used to compile or translate a design become the local link
libraries for the design. Design Compiler saves this information in the design’s
local_link_library attribute. For information about attributes, see “Working With
Attributes” on page 5-40.

• Resolving cell references

The technology libraries that Design Compiler uses to resolve cell references are called
link libraries.

In addition to technology libraries, link libraries can also include design files. The link
libraries contain the descriptions of cells (library cells as well as subdesigns) in a mapped
netlist.

Link libraries include both local link libraries (local_link_library attribute) and system
link libraries (link_library variable).

For more information about resolving references, see “Linking Designs” on page 5-13.
Chapter 4: Working With Libraries
Understanding the Library Requirements 4-3
Chapter 4: Working With Libraries
Understanding the Library Requirements 4-3

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
• Calculating timing values and path delays

The link libraries define the delay models that are used to calculate timing values and
path delays. For information about the various delay models, see the Library Compiler
documentation.

• Calculating power consumed

For information about calculating power consumption, see the Power Compiler
Reference Manual.

Symbol Libraries
Symbol libraries contain definitions of the graphic symbols that represent library cells in the
design schematics. Semiconductor vendors maintain and distribute the symbol libraries.

Design Compiler uses symbol libraries to generate the design schematic. You must use
Design Vision to view the design schematic.

When you generate the design schematic, Design Compiler performs a one-to-one mapping
of cells in the netlist to cells in the symbol library.

DesignWare Libraries
A DesignWare library is a collection of reusable circuit-design building blocks (components)
that are tightly integrated into the Synopsys synthesis environment.

DesignWare components that implement many of the built-in HDL operators are provided by
Synopsys. These operators include +, -, *, <, >, <=, >=, and the operations defined by if and
case statements.

You can develop additional DesignWare libraries at your site by using DesignWare
Developer, or you can license DesignWare libraries from Synopsys or from third parties. To
use licensed DesignWare components, you need a license key.
Chapter 4: Working With Libraries
Understanding the Library Requirements 4-4

Design Compiler User Guide Version D-2010.03-SP2
Specifying Libraries

You use dc_shell variables to specify the libraries used by Design Compiler. Table 4-1 lists
the variables for each library type as well as the typical file extension for the library.

Specifying Technology Libraries
To specify technology libraries, you must specify the target library and link library.

Target Library
Design Compiler uses the target library to build a circuit. During mapping, Design Compiler
selects functionally correct gates from the target library. It also calculates the timing of the
circuit, using the vendor-supplied timing data for these gates.

Use the target_library variable to specify the target library.

Link Library
Design Compiler uses the link library to resolve references. For a design to be complete, it
must connect to all the library components and designs it references. This process is called
linking the design or resolving references.

During the linking process, Design Compiler uses the link_library system variable, the
local_link_library attribute, and the search_path system variable to resolve
references. These variables and attribute are described below:

• link_library variable

The link_library variable specifies a list of libraries and design files that Design
Compiler can use to resolve references. When you load a design into memory, Design
Compiler also loads all libraries specified in the link_library variable.

Table 4-1 Library Variables

Library type Variable Default File
extension

Target library target_library {“your_library.db”} .db

Link library link_library {“*”, “your_library.db”} .db

Symbol library symbol_library {“your_library.sdb”} .sdb

DesignWare library synthetic_library {} .sldb
Chapter 4: Working With Libraries
Specifying Libraries 4-5
Chapter 4: Working With Libraries
Specifying Libraries 4-5

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Because the tool loads the libraries while loading the design, rather than during the link
process, the memory usage and runtime required for loading the design might increase.
However, the advantage is that you know immediately whether your design can be
processed with the available memory.

An asterisk in the value of the link_library variable specifies that Design Compiler
should search memory for the reference.

• local_link_library attribute

The local_link_library attribute is a list of design files and libraries added to the
beginning of the link_library variable during the linking process. Design Compiler
searches files in the local_link_library attribute first when it resolves references.

• search_path variable

If Design Compiler does not find the reference in the link libraries, it searches in the
directories specified by the search_path variable, described in “Specifying a Library
Search Path” on page 4-8. For more information on resolving references, see “Linking
Designs” on page 5-13.

If you do technology translation, add the standard cell library for the existing mapped
gates to the link_library and the standard cell library being translated to the
target_library.

Your target_library specification should only contain those standard cell libraries that
you want Design Compiler to use when mapping your design’s standard cells. Standard cells
are cells such as combinational logic and registers. Your target_library specification
should not include any DesignWare libraries or macro libraries such as pads or memories.
The target_library is a subset of the link_library and listed first in your list of link
libraries, as shown in Example 4-1. This example includes the additional_link_lib_files user
created variable to simplify the link library definition.

Example 4-1 Setting the Target, Synthetic, and Link Libraries
set target_library [list of standard cell library files for mapping]
set synthetic_library [list of sldb files for designware, and so on]
set additional_link_lib_files [list of additional libraries for linking: pads, macros,

and so on]
set link_library [list * $target_library $additional_link_lib_files \

 $synthetic_library]

When you specify the files in the link_library variable, consider that Design Compiler
searches these files from left to right when it resolves references, and it stops searching
when it finds a reference. If you specify the link library as {"*" lsi_10k.db}, the designs in
memory are searched before the lsi_10k library.
Chapter 4: Working With Libraries
Specifying Libraries 4-6

Design Compiler User Guide Version D-2010.03-SP2
Design Compiler uses the first technology library found in the link_library variable as the
main library. It uses the main library to obtain default values and settings used in the
absence of explicit specifications for operating conditions, wire load selection group, wire
load mode, and net delay calculation. Design Compiler obtains the following default values
and settings from the main library:

• Unit definitions

• Operating conditions

• K-factors

• Wire load model selection

• Input and output voltage

• Timing ranges

• RC slew trip points

• Net transition time degradation tables

If other libraries have units different from the main library units, Design Compiler converts all
units to those that the main library uses.

If you are performing simultaneous minimum and maximum timing analysis, the logic
libraries specified by the link_library variable are used for both maximum and minimum
timing information, unless you specify separate minimum timing libraries by using the
set_min_library command. The set_min_library command associates minimum
timing libraries with the maximum timing libraries specified in the link_library variable.
For example,

dc_shell> set link_library "* maxlib.db"
dc_shell> set_min_library maxlib.db -min_version minlib.db

To find out which libraries have been set to be the minimum and maximum libraries, use the
list_libs command. In the generated report, the letter "m" appears next to the minimum
library and the letter "M" appears next to the maximum library.

Specifying DesignWare Libraries
You do not need to specify the standard synthetic library, standard.sldb, that implements the
built-in HDL operators. The software automatically uses this library.

If you are using additional DesignWare libraries, you must specify these libraries by using
the synthetic_library variable (for optimization purposes) and the link_library
variable (for cell resolution purposes).
Chapter 4: Working With Libraries
Specifying Libraries 4-7
Chapter 4: Working With Libraries
Specifying Libraries 4-7

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
For more information about using DesignWare libraries, see the DesignWare
documentation.

Specifying a Library Search Path
You can specify the library location by using either the complete path or only the file name.
If you specify only the file name, Design Compiler uses the search path defined in the
search_path variable to locate the library files. By default, the search path includes the
current working directory and $SYNOPSYS/libraries/syn, where $SYNOPSYS is the path to
the installation directory. Design Compiler looks for the library files, starting with the leftmost
directory specified in the search_path variable, and uses the first matching library file it
finds.

For example, assume that you have technology libraries named my_lib.db in both the lib
directory and the vhdl directory. If the search path contains (in order) the lib directory, the
vhdl directory, and the default search path, Design Compiler uses the my_lib.db file found in
the lib directory, because it encounters the lib directory first.

You can use the which command to see which library files Design Compiler finds (in order).

dc_shell> which my_lib.db
/usr/lib/my_lib.db, /usr/vhdl/my_lib.db

Loading Libraries

Design Compiler uses binary libraries (.db format for technology libraries and .sdb format for
symbol libraries) and automatically loads these libraries when needed.

If your library is not in the appropriate binary format, use the read_lib command to compile
the library source. The read_lib command requires a Library-Compiler license.

To manually load a binary library, use the read_file command.

dc_shell> read_file my_lib.db
dc_shell> read_file my_lib.sdb

Listing Libraries

Design Compiler refers to a library loaded in memory by its name. The library statement in
the library source defines the library name.

To list the names of the libraries loaded in memory, use the list_libs command.
Chapter 4: Working With Libraries
Loading Libraries 4-8

Design Compiler User Guide Version D-2010.03-SP2
dc_shell> list_libs
Logical Libraries:
Library File Path
------- ---- ----
my_lib my_lib.db /synopsys/libraries
my_symbol_lib my_lib.sdb /synopsys/libraries

Reporting Library Contents

Use the report_lib command to report the contents of a library. The report_lib
command can report the following data:

• Library units

• Operating conditions

• Wire load models

• Cells (including cell exclusions, preferences, and other attributes)

Specifying Library Objects

Library objects are the vendor-specific cells and their pins.

The Design Compiler naming convention for library objects is

[file:]library/cell[/pin]

file

The file name of a technology library followed by a colon (:). If you have multiple libraries
loaded in memory with the same name, you must specify the file name.

library

The name of a library in memory, followed by a slash (/).

cell

The name of a library cell.

pin

The name of a cell’s pin.

For example, to set the dont_use attribute on the AND4 cell in the my_lib library, enter

dc_shell> set_dont_use my_lib/AND4
1

Chapter 4: Working With Libraries
Reporting Library Contents 4-9
Chapter 4: Working With Libraries
Reporting Library Contents 4-9

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
To set the disable_timing attribute on the Z pin of the AND4 cell in the my_lib library, enter
the following command:

dc_shell> set_disable_timing [get_pins my_lib/AND4/Z]
1

Directing Library Cell Usage

When Design Compiler maps a design to a technology library, it selects components (library
cells) from that library. You can influence the choice of components (library cells) by

• Excluding cells from the target library

• Specifying cell preferences

Excluding Cells From the Target Library
Use the set_dont_use command to exclude cells from the target library. Design Compiler
does not use these excluded cells during optimization.

This command affects only the copy of the library that is currently loaded into memory and
has no effect on the version that exists on disk. However, if you save the library, the
exclusions are saved and the cells are permanently disabled.

For example, to prevent Design Compiler from using the high-drive inverter INV_HD, enter

dc_shell> set_dont_use MY_LIB/INV_HD
1

Use the remove_attribute command to reinclude excluded cells in the target library.

dc_shell> remove_attribute MY_LIB/INV_HD dont_use
MY_LIB/INV_HD

Specifying Cell Preferences
Use the set_prefer command to indicate preferred cells. You can issue this command with
or without the -min option.

Use the command without the -min option if you want Design Compiler to prefer certain cells
during the initial mapping of the design.

• Set the preferred attribute on particular cells to override the default cell identified by the
library analysis step. This step occurs at the start of compilation to identify the starting
cell size for the initial mapping.
Chapter 4: Working With Libraries
Directing Library Cell Usage 4-10

Design Compiler User Guide Version D-2010.03-SP2
• Set the preferred attribute on cells if you know the preferred starting size of the complex
cells or the cells with complex timing arcs (such as memories and banked components).

You do not normally need to set the preferred attribute as part of your regular compile
methodology because a good starting cell is automatically determined during the library
analysis step.

Because nonpreferred gates can be chosen to meet optimization constraints, the effect of
preferred attributes might not be noticeable after optimization.

For example, to set a preference for the low-drive inverter INV_LD, enter

dc_shell> set_prefer MY_LIB/INV_LD
1

Use the remove_attribute command to remove cell preferences.

dc_shell> remove_attribute MY_LIB/INV_LD preferred
MY_LIB/INV_LD

Use the -min option if you want Design Compiler to prefer fewer (but larger-area) buffers or
inverters when it fixes hold-time violations. Normally, Design Compiler gives preference to
smaller cell area over the number of cells used in a chain of buffers or inverters. You can
change this preference by using the -min option, which tells Design Compiler to minimize
the number of buffers or inverters by using larger area cells.

For example, to set a hold_preferred attribute for the inverter IV, enter

dc_shell> set_prefer -min class/IV
1

Use the remove_attribute command to remove the hold_preferred cell attribute.

dc_shell> remove_attribute class/IV hold_preferred
class/IV

Library-Aware Mapping and Synthesis

You can characterize (or analyze) your target technology library and create a pseudolibrary
called ALIB, which has mappings from Boolean functional circuits to actual gates from the
target library. Design Compiler reads the ALIB file during compile. The ALIB file provides
Design Compiler with greater flexibility and a larger solution space to explore tradeoffs
between area and delay during optimization. Use the compile_ultra command or DC Ultra
optimization to get the maximum benefit from the ALIB library.
Chapter 4: Working With Libraries
Library-Aware Mapping and Synthesis 4-11
Chapter 4: Working With Libraries
Library-Aware Mapping and Synthesis 4-11

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Library characterization occurs during the initial stage of compile. Because it can take 5-10
minutes for Design Compiler to characterize each technology library, it is recommended that
you generate the ALIB file when you install Design Compiler, and store it in a single
repository so that multiple users can share the library.

Generating the ALIB file
Use the alib_analyze_libs command to generate the ALIB library corresponding to your
target technology library. The tool creates a release-specific subdirectory in the location
specified by the alib_library_analysis_path variable and stores the generated ALIB
files in this directory. For example, the following sequence of commands creates the
x.db.alib file for the target library x.db and stores it in /remote/libraries/alib/alib-51.

dc_shell> set target_library “x.db”
dc_shell> set link_library “x.db”
dc_shell> set alib_library_analysis_path “/remote/libraries/alib”
dc_shell> alib_analyze_libs

Design Compiler creates the alib-51 directory for version control; each release has a
different version.

Using the ALIB library
To load the previously generated ALIB library, use the alib_library_analysis_path
variable to point to the location of the file. For example,

dc_shell> set alib_library_analysis_path “remote/libraries/alib”

During compile, if no pre-generated ALIB libraries exist, Design Compiler performs library
characterization automatically. It generates the ALIB library in the location specified by the
alib_library_analysis_path variable. If you have not set this variable, the ALIB library is
stored in the current working directory. The tool uses this ALIB library for subsequent runs.

It is recommended that you generate the ALIB library for your target technology library when
you install Design Compiler. Create a directory structure similar to the one you use for
storing technology libraries as shown in Figure 4-1. If you re-install Design Compiler, you
must regenerate the ALIB library. A new subdirectory is created within the
/remote/libraries/alibs directory.

Note:
In version Y-2006.06-SP4 and later, Design Compiler reads ALIB files in the alib-52
directory. Design Compiler automatically generates the new ALIB files when you run the
Y-2006.06-SP4 version for the first time.
Chapter 4: Working With Libraries
Library-Aware Mapping and Synthesis 4-12

Design Compiler User Guide Version D-2010.03-SP2
If you are using the pre-built ALIB file in a central location, create new ALIB files before
compiling.

Figure 4-1 Directory Structure for ALIB library

Removing Libraries From Memory

The remove_design command removes libraries from dc_shell memory. If you have
multiple libraries with the same name loaded into memory, you must specify the path as well
as the library name. Use the list_libs command to see the path for each library in
memory.

Saving Libraries

The write_lib command saves (writes to disk) a compiled library in the Synopsys
database or VHDL format. Use the write_link_lib command to write out the shell
commands to save the current link library settings for design instances.

/remote/libraries

technology ALIB

x.db
y.db
z.db

alib-51 alib-52

x.db.alib
y.db.alib

z.db.alib

x.db.alib
y.db.alib

z.db.alib
Chapter 4: Working With Libraries
Removing Libraries From Memory 4-13
Chapter 4: Working With Libraries
Removing Libraries From Memory 4-13

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Chapter 4: Working With Libraries
Saving Libraries 4-14

5
Working With Designs in Memory 5

Design Compiler reads designs into memory from design files. Many designs can be in
memory at any time. After a design is read in, you can change it in numerous ways, such as
grouping or ungrouping its subdesigns or changing subdesign references.

This chapter contains the following sections:

• Design Terminology

• Reading Designs

• Listing Designs in Memory

• Setting the Current Design

• Linking Designs

• Listing Design Objects

• Specifying Design Objects

• Creating Designs

• Copying Designs

• Renaming Designs

• Changing the Design Hierarchy

• Editing Designs
5-1

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
• Translating Designs From One Technology to Another

• Removing Designs From Memory

• Saving Designs

• Working With Attributes

Design Terminology

Different companies use different terminology for designs and their components. This
section describes the terminology used in the Synopsys synthesis tools.

About Designs
Designs are circuit descriptions that perform logical functions. Designs are described in
various design formats, such as VHDL or Verilog HDL.

Logic-level designs are represented as sets of Boolean equations. Gate-level designs, such
as netlists, are represented as interconnected cells.

Designs can exist and be compiled independently of one another, or they can be used as
subdesigns in larger designs. Designs are flat or hierarchical.

Flat Designs
Flat designs contain no subdesigns and have only one structural level. They contain only
library cells.

Hierarchical Designs
A hierarchical design contains one or more designs as subdesigns. Each subdesign can
further contain subdesigns, creating multiple levels of design hierarchy. Designs that contain
subdesigns are called parent designs.

Design Objects
Figure 5-1 shows the design objects in a design called TOP. Synopsys commands,
attributes, and constraints are directed toward specific design objects.
Chapter 5: Working With Designs in Memory
Design Terminology 5-2

Design Compiler User Guide Version D-2010.03-SP2
Figure 5-1 Design Objects

Design

A design consists of instances, nets, ports, and pins. It can contain subdesigns and library
cells. In Figure 5-1, the designs are TOP, ENCODER, and REGFILE. The active design (the
design being worked on) is called the current design. Most commands are specific to the
current design, that is, they operate within the context of the current design.

Reference

A reference is a library component or design that can be used as an element in building a
larger circuit. The structure of the reference can be a simple logic gate or a more complex
design (a RAM core or CPU). A design can contain multiple occurrences of a reference;
each occurrence is an instance.

References enable you to optimize every cell (such as a NAND gate) in a single design
without affecting cells in other designs. The references in one design are independent of the
same references in a different design. In Figure 5-1, the references are INV, ENCODER, and
REGFILE.

INV1

INV0
U2

U3

U1

Q0

Q1

A

B

C

D

D0

D1

U4

OUT[1:0]

ENCODER REGFILE

CLK

Q[1:0]

AIN

BIN

BUS0

BUS1

INV

INV

TOP

Design Port Instance or Net

D0

D1

Pin

Design: {TOP, ENCODER, REGFILE}

Reference: {ENCODER, REGFILE, INV}

Instance: {U1, U2, U3, U4}

CIN

DIN

A

B

C

D

Cell
Chapter 5: Working With Designs in Memory
Design Terminology 5-3
Chapter 5: Working With Designs in Memory
Design Terminology 5-3

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Instance or Cell

An instance is an occurrence in a circuit of a reference (a library component or design)
loaded in memory; each instance has a unique name. A design can contain multiple
instances; each instance points to the same reference but has a unique name to distinguish
it from other instances. An instance is also known as a cell.

A unique instance of a design within another design is called a hierarchical instance. A
unique instance of a library cell within a design is called a leaf cell. Some commands work
within the context of a hierarchical instance of the current design. The current instance
defines the active instance for these instance-specific commands. In Figure 5-1, the
instances are U1, U2, U3, and U4.

Ports

Ports are the inputs and outputs of a design. The port direction is designated as input,
output, or inout.

Pins

Pins are the input and output of cells (such as gates and flip-flops) within a design. The ports
of a subdesign are pins within the parent design.

Nets

Nets are the wires that connect ports to pins and pins to each other.

Relationship Between Designs, Instances, and References
Figure 5-2 shows the relationships among designs, instances, and references.

Figure 5-2 Instances and References

The EXREF design contains two references: NAND2 and MULTIPLIER. NAND2 is
instantiated three times, and MULTIPLIER is instantiated once.

EXREF

NAND2

MULTIPLIER

U1

NAND2

U3

NAND2

U2

U4

 Designs loaded in memory

NAND2

MULTIPLIER

(references)
Chapter 5: Working With Designs in Memory
Design Terminology 5-4

Design Compiler User Guide Version D-2010.03-SP2
The names given to the three instances of NAND2 are U1, U2, and U3. The references of
NAND2 and MULTIPLIER in the EXREF design are independent of the same references in
different designs.

For information about resolving references, see “Linking Designs” on page 5-13.

Reporting References
You can use the report_reference command to report information about all references in
the current instance or current design. Use the -hierarchy option to display information
across the hierarchy in the current instance or current design.

Using Reference Objects
When you use the get_references command, Design Compiler returns a collection of
instances that have the specified reference, and you operate on the instances.

For example, the following command returns a collection of instances in the current design
that have the reference AN2:

dc_shell> get_references AN2
{U2 U3 U4}

To see the reference names, use the following command:

dc_shell> report_cell [get_references AN*]

Cell Reference Library Area
Attributes

U2 AN2 lsi_10k 2.000000
U3 AN2 lsi_10k 2.000000
U4 AN2 lsi_10k 2.000000
U8 AN3 lsi_10k 2.000000
Chapter 5: Working With Designs in Memory
Design Terminology 5-5
Chapter 5: Working With Designs in Memory
Design Terminology 5-5

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Reading Designs

Design Compiler can read designs in the formats listed in Table 5-1.

Commands for Reading Design Files
Design Compiler provides the following ways to read design files:

• The analyze and elaborate commands

• The read_file command

Using the analyze and elaborate Commands
The analyze command does the following:

• Reads an HDL source file

• Checks it for errors (without building generic logic for the design)

• Creates HDL library objects in an HDL-independent intermediate format

• Stores the intermediate files in a location you define

If the analyze command reports errors, fix them in the HDL source file and run analyze
again. After a design is analyzed, you must reanalyze it only when you change it.

Table 5-1 Supported Input Formats

Format Description

.ddc Synopsys internal database format (recommended)

.db Synopsys internal database format

equation Synopsys equation format

pla Berkeley (Espresso) PLA format

st Synopsys State Table format

Verilog IEEE standard Verilog (see the HDL Compiler documentation)

VHDL IEEE standard VHDL (see the HDL Compiler documentation)
Chapter 5: Working With Designs in Memory
Reading Designs 5-6

Design Compiler User Guide Version D-2010.03-SP2
Use options to the analyze command as follows:

The elaborate command does the following:

• Translates the design into a technology-independent design (GTECH) from the
intermediate files produced during analysis

• Allows changing of parameter values defined in the source code

• Allows VHDL architecture selection

• Replaces the HDL arithmetic operators in the code with DesignWare components

• Automatically executes the link command, which resolves design references

Use options to the elaborate command as follows:

Table 5-2 Using the analyze Command Options

To do this Use this

Store design elements in a library other than the work
library

-library
By default, the analyze
command stores all output in
the work library.

Specify the format of the files to be analyzed -vhdl or -verilog

Specify a list of files to be analyzed file_list

Table 5-3 Using the elaborate Command Options

To do this Use this

Specify the name of the design to be built (the design
can be a Verilog module, a VHDL entity, or a VHDL
configuration)

-design_name

Find the design in a library other than the work library
(the default)

-library

Specify the name of the architecture -architecture

Automatically reanalyze out-of-date intermediate files if
the source can be found

-update

Specify a list of design parameters -parameters
Chapter 5: Working With Designs in Memory
Reading Designs 5-7
Chapter 5: Working With Designs in Memory
Reading Designs 5-7

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
For more information about the analyze and elaborate commands, see the man pages
and HDL Compiler for Verilog User Guide or the HDL Compiler for VHDL User Guide.

Using the read_file Command
The read_file command does the following:

• Reads several different formats

• Performs the same operations as analyze and elaborate in a single step

• Creates .mr and .st intermediate files for VHDL

• Does not execute the link command automatically (see “Linking Designs” on page 5-13)

• Does not create any intermediate files for Verilog (However, you can have the read_file
command create intermediate files by setting the hdlin_auto_save_templates variable
to true)

For designs in memory, Design Compiler uses the naming convention path_name /
design.ddc. The path_name argument is the directory from which the original file was read,
and the design argument is the name of the design. If you later read in a design that has the
same file name, Design Compiler overwrites the original design. To prevent this, use the
-single_file option with the read_file command.

If you do not specify the design format, the read_file command will infer the format based
on the file extension. If no known extension is used, the tool assumes the .ddc format.
Supported extensions for automatic inference are not case sensitive. The read_file
command is able to read compressed files for all formats except the .ddc format, which is
compressed internally as it is written. To enable the tool to automatically infer the file format
for compressed files, use the following naming structure: <filename>.<format>.gz.

The following formats are supported:

• ddc format: Uses the .ddc extension

• db format: Uses the .db, .sldb, .sdb, .db.gz, .sldb.gz, and .sdb.gz extensions

• Verilog format: Uses the .v, .verilog, .v.gz, and .verilog.gz extensions

• SystemVerilog: Uses the .sv, .sverilog, .sv.gz, and .sverilog.gz extensions

• VHDL: Uses the .vhd, .vhdl, vhd.gz, and .vhdl.gz extensions
Chapter 5: Working With Designs in Memory
Reading Designs 5-8

Design Compiler User Guide Version D-2010.03-SP2
Use options to the read_file command as follows:

Table 5-4 Using the read_file Command Options

To do this Use this

Specify a list of files to be read file_list

Specify the format in which a design is read
You can specify any input format listed in Table 5-1.

-format

Store design elements in a library other than the work library (the
default) when reading VHDL design descriptions

-library

Read a Milkyway ILM view -ilm

Specify that the design being read is a structural or gate-level design
when reading Verilog or VHDL designs

-netlist -format\

verilog|vhdl1

1. The -netlist option is optional when you read a Verilog design.

Specify that the design being read is an RTL design when reading
Verilog or VHDL designs

-rtl -format\

verilog|vhdl2

2. The -rtl option is optional when you read a Verilog design.
Chapter 5: Working With Designs in Memory
Reading Designs 5-9
Chapter 5: Working With Designs in Memory
Reading Designs 5-9

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Table 5-5 summarizes the differences between using the read_file command and using
the analyze and elaborate commands to read design files.

Reading HDL Designs
Use one of the following methods to read HDL design files:

• The analyze and elaborate commands

To use this method, analyze the top-level design and all subdesigns in bottom-up order
and then elaborate the top-level design and any subdesigns that require parameters to
be assigned or overwritten.

For example, enter

dc_shell> analyze -format vhdl -lib -work RISCTYPES.vhd
dc_shell> analyze -format vhdl -lib -work {ALU.vhd STACK_TOP.vhd

STACK_MEM.vhd...}
dc_shell> elaborate RISC_CORE -arch STRUCT -lib WORK -update

• The read_file command

For example, enter

dc_shell> read_file -format verilog RISC_CORE.v

• The read_verilog or read_vhdl command

Table 5-5 read_file Versus analyze and elaborate Commands

Comparison read_file command analyze and elaborate commands

Input formats All formats VHDL, Verilog.

When to use Netlists, precompiled designs, and
so forth

Synthesize VHDL or Verilog.

Generics Cannot pass parameters (must use
directives in HDL)

Allows you to set parameter values on
the elaborate command line. Thus for
parameterized designs, you can use the
analyze and elaborate commands to
build a new design with nondefault
values.

Architecture Cannot specify the architecture to be
elaborated

Allows you to specify architecture to be
elaborated.

Linking designs Must use the link command to
resolve references

The elaborate command executes the
link command automatically to resolve
references.
Chapter 5: Working With Designs in Memory
Reading Designs 5-10

Design Compiler User Guide Version D-2010.03-SP2
For example, enter

dc_shell> read_verilog RISC_CORE.v

You can also use the read_file -format VHDL and read_file -format verilog
commands.

Reading .ddc Files
To read the design data from a .ddc file, use the read_ddc command or the read_file
-format ddc command. For example,

dc_shell> read_ddc design_file.ddc

Note:
The .ddc format is backward compatible (you can read a .ddc file that was generated with
an earlier software version) but not forward compatible (you cannot read a .ddc file that
was generated with a later software version).

Reading .db Files
Although you can use the .db format, it is recommended that you use the .ddc format. To
read in a .db file, use the read_db command or the read_file -format db command.

For example,

dc_shell> read_db design_file.db

The version of a .db file is the version of Design Compiler that created the file. For a .db file
to be read into Design Compiler, its file version must be the same as or earlier than the
version of Design Compiler you are running. If you attempt to read in a .db file generated by
a Design Compiler version that is later than the Design Compiler version you are using, an
error message appears. The error message provides details about the version mismatch.

Listing Designs in Memory

To list the names of the designs loaded in memory, use the list_designs command.

dc_shell> list_designs
A (*) B C
1

The asterisk (*) next to design A shows that A is the current design.
Chapter 5: Working With Designs in Memory
Listing Designs in Memory 5-11
Chapter 5: Working With Designs in Memory
Listing Designs in Memory 5-11

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
To list the memory file name corresponding to each design name, use the -show_file
option.

dc_shell> list_designs -show_file

/user1/designs/design_A/A.ddc
A (*)

/home/designer/dc/B.ddc
B C
1

The asterisk (*) next to design A shows that A is the current design. File B.ddc contains both
designs B and C.

Setting the Current Design

You can set the current design (the design you are working on) in the following ways:

• With the read_file command

When the read_file command successfully finishes processing, it sets the current
design to the design that was read in.

dc_shell> read_file -format ddc MY_DESIGN.ddc
Reading ddc file ’/designs/ex/MY_DESIGN.ddc’
Current design is ’MY_DESIGN’

• With the elaborate command

• With the current_design command

Use this command to set any design in dc_shell memory as the current design.

dc_shell> current_design ANY_DESIGN
Current design is ’ANY_DESIGN’.
{ANY_DESIGN}

To display the name of the current design, enter the following command:

dc_shell> printvar current_design
current_design = "test"
Chapter 5: Working With Designs in Memory
Setting the Current Design 5-12

Design Compiler User Guide Version D-2010.03-SP2
Using the current_design Command
You should avoid writing scripts that use a large number of current_design commands,
such as in a loop. Using a large number of current_design commands can increase
runtime. For more information, see the Design Compiler Command-Line Interface Guide,
chapter 5.

Several commands accept instance objects—that is, cells at a lower level of hierarchy. You
can operate on hierarchical designs from any level in the design without using the
current_design command. The enhanced commands are listed below:

• Netlist editing commands.

For more information, see “Editing Designs” on page 5-31.

• The ungroup, group, and uniquify commands

For more information, see “Removing Levels of Hierarchy” on page 5-25 and “Uniquify
Method” on page 8-13.

• The set_size_only command

The command sets a list of attributes on specified leaf cells so sizing optimizations can
be performed on these cells during compile.

• The change_link command

For more information, see “Changing Design References” on page 5-15.

Linking Designs

For a design to be complete, it must connect to all the library components and designs it
references. This process is called linking the design or resolving references.

Design Compiler uses the link command to resolve references. The link command uses
the link_library and search_path system variables and the local_link_library
attribute to resolve design references.

Design Compiler resolves references by carrying out the following steps:

1. It determines which library components and subdesigns are referenced in the current
design and its hierarchy.

2. It searches the link libraries to locate these references.

a. Design Compiler first searches the libraries and design files defined in the current
design’s local_link_library attribute
Chapter 5: Working With Designs in Memory
Linking Designs 5-13
Chapter 5: Working With Designs in Memory
Linking Designs 5-13

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
b. If an asterisk is specified in the value of the link_library variable, Design Compiler
searches in memory for the reference.

c. Design Compiler then searches the libraries and design files defined in the
link_library variable.

3. If it does not find the reference in the link libraries, it searches in the directories specified
by the search_path variable. See “Locating Designs by Using a Search Path” on
page 5-15.

4. It links (connects) the located references to the design.

Note:
In a hierarchical design, Design Compiler considers only the top-level design’s local link
library. It ignores local link libraries associated with the subdesigns.

Design Compiler uses the first reference it locates. If it locates additional references with the
same name, it generates a warning message identifying the ignored, duplicate references.
If Design Compiler does not find the reference, a warning appears advising that the
reference cannot be resolved.

By default, the case sensitivity of the linking process depends on the source of the
references. To explicitly define the case sensitivity of the linking process, set the
link_force_case variable.

The arrows in Figure 5-3 show the connections that the linking process added between the
instances, references, and link libraries. In this example, Design Compiler finds library
component NAND2 in the LIBRARY_2 technology library; it finds subdesign MULTIPLIER in
a design file.

Figure 5-3 Resolving References

 References

NAND2

MULTIPLIER

NAND2

U1

NAND2

U3

NAND2

U2

U4

EXREF Link libraries

LIBRARY_1

LIBRARY_2

Technology libraries

MULTIPLIER

ADDER

 Design files

AND2
NAND2
OR2

MULTIPLIER
Chapter 5: Working With Designs in Memory
Linking Designs 5-14

Design Compiler User Guide Version D-2010.03-SP2
Locating Designs by Using a Search Path
You can specify the design file location by using the complete path or only the file name. If
you specify only the file name, Design Compiler uses the search path defined in the
search_path variable. Design Compiler looks for the design files starting with the leftmost
directory specified in the search_path variable and uses the first design file it finds. By
default, the search path includes the current working directory and $SYNOPSYS/libraries/
syn, where $SYNOPSYS is the path to the installation directory. To see where Design
Compiler finds a file when using the search path, use the which command. For example,
enter

dc_shell> which my_design.ddc
{/usr/designers/example/my_design.ddc}

To specify other directories in addition to the default search path, use one following
command:

dc_shell> lappend search_path project

Changing Design References
Use the change_link command to change the component or design to which a cell or
reference is linked.

• For a cell, the link for that cell is changed.

• For a reference, the link is changed for all cells having that reference.

The link can be changed only to a component or design that has the same number of ports
with the same size and direction as the original reference.

When you use change_link, all link information is copied from the old design to the new
design. If the old design is a synthetic module, all attributes of the old synthetic module are
moved to the new link.

After running the change_link command, you must run the design with the link
command.

The change_link command accepts instance objects, that is, cells at a lower level in the
hierarchy. Additionally, you can use the -all_instances option when any cell in the
object_list is an instance at a lower level in the hierarchy and its parent cell is not unique.
All similar cells in the same parent design are automatically linked to the new reference
design. You do not have to change the current design to change the link for such cells. If
none of the cells in object_list is an instance at a lower level of the hierarchy or the parent
cell is unique, you do not have to use the -all_instances option.
Chapter 5: Working With Designs in Memory
Linking Designs 5-15
Chapter 5: Working With Designs in Memory
Linking Designs 5-15

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Example 1

The following command shows how cells U1 and U2 are linked from the current design to
MY_ADDER:

dc_shell> copy_design ADDER MY_ADDER
dc_shell> change_link {U1 U2} MY_ADDER

Example 2

The following command changes the link for cell U1, which is at a lower level in the
hierarchy:

dc_shell> change_link top/sub_inst/U1 lsi_10k/AN3

Example 3

This example shows how you can use the -all_instances option to change the link for
inv1, when its parent design, bot, is instantiated multiple times. The design bot is instantiated
twice: mid1/bot1 and mid1/bot2.

dc_shell> change_link -all_instances mid1/bot1/inv1 lsi_10k/AN3

Information: Changed link for all instances of cell ‘inv1’
in subdesign ‘bot’. (UID-193)

dc_shell> get_cells -hierarchical -filter “ref_name == AN3”

{mid1/bot1/inv1 mid1/bot2/inv1}
1

Listing Design Objects

Design Compiler provides commands for accessing various design objects. These
commands refer to design objects located in the current design. Each command in Table 5-6
performs one of the following actions:

• List

Provides a listing with minimal information.

• Display

Provides a report that includes characteristics of the design object.

• Return

Returns a collection that can be used as input to another dc_shell command.
Chapter 5: Working With Designs in Memory
Listing Design Objects 5-16

Design Compiler User Guide Version D-2010.03-SP2
Table 5-6 lists the commands and the actions they perform.

Specifying Design Objects

You can specify design objects by using either a relative path or an absolute path.

Using a Relative Path
If you use a relative path to specify a design object, the object must be in the current design.
Specify the path relative to the current instance. The current instance is the frame of
reference within the current design. By default, the current instance is the top level of the
current design. Use the current_instance command to change the current instance.

For example, to place a dont_touch attribute on hierarchical cell
U1/U15 in the Count_16 design, you can enter either

dc_shell> current_design Count_16
Current design is ’Count_16’.
{Count_16}
dc_shell> set_dont_touch U1/U15

Table 5-6 Commands to Access Design Objects

Object Command Action

Instance list_instances
report_cell

Lists instances and their references.
Displays information about instances.

Reference report_reference Displays information about references.

Port report_port
report_bus
all_inputs
all_outputs

Displays information about ports.
Displays information about bused ports.
Returns all input ports.
Returns all output ports.

Net report_net
report_bus

Displays information about nets.
Displays information about bused nets.

Clock report_clock
all_clocks

Displays information about clocks.
Returns all clocks.

Register all_registers Returns all registers.

Collections get_* Returns a collection of cells, designs,
libraries and library cell pins, nets, pins, and
ports
Chapter 5: Working With Designs in Memory
Specifying Design Objects 5-17
Chapter 5: Working With Designs in Memory
Specifying Design Objects 5-17

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
or

dc_shell> current_design Count_16
Current design is ’Count_16’.
{Count_16}
dc_shell> current_instance U1
Current instance is ’/Count_16/U1’.
/Count_16/U1
dc_shell> set_dont_touch U15
1

In the first command sequence, the frame of reference remains at the top level of design
Count_16. In the second command sequence, the frame of reference changes to instance
U1. Design Compiler interprets all future object specifications relative to instance U1.

To reset the current instance to the top level of the current design, enter the
current_instance command without an argument.

dc_shell> current_instance
Current instance is the top-level of the design ‘Count_16’

The current_instance variable points to the current instance. To display the current
instance, enter the following command:

dc_shell> printvar current_instance
current_instance = "Count_16/U1"

Using an Absolute Path
When you use an absolute path to specify a design object, the object can be in any design
in dc_shell memory. Use the following syntax to specify an object by using an absolute path:

[file:]design/object

file

The path name of a memory file followed by a colon (:). Use the file argument when
multiple designs in memory have the same name.

design

The name of a design in dc_shell memory.

object

The name of the design object, including its hierarchical path. If several objects of
different types have the same name and you do not specify the object type, Design
Compiler looks for the object by using the types allowed by the command.

To specify an object type, use the get_* command. For more information about these
commands, see the Design Compiler Command-Line Interface Guide.
Chapter 5: Working With Designs in Memory
Specifying Design Objects 5-18

Design Compiler User Guide Version D-2010.03-SP2
For example, to place a dont_touch attribute on hierarchical cell U1/U15 in the Count_16
design, enter

dc_shell> set_dont_touch /usr/designs/Count_16.ddc:Count_16/U1/U5
1

Creating Designs

The create_design command creates a new design. The memory file name is
my_design.db, and the path is the current working directory.

dc_shell> create_design my_design
1
dc_shell> list_designs -show_file

/work_dir/mapped/test.ddc
test (*) test_DW01_inc_16_0 test_DW02_mult_16_16_1

/work_dir/my_design.db
my_design
1

Designs created with create_design contain no design objects. Use the appropriate create
commands (such as create_clock, create_cell, or create_port) to add design objects
to the new design. For information about these commands, see “Editing Designs” on
page 5-31.

Copying Designs

The copy_design command copies a design in memory and renames the copy. The new
design has the same path and memory file as the original design.

dc_shell> copy_design test test_new
Information: Copying design /designs/test.ddc:to designs/
test.ddc:test_new
1
dc_shell> list_designs -show_file

/designs/test.ddc
test (*) test_new

You can use the copy_design command with the change_link command to manually
create unique instances. For example, assume that a design has two identical cells, U1 and
U2, both linked to COMP.

Enter the following commands to create unique instances:
Chapter 5: Working With Designs in Memory
Creating Designs 5-19
Chapter 5: Working With Designs in Memory
Creating Designs 5-19

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
dc_shell> copy_design COMP COMP1
Information: Copying design /designs/COMP.ddc:COMP to

designs/COMP.ddc:COMP1
1

dc_shell> change_link U1 COMP1
Performing change_link on cell ’U1’.
1

dc_shell> copy_design COMP COMP2
Information: Copying design /designs/COMP.ddc:COMP to

designs/COMP.ddc:COMP2
1

dc_shell> change_link U2 COMP2
Performing change_link on cell ’U2’.
1

Renaming Designs

Use the rename_design command to rename a design in memory. You can assign a new
name to a design or move a list of designs to a file. To save a renamed file, use the write
command. Use options to the rename_design command as follows:

In the following example, the list_designs command is used to show the design before
and after you use the rename_design command:

dc_shell> list_designs -show_file

/designs/test.ddc
test(*) test_new

Table 5-7 Using the rename_design Command Options

To do this Use this

Specify a list of designs to be renamed -design_list

Specify the new name of the design -target_name

Specify a string to be prefixed to the design name -prefix

Specify a string to be appended to the design
name

-postfix

Relink cells to the renamed reference design -update_links
Chapter 5: Working With Designs in Memory
Renaming Designs 5-20

Design Compiler User Guide Version D-2010.03-SP2
1

dc_shell> rename_design test_new test_new_1
Information: Renaming design /designs/test.ddc:test_new to

/designs/test.ddc:test_new_1
1

dc_shell> list_designs -show_file

/designs/test.ddc
test (*) test_new test_new_1
1

You can use the -prefix, -postfix, and -update_links options to rename designs and
update cell links for the entire design hierarchy. For example, the following script prefixes the
string NEW_ to the name of the design D and updates links for its instance cells:

dc_shell> get_cells -hier -filter "ref_name == D"

{b_in_a/c_in_b/d1_in_c b_in_a/c_in_b/d2_in_c}

dc_shell> rename_design D -prefix NEW_ -update_links
Information: Renaming design /test_dir/D.ddc:D to

/test_dir/D.ddc:NEW_D. (UIMG-45)

dc_shell> get_cells -h -filter "ref_name == D"
no such cells!

dc_shell> get_cells -h -filter "ref_name == NEW_D"
{b_in_a/c_in_b/d1_in_c b_in_a/c_in_b/d2_in_c}

Cells b_in_a/c_in_b/d1_in_c and b_in_a/c_in_b/d2_in_c instantiate design D. After
you have run the rename_design D -prefix NEW -update_links command, the
instances are relinked to the renamed reference design NEW_D.

Changing the Design Hierarchy

When possible, reflect the design partitioning in your HDL description. If your HDL code is
already developed, Design Compiler enables you to change the hierarchy without modifying
the HDL description.

The report_hierarchy command displays the design hierarchy. Use this command to
understand the current hierarchy before making changes and to verify the hierarchy
changes.
Chapter 5: Working With Designs in Memory
Changing the Design Hierarchy 5-21
Chapter 5: Working With Designs in Memory
Changing the Design Hierarchy 5-21

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Design Compiler provides the following hierarchy manipulation capabilities:

• Adding levels of hierarchy

• Removing levels of hierarchy

• Merging cells from different subdesigns

The following sections describe these capabilities.

Adding Levels of Hierarchy
Adding a level of hierarchy is called grouping. You can create a level of hierarchy by grouping
cells or related components into subdesigns.

Grouping Cells Into Subdesigns
You use the group command to group cells (instances) in the design into a new subdesign,
creating a new level of hierarchy. The grouped cells are replaced by a new instance (cell)
that references the new subdesign.

The ports of the new subdesign are named after the nets to which they are connected in the
design. The direction of each port of the new subdesign is determined from the pins of the
corresponding net.

To create a new subdesign by using the group command, use its arguments and options as
follows:

Table 5-8 Using the group Command

To do this Use this

Specify a list of cells to be grouped into the new
subdesign.

When the parent design is unique, the list can
include cells from a lower level in the hierarchy;
however, these cells should be at the same level of
hierarchy in relation to one another.

To exclude cells from the specified list use the
-except option.

Provide a list of cells as an
argument to the group
command

Specify the name of the new subdesign -design_name
Chapter 5: Working With Designs in Memory
Changing the Design Hierarchy 5-22

Design Compiler User Guide Version D-2010.03-SP2
Note:
Grouping cells might not preserve all the attributes and constraints of the original cells.

The following examples illustrate how to use the group command.

Example 1

To group two cells into a new design named SAMPLE with an instance name U, enter

dc_shell> group {u1 u2} -design_name SAMPLE -cell_name U
Example 2

To group all cells that begin with alu into a new design uP with cell name UCELL, enter

dc_shell> group "alu*" -design_name uP -cell_name UCELL

Example 3

In the following example, three cells— bot1, foo1, and j —are grouped into a new subdesign
named SAMPLE, with an instance name U1. The cells are at a lower level in the hierarchy
and at the same hierarchical level; the parent design is unique.

dc_shell> group {mid1/bot1 mid1/foo1 mid1/j}
-cell_name U1 -design_name SAMPLE

The preceding command is equivalent to issuing the following two commands:

dc_shell> current_design mid
dc_shell> group {bot1 foo1 j} -cell_name U1 -design_name SAMPLE

Specify the new instance name (optional)

If you do not specify an instance name, Design
Compiler creates one for you. The created
instance name has the format Un, where n is an
unused cell number (for example, U107).

-cell_name

Table 5-8 Using the group Command

To do this Use this
Chapter 5: Working With Designs in Memory
Changing the Design Hierarchy 5-23
Chapter 5: Working With Designs in Memory
Changing the Design Hierarchy 5-23

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Grouping Related Components Into Subdesigns
You also use the group command (but with different options) to group related components
into subdesigns. To group related components, use options to the group command as
follows:

Note:
You cannot use the -design_name and -cell_name options with the hdl_all_blocks or
hdl_bussed option.

Example 1

To group all cells in the HDL function bar in the process ftj into design new_block, enter

dc_shell> group -hdl_block ftj/bar -design_name new_block

Example 2

To group all bused gates beneath process ftj into separate levels of hierarchy, enter

dc_shell> group -hdl_block ftj -hdl_bussed

Table 5-9 Using the group Command Options

To do this Use this

Specify one of the
following component types:

Bused gates -hdl_bussed

Combinational logic -logic

Finite state machines -fsm

HDL blocks -hdl_all_blocks
-hdl_block block_name

PLA specifications -pla

Specify the name of the new subdesign -design_name

Optionally, specify the new instance
name

If you do not specify an instance name,
Design Compiler creates one for you.
The created instance name has the
format Un, where n is an unused cell
number (for example, U107).

-cell_name
Chapter 5: Working With Designs in Memory
Changing the Design Hierarchy 5-24

Design Compiler User Guide Version D-2010.03-SP2
Removing Levels of Hierarchy
Design Compiler does not optimize across hierarchical boundaries; therefore, you might
want to remove the hierarchy within certain designs. By doing so, you might be able to
improve timing results.

Removing a level of hierarchy is called ungrouping. Ungrouping merges subdesigns of a
given level of the hierarchy into the parent cell or design. Ungrouping can be done before
optimization or during optimization (either explicitly or automatically).

Note:
Designs, subdesigns, and cells that have the dont_touch attribute cannot be ungrouped
(including auto-ungrouping) before or during optimization.

Ungrouping Hierarchies Before Optimization
You use the ungroup command to ungroup one or more designs before optimization.

Use the following arguments and options to the ungroup command:

Table 5-10 Using the ungroup Command Options

To do this Use this

Specify a list of cells to be ungrouped

When the parent design is unique, the list can
include cells from a lower level in the hierarchy
(that is, the ungroup command can accept
instance objects)

Provide a list of cells as an
argument to the ungroup
command

Ungroup all cells in the current design or current
instance

-all

Ungroup each cell recursively until all levels of
hierarchy within the current design (instance) are
removed

-flatten

Ungroup cells recursively starting at any
hierarchical level

You must specify a number for this option: 1, 2, 3,
and so on. A value of 1 indicates that cells from the
current design are to be ungrouped. The cells that
are at the level specified by the -start_level
option are included in the ungrouping. Additionally,
when you use this option, the current instance
cannot be set.

-start_level number
Chapter 5: Working With Designs in Memory
Changing the Design Hierarchy 5-25
Chapter 5: Working With Designs in Memory
Changing the Design Hierarchy 5-25

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Note:
If you ungroup cells and then use the change_names command to modify the hierarchy
separator (/), you might lose attribute and constraint information.

The following examples illustrate how to use the ungroup command.

Example 1

To ungroup a list of cells, enter

dc_shell> ungroup {high_decoder_cell low_decoder_cell}

Example 2

To ungroup the cell U1 and specify the prefix to use when creating new cells, enter

dc_shell> ungroup U1 -prefix "U1:”

Example 3

To completely collapse the hierarchy of the current design, enter

dc_shell> ungroup -all -flatten

Example 4

To recursively ungroup cells belonging to CELL_X, which is three hierarchical levels below
the current design, enter

dc_shell> ungroup -start_level 3 CELL_X

Example 5

To recursively ungroup cells that are three hierarchical levels below the current design and
belong to cells U1 and U2 (U1 and U2 are child cells of the current design), enter

dc_shell> ungroup -start_level 2 {U1 U2}

Specify the prefix to use in naming ungrouped cells

If you do not specify a prefix, Design Compiler
uses the prefix cell_to_be_ungrouped/
old_cell_name {number}.

-prefix prefix_name

Ungroup subdesigns with fewer leaf cells than a
specified number

-small number

Table 5-10 Using the ungroup Command Options

To do this Use this
Chapter 5: Working With Designs in Memory
Changing the Design Hierarchy 5-26

Design Compiler User Guide Version D-2010.03-SP2
Example 6

To recursively ungroup all cells that are three hierarchical levels below the current design,
enter

dc_shell> ungroup -start_level 3 -all

Example 7

This example illustrates how the ungroup command can accept instance objects (cells at a
lower level of hierarchy) when the parent design is unique. In the example, MID1/BOT1 is a
unique instantiation of design BOT. The command ungroups the cells MID1/BOT1/FOO1
and MID1/BOT1/FOO2.

dc_shell> ungroup {MID1/BOT1/FOO1 MID1/BOT1/FOO2}

The preceding command is equivalent to issuing the following two commands:

dc_shell> current_instance MID1/BOT1
dc_shell> ungroup {FOO1 FOO2}

Ungrouping Hierarchies During Optimization
You can ungroup designs during optimization either explicitly or automatically.

Ungrouping Hierarchies Explicitly During Optimization
You can control which designs are ungrouped during optimization by using the set_ungroup
command followed by the compile command or the -ungroup_all compile option.

• Use the set_ungroup command when you want to specify the cells or designs to be
ungrouped. This command assigns the ungroup attribute to the specified cells or
referenced designs. If you set the attribute on a design, all cells that reference the design
are ungrouped.

For example, to ungroup cell U1 during optimization, enter the following commands:

dc_shell> set_ungroup U1
dc_shell> compile

To see whether an object has the ungroup attribute set, use the get_attribute
command.

dc_shell> get_attribute object ungroup

To remove an ungroup attribute, use the remove_attribute command or set the
ungroup attribute to false.

dc_shell> set_ungroup object false
Chapter 5: Working With Designs in Memory
Changing the Design Hierarchy 5-27
Chapter 5: Working With Designs in Memory
Changing the Design Hierarchy 5-27

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
• Use the -ungroup_all compile option to remove all lower levels of the current design
hierarchy (including DesignWare parts). For example, enter

dc_shell> compile -ungroup_all

Ungrouping Hierarchies Automatically During Optimization
To automatically ungroup hierarchies during optimization, you can use the compile_ultra
command or the -auto_ungroup option of the compile command. Design Compiler
provides two options to automatically ungroup hierarchies: area-based auto-ungrouping and
delay-based auto-ungrouping.

By default, the compile_ultra command performs delay-based auto-ungrouping. It
ungroups hierarchies along the critical path and is used essentially for timing optimization.
In addition, the command performs area-based auto-ungrouping before initial mapping. The
tool estimates the area for unmapped hierarchies and removes small subdesigns; the goal
is to improve area and timing quality of results.

To use the auto-ungrouping capability of the compile command, enter

compile -auto_ungroup area|delay

You can use only one argument at a time: either the area argument for area-based
auto-ungrouping or the delay argument for delay-based auto-ungrouping.

Before ungrouping begins, the tool issues a message to indicate that the specified hierarchy
is being ungrouped.

After auto-ungrouping, use the report_auto_ungroup command to get a report on the
hierarchies that were ungrouped during cell- count-based auto-ungrouping or delay-based
auto-ungrouping. This report gives instance names, cell names, and the number of
instances for each ungrouped hierarchy. For more information on automatic ungrouping, see
the Design Compiler Optimization Reference Manual.
Chapter 5: Working With Designs in Memory
Changing the Design Hierarchy 5-28

Design Compiler User Guide Version D-2010.03-SP2
Preserving Hierarchical Pin Timing Constraints During Ungrouping
Hierarchical pins are removed when a cell is ungrouped. Depending on whether you are
ungrouping a hierarchy before optimization or after optimization, Design Compiler handles
timing constraints placed on hierarchical pins in different ways. The table below summarizes
the effect that ungrouping has on timing constraints within different compile flows.

When preserving timing constraints, Design Compiler reassigns the timing constraints to
appropriate adjacent, persistent pins (pins on the same net that remain after ungrouping).
The constraints are moved forward or backward to other pins on the same net. Note that the
constraints can be moved backward only if the pin driving the given hierarchical pin drives
no other pin. Otherwise the constraints must be moved forward.

Table 5-11 Preserving Hierarchical Pin Timing Constraints

Compile flow Effect on hierarchical pin timing constraints

Ungrouping a hierarchy before
optimization by using ungroup

Timing constraints placed on hierarchical pins are
preserved.

In previous releases, timing attributes placed on
the hierarchical pins of a cell were not preserved
when that cell was ungrouped. If you want your
current optimization results to be compatible with
previous results, set the
ungroup_preserve_constraints variable to
false. The default for this variable is true, which
specifies that timing constraints will be preserved.

Ungrouping a hierarchy during
optimization by using compile
-ungroup_all or
set_ungroup followed by compile

Timing constraints placed on hierarchical pins are
not preserved.

To preserve timing constraints, set the
auto_ungroup_preserve_constraints variable
to true.

Automatically ungrouping a
hierarchy during optimization, that
is, by using the compile_ultra
command or compile
-auto_ungroup area|delay

Design Compiler does not ungroup the hierarchy.

To make Design Compiler ungroup the hierarchy
and preserve timing constraints, set the
auto_ungroup_preserve_constraints
variable to true.
Chapter 5: Working With Designs in Memory
Changing the Design Hierarchy 5-29
Chapter 5: Working With Designs in Memory
Changing the Design Hierarchy 5-29

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
If the constraints are moved to a leaf cell, that cell is assigned a size_only attribute to
preserve the constraints during a compile. Thus, the number of size_only cells can
increase, which might limit the scope of the optimization process. To counter this effect,
when both the forward and backward directions are possible, Design Compiler chooses the
direction that helps limit the number of newly assigned size_only attributes to leaf cells.

When you apply ungrouping to an unmapped design, the constraints on a hierarchical pin
are moved to a leaf cell and the size_only attribute is assigned. However, the constraints
are preserved through the compile process only if there is a one-to-one match between the
unmapped cell and a cell from the target library.

Only the timing constraints set with the following commands are preserved:

• set_false_path

• set_multicycle_path

• set_min_delay

• set_max_delay

• set_input_delay

• set_output_delay

• set_disable_timing

• set_case_analysis

• create_clock

• create_generated_clock

• set_propagated_clock

• set_clock_latency

Note:
The set_rtl_load constraint is not preserved. Also, only the timing constraints of the
current design are preserved. Timing constraints in other designs might be lost as a
result of ungrouping hierarchy in the current design.

Merging Cells From Different Subdesigns
To merge cells from different subdesigns into a new subdesign,

1. Group the cells into a new design.

2. Ungroup the new design.
Chapter 5: Working With Designs in Memory
Changing the Design Hierarchy 5-30

Design Compiler User Guide Version D-2010.03-SP2
For example, the following command sequence creates a new alu design that contains the
cells that initially were in subdesigns u_add and u_mult.

dc_shell> group {u_add u_mult} -design alu
dc_shell> current_design alu
dc_shell> ungroup -all
dc_shell> current_design top_design

Editing Designs

Design Compiler provides commands for incrementally editing a design that is in memory.
These commands allow you to change the netlist or edit designs by using dc_shell
commands instead of an external format.

For unique designs, these netlist editing commands accept instance objects—that is, cells
at a lower level of hierarchy. You can operate on hierarchical designs from any level in the
design without using the current_design command. For example, you can enter the
following command to create a cell called foo in the design mid1:

dc_shell> create_cell mid1/foo my_lib/AND2

When connecting or disconnecting nets, use the all_connected command to see the
objects that are connected to a net, port, or pin. For example, this sequence of commands
replaces the reference for cell U8 with a high-power inverter.

Table 5-12 Design Editing Tasks and Commands

Object Task Command

Cells Create a cell
Delete a cell

create_cell
remove_cell

Nets Create a net
Connect a net
Disconnect a net
Delete a net

create_net
connect_net
disconnect_net
remove_net

Ports Create a port
Delete a port

create_port
remove_port
remove_unconnected_port

Pins Connect pins connect_pin

Buses Create a bus
Delete a bus

create_bus
remove_bus
Chapter 5: Working With Designs in Memory
Editing Designs 5-31
Chapter 5: Working With Designs in Memory
Editing Designs 5-31

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
dc_shell> get_pins U8/*
{"U8/A", "U8/Z"}
dc_shell> all_connected U8/A
{"n66"}
dc_shell> all_connected U8/Z
{"OUTBUS[10]"}
dc_shell> remove_cell U8
Removing cell ’U8’ in design ’top’.
1
dc_shell> create_cell U8 IVP
Creating cell ’U8’ in design ’top’.
1
dc_shell> connect_net n66 [get_pins U8/A]
Connecting net ’n66’ to pin ’U8/A’.
1
dc_shell> connect_net OUTBUS[10] [get_pins U8/Z]
Connecting net ’OUTBUS[10]’ to pin ’U8/Z’.
1

Note:
You can achieve the same result by using the change_link command instead of the
series of commands listed above. For example, the following command replaces the
reference for cell U8 with a high-power inverter:

dc_shell> change_link U8 IVP

Additional netlist editing commands similar to IC Compiler are available. These
commands are described below:

• Resizing a cell

You can use the get_alternative_lib_cell command to return a collection of
equivalent library cells for a specific cell or library cell. You can then use the collection to
replace or resize the cell. The size_cell command allows you to change the drive
strength of a leaf cell by linking it to a new library cell that has the required properties.

• Inserting buffers or inverter pairs

You can use the insert_buffer command to add a buffer at pins or ports. The
-inverter_pair option allows you specify that a pair of inverting library cells is to be
inserted instead of a single non-inverting library cell. To retrieve a collection of all buffers
and inverters from the library, you can use the get_buffer command.

• Inserting repeaters

The -no_of_cells option of the insert_buffer command allows you to select a driver
of a two-pin net and insert a chain of single-fanout buffers in the net driven by this driver.

• Removing buffers

You can use the remove_buffer command to remove buffers.
Chapter 5: Working With Designs in Memory
Editing Designs 5-32

Design Compiler User Guide Version D-2010.03-SP2
Translating Designs From One Technology to Another

You use the translate command to translate a design from one technology to another.

Designs are translated cell by cell from the original technology library to a new technology
library, preserving the gate structure of the original design. The translator uses the functional
description of each existing cell (component) to determine the matching component in the
new technology library (target library). If no exact replacement exists for a component, it is
remapped with components from the target library.

You can influence the replacement-cell selection by preferring or disabling specific library
cells (set_prefer and set_dont_use commands) and by specifying the types of registers
(set_register_type command). The target libraries are specified in the target_library
variable. The local_link_library variable of the top-level design is set to the
target_library value after the design is linked.

The translate command does not operate on cells or designs having the dont_touch
attribute. After the translation process, Design Compiler reports cells that are not
successfully translated.

Procedure to Translate Designs
The following procedure works for most designs, but manual intervention might be
necessary for some complex designs.

To translate a design,

1. Read in your mapped design.

dc_shell> read_file design.ddc

2. Set the target library to the new technology library.

dc_shell> set target_library target_lib.db

3. Invoke the translate command.

dc_shell> translate

After a design is translated, you can compile it to improve the implementation in the new
technology library.
Chapter 5: Working With Designs in Memory
Translating Designs From One Technology to Another 5-33
Chapter 5: Working With Designs in Memory
Translating Designs From One Technology to Another 5-33

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Restrictions on Translating Between Technologies
Keep the following restrictions in mind when you translate a design from one technology to
another:

• The translate command translates functionality logically but does not preserve drive
strength during translation. It always uses the lowest drive strength version of a cell,
which might produce a netlist with violations.

• When you translate CMOS three-state cells into FPGA, functional equivalents between
the technologies might not exist.

• Buses driven by CMOS three-state components must be fully decoded (Design Compiler
can assume that only one bus driver is ever active). If this is the case, bus drivers are
translated into control logic. To enable this feature, set the
compile_assume_fully_decoded_three_state_buses variable to true before
translating.

• If a three-state bus within a design is connected to one or more output ports, translating
the bus to a multiplexed signal changes the port functionality. Because translate does
not change port functionality, this case is reported as a translation error.

Removing Designs From Memory

The remove_design command removes designs from dc_shell memory. For example, after
completing a compilation session and saving the optimized design, you can use
remove_design to delete the design from memory before reading in another design.

By default, the remove_design command removes only the specified design. To remove its
subdesigns, specify the -hierarchy option. To remove all designs (and libraries) from
memory, specify the -all option.

If you defined variables that reference design objects, Design Compiler removes these
references when you remove the design from memory. This prevents future commands from
attempting to operate on nonexistent design objects. For example,

dc_shell> set PORTS [all_inputs]
{"A0", "A1", "A2", "A3"}
dc_shell> query_objects $PORTS
PORTS = {"A0", "A1", "A2", "A3"}
dc_shell> remove_design
Removing design ‘top’
1
dc_shell> query_objects $PORTS
Error: No such collection ‘_sel2’ (SEL-001)
Chapter 5: Working With Designs in Memory
Removing Designs From Memory 5-34

Design Compiler User Guide Version D-2010.03-SP2
Saving Designs

You can save (write to disk) the designs and subdesigns of the design hierarchy at any time,
using different names or formats. After a design is modified, you should manually save it.
Design Compiler does not automatically save designs before it exits.

Table 5-13 lists the design file formats supported by Design Compiler.

Commands to Save Design Files
Design Compiler provides the following ways to save design files:

• The write command

• The write_milkyway command

Using the write Command
You use the write command to convert designs in memory to a format you specify and save
that representation to disk.

Table 5-13 Supported Output Formats

Format Description

.ddc Synopsys internal database format

Milkyway Format for writing a Milkyway database within Design Compiler

Verilog IEEE Standard Verilog (see the HDL Compiler documentation)

svsim SystemVerilog netlist wrapper.

Note: The write -f svsim command writes out only the netlist wrapper, not the
gate-level DUT itself. To write out the gate-level DUT, you must use the existing
write -f verilog command. For details, see the SystemVerilog User Guide.

VHDL IEEE Standard VHDL (see the HDL Compiler documentation)
Chapter 5: Working With Designs in Memory
Saving Designs 5-35
Chapter 5: Working With Designs in Memory
Saving Designs 5-35

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Use options to the write command as shown in Table 5-14.

Using the write_milkyway Command
You use the write_milkyway command within dc_shell to write to a Milkyway database.
The write_milkyway command creates a design file based on the netlist in memory and
saves the design data for the current design in that file. For more information, see Chapter
11, “Using a Milkyway Database.”

Saving Designs in .ddc Format
To save the design data in a .ddc file, use the write -format ddc command.

By default, the write command saves just the top-level design. To save the entire design,
specify the -hierarchy option. If you do not use the -output option to specify the output
file name, the write -format ddc command creates a file called top_design.ddc, where
top_design is the name of the current design.

Example 1

The following command writes out all designs in the hierarchy of the specified design:

dc_shell> write -hierarchy -format ddc top

Table 5-14 Using the write Command Options

To do this Use this

Specify a list of designs to save. The default is the
current design.

design_list

Specify the format in which a design is saved. -format
You can specify any of the output
formats listed in Table 5-13
(except the Milkyway format; use
the write_milkyway command
instead)

Specify that all designs in the hierarchy are saved -hierarchy

Specify a single file into which designs are written -output

Specify that only modified designs are saved -modified

Specify the name of the library in which the design is
saved

-library
Chapter 5: Working With Designs in Memory
Saving Designs 5-36

Design Compiler User Guide Version D-2010.03-SP2
Writing ddc file ‘top.ddc’
Writing ddc file ‘A.ddc’
Writing ddc file ‘B.ddc’

Example 2

The following command writes out multiple designs to a single file:

dc_shell> write -format ddc -output test.ddc {ADDER MULT16}

Writing ddc file ‘test.ddc’

Ensuring Name Consistency Between the Design Database and the
Netlist
Before writing a netlist from within dc_shell, make sure that all net and port names conform
to the naming conventions for your layout tool. Also ensure that you are using a consistent
bus naming style.

Some ASIC and EDA vendors have a program that creates a .synopsys_dc.setup file that
includes the appropriate commands to convert names to their conventions. If you need to
change any net or port names, use the define_name_rules and change_names
commands.

Naming Rules Section of the .synopsys_dc.setup File
Example 5-1 shows sample naming rules as created by a specific layout tool vendor. These
naming rules do the following:

• Limit object names to alphanumeric characters

• Change DesignWare cell names to valid names (changes “*cell*” to “U” and "*-return” to
“RET”)

Your vendor might use different naming conventions. Check with your vendor to determine
the naming conventions you need to follow.

Example 5-1 Naming Rules Section of .synopsys_dc.setup File

define_name_rules simple_names -allowed "A-Za-z0-9_" \
-last_restricted "_" \
-first_restricted "_" \
-map { {{"*cell*","U"}, {"*-return","RET"}} }

Using the define_name_rules -map Command
Example 5-2 shows how to use the -map option with define_name_rules to avoid an error
in the format of the string. If you do not follow this convention, an error appears.
Chapter 5: Working With Designs in Memory
Saving Designs 5-37
Chapter 5: Working With Designs in Memory
Saving Designs 5-37

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Example 5-2 Using define_name_rules -map
define_name_rules naming_convention
-map { {{string1, string2}} } -type cell

For example, to remove trailing underscores from cell names, enter

dc_shell> define_name_rules naming_convention \
-map {{{_$, ""}} } -type cell

For more information about the define_name_rules command, see the man page.

Resolving Naming Problems in the Flow
You might encounter conflicts in naming conventions in design objects, input and output
files, and tool sets. In the design database file, you can have many design objects (such as
ports, nets, cells, logic modules, and logic module pins), all with their own naming
conventions. Furthermore, you might be using several input and output file formats in your
flow. Each file format is different and has its own syntax definitions. Using tool sets from
several vendors can introduce additional naming problems.

To resolve naming issues, use the change_names command to ensure that all the file names
match. Correct naming eliminates name escaping or mismatch errors in your design.

For more information about the change_names command, see the man page.

Methodology for Resolving Naming Issues

To resolve naming issues, make the name changes in the design database file before you
write any files. Your initial flow is

1. Read in your design RTL and apply constraints.

No changes to your method need to be made here.

2. Compile the design to produce a gate-level description.

Compile or reoptimize your design as you normally would, using your standard set of
scripts.

3. Apply name changes and resolve naming issues. Use the change_names command and
its Verilog or VHDL switch before you write the design.

Important:
Always use the change_names -rules -[verilog|vhdl] -hierarchy command
whenever you want to write out a Verilog or VHDL design, because naming in the
design database file is not Verilog or VHDL compliant. For example, enter

change_names -rules verilog -hierarchy

4. Write files to disk. Use the write -format verilog command.
Chapter 5: Working With Designs in Memory
Saving Designs 5-38

Design Compiler User Guide Version D-2010.03-SP2
Look for reported name changes, which indicate you need to repeat step 3 and refine
your name rules.

5. If all the appropriate name changes have been made, your output files matches the
design database file. Enter the following commands and compare the output.

write -format verilog -hierarchy -output “consistent.v”
write -format ddc -hierarchy -output “consistent.ddc”

6. Write the files for third-party tools.

If you need more specific naming control, use the define_name_rules command. See
“Using the define_name_rules -map Command” on page 5-37.

Summary of Commands for Changing Names

Table 5-15 summarizes commands for changing names.

Table 5-15 Summary of Commands for Changing Names

To do this Use this

Change the names of ports, cells, and nets in a design
to be Verilog or VHDL compliant.

change_names

Show effects of change_names without making the
changes.

report_names

Define a set of rules for naming design objects. Name
rules are used by change_names and report_names.

define_name_rules

List available name rules. report_name_rules
Chapter 5: Working With Designs in Memory
Saving Designs 5-39
Chapter 5: Working With Designs in Memory
Saving Designs 5-39

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Working With Attributes

Attributes describe logical, electrical, physical, and other properties of objects in the design
database. An attribute is attached to a design object and is saved with the design database.

Design Compiler uses attributes on the following types of objects:

• Entire designs

• Design objects, such as clocks, nets, pins, and ports

• Design references and cell instances within a design

• Technology libraries, library cells, and cell pins

An attribute has a name, a type, and a value. Attributes can have the following types: string,
numeric, or logical (Boolean).

Some attributes are predefined and are recognized by Design Compiler; other attributes are
user-defined. Appendix C lists the predefined attributes.

Some attributes are read-only. Design Compiler sets these attribute values and you cannot
change them. Other attributes are read/write. You can change these attribute values at any
time.

Most attributes apply to one object type; for example, the rise_drive attribute applies only
to input and inout ports. Some attributes apply to several object types; for example, the
dont_touch attribute can apply to a net, cell, port, reference, or design. You can get detailed
information about the predefined attributes that apply to each object type by using the
commands listed in Table 5-16.

Table 5-16 Commands to Get Attribute Descriptions

Object type Command

All man attributes

Designs man design_attributes

Cells man cell_attributes

Clocks man clock_attributes

Nets man net_attributes

Pins man pin_attributes
Chapter 5: Working With Designs in Memory
Working With Attributes 5-40

Design Compiler User Guide Version D-2010.03-SP2
Setting Attribute Values
To set the value of an attribute, use one of the following:

• An attribute-specific command

• The set_attribute command

Using an Attribute-Specific Command
Use an attribute-specific command to set the value of the command’s associated attribute.

For example,

dc_shell> set_dont_touch U1

Using the set_attribute Command
Use this command to set the value of any attribute or to define a new attribute and set its
value.

For example, to set the dont_touch attribute on the lsi_10k/FJK3 library cell, enter

dc_shell> set_attribute lsi_10K/FJK3 dont_use true

The set_attribute command enforces the predefined attribute type and generates an
error if you try to set an attribute with a value of an incorrect type.

To determine the predefined type for an attribute, use the list_attributes -application
command. This command generates a list of all application attributes and their types. To
generate a smaller report, you can use the -class attribute to limit the list to attributes that
apply to one of the following classes: design, port, cell, clock, pin, net, lib, or reference.

Ports man port_attributes

Libraries man library_attributes

Library cells man library_cell_attributes

References man reference_attributes

Table 5-16 Commands to Get Attribute Descriptions (Continued)

Object type Command
Chapter 5: Working With Designs in Memory
Working With Attributes 5-41
Chapter 5: Working With Designs in Memory
Working With Attributes 5-41

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
For example, the max_fanout attribute has a predefined type of float. Suppose you enter the
following command, Design Compiler displays an error message:

set_attribute lib/lcell/lpin max_fanout 1 -type integer

If an attribute applies to more than one object type, Design Compiler searches the database
for the named object. For information about the search order, see “The Object Search Order”
on page 5-43.

When you set an attribute on a reference (subdesign or library cell), the attribute applies to
all cells in the design with that reference. When you set an attribute on an instance (cell, net,
or pin), the attribute overrides any attribute inherited from the instance’s reference.

Viewing Attribute Values
To see all attributes on an object, use the report_attribute command.

dc_shell> report_attribute -obj_type object

To see the value of a specific attribute on an object, use the get_attribute command.

For example, to get the value of the maximum fanout on port OUT7, enter

dc_shell> get_attribute OUT7 max_fanout
Performing get_attribute on port ’OUT7’.
{3.000000}

If an attribute applies to more than one object type, Design Compiler searches the database
for the named object. For information about the search order, see “The Object Search Order”
on page 5-43.

Saving Attribute Values
Design Compiler does not automatically save attribute values when you exit dc_shell. Use
the write_script command to generate a dc_shell script that re-creates the attribute
values.

Note:
The write_script command does not support user-defined attributes.

By default, write_script prints to the screen. Use the redirection operator (>) to redirect
the output to a file.

dc_shell> write_script > attr.scr
Chapter 5: Working With Designs in Memory
Working With Attributes 5-42

Design Compiler User Guide Version D-2010.03-SP2
Defining Attributes
The set_attribute command enables you to create new attributes. Use the
set_attribute command described in “Using the set_attribute Command” on page 5-41.

If you want to change the value of an attribute, remove the attribute and then re-create it to
store the desired type.

Removing Attributes
To remove a specific attribute from an object, use the remove_attribute command.

You cannot use the remove_attribute command to remove inherited attributes. For
example, if a dont_touch attribute is assigned to a reference, remove the attribute from the
reference, not from the cells that inherited the attribute.

For example, to remove the max_fanout attribute from port OUT7, enter

dc_shell> remove_attribute OUT7 max_fanout

You can remove selected attributes by using the remove_* commands. Note that some
attributes still require the set_* command with a -default option specified to remove the
attribute previously set by the command. See the man page for a specific command to
determine whether it has the -default option or uses a corresponding remove command.

To remove all attributes from the current design, use the reset_design command.

dc_shell> reset_design
Resetting current design ’EXAMPLE’.
1

The reset_design command removes all design information, including clocks, input and
output delays, path groups, operating conditions, timing ranges, and wire load models. The
result of using reset_design is often equivalent to starting the design process from the
beginning.

The Object Search Order
When Design Compiler searches for an object, the search order is command dependent.
(Objects include designs, cells, nets, references, and library cells.)

If you do not use a get command, Design Compiler uses an implicit find to locate the object.
Commands that can set an attribute on more than one type of object use this search order
to determine the object to which the attribute applies.
Chapter 5: Working With Designs in Memory
Working With Attributes 5-43
Chapter 5: Working With Designs in Memory
Working With Attributes 5-43

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
For example, the set_dont_touch command operates on cells, nets, references, and library
cells. If you define an object, X, with the set_dont_touch command and two objects (such
as the design and a cell) are named X, Design Compiler applies the attribute to the first
object type found. (In this case, the attribute is set on the design, not on the cell.)

Design Compiler searches until it finds a matching object, or it displays an error message if
it does not find a matching object.

You can override the default search order by using the dctcl get_* command to specify the
object.

For example, assume that the current design contains both a cell and a net named critical.
The following command sets the dont_touch attribute on the cell because of the default
search order:

dc_shell> set_dont_touch critical
1

To place the dont_touch attribute on the net instead, use the following command:

dc_shell> set_dont_touch [get_nets critical]
1

Chapter 5: Working With Designs in Memory
Working With Attributes 5-44

6
Defining the Design Environment 6

Before a design can be optimized, you must define the environment in which the design is
expected to operate. You define the environment by specifying operating conditions, wire
load models, and system interface characteristics.

Operating conditions include temperature, voltage, and process variations. Wire load
models estimate the effect of wire length on design performance. System interface
characteristics include input drives, input and output loads, and fanout loads. The
environment model directly affects design synthesis results.

In Design Compiler, the model is defined by a set of attributes and constraints that you
assign to the design, using specific dc_shell commands. Figure 6-1 illustrates the
commands used to define the design environment.
6-1

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Figure 6-1 Commands Used to Define the Design Environment

This chapter contains the following sections:

• Defining the Operating Conditions

• Defining Wire Load Models

• Modeling the System Interface

• Setting Logic Constraints on Ports

• Specifying Power Intent

• Support for Multicorner-Multimode Designs

set_drive

set_driving_cell

set_fanout_load

set_load

set_operating_conditions

set_load set_wire_load_model
Chapter 6: Defining the Design Environment
6-2

Design Compiler User Guide Version D-2010.03-SP2
Defining the Operating Conditions

In most technologies, variations in operating temperature, supply voltage, and
manufacturing process can strongly affect circuit performance (speed). These factors, called
operating conditions, have the following general characteristics:

• Operating temperature variation

Temperature variation is unavoidable in the everyday operation of a design. Effects on
performance caused by temperature fluctuations are most often handled as linear scaling
effects, but some submicron silicon processes require nonlinear calculations.

• Supply voltage variation

The design’s supply voltage can vary from the established ideal value during day-to-day
operation. Often a complex calculation (using a shift in threshold voltages) is employed,
but a simple linear scaling factor is also used for logic-level performance calculations.

• Process variation

This variation accounts for deviations in the semiconductor fabrication process. Usually
process variation is treated as a percentage variation in the performance calculation.

When performing timing analysis, Design Compiler must consider the worst-case and
best-case scenarios for the expected variations in the process, temperature, and voltage
factors.

Determining Available Operating Condition Options
Most technology libraries have predefined sets of operating conditions. Use the report_lib
command to list the operating conditions defined in a technology library. The library must be
loaded in memory before you can run the report_lib command. To see the list of libraries
loaded in memory, use the list_libraries or the list_libs command.

For example, to generate a report for the library my_lib, which is stored in my_lib.db, enter
the following commands:

dc_shell> read_file my_lib.db
dc_shell> report_lib my_lib

Example 6-1 shows the resulting operating conditions report.

Example 6-1 Operating Conditions Report
**
Report : library
Library: my_lib
Version: X-2005.09
Date : Mon Jan 13 10:56:49 2005
Chapter 6: Defining the Design Environment
Defining the Operating Conditions 6-3
Chapter 6: Defining the Design Environment
Defining the Operating Conditions 6-3

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
**
...
Operating Conditions:

 Name Library Process Temp Volt Interconnect Model

 WCCOM my_lib 1.50 70.00 4.75 worst_case_tree
 WCIND my_lib 1.50 85.00 4.75 worst_case_tree
 WCMIL my_lib 1.50 125.00 4.50 worst_case_tree
...

Specifying Operating Conditions
If the technology library contains operating condition specifications, you can let Design
Compiler use them as default conditions. Alternatively, you can use the
set_operating_conditions command to specify explicit operating conditions, which
supersede the default library conditions.

For example, to set the operating conditions for the current design to worst-case
commercial, enter

dc_shell> set_operating_conditions WCCOM -lib my_lib

Use the report_design command to see the operating conditions defined for the current
design.

Defining Wire Load Models

Wire load models are used only when Design Compiler is not operating in topographical
mode. For topographical mode details, see Chapter 10, “Using Design Compiler
Topographical Technology.” Wire load modeling allows you to estimate the effect of wire
length and fanout on the resistance, capacitance, and area of nets. Design Compiler uses
these physical values to calculate wire delays and circuit speeds.

Semiconductor vendors develop wire load models, based on statistical information specific
to the vendors’ process. The models include coefficients for area, capacitance, and
resistance per unit length, and a fanout-to-length table for estimating net lengths (the
number of fanouts determines a nominal length).

Note:
You can also develop custom wire load models. For more information about developing
wire load models, see the Library Compiler documentation.
Chapter 6: Defining the Design Environment
Defining Wire Load Models 6-4

Design Compiler User Guide Version D-2010.03-SP2
In the absence of back-annotated wire delays, Design Compiler uses the wire load models
to estimate net wire lengths and delays. Design Compiler determines which wire load model
to use for a design, based on the following factors, listed in order of precedence:

1. Explicit user specification

2. Automatic selection based on design area

3. Default specification in the technology library

If none of this information exists, Design Compiler does not use a wire load model. Without
a wire load model, Design Compiler does not have complete information about the behavior
of your target technology and cannot compute loading or propagation times for your nets;
therefore, your timing information will be optimistic.

In hierarchical designs, Design Compiler must also determine which wire load model to use
for nets that cross hierarchical boundaries. The tool determines the wire load model for
cross-hierarchy nets based on one of the following factors, listed in order of precedence:

1. Explicit user specification

2. Default specification in the technology library

3. Default mode in Design Compiler

The following sections discuss the selection of wire load models for nets and designs.

Hierarchical Wire Load Models
Design Compiler supports three modes for determining which wire load model to use for
nets that cross hierarchical boundaries:

• Top

Design Compiler models nets as if the design has no hierarchy and uses the wire load
model specified for the top level of the design hierarchy for all nets in a design and its
subdesigns. The tool ignores any wire load models set on subdesigns with the
set_wire_load_model command.

Use top mode if you plan to flatten the design at a higher level of hierarchy before layout.

• Enclosed

Design Compiler uses the wire load model of the smallest design that fully encloses the
net. If the design enclosing the net has no wire load model, the tool traverses the design
hierarchy upward until it finds a wire load model. Enclosed mode is more accurate than
top mode when cells in the same design are placed in a contiguous region during layout.

Use enclosed mode if the design has similar logical and physical hierarchies.
Chapter 6: Defining the Design Environment
Defining Wire Load Models 6-5
Chapter 6: Defining the Design Environment
Defining Wire Load Models 6-5

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
• Segmented

Design Compiler determines the wire load model of each segment of a net by the design
encompassing the segment. Nets crossing hierarchical boundaries are divided into
segments. For each net segment, Design Compiler uses the wire load model of the
design containing the segment. If the design contains a segment that has no wire load
model, the tool traverses the design hierarchy upward until it finds a wire load model.

Use segmented mode if the wire load models in your technology have been characterized
with net segments.

Figure 6-2 shows a sample design with a cross-hierarchy net, cross_net. The top level of the
hierarchy (design TOP) has a wire load model of 50x50. The next level of hierarchy (design
MID) has a wire load model of 40x40. The leaf-level designs, A and B, have wire load models
of 20x20 and 30x30, respectively.

Figure 6-2 Comparison of Wire Load Mode

In top mode, Design Compiler estimates the wire length of net cross_net, using the 50x50
wire load model. Design Compiler ignores the wire load models on designs MID, A, and B.

In enclosed mode, Design Compiler estimates the wire length of net cross_net, using the
40x40 wire load model (the net cross_net is completely enclosed by design MID).

In segmented mode, Design Compiler uses the 20x20 wire load model for the net segment
enclosed in design A, the 30x30 wire load model for the net segment enclosed in design B,
and the 40x40 wire load model for the segment enclosed in design MID.

50X50

30X3020X20

TOP
MID

A B

40X40

50X50

30X3020X20

TOP

MID
A B

40X40

50X50

30X3020X20

TOP
MID

A B

40X40

mode = top

mode = enclosed mode = segmented
50X50

40X40 40X4020X20 30X30
Chapter 6: Defining the Design Environment
Defining Wire Load Models 6-6

Design Compiler User Guide Version D-2010.03-SP2
Determining Available Wire Load Models
Most technology libraries have predefined wire load models. Use the report_lib command
to list the wire load models defined in a technology library. The library must be loaded in
memory before you run the report_lib command. To see a list of libraries loaded in
memory, use the list_libs command.

The wire load report contains the following sections:

• Wire Loading Model section

This section lists the available wire load models.

• Wire Loading Model Mode section

This section identifies the default wire load mode. If a library default does not exist,
Design Compiler uses top mode.

• Wire Loading Model Selection Group section

The presence of this section indicates that the library supports automatic area-based
wire load model selection.

To generate a wire load report for the my_lib library, enter

dc_shell> read_file my_lib.db
dc_shell> report_lib my_lib

Example 6-2 shows the resulting wire load models report. The library my_lib contains three
wire load models: 05x05, 10x10, and 20x20. The library does not specify a default wire load
mode (so Design Compiler uses top as the default wire load mode), and it supports
automatic area-based wire load model selection.

Example 6-2 Wire Load Models Report
**
Report : library
Library: my_lib
Version: Y-2006.06
Date : Mon May 1 10:56:49 2006
**
...
Wire Loading Model:

Name : 05x05
Location : my_lib
Resistance : 0
Capacitance : 1
Area : 0
Slope : 0.186
Fanout Length Points Average Cap Std Deviation
--
 1 0.39
Chapter 6: Defining the Design Environment
Defining Wire Load Models 6-7
Chapter 6: Defining the Design Environment
Defining Wire Load Models 6-7

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Name : 10x10
Location : my_lib
Resistance : 0
Capacitance : 1
Area : 0
Slope : 0.311
Fanout Length Points Average Cap Std Deviation
--
 1 0.53

Name : 20x20
Location : my_lib
Resistance : 0
Capacitance : 1
Area : 0
Slope : 0.547
Fanout Length Points Average Cap Std Deviation
--
 1 0.86
Wire Loading Model Selection Group:

 Name : my_lib

 Selection Wire load name
 min area max area

 0.00 1000.00 05x05
 1000.00 2000.00 10x10
 2000.00 3000.00 20x20
...

Specifying Wire Load Models and Modes
The technology library can define a default wire load model that is used for all designs
implemented in that technology. The default_wire_load library attribute identifies the
default wire load model for a technology library.

Some libraries support automatic area-based wire load selection. Design Compiler uses the
library function wire_load_selection to choose a wire load model based on the total cell
area. The wire load model selected the first time you compile is used in subsequent
compiles.

For large designs with many levels of hierarchy, automatic wire load selection can increase
runtime. To manage runtime, set the wire load manually.

You can turn off automatic selection of the wire load model by setting the
auto_wire_load_selection variable to false. For example, enter the following commands:
Chapter 6: Defining the Design Environment
Defining Wire Load Models 6-8

Design Compiler User Guide Version D-2010.03-SP2
dc_shell> set auto_wire_load_selection false

The technology library can also define a default wire load mode. The
default_wire_load_mode library attribute identifies the default mode. If the current library
does not define a default mode, Design Compiler looks for the attribute in the libraries
specified in the link_library variable. (To see the link library, use the list command.) In
the absence of a library default (and an explicit specification), Design Compiler uses that top
mode.

To change the wire load model or mode specified in a technology library, use the
set_wire_load_model and set_wire_load_mode commands. The wire load model and
mode you define override all defaults. Explicitly selecting a wire load model also disables
area-based wire load model selection for that design.

For example, to select the 10x10 wire load model, enter

dc_shell> set_wire_load_model "10x10"

To select the 10x10 wire load model and specify enclosed mode, enter

dc_shell> set_wire_load_mode enclosed

The wire load model you choose for a design depends on how that design is implemented
in the chip. Consult your semiconductor vendor to determine the best wire load model for
your design.

Use the report_design or report_timing commands to see the wire load model and
mode defined for the current design.

To remove the wire load model, use the remove_wire_load_model command with no model
name.

Modeling the System Interface

Design Compiler supports the following ways to model the design’s interaction with the
external system:

• Defining drive characteristics for input ports

• Defining loads on input and output ports

• Defining fanout loads on output ports

The following sections discuss these tasks.
Chapter 6: Defining the Design Environment
Modeling the System Interface 6-9
Chapter 6: Defining the Design Environment
Modeling the System Interface 6-9

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Defining Drive Characteristics for Input Ports
Design Compiler uses drive strength information to buffer nets appropriately in the case of a
weak driver.

Note:
Drive strength is the reciprocal of the output driver resistance, and the transition time
delay at an input port is the product of the drive resistance and the capacitance load of
the input port.

By default, Design Compiler assumes zero drive resistance on input ports, meaning infinite
drive strength. There are three commands for overriding this unrealistic assumption:

• set_driving_cell

• set_drive

• set_input_transition

Both the set_driving_cell and set_input_transition commands affect the port
transition delay, but they do not place design rule requirements, such as max_fanout and
max_transition, on input ports. However, the set_driving_cell command does place
design rules on input ports if the driving cell has design rule constraints.

Note:
For heavily loaded driving ports, such as clock lines, keep the drive strength setting at 0
so that Design Compiler does not buffer the net. Each semiconductor vendor has a
different way of distributing these signals within the silicon.

Both the set_drive and the set_driving_cell commands affect the port transition delay.
The set_driving_cell command can place design rule requirements, such as
max_fanout or max_transition, on input ports if the specified cell has input ports.

The most recently used command takes precedence. For example, setting a drive
resistance on a port with the set_drive command overrides previously run
set_driving_cell commands.

The set_driving_cell Command
Use the set_driving_cell command to specify drive characteristics on ports that are
driven by cells in the technology library. This command is compatible with all the delay
models, including the nonlinear delay model and piecewise linear delay model. The
set_driving_cell command associates a library pin with an input port so that delay
calculators can accurately model the drive capability of an external driver.

Use the remove_driving_cell command or reset_design command to remove driving
cell attributes on ports.
Chapter 6: Defining the Design Environment
Modeling the System Interface 6-10

Design Compiler User Guide Version D-2010.03-SP2
The set_drive and set_input_transition Commands
Use the set_drive or set_input_transition command to set the drive resistance on the
top-level ports of the design when the input port drive capability cannot be characterized
with a cell in the technology library.

You can use set_drive and the drive_of commands together to represent the drive
resistance of a cell. However, these commands are not as accurate for nonlinear delay
models as the set_driving_cell command is.

Figure 6-3 shows a hierarchical design. The top-level design has two subdesigns, U1 and
U2. Ports I1 and I2 of the top-level design are driven by the external system and have a drive
resistance of 1.5.

Figure 6-3 Drive Characteristics

To set the drive characteristics for this example, follow these steps:

1. Because ports I1 and I2 are not driven by library cells, use the set_drive command to
define the drive resistance. Enter

dc_shell> current_design top_level_design
dc_shell> set_drive 1.5 {I1 I2}

2. To describe the drive capability for the ports on design sub_design2, change the current
design to sub_design2. Enter

dc_shell> current_design sub_design2

AN2

IV I3

I4

U1 U2

PAD

PAD

External

System

sub_design1 sub_design2

set_driving_cell

set_drive

1.5

1.5

top_level_design

logic

I2

I1
Chapter 6: Defining the Design Environment
Modeling the System Interface 6-11
Chapter 6: Defining the Design Environment
Modeling the System Interface 6-11

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
3. An IV cell drives port I3. Use the set_driving_cell command to define the drive
resistance. Because IV has only one output and one input, define the drive capability as
follows. Enter

dc_shell> set_driving_cell -lib_cell IV {I3}

4. An AN2 cell drives port I4. Because the different arcs of this cell have different transition
times, select the worst-case arc to define the drive. For checking setup violations, the
worst-case arc is the slowest arc. For checking hold violations, the worst-case arc is the
fastest arc.

For this example, assume that you want to check for setup violations. The slowest arc on
the AN2 cell is the B-to-Z arc, so define the drive as follows. Enter

dc_shell> set_driving_cell -lib_cell AN2 -pin Z -from_pin B {I4}

Defining Loads on Input and Output Ports
By default, Design Compiler assumes zero capacitive load on input and output ports. Use
the set_load command to set a capacitive load value on input and output ports of the
design. This information helps Design Compiler select the appropriate cell drive strength of
an output pad and helps model the transition delay on input pads.

For example, to set a load of 30 on output pin out1, enter

dc_shell> set_load 30 {out1}

Make the units for the load value consistent with the target technology library. For example,
if the library represents the load value in picofarads, the value you set with the set_load
command must be in picofarads. Use the report_lib command to list the library units.

Example 6-3 shows the library units for the library my_lib.

Example 6-3 Library Units Report
**
Report : library
Library: my_lib
Version: 1999.05
Date : Mon Jan 4 10:56:49 1999
**

Library Type : Technology
Tool Created : 1999.05
Date Created : February 7, 1992
Library Version : 1.800000
Time Unit : 1ns
Capacitive Load Unit : 0.100000ff
Pulling Resistance Unit : 1kilo-ohm
Chapter 6: Defining the Design Environment
Modeling the System Interface 6-12

Design Compiler User Guide Version D-2010.03-SP2
Voltage Unit : 1V
Current Unit : 1uA
...

Defining Fanout Loads on Output Ports
You can model the external fanout effects by specifying the expected fanout load values on
output ports with the set_fanout_load command.

For example, enter

dc_shell> set_fanout_load 4 {out1}

Design Compiler tries to ensure that the sum of the fanout load on the output port plus the
fanout load of cells connected to the output port driver is less than the maximum fanout limit
of the library, library cell, and design. (For more information about maximum fanout limits,
see “Design Rule Constraints” on page 7-3.)

Fanout load is not the same as load. Fanout load is a unitless value that represents a
numerical contribution to the total fanout. Load is a capacitance value. Design Compiler
uses fanout load primarily to measure the fanout presented by each input pin. An input pin
normally has a fanout load of 1, but it can have a higher value.

Setting Logic Constraints on Ports

Design Compiler provides commands for setting ports to improve optimization quality.
Table 6-1 lists the commands that eliminate redundant ports or inverters.

Table 6-1 Commands Eliminating Redundant Ports or Inverters

Command Description

set_equal Defines ports as logically equivalent

set_opposite Defines ports as logically opposite

set_logic_dc Specifies one or more ports driven by don’t care

set_logic_one Specifies one or more ports tied to logic 1

set_logic_zero Specifies one or more ports tied to logic 0

set_unconnected Lists output ports to be unconnected
Chapter 6: Defining the Design Environment
Setting Logic Constraints on Ports 6-13
Chapter 6: Defining the Design Environment
Setting Logic Constraints on Ports 6-13

litongyi
Highlight

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
The following sections describe these commands in detail.

Defining Ports as Logically Equivalent
Some input ports are driven by logically related signals. For example, the signals driving a
pair of input ports might always be the same (logically equal) or might always be different
(logically opposite).

The set_equal command specifies that two input ports are logically equivalent.

The syntax is

set_equal port1 port2

Note:
For more information, see the set_equal man page.

Example

To specify that ports IN_X and IN_Y are equal, enter

dc_shell> set_equal IN_X IN_Y

To remove this attribute, use the reset_design command. The reset_design command
removes all user-specified objects and attributes from the current design, except those
defined with the set_attribute command.

Defining Logically Opposite Input Ports
The set_opposite command specifies that two input ports in the current designs are
logically opposite.

Use set_opposite to eliminate redundant inverters and to improve the quality of
optimization.

The syntax is

set_opposite port1 port2

Note:
For more information, see the set_opposite man page.

To remove this attribute, use the reset_design command, which removes all user-specified
objects and attributes from the current design, except those defined with the
set_attribute command. To remove those defined with set_attribute, use the
remove_attribute command.
Chapter 6: Defining the Design Environment
Setting Logic Constraints on Ports 6-14

Design Compiler User Guide Version D-2010.03-SP2
Allowing Assignment of Any Signal to an Input
The set_logic_dc command specifies an input port driven by don’t care.

This information is used to create smaller designs during compile. After optimization, a port
connected to don’t care usually does not drive anything inside the optimized design.

Use set_logic_dc to allow assignment of any signal to that input (including but not limited
to 0 and 1 during compilation). The outputs of the design are significant only when the inputs
that are not don’t care completely determine all the outputs, independent of the don’t care
inputs.

Use set_logic_dc on input ports. To specify output ports as unused, use the
set_unconnected command.

The syntax is

set_logic_dc port_list

Note:
For more information, see the set_logic_dc man page.

Example 1
dc_shell> set_logic_dc { A B }

For a 2:1 multiplexer design with inputs S, A, B, and output Z, the function is computed as

Z = S*A + S'*B

The command set_logic_dc B implies that the value of Z is significant when S = 1 and is
a don’t care when S = 0. The resulting simplification, done during compilation, gives the
reduced logic as a wire and the function is

Z = A

To undo this command, use the remove_attribute command.

Specifying Input Ports Always One or Zero
If an input port is always logic-high or -low, Design Compiler might be able to simplify the
surrounding logic function during optimization and create a smaller design. Figure 6-4
shows simplified input port logic.
Chapter 6: Defining the Design Environment
Setting Logic Constraints on Ports 6-15
Chapter 6: Defining the Design Environment
Setting Logic Constraints on Ports 6-15

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Figure 6-4 Simplified Input Port Logic

You can specify that input ports are connected to logic 1 or logic 0.

Tying Input Ports to Logic 1
The set_logic_one command lists the input ports tied to logic 1.

After optimization, a port connected to logic 1 usually does not drive anything inside the
optimized design.

Use set_logic_one on input ports. To specify output ports as unused, use the
set_unconnected command.

The syntax is

set_logic_one port_list

Note:
For more information, see the set_logic_one man page.

To undo this command, use the remove_attribute command.

Tying Input Ports to Logic 0
The set_logic_zero command lists input ports tied to logic 0.

After optimization, a port connected to logic 0 usually does not drive anything inside the
optimized design.

Use set_logic_zero on input ports. To specify output ports as unused, use the
set_unconnected command.

The syntax is

set_logic_zero port_list

Note:
For more information, see the set_logic_zero man page.

1

IN2
IN2
Chapter 6: Defining the Design Environment
Setting Logic Constraints on Ports 6-16

Design Compiler User Guide Version D-2010.03-SP2
Example
dc_shell> set_logic_one IN

Specifying Unconnected Output Ports
If an output port is not used, that is, if it is unconnected, the logic driving the port can be
minimized or eliminated during optimization. Figure 6-5 shows an example.

Figure 6-5 Minimizing Logic Driving an Unconnected Output Port

The set_unconnected command specifies output ports to be unconnected to outside logic.

The syntax is

set_unconnected port_list

Note:
For more information, see the set_unconnected man page.

Example
dc_shell> set_unconnected OUT

To undo this command, use the remove_attribute command.

Specifying Power Intent

The IEEETM 1801 Unified Power Format (UPF) Standard establishes set of commands used
to specify the low-power design intent for electronic systems. Using UPF commands, you
can specify the supply network, switches, isolation, retention, and other aspects relevant to
power management of a chip design. The same set of low-power design specification
commands is to be used throughout the design, analysis, verification, and implementation
flow. Synopsys tools are designed to follow the official UPF standard.

unused unused
Chapter 6: Defining the Design Environment
Specifying Power Intent 6-17
Chapter 6: Defining the Design Environment
Specifying Power Intent 6-17

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Power Intent Concepts

The IEEE 1801TM (UPF) language provides a way to specify the power requirements of a
design, but without specifying explicitly how those requirements are implemented. The
language specifies how to create a power supply network for each design element, the
behavior of supply nets with respect to each other, and how the logic functionality is
extended to support dynamic power switching to design elements. It does not contain any
placement or routing information. The UPF specification is separate from the RTL
description of the design.

In the UPF language, a power domain is a defined group of elements in the logic hierarchy
that share a common set of power supply needs. By default, all logic elements in a power
domain use the same primary supply and primary ground. Other power supplies may
optionally be defined for a power domain as well. A power domain is typically implemented
as a contiguous voltage area in the physical chip layout, although this is not a requirement
of the language.

Each power domain has a scope and an extent. The scope is the level of logic hierarchy
where the power domain exists. The extent is the set of logic elements that belong to the
power domain and share the same power supply needs. In other words, the scope is the
hierarchical level where the power domain exists, whereas the extent is what is contained
within the power domain.

Each scope or hierarchical level in the design has supply nets and supply ports. A supply net
is a conductor that carries a supply voltage or ground throughout a given power domain. A
supply net that spans more than one power domain is said to be “reused” in multiple
domains. A supply port is a power supply connection point between two adjacent levels of
the design hierarchy, between parent and child blocks of the hierarchy. A supply net that
crosses from one level of the design hierarchy to the next must pass through a supply port.

A power switch (or simply switch) is a device that turns on and turns off power for a supply
net. A switch has an in input supply net, an output supply net that can be switched on or off,
and at least one input signal to control switching. The switch can optionally have multiple
input control signals and one or more output acknowledge signals. A power state table lists
the allowed combinations of voltage values and states of the power switches for all power
domains in the design.

Where a logic signal leaves one power domain and enters another at a substantially different
supply voltage, a level-shifter cell must be present to convert the signal from the voltage
swing of the first domain to that of the second domain.
Chapter 6: Defining the Design Environment
Specifying Power Intent 6-18

Design Compiler User Guide Version D-2010.03-SP2
Where a logic signal leaves a power domain and enters a different power domain, an
isolation cell must be present to generate a known logic value during shutdown. If the
voltage levels of the two domains are substantially different, the interface cell must perform
both level shifting when the domain is powered up and isolation when the domain is powered
down. A cell that can perform both functions is called an enable level shifter.

In a power domain that has power switching, any registers that are to retain data during
shutdown must be implemented as retention registers. A retention register has a separate,
always-on supply net, sometimes called the backup supply, which keeps the data stable in
while the primary supply of the domain is shut down.

UPF Commands in Synopsys Tools
In addition to supporting most of the commands in the UPF standard, Design Compiler
supports non-UPF commands that report power-related objects in the design, such as the
report_power_domain, report_power_switch, report_supply_net, and
report_supply_port reports. Each command reports the objects existing in the design
and the characteristics of the object. For example, the report_supply_net command lists
the supply nets and shows the name, scope, power domains, supply ports, power pins,
voltage, and resolution status of each supply net. Other commands are available that create
collections of such objects, such as get_power_domains, get_power_switches,
get_supply_nets, and get_supply_ports. The reporting and collection commands are
not part of the UPF specification.

For more information about a particular reporting or collection command, see its man page
in the applicable tool.

Table 6-2 lists the major UPF commands and shows whether they are supported by Design
Compiler. A “yes” entry in the table indicates support for the UPF commands listed in the left
column. A blank space indicates that the commands do not apply to Design Compiler.

Table 6-2 Support for IEEE 1801 (UPF) Commands in Design Compiler

IEEE 1801 (UPF) commands Design Compiler support

Load/save/scope:

upf_version

set_scope

load_upf (partial)

save_upf (partial)

--

yes

yes

yes
Chapter 6: Defining the Design Environment
Specifying Power Intent 6-19
Chapter 6: Defining the Design Environment
Specifying Power Intent 6-19

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Basic power:

create_power_domain

create_supply_net

create_supply_port

set_domain_supply_net

connect_supply_net (partial)

create_power_switch (partial)

map_power_switch

yes

yes

yes

yes

yes

yes

--

Level shifter:

set_level_shifter

map_level_shifter_cell

name_format

yes

yes

yes

Isolation:

set_isolation

set_isolation_control

map_isolation_cell

name_format

yes

yes

yes

yes

Retention:

set_retention

set_retention_control

map_retention_cell (partial)

yes

yes

yes

Power state table:

add_port_state

add_pst_state

create_pst

yes

yes

yes

Verification extension:

set_design_top --

Table 6-2 Support for IEEE 1801 (UPF) Commands in Design Compiler (Continued)

IEEE 1801 (UPF) commands Design Compiler support
Chapter 6: Defining the Design Environment
Specifying Power Intent 6-20

Design Compiler User Guide Version D-2010.03-SP2
The commands to load and execute UPF commands from a file, to write a set of UPF
commands to a file, and to set the hierarchical scope for subsequent UPF commands are
described in the following sections.

upf_version

upf_version string

The upf_version command specifies the UPF version number for which the subsequent
UPF syntax is intended, or it returns the current UPF version number. As of the current
release, only version 1.0 is supported.

set_scope

set_scope [instance]

The set_scope command specifies the hierarchical scope of subsequent commands,
including UPF commands. It has the same effect as the current_instance command. If no
instance name is specified, the scope is set to the top level of the design. If the instance is
specified as a single period character (.), the scope remains at the current instance. If the
instance is specified as two period characters (..), the context is moved up one level in the
instance hierarchy. If the instance string begins with a slash character (/), the scope changes
to the instance whose name follows the slash character, relative to the top of the design.

The set_scope command reports the scope setting (a hierarchical path) before the setting
is changed. This is different from the current_instance command, which reports the
scope setting after the setting has been changed.

load_upf

load_upf upf_file_name
 [-scope instance_name]

The load_upf command executes the UPF commands in a specified file. The commands
describe the power intent of the design in the same way that the commands read by the
read_sdc command describe the timing constraints on a design.

You can optionally specify a scope for the command. The scope is a name of a hierarchical
instance on which the commands are applied. Specifying a scope has the same effect as
changing the tool to the level of instance with the set_scope or current_instance
command, executing the commands, and then changing back to the original hierarchical
level. If you do not specify a scope, the commands are applied to the current scope.

Design Compiler lets you remove loaded UPF commands with the remove_upf command.
Chapter 6: Defining the Design Environment
Specifying Power Intent 6-21
Chapter 6: Defining the Design Environment
Specifying Power Intent 6-21

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
save_upf

save_upf upf_file_name

The save_upf command writes out a set of UPF commands to a specified file. The
commands fully describe the power intent of the design in the same way that the commands
written by the write_sdc command describe the timing constraints on a design.

For more information on UPF commands, see the Synopsys Low-Power Flow User Guide.

Support for Multicorner-Multimode Designs

Designs are often required to operate under multiple modes, such as test or standby mode,
and multiple operating conditions, sometimes referred to as corners. Such designs are
known as multicorner-multimode designs. Design Compiler Graphical can analyze and
optimize across multiple modes and corners concurrently. The multicorner-multimode
feature in Design Compiler Graphical provides compatibility between flows in Design
Compiler and IC Compiler.

To define your modes and corners, you use the create_scenario command. A scenario
definition usually includes commands that specify the TLUPlus libraries, operating
conditions, and constraints. For details on setting up multicorner-multimode analysis, see
“Optimizing Multicorner-Multimode Designs in Design Compiler Graphical” on page 10-102.
Chapter 6: Defining the Design Environment
Support for Multicorner-Multimode Designs 6-22

7
Defining Design Constraints 7

Constraints are declarations that define your design’s goals in measurable circuit
characteristics such as timing, area, and capacitance. Without constraints, the Design
Compiler tool cannot effectively optimize your design.

In this chapter, you will learn about the following:

• Design Compiler Constraint Types

• Design Rule Constraints

• Optimization Constraints

• Managing Constraint Priorities

• Reporting Constraints

• Propagating Constraints in Hierarchical Designs
7-1

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Design Compiler Constraint Types

When Design Compiler optimizes your design, it uses two types of constraints:

Design rule constraints

These are implicit constraints; the technology library defines them. These constraints are
requirements for a design to function correctly, and they apply to any design using the
library. You can make these constraints more restrictive than optimization constraints.

Optimization constraints

These are explicit constraints; you define them. Optimization constraints apply to the
design on which you are working for the duration of the dc_shell session and represent
the design’s goals. They must be realistic.

Design Compiler tries to meet both design rule constraints and optimization constraints, but
design rule constraints take precedence.

Design Compiler calculates two cost functions: one for design rule constraints and one for
optimization constraints. During gate-level optimization, Design Compiler reports the value
of each cost function whenever a change is made to the design.

You specify constraints interactively on the command line or in a constraints file.

Figure 7-1 shows the major Design Compiler design rule constraints and optimization
constraints and the dc_shell interface commands to set the constraints.
Chapter 7: Defining Design Constraints
Design Compiler Constraint Types 7-2

Design Compiler User Guide Version D-2010.03-SP2
Figure 7-1 Major Design Compiler Constraints

Note:
If you use the Power Compiler tool from Synopsys, max_dynamic_power and
max_leakage_power are optimization constraints. To use these constraints, you need a
Power Optimization license and supporting libraries characterized for power.

Design Rule Constraints

Design rule constraints reflect technology-specific restrictions your design must meet in
order to function as intended.

Design rules constrain the nets of a design but are associated with the pins of cells from a
technology library. Most technology libraries specify default design rules. Design Compiler
cannot violate design rule constraints, even if it means violating optimization constraints
(delay and area goals). You can apply more restrictive design rules, but you cannot apply
less restrictive ones.

Design Rule
Constraints

Optimization
Constraints

set_max_area

set_max_transition

set_max_capacitance

set_cell_degradation

set_min_capacitance

Maximums:

Transition Time
Fanout

Capacitance

Cell
Degradation

Minimum
Capacitance

set_max_fanout

set_max_delay
set_min_delay

create_clock
set_input_delay
set_output_delay

SpeedArea
Chapter 7: Defining Design Constraints
Design Rule Constraints 7-3
Chapter 7: Defining Design Constraints
Design Rule Constraints 7-3

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
The design rule constraints comprise

• Maximum transition time

• Maximum fanout

• Minimum and maximum capacitance

• Cell degradation

You cannot remove max_transition, max_fanout, max_capacitance, and
min_capacitance attributes set in a technology library, because they are requirements for
the technology, but you can set values that are more restrictive. If both implicit and explicit
values are set on a design or a port, the more restrictive value applies. You can remove
values you have set.

Design Rule Cost Function
Design Compiler helps you fix design rule violations. If there are multiple violations, Design
Compiler tries to fix the violation with the highest priority first. When possible, it also
evaluates and selects alternatives that reduce violations of other design rules. Design
Compiler uses the same approach with delay violations.

Figure 7-2 shows the design rule cost function equation.

Figure 7-2 Design Rule Cost Equation

In a compilation report, the DESIGN RULE COST field reports the cost function for the
design rule constraints on the design.

Maximum Transition Time
Maximum transition time is a design rule constraint.

The maximum transition time for a net is the longest time required for its driving pin to
change logic values. Many technology libraries contain restrictions on the maximum
transition time for a pin, creating an implicit transition time limit for designs using that library.

Design Compiler attempts to make the transition time of each net less than the
max_transition value, for example, by buffering the output of the driving gate. The
max_transition value can vary with the operating frequency of a cell.

max di 0,() wi×
i 1=

m

∑ d = Delta Constraint
m = Total Number of Constraints
w = Constraint Weight

i = Index
Chapter 7: Defining Design Constraints
Design Rule Constraints 7-4

Design Compiler User Guide Version D-2010.03-SP2
Transition times on nets are computed by use of timing data from the technology library.

To change or add to the implicit transition time values from a technology library, use the
set_max_transition command.

If both a library max_transition and a design max_transition attribute are defined,
Design Compiler tries to meet the smaller (more restrictive) value.

If your design uses multiple technology libraries and each has a different default
max_transition value, Design Compiler uses the smallest max_transition value globally
across the design.

Defining Maximum Transition Time
The set_max_transition command sets the max_transition attribute to the specified
value on clock groups, ports, or designs. During compile, Design Compiler attempts to
ensure that the transition time for a net is less than the specified value.

Example

To set a maximum transition time of 3.2 for the design adder, enter the following command:

dc_shell> set_max_transition 3.2 [get_designs adder]

To undo a set_max_transition command, use remove_attribute. Enter the following
command:

dc_shell> remove_attribute [get_designs adder] max_transition

For command details, see the man page.

Specifying Clock-Based Maximum Transition
The max_transition value can vary with the operating frequency of a cell. The operating
frequency of a cell is defined as the highest clock frequency on the registers driving a cone
of logic (clock frequencies are defined with the create_clock command).

For designs with multiple clock domains, you can use the set_max_transition command
to set the max_transition attribute on pins in a specific clock group.

Design Compiler follows these rules in determining the max_transition value:

• When the max_transition attribute is set on a design or port and a clock group, the
most restrictive constraint is used.

• If multiple clocks launch the same paths, the most restrictive constraint is used.
Chapter 7: Defining Design Constraints
Design Rule Constraints 7-5
Chapter 7: Defining Design Constraints
Design Rule Constraints 7-5

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
• If max_transition attributes are already specified in a technology library, the tool
automatically attempts to meet these constraints during compile.

For example the following command sets a max_transition value of 5 on all pins belonging
to the Clk clock group:

dc_shell> set_max_transition 5 [get_clocks Clk]

Maximum Fanout
Maximum fanout is a design rule constraint.

Most technology libraries place fanout restrictions on driving pins, creating an implicit fanout
constraint for every driving pin in designs using that library.

You can set a more conservative fanout constraint on an entire library or define fanout
constraints for specific pins in the library description of an individual cell.

If a library fanout constraint exists and you specify a max_fanout attribute, Design Compiler
tries to meet the smaller (more restrictive) value.

Design Compiler models fanout restrictions by associating a fanout_load attribute with
each input pin and a max_fanout attribute with each output (driving) pin on a cell. Figure 7-3
shows these fanout attributes.

Figure 7-3 fanout_load and max_fanout Attributes

To evaluate the fanout for a driving pin (such as X in Figure 7-3), Design Compiler calculates
the sum of all the fanout_load attributes for inputs driven by pin X and compares that
number with the number of max_fanout attributes stored at the driving pin X.

• If the sum of the fanout loads is not more than the max_fanout value, the net driven by X
is valid.

• If the net driven by X is not valid, Design Compiler tries to make that net valid, perhaps by
choosing a higher-drive component.

Maximum Fanout Calculation Example
Figure 7-4 shows how maximum fanout is calculated.

X max_fanout : 13.0

fanout_load : 1.0

fanout_load : 2.0
Chapter 7: Defining Design Constraints
Design Rule Constraints 7-6

Design Compiler User Guide Version D-2010.03-SP2
Figure 7-4 Calculation of Maximum Fanout

You can set a maximum fanout constraint on every driving pin and input port as follows:

dc_shell> set_max_fanout 8 [get_designs ADDER]

To check whether the maximum fanout constraint is met for driving pin Z, Design Compiler
compares the specified max_fanout attribute against the fanout load.

In this case, the design meets the constraints.

The fanout load imposed by a driven cell (U3) is not necessarily 1.0. Library developers can
assign higher fanout loads (for example, 2.0) to model internal cell fanout effects.

You can also set a fanout load on an output port (OUT1) to model external fanout effects.

Fanout load is a dimensionless number, not a capacitance. It represents a numerical
contribution to the total effective fanout.

Defining Maximum Fanout
The set_max_fanout command sets the maximum allowable fanout load for the listed input
ports. The set_max_fanout command sets a max_fanout attribute on the listed objects.

To undo a maximum fanout value set on an input port or design, use the remove_attribute
command. For example,

dc_shell> remove_attribute [get_ports port_name] max_fanout
dc_shell> remove_attribute [get_designs design_name]max_fanout

For more information, see the man page.

fanout_load:
1.0

1.0

fanout_load:2.0

Driving Pin

Z

U3:NR6

OUT1
set_fanout_load 3.0

set_max_fanout 8

Total Fanout Load

8 > 1.0 + 1.0 + 3.0 + 2.0

7

Chapter 7: Defining Design Constraints
Design Rule Constraints 7-7
Chapter 7: Defining Design Constraints
Design Rule Constraints 7-7

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Defining Expected Fanout for Output Ports
The set_fanout_load command sets the expected fanout load value for listed output ports.

Design Compiler adds the fanout value to all other loads on the pin driving each port in
port_list and tries to make the total load less than the maximum fanout load of the pin.

To undo a set_fanout_load command set on an output port, use the remove_attribute
command. For example,

dc_shell> remove_attribute port_name fanout_load

To determine the fanout load, use the get_attribute command.

Examples

To find the fanout load on the input pin of library cell AND2 in library libA, enter

dc_shell> get_attribute "libA/AND2/i" fanout_load

To find the default fanout load set on technology library libA, enter

dc_shell> get_attribute libA default_fanout_load

For more information, see the set_fanout_load man page.

Maximum Capacitance
Maximum capacitance is a design rule constraint. It is set as a pin-level attribute that defines
the maximum total capacitive load that an output pin can drive. That is, the pin cannot
connect to a net that has a total capacitance (load pin capacitance and interconnect
capacitance) greater than or equal to the maximum capacitance defined at the pin.

The maximum capacitance design rule constraint allows you to control the capacitance of
nets directly. (The design rule constraints max_fanout and max_transition limit the actual
capacitance of nets indirectly.) The max_capacitance constraint operates similarly to
max_transition, but the cost is based on the total capacitance of the net, rather than the
transition time. The max_capacitance attribute functions independently, so you can use it
with max_fanout and max_transition.

The max_capacitance value can vary with the operating frequency of a cell. You can have
Design Compiler annotate each driver pin with a frequency-based max_capacitance value
by setting the compile_enable_dyn_max_cap variable to true. See “Specifying
Frequency-Based Maximum Capacitance” on page 7-9.

The max_capacitance constraint has priority over the cell degradation constraint.
Chapter 7: Defining Design Constraints
Design Rule Constraints 7-8

Design Compiler User Guide Version D-2010.03-SP2
If both a library max_capacitance attribute and a design max_capacitance attribute exist,
Design Compiler tries to meet the smaller (more restrictive) value.

Defining Maximum Capacitance
The set_max_capacitance command sets a maximum capacitance for the nets attached to
named ports or to all the nets in a design. This command allows you to control capacitance
directly and places a max_capacitance attribute on the listed objects.

Design Compiler calculates the capacitance on a net by adding the wire capacitance of the
net to the capacitance of the pins attached to the net. To determine whether a net meets the
capacitance constraint, Design Compiler compares the calculated capacitance value with
the max_capacitance value of the pin driving the net.

Use the set_max_capacitance command to specify a capacitance value on input ports or
designs. This value should be less than or equal to the max_capacitance of the pin driving
the net.

Examples

To set a maximum capacitance of 3 for the design adder, enter one the following command:

dc_shell> set_max_capacitance 3 [get_designs adder]

To undo a set_max_capacitance command, use remove_attribute. For example, enter
the following command:

dc_shell> remove_attribute [get_designs adder] max_capicitance

For more information, see the set_max_capacitance man page.

Specifying Frequency-Based Maximum Capacitance
The max_capacitance value can vary with the operating frequency of a cell. You can have
Design Compiler annotate each driver pin with a frequency-based max_capacitance value
by setting the compile_enable_dyn_max_cap variable to true.

Before you use this feature, your technology library should be characterized for multiple
frequencies. This characterization consists of associating a max_capacitance value with
each driver pin for each frequency and capturing this information in a one-dimensional
lookup table. For information on creating the max_capacitance lookup table, see the Library
Compiler documentation.
Chapter 7: Defining Design Constraints
Design Rule Constraints 7-9
Chapter 7: Defining Design Constraints
Design Rule Constraints 7-9

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Design Compiler follows these steps in determining the max_capacitance value:

1. It identifies the operating frequency of each cell.

The operating frequency of a cell is defined as the highest clock frequency on the
registers driving a cone of logic (clock frequencies are defined with the create_clock
command).

2. It looks up the corresponding max_capacitance value for the identified frequency from
the lookup table in the technology library.

3. It annotates each driver pin with the appropriate max_capacitance value and uses these
values in synthesis.

Minimum Capacitance
Minimum capacitance is a design rule constraint. Some technology libraries specify
minimum capacitance.

The min_capacitance design rule specifies the minimum load a cell can drive. It specifies
the lower bound of the range of loads with which a cell has been characterized to operate.
During optimization, Design Compiler ensures that the load driven by a cell meets the
minimum capacitance requirement for that cell. When a violation occurs, Design Compiler
fixes the violation by sizing the driver.

You can use the min_capacitance design rule with the existing design rules. The
min_capacitance has higher priority than the maximum transition time, maximum fanout,
and maximum capacitance constraints.

You can set a minimum capacitance for nets attached to input ports to determine whether
violations occur for driving cells at the input boundary. If violations are reported after
compilation, you can fix the problem by recompiling the module driving the ports. Use
set_min_capacitance for input or inout ports; you cannot set minimum capacitance on a
design.

If library min_capacitance and design min_capacitance attributes both exist, Design
Compiler tries to meet the larger (more restrictive) value.

Defining Minimum Capacitance
The set_min_capacitance command sets a defined minimum capacitance value on listed
input or bidirectional ports.

To set a minimum capacitance for nets attached to input or bidirectional ports, use the
set_min_capacitance command.
Chapter 7: Defining Design Constraints
Design Rule Constraints 7-10

Design Compiler User Guide Version D-2010.03-SP2
Example

To set a minimum capacitance value of 12.0 units on the port named high_drive, enter

dc_shell> set_min_capacitance 12.0 high_drive

To report only minimum capacitance constraint information, use the -min_capacitance
option of the report_constraint command.

To get information about the current port settings, use the report_port command.

To undo a set_min_capacitance command, use the remove_attribute command.

For more information, see the set_min_capacitance man page.

Cell Degradation
Cell degradation is a design rule constraint. Some technology libraries contain cell
degradation tables. The tables list the maximum capacitance that can be driven by a cell as
a function of the transition times at the inputs of the cell.

The cell_degradation design rule specifies that the capacitance value for a net is less than
the cell degradation value.

The cell_degradation design rule can be used with other design rules, but the
max_capacitance design rule has a higher priority than the cell_degradation design
rule. If the max_capacitance rule is not violated, applying the cell_degradation design
rule does not cause it to be violated.

The set_cell_degradation command sets the cell_degradation attribute to a specified
value on specified input ports.

During compilation, if cell_degradation tables are specified in a technology library,
Design Compiler tries to ensure that the capacitance value for a net is less than the specified
value. The cell_degradation tables give the maximum capacitance that a cell can drive,
as a function of the transition times at the inputs of the cell.

If cell_degradation tables are not specified in a technology library, you can set
cell_degradation explicitly on the input ports.

By default, a port has no cell_degradation constraint.

Note:
Use of the set_cell_degradation command requires a DC Ultra license.

The syntax is
Chapter 7: Defining Design Constraints
Design Rule Constraints 7-11
Chapter 7: Defining Design Constraints
Design Rule Constraints 7-11

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
set_cell_degradation cell_deg_value object_list

Note:
For more information, see the set_cell_degradation man page.

Example

This command sets a maximum capacitance value of 2.0 units on the port named late_riser:

dc_shell> set_cell_degradation 2.0 late_riser

To get information about optimization and design rule constraints, use the
report_constraint command.

To remove the cell_degradation attribute, use the remove_attribute command.

Connection Class
The connection class constraint on a port describes the connection requirements for a given
technology. Only loads and drivers with the same connection class label can be legally
connected. This constraint can be specified in the library or by the user. To set a connection
class constraint on a port, use the set_connection_class command. For details, see the
man page for the command.

Managing Design Rule Constraint Priorities
By default, design rule constraints have a higher optimization priority than optimization
constraints. You can change that priority, however; see “Managing Constraint Priorities” on
page 7-19.

Precedence of Design Rule Constraints
Design Compiler follows this descending order of precedence when it tries to resolve
conflicts among design rule constraints (see Table 7-2 on page 7-19):

1. Minimum capacitance

2. Maximum transition

3. Maximum fanout

4. Maximum capacitance

5. Cell degradation
Chapter 7: Defining Design Constraints
Design Rule Constraints 7-12

Design Compiler User Guide Version D-2010.03-SP2
The following details apply to the precedence of design rule constraints:

• Maximum transition has precedence over maximum fanout. If a maximum fanout
constraint is not met, investigate the possibility of a conflicting maximum transition
constraint. Design Compiler does not make a transition time worse in order to fix a
maximum fanout violation.

• Maximum fanout has precedence over maximum capacitance.

• Design Compiler calculates transition time for a net in two ways, depending on the library.

• For libraries using the CMOS delay model, Design Compiler calculates the transition
time by using the drive resistance of the driving cell and the capacitive load on the net.

• For libraries using a nonlinear delay model, Design Compiler calculates the transition
time by using table lookup and interpolation. This is a function of capacitance at the
output pin and of the input transition time.

• The set_driving_cell and set_drive commands behave differently, depending on
your technology library.

• For libraries using the CMOS delay model, drive resistance is a constant. In this case,
the set_drive -drive_of command and the set_driving_cell command give the
same result.

• For libraries using a nonlinear delay model, the set_driving_cell command
calculates the transition time dynamically, based on the load from the tables. The
set_drive command returns one value when the command is issued and uses a
value from the middle of the range in the tables for load.

Both the set_driving_cell and the set_drive commands affect the port transition delay.
The set_driving_cell command places the design rule constraints, annotated with the
driving cell, on the affected port.

The set_load command places a load on a port or a net. The units of this load must be
consistent with your technology library. This value is used for timing optimizations, not for
maximum fanout optimizations.

Design Rule Scenarios
Typical design rule scenarios are

• set_max_fanout and set_max_transition commands

• set_max_fanout and set_max_capacitance commands

Typically, a technology library specifies a default max_transition or max_capacitance, but
not both. To achieve the best result, do not mix max_transition and max_capacitance.
Chapter 7: Defining Design Constraints
Design Rule Constraints 7-13
Chapter 7: Defining Design Constraints
Design Rule Constraints 7-13

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Disabling Design Rule Fixing on Special Nets
You use the set_auto_disable_drc_nets command to enable or disable design rule fixing
on clock, constant, or scan nets. The command acts on all the nets of a given type in the
current design; that is, depending on the options you specify, it acts on all the clock nets, or
all the constant nets, or all the scan nets, or on any combination of these three net types.
Nets that are disabled with respect to design rule fixing are marked with the
auto_disable_drc_nets attribute.

By default, the clock and constant nets of a design have design rule fixing disabled (this is
the same as using the -default option of the command); the scan nets do not. You can use
the -all option to disable design rule fixing on all three net types. Alternatively, you can
independently disable or enable design rule fixing for the clock nets, constant nets, or scan
nets by assigning a true or false value to the -clock, -constant, or -scan options,
respectively. Finally, you can use the -none option to enable design rule fixing on all three
types of nets.

Note:
Clock nets are ideal nets by default. Using the set_auto_disable_drc_nets command
to enable design rule fixing does not affect the ideal timing properties of clock nets. You
must use the set_propagated_clock command to affect the ideal timing of clock nets.

You cannot use the set_auto_disable_drc_nets to override disabled design rule fixing on
ideal networks marked with ideal network attributes. This command never overrides the
settings specified by the set_ideal_net or the set_ideal_network command.

Summary of Design Rule Commands and Objects
Table 7-1 summarizes the design rule commands and the objects on which to set them.

Table 7-1 Design Rule Command and Object Summary

Command Object

set_max_fanout Input ports or designs

set_fanout_load Output ports

set_load Ports or nets

set_max_transition Ports or designs

set_cell_degradation Input ports

set_min_capacitance Input ports
Chapter 7: Defining Design Constraints
Design Rule Constraints 7-14

Design Compiler User Guide Version D-2010.03-SP2
Optimization Constraints

Optimization constraints represent speed and area design goals and restrictions that you
want but that might not be crucial to the operation of a design. Speed (timing) constraints
have higher priority than area.

By default, optimization constraints are secondary to design rule constraints. (That priority
can be changed, however; see “Managing Constraint Priorities” on page 7-19.)

The optimization constraints comprise

• Timing constraints (performance and speed)

• Input and output delays (synchronous paths)

• Minimum and maximum delay (asynchronous paths)

• Maximum area (number of gates)

Optimization Cost Function
During the first phase of mapping, Design Compiler works to reduce the optimization cost
function. Design Compiler evaluates this function to determine whether a change to the
design improves the cost.

The full optimization cost function takes into account the following components, listed in
order of importance. Not all components are active on all designs.

1. Maximum delay cost

2. Minimum delay cost

3. Maximum area cost

Design Compiler evaluates cost function components independently in order of importance
and accepts an optimization move if it decreases the cost of one component without
increasing more-important costs. For example, an optimization move that improves
maximum delay cost is always accepted.

Optimization stops when all costs are zero or no further improvements can be made to the
cost function.

Timing Constraints
When defining timing constraints you should consider that your design has synchronous
paths and asynchronous paths.
Chapter 7: Defining Design Constraints
Optimization Constraints 7-15
Chapter 7: Defining Design Constraints
Optimization Constraints 7-15

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Synchronous paths are constrained by specifying clocks in the design. Use the
create_clock command to specify a clock. After specifying the clocks, it is recommended
you also specify the input and output port timing specifications. Use the set_input_delay
and set_output_delay commands.

Asynchronous paths are constrained by specifying minimum and maximum delay values.
Use the set_max_delay and set_min_delay commands to specify these point-to-point
delays. The calculation of minimum and maximum delays are described in the following
sections.

For additional information, see the Synopsys Timing Constraints and Optimization User
Guide.

Maximum Delay
Maximum delay is an optimization constraint.

Design Compiler contains a built-in static timing analyzer for evaluating timing constraints. A
static timing analyzer calculates path delays from local gate and interconnect delays but
does not simulate the design. The Design Compiler timing analyzer performs critical path
tracing to check minimum and maximum delays for every timing path in the design. The most
critical path is not necessarily the longest combinational path in a sequential design,
because paths can be relative to different clocks at path startpoints and endpoints.

The timing analyzer calculates minimum and maximum signal rise and fall path values
based on the timing values and environmental information in the technology library.

Cost Calculation
Maximum delay is usually the most important portion of the optimization cost function. The
maximum delay optimization cost guides Design Compiler to produce a design that
functions at the speed you want.

The maximum delay cost includes multiple parts. Figure 7-5 shows the maximum delay cost
equation.

Figure 7-5 Cost Calculation for Maximum Delay

Maximum delay target values for each timing path in the design are automatically
determined after considering clock waveforms and skew, library setup times, external
delays, multicycle or false path specifications, and set_max_delay commands. Load, drive,
operating conditions, wire load model, and other factors are also taken into account.

vi wi×
i 1=

m

∑ v = worst violation
i = Index

m = number of path groups
w = weight
Chapter 7: Defining Design Constraints
Optimization Constraints 7-16

Design Compiler User Guide Version D-2010.03-SP2
The maximum delay cost is affected by how paths are grouped by the group_path and
create_clock commands.

• If only one path group exists, the maximum delay cost is the cost for that group: the
amount of the worst violation multiplied by the group weight.

• If multiple path groups exist, the costs for all the groups are added together to determine
the maximum delay cost of the design. The group cost is always zero or greater.

Delta = max(delta(pin1), delta(pin2), ... delta(pinN))

Minimum Delay
Minimum delay is an optimization constraint, but Design Compiler fixes the minimum delay
constraint when it fixes design rule violations.

Minimum delay constraints are set explicitly with the set_min_delay command or set
implicitly due to hold time requirements.

The minimum delay to a pin or port must be greater than the target delay.

Design Compiler considers the minimum delay cost only if the set_fix_hold command is
used.

If fix_hold is not specified on any clocks, the minimum delay cost is not considered during
compilation. If fix_hold or min_delay is specified, the minimum delay cost is a secondary
optimization cost.

set_min_delay

Defines a minimum delay for timing paths in the design.

set_fix_hold

Directs Design Compiler to fix hold violations at registers during compilation. You can
override the default path delay for paths affected by set_fix_hold, by using the
set_false_path or set_multicycle_path commands.

Hold time violations are fixed only if the fix_hold command is applied to related clocks.

Cost Calculation
The minimum delay cost for a design is different from the maximum delay cost. The
minimum delay cost is not affected by path groups, and all violations contribute to the cost.
Figure 7-6 shows the minimum delay cost equation.
Chapter 7: Defining Design Constraints
Optimization Constraints 7-17
Chapter 7: Defining Design Constraints
Optimization Constraints 7-17

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Figure 7-6 Cost Calculation for Minimum Delay

The minimum delay cost function has the same delta for single pins or ports and multiple
pins or ports.

Delta = min_delay - minimum delay(pin or port)

Maximum Area
Maximum area is an optimization constraint.

Maximum area represents the number of gates in the design, not the physical area the
design occupies.

Usually the area requirements for the design are stated as the smallest design that meets
the performance goal. Defining a maximum area directs Design Compiler to optimize the
design for area after timing optimization is complete.

The set_max_area command specifies the maximum allowable area for the current design.
Design Compiler computes the area of a design by adding the areas of each component on
the lowest level of the design hierarchy (and the area of the nets).

Design Compiler ignores the following components when it calculates circuit area:

• Unknown components

• Components with unknown areas

• Technology-independent generic cells

The area of a cell (component) is technology-dependent and obtained from the technology
library.

Cost Calculation
The maximum-area cost equation is

cost = max (0, current area - max_area)

vi
i 1=

m

∑ m = number of paths affected by
set_min_delay or set_fix_hold

v = minimum delay violation

i = index

max(0,required_path_delay - actual_path_delay)
Chapter 7: Defining Design Constraints
Optimization Constraints 7-18

Design Compiler User Guide Version D-2010.03-SP2
Defining Maximum Area
The set_max_area command specifies an area target and places a max_area attribute on
the current design.

Examples
dc_shell> set_max_area 0.0
dc_shell> set_max_area 14.0

Determining the smallest design can be helpful. The following script guides Design Compiler
to optimize for area only. It constrains a design only for minimum area (when you do not care
about timing). For the timing to make sense, you must apply clocking and input and output
delay.

/* example script for smallest design */
remove_constraint -all
remove_clock -all
set_max_area 0

For more information, see the set_max_area man page.

Managing Constraint Priorities

During optimization, Design Compiler uses a cost vector to resolve any conflicts among
competing constraint priorities. Table 7-2 shows the default order of priorities.

Table 7-2 Constraints Default Cost Vector

Priority (descending order) Notes

connection classes

multiple_port_net_cost

min_capacitance Design Rule Constraint

max_transition Design Rule Constraint

max_fanout Design Rule Constraint

max_capacitance Design Rule Constraint

cell_degradation Design Rule Constraint

max_delay Optimization Constraint
Chapter 7: Defining Design Constraints
Managing Constraint Priorities 7-19
Chapter 7: Defining Design Constraints
Managing Constraint Priorities 7-19

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Table 7-2 shows that, by default, design rule constraints have priority over optimization
constraints. However, you can reorder the priorities of the constraints listed in bold type, by
using the set_cost_priority command. For example, the following are circumstances
under which you might want to move the optimization constraint max_delay ahead of the
maximum design rule constraints.

• In many technology libraries, the only significant design rule violations that cannot be
fixed without hurting delay are overconstrained nets, such as input ports with large
external loads or around logic marked dont_touch. Placing max_delay ahead of the
design rule constraints in priority allows these design rule constraint violations to be fixed
in a way that does not hurt delay. Design Compiler might, for example, resize the drivers
in another module.

• In compilation of a small block of logic, such as an extracted critical region of a larger
design, the possibility of overconstraints at the block boundaries is high. In this case,
design rule fixing might better be postponed until the small block has been regrouped into
the larger design.

The syntax is

set_cost_priority [-default] [-delay] cost_list

-default

Directs Design Compiler to use its default priority, as shown in Table 7-2 on page 7-19.

-delay

Specifies that max_delay has higher priority than the maximum design rule constraints.

cost_list

Specifies the order of priority (listing the highest first) of the following costs: max_delay,
min_delay, max_transition, max_fanout, max_capacitance, cell_degradation,
and max_design_rules.

Note:
Use of the cost_list option requires a DC Ultra license.

min_delay Optimization Constraint

power Optimization Constraint

area Optimization Constraint

cell count

Table 7-2 Constraints Default Cost Vector (Continued)

Priority (descending order) Notes
Chapter 7: Defining Design Constraints
Managing Constraint Priorities 7-20

Design Compiler User Guide Version D-2010.03-SP2
Examples

To prioritize max_delay ahead of the maximum design rule constraints, enter

dc_shell> set_cost_priority -delay

To assign top priority to max_capacitance, max_delay, and max_fanout—in that order—
enter

dc_shell> set_cost_priority {max_capacitance max_delay max_fanout}

Design Compiler assigns any costs you do not list to a lower priority than the costs you do
list. This example does not list max_transition, cell_degradation, or min_delay, so
Design Compiler assigns them priority following max_fanout.

If you specify set_cost_priority more than once on a design, Design Compiler uses the
most recent setting.

Reporting Constraints

The report_constraint command reports the constraint values in the current design,
enabling you to check design rules and optimization goals.

The constraint report lists the following for each constraint in the current design:

• Whether the constraint was met or violated

• By how much the constraint value was met or violated

• The design object that is the worst violator

• The maximum delay information, showing cost by path group. This includes violations of
setup time on registers or ports with output delay as well as violations of the
set_max_delay command.

• The minimum delay cost, which includes violations of hold time on registers or ports with
output delay as well as violations of the set_min_delay command.

The constraint report summarizes the constraints in the order in which you set the priorities.
Constraints not present in your design are not included in the report. To list more information
in a constraint report, use the -verbose option of the report_constraint command. To
list all constraint violators, use the -all_violators option of the report_constraint
command.

For more information about the report_constraint command, see the man page.
Chapter 7: Defining Design Constraints
Reporting Constraints 7-21
Chapter 7: Defining Design Constraints
Reporting Constraints 7-21

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Propagating Constraints in Hierarchical Designs

Hierarchical designs are composed of subdesigns. You can propagate constraints up or
down the hierarchy in the following ways:

characterizing

Captures information about the environment of specific cell instances and assigns the
information as attributes on the design to which the cells are linked.

modeling

Creates a characterized design as a library cell.

propagating constraints up the hierarchy

Propagates clocks, timing exceptions, and disabled timing arcs from lower level
subdesigns to the current design.

Characterizing Subdesigns
When you compile subdesigns separately, boundary conditions such as the input drive
strengths, input signal delays (arrival times), and output loads can be derived from the
parent design and set on each subdesign. You can do this manually or automatically.

manually

Use the set_drive, set_driving_cell, set_input_delay, set_output_delay, and
set_load commands.

automatically

Use the characterize command or the design budgeting tool.

Using the characterize Command
The characterize command places on a design the information and attributes that
characterize its environment in the context of a specified instantiation in the top level design.

The primary purpose of characterize is to capture the timing environment of the
subdesign. This occurs when you use characterize with no arguments or when you use
its -constraints, -connections, or -power options.
Chapter 7: Defining Design Constraints
Propagating Constraints in Hierarchical Designs 7-22

Design Compiler User Guide Version D-2010.03-SP2
The characterize command derives and asserts the following information and attributes
on the design to which the instance is linked:

• Unless -no_timing is specified, characterize places on the subdesigns any timing
characteristics previously set by the following commands:

• If you specify -constraint, characterize places on the subdesigns any area, power,
connection class, and design rule constraints previously set by the following commands:

create_clock set_load

group_path set_max_delay

read_timing set_max_time_borrow

set_annotated_check set_min_delay

set_annotated_delay set_multicycle_path

set_auto_disable_drc_nets set_operating_conditions

set_drive set_output_delay

set_driving_cell set_resistance

set_false_path set_timing_ranges

set_ideal_net set_wire_load_model

set_ideal_network set_wire_load_mode

set_input_delay set_wire_load_model_selection_group

set_wire_load_min_block_size

set_cell_degradation set_max_fanout

set_connection_class set_max_power

set_dont_touch_network set_max_transition

set_fanout_load set_min_capacitance

set_max_area set_max_capacitance
Chapter 7: Defining Design Constraints
Propagating Constraints in Hierarchical Designs 7-23
Chapter 7: Defining Design Constraints
Propagating Constraints in Hierarchical Designs 7-23

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
• If you specify -connection, characterize places on the subdesigns the connection
attributes set by the following commands (Connection class information is applied only
when you use -constraint.):

• If you specify -power, characterize places on the subdesigns the switching activity
information, toggle rates, and static probability previously set, calculated, or saved by the
following commands:

Removing Previous Annotations
In most cases, characterizing a design removes the effects of a previous characterization
and replaces the relevant information. However, in the case of back-annotation (set_load,
set_resistance, read_timing, set_annotated_delay, set_annotated_check), the
characterize step removes the annotations and cannot overwrite existing annotations made
on the subdesign. In this case, you must explicitly remove annotations from the subdesign
(using reset_design) before you run the characterize command again.

Optimizing Bottom Up Versus Optimizing Top Down
During optimization, you can use characterize with set_dont_touch to maintain
hierarchy. This is known as bottom-up optimization, which you can apply by using a golden
instance or a uniquify approach (either manually with the uniquify command or
automatically as part of the compile command). An alternative to bottom-up optimization is
top-down optimization, also called hierarchical compile. During top-down optimization, the
tool automatically performs characterization and optimization for subdesigns.

Deriving the Boundary Conditions
The characterize command automatically derives the boundary conditions of a subdesign
based on its context in a parent design. It examines an instance’s surroundings to obtain
actual drive, load, and timing parameters and computes three types of boundary conditions:

timing conditions

Expected signal delays at input ports.

set_equal set_logic_zero

set_logic_dc set_opposite

set_logic_one set_unconnected

report_power set_switching_activity
Chapter 7: Defining Design Constraints
Propagating Constraints in Hierarchical Designs 7-24

Design Compiler User Guide Version D-2010.03-SP2
constraints

Inherited requirements from the parent design, such as maximum delay.

connection relations

Logical relationships between ports or between ports and power or ground, such as
always logic 0, logical opposite of another port, or unconnected.

The characterize command summarizes the boundary conditions for one instance of a
subdesign in one invocation. The result is applied to the reference. Figure 7-7 shows
instances and references.

Figure 7-7 Instances and References

If a subdesign is used in more than one place, you must either characterize it manually or
create a copy of the design for each instantiation and characterize each. See
“Characterizing Multiple Instances” on page 7-33.

Limitations of the characterize Command
The characterize command provides many useful features, but do not always rely on this
command to derive constraints for the subdesigns in a design hierarchy. Before you
characterize a design, keep in mind the following limitations:

The characterize command

• Does not derive timing budgets. (It reflects the current state of the design.)

• Ignores clock_skew and max_time_borrow attributes placed on a hierarchical boundary
(generally not an issue, because these attributes are usually placed on clocks and cells).

With no options, the characterize command replaces a subdesign’s port signal
information (clocks, port drive, input and output delays, maximum and minimum path delays,
and port load) with information derived from the parent design.

A B

TOP
U2U1

Instances

References
Chapter 7: Defining Design Constraints
Propagating Constraints in Hierarchical Designs 7-25
Chapter 7: Defining Design Constraints
Propagating Constraints in Hierarchical Designs 7-25

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
The characterize command recognizes when the top-level design has back-annotated
information (load, resistance, or delay) and to move this data down to the subdesign in
preparation for subsequent optimization.

Saving Attributes and Constraints
The characterize command captures the timing environment of the subdesign. Use the
write_script command with characterize to save the attributes and constraints for the
current design. By default, the write_script command writes the dc_shell commands to
standard output. You can redirect the output of this command to a disk file by using the
redirection operator (>).

characterize Command Calculations
This section describes how the characterize command derives specific load and timing
values for ports.

The characterize command uses values that allow the timing numbers on the output ports
of a characterized design to be the same as if the design were flattened and then timed.

The “Load Calculations” and “Input Delay Calculations” sections that follow use the
hierarchical design example in Figure 7-8 to describe the load and input delay calculations
used by the characterize command.

Figure 7-8 Hierarchical Design Example

Load Calculations
Figure 7-9 provides values for wire loads and input pin capacitances for the example shown
in Figure 7-8.

A

B

IN1

IN2
OUT

(net NET)

TOP

X

Y
•
•

(net NET)
Chapter 7: Defining Design Constraints
Propagating Constraints in Hierarchical Designs 7-26

Design Compiler User Guide Version D-2010.03-SP2
Figure 7-9 Hierarchical Design With Annotated Loads

In Figure 7-9, a through f are wire segments used in the calculations. This example assumes
a segmented wire loading model, which takes the interconnection net loads on the blocks
into account and uses a linear function for the wire loads.

• The calculation for the outside load of pin P of hierarchical block B is

outside load = sum of the loads of all pins on the net
loading P that are not in B
plus the sum of the loads of all segments of net
driving or loading P that are not in B

• The calculation for each segment’s load is

segment load = number of fanouts * wire load

• The calculation for the outside load on input IN1 to block A uses 0 driving pins, a fanout
count of 1 for segment a, and the TOP wire load of 5 loads per fanout.

The calculation is

load pins on driving net + load of segment a
= 0 + (1 * 5)
= 5

• The calculation for the outside load on the output of block A is

load pins on net
+ load of segment c
+ load of segment d

= 1 (for load pin P)
+ (1 * 5)
+ (1 * 2)
= 8

 A

IN1

IN2
OUT

Wire load at TOP
level =

Wire load for
blocks A and B =
2 units load/fanout

5 units load/fanout

1

1

1

Load values on
all input pins = 1 unit load

a b
d

c

e

f

pin P
X

Y
•
•

Load values on

 1

1

1

pin P
X

Y
•
•

 B
Chapter 7: Defining Design Constraints
Propagating Constraints in Hierarchical Designs 7-27
Chapter 7: Defining Design Constraints
Propagating Constraints in Hierarchical Designs 7-27

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
For each segment in the calculation, the local wire load model is used to calculate the load.
That is, the calculation for block A’s output pin uses TOP’s wire load of 5 loads per fanout for
segment c and block B’s wire load of 2 loads per fanout for segment d.

• The calculation for the outside load on the output of block B is

load pins on net + load of segment e
= 0 + (1 * 5)
= 5

• The calculation for the outside load on the input pin X of block B is

load pins on net
+ load of segment b
+ load of segment c
= 0 + (1 * 2) + (1 * 5)
= 7

• The calculation for the outside load on the input pin Y is

pin loads on driving net + load of segment f
= 0 + 1 * 5
= 5

Figure 7-10 shows the modified version of Figure 7-8 with the outside loads annotated.

Figure 7-10 Loads After Characterization

Input Delay Calculations
Because characterizing provides accurate details of outside loads, the path delays of input
signals reflect only the delay through the intrinsic delay of the last gate driving the port. The
path delays of input signals do not include the gate’s load delay or the connect delay on the
net.

For example, the characterized input delay on the input pins of block B is calculated from the
delay to the pin that drives the port being characterized, without the gate’s load delay or the
connect delay on the net.

 A

 B

IN1

IN2
OUT

7

5

X

Y
5

5 8

Wire load at top
level =

Wire load for A
and B =
2 units cap/load

5 units cap/load

1

1

1

Load values on
all input pins = 1 unit load

Block B’s input ports

•
• •

••a b
c

d
e

Chapter 7: Defining Design Constraints
Propagating Constraints in Hierarchical Designs 7-28

Design Compiler User Guide Version D-2010.03-SP2
The timing calculations for characterizing block B follow Figure 7-11.

Figure 7-11 shows the default drive strengths and intrinsic delays of block A and signal IN1.

Figure 7-11 Design With Annotations for Timing Calculations

The delay calculation for input pin X is

drive strength at IN1 * (wire load + pin load) + intrinsic delay of A’s
cell = 3 * (5 + 2 + 1) + 1 = 25

Characterizing Subdesign Port Signal Interfaces
The characterize command with no options replaces a subdesign’s port signal information
(clocks, port drive, input and output delays, maximum and minimum path delays, and port
load) with information derived from the parent design. The subdesign also inherits operating
conditions and timing ranges from the top-level design.

You can manually set port signal information by using the following commands:

create_clock
set_clock_latency
set_clock_uncertainty
set_drive
set_driving_cell
set_input_delay
set_load
set_max_delay
set_min_delay
set_output_delay
set_propagated_clock

IN1

IN2
OUT

3
1

1

Drive Strength

Load
Intrinsic Delay

5 8

 A

 B

NET2

X

Y
•
•

Chapter 7: Defining Design Constraints
Propagating Constraints in Hierarchical Designs 7-29
Chapter 7: Defining Design Constraints
Propagating Constraints in Hierarchical Designs 7-29

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
The characterize command sets the wire loading model selection group and model for
subdesigns. The subdesigns inherit the top-level wire loading mode. The wire loading model
for subdesigns is determined as follows:

• If the top-level mode is top, the subdesigns inherit the top-level wire loading model.
Unless an instance specific model or selection group has be specified. Instance specific
model and selection group settings take precedence over design level settings.

• If the top-level mode is enclosed or segmented, the wire loading model is based on the
following:

• If no wire loading model is defined for the lower block and the wire load cannot be
determine by the area, the wire loading model of the top-level design is used.

• If no wire loading model is defined for the lower block but the wire load can be
determine by the area, the wire loading model is reselected at compile time, based on
the cell area.

Combinational Design Example
Figure 7-12 shows subdesign block in the combinational design top. Set the port interface
attributes either manually or automatically.

• Script 1 uses characterize to set the attributes automatically.

• Script 2 sets the attributes manually.

Figure 7-12 Characterizing Drive, Timing, and Load Values—Combinational Design

current_design top
set_input_delay 0 A
set_max_delay 10 -to B

Script 1
current_design top
characterize U2

n1 n2 n3 n4

block1

A B

U2

top

U3U1

INVINV DC ■■INVINV
Chapter 7: Defining Design Constraints
Propagating Constraints in Hierarchical Designs 7-30

Design Compiler User Guide Version D-2010.03-SP2
Script 2
current_design block1
set_driving_cell -lib_cell INV {C}
set_input_delay 3.3 C
set_load 1.3 D
set_max_delay 9.2 -to D
current_design top

In Script 2,

Line 2 captures driving cell information.

Line 3 sets the arrival time of net n2 as 3.3.

Line 4 sets the load of U3 as 1.3.

Line 5 sets the inherited set_max_delay, which is 10 – .8 (.4 for each inverter).

Sequential Design Example
Figure 7-13 shows subdesign block in the sequential design top. Set the port interface
information either manually or automatically.

• Script 1 sets the information manually.

• The input delay (from ff1/CP to u5/in1) is 1.8

• The output delay (through u4 plus the setup time of ff2) is 1.2

• The outside load on the out1 net is 0.85

• Script 2 uses characterize to set the information automatically.
Chapter 7: Defining Design Constraints
Propagating Constraints in Hierarchical Designs 7-31
Chapter 7: Defining Design Constraints
Propagating Constraints in Hierarchical Designs 7-31

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Figure 7-13 Characterizing Sequential Design Drive, Timing, and Load Values

Script 1
current_design top
create_clock -period 10 -waveform {0 5} clock
current_design block
create_clock -name clock -period 10 -waveform {0 5} clock1
create_clock -name clock_bar -period 10 \
 -waveform {5 10} clock2
set_input_delay -clock clock 1.8 in1
set_output_delay -clock clock 1.2 out1
set_driving_cell -lib_cell INV -input_transition_rise 1 in1
set_driving_cell -lib_cell CKINV clock1
set_driving_cell -lib_cell CKBUF clock2
set_load 0.85 out1
current_design top

Script 2
current_design top
create_clock -period 10 -waveform {0 5} clock
characterize u5

Characterizing Subdesign Constraints
The characterize -constraints command uses values derived from the parent design
to replace the max_area, max_fanout, fanout_load, max_capacitance, and
max_transition attributes of a subdesign.

block

top
ff1 u1

u2

u4

u5

in1

clock1

clock2

out1

clock

ff2

INV

CKINV

CKBUF

u2
Chapter 7: Defining Design Constraints
Propagating Constraints in Hierarchical Designs 7-32

Design Compiler User Guide Version D-2010.03-SP2
Characterizing Subdesign Logical Port Connections
The characterize -connections command uses connection attributes derived from the
parent design to replace the port connection attributes of a subdesign.

The connection attributes are those set by the commands set_equal, set_opposite,
set_logic_one, set_logic_zero, and set_unconnected.

Example

Figure 7-14 shows subdesign block in design top. Set logical port connections either
manually or automatically.

• Script 1 sets the attributes manually.

• Script 2 uses characterize -no_timing -connections to set the attributes
automatically. The -no_timing option inhibits computation of port timing information.

Figure 7-14 Characterizing Port Connection Attributes

Script 1
current_design block
set_opposite { E F }
set_logic_zero { G }
set_unconnected { J }

Script 2
current_design top
characterize U2 -no_timing -connections

Characterizing Multiple Instances
The characterize command summarizes the boundary conditions for one instance of a
subdesign in each invocation. If a subdesign is used more than once, use the uniquify
command to make each instance distinctive before using characterize for each instance.

A

B

U1

U2

top

block

E

F

G

H

I

J

K

C

D

Chapter 7: Defining Design Constraints
Propagating Constraints in Hierarchical Designs 7-33
Chapter 7: Defining Design Constraints
Propagating Constraints in Hierarchical Designs 7-33

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
The uniquify command creates copies of subdesigns that are referenced more than once.
It then renames the copies and updates the corresponding cell references. For information
about the uniquify command, see the man page for the command.

Example

Figure 7-15 shows how to use uniquify and characterize for the subdesign block, which
is referenced in cells U1 and U2.

Figure 7-15 Characterizing a Subdesign Referenced Multiple Times

dc_shell> current_design top
dc_shell> uniquify -reference block

dc_shell> characterize U1
dc_shell> characterize U2

Characterizing Designs With Timing Exceptions
When paths crossing design hierarchies contain different timing exceptions, characterize
creates timing constraints with virtual clocks to capture this information.

Possible timing exceptions include set_multicycle_path, set_false_path,
set_max_delay, and set_min_delay. The virtual clock scheme can also handle multiple
clocks.

U2

top

block

block

U1

Multiple
Instances

U2

top

block_0

block_1

U1

Multiple
Instances

Uniquified
Chapter 7: Defining Design Constraints
Propagating Constraints in Hierarchical Designs 7-34

Design Compiler User Guide Version D-2010.03-SP2
Figure 7-16 shows a sample design in which the path from the ALARM input port to
HOURS_OUT_reg* in U3 is constrained as a two-cycle path. Example 7-1 shows the a
portion of the uncompressed characterize -verbose result of U0 block.

Figure 7-16 characterize -verbose Result of U0 Block

ALARM_BLOCK

U0

ALARM
U3

HOURS

MINS

AM_PM_OUT_reg

HOURS_OUT_reg*
Chapter 7: Defining Design Constraints
Propagating Constraints in Hierarchical Designs 7-35
Chapter 7: Defining Design Constraints
Propagating Constraints in Hierarchical Designs 7-35

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Example 7-1 characterize -verbose Output
create_clock -period 10 -waveform {0 5} [get_ports {CLK}]
create_clock -name "CLK_virtual1" -period 10 -waveform {0 5}
create_clock -name "CLK_virtual2" -period 10 -waveform {0 5}
create_clock -name "CLK_virtual3" -period 10 -waveform {0 5}
create_clock -name "CLK_virtual4" -period 10 -waveform {0 5}
create_clock -name "CLK_virtual5" -period 10 -waveform {0 5}
set_input_delay 2 -clock "CLK" [get_ports {MINUTES_BUTTON}]
set_input_delay 2 -clock "CLK" [get_ports {HOURS_BUTTON}]
set_input_delay 2 -clock "CLK_virtual1" [get_ports {ALARM_BUTTON}]
set_output_delay 7.62796 -max -rise -clock "CLK" [get_ports {MINS}]
set_output_delay 6.93955 -max -fall -clock "CLK" [get_ports {MINS}]
set_output_delay 2.20324 -min -rise -clock "CLK" [get_ports {MINS}]
set_output_delay 2.40013 -min -fall -clock "CLK" [get_ports {MINS}]
set_output_delay 8.05575 -add_delay -max -rise -clock "CLK_virtual2" \

[get_ports {MINS}]
set_output_delay 6.83933 -add_delay -max -fall -clock "CLK_virtual2" \

[get_ports {MINS}]
set_output_delay 2.89679 -add_delay -min -rise -clock "CLK_virtual2" \

[get_ports {MINS}]
set_output_delay 2.80452 -add_delay -min -fall -clock "CLK_virtual2" \

[get_ports {MINS}]
...
set_output_delay 10.232 -add_delay -max -rise -clock "CLK_virtual5" \

[get_ports {MINS}]
set_output_delay 9.4791 -add_delay -max -fall -clock "CLK_virtual5" \

[get_ports {MINS}]
set_output_delay 3.90222 -add_delay -min -rise -clock "CLK_virtual5" \

[get_ports {MINS}]
set_output_delay 3.57818 -add_delay -min -fall -clock "CLK_virtual5" \

[get_ports {MINS}]
...
set_multicycle_path 2 -from [get_clocks {CLK_virtual1}] -to \

[get_clocks {CLK_virtual2}]
set_multicycle_path 2 -from [get_clocks {CLK_virtual1}] -to \

[get_clocks {CLK_virtual3}]
set_multicycle_path 2 -from [get_clocks {CLK_virtual1}] -to \

[get_clocks {CLK_virtual4}]
set_multicycle_path 2 -from [get_clocks {CLK_virtual1}] -to \

[get_clocks {CLK_virtual5}]

Propagating Constraints up the Hierarchy
If you have hierarchical designs and compile the subdesigns, then move up to the
higher-level blocks (bottom-up compilation), you can propagate clocks, timing exceptions,
and disabled timing arcs from lower-level .ddc files to the current design, using the
propagate_constraints command.

For more information, see the propagate_constraints man page.
Chapter 7: Defining Design Constraints
Propagating Constraints in Hierarchical Designs 7-36

Design Compiler User Guide Version D-2010.03-SP2
Methodology for Propagating Constraints Upward
Use the propagate_constraints command to propagate constraints from lower levels of
hierarchy to the current design. If you do not use the command, you can propagate
constraints from a higher-level design to the current_instance, but you cannot propagate
constraints set on a lower-level block to the higher-level blocks in which it is instantiated.

Note:
Using the propagate_constraints command might cause memory usage to increase.

Example 7-2 shows a methodology in which constraints are propagated upwards. Assume
that A is the top-level and B is the lower-level design.

Example 7-2 Propagating Constraints Upward
current_design B
source constraints.tcl
compile
current_design A
propagate_constraints -design B
report_timing_requirements
compile
report_timing

To generate a report of all the constraints that were propagated up, use the -verbose and
-dont_apply options and redirect the output to a file:

dc_shell> propagate_constraints -design name \
-verbose -dont_apply -output report.cons

Use the -write -format ddc command to save the .ddc file with the propagated
constraints so there is no need to go through the propagation again when restarting a new
dc_shell session.

Handling of Conflicts Between Designs
The following shows what happens if there are conflicts between the lower-level and
top-level designs.

Clock name conflict

The lower-level clock has the same name as the clock of the current design (or another
block).

The clock is not propagated. A warning is issued.

Clock source conflict

A clock source of a lower-level block is already defined as a clock source of a higher-level
block.

The lower-level clock is not propagated. A warning is issued.
Chapter 7: Defining Design Constraints
Propagating Constraints in Hierarchical Designs 7-37
Chapter 7: Defining Design Constraints
Propagating Constraints in Hierarchical Designs 7-37

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Exceptions from or to an unpropagated clock

This can be either a virtual clock, or a clock that was not propagated from that block due
to a conflict.

Exceptions

A lower-level exception overrides a higher-level exception that is defined on the exact
same path.
Chapter 7: Defining Design Constraints
Propagating Constraints in Hierarchical Designs 7-38

8
Optimizing the Design 8

Optimization is the Design Compiler synthesis step that maps the design to an optimal
combination of specific target library cells, based on the design’s functional, speed, and area
requirements. You use the compile_ultra command or the compile command to compile
a design. Design Compiler provides options that enable you to customize and control
optimization. Several of the many factors affecting the optimization outcome are discussed
in this chapter. For detailed information, see the Design Compiler Optimization Reference
Manual.

This chapter has the following sections:

• The Optimization Process

• Selecting and Using a Compile Strategy

• Resolving Multiple Instances of a Design Reference

• Preserving Subdesigns

• Understanding the Compile Cost Function

• Performing Design Exploration

• Performing Design Implementation
8-1

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
The Optimization Process

Design Compiler performs the following three levels of optimization:

• Architectural optimization

• Logic-level optimization

• Gate-level optimization

The following sections describe these processes.

Architectural Optimization
Architectural optimization works on the HDL description. It includes such high-level
synthesis tasks as

• Sharing common subexpressions

• Sharing resources

• Selecting DesignWare implementations

• Reordering operators

• Identifying arithmetic expressions for data-path synthesis (DC Ultra only).

Except for DesignWare implementations, these high-level synthesis tasks occur only during
the optimization of an unmapped design. DesignWare selection can recur after gate-level
mapping.

High-level synthesis tasks are based on your constraints and your HDL coding style. After
high-level optimization, circuit function is represented by GTECH library parts, that is, by a
generic, technology-independent netlist.

For more information about how your coding style affects architectural optimization, see
Chapter 3, “Preparing Design Files for Synthesis.”
Chapter 8: Optimizing the Design
The Optimization Process 8-2

Design Compiler User Guide Version D-2010.03-SP2
Logic-Level Optimization
Logic-level optimization works on the GTECH netlist. It consists of the following two
processes:

• Structuring

This process adds intermediate variables and logic structure to a design, which can result
in reduced design area. Structuring is constraint based. It is best applied to noncritical
timing paths.

During structuring, Design Compiler searches for subfunctions that can be factored out
and evaluates these factors, based on the size of the factor and the number of times the
factor appears in the design. Design Compiler turns the subfunctions that most reduce
the logic into intermediate variables and factors them out of the design equations.

• Flattening

The goal of this process is to convert combinational logic paths of the design to a
two-level, sum-of-products representation. Flattening is carried out independently of
constraints. It is useful for speed optimization because it leads to just two levels of
combinational logic.

During flattening, Design Compiler removes all intermediate variables, and therefore all
its associated logic structure, from a design.

Gate-Level Optimization
Gate-level optimization works on the generic netlist created by logic synthesis to produce a
technology-specific netlist. It includes the following processes:

• Mapping

This process uses gates (combinational and sequential) from the target technology
libraries to generate a gate-level implementation of the design whose goal is to meet
timing and area goals. You can use the various options of the compile_ultra command
or the compile command to control the mapping algorithms used by Design Compiler.

• Delay optimization

The process goal is to fix delay violations introduced in the mapping phase. Delay
optimization does not fix design rule violations or meet area constraints.

• Design rule fixing

The process goal is to correct design rule violations by inserting buffers or resizing
existing cells. Design Compiler tries to fix these violations without affecting timing and
area results, but if necessary, it does violate the optimization constraints.
Chapter 8: Optimizing the Design
The Optimization Process 8-3
Chapter 8: Optimizing the Design
The Optimization Process 8-3

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
• Area optimization

The process goal is to meet area constraints after the mapping, delay optimization, and
design rule fixing phases are completed. However, Design Compiler does not allow area
recovery to introduce design rule or delay constraint violations as a means of meeting the
area constraints.

You can change the priority of the constraints by using the set_cost_priority command.
Also, you can disable design rule fixing by specifying the -no_design_rule option when
you run the compile_ultra command or compile command. However, if you use this
option, your synthesized design might violate design rules.

Selecting and Using a Compile Strategy

You can use various strategies to compile your hierarchical design. The basic strategies are

• Top-down compile, in which the top-level design and all its subdesigns are compiled
together

• Bottom-up compile, in which the individual subdesigns are compiled separately, starting
from the bottom of the hierarchy and proceeding up through the levels of the hierarchy
until the top-level design is compiled

• Mixed compile, in which the top-down or bottom-up strategy, whichever is most
appropriate, is applied to the individual subdesigns

In the following sections, the top-down and bottom-up compile strategies are demonstrated,
using the simple design shown in Figure 8-1.

Figure 8-1 Design to Illustrate Compile Strategies

U1
U2

U3 U4 U5
(A)

(B)

(C) (D) (E)

TOP
Chapter 8: Optimizing the Design
Selecting and Using a Compile Strategy 8-4

Design Compiler User Guide Version D-2010.03-SP2
The top-level, or global, specifications for this design, given in Table 8-1, are defined by the
script of Example 8-1. These specifications apply to TOP and all its subdesigns.

Example 8-1 Constraints File for Design TOP (defaults.con)
set_operating_conditions WCCOM
set_wire_load_model "20x20"
create_clock -period 25 clk
set_input_delay 3 -clock clk \

[remove_from_collection [all_inputs] [get_ports clk]]
set_output_delay 2 -clock clk [all_outputs]
set_load 1.5 [all_outputs]
set_driving_cell -lib_cell IV [all_inputs]
set_drive 0 clk

Note:
To prevent buffering of the clock network, the script sets the input drive resistance of the
clock port (clk) to 0 (infinite drive strength).

Top-Down Compile
You can use the top-down compile strategy for designs that are not memory or CPU limited.
Furthermore, top-level designs that are memory limited can often be compiled using the
top-down strategy if you first replace some of the subdesigns with interface logic model
representations. Replacing a subdesign with an interface logic model can greatly reduce the
memory requirements for the subdesign instantiation in the top-level design. For information
about how to generate and use interface logic models, see the “Using Interface Logic
Models” in Chapter 9.

Table 8-1 Design Specifications for Design TOP

Specification type Value

Operating condition WCCOM

Wire load model "20x20"

Clock frequency 40 MHz

Input delay time 3 ns

Output delay time 2 ns

Input drive strength drive_of (IV)

Output load 1.5 pF
Chapter 8: Optimizing the Design
Selecting and Using a Compile Strategy 8-5
Chapter 8: Optimizing the Design
Selecting and Using a Compile Strategy 8-5

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
The top-down compile strategy has these advantages:

• Provides a push-button approach

• Takes care of interblock dependencies automatically

On the other hand, the top-down compile strategy requires more memory and might result
in longer runtimes for designs with over 100K gates.

To implement a top-down compile, carry out the following steps:

Note:
If your top-level design contains one or more interface logic models, use the compile flow
described in the Chapter 9, “Using Interface Logic Models.

1. Read in the entire design.

2. Apply attributes and constraints to the top level.

Attributes and constraints implement the design specification. For information about
attributes, see “Working With Attributes” on page 5-40. For information about constraints,
see Chapter 6, “Defining the Design Environment” and Chapter 7, “Defining Design
Constraints.”

Note:
You can assign local attributes and constraints to subdesigns, provided that those
attributes and constraints are defined with respect to the top-level design.

3. Compile the design.

A top-down compile script for the TOP design is shown in Example 8-2.The script contains
comments that identify each of the steps. The constraints are applied by including the
constraint file (defaults.con) shown in Example 8-1 on page 8-5.

Example 8-2 Top-Down Compile Script
/* read in the entire design */
read_verilog E.v
read_verilog D.v
read_verilog C.v
read_verilog B.v
read_verilog A.v
read_verilog TOP.v
current_design TOP
link

/* apply constraints and attributes */
source defaults.con

/* compile the design */
compile
Chapter 8: Optimizing the Design
Selecting and Using a Compile Strategy 8-6

Design Compiler User Guide Version D-2010.03-SP2
Bottom-Up Compile
Use the bottom-up compile strategy for medium-size and large designs.

Note:
The bottom-up compile strategy is also known as the
compile-characterize-write_script-recompile method.

The bottom-up compile strategy provides these advantages:

• Compiles large designs by using the divide-and-conquer approach

• Requires less memory than top-down compile

• Allows time budgeting

The bottom-up compile strategy requires

• Iterating until the interfaces are stable

• Manual revision control

The bottom-up compile strategy compiles the subdesigns separately and then incorporates
them in the top-level design. The top-level constraints are applied, and the design is checked
for violations. Although it is possible that no violations are present, this outcome is unlikely
because the interface settings between subdesigns usually are not sufficiently accurate at
the start.

To improve the accuracy of the interblock constraints, you read in the top-level design and all
compiled subdesigns and apply the characterize command to the individual cell instances
of the subdesigns. Based on the more realistic environment provided by the compiled
subdesigns, characterize captures environment and timing information for each cell
instance and then replaces the existing attributes and constraints of each cell’s referenced
subdesign with the new values.

Using the improved interblock constraint, you recompile the characterized subdesigns and
again check the top-level design for constraint violations. You should see improved results,
but you might need to iterate the entire process several times to remove all significant
violations.

The bottom-up compile strategy requires these steps:

1. Develop both a default constraint file and subdesign-specific constraint files.

The default constraint file includes global constraints, such as the clock information and
the drive and load estimates. The subdesign-specific constraint files reflect the time
budget allocated to the subblocks.

2. Compile the subdesigns independently.
Chapter 8: Optimizing the Design
Selecting and Using a Compile Strategy 8-7
Chapter 8: Optimizing the Design
Selecting and Using a Compile Strategy 8-7

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
3. Read in the top-level design and any compiled subdesigns not already in memory.

4. Set the current design to the top-level design, link the design, and apply the top-level
constraints.

If the design meets its constraints, you are finished. Otherwise, continue with the
following steps.

5. Apply the characterize command to the cell instance with the worst violations.

6. Use write_script to save the characterized information for the cell.

You use this script to re-create the new attribute values when you are recompiling the
cell’s referenced subdesign.

7. Use remove_design -all to remove all designs from memory.

8. Read in the RTL design of the previously characterized cell.

Recompiling the RTL design instead of the cell’s mapped design usually leads to better
optimization.

9. Set current_design to the characterized cell’s subdesign and recompile, using the
saved script of characterization data.

10.Read in all other compiled subdesigns.

11.Link the current subdesign.

12.Choose another subdesign, and repeat steps 3 through 9 until you have recompiled all
subdesigns, using their actual environments.

When applying the bottom-up compile strategy, consider the following:

• The read_file command runs most quickly with the .ddc format. If you will not be
modifying your RTL code after the first time you read (or elaborate) it, save the unmapped
design to a .ddc file. This will save time when you reread the design.

• The compile command affects all subdesigns of the current design. If you want to
optimize only the current design, you can remove or not include its subdesigns in your
database, or you can place the dont_touch attribute on the subdesigns (by using the
set_dont_touch command).

• The subdesign constraints are not preserved after you perform a top-level compile. To
ensure that you are using the correct constraints, always reapply the subdesign
constraints before compiling or analyzing a subdesign.

• By default, compile modifies the original copy in the current design. This could be a
problem when the same design is referenced from multiple modules, which are compiled
separately in sequence. For example, the first compile could change the interface or the
functionality of the design by boundary optimizaiton. When this design is referenced from
another module in the subsequent compile, the modified design is uniquified and used.
Chapter 8: Optimizing the Design
Selecting and Using a Compile Strategy 8-8

Design Compiler User Guide Version D-2010.03-SP2
You can set the compile_keep_original_for_external_references variable to true,
which enables compile to keep the original design when there is an external reference to
the design. When the variable is set to true, the original design and its sub-designs are
copied and preserved (before doing any modifications during compile) if there is an
external reference to this design.

Typically, you require this variable only when you are doing a bottom-up compile without
setting a dont_touch attribute on all the sub-designs, especially those with boundary
optimizations turned on. If there is a dont_touch attribute on any of the instances of the
design or in the design, this variable has no effect.

A bottom-up compile script for the TOP design is shown in Example 8-3 on page 8-9. The
script contains comments that identify each of the steps in the bottom-up compile strategy.
In the script it is assumed that block constraint files exist for each of the subblocks
(subdesigns) in design TOP. The compile script also uses the default constraint file
(defaults.con) shown in Example 8-1 on page 8-5.

Note:
This script shows only one pass through the bottom-up compile procedure. If the design
requires further compilations, you repeat the procedure from the point where the top-level
design, TOP.v, is read in.

Example 8-3 Bottom-Up Compile Script
set all_blocks {E D C B A}

compile each subblock independently
foreach block $all_blocks {
 # read in block
 set block_source "$block.v"
 read_file -format verilog $block_source
 current_design $block
 link
 # apply global attributes and constraints
 source defaults.con
 # apply block attributes and constraints
 set block_script "$block.con"
 source $block_script
 # compile the block
 compile
}

read in entire compiled design
read_file -format verilog TOP.v
current_design TOP
link
write -hierarchy -format ddc -output first_pass.ddc

apply top-level constraints
source defaults.con
source top_level.con
Chapter 8: Optimizing the Design
Selecting and Using a Compile Strategy 8-9
Chapter 8: Optimizing the Design
Selecting and Using a Compile Strategy 8-9

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
check for violations
report_constraint

characterize all instances in the design
set all_instances {U1 U2 U2/U3 U2/U4 U2/U5}
characterize -constraint $all_instances

save characterize information
foreach block $all_blocks {
 current_design $block
 set char_block_script "$block.wscr"
 write_script > $char_block_script
}

recompile each block
foreach block $all_blocks {

 # clear memory
 remove_design -all

 # read in previously characterized subblock
 set block_source "$block.v"
 read_file -format verilog $block_source

 # recompile subblock
 current_design $block
 link
 # apply global attributes and constraints
 source defaults.con
 # apply characterization constraints
 set char_block_script "$block.wscr"
 source $char_block_script
 # apply block attributes and constraints
 set block_script "$block.con"
 source $block_script
 # recompile the block
 compile
}

Note:
When performing a bottom-up compile, if the top-level design contains glue logic as well
as the subblocks (subdesigns), you must also compile the top-level design. In this case,
to prevent Design Compiler from recompiling the subblocks, you first apply the
set_dont_touch command to each subdesign.
Chapter 8: Optimizing the Design
Selecting and Using a Compile Strategy 8-10

Design Compiler User Guide Version D-2010.03-SP2
Mixed Compile Strategy
You can take advantage of the benefits of both the top-down and the bottom-up compile
strategies by using both.

• Use the top-down compile strategy for small hierarchies of blocks.

• Use the bottom-up compile strategy to tie small hierarchies together into larger blocks.

Figure 8-2 shows an example of the mixed compilation strategy.

Figure 8-2 Mixing Compilation Strategies

Resolving Multiple Instances of a Design Reference

In a hierarchical design, subdesigns are often referenced by more than one cell instance,
that is, multiple references of the design can occur. For example, Figure 8-3 shows the
design TOP, in which design C is referenced twice (U2/U3 and U2/U4).

TOP

A B C D

Specification has detailed time budgets
for first level of hierarchy: A, B, C, and D.

Top-down compile is used for
hierarchy below D.

Bottom-up compile is used
for hierarchy below B.
Chapter 8: Optimizing the Design
Resolving Multiple Instances of a Design Reference 8-11
Chapter 8: Optimizing the Design
Resolving Multiple Instances of a Design Reference 8-11

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Figure 8-3 Multiple Instances of a Design Reference

Use the check_design -multiple_design command to report information messages
related to multiply-instantiated designs. The command lists all multiply instantiated designs
along with instance names and associated attributes (dont_touch, black_box, and
ungroup). The following methods are available for handling designs with multiple instances:

• The uniquify method

In earlier releases, you had manually to run the uniquify command to create a uniquely
named copy of the design for each instance. However, beginning with version V-2004.06,
the tool automatically uniquifies designs as part of the compile process.

Note that you can still manually force the tool to uniquify designs before compile by
running the uniquify command, but this step contributes to longer runtimes because the
tool automatically “re-uniquifies” the designs when compile the design. You cannot turn
off the uniquify process.

• The compile-once-don’t-touch method

This method uses the set_dont_touch command to preserve the compiled subdesign
while the remaining designs are compiled.

• The ungroup method

This method uses the ungroup command to remove the hierarchy.

 These methods are described in the following sections.

U1 U2

U3 U4 U5
(A)

(B)

(C) (C) (D)

TOP

DCA

Top-level design
 with instances

Design Compiler memory:
 loaded designs
Chapter 8: Optimizing the Design
Resolving Multiple Instances of a Design Reference 8-12

Design Compiler User Guide Version D-2010.03-SP2
Uniquify Method
The uniquify process copies and renames any multiply referenced design so that each
instance references a unique design. The process removes the original design from memory
after it creates the new, unique designs. The original design and any collections that contain
it or its objects are no longer accessible.

In earlier releases, you had manually to run the uniquify command to create a uniquely
named copy of the design for each instance. However, beginning with version V-2004.06, the
tool automatically uniquifies designs as part of the compile process. The uniquification
process can resolve multiple references throughout the hierarchy the current design (except
those having a dont_touch attribute). After this process finishes, the tool can optimize each
design copy based on the unique environment of its cell instance.

You can also create unique copies for specific references by using the -reference option of
the uniquify command, or you can specify specific cells by using the -cell option. Design
Compiler makes unique copies for cells specified with the -reference or the -cells option,
even if they have a dont_touch attribute.

The uniquify command accepts instance objects—that is, cells at a lower level of
hierarchy. When you use the -cell option with an instance object, the complete path to the
instance is uniquified. For example, the following command uniquifies both instances mid1
and mid1/bot1 (assuming that mid1 is not unique):

dc_shell> uniquify -cell mid1/bot1

Design Compiler uses the naming convention specified in the uniquify_naming_style
variable to generate the name for each copy of the subdesign. The default naming
convention is

%s_%d

%s

The original name of the subdesign (or the name specified in the -base_name option).

%d

The smallest integer value that forms a unique subdesign name.

The following command sequence resolves the multiple instances of design C in design
TOP shown in Figure 8-3 on page 8-12; it uses the automatic uniquify method to create new
designs C_0 and C_1 by copying design C and then replaces design C with the two copies
in memory.

dc_shell> current_design top
dc_shell> compile

Figure 8-4 shows the result of running this command sequence.
Chapter 8: Optimizing the Design
Resolving Multiple Instances of a Design Reference 8-13
Chapter 8: Optimizing the Design
Resolving Multiple Instances of a Design Reference 8-13

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Figure 8-4 Uniquify Results

Compared with the compile-once-don’t-touch method, the uniquify method has the following
characteristics:

• Requires more memory

• Takes longer to compile

Compile-Once-Don’t-Touch Method
If the environments around the instances of a multiply referenced design are sufficiently
similar, use the compile-once-don’t-touch method. In this method, you compile the design,
using the environment of one of its instances, and then you use the set_dont_touch
command to preserve the subdesign during the remaining optimization. For details about
the set_dont_touch command, see “Preserving Subdesigns” on page 8-17.

To use the compile-once-don’t-touch method to resolve multiple instances, follow these
steps:

1. Characterize the subdesign’s instance that has the worst-case environment.

2. Compile the referenced subdesign.

3. Use the set_dont_touch command to set the dont_touch attribute on all instances that
reference the compiled subdesign.

4. Compile the entire design.

U1 U2

U3 U4 U5
(A)

(B)

(C_0) (C_1) (D)

TOP

DC_0A C_1

Top-level Design
 With Instances

Design Compiler Memory:
 Loaded Designs
Chapter 8: Optimizing the Design
Resolving Multiple Instances of a Design Reference 8-14

Design Compiler User Guide Version D-2010.03-SP2
For example, the following command sequence resolves the multiple instances of design C
in design TOP by using the compile-once-don’t-touch method (assuming U2/U3 has the
worst-case environment). In this case, no copies of the original subdesign are loaded into
memory.

dc_shell> current_design top
dc_shell> characterize U2/U3
dc_shell> current_design C
dc_shell> compile
dc_shell> current_design top
dc_shell> set_dont_touch {U2/U3 U2/U4}
dc_shell> compile

Figure 8-5 shows the result of running this command sequence. The X drawn over the C
design, which has already been compiled, indicates that the dont_touch attribute has been
set. This design is not modified when the top-level design is compiled.

Figure 8-5 Compile-Once-Don’t-Touch Results

The compile-once-don’t-touch method has the following advantages:

• Compiles the reference design once

• Requires less memory than the uniquify method

• Takes less time to compile than the uniquify method

The principal disadvantage of the compile-once-don’t-touch method is that the
characterization might not apply well to all instances. Another disadvantage is that you
cannot ungroup objects that have the dont_touch attribute.

U1 U2

U3 U4 U5
(A)

(B)

(C) (C) (D)

TOP

DCA

Top-level Design
 With Instances

Design Compiler Memory:
 Loaded Designs
Chapter 8: Optimizing the Design
Resolving Multiple Instances of a Design Reference 8-15
Chapter 8: Optimizing the Design
Resolving Multiple Instances of a Design Reference 8-15

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Ungroup Method
The ungroup method has the same effect as the uniquify method (it makes unique copies of
the design), but in addition, it removes levels of hierarchy. This method uses the ungroup
command to produce a flattened netlist. For details about the ungroup command, See
“Removing Levels of Hierarchy” on page 5-25.

After ungrouping the instances of a subdesign, you can recompile the top-level design. For
example, the following command sequence uses the ungroup method to resolve the multiple
instances of design C in design TOP:

dc_shell> current_design B
dc_shell> ungroup {U3 U4}
dc_shell> current_design top
dc_shell> compile

Figure 8-6 shows the result of running this command sequence.

Figure 8-6 Ungroup Results

The ungroup method has the following characteristics:

• Requires more memory and takes longer to compile than the compile-once-don’t-touch
method

• Provides the best synthesis results

The obvious drawback in using the ungroup method is that it removes the user-defined
design hierarchy.

TOP

U1 U2

U5

(A)
(B)

(D)

U3/U10

U3/U11

U4/U10

U4/U11

D
Design Compiler memory
Chapter 8: Optimizing the Design
Resolving Multiple Instances of a Design Reference 8-16

Design Compiler User Guide Version D-2010.03-SP2
Preserving Subdesigns

The set_dont_touch command preserves a subdesign during optimization. It places the
dont_touch attribute on cells, nets, references, and designs in the current design to prevent
these objects from being modified or replaced during optimization.

Note:
Any interface logic model present in your design is automatically marked as dont_touch.
Also, the cells of an interface logic model are marked as dont_touch. For information
about interface logic models, see the Chapter 9, “Using Interface Logic Models.

Use the set_dont_touch command on subdesigns you do not want optimized with the rest
of the design hierarchy. The dont_touch attribute does not prevent or disable timing through
the design.

When you use set_dont_touch, remember the following points:

• Setting dont_touch on a hierarchical cell sets an implicit dont_touch on all cells below
that cell.

• Setting dont_touch on a library cell sets an implicit dont_touch on all instances of that
cell.

• Setting dont_touch on a net sets an implicit dont_touch only on mapped combinational
cells connected to that net. If the net is connected only to generic logic, optimization
might remove the net.

• Setting dont_touch on a reference sets an implicit dont_touch on all cells using that
reference during subsequent optimizations of the design.

• Setting dont_touch on a design has an effect only when the design is instantiated within
another design as a level of hierarchy. In this case, the dont_touch attribute on the
design implies that all cells under that level of hierarchy are subject to the dont_touch
attribute. Setting dont_touch on the top-level design has no effect because the top-level
design is not instantiated within any other design.

• You cannot manually or automatically ungroup objects marked as dont_touch. That is,
the ungroup command and the compile -ungroup_all and -auto_ungroup options
have no effect on dont_touch objects.

Note:
The dont_touch attribute is ignored on synthetic part cells (for example, many of the
cells read in from an HDL description) and on nets that have unmapped cells on them.
During compilation, warnings appear for dont_touch nets connected to unmapped
cells (generic logic).

Use the report_design command to determine whether a design has the dont_touch
attribute set.
Chapter 8: Optimizing the Design
Preserving Subdesigns 8-17
Chapter 8: Optimizing the Design
Preserving Subdesigns 8-17

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
dc_shell> set_dont_touch SUB_A
1
dc_shell> report_design

**
Report : design
Design : SUB_A
Version: Y-2006.06
Date : Mon May 1 10:56:49 2006
**

Design is dont_touched.

To remove the dont_touch attribute, use the remove_attribute command or the
set_dont_touch command set to false.

Understanding the Compile Cost Function

The compile cost function consists of design rule costs and optimization costs. By default,
Design Compiler prioritizes costs in the following order:

1. Design rule costs

a. Connection class

b. Multiple port nets

c. Maximum transition time

d. Maximum fanout

e. Maximum capacitance

f. Cell degradation

2. Optimization costs

a. Maximum delay

b. Minimum delay

c. Maximum power

d. Maximum area

The compile cost function considers only those components that are active in your design.
Design Compiler evaluates each cost function component independently, in order of
importance.
Chapter 8: Optimizing the Design
Understanding the Compile Cost Function 8-18

Design Compiler User Guide Version D-2010.03-SP2
When evaluating cost function components, Design Compiler considers only violators
(positive difference between actual value and constraint) and works to reduce the cost
function to zero.

The goal of Design Compiler is to meet all constraints. However, by default, it gives
precedence to design rule constraints because design rule constraints are functional
requirements for designs. Using the default priority, Design Compiler fixes design rule
violations even at the expense of violating your delay or area constraints.

You can change the priority of the maximum design rule costs and the delay costs by using
the set_cost_priority command to specify the ordering. You must run the
set_cost_priority command before running the compile command.

You can disable evaluation of the design rule cost function by using the -no_design_rule
option when running the compile_ultra command or compile command.

You can disable evaluation of the optimization cost function by using the
-only_design_rule option when running the compile_ultra command or compile
command.

For more information on the compile cost function, see the Design Compiler Optimization
Reference Manual.

Performing Design Exploration

In design exploration, you use the default synthesis algorithm to gauge the design
performance against your goals. To invoke the default synthesis algorithm, use the compile
command with no options:

dc_shell> compile

The default compile uses the -map_effort medium option of the compile command. The
default area effort of the area recovery phase of the compile is the specified value of the
map_effort option. You can change the area effort by using the -area_effort option.

If the performance violates the timing goals by more than 15 percent, you should consider
whether to refine the design budget or modify the HDL code.
Chapter 8: Optimizing the Design
Performing Design Exploration 8-19
Chapter 8: Optimizing the Design
Performing Design Exploration 8-19

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Performing Design Implementation

The default compile generates good results for most designs. If your design meets the
optimization goals after design exploration, you are finished. If not, try the techniques
described in the following sections:

• Optimizing High-Performance Designs

• Optimizing for Maximum Performance

• Optimizing for Minimum Area

• Optimizing Data Paths

Optimizing High-Performance Designs
For high-performance designs that have significantly tight timing constraints, you can invoke
a single DC Ultra command, compile_ultra, for better quality of results (QoR). This
command allows you to apply the best possible set of timing-centric variables or commands
during compile for critical delay optimization as well as improvement in area QoR. Because
compile_ultra includes all compile options and starts the entire compile process, no
separate compile command is necessary.

By default, if the dw_foundation.sldb library is not in the synthetic library list but the
DesignWare license has been successfully checked out, the dw_foundation.sldb library is
automatically added to the synthetic library list. This behavior applies to the current
command only. The user-specified synthetic library and link library lists are not affected.

In addition, all DesignWare hierarchies are, by default, unconditionally ungrouped in the
second pass of the compile. You can prevent this ungrouping by setting the
compile_ultra_ungroup_dw variable to false (the default is true).

To use the compile_ultra command, you will need a DC Ultra license and a DesignWare
Foundation license.

For more information on this command, see the man page and the Design Compiler
Optimization Reference Manual.
Chapter 8: Optimizing the Design
Performing Design Implementation 8-20

Design Compiler User Guide Version D-2010.03-SP2
Optimizing for Maximum Performance
If your design does not meet the timing constraints, you can try the following methods to
improve performance:

• Create path groups

• Fix heavily loaded nets

• Auto-ungroup hierarchies on the critical path

• Perform a high-effort incremental compile

• Perform a high-effort compile

Creating Path Groups
By default, Design Compiler groups paths based on the clock controlling the endpoint (all
paths not associated with a clock are in the default path group). If your design has complex
clocking, complex timing requirements, or complex constraints, you can create path groups
to focus Design Compiler on specific critical paths in your design.

Use the group_path command to create path groups. The group_path command allows
you to

• Control the optimization of your design

• Optimize near-critical paths

• Optimize all paths

Controlling the Optimization of Your Design
You can control the optimization of your design by creating and prioritizing path groups,
which affect only the maximum delay cost function. By default, Design Compiler works only
on the worst violator in each group.

Set the path group priorities by assigning weights to each group (the default weight is 1.0).
The weight can be from 0.0 to 100.0.

For example, Figure 8-7 shows a design that has multiple paths to flip-flop FF1.

Figure 8-7 Path Group Example

in3

in4
FF1
Chapter 8: Optimizing the Design
Performing Design Implementation 8-21
Chapter 8: Optimizing the Design
Performing Design Implementation 8-21

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
To indicate that the path from input in3 to FF1 is the highest-priority path, use the following
command to create a high-priority path group:

dc_shell> group_path -name group3 -from in3 -to FF1/D -weight 2.5

Optimizing Near-Critical Paths
When you add a critical range to a path group, you change the maximum delay cost function
from worst negative slack to critical negative slack. Design Compiler optimizes all paths
within the critical range.

Specifying a critical range can increase runtime. To limit the runtime increase, use critical
range only during the final implementation phase of the design, and use a reasonable critical
range value. A guideline for the maximum critical range value is 10 percent of the clock
period.

Use one of the following methods to specify the critical range:

• Use the -critical_range option of the group_path command.

• Use the set_critical_range command.

For example, Figure 8-8 shows a design with three outputs, A, B, and C.

Figure 8-8 Critical Range Example

Assume that the clock period is 20 ns, the maximum delay on each of these outputs is 10
ns, and the path delays are as shown. By default, Design Compiler optimizes only the worst
violator (the path to output A). To optimize all paths, set the critical delay to 3.0 ns. For
example,

create_clock -period 20 clk
set_critical_range 3.0 $current_design
set_max_delay 10 {A B C}
group_path -name group1 -to {A B C}

in1

in2

A
B
C

13 ns
12 ns
11 ns

10 ns

delay

Worst violator
A
B
C

Path

Goal
Chapter 8: Optimizing the Design
Performing Design Implementation 8-22

Design Compiler User Guide Version D-2010.03-SP2
Optimizing All Paths
You can optimize all paths by creating a path group for each endpoint in the design. Creating
a path group for each endpoint enables total negative slack optimization but results in long
compile runtimes.

Use the following script to create a path group for each endpoint.

set endpoints \
[add_to_collection [all_outputs] \
[all_registers -data_pins]]

foreach_in_collection endpt $endpoints {
set pin [get_object_name $endpt]
group_path -name $pin -to $pin

}

Fixing Heavily Loaded Nets
Heavily loaded nets often become critical paths. To reduce the load on a net, you can use
either of two approaches:

• If the large load resides in a single module and the module contains no hierarchy, fix the
heavily loaded net by using the balance_buffer command. For example, enter

source constraints.con
compile_ultra
balance_buffer -from [get_pins buf1/Z]

Note:
The balance_buffer command provides the best results when your library uses
linear delay models. If your library uses nonlinear delay models, the second approach
provides better results.

• If the large loads reside across the hierarchy from several modules, apply design rules to
fix the problem. For example,

source constraints.con
compile_ultra
set_max_capacitance 3.0
compile_ultra -only_design_rule

In rare cases, hierarchical structure might disable Design Compiler from fixing design rules.

In the sample design shown in Figure 8-9, net O1 is overloaded. To reduce the load, group
as many of the loads (I1 through In) as possible in one level of hierarchy by using the group
command or by changing the HDL. Then you can apply one of the approaches.
Chapter 8: Optimizing the Design
Performing Design Implementation 8-23
Chapter 8: Optimizing the Design
Performing Design Implementation 8-23

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Figure 8-9 Heavily Loaded Net

Automatically Ungrouping Hierarchies on the Critical Path
Automatically ungrouping hierarchies during compile can often improve performance.
Ungrouping removes hierarchy boundaries and allows Design Compiler to optimize over a
larger number of gates, generally improving timing. You use delay-based auto-ungrouping to
ungroup hierarchies along the critical path.

To use the auto-ungroup capability, use the compile_ultra command or the -auto_ungroup
delay option of the compile command.

For more information on auto-ungrouping, see the Design Compiler Optimization Reference
Manual.

Performing a High-Effort Compile
The optimization result depends on the starting point. Occasionally, the starting point
generated by the default compile results in a local minimum solution, and Design Compiler
quits before generating an optimal design. A high-effort compile might solve this problem.

The high-effort compile uses the -map_effort high option of the compile command on the
initial compile (on the HDL description of the design).

dc_shell> elaborate my_design
dc_shell> compile -map_effort high

A high-effort compile pushes Design Compiler to the extreme to achieve the design goal. A
high-effort compile invokes the critical path resynthesis strategy to restructure and remap
the logic on and around the critical path.

O1

I1

I2

In

• • •
Chapter 8: Optimizing the Design
Performing Design Implementation 8-24

Design Compiler User Guide Version D-2010.03-SP2
This compile strategy is CPU intensive, especially when you do not use the incremental
compile option, with the result that the entire design is compiled using a high map effort.

Performing a High-Effort Incremental Compile
You can often improve compile performance of a high-effort compile by using the
incremental compile option. Also, if none of the previous strategies results in a design that
meets your optimization goals, a high-effort incremental compile might produce the desired
result.

An incremental compile (-incremental_mapping compile option) allows you to
incrementally improve your design by experimenting with different approaches. An
incremental compile performs only gate-level optimization and does not perform logic-level
optimization. The resulting design’s performance is the same or better than the original
design’s.

This technique can still require large amounts of CPU time, but it is the most successful
method for reducing the worst negative slack to zero. To reduce runtime, you can place a
dont_touch attribute on all blocks that already meet timing constraints.

dc_shell> dont_touch noncritical_blocks
dc_shell> compile -map_effort high -incremental_mapping

This incremental approach works best for a technology library that has many variations of
each logic cell.

Incremental compile supports adaptive retiming, that is, compile_ultra -inc -retime.

Optimizing for Minimum Area
If your design has timing constraints, these constraints always take precedence over area
requirements. For area-critical designs, do not apply timing constraints before you compile.
If you want to view timing reports, you can apply timing constraints to the design after you
compile.

If your design does not meet the area constraints, you can try the following methods to
reduce the area:

• Disable total negative slack optimization

• Optimize across hierarchical boundaries
Chapter 8: Optimizing the Design
Performing Design Implementation 8-25
Chapter 8: Optimizing the Design
Performing Design Implementation 8-25

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Disabling Total Negative Slack Optimization
By default, Design Compiler prioritizes total negative slack over meeting area constraints.
This means Design Compiler performs area optimization only on those paths that have
positive slack.

To change the default priorities (prioritize area over total negative slack), use the
-ignore_tns option when setting the area constraints.

dc_shell> set_max_area -ignore_tns max_area

Optimizing Across Hierarchical Boundaries
Design Compiler respects levels of hierarchy and port functionality (except when automatic
ungrouping of small hierarchies is enabled). Boundary optimizations, such as constant
propagation through a subdesign, do not occur automatically.

To fine-tune the area, you can leave the hierarchy intact and enable boundary optimization.
For greater area reduction, you might have to remove hierarchical boundaries.

Boundary Optimization
Direct Design Compiler to perform optimization across hierarchical boundaries (boundary
optimization) by using one of the following commands:

dc_shell> compile -boundary_optimization

or

dc_shell> set_boundary_optimization subdesign

If you enable boundary optimization, Design Compiler propagates constants, unconnected
pins, and complement information. In designs that have many constants (VCC and GND)
connected to the inputs of subdesigns, propagation can reduce area. Figure 8-10 shows this
relationship.
Chapter 8: Optimizing the Design
Performing Design Implementation 8-26

Design Compiler User Guide Version D-2010.03-SP2
Figure 8-10 Benefits of Boundary Optimization

Hierarchy Removal
Removing levels of hierarchy by ungrouping gives Design Compiler more freedom to share
common terms across the entire design. You can ungroup specific hierarchies before
optimization by using the set_ungroup command or the compile command with the
-ungroup_all option to designate which cells you want ungrouped. Also, you can use the
auto-ungroup capability of Design Compiler to ungroup small hierarchies during
optimization. In this case, you do not specify the hierarchies to be ungrouped.

For details about ungrouping hierarchies, see “Removing Levels of Hierarchy” on page 5-25.

Optimizing Data Paths
Datapath design is commonly used in applications that contain extensive data manipulation,
such as 3-D, multimedia, and digital signal processing (DSP). Datapath extraction
transforms arithmetic operators (for example, addition, subtraction, and multiplication) into
datapath blocks to be implemented by a datapath generator. This transformation improves
the QOR by utilizing the carry-save arithmetic technique.

Beginning with version W-2004.12, Design Compiler provides an improved datapath
generator and better arithmetic components for both DC Expert and DC Ultra. To take
advantage of these enhancements, make sure that the dw_foundation.sldb library is listed
in the synthetic library. If necessary, use the set synthetic_library dw_foundation.sldb
command. These enhancements require a DesignWare license.

DC Ultra enables datapath extraction and explores various datapath and resource-sharing
options during compile. DC Ultra datapath optimization provides the following benefits:

• Shares datapath operators

• Extracts the datapath

VCC

IN1

Logic

Subdesign

GND

IN2

Logic
IN1

IN2

Subdesign
Chapter 8: Optimizing the Design
Performing Design Implementation 8-27
Chapter 8: Optimizing the Design
Performing Design Implementation 8-27

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
• Explores better solutions that might involve a different resource-sharing configuration

• Allows the tool to make better tradeoffs between resource sharing and datapath
optimization

DC Ultra datapath optimization is enabled by default when you use compile_ultra.

To disable DC Ultra datapath optimization, set hlo_disable_datapath_optimization to
true. (The default is false.)

For more information on datapath synthesis, see the Design Compiler Optimization
Reference Manual.
Chapter 8: Optimizing the Design
Performing Design Implementation 8-28

9
Using Interface Logic Models 9

An interface logic model (ILM) is a structural model of a circuit that is modeled as a smaller
circuit representing the interface logic of the block. The interface logic model contains the
cells whose timing is affected by or affects the external environment of a block. Interface
logic models enhance capacity and reduce runtime for top-level optimization.

This chapter contains the following sections:

• Overview of Interface Logic Models (ILMs)

• General Guidelines for Creating ILMs

• Controlling the Logic Included in ILMs

• Methodology for Creating and Saving ILMs

• Instantiating and Using ILMs in the Top-Level Design

• Using the create_ilm Command Options

• Using ILMs with Multicorner-Multimode Designs

• Reporting Information About ILMs

• Summary of Commands for ILMs
9-1

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Overview of Interface Logic Models (ILMs)

Interface logic models (ILMs) are used in Design Compiler to reduce the number of design
objects and memory required when performing top-level optimization on large designs. In an
interface logic model, the gate-level netlist for a block is modeled by another gate-level netlist
that contains the interface logic of a block and possibly logic associated with the interface
logic. Logic not associated with the interface is removed.

ILMs are created by using the create_ilm command. Various options are available that let
you control specific properties of the model. Also, for top-level design optimization, the
properties of the ILMs are communicated to the top level by using the propagate_ilm
command. These are the principal commands associated with using ILMs.

Figure 9-1 shows a block and its interface logic model. The logic between the input port and
the first register is preserved, as is the logic between the last register and the output port.
Clock connections to the preserved registers are kept as well. Logic associated with pure
combinational input-port-to-output-port timing paths (A to X) is also preserved. The
remaining logic is discarded. The timing exceptions specified on core logic
(register-to-register) of a design are lost when that design becomes an ILM, because the
core logic is not part of the model.

Figure 9-1 A Block and Its Interface Logic Model

A

B

CLK

X

Y

Block

A

B

CLK

X

Y

Interface logic model
Chapter 9: Using Interface Logic Models
Overview of Interface Logic Models (ILMs) 9-2

Design Compiler User Guide Version D-2010.03-SP2
When you create interface logic models for hierarchical scan synthesis, the block’s scan
chains are preserved if you used a test model. The scan chains are not preserved in the gate
level model. For details of hierarchical test synthesis, see the DFT Compiler documentation.

Important:
Synthesis interface logic models support only SDF and set_load information for
back-annotation. In topographical mode, block-level cell placement information is also
back-annotated.

Benefits of Using ILMs

In addition to improved capacity and reduced compile times for very large designs when
interface logic models are used, ILMs provide the following benefits:

• ILMs preserve interface logic without modifying it. In other words, this model does not
abstract the design but instead discards only what is not required for modeling boundary
timing. Any subblock in the hierarchy that affects the boundary timing is retained.

• ILMs provide, therefore, highly accurate timing representations, because they preserve
the boundary interface logic.

• Differences in the timing characteristics of an interface logic model, when compared with
the original netlist, are easy to debug because the interface logic is maintained. Clock
and data paths are preserved without modification, and cell and net names are identical,
enabling you to isolate the cause for discrepancies.

• The runtime for generating interface logic models is fast because identifying the interface
logic for a design is a structural operation performed by analysis of circuit topology.

• A model is context independent because it is an abstraction of the original netlist and
contains instantiations of library cells that comprise the interface logic.

• An interface logic model can be used for an instance nested anywhere in the design
hierarchy, including within another interface logic model. For nested ILMs, you can control
whether the tool includes entire lower-level ILM logic or only the lower-level ILM logic that
is involved in the timing paths of the upper-level ILM.

• Any back-annotated data (set_load and SDF) that was applied to the original netlist is
retained by the interface logic model. Therefore, you can optionally propagate this
back-annotated data up to the top level. By using this option, you can avoid timing
inaccuracies that would be incurred if the tool had to reestimate delays for nets fully
enclosed in the interface logic model.

• ILMs can be saved as .ddc files without loss of attributes related to the interface logic.
Chapter 9: Using Interface Logic Models
Overview of Interface Logic Models (ILMs) 9-3
Chapter 9: Using Interface Logic Models
Overview of Interface Logic Models (ILMs) 9-3

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
General Guidelines for Creating ILMs

When creating ILMs, observe the following guidelines:

• The amount of improvement for memory and runtime depends on design style.

Some design types such as pure combinational logic blocks or latch-based designs with
many levels of time borrowing do not show much reduction. The interface logic for such
designs tends to contain much of the original design. Designs with registered inputs and
outputs will have the greatest reduction in size (original netlist compared with its ILM).

• User-controlled handling of side-load cells (capacitance) can affect the timing of an
interface path even when side-load cells are not in the interface logic.

• During chip-level optimizations, optimization is not performed on the logic or cells within
an ILM.

• Generated clocks are treated like clock ports. Interface registers driven by a generated
clock are retained in the model. However, internal registers driven by generated clocks
are not retained.

• Propagated clocks retain side loads if the appropriate value of the create_ilm
-include_side_load option is set.

• If you want to create a compact ILM, you should remove the dont_touch attribute from
any block-level subdesign that has this attribute set on it. If you do not remove the
attribute, the size of the ILM is likely to increase, causing the create_ilm command to
issue ILM-20 warning message.

• Use the report_annotated_delay command to check if the necessary nets and cells
are annotated for a postroute SDF flow.

• Handling “what if” constraints.

If you choose to apply constraints such as set_case_analysis, set_disable_timing,
or set_false_path on a block, the logic included in the ILM created for the block might
be pruned incorrectly for all applications where the ILM could be used. (Logic pruning
occurs when an ILM is created.)

However, when you create an ILM for a block that has disabled timing arcs or pins (for
example, from case analysis, disabled timing arcs, false paths, and so on), you can
prevent pruning by using the -traverse_disabled_arcs option with the create_ilm
command.

Note that if the -traverse_disabled_arcs option is used with the create_ilm
command, you might need to propagate case analysis constraints from the block level to
the top level by using the propagate_constraints command. Not doing so could lead
to including additional timing paths that would need to be disabled for timing analysis
when the ILMs are employed at the top level.
Chapter 9: Using Interface Logic Models
General Guidelines for Creating ILMs 9-4

Design Compiler User Guide Version D-2010.03-SP2
Alternatively, do not apply such constraints to a block if you are not going to use the
-traverse_disabled_arcs option with the create_ilm command when you create the
ILM for the block.

Note that either method creates an ILM that is independent of case analysis. Case
analysis can then be applied to the block’s ILM as desired for the particular application.

• If the current design contains nested ILMs, you can control what logic from a lower-level
ILM is included in the upper-level ILM. That is, you can control whether all the lower-level
ILM logic or only the lower-level ILM logic involved in the upper-level interface timing
paths is included in the upper-level ILM.

• Designs containing ILMs can be budgeted. For more information about budgeting with
ILMs, see the section “Budgeting With Interface Logic Models” in the Budgeting for
Synthesis User Guide.

Controlling the Logic Included in ILMs

The following sections discuss controlling the logic included in ILMs:

• Basic ILM Logic Content

• Controlling the Fanins and Fanouts of Chip-Level Networks

• Controlling the Number of Latch Levels

• Controlling Side-Load Cells

Basic ILM Logic Content
The basic interface logic model contains the following circuitry:

• Leaf cells and macro cells in timing paths that lead from input ports to output ports
(combinational input to output paths).

• Leaf cells and macro cells in timing paths that lead from input ports to edge-triggered
registers.

• Leaf cells and macro cells in timing paths that lead to output ports from edge-triggered
registers.

• Macros that are not part of the interface timing paths can be included in the model by
using the -keep_macros option of the create_ilm command.

This capability is useful when an ILM is taken into a floorplanning tool for the purpose of
exploring potential floorplan changes that involve the ILM. If you do not use this option,
macros that are not part of the interface logic of the design are excluded from the ILM.
Chapter 9: Using Interface Logic Models
Controlling the Logic Included in ILMs 9-5
Chapter 9: Using Interface Logic Models
Controlling the Logic Included in ILMs 9-5

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
• The boundary cells of ignored ports that you include by using the
-keep_boundary_cells option of the create_ilm command. (Ignored ports are
specified by using the -ignore_ports or -no_auto_ignore option.)

• Clock trees that drive interface registers, including registers in the clock tree.

To include the entire clock tree, use the -keep_full_clock_tree option of the
create_ilm command. Note that using this option can increase the memory requirement
of the ILM significantly.

• Clock-gating circuitry, if it is driven by external ports.

• Any transparent latch encountered in a timing path from an input port to a register or from
an output register to an output port is treated as a combinational logic device and is
included in the interface logic. You can control this behavior by using the -latch_level
option of the create_ilm command. (See Figure 9-2 on page 9-7 and Figure 9-3 on
page 9-8.)

• If you use the -traverse_disabled_arcs option with the create_ilm command, the
disabled timing arcs and paths of a block are ignored, and any interface logic belonging
to these disabled arcs or paths is included in the model. Conversely, if you do not use this
option, this logic is not included in the model. By using the -traverse_disabled_arcs
option with the create_ilm command, a single ILM can be created for a block that has timing
arcs or paths disabled (for example, by commands such as set_false_path,
set_disable_timing) or by the set_case_analysis command. If you do not use this
option, you will need to create multiple ILMs, each one valid only for its particular case.

Note:
The cells, nets, and pins that are identified as part of an ILM for the current design are
marked with the is_interface_logic attribute.

Controlling the Fanins and Fanouts of Chip-Level Networks
Usually you do not want the fanins and fanouts of chip-level networks, such as scan enable
and set/reset networks, to be part of the ILM. If you want to automatically exclude the input
ports whose nets fanout to a “large” percentage of the total number of registers in the design
(defined with the user-defined ilm_ignore_percentage variable, default of 25), you can
use the -no_auto_ignore option. If you want to exclude specific ports or both input and
output ports, you must use the -ignore_ports options and manually provide a ports list.
Note that these options are mutually exclusive; you can use only one of them.

Because ignored ports have no internal connections in the ILM, design rule checking and
fixing of the outside connections to these ports tends to be inaccurate. This might require
manual intervention to fix. For accurate design rule checking and fixing, use the
-keep_boundary_cells option to include the boundary cells of all ignored ports in the
model.
Chapter 9: Using Interface Logic Models
Controlling the Logic Included in ILMs 9-6

Design Compiler User Guide Version D-2010.03-SP2
Controlling the Number of Latch Levels
By default, latches are identified as part of the interface logic and are assumed to be
potential time borrowers. Path tracing continues from the input ports through these latches
until an edge-triggered register is encountered. Similarly, path tracing continues from the
output registers through the latches to the output ports. You can control the number of latch
levels included in the model by using the -latch_level option with the create_ilm
command.

Figure 9-2 shows an ILM default model.

Figure 9-2 ILM Default Model

Figure 9-3 shows the results of specifying -latch_level 1 and -latch_level 0.

L1 C1 C2
L2

C3
L4

In
U0

U5
Out

Default
interface logic
model

L3
Chapter 9: Using Interface Logic Models
Controlling the Logic Included in ILMs 9-7
Chapter 9: Using Interface Logic Models
Controlling the Logic Included in ILMs 9-7

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Figure 9-3 Results of Specifying -latch_level 1 and -latch_level 0

Controlling Side-Load Cells
By default, only side-load cells that are boundary cells are included in an ILM. These are
cells on nets connected to the ports of the model. Even though these cells are not involved
in any interface logic timing paths, they might affect the timing of an interface path.

Figure 9-4 shows a side-load cell and a boundary side-load cell.

L1 C1
L2

C3 L4

In
U0

U5
OutL3

L1

L4

In
U0

U5
Out

Interface logic model
-latch_ level = 1

Interface logic model
-latch_level = 0
Chapter 9: Using Interface Logic Models
Controlling the Logic Included in ILMs 9-8

Design Compiler User Guide Version D-2010.03-SP2
Figure 9-4 Side-Load Cell and Boundary Side-Load Cell

In Figure 9-4, cell U1 is a side-load cell because it places a load capacitance on the interface
logic net n1. Cell U2 is a boundary side-load cell because it places a load capacitance on
the boundary ILM net out1. Net out1 is considered a boundary net because it is directly
connected to a port (out1). To include all side-load cells in the ILM, use the
create_ilm -include_side_load all command. Using this command increases the
model size but can improve model timing accuracy.

Methodology for Creating and Saving ILMs

You use the create_ilm command to generate an ILM. A number of command options are
available that allow you to control the details of how the interface logic is modeled. The
create_ilm command does the following:

• Identifies the interface logic to be included in the model. You can specify various
command options to control what logic is included as part of a block’s interface.

• Extracts the logic and builds the model. Certain command options can be used to include
side-load cells (technically not part of the interface logic) and to include physical design
information in the model.

• Automatically marks the ILM with the is_interface_model attribute. Prior to optimizing
the top-level design, you use the propagate_ilm command to propagate information
about the ILM blocks to the top level.Exceptions related to the interface are saved in the
model but are not automatically visible to the top-level design.

out1

out2

out3

n1 out1

U2

U1

Reg1

Reg2

Reg2

U0

Interface logic
model net

Side-load cell

Boundary
side-load cell

Interface logic

boundary nets

n2

 model

out2

out3
Chapter 9: Using Interface Logic Models
Methodology for Creating and Saving ILMs 9-9
Chapter 9: Using Interface Logic Models
Methodology for Creating and Saving ILMs 9-9

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Note:
The propagate_ilm command is not supported in topographical mode; information
about ILM blocks is automatically propagated in this topographical mode.

To create ILMs, use the following steps:

1. Determine the block(s) you want to model as ILMs.

2. Read each mapped block design that you want to model and link each design.

3. Identify all clocks by using the appropriate commands, for example, create_clock or
create_generated_clock.

4. Use the write_interface_timing command to create a timing report for the original
netlist. This timing report will be compared to the timing report for the ILM to help verify
consistency between the ILM model and the original netlist.

5. (Optional) If you are using multi-scenarios, see Example 9-1 for the flow to use to verify
consistency between the original netlist and the ILM.

6. Create the ILM for each block you chose. Use the create_ilm command with
appropriate options as needed.

When you execute the create_ilm command, the following automatic checks are carried
out:

- If the current design contains sequential elements but no clock is defined, the
command issues an error message, and no ILM is created.

- If the current design does not contain any sequential elements, a warning message is
issued and the ILM is created. However, this ILM is the same size as the original
design.

After command execution, the design in memory is the ILM for the block. It has the same
name as the original design and becomes the current design.

Note:
In special situations where you want to create a customized model that selectively
includes (or excludes) certain cells, nets, and pins, use the create_ilm
-identify_only and create_ilm -extract_only commands. For details, see
“Controlling the Logic Included in ILMs” on page 9-5.

7. (Optional) Use the get_ilm_objects command to determine the objects that have been
identified as interface logic objects. You can repeat this step, changing option settings as
needed, until you obtain the desired collection of interface objects. You can then use the
create_ilm -extract_only command to extract the currently identified interface logic
objects and build the ILM with these objects. The create_ilm -extract_only
command does not identify new interface logic elements. Use the get_ilm_objects
command after you are satisfied with the collection of interface logic objects.
Chapter 9: Using Interface Logic Models
Methodology for Creating and Saving ILMs 9-10

Design Compiler User Guide Version D-2010.03-SP2
8. Use the write_interface_timing command to create a timing report for the ILM
model. This timing report will be compared to the timing report for the netlist to help verify
consistency between the ILM model and the original netlist.

9. Compare the original netlist and ILM interface timing reports by using the
compare_interface_timing command. This command checks for consistency
between the ILM model and the original netlist. For example, the command

compare_interface_timing original.wit ilm.wit -output check.cit

compares the report for the original netlist in the original.wit file with the report for the ILM
model in the ilm.wit file and outputs the comparision report to the check.cit file.

10.Save the model of the block design by using the write -format ddc command. Design
Compiler supports only the .ddc format for writing out the ILMs.

By default, the write command saves only the top-level design. Use the -hierarchy
option to save the entire design. If you do not use the -output option to specify the output
file name, the write -format ddc command creates a file called top_design.ddc, where
top_design is the name of the current design. For more information, see Chapter 5,
“Working With Designs in Memory.”

To save an ILM to a file named my_ilm, execute the following command:

 write -format ddc -hierarchy -output my_ilm

Because it is possible to write out an incorrect ILM in the case when the create_ilm
command did not complete successfully, you should take one of the following precautions
before saving the ILM:

- Check the log file to make sure there are no errors.

- Check the return status of the create_ilm command. If the command returned a 1,
then the command succeeded. This is the preferred method of checking because it
can be scripted.

Example 9-1 shows the flow for creating ILMs in a multi-scenario environment. When using
multi-scenarios, you must create interface timing reports for all your netlists before you
create interface timing reports for your scenario ILMs, as shown in Example 9-1.

Example 9-1 Methodology For Using ILMs in a Multi-Scenario Environment
compile_ultra
current_scenario sc1
write_interface_timing no_ilm_sc1.wit
current_scenario sc2
write_interface_timing no_ilm_sc2.wit
create_ilm
current_scenario sc1
write_interface_timing ilm_sc1.wit
current_scenario sc2
write_interface_timing ilm_sc2.wit
compare_interface_timing no_ilm_sc1.wit ilm_sc1.wit -output check_sc1.cit
compare_interface_timing no_ilm_sc2.wit ilm_sc2.wit -output check_sc2cit
Chapter 9: Using Interface Logic Models
Methodology for Creating and Saving ILMs 9-11
Chapter 9: Using Interface Logic Models
Methodology for Creating and Saving ILMs 9-11

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
When you create an ILM, Design Compiler automatically performs the following actions:

• Automatically applies the dont_touch attribute to the ILM cells.

• Maintains the hierarchy of the original netlist being modeled as an ILM. You can flatten an
ILM by ungrouping it using the ungroup -all -flatten command.

• Allows propagated clocks to retain side loads if the option that instructs Design Compiler
to keep side loads is set. Generated clocks are treated like clock ports. Interface registers
driven by the generated clock are retained in the model. Registers driven by the
generated clock that are in internal register-to-register paths are not included in the
model.

• Handles multi-instantiated designs and ILMs without relying on the uniquify command.

When you create an ILM for a block-level that contains multiple instantiations of a
hierarchical cell, you do not need to run the uniquity command on the subdesign first.
Hierarchical cells are automatically uniquified when you run the compile command on the
subdesign. You can then create an ILM for the mapped block and use that ILM in the
top-level design.

At the top level, multi-instantiated ILMs do not need to be uniquified with the uniquify
command. Note, however, that running the compile command at the top level does not
automatically uniquify any multi-instantiated ILMs.

Instantiating and Using ILMs in the Top-Level Design

For ILMs created in Design Compiler topographical mode, the abstract model is saved in the
.ddc format without any FRAM view. The tool in the top level treats the entire region over this
ILM object as a placement and wiring blockage. The tool does not perform routing over the
ILM block.

For ILMs created in IC Compiler, the tool loads the FRAM view for the corresponding ILM. If
the FRAM view is not found, the entire region over the ILM is treated as a placement and
wiring blockage.

Figure 9-5 shows the flow for instantiating and using ILMs in Design Compiler.
Chapter 9: Using Interface Logic Models
Instantiating and Using ILMs in the Top-Level Design 9-12

Design Compiler User Guide Version D-2010.03-SP2
Figure 9-5 Flow for Instantiating and Using Interface Logic Models

To use Design Compiler created ILMs in the top-level design, follow this procedure:

1. Read in the ILM block from a .ddc netlist.

2. Read in the top-level design.

3. Set the current design to the top-level design.

4. Link the design with the top-level design as the current design.

5. Source the top-level constraints.

6. Run the compile_ultra command.

7. Use the write_interface_timing command to create a timing report for the netlist.
This timing report is then compared to the timing report for the ILM model to help verify
consistency between the ILM model and the original netlist.

8. Use the create_ilm command to generate the interface logic model for the subblock.

9. Use the write_interface_timing command to create a timing report for the ILM
model. This timing report is then compared to the timing report for the netlist to help
verify consistency between the ILM model and the original netlist.

block ILM

Top-level design

design

Top-level constraints

In dc_shell, run compile
Chapter 9: Using Interface Logic Models
Instantiating and Using ILMs in the Top-Level Design 9-13
Chapter 9: Using Interface Logic Models
Instantiating and Using ILMs in the Top-Level Design 9-13

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
10.Compare the original netlist and ILM interface timing reports by using the
compare_interface_timing command. This command checks for consistency
between the ILM model and the original netlist. For example, the following command

compare_interface_timing original.wit ilm.wit -output check.cit

compares the report for the original netlist in the original.wit filein the original.wit file with
the report for the ILM model in the ilm.wit file and outputs the comparision report to the
check.cit file.

11.Use the write_file command to save the design.

To use IC Compiler created ILMs in the top-level design, follow this procedure:

1. Set the link library variable to identify the ILM blocks in the ILM view.

For example, run
set link_library "$link_library block.ILM"

Add the Milkyway design library to the Milkyway reference library as follows:

set mw_reference_library "$mw_reference_library block.iCC.MW

2. Perform library setup. For example, run

create_mw_design
open_mw_lib

3. Read in the top-level design.

4. Set the current design to the top-level design.

5. Use routing (FRAM) views for the ILM blocks for which you want placement and routing
resources to be available at the top level. In other words, select the routing (FRAM) views
for these blocks by using the change_macro_view command.

6. Link the design, with the top-level design as the current design.

7. Source the top-level constraints.

8. Run the compile_ultra command.

9. Use the write_interface_timing command to create a timing report for the netlist.
This timing report is then compared to the timing report for the ILM model to help verify
consistency between the ILM model and the original netlist.

10.Use the create_ilm command to generate the ILM model for the subblock.

11.Use the write_interface_timing command to create a timing report for the ILM
model. This timing report will be compared to the timing report for the netlist to help verify
consistency between the ILM model and the original netlist.
Chapter 9: Using Interface Logic Models
Instantiating and Using ILMs in the Top-Level Design 9-14

Design Compiler User Guide Version D-2010.03-SP2
12.Compare the original netlist and ILM interface timing reports by using the
compare_interface_timing command. This command checks for consistency
between the ILM model and the original netlist. For example, the following command

compare_interface_timing original.wit ilm.wit -output check.cit

compares the report for the original netlist in the original.wit file with the report for the ILM
model in the ilm.wit file and outputs the comparision report to the check.cit file.

13.Use the write_file command to save the design.

Using the create_ilm Command Options

Table 9-1 describes when to use various create_ilm options.

Table 9-1 Using the create_ilm Command Options

To do this Use this option

Only identify interface logic elements, but not build the ILM. -identify_only

Print statistics about the number of design objects in the original
design and the model netlist.

-verbose

Include the boundary cells of ignored ports. -keep_boundary_cells

Only extract and create an ILM from currently identified interface
logic elements.

-extract_only

To exclude the fanin and fanout logic from the input and output of
ports connected to chip-level nets. For details, see “Controlling the
Fanins and Fanouts of Chip-Level Networks” on page 9-6.

-ignore_ports

To automatically exclude the fanout logic from input ports
connected to a certain percentage of the total number of registers
in the design. For details, see “Controlling the Fanins and
Fanouts of Chip-Level Networks” on page 9-6.

-no_auto_ignore

Specify the number of latch levels for which time borrowing can
occur for latch chains that are part of the interface logic.
For details, see “Controlling the Number of Latch Levels” on
page 9-7.

-latch_level

Include all macros. For details, see “Controlling the Logic Included
in ILMs” on page 9-5.

-keep_macros
Chapter 9: Using Interface Logic Models
Using the create_ilm Command Options 9-15
Chapter 9: Using Interface Logic Models
Using the create_ilm Command Options 9-15

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
For the complete syntax, see the man page.

Using ILMs with Multicorner-Multimode Designs

ILMs are compatible with multicorner-multimode scenarios. You can apply
multicorner-multimode constraints to an ILM and use the ILM in a top-level design. For
details, see “Optimizing Multicorner-Multimode Designs in Design Compiler Graphical” in
Chapter 10.

Reporting Information About ILMs

Use the following commands to obtain information about ILMs:

• report_design

The report_design command reports information that the design is an ILM if you are at
the top of the interface logic model. Note the differences in the report results depending
on the current design:

- If you have an ILM called ILM_TOP and ILM_TOP is the current design, the report
provides the information that it is an ILM.

- If you have an ILM called ILM_TOP that has instances A, B, and C in it and you push
into instance A and make it the current design, running report_design on design A
will report that design A is a subdesign inside the ILM.

Include interface logic from disabled timing arcs and pins.
For details, see “Controlling the Logic Included in ILMs” on
page 9-5.

-traverse_disabled_arcs

Include side-load cells of a specified type.
For details, see “Controlling Side-Load Cells” on page 9-8.

-include_side_load

Specify that the tool use techniques to reduce the size of the ILM. -compact

Table 9-1 Using the create_ilm Command Options (Continued)

To do this Use this option
Chapter 9: Using Interface Logic Models
Using ILMs with Multicorner-Multimode Designs 9-16

Design Compiler User Guide Version D-2010.03-SP2
• report_area

The report_area command provides statistics for both the original netlist (Example 9-2)
and the ILM netlist (Example 9-3) to let you know how much reduction occurred for each
of the design objects and the total area reduction for ILM designs. However, if instance A
is the current design, when you run report_area on it, you see only the statistics for the
ILM of design A.

• get_ilm_objects

Reports the objects in the current design that are identified as belonging to interface logic.

• get_ilms

Reports the ILM blocks that are defined as part of the current design. You can prevent this
command from issuing messages by using the -quiet option.

• create_ilm -verbose

Reports the statistics for the original design and the ILM.

• write_interface_timing and compare_interface_timing

Use the reports generated by the write_interface_timing and
compare_interface_timing commands to verify consistency between the ILM model
and the original netlist. For details, see “Methodology for Creating and Saving ILMs” on
page 9-9.

For complete command syntax, see the respective man pages.

The reports in the following examples show that the ILM model has reduced the total cell
area from about 790 units to 226 units. Example 9-2 uses the report_area command to
show the statistics for the original netlist.

Example 9-2 Pre-ILM-Creation Area Report Result When Instance A Is the Current Design
**
Report : area
Design : A
Version: 2002.05
Date : Mon Apr 1 06:48:14 2002
**

Library(s) Used:

 fd_inv (File: /remote/stellar04/testcases/129022/lib/fd_inv.db)

Number of ports: 3
Number of nets: 18
Number of cells: 16
Number of references: 2

Combinational area: 100.349998
Chapter 9: Using Interface Logic Models
Reporting Information About ILMs 9-17
Chapter 9: Using Interface Logic Models
Reporting Information About ILMs 9-17

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Noncombinational area: 689.920044
Net Interconnect area: undefined (Wire load has zero net area)

Total cell area: 790.270020
Total area: undefined
1

Example 9-3 uses the report_area command to show the statistics for the ILM netlist.

Example 9-3 Post- ILM-Creation Area Report Result When Instance A Is the Current Design
**
Report : area
Design : A
Version: 2002.05
Date : Mon Apr 1 06:48:15 2002
**

Library(s) Used:

 fd_inv (File: /remote/stellar04/testcases/129022/lib/fd_inv.db)

Number of ports: 3
Number of nets: 8
Number of cells: 7
Number of references: 2

Combinational area: 100.349998
Noncombinational area: 125.440002
Net Interconnect area: undefined (Wire load has zero net area)

Total cell area: 225.790009
Total area: undefined
1
.

Discrepancies between the original design and its interface logic model can arise because
of the following:

• Whether or not you include all boundary side loads in the interface logic model. This
choice affects the total capacitance on a node and the path timing.

• Propagation of the actual cell interface timing arc instead of the worst-case, maximum
transition, as shown in Figure 9-6.
Chapter 9: Using Interface Logic Models
Reporting Information About ILMs 9-18

Design Compiler User Guide Version D-2010.03-SP2
Figure 9-6 Comparison of Timing Propagation Between Netlist and Model

Summary of Commands for ILMs

Table 9-2 lists commands for ILMs.

Table 9-2 Summary of Commands for Interface Logic Models

Command Description

create_ilm Determines the objects in the current design that are identified
as belonging to interface logic, creates an ILM, and saves the
model in memory, replacing the original design. The ILM in
memory has the same design name as the original block. For
option details, see “Using the create_ilm Command Options” on
page 9-15.

get_ilms Returns a collection of ILMs defined in the current design.

Use the -quiet option to prevent this command from issuing
messages.

get_ilm_objects Returns a collection of nets, cells, or pins that are identified as
belonging to interface logic.

write_interface_timing Verifies consistency between the ILM model and the original
netlist when used with the compare_interface_timing
command. For details, see “Methodology for Creating and
Saving ILMs” on page 9-9.

Z
A
B
C C

Z

Using the Netlist Using the Interface Logic Model

Timing engine is pessimistic
and maximum transition is
propagated.

Only the required arc is present.
For example, if arc C --> Z belongs
to the interface logic and arcs
A --> Z and B --> Z are not part of the
interface logic, the accurate transition
is propagated.
Chapter 9: Using Interface Logic Models
Summary of Commands for ILMs 9-19
Chapter 9: Using Interface Logic Models
Summary of Commands for ILMs 9-19

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
For complete command syntax, see the respective man pages.

compare_interface_timing Verifies consistency between the ILM model and the original
netlist when used with the write_interface_timing
command, see “Methodology for Creating and Saving ILMs” on
page 9-9.

Table 9-2 Summary of Commands for Interface Logic Models (Continued)

Command Description
Chapter 9: Using Interface Logic Models
Summary of Commands for ILMs 9-20

10
Using Design Compiler Topographical
Technology 10

Topographical technology enables you to accurately predict post-layout timing, area, and
power during RTL synthesis without the need for wireload model-based timing
approximations. It uses Synopsys’ placement and optimization technologies to drive
accurate timing prediction within synthesis, ensuring better correlation to the final physical
design. This new technology is built in as part of the DC Ultra feature set and is available
only by using the compile_ultra command in topographical mode.

Design Compiler topographical mode requires a DC Ultra license and a DesignWare
license. A Milkyway-Interface license is also necessary if the Milkyway flow is used; this
license is automatically included with the DC Ultra license.

This chapter includes the following sections:

• Overview of Topographical Technology

• Starting Design Compiler Topographical Mode

• Inputs and Outputs in Design Compiler Topographical Mode

• Specifying Libraries

• Using Floorplan Physical Constraints

• Performing Automatic High-Fanout Synthesis

• Test Synthesis in Topographical Mode
10-1

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
• Using Power Compiler in Topographical Mode

• Multivoltage Designs

• Compile Flows in Topographical Mode

• Supported Commands, Command Options, and Variables

• Using the Design Compiler Graphical Tool

• Optimizing Multicorner-Multimode Designs in Design Compiler Graphical
Chapter 10: Using Design Compiler Topographical Technology
10-2

Design Compiler User Guide Version D-2010.03-SP2
Overview of Topographical Technology

In ultra deep submicron designs, interconnect parasitics have a major effect on path delays;
accurate estimates of resistance and capacitance are necessary to calculate path delays. In
topographical mode, Design Compiler leverages the Synopsys physical implementation
solution to derive the “virtual layout” of the design so that the tool can accurately predict and
use real net capacitances instead of wireload model-based statistical net approximations. If
wireload models are present, they are ignored.

In addition, the tool updates capacitances as synthesis progresses. That is, it considers the
variation of net capacitances in the design by adjusting placement-derived net delays based
on an updated “virtual layout” at multiple points during synthesis. This approach eliminates
the need for overconstraining the design or using optimistic wireload models in synthesis.
The accurate prediction of net capacitances drives Design Compiler to generate a netlist
that is optimized for all design goals including area, timing, test, and power. It also results in
a better starting point for physical implementation.

Topographical technology supports all synthesis flows, including the following:

• Test-ready compile flow (basic scan and DFT MAX adaptive scan)

• Clock-gating flow

• Register retiming

The recommended compile flow in topographical mode is top down as described in the
following steps:

1. To use the Design Compiler topographical features, run Design Compiler in topographical
mode by entering dc_shell -topographical at the command prompt.

See “Starting Design Compiler Topographical Mode” on page 10-7.

2. Set up the libraries.

In topographical mode, Design Compiler requires both logical libraries and physical
libraries. Design Compiler topographical mode uses the same logical libraries as the
Design Compiler wire load mode; it uses the Milkyway format for physical libraries.
See“Specifying Libraries” on page 10-9.

3. Read in the design (Verilog, VHDL, netlist, or .ddc). See “Inputs and Outputs in Design
Compiler Topographical Mode” on page 10-7.

4. Specify timing, area, power, and test constraints.

Just as in Design Compiler wireload mode, you set up the design environment by
specifying the external operating conditions (manufacturing process, temperature, and
voltage), loads, drives, fanouts, and so on as described in Chapter 6, “Defining the
Chapter 10: Using Design Compiler Topographical Technology
Overview of Topographical Technology 10-3
Chapter 10: Using Design Compiler Topographical Technology
Overview of Topographical Technology 10-3

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Design Environment.” However, you do not specify the wire load mode (Design Compiler
ignores the wire load mode if you set it). You also specify timing and area goals as
described in Chapter 7, “Defining Design Constraints.”

In addition, you can specify power constraints as described in “Using Power Compiler in
Topographical Mode” on page 10-69 and the test configuration as described in “Test
Synthesis in Topographical Mode” on page 10-68. Topographical technology supports
multivoltage designs, described in “Multivoltage Designs” on page 10-71.

5. (Optional) Provide floorplan information.

The principal reason for using floorplan constraints in topographical mode is to accurately
represent the placement area and to improve timing correlation with the
post-place-and-route design. You can provide high-level physical constraints that
determine core area and shape, port location, macro location and orientation, voltage
areas, placement blockages, and placement bounds. These physical constraints can be
derived from IC Compiler floorplan data, extracted from an existing Design Exchange
Format (DEF) file, or created manually. See “Using Floorplan Physical Constraints” on
page 10-15.

Sometimes Design Compiler topographical and IC Compiler have different environment
settings. These differences can lead to correlation problems. To help fix correlation issues
between Design Compiler topographical and IC Compiler, use the write_environment
command. For details, see “Comparing Design Compiler Topographical and IC Compiler
Environments” on page 12-4.

6. (Optional) Visually verify the floorplan.

Use the Design Vision layout window to visually verify that your pre-synthesis floorplan is
laid out according to your expectations. The layout view automatically displays floorplan
constraints read in with the extract_physical_constraints command or read in with
Tcl commands. You need to link all applicable designs and libraries to obtain an accurate
floorplan. For details, see the Design Vision User Guide or Design Vision Online Help.

7. Check the design.

Before synthesizing your design, check that all designs and libraries have the necessary
data for compile to run successfully by using the -check_only option of the
compile_ultra command. The -check_only option quickly reports potential problems
that could cause the tool to stop during compile_ultra or to produce unsatisfactory
correlation with your physical implementation. Use the -check_only option to help debug
such problems as

• Missing TLUPlus files and missing physical library cells

• Multiple logical library cells with the same names

• Discrepancies in technology data between multiple physical libraries

• Missing placement location for cells and ports of ILMs or physical hierarchical modules
Chapter 10: Using Design Compiler Topographical Technology
Overview of Topographical Technology 10-4

Design Compiler User Guide Version D-2010.03-SP2
• Missing dont_touch attributes for ILMs or physical hierarchical modules

• Missing floor plan information such as core area constraints (through site row
definition), port location, macro location, ILM location, and physical hierarchy location.

Important:
Always execute the compile_ultra optimization step with the same set of options
that were used when you executed compile_ultra –check_only.

8. Compile the design by using the compile_ultra -gate_clock -scan command.

When you use the -gate_clock option, clock gating is implemented in the design
according to options set by the set_clock_gating_style command. For more
information on this command, see the Power Compiler User Guide.

When you use the -scan option, the tool performs test-ready compile. During test-ready
compile, the tool employs the scan insertion design-for-test technique, which replaces
regular flip-flops with flip-flops that contain logic for testability. Test-ready compile
reduces iterations and design time, by accounting for the impact of the scan
implementation during the logic optimization process. For optimization details, see
Design Compiler Optimization Reference Manual.

9. Insert scan chains.

Run the insert_dft command to insert scan chains. For more information on this
command, see the DFT Compiler User Guide.

10. Perform an incremental compile by using the compile_ultra -incremental -scan.

The main goal for compile_ultra -incremental is to enable topographical-based
optimization for post-topographical-based synthesis flows such as retiming,
design-for-test (DFT), DFT MAX, and minor netlist edits. See “Performing an Incremental
Compile” on page 10-73.

11.(Optional) Visually inspect the floorplan and placement results.

Use the Design Vision layout window to verify your floorplan and placement results. You
can

• Examine the placement and orientation of objects such as macro cells, port locations,
and physical constraints

• Examine the placement of critical timing path objects

• Analyze floorplan-related congestion and identify the causes of congestion hotspots

For details, see the Design Vision User Guide or the Design Vision Online Help.

12. Write out the design. Formats include .ddc, Milkyway, or Verilog. See “Inputs and
Outputs in Design Compiler Topographical Mode” on page 10-7.
Chapter 10: Using Design Compiler Topographical Technology
Overview of Topographical Technology 10-5
Chapter 10: Using Design Compiler Topographical Technology
Overview of Topographical Technology 10-5

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
The scripts shown in Example 10-1 and Example 10-2 suggest how to set up your libraries
and use Design Compiler topographical technology to synthesize your design.

Example 10-1 Default Flow for Topographical Synthesis
dc_shell -topo

set search_path "search_path ./libraries"
set link_library "* max_lib.db"
set target_library "max_lib.db"

create_mw_lib -technology $mw_tech_file -mw_reference_library \
$mw_reference_library $mw_lib_name

open_mw_lib $mw_lib_name

read_verilog rtl.v
source top_constraint.sdc
compile_ultra
report_timing
change_names -rules verilog -h
write -format ddc -hierarchy -output top_synthesized.ddc
write -f verilog -h -o netlist.v
write_sdf sdf_file_name
write_parasitics -o parasitics_file_name
write_sdc sdc_file_name

Example 10-2 Flow With Physical Constraints
dc_shell -topo

set search_path "search_path ./libraries"
set link_library "* max_lib.db"
set target_library "max_lib.db"

read_verilog rtl.v
source top_constraint.sdc
extract_physical_contraints def_file_name
compile_ultra
report_timing
change_names -rules verilog -h
write -format ddc -hierarchy -output top_synthesized.ddc
write -f verilog -h -o netlist.v
write_sdf sdf_file_name
write_parasitics -o parasitics_file_name
write_sdc sdc_file_name
write_physical_constraints -o phys_cstr_file_name.tcl
Chapter 10: Using Design Compiler Topographical Technology
Overview of Topographical Technology 10-6

Design Compiler User Guide Version D-2010.03-SP2
Starting Design Compiler Topographical Mode

To use the Design Compiler topographical features, you must run dc_shell in topographical
mode. At the prompt, enter

dc_shell -topographical

In topographical mode, the dc_shell command-line prompt appears as

dc_shell-topo>

To query for topographical mode, run the shell_is_in_topographical_mode command.
The command returns 1 if the topographical mode is active; otherwise it returns 0.
Topographical technology is Tcl based. When you run the compile_ultra command in this
mode, the Design Compiler topographical features are automatically used. All
compile_ultra command options are supported.

Note:
Design Compiler in topographical mode supports only a subset of dc_shell commands,
command options, and variables. For more information, see “Supported Commands,
Command Options, and Variables.”

Inputs and Outputs in Design Compiler Topographical Mode

Figure 10-1 shows the inputs and outputs in Design Compiler topographical mode. The
sections that follow provide more information.

Figure 10-1 Inputs and Outputs in Design Compiler Topographical Mode

RTL Constraints

Synthesized design

Design
Compiler

Physical
library

Logical
library

Floorplan or
Physical Constraints

(optional)

Topographical

Mode
Chapter 10: Using Design Compiler Topographical Technology
Starting Design Compiler Topographical Mode 10-7
Chapter 10: Using Design Compiler Topographical Technology
Starting Design Compiler Topographical Mode 10-7

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Table 10-1 and Table 10-2 describe the inputs and outputs in topographical mode.

Table 10-1 Inputs in Design Compiler Topographical Mode

Input Description

Design RTL or gate-level netlist.

Constraints Timing and optimization constraints.
Note that if you specify wireload models, Design Compiler ignores them.

Logical library Liberty format (.lib or .db). For more information, see “Specifying Logical
Libraries” on page 10-9.

Physical library Milkyway format. For more information, see “Specifying Physical Libraries” on
page 10-10.

Note: The .pdb format is not supported.

Floorplan or
physical
constraints

High-level physical constraints that determine items such as core area and
shape, port location, macro location and orientation, voltage areas, placement
blockages, and placement bounds. For more information, see “Using
Floorplan Physical Constraints” on page 10-15.

Table 10-2 Outputs in Design Compiler Topographical Mode

Output Description

.ddc This format contains back-annotated net delays and constraints. Subsequent
topographical mode sessions restore virtual layout data. The .ddc format is
recommended for subsequent topographical mode optimizations and
verification.

Milkyway This format contains back-annotated net delays and constraints. The
Milkyway format cannot be read back into topographical mode for subsequent
optimizations. This format is recommended if you intend to use Synopsys
tools for the backend flow.

ASCII This format does not contain back-annotated delays or Synopsys Design
Constraints (SDC). Use the write_sdc command to write out the SDC and
the write_parasitics command to write out parasitics. This format is
recommended only if you intend to use a third-party tool.
Chapter 10: Using Design Compiler Topographical Technology
Inputs and Outputs in Design Compiler Topographical Mode 10-8

Design Compiler User Guide Version D-2010.03-SP2
Note:
You cannot use the Milkyway format to store design data for unmapped designs or
non-uniquified designs. Before you use the write_milkyway command, run the following
command:

uniquify -force -dont_skip_empty_designs

Specifying Libraries

In topographical mode, Design Compiler requires both logical libraries and physical libraries.
Topographical mode also supports synthesis with black boxes. For more details about black
box support, see “Support for Black Boxes” on page 10-14.

Note:
Occasionally, IC Compiler adds support for new technology file attributes in the physical
libraries that are not yet supported in Design Compiler. In these cases, a TFCHK-009
error message is issued in Design Compiler but not in IC Compiler when using the same
technology file. If the new attributes are safe to ignore, you can set the ignore_tf_error
variable to true, which enables the tool to ignore the unsupported attributes. For details,
see “Fixing Errors Caused by New Unsupported Technology File Attributes” on
page 12-3.

Specifying Logical Libraries
Design Compiler topographical mode uses the same logical libraries as the Design Compiler
wire load mode. Use the following commands to set up logical libraries:

set search_path "search_path ./libraries"
set link_library "* max_lib.db"
set target_library "max_lib.db"

For more information on logical libraries, see “Working With Libraries” on page 4-1.

Note:
Because multivoltage designs use power domains, these designs usually require that
certain library cells are marked as always-on cells and certain library cell pins are marked
as always-on library cell pins. These always-on attributes are necessary to establish any
always-on relationships between power domains. For more information, see the Power
Compiler User Guide.
Chapter 10: Using Design Compiler Topographical Technology
Specifying Libraries 10-9
Chapter 10: Using Design Compiler Topographical Technology
Specifying Libraries 10-9

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Specifying Physical Libraries
You use the Milkyway design library to specify physical libraries and save designs in
Milkyway format. The inputs required to create a Milkyway design library are the Milkyway
reference library and the Milkyway technology file.

The Milkyway reference library contains the physical representation of standard cells and
macros. In topographical mode, the Milkyway reference library uses the FRAM abstract view
to store information. The reference library also defines the placement unit tile (the width and
height of the smallest placeable instance and the routing directions).

The Milkyway technology file (.tf), contains technology-specific information required to route
a design. Design Compiler will automatically derive routing layer directions if your Milkyway
library file is missing this information. Derived routing layer directions are saved in the .ddc
file. You can override the derived routing layer direction by using the
set_preferred_routing_direction command. To report all routing directions, use the
report_preferred_routing_direction command.

The following steps provide an overview of how to create a Milkyway design library; for more
information on the Milkyway database, see Chapter 11, “Using a Milkyway Database and the
Milkyway documentation.

1. Define the power and ground nets. For example, set the following variables:

set mv_power_net VDD
set mw_ground_net VSS
set mw_logic1_net VDD
set mw_logic0_net VSS
set mw_power_port VDD
set mw_ground_port VSS

If you do not set these variables, power and ground connections are not made during
execution of write_milkyway. Instead power and ground nets can get translated to
signal nets.

2. Use the create_mw_lib command to create the Milkyway design library. For example,

create_mw_lib -technology $mw_tech_file \
-mw_reference_library $mw_reference_library

$mw_design_library_name

3. Use the open_mw_lib command to open the Milkyway library that you created. For
example, enter

open_mw_lib $mw_design_library_name

4. (Optional) Use the set_tlu_plus command to attach TLUPlus files. For example,

set_tlu_plus_files-max_tluplus $max_tlu_file \
Chapter 10: Using Design Compiler Topographical Technology
Specifying Libraries 10-10

Design Compiler User Guide Version D-2010.03-SP2
 -min_tluplus $min_tlu_file\
-tech2itf_map $prs_map_file

For more information, see “Using TLUPlus for RC Estimation” on page 10-13.

5. In subsequent topographical mode sessions, you use the open_mw_lib command to
open the Milkyway library. If you are using TLUPlus files for RC estimation, use the
set_tlu_plus_files command to attach these files. For example,

open_mw_lib $mw_design_library_name
set_tlu_plus_files-max_tluplus $max_tlu_file \

 -min_tluplus $min_tlu_file\
-tech2itf_map $prs_map_file

The following Milkyway library commands are also supported:

• copy_mw_lib

• close_mw_lib

• report_mw_lib

• current_mw_lib

• check_tlu_plus_files

• write_mw_lib_files

• set_mw_lib_references

Verifying Library Consistency
Consistency between the logic library and the physical library is critical to achieving good
results. Before you process your design, ensure that your libraries are consistent by running
the check_library command.

dc_shell-topo> check_library

The check_library command provides the following capabilities:

• Checks the integrity of individual logical and physical libraries.

• Checks consistency between logical libraries.

• Checks consistency between logical libraries and physical libraries.

• Checks consistency between physical libraries and technology files.
Chapter 10: Using Design Compiler Topographical Technology
Specifying Libraries 10-11
Chapter 10: Using Design Compiler Topographical Technology
Specifying Libraries 10-11

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
By default, the check_library command performs consistency checks between the logic
libraries specified in the link_library variable and the physical libraries in the current
Milkyway design library. You can also explicitly specify logic libraries (by using the
-logic_library_name option) or Milkyway reference libraries (by using the
-mw_library_name option). If you explicitly specify libraries, these override the default
libraries.

By default, the check_library command performs the following consistency checks
between the logic library and the physical library:

• Verify that all cells exist in both the logic library and the physical library, including any
physical-only cells.

• Verify that the pins on each cell are consistent between the logic library and the physical
library.

This validation includes consistency in naming, direction, and type (including power and
ground pins).

Note:
If the logic library does not contain pg_pin definitions, Design Compiler uses the
power and ground pins as defined in the physical library.

You can also perform the following consistency checks, by setting the appropriate options
with the set_check_library_options command:

• Verify that the area for each cell (except pad cells) is consistent between the logic library
and the physical library.

dc_shell-topo> set_check_library_options -cell_area

• Verify that the cell footprints are consistent between the logic library and the physical
library.

dc_shell-topo> set_check_library_options -cell_footprint

• Verify that the same bus naming style is used in the logic library and the physical library.

dc_shell-topo> set_check_library_options -bus_delimiter

Specify the option for each check that you would like to enable, or to enable all consistency
checks, use the -logic_vs_physical option.

To reset the library checks to the default settings (cell name and pin consistency checks),
run the set_check_library_options -reset command.

To see the enabled library consistency library checks, run the
report_check_library_options -logic_vs_physical command.
Chapter 10: Using Design Compiler Topographical Technology
Specifying Libraries 10-12

Design Compiler User Guide Version D-2010.03-SP2
If the check_library command reports any inconsistencies, you must fix these
inconsistencies before you process your design. For more information about logic libraries,
see the Library Compiler documentation. For more information about physical libraries, see
the Milkyway documentation.

Using TLUPlus for RC Estimation
TLUPlus files contain resistance and capacitance look-up tables and model ultra deep
submicron (UDSM) process effects. If TLUPlus are available or are used in your backend
flow, it is recommended that you use them for RC estimation in Design Compiler
topographical mode.

TLUPlus files provide more accurate capacitance and resistance data, thereby improving
correlation with back-end results.

You use the set_tlu_plus_files command to specify TLUPlus files. In addition, use the
-tech2itf_map option to specify a map file, which maps layer names between the Milkyway
technology file and the process Interconnect Technology Format (ITF) file. For example,

set_tlu_plus_files -max_tluplus $max_tlu_file \
 -min_tluplus $min_tlu_file\

-tech2itf_map $prs_map_file

You can use the check_tlu_plus_files command to check TLUPlus settings.

For more information on the map file, see the Milkyway documentation. To ensure that you
are using the TLUPlus files, check the compile_ultra log for the following message:

**
Information: TLU Plus based RC computation is enabled.
(RCEX-141)
**

Topographical mode supports the extract_rc command to perform 2.5D extraction. The
command calculates delays based on the Elmore delay model and can update
back-annotated delay and capacitance numbers on nets. Use this command after the netlist
has been edited. If you used the set_tlu_plus_files command to specify the TLUPlus
technology files, the tool performs extraction based on TLUPlus technology. Otherwise, the
tool performs extraction using the extraction parameters in your physical library. Use the
set_extraction_options command to specify the parameters that influence extraction
and the report_extraction_options command to report the parameters that influence
the post-route extraction.
Chapter 10: Using Design Compiler Topographical Technology
Specifying Libraries 10-13
Chapter 10: Using Design Compiler Topographical Technology
Specifying Libraries 10-13

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Support for Black Boxes
Topographical mode supports synthesis with black boxes. The tool can create physical
library cells for the following:

• Logical library cells (leaf cells and macros)

• Empty hierarchy cells or black-boxed modules

• Unlinked or unresolved cells

• Unmapped cells

 The tool issues the following warning message when it creates physical library cells:

Warning: Created physical library cell for logical library
%s. (OPT-1413)
Chapter 10: Using Design Compiler Topographical Technology
Specifying Libraries 10-14

Design Compiler User Guide Version D-2010.03-SP2
Using Floorplan Physical Constraints

This section describes how to create, import, reset, save, and report physical constraints in
the following subsections:

• Physical Constraints Overview

• Extracting Physical Constraints From IC Compiler Using the write_def Command

• Importing Physical Constraints From an IC Compiler DEF Formatted File

• Exporting Physical Constraints From IC Compiler Using the write_floorplan Command

• Importing Physical Constraints From an IC Compiler write_floorplan Formatted File

• Manually Defining Physical Constraints

• Specifying Relative Placement

• Placement Options: Magnet Placement

• Resetting Physical Constraints

• Saving Physical Constraints Using the write_floorplan Command

• Reporting Physical Constraints

Physical Constraints Overview
The principal reason for using floorplan constraints in topographical mode is to improve
timing correlation with the post-place-and-route tools, such as IC Compiler, by considering
floorplanning information during optimizations. DC Ultra topographical mode supports
high-level physical constraints such as die area, core area and shape, port location, macro
location and orientation, voltage areas, placement blockages, wiring keepouts, pre-routes,
and placement bounds.

You provide physical information to Design Compiler topographical mode in the following
ways:

• You can export the physical data from IC Compiler by using the write_def command
within IC Compiler and can import this data into Design Compiler by using the
extract_physical_constraints command.

See “Extracting Physical Constraints From IC Compiler Using the write_def Command”
on page 10-16 and “Importing Physical Constraints From an IC Compiler DEF Formatted
File” on page 10-17.
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-15
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-15

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
• You can export the physical data from IC Compiler by using the write_floorplan
command within IC Compiler and import this data into Design Compiler by using the
read_floorplan command.

See “Exporting Physical Constraints From IC Compiler Using the write_floorplan
Command” on page 10-26 and “Importing Physical Constraints From an IC Compiler
write_floorplan Formatted File” on page 10-26.

• You can create physical constraints manually. See “Manually Defining Physical
Constraints” on page 10-29.

If you do not provide any physical constraints from a floorplanning tool, Design Compiler
uses the following default physical constraints:

• Aspect ratio of 1.0 (that is, a square placement area)

• Utilization of 0.6 (that is, forty percent of empty space in the core area)

Extracting Physical Constraints From IC Compiler Using
the write_def Command
To improve timing, area, and power correlation between Design Compiler and IC Compiler,
you can read your mapped Design Compiler netlist into IC Compiler, create a basic floorplan
in IC Compiler, export this floorplan from IC Compiler, and read the floorplan back into
Design Compiler.

To export floorplan information from IC Compiler for use in DC Ultra topographical mode,
you can use the write_def command in IC Compiler. The write_def command exports
physical design data and writes this data to a Design Exchange Format (DEF) file which you
can read into DC Ultra topographical mode. Example 10-3 uses the write_def command to
write physical design data to the my_physical_data.def file.

Example 10-3 Using the write_def Command to Extract Physical Data From IC Compiler
icc_shell> write_def -version 5.7 -rows_tracks_gcells -macro -pins \
 -blockages -specialnets -vias -regions_groups -verbose \

-output my_physical_data.def

For details about the write_def command, see the man page.
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-16

Design Compiler User Guide Version D-2010.03-SP2
Importing Physical Constraints From an IC Compiler DEF
Formatted File
This section describes the imported DEF physical constraints, incremental DEF extraction,
and port and macro name matching considerations, in the following subsections:

• Importing a DEF Floorplan Overview

• Imported DEF Constraints

• Importing Incremental DEF Information Using the extract_physical_constraints
Command

• Matching Names of Macros and Ports

Importing a DEF Floorplan Overview
To import floorplan information from a DEF file, use the extract_physical_constraints
command. This command imports physical information from the specified DEF file and
applies these constraints to the design. The applied constraints are saved in the .ddc file and
do not need to be reapplied in a new topographical mode session when you read in the .ddc.

The following command shows how you can import physical constraints from multiple DEF
files:

dc_shell-topo> extract_physical_constraints \
{des_1.def des2.def … des_N.def}

For information on incremental extraction from DEF files, see “Importing Incremental DEF
Information Using the extract_physical_constraints Command” on page 10-24.

Note:
When you use the extract_physical_constraints command to read a DEF file, DC
Ultra topographical mode automatically resolves the site name in the floorplan to match
the name of the tile in the Milkyway reference libraries. Milkyway reference libraries
usually have the site name set to unit by default. However, you might still need to use the
mw_site_name_mapping variable to define the name mappings if the site dimension
does not match unit or if there is more than one site type being used in the DEF. For
example,

set mw_site_name_mapping def_site_name milkyway_site

Multiple pairs of values can be specified for the mw_site_name_mapping variable.
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-17
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-17

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Imported DEF Constraints
This section describes the physical constraints imported from the DEF file with the
extract_physical_constraints command, in the following subsections:

• Die Area

• Placement Area

• Macro Location and Orientation

• Hard, Soft, and Partial Placement Blockages

• Wiring Keepouts

• Placement Bounds

• Port Location

• Preroutes

• Site Array Information

To visually inspect your extracted physical constraints, use the layout view in the Design
Vision layout window. All physical constraints extracted from the DEF file are automatically
added to the layout view.

Note:
Voltage areas are not defined in a DEF file. Therefore, for multivoltage designs, you have
to use the create_voltage_area command to define voltage areas for the tool. If you
are using IC Compiler as your floorplanning tool, you can use the write_floorplan and
read_floorplan commands to obtain floorplan information that automatically includes
voltage areas. You do not need to define voltage areas manually when using these
commands.

Die Area
The DC Ultra topographical mode command, extract_physical_constraints, supports
automatic die area extraction from the DEF file. DEF files are generated by floorplanning
tools and used by DC Ultra to import physical constraints. The tool can extract both
rectangular and rectilinear die areas that are defined in the DEF file. Keep in mind that the
die area is also known as the cell boundary. The die area represents the silicon boundary of
a chip and encloses all objects of a design, such as pads, I/O pins, and cells.

The following example shows a die area definition in a DEF file:

DEF
 UNITS DISTANCE MICRONS 1000 ;
 DIEAREA (0 0) (0 60000) (39680 60000) (39680 40000) \
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-18

Design Compiler User Guide Version D-2010.03-SP2
 (59360 40000) (59360 0) ;

The example below shows how DC Ultra, in topographical mode, would translate thise DEF
definition into Tcl when you write out your physical constraints using the
write_physical_constraints command.

create_die_area -polygon { { 0.000 0.000 } { 0.000 60.000 }\
 { 39.680 60.000 } { 39.680 40.000 } { 59.360 40.000 } \
 { 59.360 0.000 } { 0.000 0.000 } }

Placement Area
Placement area is computed as the rectangular bounding box of the site rows.

Macro Location and Orientation
When you use the extract_physical_constraints command, for each cell with a
location and the FIXED attribute specified in the DEF, Design Compiler sets the location on
the corresponding cell in the design. Example 10-4 shows DEF macro location and
orientation information.

Note:
E = east rotation and W = west rotation

Example 10-4 DEF Macro Location and Orientation Information
COMPONENTS 2 ;

- macro_cell_abx2 + FIXED (4350720 8160) E ;
- macro_cell_cdy1 + FIXED (4800 8160) W ;

END COMPONENTS

The Tcl equivalent commands are shown in Example 10-5.

Example 10-5 Tcl Equivalent Macro Location and Orientation Information
set_cell_location macro_cell_abx2 -coordinate { 4350.720 8.160 } -orientation E -fixed
set_cell_location macro_cell_cdy1 -coordinate { 4.800 8.160 } -orientation W -fixed

Hard, Soft, and Partial Placement Blockages
The extract_physical_constraints command can import hard, soft, and partial
placement blockages defined in the DEF file.

Note:
DEF versions prior to version 5.7 did not support partial blockages. In addition, if your
floorplanning tool creates a DEF file with DEF version 5.6, you need to manually add the
#SNPS_SOFT_BLOCKAGE pragma to specify a soft blockage, as shown in
Example 10-9.
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-19
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-19

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Example 10-6 shows DEF hard placement blockage information.

Example 10-6 DEF Hard Placement Blockage Information
BLOCKAGES 50 ;
...

- PLACEMENT RECT (970460 7500) (3247660 129940)
...
END BLOCKAGES

The Tcl equivalent command is shown in Example 10-7.

Example 10-7 Tcl Equivalent Hard Placement Blockage Information
create_placement_blockage -name def_obstruction_23

-bbox { 970.460 7.500 3247.660 129.940 }

For a soft placement blockage, if your extracted DEF information is as shown in
Example 10-8 (DEF version 5.7) or Example 10-9 (DEF version 5.6),

Example 10-8 DEF Version 5.7 Soft Placement Blockage Information
BLOCKAGES 50 ;
...
- PLACEMENT + SOFT RECT (970460 7500) (3247660 129940) ;
...
END BLOCKAGES

Example 10-9 DEF Version 5.6 Soft Placement Blockage Information
BLOCKAGES 50 ;
...
- PLACEMENT RECT (970460 7500) (3247660 129940) ; #SNPS_SOFT_BLOCKAGE
...
END BLOCKAGES

then the Tcl equivalent command is shown in Example 10-10.

Example 10-10 Tcl Equivalent Soft Placement Blockage Information
create_placement_blockage -name def_obstruction_23 \

-bbox { 970.460 7.500 3247.660 129.940 } \
-type soft

For a partial placement blockage, if your extracted DEF information is as shown in
Example 10-11,

Example 10-11 DEF Partial Placement Blockage Information
BLOCKAGES 50 ;
...
- PLACEMENT + PARTIAL 80 RECT (970460 7500) (3247660 129940) ;
...
END BLOCKAGES
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-20

Design Compiler User Guide Version D-2010.03-SP2
then the Tcl equivalent command is shown in Example 10-12.

Example 10-12 Tcl Equivalent Partial Placement Blockage Information
create_placement_blockage -name def_obstruction_23 \

-bbox { 970.460 7.500 3247.660 129.940 } \
-type partial

 -blocked_percentage 80

Wiring Keepouts
For wiring keepouts defined in the DEF, Design Compiler creates wiring keepouts on the
design.

Example 10-13 shows DEF wiring keepout information.

Example 10-13 DEF Wiring Keepout Information
BLOCKAGES 30 ;
...

- LAYER METAL6 RECT (0 495720) (4050 1419120);
...
END BLOCKAGES

Placement Bounds
If REGIONS defining bounds exist in the DEF, extract_physical_constraints imports
placement bounds. Also, if there are cells in the related GROUP attached to the region,
these cells are fuzzy matched with the ones in the design, and the matched cells are
attached to the bounds in the following two ways:

• If there are regions in the design with the same name as in the DEF, the cells in the
related group are attached to the region by the update_bounds command in incremental
mode.

• If the region does not exist in the design, it is created with the same name as in the DEF
file by applying the create_bound command; matched cells in the related group are also
attached.

Example 10-14 shows imported placement bounds information.

Example 10-14 DEF Placement Bounds Information
REGIONS 1 ;
 - c20_group (201970 40040) (237914 75984) + TYPE FENCE ;
END REGIONS

GROUPS 1 ;
 - c20_group
 cell_abc1
 cell_sm1
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-21
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-21

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
 cell_sm2
 + SOFT
 + REGION c20_group ;
END GROUPS

The Tcl equivalent commands are shown in Example 10-15.

Example 10-15 Tcl Equivalent Placement Bounds Information
create_bounds \
 -name "c20_group" \
 -coordinate {201970 40040 237914 75984} \
 -exclusive \
 {cell_abc1 cell_sm1 cell_sm2}

Port Location
When you use the extract_physical_constraints command, for each port with the
location specified in the DEF, Design Compiler sets the location on the corresponding port
in the design.

Example 10-16 shows imported port location information.

Example 10-16 DEF Port Information
PINS 2 ;

-Out1 + NET Out1 + DIRECTION OUTPUT + USE SIGNAL +
LAYER M3 (0 0) (4200 200) + PLACED (80875 0) N;

-Sel0 + NET Sel0 + DIRECTION INPUT + USE SIGNAL +
LAYER M4 (0 0)(200 200) + PLACED (135920 42475) N;

END PINS

The Tcl equivalent commands are shown in Example 10-17.

Example 10-17 Tcl Equivalent Port Information
set_port_location Out1 -coordinate {80.875 0.000}

-layer_name M3 -layer_area {0.000 0.000 4.200 0.200}

set_port_location Sel0 -coordinate {135.920 0.000}
-layer_name M4 -layer_area {0.000 0.000 0.200 0.200}

Ports with changed names and multiple layers are supported. Example 10-18 shows DEF
information for such a case.

Example 10-18 DEF Port Information
PINS 2 ;

- sys_addr\[23\].extra2 + NET sys_addr[23] + DIRECTION INPUT + USE SIGNAL +
LAYER METAL4 (0 0) (820 5820) + FIXED (1587825 2744180) N ;

- sys_addr[23] + NET sys_addr[23] + DIRECTION INPUT + USE SIGNAL + LAYER
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-22

Design Compiler User Guide Version D-2010.03-SP2
METAL3 (0 0) (820 5820) + FIXED (1587825 2744180) N ;
END PINS

The corresponding Tcl commands are shown in Example 10-19.

Example 10-19 Tcl Equivalent Port Information
set_port_location sys_addr[23] -coordinate { 1587.825 2744.180 } \
 -layer_name METAL3 -layer_area {0.000 0.000 0.820 5.820}
set_port_location sys_addr[23] -coordinate { 1587.825 2744.180 }\
 -layer_name
METAL4 -layer_area {0.000 0.000 0.820 5.820} -append

Port orientation is also supported. Example 10-20 shows DEF information for such a case.

Example 10-20 DEF Port Information
PINS 1;

- OUT + NET OUT + DIRECTION INPUT + USE SIGNAL
+ LAYER m4 (-120 0) (120 240)
+ FIXED (4557120 1726080) S ;

END PINS

The corresponding Tcl commands are shown in Example 10-21.

Example 10-21 Tcl Equivalent Port Information
set_port_location OUT -coordinate { 4557.120 1726.080 } -layer_name m4 \

-layer_area {-0.120 -0.240 0.120 0.000}

Preroutes
Design Compiler extracts preroutes that are defined in the DEF file.

Example 10-22 shows imported preroute information.

Example 10-22 DEF Preroute Information
SPECIALNETS 2 ;
- vdd
 + ROUTED METAL3 10000 + SHAPE STRIPE (10000 150000) (50000 *)
 + USE POWER ;
...
END SPECIALNETS

The Tcl equivalent commands are shown in Example 10-23.

Example 10-23 Tcl Equivalent Preroute Information
create_net_shape -no_snap -type path -net vdd -datatype 0 -path_type 0 \

-route_type pg_strap -layer METAL3 -width 10.000 \
-points {{10.000 150.000} {50.000 150.000}}
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-23
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-23

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Site Array Information
Design Compiler imports site array information that is defined in the DEF file. Site arrays in
the DEF file define the placement area.

Example 10-24 shows imported site array information.

Example 10-24 DEF Site Array Information
ROW ROW_0 core 0 0 N DO 838 BY 1 STEP 560 0;

The Tcl equivalent commands are shown in Example 10-25.

Example 10-25 Tcl Equivalent Site Array Information
create_site_row -name ROW_0 -coordinate {0.000 0.000}\

-kind core -orient 0 -dir H -space 0.560 -count 838

Importing Incremental DEF Information Using
the extract_physical_constraints Command
By default, the extract_physical_constraints command runs in incremental mode.
That is, if you use the command to process multiple DEF files, the command preserves
existing physical annotations on the design. In incremental mode, the placement area is
imported based on the current core area and site rows in the DEF whereas, in
non-incremental mode, the placement area is imported based on the site rows in the DEF.
Conflicts are resolved as follows:

• Physical constraints that can have only one value are overwritten by the value from the
latest DEF file. That is, port location and macro location are overwritten.

• Physical constraints that can have accumulated values are recomputed. That is, core
area can be recomputed based on the existing value and the site row definitions in the
latest DEF file. Placement keepouts from different DEF files are accumulated and the
final keepout geometry is computed internally during synthesis.

Figure 10-2 shows an example of incremental extraction performed by the
extract_physical_constraints command.
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-24

Design Compiler User Guide Version D-2010.03-SP2
Figure 10-2 Incremental Extraction with the extract_physical_constraints command

To disable incremental mode, use the -no_incremental option of the
extract_physical_constraints command.

Matching Names of Macros and Ports
By default, when the extract_physical_constraints command applies physical
constraints in topographical mode, it uses an intelligent name matching algorithm to match
macros and ports in the DEF file with macros and ports in memory. The command uses the
intelligent name matching capability when it does not find an exact match.

The extract_physical_constraints command reads the DEF files generated from a
netlist that could have different object names than the netlist in memory. These name
mismatches can be caused by automatic ungrouping and the change_names command.
Typically, hierarchy separators and bus notations are sources of these mismatches.

For example, automatic ungrouping by the compile_ultra command followed by the
change_names command might result in the forward slash (/) separator being replaced with
an underscore (_) character. Therefore, a macro named a/b/c/macro_name in the RTL might
be named a/b_c_macro_name in the mapped netlist, which is the input to the back-end tool.
When extracting physical constraints from the DEF file, the
extract_physical_constraints command automatically resolves these name
differences by using an intelligent name matching algorithm.

To disable intelligent name matching, you can use the -exact option of the
extract_physical_constraints command. This option allows you to specify that the
objects in the netlist in memory be matched exactly with the corresponding objects in the
DEF file. When you use the -verbose option of the extract_physical_constraints
command, the tool displays an informational message:

Information: Fuzzy match cell %s in netlist with instance
%s in DEF.

extract_physical_constraints DEF1.def DEF2.def

(300,300)

(0,0)

P1

P2

DEF1
Core Area {0,0, 200, 200}
Port P1 P2 location
Keepout K1

DEF1
Core Area {0,50, 300, 300}
Port P2 location
Keepout K2

K1

K2
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-25
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-25

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
By default, the following characters are considered equivalent:

• Hierarchical separators { / _ . }

For example, a cell named a.b_c/d_e is automatically matched with the string a/b_c.d/e
in the DEF file.

• Bus notations { [] __ () }

For example, a cell named a [4] [5] is automatically matched with the string a_4__5_ in
the DEF file.

To define the rules used by the intelligent name matching algorithm, use the
set_fuzzy_query_options command. For more information, see the Design Compiler
Command-Line Interface Guide.

Exporting Physical Constraints From IC Compiler Using
the write_floorplan Command
To improve timing, area, and power correlation between Design Compiler and IC Compiler,
you can read your mapped Design Compiler netlist into IC Compiler, create a basic floorplan
in IC Compiler, export this floorplan from IC Compiler, and read the floorplan back into
Design Compiler.

To export floorplan information from IC Compiler for use in DC Ultra topographical mode,
you can use the write_floorplan command in IC Compiler. The write_floorplan
command writes a Tcl script that you read into DC Ultra topographical mode to re-create
elements of the floorplan of the specified design. Example 10-26 uses the
write_floorplan command to write out all placed standard cells to a file called
placed_std.fp.

Example 10-26 Using write_floorplan to Export Physical Data From IC Compiler
icc_shell> write_floorplan -placement {io hard_macro soft_macro}\

-create_terminal -row -create_bound
 -preroute floorplan_for_DC.fp

For details about the write_floorplan command, see the man page.

Importing Physical Constraints From an IC Compiler
write_floorplan Formatted File
Use the read_floorplan command to read in a script file generated by the
write_floorplan command that contains commands describing floorplan information. You
can also use the source command to import the floorplan information. However, the source
command reports errors and warnings that are not applicable to DC Ultra in topographical
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-26

Design Compiler User Guide Version D-2010.03-SP2
mode. The read_floorplan command removes these unnecessary errors and warnings. In
addition, you need to enable fuzzy name matching manually when you use the source
command. The read_floorplan command automatically enables fuzzy name matching.

To visually inspect your imported physical constraints, use the layout view in the Design
Vision layout window.

Imported physical constraints are automatically saved to your .ddc file. To save the physical
constraints in a separate file, use the write_floorplan command after extraction. This
command saves the floorplan information so that you can read the floorplan back into
Design Compiler.

Some of the physical constraints imported from the floorplan file are listed below:

• Voltage areas

• Die Area

The die area represents the silicon boundary of a chip and encloses all objects of a
design, such as pads, I/O pins, and cells.

• Placement Area

• Macro Location and Orientation

For each cell with a location and the FIXED attribute specified, Design Compiler sets the
location on the corresponding cell in the design.

• Hard and Soft Placement Blockages

For defined placement blockages, Design Compiler creates placement blockages on the
design.

• Wiring Keepouts

Wiring keepout information is imported from the floorplan file. The create_route_guide
command creates a wiring keepout.

• Placement Bounds

Placement bounds are extracted from the floorplan file in the following two ways:

1. If there are regions in the design with the same name as in the floorplan file, the cells
in the related group are attached to the region by the update_bounds command in
incremental mode.

2. If the region does not exist in the design, it is created with the same name as in the
floorplan file by applying the create_bound command. Matched cells in the related
group are also attached.

• Port Locations
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-27
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-27

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
For each port with the location specified in the floorplan file, Design Compiler sets the
location on the corresponding port in the design.

Ports with changed names and multilayers are supported.

• Preroutes

Design Compiler imports preroutes that are defined in the floorplan file. A preroute is
represented with the create_net_shape command.

• Site Array Information

Design Compiler extracts site array information that is defined in the floorplan file. Site
arrays define the placement area.

For command details, see the man page.

Floorplan modification issues and port and macro name matching considerations are
described in the following sections:

• Incremental Floorplan Modifications Using the read_floorplan Command

• Matching Names of Macros and Ports

Incremental Floorplan Modifications Using the
read_floorplan Command
The read_floorplan command should not be used to perform incremental floorplan
modifications. The read_floorplan command imports the entire floorplan information
exported from IC Compiler with the write_floorplan command and overwrites any
existing floorplan. The write_floorplan command usually includes commands to remove
any existing floorplan.

Matching Names of Macros and Ports
By default, when the read_floorplan command applies physical constraints in
topographical mode, it has an intelligent name matching capability that matches macros and
ports in the floorplan file with macros and ports in memory. The command uses the
intelligent name matching capability when it does not find an exact match.

The read_floorplan command reads from floorplan files generated from a netlist that
could have different object names from the netlist in memory. These name mismatches can
be caused by automatic ungrouping and the change_names command. Typically, hierarchy
separators and bus notations are sources of these mismatches.

For example, automatic ungrouping by the compile_ultra command followed by
change_names might result in the forward slash (/) separator being replaced with an
underscore (_) character. Therefore, a macro named a/b/c/macro_name in the RTL might be
named a/b_c_macro_name in the mapped netlist, which is the input to the back-end tool.
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-28

Design Compiler User Guide Version D-2010.03-SP2
When extracting physical constraints from the DEF file, the
extract_physical_constraints command automatically resolves these name
differences by using Design Compiler’s intelligent name matching capability.

By default, the following characters are considered equivalent:

• Hierarchical separators { / _ . }

For example, a cell named a.b_c/d_e is automatically matched with the string a/b_c.d/e
in the floorplan file.

• Bus notations { [] __ () }

For example, a cell named a [4] [5] is automatically matched with the string a_4__5_ in
the floorplan file.

To define the rules used by the intelligent name matching capability, use the
set_fuzzy_query_options command.

Note:
Using the source command is not recommended. However, if you use the source
command to import your floorplan information, you need to enable fuzzy name matching
manually by setting the fuzzy_matching_enabled variable to true before you source
the floorplan file, for example,

(set_fuzzy_query_options)
set fuzzy_matching_enabled true
source design.fp
set fuzzy_matching_enabled false

For more information, see the Design Compiler Command-Line Interface Guide.

Manually Defining Physical Constraints
This section describes how to manually define physical constraints in the following
subsections:

• Defining Physical Constraints Overview

• Defining the Die Area With the create_die_area Command

• Defining the Core Placement Area With the create_site_rows Command

• Defining Placement Area With the set_aspect_ratio and set_utilization Commands

• Defining Port Locations

• Defining Macro Location and Orientation
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-29
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-29

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
• Defining Placement Blockage

• Defining Voltage Area

• Defining Placement Bounds

• Creating Wiring Keepouts

• Creating Preroutes

Defining Physical Constraints Overview
This section describes the commands you can use to define the floorplan’s physical
constraints manually. DC Ultra, in topographical mode, can read physical constraints
(floorplan information) from a Tcl-based script of physical commands.

You manually define physical constraints when you cannot obtain this information from a
DEF file or from the read_floorplan command. For details, see “Importing Physical
Constraints From an IC Compiler DEF Formatted File” on page 10-17 and “Importing
Physical Constraints From an IC Compiler write_floorplan Formatted File” on page 10-26.
After you have manually defined your physical constraints in a Tcl script file, use the source
command to apply these constraints. Keep the following points in mind when you manually
define physical constraints:

• You must read in the design before applying user-specified physical constraints.

• You must apply user-specified physical constraints during the first topographical mode
session.

Table 10-3 lists the commands that you use to set physical constraints.

Table 10-3 Commands That Define Physical Constraints

To define this physical constraint Use these commands

Die Area
(For details, see “Defining the Die Area With
the create_die_area Command” on
page 10-31.)

create_die_area

Floorplan estimate when exact area is not
known
(For details, see “Defining Placement Area
With the set_aspect_ratio and set_utilization
Commands” on page 10-33.)

set_aspect_ratio and
set_utilization

Exact core area
(For details, see “Defining the Core Placement
Area With the create_site_rows Command” on
page 10-33.)

 create_site_rows
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-30

Design Compiler User Guide Version D-2010.03-SP2
Defining the Die Area With the create_die_area Command
DC Ultra topographical technology supports the manual definition of the die area, which is
also known as the cell boundary. The die area represents the silicon boundary of a chip, and
it encloses all objects of a design, such as pads, I/O pins, and cells.

Typically, you create floorplan constraints, including die area, in your floorplanning tool and
import these physical constraints into DC Ultra topographical mode. However, if you are not
using a floorplanning tool, you may need to create your physical constraints manually. The
create_die_area command enables you to define your die area manually from within
DC Ultra topographical mode.

Relative port locations
(See “Defining Relative Port Locations” on
page 10-34)

set_port_side

Exact port locations
(See “Defining Exact Port Locations” on
page 10-35)

set_port_location

Macro location and orientation
(See “Defining Macro Location and
Orientation” on page 10-36)

set_cell_location

Placement keepout (blockages)
(See “Defining Placement Blockage” on
page 10-37)

create_placement_blockage

Voltage area
(See “Defining Voltage Area” on page 10-37)

create_voltage_area

Placement bounds
(See “Defining Placement Bounds” on
page 10-38)

create_bounds

Wiring keepouts
(See “Creating Wiring Keepouts” on
page 10-41)

create_route_guide

Preroutes
(See “Creating Preroutes” on page 10-41)

create_net_shape

Table 10-3 Commands That Define Physical Constraints (Continued)

To define this physical constraint Use these commands
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-31
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-31

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
When using the create_die_area command, you can use the -coordinate option if your
die area is a rectangle; you must use the -polygon option if your die area is rectilinear. Note
that you can use the -polygon option to specify rectangles, but you cannot use the
-coordinate option to specify rectilinear die areas. For example, this command

create_die_area -coordinate { 0 0 100 100 }

or this command

create_die_area -coordinate { {0 0} {100 100} }

will create the same rectangular die area as the following command:

create_die_area -polygon { {0 0} {100 0} {100 100} {0 100} }

For the create_die_area command syntax details, see the man page.
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-32

Design Compiler User Guide Version D-2010.03-SP2
Defining the Core Placement Area With the
create_site_rows Command
Define the core placement area with the create_site_rows command.

The core placement area is a box that contains all rows. It represents the placeable area for
standard cells. The core area is smaller than the cell boundary (the die area). Pads, I/O pins,
and top-level power and ground rings are found outside the core placement area. Standard
cells, macros, and wire tracks are typically found inside the core placement area. There
should be only one core area in a design.

You use the create_site_row command to create a row of sites or a site array at a
specified location. A site is a predefined valid location where a leaf cell can be placed; a site
array is an array of placement sites and defines the placement core area.

To create a horizontal row of 100 CORE_2H sites with a bottom-left corner located at (10,10)
and rows spaced 5 units apart, enter

create_site_row -count 100 -kind CORE_2H -space 5 \
-coordinate {10 10}

Use the report_area -physical command to report physical information such as core
area, aspect ratio, utilization, total fixed cell area, and total movable cell area.

For the create_site_rows command syntax details, see the man page.

Defining Placement Area With the set_aspect_ratio
and set_utilization Commands
If you have not defined your die area with the create_die_area command, defined a
floorplan area with the create_site_rows command, or imported floorplan information
from a floorplanning tool, you can use the set_aspect_ratio and set_utilization
commands to estimate the placement area.

The aspect ratio is the height-to-width ratio of a block; it defines the shape of a block.
Utilization specifies how densely you want cells to be placed within the block. Increasing
utilization reduces the core area.

Figure 10-3 illustrates how to use these commands.
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-33
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-33

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Figure 10-3 Using the set_aspect_ratio and set_utilization Commands

Defining Port Locations
You can define constraints that restrict the placement and sizing of ports by using the
set_port_side command or set_port_location command. You can specify relative or
exact constraints.

The following subsections describe how to define relative and exact port locations:

• Defining Relative Port Locations

• Defining Exact Port Locations

Defining Relative Port Locations
Use the set_port_side command to define relative port locations as follows:

set_port_side port_name -side {L|R|T|B}

Valid sides are left (L), right (R), top (T), or bottom (B). A port can be placed at any location
along the specified side. If the port side constraints are provided, the ports are snapped to
the specified side. Otherwise, by default, the ports are snapped to the side nearest to the
port location assigned by the coarse placer. Figure 10-4 shows how you define port sides by
using the set_port_side command.

width

he
ig

ht

width

he
ig

ht

set_aspect_ratio 1 set_aspect_ratio 0.5

width

he
ig

ht

set_utilization 0.6

width

he
ig

ht

set_utilization 0.85
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-34

Design Compiler User Guide Version D-2010.03-SP2
Figure 10-4 Setting Relative Port Sides

Defining Exact Port Locations
Use the set_port_location command to annotate the port location on the specified port,
defining exact port locations as follows:

set_port_location port_name -coordinate {x y}

where -coordinate is the lower left point of the port shape.

The following example annotates port Z, a top-level port in the current design, with the
location at 100, 5000.

dc_shell-topo> set_port_location -coord {100 5000} Z

In addition, you can use the -layer_name option and -layer_area option to define metal
layer geometry. For example, the following command specifies that the layer geometry is a
rectangle of dimensions 10 by 20 for port Z.

dc_shell-topo> set_port_location -layer_name METAL1 \
-layer_area {-5 -10 5 10} Z

These options allow you to define long ports so that connections to the long port can be
made along any point on the specified metal layer during virtual-layout based optimization.
A long port can be an input, output, or bidirectional port. You specify a long port location by
using a dimension greater than the minimum metal area. Figure 10-5 illustrates the different
types of port dimensions: Long port, flushed port, and multiple port.

• A long port has the metal area defined with a single metal layer and touches only one side
of the block core area boundary.

• A flushed port has the metal area defined with a single metal layer and touches the block
core area boundary on two sides.

set_port_side -side {R} Port_N

Port_N

set_port_side -side {B} Port_M
Port_M
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-35
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-35

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
• A multiple port has more than one connection to the block and can touch the block
boundary on two or more sides and can use one or more layers.To create a multiple port,
use the -append option of the set_port_locations command. With this option you add
multiple shapes to a port and create a multiple port.

Figure 10-5 Types of Port Dimension Specifications

Defining Macro Location and Orientation
You can define exact macro locations by setting the following command:

set_cell_location cell_name -coordinate {x y} -fixed
-orientation {N|S|E|W|FN|FS|FE|FW}

where -coordinate is the coordinate of the lower left corner of the cell’s bounding box. The
coordinate numbers are displayed in microns relative to the block orientation. The
orientation value is one of the rotations listed in the following table.

Orientation Rotation

N (default) Nominal orientation, 0 degree rotation (north)

S 180 degrees (south)

E 270 degrees counterclockwise (east)

W 90 degrees counterclockwise (west)

FN Reflection in the y-axis (flipped north)

FS 180 degrees, followed by reflection in the y-axis (flipped south)

FE 270 degrees counterclockwise, followed by reflection in the y-axis (flipped east)

FW 90 degrees counterclockwise, followed by reflection in the y-axis (flipped west)

(50,160)

(400,140)

RAM1
Blockage1

Port A

(50,160)

(400,140)

RAM1
Blockage1

Port A

(50,160)

(400,140)

RAM1
Blockage1

Port A
Port A

P
o
r
t

A

Long Port Flushed Port Multiple Port
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-36

Design Compiler User Guide Version D-2010.03-SP2
Defining Placement Blockage
Use the create_placement_blockage command to define hard, soft, and partial
placement blockages.

Figure 10-6 uses the create_placement_blockage command to define a hard placement
blockage named Blockage1.

Figure 10-6 Defining a Hard Placement Blockage

Defining Voltage Area
You define voltage areas by using the create_voltage_area command. This command
enables you to create a voltage area on the core area of the chip. The voltage area is
associated with hierarchical cells. The tool assumes the voltage area to be an exclusive,
hard move bound and tries to place all the cells associated with the voltage area within the
defined voltage area, as well as place all the cells not associated with the voltage area
outside the defined voltage area.

Example 10-27 uses the create_voltage_area command to constrain the instance
INST_1 to lie within the voltage area whose coordinates are lower-left corner (100 100)
upper-right corner (200 200).

Example 10-27 Using the create_voltage_area Command With the -names Option
dc-shell-topo> create_voltage_area -name foo \

-coordinate {100 100 200 200} INST_1

Example 10-28 uses the create_voltage_area command to constrain cells in power
domain PD1 to lie within the voltage area whose coordinates are lower-left corner (100 100)
upper-right corner (200 200).

(300,280)

(50,160)

Blockage1

create_placement_blockage\
-name Blockage1 -type hard \
-coordinate {50 160 300 280}
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-37
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-37

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Example 10-28 Using the create_voltage_area Command With the -power_domain Option
dc-shell-topo> create_voltage_area -power_domain PD1 \
 -coordinate {100 100 200 200}

Note:
Note: The -names option and the -power_domain option of the create_voltage_area
command are mutually exclusive.

In addition to the create_voltage_area command, the following commands are
supported: remove_voltage_area and report_voltage_area

Voltage areas are automatically defined when you import your floorplan information from
IC Compiler with the read_floorplan command. For details, see “Importing Physical
Constraints From an IC Compiler write_floorplan Formatted File” on page 10-26. You need
to define voltage areas manually when importing floorplan information from a DEF file.

To visually inspect your defined voltage areas, use the layout view in the Design Vision
layout window.

Defining Placement Bounds
This section describes how to create and use placement bounds in the following
subsections:

• Placement Bounds Overview

• Creating Placement Bounds

• Using Placement Bounds Effectively

• Order for Creating Placement Bounds

• Guidelines for Defining Placement Bounds Effectively

• Summary of Bounds Commands

Placement Bounds Overview
A placement bound is a rectangular or rectilinear area within which to place cells and
hierarchical cells. You use the create_bounds command to specify placement constraints
for coarse placement.

Defining a placement bound enables you to group cells such as clock-gating cells or
extremely timing-critical groups of cells that you want to guarantee will not be disrupted for
placement by other logic. During placement, the tool ensures that the cells you grouped
remain together. Placement bounds are placement constraints.
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-38

Design Compiler User Guide Version D-2010.03-SP2
Creating Placement Bounds
Use the create_bounds command to specify placement bounds. You can specify two
different types of bounds: move bounds and group bounds. Move bounds restrict the
placement of cells to a specific region of the core area. Move bounds require absolute
coordinates to be specified, using the -coordinate option. Group bounds, on the other
hand, are floating region constraints, using the -dimension option. Cells in the same group
bound are placed within a specified bound but the absolute coordinates are not fixed.
Instead, they are optimized by the placer. If you do not use either the -dimension or
-coordinate option, the tool creates a group bound with the bounding box computed
internally by the tool.

In addition, move bounds can be soft, hard, or exclusive. Group bounds can be soft or hard.

• Soft bounds specify placement goals, with no guarantee that the cells will be placed
inside the bounds. If timing or congestion cost is too high, cells might be placed outside
the region. This is the default.

• Hard bounds force placement of the specified cells inside the bounds. To specify hard
bounds, use the -type hard option along with the -dimension or -coordinate option.
However, overusing hard bounds can lead to inferior placement solutions.

• Exclusive bounds force the placement of the specified cell inside the bounds. All other
cells must be placed outside the bounds. To specify exclusive bounds, use the
-exclusive option.

You can specify the following types of placement bounds:

• Soft group bound

create_bounds -dimension {100 100} -name foo1 INST1

• Soft move bound

create_bounds -coordinate {0 0 10 10} -name foo2 INST2

• Hard group bound

create_bounds -dimension {100 100} -type hard \
-name foo3 INST3

• Hard move bound

create_bounds -coordinate {0 0 10 10} -type hard \
-name foo4 INST4

• Exclusive move bound

create_bounds -coordinate {0 0 10 10} -type hard \
-name foo5 INST5
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-39
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-39

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Using Placement Bounds Effectively
Usually, you do not impose bounds constraints, allowing the tool full flexibility to optimize
placement for timing and routability. However, if QoR does not meet your requirements, you
might improve QoR by using the create_bounds command.

Make the number of cells you place in placement bounds relatively small compared with the
total number of cells in the design. When you define placement bounds, the solution space
available to the placer to reach the optimal result gets smaller.

Order for Creating Placement Bounds
If you impose bounds constraints, create bounds in the following order:

1. Floating group bounds where location and dimension are optimized by the tool. For these
bounds, do not specify dimensions.

2. Floating group bounds with fixed dimensions. For these bounds, specify dimensions.

3. Fixed move bounds with fixed location and dimension. For these bounds, specify
coordinates that define the bound.

Guidelines for Defining Placement Bounds Effectively
Use the following guidelines when you create placement bounds:

• Use soft and hard move bounds sparingly in your design.

• Avoid placing cells in more than one bound.

• Be aware that including small numbers of fixed cells in group bounds can move the
bound.

• Do not use placement bounds as keepouts.

• Maintain even cell density distribution over the chip.
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-40

Design Compiler User Guide Version D-2010.03-SP2
Summary of Bounds Commands
Table 10-4 summarizes the commands related to placement bounds.

Creating Wiring Keepouts
You can create wiring keepouts by using the create_route_guide command.
Example 10-29 uses the create_route_guide command to create a keepout named
my_keepout_1 in the METAL1 layer at coordinates {12 12 100 100}.

Example 10-29
dc_shell-topo> create_route_guide -name "my_keepout_1" \

-no_signal_layers "METAL1" \
-coord {12 12 100 100}

Creating Preroutes
You can preroute a group of nets, such as clock nets, before routing the rest of the nets in
the design. During global routing, the tool considers these preroutes while computing the
congestion map; this map is consistent with IC Compiler. This feature also addresses
correlation issues caused by inconsistent floorplan information.

To define preroutes, you use the create_net_shape command. You can create three
different types of net shapes as shown in Figure 10-7: path, wire (horizontal and vertical),
and rectangle.

Table 10-4 Summary of Bounds Commands

Command Description

create_bounds Creates rectangular and rectilinear move bounds and
group bounds

update_bounds Updates a bound by adding or removing contents

remove_bounds Removes bounds set using create_bounds

report_bounds Reports bounds and bound IDs set using
create_bounds
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-41
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-41

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Figure 10-7 Types of Preroutes

Table 10-5 shows how you use some of the options of the create_net_shape command.

Table 10-5 Using the create_net_shape Command Options to Create Preroutes

To do this Use this option

Specify the type of net shape. -type path | wire | rect

Specify the type of net. -net_type ground | power | clock | signal

Specify the net on which the net shape is
created, for example VSS or VDD.

-net name

Specify the layer on which the net shape
is created.

-layer name

Specify the origin of the net shape for
wires.

-origin x y

Specify the bounding box of the net
shape for rectangles.

-bbox llx lly urx ury

Specify the point sequence of the net
shape for paths.

-points {x0 y0 x1 y1... xn yn}

Specify the alignment type of a wire or
path. Default is square.

-path_type { square | round | extend_half_width
| octagon }

50

Path net shape

Rectangle net shape

Wire net shape

Wire net shape

100

150
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-42

Design Compiler User Guide Version D-2010.03-SP2
The following examples show how to create the net shapes shown in Figure 10-7.

Example 10-30 uses the create_net_shape command to create two wire net shapes.

Example 10-30
create_net_shape -type wire -net VSS \

-bbox {0 60 80 80} \
-layer METAL5 \
-route_type pg_strap \
-net_type ground

create_net_shape -type wire -net VSS \
-origin {50 100} \
-width 20 \
-length 80 \
-layer METAL4 -route_type pg_strap -vertical

Example 10-31 uses the create_net_shape command to create the path net shape.

Example 10-31
create_net_shape -type path -net VSS\

-points {70 30 110 30 110 90 150 90 150 110} \
-width 0.20 -layer M3 \
-route_type pg_std_cell_pin_conn

Example 10-32 uses the create_net_shape command to create the rectangle net shape.

Example 10-32
create_net_shape -type rect -net VSS \

-bbox {{80 140} {160 180}} \
-layer METAL1 -route_type pg_strap

For syntax and additional details, see the man page.

Specify the length and width for wires. -length real_number -width real_number

Specify the type of route. -route_type {user_enter | signal_route |
signal_route_global | signal_route_detail |
pg_ring | pg_strap | pg_macro_io_pin_conn |
pg_std_cell_pin_conn | clk_ring | clk_strap |
clk_zero_skew_route | bus | shield |
shield_dynamic | clk_fill_track}

Specify the vertical orientation (Default is
horizontal).

-vertical

Table 10-5 Using the create_net_shape Command Options to Create Preroutes (Continued)

To do this Use this option
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-43
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-43

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Specifying Relative Placement
The relative placement capability provides a way for you to create structures in which you
specify the relative column and row positions of instances. During placement and
optimization, these structures are preserved and the cells in each structure are placed as a
single entity.

Relative placement is usually applied to datapaths and registers, but you can apply it to any
cells in your design, controlling the exact relative placement topology of gate-level logic
groups and defining the circuit layout. You can use relative placement to explore QoR
benefits, such as shorter wire lengths, reduced congestion, better timing, skew control,
fewer vias, better yield, and lower dynamic and leakage power.

The relative placement constraints implicitly generate a matrix structure of instances and
control the placement of these instances. You use the resulting annotated netlist for
optimization, during which the tool preserves the structure and places it as a single entity or
group, as shown in Figure 10-8.

Figure 10-8 Relative Placement in a Floorplan

RAM

(already FIXED
in place)

Structured placement
extracted from
design database

Cells are moved
around floorplan
as a single unit.

Cells
Obstructions
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-44

Design Compiler User Guide Version D-2010.03-SP2
Relative placement is described in the following subsections:

• Benefits of Relative Placement

• Methodology for the Relative Placement Flow

• Summary of Relative Placement Commands

• Creating Relative Placement Using Compiler Directives

• Creating Relative Placement Groups

• Anchoring Relative Placement Groups

• Applying Compression to Relative Placement Groups

• Specifying Alignment

• Adding Objects to a Group

• Querying Relative Placement Groups

• Checking Relative Placement Constraints

• Saving Relative Placement Information

• Removing Relative Placement Group Attributes

• Sample Script for a Relative Placement Flow

Benefits of Relative Placement
Relative placement provides the following benefits:

• Provides a method for maintaining structured placement for legacy or intellectual
property (IP) designs

• Reduces the placement search space in critical areas of the design, which means greater
predictability of QoR (wire length, timing, power)

• Correlates better with IC Compiler

• Can minimize congestion and improve routability
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-45
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-45

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Methodology for the Relative Placement Flow
The methodology for the relative placement flow follows these major steps:

1. Read a mapped gate-level netlist into topographical mode.

2. Define the relative placement constraints.

a. Create the relative placement groups by using the create_rp_group command.
See “Creating Relative Placement Groups” on page 10-49.

b. Add relative placement objects to the groups by using the add_to_rp_group
command. See “Adding Relative Placement Groups” on page 10-59.

Topographical mode annotates the netlist with the relative placement constraints and
places an implicit size_only constraint on these cells.

3. Read floorplan information. For example, enter

dc_shell> extract_physical_constraints floorplan.def

4. Check the relative placement by using the check_rp_groups command.

The command reports relative placement failures, such as:

RPGP-028: The height ‘%f’ of the RP group ‘%s’ is more than the height
‘%f’ of the core area.
RPGP-035 (warning) Relative placement leaf cell data may have been
lost.
RPGP-0348: All RP cells in cluster ‘%s’ are not within same voltage
region;
ignoring voltage region placement.

5. Synthesize and optimize the design by using the compile_ultra command. Figure 10-9
shows the relative placement flow in topographical mode.

6. To visually verify placement, use the layout view in the Design Vision layout window.
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-46

Design Compiler User Guide Version D-2010.03-SP2
Figure 10-9 Relative Placement Flow

Keep the following points in mind when you use the relative placement feature:

• Topographical mode automatically places a size_only attribute on the relative
placement cells to preserve the RP structure.

• Relative placement constraints are handled appropriately and preserved by using the
uniquify and ungroup commands.

• New cells added during optimization between two relative placement cells do not
automatically belong to the relative placement group.

• Make sure that relative placement is applicable to your design. A design can contain both
structured and unstructured elements. Some designs such as datapaths and pipelined
designs are more appropriate for structured placement. Providing relative placement
constraints for cells that would have be placed better by the tool can deliver poor results.

• Relative placement constraints are carried in the .ddc file for subsequent topographical
mode sessions.

.ddc with RP

RTL/Netlist

Relative Placement Constraints
in RTL designs,

(through Tcl commands

constraints
Updated RP
constraints

Milkyway/
Verilog

Topographical Mode

IC Compiler

mapped cellsGTECH netlists, or

or compiler directives)
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-47
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-47

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Summary of Relative Placement Commands
You can specify relative placement constraints by using a dedicated set of Tcl commands,
similar to the commands in IC Compiler. Table 10-6 summarizes the commands available in
Design Compiler topographical mode for relative placement. The sections that follow
describe how to use these commands.

Table 10-6 Summary of Relative Placement Commands

Command Description

create_rp_group Creates new relative placement groups.

add_to_rp_group Adds items to relative placement groups.

set_rp_group_options Sets relative placement group attributes.

report_rp_group_options Reports attributes for relative placement groups.

get_rp_groups Creates a collection of relative placement groups that match
certain criteria.

write_rp_groups Writes out relative placement information for specified groups.

all_rp_groups Returns a collection of specified relative placement groups
and all subgroups in their hierarchy.

all_rp_hierarchicals Returns a collection of hierarchical relative placement groups
that are ancestors of specified groups.

all_rp_inclusions Returns a collection of hierarchical relative placement groups
that include specified groups.

all_rp_instantiations Returns a collection of hierarchical relative placement groups
that instantiate specified groups.

all_rp_references Returns a collection of relative placement groups that contain
specified cells (either leaf cells or hierarchical cells that
contain instantiated relative placement groups).

check_rp_groups Checks relative placement constraints and reports failures.

remove_rp_groups Removes a list of relative placement groups.

remove_rp_group_options Reports attributes for the specified relative

placement groups.
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-48

Design Compiler User Guide Version D-2010.03-SP2
Creating Relative Placement Using Compiler Directives
DC Ultra topographical mode supports relative placement information embedded within the
Verilog or VHDL description. This capability is enabled by compiler directives that can
specify and modify relative placement information. Using these embedded compiler
directives, relative placement constraints can be placed in an RTL design, a GTECH netlist,
or a mapped netlist. Using compiler directives to specify relative placement increases design
flexibility and simplifies relative placement because you no longer need to update the
location of many of the cells in the design.

For information about specifying relative placement data for RTL designs, GTECH netlists,
and mapped netlists, see the “Creating Relative Placement in Hardware Description
Languages,” section in the HDL Compiler for VHDL User Guide and the HDL Compiler for
Verilog User Guide.

Creating Relative Placement Groups
A relative placement group is an association of cells, other groups, and keepouts. A group is
defined by the number of rows and columns it uses. To create a relative placement group in
Design Compiler topographical mode, use the create_rp_group command. Topographical
mode creates a relative placement group named design_name::group_name, where
design_name is the design specified by the -design option or the current design if you do
not use the -design option. You must use this name or a collection of relative placement
groups when referring to this group in other relative placement commands. See the man
page for a list of available options.

remove_from_rp_group Removes an item (cell, relative placement group, or keepout)
from the specified relative placement groups.

rp_group_inclusions Returns collections for directly embedded included groups
(added to a group by using the add_rp_group -hierarchy
command) in all or specified groups.

rp_group_instantiations Returns collections for directly embedded instantiated groups
(added to a group by using the add_rp_group -hierarchy
-instance command) in all or specified groups.

rp_group_references Returns collections for directly embedded leaf cells (added to
a group by using the add_rp_group -leaf command),
directly embedded included cells that contain hierarchically
instantiated cells (added to the included group by using the
add_rp_group -hierarchy -instance command), or both in
all or specified relative placement groups.

Table 10-6 Summary of Relative Placement Commands (Continued)

Command Description
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-49
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-49

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
If you do not specify any options, the tool creates a relative placement group that has one
column and one row. The group will not contain any objects. To add objects (leaf cells,
relative placement groups, or keepouts) to a relative placement group, use the
add_to_rp_group command, which is described in “Adding Objects to a Group” on
page 10-54.

For example, to create a group named designA::rp1, having six columns and six rows, enter

create_rp_group rp1 -design designA -columns 6-rows 6

Figure 10-10 shows the positions of columns and rows in a relative placement group.

Figure 10-10 Relative Placement Column and Row Positions

In this figure,

• Columns count from column 0 (the leftmost column).

• Rows count from row 0 (the bottom row).

• The width of a column is the width of the widest cell in that column.

• The height of a row is determined by the height of the tallest cell in that row.

• It is not necessary to use all positions in the structure. For example, in this figure,
positions 0 3 (column 0, row 3) and 4 1 (column 4, row 1) are not used.

0 5

0 4

0 2

1 5

1 4

1 3

3 5

3 4

3 3

4 52 5

3 2

2 3

4 2

0 0 1 0 3 0 4 02 0

5 5

5 4

5 2

5 0

2 4

5 3

0 1 1 1 3 12 1 5 1

col 0

row 0

row 2

row 4

row 5

row 3

row 1

col 1 col 2 col 4 col 5col 3

1 2 2 2

4 4

4 3
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-50

Design Compiler User Guide Version D-2010.03-SP2
Table 10-7 describes some options you can use with the create_rp_group command.

Anchoring Relative Placement Groups
By default, topographical mode can place a relative placement group anywhere within the
core area. You can control the placement of a top-level relative placement group by
anchoring it.

To anchor a relative placement group, use the create_rp_group or the
set_rp_group_options command with the -x_offset and -y_offset options. The offset
values are float values, in microns, relative to the chip’s origin.

If you specify both the x- and y-coordinates, the group is anchored at that location. If you
specify only one coordinate, IC Compiler can determine the placement by sliding the group
along the unspecified coordinate.

For example, to specify a relative placement group anchored at (100, 100), enter the
following command:

create_rp_group misc1 -design block1 \
-columns 3 -rows 10 -x_offset 100 -y_offset 100

Applying Compression to Relative Placement Groups
You can apply compression to a relative placement group in the horizontal direction during
placement by using the -compress option with the create_rp_group command or the
set_rp_group_options command. Setting this option enables bit-stack placement that
places each row of a relative placement group without any gaps between leaf cells,
lower-level hierarchical relative placement groups, or keepouts. Note that column alignment
is not maintained when you use compression.

Table 10-7 Using the create_rp_group Command Options

To do this Use this option

Specify the anchor location. -x_offset
-y_offset

Specify the type of alignment used by the group. -alignment

Specify the group alignment pin. -pin_align_name

Specify the utilization percentage (default is 100 percent). -utilization

Ignore this relative placement group. -ignore

Apply compression in the horizontal direction. -compress
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-51
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-51

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
If you specify both the -utilization and -compress options, the utilization constraints are
observed with gaps between leaf elements in a relative placement row. The -compress
option does not propagate from a parent group to child groups. To disable relative placement
with compression, use the remove_rp_group_options -compress command.

Supporting Compression with Mixed Alignment
Relative placement groups with alignment, such as bottom left, bottom right, or pin
alignment, and the relative placement group that is created by using -compress can be
placed on the same top-level groups as shown in Figure 10-11. The individual groups of the
top level are aligned with compression only if you specify the -compress option. Note that
the compression specified at the top level does not propagate to the child groups. The
default alignment of the top-level groups is bottom left and the -compress option is disabled
by default.

Figure 10-11 Compression of Relative Placement Groups with Mixed Alignment

Specifying Alignment
To specify the default alignment method to use when placing leaf cells and relative
placement groups, use the -alignment option with the create_rp_group or
set_rp_group_options command.

set_rp_group_options -alignment bottom-right [get_rp_groups *]

Controlling the cell alignment can improve the timing and routability of your design. You can
specify a bottom-left, bottom-right or bottom-pin alignment. If you do not specify an option,
the tool uses a bottom-left alignment.

The script in Example 10-33 defines a relative placement group that is bottom-left aligned.
The resulting structure is shown in Figure 10-12.

Example 10-33 Definition for Bottom-Left-Aligned Relative Placement Group
create_rp_group rp1 -design pair_design -columns 1 -rows 4

add_to_rp_group pair_design::rp1 -leaf U1 -column 0 -row 0
add_to_rp_group pair_design::rp1 -leaf U2 -column 0 -row 1

Top: -compress
Group_0_0: bottom_left
Group_0_1: -compress
Group_1_0: -compress
Group_1_1: bottom_left
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-52

Design Compiler User Guide Version D-2010.03-SP2
add_to_rp_group pair_design::rp1 -leaf U3 -column 0 -row 2
add_to_rp_group pair_design::rp1 -leaf U4 -column 0 -row 3

Figure 10-12 Bottom-Left-Aligned Relative Placement Group

To align a group by pin location, use the -alignment bottom-pin and -pin_align_name
options of the create_rp_group or set_rp_group_options command.

set_rp_group_options -alignment bottom-pin
-pin_align_name align_pin

Topographical mode looks for the specified alignment pin in each cell in the column. If the
alignment pin exists in a cell, the cell is aligned by use of the pin location. If the specified
alignment pin does not exist in a cell, the cell is aligned at the bottom-left corner and the tool
generates an information message. If the specified alignment pin does not exist in any cell
in the column, the tool generates a warning message.

The script in Example 10-34 defines a relative placement group that is aligned by pin A. The
resulting structure is shown in Figure 10-13.

Example 10-34 Definition for Relative Placement Group Aligned by Pins
create_rp_group rp1 -design pair_design -columns 1 -rows 4 -pin_align_name A

add_to_rp_group pair_design::rp1 -leaf U1 -column 0 -row 0
add_to_rp_group pair_design::rp1 -leaf U2 -column 0 -row 1
add_to_rp_group pair_design::rp1 -leaf U3 -column 0 -row 2
add_to_rp_group pair_design::rp1 -leaf U4 -column 0 -row 3

U4

U3

U2

U1

row 3

row 2

row 1

row 0

col 0
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-53
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-53

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Figure 10-13 Relative Placement Group Aligned by Pins

When you specify an alignment pin for a group, the pin applies to all cells in the group. You
can override the group alignment pin for specific cells in the group by specifying the
-pin_align_name option when you use the add_to_rp_group command to add the cells to
the group.

Adding Objects to a Group
You can add leaf cells, other relative placement groups, and keepouts to relative placement
groups (created with the create_rp_group command). You use the add_to_rp_group
command to add objects.

When you add an object to a relative placement group, keep the following points in mind:

• The relative placement group to which you are adding the object must exist.

• The object must be added to an empty location in the relative placement group.

Adding Leaf Cells
To add a leaf cell to a relative placement group, use the add_to_rp_group command. In a
relative placement group, a leaf cell can occupy multiple column positions or multiple row
positions, which is known as leaf cell straddling. You can create a more compact relative
placement group by straddling leaf cells. To define straddling, you specify multiple column or
row positions by using the -num_columns or -num_rows options respectively. If you do not
specify these options, the default is 1. For example, to create a leaf cell of two columns and
one row, enter

add_to_rp_group rp_group_name -leaf cell_name \
-column 0 -num_columns 2 -row 0 -num_rows 1

U4

U3

U2

U1

row 3

row 2

row 1

row 0

col 0

is pin A
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-54

Design Compiler User Guide Version D-2010.03-SP2
You should not place a relative placement keepout at the same location of a straddling leaf
cell. In addition, straddling is for leaf cells only, but not for hierarchical groups or keepouts.

Note:
You should not apply compression to a straddling leaf cell that has either multiple column
positions, multiple row positions, or both. You can apply right alignment or pin alignment
to a straddling leaf cell with multiple row positions, but not to a cell with multiple column
positions.

Include the -orientation option with a list of possible orientations when you add the cells
to the group with the add_to_rp_group command. See the man page for a list of available
options.

Aligning Leaf Cells Within a Column
You can align the leaf cells in a column of a relative placement group by using the following
alignment methods:

• Bottom left (default)

• Bottom right

• Pin alignment

Controlling the cell alignment can improve the timing and routability of your design.

Aligning by Bottom-Left Corners
To align the leaf cells by aligning the bottom-left corners, use the -alignment bottom-left
option with the create_rp_group command or the set_rp_group_options command:

set_rp_group_options -alignment bottom-left [get_rp_groups *]

The script in Example 10-35 defines a relative placement group that is bottom-left aligned.
The resulting structure is shown in Figure 10-14.

Example 10-35 Definition for Bottom-Left Aligned Relative Placement Group
create_rp_group rp1 -design pair_design -columns 1 -rows 4

add_to_rp_group pair_design::rp1 -leaf U1 -column 0 -row 0
add_to_rp_group pair_design::rp1 -leaf U2 -column 0 -row 1
add_to_rp_group pair_design::rp1 -leaf U3 -column 0 -row 2
add_to_rp_group pair_design::rp1 -leaf U4 -column 0 -row 3
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-55
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-55

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Figure 10-14 Bottom-Left-Aligned Relative Placement Group

Aligning by Bottom-Right Corners
To align a group by aligning the bottom-right corners, use the -alignment bottom-right
option with the create_rp_group command or the set_rp_group_options command:

set_rp_group_options -alignment bottom-right \
[get_rp_groups *]

Note:
For hierarchical relative placement groups, the bottom-right alignment does not
propagate through the hierarchy.

The script in Example 10-36 defines a relative placement group that is bottom-right aligned.
The resulting structure is shown in Figure 10-15.

Example 10-36 Definition for Bottom-Right Aligned Relative Placement Group
create_rp_group rp1 -design pair_design -columns 1 -rows 4 \

-alignment bottom-right
add_to_rp_group pair_design::rp1 -leaf U1 -column 0 -row 0
add_to_rp_group pair_design::rp1 -leaf U2 -column 0 -row 1
add_to_rp_group pair_design::rp1 -leaf U3 -column 0 -row 2
add_to_rp_group pair_design::rp1 -leaf U4 -column 0 -row 3

U4

U3

U2

U1

row 3

row 2

row 1

row 0

col 0
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-56

Design Compiler User Guide Version D-2010.03-SP2
Figure 10-15 Bottom-Right Aligned Relative Placement Group

Aligning by Pin Location
To align a group by pin location, use the -alignment bottom-pin and -pin_align_name
options of the create_rp_group or set_rp_group_options command.

set_rp_group_options -alignment bottom-pin \
-pin_align_name align_pin

Design Compiler looks for the specified alignment pin in each cell in the column. If the
alignment pin exists in a cell, the cell is aligned by use of the pin location. If the specified
alignment pin does not exist in a cell, the cell is aligned at the bottom-left corner and Design
Compiler generates an information message. If the specified alignment pin does not exist in
any cell in the column, Design Compiler generates a warning message.

If you specify both pin alignment and cell orientation, Design Compiler resolves potential
conflicts as follows:

• User specifications for cell orientation take precedence over the pin alignment done by
Design Compiler.

• Pin alignment done by Design Compiler takes precedence over the cell orientation
optimization done by Design Compiler.

The script in Example 10-37 defines a relative placement group that is aligned by pin A. The
resulting structure is shown in Figure 10-16.

Example 10-37 Definition for Relative Placement Group Aligned by Pins
create_rp_group rp1 -design pair_design -columns 1 -rows 4 -pin_align_name A

add_to_rp_group pair_design::rp1 -leaf U1 -column 0 -row 0
add_to_rp_group pair_design::rp1 -leaf U2 -column 0 -row 1
add_to_rp_group pair_design::rp1 -leaf U3 -column 0 -row 2
add_to_rp_group pair_design::rp1 -leaf U4 -column 0 -row 3

U4

U3

U2

U1

row 3

row 2

row 1

row 0

col 0
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-57
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-57

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Figure 10-16 Relative Placement Group Aligned by Pins

When you specify an alignment pin for a group, the pin applies to all cells in the group. You
can override the group alignment pin for specific cells in the group by specifying the
-pin_align_name option when you use the add_to_rp_group command to add the cells to
the group.

Note:
You cannot specify a cell-specific alignment pin when you add a leaf cell from the relative
placement hierarchy browser.

The script in Example 10-38 defines relative placement group misc1, which uses pin A as
the group alignment pin; however, instances I5 and I6 use pin B as their alignment pin, rather
than the group alignment pin. The resulting structure is shown in Figure 10-17.

Example 10-38 Definition for Aligning a Group and Leaf Cells by Pins
create_rp_group misc1 -design block1 -columns 3 -rows 10 \

-pin_align_name A
add_to_rp_group block1::misc1 -leaf I3 -column 0 -row 0
add_to_rp_group block1::misc1 -leaf I4 -column 0 -row 1
add_to_rp_group block1::misc1 -leaf I5 -column 0 -row 2 \

-pin_align_name B
add_to_rp_group block1::misc1 -leaf I6 -column 0 -row 3 \

-pin_align_name B
add_to_rp_group block1::misc1 -leaf I7 -column 0 -row 4
add_to_rp_group block1::misc1 -leaf I8 -column 0 -row 5

U4

U3

U2

U1

row 3

row 2

row 1

row 0

col 0

is pin A
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-58

Design Compiler User Guide Version D-2010.03-SP2
Figure 10-17 Relative Placement Group Aligned by Pins

Adding Relative Placement Groups
Hierarchical relative placement allows relative placement groups to be embedded within
other relative placement groups. The embedded groups then are handled similarly to leaf
cells. You can use hierarchical relative placement to simplify the expression of relative
placement constraints. With hierarchical relative placement, you do not need to provide
relative placement information multiple times for a recurring pattern.

There are two methods for adding a relative placement group to a hierarchical group. You
can include the group or instantiate the group. You use the add_to_rp_group command for
both methods:

• Include the group

If the relative placement group to be added is in the same design as its parent group, it is
an included group. You can include groups in either flat or hierarchical designs. When you
include a relative placement group in a hierarchical group, it is as if the included group is
directly embedded within its parent group. An included group can be used only in a group
of the same design and only once. However, a group that contains an included group can
be further included in another group in the same design or can be instantiated in a group
of a different design.

• Instantiate the group

If the relative placement group to be added is in an instance of a subdesign of its parent
group, it is an instantiated group. You can instantiate groups only in hierarchical designs.

I5

I4

I3

row 3

row 2

row 1

row 0

col 0

I6

I7

I8

row 4

row 5

aligned by pin A

aligned by pin B
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-59
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-59

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
The group specified in the -hierarchy option must be defined in the reference design of the
instance specified in the -instance option. In addition, the specified instance must be in the
same design as the hierarchical group in which you are instantiating the specified group.
Using an instantiated group is a useful way to replicate relative placement information
across multiple instances of a design and to create relative placement relationships between
those instances.

The script in Example 10-39 creates a hierarchical group (rp2) that contains three instances
of group rp1. Group rp1 is in the design pair_design and includes leaf cells U1 and U2.
Group rp2 is a hierarchical group in the design mid_design that instantiates group rp1 three
times (mid_design must contain at least three instances of pair_design). Group rp2 is
treated as a leaf cell. You can instantiate rp2 multiple times and in multiple places, up to the
number of times mid_design is instantiated in your netlist.

The resulting hierarchical relative placement group is shown in Figure 10-18.

Example 10-39 Instantiating Groups in a Hierarchical Group
create_rp_group rp1 -design pair_design -columns 2 -rows 1

add_to_rp_group pair_design::rp1 -leaf U1 -column 0 -row 0
add_to_rp_group pair_design::rp1 -leaf U2 -column 1 -row 0

create rp_group rp2 -design mid_design -columns 1 -rows 3
add_to_rp_group mid_design::rp2 \

-hierarchy pair_design::rp1 -instance I1 -column 0 -row 0
add_to_rp_group mid_design::rp2 \

-hierarchy pair_design::rp1 -instance I2 -column 0 -row 1
add_to_rp_group mid_design::rp2 \

-hierarchy pair_design::rp1 -instance I3 -column 0 -row 2

Figure 10-18 Instantiating Groups in a Hierarchical Group

rp1 (I3)

rp1 (I2)

rp1 (I1)

U1 U2
rp2

rp1

U1 U2

U1 U2

U1 U2

U1 U2

rp1

U1 U2

rp1

row 0

row 0

row 0

col 0 col 1

col 0 col 1

col 0 col 1

row 2

row 0

row 1

col 0
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-60

Design Compiler User Guide Version D-2010.03-SP2
Adding Keepouts
To add a keepout to a relative placement group, use the add_to_rp_group command. For
example, to create a keepout named gap1, enter

add_to_rp_group TOP::misc -keepout gap1 \
-column 0 -row 2 -width 15 -height 1

where TOP::misc is the group list.

Querying Relative Placement Groups
Table 10-8 lists the commands available for querying particular types of relative placement
groups to annotate, edit, and view. For detailed information, see the man pages.

For example, to create a collection of relative placement groups that start with the letter g in
a design that starts with the letter r, enter

get_rp_groups r*::g*
{ripple::grp_ripple}

To set the utilization to 95 percent for all relative placement groups, enter

set_rp_group_options [all_rp_groups] -utilization 0.95

Table 10-8 Commands for Querying Relative Placement Groups

To return collections for this Use this Command

Relative placement groups that match certain criteria get_rp_groups

All or specified relative placement groups and the included and
instantiated groups they contain in their hierarchies

all_rp_groups

All or specified relative placement groups that contain included or
instantiated groups

all_rp_hierarchicals

All or specified relative placement groups that contain included
groups

all_rp_inclusions

All or specified relative placement groups that contain instantiated
groups

all_rp_instantiations

All or specified relative placement groups that directly embed leaf
cells (added to a group by add_rp_group -leaf) or instantiated
groups (added to a group by add_rp_group -hierarchy
-instance) in all or specified relative placement groups in a
specified design or the current design

all_rp_references
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-61
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-61

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Checking Relative Placement Constraints
To check whether the relative placement constraints have been met, run the
check_rp_groups command. The command reports relative placement failures such as the
following:

RPGP-028: The height ‘%f’ of the RP group ‘%s’ is more than the height
‘%f’ of the core area.
RPGP-035 (warning) Relative placement leaf cell data may have been lost.
RPGP-0348: All RP cells in cluster ‘%s’ are not within same voltage
region;
ignoring voltage region placement.

The check_rp_groups command checks for the following failures:

• The relative placement group cannot be placed as a whole.

• The height or width of the relative placement group is greater than the height or width of
the core area.

• The user-specified orientation cannot be met.

If a failure prevents the group from being placed as a single entity, as defined by the relative
placement constraints, the failure is considered critical. If the failure does not prevent
placement but causes the relative placement constraints to be violated, the failure is
considered noncritical. The generated report contains separate sections for critical and
noncritical failures.

Note that the check_rp_groups command does not check for the failure: the keepouts are
not created correctly in the relative placement group.

You can check all relative placement groups by specifying the -all option or you can specify
which relative placement groups to check. By default, the report is output to the screen. To
save the generated report to a file, specify the file name by using the -output option.

For example, to check the relative placement constraints for groups compare17::seg7 and
compare17::rp_group3 and to save the output in a file called rp_failures.log, run the
following command:

check_rp_groups "compare17::seg7 compare17::rp_group3" \
-output rp_failures.log

The generated report is similar to this:

**
Report : The RP groups, which could not be placed.
Version: 2005.12
Date : Tue Dec 27 16:32:02 2005
No. of RP groups:1
**
RP GROUP: compare17::seg7
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-62

Design Compiler User Guide Version D-2010.03-SP2

ERROR: Could not get clean area for placing RP group compare17::seg7.

**
Report : The RP groups, not meeting all constraints but placed.
Version: 2005.12
Date : Tue Dec 27 16:32:02 2005
No. of RP groups:1
**
RP GROUP: compare17::rp_group_3

WARNING: Could not set user specified orientation for cell u[8].

To display a detailed report, use the -verbose option, as shown:

check_rp_groups -all -verbose

The -verbose option reports all possible relative placement failures in the design.

Saving Relative Placement Information
You can use the write_rp_groups command to write out relative placement constraints.

For example, to save all the relative placement groups to disk, remove the information from
the design, and then re-create the information on the design, enter

get_rp_groups
{mul::grp_mul ripple::grp_ripple example3::top_group}
write_rp_groups -all -output my_groups.tcl
1
remove_rp_groups -all -quiet
1
get_rp_groups
Error: Can’t find objects matching ’*’. (UID-109)
source my_groups.tcl
{example3::top_group}
get_rp_groups
{example3::top_group ripple::grp_ripple mul::grp_mul}

By default, the write_rp_groups command writes out commands for creating the specified
relative placement groups and to add leaf cells, hierarchical groups, and keepouts to these
groups. The commands for generating subgroups within hierarchical groups are not written.
The write_rp_groups command writes out updated relative placement constraints and
includes names changes from uniquification or ungrouping.

If you specified multiple column positions or multiple row positions for a cell using the
-num_columns or -num_rows options with the add_to_rp_groups command, the
write_rp_groups command writes out the multiple-location cell as well.
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-63
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-63

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
You can modify the default behavior of the write_rp_groups command by using the options
described in Table 10-9.

Removing Relative Placement Group Attributes
To remove relative placement groups, run the remove_rp_groups command. You can
remove all relative placement groups (by specifying the -all option), or you can specify
which relative placement groups to remove. If you specify a list of relative placement groups,
only the specified groups (and not groups included or instantiated within the specified group)
are removed. To remove the included and instantiated groups of the specified groups, you
must specify -hierarchy.

For example, to remove the relative placement group named grp_ripple and confirm its
removal, enter

get_rp_groups
{mul::grp_mul ripple::grp_ripple example3::top_group}
remove_rp_groups ripple::grp_ripple
Removing rp group ’ripple::grp_ripple’
1
get_rp_groups *grp_ripple
Error: Can’t find object ’grp_ripple’. (UID-109)
remove_rp_groups -all
Removing rp group ’mul::grp_mul’

Table 10-9 Using the write_rp_groups Command Options

To do this Use this option with the
write_rp_groups Command

Write all the relative placement groups within the
hierarchy of the relative placement groups. If you
omit this option, subgroups are not written.

-hierarchy

Write only create_rp_group commands to the
script.

-create

Write only add_to_rp_group -leaf commands to
the script.

-leaf

Write only create_rp_group -keepout
commands to the script.

-keepout

Write only create_rp_group -hierarchy
-instance commands to the script.

-instance

Write only create_rp_group -hierarchy
commands to the script.

-include
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-64

Design Compiler User Guide Version D-2010.03-SP2
Removing rp group ’example3::top_group’
1

To remove relative placement group attributes, run the remove_rp_group_options
command. You must specify the group name and at least one option; otherwise, this
command has no effect.

For example, to remove the x_offset attribute for the block1::misc1 group, enter

remove_rp_group_options block1::misc1 -x_offset
{block1::misc1}

The command returns a collection of relative placement groups for which attributes have
been changed. If no attributes change for any object, an empty string is returned.

To remove objects from a relative placement group, use the remove_from_rp_group
command. You can remove leaf cells (-leaf), included groups (-hierarchy), instantiated
groups (-hierarchy -instance), and keepouts (-keepout).

For example, to remove leaf cell carry_in_1 from grp_ripple, enter

remove_from_rp_group ripple::grp_ripple -leaf carry_in_1
1

If you specified multiple column positions or multiple row positions for a cell using the
-num_columns or -num_rows options with the add_to_rp_groups command, the
remove_from_rp_group command removes the cell from all its locations.

Sample Script for a Relative Placement Flow
Example 10-40 is a sample script for running a relative placement flow.

Example 10-40 Sample Script for the Relative Placement Flow
Set library and design paths
source setup.tcl
read_ddc design_name
current_design top
link

Create relative placement constraints
create_rp_group grp_ripple -design ripple -rows 8
...
add_to_rp_group ripple::grp_ripple -leaf carry_in_1
...

Apply design constraints
source constraints.tcl

Read physical constraints
extract_physical_constraints top.def
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-65
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-65

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Check relative placement
check_rp_groups

Perform synthesis
compile_ultra -scan

Write out the netlist and relative placement
change_names -rules verilog
write -f verilog -h -o ripple.v
write_rp_groups -all -out ripple.rp.tcl

Placement Options: Magnet Placement
Magnet placement improves timing and congestion correlation between Design Compiler
and IC Compiler. Magnet placement moves standard cells closer to objects specified as
magnets. You can use magnet placement with any netlist that is fully mapped. Use the
magnet_placement command to enable magnet placement if magnet_placement was used
in IC Compiler.

The tool will only perform magnet placement if the standard cells are placed. If you use the
magnet_placement command before the standard cells are placed, the tool will not pull any
objects to the specified magnet. The tool will issue a warning for this condition.

To perform magnet placement, use the magnet_placement command with a specification of
the magnets and options for any special functions you need to perform. Table 10-10 lists
options to use for various tasks. Specify magnet placement as follows:

magnet_placement [options] magnet_objects

 For complete command syntax and description details, see the man page.

Table 10-10 Using the magnet_placement Command Options

To do this Use this option

Enable the movement of fixed cells and display
a warning that lists the fixed cells to be moved

-move_fixed

Fix cells in their locations after magnet
placement

-mark_fixed

Specify the number of logic levels from the
magnet that should be checked for magnet
placement

-logical_level number

Prevent movement of buffers and inverters -exclude_buffers
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-66

Design Compiler User Guide Version D-2010.03-SP2
Use the magnet_placement_fanout_limit variable to specify the fanout limit. If the fanout
of a net exceeds the specified limit, the magnet_placement command does not pull cells of
the net toward the magnet objects. The default setting is 1000.

By default, the magnet placement operation is terminated before the sequential cell when
the -stop_by_sequential_cells option is used with the magnet_placement command. If
you want to terminate the magnet placement operation after the sequential cell, set the
magnet_placement_stop_after_seq_cell variable to true. The default value is false.

Magnet placement allows cells to be overlapped by default. To prevent overlapping of cells,
you can set the magnet_placement_disable_overlap variable to true.

To return a collection of cells that can be moved with magnet placement, use the
get_magnet_cells command with the options you need. Table 10-11 lists options to use for
various tasks. For command syntax and details, see the man page.

get_magnet_cells [options] magnet_list

Resetting Physical Constraints
To reset all physical constraints, use the reset_physical_constraints command. Use
this command to clear all existing physical constraints before reading in a new or modified
floorplan.

Saving Physical Constraints Using the write_floorplan Command
You use the write_floorplan command to save the floorplan information. The
write_floorplan command writes out individual floorplan commands relative to the top of
the design, regardless of the current instance. The output is a command script file that
contains floorplan information such as bounds, placement blockages, route guides, plan
groups, and voltage areas.

Prevent cells from being placed over soft
blockages

-avoid_soft_blockages

Prevent placement beyond sequential cells -stop_by_sequential_cells

Pull only those objects on the timing path
between the magnet object and a specified end
object. Note: This option is mutually exclusive
with -logical_level.

-stop_points object_list

Table 10-10 Using the magnet_placement Command Options (Continued)

To do this Use this option
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-67
Chapter 10: Using Design Compiler Topographical Technology
Using Floorplan Physical Constraints 10-67

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
If you reuse this output to re-create the floorplan, you must read it in from the top level of the
design with the read_floorplan command.

You can also use the source command to import the floorplan information. However, the
source command reports errors and warnings that are not applicable to DC Ultra in
topographical mode. The read_floorplan command removes these unnecessary errors
and warnings. In addition, you need to enable fuzzy name matching manually when you use
the source command. The read_floorplan command automatically enables fuzzy name
matching.

Note:
The output of the DC Ultra write_floorplan command does not contain all the physical
information; it only contains the physical data that is applicable to DC Ultra topographical
mode, which is a subset of the entire physical data set. Also, physical data, such as vias,
is transformed to pre-routes when read into DC Ultra.

For command syntax and other details, see the man page.

Reporting Physical Constraints
To report the physical constraints, use the report_physical_constraints command. To
report the create_net_shape commands (preroutes), use the -pre_route option the
report_physical_constraints command. If you do not want the report to show site row
information, use the -no_site_row option.

Performing Automatic High-Fanout Synthesis

By default, Design Compiler topographical mode does automatic high-fanout synthesis.
Design Compiler does not perform automatic high-fanout synthesis on any nets that are part
of dont_touch_network and ideal_network. You can use the set_ahfs_options
command to specify the constraints to be used when running automatic high-fanout
synthesis (AHFS). After automatic high-fanout synthesis, Design Compiler sets a global
design-based attribute that prevents IC Compiler from doing automatic high-fanout
synthesis. If you need to enable automatic high-fanout synthesis in IC Compiler, for
example, if you are changing any ideal or dont_touch_network settings, apply the
set_ahfs_options command in the back-end script.

Test Synthesis in Topographical Mode

Topographical mode supports test synthesis. The flow is similar to the one in Design
Compiler wire load mode except that the insert_dft command is used for stitch-only.
Topographical mode supports basic scan and adaptive scan.
Chapter 10: Using Design Compiler Topographical Technology
Performing Automatic High-Fanout Synthesis 10-68

Design Compiler User Guide Version D-2010.03-SP2
To perform scan insertion within topographical mode, use a script similar to the following:

dc_shell -topo
read_ddc top_elaborated.ddc
source top_constraint.sdc
source physical_constraints.tcl
compile_ultra -gate_clock -scan

Provide DFT specifications
set_dft_signal ...

create_test_protocol
dft_drc
preview_dft
insert_dft
dft_drc

compile_ultra -incremental -scan
write_scan_def -output dft.scandef

For more information on scan insertion, see the DFT Compiler documentation.

Using Power Compiler in Topographical Mode

In topographical mode, Design Compiler can perform power correlation. The
set_power_prediction command enables Design Compiler to correlate post-synthesis
power numbers with those after place and route. Optionally, you can use the
-ct_references option to specify clock tree references to improve correlation.

In addition, power prediction is on by default if any gate-level power optimizations are
enabled by using the following commands:

• set_max_dynamic_power

• set_max_leakage_power

• compile_ultra -gate_clock

To perform power correlation within topographical mode, run a script similar to the following
one:
Chapter 10: Using Design Compiler Topographical Technology
Using Power Compiler in Topographical Mode 10-69
Chapter 10: Using Design Compiler Topographical Technology
Using Power Compiler in Topographical Mode 10-69

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
read_ddc top_elaborated.ddc

Define clock gating style. The default style suits most designs.
Change
only if necessary.

#set_clock_gating_style -pos {integrated} \
-control_point before

source top_constraint.sdc
source physical_constraints.tcl

Set power optimization constraints

set_max_leakage_power 0 mW
compile_ultra -gate_clock -scan
write -format ddc -output synthesized.ddc

For more information on power correlation, see the Power Compiler documentation.
Chapter 10: Using Design Compiler Topographical Technology
Using Power Compiler in Topographical Mode 10-70

Design Compiler User Guide Version D-2010.03-SP2
Multivoltage Designs

Design Compiler topographical mode supports the use of multivoltage designs, multivoltage
design features, and related commands.

For multivoltage designs, the subdesign instances (blocks) operate at different voltages. To
reduce power consumption, multivoltage designs typically make use of power domains. The
blocks of a power domain can be powered up and down, independent of the power state of
other power domains (except where a relative always-on relationship exists between two
power domains). In particular, power domains can be defined and level shifter and isolation
cells can be used as needed to adjust voltage differences between power domains and to
isolate shut-down power domains.

A power domain is defined as a logic grouping of one or more hierarchical blocks in a design
that share the following:

• Primary voltage states or voltage range (that is, the same operating voltage)

• Power net hookup requirements

• Power-down control and acknowledge signals (if any)

• Power switching style

• Same process, voltage, and temperature (PVT) operating condition values (all cells of the
power domain except level shifters)

• Same set or subset of nonlinear delay model (NLDM) target libraries

Principal power domain commands are described in “Specifying Power Intent” on
page 6-17.

Note:
Power domains are not voltage areas. A power domain is a grouping of logic hierarchies,
whereas the corresponding voltage area is a physical placement area into which the cells
of the power domain’s hierarchies are placed. This correspondence is not automatic. You
are responsible for correctly aligning the hierarchies to the voltage areas. You use the
create_voltage_area command to set voltage areas.

Because there are nets that cross power domains (connecting cells operating at different
voltages) and because some power domains can be always-on (that is, never powered
down) while others might be always-on relative to some specific power domain (requiring
isolation) and still others shut down and power up independently (also requiring isolation),
special cells are needed.

In general, voltage differences are handled by level shifters, which connect drive and load
pins operating at different voltages across the power domains. They are used to step up or
step down the voltage from their input side to their output side. These cells are modeled
Chapter 10: Using Design Compiler Topographical Technology
Multivoltage Designs 10-71
Chapter 10: Using Design Compiler Topographical Technology
Multivoltage Designs 10-71

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
either as simple buffers or as buffer cells with an enable pin. The first type of cell is referred
to as a buffer-type level shifter and the second type as an enable-type level shifter.
Enable-type level shifters are used when a power domain must be selectively shut down for
some duration of the design’s operation.

Isolation cells are used when a power domain must be selectively isolated from other power
domains at certain times during the design’s operation but stepping the voltage from the
input side to the output side of the cell is not necessary. Their function is equivalent to that
of an enable-type level shifter that connects two power domains operating at the same
voltage. (Because an enable-type level shifter is basically a buffer, it can connect drive and
load pins operating at the same voltage as well as pins not operating at the same voltage.)

Level shifters and isolation cells are not usually part of the original design description and
must be inserted during the logic synthesis flow. Different methods are used to add these
special cells to a design. Buffer-type level shifters, enable-type level shifters, and isolation
cells can be inserted in the following ways:

• Automatically, as part of running the compile_ultra command.

This method is described in “Specifying Power Intent” on page 6-17 and is the
recommended method.

• Manually

This method involves instantiating the cells in the RTL.

The compile flow for multivoltage designs can involve using a number of commands not
discussed here. For details, see the Power Compiler User Guide.

Compile Flows in Topographical Mode

In addition to supporting a top-down compile_ultra flow, as described in the “Top-Down
Compile” section in Chapter 8, “Optimizing the Design”, DC Ultra topographical mode
supports incremental and hierarchical flows, as described in the following sections:

• Performing an Incremental Compile

The -incremental option of the compile_ultra command allows you to employ a
second-pass, incremental compile strategy.

• Performing a Bottom-up or Hierarchical Compile

Topographical mode supports a hierarchical flow or bottom-up flow if you need to address
design and runtime challenges or use a divide and conquer synthesis approach. In
topographical mode, the -top option of the compile_ultra command enables you to
stitch compiled physical blocks into the top-level design.
Chapter 10: Using Design Compiler Topographical Technology
Compile Flows in Topographical Mode 10-72

Design Compiler User Guide Version D-2010.03-SP2
Performing an Incremental Compile
The -incremental option of the compile_ultra command allows you to employ a
second-pass, incremental compile strategy. The main goal for compile_ultra
-incremental is to enable topographical-based optimization for post-topographical-based
synthesis flows such as retiming, design-for-test (DFT), DFT MAX, and minor netlist edits.
The primary focus in Design Compiler topographical mode is to maintain QoR correlation;
therefore, only limited changes to the netlist can be made.

Use the incremental compile strategy to meet the following goals:

• Improve design QoR

• Fix the netlist after manual netlist edits or constraint changes

• Fix the netlist after various synthesis steps have been performed on the compiled design,
for example, after insert_dft or register retiming

• Control design rule fixing by using the -no_design_rule or -only_design_rule option
in combination with the -incremental option

Incremental compile supports adaptive retiming, that is,
compile_ultra -incremental -retime.

Note that applying compile_ultra -incremental to a topographical netlist results in
placement-based optimization only. This compile should not be thought of as an incremental
mapping.

Note:
When you use the insert_buffer command and remove_buffer command described
in “Editing Designs” on page 5-31, the report_timing command does not report
placement-based timing for the edited cells. To update timing, run the
compile_ultra -incremental command.

When using the -incremental option, keep the following in mind:

• Marking library cells with the dont_use attribute does not work for an incremental flow
when it is applied to a topographical netlist. Make sure to apply any set_dont_use
attributes before the first pass of a topographical-based synthesis.

• If you intend to use boundary optimization and scan insertion, apply them to the first pass
of a topographical-based synthesis.

• Avoid significant constraint changes in the incremental pass.

Note:
Physical constraint changes are not supported.
Chapter 10: Using Design Compiler Topographical Technology
Compile Flows in Topographical Mode 10-73
Chapter 10: Using Design Compiler Topographical Technology
Compile Flows in Topographical Mode 10-73

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Performing a Bottom-up or Hierarchical Compile
In a bottom-up or hierarchical compile, you compile the subdesigns separately and then
incorporate them in the top-level design.

The recommended strategy is a top-down compile flow. However, topographical mode
supports a hierarchical flow or bottom-up flow if you need to address design and runtime
challenges or use a divide and conquer synthesis approach. In the bottom-up strategy,
individual subblocks are constrained and compiled separately. The compiled subblocks are
then included in subsequent top-level synthesis. In topographical mode, the tool can read
two types of hierarchical blocks:

• Interface logic model generated in topographical mode or IC Compiler

• Netlist generated in topographical mode

That is, you can compile the subblock in topographical mode and provide it to the top-level
design as a .ddc netlist or as an interface logic model (ILM). Alternatively, you can continue
working on the subblock in IC Compiler to create an interface logic model, which you can
then provide to the top-level design in topographical mode. Timing and physical information
of the subblock are propagated to the top-level for physical synthesis in topographical mode.
In addition, you can provide placement constraints for a subblock during top-level synthesis
to maintain correlation to IC Compiler.

The -top option of the compile_ultra command enables you to perform top-level design
integration—that is, you can stitch compiled physical blocks into the top-level design without
losing placement-aware net delay estimation for register-to-register paths within lower-level
blocks. The tool automatically back-annotates the top-level design with virtual
placement-based delays of subblocks while preserving the logic structure of the subblocks.
However, top-level design integration does not use core placement technology to drive
mapping and optimization at the top level. In addition, every subblock must be fully mapped.

In the hierarchical or bottom-up flow, the tool propagates block-level timing and placement
to the top level and uses them to drive optimizations. In addition, you can specify location
constraints for the subblock. Top-level optimizations are placement-aware and can be driven
with the same physical constraints as your back-end tool.

The following sections describe the DC Ultra topographical mode hierarchical flow:

• Overview of Bottom-Up Compile

• Compiling the Subblock

• Compiling the Design at the Top Level

• Performing Top-Level Design Stitching

• Steps in the Top-Level Design Stitching Flow
Chapter 10: Using Design Compiler Topographical Technology
Compile Flows in Topographical Mode 10-74

Design Compiler User Guide Version D-2010.03-SP2
Overview of Bottom-Up Compile
In the bottom-up strategy, you first compile the subblock in topographical mode and save the
mapped subblock as a netlist (.ddc format) or an interface logic model (.ddc format). You can
then continue working on the subblock (.ddc netlist) in IC Compiler to generate an interface
logic model.

Top-level synthesis can accept any of these three types of mapped subblocks: .ddc netlist
synthesized in topographical mode, interface logic model created in topographical mode, or
interface logic model created in IC Compiler. Therefore, three types of bottom-up flows are
supported as shown in Figure 10-19 on page 10-76:

• IC Compiler—interface logic model flow

• Topographical mode—interface logic model flow

• Topographical mode—.ddc flow

Note:
IC Compiler cannot accept an interface logic model created in topographical mode.
Chapter 10: Using Design Compiler Topographical Technology
Compile Flows in Topographical Mode 10-75
Chapter 10: Using Design Compiler Topographical Technology
Compile Flows in Topographical Mode 10-75

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Figure 10-19 Overview of the Hierarchical Flow

compile_ultra -scan
insert_dft
compile_ultra -inc -scan

blk.ddc
blk.scandef

Top-level

compile_ultra -scan
insert_dft

compile_ultra -inc -scan

compile_ultra -scan
insert_dft
compile_ultra -inc -scan

RTL

create_ilm

blk.ilm.ddc blk.ddc

create_floorplan/ read floorplan
place_opt -optimize_dft
create_macro_fram

compile_ultra -scan (-inc)
insert_dft
compile_ultra -inc -scan

top.ddc
top.scandef

create_floorplan/ read floorplan
place_opt

Topographical mode Topographical mode Topographical mode

IC Compiler

blk.ddc

IC Compiler

block RTL

Block-
level

compile

Top-level
compile

Topographical mode

Finish

write_scan_def
write_scan_def

write_scan_def

ILM +FRAM

blk.ilm

create_ilm

write_scan_def (-expand)

block RTL block RTL

IC Compiler—ILM Flow Topographical Mode—ILM Flow Topographical Mode—.ddc Flow

h
ar

d
 m

ac
ro

lo
g

ic
 m

ac
ro

lo
g

ic
 m

ac
ro
Chapter 10: Using Design Compiler Topographical Technology
Compile Flows in Topographical Mode 10-76

Design Compiler User Guide Version D-2010.03-SP2
As shown in Figure 10-19 on page 10-76, the bottom-up flow requires these main steps:

1. Compile the subdesigns independently. See “Compiling the Subblock” on page 10-77.

2. Read in the top-level design and any compiled subdesigns not already in memory;
compile the top-level design. See “Compiling the Design at the Top Level” on page 10-79.

Compiling the Subblock
As shown in Figure 10-19 on page 10-76, compiling the subblock requires the following
steps:

1. Specify the logical and physical libraries as described in “Specifying Libraries” on
page 10-9.

2. Read in the subblock (Verilog, VHDL, netlist, or .ddc) and set the current design to the
subblock.

3. Apply block-level timing constraints and power constraints.

4. (Optional) Provide physical constraints as described in “Using Floorplan Physical
Constraints” on page 10-15.

5. (Optional) Visually verify the floorplan

Use the Design Vision layout window to visually verify that your pre-synthesis floorplan is
laid out according to your expectations. The layout view automatically displays floorplan
constraints read in with extract_physical_constraints or read in with Tcl commands.
You need to link all applicable designs and libraries to obtain an accurate floorplan. For
details, see the Design Vision User Guide or Design Vision Online Help.

6. Compile the subblock by using the compile_ultra -scan command.

7. Specify the design-for-test configuration and run the insert_dft command as described
in “Test Synthesis in Topographical Mode” on page 10-68.

You use the insert_dft command to insert scan chains, if the subblock is to be included
in the top-level scan chain.

8. Run the compile_ultra -scan -incremental command.

The -scan option enables the tool to map sequential cells to their scan-equivalent cells.

9. Write out the following information:

• Save the SCANDEF information to the block database by using the write_scan_def
command. The SCANDEF file is a data file that contains scan chain information so
that the place and route tools can perform reordering and repartitioning of scan
chains.
Chapter 10: Using Design Compiler Topographical Technology
Compile Flows in Topographical Mode 10-77
Chapter 10: Using Design Compiler Topographical Technology
Compile Flows in Topographical Mode 10-77

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
• Save the mapped subblock in the .ddc format by using the write -format ddc
command.

10.The steps you perform from this point forward depend on whether you are creating a full
.ddc netlist for the subblock in topographical mode, generating an ILM model for the
subblock in topographical mode, or continuing to synthesize the subblock in IC Compiler.

When creating a full .ddc netlist for the subblock in topographical mode, no additional
steps are necessary; during top-level synthesis, read in the mapped subblock or add it to
the link_library variable. See “Compiling the Design at the Top Level” on page 10-79.

When generating an ILM model for the subblock in topographical mode, follow these
steps:

a. To verify consistency between the ILM model and the original netlist, use the
write_interface_timing command to create a timing report for the original netlist.

b. Run the create_ilm command to generate the ILM.

By default, the create_ilm command writes out the ILM in the .ddc format; therefore,
you do not need to specify the -format option.

c. Use the write_interface_timing command to create a timing report for the ILM
model. This timing report will be compared to the timing report for the netlist to help
verify consistency between the ILM model and the netlist.

d. Compare the original netlist and ILM interface timing reports by using the
compare_interface_timing command. This command checks for consistency
between the ILM model and the original netlist. For example, the command

compare_interface_timing original.wit ilm.wit -output check.cit

compares the report for the original netlist in the original.wit file with the report for the
ILM model in the ilm.wit file and outputs the comparision report to the check.cit file.

e. Use the write -format ddc command to save the ILM.

f. During top-level synthesis, read in the interface logic model (.ddc netlist) of the
mapped subblock or add it to the link_library variable. See “Compiling the Design
at the Top Level” on page 10-79.

When continuing to synthesize the subblock in IC Compiler (the IC Compiler ILM flow),
use the following steps to create a physical block. For more information on IC Compiler
commands, see the IC Compiler documentation.

a. In IC Compiler, set up the design and Milkyway libraries.

b. Read in the .ddc format of the mapped subblock and block SCANDEF information
generated in topographical mode.

c. Create the floorplan by using IC Compiler commands or read in floorplan information
from a DEF file by using the read_def command.
Chapter 10: Using Design Compiler Topographical Technology
Compile Flows in Topographical Mode 10-78

Design Compiler User Guide Version D-2010.03-SP2
d. Run the place_opt -optimize_dft command to perform placement-aware scan
reordering.

e. Use the save_mw_cel command to create the CEL view.

f. Use the create_macro_fram command to create the FRAM view.

g. Use the write_interface_timing command to create a timing report for the original
netlist. This timing report will be compared to the timing report for the ILM model to
help verify consistency between the ILM model and the netlist.

h. Use the create_ilm command to generate the interface logic model for the subblock.

i. Use the write_interface_timing command to create a timing report for the ILM
model. This timing report will be compared to the timing report for the netlist to help
verify consistency between the ILM model and the netlist.

j. Compare the original netlist and ILM interface timing reports by using the
compare_interface_timing command. This command checks for consistency
between the ILM model and the original netlist. For example, the command

compare_interface_timing original.wit ilm.wit -output check.cit

compares the report for the original netlist in the original.wit file with the report for the
ILM model in the ilm.wit file and outputs the comparision report to the check.cit file.

k. During top-level synthesis, read in the interface logic model (.ddc netlist) of the
mapped subblock or add it to the link_library variable. See “Compiling the Design
at the Top Level” on page 10-79.

Compiling the Design at the Top Level
As shown in Figure 10-19, compiling the design at the top level requires the following steps:

1. In topographical mode, set the current design to the top-level design, link the design, and
apply the top-level timing constraints.

2. Read in the subblock that you mapped in “Compiling the Subblock” on page 10-77, that
is, any of the following:

• Interface logic model created in IC Compiler. That is, add the Milkyway design library
that contains the ILM view to the Milkyway reference library list at the top level. In
addition, add the subblock ILM to the link_library variable.

• Interface logic model (.ddc format) created in topographical mode (or add it to the
link_library variable)

• Netlist (.ddc) created in topographical mode (or add it to the link_library variable).
Chapter 10: Using Design Compiler Topographical Technology
Compile Flows in Topographical Mode 10-79
Chapter 10: Using Design Compiler Topographical Technology
Compile Flows in Topographical Mode 10-79

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
In this case, you must also specify how the subblock should be treated during top-level
synthesis. To specify that top-level synthesis cannot change the logical structure but
can change the placement, use the set_dont_touch command to set a logical
dont_touch attribute on the subblock. To specify that the subblock should be treated
as a physical subblock—that is, top level synthesis does not modify the physical or
logical structure of the subblock—use the set_physical_hierarchy command. If
you do not specify how the subblock should be handled, top-level synthesis treats it as
flat; that is, it can modify both the logical and physical structure.

3. Read in the top-level design (Verilog, VHDL, netlist, or .ddc) file.

4. Apply top-level timing and power constraints.

5. (Optional) Provide physical constraints as described in “Using Floorplan Physical
Constraints” on page 10-15.

You can specify locations for the subblock by using the set_cell_location command
or by using the extract_physical_constraints command to extract physical
information from the Design Exchange Format (DEF) file.

6. (Optional) Visually verify the floorplan

Use the Design Vision layout window to visually verify that your pre-synthesis floorplan is
laid out according to your expectations. The layout view automatically displays floorplan
constraints read in with extract_physical_constraints or read in with Tcl commands.
You need to link all applicable designs and libraries to obtain an accurate floorplan. For
details, see the Design Vision User Guide or Design Vision Online Help.

7. Run the compile_ultra -scan command.

The -scan option enables the tool to map sequential cells to appropriate scan flip-flops.

8. Run the insert_dft command to insert scan chains at the top level, followed by
compile_ultra -scan -incremental command.

9. Write out the top-level netlist by using the write -format ddc command.

Note:
In ILM-based flows, you must remove all subblock ILMs before generating the final
top-level netlist.

10.Write out the SCANDEF information by using the write_scan_def command.

Top-level scan chain stitching connects scan chains up to the interfaces of test pins of the
subblock. In the top-level SCANDEF, you can control whether physical blocks are
described using the “BITS” construct or scan chain object.
Chapter 10: Using Design Compiler Topographical Technology
Compile Flows in Topographical Mode 10-80

Design Compiler User Guide Version D-2010.03-SP2
In the topographical mode—ILM and .ddc flows, you use the write_scan_def command
with the -expand_elements option to write out the SCANDEF information. You do not
maintain the test hierarchy partition during top-level physical implementation in IC
Compiler. The SCANDEF must directly reference the scan leaf objects of the physical
block instead of the BITS construct to run the IC Compiler top-level flat flow. For example,

write_scan_def -expand_elements block_instance

In the IC Compiler—ILM flow, you maintain the test hierarchy partition during top-level
physical implementation. Therefore, the top-level SCANDEF is written out with the block
containing the BITS construct; you use the write_scan_def command without the
-expand_elements option to write out the SCANDEF information.

Performing Top-Level Design Stitching
In topographical mode, the -top option of the compile_ultra command enables you to
stitch compiled physical blocks into the top-level design.

The recommended strategy is a top-level compile flow. However, you might need to use the
top-level design stitching capability in certain cases. For example,

• The chip top level might contain unmapped glue logic that needs to be mapped, timed,
and optimized.

• Paths that traverse multiple physical blocks might require the complete timing context at
the chip level.

The -top option of the compile_ultra option enables you to perform chip-level mapping,
optimization, and stitching. Top-level design stitching in topographical mode is similar to the
functionality provided by the compile -top command except that in topographical mode,
the tool can map any unmapped top-level glue logic. The tool automatically back-annotates
the top-level design with virtual placement-based delays of subblocks while preserving the
logic structure of the subblocks.

When you perform top-level design stitching, keep the following points in mind:

• Each subblock must be a fully mapped netlist. Otherwise, the following error message is
issued:

Error: Using compile -top with unmapped logic (OPT-1304)

The subblock must have been compiled in topographical mode. Otherwise, the following
warning message is issued:

Warning: Subblock ‘%s’ was not created using DC
topographical technology. (OPT-1422)

• If the subblock is to be included in the top-level scan chain, use the insert_dft
command to insert scan chains in the subblock.
Chapter 10: Using Design Compiler Topographical Technology
Compile Flows in Topographical Mode 10-81
Chapter 10: Using Design Compiler Topographical Technology
Compile Flows in Topographical Mode 10-81

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Steps in the Top-Level Design Stitching Flow
Figure 10-20 shows the steps in the top-level design stitching flow.

Figure 10-20 Top-Level Design Stitching Flow

As shown in Figure 10-20, the top-level design stitching flow requires these steps:

1. Set up the design and libraries.

2. Read in the top-level design.

3. Compile each subblock by performing the following steps:

a. Set the current design to the sub-block.

b. Apply timing constraints and power constraints.

Constraints
(timing and physical)

Libraries
(logical and physical)RTL

insert_clock_gating

compile_ultra -scan

insert_dft

compile_ultra -inc -scan

insert_clock_gating

compile_ultra -scan

insert_dft

compile_ultra -inc -scan

compile_ultra -scan -top

insert_dft

compile_ultra -scan -top

Subblock Subblock

Top level

FloorplanIC Compiler
Chapter 10: Using Design Compiler Topographical Technology
Compile Flows in Topographical Mode 10-82

Design Compiler User Guide Version D-2010.03-SP2
c. (Optional) Provide physical constraints as described in “Using Floorplan Physical
Constraints” on page 10-15.

d. Perform clock gating by using the insert_clock_gating command.

e. Perform test-ready compile by using the compile_ultra -scan command.

f. If the subblock is to be included in the top-level scan chain, use the insert_dft
command to insert scan chains.

g. Run the compile_ultra -scan -incremental command.

h. Use the report_timing command to check timing.

4. Set the current design to the top-level design, link the design, and apply the top-level
timing constraints.

5. Perform clock gating at the top level by using the insert_clock_gating command.

6. Run the compile_ultra -scan -top command.

You use these options because top-level glue logic can contain both unmapped
sequential cells and combinational cells. The -top option maps the top-level logic and
back-annotates the top-level design with timing information from the lower-level blocks.
The -scan option enables the tool to map sequential cells to appropriate scan flip-flops.

7. Run the insert_dft command to insert scan chains at the top level, followed by the
compile_ultra -scan -top command to map any additional unmapped logic that might
have been introduced.

Note:
The compile_ultra -top command performs boundary optimizations that could
change interface logic between blocks; therefore, the back-annotated timing of subblocks
might be updated even though the logic configuration has not changed.

The top-level design stitching feature does not support clock tree estimation; therefore,
the report_power command cannot report any correlated power at the top level.
Chapter 10: Using Design Compiler Topographical Technology
Compile Flows in Topographical Mode 10-83
Chapter 10: Using Design Compiler Topographical Technology
Compile Flows in Topographical Mode 10-83

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Supported Commands, Command Options, and Variables

In topographical mode, if an unsupported command or variable is encountered in a script,
an error message is issued; however, the script continues.

For example,

ERROR: Command set_wire_load_mode is not supported in DC
Topographical mode. (OPT-1406)

For unsupported command options (except wire load model options), an error message is
issued, and the script stops executing. Wire load model options are ignored, and the script
continues.

Also, variables that are read-only in topographical mode are indicated read-only variables in
error messages.

Look for additional supported commands, command options, and variables in subsequent
releases. You should check your scripts and update them as needed. See the appropriate
man pages to determine the current status in topographical mode.

Using the Design Compiler Graphical Tool

The Design Compiler Graphical tool extends topographical technology and enables you to
optimize multicorner-multimode (MCMM) designs, reduce routing congestion, and improve
both area correlation with IC Compiler and runtime in IC Compiler by using Synopsys
physical guidance. In addition, Design Compiler Graphical enables you to create and modify
floorplans using floorplan exploration.

This section describes Design Compiler Graphical features in following subsections:

• Reducing Routing Congestion

• Improving Area Correlation and Runtime with Synopsys Physical Guidance (SPG)

• Creating and Modifying Floorplans Using Floorplan Exploration

For multicorner-multimode support details, see “Optimizing Multicorner-Multimode Designs
in Design Compiler Graphical” on page 10-102.
Chapter 10: Using Design Compiler Topographical Technology
Supported Commands, Command Options, and Variables 10-84

Design Compiler User Guide Version D-2010.03-SP2
Reducing Routing Congestion
This section describes how to reduce routing congestion in the following subsections:

• Routing Congestion Overview

• Viewing Congestion With the Design Vision Layout Window

• Routing Congestion Reduction Flow

• Predicting, Analyzing, and Minimizing Routing Congestion

• Specifying Congestion Optimization Options

• Reporting Congestion

• Summary of Routing Congestion Commands

Routing Congestion Overview
Designs are considered congested when the wires needed to connect design components
become greater than the space available to put the wires. If Design Compiler passes a
congested design to IC Compiler, it might be difficult and time consuming for IC Compiler to
reduce the congestion. Design Compiler can reduce congestion easier than IC Compiler
because Design Compiler can optimize RTL structures. Traditionally, to minimize congestion
related to the netlist topology, you would use scripting solutions to restrict technology
mapping tools, such as IC Compiler, from choosing library cells that you perceive as poor for
congestion. But these solutions do not significantly improve congestion; instead, they often
create poor timing or area results.

To reduce congestion in Design Compiler, use the -congestion option of the
compile_ultra command. In addition, you can use the set_congestion_options
command to specify options such as the amount of resources available for a given layer. To
report details about congestion, use the report_congestion and the
report_congestion_options commands. For graphical representation of the congested
areas, use the Design Vision layout window. From this window you can view and analyze
congestion.

You use the congestion optimization feature primarily for designs in which RTL logic
structures result in congestion. This standard cell congestion is often caused by the topology
of the netlist. Minimizing the congestion for such designs often requires significant changes
in the netlist topology, which cannot be done during place and route. Such large changes are
best done early in the flow during synthesis. For best results, start your congestion reduction
at the RTL level not at the gate-level netlist. If needed, the compile_ultra -congestion
command does support gate-level congestion-driven synthesis optimizations.
Chapter 10: Using Design Compiler Topographical Technology
Using the Design Compiler Graphical Tool 10-85
Chapter 10: Using Design Compiler Topographical Technology
Using the Design Compiler Graphical Tool 10-85

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
When you run the compile_ultra -congestion option, the tool attempts to produce logic
structures that are better for placement and congestion. Figure 10-21 shows an example of
how the tool optimizes an RTL structure to minimize congestion. In this example, the tool
optimizes the single large multiplexor into three smaller multiplexors which reduces routing
congestion by restructuring the RTL.

Figure 10-21 Optimizing RTL Structures to Minimize Congestion
Chapter 10: Using Design Compiler Topographical Technology
Using the Design Compiler Graphical Tool 10-86

Design Compiler User Guide Version D-2010.03-SP2
Viewing Congestion With the Design Vision Layout Window
The Design Vision layout window enables you to view and analyze the physical aspects of a
design. The layout view displays physical information such as placement area, placement
blockages, ports, macros, selected standard cells and congestion maps. You can use the
layout window to do the following:

1. Validate physical constraints that you have applied in topographical mode.

2. Debug QoR issues related to floorplan and topographical mode layout.

3. Perform GUI-based congestion analysis.

The layout window includes visual modes that provide a high-level view of the placement
quality of logic blocks and hierarchical cells in your physical design. Visual modes highlight
design information in colored overlays on the active layout view.

• In the hierarchy visual mode, you can color all the cells on a particular hierarchy level or
just the hierarchical cells that you select.

• In the snapshot visual mode, you can select and color individual design objects or groups
of objects.

For more information, see the Design Vision Help System.

In some cases, it may be useful to open the layout window and display the congestion map
or a visual mode images with your script. You can also save an image of the layout in file. For
more information, see the Design Vision User Guide.

For more information on the Design Vision layout view, see the Design Vision Online Help.

Routing Congestion Reduction Flow
You use the -congestion option of the compile_ultra command to minimize congestion.
Figure 10-22 shows how the congestion optimization feature fits into the synthesis flow. It is
recommended that you run this command on the RTL.
Chapter 10: Using Design Compiler Topographical Technology
Using the Design Compiler Graphical Tool 10-87
Chapter 10: Using Design Compiler Topographical Technology
Using the Design Compiler Graphical Tool 10-87

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Figure 10-22 Congestion Optimization Flow in Design Compiler Graphical

Predicting, Analyzing, and Minimizing Routing Congestion
You use Design Compiler Graphical to predict wire-routing congestion during synthesis,
similar to how you predict timing, area, power, and testability in DC Ultra topographical
mode. You can predict wire-routing congestion “hot spots” during RTL synthesis and use its
interactive capability to visualize the design’s congestion. After you have determined that the
design has congestion problems, you can minimize congestion by enabling the congestion
optimization feature, resulting in a better starting point for layout.

Wire-routing congestion in a design occurs when the number of wires traversing a particular
region is greater than the capacity of the region. If the ratio of usage-to-capacity is greater
than 1, the region is considered to have congestion problems. Congestion can be
associated with standard cells or the floorplan. Typically, standard cell congestion is caused

RTL

Physical
library

Logical
library

compile_ultra -congestion

Constraints
DEF

op
tim

iz
at

io
n

report_congestion

Small netlist updates

compile_ultra -inc -congestion

ne
t m

od
el

 a
cc

ur
ac

y

Chapter 10: Using Design Compiler Topographical Technology
Using the Design Compiler Graphical Tool 10-88

Design Compiler User Guide Version D-2010.03-SP2
by the netlist topology, for example, large multiplexer trees, large sums of products (ROMs),
test decompression logic, or test compression logic. Floorplan congestion can be caused by
macro placement or port location.

Design Compiler Graphical uses the Synopsys virtual global routing technology to predict
wire-routing congestion. In this technology, congestion is estimated by dividing the design
into a virtual grid of global routing cells followed by a global route to count the number of
wires crossing each grid edge. The capacity and size of each global routing cell is calculated
by using the technology physical library information. A cell is considered congested if the
number of wires passing through it is greater than the number of available tracks.

Design Compiler Graphical predicts the congestion number by subtracting the maximum
wires allowed for a particular edge direction from the total number of wires crossing per
edge. Any number over zero is a congestion violation. This calculation is represented by the
following equation:

 Congestion = (number of wires) - (maximum wires allowed)

Figure 10-23 shows how Design Compiler Graphical predicts congestion. The red areas
indicate congestion.

Figure 10-23 Predicting Congestion Using Virtual Grid Route
Chapter 10: Using Design Compiler Topographical Technology
Using the Design Compiler Graphical Tool 10-89
Chapter 10: Using Design Compiler Topographical Technology
Using the Design Compiler Graphical Tool 10-89

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
The tool considers floorplan-related physical constraints when it estimates routing
congestion. In particular, the wiring keepout physical constraint ensures that the tool is
aware of areas that must be avoided during routing. This physical constraint helps to achieve
consistent congestion correlation with layout.

Specifying Congestion Optimization Options
To specify options for congestion optimization, use the set_congestion_options
command. This command helps achieve consistent congestion correlation between
DC Ultra topographical mode and IC Compiler by ensuring that both tools see the same
congestion setup.

To remove congestion options, use the remove_congestion_options command.

To report congestion options, use the report_congestion_options command.

Use the set_congestion_options command options as described below:

Table 10-11 Using the set_congestion_options Command

To do this Use this option

Minimize congestion by moving cells from congested
regions to uncongested regions.

Note: Use the -max_util option to specify the
maximum utilization the tool allows as cells migrate into
uncongested areas. For example, setting a value of 0.9
allows the tool to place cells in an area with up to 90
percent utilization.

-max_util

Specify the layer whose availability you want to reduce.

Specify how much of the routing resource for the given
layer is available. A value of 0.30 for availability means
the tool considers 70% as being used.

-layer

-availability

Specify the lower left and upper right coordinates for
which the congestion options apply.

-coordinate
Chapter 10: Using Design Compiler Topographical Technology
Using the Design Compiler Graphical Tool 10-90

Design Compiler User Guide Version D-2010.03-SP2
Reporting Congestion
The text based report_congestion command provides a quick estimate of the congestion
status of the design. In cases where the design is reported as significantly congested, you
can further analyze congestion by generating a congestion map. By viewing the congestion
map, you can identify areas of high congestion and determine whether the design can be
routed.

For this detailed analysis, you use the Design Vision layout view to analyze the congestion
map. You load the .ddc netlist, synthesized in topographical mode to analyze the congestion
map and identify the likely cause of congestion in the design. For more information, see the
Design Vision Online Help.

The report_congestion command generates a report that shows the design's congestion
status. You can use this report to assess the severity of congestion in the design.
Example 10-41 shows a sample output generated by the report_congestion command.

Example 10-41 The report_congestion Command Output
**
Report : congestion
Design : Lut
Version: B-2008.09
Date : Wed July 20 17:38:50 2007
**
Both Dirs: Overflow = 4651 Max = 5 (10 GRCs) GRCs = 3401 (0.59%)
H routing: Overflow = 2386 Max = 3 (50 GRCs) GRCs = 1788 (0.31%)
V routing: Overflow = 2265 Max = 3 (18 GRCs) GRCs = 1961 (0.34%)

You interpret this report as follows:

• Overflow is the total number of wires in the design global routing cells that do not have a
corresponding track available. The following equation shows how overflow is measured:

• Max corresponds to the highest number of over-utilized wires in a single global routing
cell. It is the worst-case violation and the number of global routing cells that have the
violation. The report shows that the worst-case violation is five and it occurs for ten global
routing cells in the design.

• GRC is the total number of over-congested global routing cells in the design. The report
indicates that there are 3401 violating GRCs in the design, which account for 0.59% of
the design.

Overflow violation(i) GRCs with violation(i)×
i 1=

Max

∑=
Chapter 10: Using Design Compiler Topographical Technology
Using the Design Compiler Graphical Tool 10-91
Chapter 10: Using Design Compiler Topographical Technology
Using the Design Compiler Graphical Tool 10-91

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Summary of Routing Congestion Commands
Commands related to routing congestion reduction are listed below:

• compile_ultra -congestion

• set_congestion_options

• remove_congestion_options

• report_congestion_options

• report_congestion

• gui_show_map

For command syntax and details, see the man pages.

Improving Area Correlation and Runtime with Synopsys
Physical Guidance (SPG)
The physical guidance feature enables Design Compiler Graphical to save physical
guidance information and pass this information to IC Compiler. With this information,
IC Compiler can begin the implementation flow with the place_opt command. IC Compiler
no longer needs to create a coarse placement by running commands such as
create_placement, remove_buffer_tree, or psynopt. By using the Design Compiler
physical guidance as a starting point for placement, runtime and area correlation with
IC Compiler are improved.

This section describes the Synopsys Physical Guidance (SPG) feature in the following
sections:

• Using Physical Guidance in Design Compiler (compile_ultra -spg)

• Using Physical Guidance in IC Compiler (place_opt -spg)

• Supported Flows

• Reporting Physical Guidance Information

• Physical Guidance Limitations
Chapter 10: Using Design Compiler Topographical Technology
Using the Design Compiler Graphical Tool 10-92

Design Compiler User Guide Version D-2010.03-SP2
Using Physical Guidance in Design Compiler (compile_ultra -spg)
To enable physical guidance in Design Compiler, use the -spg option with the
compile_ultra command.

Setup requirements:

Both Design Compiler and IC Compiler must use consistent physical and logical constraints
and use the same libraries. The same DEF file must be used by both tools. The DEF file
contains floorplan information and this information must be consistent between tools. The
tools will issue various errors and warnings if your constraints, floorplan information, and
libraries are not consistent.

Using Physical Guidance in IC Compiler (place_opt -spg)
To enable physical guidance in IC Compiler, use the -spg option with the place_opt
command.

Setup requirements:

Both Design Compiler and IC Compiler must use consistent physical and logical constraints
and use the same libraries. The same DEF file must be used by both tools. The DEF file
contains floorplan information and this information must be consistent between tools. The
tools will issue various errors and warnings if your constraints, floorplan information, and
libraries are not consistent.

Supported Flows
The physical guidance feature supports all DC Ultra topographical mode compile options,
such as compile_ultra -spg -scan, compile_ultra -spg -scan -clock_gate,
compile_ultra -spg -scan -congestion, and
compile_ultra -spg -scan -incremental.
In addition, the physical guidance feature supports the multicorner-multimode based flow,
the multivoltage-UPF flow, the power flow, the DFT flow, and the hierarchical flow. Note that
for the hierarchical flow, you cannot use ILMs that have been created by Design Compiler.
You can use only IC Compiler ILMs. See “Physical Guidance Limitations” on page 10-93.

Reporting Physical Guidance Information
The physical guidance information is stored with the design in binary format. It is not
available as a standalone file. To view the physical guidance information, you must run
IC Compiler and execute the place_opt -spg command.

Physical Guidance Limitations
Design Compiler can only save the physical guidance information in .ddc file format or
Milkyway format. The ASCII output netlist format is not supported.
Chapter 10: Using Design Compiler Topographical Technology
Using the Design Compiler Graphical Tool 10-93
Chapter 10: Using Design Compiler Topographical Technology
Using the Design Compiler Graphical Tool 10-93

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
In the hierarchical flow, only created ILMs that have been created by IC Compiler are
supported. You cannot use ILMs created by Design Compiler or .ddc formatted ILMs.

Creating and Modifying Floorplans Using Floorplan Exploration
This section describes how to use floorplan exploration, which allows you to create and
modify floorplans using Design Compiler Graphical.

This section contains the following subsections:

• Floorplan Exploration Overview

• Enabling Floorplan Exploration

• Using the Floorplan Exploration GUI

• Creating and Editing Floorplans

• Saving the Floorplan or Discarding Updates

• Saving the Floorplan into a Tcl Script File or DEF File

• Exiting the Session

• Incremental or Full Synthesis after Floorplan Changes

• Floorplan Exploration Limitations

Floorplan Exploration Overview
Floorplan exploration allows you to perform floorplanning tasks, including floorplan analysis,
floorplan creation, and floorplan modification from within the synthesis environment. Design
Compiler Graphical floorplan exploration uses the IC Compiler floorplanning tools in the IC
Compiler layout window. Although you use the IC Compiler layout window, the interface
between floorplan exploration in Design Compiler Graphical and the IC Compiler layout
window is transparent, allowing you to move seamlessly between the Design Vision and IC
Compiler layout windows.

Figure 10-24 shows a typical floorplan exploration flow. You read an RTL file, specify the
physical and logic libraries, define the Synopsys design constraints, specify a floorplan (if
you have one), and synthesize the design in Design Compiler Graphical. After synthesis,
you evaluate the QoR results and use floorplan exploration to create a new floorplan or
improve an existing floorplan, as needed.
Chapter 10: Using Design Compiler Topographical Technology
Using the Design Compiler Graphical Tool 10-94

Design Compiler User Guide Version D-2010.03-SP2
Figure 10-24 Floorplan Exploration Flow

Enabling Floorplan Exploration
Before you begin floorplan exploration, you must have the following:

• A synthesized design

Design Compiler Graphical issues an error if it finds any unmapped logic.

• Both the physical and logic libraries

All cells in the design must link to the physical and logic libraries. By default, Design
Compiler Graphical creates a dummy physical cell if a cell is missing from the
user-supplied physical libraries. However, in floorplan exploration, the tool issues an error
and does not start the floorplan exploration session if your design is linked to a dummy
physical cell.

Once you have a synthesized design that links to the physical and logic libraries, you must
set the design planning options, as described in the following steps:

1. In the Design Compiler Graphical GUI, open the Design Vision layout window.

2. Choose Floorplan > Set Design Planning Options.

The Set Design Planning Options dialog box appears, as shown in Figure 10-25.

Design Compiler Graphical

(RTL + SDC constraints + floorplan)

Synthesize design

Design Compiler Graphical
floorplan exploration session

Save floorplan

Modify or create floorplan

Perform floorplan exploration
Chapter 10: Using Design Compiler Topographical Technology
Using the Design Compiler Graphical Tool 10-95
Chapter 10: Using Design Compiler Topographical Technology
Using the Design Compiler Graphical Tool 10-95

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Figure 10-25 Set Design Planning Options Dialog Box

3. In the Work Directory box, enter the name of your working directory with the relative path
from the current directory.

This is where the floorplanning scripts, the floorplan, and any other necessary files are
stored.

4. In the ICC Executable box, enter the name and location of the IC Compiler executable.

By default, Design Compiler uses the icc_shell executable specified by the $path
variable.

5. In the File Name Prefix box, enter the prefix you want to use in the file name for any
generated files, such as the floorplanning scripts and floorplan files.

The default file prefix naming style is %s_%d where %s is the design name and %d is the
process ID.

6. Select the Keep Files option if you want to retain the files that are created during and after
the floorplan exploration session, such as the floorplanning scripts, floorplan files, and so
on.

This option is deselected by default, which means that the generated files are removed
when the floorplan exploration session is closed.

7. Click OK.
Chapter 10: Using Design Compiler Topographical Technology
Using the Design Compiler Graphical Tool 10-96

Design Compiler User Guide Version D-2010.03-SP2
Using the Floorplan Exploration GUI
Floorplan exploration in Design Compiler Graphical uses the IC Compiler layout window. By
default, when you enable floorplan exploration, Design Compiler Graphical configures the IC
Compiler layout window so that it includes only the menus and menu commands you need
to perform Design Compiler Graphical floorplanning. Figure 10-26 shows the simplified
floorplanning menu structure.

Figure 10-26 IC Compiler Simplified Layout Window Features

If you are an experienced IC Compiler user, you can use the full set of design planning
menus.

You can access the full set of IC Compiler design planning menus by choosing
File > Task > Design Planning, as shown in Figure 10-27. To switch from the full design
planning menu structure back to the simplified menu structure, choose File > Task >
DCG-DP Link.

Menus

Toolbars

Overview

View
Settings

panel

panel

Status bar

Floorplan menu Layout view
Chapter 10: Using Design Compiler Topographical Technology
Using the Design Compiler Graphical Tool 10-97
Chapter 10: Using Design Compiler Topographical Technology
Using the Design Compiler Graphical Tool 10-97

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Figure 10-27 Switching Between Simplified and Full Design Planning Menu Structures

Any work you complete using the full set of IC Compiler design planning menus is available
when you switch back to the simplified floorplanning menus.

For general information about working in the IC Compiler layout window, see the IC Compiler
Help system and the IC Compiler Design Planning User Guide.

Creating and Editing Floorplans
Whether you use the simplified Design Compiler Graphical floorplanning menus or the full
set of IC Compiler design planning menus, the IC Compiler layout window provides
interactive tools and commands that you can use to create or modify your floorplan. You can

• Use editing tools to move, resize, copy, split, reshape, or remove objects.

• Use editing commands to rotate, align, distribute, spread, or expand objects or to change
cell orientations.

Shortcut keys are available for the most frequently performed editing operations. Online
Help pages are provided for each of the editing tools.

In addition, you can use commands on the Floorplan menu to create physical objects such
as placement blockages, bounds, and routing keepouts. When you create an object, you can
specify its coordinates or draw the object in the layout view.

For more information about working with editing tools and commands in the IC Compiler
layout window, see the IC Compiler Help system. For sample flows that show how to create
a floorplan using Design Compiler Graphical floorplan exploration and how to modify a
floorplan to improve timing or congestion, see the Design Compiler Graphical Push-Button
Floorplan Exploration Application Note on Solvnet.

Access the full set of

Access the simplified
floorplanning menus

design planning menus
Chapter 10: Using Design Compiler Topographical Technology
Using the Design Compiler Graphical Tool 10-98

Design Compiler User Guide Version D-2010.03-SP2
Saving the Floorplan or Discarding Updates
You can save or discard floorplan updates in Design Compiler Graphical from the IC
Compiler floorplanning session at any time using the “Update DC Floorplan” command. To
save or discard the floorplan, perform the following steps:

1. Choose Floorplan > Update DC Floorplan.

The Update DC Floorplan dialog box appears, as shown in Figure 10-28.

Figure 10-28 Update DC Floorplan Dialog Box

The “Update DC Floorplan” command is available only in the simplified floorplanning
menu structure for Design Compiler Graphical. For information about switching from the
full set of design planning menus to the simplified floorplanning menu structure, see
“Using the Floorplan Exploration GUI” on page 10-97.

2. Choose one of the following options:

• To save the current floorplan in Design Compiler Graphical, select the “Save current
floorplan for DC” option.

If you have previously saved a floorplan, the tool overwrites it.

• To remove a previously saved floorplan, select the “Discard DC floorplan updates”
option.

3. Click OK.

Saving the Floorplan into a Tcl Script File or DEF File
You can also save the floorplan into a Tcl script file or a DEF file during the floorplan
exploration session. However, the Tcl or DEF file is not automatically read in Design
Compiler Graphical.

To save the floorplan into a Tcl script file, choose Floorplan > Write Floorplan, and specify
the required options in the Write Floorplan dialog box.

Alternatively, you can use the write_floorplan command with its required options at the
tool prompt.
Chapter 10: Using Design Compiler Topographical Technology
Using the Design Compiler Graphical Tool 10-99
Chapter 10: Using Design Compiler Topographical Technology
Using the Design Compiler Graphical Tool 10-99

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
To save the floorplan in a DEF file, choose File > Export > Write DEF, and specify the
required options in the Write DEF dialog box.

Alternatively, you can use the write_def command with its required options at the tool
prompt.

Exiting the Session
To exit the floorplan exploration session and save your floorplan for synthesis or discard the
floorplan, perform the following steps:

1. Choose File > Exit in the menu.

The Exit IC Compiler dialog box appears, as shown in Figure 10-29.

Figure 10-29 Exit IC Compiler Dialog Box

2. Choose one of the following options:

• Select the “Update DC with current floorplan” option to save the current floorplan in
Design Compiler Graphical and exit the floorplan exploration session.

• To exit the floorplan exploration session and discard the floorplan, including any
previously saved floorplans, select the “Discard DC floorplan updates” option.

• To keep the floorplan that you saved previously in Design Compiler Graphical, discard
any subsequent changes that you have not saved, and exit the floorplan exploration
session, select the “Update DC with previously saved floorplan” option.

3. Click OK.

When you exit the floorplan exploration session, the Design Compiler Graphical windows
and shell interface become active.

If you update the floorplan, the tool closes the original Design Vision layout window. To see
the floorplan changes, open a new Design Vision layout window.
Chapter 10: Using Design Compiler Topographical Technology
Using the Design Compiler Graphical Tool 10-100

Design Compiler User Guide Version D-2010.03-SP2
Incremental or Full Synthesis after Floorplan Changes
The floorplan changes impact the design only through synthesis. After you create a floorplan
or modify an existing floorplan, you can perform incremental synthesis by using the
compile_ultra -incremental command for a quick assessment of the floorplan’s QoR
benefits. However, incremental synthesis might not meet the requirements for achieving
good QoR results or the requirements for a final implementation flow. In these cases,
perform full synthesis using the compile_ultra command.

To prepare for full synthesis, you must save the floorplan into a dctcl script file by running the
write_floorplan command at the tool prompt, as shown:

write_floorplan -all DESIGN.fp

The -all option is recommended for resynthesizing the design with the new or modified
floorplan.

Use the read_floorplan command to read the floorplan in Design Compiler for synthesis.
After you read the RTL file, the SDC constraints, and the new floorplan file, you perform full
synthesis with the compile_ultra command.

For information about the read_floorplan and write_floorplan commands, see “Using
Floorplan Physical Constraints” on page 10-15. For information about synthesizing the
design, see “Overview of Topographical Technology” on page 10-3.

Floorplan Exploration Limitations
Floorplan exploration in Design Compiler Graphical has the following limitations:

• Design Compiler topographical mode does not support keepout margins, but it
recognizes placement blockages. For information about converting keepout margins to
placement blockages, see the Design Compiler Graphical Push-Button Floorplan
Exploration Application Note.

• Design Compiler ILMs (wire load or topographical) and Design Compiler physical
hierarchies are not supported in IC Compiler.

• Some floorplan constraints are transformed when read in Design Compiler Graphical. For
example, vias are converted to net shapes.

• Some floorplan constraints, such as tracks and keepout margins, are ignored when read
in Design Compiler Graphical.

• Relative placement constraints are not passed to and from the IC Compiler floorplanning
session.
Chapter 10: Using Design Compiler Topographical Technology
Using the Design Compiler Graphical Tool 10-101
Chapter 10: Using Design Compiler Topographical Technology
Using the Design Compiler Graphical Tool 10-101

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Optimizing Multicorner-Multimode Designs in Design Compiler
Graphical

Multicorner-multimode design optimization is a feature available only in the Design Compiler
Graphical tool. This feature enables you to analyze and optimize designs across multiple
modes and multiple corners concurrently. For more details about other Design Compiler
Graphical features, see “Using the Design Compiler Graphical Tool” on page 10-84.

This section describes multicorner-multimode design optimization, in the following
subsections:

• Multicorner-Multimode Concepts

• Multicorner-Multimode Feature Support

• Unsupported Features

• Concurrent Multicorner-Multimode Optimization and Timing Analysis

• Basic Multicorner-Multimode Flow

• Setting Up the Design for a Multicorner-Multimode Flow

• Handling Libraries in the Multicorner-Multimode Flow

• Scenario Management Commands

• Reporting Commands

• Supported SDC Commands

• Multicorner-Multimode Script Example

• Using ILMs in Multicorner-Multimode Designs
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-102

Design Compiler User Guide Version D-2010.03-SP2
Multicorner-Multimode Concepts
Designs must often operate under multiple operating conditions, often called corners, and in
multiple modes. Such designs are referred to as multicorner-multimode designs. Design
Compiler Graphical extends the topographical technology to analyze and optimize these
designs across multiple modes and multiple corners concurrently. The
multicorner-multimode feature also provides ease-of-use and compatibility between flows in
Design Compiler and IC Compiler due to the similar user interface. Common
multicorner-multimode terms are described below.

Terminology

• Corner

A corner is defined as a set of libraries characterized for process, voltage and
temperature (PVT) variations. Corners are not dependent on functional settings; they are
meant to capture variations in the manufacturing process, along with expected variations
in the voltage and temperature of the environment in which the chip will operate.

• Mode

A mode is defined by a set of clocks, supply voltages, timing constraints, and libraries. It
can also have annotation data, such as SDF or parasitics files. Multicorner-multimode
designs can operate in many modes such as the test mode, mission mode, standby mode
and so forth.

• Scenario

A scenario is a combination of modal constraints and corner specifications. In a design,
the tool uses a scenario or a set of scenarios as the unit for multimode-multicorner
analysis and optimization. Some constraints can be part of both the mode and corner
specification. Optimization of multicorner-multimode design involves managing the
scenarios of the design. For more details on scenario management, see “Scenario
Management Commands” on page 10-114.

Basic Scenario Definition

To define modes and corners, you use the create_scenario command. A scenario
definition includes commands that specify the TLUPlus libraries, operating conditions, and
constraints, as shown in Example 10-42, which defines the s1 scenario. A scenario
definition must include the set_operating_conditions and set_tlu_plus_files
commands. The following sections describe these commands along with the associated
library setup information that is needed to run multicorner-multimode design optimization.
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-103
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-103

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Example 10-42 Basic Scenario Definition
create_scenario s1
set_operating_conditions WORST -library stdcell.setup.typ.db:stdcell_typ
set_tlu_plus_files -max_tluplus design.tlup -tech2itf_map layermap.txt
read_sdc s1.sdc

Multicorner-Multimode Feature Support
The multicorner-multimode feature in Design Compiler Graphical provides compatibility
between flows in Design Compiler and IC Compiler through the use of a similar user
interface.

Keep the following points in mind when running multicorner-multimode optimizations:

• All options of the compile_ultra command are supported.

• Multicorner-multimode technology is supported only in topographical mode with the
DC-Extension license. Multicorner-multimode technology is not supported in DC Expert.

• Leakage power optimizations are supported.

• Dynamic power optimizations are supported.

• The UPF flow is supported only for multivoltage designs.

Unsupported Features
The following features are not supported in Design Compiler Graphical for
multicorner-multimode designs:

• Power-driven clock gating is not supported.

However, if you use the compile_ultra -gate_clock or the insert_clock_gating
commands, clock-gate insertion is performed on the design, independent of the
scenarios.

• Clock tree estimation is not supported.

• k-factor scaling is not supported.

Because multicorner-multimode design libraries do not support the use of k-factor
scaling, the operating conditions that you specify for each scenario must match the
nominal operating conditions of one of the libraries in the list of the link libraries.

• The set_min_library command is not supported for individual scenarios.

The set_min_library command applies to all scenarios. If you use set_min_library
to define one scenario, the tool will use the library for all scenarios.
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-104

Design Compiler User Guide Version D-2010.03-SP2
Concurrent Multicorner-Multimode Optimization and Timing
Analysis
Concurrent multicorner-multimode optimization works on the worst violations across all
scenarios, eliminating the convergence problems observed in sequential approaches.

Timing analysis is carried out on all scenarios concurrently, and costing is measured across
all scenarios for timing and design rules. As a result, the timing and constraint reports show
worst-case timing across all scenarios.

To run timing analysis, use one of the following two methods:

• Traditional minimum-maximum analysis

To use this analysis method, define your analysis type as bc_wc, for example,

set_operating_conditions -analysis_type bc_wc

• Early-late analysis

To use this analysis method, define your analysis type as on_chip_variation, for
example,

set_operating_conditions -analysis_type on_chip_variation

PrimeTime also uses the on-chip variation (OCV) method.

Basic Multicorner-Multimode Flow
Figure 10-30 shows the basic multicorner-multimode flow.The key step in
multicorner-multimode optimization involves creating the scenarios. You use the
create_scenario command to create the scenarios. You can create multiple scenarios. For
each scenario, you set constraints specific to the scenario mode and you set operating
conditions specific to the scenario corner. For an example script, see
“Multicorner-Multimode Script Example” on page 10-129.

Scenario definitions include commands that specify the TLUPlus libraries, operating
conditions, and constraints. However, other commands can be included. For example, you
can use the set_max_leakage_power command to control leakage power on a
per-scenario basis or you can use the read_sdf command to set the correct net RC and
pin-to-pin delay information in the respective scenarios.

After you configure all the scenarios, you can activate a subset of these scenarios by using
the set_active_scenarios command.
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-105
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-105

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Figure 10-30 Basic Multimode Flow

Set up design

Read design

Create scenario

Set TLUPlus

Set operating conditions

Set constraints

Analyze

Optimize

per scenario

... additional commands...
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-106

Design Compiler User Guide Version D-2010.03-SP2
Setting Up the Design for a Multicorner-Multimode Flow
To setup a design for a multicorner-multimode flow, you must specify the TLUPlus files,
operating conditions, and Synopsys Design Constraints for each scenario. Design Compiler
uses the nominal process, voltage, and temperature (PVT) values to group the libraries into
different sets. Libraries with the same PVT values are grouped into the same set. For each
scenario, the PVT of the maximum operating condition is used to select the appropriate set.
Setup considerations are described in the following sections:

• Specifying TLUPlus Files

• Specifying Operating Conditions

• Specifying Constraints

Specifying TLUPlus Files
Use the set_tlu_plus_files command to specify the TLUPlus files for each scenario, as
shown in Example 10-43.

Example 10-43 Specifying TLUPlus Files for a Scenario
create_scenario s1
set_operating_conditions WORST -library stdcell.setup.typ.db:stdcell_typ
set_tlu_plus_files -max_tluplus design.tlup -tech2itf_map layermap.txt
read_sdc s1.sdc

If you do not specify a TLUPlus file, the tool returns an error message similar to the following:

Error: tlu_plus files are not set in this scenario s1.
RC values will be 0.

If a TLUPlus library is not correct, the tool issues the following error message:

Error: TLU+ sanity check failed (OPT-1429)

If you want to enable temperature scaling, the TLUPlus files must contain the
GLOBAL_TEMPERATURE and CRT1 variables. The CRT2 variable is optional. The following
example is an excerpt from a TLUPlus file:

TECHNOLOGY = 90nm_lib
GLOBAL_TEMPERATURE = 105.0
CONDUCTOR metal8 {THICKNESS= 0.8000
 CRT1=4.39e-3 CRT2=4.39e-7

...
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-107
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-107

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Specifying Operating Conditions
You must define the operating condition for each scenario. You specify different operating
conditions for different scenarios using the set_operating_condition command, as
shown in Example 10-44.

Example 10-44 Specifying Operating Conditions for a Scenario
create_scenario s1
set_operating_conditions SLOW_95 -library max_vmax_v95_t125
set_tlu_plus_files -max_tluplus design.tlup -tech2itf_map layermap.txt
read_sdc s1.sdc

If you do not define an operating condition for a scenario, the tool issues MV-020 and
MV-021 warnings.

Specifying Constraints
For each scenario, you must specify the Synopsys Design Constraints (SDCs) specific to
that scenario, as shown in Example 10-45.

Example 10-45 Specifying SDC Constraints for a Scenario
create_scenario s1
set_operating_conditions WORST -library stdcell.setup.typ.db:stdcell_typ
set_tlu_plus_files -max_tluplus design.tlup -tech2itf_map layermap.txt
read_sdc s1.sdc

The tool discards any previous scenario-specific constraints after you execute the
create_scenario command and reports an MV-020 warning, as shown in Example 10-46.

Example 10-46 Tool Removes Previous Constraints
dc_shell-topo> create_scenario s1
Warning: Any existing scenario-specific constraints

are discarded. (MV-020)
dc_shell-topo> report_timing
Warning: No operating condition was set in scenario s1 (MV-021)
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-108

Design Compiler User Guide Version D-2010.03-SP2
Handling Libraries in the Multicorner-Multimode Flow
The following sections discuss how to handle libraries in multicorner-multimode designs:

• Using Link Libraries That Have the Same PVT Nominal Values

• Using Unique PVT Names to Prevent Linking Problems

• Unsupported k-factors

• Automatic Detection of Driving Cell Library

• Defining Minimum Libraries

Using Link Libraries That Have the Same PVT Nominal Values
The link library lists all the libraries that are to be used for linking the design for all scenarios.
Furthermore, because several libraries are often intended for use with a particular scenario,
such as a standard cell library and a macro library, Design Compiler automatically groups
the libraries in the link library list into sets and identifies which set must be linked with each
scenario.

The tool groups libraries according to the PVT value of the library. Libraries with the same
PVT values are grouped into the same set. The tool uses the PVT value of a scenario’s
maximum operating condition to select the appropriate set for the scenario.

If the tool finds no suitable cell in any of the specified libraries, an error is reported as shown
in the following example,

Error: cell TEST_BUF2En_BUF1/Z (inx4) is not characterized
for 0.950000V, process 1.000000,
temperature -40.000000. (MV-001)

You should verify the operating conditions and library setup. You must fix this error before
you can optimize your design.

Link Library Example

To understand how library linking works, consider Table 10-12.

Table 10-12 shows the libraries in the link library list, their nominal PVT values, and the
operating condition, if any, that is specified in each library. The design has instances of
combinational, sequential, and macro cells.
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-109
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-109

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
To create the scenario, s1, with cell instances linked to the Combo_cells_slow,
Macros_slow, and Sequential_slow libraries, you run

dc_shell-topo> create_scenario s1
dc_shell-topo> set_operating_conditions -max WORST -library slow

where the library “slow” is defined within the Combo_cells_slow.db file. Note that using the
-library option in the set_operating_conditions command helps the tool identify the
correct PVT for the operating conditions. The PVT of the maximum operating condition is
used to find the correct matches in the link library list during linking.

Using this library linking method, you can link libraries that do not have operating condition
definitions. The method also enables you to have multiple library files. For example, you can
have one library file for standard cells, another for macros, and so forth.

Inconsistent Libraries Warning

When you use multiple libraries, if library cells with the same name are not functionally
identical or do not have identical sets of library pins with the same name and order, the tool
issues a warning stating that the libraries are inconsistent.

You should run the check_library command before running a multicorner-multimode flow,
as shown in the following example,

set_check_library_options -mcmm
check_library -logic_library_name {a.db b.db}

Table 10-12 Link Libraries With PVT and Operating Conditions

Link library (in order) Nominal PVT Operating conditions
in library (PVT)

Combo_cells_slow.db 1/0.85/130 WORST (1/0.85/130)

Sequentials_fast.db 1/1.30/100 None

Macros_fast.db 1/1.30/100 None

Macros_slow.db 1/0.85/130 None

Combo_cells_fast.db 1/1.30/100 BEST (1/1.3/100)

Sequentials_slow.db 1/0.85/130 None
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-110

Design Compiler User Guide Version D-2010.03-SP2
When you use the -mcmm option with the set_check_library_options command, the
check_library command performs multicorner-multimode specific checks, such as
determining operating condition or power-down inconsistencies. When inconsistencies are
detected, the tool generates a report that lists the inconsistencies. In addition, the tool
issues the following summary information message:

Information: Logic library consistency check FAILED for MCMM.
(LIBCHK-360)

When you get a LIBCHK-360 message, check the report to identify the cause of the problem
and fix the library inconsistencies. The LIBCHK-360 man page describes possible causes
for the library inconsistencies.

Setting the dont_use Attribute on Library Cells in the Multicorner-Multimode Flow
When you set the dont_use attribute on a library cell, the multicorner-multimode feature
requires that all characterizations of this cell have the dont_use attribute. Otherwise, the
tool might consider the libraries as inconsistent. You can use the wildcard character to set
the dont_use attribute as follows:

set_dont_use */AN2

Note that you do not have to issue the command multiple times to set the dont_use attribute
on all characterizations of a library cell.

Using Unique PVT Names to Prevent Linking Problems
To prevent linking problems, make sure your PVT operating conditions have unique names.
If the maximum libraries associated with each scenario do not have distinct PVT values,
your cell instances might be incorrectly linked, resulting in incorrect timing values. This
happens because the nominal PVT values that are used to group the link libraries into sets
group the maximum libraries of different corners into one set. Consequently, the cell
instances are linked to the first cell with a matching type in that set, for example, the first
AND2_4 cell, even though the -library option is specified for each of the scenario-specific
set_operating_conditions commands. That is, the -library option locates the
operating condition and its PVT but not the library to link.

The following paragraphs describe a linking problem due to non-unique PVT names. For the
conditions given in Table 10-13, Table 10-14, and Example 10-47, the tool groups the
Ftyp.db and TypHV.db libraries into a set with Ftyp.db as the first library in the set. Therefore,
the cell instances in scenario s2 are not linked to the library cells in TypHV.db, as intended.
Instead, they are incorrectly linked to the library cells in the Ftyp.db library, assuming that all
the libraries include the library cells required to link the design.
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-111
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-111

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Table 10-13 shows the libraries in the link library, listed in order; their nominal PVT; and the
operating condition that is specified in each library.

Table 10-14 shows the operating condition specifications for each of the scenarios;
Example 10-47 shows the corresponding scenario creation script.

Example 10-47 Linking Problem Due to Non-Unique PVT Name
create_scenario s1
set_operating_conditions WORST -library Typ.db:Typ
create_scenario s2
set_operating_conditions WORST -library TypHV.db:TypHV
create_scenario s3
set_operating_conditions WORST -library Ftyp.db:Ftyp
create_scenario s4
set_operating_condition \

-max WORST -max_library Typ.db:Typ \
-min BEST -min_library HoldTyp.db:HoldTyp

Table 10-13 Link Libraries With PVT and Operating Conditions

Link library (in order) Nominal PVT Operating conditions
in library (PVT)

Ftyp.db 1/1.30/100 WORST (1/1.30/100)

Typ.db 1/0.85/100 WORST (1/0.85/100)

TypHV.db 1/1.30/100 WORST (1/1.30/100)

Holdtyp.db 1/0.85/100 BEST (1/0.85/100)

Table 10-14 Scenarios and Their Operating Conditions

Scenarios

s1 s2 s3 s4

Max Opcond
(Library)

WORST
(Typ.db)

WORST
(TypHV.db)

WORST
(Ftyp.db)

WORST
(Typ.db)

Min Opcond
(Library)

None None None BEST
(HoldTyp.db)
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-112

Design Compiler User Guide Version D-2010.03-SP2
Ambiguous Libraries Warning

The tool issues a warning if your design uses any libraries containing cells with the same
name and same nominal PVT. The warning states that the libraries are ambiguous and
identifies which libraries are being used and which are being ignored.

Unsupported k-factors
Multicorner-multimode design libraries do not support k-factor scaling. Therefore, the
operating conditions that you specify for each scenario must match the nominal operating
conditions of one of the libraries in the link library list.

Automatic Detection of Driving Cell Library
In multicorner-multimode flow, the operating condition setting is different for different
scenarios. To build the timing arc for the driving cell, different technology libraries are used
for different scenarios. You can specify the library using the -library option of the
set_driving_cell command. But specifying the library is optional because the tool can
automatically detect the driving cell library.

When you specify the library using the -library option of the set_driving_cell
command, the tool searches for the specified library in the link library set. If the specified
library exists, it is used. If the specified library does not exist in the link library, the tool issues
the UID-993 error message as follows:

Error: Cannot find the specified driving cell in memory.(UID-993)

When you do not use the -library option of the set_driving_cell command, the tool
searches all the libraries for the matching operating conditions. The first library in the link
library set that matches the operating condition is used. If no library in the link library set
matches the operating condition, the first library in the link library set that contains the
matching library cell is used. If no library in the link library set contains the matching library
cell, the tool issues the UID-993 error message.

Defining Minimum Libraries
Minimum libraries are usually defined with the set_operating_conditions command. You
can use the set_min_library command, but it is not scenario-specific. If you use
set_min_library to define a minimum library for a scenario, the tool uses that library as the
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-113
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-113

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
minimum library for all scenarios, even if you do not define that library in all your scenarios.
If you want to define different minimum libraries for each scenario, use the
set_operating_conditions command.

For example, you could not relate two different minimum libraries – say, Fast_0yr.db and
Fast_10yr.db – with the maximum library, Slow.db, in two separate scenarios. The first
minimum library you specify would apply to both scenarios. Table 10-15 shows the
unsupported configuration.

Note, however, that a minimum library can be associated with multiple maximum libraries.
As shown in Table 10-16, the minimum library Fast_0yr.db is paired with both the maximum
library Slow.db of scenario 1 and the maximum library SlowHV.db of scenario 2.

Scenario Management Commands
Use the following commands to create and manage scenarios:

• create_scenario

• current_scenario

• all_scenarios

• all_active_scenarios

Table 10-15 Unsupported Multiple Minimum Library Configuration

Scenarios

s1 s2

Max library Slow.db Slow.db

Min library Fast_0yr.db Fast_10yr.db

Table 10-16 Supported Min-Max Library Configuration

Scenarios

s1 s2

Max library Slow.db SlowHV.db

Min library Fast_0yr.db Fast_0yr.db
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-114

Design Compiler User Guide Version D-2010.03-SP2
• set_active_scenarios

• set_scenario_options

• set_preferred_scenarios

• check_scenarios

• remove_scenario

• report_scenarios

• report_scenario_options

The following sub-sections describe how you use these commands to manage scenarios:

• Creating Scenarios

• Defining Active Scenarios

• Scenario Reduction

• Specifying Scenario Options

• Removing Scenarios

Creating Scenarios
You use the create_scenario command to create a new scenario. When the first scenario
is created, all previous scenario-specific constraints are removed from the design and the
following warning is issued:

dc_shell-topo> create_scenario s1
Warning: Any existing scenario-specific constraints

are discarded. (MV-020)
Current scenario is: s1

Use the current_scenario command to specify the name of the current scenario. Without
arguments, the command returns the name of the current scenario. Note that the
current_scenario command merely specifies the focus scenario and that when you define
more than one scenario, the tool performs concurrent analysis and optimization across all
scenarios, independent of the current scenario setting.

Use the set_tlu_plus command to set the TLUPlus files in the scenario specified by the
current_scenario command. Note that each scenario must have a set of TLUPlus files
specified, or the following error is reported:

Error: tlu_plus files are not set in this scenario <name>.
RC values will be 0.
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-115
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-115

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Defining Active Scenarios
During concurrent analysis and optimization, you can significantly reduce memory usage
and runtime by limiting the number of active scenarios to those that are “essential” or
“dominant.” An essential or dominant scenario has the worst slack among all the scenarios
for at least one of its constrained objects. (Constrained objects can include delay constraints
associated with a pin, the design rule constraints for a net, leakage power, and so on.) Any
scenario for which one of its constrained objects is the worst slack value is a dominant
scenario.

You use the set_active_scenarios command to define active scenarios. Other
commands related to active scenarios are all_scenarios and all_active_scenarios.

Scenario Reduction
Topographical mode automatically performs scenario reduction on the current set of active
scenarios to reduce memory and runtime. In general, restricting concurrent analysis and
optimization to a subset of dominant scenarios does not lead to a significant difference in
QoR. The tool analyzes all the active scenarios and automatically determines a set of
dominant scenarios, based on the number of violating endpoints, and optimizes them for
timing, power, and design rule. In the current version, topographical mode does not support
the get_dominant_scenario command, which IC Compiler supports. However, you can
choose a preferred scenario by using the set_preferred_scenario command. When you
set the preferred scenario, the tool treats it as the most constraining scenario. It still performs
scenario reduction to determine the dominant scenarios but treats the user-specified
preferred scenario as the most constraining one.

Specifying Scenario Options
Use the set_scenarios_options command to define specific constraint options, such as
leakage power, that you want optimized in a scenario. You can apply the constraint option to
more than one scenario at a time by using the -scenarios option. The options can be
specified on both active and inactive scenarios. If you do not specify any scenario, the
options are applied only to the current scenario.

Use the -leakage_power option to enable or disable the leakage power optimization. The
default value of the -leakage_power option is true. Leakage power optimization is enabled
by default on all scenarios. Set the -leakage_power option to false to disable the leakage
power optimization. The following command shows how to enable leakage power
optimization on only specific scenarios.

set_scenario_options -leakage_power true \
 -scenarios scenario_list

Use the -dynamic_power option to enable or disable the dynamic power optimization. The
default value of the -dynamic_power option is true. Dynamic power optimization is enabled
by default on all scenarios.
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-116

Design Compiler User Guide Version D-2010.03-SP2
Use the -setup option to enable or disable the setup or maximum delay optimization for
specified scenarios. The default value of the -setup option is true, so maximum delay
optimization is enabled by default. The following example shows how to disable maximum
delay optimization on specific scenarios.

dc_shell-topo> set_scenario_options -setup false -scenarios
scenario_list

Use the -hold option to enable or disable the hold or minimum delay optimization for the
specified scenarios. The default value of the -hold option is true. When you set the -hold
option to false, the tool ignores the hold or the minimum delay violations in the specified
scenarios.

dc_shell-topo> set_scenario_options -reset_all true \
-scenarios [all_scenarios]

Use the report_scenario_options command to report the scenario options.

Removing Scenarios
Use the remove_scenario command to remove the specified scenarios. All
scenario-specific constraints defined in the removed scenario are deleted. For example,

dc_shell-topo> remove_scenarios
s1 s2
dc_shell-topo> remove_scenario -all
Removed scenario 's2'
Removed scenario 's1'
dc_shell-topo> all_scenarios

Power Optimization Techniques
Design Compiler Graphical supports power optimization for multicorner-multimode designs.
You use the set_max_leakage_power and set_max_dynamic_power commands to set the
leakage and dynamic power constraints on specific scenarios of a multicorner-multimode
design.

The following sections describe how you perform different types of leakage and dynamic
power optimization on multicorner-multimode designs.

For details on multivoltage, multicorner-multimode design optimization, and the UPF flow for
the multivoltage, multicorner-multimode design optimization, see the Power Compiler User
Guide.
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-117
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-117

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Optimizing for Leakage Power
Figure 10-31 shows how you set various constraints on different scenarios of a
multicorner-multimode design.

Typically, in a multicorner-multimode design, leakage power optimization and timing
optimization are done on different corners. Therefore, the worst case leakage corner can be
different from a worst case timing corner. To perform leakage power optimization on specific
corners, set the leakage power constraint on specific scenarios of the
multicorner-multimode design by using the set_max_leakage_power command.

Note:
The set_scenario_options and get_dominant_scenarios commands are not
supported in Design Compiler Graphical.

Figure 10-31 Setting Different Constraints on Different Scenarios

Note the following points when you optimize for leakage power in multicorner-multimode
designs:

• You must define the leakage power constraint on specific scenarios targeted for leakage
power optimization.

• Leakage and timing optimizations can be performed concurrently across multiple
scenarios.

• The worst case leakage corner is different from the worst case timing corner.
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-118

Design Compiler User Guide Version D-2010.03-SP2
The following example script shows how to create a scenario and set the leakage power
constraint on the scenario:

Example 10-48 Performing Leakage Power Optimization in a Multicorner-Multimode Flow
read_verilog top.v
current_design top
link

create_scenario s1
set_operating_conditions WCCOM -library slow.db:slow
set_tlu_plus_files -max_tluplus max.tlu_plus -tech2itf_map tech.map
read_sdc ./s1.sdc
set_switching_activity -toggle_rate 0.25 -clock p_Clk -static_probability
0.015 -select inputs
set_max_leakage_power 0

create_scenario s2
set_operating_conditions BCCOM -library fast.db:fast
set_tlu_plus_files -max_tluplus max.tlu_plus -tech2itf_map tech.map
read_sdc ./s2.sdc

create_scenario s3
set_operating_conditions TCCOM -library typ.db:typ
set_tlu_plus_files -max_tluplus max.tlu_plus -tech2itf_map tech.map
read_sdc ./s3.sdc

create_scenario s4
set_operating_conditions NCCOM -library typ2.db:typ2
set_tlu_plus_files -max_tluplus max.tlu_plus -tech2itf_map tech.map
read_sdc ./s4.sdc
set_max_leakage_power 0

report_scenarios
compile_ultra -scan -gate_clock
report_power –scenario [all_scenarios]
report_timing -scenario [all_scenarios]
report_scenarios
report_qor
report_saif

Optimizing for Dynamic Power
To perform dynamic power optimization for a multicorner-multimode design, you must
specify the set_max_dynamic_power command on every scenario of the design. Do not
specify the dynamic power constraint only on certain scenarios. If you do so, Power
Compiler issues an error message.

Note:
Unlike leakage power optimization where you specify the leakage constraint on specific
scenarios, for dynamic power optimization, the dynamic power constraint must be
specified on every scenario of the multicorner-multimode design.
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-119
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-119

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
The following example script shows how you set dynamic power constraints on the
scenarios of a multicorner-multimode design.

Example 10-49 Performing Dynamic Power Optimization in a Multicorner-Multimode Design

create_scenario s1
read_sdc s1.sdc
set_operating_conditions WCCOM -library test1.db:test1
set_tlu_plus_files -max_tluplus max.tlu_plus -tech2itf_map tech.map
set_max_dynamic_power 0

create_scenario s2
read_sdc s2.sdc
set_operating_conditions BCCOM -library test2.db:test2
set_tlu_plus_files -max_tluplus max.tlu_plus -tech2itf_map tech.map
set_max_leakage_power 0
set_max_dynamic_power 0

create_scenario s3
read_sdc s3.sdc
set_operating_conditions NCCOM -library test3.db:test3
set_tlu_plus_files -max_tluplus max.tlu_plus -tech2itf_map tech.map
set_max_dynamic_power 0

create_scenario s4
read_sdc s4.sdc
set_operating_conditions WCCOM -library test4.db:test4
set_tlu_plus_files -max_tluplus max.tlu_plus -tech2itf_map tech.map
set_max_dynamic_power 0

Reporting Commands
This section describes the commands that you can use for reporting multicorner-multimode
designs in the following sub-sections:

• report_scenario Command

• report_scenario_options Command

• Reporting Commands That Support the -scenario Option

• Commands That Report the Current Scenario

• Reporting Examples
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-120

Design Compiler User Guide Version D-2010.03-SP2
report_scenario Command
The report_scenario command reports the scenario setup information for
multicorner-multimode designs. The scenario specific information includes the technology
library used, the operating condition, and TLUPlus files.

The following example shows a report generated by the report_scenarios command:

Report : scenarios
Design : DESIGN1
scenario(s) : SCN1
Version: C-2009.06
Date : Fri Apr 17 20:55:59 2009

All scenarios (Total=4): SCN1 SCN2 SCN3 SCN4
All Active scenarios (Total=1): SCN1
Current scenario : SCN1

Scenario #0: SCN1 is active.
Scenario options:
Has timing derate: No
Library(s) Used:
 technology library name (File: library.db)

Operating condition(s) Used:
 Analysis Type : bc_wc
 Max Operating Condition: library:WCCOM
 Max Process : 1.00
 Max Voltage : 1.08
 Max Temperature: 125.00
 Min Operating Condition: library:BCCOM
 Min Process : 1.00
 Min Voltage : 1.32
 Min Temperature: 0.00

Tlu Plus Files Used:
 Max TLU+ file: tlu_plus_file.tf
 Tech2ITF mapping file: tf2itf.map

report_scenario_options Command
Use the report_scenario_options command to report the scenario options set by the
set_scenario_options command. You can specify a list of scenarios to be reported by
using the -scenarios option. By default, this command reports scenario options for the
current, active scenario.
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-121
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-121

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
To illustrate the report generated by the report_scenario_options command, consider
Example 10-50 where the set_scenario_options -leakage_power false
command is executed. This command sets the -leakage_power option to false. With the
-leakage_power option set to false, the tool will not optimize the current, active scenario
for leakage power. This status is shown by the report_scenario_options report in
Example 10-50.

Example 10-50

dc_shell-topo> set_scenario_options -leakage_power false
dc_shell-topo> report_scenario_options
**
Report : scenario options
Design : TEST03
Version: D-2010.03
Date : Wed Jan 20 14:57:08 2010
**

Scenario: MODE1 is active.

setup : true
hold : true
leakage_power : false
dynamic_power : true

Reporting Commands That Support the -scenario Option
Some reporting commands support the -scenario option to report scenario-specific
information. You can specify a list of scenarios to the -scenario option, and the tool reports
scenario details for the specified scenarios.

The following reporting commands support the -scenario option:

• report_timing

• report_timing_derate

• report_power

• report_clock

• report_path_group

• report_extraction_options

• report_tlu_plus_files

• report_constraint
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-122

Design Compiler User Guide Version D-2010.03-SP2
Commands That Report the Current Scenario
The following reporting commands report scenario-specific details for the current scenario.
The header section of the report contains the name of the current scenario. No additional
options are required to report the scenario-specific details of the current scenario.

• report_net

• report_annotated_check

• report_annotated_transition

• report_annotated_delay

• report_attribute

• report_case_analysis

• report_ideal_network

• report_internal_loads

• report_clock_gating_check

• report_clock_tree

• report_clock_tree_power

• report_delay_calculation

• report_delay_estimate_options

• report_transitive_fanout

• report_disable_timing

• report_latency_adjustment_options

• report_net

• report_power_calculation

• report_noise

• report_signal_em

• report_timing_derate

• report_timing_requirements

• report_transitive_fanin

• report_crpr

• report_clock_timing
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-123
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-123

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Reporting Examples
This section contains sample reports for some of the multicorner-multimode reporting
commands.

report_qor

The report_qor command reports by default the QoR details for all the scenarios in the
design. The following example shows a report generated by the report_qor command:

**
Report : qor
Design : DESIGN1
**
 Scenario 's1'
 Timing Path Group 'reg2reg'

 Levels of Logic: 33.00
 Critical Path Length: 694.62
 Critical Path Slack: -144.52
 Critical Path Clk Period: 650.00
 Total Negative Slack: -4533.01
 No. of Violating Paths: 136.00

 Scenario 's2'
 Timing Path Group 'reg2reg'

 Levels of Logic: 33.00
 Critical Path Length: 393.61
 Critical Path Slack: 61.18
 Critical Path Clk Period: 500.00
 Total Negative Slack: 0.00
 No. of Violating Paths: 0.00

Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-124

Design Compiler User Guide Version D-2010.03-SP2
report_timing -scenario

This command reports timing results for the active scenarios in the design. You can specify
a list of scenarios with the -scenario option. When the -scenario option is not specified
only the current scenario is reported.

**
Report : timing
 -path full
 -delay max
 -max_paths 1
Design : DESIGN1
Version: C-2009.06
Date : Thu Apr 16 20:55:59 2009
**

* Some/all delay information is back-annotated.

A fanout number of 1000 was used for high fanout net computations.

Startpoint: TEST_BUF2En
 (input port clocked by clk)
Endpoint: TEST1/TEST2_SYN/latch_3
 (non-sequential rising-edge timing check clocked by clk)
Scenario: s1
Path Group: clk
Path Type: max
Point Incr Path Lib:OC

clock clk (rise edge) 0.00 0.00
clock network delay (propagated) 0.00 0.00
input external delay 450.00 450.00 f
TEST_BUF2En (in) 0.00 450.00 f stdcell_typ:WORST
TEST_BUF2En_BUF1/Z (inx4) 9.75 459.75 r stdcell_typ:WORST
U468/Z (inx10) 10.21 469.96 f stdcell_typ:WORST
TEST_BUF2En_BUF/Z (inx11) 8.74 478.70 r stdcell_typ:WORST
U293/Z (inx11) 9.30 488.00 f stdcell_typ:WORST
TEST1/TEST2_SYN/U74963/Z (nr2x4) 12.78 500.78 r stdcell_typ:WORST
U31662/Z (inx4) 10.58 511.37 f stdcell_typ:WORST
TEST1/TEST2_SYN/U75093/Z (aoi21x6) 18.98 530.34 r stdcell_typ:WORST
U42969/Z (nd2x6) 14.16 544.51 f stdcell_typ:WORST
TEST1/TEST2_SYN/U53046/Z (inx8) 13.35 557.86 r stdcell_typ:WORST
U2765/Z (inx8) 11.48 569.33 f stdcell_typ:WORST
U32442/Z (inx6) 7.61 576.94 r stdcell_typ:WORST
U33615/Z (nd2x3) 18.14 595.09 f stdcell_typ:WORST
U32269/Z (nd2x6) 8.74 603.82 r stdcell_typ:WORST
TEST1/TEST2_SYN/clk_gate/EN (cklan2x1) 0.00 603.82 r stdcell_typ:WORST
data arrival time 603.82
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-125
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-125

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
clock clk (rise edge) 650.00 650.00
clock network delay (propagated) 0.00 650.00
TEST1/TEST2_SYN/clk_gate/CLK (cklan2x1)
 0.00 650.00 r
library setup time -56.25 593.75
data required time 593.75
--
data required time 593.75
data arrival time -603.82
--
slack (VIOLATED) -10.07

report_constraint

This command reports constraints for all active scenarios. Each scenario is reported
separately. When used with the -scenario option, it reports constraints for a specified list
of scenarios.

**
Report : constraint
Design : DESIGN1
Scenarios: 0, 1
Version: C-2009.06
Date : Thu Apr 16 20:55:59 2009
**
 Weighted
Group (max_delay/setup) Cost Weight Cost Scenario

CLK 10.07 1.00 10.07 s1
in2out 372.89 1.00 372.89 s1
in2reg 199.73 1.00 199.73 s1
reg2out 467.99 1.00 467.99 s1
reg2reg 171.16 1.00 171.16 s1
default 0.00 1.00 0.00 s1
CLK 90.60 1.00 90.60 s2
in2out 474.97 1.00 474.97 s2
in2reg 166.88 1.00 166.88 s2
reg2out 326.46 1.00 326.46 s2
reg2reg 0.00 1.00 0.00 s2
default 0.00 1.00 0.00 s2

max_delay/setup 4404.52

...
 Multi-Scenario
Constraint Cost

multiport_net 0.00 (MET)
min_capacitance 0.00 (MET)
max_transition 45.28 (VIOLATED)
max_fanout 150.00 (VIOLATED)
max_capacitance 0.00 (MET)
max_delay/setup 4404.52 (VIOLATED)
critical_range 4404.52 (VIOLATED)
min_delay/hold 0.00 (MET)
max_area 714233.56 (VIOLATED)
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-126

Design Compiler User Guide Version D-2010.03-SP2
report_tlu_plus_files

This command reports the TLUPlus files associations; it shows each minimum and
maximum TLUPlus and layer map file per scenario:

dc_shell-topo> current_scenario s1
Current scenario is: s1

dc_shell-topo> report_tlu_plus_files
Max TLU+ file: /snps/testcase/s1max.tluplus
Min TLU+ file: /snps/testcase/s1min.tluplus
Tech2ITF mapping file: /snps/testcase/tluplus_map.txt

report_scenarios

The report_scenarios command reports the scenario setup information for
multicorner-multimode designs. This command reports all the defined scenarios. The
scenario-specific information includes the technology library used, the operating condition,
and the TLUPlus files. The following example shows a report generated by the
report_scenarios command:

Report : scenarios
Design : DESIGN1
scenario(s) : SCN1
Version: C-2009.06
Date : Fri Apr 17 20:55:59 2009

All scenarios (Total=4): SCN1 SCN2 SCN3 SCN4
All Active scenarios (Total=1): SCN1
Current scenario : SCN1

Scenario #0: SCN1 is active.
Scenario options:
Has timing derate: No
Library(s) Used:
 technology library name (File: library.db)

Operating condition(s) Used:
 Analysis Type : bc_wc
 Max Operating Condition: library:WCCOM
 Max Process : 1.00
 Max Voltage : 1.08
 Max Temperature: 125.00
 Min Operating Condition: library:BCCOM
 Min Process : 1.00
 Min Voltage : 1.32
 Min Temperature: 0.00

Tlu Plus Files Used:
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-127
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-127

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
 Max TLU+ file: tlu_plus_file.tf
 Tech2ITF mapping file: tf2itf.map

report_power

The report_power command supports the -scenario option. Without the -scenario
option, only the current scenario is reported. To report power information for all scenarios,
use the report_power -scenarios [all_scenarios] command.

Note:
In the multicorner-multimode flow, the report_power command does not perform clock
tree estimation. The command reports only the netlist power in this flow.

The following example shows the report generated by the report_power -scenario
command.

**
Report : power
Design : Design_1
Scenario(s): s1
Version: C-2009.06
Date : Wed Apr 15 12:52:02 2009
**

Library(s) Used: slow (File: slow.db)

Global Operating Voltage = 1.08
Power-specific unit information :
 Voltage Units = 1V
 Capacitance Units = 1.000000pf
 Time Units = 1ns
 Dynamic Power Units = 1mW (derived from V,C,T units)
 Leakage Power Units = Unitless

Warning: Could not find correlated power. (PWR-725)

Power Breakdown

 Cell Driven Net Tot Dynamic Cell
 Internal Switching Power (mW) Leakage
Cell Ower (mW) Power (mW) (% Cell/Tot) Power(nW)
--
Netlist Power 4.8709 1.2889 6.160e+00 (79%) 1.351e+05
Estimated Clock Tree Power N/A N/A (N/A) N/A
--
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-128

Design Compiler User Guide Version D-2010.03-SP2
Supported SDC Commands
Table 10-17 lists the SDC commands supported in the multicorner-multimode flow.

Multicorner-Multimode Script Example
Example 10-51 shows a basic sample script for the multicorner-multimode flow.

Table 10-17 Supported SDC Commands

Commands

all_clocks set_fanout_load

create_clock set_input_delay

create_generated_clock set_input_transition

get_clocks set_latency_adjustment_options

group_path set_load

set_annotated_delay set_max_capacitance

set_capacitance set_max_delay

set_case_analysis set_max_dynamic_power

set_clock_gating_check set_max_leakage_power

set_clock_groups set_max_time_borrow

set_clock_latency set_max_transition

set_clock_transition set_min_delay

set_clock_uncertainty set_multicycle_path

set_data_check set_output_delay

set_disable_timing set_propagated_clock

set_drive set_resistance

set_false_path set_timing_derate
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-129
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-129

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Example 10-51 Basic Script to Run a Multicorner-Multimode Flow

#......path settings......
set search_path ". $DESIGN_ROOT $lib_path/dbs \

$lib_path/mwlibs/macros/LM"
set target_library "stdcell.setup.ftyp.db \

stdcell.setup.typ.db stdcell.setup.typhv.db"
set link_library [concat * $target_library \

setup.ftyp.130v.100c.db setup.typhv.130v.100c.db \
setup.typ.130v.100c.db]

set_min_library stdcell.setup.typ.db -min_version stdcell.hold.typ.db

#......MW setup......
#......load design......

create_scenario s1
set_operating_conditions WORST -library stdcell.setup.typ.db:stdcell_typ
set_tlu_plus_files -max_tluplus design.tlup -tech2itf_map layermap.txt
read_sdc s1.sdc
set_max_leakage_power 0

create_scenario s2
set_operating_conditions BEST -library stdcell.setup.ftyp.db:stdcell_ftyp
set_tlu_plus_files -max_tluplus design.tlup -tech2itf_map layermap.txt
read_sdc s2.sdc

create_scenario s3
set_operating_conditions NOM -library stdcell.setup.ftyp.db:stdcell_ftyp
set_tlu_plus_files -max_tluplus design.tlup -tech2itf_map layermap.txt
read_sdc s3.sdc

set_active_scenarios {s1 s2}
report_scenarios
compile_ultra -scan -gate_clock
report_qor
report_constraints
report_timing -scenario [all_scenarios]
.
.
insert_dft
.
.
compile_ultra –incr -scan

Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-130

Design Compiler User Guide Version D-2010.03-SP2
Using ILMs in Multicorner-Multimode Designs
An interface logic model (ILM) is a structural model of a circuit that is modeled as a smaller
circuit representing the interface logic of the block. The model contains cells whose timing is
affected by or affects the external environment of a block. ILMs enhance capacity and
reduce runtime for the optimization of the top-level design. For ILM details, see “Using
Interface Logic Models” in Chapter 9.

ILMs are compatible with multicorner-multimode scenarios. You can apply
multicorner-multimode constraints to an ILM and use the ILM in a top-level design.

The following requirements apply to using ILMs with multicorner-multimode scenarios:

• For each scenario in the top-level design, an identically named scenario must exist in
each of the ILM blocks used in the top-level design. An ILM can have additional scenarios
that are not used at the top-level design.

• If a top-level design does not have multicorner-multimode scenarios defined in it, the
ILMs also cannot have multicorner-multimode scenarios defined in it.

• For each TLUPlus file that is used, the ILM stores the extraction data and the specified
operating condition. In the top-level design, you cannot use additional TLUPlus files or
define additional temperature corners for the existing TLUPlus files.

Methodology for Using ILMs With Scenarios at the Top Level
Follow these steps to use an ILM at the top level when it has scenario information:

1. Set the current design to the top-level design.

2. Remove all scenarios.

remove_scenarios -all

3. Define scenarios for the top-level design.

The scenarios defined in the top-level design must match the scenario definitions in the
ILM blocks of the design. In the top-level design, all the scenarios must be defined before
the next step.

4. Perform optimization.

compile_ultra
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-131
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-131

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
At the beginning of compilation, the compile_ultra command performs the following
sanity checks to ensure that there are no scenario mismatches between the top-level
design and the ILMs. The compilation is terminated when any of the following
mismatches are encountered:

• The number of scenarios in the top-level design match the number of scenarios in the
ILM blocks.

If the tool detects that the top-level design has more scenarios than ILM blocks, an
ILM-70 error message is issued, and compilation is terminated.

Error: Scenario S6 is not available in ILM Block1. (ILM-70)

• The scenario information in the top-level design is consistent with the scenario
information in the ILM blocks.

If scenarios are not defined in the top-level design and the ILM blocks have scenario
definitions, an ILM-73 error message is issued and compilation is terminated.

Error: Inconsistent use of of ILM BlockInit in the
multicorner-multimode flow. ILM BlockInit has scenarios defined while
top design Top does not have scenarios defined. (ILM-73)

You can also use the check_scenarios command to check consistency between scenarios.
For more details, see the command man page.
Chapter 10: Using Design Compiler Topographical Technology
Optimizing Multicorner-Multimode Designs in Design Compiler Graphical 10-132

11
Using a Milkyway Database 11

You can write a Milkyway database within Design Compiler to use with other Synopsys
Galaxy platform tools, such as IC Compiler. You do this by way of the write_milkyway
commands. You can use a single Milkyway library across the entire Galaxy flow.

Note:
Design Compiler does not support the read_milkyway command.

When you use a Milkyway database, you do not need to use an intermediate netlist file
exchange format such as Verilog or VHDL to communicate with other Synopsys Galaxy
platform tools. Before you can use a Milkyway database within Design Compiler, you must
prepare a design library and a reference library and know about the concepts and tasks
described in these sections:

• Licensing and Required Files

• Invoking the Milkyway Tool

• About the Milkyway Database

• Guidelines for Using the Milkyway Databases

• Preparing to Use the Milkyway Database

• Writing the Milkyway Database

• Maintaining the Milkyway Design Library

• Setting the Milkyway Design Library for Writing an Existing Milkyway Database
11-1

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Licensing and Required Files

The Milkyway-Interface license is already provided to Design Compiler users. This license is
needed for the write_milkyway commands.

Table 11-1 and Table 11-2 list the files required for using a Milkyway database.

Invoking the Milkyway Tool

You invoke the Milkyway tool by using the Milkyway -galaxy command, which checks out
the Milkyway-Interface license.

About the Milkyway Database

The Milkyway database stores design data in the Milkyway design library and physical
library data in the Milkyway reference library.

• Milkyway design library

The Milkyway directory structure used to store design data—that is, the uniquified,
mapped netlist and constraints—is referred to as the Milkyway design library. You specify
the Milkyway design library for the current session by setting the mw_design_library
variable to the root directory path.

• Milkyway reference library

Table 11-1 Source Files

Source file Description

.lib Source for logic libraries

Table 11-2 Compiled Databases

Compiled
databases

Description

.db Logic library containing standard cell timing, power, function, test,
and so forth

Milkyway library Physical technology data, FRAM
Chapter 11: Using a Milkyway Database
Licensing and Required Files 11-2

Design Compiler User Guide Version D-2010.03-SP2
The Milkyway directory structure used to store physical library data is referred to as the
Milkyway reference library. Reference libraries contain standard cells, macro cells, and
pad cells. For information on creating reference libraries, see the Milkyway
documentation.

You specify the Milkyway reference library for the current session by setting the
mw_reference_library variable to the root directory path. The order in the list implies
priority for reference conflict resolution. If more than one reference library has a cell with
the same name, the first reference library has precedence.

Guidelines for Using the Milkyway Databases

When you use the write_milkyway command, observe these guidelines.

• Make sure all the cells present in the Milkyway reference library have corresponding cells
in the timing library. The port direction of the cells in the Milkyway reference libraries are
set from the port direction of cells in the timing library. If cells are present in the Milkyway
reference library but are not in the timing library, the port direction of cells present in the
Milkyway reference library is not set.

• Run the uniquify command before you run write_milkyway.

• You must make sure the units in the logic library and the Milkyway technology file are
consistent.

The SDC file does not contain unit information. If the units in the logic library and
Milkyway technology file are inconsistent, the write_milkyway command cannot convert
them automatically. For example, if the logic library uses femtofarad as the capacitance
unit and the Milkyway technology file uses picofarad as the capacitance unit, the output
of write_sdc shows different net load values.

In the following example, the capacitance units in the logic library and the Milkyway
technology file are not consistent. The following set_load information is shown for the
net gpdhi_word_d_21_ before write_milkyway is run:

set_load 1425.15 [get_nets {gpdhi_word_d_21_}]

After write_milkyway is run, the SDC file shows

set_load 8.36909 [get_nets {gpdhi_word_d_21_}]

• Design Compiler is case-sensitive. However, you can use the tool in case-insensitive
mode by doing the following before you run write_milkyway:

• Prepare uppercase versions of the libraries used in the link library.

• Use the change_names command to make sure the netlist is uppercased.
Chapter 11: Using a Milkyway Database
Guidelines for Using the Milkyway Databases 11-3
Chapter 11: Using a Milkyway Database
Guidelines for Using the Milkyway Databases 11-3

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Preparing to Use the Milkyway Database

You use the Milkyway design library to specify physical libraries and save designs in
Milkyway format. The inputs required to create a Milkyway design library are the Milkyway
reference library and the Milkyway technology file.

To create a Milkyway design library, follow these steps:

1. Define the power and ground nets. For example, set the following variables:

set mv_power_net VDD
set mw_ground_net VSS
set mw_logic1_net VDD
set mw_logic0_net VSS
set mw_power_port VDD
set mw_ground_port VSS

If you do not set these variables, power and ground connections are not made during
execution of write_milkyway. Instead power and ground nets can get translated to
signal nets.

2. Use the create_mw_lib command to create the Milkyway design library. For example,

create_mw_lib -technology $mw_tech_file \
 -mw_reference_library $mw_reference_library $mw_design_library_name

3. Use the open_mw_lib command to open the Milkyway library that you created. For
example, enter

open_mw_lib $mw_design_library_name

4. (Optional) Use the set_tlu_plus command to attach TLU+ files. For example,

set_tlu_plus_files-max_tluplus $max_tlu_file \
 -min_tluplus $min_tlu_file\

-tech2itf_map $prs_map_file

5. In subsequent dc_shell sessions, you use the open_mw_lib command to open the
Milkyway library. If you are using TLUPlus files for RC estimation, use the
set_tlu_plus_files command to attach these files. For example,

open_mw_lib $mw_design_library_name
set_tlu_plus_files-max_tluplus $max_tlu_file \

 -min_tluplus $min_tlu_file\
-tech2itf_map $prs_map_file
Chapter 11: Using a Milkyway Database
Preparing to Use the Milkyway Database 11-4

Design Compiler User Guide Version D-2010.03-SP2
Writing the Milkyway Database

To save the design data in a Milkyway design library, use the write_milkyway command.
The write_milkyway command writes netlist and physical data from memory to Milkyway
design library format.

To use the write_milkyway command, enter

dc_shell> write_milkyway [options] file_name

You must use the -output option to specify the file name.

dc_shell> write_milkyway -output file_name -overwrite

For more information, see the man page.

Example

To write design information from memory to a Milkyway library named testmw and name the
design file TOP, enter

dc_shell> set mw_design_library testmw
dc_shell> write_milkyway -output TOP

Important Points About the write_milkyway Command
When you use the write_milkyway command, keep the following points in mind:

• You must run create_mw_lib before you run write_milkyway.

• If a design file already exists (that is, you ran write_milkyway more than once on the
design with the same output directory), write_milkyway creates a new, additional
design file and increments the version number. You must make sure you open the correct

Table 11-3 Using the write_milkyway Command Options

To do this Use this

Specify the name of the design file to write (required). If you omit this switch, the
tool displays an error message
Error: Required argument '-output' was not found (CMD-007)

-output

Overwrite the current version of the design file. If you omit this option, a new,
additional file version is written. Use this switch to save disk space.

-overwrite
Chapter 11: Using a Milkyway Database
Writing the Milkyway Database 11-5
Chapter 11: Using a Milkyway Database
Writing the Milkyway Database 11-5

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
version in Milkyway; by default Milkyway opens the latest version. To avoid creating an
additional version, use the -overwrite switch to overwrite the current version of the
design file and save disk space.

• The command does not modify in-memory data.

• Attributes present in the design in memory that have equivalent attributes in Milkyway are
translated (not all attributes present in the design database are translated).

• A hierarchical netlist translated using write_milkyway retains its hierarchy in the
Milkyway database.

Results of Running the write_milkyway Command
The write_milkyway command does the following:

• Creates a design file based on the netlist in memory and saves the design data for the
current design in the file. The path for the design file is design_dir/CEL/file_name:version,
where design_dir is the location you specified in mw_design_library.

• Re-creates the hierarchy preservation information.

Limitations When Writing Milkyway Format
The following limitations apply when you write your design in Milkyway format:

• The design must be mapped.

Because the Milkyway format describes physical information, it supports mapped
designs only. You cannot use the Milkyway format to store design data for unmapped
designs.

• The design must not contain multiple instances.

You must uniquify your design before saving it in Milkyway format. Use the check_design
-multiple_designs command to report information related to multiply-instantiated
designs.

• The write_milkyway command saves the entire hierarchical design in a single Milkyway
design file. You cannot generate separate design files for each subdesign.

• When you save a design in Milkyway format, the write_milkyway command does not
save the interface logic model (ILM) instances in the Milkyway design library. You must
explicitly save each ILM. For details, see Chapter 9, “Using Interface Logic Models”.
Chapter 11: Using a Milkyway Database
Writing the Milkyway Database 11-6

Design Compiler User Guide Version D-2010.03-SP2
Script to Set Up and Write a Milkyway Database
Example 11-1 is a script to set up and write a Milkyway database.

Example 11-1 Script to Set Up and Write a Milkyway Database
set search_path "search_path ./libraries"
set link_library "* max_lib.db"
set target_library "max_lib.db"

create_mw_lib -technology $mw_tech_file -mw_reference_library \
$mw_reference_library $mw_lib_name

open_mw_lib $mw_lib_name
read_file -format ddc design.ddc
current_design TopDesign
link
write_milkyway -output myTop

Maintaining the Milkyway Design Library

To maintain your Milkyway design library (for example, to delete unneeded versions of your
design), you must use the Milkyway tool. This tool is a graphical user interface (GUI) that
enables manipulation of the Milkyway libraries.

To invoke the Milkyway tool, enter

% Milkyway -galaxy

For information about using the Milkyway tool, see the Milkyway documentation.

Setting the Milkyway Design Library for Writing an Existing
Milkyway Database

If the Milkyway design library already exists, run the set_mw_design command before you
run the write_milkyway command to set the Milkyway design library directory.

When you use set_mw_design, keep the following points in mind:

• The Milkyway design library must already exist (created previously by create_mw_lib).

• Specify the mw_reference_library and mw_design_library variables. The
mw_reference_library variable is used to set the Milkyway reference libraries for the
design and to enhance the search_path variable.
Chapter 11: Using a Milkyway Database
Maintaining the Milkyway Design Library 11-7
Chapter 11: Using a Milkyway Database
Maintaining the Milkyway Design Library 11-7

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Chapter 11: Using a Milkyway Database
Setting the Milkyway Design Library for Writing an Existing Milkyway Database 11-8

12
Analyzing and Resolving Design Problems 12

Use the reports generated by Design Compiler to analyze and debug your design. You can
generate reports both before and after you compile your design. Generate reports before
compiling to check that you have set attributes, constraints, and design rules properly.
Generate reports after compiling to analyze the results and debug your design.

This chapter contains the following sections:

• Instantiating RTL PG Pins in a Non-UPF Mode

• Resolving Bus Versus Bit-Blasted Mismatches Between the RTL and Macros

• Fixing Errors Caused by New Unsupported Technology File Attributes

• Using Register Replication to Solve Timing QoR, Congestion, and Fanout Problems

• Comparing Design Compiler Topographical and IC Compiler Environments

• Assessing Design and Constraint Feasibility in Mapped Designs

• Checking for Design Consistency

• Analyzing Your Design During Optimization

• Analyzing Design Problems

• Analyzing Area

• Analyzing Timing
12-1

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
• Resolving Specific Problems

Instantiating RTL PG Pins in a Non-UPF Mode

Design Compiler can accept RTL designs containing a small number of power/ground pin
connections on macros in non-UPF mode. The tool does not support a full PG netlist for a
block. For example, the tool only supports designs that contain a small number of analog
macros that have PG pins.

To instantiate PG pins in your RTL design, set the dc_allow_rtl_pg variable to true. The
default is false. To preserve the PG connections in a Verilog output, execute the
write_file -pg -format verilog command. To preserve the PG connections in a .ddc
format output, execute the write_file -format ddc command. Note that when saving the
design in .ddc format, you do not need to use the -pg option. When reading the .ddc file back
into Design Compiler, you make sure that the dc_allow_rtl_pg variable is set to true,
otherwise the tool issues a DDC-21 error:

Error: The feature used to generate this DDC file is not supported by

this tool or is not enabled in the current session. (DDC-21)

Information: To pass this netlist from DC to other tools, please use

write_file -pg -f verilog ...

To pass the design netlist to IC Compiler or Formality, you must use a Verilog output.

To use PG pins in your RTL design, observe the following guidelines:

• PG libraries are required

• FRAM must always have correct PG information

• The tool will not display the PG nets and pins; the get_pins command will not show PG
pins

• The RTL design must represent all PG pins as wires, not as supply0, supply1, and so on

• The RTL design must instance PG pins by name, such as ref U1 (.pin(net), …);

• PG nets should reach the top level, but do not have to connect to top-level ports

• The tool will mark cells with PG pins with the dont_touch attribute

• If any UPF commands are executed, the derived PG network is converted to UPF and the
UPF flow is followed

Example 12-1 shows Verilog RTL code that instantiates two PG pins: my_vdd and my_vss.
Chapter 12: Analyzing and Resolving Design Problems
Instantiating RTL PG Pins in a Non-UPF Mode 12-2

Design Compiler User Guide Version D-2010.03-SP2
Example 12-1 Coding PG Pins in the RTL Design
module my_design(a, b, c, my_vdd, my_vss);
input a, b, my_vdd, my_vss;
output c;
 my_macro U1(.a(a), .b(b), .c(c), .VDD(my_vdd), .VSS(my_vss));
endmodule

Resolving Bus Versus Bit-Blasted Mismatches Between the RTL
and Macros

Typically, the RTL pin names and the logical library pin names match. Signals are defined
one way in both the RTL and the library. They are defined as busses or the bus is defined by
its individual wires. Occasionally, mismatches occur during development when, for example,
you port from one technology to another, or when the libraries and the RTL are in flux. When
mismatches occur, you can set the enable_bit_blasted_bus_linking variable to true
and read your design into Design Compiler, even though your RTL and libraries do not
match with respect to bus verses bit-blasted pin names. When the
enable_bit_blasted_bus_linking variable is set to true, the linker rules are relaxed
such that you can read your design when mismatched pin names occur. The default value
for the enable_bit_blasted_bus_linking variable is false.

Note that when the enable_bit_blasted_bus_linking variable is set to true, the tool will
match names in accordance with the bus_inference_style and
bus_inference_descending_sort variable settings.

Fixing Errors Caused by New Unsupported Technology File
Attributes

Occasionally, IC Compiler adds support for new technology file attributes that are not yet
supported in Design Compiler. In these cases, a TFCHK-009 error message is issued in
Design Compiler but not in IC Compiler when using the same technology file.

If you get TFCHK-009 errors when reading in your technology file, check the spelling of the
attributes and make sure that the attributes are spelled correctly. If you still have TFCHK-009
errors, you can use either of the following two methods to remove the TFCHK-009 errors.
Before using either of the following methods, make sure that you can safely remove or ignore
the new attributes without impacting the tool functionality. In most cases, new attributes are
associated with new routing rules and should not impact the functionality of Design
Compiler.

• Remove the new attributes from the specified section in the technology file.
Chapter 12: Analyzing and Resolving Design Problems
Resolving Bus Versus Bit-Blasted Mismatches Between the RTL and Macros 12-3
Chapter 12: Analyzing and Resolving Design Problems
Resolving Bus Versus Bit-Blasted Mismatches Between the RTL and Macros 12-3

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
• If the new attributes are safe to ignore, you can set the ignore_tf_error variable to
true which enables the tool to ignore the unsupported attributes. This allows the tool to
ignore all TFCHK-009 errors, but the errors will still be issued in the log file.

Using Register Replication to Solve Timing QoR,
Congestion, and Fanout Problems

Design Compiler can replicate registers to address timing quality of results (QoR),
congestion, and fanout issues. This feature is supported in both Design Compiler
topographical mode and wire-load mode. To enable register replication, use the
set_register_replication command.

For Design Compiler topographical, register replication is placement-aware, which can help
reduce congestion in some cases. For wire-load mode, the load of the original replicated
register is evenly distributed among the new replicated registers. For details, see the Design
Compiler Optimization Reference Manual.

Comparing Design Compiler Topographical and IC Compiler
Environments

Sometimes Design Compiler topographical and IC Compiler have different environment
settings. These differences can lead to correlation problems. To help fix correlation issues
between Design Compiler topographical and IC Compiler, use the consistency_checker
command in your UNIX shell to compare the respective environments. However, before you
can compare the two environments, you need to determine the environments of each tool.
To do this, use the write_environment command as shown in Example 12-2 and
Example 12-3. Use the -output option to specify the name of your output report. In Design
Compiler, execute write_environment before compile_ultra; in IC Compiler, execute
write_environment before place_opt. For command details, see the man pages.

Example 12-2 Using write_environment in Design Compiler
dc_shell-topo> write_environment -consistency -output DCT.env

Example 12-3 Using write_environment in IC Compiler
icc_shell> write_environment -consistency -output ICC.env

Once you have the environments for each tool, compare the environments using the
consistency_checker command, as shown in Example 12-4.
Chapter 12: Analyzing and Resolving Design Problems
Using Register Replication to Solve Timing QoR, Congestion, and Fanout Problems 12-4

Design Compiler User Guide Version D-2010.03-SP2
Example 12-4 Comparing Design Compiler and IC Compiler Environments
unix_shell> consistency_checker –file1 DCT.env –file2 ICC.env \

-folder temp \
-html html_report | tee cc.log

The resulting HTML output report lists mismatched commands and variables. In
Example 12-4, the HTML output report is written to the ./html_report directory. To access
this report, open the ./html_report/index.html file in any Web browser. To reduce correlation
problems, fix these mismatches before proceeding to optimization.

In addition to the HTML output report, the tool prints a summary report to the shell while the
consistency_checker command is running. You can use the UNIX tee command, as
shown in Example 12-4, to save this report to a file. In Example 12-4, the report is saved to
the ./cc.log file.

Note:
The ./temp directory stores intermediate files the tool uses when executing the
consistency_checker command. Once the command completes, you can remove the
./temp directory.

For more details, see SolvNet article 026366.

Assessing Design and Constraint Feasibility in Mapped Designs

To help debug missing timing constraints and assess design and constraint feasibility in
mapped designs, use the set_zero_interconnect_delay_mode command, as shown in
Example 12-5. In this example, you set the set_zero_interconnect_delay_mode
command to true, run report_qor, and set the set_zero_interconnect_delay_mode
command back to its default of false before proceeding with further optimization
commands. When set_zero_interconnect_delay_mode is set to true, the tool analyzes
your design with only cell delays and the capacitance of the pin-load on all the wires in the
design to determine if your design meets timing goals. The tool does not consider wire
capacitance due to timing paths.

Always set set_zero_interconnect_delay_mode back to its default of false before
running your optimization step. The tool reports warning messages if you use optimization
commands when set_zero_interconnect_delay_mode is true.

Example 12-5 set_zero_interconnect_delay_mode Sample Script
...
compile
...
set_zero_interconnect_delay_mode true
report_qor
set_zero_interconnect_delay_mode false
Chapter 12: Analyzing and Resolving Design Problems
Assessing Design and Constraint Feasibility in Mapped Designs 12-5
Chapter 12: Analyzing and Resolving Design Problems
Assessing Design and Constraint Feasibility in Mapped Designs 12-5

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
...

When set_zero_interconnect_delay_mode is set to true, the tool reports the following
warning when you execute report_constraints or report_qor:

Warning: Timer is in zero interconnect delay mode. (TIM-177)

Checking for Design Consistency

A design is consistent when it does not contain errors such as unconnected ports,
constant-valued ports, cells with no input or output pins, mismatches between a cell and its
reference, multiple driver nets, connection class violations, or recursive hierarchy definitions.

Design Compiler runs the -check_design -summary command on all designs that are
compiled; however, you can also use the command explicitly to verify design consistency.
The command reports a list of warning and error messages.

• It reports an error if it finds a problem that Design Compiler cannot resolve. For example,
recursive hierarchy (when a design references itself) is an error. You cannot compile a
design that has check_design errors.

• It reports a warning if it finds a problem that indicates a corrupted design or a design
mistake not severe enough to cause the compile command to fail.

For a complete list of error and warning messages issued by the check_design
command, see the manpage. Use options to the check_design command as follows:

Table 12-1 Using the check_design Command Options

To do this Use this

To perform checks at only the current level of hierarchy
(by default, the check_design command validates the
entire design hierarchy)

-one_level

Disable warning messages -no_warnings

Display a summary of warning messages instead of
one message per warning

-summary
Chapter 12: Analyzing and Resolving Design Problems
Checking for Design Consistency 12-6

Design Compiler User Guide Version D-2010.03-SP2
By default, during compile or execution of the check_design command, Design Compiler
issues a warning message if a tri-state bus is driven by a non tri-state driver. You can have
Design Compiler display an error message instead by setting the
check_design_allow_non_tri_drivers_on_tri_bus variable to false. The default is
true. When the variable is set to false, the compile command stops after reporting the error;
however, the check_design command continues to run after the error is reported.

Analyzing Your Design During Optimization

Design Compiler provides the following capabilities for analyzing your design during
optimization:

• It lets you customize the compile log.

• It lets you save intermediate design databases.

The following sections describe these capabilities.

Report information messages related to multiply
instantiated designs.

When you use this option, a list of multiply instantiated
designs along with instance names and associated
attributes (dont_touch, black_box, and ungroup) are
displayed. By default, messages related to multiply
instantiated designs are suppressed.

-multiple_designs

Suppress warning messages related to connection
class violations before compile.

Use this option when you are working on a GTECH
design or netlist in which connection class violations
are expected. Doing so improves runtime (especially if
the GTECH design is large and has several connection
class violations).

-no_connection_class

Table 12-1 Using the check_design Command Options (Continued)

To do this Use this
Chapter 12: Analyzing and Resolving Design Problems
Analyzing Your Design During Optimization 12-7
Chapter 12: Analyzing and Resolving Design Problems
Analyzing Your Design During Optimization 12-7

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Customizing the Compile Log
The compile log records the status of the compile run. Each optimization task has an
introductory heading, followed by the actions taken while that task is performed. There are
three tasks in which Design Compiler works to reduce the compile cost function:

• Delay optimization

• Design rule fixing

• Area optimization

While completing these tasks, Design Compiler performs many trials to determine how to
reduce the cost function. For this reason, these tasks are collectively known as the trials
phase of optimization.

By default, Design Compiler logs each action in the trials phase by providing the following
information:

• Elapsed time

• Design area

• Worst negative slack

• Total negative slack

• Design rule cost

• Endpoint being worked on

You can customize the trials phase output by setting the compile_log_format variable.
Table 12-2 lists the available data items and the keywords used to select them. For more
information about customizing the compile log, see the man page for the
compile_log_format variable.

Table 12-2 Compile Log Format Keywords

Column Column header Keyword Column description

Area AREA area Shows the area of the design.

CPU seconds CPU SEC cpu Shows the process CPU time
used (in seconds).

Design rule cost DESIGN RULE COST drc Measures the difference
between the actual results and
user-specified design rule
constraints.
Chapter 12: Analyzing and Resolving Design Problems
Analyzing Your Design During Optimization 12-8

Design Compiler User Guide Version D-2010.03-SP2
Saving Intermediate Design Databases
Design Compiler provides the capability to output an intermediate design database during
the trials phase of the optimization process. This capability is called checkpointing.
Checkpointing saves the entire hierarchy of the intermediate design. You can use this

Elapsed time ELAPSED TIME elap_time Tracks the elapsed time since
the beginning of the current
compile or reoptimization of the
design.

Endpoint ENDPOINT endpoint Shows the endpoint being
worked on. When delay
violations are being fixed, the
endpoint is a cell or a port. When
design rule violations are being
fixed, the endpoint is a net.
When area violations are being
fixed, no endpoint is printed.

Maximum delay
cost

MAX DELAY COST max_delay Shows the maximum delay cost
of the design.

Megabytes of
memory

MBYTES mem Shows the process memory
used (in MB).

Minimum delay
cost

MIN DELAY COST min_delay Shows the minimum delay cost
of the design.

Path group PATH GROUP group_path Shows the path group of an
endpoint.

Time of day TIME OF DAY time Shows the current time.

Total negative
slack

TOTAL NEG SLACK tns Shows the total negative slack of
the design.

Trials TRIALS trials Tracks the number of
transformations that the
optimizer tried before making the
current selection.

Worst negative
slack

WORST NEG SLACK wns Shows the worst negative slack
of the current path group.

Table 12-2 Compile Log Format Keywords (Continued)

Column Column header Keyword Column description
Chapter 12: Analyzing and Resolving Design Problems
Analyzing Your Design During Optimization 12-9
Chapter 12: Analyzing and Resolving Design Problems
Analyzing Your Design During Optimization 12-9

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
intermediate design to debug design problems, as described in “Analyzing Design
Problems” on page 12-10. To checkpoint automatically between each phase of compile, set
the compile_checkpoint_phases variable to true.

Analyzing Design Problems

Table 12-3 shows the design analysis commands provided by Design Compiler. For
additional information about these commands, see the man pages.

Analyzing Area

Use the report_area command to display area information and statistics for the current
design or instance. The command reports combinational, non-combinational, and total area.
If you have set the current instance, the report is generated for the design of that instance;
otherwise, the report is generated for the current design. Use the -hierarchy option to
report area used by cells across the hierarchy.

Table 12-3 Commands to Analyze Design Objects

Object Command Description

Design report_design
report_area
report_hierarchy
report_resources

Reports design characteristics.
Reports design size and object counts.
Reports design hierarchy.
Reports resource implementations.

Instances report_cell Displays information about instances.

References report_reference Displays information about references.

Pins report_transitive_fanin
report_transitive_fanout

Reports fanin logic.
Reports fanout logic.

Ports report_port
report_bus
report_transitive_fanin
report_transitive_fanout

Displays information about ports.
Displays information about bused ports.
Reports fanin logic.
Reports fanout logic.

Nets report_net
report_bus
report_transitive_fanin
report_transitive_fanout

Reports net characteristics.
Reports bused net characteristics.
Reports fanin logic.
Reports fanout logic.

Clocks report_clock Displays information about clocks.
Chapter 12: Analyzing and Resolving Design Problems
Analyzing Design Problems 12-10

Design Compiler User Guide Version D-2010.03-SP2
Analyzing Timing

Use the report_timing command to generate timing reports for the current design or the
current instance. By default, the command lists the full path of the longest maximum delay
timing path for each path group. (Design Compiler groups paths based on the clock
controlling the endpoint. All paths not associated with a clock are in the default path group.
You can also create path groups by using the group_path command).

Before you begin debugging timing problems, verify that your design meets the following
requirements:

• You have defined the operating conditions.

• You have specified realistic constraints.

• You have appropriately budgeted the timing constraints.

• You have properly constrained the paths.

• You have described the clock skew.

If your design does not meet these requirements, make sure it does before you proceed.

After producing the initial mapped netlist, use the report_constraint command to check
your design’s performance.

Table 12-4 lists the timing analysis commands.

Table 12-4 Timing Analysis Commands

Command Analysis task description

report_design Shows operating conditions, wire load model and mode, timing
ranges, internal input and output, and disabled timing arcs.

check_timing Checks for unconstrained timing paths and clock-gating logic.

report_port Shows unconstrained input and output ports and port loading.

report_timing_requirements Shows all timing exceptions set on the design.

report_clock Checks the clock definition and clock skew information.

report_path_group Shows all timing path groups in the design.

report_timing Checks the timing of the design.

report_constraint Checks the design constraints.
Chapter 12: Analyzing and Resolving Design Problems
Analyzing Timing 12-11
Chapter 12: Analyzing and Resolving Design Problems
Analyzing Timing 12-11

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
report_delay_calculation Reports the details of a delay arc calculation.

Table 12-4 Timing Analysis Commands (Continued)

Command Analysis task description
Chapter 12: Analyzing and Resolving Design Problems
Analyzing Timing 12-12

Design Compiler User Guide Version D-2010.03-SP2
Resolving Specific Problems

This section provides examples of design problems you might encounter and describes the
workarounds for them.

Analyzing Cell Delays
Some cell delays shown in the full path timing report might seem too large. Use the
report_delay_calculation command to determine how Design Compiler calculated a
particular delay value.

Example 12-6 shows a full path timing report with a large cell delay value.

Example 12-6 Full Path Timing Report
**
Report : timing
 -path full
 -delay max
 -max_paths 1
Design : Adder8
Version: Y-2006.06
Date : Mon May 1 10:56:49 2006
**

Operating Conditions:
Wire Loading Model Mode: top

 Startpoint: cin (input port)
 Endpoint: cout (output port)
 Path Group: (none)
 Path Type: max

 Point Incr Path

 input external delay 0.00 0.00 f
 cin (in) 0.00 0.00 f
 U19/Z (AN2) 0.87 0.87 f
 U18/Z (EO) 1.13 2.00 f
 add_8/U1_1/CO (FA1A) 2.27 4.27 f
 add_8/U1_2/CO (FA1A) 1.17 5.45 f
 add_8/U1_3/CO (FA1A) 1.17 6.62 f
 add_8/U1_4/CO (FA1A) 1.17 7.80 f
 add_8/U1_5/CO (FA1A) 1.17 8.97 f
 add_8/U1_6/CO (FA1A) 1.17 10.14 f
 add_8/U1_7/CO (FA1A) 1.17 11.32 f
 U2/Z (EO) 1.06 12.38 f
 cout (out) 0.00 12.38 f
 data arrival time 12.38 f

 (Path is unconstrained)
Chapter 12: Analyzing and Resolving Design Problems
Resolving Specific Problems 12-13
Chapter 12: Analyzing and Resolving Design Problems
Resolving Specific Problems 12-13

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
The delay from port cin through cell FA1A seems large (2.27 ns). Enter the following
command to determine how Design Compiler calculated this delay:

dc_shell> report_delay_calculation -from add_8/U1_1/A -to add_8/U1_1/CO

Example 12-7 shows the results of this command.

Example 12-7 Delay Calculation Report
**
Report : delay_calculation
Design : Adder8
Version: Y-2006.06
Date : Mon May 1 10:56:49 2006
**

From pin: add_8/U1_1/A
To pin: add_8/U1_1/CO

arc sense: unate
arc type: cell
Input net transition times: Dt_rise = 0.1458, Dt_fall = 0.0653

Rise Delay computation:
rise_intrinsic 1.89 +
rise_slope * Dt_rise 0 * 0.1458 +
rise_resistance * (pin_cap + wire_cap) / driver_count
0.1458 * (2 + 0) / 1
--
Total 2.1816

Fall Delay computation:
fall_intrinsic 2.14 +
fall_slope * Dt_fall 0 * 0.0653 +
fall_resistance * (pin_cap + wire_cap) / driver_count
0.0669 * (2 + 0) / 1
--
Total 2.2738

Finding Unmapped Cells
All unmapped cells have the is_unmapped attribute. You can use the dctcl get_cells
command to locate all unmapped components:

dc_shell> get_cells -hier -filter "@is_unmapped==true"
Chapter 12: Analyzing and Resolving Design Problems
Resolving Specific Problems 12-14

Design Compiler User Guide Version D-2010.03-SP2
Finding Black Box Cells
All black box cells have the is_black_box attribute. You can use the get_cells command
to locate all black box cells:

dc_shell> get_cells -hier -filter "is_black_box==true"

Finding Hierarchical Cells
All hierarchical cells have the is_hierarchical attribute. You can use the get_designs
command to locate all hierarchical cells:

dc_shell> get_designs -filter "is_hierarchical==true"

Disabling Reporting of Scan Chain Violations
If your design contains scan chains, it is likely that these chains are not designed to run at
system speed. This can cause false violation messages when you perform timing analysis.
To mask these messages, use the set_disable_timing command to break the
scan-related timing paths (scan input to scan output and scan enable to scan output).

dc_shell> set_disable_timing my_lib/scanf -from TI -to Q

dc_shell> set_disable_timing my_lib/scanf -from CP -to TE

This example assumes that

• scanf is the scan cell in your technology library

• TI is the scan input pin on the scanf cell

• TE is the scan enable on the scanf cell

• Q is the scan output pin on the scanf cell

Example 12-8 shows the script that you can use to identify the scan pins in your technology
library.

Example 12-8 Script to Identify Scan Pins
set seq_cell_list [get_cells class/* -filter "@is_sequential==true"]
foreach_in_collection seq_cell $seq_cell_list {
 set seq_pins "[get_object_name $seq_cell]/*"
 set si [get_pins $seq_pins -filter "@signal_type==test_scan_in"]
if {[sizeof_collection $si] > 0} then {
 echo "Scan pins for cell [get_object_name $seq_cell]"
 echo " scan input: [get_object_name $si]"
 echo " scan output: [get_object_name [get_pins $seq_pins \
Chapter 12: Analyzing and Resolving Design Problems
Resolving Specific Problems 12-15
Chapter 12: Analyzing and Resolving Design Problems
Resolving Specific Problems 12-15

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
 -filter "@signal_type==test_scan_out"]]"
 }
}

Insulating Interblock Loading
Design Compiler determines load distribution in the driving block. If a single output port
drives many blocks, a huge incremental cell delay can result. To insulate the interblock
loading, fan the heavily loaded net to multiple output ports in the driving block. Evenly divide
the total load among these output ports.

Preserving Dangling Logic
By default, Design Compiler optimizes away dangling logic. Use one of the following
methods to preserve dangling logic (for example, spare cells) during optimization:

• Place the dont_touch attribute on the dangling logic.

• Connect the dangling logic to a dummy port.

Preventing Wire Delays on Ports
If your design contains unwanted wire delays between ports and I/O cells, you can remove
these wire delays by specifying zero resistance (infinite drive strength) on the net. Use the
set_resistance command to specify the net resistance. For example, enter the following
command:

dc_shell> set_resistance 0 [get_nets wire_io4]

Breaking a Feedback Loop
Follow these steps to break a feedback loop in your design:

1. Find the feedback loop in your design by using the report_timing -loop option.

2. Break the feedback loop using the set_disable_timing command to disable the path
trace.
Chapter 12: Analyzing and Resolving Design Problems
Resolving Specific Problems 12-16

Design Compiler User Guide Version D-2010.03-SP2
Analyzing Buffer Problems
Note:

This section uses the term buffer to indicate either a buffer or an inverter chain.

This section describes the following topics:

• Buffer insertion behavior

• Missing buffer problems

• Extra buffer problems

• Hanging buffer problems

• Modified buffer network problems

Understanding Buffer Insertion
Design Compiler inserts buffers to correct maximum fanout load or maximum transition time
violations. If Design Compiler does not insert buffers during optimization, the tool probably
does not identify a violation. For more information about the maximum fanout load and
maximum transition time design rules, see “Design Rule Constraints” on page 7-3.

Use the report_constraint command to get details on constraint violations.

Figure 12-1 shows a design containing the IV1 cell.

Figure 12-1 Buffering Example

IN

IV1

OUT
A Z
Chapter 12: Analyzing and Resolving Design Problems
Resolving Specific Problems 12-17
Chapter 12: Analyzing and Resolving Design Problems
Resolving Specific Problems 12-17

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Table 12-5 gives the attributes defined in the technology library for the IV1 cell.

Example 12-9 shows the constraint report generated by the following command sequence:

set_drive 0 [get_ports IN]
set_load 0 [get_ports OUT]
report_constraint

Example 12-9 Constraint Report
**
Report : constraint
Design : buffer_example
Version: Y-2006.06
Date : Mon May 1 10:56:49 2006
**

 Constraint Cost

 max_transition 0.00 (MET)
 max_fanout 0.00 (MET)

To see the constraint cost functions used by Design Compiler, specify the -verbose option
of the report_constraint command (shown in Example 12-10).

Table 12-5 IV1 Library Attributes

Pin Attribute Value

A

direction input

capacitance
fanout_load

1.5
1

Z

direction output

rise_resistance
fall_resistance
max_fanout
max_transition

0.75
0.75
3
2.5
Chapter 12: Analyzing and Resolving Design Problems
Resolving Specific Problems 12-18

Design Compiler User Guide Version D-2010.03-SP2
Example 12-10 Constraint Report (-verbose)
**
Report : constraint

-verbose
Design : buffer_example
Version: Y-2006.06
Date : Mon May 1 10:56:49 2006
**

 Net: OUT

 max_transition 2.50
 - Transition Time 0.00

 Slack 2.50 (MET)

 Net: OUT

 max_fanout 3.00
 - Fanout 0.00

 Slack 3.00 (MET)

The verbose constraint report shows that two constraints are measured:

• Maximum transition time (2.50)

• Maximum fanout load (3.00)

Design Compiler derives the constraint values from the attribute values on the output pin of
the IV1 cell.

When you compile this design, Design Compiler does not modify the design because the
design meets the specified constraints.

To list all constraint violations, use the -all_violators option of the report_constraint
command (shown in Example 12-11).

Example 12-11 Constraint Report (-all_violators)
**
Report : constraint

-all_violators
Design : buffer_example
Version: Y-2006.06
Date : Mon May 1 10:56:49 2006
**

This design has no violated constraints.
Chapter 12: Analyzing and Resolving Design Problems
Resolving Specific Problems 12-19
Chapter 12: Analyzing and Resolving Design Problems
Resolving Specific Problems 12-19

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
This design does not have any constraint violations. Changing the port attributes, however,
can cause constraint violations to occur. Example 12-12 shows the result of the following
command sequence:

dc_shell> set_drive 2.5 IN
dc_shell> set_max_fanout 0.75 IN
dc_shell> set_load 4 OUT
dc_shell> set_fanout_load 3.5 OUT
dc_shell> report_constraint -all_violators -verbose

Example 12-12 Constraint Report (After Port Attributes Are Modified)
**
Report : constraint

-all_violators
-verbose

Design : buffer_example
Version: Y-2006.06
Date : Mon May 1 10:56:49 2006
**

 Net: OUT

 max_transition 2.50
 - Transition Time 3.00

 Slack -0.50 (VIOLATED)

 Net: OUT

 max_fanout 3.00
 - Fanout 3.50

 Slack -0.50 (VIOLATED)

 Net: IN

 max_fanout 0.75
 - Fanout 1.00

 Slack -0.25 (VIOLATED)

This design now contains three violations:

• Maximum transition time violation at OUT

Actual transition time is 4.00 * 0.75 = 3.00, which is greater than the maximum transition
time of 2.50.

• Maximum fanout load violation at OUT

Actual fanout load is 3.5, which is greater than the maximum fanout load of 3.00.
Chapter 12: Analyzing and Resolving Design Problems
Resolving Specific Problems 12-20

Design Compiler User Guide Version D-2010.03-SP2
• Maximum fanout load violation at IN

Actual fanout load is 1.00, which is greater than the maximum fanout load of 0.75.

There is no max_transition violation at IN, even though the transition time on this net is
2.5 * 1.5 = 3.75, which is well above the max_transition requirement of 2.50. Design
Compiler does not recognize this as a violation because the requirement of 2.50 is a design
rule from the output pin of cell IV1. This requirement applies only to a net driven by this pin.
The IV1 output pin does not drive the net connected to port IN, so the max_transition
constraint does not apply to this net.

If you want to constrain the net attached to port IN to a maximum transition time of 2.50,
enter the following command:

dc_shell> set_max_transition 2.5 [get_ports IN]

This command causes report_constraint -verbose -all_violators to add the
following lines to the report shown in Example 12-12:

Net: IN
max_transition 2.50
- Transition Time 3.75

Slack -1.25 (VIOLATED)

When you compile this design, Design Compiler adds buffering to correct the
max_transition violations.

Remember the following points when you work with buffers in Design Compiler:

• The max_fanout and max_transition constraints control buffering; be sure you
understand how each is used.

• Design Compiler fixes only violations it detects.

• The report_constraint command identifies any violations.

Correcting for Missing Buffers
Missing buffers present the most frequent buffering problem. It usually results from one of
the following conditions:

• Incorrectly specified constraints

• Improperly constrained designs

• Incorrect assumptions about constraint behavior

To debug the problem, generate a constraint report (report_constraint) to determine
whether Design Compiler recognized any violations.
Chapter 12: Analyzing and Resolving Design Problems
Resolving Specific Problems 12-21
Chapter 12: Analyzing and Resolving Design Problems
Resolving Specific Problems 12-21

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
If Design Compiler reports no max_fanout or max_transition violations, check the
following:

• Are constraints applied?

• Is the library modeled for the correct attributes?

• Are the constraints tight enough?

If Design Compiler recognizes a violation but compile does not insert buffers to remove the
violation, check the following:

• Does the violation exist after compile?

• Are there dont_touch or dont_touch_network attributes?

• Are there three-state pins that require buffering?

• Have you considered that max_transition takes precedence over max_fanout?

Incorrectly Specified Constraints
A vendor might omit an attribute you want to use, such as fanout_load. If a vendor has not
set this attribute in the library, Design Compiler does not find any violations for the constraint.
You can check whether attributes have been assigned to cell pins by using the
get_attribute command with the get_pins command. For example, to determine
whether a pin has a fanout_load attribute, enter

dc_shell> get_attribute [get_pins library/cell/pin] fanout_load

The vendor might have defined default_fanout_load in the library. If this value is set to
zero or to an extremely small number, any pin that does not have an explicit fanout_load
attribute inherits this value.

Improperly Constrained Designs
Occasionally, a vendor uses extremely small capacitance values (on the order of 0.001). If
your scripts do not take this into account, you might not be constraining your design tightly
enough. Try setting an extreme value, such as 0.00001, and run report_constraint to
make sure a violation occurs.

You can use the load_of command with the get_pins command to check the capacitance
values in the technology library:
Chapter 12: Analyzing and Resolving Design Problems
Resolving Specific Problems 12-22

Design Compiler User Guide Version D-2010.03-SP2
dc_shell> load_of [get_pins library/cell/pin]

Incorrect Assumptions About Constraint Behavior
Check to make sure you are not overlooking one of the following aspects of constraint
behavior:

• A common mistake is the assumption that the default_max_transition or the
default_max_fanout constraint in the technology library applies to input ports. These
constraints apply only to the output pins of cells within the library.

• Maximum transition time takes precedence over maximum fanout load within Design
Compiler. Therefore, a maximum fanout violation might not be corrected if the correction
affects the maximum transition time of a net.

• Design Compiler might have removed a violation by sizing gates or modifying the
structure of the design.

Generate a constraint report after optimization to verify that the violation still exists.

• Design Compiler cannot correct violations if dont_touch attributes exist on the violating
path.

You might have inadvertently placed dont_touch attributes on a design or cell reference
within the hierarchy. If so, Design Compiler reports violations but cannot correct them
during optimization.

Use the report_cell command and the get_attribute command to see whether
these attributes exist.

• Design Compiler cannot correct violations if dont_touch_network attributes exist on the
violating path.

If you have set the dont_touch_network attribute on a port or pin in the design, all
elements in the transitive fanout of that port or pin inherit the attribute. If this attribute is
set, Design Compiler reports violations but does not modify the network during
optimization.

Use the remove_attribute command to remove this attribute from the port or net.

• Design Compiler does not support additional buffering on three-state pins.

For simple three-state cells, Design Compiler attempts to enlarge a three-state cell to a
stronger three-state cell.

For complex three-state cells, such as sequential elements or RAM cells, Design
Compiler cannot build the logic necessary to duplicate the required functionality. In such
cases, you must manually add the extra logic or rewrite the source HDL to decrease the
fanout load of such nets.
Chapter 12: Analyzing and Resolving Design Problems
Resolving Specific Problems 12-23
Chapter 12: Analyzing and Resolving Design Problems
Resolving Specific Problems 12-23

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Correcting for Extra Buffers
Extremely conservative numbers for max_transition, max_fanout, or max_capacitance
force Design Compiler to buffer nets excessively. If your design has an excessive number of
buffers, check the accuracy of the design rule constraints applied to the design.

If you have specified design rule constraints that are more restrictive than those specified in
the technology library, evaluate the necessity for these restrictive design rules.

You can debug this type of problem by setting the priority of the maximum delay cost function
higher than the maximum design rule cost functions (using the set_cost_priority
-delay command). Changing the priority prevents Design Compiler from fixing the
maximum design rule violations if the fix results in a timing violation.

Correcting for Hanging Buffers
A buffer that does not fan out to any cells is called a hanging buffer. Hanging buffers often
occur because the buffer cells have dont_touch attributes. These attributes either can be
set by you, in the hope of retaining a buffer network, or can be inherited from a library.

The dont_touch attribute on a cell signals to Design Compiler that the cell should not be
touched during optimization. Design Compiler follows these instructions by leaving the cell
in the design. But because the buffer might not be needed to meet the constraints that are
set, Design Compiler disconnects the net from the output. The design meets your
constraints, but because the cell has the dont_touch attribute, the cell cannot be removed.
Remove the dont_touch attribute to correct this problem.

Correcting Modified Buffer Networks
Sometimes it appears that Design Compiler modifies a buffer network that has dont_touch
attributes. This problem usually occurs when you place the dont_touch attribute on a cell
and expect the cells adjacent to that cell to remain in the design.

Design Compiler does not affect the cell itself but modifies the surrounding nets and cells to
attain the optimal structure. If you are confident about the structure you want, you can use
one of the following strategies to preserve your buffer network:

• Group the cells into a new hierarchy and set dont_touch attributes on that hierarchy.

• Set the dont_touch_network attribute on the pin that begins the network.

• Set the dont_touch attribute on all cells and nets within the network that you want to
retain.
Chapter 12: Analyzing and Resolving Design Problems
Resolving Specific Problems 12-24

A
Design Example A

Optimizing a design can involve using different compile strategies for different levels and
components in the design. This appendix shows a design example that uses several compile
strategies. Earlier chapters provide detailed descriptions of how to implement each compile
strategy. Note that the design example used in this appendix does not represent a real-life
application.

This appendix includes the following sections:

• Design Description

• Setup File

• Default Constraints File

• Read Script

• Compile Scripts

You can access the files described in these sections at $SYNOPSYS/doc/syn/guidelines,
where $SYNOPSYS is the path to the installation directory.
A-1

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Design Description

The design example shows how you can constrain designs by using a subset of the
commonly used dc_shell commands and how you can use scripts to implement various
compile strategies.

The design uses synchronous RTL and combinational logic with clocked D flip-flops.

Figure A-1 shows the block diagram for the design example. The design contains seven
modules at the top level: Adder16, CascadeMod, Comparator, Multiply8x8, Multiply16x16,
MuxMod, and PathSegment.

Figure A-1 Block Diagram for the Design Example

Figure A-2 shows the hierarchy for the design example.

Counter
Comparator

Adder8Adder8 Adder16

CascadeMod

PathSegment

Multiply

Multiply

MuxMod

ChipLevel

8x8

16x16

Comparator
Appendix A: Design Example
Design Description A-2

Design Compiler User Guide Version D-2010.03-SP2
Figure A-2 Hierarchy for the Design Example

The top-level modules and the compilation strategies for optimizing them are

Adder16

Uses registered outputs to make constraining easier. Because the endpoints are the data
pins of the registers, you do not need to set output delays on the output ports.

CascadeMod

Uses a hierarchical compile strategy. The compile script for this design sets the
constraints at the top level (of CascadeMod) before compilation.

The CascadeMod design instantiates the Adder8 design twice. The script uses the
compile-once-don’t-touch method for the Comparator module.

Comparator

Is a combinational block. The compile script for this design uses the virtual clock concept
to show the use of virtual clocks in a design.

The ChipLevel design instantiates Comparator twice. The compile script (for
CascadeMod) uses the compile-once-don’t-touch method to resolve the multiple
instances.

The compile script specifies wire load model and mode instead of using automatic wire
load selection.

Multiply8x8

Shows the basic timing and area constraints used for optimizing a design.

Multiply16x16

Ungroups DesignWare parts before compilation. Ungrouping your hierarchical module
might help achieve better synthesis results. The compile script for this module defines a
two-cycle path at the primary ports of the module.

ChipLevel

Adder16

Adder8Adder8 CounterComparator

MultiplyCascadeMod MuxMod PathSegment8x8
Multiply
16x16Comparator
Chapter A: Design Example
Design Description A-3
Appendix A: Design Example
Design Description A-3

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
MuxMod

Is a combinational block. The script for this design uses the virtual clock concept.

PathSegment

Uses path segmentation within a module. The script uses the set_multicycle_path
command for a two-cycle path within the module and the group command to create a
new level of hierarchy.

Example A-1 through Example A-11 provide the Verilog source code for the ChipLevel
design.

Example A-1 ChipLevel.v
/* Date: May 11, 1995 */
/* Example Circuit for Baseline Methodology for Synthesis */
/* Design does not show any real-life application but rather
 it is used to illustrate the commands used in the Baseline
 Methodology */

module ChipLevel (data16_a, data16_b, data16_c, data16_d, clk, cin, din_a,
 din_b, sel, rst, start, mux_out, cout1, cout2, s1, s2, op,
 comp_out1, comp_out2, m32_out, regout);

 input [15:0] data16_a, data16_b, data16_c, data16_d;
 input [7:0] din_a, din_b;
 input [1:0] sel;
 input clk, cin, rst, start;
 input s1, s2, op;
 output [15:0] mux_out, regout;
 output [31:0] m32_out;
 output cout1, cout2, comp_out1, comp_out2;

 wire [15:0] ad16_sout, ad8_sout, m16_out, cnt;

Adder16 u1 (.ain(data16_a), .bin(data16_b), .cin(cin), .cout(cout1),
 .sout(ad16_sout), .clk(clk));

CascadeMod u2 (.data1(data16_a), .data2(data16_b), .cin(cin), .s(ad8_sout),
 .cout(cout2), .clk(clk), .comp_out(comp_out1), .cnt(cnt),
 .rst(rst), .start(start));

Comparator u3 (.ain(ad16_sout), .bin(ad8_sout), .cp_out(comp_out2));

Multiply8x8 u4 (.op1(din_a), .op2(din_b), .res(m16_out), .clk(clk));

Multiply16x16 u5 (.op1(data16_a), .op2(data16_b), .res(m32_out), .clk(clk));

MuxMod u6 (.Y_IN(mux_out), .MUX_CNT(sel), .D(ad16_sout), .R(ad8_sout),
 .F(m16_out), .UPC(cnt));

PathSegment u7 (.R1(data16_a), .R2(data16_b), .R3(data16_c), .R4(data16_d),
 .S2(s2), .S1(s1), .OP(op), .REGOUT(regout), .clk(clk));
endmodule
Appendix A: Design Example
Design Description A-4

Design Compiler User Guide Version D-2010.03-SP2
Example A-2 Adder16.v
module Adder16 (ain, bin, cin, sout, cout, clk);
/* 16-Bit Adder Module */
output [15:0] sout;
output cout;
input [15:0] ain, bin;
input cin, clk;

wire [15:0] sout_tmp, ain, bin;
wire cout_tmp;
reg [15:0] sout, ain_tmp, bin_tmp;
reg cout, cin_tmp;

always @(posedge clk) begin
 cout = cout_tmp;
 sout = sout_tmp;
 ain_tmp = ain;
 bin_tmp = bin;
 cin_tmp = cin;
end
 assign {cout_tmp,sout_tmp} = ain_tmp + bin_tmp + cin_tmp;
endmodule

Example A-3 CascadeMod.v
module CascadeMod (data1, data2, s, clk, cin, cout, comp_out, cnt, rst, start);
input [15:0] data1, data2;
output [15:0] s, cnt;
input clk, cin, rst, start;
output cout, comp_out;
wire co;

Adder8 u10 (.ain(data1[7:0]), .bin(data2[7:0]), .cin(cin), .clk(clk),
.sout(s[7:0]), .cout(co));
Adder8 u11 (.ain(data1[15:8]), .bin(data2[15:8]), .cin(co), .clk(clk),
.sout(s[15:8]), .cout(cout));
Comparator u12 (.ain(s), .bin(cnt), .cp_out(comp_out));

Counter u13 (.count(cnt), .start(start), .clk(clk), .rst(rst));
endmodule
Chapter A: Design Example
Design Description A-5
Appendix A: Design Example
Design Description A-5

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Example A-4 Adder8.v
module Adder8 (ain, bin, cin, sout, cout, clk);
/* 8-Bit Adder Module */
output [7:0] sout;
output cout;
input [7:0] ain, bin;
input cin, clk;

wire [7:0] sout_tmp, ain, bin;
wire cout_tmp;
reg [7:0] sout, ain_tmp, bin_tmp;
reg cout, cin_tmp;

always @(posedge clk) begin
 cout = cout_tmp;
 sout = sout_tmp;
 ain_tmp = ain;
 bin_tmp = bin;
 cin_tmp = cin;
end
 assign {cout_tmp,sout_tmp} = ain_tmp + bin_tmp + cin_tmp;
endmodule

Example A-5 Counter.v
module Counter (count, start, clk, rst);
/* Counter module */
 input clk;
 input rst;
 input start;
 output [15:0] count;

 wire clk;
 reg [15:0] count_N;
 reg [15:0] count;

 always @ (posedge clk or posedge rst)
 begin : counter_S
 if (rst) begin
 count = 0; // reset logic for the block
 end
 else begin
 count = count_N; // set specified registers of the block
 end
 end

 always @ (count or start)
 begin : counter_C
 count_N = count; // initialize outputs of the block
 if (start) count_N = 1; // user specified logic for the block
 else count_N = count + 1;
 end
endmodule
Appendix A: Design Example
Design Description A-6

Design Compiler User Guide Version D-2010.03-SP2
Example A-6 Comparator.v
module Comparator (cp_out, ain, bin);
/* Comparator for 2 integer values */
output cp_out;
input [15:0] ain, bin;
 assign cp_out = ain < bin;
endmodule

Example A-7 Multiply8x8.v
module Multiply8x8 (op1, op2, res, clk);
/* 8-Bit multiplier */
input [7:0] op1, op2;
output [15:0] res;
input clk;

wire [15:0] res_tmp;
reg [15:0] res;

always @(posedge clk) begin
 res = res_tmp;
end
assign res_tmp = op1 * op2;
endmodule

Example A-8 Multiply16x16.v
module Multiply16x16 (op1, op2, res, clk);
/* 16-Bit multiplier */
input [15:0] op1, op2;
output [31:0] res;
input clk;

wire [31:0] res_tmp;
reg [31:0] res;

always @(posedge clk) begin
 res = res_tmp;
end
assign res_tmp = op1 * op2;
endmodule

Example A-9 def_macro.v
`define DATA 2’b00
`define REG 2’b01
`define STACKIN 2’b10
`define UPCOUT 2’b11
Chapter A: Design Example
Design Description A-7
Appendix A: Design Example
Design Description A-7

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Example A-10 MuxMod.v
module MuxMod (Y_IN, MUX_CNT, D, R, F, UPC);
‘include "def_macro.v"
 output [15:0] Y_IN;
 input [1:0] MUX_CNT;
 input [15:0] D, F, R, UPC;

 reg [15:0] Y_IN;

always @ (MUX_CNT or D or R or F or UPC) begin
 case (MUX_CNT)
 `DATA :
 Y_IN = D ;
 `REG :
 Y_IN = R ;
 `STACKIN :
 Y_IN = F ;
 `UPCOUT :
 Y_IN = UPC;
 endcase
end

endmodule

Example A-11 PathSegment.v
module PathSegment (R1, R2, R3, R4, S2, S1, OP, REGOUT, clk);
/* Example for path segmentation */
input [15:0] R1, R2, R3, R4;
input S2, S1, clk;
input OP;
output [15:0] REGOUT;

reg [15:0] ADATA, BDATA;
reg [15:0] REGOUT;
reg MODE;

wire [15:0] product ;

always @(posedge clk)
begin : selector_block
 case(S1)
 1’b0: ADATA <= R1;
 1’b1: ADATA <= R2;
 default: ADATA <= 16’bx;
 endcase
 case(S2)
 1’b0: BDATA <= R3;
 1’b1: BDATA <= R4;
 default: ADATA <= 16’bx;
 endcase
end

/* Only Lower Byte gets multiplied */
// instantiate DW02_mult
Appendix A: Design Example
Design Description A-8

Design Compiler User Guide Version D-2010.03-SP2
DW02_mult #(8,8) U100 (.A(ADATA[7:0]), .B(BDATA[7:0]), .TC(1’b0),
.PRODUCT(product));

always @(posedge clk)
begin : alu_block
 case (OP)
 1’b0 : begin
 REGOUT <= ADATA + BDATA;
 end
 1’b1 : begin
 REGOUT <= product;
 end
 default : REGOUT <= 16’bx;
 endcase
end

endmodule

Setup File

When running the design example, copy the project-specific setup file in Example A-12 to
your project working directory. This setup file is written in the Tcl subset and can be used in
the dctcl command language. For more information about the Tcl subset, see Using Tcl With
Synopsys Tools and the Design Compiler Command-Line Interface Guide.

For details on the synthesis setup files, see “Setup Files” on page 2-5.

Example A-12 .synopsys_dc.setup File
Define the target technology library, symbol library,
and link libraries
set target_library lsi_10k.db
set symbol_library lsi_10k.sdb
set link_library [concat $target_library "*"]
set search_path [concat $search_path ./src]
set designer "Your Name"
set company "Synopsys, Inc."
Define path directories for file locations
set source_path "./src/"
set script_path "./scr/"
set log_path "./log/"
set ddc_path "./ddc/"
set db_path "./db/"
set netlist_path "./netlist/"
Chapter A: Design Example
Setup File A-9
Appendix A: Design Example
Setup File A-9

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Default Constraints File

The file shown in Example A-13 defines the default constraints for the design. In the scripts
that follow, Design Compiler reads this file first for each module. If the script for a module
contains additional constraints or constraint values different from those defined in the default
constraints file, Design Compiler uses the module-specific constraints.

Example A-13 defaults.con
Define system clock period
set clk_period 20

Create real clock if clock port is found
if {[sizeof_collection [get_ports clk]] > 0} {
 set clk_name clk
 create_clock -period $clk_period clk
}

Create virtual clock if clock port is not found
if {[sizeof_collection [get_ports clk]] == 0} {
 set clk_name vclk
 create_clock -period $clk_period -name vclk
}

Apply default drive strengths and typical loads
for I/O ports
set_load 1.5 [all_outputs]
set_driving_cell -lib_cell IV [all_inputs]

If real clock, set infinite drive strength
if {[sizeof_collection [get_ports clk]] > 0} {
 set_drive 0 clk
}

Apply default timing constraints for modules
set_input_delay 1.2 [all_inputs] -clock $clk_name
set_output_delay 1.5 [all_outputs] -clock $clk_name
set_clock_uncertainty -setup 0.45 $clk_name

Set operating conditions
set_operating_conditions WCCOM

Turn on auto wire load selection
(library must support this feature)
set auto_wire_load_selection true

Read Script

Example A-15 provides the dctcl script used to read in the ChipLevel design.
Appendix A: Design Example
Default Constraints File A-10

Design Compiler User Guide Version D-2010.03-SP2
The read.tcl script reads design information from the specified Verilog files into memory.

Example A-14 read.tcl
read_file -format verilog ChipLevel.v
read_file -format verilog Adder16.v
read_file -format verilog CascadeMod.v
read_file -format verilog Adder8.v
read_file -format verilog Counter.v
read_file -format verilog Comparator.v
read_file -format verilog Multiply8x8.v
read_file -format verilog Multiply16x16.v
read_file -format verilog MuxMod.v
read_file -format verilog PathSegment.v

Compile Scripts

Example A-15 through Example A-26 provide the dctcl scripts used to compile the
ChipLevel design.

The compile script for each module is named for that module to ease recognition.The initial
dctcl script files have the .tcl suffix. Scripts generated by the write_script command have
the .wtcl suffix.

Example A-15 run.tcl
Initial compile with estimated constraints
source "${script_path}initial_compile.tcl"

current_design ChipLevel
if {[shell_is_in_xg_mode]==0}{
write -hier -o "${db_path}ChipLevel_init.db"
} else {
write -format ddc -hier -o "${ddc_path}ChipLevel_init.ddc"}

Characterize and write_script for all modules
source "${script_path}characterize.tcl"

Recompile all modules using write_script constraints
remove_design -all
source "${script_path}recompile.tcl"

current_design ChipLevel
if {[shell_is_in_xg_mode]==0}{
write -hier -out "${db_path}ChipLevel_final.db"
} else {
write -format ddc -hier -out "${ddc_path}ChipLevel_final.ddc"}
Chapter A: Design Example
Compile Scripts A-11
Appendix A: Design Example
Compile Scripts A-11

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Example A-16 initial_compile.tcl
Initial compile with estimated constraints
source "${script_path}read.tcl"

current_design ChipLevel
source "${script_path}defaults.con"

source "${script_path}adder16.tcl"
source "${script_path}cascademod.tcl"
source "${script_path}comp16.tcl"
source "${script_path}mult8.tcl"
source "${script_path}mult16.tcl"
source "${script_path}muxmod.tcl"
source "${script_path}pathseg.tcl"

Example A-17 adder16.tcl
Script file for constraining Adder16
set rpt_file "adder16.rpt"
set design "adder16"

current_design Adder16
source "${script_path}defaults.con"

Define design environment
set_load 2.2 sout
set_load 1.5 cout
set_driving_cell -lib_cell FD1 [all_inputs]
set_drive 0 $clk_name

Define design constraints
set_input_delay 1.35 -clock $clk_name {ain bin}
set_input_delay 3.5 -clock $clk_name cin
set_max_area 0

compile

if {[shell_is_in_xg_mode]==0}{
write -hier -o "${db_path}${design}.db"
} else {
write -format ddc -hier -o "${ddc_path}${design}.ddc"}

source "${script_path}report.tcl"
Appendix A: Design Example
Compile Scripts A-12

Design Compiler User Guide Version D-2010.03-SP2
Example A-18 cascademod.tcl
Script file for constraining CascadeMod
Constraints are set at this level and then a
hierarchical compile approach is used

set rpt_file "cascademod.rpt"
set design "cascademod"

current_design CascadeMod
source "${script_path}defaults.con"

Define design environment
set_load 2.5 [all_outputs]
set_driving_cell -lib_cell FD1 [all_inputs]
set_drive 0 $clk_name

Define design constraints
set_input_delay 1.35 -clock $clk_name {data1 data2}
set_input_delay 3.5 -clock $clk_name cin
set_input_delay 4.5 -clock $clk_name {rst start}
set_output_delay 5.5 -clock $clk_name comp_out
set_max_area 0

Use compile-once, dont_touch approach for Comparator
set_dont_touch u12

compile

if {[shell_is_in_xg_mode]==0}{
write -hier -o "${db_path}${design}.db"
} else {
write -format ddc -hier -o "${ddc_path}${design}.ddc"}

source "${script_path}report.tcl"
Chapter A: Design Example
Compile Scripts A-13
Appendix A: Design Example
Compile Scripts A-13

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Example A-19 comp16.tcl
Script file for constraining Comparator
set rpt_file "comp16.rpt"
set design "comp16"

current_design Comparator
source "${script_path}defaults.con"

Define design environment
set_load 2.5 cp_out
set_driving_cell -lib_cell FD1 [all_inputs]

Override auto wire load selection
set_wire_load_model -name "05x05"
set_wire_load_mode enclosed

Define design constraints
set_input_delay 1.35 -clock $clk_name {ain bin}
set_output_delay 5.1 -clock $clk_name {cp_out}
set_max_area 0

compile

if {[shell_is_in_xg_mode]==0}{
write -hier -o "${db_path}${design}.db"
} else {
write -format ddc -hier -o "${ddc_path}${design}.ddc"}

source "${script_path}report.tcl"
Appendix A: Design Example
Compile Scripts A-14

Design Compiler User Guide Version D-2010.03-SP2
Example A-20 mult8.tcl
Script file for constraining Multiply8x8
set rpt_file "mult8.rpt"
set design "mult8"

current_design Multiply8x8
source "${script_path}defaults.con"

Define design environment
set_load 2.2 res
set_driving_cell -lib_cell FD1P [all_inputs]
set_drive 0 $clk_name

Define design constraints
set_input_delay 1.35 -clock $clk_name {op1 op2}
set_max_area 0

compile

if {[shell_is_in_xg_mode]==0}{
write -hier -o "${db_path}${design}.db"
} else {
write -format ddc -hier -o "${ddc_path}${design}.ddc"}

source "${script_path}report.tcl"
Chapter A: Design Example
Compile Scripts A-15
Appendix A: Design Example
Compile Scripts A-15

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Example A-21 mult16.tcl
Script file for constraining Multiply16x16
set rpt_file "mult16.rpt"
set design "mult16"

current_design Multiply16x16
source "${script_path}defaults.con"

Define design environment
set_load 2.2 res
set_driving_cell -lib_cell FD1 [all_inputs]
set_drive 0 $clk_name

Define design constraints
set_input_delay 1.35 -clock $clk_name {op1 op2}
set_max_area 0

Define multicycle path for multiplier
set_multicycle_path 2 -from [all_inputs] \
 -to [all_registers -data_pins -edge_triggered]

Ungroup DesignWare parts
set designware_cells [get_cells \

-filter "@is_oper==true"]
if {[sizeof_collection $designware_cells] > 0} {
 set_ungroup $designware_cells true
}

compile

if {[shell_is_in_xg_mode]==0}{
write -hier -o "${db_path}${design}.db"
} else {
write -format ddc -hier -o "${ddc_path}${design}.ddc"}

source "${script_path}report.tcl"
report_timing_requirements -ignore \
 >> "${log_path}${rpt_file}"
Appendix A: Design Example
Compile Scripts A-16

Design Compiler User Guide Version D-2010.03-SP2
Example A-22 muxmod.tcl
Script file for constraining MuxMod
set rpt_file "muxmod.rpt"
set design "muxmod"

current_design MuxMod
source "${script_path}defaults.con"

Define design environment
set_load 2.2 Y_IN
set_driving_cell -lib_cell FD1 [all_inputs]

Define design constraints
set_input_delay 1.35 -clock $clk_name {D R F UPC}
set_input_delay 2.35 -clock $clk_name MUX_CNT
set_output_delay 5.1 -clock $clk_name {Y_IN}
set_max_area 0

compile

if {[shell_is_in_xg_mode]==0}{
write -hier -o "${db_path}${design}.db"
} else {
write -format ddc -hier -o "${ddc_path}${design}.ddc"}

source "${script_path}report.tcl"
Chapter A: Design Example
Compile Scripts A-17
Appendix A: Design Example
Compile Scripts A-17

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Example A-23 pathseg.tcl
Script file for constraining path_segment
set rpt_file "pathseg.rpt"
set design "pathseg"

current_design PathSegment
source "${script_path}defaults.con"

Define design environment
set_load 2.5 [all_outputs]
set_driving_cell -lib_cell FD1 [all_inputs]
set_drive 0 $clk_name

Define design rules
set_max_fanout 6 {S1 S2}

Define design constraints
set_input_delay 2.2 -clock $clk_name {R1 R2}
set_input_delay 2.2 -clock $clk_name {R3 R4}
set_input_delay 5 -clock $clk_name {S2 S1 OP}
set_max_area 0

Perform path segmentation for multiplier
group -design mult -cell mult U100
set_input_delay 10 -clock $clk_name mult/product*
set_output_delay 5 -clock $clk_name mult/product*
set_multicycle_path 2 -to mult/product*

compile

if {[shell_is_in_xg_mode]==0}{
write -hier -o "${db_path}${design}.db"
} else {
write -format ddc -hier -o "${ddc_path}${design}.ddc"}

source "${script_path}report.tcl"
report_timing_requirements -ignore \
 >> "${log_path}${rpt_file}"
Appendix A: Design Example
Compile Scripts A-18

Design Compiler User Guide Version D-2010.03-SP2
Example A-24 characterize.tcl
Characterize and write_script for all modules
current_design ChipLevel
characterize u1
current_design Adder16
write_script > "${script_path}adder16.wtcl"

current_design ChipLevel
characterize u2
current_design CascadeMod
write_script -format dctcl"${script_path}cascademod.wtcl"

current_design ChipLevel
characterize u3
current_design Comparator
write_script -format dctcl > "${script_path}comp16.wtcl"

current_design ChipLevel
characterize u4
current_design Multiply8x8
write_script -format dctcl > "${script_path}mult8.wtcl"

current_design ChipLevel
characterize u5
current_design Multiply16x16
write_script -format dctcl > "${script_path}mult16.wtcl"

current_design ChipLevel
characterize u6
current_design MuxMod
write_script -format dctcl > "${script_path}muxmod.wtcl"

current_design ChipLevel
characterize u7
current_design PathSegment

echo "current_design PathSegment" > \
"${script_path}pathseg.wtcl"

echo "group -design mult -cell mult U100" >> \
"${script_path}pathseg.wtcl"

write_script -format dctcl >> "${script_path}pathseg.wtcl"
Chapter A: Design Example
Compile Scripts A-19
Appendix A: Design Example
Compile Scripts A-19

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Example A-25 recompile.tcl
source "${script_path}read.tcl"

current_design ChipLevel
source "${script_path}defaults.con"

source "${script_path}adder16.wtcl"
compile
if {[shell_is_in_xg_mode]==0}{
write -hier -o "${db_path}adder16_wtcl.db"
} else {
write -format ddc -hier -o "${ddc_path}adder16_wtcl.ddc"}
set rpt_file adder16_wtcl.rpt
source "${script_path}report.tcl"

source "${script_path}cascademod.wtcl"
dont_touch u12
compile
if {[shell_is_in_xg_mode]==0}{
write -hier -o "${db_path}cascademod_wtcl.db"
} else {
write -format ddc -hier -o "${ddc_path}cascademod_wtcl.ddc"}
set rpt_file cascade_wtcl.rpt
source "${script_path}report.tcl"
source "${script_path}comp16.wtcl"
compile
if {[shell_is_in_xg_mode]==0}{
write -hier -o "${db_path}comp16_wtcl.db"
} else {
write -format ddc -hier -o "${ddc_path}comp16_wtcl.ddc"}
set rpt_file comp16_wtcl.rpt
source "${script_path}report.tcl"

source "${script_path}mult8.wtcl"
compile
if {[shell_is_in_xg_mode]==0}{
write -hier -o "${db_path}mult8_wtcl.db"
} else {
write -format ddc -hier -o "${ddc_path}mult8_wtcl.ddc"}
set rpt_file mult8_wtcl.rpt
source "${script_path}report.tcl"

source "${script_path}mult16.wtcl"
compile -ungroup_all
if {[shell_is_in_xg_mode]==0}{
write -hier -o "${db_path}mult16_wtcl.db"
} else {
write -format ddc -hier -o "${ddc_path}mult16_wtcl.ddc"}
set rpt_file mult16_wtcl.rpt
source "${script_path}report.tcl"
report_timing_requirements -ignore \

>> "${log_path}${rpt_file}"
Appendix A: Design Example
Compile Scripts A-20

Design Compiler User Guide Version D-2010.03-SP2
source "${script_path}muxmod.wtcl"
compile
if {[shell_is_in_xg_mode]==0}{
write -hier -o "${db_path}muxmod_wtcl.db"
} else {
write -format ddc -hier -o "${ddc_path}muxmod_wtcl.ddc"}
set rpt_file muxmod_wtcl.rpt
source "${script_path}report.tcl"

source "${script_path}pathseg.wtcl"
compile
if {[shell_is_in_xg_mode]==0}{
write -hier -o "${db_path}pathseg_wtcl.db"
} else {
write -format ddc -hier -o "${ddc_path}pathseg_wtcl.ddc"}
set rpt_file pathseg_wtcl.rpt
source "${script_path}report.tcl"
report_timing_requirements -ignore \
 >> "${log_path}${rpt_file}"

Example A-26 report.tcl
This script file creates reports for all modules
set maxpaths 15

check_design > "${log_path}${rpt_file}"
report_area >> "${log_path}${rpt_file}"
report_design >> "${log_path}${rpt_file}"
report_cell >> "${log_path}${rpt_file}"
report_reference >> "${log_path}${rpt_file}"
report_port -verbose >> "${log_path}${rpt_file}"
report_net >> "${log_path}${rpt_file}"
report_compile_options >> "${log_path}${rpt_file}"
report_constraint -all_violators -verbose \
 >> "${log_path}${rpt_file}"
report_timing -path end >> "${log_path}${rpt_file}"
report_timing -max_path $maxpaths \
 >> "${log_path}${rpt_file}"
report_qor >> "${log_path}${rpt_file}"
Chapter A: Design Example
Compile Scripts A-21
Appendix A: Design Example
Compile Scripts A-21

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Appendix A: Design Example
Compile Scripts A-22

B
Basic Commands B

This appendix lists the basic dc_shell commands for synthesis and provides a brief
description for each command. The commands are grouped in the following sections:

• Commands for Defining Design Rules

• Commands for Defining Design Environments

• Commands for Setting Design Constraints

• Commands for Analyzing and Resolving Design Problems

Within each section the commands are listed in alphabetical order.
B-1

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Commands for Defining Design Rules

The commands that define design rules are

set_max_capacitance

Sets a maximum capacitance for the nets attached to the specified ports or to all the nets
in a design.

set_max_fanout

Sets the expected fanout load value for output ports.

set_max_transition

Sets a maximum transition time for the nets attached to the specified ports or to all the
nets in a design.

set_min_capacitance

Sets a minimum capacitance for the nets attached to the specified ports or to all the nets
in a design.

Commands for Defining Design Environments

The commands that define the design environment are

set_drive

Sets the drive value of input or inout ports. The set_drive command is superseded by
the set_driving_cell command.

set_driving_cell

Sets attributes on input or inout ports, specifying that a library cell or library pin drives the
ports. This command associates a library pin with an input port so that delay calculators
can accurately model the drive capability of an external driver.

set_fanout_load

Defines the external fanout load values on output ports.

set_load

Defines the external load values on input and output ports and nets.

set_operating_conditions

Defines the operating conditions for the current design.
Appendix B: Basic Commands
Commands for Defining Design Rules B-2

Design Compiler User Guide Version D-2010.03-SP2
set_wire_load_model

Sets the wire load model for the current design or for the specified ports. With this
command, you can specify the wire load model to use for the external net connected to
the output port.

Commands for Setting Design Constraints

The basic commands that set design constraints are

create_clock

Creates a clock object and defines its waveform in the current design.

set_clock_latency, set_clock_uncertainty, set_propagated_clock,
set_clock_transition

Sets clock attributes on clock objects or flip-flop clock pins.

set_input_delay

Sets input delay on pins or input ports relative to a clock signal.

set_max_area

Specifies the maximum area for the current design.

set_output_delay

Sets output delay on pins or output ports relative to a clock signal.

The advanced commands that set design constraints are

group_path

Groups a set of paths or endpoints for cost function calculation. This command is used to
create path groups, to add paths to existing groups, or to change the weight of existing
groups.

set_false_path

Marks paths between specified points as false. This command eliminates the selected
paths from timing analysis.

set_max_delay

Specifies a maximum delay target for selected paths in the current design.

set_min_delay

Specifies a minimum delay target for selected paths in the current design.

set_multicycle_path

Allows you to specify the time of a timing path to exceed the time of one clock signal.
Chapter B: Basic Commands
Commands for Setting Design Constraints B-3
Appendix B: Basic Commands
Commands for Setting Design Constraints B-3

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Commands for Analyzing and Resolving Design Problems

The commands for analyzing and resolving design problems are

all_connected

Lists all fanouts on a net.

all_registers

Lists sequential elements or pins in a design.

check_design

Checks the internal representation of the current design for consistency and issues error
and warning messages as appropriate.

check_timing

Checks the timing attributes placed on the current design.

get_attribute

Reports the value of the specified attribute.

link

Locates the reference for each cell in the design.

report_area

Provides area information and statistics on the current design.

report_attribute

Lists the attributes and their values for the selected object. An object can be a cell, net,
pin, port, instance, or design.

report_cell

Lists the cells in the current design and their cell attributes.

report_clock

Displays clock-related information on the current design.

report_constraint

Lists the constraints on the current design and their cost, weight, and weighted cost.

report_delay_calculation

Reports the details of a delay arc calculation.

report_design

Displays the operating conditions, wire load model and mode, timing ranges, internal
input and output, and disabled timing arcs defined for the current design.
Appendix B: Basic Commands
Commands for Analyzing and Resolving Design Problems B-4

Design Compiler User Guide Version D-2010.03-SP2
report_hierarchy

Lists the children of the current design.

report_net

Displays net information for the design of the current instance, if set; otherwise, displays
net information for the current design.

report_path_group

Lists all timing path groups in the current design.

report_port

Lists information about ports in the current design.

report_qor

Displays information about the quality of results and other statistics for the current design.

report_resources

Displays information about the resource implementation.

report_timing

Lists timing information for the current design.

report_timing_requirements

Lists timing path requirements and related information.

report_transitive_fanin

Lists the fanin logic for selected pins, nets, or ports of the current instance.

report_transitive_fanout

Lists the fanout logic for selected pins, nets, or ports of the current instance.
Chapter B: Basic Commands
Commands for Analyzing and Resolving Design Problems B-5
Appendix B: Basic Commands
Commands for Analyzing and Resolving Design Problems B-5

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Appendix B: Basic Commands
Commands for Analyzing and Resolving Design Problems B-6

C
Predefined Attributes C

This appendix contains tables that list the Design Compiler predefined attributes for each
object type.

Table C-1 Clock Attributes

Attribute name Value

dont_touch_network {true, false}

fall_delay float

fix_hold {true, false}

max_time_borrow float

minus_uncertainty float

period float

plus_uncertainty float

propagated_clock {true, false}

rise_delay float
C-1

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Table C-2 Design Attributes

Attribute name Value

actual_max_net_capacitance float

actual_min_net_capacitance float

boundary_optimization {true, false}

default_flip_flop_type internally generated string

default_flip_flop_type_exact library_cell_name

default_latch_type library_cell_name

design_type {equation, fsm, pla, netlist}

dont_touch {true, false}

dont_touch_network {true, false}

driven_by_logic_one {true, false}

driven_by_logic_zero {true, false}

driving_cell_dont_scale string

driving_cell_fall string

driving_cell_from_pin_fall string

driving_cell_from_pin_rise string

driving_cell_library_fall string

driving_cell_library_rise string

driving_cell_multiplier float

driving_cell_pin_fall string

driving_cell_pin_rise string

driving_cell_rise string

fall_drive float
Appendix C: Predefined Attributes
C-2

Design Compiler User Guide Version D-2010.03-SP2
fanout_load float

flatten {true, false}

flatten_effort {true, false}

flatten_minimize {true, false}

flatten_phase {true, false}

flip_flop_type internally generated string

flip_flop_type_exact library_cell_name

is_black_box {true, false}

is_combinational {true, false}

is_hierarchical {true, false}

is_mapped {true, false}

is_sequential {true, false}

is_test_circuitry {true, false}

is_unmapped {true, false}

latch_type internally generated string

latch_type_exact library_cell_name

load float

local_link_library design_or_lib_file_name

max_capacitance float

max_fanout float

max_time_borrow float

max_transition float

Table C-2 Design Attributes (Continued)

Attribute name Value
Chapter C: Predefined Attributes
C-3

Appendix C: Predefined Attributes
C-3

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
min_capacitance float

minus_uncertainty float

output_not_used {true, false}

pad_location (XNF only) string

part (XNF only) string

plus_uncertainty float

port_direction {in, inout, out, unknown}

port_is_pad {true, false}

ref_name reference_name

rise_drive float

structure {true, false}

ungroup {true, false}

wired_logic_disable {true, false}

xnf_init string

xnf_loc string

Table C-3 Library Attributes

Attribute name Value

default_values float

k_process_values float

k_temp_values float

k_volt_values float

Table C-2 Design Attributes (Continued)

Attribute name Value
Appendix C: Predefined Attributes
C-4

Design Compiler User Guide Version D-2010.03-SP2
nom_process float

nom_temperature float

nom_voltage float

Table C-4 Library Cell Attributes

Attribute name Value

area float

dont_touch {true, false}

dont_use {true, false}

preferred {true, false}

Table C-5 Net Attributes

Attribute name Value

ba_net_resistance float

dont_touch {true, false}

load float

subtract_pin_load {true, false}

wired_and {true, false}

wired_or {true, false}

Table C-6 Pin Attributes

Attribute name Value

disable_timing {true, false}

Table C-3 Library Attributes (Continued)

Attribute name Value
Chapter C: Predefined Attributes
C-5

Appendix C: Predefined Attributes
C-5

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
max_time_borrow float

pin_direction {in, inout, out, unknown}

Table C-7 Reference Attributes

Attribute name Value

dont_touch {true, false}

is_black_box {true, false}

is_combinational {true, false}

is_hierarchical {true, false}

is_mapped {true, false}

is_sequential {true, false}

is_unmapped {true, false}

ungroup {true, false}

Table C-6 Pin Attributes (Continued)

Attribute name Value
Appendix C: Predefined Attributes
C-6

Glossary GL

annotation
A piece of information attached to an object in the design, such as a capacitance value
attached to a net; the process of attaching such a piece of information to an object in
the design.

back-annotate
To update a circuit design by using extraction and other post-processing information
that reflects implementation-dependent characteristics of the design, such as pin
selection, component location, or parasitic electrical characteristics. Back-annotation
allows a more accurate timing analysis of the final circuit. The data is generated by
another tool after layout and passed to the synthesis environment. For example, the
design database might be updated with actual interconnect delays; these delays are
calculated after placement and routing—after exact interconnect lengths are known.

cell
See instance.

clock
A source of timed pulses with a periodic behavior. A clock synchronizes the
propagation of data signals by controlling sequential elements, such as flip-flops and
registers, in a digital circuit. You define clocks with the create_clock command.

Clocks you create by using the create_clock command ignore delay effects of the
clock network. Therefore, for accurate timing analysis, you describe the clock network
in terms of its latency and skew. See also clock latency and clock skew.

clock gating
The control of a clock signal by logic (other than inverters or buffers), either to shut
down the clock signal at selected times or to modify the clock pulse characteristics.

clock latency
The amount of time that a clock signal takes to be propagated from the clock source to
a specific point in the design. Clock latency is the sum of source latency and network
latency.
GL-1

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
Source latency is the propagation time from the actual clock origin to the clock
definition point in the design. Network latency is the propagation time from the clock
definition point in the design to the clock pin of the first register.

You use the set_clock_latency command to specify clock latency.

clock skew
The maximum difference between the arrival of clock signals at registers in one clock
domain or between clock domains. Clock skew is also known as clock uncertainty. You
use the set_clock_uncertainty command to specify the skew characteristics of
one or more clock networks.

clock source
The pin or port where the clock waveform is applied to the design. The clock signal
reaches the registers in the transitive fanout of all its sources. A clock can have
multiple sources.

You use the create_clock command with the source_object option to specify clock
sources.

clock tree
The combinational logic between a clock source and registers in the transitive fanout of
that source. Clock trees, also known as clock networks, are synthesized by vendors
based on the physical placement data at registers in one clock domain or between
clock domains.

clock uncertainty
See clock skew.

core
A predesigned block of logic employed as a building block for ASIC designs.

critical path
The path through a circuit with the longest delay. The speed of a circuit depends on the
slowest register-to-register delay. The clock period cannot be shorter than this delay or
the signal will not reach the next register in time to be clocked.

datapath
A logic circuit in which data signals are manipulated using arithmetic operators such as
adders, multipliers, shifters, and comparators.

current design
The active design (the design being worked on). Most commands are specific to the
current design, that is, they operate within the context of the current design. You
specify the current design with the current_design command.

current instance
The instance in a design hierarchy on which instance-specific commands operate by
default. You specify the current instance with the current_instance command.
Glossary GL-2

Design Compiler User Guide Version D-2010.03-SP2
design constraints
The designer’s specification of design performance goals, that is, the timing and
environmental restrictions under which synthesis is to be performed. Design Compiler
uses these constraints—for example, low power, small area, high-speed, or minimal
cost—to direct the optimization of a design to meet area and timing goals.

There are two categories of design constraints: design rule constraints and design
optimization constraints.

• Design rule constraints are supplied in the technology library. For proper functioning of
the fabricated circuit, they must not be violated.

• Design optimization constraints define timing and area optimization goals.

Design Compiler optimizes the synthesis of the design in accordance with both sets of
constraints; however, design rule constraints have higher priority.

false path
A path that you do not want Design Compiler to consider during timing analysis. An
example of such a path is one between two multiplexed blocks that are never enabled
at the same time, that is, a path that cannot propagate a signal.

You use the set_false_path command to disable timing-based synthesis on a
path-by-path basis. The command removes timing constraints on the specified path.

fanin
The pins driving an endpoint pin, port, or net (also called sink). A pin is considered to
be in the fanin of a sink if there is a timing path through combinational logic from the
pin to the sink. Fanin tracing starts at the clock pins of registers or valid startpoints.
Fanin is also known as transitive fanin.

You use the report_transitive_fanin command to report the fanin of a specified
sink pin, port, or net.

fanout
The pins driven by a source pin, port, or net. A pin is considered to be in the fanout of
a source if there is a timing path through combinational logic from the source to that
pin or port. Fanout tracing stops at the data pin of a register or at valid endpoints.
Fanout is also known as transitive fanout or timing fanout.

You use the report_transitive_fanout command to report the fanout of a specified
source pin, port, or net.

fanout load
A unitless value that represents a numerical contribution to the total fanout. Fanout
load is not the same as load, which is a capacitance value.

Design Compiler models fanout restrictions by associating a fanout_load attribute
with each input pin and a max_fanout attribute with each output (driving) pin on a cell
and ensures that the sum of fanout loads is less than the max_fanout value.
Chapter GL:
GL-3Glossary GL-3

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
flatten
To convert combinational logic paths of the design to a two-level, sum-of-products
representation. During flattening, Design Compiler removes all intermediate terms,
and therefore all associated logic structure, from a design. Flattening is constraint
based.

forward-annotate
To transfer data from the synthesis environment to other tools used later in the design
flow. For example, delay and constraints data in Standard Delay Format (SDF) might
be transferred from the synthesis environment to guide place and route tools.

generated clock
A clock signal that is generated internally by the integrated circuit itself; a clock that
does not come directly from an external source. An example of a generated clock is a
divide-by-2 clock generated from the system clock. You define a generated clock with
the create_generated_clock command.

hold time
The time that a signal on the data pin must remain stable after the active edge of the
clock. The hold time creates a minimum delay requirement for paths leading to the
data pin of the cell.

You calculate the hold time by using the formula

hold = max clock delay - min data delay

ideal clock
A clock that is considered to have no delay as it propagates through the clock network.
The ideal clock type is the default for Design Compiler. You can override the default
behavior (using the set_clock_latency and set_propagated_clock commands) to
obtain nonzero clock network delay and specify information about the clock network
delays.

ideal net
Nets that are assigned ideal timing conditions—that is, latency, transition time, and
capacitance are assigned a value of zero. Such nets are exempt from timing updates,
delay optimization, and design rule fixing. Defining certain high fanout nets that you
intend to synthesize separately (such as scan-enable and reset nets) as ideal nets can
reduce runtime.

You use the set_ideal_net command to specify nets as ideal nets.

input delay
A constraint that specifies the minimum or maximum amount of delay from a clock
edge to the arrival of a signal at a specified input port.

You use the set_input_delay command to set the input delay on a pin or input port
relative to a specified clock signal.
Glossary GL-4

Design Compiler User Guide Version D-2010.03-SP2
instance
An occurrence in a circuit of a reference (a library component or design) loaded in
memory; each instance has a unique name. A design can contain multiple instances;
each instance points to the same reference but has a unique name to distinguish it
from other instances. An instance is also known as a cell.

leaf cell
A fundamental unit of logic design. A leaf cell cannot be broken into smaller logic units.
Examples are NAND gates and inverters.

link library
A technology library that Design Compiler uses to resolve cell references. Link libraries
can contain technology libraries and design files. Link libraries also contain the
descriptions of cells (library cells as well as subdesigns) in a mapped netlist.

Link libraries include both local link libraries (local_link_library attribute) and
system link libraries (link_library variable).

multicycle path
A path for which data takes more than one clock cycle to propagate from the startpoint
to the endpoint.

You use the set_multicycle_path command to specify the number of clock cycles
Design Compiler should use to determine when data is required at a particular
endpoint.

netlist
A file in ASCII or binary format that describes a circuit schematic— the netlist contains
a list of circuit elements and interconnections in a design. Netlist transfer is the most
common way of moving design information from one design system or tool to another.

operating conditions
The process, voltage, and temperature ranges a design encounters. Design Compiler
optimizes your design according to an operating point on the process, voltage, and
temperature curves and scales cell and wire delays according to your operating
conditions.

By default, operating conditions are specfied in a technology library in an
operating_conditions group.

optimization
The step in the logic synthesis process in which Design Compiler attempts to
implement a combination of technology library cells that best meets the functional,
timing, and area requirements of the design.

output delay
A constraint that specifies the minimum or maximum amount of delay from an output
port to the sequential element that captures data from the output port. This constraint
establishes the times at which signals must be available at the output port to meet the
setup and hold requirements of the sequential element.
Chapter GL:
GL-5Glossary GL-5

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
You use the set_output_delay command to set the output delay on a pin or output
port relative to a specified clock signal.

pad cell
A special cell at the chip boundaries that allows connection or communication with
integrated circuits outside the chip.

path group
A group of related paths, grouped either implicitly by the create_clock command or
explicitly by the group_path command. By default, paths whose endpoints are clocked
by the same clock are assigned to the same path group.

pin
A part of a cell that provides for input and output connections. Pins can be
bidirectional. The ports of a subdesign are pins within the parent design.

propagated clock
A clock that incurs delay through the clock network. Propagated clocks are used to
determine clock latency at register clock pins. Registers clocked by a propagated clock
have edge times skewed by the path delay from the clock source to the register clock
pin.

You use the set_propagated_clock command to specify that clock latency be
propagated through the clock network.

real clock
A clock that has a source, meaning its waveform is applied to pins or ports in the
design. You create a real clock by using a create_clock command and including a
source list of ports or pins. Real clocks can be either ideal or propagated.

reference
A library component or design that can be used as an element in building a larger
circuit. The structure of the reference may be a simple logic gate or a more complex
design (RAM core or CPU). A design can contain multiple occurrences of a reference;
each occurrence is an instance. See also instance.

RTL
RTL, or register transfer level, is a register-level description of a digital electronic
circuit. In a digital circuit, registers store intermediate information between clock
cycles; thus, RTL describes the intermediate information that is stored, where it is
stored within the design, and how it is transferred through the design. RTL models
circuit behavior at the level of data flow between a set of registers. This level of
abstraction typically contains little timing information, except for references to a set of
clock edges and features.

setup time
The time that a signal on the data pin must remain stable before the active edge of the
clock. The setup time creates a maximum delay requirement for paths leading to the
data pin of a cell.

You calculate the setup time by using the formula
Glossary GL-6

Design Compiler User Guide Version D-2010.03-SP2
setup = max data delay - min clock delay

slack
A value that represents the difference between the actual arrival time and the required
arrival time of data at the path endpoint in a mapped design. Slack values can be
positive, negative, or zero.

A positive slack value represents the amount by which the delay of a path can be
increased without violating any timing constraints. A negative slack value represents
the amount by which the delay of a path must be reduced to meet its timing
constraints.

structuring
To add intermediate variables and logic structure to a design, which can result in
reduced design area. Structuring is constraint based. It is best applied to noncritical
timing paths.

By default, Design Compiler structures your design.

synthesis
A software process that generates an optimized gate-level netlist, which is based on a
technology library, from an input IC design. Synthesis includes reading the HDL source
code and optimizing the design from that description.

symbol library
A library that contains the schematic symbols for all cells in a particular ASIC library.
Design Compiler uses symbol libraries to generate the design schematic. You can use
Design Vision to view the design schematic.

target library
The technology library to which Design Compiler maps during optimization. Target
libraries contain the cells used to generate the netlist and definitions for the design’s
operating conditions.

technology library
A library of ASIC cells that are available to Design Compiler during the synthesis
process. A technology library can contain area, timing, power, and functional
information on each ASIC cell. The technology of each library is specific to a particular
ASIC vendor.

timing exception
An exception to the default (single-cycle) timing behavior assumed by Design
Compiler. For Design Compiler to analyze a circuit correctly, you must specify each
timing path in the design that does not conform to the default behavior. Examples of
timing exceptions include false paths, multicycle paths, and paths that require a
specific minimum or maximum delay time different from the default calculated time.
Chapter GL:
GL-7Glossary GL-7

Design Compiler User Guide D-2010.03-SP2Design Compiler User Guide Version D-2010.03-SP2
timing path
A point-to-point sequence that dictates data propagation through a design. Data is
launched by a clock edge at a startpoint, propagated through combinational logic
elements, and captured at an endpoint by another clock edge. The startpoint of a
timing path is an input port or clock pin of a sequential element. The endpoint of a
timing path is an output port or a data pin of a sequential element.

transition delay
A timing delay caused by the time it takes the driving pin to change voltage state.

ungroup
To remove hierarchy levels in a design. Ungrouping merges subdesigns of a given level
of the hierarchy into the parent cell or design.

You use the ungroup command or the compile command with the auto_ungroup
option to ungroup designs.

uniquify
To resolve multiple cell references to the same design in memory.

The uniquify process creates unique design copies with unique design names for each
instantiated cell that references the original design.

virtual clock
A clock that exists in the system but is not part of the block. A virtual clock does not
clock any sequential devices within the current design and is not associated with a pin
or port. You use a virtual clock as a reference for specifying input and output delays
relative to a clock outside the block.

You use the create_clock command without a list of associated pins or ports to
create a virtual clock.

wire load model
An estimate of a net’s RC parasitics based on the net’s fanout, in the absence of
placement and routing information. The estimated capacitance and resistance are
used to calculate the delay of nets. After placement and routing, you should
back-annotate the design with detailed information on the net delay.

The wire load model is shipped with the technology library; vendors develop the wire
load model based on statistical information specific to the vendor’s process. You can
also custom-generate the model based on back-annotation. The model includes
coefficients for area, capacitance, and resistance per unit length, and a
fanout-to-length table for estimating net lengths (the number of fanouts determines a
nominal length).
Glossary GL-8

Index

A
accessing help 2-9
all_clocks command 5-17
all_connected command 5-31
all_outputs command 5-17
all_registers command 5-17
all_rp_groups command 10-61
all_rp_hierarchicals command 10-61
all_rp_inclusions command 10-61
all_rp_instantiations command 10-61
all_rp_references command 10-61
analyze command 2-17, 5-6, 5-10
analyzing design 12-10

area 12-10
timing 12-11

annotated load 7-26
architectural optimization 8-2
area

maximum
constraints for 7-15

set maximum 7-18
area, voltage 6-18
async_set_reset compiler directive 3-12
asynchronous paths

optimization constraints 7-16, 7-17
set_max_delay command 7-16

set_min_delay command 7-16, 7-17
attribute values

saving 5-42
setting 5-41
viewing 5-42

attributes
cell_degradation 7-11
creating 5-43
defined 5-40
dont_touch 9-12
getting descriptions 5-40
is_interface_model 9-6, 9-9
listing 5-27
max_capacitance 7-9
max_dynamic_power 7-3
max_fanout 7-7
max_leakage_power 7-3
max_transition 7-5
min_capacitance 7-10
relative placement, writing to disk 10-63
removing 5-27, 5-43
search order 5-42
set_auto_disable_drc_net 7-14
viewing 12-23

attributes, list of
auto_wire_load_selection 6-8
clock C-1
default_wire_load 6-8
IN-1
IN-1

Design Compiler User Guide Version D-2010.03-SP2
default_wire_load_mode 6-9
design C-2
dont_touch 8-17, 12-16, 12-23, 12-24
is_black_box 12-15
is_hierarchical 12-15
is_unmapped 12-14
library C-4
library cell C-5
max_capacitance 12-24
max_fanout 12-24
max_transition 12-24
net C-5
pin C-5
reference C-6

auto_wire_load_selection attribute 6-8
automatic ungrouping 5-28

using compile 5-28

B
balance_buffer command 8-23
bottom-up compile 8-7

advantages 8-7
directory structure

figure 3-3
disadvantages 8-7
process 8-7
when to use 8-7

bound
order of precedence 10-40
using effectively 10-40

boundary conditions
subdesign 7-24

boundary optimization 8-26
bounding box

guidelines 10-40
breaking, feedback loop 12-16
buffers

extra 12-24
guidelines for working with 12-21
hanging 12-24

insertion process 12-17
interblock 12-16
missing 12-21

buses
creating 5-31
deleting 5-31

C
calculations, characterize command 7-26
capacitance

calculating 7-9
checking 12-22
control indirectly 7-8
limit directly 7-9
maximum 7-8, 7-9

control directly 7-8
frequency-based 7-9

minimum 7-10
capacitive load

setting 6-12
case sensitive

setting 5-14
case statement 3-18

latch inference 3-18
multiplexer inference 3-11

cell degradation 7-11
cell delays, finding source of 12-13
cell_degradation attribute 7-11
cells

black box, identifying 12-15
creating 5-31
deleting 5-31
grouping

from different subdesigns 5-30
from same subdesign 5-22

hierarchical
defined 5-4
identifying 12-15

leaf 5-4
library, specifying 4-9
IN-2
Index IN-2

Design Compiler User Guide Version D-2010.03-SP2
listing 5-17
merging

hierarchy 5-30
reporting 5-17
unmapped, identifying 12-14

change_link command 5-15
change_names command 5-26, 5-37
characterize

subdesign port signal interfaces 7-29
combinational design 7-30
sequential design 7-31

subdesigns 7-22
characterize command 7-24

calculations 7-26
limitations 7-25

check_design command 12-6
check_design_allow_non_tri_drivers_on_tri_b

us variable 12-7
checkpointing

defined 12-9
clock attributes C-1
clock skew

characterize command 7-25
clock trees

automatically disabling DRC fixing 7-14
clock-based maximum transition,specifying

7-5
clocks

create_clock command 7-16
listing 5-17
reporting 5-17
virtual 7-34

combinational logic
partitioning 3-5

command
analyzing design problems B-4
design constraints

setting B-3
design environment B-2
design rules B-2
report_reference 5-5

resolving design problems B-4
command language

dctcl 2-5
command log files 2-10
command script 2-10
commands

all_clocks 5-17
all_connected 5-31
all_outputs 5-17
all_registers 5-17
all_rp_groups 10-61
all_rp_hierarchicals 10-61
all_rp_inclusions 10-61
all_rp_instantiations 10-61
all_rp_references 10-61
analyze 2-17, 5-6, 5-10
analyzing design 12-10
balance_buffer 8-23
change_link 5-15
change_names 5-26, 5-37
characterize 7-24

calculations 7-26
check_design 12-6
compare_interface_timing 9-11, 9-14, 9-15,

10-78, 10-79
compile -auto_ungroup area 5-28
compile -auto_ungroup delay 5-28
compile_auto_ungroup delay 8-24
compile_ultra 2-19, 8-20
connect_net 5-31
connect_pin 5-31
copy_design 5-19
create_bounds 10-38
create_bus 5-31
create_cell 5-31
create_clock 7-16
create_design 5-19
create_ilm 9-9
create_multibit 3-13
create_net 5-29, 5-31
create_port 5-29, 5-31
current_design 5-12
IN-3
Index IN-3

Design Compiler User Guide Version D-2010.03-SP2
current_instance 5-17
define_name_rules -map 5-37
disconnect_net 5-31
elaborate 2-17, 5-6, 5-10
exit 2-8
filter 12-14, 12-15
get_attribute 5-42, 12-22, 12-23
get_cells 12-14, 12-15
get_designs 12-15
get_ilm_objects 9-17, 9-19
get_ilms 9-19
get_license 2-13
get_magnet_cells 10-67
get_references 5-5
group 5-22, 8-23
group_path 8-21
gui_start 2-8
gui_stop 2-9
license_users 2-12
list 6-9
list_designs 5-11
list_instances 5-17
list_libs 4-8, 6-7
load_of 12-22
magnet_placement 10-66
max_dynamic_power 7-3
max_leakage_power 7-3
quit 2-8
read_db 5-11
read_ddc 5-11
read_file 2-17, 4-8, 5-6, 5-10, 5-12
read_floorplan 10-26
read_lib 4-8
read_verilog 2-17
read_vhdl 2-17
remove_attribute 7-7
remove_bus 5-31
remove_cell 5-31
remove_design 4-13, 5-34
remove_license 2-14
remove_multibit 3-13
remove_net 5-31

remove_port 5-31
remove_wire_load_model 6-9
rename_design 5-20
report_area 12-10
report_attribute 5-42
report_auto_ungroup 5-28
report_cell 12-23
report_clock 5-17
report_constraint 7-21, 10-126, 12-17
report_delay_calculation 12-13
report_design 6-4, 8-17
report_hierarchy 5-21
report_lib 6-3, 6-7, 6-12
report_net 5-17
report_port 5-17
report_qor 10-124
report_reference 5-17
report_timing 6-9, 12-11, 12-16
report_timing -scenario 10-125
report_tlu_plus_files 10-127
set_auto_disable_drc_nets 7-14
set_cell_degradation 7-11
set_cost_priority 7-20, 8-19
set_critical_range 8-22
set_disable_timing 12-15
set_dont_touch 8-14, 8-17
set_drive 6-10, 6-11
set_driving_cell 6-10, 6-12
set_equal 6-14
set_fanout_load 6-13, 7-8
set_input_delay 7-16
set_input_transition 6-10
set_load 6-12, 9-3
set_logic_dc 6-15
set_logic_one 6-16
set_logic_zero 6-16
set_max_area 7-18
set_max_capacitance 7-9
set_max_delay 7-16
set_max_fanout 7-7
set_max_leakage_power 10-105
set_max_transition 7-5
IN-4
Index IN-4

Design Compiler User Guide Version D-2010.03-SP2
set_min_capacitance 7-10
set_min_delay 7-16
set_min_library 4-7, 10-113
set_mw_design 11-7
set_operating_conditions 10-110, 10-111
set_opposite 6-14
set_output_delay 7-16
set_resistance 12-16
set_tlu_plus_files 10-107
set_unconnected 6-17
set_ungroup 5-27, 8-27
set_wire_load 6-5, 6-9
translate 5-33
ungroup 5-25, 8-16
uniquify 8-13
write 5-35
write_floorplan 10-26
write_interface_timing 9-10, 9-11, 9-13,

9-14, 10-78, 10-79
write_lib 4-13
write_rp_groups 10-63
write_script 5-42

compare_interface_timing command 9-11,
9-14, 9-15, 10-78, 10-79

compile
default 8-19
defined 2-2
directory structure

bottom-up 3-3
top-down 3-3

high effort 8-24
incremental 8-25
subdesigns 7-22

compile -auto_ungroup area 5-28
compile -auto_ungroup delay 5-28
compile command

automatically uniquified designs 8-12
default behavior 8-19
disabling design rule cost function 8-19
disabling optimization cost function 8-19

compile cost function 8-18

compile log
customizing 12-8

compile script A-11
adder16 A-12
cascademod A-13
comparator A-14
multiply 8x8 A-15
multiply16x16 A-16
muxmod A-17
pathseg A-18

compile scripts
design example A-10, A-11

compile strategies 8-4
compile strategy

bottom-up 8-7
defined 2-18
mixed 8-11
top-down 8-5

compile_assume_fully_decoded_three_state_
busses variable 5-34

compile_ultra command 2-19, 8-20
compiler directives

async_set_reset 3-12
enum 3-16
full_case 3-18
implementation 3-14
infer_multibit 3-13
infer_mux 3-11
label 3-14
map_to_module 3-14, 3-23
ops 3-14
return_port_name 3-23
state_vector 3-16
sync_set_reset 3-12

compiler_log_format variable 12-8
connect_net command 5-31
connect_pin command 5-31
constant nets

automatically disabling DRC fixing 7-14
constants

global
IN-5
Index IN-5

Design Compiler User Guide Version D-2010.03-SP2
defining 3-19
constraints

boundary conditions 7-24
cost vector 7-19
design rule 7-3

cell degradation 7-11
maximum capacitance 7-8, 7-9
maximum fanout 7-6, 7-7
maximum transition time 7-4
minimum capacitance 7-10

maximum
area 7-15

maximum capacitance 7-8
maximum fanout 7-6
minimum capacitance 7-10
minimum delay 7-17
optimization 7-15

maximum area 7-18
maximum delay 7-16
minimum delay 7-17
timing 7-15

placement, setting 10-38
priorities 7-19

set_cost_priority command 7-20
simplifying 3-6
timing

asynchronous 7-15
synchronous 7-15

transition time 7-4
constraints file

design example A-10
copy_design command 5-19
cost calculation

maximum area 7-18
maximum delay 7-16
minimum delay 7-17

cost function 7-2, 8-18
constraints

report_constraint command 12-18
design rule 8-18
design rule constraints 7-2
design rules 7-4

equation 7-4
maximum delay equation 7-16
optimization 7-15, 8-18
optimization constraints 7-2

cost vector, constraints 7-19
create_bounds command 10-38
create_bus command 5-31
create_cell command 5-31
create_design command 5-19
create_ilm command 9-9
create_multibit command 3-13
create_net command 5-29, 5-31
create_port command 5-29, 5-31
critical-path resynthesis 8-24
current design

defined 5-3
displaying 5-12

current instance 5-4
changing 5-17
default 5-17
defined 5-17
displaying 5-18
resetting 5-18

current_design
command 5-12
variable 5-12

current_instance
command 5-17
variable 5-18

D
dangling logic, preserving 12-16
data management 3-2
data organization 3-2
.db format

reading 5-11
DC Expert

defined 1-4
DC Ultra
IN-6
Index IN-6

Design Compiler User Guide Version D-2010.03-SP2
defined 1-4
dc_shell

exiting 2-8
session example 2-20

dctcl command language 2-5
.ddc format

reading 5-11
saving 5-36

default compile 8-19
default_wire_load attribute 6-8
default_wire_load_mode attribute 6-9
define_name_rules -map command 5-37
definitions

attribute 5-40
checkpointing 12-9
compiler 2-2
current design 5-3
current instance 5-4, 5-17
design 5-2
flat design 5-2
hierarchical cell 5-4
hierarchical design 5-2
leaf cell 5-4
nets 5-4
networks 5-4
optimization 2-2
parent design 5-2
pin 5-4
ports 5-4
subdesign 5-2
synthesis 2-1

delay
maximum 7-16

cost calculation 7-16
delay calculation, reporting 12-13
design

characterize 7-22
logical connections of ports 7-33

data management 3-2
in memory 5-1
organization 3-2

design attributes C-2
Design Compiler

description 1-1
design flow 1-2
exiting 2-8
family of products 1-3
help 2-9
interfaces 2-5
session example 2-20
starting 2-7

Design Compiler family
DC Expert 1-4
DC Ultra 1-4
Design Vision 1-5
DesignWare 1-5
DFT Compiler 1-5
HDL Compiler 1-5
Power Compiler 1-5

Design Compiler Topographical Technology
10-1

design constraints
commands

setting B-3
design environment

commands B-2
defining 6-3
See also, operating conditions

design example
block diagram A-2
compile scripts A-10, A-11
compile strategies for A-3
constraints file A-10
hierarchy A-3
setup file A-9

design exploration 8-19
basic flow 2-15
invoking 8-19

design files
reading 2-17, 5-6, 5-10
writing 5-35

design flow 1-2
high-level
IN-7
Index IN-7

Design Compiler User Guide Version D-2010.03-SP2
figure 2-3
synthesis

design exploration 2-15
design implementation 2-15

design function
target libraries 4-3

design hierarchy
changing 5-21
displaying 5-21
preserved timing constraints 5-30
removing levels 5-25
See also, hierarchy

design implementation 8-20
basic flow 2-15
techniques for 8-20

design objects
accessing 5-17
adding 5-19
defined 5-2
listing

clocks 5-17
instances 5-17
nets 5-17
ports 5-17
references 5-17
registers 5-17

specifying
absolute path 5-18
relative path 5-17

design problems
commands

analyzing B-4
resolving B-4

design reuse
partitioning 3-4

design rule
constraints 7-3

precedence 7-12
max_capacitance attribute 7-9
max_transition attribute 7-5
maximum fanout

calculation 7-6

maximum transition time 7-4
min_capacitance attribute 7-10
priorities 7-12

design rule constraints
defined 4-3

design rule cost function 8-18
design rules

commands B-2
design rules cost function equation 7-4
Design Vision

defined 1-5
designs

analyzing 12-10
area 12-10
timing 12-11

checking consistency 12-6
copying 5-19
creating 5-19
current 5-3
defined 5-2
editing 5-31

buses 5-31
cells 5-31
nets 5-29, 5-31
ports 5-29, 5-31

flat 5-2
hierarchical 5-2
linking 4-5, 5-13
listing

details 5-12
names 5-11

listing current 5-12
parent 5-2
preserving implementation 8-17
reading 2-17, 5-6, 5-10

.db format 5-11
HDL (analyze command) 5-6
HDL (elaborate command) 5-7
netlists 2-17
RTL 2-17

reference, changing 5-15
removing from memory 5-34
IN-8
Index IN-8

Design Compiler User Guide Version D-2010.03-SP2
renaming 5-20
reporting attributes 8-17
saving 5-35

default behavior 5-35
multiple 5-37
supported formats 5-35

translating 5-33
updating links for renamed designs 5-20

DesignWare
defined 1-5

DesignWare library
defined 1-5, 4-4
file extension 4-5
specifying 4-5, 4-7

device degradation 7-11
DFT Compiler

defined 1-5
directory structure

bottom-up compile
figure 3-3

top-down compile
figure 3-3

disabling
false violation messages 12-15
timing paths

scan chains 12-15
disabling DRC fixing automatically on clock

trees and constant nets 7-14
disconnect_net command 5-31
domain, power 6-18
dont_touch attribute 9-12, 12-23, 12-24

and dangling logic 12-16, 12-24
and timing analysis 8-17
reporting, designs 8-17
setting 8-17

drive characteristics
removing 6-10
setting

command to 6-10
example of 6-11

drive resistance, setting 6-11

drive strength
defining 6-10

E
elaborate command 2-17, 5-6, 5-10
enable level shifter 6-18
environment variables

SNPS_MAX_QUEUETTIME 2-14
SNPS_MAX_WAITTIME 2-14
SNPSLMD_QUEUE 2-13

equation
design rule cost 7-4

examples of
ungrouping hierarchy 5-27

exit command 2-8
exiting Design Compiler 2-8
expressions

guidelines
HDL 3-22

extent 6-18

F
false violation messages, disabling 12-15
fanout

calculation 7-6
constraints 7-6
maximum 7-6
specifying values of 6-13

fanout load
determine 7-8
set 7-8

feedback loop
breaking 12-16
identifying 12-16

file name extensions
conventions 3-2

filename log files 2-10
filename_log_file variable 2-10
files
IN-9
Index IN-9

Design Compiler User Guide Version D-2010.03-SP2
command log file 2-10
filename log file 2-10
script 2-10

flat design 5-2
flip-flop

defined 3-12
inferring 3-12

floorplan exploration
creating and editing floorplans 10-98
enabling 10-95
exiting 10-100
flow 10-95
limitations 10-101
overview 10-94
resynthesizing the design 10-101
saving floorplan for synthesis 10-100
saving into a Tcl script or DEF file 10-99
saving or discarding floorplan updates 10-99
setting floorplanning options 10-95
using 10-94
using the GUI 10-97

floorplans, creating and editing 10-94
frequency-based maximum capacitance 7-9
frequency-based maximum

capacitance,specifying 7-9
full_case directive 3-18
functions

guidelines
HDL 3-23

G
gate-level optimization 8-3
get_attribute command 5-42, 12-22, 12-23
get_cells command 12-14, 12-15
get_designs command 12-15
get_ilm_objects command 9-17, 9-19
get_ilms command 9-19
get_license command 2-13
get_magnet_cells command 10-67

glue logic 3-5
group command 5-22, 8-23
group_path command

-critical_range option 8-22
features of 8-21

grouping
adding hierarchy levels 5-22

groups
relative placement, defined 10-49

GUI
opening 2-8

gui_start command 2-8
gui_stop command 2-9

H
HDL Compiler

defined 1-5
HDL design, reading

analyze command 5-6
elaborate command 5-7

help
accessing 2-9

hierarchical block
outside load 7-27

hierarchical boundaries
wire load model 6-5

hierarchical cells
defined 5-4
identifying 12-15

hierarchical compile
See, top-down compile

hierarchical designs
defined 5-2
reporting area across hierarchy 12-10
reporting references across hierarchy 5-5

hierarchical pin timing constraints, preserving
5-29

hierarchical pins, preserving timing constraints
5-29

hierarchy
IN-10
Index IN-10

Design Compiler User Guide Version D-2010.03-SP2
adding levels 5-22
changing 5-21
changing interactively 5-22
displaying 5-21
merging cells 5-30
removing levels 5-25, 5-27, 8-27

all 5-25
ungrouping automatically 5-28

high-effort compile 8-24
hlo_disable_datapath_optimization variable

8-28
hold checks

timing arcs and 6-12

I
identifiers

guidelines
HDL 3-21

identifying
black box cells 12-15
feedback loops 12-16
hierarchical cells 12-15
unmapped cells 12-14

if statement 3-17
ILM (interface logic model) 9-1
ILMs

compare_interface_timing 9-11, 9-14, 9-15,
10-78, 10-79

write_interface_timing 9-10, 9-11, 9-13,
9-14, 10-78, 10-79

incremental compile 8-25
infer_multibit compiler directive 3-13
infer_mux compiler directive 3-11
inferring registers 3-12
input delay

characterize command 7-26
input port

always one or zero 6-15
set_equal command 6-14

set_logic_dc command 6-15
set_opposite command 6-14

instances
current 5-4
listing 5-17
reporting 5-17

interblock buffers 12-16
interface

graphical user interface 2-5
interface logic model

benefits of using 9-3
command summary, list of 9-19
defined 9-1
dont_touch attribute 9-12
fanins and fanouts of chip-level networks,

controlling 9-6
flow for creating 9-9
guidelines for creating 9-4
information about, reporting 9-16
instantiating and using 9-12
logic included in, controlling 9-5
number of latch levels, controlling 9-7
overview 9-2
preserving as subdesign 8-17
set_load command 9-3
side-load cells, controlling 9-8
top-down compile 8-5, 8-6

interfaces
dc_shell 2-5

is_black_box attribute 12-15
is_hierarchical attribute 12-15
is_interface_model attribute 9-6, 9-9
is_unmapped attribute 12-14
isolation cell 6-18

K
k-factors

unsupported in multicorner-multimode
10-113
IN-11
Index IN-11

Design Compiler User Guide Version D-2010.03-SP2
L
latches

defined 3-12
inferring 3-12

leaf cell 5-4
level shifter 6-18
libraries

DesignWare 1-5, 4-4
link 4-3
list of 6-7
list values of 6-7, 6-12
listing

names 4-8
main 4-7
power consumption 4-4
reading 4-8
removing from memory 4-13
reporting contents 4-9
saving 4-13
specifying 2-17, 4-5

objects 4-9
symbol 4-4
synthetic 3-13
target 4-3
technology 4-2
timing values 4-4

library attributes C-4
library cell

specifying 5-33
library cell attributes C-5
library objects

defined 4-9
specifying 4-9

library registers
specifying 5-33

license queuing
enabling 2-13
environment variables 2-13

SNPS_MAX_QUEUETIME 2-14
SNPS_MAX_WAITTIME 2-14
SNPSLMD_QUEUE 2-13

license_users command 2-12
licenses

checking out 2-13
enabling queuing 2-13
listing 2-12
releasing 2-14
using 2-12
working with 2-12

limitations
interface logic models, saving 11-6
Milkyway design library

writing 11-6
link library

file extension 4-5
libraries

cell references 4-3
specifying 4-5

link_force_case variable 5-14
link_library variable 4-5, 5-14
list command 6-9
list_designs command 5-11
list_instances command 5-17
list_libs command 4-8, 6-7
load

annotated 7-26
characterize command 7-26
outside 7-27

load_of command 12-22
log files

command log file 2-10
filename log file 2-10

logic-level optimization 8-3

M
magnet placement 10-66
magnet_placement command 10-66
main library 4-7
man pages

accessing 2-9
max_capacitance attribute 7-9, 12-24
IN-12
Index IN-12

Design Compiler User Guide Version D-2010.03-SP2
max_dynamic_power 7-3
max_fanout attribute 7-7, 12-24
max_leakage_power 7-3
max_transition attribute 7-5, 12-24
maximum area

cost calculation 7-18
equation 7-18

maximum capacitance
frequency-based 7-9

maximum delay 7-16
cost calculation 7-16

maximum fanout 7-6
maximum fanout calculation 7-6
maximum performance optimization 8-21
maximum timing information 4-7
maximum transition time 7-4

clock-based 7-5
set_max_transition command 7-5

messages
disabling 12-15

Milkyway database
guidelines for using 11-3
Milkyway design library, creating 11-4
preparation for reading 11-7

Milkyway design library
defined 11-2, 11-3
existing Milkyway database, preparation for

reading 11-7
maintaining 11-7
specifying 11-2, 11-3

Milkyway format
limitations

writing 11-6
limitations when writing 11-6

min_capacitance attribute 7-10
minimum area optimization 8-25
minimum capacitance 7-10
minimum delay 7-17

cost calculation 7-17
equation 7-17

minimum timing information 4-7
mixed compile strategy 8-11
model, interface logic, defined 9-1
modules

guidelines
HDL 3-24

multicore 2-11, 2-12
multicorner-multimode

k-factors, unsupported 10-113
report_constraint command 10-126
report_qor command 10-124
report_timing -scenario command 10-125
report_tlu_plus_files command 10-127
scenario management, commands 10-114
scenario reduction 10-116
script example 10-129
set_min_library command 10-113
set_tlu_plus_files command 10-107
setup considerations 10-107

multimode
scenario definition 10-103
set_max_dynamic_power command 10-117
set_max_leakage_power command 10-105

multiple instances of a design
resolving 8-11

multiple instances, resolving
compile command automatic uniquify 8-13
compile-once-don’t-touch method 8-14
ungroup method 8-16
uniquify method 8-13

multiplexers
inferring 3-11

HDL Compiler 3-11
mw_logic0_net variable 10-10, 11-4
mw_logic1_net variable 10-10, 11-4

N
name

changing net or port 5-37
naming conventions
IN-13
Index IN-13

Design Compiler User Guide Version D-2010.03-SP2
file name extensions 3-2
library objects 4-9
signal name suffixes 3-22

naming translation 5-37
net attributes C-5
net names

changing name rules 5-37
net, supply 6-18
netlist

editing 5-31
reading 2-17

netlist reader 2-17
nets 5-4

connecting 5-31
creating 5-29, 5-31
disconnecting 5-31
heavily loaded, fixing 8-23
reporting 5-17

networks 5-4

O
opening the GUI 2-8
operating conditions

defining 6-3
list of

current design 6-4
technology library 6-3

optimization
across hierarchical boundaries 8-26
architectural 8-2
boundary 8-26
constraints 7-15

asynchronous paths 7-16
Power Compiler 7-3

cost function 8-18
data paths 8-27
defined 2-2
gate level 8-3
gate-level 8-3
high-speed designs 8-20

how it works 12-8
incremental 8-25
invoking 8-19
logic-level 8-3
maximum performance 8-21
minimum area 8-25
port settings 6-13
priorities 7-15
trials phase 12-8

optimization cost function 7-15
optimization processes 8-2
output formats

supported 5-35
output port

fanout load 7-8
unconnected 6-17

outside load 7-27
overview of interface logic models 9-2

P
partitioning

by compile technique 3-7
combinational logic 3-5
design reuse considerations 3-4
glue logic 3-5
merge resources 3-8
modules by design goals 3-7
modules with different goals 3-7
random logic 3-7
sharable resources 3-8
structural logic 3-7
user-defined resources 3-8

path groups
creating 12-11

paths
asynchronous

constraints for 7-15
synchronous

constraints for 7-15
using absolute 5-18
IN-14
Index IN-14

Design Compiler User Guide Version D-2010.03-SP2
using relative 5-17
paths delay

override default
set_false_path command 7-17
set_multicycle_path command 7-17

pin attributes C-5
pins 5-4

connecting 5-31
library cell, specifying 4-9
relationship to ports 5-4

placement
magnet 10-66

placement bounding box
guidelines 10-40

placement constraint, setting 10-38
point-to-point exception 7-34
port

always one or zero 6-15
driving violation at 7-10
logical connections

characterize 7-33
names, changing 5-37
output

fanout load 7-8
unconnected 6-17

set_equal command 6-14
set_logic_dc command 6-15
set_opposite command 6-14

port, supply 6-18
ports 5-4

capacitive load on
setting 6-12

creating 5-29, 5-31
deleting 5-31
listing

output ports 5-17
relationship to pins 5-4
reporting 5-17
setting drive characteristics of 6-10, 6-11
wire delays, preventing 12-16

Power Compiler

defined 1-5
optimization constraints 7-3

power domain 6-18
extent 6-18
scope 6-18

power domains
definition 10-71

power state table 6-18
power switch 6-18
preserved timing constraints in design

hierarchies 5-30
preserving subdesigns 8-17
priorities, constraints 7-19

Q
queuing licenses 2-13
quit command 2-8
quitting Design Compiler 2-8

R
read_db command 5-11
read_ddc command 5-11
read_file command 2-17, 4-8, 5-6, 5-10, 5-12
read_floorplan 10-26
read_lib command 4-8
read_verilog command 2-17
read_vhdl command 2-17
reference attributes C-6
references

changing design 5-15
reporting 5-5, 5-17
resolving 4-5, 5-13
using 5-5

register inference
D flip-flop 3-12
D latch 3-12
defined 3-12
edge expressions 3-12
IN-15
Index IN-15

Design Compiler User Guide Version D-2010.03-SP2
register types
mixing 3-12

registers
inferring

HDL Compiler 3-12
listing 5-17

relative placement
aligning by pins 10-55
group

creating 10-49
defined 10-49

hierarchical group
included, defined 10-59
instantiated, defined 10-59

methodology 10-46
positions for data 10-50
sample script 10-65
writing information 10-63

remove_attribute command 7-7
remove_bus command 5-31
remove_cell command 5-31
remove_design command 4-13, 5-34
remove_license command 2-14
remove_multibit command 3-13
remove_net command 5-31
remove_port command 5-31
remove_wire_load_model command 6-9
removing levels of hierarchy 5-25
rename_design command 5-20
report

constraint 7-21
report_area command 12-10
report_attribute command 5-42
report_auto_ungroup 5-28
report_cell command 12-23
report_clock command 5-17
report_constraint command 7-21, 10-126,

12-17, 12-19
-all_violators option

report violations 12-19

-verbose option 12-18
report_delay_calculation command 12-13
report_design command 6-4, 8-17
report_hierarchy command 5-21
report_lib command 4-9, 6-3, 6-7, 6-12
report_net command 5-17
report_port command 5-17
report_qor command 10-124
report_reference command 5-5, 5-17
report_timing command 12-11

feedback loops 12-16
wire load information 6-9

report_timing -scenario command 10-125
report_tlu_plus_files command 10-127
reports

analyzing design 12-10
check_design command 12-6
delay calculation 12-13
library contents 4-9
operating condition 6-3
operating conditions 6-4
report_hierarchy command 5-21
script file A-21
timing path 12-13
wire load model

example 6-7
resistance

output driver
defining 6-10

See also, drive characteristics
resolving multiple instances of a design 8-11
resources

shareable 3-8
user-defined

partitioning 3-8
retention register 6-19
RTL, reading 2-17

S
scenario definition
IN-16
Index IN-16

Design Compiler User Guide Version D-2010.03-SP2
multimode 10-103
scenario reduction, multicorner-multimode

10-116
scope 6-18
script files 2-10

compile A-11
executing 2-10
generating 5-42
report A-21

search path
for libraries 4-8

search_path variable 4-8
semiconductor vendor, selecting 4-2
sequential device, initialize or control state

3-12
set_auto_disable_drc_net attribute 7-14
set_auto_disable_drc_nets command 7-14
set_cell_degradation command 7-11
set_cost_priority command 7-20, 8-19
set_critical_range command 8-22
set_disable_timing command 12-15
set_dont_touch command 8-14, 8-17
set_drive command 6-10, 6-11
set_driving_cell command 6-10, 6-12
set_equal command 6-14
set_false_path command 7-17
set_fanout_load command 6-13, 7-8
set_fix_hold command

minimum delay cost 7-17
set_input_transition command 6-10
set_load command 6-12, 9-3
set_logic_dc command 6-15
set_logic_one command 6-16
set_logic_zero command 6-16
set_max_area command 7-18
set_max_capacitance command 7-9

undo 7-9
set_max_fanout command 7-7
set_max_transition command

undo 7-5
set_min_capacitance command 7-10

undo 7-11
set_min_delay command 7-17
set_min_library command 4-7, 10-113
set_mw_design command 11-7
set_operating_condtions command 10-110,

10-111
set_opposite command 6-14
set_resistance command 12-16
set_tlu_plus_files command 10-107
set_unconnected command 6-17
set_ungroup command 5-27, 8-27
set_wire_load command 6-5, 6-9
setup checks

timing arcs and 6-12
setup files

design example A-9
.synopsys_dc.setup file 2-5

signals, edge detection 3-12
specifying

libraries
DesignWare 4-7
link 4-5
symbol 4-5
target 4-5

library objects 4-9
wire load mode 6-9
wire load model 6-9

state machine design 3-15
statements

’define 3-19
case 3-18
constant 3-19
if 3-17

subdesign
port signal interfaces

characterize 7-29, 7-30, 7-31
wire load model

characterize 7-30
subdesigns 5-2
IN-17
Index IN-17

Design Compiler User Guide Version D-2010.03-SP2
preserving 8-17
supply net 6-18
supply port 6-18
switch, power 6-18
symbol library

defined 4-4
file extension 4-5
search path for 4-8
specifying 4-5

symbol_library variable 4-5
sync_set_reset directive 3-12
synchronous paths

create_clock command 7-16
set_input_delay command 7-16
set_output_delay command 7-16

.synopsys_dc.setup file 2-5
sample 2-6

synthesis
defined 2-1

synthesis design flow
figure 2-16

synthetic libraries 3-13
synthetic_library variable 4-5

T
table

bounds commands, summary 10-41, 10-48
target library

definition 4-3
file extension 4-5
specifying 4-5

target_library variable 4-5
technology library

creating 4-3
definition 4-2
required format 4-3
search path for 4-8

timing
boundary conditions 7-24
point-to-point exception 7-34

timing analyzer
timing constraints 7-16

timing arcs
hold checks and 6-12
setup checks and 6-12

timing budgets
characterize command 7-25

timing constraints
analyzer 7-16
optimization 7-15

timing information
maximum 4-7
minimum 4-7

timing path, report 12-13
timing values

link libraries 4-4
timing violations

correcting 12-23
scan chain 12-15

top-down compile 8-5
advantages 8-6
directory structure

figure 3-3
Topographical technology 10-1
transition time

constraints 7-4
maximum 7-4

clock-based 7-5
translate command 5-33
translating designs

procedure for 5-33
restrictions 5-34

U
ungroup command 5-25, 8-16
ungroup design

compile option 5-27, 8-27
ungroup hierarchy

examples 5-27
ungroup_preserve_constraints variable 5-29
IN-18
Index IN-18

Design Compiler User Guide Version D-2010.03-SP2
ungrouping
automatically during compile 5-28, 8-24
removing hierarchy levels 5-25, 5-27, 8-27

uniquify command 8-13
uniquify method 8-12

V
variables

check_design_allow_non_tri_drivers_on_tri
_bus 12-7

compile_assume_fully_decoded_three_stat
e_busses 5-34

compile_log_format 12-8
current_design 5-12
current_instance 5-18
filename_log_file 2-10
hlo_disable_datapath_optimization 8-28
link_force_case 5-14
link_library 4-5, 5-14
mw_logic0_net 10-10, 11-4
mw_logic1_net 10-10, 11-4
search_path 4-8
SNPS_MAX_QUEUETIME 2-14
SNPS_MAX_WAITTIME 2-14
SNPSLMD_QUEUE 2-13
symbol_library 4-5
synthetic_library 4-5
target_library 4-5
ungroup_preserve_constraints 5-29

Verilog
expressions 3-22
functions 3-23
identifiers 3-21
modules 3-24

VHDL
expressions 3-22
functions 3-23
identifiers 3-21
modules 3-24

violations at driving ports 7-10
voltage area 6-18

W
wire delays, on ports 12-16
wire load

defining 6-4
wire load mode

default 6-9
reporting 6-9
specifying 6-9

wire load model
automatic selection

described 6-8
disabling 6-8, 6-9

choosing 6-9
default 6-8
enclosed 7-30
hierarchical boundaries 6-5
list of

technology libraries 6-7
removing 6-9
report example 6-7
reporting 6-9
segmented 7-30
specifying 6-9
subdesign

characterize 7-30
top 7-30

wire_load_selection library function 6-8
write command 5-35
write_floorplan command 10-26
write_interface_timing command 9-10, 9-11,

9-13, 9-14, 10-78, 10-79
write_lib command 4-13
write_rp_groups command 10-63
write_script command 5-42

characterize command 7-26
IN-19
Index IN-19

	Preface
	Introduction to Design Compiler
	Design Compiler and the Design Flow
	Design Compiler Family
	DC Expert
	DC Ultra
	HDL Compiler Tools
	DesignWare Library
	DFT Compiler
	Power Compiler
	Design Vision

	Design Compiler Basics
	The High-Level Design Flow
	Running Design Compiler
	Design Compiler Interfaces
	Setup Files
	Starting Design Compiler
	Exiting Design Compiler
	Opening and Closing the GUI in dc_shell
	Getting Command Help
	Using Command Log Files
	Using the Filename Log File
	Using Script Files

	Support for Multicore Technology
	Support for Multicorner-Multimode Designs
	Working With Licenses
	Listing the Licenses in Use
	Getting Licenses
	Enabling License Queuing
	Releasing Licenses

	Following the Basic Synthesis Flow
	A Design Compiler Session Example

	Preparing Design Files for Synthesis
	Managing the Design Data
	Controlling the Design Data
	Organizing the Design Data

	Partitioning for Synthesis
	Partitioning for Design Reuse
	Keeping Related Combinational Logic Together
	Registering Block Outputs
	Partitioning by Design Goal
	Partitioning by Compile Technique
	Keeping Sharable Resources Together
	Keeping User-Defined Resources With the Logic They Drive
	Isolating Special Functions

	HDL Coding for Synthesis
	Writing Technology-Independent HDL
	Inferring Components
	Using Synthetic Libraries
	Designing State Machines

	Using HDL Constructs
	General HDL Constructs
	Using Verilog Macro Definitions
	Using VHDL Port Definitions

	Writing Effective Code
	Guidelines for Identifiers
	Guidelines for Expressions
	Guidelines for Functions
	Guidelines for Modules

	Working With Libraries
	Selecting a Semiconductor Vendor
	Understanding the Library Requirements
	Technology Libraries
	Symbol Libraries
	DesignWare Libraries

	Specifying Libraries
	Specifying Technology Libraries
	Target Library
	Link Library

	Specifying DesignWare Libraries
	Specifying a Library Search Path

	Loading Libraries
	Listing Libraries
	Reporting Library Contents
	Specifying Library Objects
	Directing Library Cell Usage
	Excluding Cells From the Target Library
	Specifying Cell Preferences

	Library-Aware Mapping and Synthesis
	Generating the ALIB file
	Using the ALIB library

	Removing Libraries From Memory
	Saving Libraries

	Working With Designs in Memory
	Design Terminology
	About Designs
	Flat Designs
	Hierarchical Designs

	Design Objects
	Relationship Between Designs, Instances, and References
	Reporting References
	Using Reference Objects

	Reading Designs
	Commands for Reading Design Files
	Using the analyze and elaborate Commands
	Using the read_file Command

	Reading HDL Designs
	Reading .ddc Files
	Reading .db Files

	Listing Designs in Memory
	Setting the Current Design
	Using the current_design Command

	Linking Designs
	Locating Designs by Using a Search Path
	Changing Design References

	Listing Design Objects
	Specifying Design Objects
	Using a Relative Path
	Using an Absolute Path

	Creating Designs
	Copying Designs
	Renaming Designs
	Changing the Design Hierarchy
	Adding Levels of Hierarchy
	Grouping Cells Into Subdesigns
	Removing Levels of Hierarchy

	Ungrouping Hierarchies Explicitly During Optimization
	Ungrouping Hierarchies Automatically During Optimization
	Merging Cells From Different Subdesigns

	Editing Designs
	Translating Designs From One Technology to Another
	Procedure to Translate Designs
	Restrictions on Translating Between Technologies

	Removing Designs From Memory
	Saving Designs
	Commands to Save Design Files
	Using the write Command
	Using the write_milkyway Command

	Saving Designs in .ddc Format
	Ensuring Name Consistency Between the Design Database and the Netlist
	Naming Rules Section of the .synopsys_dc.setup File
	Using the define_name_rules -map Command
	Resolving Naming Problems in the Flow

	Working With Attributes
	Setting Attribute Values
	Using an Attribute-Specific Command
	Using the set_attribute Command

	Viewing Attribute Values
	Saving Attribute Values
	Defining Attributes
	Removing Attributes
	The Object Search Order

	Defining the Design Environment
	Defining the Operating Conditions
	Determining Available Operating Condition Options
	Specifying Operating Conditions

	Defining Wire Load Models
	Hierarchical Wire Load Models
	Determining Available Wire Load Models
	Specifying Wire Load Models and Modes

	Modeling the System Interface
	Defining Drive Characteristics for Input Ports
	The set_driving_cell Command
	The set_drive and set_input_transition Commands

	Defining Loads on Input and Output Ports
	Defining Fanout Loads on Output Ports

	Setting Logic Constraints on Ports
	Defining Ports as Logically Equivalent
	Defining Logically Opposite Input Ports
	Allowing Assignment of Any Signal to an Input
	Specifying Input Ports Always One or Zero
	Tying Input Ports to Logic 1
	Tying Input Ports to Logic 0

	Specifying Unconnected Output Ports

	Specifying Power Intent
	Power Intent Concepts
	UPF Commands in Synopsys Tools
	upf_version
	set_scope
	load_upf
	save_upf

	Support for Multicorner-Multimode Designs

	Defining Design Constraints
	Design Compiler Constraint Types
	Design Rule Constraints
	Design Rule Cost Function
	Maximum Transition Time
	Defining Maximum Transition Time
	Specifying Clock-Based Maximum Transition

	Maximum Fanout
	Maximum Fanout Calculation Example
	Defining Maximum Fanout
	Defining Expected Fanout for Output Ports

	Maximum Capacitance
	Defining Maximum Capacitance
	Specifying Frequency-Based Maximum Capacitance

	Minimum Capacitance
	Defining Minimum Capacitance

	Cell Degradation
	Connection Class
	Managing Design Rule Constraint Priorities
	Precedence of Design Rule Constraints
	Design Rule Scenarios

	Disabling Design Rule Fixing on Special Nets
	Summary of Design Rule Commands and Objects

	Optimization Constraints
	Optimization Cost Function
	Timing Constraints
	Maximum Delay
	Minimum Delay

	Maximum Area
	Cost Calculation
	Defining Maximum Area

	Managing Constraint Priorities
	Reporting Constraints
	Propagating Constraints in Hierarchical Designs
	Characterizing Subdesigns
	Using the characterize Command
	Removing Previous Annotations
	Optimizing Bottom Up Versus Optimizing Top Down
	Deriving the Boundary Conditions
	Limitations of the characterize Command
	characterize Command Calculations
	Characterizing Subdesign Port Signal Interfaces
	Characterizing Subdesign Constraints
	Characterizing Subdesign Logical Port Connections
	Characterizing Multiple Instances
	Characterizing Designs With Timing Exceptions

	Propagating Constraints up the Hierarchy
	Methodology for Propagating Constraints Upward
	Handling of Conflicts Between Designs

	Optimizing the Design
	The Optimization Process
	Architectural Optimization
	Logic-Level Optimization
	Gate-Level Optimization

	Selecting and Using a Compile Strategy
	Top-Down Compile
	Bottom-Up Compile
	Mixed Compile Strategy

	Resolving Multiple Instances of a Design Reference
	Uniquify Method
	Compile-Once-Don’t-Touch Method
	Ungroup Method

	Preserving Subdesigns
	Understanding the Compile Cost Function
	Performing Design Exploration
	Performing Design Implementation
	Optimizing High-Performance Designs
	Optimizing for Maximum Performance
	Creating Path Groups
	Fixing Heavily Loaded Nets
	Automatically Ungrouping Hierarchies on the Critical Path
	Performing a High-Effort Compile
	Performing a High-Effort Incremental Compile

	Optimizing for Minimum Area
	Disabling Total Negative Slack Optimization
	Optimizing Across Hierarchical Boundaries

	Optimizing Data Paths

	Using Interface Logic Models
	Overview of Interface Logic Models (ILMs)
	General Guidelines for Creating ILMs
	Controlling the Logic Included in ILMs
	Basic ILM Logic Content
	Controlling the Fanins and Fanouts of Chip-Level Networks
	Controlling the Number of Latch Levels
	Controlling Side-Load Cells

	Methodology for Creating and Saving ILMs
	Instantiating and Using ILMs in the Top-Level Design
	Using the create_ilm Command Options
	Using ILMs with Multicorner-Multimode Designs
	Reporting Information About ILMs
	Summary of Commands for ILMs

	Using Design Compiler Topographical Technology
	Overview of Topographical Technology
	Starting Design Compiler Topographical Mode
	Inputs and Outputs in Design Compiler Topographical Mode
	Specifying Libraries
	Specifying Logical Libraries
	Specifying Physical Libraries
	Verifying Library Consistency
	Using TLUPlus for RC Estimation
	Support for Black Boxes

	Using Floorplan Physical Constraints
	Physical Constraints Overview
	Extracting Physical Constraints From IC Compiler Using the write_def Command
	Importing Physical Constraints From an IC Compiler DEF Formatted File
	Importing a DEF Floorplan Overview
	Imported DEF Constraints
	Importing Incremental DEF Information Using the extract_physical_constraints Command
	Matching Names of Macros and Ports

	Exporting Physical Constraints From IC Compiler Using the write_floorplan Command
	Importing Physical Constraints From an IC Compiler write_floorplan Formatted File
	Incremental Floorplan Modifications Using the read_floorplan Command
	Matching Names of Macros and Ports

	Manually Defining Physical Constraints
	Defining Physical Constraints Overview
	Defining the Die Area With the create_die_area Command
	Defining the Core Placement Area With the create_site_rows Command
	Defining Placement Area With the set_aspect_ratio and set_utilization Commands
	Defining Port Locations
	Defining Macro Location and Orientation
	Defining Placement Blockage
	Defining Voltage Area
	Defining Placement Bounds
	Creating Wiring Keepouts
	Creating Preroutes

	Specifying Relative Placement
	Benefits of Relative Placement
	Methodology for the Relative Placement Flow
	Summary of Relative Placement Commands
	Creating Relative Placement Using Compiler Directives
	Creating Relative Placement Groups
	Anchoring Relative Placement Groups
	Applying Compression to Relative Placement Groups
	Specifying Alignment
	Adding Objects to a Group
	Querying Relative Placement Groups
	Checking Relative Placement Constraints
	Saving Relative Placement Information
	Removing Relative Placement Group Attributes
	Sample Script for a Relative Placement Flow

	Placement Options: Magnet Placement
	Resetting Physical Constraints
	Saving Physical Constraints Using the write_floorplan Command
	Reporting Physical Constraints

	Performing Automatic High-Fanout Synthesis
	Test Synthesis in Topographical Mode
	Using Power Compiler in Topographical Mode
	Multivoltage Designs
	Compile Flows in Topographical Mode
	Performing an Incremental Compile
	Performing a Bottom-up or Hierarchical Compile
	Overview of Bottom-Up Compile
	Compiling the Subblock
	Compiling the Design at the Top Level
	Performing Top-Level Design Stitching
	Steps in the Top-Level Design Stitching Flow

	Supported Commands, Command Options, and Variables
	Using the Design Compiler Graphical Tool
	Reducing Routing Congestion
	Routing Congestion Overview
	Viewing Congestion With the Design Vision Layout Window
	Routing Congestion Reduction Flow
	Predicting, Analyzing, and Minimizing Routing Congestion
	Specifying Congestion Optimization Options
	Reporting Congestion
	Summary of Routing Congestion Commands

	Improving Area Correlation and Runtime with Synopsys Physical Guidance (SPG)
	Using Physical Guidance in Design Compiler (compile_ultra -spg)
	Using Physical Guidance in IC Compiler (place_opt -spg)
	Supported Flows
	Reporting Physical Guidance Information
	Physical Guidance Limitations

	Creating and Modifying Floorplans Using Floorplan Exploration
	Floorplan Exploration Overview
	Enabling Floorplan Exploration
	Using the Floorplan Exploration GUI
	Creating and Editing Floorplans
	Saving the Floorplan or Discarding Updates
	Saving the Floorplan into a Tcl Script File or DEF File
	Exiting the Session
	Incremental or Full Synthesis after Floorplan Changes
	Floorplan Exploration Limitations

	Optimizing Multicorner-Multimode Designs in Design Compiler Graphical
	Multicorner-Multimode Concepts
	Multicorner-Multimode Feature Support
	Unsupported Features
	Concurrent Multicorner-Multimode Optimization and Timing Analysis
	Basic Multicorner-Multimode Flow
	Setting Up the Design for a Multicorner-Multimode Flow
	Specifying TLUPlus Files
	Specifying Operating Conditions
	Specifying Constraints

	Handling Libraries in the Multicorner-Multimode Flow
	Using Link Libraries That Have the Same PVT Nominal Values
	Using Unique PVT Names to Prevent Linking Problems
	Unsupported k-factors
	Automatic Detection of Driving Cell Library
	Defining Minimum Libraries

	Scenario Management Commands
	Creating Scenarios
	Defining Active Scenarios
	Scenario Reduction
	Specifying Scenario Options
	Removing Scenarios

	Power Optimization Techniques
	Optimizing for Leakage Power
	Optimizing for Dynamic Power

	Reporting Commands
	report_scenario Command
	report_scenario_options Command
	Reporting Commands That Support the -scenario Option
	Commands That Report the Current Scenario
	Reporting Examples

	Supported SDC Commands
	Multicorner-Multimode Script Example
	Using ILMs in Multicorner-Multimode Designs
	Methodology for Using ILMs With Scenarios at the Top Level

	Using a Milkyway Database
	Licensing and Required Files
	Invoking the Milkyway Tool
	About the Milkyway Database
	Guidelines for Using the Milkyway Databases
	Preparing to Use the Milkyway Database
	Writing the Milkyway Database
	Important Points About the write_milkyway Command
	Results of Running the write_milkyway Command
	Limitations When Writing Milkyway Format
	Script to Set Up and Write a Milkyway Database

	Maintaining the Milkyway Design Library
	Setting the Milkyway Design Library for Writing an Existing Milkyway Database

	Analyzing and Resolving Design Problems
	Instantiating RTL PG Pins in a Non-UPF Mode
	Resolving Bus Versus Bit-Blasted Mismatches Between the RTL and Macros
	Fixing Errors Caused by New Unsupported Technology File Attributes
	Using Register Replication to Solve Timing QoR, Congestion, and Fanout Problems
	Comparing Design Compiler Topographical and IC Compiler Environments
	Assessing Design and Constraint Feasibility in Mapped Designs
	Checking for Design Consistency
	Analyzing Your Design During Optimization
	Customizing the Compile Log
	Saving Intermediate Design Databases

	Analyzing Design Problems
	Analyzing Area
	Analyzing Timing
	Resolving Specific Problems
	Analyzing Cell Delays
	Finding Unmapped Cells
	Finding Black Box Cells
	Finding Hierarchical Cells
	Disabling Reporting of Scan Chain Violations
	Insulating Interblock Loading
	Preserving Dangling Logic
	Preventing Wire Delays on Ports
	Breaking a Feedback Loop
	Analyzing Buffer Problems
	Understanding Buffer Insertion
	Correcting for Missing Buffers
	Correcting for Extra Buffers
	Correcting for Hanging Buffers
	Correcting Modified Buffer Networks

	Design Example
	Design Description
	Setup File
	Default Constraints File
	Read Script
	Compile Scripts

	Basic Commands
	Commands for Defining Design Rules
	Commands for Defining Design Environments
	Commands for Setting Design Constraints
	Commands for Analyzing and Resolving Design Problems

	Predefined Attributes
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

