
Design Compiler®

Optimization
Reference Manual
Version D-2010.03, March 2010

Design Compiler Optimization Reference Manual, version D-2010.03 ii

Copyright Notice and Proprietary Information
Copyright © 2010 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary
information that is the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and
may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may
be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise,
without prior written permission of Synopsys, Inc., or as expressly provided by the license agreement.

Right to Copy Documentation
The license agreement with Synopsys permits licensee to make copies of the documentation for its internal use only.
Each copy shall include all copyrights, trademarks, service marks, and proprietary rights notices, if any. Licensee must
assign sequential numbers to all copies. These copies shall contain the following legend on the cover page:

“This document is duplicated with the permission of Synopsys, Inc., for the exclusive use of
__ and its employees. This is copy number __________.”

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks (®)
Synopsys, AMPS, Astro, Behavior Extracting Synthesis Technology, Cadabra, CATS, Certify, CHIPit, Design Compiler,
DesignWare, Formality, HDL Analyst, HSIM, HSPICE, Identify, Leda, MAST, ModelTools, NanoSim, OpenVera, PathMill,
Physical Compiler, PrimeTime, SCOPE, Simply Better Results, SiVL, SNUG, SolvNet, Syndicated, Synplicity, Synplify,
Synplify Pro, Synthesis Constraints Optimization Environment, TetraMAX, the Synplicity logo, UMRBus, VCS, Vera, and
YIELDirector are registered trademarks of Synopsys, Inc.

Trademarks (™)
AFGen, Apollo, Astro-Rail, Astro-Xtalk, Aurora, AvanWaves, BEST, Columbia, Columbia-CE, Confirma, Cosmos,
CosmosLE, CosmosScope, CRITIC, CustomExplorer, CustomSim, DC Expert, DC Professional, DC Ultra, Design
Analyzer, Design Vision, DesignerHDL, DesignPower, DFTMAX, Direct Silicon Access, Discovery, Eclypse, Encore,
EPIC, Galaxy, Galaxy Custom Designer, HANEX, HAPS, HapsTrak, HDL Compiler, Hercules, Hierarchical Optimization

Technology, High-performance ASIC Prototyping System, HSIM
plus

, i-Virtual Stepper, IICE, in-Sync, iN-Tandem, Jupiter,
Jupiter-DP, JupiterXT, JupiterXT-ASIC, Liberty, Libra-Passport, Library Compiler, Magellan, Mars, Mars-Rail, Mars-Xtalk,
Milkyway, ModelSource, Module Compiler, MultiPoint, Physical Analyst, Planet, Planet-PL, Polaris, Power Compiler,
Raphael, Saturn, Scirocco, Scirocco-i, Star-RCXT, Star-SimXT, StarRC, System Compiler, System Designer, Taurus,
TotalRecall, TSUPREM-4, VCS Express, VCSi, VHDL Compiler, VirSim, and VMC are trademarks of Synopsys, Inc.

Service Marks (SM)
MAP-in, SVP Café, and TAP-in are service marks of Synopsys, Inc.

SystemC is a trademark of the Open SystemC Initiative and is used under license.
ARM and AMBA are registered trademarks of ARM Limited.
Saber is a registered trademark of SabreMark Limited Partnership and is used under license.
All other product or company names may be trademarks of their respective owners.

Contents

What’s New in This Release . xii

About This Manual . xii

Customer Support. xv

1. Basic Concepts for Optimizing Designs

Using DC Ultra . 1-3

Exploring the Design Space . 1-3

Optimization Phases. 1-4

Combinational Optimization. 1-4
Technology-Independent Optimization . 1-6
Mapping . 1-6
Technology-Specific Optimization. 1-7

Initial Sequential Optimization . 1-7

Final Sequential Optimization . 1-7

Local Optimizations . 1-8

Optimization Flow . 1-9

Automatic Ungrouping . 1-11

High-Level Optimization and Datapath Optimization . 1-11

Multiplexer Mapping and Optimization. 1-11

Finite State Machine Optimization . 1-11

Sequential Mapping . 1-12

Structuring and Mapping . 1-12

Auto-Uniquification. 1-12

Implementing Synthetic Parts . 1-13
iii

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Timing-Driven Combinational Optimization . 1-13

Register Retiming . 1-13

Delay Optimization. 1-14

Design Rule Fixing. 1-14

Area Optimization . 1-14

2. Compiling a Design

Before You Start . 2-3

The compile_ultra Command . 2-3

The compile Command. 2-5

Controlling Mapping Optimization . 2-5

Customizing the compile Command . 2-5

Performing High-Effort Synthesis . 2-6

Performing an Incremental Compile . 2-6

Performing Test-Ready Compile . 2-7

Controlling Design Rule Fixing . 2-7

Performing a Top-Level Compile . 2-8

Using The -top Option With Other Compile Options . 2-8

Limiting Optimization to Paths Within a Specific Range 2-9

Fixing Timing Violations For All Paths . 2-9

Choosing a Compile Strategy . 2-9

Mixing Compilation Strategies . 2-9

Using the Top-Down Hierarchical Compile Strategy . 2-10
Running a Top-Down Hierarchical Compile Strategy 2-11
Using the Compile-Characterize-Write Script-Recompile Strategy 2-13

Redirecting the Output of Commands . 2-16

Checking the Compile Log . 2-16

3. Optimization Techniques

Optimizing for Delay . 3-3

Optimizing for Area . 3-3

Creating Path Groups . 3-4
Contents iv

Design Compiler Optimization Reference Manual Version D-2010.03
Optimizing Near-Critical Paths . 3-5

Fixing Heavily Loaded Nets . 3-6

Performing High-Effort Compile . 3-7

Performing a High-Effort Incremental Compile . 3-8

Disabling Total Negative Slack Optimization. 3-8

Optimizing Across Hierarchical Boundaries . 3-8

Optimizing Across Specified Boundaries. 3-10

Optimizing Across All Boundaries . 3-11

Isolating Input and Output Ports . 3-11

Propagating Constants . 3-15

Enabling Critical Path Resynthesis . 3-15

Logic Duplication and Mapping to Wide-Fanin Gates. 3-16

Removing Hierarchy . 3-16

Optimizing for Multiple Clocks per Register . 3-17

Preserving the Clock Network After Clock Tree Synthesis . 3-19

Optimizing Once for Best- and Worst-Case Conditions . 3-21

Optimizing With Multiple Libraries . 3-22

Synthesizing to Multibit Components . 3-24

Reporting Multibit Components . 3-25

Finding Multibit Components . 3-26

Controlling Multibit-Component Optimization . 3-26

Inferring Multibit Library Cells From Already Mapped Designs 3-27

Creating Multibit Components . 3-27

Removing Multibit Components. 3-28

Recompiling the Design With Multibit Components. 3-28

Controlling the Use of Multibit Library Cells. 3-28

Buffering Nets Connected to Multiple Ports . 3-29

Building a Balanced Buffer Tree . 3-30

Defining a Signal for Unattached Master Clocks . 3-31
Chapter 1: Contents
1-vContents v

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
4. Automatic Ungrouping

Ungrouping of Hierarchies . 4-2

Exceptions to Automatic Ungrouping . 4-3

Preventing Automatic Ungrouping . 4-4

Reporting Ungrouped Hierarchies . 4-4

5. High-Level Optimization and Datapath Optimization

Design Compiler Arithmetic Optimization . 5-3

Synthetic Operators . 5-4

Checking DesignWare Licenses . 5-5

High-Level Optimizations . 5-6

Tree Delay Minimization and Arithmetic Simplifications. 5-6

Resource Sharing . 5-6
Common Subexpression Elimination . 5-6
Sharing Mutually Exclusive Operations . 5-8

Datapath Optimization With DC Ultra . 5-9

Enabling DC Ultra Datapath Optimization . 5-10

Datapath Extraction . 5-10

Datapath Implementation. 5-12

Advanced Datapath Transformations with DC Ultra. 5-12

Reporting Resources and Datapath Blocks . 5-13

6. Multiplexer Mapping and Optimization

Inferring SELECT_OPs. 6-3

Inferring MUX_OPs. 6-4

Library Cell Requirements for Multiplexer Optimization . 6-7

Optimization of Multiplexers . 6-7

Mapping to One-Hot Multiplexers . 6-8

Inferring One-hot Multiplexers . 6-8

Library Requirements for One-Hot Multiplexers. 6-9

Optimization of One-Hot Multiplexers . 6-10

Reporting MUX_OP Cells . 6-11
Contents vi

Design Compiler Optimization Reference Manual Version D-2010.03
7. Optimizing Finite State Machines

Basic Description of Finite State Machines . 7-2

General Behavior of a Finite State Machine . 7-2

Finite State Machine Architecture . 7-3

State Vector, State Encodings, and Encoding Styles. 7-3
State Vector . 7-3
State Encodings . 7-4
State Encoding Styles. 7-5

Completely and Incompletely Specified Finite State Machines 7-6

Synthesizing Finite State Machines . 7-6

Finite State Machine Design File Requirements . 7-8

DC Ultra Automatic Methodology. 7-8
How Design Compiler Processes a Finite State Machine

in the DC Ultra Automatic Flow . 7-9
The Finite State Machine DC Ultra Automatic Flow 7-10

Verifying a Finite State Machine . 7-13

Creating Finite State Machine Reports. 7-13

8. Sequential Mapping

Register Inference. 8-3

Directing Register Mapping . 8-6

Specifying The Default Flip-Flop or Latch. 8-6

Reporting Register Types . 8-7

Reporting the Register Type Specifications for the Design 8-7

Reporting the Register Type Specifications for Cells. 8-7

Unmapped Registers in a Compiled Design. 8-8

Automatically Removing Unnecessary Registers . 8-9

Removing Unconnected Registers . 8-9

Eliminating Constant Registers . 8-9

Merging Equal and Opposite Registers . 8-11

Inverting the Output Phase of Sequential Elements . 8-12

Mapping to Falling-Edge Flip-Flops . 8-13

Resizing Black Box Registers . 8-15
Chapter 1: Contents
1-viiContents vii

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Preventing The Exchange of the Clock and Clock Enable Pin Connections. 8-15

Mapping to Registers With Synchronous Reset or Preset Pins 8-17

Performing Test-Ready Compile . 8-20

Overview of Test-Ready Compile . 8-21

Scan Replacement . 8-22

Selecting a Scan Style. 8-24

Mapping to Libraries Containing Only Scan Registers 8-25

Mapping To The Dedicated Scan-Out Pin . 8-25

Automatic Identification of Shift Registers . 8-26

Using Register Replication to Solve Timing QoR,
Congestion, and Fanout Problems . 8-30

9. Adaptive Retiming

Comparing optimize_registers With compile_ultra -retime . 9-2

Adaptive Retiming Examples . 9-2

Performing Adaptive Retiming . 9-6

Controlling Adaptive Retiming. 9-6

Reporting the dont_retime Attribute . 9-7

Removing the dont_retime Attribute . 9-7

Verifying Retimed Designs . 9-8

10. Gate-Level Optimization

Compile Cost Function . 10-2

Design Rules Cost Function . 10-2
Calculating Transition Time Cost . 10-3
Calculating Fanout Cost . 10-3
Calculating Capacitance Cost. 10-3

Optimization Constraints Cost Function . 10-4
Calculating Maximum Delay Cost . 10-4
Calculating Minimum Delay Cost . 10-6
Calculating Maximum Power Cost . 10-7
Calculating Maximum Area Cost . 10-7

Changing the Cost Function . 10-7

Reordering the Default Priority of Constraints . 10-8
Contents viii

Design Compiler Optimization Reference Manual Version D-2010.03
Disabling the Cost Function. 10-9

Prioritizing Area Over Total Negative Slack . 10-10

Compile Log . 10-10

Delay Optimization . 10-12

Design Rule Fixing . 10-14

Area Recovery . 10-14

11. Verifying Functional Equivalence

Using Formality . 11-2

Adjusting Optimization For Successful Verification . 11-3

Using Third-Party Formal Verification Tools . 11-4

12. Latch-Based Design Code Examples

SR Latch . 12-2

VHDL and Verilog Code Examples for SR Latch . 12-2

Inference Report for an SR Latch . 12-3

Synthesized Design for an SR Latch . 12-3

D Latch . 12-4

VHDL Code for a D Latch . 12-4

Inference Report for a D Latch . 12-5

Synthesized Design for a D Latch . 12-5

D Latch With Asynchronous Reset . 12-6

VHDL and Verilog Code for a D Latch With Asynchronous Reset. 12-6

Inference Report for a D Latch With Asynchronous Reset 12-7

Synthesized Design for a D Latch With Asynchronous Reset 12-8

D Latch With Asynchronous Set and Reset . 12-9

VHDL and Verilog Code for a D Latch With Asynchronous Set and Reset 12-9

Inference Report for a D Latch With Asynchronous Set and Reset. 12-11

Synthesized Design for a D Latch With Asynchronous Set and Reset 12-12

D Latch With Enable (avoiding clock gating). 12-12

VHDL and Verilog Code for a D Latch With Enable. 12-13

Inference Report for a D Latch With Enable . 12-14

Synthesized Design for a D Latch With Enable . 12-14
Chapter 1: Contents
1-ixContents ix

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Inferring Gated Clocks . 12-15
Case 1 . 12-15
Case 2 . 12-16

Synthesized Design With Enable and Gated Clock . 12-17

D Latch With Enable and Asynchronous Reset . 12-17

VHDL and Verilog Code for a D Latch With Enable
and Asynchronous Reset . 12-18

Synthesized Design for a D Latch With Enable and
Asynchronous Reset. 12-19

D Latch With Enable and Asynchronous Set . 12-20

VHDL and Verilog Code for a D Latch With Enable and Asynchronous Set . . . 12-20

Synthesized Design for D Latch With Enable and Asynchronous Set 12-22

D Latch With Enable and Asynchronous Set and Reset . 12-23

VHDL and Verilog Code for D Latch With Enable and
Asynchronous Set and Reset . 12-23
Synthesized Design for D Latch With Enable and

Asynchronous Set and Reset . 12-26

Index
Contents x

Preface

This preface includes the following sections:

• What’s New in This Release

• About This Manual

• Customer Support
xi

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
What’s New in This Release

Information about new features, enhancements, and changes, along with known problems
and limitations and resolved Synopsys Technical Action Requests (STARs), is available in
the Design Compiler Release Notes in SolvNet.

To see the Design Compiler Release Notes,

1. Go to the release notes page on SolvNet located at the following address:

https://solvnet.synopsys.com/ReleaseNotes

If prompted, enter your user name and password. If you do not have a Synopsys user
name and password, follow the instructions to register with SolvNet.

2. Select Design Compiler, then select a release in the list that appears at the bottom.

About This Manual

The Design Compiler Optimization Reference Manual describes concepts and commands
used for optimizing designs and performing timing analysis using Design Compiler.

Audience

This manual is intended for logic designers and engineers who use the Synopsys synthesis
tools to design ASICs, ICs, and FPGAs. Knowledge of high level techniques, a hardware
description language, such as VHDL or Verilog is required. A working knowledge of UNIX is
assumed.

Related Publications

For additional information about Design Compiler, see Documentation on the Web, which is
available through SolvNet at the following address:

https://solvnet.synopsys.com/DocsOnWeb

You might also want to refer to the documentation for the following related Synopsys
products:

• Automated Chip Synthesis

• Design Budgeting

• Design Vision
Preface
What’s New in This Release xii

Design Compiler Optimization Reference Manual Version D-2010.03
• DesignWare components

• DFT Compiler

• PrimeTime

• Power Compiler

• HDL Compiler

Also see the following related documents:

• Using Tcl With Synopsys Tools

• Synthesis Master Index
Chapter 1: Preface
About This Manual 1-xiii
Preface
About This Manual xiii

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Conventions

The following conventions are used in Synopsys documentation.

Convention Description

Courier Indicates command syntax.

Courier italic Indicates a user-defined value in Synopsys syntax,
such as object_name. (A user-defined value that is
not Synopsys syntax, such as a user-defined value
in a Verilog or VHDL statement, is indicated by
regular text font italic.)

Courier bold Indicates user input—text you type verbatim—in
Synopsys syntax and examples. (User input that is
not Synopsys syntax, such as a user name or
password you enter in a GUI, is indicated by regular
text font bold.)

[] Denotes optional parameters, such as
pin1 [pin2 ... pinN]

| Indicates a choice among alternatives, such as
low | medium | high
(This example indicates that you can enter one of
three possible values for an option:
low, medium, or high.)

_ Connects terms that are read as a single term by
the system, such as
set_annotated_delay

Control-c Indicates a keyboard combination, such as holding
down the Control key and pressing c.

\ Indicates a continuation of a command line.

/ Indicates levels of directory structure.

Edit > Copy Indicates a path to a menu command, such as
opening the Edit menu and choosing Copy.
Preface
About This Manual xiv

Design Compiler Optimization Reference Manual Version D-2010.03
Customer Support

Customer support is available through SolvNet online customer support and through
contacting the Synopsys Technical Support Center.

Accessing SolvNet

SolvNet includes an electronic knowledge base of technical articles and answers to
frequently asked questions about Synopsys tools. SolvNet also gives you access to a wide
range of Synopsys online services including software downloads, documentation on the
Web, and “Enter a Call to the Support Center.”

To access SolvNet, go to the SolvNet Web page at the following address:

https://solvnet.synopsys.com

If prompted, enter your user name and password. If you do not have a Synopsys user name
and password, follow the instructions to register with SolvNet.

If you need help using SolvNet, click HELP in the top-right menu bar or in the footer.

Contacting the Synopsys Technical Support Center

If you have problems, questions, or suggestions, you can contact the Synopsys Technical
Support Center in the following ways:

• Open a call to your local support center from the Web by going to http://
solvnet.synopsys.com (Synopsys user name and password required), and then clicking
“Enter a Call to the Support Center.”

• Send an e-mail message to your local support center.

• E-mail support_center@synopsys.com from within North America.

• Find other local support center e-mail addresses at
http://www.synopsys.com/Support/GlobalSupportCenters/Pages

• Telephone your local support center.

• Call (800) 245-8005 from within the continental United States.

• Call (650) 584-4200 from Canada.

• Find other local support center telephone numbers at
http://www.synopsys.com/Support/GlobalSupportCenters/Pages
Chapter 1: Preface
Customer Support 1-xv
Preface
Customer Support xv

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Preface
Customer Support xvi

1
Basic Concepts for Optimizing Designs 1

Optimizing (compiling) is the step in the synthesis process that attempts to implement a
combination of library cells that meets the functional, speed, and area requirements of your
design. Optimization transforms a design into a technology-specific circuit based on the
attributes and constraints you place on the design.

The quality of optimization results depends on how the HDL description is written. In
particular, the partitioning of the hierarchy in the HDL, if done well, can enhance
optimization.

During optimization, the Design Compiler tool from Synopsys attempts to meet the
constraints you have set on the design. Design Compiler’s optimization algorithms use costs
to determine if a design change is an improvement. Design Compiler calculates two cost
functions: one for design rule constraints and one for optimization constraints and accepts
an optimization move if it decreases the cost of one component without increasing
more-important costs. By default, the design rule constraints (transition, fanout,
capacitance, and cell degradation) have a higher priority than the optimization constraints
(delay and area).

For basic information about optimization constraints and timing, see the Design Compiler
User Guide and Synopsys Timing Constraints and Optimization User Guide.

This chapter contains the following sections:

• Using DC Ultra

• Exploring the Design Space
1-1

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
• Optimization Phases

• Optimization Flow
Chapter 1: Basic Concepts for Optimizing Designs
1-2

Design Compiler Optimization Reference Manual Version D-2010.03
Using DC Ultra

The DC Ultra tool is applied to high-performance deep submicron ASIC and IC designs,
where maximum control over the optimization process is required. In addition to the
capabilities provided by DC-Expert, the DC Ultra tool provides the following features:

• Automatic area ungrouping

• Datapath optimization

• Finite state machine (FSM) optimization

• Advanced critical path resynthesis

• Register retiming

• Support for advanced cell modeling, that is, the cell-degradation design rule

• Advanced timing analysis

Features that are not available in DC-Expert are noted as such in the Design Compiler
documentation.

To use any of these advanced optimization features, you use the compile_ultra command,
which enables you to run a compile flow comprising of the most powerful features of DC
Ultra, including topographical technology.

When you enter the compile_ultra command, Design Compiler checks to ensure that a
DC Ultra license is available. If a DC Ultra license is not available, the tool issues a warning
and uses the Design-Compiler license instead. If you use the -force option with the
command and a DC Ultra license is not available, the return status is 0 (it is 1 otherwise) and
compile stops.

Exploring the Design Space

Experimenting with speed and area to get the smallest or fastest design is called exploring
the design space. Using Design Compiler, you can examine different implementations of the
same design in a relatively short time. Figure 1-1 shows a design space curve. The shape
of the curve demonstrates the tradeoff between area-efficient and speed-efficient circuits.
Chapter 1: Basic Concepts for Optimizing Designs
Using DC Ultra 1-3
Chapter 1: Basic Concepts for Optimizing Designs
Using DC Ultra 1-3

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Figure 1-1 Design Space Curve

Optimization Phases

The optimization process modifies the logic in a netlist. Optimization uses cells from the
technology library in an attempt to meet specified constraints.

Design Compiler performs the following types of optimizations:

• Combinational optimization, including

• Technology-independent optimization, which operates at the logic level. Design
Compiler represents the gates as a set of Boolean logic equations.

• Mapping, during which Design Compiler selects components from the technology
library to implement the logic structure.

• Technology-specific optimization, which operates at the gate level.

• Sequential optimization.

• Local optimizations.

Combinational Optimization
The combinational optimization phase transforms the logic-level description of the
combinational logic to a gate-level netlist. Figure 1-2 shows the logic-level description of the
combinational logic and the gate-level optimization for design LED.

AREA

DELAY

1,100

300
0

Chapter 1: Basic Concepts for Optimizing Designs
Optimization Phases 1-4

Design Compiler Optimization Reference Manual Version D-2010.03
Figure 1-2 Logic-Level and Gate-Level Optimization for Design LED

Figure 1-3 shows the two levels of design representation and the related combinational
optimization phases.

a

b
d

c

z0

z1

z2

z3

z4

z5

z6

Total Area = 32

design_name LED
.inputnames a b c d

.outputnames z0 z1 z2 z3 z4 z5 z6

n1 = c’ ;

n2 = d’ ;

n3 = a’ ;

n4 = ((n2’ + n6’) * (d’ + b’)) ;

n5 = ((n2’ + n1’) * (d’ + c’)) ;
n6 = b’ ;
n7 = ((n2’ + n6’) * (a’ + b’)) ;

n8 = ((n12’ + n1’) * (n2’ + c’)) ;

n9 = ((a’ * n2’) + c’) ;

n10 = ((n1’ * n2’) + b’) ;

n11 = ((n1’ + b’) * (c’ + n6’)) ;

n12 = (n6’ * n2’) ;

z0 = ((n1’ * n2’) + n3’ + n4’) ;

z1 = (n5’ + n3’ + b’) ;

z2 = (c’ + n3’ + n6’ + n2’) ;

z3 = ((b’ * n1’) + n7’ + n8’) ;

z4 = (n7’ + n9’) ;

z5 = ((d’ * c’) + n10’ + n3’) ;

z6 = ((d’ * n1’) + n3’ + n11’) ;
Chapter 1: Basic Concepts for Optimizing Designs
Optimization Phases 1-5
Chapter 1: Basic Concepts for Optimizing Designs
Optimization Phases 1-5

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Figure 1-3 Combinational Optimization Phases

Technology-Independent Optimization
Technology-independent optimization applies algebraic and Boolean techniques to a set of
logic equations. This optimization reimplements the logic equations to meet your timing and
area goals.

Mapping
During mapping, Design Compiler selects components from the technology library to
implement the logic structure. Design Compiler tries different logic combinations, using only
components that approach the defined speed and area goals. Figure 1-4 shows examples
of mapped gates.

Technology-Specific
Optimization

Gate Level

Technology-Independent

Logic Level

Optimization

Critical path
resynthesis

Mapping
Chapter 1: Basic Concepts for Optimizing Designs
Optimization Phases 1-6

Design Compiler Optimization Reference Manual Version D-2010.03
Figure 1-4 Mapped Gates

Technology-Specific Optimization
Technology-specific optimization synthesizes a gate-level design that attempts to meet your
timing and area constraints.

Initial Sequential Optimization
Initial sequential optimization maps sequential cells to cells in the library. You can map to
either standard sequential cells or scan-equivalent cells. Initial sequential optimization is in
the first phase of gate-level optimization.

At this point in the optimization process, information about the delay through the
combinational logic is incomplete. Design Compiler does not have enough information to
select the optimum sequential cell. The tool can correct this lack of information later, in the
final sequential optimization phase.

Final Sequential Optimization
Design Compiler has accurate values for all delays through the I/O pads and combinational
logic before it enters the final sequential optimization phase. In this phase, Design Compiler
optimizes timing-critical sequential cells (cells on the critical path).

b

a
b

d
e

f
g

c

a

c

d
e

f
g

out

out
Chapter 1: Basic Concepts for Optimizing Designs
Optimization Phases 1-7
Chapter 1: Basic Concepts for Optimizing Designs
Optimization Phases 1-7

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
The tool examines each sequential cell and its surrounding combinational logic to determine
whether they might be replaced by more-optimal sequential cells from the target library in
order to meet timing and area constraints.

Final sequential optimization can achieve the following:

• Improve design timing by choosing higher-performance sequential cells.

• Possibly to reduce area and delay of the design if more optimal sequential cells exist in
the library. The tool incorporates the combinational logic in the sequential cell, as shown
in Figure 1-5 and Figure 1-6.

• Further improve area by remapping sequential elements

Figure 1-5 Sequential Optimization

Figure 1-6 Sequential Optimization

Local Optimizations
The final step in gate-level optimization involves making local changes. Design Compiler
makes incremental modifications to the design to adjust for timing or area.

A

B

CLK

D Latch
MUXed D Latch

A

BD Q

CLK

D Q
1

0

CLK

D Q

DATA

ENABLE

ENABLE

DATA

CLK

Q

D

E

Chapter 1: Basic Concepts for Optimizing Designs
Optimization Phases 1-8

Design Compiler Optimization Reference Manual Version D-2010.03
Figure 1-7 shows common local optimization steps.

Figure 1-7 Local Optimization Steps

Optimization Flow

Figure 1-8 on page 1-10 shows the optimization flow. Steps that occur only in DC Ultra are
marked with an asterisk. The sections following the figure describe the steps in the flow.

a

b

a

b

a
b

a f

g a

f

g

a

b

c c

Critical Path

a c a c

x1 x2x1 x4

Critical Path
Chapter 1: Basic Concepts for Optimizing Designs
Optimization Flow 1-9
Chapter 1: Basic Concepts for Optimizing Designs
Optimization Flow 1-9

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Figure 1-8 Optimization Flow

Auto-uniquification

Sequential Mapping

Finite State Machine Optimization*

Boolean Optimization and Mapping

Retiming*

Design Rule Fixing

Area Recovery

Automatic Area Ungrouping*

Multiplexer Optimization and Mapping

Implement Synthetic

Timing-driven Combinational Optimization

High-level Optimization
Datapath Optimization*

Critical Path
Resynthesis*

Delay Optimization
Chapter 1: Basic Concepts for Optimizing Designs
Optimization Flow 1-10

Design Compiler Optimization Reference Manual Version D-2010.03
Automatic Ungrouping
Ungrouping merges subdesigns of a given level of the hierarchy into the parent cell or
design. It removes hierarchical boundaries and allows DC Ultra to improve timing by
reducing the levels of logic and to improve area by sharing logic. DC Ultra provides you with
two automatic ungrouping strategies: area-based auto-ungrouping and delay-based
auto-ungrouping. You can use the compile_ultra command or the compile
-auto_ungroup [area | delay] command to allow DC Ultra to perform automatic
ungrouping.

The area-based automatic ungrouping strategy allows DC Ultra to ungroup small
hierarchies, often improving timing and area results. The delay-based automatic ungrouping
strategy allows DC Ultra to ungroup blocks along the critical path. For more information, see
Chapter 4, “Automatic Ungrouping.”

High-Level Optimization and Datapath Optimization
During high-level optimization, resources are allocated and shared, depending on timing
and area considerations. Resource sharing enables the tool to build one hardware
component for multiple operations, which typically reduces the hardware required to
implement your design. Additional optimizations, such as arithmetic optimization and the
sharing of common subexpressions, are also performed. In addition, if you are using the DC
Ultra tool, advanced datapath transformations are performed. For more information, see
Chapter 5, “High-Level Optimization and Datapath Optimization.”

Multiplexer Mapping and Optimization
In this phase, Design Compiler maps combinational logic representing multiplexers in the
HDL code directly to a single multiplexer (MUX) or a tree of multiplexer cells from the target
technology library. Design Compiler reorders SELECT signals for better area and shares
multiplexer trees. For more information, see Chapter 6, “Multiplexer Mapping and
Optimization.”

Finite State Machine Optimization
DC Ultra can perform automatic extraction and optimization of finite state machines (FSMs)
from your RTL. If an FSM subdesign is represented as a state table, it is read directly and
optimized. If the FSM subdesign is represented in an HDL format or as part of an input
netlist, the FSM is extracted first and then optimized. The FSM part of the optimization
includes optimization with respect to state assignment and, optionally, state minimization.
Chapter 1: Basic Concepts for Optimizing Designs
Optimization Flow 1-11
Chapter 1: Basic Concepts for Optimizing Designs
Optimization Flow 1-11

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
After FSM optimization, the FSM subdesign is converted to Boolean equations and
technology-independent flip-flops and compiled along with the rest of the design, using
standard optimization procedures.

FSM optimization is carried out automatically. For more information, see Chapter 7,
“Optimizing Finite State Machines.”

Sequential Mapping
This phase consists of two steps: register inferencing by HDL Compiler and technology
mapping by Design Compiler. The RTL is translated into a technology-independent
representation called SEQGEN; the SEQGEN is then mapped to gates from the technology
library. A SEQGEN is a generic sequential element that is used by Synopsys tools to
represent registers and latches in a design. SEQGENs are created during elaboration and
are mapped to flip-flops or latches during compile. For more information, see Chapter 8,
“Sequential Mapping.”

Structuring and Mapping
In this phase, the tool optimizes unmapped unstructured logic and maps it to technology
gates. Structuring is an optimization step that adds intermediate variables and logic
structure to a design. During structuring, Design Compiler searches for subfunctions that
can be factored out, then evaluates these factors based on the size of the factor and the
number of times the factor appears in the design. The subfunctions that most reduce the
logic are turned into intermediate variables and factored out of the design equations. Design
Compiler offers timing-driven structuring to minimize delays and Boolean structuring to
reduce area.

Auto-Uniquification
The uniquify process copies and renames any multiply referenced design so that each
instance references a unique design. The process removes the original design from
memory after it creates the new, unique designs. The original design and any collections
that contain it or its objects are no longer accessible. In earlier releases, you had manually
to run the uniquify command to create a uniquely named copy of the design for each
instance. The tool automatically uniquifies designs as part of the compile process. For more
information on the uniquification process, see the Design Compiler User Guide.
Chapter 1: Basic Concepts for Optimizing Designs
Optimization Flow 1-12

Design Compiler Optimization Reference Manual Version D-2010.03
Implementing Synthetic Parts
HDL operators (either built-in operators like + and * or HDL functions and procedures) are
associated with synthetic parts, which are bound in turn to synthetic modules. Each
synthetic module can have multiple architectural realizations, called implementations.

For example, when you use the HDL addition operator (+), HDL Compiler infers the need for
an adder resource and puts an abstract representation of the addition operation in the
netlist. During high-level optimization, the tool manipulates this abstract representation—
called a synthetic operator— and applies optimizations such as arithmetic optimization or
resource sharing.

During the high-level optimization phase, the tool used abstract representations for synthetic
parts. During the implement synthetic parts phase, the tool maps synthetic modules to
architectural representations (implementations). For more information on synthetic parts,
see the HDL Compiler documentation and the DesignWare documentation.

Timing-Driven Combinational Optimization
During this phase, Design Compiler performs optimization of combinational parts. This
phase has two components: timing-driven structuring and incremental implementation
selection. During timing-driven structuring, the tool restructures logic in the critical paths to
improve delay cost. During incremental implementation selection, the tool explores
alternative implementations for each synthetic operator. It evaluates and replaces synthetic
implementations along the critical path to improve delay cost.

Register Retiming
Register retiming is available in DC Ultra only. Register retiming is a sequential optimization
technique that moves registers through the combinational logic gates of a design to optimize
timing and area. Register retiming adds an opportunity for improving circuit timing.

Design Compiler provides two ways to perform register retiming:

• The optimize_registers command performs retiming of sequential cells
(edge-triggered registers or level-sensitive latches) for pipelined designs. For information
on the optimize_registers command, see the Design Compiler Register Retiming
Reference Manual.

• The compile_ultra command supports the -retime option, which enables Design
Compiler to automatically perform local retiming moves to improve worst negative slack
(WNS). This capability, called adaptive retiming, optimizes an entire design. It works best
with general non-pipelined logic.
Chapter 1: Basic Concepts for Optimizing Designs
Optimization Flow 1-13
Chapter 1: Basic Concepts for Optimizing Designs
Optimization Flow 1-13

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
For information on adaptive retiming, see Chapter 9, “Adaptive Retiming.”

Delay Optimization
In this phase, Design Compiler attempts to fix existing delay violations by traversing the
critical path. During delay optimization, Design Compiler reevaluates existing
implementations to determine if they meets constraints. If constraints are not met, Design
Compiler selects a different implementation. It applies local transformations such as
upsizing, load isolation and splitting, and revisits mapping of sequential paths. Figure 1-7
shows some common local optimization steps. Design Compiler takes design rules into
account during this phase. When two circuit solutions offer the same delay performance,
Design Compiler implements the solution that has the lower design rule cost.

In addition, Design Compiler performs critical path resynthesis on your design to improve
timing. It identifies the critical path and attempts to do a full compile on only the logic along
that path. This process then repeats on the new critical path.

The compile command, with its -map_effort high, option enables critical path
resynthesis. For more information, see Chapter 10, “Gate-Level Optimization.”

Note:
Critical path resynthesis requires a DC Ultra license.

Design Rule Fixing
Design rules are provided in the vendor technology library to ensure that the product meets
specifications and works as intended. In this phase, Design Compiler fixes any design rule
violations. Whenever possible, Design Compiler fixes design rule violations by resizing
gates across multiple logic levels—as opposed to adding buffers to the circuitry. For more
information, see Chapter 10, “Gate-Level Optimization.”

Area Optimization
Assuming that you have placed area constraints on your design (with the set_max_area
command), Design Compiler now attempts to minimize the number of gates in the design.
Using the -map_effort or -area_effort option of the compile command, you can direct
Design Compiler to put a low, medium, or high effort into area optimization. (If you do not
place area constraints on your design, Design Compiler performs a limited series of
downsizing and area cleanup steps). For more information, see Chapter 10, “Gate-Level
Optimization.”
Chapter 1: Basic Concepts for Optimizing Designs
Optimization Flow 1-14

2
Compiling a Design 2

When you compile a design, Design Compiler attempts to implement a combination of
library cells that meets the functional, speed, and area requirements of a design according
to the attributes and constraints placed on the design. You use the compile_ultra
command or the compile command to compile a design. Design Compiler provides options
that enable you to customize and control optimization. The optimization process trades off
timing and area constraints to provide the smallest possible circuit that meets the specified
timing requirements.

During compile, Design Compiler’s optimization algorithms use costs to determine if a
design change is an improvement. Design Compiler calculates two cost functions: one for
design rule constraints and one for optimization constraints and accepts an optimization
move if it decreases the cost of one component without increasing more-important costs.
For more information on the compile cost function, see Chapter 10, “Gate-Level
Optimization.”

During a full compile, Design Compiler removes the existing gate structure from a design,
then rebuilds the design. A full compile performs both technology-independent optimization
as well as technology-specific optimization (mapping).

In addition, different pieces of your design require different compilation strategies, such as a
top-down hierarchical compile or bottom-up compile. You need to develop a compilation
strategy before you compile. You can use various strategies to compile, depending on your
design, and you can mix strategies.
2-1

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
This chapter contains the following sections:

• Before You Start

• The compile_ultra Command

• The compile Command

• Performing High-Effort Synthesis

• Performing an Incremental Compile

• Performing Test-Ready Compile

• Controlling Design Rule Fixing

• Performing a Top-Level Compile

• Choosing a Compile Strategy

• Redirecting the Output of Commands

• Checking the Compile Log
Chapter 2: Compiling a Design
2-2

Design Compiler Optimization Reference Manual Version D-2010.03
Before You Start

To optimize successfully, do the following before you compile a design:

• Ensure that partitioning is the best possible for synthesis. The quality of optimization
results depends on how the HDL description is written. In particular, the partitioning of the
hierarchy in the HDL, if done well, can enhance optimization.

• Define constraints as accurately as possible but do not overconstrain your design.

• Use a good synthesis library.

• Identify all multicycle and false paths.

• Instantiate clock gating elements.

• Optionally, define scan style.

• Determine the best strategy for optimizing your design.

The compile_ultra Command

For designs that have significantly tight timing constraints, you can invoke a single DC Ultra
command, compile_ultra, for better quality of results (QoR). The command is a
push-button solution for timing-critical, high performance designs and encapsulates DC
Ultra strategies into a single command. It enables you to apply the best possible set of
timing-centric variables or commands during compile for critical delay optimization as well
as improvement in area QoR. Because compile_ultra includes all compile options and
starts the entire compile process, no separate compile command is necessary.

To use the compile_ultra command, you will need a DC Ultra license and a DesignWare
Foundation license.

The DesignWare library is necessary so that the tool can use licensed DesignWare
architectures for optimal QoR. By default, if the dw_foundation.sldb library is not in the
synthetic library list but the DesignWare license has been successfully checked out, the
dw_foundation.sldb library is automatically added to the synthetic library list. This behavior
applies to the current command only. The user-specified synthetic library and link library lists
are not affected.

In addition, all DesignWare hierarchies are, by default, unconditionally ungrouped in the
second pass of the compile. You can prevent this ungrouping by setting the
compile_ultra_ungroup_dw variable to false (the default is true).
Chapter 2: Compiling a Design
Before You Start 2-3
Chapter 2: Compiling a Design
Before You Start 2-3

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
The compile_ultra command includes the following features:

• Topographical technology, which enables you to accurately predict post-layout timing,
area, and power during RTL synthesis without the need for wireload model-based timing
approximations. Topographical mode uses Synopsys’ placement and optimization
technologies to drive accurate timing prediction within synthesis, ensuring better
correlation to the final physical design. For more information, see the Design Compiler
User Guide.

• Automatic boundary optimization

By default, the compile_ultra command optimizes across hierarchical boundaries.
Boundary optimization is a strategy that can improve a hierarchical design by allowing the
compile process to modify the port interface of lower-level designs. Use the
-no_boundary_optimization to turn off boundary optimization. For more information
on boundary optimization, see Chapter 3, “Optimization Techniques.”

• Automatic ungrouping

By default, the compile_ultra command performs delay-based auto-ungrouping. It
ungroups hierarchies along the critical path and is used essentially for timing
optimization. Use the -no_autoungroup option to turn off automatic ungrouping. For
more information on automatic ungrouping, see Chapter 4, “Automatic Ungrouping.”

• Aggressive logic duplication for load isolation

The tool considers a larger section of the critical path and replicates many gates to isolate
the load observed by the critical path. For more information, see Chapter 3, “Optimization
Techniques.”

• Library-aware mapping and structuring

This capability enables you to characterize your target technology library and create a
pseudolibrary called ALIB, which has mappings from Boolean functional circuits to actual
gates from the target library. The ALIB file provides Design Compiler with greater
flexibility and a larger solution space to explore tradeoffs between area and delay during
optimization. For more information, see the Design Compiler User Guide.

• Automatic datapath extraction and optimization

Datapath extraction transforms arithmetic operators (for example, addition, subtraction,
and multiplication) into datapath blocks. During datapath implementation, the tool uses a
datapath generator to generate the best implementations for these extracted
components. For more information, see Chapter 5, “High-Level Optimization and
Datapath Optimization.”

Note:
Compile options, such as -map_effort and -area_effort, are not compatible with the
compile_ultra command.
Chapter 2: Compiling a Design
The compile_ultra Command 2-4

Design Compiler Optimization Reference Manual Version D-2010.03
The compile Command

When the current design is hierarchical, and there are multiple instances of a subdesign, it
is no longer necessary to run the uniquify command before running the compile
command. The tool automatically uniquifies designs as part of the compile process. Use the
check_design -multiple_design command to report information messages related to
multiply-instantiated designs (by default, these messages are suppressed).

Controlling Mapping Optimization
Select appropriate effort levels for mapping optimization by using the compile command
-map_effort and -area_effort options to select the map effort.

Note:
The DC Ultra version of the compile command -map_effort high option includes
algorithms that enable mapping to wide-fanin gates. This reduces critical path length.

Customizing the compile Command
Compile variables enable you to customize the compile command to fit your particular
needs. Set variables from the dc_shell prompt, or define them in your .synopsys_dc.setup
file.

The compile_variables man page lists the compile variables.

The syntax is

set variable_name value

Table 2-1

Argument Description

-map_effort low This option defaults to -map_effort medium.

-map_effort medium This option is the default. Design Compiler tries to find a
good mapping but does not use some CPU-intensive
strategies. Medium is appropriate for getting a quick idea of
how large a circuit will be. Use medium for most cases.

-map_effort high This option performs all medium effort optimizations and
critical path resynthesis. It takes significantly longer to
compile but can produce better designs. The mapping
process proceeds until it has tried all strategies.
Chapter 2: Compiling a Design
The compile Command 2-5
Chapter 2: Compiling a Design
The compile Command 2-5

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
The individual variable descriptions define the value type.

To list compile variables and their current values, enter

dc_shell> print_variable_group compile

Performing High-Effort Synthesis

The compile_ultra command supports two options, which encapsulate higher-effort
synthesis strategies. The -area_high_effort_script option and
-timing_high_effort_script option include encapsulated scripts that offer additional
area and timing improvements. Depending on the optimization goal, the scripts apply a
compile strategy that might turn on or off different optimization features.

Performing an Incremental Compile

An incremental compile might improve quality of results (QoR) by improving the structure of
your design after the initial compile. To perform an incremental compile, use the
-incremental option of the compile_ultra command or the -incremental_mapping
option of the compile command.

Incremental mapping uses the existing gates from an earlier compilation as a starting point
for the mapping process. It improves the existing design cost by focusing on the areas of the
design that do not meet constraints and affects the second pass of compile. The existing
structure is preserved if all constraints are already met. Mapping optimizations are accepted
only if they improve the circuit speed or area.

Keep the following points in mind when you do an incremental compile:

• The option enables only gate-level optimizations. For more information, see Chapter 10,
“Gate-Level Optimization.”

• Gates are not converted back to the generic technology (GTECH) level.

• Flattening and structuring are not done on the mapped portion of the design.

• Implementations for DesignWare operators are reselected if optimization costs can be
improved.

The compile_ultra -incremental option is incompatible with the following options:

-top
-timing_high_effort_script
-area_high_effort_script
Chapter 2: Compiling a Design
Performing High-Effort Synthesis 2-6

Design Compiler Optimization Reference Manual Version D-2010.03
Performing Test-Ready Compile

Test-ready compile reduces iterations and design time, by accounting for the impact of the
scan implementation during the logic optimization process. The optimization cost functions
consider the impact of the scan cells themselves and the additional loading due to the
scan-chain routing. By accounting for the timing impact of scan design from the start of the
synthesis process, test-ready compilation eliminates the need to recompile your design after
scan insertion. Use the -scan option of the compile_ultra command or the compile
command to enable test-ready compile. When you use this option, the tool replaces all
sequential elements during optimization.

For more information, see the “Performing Test-Ready Compile” on page 8-20.”

Controlling Design Rule Fixing

You can direct Design Compiler to avoid design rule fixing or to compile with only design rule
fixing. The -no_design_rule and -only_design_rule options of the compile_ultra
command or compile command determine whether design rule violations are fixed before
compilation stops. You cannot use these options together.

If you omit the -no_design_rule and -only_design_rule options, Design Compiler
performs both design rule fixing and mapping optimizations before exiting (the default). The
compile command supports an additional option, -only_hold_time, which causes
compile to perform only hold time fixing, ignoring other design rules. The set_fix_hold
command must be specified for hold time fixing to be performed. For more information on
design rule fixing, see “Design Rule Fixing” on page 10-14.”

Table 2-2 Using Design Rule Fixing Options

Argument Description

-no_design_rule Causes compile to exit before fixing design rule
violations. This allows you to check the results in a
constraint report before fixing the violations.

-only_design_rule Causes compile to perform only design rule fixing.
Mapping optimizations are not performed. If you are
using the compile_ultra command, you must use
the -only_design_rule option with the
-incremental option.
Chapter 2: Compiling a Design
Performing Test-Ready Compile 2-7
Chapter 2: Compiling a Design
Performing Test-Ready Compile 2-7

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Note:
Another way to limit design rule fixing is by using the set_cost_priority command with
the -delay option.

Performing a Top-Level Compile

The -top option of the compile_ultra command or the compile command invokes the
top-level optimization process. The top-level optimization capability fixes constraint
violations occurring at the top level after the subblocks in a design are assembled. These
violations might occur due to changes in the environment around the subblocks as a result
of the optimizations that have been performed in the subblocks.

Top level optimization fixes only violations of top level nets because it is assumed that the
subblocks have been compiled separately and are meeting timing. However, any design rule
violations present in the design will be fixed regardless of where the violation occurs.

The -top option works with mapped designs only and runs significantly faster than an
incremental compilation because of its emphasis on top-level nets. Additionally, it does not
perform any incremental implementation selection of synthetic components, structuring, or
area recovery on the design.

Using The -top Option With Other Compile Options
The compile_ultra -top option is incompatible with the following options:

• -incremental

• -timing_high_effort_script

• -area_high_effort_script

The compile -top option is incompatible with the following options:

• -incremental_mapping

• -exact_map

• -no_map

• -area_effort
Chapter 2: Compiling a Design
Performing a Top-Level Compile 2-8

Design Compiler Optimization Reference Manual Version D-2010.03
Limiting Optimization to Paths Within a Specific Range
By default, the -top option aims to fix all design rule violations in the entire design but only
the intermodule timing paths with violations. It does not address the intramodule timing
paths. To direct Design Compiler to attempt to optimize the intermodule paths with timing
delay violations within a specific range, set the critical_range attribute before you
compile with the -top option.

Fixing Timing Violations For All Paths
By default, when the -top option is used, Design Compiler fixes all design rules but only
those timing violations whose paths cross top-level hierarchical boundaries.

Setting the compile_top_all_paths environment variable to true causes the –top option
to attempt to fix timing violations for all paths.

Choosing a Compile Strategy

The two strategies for compiling a hierarchical design are

• Top-down hierarchical compile (recommended)

• Compile-characterize-write script-recompile. This strategy is also known as the
bottom-up compile strategy.

Mixing Compilation Strategies
You can mix the two compilation strategies, as shown in Figure 2-1.
Chapter 2: Compiling a Design
Choosing a Compile Strategy 2-9
Chapter 2: Compiling a Design
Choosing a Compile Strategy 2-9

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Figure 2-1 Mixing Compilation Strategies

Using the Top-Down Hierarchical Compile Strategy
Design Compiler automatically compiles hierarchical circuits without collapsing the
hierarchy. After each module in the design is compiled, Design Compiler continues to
optimize the circuit until the constraints are met. This process sometimes requires
recompiling subdesigns on a critical path. When the performance goals are achieved or
when no further improvement can be made, the compile process stops.

Hierarchical compilation is automatic when the design being compiled has multiple levels of
hierarchy that are not marked dont_touch. Design Compiler preserves the hierarchy
information and optimizes individual levels automatically, based on the constraints at the top
level of hierarchy (dont_touch attributes placed on the top level of hierarchy are ignored).

The top-down hierarchical compile strategy is an easy, push-button approach that involves
only three basic steps:

1. Read in the entire design.

2. Apply constraints and attributes to the top level. Constraints and attributes are based on
the design specification.

3. Compile.

Example

Use top-down hierarchical compile for design Top.

TOP

A B C D

Specification has detailed time budgets
for first level of hierarchy: A, B, C, and D.

Hierarchical compile is used for
hierarchy below D.

Compile-characterize-write script-recompile
is used for hierarchy below B.
Chapter 2: Compiling a Design
Choosing a Compile Strategy 2-10

Design Compiler Optimization Reference Manual Version D-2010.03
The design specification for design Top is

Operating conditions:WCCOM
Wire Load Model: "20x20"
clock: 22 MHz
Input delay time: 10 ns

Use the compile script shown in Example 2-1 to run top-down hierarchical compile for
design Top. The script includes a script of default constraints, default.con.

Example 2-1 Top-Down Hierarchical Compile Script
read_file -format vhdl top.vhd
current_design Top
source default.con
set_operating_conditions WCCOM
set_wire_load_model -name "20x20"
create_clock -period 45 clk
set_input_delay 10 -clock clk [all_inputs]
set_output_delay
compile_ultra

Running a Top-Down Hierarchical Compile Strategy
This example of running the hierarchical optimization strategy uses a hierarchical, 4-bit
adder design named ADDER. ADDER is composed of four 1-bit full adders with A, B, and
CIN (carry in) inputs and SUM and COUT (carry out) outputs.

Figure 2-2 shows a diagram of design ADDER.

U1
U2

U3 U4 U5

A
B

C D E

Top
Chapter 2: Compiling a Design
Choosing a Compile Strategy 2-11
Chapter 2: Compiling a Design
Choosing a Compile Strategy 2-11

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Figure 2-2 Hierarchical Design

The suggested optimization strategy for hierarchical designs is

1. Read in as much of the design hierarchy as you need to use in this session. For example,
enter

2. dc_shell> read_file -format ddc adder.ddc
Reading ddc file ’/usr/design/adder.ddc’
Current design is ’ADDER’.

3. Run the check_design -multiple_designs command to determine whether any
subdesigns (components) are referenced more than once (unresolved) or whether the
hierarchy is recursive. The command reports all multiply instantiated designs along with
instance names and associated attributes (dont_touch, black_box, and ungroup).

For example, enter

4. dc_shell> check_design -multiple_designs
Information: Design ’FULL_ADDER’ is instantiated 4 times.
 Cell ’ADD0’ in design ’ADDER’
 Cell ’ADD1’ in design ’ADDER’
 Cell ’ADD2’ in design ’ADDER’
 Cell ’ADD3’ in design ’ADDER’

5. Resolve multiple instances.

For each cell referencing a nonunique subdesign, you can let compile automatically
uniquify the multiple instances, or, before running compile, you can do one of the
following actions (you can use each action with one or more cells):

• Combine the cell into the surrounding circuitry (ungroup).

• Compile the cell separately, then use set_dont_touch.

Note:
The tool automatically uniquifies designs as part of the compile process.

b3a3

sum3

cout

b2a2

sum2

c2

b1a1

sum1

c1

b0a0

sum0

c0
cin

ADDER
Chapter 2: Compiling a Design
Choosing a Compile Strategy 2-12

Design Compiler Optimization Reference Manual Version D-2010.03
Note that you can still manually force the tool to uniquify designs before compile by
running the uniquify command, but this step contributes to longer runtimes because
the tool automatically “re-uniquifies” the designs when you compile the design. You
cannot turn off the uniquify process. For more information about resolving multiple
instances, see the Design Compiler User Guide.

6. Check the design again to verify that all multiple instances have been uniquified, or
ungrouped or have the dont_touch attribute set. For example, enter

dc_shell> check_design -multiple_designs

7. Compile the design.

dc_shell> compile_ultra

Using the Compile-Characterize-Write Script-Recompile Strategy
The compile-characterize-write script-recompile strategy is an alternative to hierarchical
compilation. Using this strategy, first optimize nonunique designs, using context information
or time budgets. Then, optimize higher-level blocks with the lower blocks marked as
dont_touch.

Use the compile-characterize-write script-recompile strategy for medium and large designs
that do not have good interblock specifications (the typical situation for many designs).

The compile-characterize-write script-recompile strategy assists in compiling large designs,
using the divide-and-conquer approach, and is not limited by memory.

The compile-characterize-write script-recompile strategy has these disadvantages:

• It requires iterations until the interfaces are stable.

• It requires manual revision control.

The compile-characterize-write script-recompile strategy requires seven steps:

1. Compile subblocks independently, using estimates for drive and load. Use a default script
to estimate drive and load.

2. Read in the entire compiled design.

3. Characterize one subblock.

4. Use write_script to save the information from the characterization.

5. Clear memory; read in the previously characterized subblock; and recompile the
subblock, using the saved script.

For characterization information to apply, you must read in the database format that was
characterized (.ddc format).
Chapter 2: Compiling a Design
Choosing a Compile Strategy 2-13
Chapter 2: Compiling a Design
Choosing a Compile Strategy 2-13

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
6. Read in the entire compiled design again without the old subblock; use recompiled
subblock.

7. Choose another subblock, and repeat steps 3 through 7 until all subblocks are
recompiled, using their actual environments.

When you use the compile-characterize-write script-recompile strategy, consider the
following:

• If you do not modify your RTL code after the first time you read it in, you can save it to a
.ddc file. This step saves time later when you reread the design.

• compile automatically goes to the submodule. If you want the compile to affect only the
current design, you can either

• Remove or omit the submodule from your database or

• Use the set_dont_touch command to set the dont_touch attribute on the submodule.

• compile is bottom up.

• characterize is top down.

• By default, compile modifies the original copy in the current design. This could be a
problem when the same design is referenced from multiple modules and these modules
are compiled separately in sequence. For example, the first compile could change the
interface or the functionality of the design by boundary optimizaiton. When this design is
referenced from another module in the subsequent compile, the modified design is
uniquified and used.

You can set the compile_keep_original_for_external_references variable to true,
which enables compile to keep the original design when there is an external reference to
the design. When the variable is set to true, the original design and its sub-designs are
copied and preserved (before doing any modifications during compile) if there is an
external reference to this design.

Typically, you require this variable only when you are doing a bottom-up compile without
setting a dont_touch attribute on all the sub-designs, especially those with boundary
optimizations turned on. If there is a dont_touch attribute on any of the instances of
the design or in the design, this variable has no effect.

Example

Use the compile-characterize-write script-recompile compilation strategy for design Top.
Chapter 2: Compiling a Design
Choosing a Compile Strategy 2-14

Design Compiler Optimization Reference Manual Version D-2010.03
The compile script shown in Example 2-2 runs compile-characterize-write script-recompile
for design Top. Example 2-3 shows the default constraint script used to estimate the drive
and the load, as shown in Figure 2-3.

Example 2-2 compile-characterize-write script-recompile Script
read_ddc {top.ddc B.ddc ...}
source defaults.con
characterize B.blk
current_design B
write_script > B.wscr
remove_design -all
read_ddc B.ddc
source B.wtcl
compile
read_ddc {top.ddc A.ddc}
source defaults.con
characterize A_blk
current_design A
write_script > A.wscr

Example 2-3 Default Constraint Script (default.con)
set_operating_conditions "WCCOM"
set_wire_load_model -name "10x10"
create_clock -period 20 clk
dont_touch_network clk
set_input_delay -clock clk 4 [all_inputs]
set_output_delay -clock clk 5 [all_inputs]
set_load load_of(library/ND2/A) * 4 [all_outputs]
set_driving_cell -lib_cell "FD1" [all_inputs]
set_drive 0 clk

Top

A B

C D E
Chapter 2: Compiling a Design
Choosing a Compile Strategy 2-15
Chapter 2: Compiling a Design
Choosing a Compile Strategy 2-15

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Figure 2-3 Estimating Drive and Load

Redirecting the Output of Commands

You can redirect or append the output of the commands to a file you can review. This way,
you can archive runtime messages for future reference.

Note:
The pipe character (|) has no meaning in the dc_shell interface.

Checking the Compile Log

During optimization, each time Design Compiler starts a step it prints a message in the
compile log, indicating its progress.

For example

Table 2-3 Redirecting the Command Output

To Do This Use This

Divert command output to a file. > (redirection operator)

Append command output to a file. >> (append operator)

Redirect command output to a file. redirect command

clk

A ND2

FD1
Q

clk

A ND2

FD1
Q

clk

A ND2

FD1
Q

set_driving_cell -lib_cell "FD1" all_inputs

set_load load_of(library/ND2/A) * 4 all_outputs
Chapter 2: Compiling a Design
Redirecting the Output of Commands 2-16

Design Compiler Optimization Reference Manual Version D-2010.03
dc_shell> compile

Beginning Mapping Optimizations (Medium effort)

For additional information, see “Compile Log” on page 10-10 and the chapter on analyzing
and resolving design problems in the Design Compiler User Guide.

Table 2-4

Trials Area Delta delay Total neg
slack

Design rule
cost

3 1296477.2 7.58 3468.1 2.9

1 1296538.9 7.48 3382.7 2.9
Chapter 2: Compiling a Design
Checking the Compile Log 2-17
Chapter 2: Compiling a Design
Checking the Compile Log 2-17

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Chapter 2: Compiling a Design
Checking the Compile Log 2-18

3
Optimization Techniques 3

Optimizing a design produces the smallest design that meets your constraints. The
compile_ultra command and compile command enable optimization. The optimization
process trades off timing and area constraints to provide the smallest possible circuit that
meets the specified timing requirements.

This chapter has the following sections:

• Optimizing for Delay

• Optimizing for Area

• Creating Path Groups

• Optimizing Near-Critical Paths

• Fixing Heavily Loaded Nets

• Performing High-Effort Compile

• Performing a High-Effort Incremental Compile

• Disabling Total Negative Slack Optimization

• Optimizing Across Hierarchical Boundaries

• Isolating Input and Output Ports

• Propagating Constants
3-1

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
• Enabling Critical Path Resynthesis

• Logic Duplication and Mapping to Wide-Fanin Gates

• Removing Hierarchy

• Optimizing for Multiple Clocks per Register

• Preserving the Clock Network After Clock Tree Synthesis

• Optimizing Once for Best- and Worst-Case Conditions

• Optimizing With Multiple Libraries

• Synthesizing to Multibit Components

• Buffering Nets Connected to Multiple Ports

• Building a Balanced Buffer Tree

• Defining a Signal for Unattached Master Clocks
Chapter 3: Optimization Techniques
3-2

Design Compiler Optimization Reference Manual Version D-2010.03
Optimizing for Delay

Design Compiler optimizes the timing of your design based on the delay constraints you
specify. Constraints affecting delay include clocks, input and output delays, external loads,
input driving cells, operating conditions, and wire load tables.

The following strategies can help achieve a faster design:

• Automatically ungroup hierarchies along the critical path by using the compile_ultra
command or the -auto_ungroup delay option of the compile command. See
“Automatic Ungrouping” on page 4-1.

• Ungroup all or part of the hierarchy. This can give optimization more freedom to change
logic that previously spanned a hierarchical boundary. See “Removing Hierarchy” on
page 3-16.

• Turn on boundary optimization for modules you do not want to ungroup. See “Optimizing
Across Hierarchical Boundaries” on page 3-8.

• Use the group_path command to create path groups. See “Creating Path Groups” on
page 3-4.

• Specify a critical range, so that Design Compiler optimizes not only the critical path but
paths within that range of the critical path as well. See “Optimizing Near-Critical Paths”
on page 3-5.

• In the design exploration phase, you might want to give delay a higher priority than design
rules, using the set_cost_priority -delay command.

• Use the -timing_effort_high_script option of the compile_ultra command. This
option includes several strategies and settings for timing improvements.

• If you are using the compile command, perform a high-effort compile or a high-effort
incremental compile. See “Performing High-Effort Compile” on page 3-7 and “Performing
a High-Effort Incremental Compile” on page 3-8.

• Fix heavily loaded nets by using the balance_buffer command or by fixing design rules.
See “Fixing Heavily Loaded Nets” on page 3-6.

Optimizing for Area

The area optimization process minimizes the area your design uses. The process tries to
improve area, if that can be done without degrading delay cost.

Area optimization requires that you set an area constraint, using the set_max_area
command.
Chapter 3: Optimization Techniques
Optimizing for Delay 3-3
Chapter 3: Optimization Techniques
Optimizing for Delay 3-3

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
By default, area optimization does not create a new timing violation or worsen an existing
timing violation to gain an improvement in area. If Design Compiler can identify a change to
a path with a timing violation, it makes the change only if it can improve area without
worsening the timing violation.

Achieving the smallest design can require changes in optimization strategy or rewriting the
HDL code. Some strategies that can help achieve small designs are:

• Ungroup all or part of the hierarchy. Take care not to ungroup regular structures such as
adders. In particular, ungroup smaller blocks to allow shared optimization across
boundaries. See “Removing Hierarchy” on page 3-16.

• Automatically ungroup small hierarchies by using the compile_ultra command or the
-auto_ungroup area option of the compile command. See Chapter 4, “Automatic
Ungrouping."

• Optimize across hierarchical boundaries. See “Optimizing Across Hierarchical
Boundaries” on page 3-8.

• Disable total negative slack optimization by using the -ignore_tns option of the
set_max_area command. See “Disabling Total Negative Slack Optimization” on
page 3-8.

• Use the -area_effort high option or map_effort high option of the compile
command.

• Use the -area_effort_high_script option of the compile_ultra command.

Creating Path Groups

By default, Design Compiler groups paths based on the clock controlling the endpoint (all
paths not associated with a clock are in the default path group). If your design has complex
clocking, complex timing requirements, or complex constraints, you can create path groups
to focus Design Compiler on specific critical paths in your design.

You can control the optimization of your design by creating and prioritizing path groups,
which affect only the maximum delay cost function. By default, Design Compiler works only
on the worst violator in each group.

Set the path group priorities by assigning weights to each group (the default weight is 1.0).
The weight can be from 0.0 to 100.0.

For example, Figure 3-1 shows a design that has multiple paths to flip-flop FF1.
Chapter 3: Optimization Techniques
Creating Path Groups 3-4

Design Compiler Optimization Reference Manual Version D-2010.03
Figure 3-1 Path Group Example

To indicate that the path from input in3 to FF1 is the highest-priority path, use the following
command to create a high-priority path group:

dc_shell> group_path -name group3 -from in3 -to FF1/D -weight 2.5

Optimizing Near-Critical Paths

When you add a critical range to a path group, you change the maximum delay cost function
from worst negative slack to critical negative slack. Design Compiler optimizes all paths
within the critical range.

Specifying a critical range can increase runtime. To limit the runtime increase, use critical
range only during the final implementation phase of the design, and use a reasonable critical
range value. A guideline for the maximum critical range value is 10 percent of the clock
period.

Use one of the following methods to specify the critical range:

• Use the -critical_range option of the group_path command.

• Use the set_critical_range command.

For example, Figure 3-2 shows a design with three outputs, A, B, and C.

Figure 3-2 Critical Range Example

Assume that the clock period is 20 ns, the maximum delay on each of these outputs is 10
ns, and the path delays are as shown. By default, Design Compiler optimizes only the worst
violator (the path to output A). To optimize all paths, set the critical delay to 3.0 ns. For
example,

create_clock -period 20 clk

in3

in4
FF1

in1

in2

A
B
C

13 ns
12 ns
11 ns

10 ns

delay

Worst violator
A
B
C

Path

Goal
Chapter 3: Optimization Techniques
Optimizing Near-Critical Paths 3-5
Chapter 3: Optimization Techniques
Optimizing Near-Critical Paths 3-5

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
set_critical_range 3.0 $current_design
set_max_delay 10 {A B C}
group_path -name group1 -to {A B C}

Fixing Heavily Loaded Nets

Heavily loaded nets often become critical paths. To reduce the load on a net, you can use
either of two approaches:

• If the large load resides in a single module and the module contains no hierarchy, fix the
heavily loaded net by using the balance_buffer command. For example, enter

source constraints.con
compile_ultra
balance_buffer -from [get_pins buf1/Z]

Note:
The balance_buffer command provides the best results when your library uses
linear delay models. If your library uses nonlinear delay models, the second approach
provides better results.

• If the large loads reside across the hierarchy from several modules, apply design rules to
fix the problem. For example,

source constraints.con
compile_ultra
set_max_capacitance 3.0
compile -only_design_rule

In rare cases, hierarchical structure might disable Design Compiler from fixing design rules.

In the sample design shown in Figure 3-3, net O1 is overloaded. To reduce the load, group
as many of the loads (I1 through In) as possible in one level of hierarchy by using the group
command or by changing the HDL. Then you can apply one of the approaches.
Chapter 3: Optimization Techniques
Fixing Heavily Loaded Nets 3-6

Design Compiler Optimization Reference Manual Version D-2010.03
Figure 3-3 Heavily Loaded Net

Performing High-Effort Compile

The compile_ultra command supports two options, which encapsulate higher-effort
synthesis strategies. The -area_high_effort_script option and
-timing_high_effort_script option include encapsulated scripts that offer additional
area and timing improvements. Depending on the optimization goal, the scripts apply a
compile strategy that might turn on or off different optimization features.

The compile command supports a map_effort -high option. The optimization result
depends on the starting point. Occasionally, the starting point generated by the default
compile results in a local minimum solution, and Design Compiler quits before generating an
optimal design. A high-effort compile might solve this problem.

The high-effort compile uses the -map_effort high option of the compile command on
the initial compile (on the HDL description of the design).

A high-effort compile pushes Design Compiler to the extreme to achieve the design goal. A
high-effort compile invokes the critical path resynthesis strategy to restructure and remap
the logic on and around the critical path.

This compile strategy is CPU intensive, especially when you do not use the incremental
compile option, with the result that the entire design is compiled using a high map effort.

O1

I1

I2

In

• • •
Chapter 3: Optimization Techniques
Performing High-Effort Compile 3-7
Chapter 3: Optimization Techniques
Performing High-Effort Compile 3-7

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Performing a High-Effort Incremental Compile

You can often improve compile performance of a high-effort compile by using the
incremental compile option. Also, if none of the previous strategies results in a design that
meets your optimization goals, a high-effort incremental compile might produce the desired
result.

An incremental compile (-incremental_mapping compile option) allows you to
incrementally improve your design by experimenting with different approaches. An
incremental compile performs only gate-level optimization and does not perform logic-level
optimization. The resulting design’s performance is the same or better than the original
design’s.

This technique can still require large amounts of CPU time, but it is the most successful
method for reducing the worst negative slack to zero. To reduce runtime, you can place a
dont_touch attribute on all blocks that already meet timing constraints.

This incremental approach works best for a technology library that has many variations of
each logic cell.

Disabling Total Negative Slack Optimization

You can choose to enable area optimization at the risk of worsening timing violations on
some paths and creating some new timing violations, as long as the violation on the most
critical path in each path group is not affected. Assuming you are willing to take this risk, you
can direct Design Compiler to enable area optimizations on all paths, using the
set_max_area command with its -ignore_tns option. (TNS means total negative slack, the
sum of the delay violations of all violating endpoints.) The command line is

set_max_area 0 -ignore_tns

Optimizing Across Hierarchical Boundaries

Boundary optimization is a strategy by which Design Compiler optimizes across hierarchical
boundaries. The different types of boundary optimization are as follows:

• Propagation of constants across the hierarchy

• Propagation of equal or opposite information across the hierarchy

• Propagation of unconnected port information across the hierarchy

• Pushing of inverters across the hierarchy
Chapter 3: Optimization Techniques
Performing a High-Effort Incremental Compile 3-8

Design Compiler Optimization Reference Manual Version D-2010.03
You can direct Design Compiler to perform optimization across hierarchical boundaries by
using one of the following:

• Use the compile_ultra command.

By default, the compile_ultra command optimizes across hierarchical boundaries. Use
the -no_boundary_optimization to turn off boundary optimization.

• Use the -boundary_optimization option of the compile command. This option
optimizes across all hierarchical boundaries in the current design. For example, enter

compile -boundary_optimization

• Use the set_boundary_optimization command.

This command optimizes across specified hierarchical boundaries for one or more
designs or subdesigns. For example, enter

set_boundary_optimization subdesign

During boundary optimization, Design Compiler propagates constants, unconnected pins,
and complement information. In designs that have many constants (VCC and GND)
connected to the inputs of subdesigns, propagation can reduce area. Figure 3-4 shows this
relationship.

Figure 3-4 Benefits of Boundary Optimization

During normal compilation, constant and equal (opposite) properties are propagated down
the hierarchy, even when boundary optimization is not enabled
(-boundary_optimization). Two output signals that are functionally equal (opposite) can
be detected during compile. The equal (opposite) properties can be propagated to the
containing parent design. Consequently, the corresponding signals in the parent design can
be optimized. For example, one signal can be unconnected, and all of its loads can be
reconnected to the other, equal signal.

VCC

IN1

Logic

Subdesign

GND

IN2

Logic
IN1

IN2

Subdesign
Chapter 3: Optimization Techniques
Optimizing Across Hierarchical Boundaries 3-9
Chapter 3: Optimization Techniques
Optimizing Across Hierarchical Boundaries 3-9

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Similar optimizations can occur for opposite nets. Output nets in a subdesign that are
functionally equal to constant 0 or 1 can be propagated to the parent design. Further
optimization in the parent design can result. Verification deals with the propagation of these
logical properties. However, hierarchical verification can use significant runtime in
determining the properties required to prove that a design is a valid implementation of the
original design specification. If some properties cannot be determined, a warning appears.
These properties do not need to be computed for nonhierarchical verification, because both
the original and implementation designs are flattened prior to verification.

When you specify -boundary_optimization, verification is automatically nonhierarchical.

If you enable boundary optimization during optimization, subdesign boundaries (ports) are
maintained. Some logic optimization is possible across the boundaries, however, and the
phase of the ports can be changed. For example, if the signal to a subdesign input port is
always logic 1, you can simplify logic inside the subdesign after optimization.

Boundary optimization is an implicit characterize -connections command, where logical
port connection information is attached to a subdesign. This connection information is set by
the appropriate set_equal, set_opposite, set_logic_one, set_logic_zero, and
set_unconnected commands.

The function of subdesign ports can be changed by boundary optimization. For example, if
one input of a 2-input adder subdesign is always set to logic 1 in the context of the current
design, that subdesign is optimized as an incrementer after boundary optimization. If
another design outside the scope of the current design references the original adder
subdesign, it now references an incrementer.

Optimizing Across Specified Boundaries
The set_boundary_optimization command enables optimizing across hierarchical
boundaries for one or more designs or subdesigns. This command sets the boundary
optimization attribute on the specified designs or subdesigns.

The compile process uses this information to create smaller designs. Because this might
change the function of the object, do not use the object in any other context.

If a cell with the specified name is found in the current design, the boundary_optimization
attribute is set to the specified value in the cell. If no cell with the specified name is found in
the current design, a reference is searched for. If a reference is found, the attribute is set for
the reference. Otherwise, a design is searched for and the attribute is set for the design.

Occasionally cells use an input signal only in its complemented form. In this case, consider
inverting the signal and its ports for optimal results. The set_boundary_optimization
command considers these optimizations. When this occurs, port names change according
to the port_complement_naming_style variable setting.
Chapter 3: Optimization Techniques
Optimizing Across Hierarchical Boundaries 3-10

Design Compiler Optimization Reference Manual Version D-2010.03
The syntax is

set_boundary_optimization subdesign_list true | false
true (the default)

Enables boundary optimization.

false

Disables boundary optimization.

Note:
For more information, see the set_boundary_optimization man page.

To remove the boundary_optimization attribute, use the remove_attribute command.

Optimizing Across All Boundaries
The compile_ultra command or the -boundary_optimization option of the compile
command optimize across all hierarchical boundaries in the current design. These
commands propagate constants, unconnects, and equal or opposite information across
hierarchical boundaries.

If there are constraints on the design, compile -boundary_optimization inverts
hierarchical interface signals (when appropriate) if both of the following criteria are met:

• The complement of the net is already easily available.

• Inverting the net improves the cost function.

If these conditions are satisfied, the entire net is complemented and the affected boundary
ports are renamed to indicate that they now represent the complement of the original signal.
If a port undergoes, two of these transformations, its name reverts to the original name with
no indication that the port was ever inverted.

The affected ports are renamed according to the dc_shell variable
port_complement_naming_style. The default naming style is %s_BAR, where %s
represents the original name of the port. If the new name conflicts with an existing port name
in the design, an integer is appended to the new name to produce a unique name.

Isolating Input and Output Ports

The set_isolate_ports command inserts isolation logic at specified input or output ports.
You isolate input and output ports to improve the accuracy of timing models.
Chapter 3: Optimization Techniques
Isolating Input and Output Ports 3-11
Chapter 3: Optimization Techniques
Isolating Input and Output Ports 3-11

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Input ports are isolated in the following cases:

• When they drive one or more input pins of a cell having several input pins (as a result of
boundary optimization)

• When they drive one or more input pins belonging to different cells having several input
pins

Output ports are isolated in the following cases:

• To ensure that the cell driving an output port does not also drive some internal logic within
the design

• To specify particular driver cells at the output ports

This is useful when you want each output port to be driven explicitly by its own driver (no
sharing of output drivers by two or more ports) or when you want to compile the design
in the context of the environment in which the design will be used.

The syntax is

set_isolate_ports object_list
[-type buffer | inverter]
[-driver cell_name]
[-force]

object_list

The list of input or output ports you want to isolate.

-type buffer | inverter

Specifies whether Design Compiler should use a buffer or a pair of inverters as the
isolation logic.

-driver cell_name

Specifies a particular cell from the target library as the isolation cell.

-force

With input ports, -force indicates that isolation logic is inserted after the specified input
port.

With output ports, -force indicates that isolation logic is inserted even if no internal
feedback from the output drivers occurs.

The isolation logic can be a buffer or a pair of inverters. Either Design Compiler selects the
buffer or inverter from the target library, or you specify a particular cell from the target library.

Note:
However, that a user-specified cell must be a buffer or an inverter. Otherwise, Design
Compiler outputs an error message

The inserted isolation logic has the size_only attribute assigned to it. When you compile
the design, therefore, only sizing optimization is allowed for this logic.
Chapter 3: Optimization Techniques
Isolating Input and Output Ports 3-12

Design Compiler Optimization Reference Manual Version D-2010.03
Note:
If the isolation logic is composed of an inverter pair, the size_only attribute is assigned
only to the second inverter, which allows flexibility in optimizing the first inverter.

For example to insert the isolation logic cell IVDAP on all output ports of the current design,
enter the following command:

dc_shell> set_isolate_ports [all_outputs] -driver IVDAP

You issue the set_isolate_ports command before the compile command. That is, the
isolation logic is inserted before the design is compiled. Example 3-1 shows a sample script.

Example 3-1
set target_library lsi_10k.db
set link_library {* lsi_10k.db}
read_verilog ./t1.v
current_design test1
link
set_isolate_ports [all_outputs] -driver IVDAP
compile -map_effort medium

It is important to understand that port isolation can be applied only to the input or output
ports of the current design. Therefore, to apply port isolation to a subdesign of your top-level
design, you must first make the subdesign the current design.

Port isolation is currently intended for use only during bottom-up compilation. That is,
isolating hierarchical instance pins of lower- level designs from the top-level design in a
top-down compilation is not supported.

Also, in a bottom-up compilation, you cannot simply isolate the ports of a subblock that you
have temporarily designated as the current design and then expect that isolation logic
automatically to propagate upward when you compile the top-level design. To ensure that
the isolation logic of a subblock remains while the top-level design is compiled, you must use
the propagate_constraints command to propagate the constraints upward after the
subblock ports are isolated and before you compile the top-level design.

The following script fragments shows you how to compile a subdesign with port isolation,
followed by a top-level compile.

current_design test1
link
set_isolate_ports [all_outputs] -type buffer -force
compile -map_effort medium
current_design top
propagate_constraints
compile -map_effort medium
Chapter 3: Optimization Techniques
Isolating Input and Output Ports 3-13
Chapter 3: Optimization Techniques
Isolating Input and Output Ports 3-13

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Port isolation does not work if

• A dont_touch net is connected to the port

• The specified isolation cell is not in the target library

• The specified port is not an output or input port (inout ports and tristate ports are not
supported)

• The specified type option (in the set_isolate_ports command) is not a buffer or an
inverter

You can remove the port isolation attribute from designs by using the
remove_isolate_ports command. The isolation cells are then removed during the next
compile. You can also use the remove_attribute command.

To obtain a list of isolated input or output ports in a design, use the report_isolate_ports
command. The report_constraint and report_compile_options command also
provide information about the isolated input or output ports.

When you issue the report_isolate_ports command, you see a report similar to the
following:

**
Report : isolate_ports
Design : top
Version: Y-2006.06
Date : Mon May 1 17:05:43 2006
**

Port Name Cell Name Inst. Name Type Forced Insertion
--
stp IVDA U35 buffer yes
rhcp IVP U34 inverter yes
hip_1 IVDA U32 buffer no
--

Other commands that support the port isolation feature are

• reset_design

This command removes the port isolation attribute, as well as other attributes from the
design.

• write_script

This command writes any set_isolate_ports commands (along with the other dc_shell
commands) into the script file.
Chapter 3: Optimization Techniques
Isolating Input and Output Ports 3-14

Design Compiler Optimization Reference Manual Version D-2010.03
For more information on the commands discussed in this section, see the appropriate man
pages.

Propagating Constants

The compilation process entails a series of optimizations including constant propagation. If
you want to perform constant propagation only to save area while retaining the basic
structure of the remaining portions of the design, you can use the simplify_constants
command to perform the constant propagation optimization separately.

By default, the simplify_constants command uses constants to simplify logic within the
current design. However, with use of the command’s -boundary_optimization option,
constant signals are used to allow logic simplification across subdesign boundaries.

The simplify_constants command optimizes logic 0, logic 1, and unconnected signals.
By default, the command does not propagate this information into lower-level designs unless
the -boundary_optimization option is used.

For complete command syntax description and details, see the man page.

You can use the following commands to define which signals are constant:

• set_logic_one

• set_logic_zero

• set_unconnected

The simplify_constants command propagates the constant information forward. It
propagates information about unconnected signals back through the design.

Enabling Critical Path Resynthesis

The compile command -map_effort high option implements an optimization strategy
called critical path resynthesis. Critical path resynthesis seeks to resolve timing violations on
critical paths by resynthesizing the logic on the paths. The goal is to create a small partition
of cells on and around part of the current critical path, then restructure and remap the new
partition. The new partition is then accepted or rejected, based on the Design Compiler cost
vector.

(The critical path is the path in the design that limits the clock speed—the path with the
minimum amount of slack. You can list the cells on the critical path by using the
report_timing command.)
Chapter 3: Optimization Techniques
Propagating Constants 3-15
Chapter 3: Optimization Techniques
Propagating Constants 3-15

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
The -map_effort high option is CPU-intensive.

Logic Duplication and Mapping to Wide-Fanin Gates

The DC Ultra version of Design Compiler includes algorithms that enable mapping to
wide-fanin gates, plus extensive logic duplication steps on the critical path. Use the
compile_ultra command or the -map_effort high option of the compile command to
invoke these algorithms.

During compile, Design Compiler evaluates the cells along critical paths. The tool
determines whether it can improve the timing or area of the paths by replacing groups of
cells with complex, wide-fanin cells from the technology library. Additionally, Design
Compiler tries to improve the timing of high-fanout or heavily loaded nets, by duplicating and
restructuring large sections of the logic driving the nets. This duplication and restructuring to
gain timing improvements often results in significant increases in the design area.

Removing Hierarchy

Design Compiler provides several commands for removing design hierarchy:

set_ungroup

Ungroups one or more designs, subdesigns (cells), or references during compilation.

ungroup

Ungroups a design or reference manually.

compile -ungroup_all

Ungroups all subdesigns during optimization (described earlier in this chapter).

compile -auto_ungroup area

Automatically ungroups small hierarchies in the current design and its subdesigns. Use
the compile_auto_ungroup_area_num_cells variable to specify the minimum number of
child cells that a design hierarchy must have so that it is not ungrouped.

compile -auto_ungroup delay

Automatically ungroups hierarchies along the critical path in the current design and its
subdesigns. Use the compile_auto_ungroup_delay_num_cells variable to specify the
minimum number of child cells that a design hierarchy must have so that it is not
ungrouped.
Chapter 3: Optimization Techniques
Logic Duplication and Mapping to Wide-Fanin Gates 3-16

Design Compiler Optimization Reference Manual Version D-2010.03
compile_ultra

By default, the compile_ultra command performs delay-based auto-ungrouping. It
ungroups hierarchies along the critical path and is used essentially for timing
optimization. In addition, the compile_ultra command performs area-based
auto-ungrouping before initial mapping. The tool estimates the area for unmapped
hierarchies and removes small subdesigns; the goal is to improve area and timing quality
of results.

Optimizing for Multiple Clocks per Register

When a sequential device is driven by different clocks, you can either restrict the
optimization to one clock at a time or allow multiple clocks to propagate to the sequential
device.

To restrict the propagation of clocks so that exactly one reaches the register, you can use
either of the following commands: set_case_analysis or set_disable_timing. You use
these commands when you want to select a single active clock for timing analysis and
optimization; this method requires multiple iterations for all clocks.

To allow multiple clocks to propagate to a register, set the
timing_enable_multiple_clocks_per_reg variable to true. Setting this variable to true
eliminates the need for multiple iterations to optimize each clock. By default, optimization is
restricted to a single clock.

For example, consider the circuit in Figure 3-5. In previous versions of Design Compiler,
either CLK A or CLK B could be active; similarly, either CLK C or CLK D could be active. With
the multiple clocks per register feature, you can allow Design Compiler to optimize for the
following: CLK A to CLK C, CLK A to CLK D, CLK B to CLK C, and CLK B to CLK D.

Figure 3-5 Multiple Clocks per Register

To allow multiple clocks to propagate to a register:

1. Set the timing_enable_multiple_clocks_per_reg variable to true. The default is
false.

FF 1

QD

FF 2

QD

CLK A

CLK B

CLK C

CLK D

CP CP
Chapter 3: Optimization Techniques
Optimizing for Multiple Clocks per Register 3-17
Chapter 3: Optimization Techniques
Optimizing for Multiple Clocks per Register 3-17

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
If you do not set this variable to true and more than one clock signal reaches a register,
Design Compiler uses one of the clocks propagating to the register.

2. To define multiple clocks at a pin or port, use the -add option with the create_clock
command.

This option allows you to add clocks to the existing clocks; otherwise the existing clocks
are overwritten.

If your design has generated clocks, use the following options with the
create_generated_clock command:

• the -add option to specify multiple generated clocks on the same source or pin.
Ideally, one generated clock must be specified for each clock that fans into the
master pin.

• the -master_clock option to specify which clock is the master clock.

• the -source option to specify the clock source from which the clock is generated,
that is, the pins or ports where the clock waveform is applied to the design.

Additionally, when you use the -add option along with the create_clock and
create_generated_clock commands, you must use the -name option so that clocks
that are defined on the same pin or port have unique names.

3. (Optional) Define a network latency for each clock signal that passes through a specific
pin or port to a set of fanout registers.

When multiple clock signals traverse the same pins of a design, any register clock pins
that are in the fanout of these clock signals are assigned the same network latency.

You can, however, set clock network latency on a pin or port with reference to a specific
clock. To do so, use the -clock option with the set_clock_latency command. When
computing the network latency along the path from a clock definition point to a register
clock pin, Design Compiler uses the network latency value associated with the pin or port
closest to the register, ignoring network latencies that do not reference the clock of
interest.

Important:
For latch-based designs that have more than two clocks, it is strongly recommended
that you set false paths between mutually exclusive clocks; otherwise you might
observe longer runtime and higher memory usage. Unrelated clocks are those that do
not interact with one another. For example, consider Figure 3-5. By default, Design
Compiler analyzes the interactions between all combinations of clocks. However, the
logic enables only two possible interactions: CLK A to CLK C and CLK B to CLK D.
Therefore, set false paths between the unrelated clocks as follows:

 set_false_path -from CLK A -through FF1/CP -to CLK D

set_false_path -from CLK B -through FF1/CP -to CLK C
Chapter 3: Optimization Techniques
Optimizing for Multiple Clocks per Register 3-18

Design Compiler Optimization Reference Manual Version D-2010.03
4. To report registers with multiple clock pins, use the check_timing -multiple_clock
command and report_clock command.

The check_timing command generates a warning message if the
timing_enable_multiple_clocks_per_reg variable is set to false and more than one
clock signal reaches a register. The report_clock command provides you with the
following information about a generated clock: the name of the master clock, the name of
the master clock source pin, and the name of the generated clock pin.

Example

The following commands create two clocks on the same port and associate a network
latency with each clock signal traversing a particular pin. The commands also set false paths
between unrelated clocks.

set_timing_enable_multiple_clocks_per_reg TRUE
create_clock -name CLKA -period 10 [get_ports CLK]
create_clock -name CLKB -period 8 -add [get_ports CLK]
set_clock_latency 1.16 -clock CLKA [get_pins b1/Z]
set_clock_latency 1.26 -clock CLKB [get_pins b1/Z]
set_input_delay .85 -clock CLKA [get_ports d]
set_input_delay .95 -clock CLKB -add [get_ports d]
set_false_path -from CLKA -to CLKB
set_false_path -from CLKB -to CLKA

Preserving the Clock Network After Clock Tree Synthesis

To preserve a clock network after clock tree synthesis, use the set_dont_touch_network
command. This command sets a dont_touch_network attribute on a net group. When
placed on a clock tree, the dont_touch_network attribute ensures that your clock network is
preserved during subsequent optimizations.

To list the clock networks in the design, use the report_transitive_fanout -clock_tree
command.

Starting at the specified source object, the set_dont_touch_network command
propagates the dont_touch_network attribute throughout the hierarchy of the clock
network. By default, the propagation stops at output ports, or at sequential components if
setup and hold relationships exist. If you use the -no_propagate option, the propagation
stops at any logical cell.

The propagation of the dont_touch_network attribute occurs only in a forward direction,
starting from the specified source object and spreading to objects driven by the source. The
propagation can not go backwards, even to electrically connected nets in the same net
Chapter 3: Optimization Techniques
Preserving the Clock Network After Clock Tree Synthesis 3-19
Chapter 3: Optimization Techniques
Preserving the Clock Network After Clock Tree Synthesis 3-19

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
group. This method of propagation highlights an important difference between the
set_dont_touch_network and the set_ideal_network commands: the
set_ideal_network command propagates in both the forward and backward directions.

For example, if your design is represented by the simple circuit in Figure 3-6, and you issue
the following command

set_dont_touch_network U1/A

the dont_touch_network attribute is propagated from U1/A to U1/N2, U1/IV, U1/N3, and
N4. If you issue the command

set_dont_touch_network U1/A -no_propagate

the dont_touch_network parameter is propagated from U1/A to U1/N2. It is not
propagated past net U1/N2.

Figure 3-6 set_dont_touch_network -no_propagate option

Note:
Use the set_auto_disable_drc_nets command when you do not have an accurate
representation of the clock tree and you want Design Compiler to treat the clock net as
ideal. Typically, you would use this command when a clock tree has not yet been inserted
in your design.

The set_dont_touch_network command cannot be used if the network has unmapped
logic.

You can use the get_attribute command to check if an object has either the
dont_touch_network or the dont_touch_network_no_propagate attribute.

For more information on attributes, see the Design Compiler User Guide.

U1

N1 outin A N2 N3 N4Z

IV
Chapter 3: Optimization Techniques
Preserving the Clock Network After Clock Tree Synthesis 3-20

Design Compiler Optimization Reference Manual Version D-2010.03
Optimizing Once for Best- and Worst-Case Conditions

Using Design Compiler, you can constrain your design once for both minimum (best-case)
and maximum (worst-case) optimization and timing analysis. The tool then optimizes and
analyzes the timing in a single compile run.

You can constrain the design by using either a single technology library or multiple libraries.
Whether you use one or multiple libraries, the general methodology is as follows:

1. Set up a technology library file or files. Make sure the files contain

• Best- and worst-case operating conditions

• Optimistic and pessimistic wire load models

• Minimum and maximum timing delays

If you use multiple libraries, see the next section, “Optimizing With Multiple Libraries”
on page 3-22.

2. Specify minimum and maximum constraints.

• Environmental—including operating conditions and wire loads

• Clock information—including clock skew and clock transition

• Optimization—including input and output delays, drive, load, and resistance

• Design rule—including transition time, fanout, and capacitance

3. Optimize the design (run compile) for simultaneous minimum and maximum timing. To
ensure that minimum delay constraints are optimized with respect to a particular clock,
specify the fix_hold attribute for that clock, using the set_fix_hold command.

4. Report and analyze the paths showing constraint violations.

The following constraint-related, reporting, and back-annotation commands support both
minimum and maximum optimization and timing analysis:

Constraint-related commands

set_min_library
set_operating_conditions
set_wire_load_model
set_wire_load_mode
set_wire_load_min_block_size
set_wire_load_selection_group
set_clock_uncertainty
set_clock_transition
set_drive
set_load
Chapter 3: Optimization Techniques
Optimizing Once for Best- and Worst-Case Conditions 3-21
Chapter 3: Optimization Techniques
Optimizing Once for Best- and Worst-Case Conditions 3-21

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
set_port_fanout_number
set_resistance

Reporting commands

report_annotated_delay
report_area
report_attribute
report_bus
report_cache
report_cell
report_clock
report_clusters
report_compile_options
report_constraint
report_delay_calculation
report_design
report_design_lib
report_fsm
report_hierarchy
report_internal_loads
report_lib
report_name_rules
report_net
report_path_group
report_port
report_power
report_qor
report_reference
report_resources
report_synlib
report_timing
report_timing_requirements
report_transitive_fanin
report_transitive_fanout
report_wire_load

Other commands, including report_design, report_port, and report_wire_load,
generate reports on the minimum and maximum constraints on your design. You do not
need to specify the -min option.

The set_min_library command is described in the next section, “Optimizing With Multiple
Libraries.”

Optimizing With Multiple Libraries

The set_min_library command directs Design Compiler to use multiple technology
libraries for minimum- and maximum-delay analyses in one optimization run. Thus, you can
choose libraries that contain all of the following:
Chapter 3: Optimization Techniques
Optimizing With Multiple Libraries 3-22

Design Compiler Optimization Reference Manual Version D-2010.03
• Best- and worst-case operating conditions

• Optimistic and pessimistic wire load models

• Minimum and maximum timing delays

You can direct Design Compiler to analyze them simultaneously. To accomplish this
analysis, use the set_min_library commands to create a link between the data in the two
libraries.

The set_min_library command creates a minimum/maximum relationship between two
library files. You specify a max_library to be used for maximum delay analysis and a
min_library to be used for minimum delay analysis. Only max_library should be used for
linking and as target library. When Design Compiler needs to compute a minimum delay
value, it first analyzes the library cell in the max_library, then looks to the min_library to
determine if a match exists. If a library cell with the same name, the same pins, and the
same timing arcs exists in the min_library, Design Compiler uses the timing information from
the min_library. If the tool cannot find a matching cell in the min_library, it uses the cell in the
max_library.

The syntax is

set_min_library max_library
-min_version min_library | -none

Note:
For more information, see the set_min_library man page.

Example

Example 3-2 shows how you might use set_min_library with
set_operating_conditions to control and report delay analysis. If you do not specify a
minimum, Design Compiler uses the maximum condition for both minimum and maximum
delay analysis. You cannot use the -min option without also using the -max option.

Example 3-2 Controlling and Reporting Delay Analysis
set link_library "LIB_WC_COM.db"
set target_library $link_library
set_min_library LIB_WC_COM.db -min_version LIB_BC_COM.db
set_operating_conditions -max WC_COM -min BC_COM
source minmax.cons
set_fix_hold clk
compile
report_timing -delay max
report_timing -delay min
Chapter 3: Optimization Techniques
Optimizing With Multiple Libraries 3-23
Chapter 3: Optimization Techniques
Optimizing With Multiple Libraries 3-23

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Note:
1. Use the max_library (only) as the link and target library.
2. Use the library file name (not the library name) with the
 set_min_library command.
3. Use both the maximum and minimum options with the
 set_operating_conditions command.

Synthesizing to Multibit Components

You can use Design Compiler to synthesize certain logic to multibit components in vendor
libraries.

A multibit component is a group of cells with identical functionality. Two cells can have
identical functionality even if they have different bit-widths. Thus, a group of cells including
one 3-bit register and one 5-bit register is a multibit component (assuming identical
functionality). It would still be called a multibit component if it were implemented using eight
single-bit cells. Multibit library cells consume less power and area and create a more
uniform layout structure than single-bit equivalents can attain.

Design Compiler can synthesize the following to multibit library cells:

• Flip-flops

• Latches

• Master-slave circuits

• Multiplexers

• Three-state circuits

Design Compiler provides two methodologies for mapping logic to multibit library cells. (You
can use either methodology or a combination of the two.) The first directs cell inference from
the HDL source code. This method is best if you know the design’s layout and can determine
where multibit cells might have the most impact. This might be the case, for example, if the
data path and control logic are well separated or if you have done early floorplanning. For
more information, see the HDL Compiler documentation.

The second methodology directs multibit library cell inference from an already mapped
design. This method is most useful after you complete an initial floorplan or placement and
determine which areas can benefit from the use of multibit cells.

Design Compiler supports only multibit library cells that have identical functionality for each
bit. The multibit library cell interfaces must be either fully parallel or fully global. For example,
if you want to infer a 4-bit banked flip-flop with an asynchronous clear, the clear signal must
be either different for each bit or shared among all 4 bits. Design Compiler cannot infer a
Chapter 3: Optimization Techniques
Synthesizing to Multibit Components 3-24

Design Compiler Optimization Reference Manual Version D-2010.03
multibit register if the first and second bits share one asynchronous reset but the third and
fourth bits share another reset. In that case, Design Compiler does not infer a multibit
flip-flop but uses 4 single-bit flip-flops instead. You must instantiate the multibit flip-flop.

Reporting Multibit Components
You can infer a multibit component from the HDL source code by adding directives, or you
can create it from Design Compiler by using the create_multibit command. The
compilation process preserves multibit components even if their implementations undergo
changes.

Use the report_multibit command to report all multibit components in your current
design. The report lists the multibit component name and the cells that implement each bit.
(You can use the command on a mapped or an unmapped design.)

The syntax is

report_multibit [-nosplit] [object_list]

Note:
For more information, see the report_multibit man page.

Here is a sample report produced by the report_multibit command.

Report: Multibit
Design: your_design
Version: Y-2006.06
Date: Mon May 1 11:57:12 2006

Multibit Component : U813_multibit

Cell Reference Library Area Width Attributes
--
U813 mux4x16 your_library 96.00 16
U9101 mux4x16 your_library 96.00 16
--
Total 2 cells 192.00 32
--

Multibit Component : data_reg
Cell Reference Library Area Width Attributes
--
data_reg[0:15] ff2x16 your_library 48.00 16 n
data_reg[16:31] ff2x16 your_library 48.00 16 n
--
Total 2 cells 96.00 32
--
Chapter 3: Optimization Techniques
Synthesizing to Multibit Components 3-25
Chapter 3: Optimization Techniques
Synthesizing to Multibit Components 3-25

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Design Compiler uses a colon to identify multibit component registers with consecutive bits
(0 through 15 and 16 through 31 in the previous report). If the colon conflicts with your
back-end tool’s naming requirements, change the colon to another delimiter using the
bus_range_separator_style variable.

The tool uses a comma to separate nonconsecutive bits. For example, if you use bits 0
through 5 and bit 7 in the multibit component, the report lists them as 0 : 5, 7. The
bus_multiple_separator_style variable controls this delimiter.

Finding Multibit Components
To see a list of all multibit components in the current design, use the find command, with
multibit as the object type.

Example

To find all multibit components in your design, enter

find multibit *

Using the sample report in the previous section, Design Compiler would find U813_multibit
and data_reg.

Controlling Multibit-Component Optimization
To control the Design Compiler process of optimizing your design’s multibit components, use
the set_multibit_options command. This command sets two attributes on the design:
multibit_mode and minimum_multibit_width.

The multibit_mode attribute specifies how multibit components are optimized during the
compile run. There are four modes: user_driven, structured, start_multibit, and
start_singlebit. The minimum_multibit_width attribute indicates the smallest bit-width
that Design Compiler optimizes as a multibit component.

You can direct Design Compiler to report the values of the multibit_mode and
minimum_multibit_width attributes, using the report_compile_options command.

During compilation, Design Compiler uses only the multibit_mode and
minimum_multibit_width attributes set on the current design. The tool ignores values set
on subdesigns. If the library to which you are mapping your design does not contain multibit
library cells for a certain functionality, Design Compiler implements the function with
single-bit library cells.

The syntax of the set_multibit_options command is
Chapter 3: Optimization Techniques
Synthesizing to Multibit Components 3-26

Design Compiler Optimization Reference Manual Version D-2010.03
set_multibit_options [-default]
[-mode [user_driven | structured | start_multibit | \
start_singlebit]][-minimum_width width]

Note:
For more information, see the set_multibit_options man page.

Examples

To set the multibit_mode attribute to structured, enter

set_multibit_options -mode structured

To set the multibit_mode and minimum_multibit_width attributes to default values, enter

set_multibit_options -default

To direct Design Compiler not to optimize multibit components of less than 4 bits, enter

set_multibit_options -minimum_width 4

Inferring Multibit Library Cells From Already Mapped Designs
You might want Design Compiler to infer multibit library cells as multibit components on an
already mapped design if, for example, the design includes a section of bit-sliced logic that
can benefit from a more uniform layout.

To control multibit-component inference, use the create_multibit and remove_multibit
commands.

Creating Multibit Components
To create multibit components in your design, use the create_multibit command.

The syntax is

create_multibit object_list [-name multibit_name]
[-sort] [-no_sort]

Note:
For more information, see the create_multibit man page.

For example, to create multibit components named y_reg[0] through [3] and sort them in
0-2-1-3 order, enter

create_multibit -name y {y_reg[0] y_reg[2] y_reg[1] y_reg[3]} -no_sort
Chapter 3: Optimization Techniques
Synthesizing to Multibit Components 3-27
Chapter 3: Optimization Techniques
Synthesizing to Multibit Components 3-27

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Removing Multibit Components
To delete multibit components from your design, use the remove_multibit command.

 The syntax is

remove_multibit object_list

Note:
For more information, see the remove multibit man page.

Examples

To remove the cell y_reg[2] from a multibit component, enter

remove_multibit y_reg[2]

To remove multibit component y from your design, enter

remove_multibit y

Recompiling the Design With Multibit Components
After you use the create_multibit or remove_multibit command, recompile the design,
using the compile or compile -incremental command. Design Compiler builds multibit
components (or reduces multibit components to single-bit components) as it recompiles the
design. While doing so, the tool also optimizes other cells in the design. If you want to affect
only the multibit components, set a dont_touch attribute on the other cells in the design.

Controlling the Use of Multibit Library Cells
Large multibit cells might cause routing congestion or might be too inflexible for your design.
To prevent Design Compiler from using multibit library cells larger than 8 bits, for example,
use the set_dont_use command with the multibit_width library attribute, as shown:

set_dont_use \
[get_cells -filter "@multibit_width > 8" library_name/*]
Chapter 3: Optimization Techniques
Synthesizing to Multibit Components 3-28

Design Compiler Optimization Reference Manual Version D-2010.03
Buffering Nets Connected to Multiple Ports

By default, Design Compiler does not buffer nets that are connected to multiple ports. As
shown in Figure 3-7, multiple-port connections are nets that connect:

• An input port to an output port (feedthrough) or

• Multiple output ports (logically equivalent outputs)

Figure 3-7 Multiple-Port Connection Types

To represent such nets, Design Compiler uses assign statements in the gate-level netlist.
Back-end tools could potentially have problems with assign statements in the netlist.

To prevent multiple-port connections, you use the set_fix_multiple_port_nets
command to set the fix_multiple_port_nets attribute on a design.

You must use the set_fix_multiple_port_nets command before compiling. Design
Compiler then inserts extra logic (buffers or inverters) that prevent feedthrough nets and
multiple-output ports from connecting to the same net. Use options to this command as
follows:

• -feedthroughs to insert buffers so that input ports are isolated from output ports. A
feedthrough net occurs when an input port and output port are connected directly with no
intervening logic.

• -outputs to insert buffers so that no cell driver pin drives more than one output port.

• -constants to duplicate constant logic so that no constant drives more than one output
port.

• -buffer_constants to buffer logic constants instead of duplicating them.

For more information, see the set_fix_multiple_port_nets man page.

Feedthrough Logically Equivalent Outputs
Chapter 3: Optimization Techniques
Buffering Nets Connected to Multiple Ports 3-29
Chapter 3: Optimization Techniques
Buffering Nets Connected to Multiple Ports 3-29

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Building a Balanced Buffer Tree

The balance_buffer command builds balanced buffer trees on user-specified nets and
drivers of a mapped design. You use this command to fix design rule violations and improve
timing delays caused by high fanout nets.

The balance_buffer command first removes any existing buffer tree on the specified net
or driver and then builds a new buffer tree, free of design rule violations. The tree can span
hierarchies downstream of the specified net or driver. However, the balance_buffer
command does not change the hierarchical pin configuration to balance out loads across
the hierarchies. Within each hierarchy, Design Compiler builds the buffer tree, taking into
account the loads and drivers of the next downstream hierarchy.

The generated buffer tree consists of layered stages of buffers or inverters. Each stage uses
the same buffer or inverter, and each gate of a given stage drives roughly the same load
capacitance. The buffer and inverter cells are optimally chosen by Design Compiler from the
technology library, unless you use the -prefer option to specify a particular cell from the
technology library.

Technology libraries provide various kinds of delay models, including linear and nonlinear
models. The balance_buffer command can use any delay model provided by the
technology library to build the buffer tree.

When all loads have approximately the same value, balanced buffering creates an optimal
buffer tree. When loads are not equal, balanced buffering still creates an optimal buffer tree
with respect to the delay and design rule constraints, but the tree structure might not be
balanced.

An input port driving a net to be buffered by balance_buffer must have its drive value set.
If you omit the value, no buffer tree is created, because the default value implies that the
input port has infinite drive.

Balanced buffering is constraint driven. It fixes design rules first, then optimizes for timing
and area.

Note:
The balance_buffer command is not recommended for clock trees because the
command does not take clock skew into account.

You can use the -force option to force buffer tree construction. But if you do, it is possible
for the balance_buffer command to build buffer trees that worsen design cost. Note that if
the design has no design rules or timing cost, buffer trees are not built even with the -force
option specified.
Chapter 3: Optimization Techniques
Building a Balanced Buffer Tree 3-30

Design Compiler Optimization Reference Manual Version D-2010.03
To perform a functional verification or comparison between the initial mapped design and
the mapped design after the balance_buffer command is applied, you can use the
Formality tool. For more information, see Chapter 11, “Verifying Functional Equivalence”.

You can display the balanced buffer tree and its level information at a given driver pin by
using the report_buffer_tree command, and you can remove a buffer tree by using the
clean_buffer_tree command. For more information about these commands, see their
respective man pages.

Example

In this example, a buffer tree is first built from port io, and then two additional buffer trees are
built to drive load1 and load2.

dc_shell> set_driving_cell -lib_cell IV io
dc_shell> balance_buffer -from io
dc_shell> balance_buffer -to {load1 load2}

Defining a Signal for Unattached Master Clocks

Design Compiler can connect master clock pins to a specified signal when it translates or
optimizes to flip-flops that have master- and slave-clock pins. In your HDL code, you
describe the master-slave latch as a flip-flop by specifying only the slave clock. Specify the
master clock as an input port but do not connect it. In addition, set the clocked_on_also
attribute on the master clock port. Design Compiler then maps the logic to a master-slave
cell in the library.

You use the set_attribute command to set the signal_type attribute to
clocked_on_also on the master clock port. Design Compiler then maps the logic to a
master-slave cell in the library. For multiple clock designs, you use the -associated_clock
option to specify the associated slave clock.

Example 1

This example illustrates how you use the set_attribute command to describe a
master-slave latch with a single master-slave clock pair.
Chapter 3: Optimization Techniques
Defining a Signal for Unattached Master Clocks 3-31
Chapter 3: Optimization Techniques
Defining a Signal for Unattached Master Clocks 3-31

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
module MSDFF (Q, D, MCLK, SCLK)

input D, MCLK, SCLK;
output Q;

reg Q;

//synopsys_dc_tcl_script_begin
//set_attribute -type string MCLK signal_type

clocked_on_also
//set_attribute -type boolean MCLK level_sensitive true
//synopsys dc_tcl_script_end

always @ (posedge SCLK)
Q <= DATA;

endmodule

Alternatively, instead of embedding the set_attribute command in the RTL, you can
include the following commands in your script:

create_clock -period 10 [get_ports SCLK]
set_attribute -type string MCLK signal_type clocked_on_also
set_attribute -type boolean MCLK level_sensitive true

Figure 3-8 shows the generic cell inferred by Design Compiler and the resultant
master-slave latch after compile. As shown in the figure, unattached master clocks are
connected to the MCLK port.

Figure 3-8

Example 2

This example illustrates how you use the -associated_clock option to specify the
associated slave clock in multiple clock designs. Slave clock port SCK1 and master clock
port MCK1 are paired; SCK2 and MCK2 are also paired. The compile_ultra or compile
command automatically connect unconnected master clock pins of cells in the fanout of
SCK1 to port MCK1.

SEQGEN

Master-Slave Latch

SCLK

D

MCLK

SCLK

D

MCLK

D D

G G

Design

Q Q
Qnext_state

clocked_on

Q D

MCLK

SCLK

Q

Chapter 3: Optimization Techniques
Defining a Signal for Unattached Master Clocks 3-32

Design Compiler Optimization Reference Manual Version D-2010.03
dc_shell> set_attribute -type string MCK1 signal_type clocked_on_also
dc_shell> set_attribute -type boolean MCK1 level_sensitive true
dc_shell> set_attribute -type boolean MCK1 associated_clock SCK1
dc_shell> set_attribute -type string MCK2 signal_type clocked_on_also
dc_shell> set_attribute -type boolean MCK2 level_sensitive true
dc_shell> set_attribute -type boolean MCK2 associated_clock SCK2

See the HDL Compiler documentation for more information on describing master-slave
latches.
Chapter 3: Optimization Techniques
Defining a Signal for Unattached Master Clocks 3-33
Chapter 3: Optimization Techniques
Defining a Signal for Unattached Master Clocks 3-33

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Chapter 3: Optimization Techniques
Defining a Signal for Unattached Master Clocks 3-34

4
Automatic Ungrouping 4

Ungrouping merges subdesigns of a given level of the hierarchy into the parent cell or
design. It removes hierarchical boundaries and allows DC Ultra to improve timing by
reducing the levels of logic and to improve area by sharing logic. Before you read this
chapter, read the “Optimization Flow” on page 1-9 to understand how automatic ungrouping
fits into the overall compile flow.

To use the automatic ungrouping feature, you can use the compile_ultra command or the
-auto_ungroup option of the compile command. You can also manually ungroup
hierarchies by using the ungroup command or the set_ungroup command followed by
compile. For more information on manually ungrouping hierarchies, see the Design
Compiler User Guide.

This chapter contains the following sections:

• Ungrouping of Hierarchies

• Exceptions to Automatic Ungrouping

• Preventing Automatic Ungrouping

• Reporting Ungrouped Hierarchies
4-1

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Ungrouping of Hierarchies

Figure 4-1 shows the hierarchy before and after ungrouping.

Figure 4-1 Automatic Ungrouping of Hierarchies

DC Ultra provides you with two automatic ungrouping strategies: delay-based
auto-ungrouping and area-based auto-ungrouping.

• Delay-based automatic ungrouping

By default, the compile_ultra command performs delay-based auto-ungrouping. It
ungroups hierarchies along the critical path and is used essentially for timing
optimization.

You can also use the compile command with the -auto_ungroup delay option to
perform delay-based automatic ungrouping. In this case, DesignWare components are
not ungrouped because they are already highly optimized and significant improvements
in area or timing are unlikely. In addition, if the design being ungrouped has no timing
violations, the tool issues a message to indicate that delay-based auto-ungrouping will
not be performed..

• Area-based automatic ungrouping

Before Ungrouping

After Ungrouping
Chapter 4: Automatic Ungrouping
Ungrouping of Hierarchies 4-2

Design Compiler Optimization Reference Manual Version D-2010.03
The compile_ultra command performs area-based auto-ungrouping before initial
mapping. The tool estimates the area for unmapped hierarchies and removes small
subdesigns; the goal is to improve area and timing quality of results. Because the tool
performs auto-ungrouping at an early stage, it has a better optimization context.
Additionally, datapath extraction is enabled across ungrouped hierarchies. These factors
improve the timing and area quality of results.

You can also use the compile command with the -autoungroup area option to perform
area-based automatic ungrouping. You use this compile option if you want to control
explicitly when the compile command ungroups the small hierarchies in the current
design and its subdesigns. The compile_auto_ungroup_area_num_cells variable allows
you to specify the minimum number of child cells that a design hierarchy must have so
that it is not ungrouped. The default is 30. This threshold value of a hierarchy refers to the
number of child cells in that hierarchy (that is, the cells are not counted recursively). To
include all leaf cells of the design hierarchy, set the
compile_auto_ungroup_count_leaf_cells variable to true.

Exceptions to Automatic Ungrouping

Hierarchies are not automatically ungrouped in the following cases:

• The wire load model for the hierarchy is different from the wire load model of the parent
hierarchy.

You can override this behavior by setting the compile_auto_ungroup_override_wlm
variable to true (the default is false). The ungrouped child cells of the hierarchy then
inherit the wire load model of the parent hierarchy. Consequently, the child cells might
have a more pessimistic wire load model. To ensure that the cells that are ungrouped into
different wire load models are updated with the correct delays, set the
auto_ungroup_preserve_constraints variable to true (in addition to setting the
compile_auto_ungroup_override_wlm variable to true)

• The hierarchy has user-specified constraints such as dont_touch , size_only, or
set_ungroup attributes.

• Constraints or timing exceptions are set on pins of the hierarchy.

You can override this behavior by setting the auto_ungroup_preserve_constraints
variable to true. Design Compiler ungroups the hierarchy and moves timing constraints to
adjacent, persistent pins, that is, pins on the same net that remain after ungrouping.
Hierarchies are ungrouped when the following timing constraints are set on hierarchical
pins:

• set_false_path

• set_multicycle_path
Chapter 4: Automatic Ungrouping
Exceptions to Automatic Ungrouping 4-3
Chapter 4: Automatic Ungrouping
Exceptions to Automatic Ungrouping 4-3

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
• set_min_delay

• set_max_delay

• set_input_delay

• set_output_delay

• set_disable_timing

• set_rtl_load

• create_clock -period

Preventing Automatic Ungrouping

By default, the compile_ultra command performs automatic ungrouping. To prevent the
command from doing automatic ungrouping, use the -no_autoungroup option. To prevent
certain blocks from being ungrouped, you can use one of the following:

• Set the dont_touch attribute on the block. For example,

set_dont_touch {mem_ctrl}

• Set the set_ungroup command to false. For example,

set_ungroup false {alu}

Reporting Ungrouped Hierarchies

After auto-ungrouping, use the report_auto_ungroup command to display a report on the
hierarchies that were ungrouped during area-based auto-ungrouping or delay-based
auto-ungrouping. This report gives instance names, cell names, and the number of
instances for each ungrouped hierarchy.
Chapter 4: Automatic Ungrouping
Preventing Automatic Ungrouping 4-4

5
High-Level Optimization and Datapath
Optimization 5

High level optimizations are performed when you use the compile command or the
compile_ultra command. The compile_ultra command explores additional optimization
opportunities; it also performs automatic datapath extraction and advanced datapath
transformations.

During high-level optimization, Design Compiler performs arithmetic simplifications and
resource sharing. A resource is an arithmetic or comparison operator read in as part of an
HDL design. A datapath block contains one or more resources that are grouped and
optimized by a datapath generator. During the high-level optimization phases, resources are
allocated and shared, depending on timing and area considerations. Resource sharing
enables the tool to build one hardware component for multiple operations, which typically
reduces the hardware required to implement your design.

Before you read this chapter, read the “Optimization Flow” on page 1-9 to understand how
high-level optimizations and datapath optimizations fit into the overall compile flow.

This chapter contains the following sections:

• Design Compiler Arithmetic Optimization

• Synthetic Operators

• Checking DesignWare Licenses

• High-Level Optimizations
5-1

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
• Datapath Optimization With DC Ultra

• Reporting Resources and Datapath Blocks
Chapter 5: High-Level Optimization and Datapath Optimization
5-2

Design Compiler Optimization Reference Manual Version D-2010.03
Design Compiler Arithmetic Optimization

Figure 5-1 shows how Design Compiler optimizes arithmetic components within the
optimization flow described in “Optimization Flow” on page 1-9. The shaded boxes pertain
to the arithmetic optimization flow. Information on these steps is presented in both
“Optimization Flow” on page 1-9 and the sections that follow in this chapter.

Figure 5-1 Optimization of Arithmetic Expressions

The steps in the Design Compiler arithmetic optimization flow are as follows:

1. When HDL Compiler elaborates a design, it maps HDL operators (either built-in
operators like + and * or HDL functions and procedures) to synthetic (DesignWare)
operators that appear in the generic netlist. See “Synthetic Operators” on page 5-4.

2. Design Compiler checks for any required licenses and initializes the synthetic library. See
“Checking DesignWare Licenses” on page 5-5.

Rest of compile

Area-based Structuring and Mapping

Timing driven combinational optimization

Check DesignWare license

RTL

Analyze and Elaborate

Datapath
Synthesis interface

Datapath generator

DesignWare

Library

Design Compiler

HDL Compiler

High level optimization

Implement synthetic parts

and initialize synthetic library

Incremental
implementation
selection
Chapter 5: High-Level Optimization and Datapath Optimization
Design Compiler Arithmetic Optimization 5-3
Chapter 5: High-Level Optimization and Datapath Optimization
Design Compiler Arithmetic Optimization 5-3

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
3. During high-level optimization, Design Compiler manipulates the synthetic operators and
applies optimizations such as arithmetic simplifications and resource sharing. See
“High-Level Optimizations” on page 5-6. If you are using DC Ultra, Design Compiler
performs automatic datapath extraction. See “Datapath Optimization With DC Ultra” on
page 5-9.

4. During the implement synthetic parts phase, the tool maps synthetic modules to
architectural representations (implementations). For more information on synthetic parts,
see the DesignWare documentation.

Design Compiler uses the datapath generator to implement arithmetic components and
generate the best implementations. In addition, if you are using DC Ultra, Design
Compiler performs advanced datapath transformations on the extracted datapath blocks.
See “Datapath Optimization With DC Ultra” on page 5-9.

5. During incremental implementation selection, Design Compiler explores alternative
implementations for each arithmetic component. The tool evaluates and replaces
synthetic implementations along the critical path to improve delay cost.

Synthetic Operators

Synopsys provides a collection of intellectual property (IP), referred to as the DesignWare
Building Block IP Library, to support the synthesis products. Building Block IP provides basic
implementations of common arithmetic functions that can be referenced by HDL operators
in your RTL source code.

The DesignWare library is built on a hierarchy of abstractions. HDL operators (either built-in
operators like + and *, or HDL functions and procedures) are associated with synthetic
operators, which are bound in turn to synthetic modules. Each synthetic module can have
multiple architectural realizations, called implementations. For example, when you use the
HDL addition operator in a design description, HDL Compiler infers the need for an adder
resource and puts an abstract representation of the addition operation into your circuit
netlist. See Figure 5-2 on page 5-5.

During high-level optimization, Design Compiler manipulates these synthetic operators and
applies optimizations such as arithmetic transformations and resource sharing.

To display information about the standard synthetic library that is included with a Design
Compiler license, use the report_synlib command:

report_synlib standard.sldb

For more information about DesignWare synthetic operators, modules, and libraries, see the
DesignWare documentation.
Chapter 5: High-Level Optimization and Datapath Optimization
Synthetic Operators 5-4

Design Compiler Optimization Reference Manual Version D-2010.03
Figure 5-2 DesignWare Overview

Checking DesignWare Licenses

If any DesignWare component set in the synthetic_library variable requires a
DesignWare license, Design Compiler checks for this license. You do not need to specify the
standard synthetic library, standard.sldb, that implements the built-in HDL operators. Design
Compiler automatically uses this library.

If you are using additional DesignWare libraries, you must specify these libraries by using
the synthetic_library variable (for optimization purposes) and the link_library
variable (for cell resolution purposes) as shown:

set synthetic_library {dw_foundation.sldb}
set link_library "* $target_library $synthetic_library}

You can force Design Compiler to wait for a DesignWare license by setting the
synlib_wait_for_design_license variable to DesignWare as follows:

set synlib_wait_for_design_license "DesignWare"

 HDL operator

Synthetic operator

Synthetic modules

Implementations

ADD_UNS_OP

proprietaryripple

 X + Y

X + Y

DW01_ADD

RTL
Chapter 5: High-Level Optimization and Datapath Optimization
Checking DesignWare Licenses 5-5
Chapter 5: High-Level Optimization and Datapath Optimization
Checking DesignWare Licenses 5-5

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
High-Level Optimizations

During high-level optimization, Design Compiler applies techniques such as tree delay
minimization and arithmetic simplifications; it also performs resource sharing.

Tree Delay Minimization and Arithmetic Simplifications
During tree delay minimization, Design Compiler arranges the inputs to arithmetic trees. For
example, the expression a + b + c + d describes three levels of cascaded addition
operations. The tool can rearrange this expression to (a + b) + (c + d), which might result in
faster logic (only two levels of cascaded operations).

Additional simplification is available with the compile_ultra command; some examples are
as follows:

• Sink cancellation

The expression (a + b - a) is simplified to b.

• Constant folding

The expression (a * 3 * 5) is transformed to (a * 15)

Resource Sharing
Resource sharing reduces the amount of hardware needed to implement operators such as
addition (+) in your Verilog or VHDL description. Without this feature, each operation is built
with separate hardware. For example, every + operator builds an adder. This repetition of
hardware increases the area of a design.

There are two basic types of resource sharing: Common subexpression elimination and
sharing mutually exclusive operations.

Common Subexpression Elimination
This type shares redundant computations in a design. To understand common
subexpression elimination, consider Example 5-1.

Example 5-1 Original RTL
X = A > B;
Y = A > B && C;

This code contains two comparators and a logical add. In common subexpression
elimination, the common subexpression, A > B, is grouped and the code is transformed to
Example 5-2.
Chapter 5: High-Level Optimization and Datapath Optimization
High-Level Optimizations 5-6

Design Compiler Optimization Reference Manual Version D-2010.03
Example 5-2 Expression A > B Shared
Temp = A > B;
X = Temp;
Y = Temp && C;

This transformation reduces the number of comparators from two to one.

Both HDL Compiler and Design Compiler perform common subexpression elimination.
However, HDL Compiler does not share the +, *, and – operators by default because it might
reduce the sharing options available to Design Compiler during compile. Design Compiler
shares these operators and all other operators by default during timing-driven optimization.

The following operators are shared by default when Design Compiler does common
subexpression elimination:

• Relational (=, <, >, <=, >=, !=)

• Shifting (<<, >>, <<<, >>>)

• Arithmetic (+, -, *, /, **, %)

• Selectors that drive arithmetic operators

Additionally, if you use the compile_ultra command, the tool can identify common
subexpressions automatically; you do not need to use parentheses or write them in the
same order. For example, the expressions
(A + B + C) and (B + A + D), A + B and B + A are recognized as a common subexpression.

Furthermore, the tool can either share common subexpressions or reverse the sharing
depending on constraints. Consider the following expressions: Z1 <= A + B + C, Z2<= A + B
+ D, and arrival time is A < B < D < C; Figure 5-3 shows how the tool might reverse the
sharing of common subexpressions depending on constraints. The tool determines whether
to share or reverse the sharing of operators during a later phase—that is, during
timing-driven optimization.
Chapter 5: High-Level Optimization and Datapath Optimization
High-Level Optimizations 5-7
Chapter 5: High-Level Optimization and Datapath Optimization
High-Level Optimizations 5-7

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Figure 5-3 Sharing and Unsharing of Arithmetic Subexpressions

Sharing Mutually Exclusive Operations
This type of resource sharing shares operators in a single process when there is no
execution path that reaches both operators from the start of the block to the end of the
block—that us, operations that cannot be performed simultaneously are shared. To
understand this type of resource sharing, consider Example 5-3.

Example 5-3 Sharing Two + Operators
module resources(A,B,C,SEL);
 input A,B,C;D
 input SEL;
 output [1:0] Z;

 reg [1:0] Z;

 always @(A or B or C or D or SEL)
 begin

if(SEL)
Z = B + A;

else
Z = C + D;

 end
endmodule

Example 5-3 shows code that adds either A + B or D + C; what is added depends on
whether the condition SEL is true.

Without resource sharing, the tool builds two adders and one MUX, and with resource
sharing, the tool uses only one adder to build the design, as shown in Figure 5-4.

+

A B

+

C

Z1

+

A B

+

D

Z2

+

A B D

+ +

C

Z1 Z2

Smaller Area

Better Timing
Chapter 5: High-Level Optimization and Datapath Optimization
High-Level Optimizations 5-8

Design Compiler Optimization Reference Manual Version D-2010.03
Figure 5-4 Design With and Without Sharing

Similar to common subexpression sharing, the tool determines whether to share or reverse
sharing depending on timing constraints. For example, when the arrival of the SEL signal is
late and sharing the adder worsens timing quality of results (QoR), Design Compiler does
not share the adder.

Datapath Optimization With DC Ultra

DC Ultra datapath optimization requires a DC-Ultra license and a DesignWare license.
Datapath design is commonly used in applications that contain extensive data manipulation,
such as 3-D, multimedia, and digital signal processing (DSP).

DC Ultra datapath optimization comprises of two steps: Datapath extraction, which
transforms arithmetic operators (for example, addition, subtraction, and multiplication) into
datapath blocks, and datapath implementation, which uses a datapath generator to
generate the best implementations for these extracted components.

During datapath optimization, DC Ultra does the following:

• Shares (or reverses the sharing) datapath operators

• Uses the carry-save arithmetic technique

• Performs high-level arithmetic optimization on the extracted datapath

• Explores better solutions that might involve a different resource-sharing configuration

• Allows the tool to make better tradeoffs between resource sharing and datapath
optimization

With Sharing

Z

+

A B

SEL

+

DC

Without Sharing

Z

A C

SEL

DB

+

Chapter 5: High-Level Optimization and Datapath Optimization
Datapath Optimization With DC Ultra 5-9
Chapter 5: High-Level Optimization and Datapath Optimization
Datapath Optimization With DC Ultra 5-9

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Enabling DC Ultra Datapath Optimization
DC Ultra datapath optimization is enabled by default when you use the compile_ultra
command.

Note:
DC Ultra datapath optimization requires both the DC-Ultra-Features license and the
DesignWare-Foundation license. The DesignWare license is pulled when you run the
compile_ultra command.

Datapath Extraction
Datapath extraction transforms arithmetic operators (for example, addition, subtraction, and
multiplication) into datapath blocks to be implemented by a datapath generator. This
transformation improves the quality of results (QOR) by utilizing the carry save arithmetic
technique.

Carry save arithmetic does not fully propagate carries but instead stores results in an
intermediate form.The carry-save adders are faster than the conventional carry-propagate
adders because the carry-save adder delay is independent of bit-width. These adders use
significantly less area than carry-propagate adders because they do not use full adders for
the carry.

Example 5-4 shows the code for the expression a * b + c + d = z. Figure 5-5 shows that the
conventional implementation of the expression a * b + c + d = z would use three
carry-propagate adders (CPAs); whereas, the carry save technique requires only one
carry-propagate adder and two carry-save adders (CSAs). Figure 5-5 also shows the timing
and area numbers for both implementations.

Example 5-4
module dp (a,b,c,d,e);
 input [15:0] a,b;
 input [31:0] c,d;
 output [31:0] Z;

 assign Z = (a * b)+ c + d;
endmodule
Chapter 5: High-Level Optimization and Datapath Optimization
Datapath Optimization With DC Ultra 5-10

Design Compiler Optimization Reference Manual Version D-2010.03
Figure 5-5 Conventional Carry-Propagate Adder and Faster,
Smaller Carry-Save Adder

When DC Ultra datapath optimization is used to compile design dp in Example 5-4, the
following improvements are realized:

• 8.3 percent timing improvement, compared to DC Expert results

• 36 percent area improvement, compared to DC Expert results

The DC Ultra datapath solution supports extraction of the following components:

• Arithmetic operators that can be merged into one CSA tree

• Operators extracted as part of a datapath: *, +, -, >, <, <=, >=, ==, !=, and MUXes

• Variable shift operators (<<, >>, <<<, >>> for Verilog and sll, srl, sla, sra, rol, ror for
VHDL)

• Operations with bit truncation

X

+

+

X

+

+

a b a b

c

c

z

c

d

z

s

s

c

d
CPA

CPA

CPA

CSA

CSA

CPA
Conventional carry-propagate
adder implementation of
a * b + c + d = z

Improved carry-save
adder implementation of
a * b + c + d = z

Timing: Met

Area: 15870

Timing: -0.25 violation

Area: 24924
Chapter 5: High-Level Optimization and Datapath Optimization
Datapath Optimization With DC Ultra 5-11
Chapter 5: High-Level Optimization and Datapath Optimization
Datapath Optimization With DC Ultra 5-11

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
The datapath flow can extract these components only if they are directly connected to each
other—that is, no nonarithmetic logic between components. Keep the following points in
mind:

• Extraction of mixed signed and unsigned operators is allowed only for adder trees

• Instantiated DesignWare components cannot be extracted

Datapath Implementation
All the synthetic operators and the extracted datapath elements are implemented by the
DesignWare datapath generator in DC Ultra.

The DesignWare datapath generator uses the smart generation technology to perform the
following tasks:

• Implement datapath blocks using context-driven optimizations

• Revisit high-level optimization decisions for a given timing context

• Consider technology library characteristics

For further fine tuning, the control of the smart generation strategies is available by using the
Design Compiler set_dp_smartgen_options command.

For more information on the datapath smart generation strategies, see the man page of the
set_dp_smartgen_options command and the DesignWare documentation.

Advanced Datapath Transformations with DC Ultra
Design Compiler performs advanced datapath transformations on the extracted datapath
blocks. Some examples of advanced datapath transformations performed by DC Ultra as
follows:

• Sum-of-products to Product-of-Sums

The expression (A*C + B*C) is transformed to (A + B) * C.

• Comparator sharing

Expressions such as A>B, A<B, A<=B are transformed to use single subtractors with
multiple comparison outputs.

• Optimization of parallel constant multipliers

• Operand reordering
Chapter 5: High-Level Optimization and Datapath Optimization
Datapath Optimization With DC Ultra 5-12

Design Compiler Optimization Reference Manual Version D-2010.03
The tool can rearrange operands of multipliers or comparators to produce different quality
of results (QoR).

• Explore trade-offs between common subexpression elimination (CSE) sharing and
mutually exclusive operations (MUTEX) sharing. Design Compiler can undo the CSE
sharing in the GTECH netlist generated by HDL Compiler to facilitate the optimum
combination of CSE and MUTEX sharing.

Reporting Resources and Datapath Blocks

Use the report_resources command to generate a report that lists the resources and
datapath blocks used in the design. To understand the resources report, consider the code
in Example 5-5.

Example 5-5 Design add: Code
module datapath (a, b, c, d, sel, z1, z2);
input [7:0] a, b, c, d;
input sel;
output [15:0] z1, z2;
wire [15:0] prod = sel? a * b : a * c;
assign z1 = prod + d;
assign z2 = c * d;
endmodule

When this code is compiled, the report_resources command generates the report shown
in Example 5-6.

In this example, the report_resources command generates the following three reports:

• Resource report for arithmetic operators that are mapped to individual DesignWare
components

• Datapath report for arithmetic operators that are merged into a single datapath block by
datapath extraction

• Implementation report for each arithmetic cell

The Resource report shows that there is a multiplier cell 'mult_x_7_0' that is mapped to
DW_mult_uns (unsigned DesignWare multiplier).

The Datapath report shows that the operators are merged into a single datapath cell,
DP_OP_5_297. The contained operations show the list of operations that are contained in
each cell. Note that the suffix of the operation names xxx_5 in general represents the line
number in the RTL code ((Example 5-5 on page 5-13)), and if two operators appear in one
line, as in line 5 of the example, the second multiplier is identified in the report as xxx_5_2.
Chapter 5: High-Level Optimization and Datapath Optimization
Reporting Resources and Datapath Blocks 5-13
Chapter 5: High-Level Optimization and Datapath Optimization
Reporting Resources and Datapath Blocks 5-13

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
The Datapath report table shows the input (PI) and output (PO) ports of the datapath cell. It
also shows the datapath expression with the intermediate fanout (IFO) and its data class.
Note that the expression in this report is just a functional representation of each datapath
block. The data class shows whether the signal should be zero extended (unsigned) or sign
extended (signed) in computation when the signal is used for subsequent operations. The
report does not describe the actual internal implementation of the block.

The Implementation report shows the implementation of each DesignWare block. The report
includes the implemenation name and the optimization mode that is used to implement each
DesignWare cell. The implementation report is generated for both detected DesignWare
cells and ungrouped DesignWare cells.

Example 5-6 Datapath Report for Design Datapath Generated by the report_resources
Command

**
Report : resources
Design : datapath
Version: D-2010.03
Date : Mon Feb 1 09:19:09 2010
**

Resource Report for this hierarchy in file /usr/.../datapath.v
===
| Cell | Module | Parameters | Contained Operations |
===
mult_x_7_1	DW_mult_uns	a_width=8	mult_7
		b_width=8	
DP_OP_5_298_491			
	DP_OP_5_298_491		
===

Datapath Report for DP_OP_5_298_491
==
| Cell | Contained Operations |
==
| DP_OP_5_298_491 | mult_5 mult_5_2 add_6 |
==

==
| | | Data | | |
| Var | Type | Class | Width | Expression |
==
I1	PI	Unsigned	8	
I2	PI	Unsigned	8	
I3	PI	Unsigned	1	
I4	PI	Unsigned	1	
I5	PI	Unsigned	8	
I6	PI	Unsigned	8	
T0	IFO	Unsigned	16	I1 * I2
T1	IFO	Unsigned	16	I1 * I5
T2	IFO	Unsigned	16	{ I3, I4 } ? T0 : T1
O1	PO	Unsigned	16	T2 + I6
==
Chapter 5: High-Level Optimization and Datapath Optimization
Reporting Resources and Datapath Blocks 5-14

Design Compiler Optimization Reference Manual Version D-2010.03
Implementation Report
===
| | | Current | Set |
| Cell | Module | Implementation | Implementation |
===
| mult_x_7_1 | DW_mult_uns | pparch (area,speed) |
| DP_OP_5_298_491 | DP_OP_5_298_491 | str (area,speed) | |
===
Chapter 5: High-Level Optimization and Datapath Optimization
Reporting Resources and Datapath Blocks 5-15
Chapter 5: High-Level Optimization and Datapath Optimization
Reporting Resources and Datapath Blocks 5-15

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Chapter 5: High-Level Optimization and Datapath Optimization
Reporting Resources and Datapath Blocks 5-16

6
Multiplexer Mapping and Optimization 6

Design Compiler can map combinational logic representing multiplexers in the HDL code
directly to a single multiplexer (MUX) or a tree of multiplexer cells from the target technology
library. Before you read this chapter, read the “Optimization Flow” on page 1-9 to understand
how multiplexer mapping and optimization fit into the overall compile flow.

Multiplexers are commonly modeled with if and case statements. To implement this logic,
HDL Compiler uses SELECT_OP cells, which Design Compiler maps to combinational logic
or multiplexers in the technology library. If you want Design Compiler to preferentially map
multiplexing logic to multiplexers—or multiplexer trees—in your technology library, you must
infer MUX_OP cells.

The MUX_OP cell should be inferred when you want Design Compiler to build a multiplexer
tree structure for the case statement blocks in your HDL. MUXs can be implemented
efficiently (in speed and area) in the library. This type of structure can provide advantages in
circuit performance and savings in wiring area, compared to implementation constructed
from random logic. This feature is supported only with the use of the case statement in
VHDL or Verilog code.

This chapter contains the following sections:

• Inferring SELECT_OPs

• Inferring MUX_OPs

• Library Cell Requirements for Multiplexer Optimization

• Optimization of Multiplexers
6-1

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
• Mapping to One-Hot Multiplexers

• Reporting MUX_OP Cells
Chapter 6: Multiplexer Mapping and Optimization
6-2

Design Compiler Optimization Reference Manual Version D-2010.03
Inferring SELECT_OPs

By default, HDL Compiler uses SELECT_OP components to implement conditional
operations implied by if and case statements. An example of a SELECT_OP cell
implementation for an 8-bit data signal is shown in Figure 6-1.

Figure 6-1 SELECT_OP Implementation for an 8-bit Data Signal

SELECT_OPs behave like one-hot multiplexers; the control lines are mutually exclusive, and
each control input allows the data on the corresponding data input to pass to the output of
the cell. To determine which data signal is chosen, HDL Compiler generates selection logic,
as shown in Figure 6-2.

output

For an 8-bit data signal, 8 selection bits are needed.
This is called a one-hot implementation.

data signals

select signals

CONTROL1_0

CONTROL1_0

CONTROL4_0

CONTROL5_0

CONTROL3_0

CONTROL2_0

CONTROL6_0

CONTROL1_0

CONTROL7_0

CONTROL8_0

DATA1_0

DATA1_0

DATA1_0

DATA1_0

DATA1_0

DATA1_0

DATA1_0

DATA1_0

Z_0
Chapter 6: Multiplexer Mapping and Optimization
Inferring SELECT_OPs 6-3
Chapter 6: Multiplexer Mapping and Optimization
Inferring SELECT_OPs 6-3

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Figure 6-2 Verilog Output—SELECT_OP and Selection Logic

Depending on the design constraints, Design Compiler implements the SELECT_OP with
either combinational logic or multiplexer cells from the technology library. For more
information on SELECT_OP inference, see the HDL Compiler documentation.

Inferring MUX_OPs

If you want Design Compiler to preferentially map multiplexing logic in your RTL to
multiplexers—or multiplexer trees—in your technology library, you need to infer MUX_OP
cells. These cells are hierarchical generic cells optimized to use the minimum number of
select signals. They are typically faster than the SELECT_OP cell, which uses a one-hot
implementation. Although MUX_OP cells improve design speed, they also might increase
area. During optimization, Design Compiler preferentially maps MUX_OP cells to
multiplexers—or multiplexer trees—from the technology library, unless the area costs are
prohibitive, in which case combinational logic is used.

You can embed an attribute or directive in the HDL code or use variables to tell HDL
Compiler which part of the HDL description to implement as a single multiplexer or a tree of
multiplexers. When the HDL is read in, a generic cell called MUX_OP cell represents the
multiplexer functionality. During optimization, Design Compiler maps the logic inside the
MUX_OP cell to an implementation, using multiplexer cells from the library.

The MUX_OP cell is a generic representation of an N:1 multiplexer with M output bits. When
VHDL or Verilog code is read in, the resulting design contains a MUX_OP cell for every case
block inside a process that contains the infer_mux directive. A MUX_OP cell also is inferred
for each signal (including bused signals) assigned inside the same case block. The signals
in the HDL that compute the selector are connected to the select inputs of the MUX_OP cell.
Figure 6-3 shows a generic MUX_OP cell for an 8-bit data signal.

Selection logicSelect signals
SELECT_OP

Data signals Output
Chapter 6: Multiplexer Mapping and Optimization
Inferring MUX_OPs 6-4

Design Compiler Optimization Reference Manual Version D-2010.03
Figure 6-3 MUX_OP Generic Cell for an 8-bit Data Signal

The MUX_OP cell contains internal selection logic to determine which data signal is chosen;
HDL Compiler does not need to generate any selection logic, as shown in Figure 6-4.

Figure 6-4 HDL Compiler Output—MUX_OP Generic Cell for 8-Bit Data

The naming convention for MUX_OP cells in a design is

_MUX_OP_N_S_M

data signals

select signals

For an 8-bit word, only 3 selection bits
are needed.

S2

S1

S0

DATA1_0

DATA3_0

DATA5_0

DATA6_0

DATA7_0

DATA8_0

DATA4_0

DATA2_0
Z_0

Select signals
MUX_OP

Data signals Output
Chapter 6: Multiplexer Mapping and Optimization
Inferring MUX_OPs 6-5
Chapter 6: Multiplexer Mapping and Optimization
Inferring MUX_OPs 6-5

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Because the MUX_OP cell is implemented as a level of hierarchy, certain types of logic
sharing that might otherwise take place are no longer possible. In some cases, this can lead
to a design that is less suitable than one having no MUX_OP cells.

The MUX_OP feature enables you to direct Design Compiler to generate a MUX tree
structure for a given case statement when you already know that a MUX tree is the best
representation for that statement. Design Compiler optimizes the tree based on constraints
and yields the best-possible MUX tree.

To generate MUX_OP cells for a specific case or if statement, use the infer_mux directive
in the HDL description as shown in Example 6-1. For more information on this directive and
inference limitations, see the HDL Compiler documentation.

Example 6-1 Using the infer_mux directive in the HDL Description

always@(SEL) begin
 case (SEL) // synopsys infer_mux
 2’b00: DOUT <= DIN[0];
 2’b01: DOUT <= DIN[1];
 2’b10: DOUT <= DIN[2];
 2’b11: DOUT <= DIN[3];
 endcase

Observe the following when you use MUX_OP cells:

• Do not set the HDL Compiler variable hdlin_infer_mux to all when you compile. Setting
this variable to all results in implementing MUX_OP cells for every case statement in your
HDL. MUX_OP cells should be inferred for case statements that can benefit most from a
multiplexer tree structure.

• Incompletely specified case statements can result in MUX_OP cells with unused inputs
or a partially collapsed multiplexer tree structure. In such cases, the difference between
using a MUX_OP cell and implementing the multiplexer with random logic might not be
significant.

Argument Description

N The number of data inputs.

S The number of select inputs.

M The width of the output signal
Chapter 6: Multiplexer Mapping and Optimization
Inferring MUX_OPs 6-6

Design Compiler Optimization Reference Manual Version D-2010.03
• In general, most gains are realized when you use a MUX_OP cell for fully specified case
statements that implement large multiplexer logic. If your design uses mostly small (2:1
or 4:1) multiplexers, you might get better results by not using MUX_OP cells.

Design Compiler can also recognize and map to one-hot multiplexers. See “Mapping to
One-Hot Multiplexers” on page 6-8.

Library Cell Requirements for Multiplexer Optimization

The multiplexer optimization requires the presence of at least a 2:1 multiplexer cell in the
technology library. The inputs or outputs of this cell can be inverted. If a 2:1 multiplexer
primitive cell does not exist in the library, you see the following warning message:

Warning: Target library does not contain any 2-1 multiplexer.
(OPT-853)

An implementation of the MUX_OP cell from the target library is created, but it might not be
the best implementation possible. All multiplexer cells in the target library can be used to
construct the implementation of the MUX_OP cell except

• Enabled multiplexer cells

• Bused output multiplexer

• Multiplexers larger than 32 : 1

For Design Compiler to make the best use of the multiplexer cells available in your
technology library, recompile the library or obtain a library compiled with version V3.4a or
later from your ASIC vendor.

Optimization of Multiplexers

During compilation, Design Compiler replaces each MUX_OP cell with the best multiplexer
tree implementation of the N-input M-output multiplexer. The implementation depends on
the constraints given for the design and the arrival times of the selector inputs. If the
hierarchy of the MUX_OP cell is preserved, incremental implementation selection is
performed on subsequent compilations when the constraints change.

Design Compiler does not trade off multiplexer implementations defined in the DesignWare
library during optimization.
Chapter 6: Multiplexer Mapping and Optimization
Library Cell Requirements for Multiplexer Optimization 6-7
Chapter 6: Multiplexer Mapping and Optimization
Library Cell Requirements for Multiplexer Optimization 6-7

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Mapping to One-Hot Multiplexers

Design Compiler also supports inference and mapping of one-hot multiplexers as described
in the following sections.

Inferring One-hot Multiplexers
A one-hot multiplexer is a library cell that behaves functionally as an AND/OR gate such as
an AO22 or AO222. The difference is that in case of a one-hot MUX, there are as many
control inputs as data inputs and the function of the cell ANDs each control input with the
corresponding data input. For example, a 4-to-1 one-hot MUX has the following function:

Z = (D_0 & C_0) | (D_1 & C_1) | (D_2 & C_2) | (D_3 & C_3)

One-hot MUXes are generally implemented using passgates, which makes them very fast
and allows their speed to be largely independent of the number of data bits being
multiplexed. However, this implementation requires that exactly one control input be active
at a time. If no control inputs are active, the output remains floating. If more than one control
input is active, there could be an internal drive fight.

Design Compiler allows you to control one-hot MUX inference and mapping. Because of the
restriction on the control inputs of a one-hot MUX (that is, one control input is active at all
times), Design Compiler cannot automatically make use of these gates. The tool cannot
verify that the control inputs behave as required. Hence, it does not automatically map to
these cells. Instead, it maps only to cells that you specify can be mapped. Also, after the tool
maps these cells, they cannot be unmapped. The cells can only be sized.

Example 6-2 and Example 6-3 show the coding styles that are supported.

Example 6-2
case (1'b1) //synopsys full_case parallel_case infer_onehot_mux
sel1 : out = in1;
sel2 : out = in2;
sel3 : out = in3;

Example 6-3
case({sel3, sel2, sel1}) //synopsys full_case parallel_case
infer_onehot_mux
001: out = in1;
010: out = in2;
100: out = in3;

Note:
The parallel_case and full_case pragmas are required. The infer_onehot_mux
pragma is supported only in Verilog and System Verilog.
Chapter 6: Multiplexer Mapping and Optimization
Mapping to One-Hot Multiplexers 6-8

Design Compiler Optimization Reference Manual Version D-2010.03
For more information on coding styles and pragmas, see the HDL Compiler documentation.

Library Requirements for One-Hot Multiplexers
Design Compiler can recognize and map to a one-hot MUX cell in the target library only if
the one-hot MUX cell meets with all of the following requirements:

• It is a single-output cell.

• Its inputs can be divided into two disjoint sets of the same size as follows:

C={C_1, C_2, ..., C_n} and D={D_1, D_2, ..., D_n}

where n is greater than 1 and is the size of the set. Actual names of the inputs can be
different from the connotation shown above.

• The contention_condition attribute must be set on the cell. The value of the attribute
is a combinational function, FC, of inputs in set C that defines prohibited combinations of
inputs as shown in the following examples (where the size n of the set is 3):

FC = C_0' & C_1' & C_2' | C_0 & C_1 | C_0 & C_2 | C_1 & C_2

or

FC = (C_0 & C_1' & C_2' | C_0' & C_1 & C_2' | C_0' & C_1' & C_2)'

• The cell must have a combinational function FO defined on the output with respect to all
its inputs. This function FO must logically define, together with the contention condition,
a base function F* that is the sum of n product terms, where the ith term contains all the
inputs in C, with C_i high and all others low and exclusively one input in D. Examples of
the defined function are as follows (for n = 3):

F* = C_0 & C_1' & C_2' & D_0 | C_0' & C_1 & C_2' & D_1 | C_0' & C_1' &
C_2 & D_2'

or

F* = C_0 & C_1' & C_2' & D_0' + C_0' & C_1 & C_2' & D_1' +
 C_0' & C_1'& C_2 & D_2'

The function FO itself can take many forms, as long as it satisfies the following condition:

FO & FC' == F*

That is, when FO is restricted by FC', it should be equivalent to F*. The term FO = F* is
acceptable; other examples are as follows (for n = 3):

FO = (D_0 & C_0) | (D_1 & C_1) | (D_2 & C_2)

or

FO = (D_0' & C_0) | (D_1' & C_1) | (D_2' & C_2)
Chapter 6: Multiplexer Mapping and Optimization
Mapping to One-Hot Multiplexers 6-9
Chapter 6: Multiplexer Mapping and Optimization
Mapping to One-Hot Multiplexers 6-9

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Note that when FO is restricted by FC, inverting all inputs in D is equivalent to inverting
the output; however inverting only a subset of D would yield an incompatible function.
Although Design Compiler supports any form of FO that satisfies the condition FO & FC'
== F*, it is recommended that you use a simple form (such as those described above or
F*).

An example of a properly specified cell is as follows. For more information on cell definition,
see the Library Compiler documentation.

Example 6-4 One-hot MUX Cell Definition

cell(OHMUX2) {
... ...
contention_condition : "(C0 C1 + C0' C1')";
... ...
pin(D0) {
direction : input;
... ...
}
pin(D1) {
direction : input;
... ...
}
pin(C0) {
direction : input;
... ...
}
pin(C1) {
direction : input;
... ...
}
pin(Z) {
direction : output;
function : "(C0 D0 + C1 D1)";
... ...
}
}

Optimization of One-Hot Multiplexers
Because a one-hot MUX implementation requires that exactly one control input be active at
a time, composition is not supported. Composition of larger cells from smaller ones requires
extra logic to ensure that exactly one control input is active at any time, which is inconsistent
with the intention of the use of one-hot MUXes; in addition, the implementation of
composition also depends on the actual electronic structure of the library cells.
Chapter 6: Multiplexer Mapping and Optimization
Mapping to One-Hot Multiplexers 6-10

Design Compiler Optimization Reference Manual Version D-2010.03
However, if Design Compiler does not find an exact match in the library, it generates a
warning message and maps an RTL MUX to a larger MUX—that is, more inputs—from the
library and tie the additional inputs to ground. If the RTL one-hot MUX cannot fit into the
largest one-hot MUX cell from the target library, the tool does not perform one-hot MUX
mapping and issues a warning message. The MUX in this case is mapped the normal way.

Reporting MUX_OP Cells

The MUX_OP cell appears in reports as a synthetic operator. The report_resouces
command displays information about the presence of MUX_OP cells and their parameters.

For example, this is the report before compilation for a design that contains
a _MUX_OP_8_3.2 design with eight data inputs and 2-bit-wide output:

Report : resources
Design: mux8_2
Version: Y-2006.06
Date: Mon May 1 2006

Resource sharing reports are created during the compile command, so the
design
must be compiled before resource sharing can be reported.

No implementations to report

Multiplexor Report
==
| Cell| WidthDataReference|
==
| U1 | 2 | 8 |_MUX_OP_8_3_2|
==
Chapter 6: Multiplexer Mapping and Optimization
Reporting MUX_OP Cells 6-11
Chapter 6: Multiplexer Mapping and Optimization
Reporting MUX_OP Cells 6-11

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Chapter 6: Multiplexer Mapping and Optimization
Reporting MUX_OP Cells 6-12

7
Optimizing Finite State Machines 7

Design Compiler provides unique optimization capabilities for finite state machines (FSMs).
Design Compiler extracts and optimizes FSMs automatically. It requires a DC-Ultra license
and can be applied to Verilog and VHDL designs, Synopsys state tables (.st files), and
already compiled FSM designs. The methodology is referred to as the DC Ultra FSM flow or
simply the automatic FSM flow. This flow requires minimal user input. Before you read this
chapter, read the “Optimization Flow” on page 1-9 to understand how FSM optimization fits
into the overall compile flow.

This chapter contains the following sections:

• Basic Description of Finite State Machines

• Synthesizing Finite State Machines

• Verifying a Finite State Machine

• Creating Finite State Machine Reports
7-1

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Basic Description of Finite State Machines

A finite state machine is a circuit for which the primary output values depend not only on the
current values of the primary inputs of the circuit but also on the sequence of previous
primary input values. An FSM circuit contains flip-flops or registers (banks of flip-flops), as
well as combinational cells. It is the presence of both flip-flops and feedback logic that can
produce the dependence of the outputs on the sequence of input values, that is, the input
sequence (along with the feedback logic) ultimately determines the values held at the output
pins of the flip-flops at any given time.

General Behavior of a Finite State Machine
The time-dependent state vector of the FSM is defined by a set of flip-flops. The different
achievable combinations of bit values that can be held by the flip-flop outputs define the
states of the FSM. That is, each state is represented as a unique pattern of logic 0s and 1s
stored by the state flip-flops. (Typically, the flip-flops use set and reset signals to produce
logic 1 and 0, respectively, at the Q output pin.)

The state vector bit patterns correspond to state encodings or state assignments. State
encodings affect in important ways both the extraction process and FSM optimization
phase. In most cases, Design Compiler can derive these encodings from the input design
file. You can also set or reset the encodings by using particular commands. If no state
encodings are defined by the input file or user commands, the tool automatically assigns
encodings.

The current values held by the state vector flip-flops correspond to a particular state
encoding and represent the present state of the FSM. The present state or the present state
along with the current values of the primary input produces an associated set of values at
the primary outputs. When the primary inputs change and a synchronizing event occurs
(usually the rising or falling edge of a clock signal), the state vector changes from the
present state to the next state, which can be a new state or the same state. The next state
produces its particular set of output values. In this way, as the inputs change, the FSM can
sequence through a set of states that generate different outputs.

Note that a finite state machine does not necessarily use all possible bit combinations of the
flip-flops. Often it does not.

For example, a circuit with N states requires at least log2(N) flip-flops. A state vector that is

specified with M flip-flops has 2M possible state encodings. But if the number of valid states,

N, in a circuit is less than 2M (the maximum number of encodable states possible), then
some state encodings would not represent valid states. In a correctly defined circuit,
however, these unassigned encodings never appear. Instead don’t care conditions are
assigned, which can help Design Compiler simplify the FSM logic during optimization.
Chapter 7: Optimizing Finite State Machines
Basic Description of Finite State Machines 7-2

Design Compiler Optimization Reference Manual Version D-2010.03
Finite State Machine Architecture
Figure 7-1 shows the general structure and behavior of an FSM. As described previously,
the architecture for an FSM consists of primary inputs, a set of flip-flops for holding the state
vector, and two combinational logic networks: the next state logic and the output logic,
leading to the primary outputs.

Figure 7-1 Architecture of a Finite State Machine

There are two basic types of FSMs: the Moore machine, for which the outputs are derived
only from the state vector, and the Mealy machine, for which the outputs depend on both the
primary inputs and the state vector. Figure 7-1 shows the architecture for both machines.

State Vector, State Encodings, and Encoding Styles
State vectors, state encodings, and state encoding styles are Design Compiler constructs
that influence the way the tool optimizes an FSM. Specifically, when the state encodings and
the state encoding style are carefully defined with respect to the state vector definition,
Design Compiler can take advantage of the don’t care and unassigned states to achieve an
optimum result during compile.

In the DC Ultra automatic FSM flow, the tool can derive these constructs for most Verilog
and VHDL designs, and always for state table designs.

State Vector
The state vector is specified by an ordered list of flip-flop instance names. The named
flip-flops store an ordered bit pattern that defines the current state of an FSM at any given
time. A particular flip-flop bit pattern corresponds to an actual or legal state of the FSM if the
flip-flop bit pattern maps to the predefined, ordered bit pattern of a particular state encoding

Primary
Inputs

Primary
Outputs

Next State
Vector

Output
LogicState

Logic Flip-Flops

Clock

Present
State

State

Next

Mealy Machines Only
Chapter 7: Optimizing Finite State Machines
Basic Description of Finite State Machines 7-3
Chapter 7: Optimizing Finite State Machines
Basic Description of Finite State Machines 7-3

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
(see the next section on state encodings later). This mapping establishes a one-to-one
correspondence between the state assignments (state encodings) and a set of unique
flip-flop bit patterns. Any flip-flop bit patterns that do not map to the predefined state
encodings are not legal states and are treated as don’t care states.

For example, the list {ff0 ff1 ff2}, where ff0, ff1, and ff2 are flip-flop instance names, defines
a 3-bit-wide state vector. This state vector can represent an FSM with eight or fewer states,
because each flip-flop can hold a 0 or a 1, leading to eight unique bit patterns. A state with
the encoding (101) is represented by the state vector bit pattern (101), where ff0 holds the
value 1, ff1 holds the value 0, and ff2 holds the value 1. Similarly, the state encoding (001)
is represented by the state vector bit pattern (001), where ff0 and ff1 both hold a 0 and ff2
holds a 1. On the other hand, if the state encoding (110) has not been assigned, the state
vector (110) is treated as a don’t care state.

Note that the length of the state vector and the length of the state encodings must agree.

For most HDL design files, Design Compiler can derive the state vector. For other input
design files, where the state vector cannot be derived by the tool, you must define the state
vector by using the set_fsm_state_vector command.

For example, to specify the 4-bit state vector, where the flip-flop instance names are ff0, ff1,
ff2, and ff3, enter

dc_shell> set_fsm_state_vector {ff0 ff1 ff2 ff3}

In this example, if the FSM has fewer than 16 legal states, you should use the
set_fsm_encoding command to limit the legal states (see the next section on state
encodings).

For more information about the set_fsm_state_vector command, see the man page.

State Encodings
FSM encodings define all the legal state bit encodings of an FSM, along with the symbolic
names for these states. These encodings determine which state vector bit patterns
represent legal states (see the preceding section) and which bit patterns can be treated as
don’t care states (not actual states of the FSM). The presence of don’t care states increases
the chances that the tool can achieve improved optimization results.

Conversely, without state encodings, all states are treated as legal in the sense that all
states must be realizable in the compiled result. In this case, improved optimization results
are not likely.
Chapter 7: Optimizing Finite State Machines
Basic Description of Finite State Machines 7-4

Design Compiler Optimization Reference Manual Version D-2010.03
For most HDL design files, as well as state table files, Design Compiler can derive the state
encodings. If the state encodings cannot be derived by the tool and you want to take
advantage of don’t care states during optimization, you can use the set_fsm_encoding
command to establish the encodings.

For more information about the set_fsm_encoding command, see the man page.

State Encoding Styles
The Design Compiler tool can use one of four state encoding styles—one-hot, binary, gray,
and auto—to assign state encodings to legal states during optimization (after FSM
extraction). The different encoding styles can lead to very different FSM optimization results,
which gives you some flexibility in trying to improve the QOR of a compiled FSM.

The one-hot, binary, and gray encoding styles generate state assignments that override all
prior state encodings and can lead to a redefinition of the state vector. The auto encoding
style assigns state encodings only to unencoded states; it does not override previously
specified state encodings.

The one-hot encoding style generates codes with a bit length equal to the number of states
in the FSM. Each state is represented by a unique bit pattern that has a 1 in only one bit
position and 0s in all other bit positions, so there are as many flip-flops required as there are
states. This encoding style simplifies the combinational logic of the FSM and usually yields
the fastest machine. However, you can expect the area of the FSM to increase.

The binary and gray encoding styles assign state codes to ordered states, based on a binary
or gray numbering sequence. A specific state order is required. Either it is derived by the tool
from the HDL input file or from the state table (if the optional .encoding section is present),
or it is defined by you, using the set_fsm_order command. These encoding styles tend to
require the least number of flip-flops —log2(number of states)—and can often lead to
reduced area QOR.

The auto encoding style generates state codes in a seemingly random fashion that best
reduces the complexity of the combinational logic of the FSM while using a minimum
number of encoding bits. This style can lead to the best overall QOR.

In the automatic FSM flow, state reencoding occurs automatically as part of the FSM
optimization phase. You do not have to manually remove state encodings or choose the
state encoding style. In this case, the tool chooses the encoding style that achieves optimum
QOR. You can, however, specify the encoding style by using the set_fsm_encoding_style
command. For example, to use the binary encoding style instead of having the tool select
the style, enter

dc_shell> set_fsm_encoding_style binary

before you compile the design.
Chapter 7: Optimizing Finite State Machines
Basic Description of Finite State Machines 7-5
Chapter 7: Optimizing Finite State Machines
Basic Description of Finite State Machines 7-5

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
For more information about the set_fsm_order and set_fsm_encoding_style
commands, see the man pages.

Completely and Incompletely Specified Finite State Machines
Finite state machines do not always have their state transition behavior, outputs, or state
encodings completely specified. So-called don’t care conditions can be substituted for
certain kinds of incomplete specification.

FSMs can have the following sets of don’t care conditions:

• Input conditions for which the next state of the machine is unspecified. These input
conditions constitute the next-state don’t care set and are obtained by the tool from the
state table description.

• Output conditions for which the value for certain outputs is unspecified. These output
conditions constitute the output don’t care set and are obtained by the tool from the state
table description.

• State codes not used in the particular encoding of the FSM. These state codes constitute
the encoding don’t care set and are automatically derived by the tool after the state
encodings are known.

An FSM for which the state transition behavior is specified for all possible input conditions is
a completely specified machine, irrespective of any don’t care conditions that might apply to
its outputs and state encodings. But an FSM for which the state transition behavior is not
specified for all possible input conditions is an incompletely specified machine.

The next-state don’t care set is a sequential don’t care set. The FSM’s behavior is undefined
and can transition to any state in the machine, including invalid states.

If an incompletely specified FSM description is read into Design Compiler, the following
message is displayed during compilation:

Warning: In design name, the next state is unspecified for
some transitions. (FSM-104)

The output and encoding don’t care sets are combinational don’t care sets. They can be
used during FSM compile to simplify the combinational logic of the machine.

Synthesizing Finite State Machines

The FSM optimization algorithms require that the FSM part of an input design file be
described in Synopsys state table format or its equivalent internal data structure. In general,
designs are not represented by state tables. Therefore, in most cases, it is necessary to
Chapter 7: Optimizing Finite State Machines
Synthesizing Finite State Machines 7-6

Design Compiler Optimization Reference Manual Version D-2010.03
extract the FSM portion of the circuit from the initial design, convert the extracted logic to a
state table, and replace the original FSM logic with the state table description before the
entire design is compiled. These steps are carried out automatically through a series of
dc_shell commands.

Commands Supported in the DC Ultra Automatic Flow

In the DC Ultra automatic FSM flow, the processes are transparent, including extracting the
FSM and generating an intermediate state table representation. In most cases, you issue
only the read_file, compile, and report_fsm commands. (Other commands are available
if needed.) After optimization, the entire design is a mapped, technology-dependent
database file. The FSM objects in the database file are marked with the finite state machine
attributes.

In addition to the read_file, compile, and write commands, the commands supported in
the automatic flow include the following:

• set_fsm_state_vector

• set_fsm_encoding

• group -fsm

• set_fsm_order

• set_fsm_encoding_style

• set_fsm_preserve_state

• set_fsm_minimize

• report_fsm

Usually, you do not need to use the additional commands. However, if Design Compiler
cannot recognize the FSM part of an input design and you know exactly both the state vector
and state encodings for the design, you can provide this critical information by using the
set_fsm_state_vector and set_fsm_encoding commands. Also, you can investigate the
compiled design’s QOR for different state assignments by using the
set_fsm_encoding_style command.

For more information about all these commands, see the man pages.
Chapter 7: Optimizing Finite State Machines
Synthesizing Finite State Machines 7-7
Chapter 7: Optimizing Finite State Machines
Synthesizing Finite State Machines 7-7

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Finite State Machine Design File Requirements
For Design Compiler to be able to extract and optimize an FSM either automatically or
manually, the initial design must meet the requirements described in Table 7-1.

Note:
Design Compiler automatically determines the reset state of the FSM during the
extraction process by noting how the asynchronous reset signal is connected to the set
or reset pins of each state vector flip-flop. The extracted encoding of the asynchronous
reset state must be a valid state of the machine.

In addition, for Verilog design files, the following restrictions must be observed in the file:

• A state register cannot occur directly on the right side of an assignment except when the
operand of either the “==” or “!=” operator.

• A state register must infer flip-flops (not latches).

• A state register cannot be a port.

DC Ultra Automatic Methodology
DC Ultra FSM optimization is enabled by default when you use the compile_ultra
command.

Table 7-1 FSM Requirements

Item Description

Ports All ports of the initial design must be input ports or output ports.

Inout ports are not supported.

Function Only one FSM design per module (Verilog) or entity (VHDL) is recommended. If
multiple FSMs are present, only one is extracted each time you compile. It is not
possible to predict which FSM will be extracted.

State variables cannot drive a port. State variables cannot be indexed.

Combinational
feedback loops

Combinational feedback loops are not supported, although combinational logic
that does not depend on the state vector is accurately represented.

Clocks FSM designs can include only a single clock and an optional synchronous or
asynchronous reset signal that resets to the initial state. These signals must
connect only to each state vector element (flip-flop).

The clock signal must have the same rising or falling sense for all state vector
elements.
Chapter 7: Optimizing Finite State Machines
Synthesizing Finite State Machines 7-8

Design Compiler Optimization Reference Manual Version D-2010.03
You must also ensure that the fsm_auto_inferring variable is set to true (the default is
false).

Note:
If clock gating is enabled, the automatic FSM flow is automatically disabled.

You can also set the following variables to true:

• fsm_enable_state_minimization

The default is false. Use the default if you want to be able to verify the compiled design.
State minimization removes any redundant states and is automatically performed if this
variable is true.

Note:
If state minimization does change the number of states in the FSM, the Formality tool
cannot verify the compiled design.

• fsm_export_formality_state_info

The default is false. If you set this variable to true, the state encoding information before
and after compile is saved in a .ref file and an .imp file, respectively. These files are used
in the Formality verification process.

How Design Compiler Processes a Finite State Machine
in the DC Ultra Automatic Flow
Design Compiler processes an FSM input file in two phases that are transparent to the user:
a read phase followed by a compile phase.

The read phase consists of three steps:

1. Read in the input HDL design or state table .st file.

2. Autodetect the FSM registers (flip-flops) of the input design.

3. Mark the FSM state vector and state encoding attributes on the design.

The compile phase consists of the following steps:

1. Autopartition the FSM from the input design.

This step creates a new hierarchy that contains the FSM combinational logic and state
vector registers.

2. Autoextract the FSM from the newly created hierarchy.

This step creates an intermediate state table format that resembles the format of a state
table .st file but is an internal data structure.
Chapter 7: Optimizing Finite State Machines
Synthesizing Finite State Machines 7-9
Chapter 7: Optimizing Finite State Machines
Synthesizing Finite State Machines 7-9

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
3. Check for a user-specified state encoding style, and, if not specified, autoselect the style
that might produce the best QOR.

The selected encoding style affects state assignment. Available encoding styles include
one-hot, binary, gray, and auto.

4. Perform state minimization, if enabled.

5. Perform state assignment (also referred to as state encoding) on the FSM hierarchy.

6. Generate the Design Compiler internal data structure from the FSM logic netlist
according to the state assignment.

7. Flatten the newly created FSM hierarchy.

8. Continue with the standard Design Compiler Ultra optimization steps.

9. Output the technology-mapped database file with the FSM objects marked with the FSM
attribute.

The Finite State Machine DC Ultra Automatic Flow
Figure 7-2 shows a simplified DC Ultra automatic FSM flow for both HDL input design files
and Synopsys state table files. In most cases, you can use this flow.
Chapter 7: Optimizing Finite State Machines
Synthesizing Finite State Machines 7-10

Design Compiler Optimization Reference Manual Version D-2010.03
Figure 7-2 DC Ultra Automatic Finite State Machine: Simple Flow

Figure 7-3 shows the complete DC Ultra automatic FSM flow for both HDL input design files
and Synopsys state table files. In this flow, the various optional commands are shown.
Depending on the design you are trying to compile, you might have to use one or more of
these commands. Also, optionally, you might want to try to improve the QOR for your
compiled design by using some of these commands.

HDL Design or Netlist

read_file -format format

fsm_auto_inferring = true

report_fsm

write -format ddc -output fsm_design.ddc

compile_ultra
Chapter 7: Optimizing Finite State Machines
Synthesizing Finite State Machines 7-11
Chapter 7: Optimizing Finite State Machines
Synthesizing Finite State Machines 7-11

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Figure 7-3 DC Ultra Automatic Finite State Machine: Complete Flow

set_fsm_state_vector

Use state
minimization?

Does
Design Compiler

recognize
the FSM?

Set encoding style?

fsm_auto_inferring = true

Read HDL design or state table

Yes

No

No

set_fsm_encoding

fsm_enable_state
_minimization = true

Yes

Verify

set_fsm_encoding_style

Yes

No

report_fsm

Write compiled design file

compiled FSM?

Quit

No

Run Formality

Quit

Yes

(state minimization
was not enabled)

compile_ultra
Chapter 7: Optimizing Finite State Machines
Synthesizing Finite State Machines 7-12

Design Compiler Optimization Reference Manual Version D-2010.03
For most HDL input files, you do not specify the state vector and state encodings. However,
if Design Compiler cannot automatically recognize and extract the FSM logic, you must use
the set_fsm_state_vector and, optionally, the set_fsm_encoding commands. To
experiment with the QOR, you might want to try different encoding styles by using the
set_fsm_encoding_style command.

After the design is compiled, you can verify the FSM by using the Formality tool.

For more information about design verification, see Chapter 11, “Verifying Functional
Equivalence” or the Formality User Guide.

Verifying a Finite State Machine

If you did not enable state minimization (fsm_enable_state_minimization is true), you
can use the the Formality tool to verify your compiled FSM design. For information about
design verification, see Chapter 11, “Verifying Functional Equivalence” and the Formality
User Guide.

Creating Finite State Machine Reports

The report_fsm command creates an FSM report that includes the following information:

• Name of the clock signal and its sense

• Name of the optional asynchronous reset signal, its sense, and its state name

• Encoding bit length and encoding style

• State vector flip-flop names and ordering

• A list of state names and encodings in state order

• Preserved states and merged (equivalent) states

To obtain an FSM report, enter

dc_shell> report_fsm

For more information about the FSM report, see the man page.

A typical FSM report follows.
Chapter 7: Optimizing Finite State Machines
Verifying a Finite State Machine 7-13
Chapter 7: Optimizing Finite State Machines
Verifying a Finite State Machine 7-13

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
**
Report : fsm
Design : BUS_ARBITRATOR
Version: v2001.08
Date : Tues July 17 2001
**
Clock : CLK Sense: rising_edge
Asynchronous Reset: Unspecified

Encoding Bit Length: 3
Encoding style : auto

State Vector: { FF2 FF1 FF0 }

State Encodings and Order:

Grant_A : 001
Wait_A : 011
Timeout_A1 : 111
Grant_B : 010
Wait_B : 110
Timeout_B1 : 101

Preserved States: Grant_A

Merged States: None
Chapter 7: Optimizing Finite State Machines
Creating Finite State Machine Reports 7-14

8
Sequential Mapping 8

Sequential mapping phase consists of two steps: register inferencing and technology
mapping. Synopsys uses the term register for both edge-triggered registers and
level-sensitive latches.

Register inferencing is the process by which the RTL description of a register is translated
into a technology-independent representation called a SEQGEN. SEQGENs are created
during elaboration and are usually mapped to flip-flops during compile. Technology mapping
is the process by which a SEQGEN is mapped to gates from a specified target technology
library. It is performed when you use the compile_ultra or compile command. Before you
read this chapter, read the “Optimization Flow” on page 1-9 to understand how sequential
mapping fits into the overall compile flow.

This chapter contains the following sections:

• Register Inference

• Directing Register Mapping

• Specifying The Default Flip-Flop or Latch

• Reporting Register Types

• Unmapped Registers in a Compiled Design

• Automatically Removing Unnecessary Registers

• Merging Equal and Opposite Registers
8-1

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
• Inverting the Output Phase of Sequential Elements

• Mapping to Falling-Edge Flip-Flops

• Resizing Black Box Registers

• Preventing The Exchange of the Clock and Clock Enable Pin Connections

• Mapping to Registers With Synchronous Reset or Preset Pins

• Performing Test-Ready Compile

• Using Register Replication to Solve Timing QoR, Congestion, and Fanout Problems
Chapter 8: Sequential Mapping
8-2

Design Compiler Optimization Reference Manual Version D-2010.03
Register Inference

When HDL Compiler reads in a Verilog or VHDL RTL description of the design, it translates
the design into a technology-independent representation (GTECH). In GTECH, both
registers and latches are represented by a SEQGEN cell, which is a
technology-independent model of a sequential element as shown in Figure 8-1. SEQGEN
cells have all the possible control and data pins that can be present on a sequential element.

Figure 8-1 Generic SEQGEN Cell

Q

QN

synch_preset

synch_clear

synch_toggle

next_state

clocked_on

synch_enable

data_in

enable
clear

preset
Chapter 8: Sequential Mapping
Register Inference 8-3
Chapter 8: Sequential Mapping
Register Inference 8-3

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Table 8-1 lists the pins of a SEQGEN cell. Only a subset of these pins is used depending on
the type of cell that is inferred. Unused pins are tied to zero.

Incorrect register inferencing results in incorrect technology mapping. One way to examine
the type of register inferred is to examine the register inference reports in HDL Compiler. Set
the following variable in HDL Compiler to generate additional information on inferred
registers:

set hdlin_report_inferred_modules verbose

Example 8-1 shows an HDL Compiler inference report for a D flip-flop with a synchronous
preset control.

Example 8-1 Inference Report
==
|Register Name | Type |Width | Bus | MB | AR | AS | SR | SS | ST |
==
| Q_reg | Flip-flop | 1 | N | N | N | N | N | Y | N |
==
Sequential Cell (Q_reg)
Cell Type: Flip-Flop

Table 8-1 Pins of a SEQGEN Cell

Direction Name Description Cell Type

Input clocked_on clock flip-flop

next_state synchronous data flip-flop

data_in asynchronous data latch

synch_toggle synchronous toggle flip-flop

synch_clear synchronous reset flip-flop

clear asynchronous reset flip-flop or latch

preset asynchronous preset flip-flop or latch

synch_enable synchronous enable flip-flop

asynch_enable asynchronous enable latch

Output Q non-inverting output flip-flop or latch

QN inverting output flip-flop or latch
Chapter 8: Sequential Mapping
Register Inference 8-4

Design Compiler Optimization Reference Manual Version D-2010.03
Multibit Attribute: N
Clock: CLK
Async Clear: 0
Async Set: 0
Async Load: 0
Sync Clear: 0
Sync Set: SET
Sync Toggle: 0
Sync Load: 1

The inference report can help troubleshoot issues by indicating the type of register inferred
(latch or flip-flop, single or multibit) and the control signals inferred for that register. The
report shows the names of the nets connecting the pins on the SEQGEN elements in
GTECH. In most cases, these control pins are tied to zero (inactive). If you are attempting
to infer a synchronous or asynchronous reset or preset and it does not correctly appear in
the inference report, check for issues in the specification of the register at the RTL level.

Correct inferencing of synchronous and asynchronous reset or preset control signals in the
RTL results in connections to the synch_set, synch_clear, asynch_set, and
asynch_clear pins on the SEQGEN GTECH cell. During technology mapping, Design
Compiler uses the SEQGEN as the starting point for mapping. The sequential mapper
checks the connections to the pins and the information present in the library cell descriptions
when it maps to a technology library register.

Incorrect register inferencing or incomplete library information can produce unexpected
results in mapping to the reset or preset pins of the register.

Design Compiler does not infer synchronous resets by default. To indicate to the tool which
signals should be treated as synchronous resets, use the sync_set_reset Synopsys
compiler directive in Verilog source files or the corresponding sync_set_reset Synopsys
attribute in VHDL source files. HDL Compiler then connects these signals to the
synch_clear and synch_preset pins on the SEQGEN in order to communicate to the
mapper that these are the synchronous control signals and they should be kept as close to
the register as possible. For information on inference of these signals, see the HDL Compiler
documentation. For information on how Design Compiler maps these signals, see “Mapping
to Registers With Synchronous Reset or Preset Pins” on page 8-17.

The correct mapping of asynchronous reset or preset registers requires that these registers
be correctly described in the RTL and that corresponding cells exist in the technology library.
As long as you follow the recommended coding guidelines for coding asynchronous
registers, no special compiler directives are needed in order to infer asynchronous set or
reset signals. For more information on inference of these signals, see the HDL Compiler
documentation.
Chapter 8: Sequential Mapping
Register Inference 8-5
Chapter 8: Sequential Mapping
Register Inference 8-5

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Directing Register Mapping

You can control register mapping in the following ways:

• Use the set_register_type command. See “Specifying The Default Flip-Flop or Latch,”
next.

• Use exact mapping (-exact_map option).

Use the -exact_map option of the compile_ultra command or compile command to
restrict the mapping to sequential cells with simple behavior (synchronous set and reset,
synchronous toggle, synchronous enable, asynchronous set and reset, and
asynchronous load and data). When you use the -exact_map option, sequential
mapping does not try to encapsulate combinational logic originally outside the generic
sequential element (SEQGEN) into the sequential cell.

• Use test-ready compile (compile_ultra -scan or compile -scan). See “Performing
Test-Ready Compile” on page 8-20.

Specifying The Default Flip-Flop or Latch

The set_register_type command specifies the default flip-flop or latch library cell type for
some or all registers in the current design or current instance. A flip-flop type is represented
by an example flip-flop; any flip-flop that has the same sequential characteristics as the
specified flip-flop is considered to be of that type.

Use set_register_type to direct Design Compiler to infer a particular flip-flop or latch.

Note:
This mechanism for directing register types is not needed if you write the HDL to directly
infer the correct register type.

You can specify a latch, a flip-flop, or both.

For example,

To set the default flip-flop type to FFX and the default latch type to LTCHZ, enter

dc_shell> set_register_type -flip_flop FFX -latch LTCHZ

For more information, see the set_register_type man page.
Chapter 8: Sequential Mapping
Directing Register Mapping 8-6

Design Compiler Optimization Reference Manual Version D-2010.03
Reporting Register Types

You can see the current default register type specification for the design and for cells.

Reporting the Register Type Specifications for the Design
The report_design command lists the current default register type specifications.

dc_shell> report_design

**
Report : design
Design : DESIGN
Version: Y-2006.06
Date : Mon May 1 16:52:43 2006
**
. . .
Flip-Flop Types:
 Default: FFX, FFXHP, FFXLP

Reporting the Register Type Specifications for Cells
The report_cell all_registers command lists the current register type specifications
for cells.

The syntax is

report_cell [all_registers]

The following example shows a sample report.

**
Report : cell
Design : reg_type
Version: Y-2006.06
Date : Mon May 1 2006
**

Attributes:
 n - noncombinational
...

Cell Reference Library Area Attributes
--
ffa FFY MY_LIB 9.00 1,n
ffb FFY MY_LIB 9.00 1,n
ffc FFY MY_LIB 9.00 1,n
ffd FFY MY_LIB 9.00 1,n
Chapter 8: Sequential Mapping
Reporting Register Types 8-7
Chapter 8: Sequential Mapping
Reporting Register Types 8-7

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
--
Total 4 cells 36.00

Flip-Flop Types:
 1 - Exact type FFY

Unmapped Registers in a Compiled Design

When Design Compiler fails to find a match for a register in the available target technology
library, it issues the following warning in the compile log:

Warning: Target library contains no replacement for register
'Q_reg' (**FFGEN**). (TRANS-4)

In addition, the compiled gate-level netlist has the following type of cell:

FFGEN Q_reg (.next_state(D), .clocked_on(CLK),
.force_00(1'b0), .force_01(N0), .force_10(1'b0),
.force_11(1'b0), .Q(Q));

FFGEN is a model of the register functionality, similar to the SEQGEN. It is not a cell that
you find in any technology library. Check the names of the cells mapped to **FFGEN**;
these are the cells for which Design Compiler could not find a match in the technology
library. This behavior usually occurs when asynchronous registers or latches are inferred in
the RTL but a cell with the corresponding asynchronous functionality is not available for
mapping in the specified target libraries.

Check the failing registers to see the types of registers that you are attempting to infer:

• Are you inferring positive-edge or negative-edge clocked registers?

• What sets of asynchronous control pins are being inferred (reset only, preset only, both
reset and preset)?

• Are you performing power gating on these cells (using retention registers)?

• Are you using a test-ready compile (compile_ultra –scan or compile -scan)?

Make sure that your target library has cells with all the features that you are attempting to
use for register mapping. Verify that you have not disabled the use of the required cells with
the set_dont_use command. Use the following command to check the set_dont_use
settings:

write_environment –environment_only
Chapter 8: Sequential Mapping
Unmapped Registers in a Compiled Design 8-8

Design Compiler Optimization Reference Manual Version D-2010.03
Automatically Removing Unnecessary Registers

During sequential mapping, Design Compiler can save area significantly by automatically
detecting and unconnected registers and constant registers.

Removing Unconnected Registers
During optimization, Design Compiler deletes registers having outputs that do not drive any
loads. The combinational logic cone associated with the input of the register can also be
deleted if the cell is not used elsewhere in the design. Register outputs can become
unconnected due to redundancy in the circuit or as a result of constant propagation. In some
designs where the registers have been instantiated, the outputs might already be
unconnected.

You can preserve such registers if you need to maintain consistency between the compiled
design and the HDL source or for other design reasons, such as in the case of instantiated
cells. To direct Design Compiler to preserve the registers, set the
compile_delete_unloaded_sequential_cells variable to false before you compile. The
default is true. When this variable is set to false, a warning message appears during
compilation, indicating the presence of unloaded registers.

Warning: In design ‘design_name’, there are sequential cells
not connected to any load. (OPT-109)
Information: Use the ‘check_design’ command for more
information about warnings. (LINT-99)

You can use the check_design command after compile to identify cell instances that have
unconnected outputs.

In cases where a feedback loop exists with no path from any section of the loop to a primary
output, no warning appears because the output of the register is theoretically connected.
When the compile_delete_unloaded_sequential_cells variable is set to true, such
cells are optimized away. Setting the value to false retains the cells and the logic cone
associated with the inputs to the cells.

Eliminating Constant Registers
Certain registers in a design might never change their state because they have constant
values on one or more input pins. These constant values can either be directly at the input
or result from the optimization of fanin logic that eventually leads to a constant input of the
register. Eliminating such registers can improve area significantly.
Chapter 8: Sequential Mapping
Automatically Removing Unnecessary Registers 8-9
Chapter 8: Sequential Mapping
Automatically Removing Unnecessary Registers 8-9

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
During compile, Design Compiler performs constant propagation to automatically find and
replace such sequential elements with a constant. This type of optimization is controlled by
setting the compile_seqmap_propagate_constants variable to true (default value). When
this type of optimization is performed, Design Compiler issues an informational message in
the log file when it removes a constant register in the design:

Information: The register ’Z_reg’ is a constant and will be
removed. (OPT-1206)

Table 8-2 lists cases in which a sequential element can be eliminated.

Additionally, Design Compiler removes sequential elements for which the logic leading to a
constant value is particularly complex. That is, it attempts to identify more complex
conditions leading to a register input. It analyzes each sequential element to determine its
reset state. If a known reset state can be determined, Design Compiler checks whether the
sequential element can switch state after it has reached its known reset state. If the
sequential element cannot escape its reset state, Design Compiler replaces it with a
constant equivalent to its reset state.

Figure 8-2 illustrates such a case. A feedback path leads from the Q pin of the register back
to the D input; the register cannot escape its reset state.

Table 8-2 Cases for Which Sequential Elements Are Eliminated

Type of register Data Preset Reset

Simple, constant data 1 or 0

Preset and constant data 1 1 X

Constant preset X 1

Reset and constant data 0 0 X

Constant reset X 1

Preset, reset, and constant data 1; reset always
inactive

1 X 0

Preset, reset, and constant data 0; preset always
inactive

0 0 X
Chapter 8: Sequential Mapping
Automatically Removing Unnecessary Registers 8-10

Design Compiler Optimization Reference Manual Version D-2010.03
Figure 8-2 Constant Output Sequential Element That Cannot Escape Its Reset State

Note:
Constant propagation occurs for both unmapped and mapped designs, when the
compile_seqmap_propagate_constants variable is set to true. However, the best
results are obtained when constant propagation is enabled during the initial sequential
mapping from an unmapped design.

Merging Equal and Opposite Registers

By default, Design Compiler identifies and merges equal and opposite registers. Two
registers that are equal in all states that can be reached from the reset state can be replaced
with a single register driving both sets of loads. The same principle applies to registers that
are opposite to each other. In addition to removing the registers, this type of optimization
enables equal and opposite information to propagate beyond the registers so that
subsequent logic can be optimized in the context of equal and opposite relationships. Equal
and opposite register merging is shown in Figure 8-3.

Figure 8-3 Merging Equal and Opposite Registers

Design Compiler issues the following message when it merges registers:

A

B
D Q

RST

0 0 0

Data

Clock

D QD Q

D Q

D Q

Clock

Data

Output1

Output2

Output1

Output2
Chapter 8: Sequential Mapping
Merging Equal and Opposite Registers 8-11
Chapter 8: Sequential Mapping
Merging Equal and Opposite Registers 8-11

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Information: In design 'test', the register 'u2/op_reg' is removed
because
it is merged to 'u2/op1_reg'. (OPT-1215)

To disable register merging on specific cells or blocks, set the set_register_merging
command to false on those cells or blocks. If you want to prevent register merging on all
registers in your design, set the compile_enable_register_merging variable to false. If
you set the compile_enable_register_merging variable to false, you cannot enable any
register merging, that is, the compile_enable_register_merging variable setting takes
precedance over the set_register_merging command.

To make sure that the register_merging attribute is set on a cell or design, use the
report_attribute command. For example,

dc_shell> report_attribute u1/op_reg

Design Object Type Attribute Name Value

test u1/op_reg cell register_merging false
test u1/op_reg cell is_a_generic_seq true
test u1/op_reg cell ff_edge_sense

Inverting the Output Phase of Sequential Elements

The compile_seqmap_enable_output_inversion variable controls whether the compile
command allows sequential elements to have their output phase inverted. Note that the
compile_seqmap_enable_output_inversion variable does not have any effect on the
compile_ultra command; to control sequential output inversion for the compile_ultra
command, use the -no_seq_output_inversion option.

In certain cases, you might be inferring a register that has one type of asynchronous control
but your library has the opposite type of pin. For example, you might be inferring an
asynchronous set but your library has only registers with asynchronous clear pins.

During mapping, Design Compiler issues the following warning message:

Warning: Target library contains no replacement for register
‘Q_reg’ (**FFGEN**). (TRANS-4)

In such cases, you can allow Design Compiler to map to the opposite type of register and
invert all the data inputs and outputs by using the
compile_seqmap_enable_output_inversion variable to as follows:

set compile_seqmap_enable_output_inversion true

Figure 8-4 shows an example of output inversion transformations.
Chapter 8: Sequential Mapping
Inverting the Output Phase of Sequential Elements 8-12

Design Compiler Optimization Reference Manual Version D-2010.03
Figure 8-4 Output Inversion Transformations

Note:
Information about inverted registers is written to the SVF file. The following informational
message appears in the log file to remind you that you must include the SVF file in
Formality when verifying designs with output inversion:

Information: Sequential output inversion is enabled. SVF file must be
used for formal verification. (OPT-1208)

Mapping to Falling-Edge Flip-Flops

Falling-edge flip-flops are inferred by HDL Compiler by referencing the falling edge of the
clock in the process describing the register. The resulting SEQGEN shows an inversion of
the clocked_on pin as shown in Figure 8-5. HDL Compiler also sets attributes so that the
register is mapped to a flip-flop with an inverted clock input as shown in Figure 8-6 on
page 8-15. You do not have to define any constraints to enable mapping to falling-edge
flip-flops.

Example

For the following Verilog design, HDL Compiler creates the SEQGEN shown in Figure 8-5.

module dff_inv_clk (D,CLK,Q);
input D,CLK;
output reg Q;
always @ (negedge clock)
 Q = D;
endmodule

D Q

SET

D Q

RST

D

QN

RST
Chapter 8: Sequential Mapping
Mapping to Falling-Edge Flip-Flops 8-13
Chapter 8: Sequential Mapping
Mapping to Falling-Edge Flip-Flops 8-13

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Figure 8-5 SEQGEN Created by HDL Compiler

Note:
The inverter on the clock net in the GTECH is only used by the tool to represent an
inverted clock for mapping the registers. It does not imply that an inverter is put on the
clock net.

Example 8-2 shows the inference report.

Example 8-2 Inference Report
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| Q_reg | Flip-flop | 1 | N | N | N | N | N | N | N |
===
Sequential Cell (Q_reg)
 Cell Type: Flip-Flop
 Multibit Attribute: N
 Clock: CLK'
 Async Clear: 0
 Async Set: 0
 Async Load: 0
 Sync Clear: 0
 Sync Set: 0
 Sync Toggle: 0
 Sync Load: 1

Given a library with both positive edge and negative edge-triggered flip-flops, Design
Compiler creates the optimized negative edge-triggered design as shown in Figure 8-6.

CLK

logic 0

Q

QN

clear

preset

next_state

clocked_on

data_in

enable

synch_clear

synch_preset

synch_toggle

synch_enable

D

Q_reg

SEQGEN

logic 1
Chapter 8: Sequential Mapping
Mapping to Falling-Edge Flip-Flops 8-14

Design Compiler Optimization Reference Manual Version D-2010.03
Figure 8-6 Register Mapped To Technology Library

Resizing Black Box Registers

Design Compiler supports the user_function_class attribute for cells that cannot be
functionally modeled for synthesis. Design Compiler treats black box cells with the same
user_function_class attribute and the same number of pins as functionally equivalent.
The tool can resize such cells by using other cells with the same user_function_class
attribute value, as long as timing arcs to the output pins of the cells are provided in the target
technology library. This capability works for both combinational and sequential library cells.

If this attribute has not already been set on your black box registers in the library source (.lib)
file, you can set it by using the set_attribute command. During register-sizing
optimizations, registers with the attribute setting can be exchanged with other registers
having the same user_function_class attribute. For example,

set_attribute [get_lib_cells my_lib/DFFX*]\
user_function_class DFFX -type string

Information: Attribute 'user_function_class' is set on 4
objects. (UID-186)
my_lib/DFFX1 my_lib/DFFX2 my_lib/DFFX4 my_lib/DFFX8

Note that by default, Design Compiler does not resize integrated clock-gating cells. Such
cells have the clock_gating_integrated_cell attribute set on the library cell and can
only be sized by Power Compiler. Use the identify_clock_gating command to identify
existing integrated clock-gating cells in the design.

Preventing The Exchange of the Clock and Clock Enable Pin
Connections

Some libraries have flip-flops with both clock and clock enable pins. Although Design
Compiler can successfully map to both of these pins, incomplete information in the library
can lead to situations in which the clock and clock enable pins are exchanged during
mapping.

FDN1A
Q_reg

CLK

D Q

QNCPN
Chapter 8: Sequential Mapping
Resizing Black Box Registers 8-15
Chapter 8: Sequential Mapping
Resizing Black Box Registers 8-15

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
In the library description of the flip-flop (.lib file), all pins included in the clocked_on attribute
are treated as clocks by default. The pin_func_type attribute alone is not sufficient to
distinguish a clock enable pin from a clock pin. You must also set the clock attribute to false
on clock enable pins to prevent these pins from being treated as clocks by the sequential
mapper.

Clock nets are distinguished from clock enable nets in the design based on clock constraints
propagated to these nets. The following simplified library example shows how you can
distinguish the clock enable pin (CE in the example) from the clock pin (CLK in the example)
by specifying the pin_func_type attribute as clock_enable and also by setting the clock
attribute to false on this pin:

cell (DFFCE) {
ff (IQ, IQN) {
next_state : "D" ;
clocked_on : "CLK & CE" ;
}
pin (CLK) {
direction : input;
clock : true;
}
pin (CE) {
direction : input;
pin_func_type : clock_enable;
clock : false ;
}
…

Chapter 8: Sequential Mapping
Preventing The Exchange of the Clock and Clock Enable Pin Connections 8-16

Design Compiler Optimization Reference Manual Version D-2010.03
Mapping to Registers With Synchronous Reset or Preset Pins

Before you read this section, see “Register Inference” on page 8-3 for information on
inference of synchronous reset or preset pins. Flip-flops with synchronous resets or presets
are mapped in one of the following ways:

• If your library has registers with synchronous reset (or preset) pins, the reset (or preset)
net is connected to the reset (or preset) pin of a register with a dedicated reset pin.

• If your library does not have any registers with synchronous reset (or preset) pins, the tool
adds extra logic to the data input to generate the reset (or preset) condition on a register
without a reset (or preset) pin. In these cases, Design Compiler attempts to map the logic
as close as possible to the data pin to minimize X-propagation problems that lead to
synthesis/simulation mismatches.

Figure 8-7 shows examples of mapping to registers with and without a synchronous reset
pin.

Figure 8-7 Mapping To Registers With and Without Synchronous Reset Pins

If your library does have registers with synchronous reset (or preset) pins, it is still important
to use the sync_set_reset pragma in your RTL so that Design Compiler can distinguish the
reset (or preset) signals from other data signals and connect the reset signal as close to the
register as possible.

D Q

RST
D Q

RST

D

Synchronous Reset Using a Reset Pin

Synchronous Reset Using a Gate on the Data Pin

D

Chapter 8: Sequential Mapping
Mapping to Registers With Synchronous Reset or Preset Pins 8-17
Chapter 8: Sequential Mapping
Mapping to Registers With Synchronous Reset or Preset Pins 8-17

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Note:
Synchronous reset and preset signals are not inferred for level-sensitive latches. A
synchronous reset or preset coding style on a latch always results in combinational logic
on the data signal even if the library has latches with synchronous reset or preset pins.

Even if your library does contain registers with synchronous reset or preset pins, these
registers are used for mapping. However, you must ensure that the synchronous pins in the
library have the nextstate_type attribute correctly defined for each of these pins to
correctly connect the pins.

The nextstate_type attribute is predefined for use in the .lib file as follows:

nextstate_type : data | preset | clear | load | scan_in |
scan_enable;

The nextstate_type attribute is used by the sequential mapper in order to distinguish
between the different types of synchronous input pins. Without this information, the
synchronous data, reset, and clear pins are all treated as synchronous data pins and may
be exchanged during mapping.

Table 8-3 describes the attribute values and their corresponding short integer value.

Example 8-3 shows how the nextstate_type attribute is specified in the library for a
synchronous reset register. Other necessary attributes have been omitted for the sake of
clarity.

Example 8-3 Specifying the nextstate_type Attribute
cell (DFFSRST) {
ff (IQ, IQN) {

Table 8-3 Values Used For The nextstate_type attribute

Enum Value
Used in the .lib
File

Short Type Value in
Design Compiler

How the Pin Is Identified

data 0 Synchronous data pin (the default)

preset 1 Synchronous preset pin

clear 2 Synchronous clear pin

load 3 Synchronous load pin

scan_in 4 Synchronous scan in pin

scan_enable 5 Synchronous scan enable pin
Chapter 8: Sequential Mapping
Mapping to Registers With Synchronous Reset or Preset Pins 8-18

Design Compiler Optimization Reference Manual Version D-2010.03
next_state : "RN D" ;
clocked_on : "CLK" ;
}
pin (CLK) {
direction : input ;
clock : true ;
}
pin (D) {
direction : input ;
nextstate_type : data;
}
pin (RN) {
direction : input ;
nextstate_type : clear;
}
pin (Q) {
direction : output ;
function : "IQ" ;
}
} /* end of cell DFFSRST

Note how the nextstate_type attribute has been added to the pin groups for the data and
synchronous reset pins. Pins included in the next_state attribute have a default
nextstate_type of data unless otherwise specified. This setting might result in the
swapping of the data and synchronous reset or preset pins if the nextstate_type attribute
is not assigned.

You should therefore check to ensure that the nextstate_type attribute has been correctly
added to the synchronous input pins of registers with synchronous reset or preset pins in
your library.

If you are compiling the .lib file using Library Compiler, pay special attention to the following
types of warnings for your synchronous set or reset registers:

Warning: Line 5905, The 'DFFSRST' cell is missing the
"nextstate_type" attribute for some input pin(s) specified
in 'next_state" of its ff/ff_bank group. (LIBG-243)

You can examine the .lib file if it is available. Otherwise you can check the library by querying
for the attribute in dc_shell. The following example shows that the attributes have been
correctly defined in the library.

dc_shell> read_db mytechlib.db
dc_shell> get_attribute [get_lib_pin MYTECHLIB/DFFSRST/D] nextstate_type
0

dc_shell> get_attribute [get_lib_pin MYTECHLIB/DFFSRST/RN] nextstate_type
2

Chapter 8: Sequential Mapping
Mapping to Registers With Synchronous Reset or Preset Pins 8-19
Chapter 8: Sequential Mapping
Mapping to Registers With Synchronous Reset or Preset Pins 8-19

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
The following example shows that the attributes are not correctly defined in the library:

dc_shell> get_attribute [get_lib_pin MYTECHLIB/DFFSRST/D] nextstate_type
Warning: Attribute 'nextstate_type' does not exist on port
'D'. (UID-101)

Ideally, you should add the attributes to the library source .lib file. Otherwise, you can add
the attributes to the library pins in Design Compiler prior to using the library for synthesis.
Note that you use the short type integer value in Design Compiler to add the missing
attributes. See Table 8-3 on page 8-18 for the appropriate value to use for each input pin
type.

set_attribute [get_lib_pins MYTECHLIB/DFFSRST/D] \
nextstate_type 0 -type short

set_attribute [get_lib_pins MYTECHLIB/DFFSRST/RN] \

nextstate_type 2 -type short

After updating the library in memory by using these commands, you can save an updated
version of the library by using the write_lib command as follows:

write_lib -format db MYTECHLIB -output mytechlib.fixed.db

For more information, see the Library Compiler documentation.

If the reset or preset registers are not being correctly mapped, check the following:

• Have you used the sync_set_reset compiler directive in your RTL to identify the set or
reset?

• Does the register inference report from show that synchronous set or reset has been
correctly inferred?

• Does the library have the nextstate_type attribute defined for the synchronous input
pins?

Performing Test-Ready Compile

Test-ready compile integrates logic optimization and scan replacement. During the first
synthesis pass of each HDL design or module, test-ready compile maps all sequential cells
directly to scan cells. The optimization cost function considers the impact of the scan cells
themselves and the additional loading due to the scan chain routing.
Chapter 8: Sequential Mapping
Performing Test-Ready Compile 8-20

Design Compiler Optimization Reference Manual Version D-2010.03
For a test-ready compile, you specify a scan style by using the test_default_scan_style
or the set_scan_configuration -style command. Include the -scan option to the
compile_ultra command or compile command when compiling the design. This section
describes the following topics:

• Overview of Test-Ready Compile

• Scan Replacement

• Selecting a Scan Style

• Mapping to Libraries Containing Only Scan Registers

• Mapping To The Dedicated Scan-Out Pin

• Automatic Identification of Shift Registers

Overview of Test-Ready Compile
During test-ready compile, the tool replaces regular flip-flops with flip-flops that contain logic
for testability. Figure 8-8 shows an example of how a D flip-flop is replaced with a scan
register during test-ready compile. This type of architecture, a multiplexed flip-flop,
incorporates a two-input MUX at the input of the D flip-flop. The select line of the MUX
enables two modes—functional mode (normal data input) or test mode (scanned data
input). In this example, the scan-in pin is si, the scan-enable pin is se, and the scan-out pin,
so, is shared with the functional output pin, Q.

Other architectures are supported: clocked scan, level-sensitive scan design (LSSD), and
auxiliary-clock LSSD. The scan style dictates the appropriate scan cells to insert during
optimization. You can change the default scan style by using the
test_default_scan_style or the set_scan_configuration -style command. For
more information, see the DFT Compiler documentation.

Figure 8-8 Example of a Scan Register Used During Test-Ready Compile

D

si
1

0

Q/so

se

CLK

D

Chapter 8: Sequential Mapping
Performing Test-Ready Compile 8-21
Chapter 8: Sequential Mapping
Performing Test-Ready Compile 8-21

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Note:
Scan connections are removed and modeled internally with pin or net capacitance. This
results in improved QoR for both test-ready and scan-stitched designs. It also leads to
better optimization opportunities such as optimal cell sizing.

When you use test-ready compile, Design Compiler does the following:

• Maps all sequential cells directly to scan registers in your library

• Ties the test control pins to the appropriate state to enable functional mode

Figure 8-9 shows the result of a test-ready compile.

Figure 8-9 Result of Test-Ready Compile

After test-ready compile, you have a design that contains unrouted scan cells (prescan
design) and you are ready to perform scan assembly. When you use the insert_dft
command, DFT Compiler stitches the scan registers to form a scan chain, similar to a serial
shift register. During scan mode, a combination of patterns are applied to the primary input
and shifted out through the scan chain, providing fault coverage for the combinational and
sequential logic in the design. For more information, see the DFT Compiler documentation.

Scan Replacement
When you perform a test-ready compile on an unmapped design, the tool maps sequential
cells directly to scan registers in your library. If you map a design without using the -scan
option to the compile_ultra command or the compile command and then include the
-scan option in a subsequent compile, the tool uses the scan replacement algorithm as

D

si

se

Q

“0”

D

si

se

Q

“0”

D

E

A

B

CLK

Scan register inserted
during compile

“0”

“0”
Chapter 8: Sequential Mapping
Performing Test-Ready Compile 8-22

Design Compiler Optimization Reference Manual Version D-2010.03
shown in Figure 8-10. However, the recommended method for test-ready compile is to use
the -scan option of the compile_ultra command or the compile command on an
unmapped design.

Figure 8-10 Mapping to Scan Cells

In the scan replacement flow shown in Figure 8-11, compile first maps sequential cells to
nonscan cells from the technology library and then scan-replaces the nonscan cells with
scan cells from the technology library.

Figure 8-11 Scan Replacement

Map
directly to available

scan cells

No

Register already
mapped to nonscan

Perform
scan

replacement

Yes
cells?

No

No

Yes

Yes

DONE

DONE

Perform
Identical-Function

Search

Scan Equivalent
Found?

Perform
Sequential-Mapping

Search

Scan Equivalent
Found?

CANNOT MAP TO
SCAN CELL (nonscan cell

remains in netlist)
Chapter 8: Sequential Mapping
Performing Test-Ready Compile 8-23
Chapter 8: Sequential Mapping
Performing Test-Ready Compile 8-23

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Therefore, it is important to have a complete set of nonscan cells as well as equivalent scan
cells to obtain the best mapping for test-ready compile. If your library is missing a nonscan
equivalent cell for a scan cell, then the tool does not use that scan cell. For example,
assume that you have a scan cell with a synchronous enable pin but you do not have a
nonscan cell with this pin. Registers with an enable condition are mapped by using extra
logic on the data pin because no nonscan cell is available with an enable pin for the initial
mapping.

Identical-function search locates a scan equivalent, using the information in the test_cell
group of the library description. A valid scan equivalent must meet the following conditions:

• The scan cell and the nonscan cell must have the same functional input and output pins.

• The functional description in the test_cell group of the library description must exactly
match the functional description of the nonscan cell.

Sequential-mapping search locates a scan equivalent by using the Design Compiler
sequential-mapping algorithms. DFT Compiler uses this search only for edge-triggered
nonscan sequential cells. Sequential mapping selects the lowest-cost scan equivalent,
which can be a scan cell plus combinational gates.

Identical-function search is faster than sequential-mapping mode but might not find a scan
equivalent in some cases, such as for complex flip-flops. If neither identical-function search
nor sequential-mapping search can find a scan equivalent, DFT Compiler leave the nonscan
cell in the design without performing scan replacement and issues the following message:

TEST-120(Warning)No scan equivalent exists for cell

If you did not use test-ready compile, DFT Compiler can also perform scan replacement
during scan assembly. However, for best results, use test-ready compile to map to scan cells
when your starting point is an HDL description.

For additional information about how to assemble scan structures and analyze scan
operations, see the DFT Compiler documentation.

Selecting a Scan Style
If you are using test-ready compile to insert scan structures in your design, you must select
a scan style before you perform logic synthesis. You must use the same scan style for all
modules of your design.

Select a scan style based on your design style and on the types of scan cells available in
your target technology library. See the DFT Compiler documentation for more information on
considerations for selecting a scan style.
Chapter 8: Sequential Mapping
Performing Test-Ready Compile 8-24

Design Compiler Optimization Reference Manual Version D-2010.03
Specify the scan style by setting the test_default_scan_style variable.The scan style
defined by the test_default_scan_style variable applies to all the designs in the current
session. You can also use the set_scan_configuration -style command to specify the
scan style. However, this command applies only to the current design. If your selected scan
style differs from the default scan style, you must execute this command for each module.
See the DFT Compiler documentation for details on the set_scan_configuration
command.

Table 8-4 shows the scan style keywords to use when specifying the scan style. You can use
these keywords with either the test_default_scan_style variable or the
set_scan_configuration -style command.

Mapping to Libraries Containing Only Scan Registers
Design Compiler automatically maps directly to scan registers from your library without
going through a scan-replacement step. Scan-replacement is not possible with a scan-only
library. You must always use the -scan option of the compile_ultra command for these
libraries.

Mapping To The Dedicated Scan-Out Pin
Some registers in your library might have both a functional output pin and a dedicated
scan-out pin. These dedicated scan-out pins must be identified by the setting following
attribute on the output pins in the .lib file:

test_output_only:true;

By default, the compile –scan command does not use these pins for functional output
connections. This behavior is controlled by the following integer variable (set to 1 by default):

set compile_dont_use_dedicated_scanout 1

Table 8-4 Scan Style Keywords

Scan style Keyword

Multiplexed flip-flop multiplexed_flip_flop

Clocked scan clocked_scan

Level-sensitive scan design (LSSD) lssd

Auxiliary-clock LSSD aux_clock_lssd
Chapter 8: Sequential Mapping
Performing Test-Ready Compile 8-25
Chapter 8: Sequential Mapping
Performing Test-Ready Compile 8-25

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
If you observe that compile is making use of these pins for functional connections, be sure
that this variable is not set to 0 in your scripts, and make sure that your library pins have the
correct attribute settings.

Automatic Identification of Shift Registers
Test-ready compile with DC Ultra can automatically identify shift registers in the design and
perform scan replacement on only the first register. This capability improves the sequential
design area and reduces congestion by using fewer scan-signals for routing. Figure 8-12
shows an example.

Figure 8-12 Example of Shift Register Identification

When DC Ultra identifies these shift-registers, DFT Compiler recognizes these identified
shift-registers as shift-register scan segments. If required, DFT Compiler breaks these scan
segments to satisfy the test setup requirements, such as maximum chain length.

Shift registers containing synchronous logic between the registers can be identified if the
synchronous logic is controlled such that the data can be shifted from the output of the first
register to the input of the next register. This synchronous logic can either be internal to the
register (for example, synchronous reset and enable, see Figure 8-13), or it can be external
synchronous logic (for example, multiplexor logic between the registers, see Figure 8-14).
Chapter 8: Sequential Mapping
Performing Test-Ready Compile 8-26

Design Compiler Optimization Reference Manual Version D-2010.03
Figure 8-13 Example of Shift Register Identification with Synchronous Reset
Chapter 8: Sequential Mapping
Performing Test-Ready Compile 8-27
Chapter 8: Sequential Mapping
Performing Test-Ready Compile 8-27

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Figure 8-14 Example of Shift Register Idenitification with Combinational Logic Between the
Registers

For shift registers identified with synchronous logic between the registers, DFT Compiler
adds additional logic to the scan-enable signal during the scan insertion. The extra logic
allows the data to be shifted between the registers in the scan mode. This extra logic results
in shared paths between the scan-enable signal and the functional logic. Therefore not
setting the dont_touch_network attribute on the scan-enable ports or signals is important.

The dont_touch_network attribute on the scan-enable signal can propagate into functional
logic paths which prevents optimization of these paths and can lead to QoR degradation.
Chapter 8: Sequential Mapping
Performing Test-Ready Compile 8-28

Design Compiler Optimization Reference Manual Version D-2010.03
If the dont_touch_network attribute is found on the scan-enable signal in your design and
shift-registers have been identified where extra logic was inserted on the scan-enable
signal, you will see the following warning message in the log file:

Warning: dont_touch_network attribute on scan-enable port or signal '%s'

can result in QoR degradation after scan insertion. (TEST-2040).

On scan-enable ports, you can use, the set_case_analysis command to disable timing
optimization and the set_ideal_network command to disable design rule fixing. However,
if you need to use the dont_touch_network attribute, then use the dont_touch_network
-no_propagate command instead. By doing this, you can avoid the propagation of the
dont_touch attribute into the functional logic.

The capability to identify shift-registers with synchronous logic between the registers is
controlled by the
compile_seqmap_identify_shift_registers_with_synchronous_logic
variable where its default is set to true. Set this variable to false if you do not want DC Ultra
to identify shift registers containing synchronous logic between the registers or if your
design flow does not permit the insertion of an additional logic on the scan-enable signal.

Shift register identification is available only in DC Ultra, that is, by using the compile_ultra
-scan command. Shift register identification is enabled by default and can be controlled by
setting the compile_seqmap_identify_shift_registers variable. The default of this
variable is true.

For best results, you should write out the design in the .ddc format in order to preserve the
attributes for the shift registers that are identified. When you write out the design in the .ddc
format, the compile -inc scan command or DFT Compiler can recognize already
identified shift registers from a previous compile. These attributes are used by DFT Compiler
when it performs scan chain insertion.

If your flow requires you to work with an ASCII netlist rather than a .ddc file, you must use
the set_scan_state command when reading the netlist back into Design Compiler. Doing
so indicates to the tool that the test-ready compile has already been performed and so the
tool searches for and stores information about previously identified registers. The following
example reads in an ASCII design and uses the set_scan_state command to set the scan
state status.

read_verilog mapped_design.v
current_design top
link
set_scan_state test_ready
Chapter 8: Sequential Mapping
Performing Test-Ready Compile 8-29
Chapter 8: Sequential Mapping
Performing Test-Ready Compile 8-29

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Note:
The identification of shift registers with synchronous logic between the registers is only
supported in the binary netlist flow. You must store the netlist in a .ddc file for further
optimization in Design Compiler. If you are using an ASCII netlist flow, you should set the
compile_seqmap_identify_shift_registers_with_synchronous_logic variable to
false for all the compile steps.

In addition, the identification of shift registers with multiple synchronous inputs, such as
muxed registers, is only supported in the binary netlist flow. You must store the netlist in
a .ddc file for further optimization in Design Compiler. The identification of shift registers
with such flip-flops is also controlled by the
compile_seqmap_identify_shift_registers_with_synchronous_logic variable.

Using Register Replication to Solve Timing QoR,
Congestion, and Fanout Problems

Design Compiler can replicate registers to address timing quality of results (QoR),
congestion, and fanout issues. This feature is supported in both Design Compiler
topographical mode and wire-load mode. To enable register replication, use the
set_register_replication command.

For Design Compiler topographical, register replication is placement-aware, which can help
reduce congestion in some cases. For wire-load mode, the load of the original replicated
register is evenly distributed among the new replicated registers.

You can either set a max_fanout limit on the target register or specify the number of
replications by using the num_copies option. However, you should check the fanout of the
register to be replicated before attempting to use these options. The tool does not replicate
registers if the -max_fanout or -num_copies value is greater than the fanout of the target
register.

To do this Use this

Specify the value to which the
register_replication attribute is to be set (the
maximum fanout)

-max_fanout

Specify the value to replicate the registers n times
(n >= 2)

-num_copies

Specify a list of registers on which the
register_replication attribute is to be set

-object_list
Chapter 8: Sequential Mapping
Using Register Replication to Solve Timing QoR, Congestion, and Fanout Problems 8-30

Design Compiler Optimization Reference Manual Version D-2010.03
You can set the register_replication attribute only on registers and not on the design
or current design. After the register replication feature is enabled, the compile command
automatically invokes the set_register_replication command to replicate registers
during optimization. The tool implements the fanout or num_copies value that you set by
replicating registers but not by inserting buffers.

Keep the following points in mind when you enable the register replication capability:

• If the fanout of the register is seventeen and you specified -fanout 8 or
-num_copies 3, then the tool replicates the register three times with fanout 6, 6, and 5.
That is, it evenly distributes the fanouts to each register.

• The compile_ultra -incremental command supports register replication.

• If you use both the set_max_fanout command and the set_register_replication
-max_fanout command, the set_register_replication command has a higher
priority.

• If the -fanout and -num_copies options are applied together, then the -num_copies
option has the higher priority and the tool prints out the warning message that the
-fanout option will be ignored.

Example 8-4 shows how to enable register replication on registers.

Example 8-4 Enable Register Replication
set_register_replication –max_fanout 10 [get_cells -h * -f "@ref_name==*regA*"]
set_register_replication –num_copies 10 [get_cells -h * -f "@ref_name==*regA*"]

To specify the style used in naming replicated registers, use the
register_replication_naming_style variable. The default format is <%s_rep%d>. For
example, if your original register is named PLL, by default, the replicated registers would be
named PLL_rep1, PLL_rep2, PLL_rep3, and so forth.

Figure 8-15 shows a design in which register replication has been enabled. The figure
shows a chip that contains two macros. Based on the speed and distance across the logic
area of the chip, register B cannot be placed at any location such that timing is met. With the
register replication enabled, the tool can replicate register B such that timing is met.
Chapter 8: Sequential Mapping
Using Register Replication to Solve Timing QoR, Congestion, and Fanout Problems 8-31
Chapter 8: Sequential Mapping
Using Register Replication to Solve Timing QoR, Congestion, and Fanout Problems 8-31

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Figure 8-15 Register Replication Example

For complete command syntax, see the man page.

Reg A

Macro 1 Macro 2 Macro 1 Macro 2

Reg B
Chapter 8: Sequential Mapping
Using Register Replication to Solve Timing QoR, Congestion, and Fanout Problems 8-32

9
Adaptive Retiming 9

The compile_ultra command supports the -retime option, which enables Design
Compiler to automatically perform register moves during optimization. This capability, called
adaptive retiming, enables the tool to move registers and latches to improve timing. Adaptive
retiming is intended for use in optimizing general designs; it does not replace the regular
retiming engine available with the optimize_registers command.

Before you read this chapter, read the “Optimization Flow” on page 1-9 to understand how
register retiming fits into the overall compile flow.

Adaptive retiming is supported in both Design Compiler regular mode and topographical
mode.

This chapter contains the following sections:

• Comparing optimize_registers With compile_ultra -retime

• Adaptive Retiming Examples

• Performing Adaptive Retiming

• Controlling Adaptive Retiming

• Reporting the dont_retime Attribute

• Removing the dont_retime Attribute

• Verifying Retimed Designs
9-1

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Comparing optimize_registers With compile_ultra -retime

Adaptive retiming moves registers and latches to improve worst negative slack (WNS). For
datapath designs, you should still use either the optimize_registers command or the
set_optimize_registers command followed by the compile_ultra command.

You can use both adaptive retiming and pipelined logic retiming if you use the
set_optimize_registers command on the pipelined portions of the design prior to
running compile_ultra -retime, as shown in the following example:

set_optimize_registers [get_designs pipelined_ALU]
compile_ultra -retime

The commands in the previous example apply pipeline retiming on the pipelined portions of
the design and adaptive retiming on the remainder of the design.

For more information on the pipeline retiming engine, see the Design Compiler Register
Retiming Reference Manual.

Adaptive Retiming Examples

When you describe circuits prior to logic synthesis, it is usually time-consuming and difficult
to find the optimal register locations and code them into the HDL description. With retiming,
the locations of the registers and latches in a sequential design can be automatically
adjusted to equalize as nearly as possible the delays of the stages. This capability is
particularly useful when some stages of a design exceed the timing goal while other stages
fall short. If no path exceeds the timing goal, adaptive retiming can be used to reduce the
number of registers, where possible.

During retiming, registers are moved forward or backward through the combinational logic of
a design as shown in Figure 9-1.
Chapter 9: Adaptive Retiming
Comparing optimize_registers With compile_ultra -retime 9-2

Design Compiler Optimization Reference Manual Version D-2010.03
Figure 9-1 Adaptive Retiming

Design Compiler can improve worst negative slack by performing the following tasks during
adaptive retiming:

• Retiming registers with conflicting reset requirements

• Retiming registers with extra synchronous input pins (tied high or low)

• Decomposing registers without SEQGEN correspondence

Design Compiler can also improve area by performing the following tasks:

• Allowing forward moves on non-critical registers

• Merging registers with equal and opposite next states

Figure 9-2 shows an example of how Design Compiler handles registers with conflicting
reset requirements.

D QD Q

D Q

D Q

Backward Move

Forward Move

D Q

D Q

D QD Q
Chapter 9: Adaptive Retiming
Adaptive Retiming Examples 9-3
Chapter 9: Adaptive Retiming
Adaptive Retiming Examples 9-3

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Figure 9-2 Adaptive Retiming for Registers with Conflicting Reset Values

The values (0 or 1) above the registers in the netlists indicate their reset values when a
common reset or preset signal (not shown) becomes active. Assume that all three registers
R1, R2, R3 in the first netlist move backward across the driver cells of their input nets. The
second netlist is a possible result of the moves. Registers R4 and R7 have unique reset or
preset values; however, R5 and R6 can have either preset (1) for R5 and reset (0) for R6 as
in the second netlist or the reverse as in the third netlist.

Design Compiler can retime registers with these conflicitng reset requirements. The two
input XOR gate has two possible input assignments resulting in an output value of 1. In the
second netlist, conflicting reset values can prevent further backward moves. The third
netlist, however, allows such backward moves if they are required.

R1

R2

R3

C3

C5

C4

0

1

0

C1

C2

R4

R5

R6

C5

C4

1

0

C2

0

R7

1

C1 C3

R4

R5

R6

C5

C4

0

1

C2

0

R7

1

C1 C3

Netlist 1

Netlist 2 Netlist 3
Chapter 9: Adaptive Retiming
Adaptive Retiming Examples 9-4

Design Compiler Optimization Reference Manual Version D-2010.03
Figure 9-3 shows how Design Compiler can execute forward local retiming moves on
non-critical registers to improve area by decreasing the number of registers.

Figure 9-3 Forward Moves for Non-Critical Registers

Design Compiler can move registers with common timing exceptions, including max_delay,
min_delay, multicycle_path, false_path, and group_path, as long as all the registers
being moved have the same exceptions. After executing a move involving registers with
exceptions, the new registers inherit all the exceptions from the original registers.

Two registers have the same exceptions if they appear in the same point-to-point timing
exception setting commands, such as set_max_delay, set_min_delay,
set_multicycle_path, set_false_path, and group_path.

In the following example, registers r0 and r1 have the same exceptions.

set_max_delay 10 -to [list r0/D r1/D]

Alternatively, if the above set_max_delay command is split into two set_max_delay
commands, both with the same delay value, the two registers still have the same exceptions:

set_max_delay 10 -to r0/D
set_max_delay 10 -to r1/D

However, if the two set_max_delay commands have different delay values, the two
registers have different exceptions, and they cannot be moved together:

set_max_delay 10 -to r0/D
set_max_delay 15 -to r1/D

By default this feature is disabled: to enable this feature, set the
compile_retime_exception_registers variable to true.

R1

R2

R3

C1

C2

R4

R5

C1

C2
Chapter 9: Adaptive Retiming
Adaptive Retiming Examples 9-5
Chapter 9: Adaptive Retiming
Adaptive Retiming Examples 9-5

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Performing Adaptive Retiming

You use the -retime option of the compile_ultra command to perform adaptive retiming
and to improve the delay during optimization.

Adaptive retiming honors attributes such as dont_touch, size_only, and
set_dont_retime; retiming is prevented if these attributes are set. Registers that are
moved as a result of adaptive retiming are renamed with a prefix of R and a numbered suffix
(R_xxx); you cannot match these retimed registers to the original registers.

Adaptive retiming supports all compile_ultra options except the following:

• -top

• -only_design_rule

Note:
 The -retime option is ignored if the only_design_rule -incremental options are
chosen at the same time.

When you run the compile_ultra -retime -incremental command, you need to run a
two step formal verification. Every time you run the -retime option with the compile_ultra
command, a gate-level netlist and automated setup file should be used to verify it in
Formality. To formally verify your design, you need to verify each new gate-level retimed
netlist against the previous netlist. If you run multiple compile_ultra -retime commands,
you must run multiple formal verifications, each one verifying the only changes made by the
most recent compile_ultra -retime command.

Controlling Adaptive Retiming

You can use the set_dont_retime command to include or exclude designs or cells from
being retimed. For example, the following command specifies that the design a1 should not
be retimed:

set_dont_retime [get_designs a1] true

Setting the dont_retime attribute on a hierarchical cell implies that the attribute is also set
on all cells below it. However, you can override the attribute at a lower-level of the hierarchy
by explicitly setting the dont_retime attribute at that level. For example, the following
command specifies that the cells z1_reg and z2_reg should be retimed:

set_dont_retime [get_cells {z1_reg z2_reg}] false

If you use the set_dont_retime command without specifying either true or false, a value of
true is assumed.
Chapter 9: Adaptive Retiming
Performing Adaptive Retiming 9-6

Design Compiler Optimization Reference Manual Version D-2010.03
The following sequence of commands will create the scenario shown in Figure 9-4:

set_dont_retime [get_cells U1]
set_dont_retime [get_designs mid] true
set_dont_retime [get_cells U_mid/U3] false
set_dont_retime [get_cells U_mid/U_bot]false
compile_ultra -retime

Figure 9-4 Design With Both Retimable and Nonretimable Cells

Note:
The dont_retime attribute on a child cell has priority over the attribute set on any
ancestor cell or design.

You can also use the set_dont_retime command to prevent retiming on specific cells or
designs when you use the optimize_registers command. For more information, see the
Design Compiler Register Retiming Reference Manual.

Reporting the dont_retime Attribute

Use the report_attribute command or the get_attributes command to check which
cells or designs have the dont_retime attribute.

Removing the dont_retime Attribute

To remove the dont_retime attribute, use the remove_attribute command.

D Q D Q

bot

mid

U_mid

U_bot

U1 U3

Can be retimed

Will not be retimed
Chapter 9: Adaptive Retiming
Reporting the dont_retime Attribute 9-7
Chapter 9: Adaptive Retiming
Reporting the dont_retime Attribute 9-7

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Verifying Retimed Designs

When Design Compiler performs any retiming, an automated setup file is necessary for
verification with Formality. The automated setup file includes retiming optimization
information that helps Formality to verify retimed designs. To remind you that Formality
requires an automated setup file, Design Compiler displays the following message when
retiming is performed:

Information: Retiming is enabled. SVF file must be used for
formal verification. (OPT-1210)
Chapter 9: Adaptive Retiming
Verifying Retimed Designs 9-8

10
Gate-Level Optimization 10

During gate-level optimizations, Design Compiler implements the final netlist by making
optimal selections of library cells. It performs tasks such as delay optimization, design rule
fixing, and area recovery. Design Compiler’s optimization algorithms use costs to determine
if a design change is an improvement. Design Compiler calculates two cost functions: one
for design rule constraints and one for optimization constraints and accepts an optimization
move if it decreases the cost of one component without increasing more-important costs.
Before you read this chapter, read the “Optimization Flow” on page 1-9 to understand how
gate-level optimizations fit into the overall compile flow.

This chapter contains the following sections:

• Compile Cost Function

• Changing the Cost Function

• Compile Log

• Delay Optimization

• Design Rule Fixing

• Area Recovery
10-1

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Compile Cost Function

During gate-level optimization, Design Compiler calculates two cost functions: one for
design rule constraints and one for optimization constraints. Cost calculations are affected
by constraints such as user-specified constraints (for example, create_clock), library
constraints (for example, max_fanout), and built-in optimization goals (for example, area
cleanup). A cost function consists of deltas from these constraints, that is, the positive
difference between the actual value and target value of the constraint. When evaluating cost
function components, Design Compiler considers these violators and works to reduce the
cost function to zero.

Design Compiler reports the value of each cost function whenever a change is made to the
design. The compile cost function considers only those components that are active in your
design. Design Compiler evaluates each cost function component independently, in order of
importance.

Design Compiler evaluates cost function components independently in order of importance
and accepts an optimization move if it decreases the cost of one component without
increasing more-important costs. For example, an optimization move that improves
maximum delay cost is always accepted. Optimization stops when all costs are zero or no
further improvements can be made to the cost function.

Design Rules Cost Function
Design rule constraints reflect technology-specific restrictions your design must meet in
order to function as intended. The design rules cost function has the components shown in
Figure 10-1.

Figure 10-1 Design Rules Cost Function

The design rules cost function takes into account the following design rule constraints:

• Maximum transition time

• Maximum fanout

• Maximum capacitance

ΣΔ max_fanout + ΣΔ max_transition + ΣΔ max_capacitance Cost =
Chapter 10: Gate-Level Optimization
Compile Cost Function 10-2

Design Compiler Optimization Reference Manual Version D-2010.03
Calculating Transition Time Cost
The maximum transition time for a net is the longest time required for its driving pin to
change logic values. Design Compiler determines driver transition times from the
technology library. If the transition time for a given driver is greater that the max_transition
value, Design Compiler reports a design rule violation and works to correct the violation.

Calculating Fanout Cost
Most technology libraries place fanout restrictions on driving pins, creating an implicit fanout
constraint for every driving pin in designs using that library. Design Compiler computes
fanout load for a driver by using the following equation:

m is the number of inputs driven by the driver.

fanout_loadi is the fanout load of the i th input.

If the calculated fanout load is greater than the max_fanout value, Design Compiler reports
a design rule violation and attempts to correct the violation.

Calculating Capacitance Cost
The maximum capacitance is a pin-level attribute used to define the maximum total
capacitive load that an output pin can drive. Design Compiler computes the total
capacitance for a driver by using the following equation:

m is the number of inputs driven by the driver.

Ci is the capacitance of the i th input.

If the calculated capacitance is greater than the max_capacitance value, Design Compiler
reports a design rule violation and attempts to correct the violation.

fanout_loadi

i 1=

m

∑

Ci

i 1=

m

∑

Chapter 10: Gate-Level Optimization
Compile Cost Function 10-3
Chapter 10: Gate-Level Optimization
Compile Cost Function 10-3

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Optimization Constraints Cost Function
Optimization constraints represent speed and area design goals and restrictions; speed
(timing) constraints have higher priority than area. The optimization constraints cost function
has the components shown in Figure 10-2.

Figure 10-2 Optimization Constraints Cost Function

The full optimization cost function takes into account the following components, listed in
order of importance. Not all components are active on all designs.

• Maximum delay cost

• Minimum delay cost

• Maximum area cost

Calculating Maximum Delay Cost
Maximum delay is usually the most important portion of the optimization cost function.
Maximum delay target values for each timing path in the design are automatically
determined after considering clock waveforms and skew, library setup times, external
delays, multicycle or false path specifications, and set_max_delay commands. Load, drive,
operating conditions, wire load model, and other factors are also taken into account.

Design Compiler supports two methods for calculating the maximum delay cost:

• Worst negative slack (default behavior)

• Critical range negative slack

The following sections describe these methods.

Worst Negative Slack Method
By default, Design Compiler uses the worst negative slack method to calculate the
maximum delay cost. With the worst negative slack method, only the worst violator in each
path group is considered.

A path group is a collection of paths that to Design Compiler represent a group in maximum
delay cost calculations. Each time you create a clock with the create_clock command,
Design Compiler creates a path group that contains all the paths associated with the clock.
You can also create path groups by using the group_path command. Design Compiler

ΣΔ max_delay + ΣΔ min_delay + ΣΔ max_area Cost =
Chapter 10: Gate-Level Optimization
Compile Cost Function 10-4

Design Compiler Optimization Reference Manual Version D-2010.03
places in the default group any paths that are not associated with any particular group or
clock. To see the path groups defined for your design, run the report_path_group
command.

Because the worst negative slack method does not optimize near-critical paths, this method
requires fewer CPU resources than the critical negative slack method. Because of the
shorter runtimes, the worst negative slack method is ideal for the exploration phase of the
design. Always use the worst negative slack method during default compile runs.

With the worst negative slack method, the equation for the maximum delay cost is

m is the number of path groups.

vi is the worst violator in the i th path group.

wi is the weight assigned to the i th path group (the default is 1.0).

Design Compiler calculates the maximum delay violation for each path group as

max (0, (actual_path_delay - max_delay))

Because only the worst violator in each path group contributes to the maximum delay
violation, how you group paths affects the maximum delay cost calculation.

• If only one path group exists, the maximum delay cost is the amount of the worst violation
multiplied by the group weight.

• When multiple path groups exist, the costs for all the groups are added to determine the
maximum delay cost of the design.

During optimization, the Design Compiler focus is on reducing the delay of the most critical
path. This path changes during optimization. If Design Compiler minimizes the initial path’s
delay so that it is no longer the worst violator, the tool shifts its focus to the path that is now
the most critical path in the group.

Critical Range Negative Slack Method
Design Compiler also supports the critical range negative slack method to calculate the
maximum delay cost. The critical range negative slack method considers all violators in
each path group that are within a specified delay margin (referred to as the critical range) of
the worst violator.

vi wi×

i 1=

m

∑

Chapter 10: Gate-Level Optimization
Compile Cost Function 10-5
Chapter 10: Gate-Level Optimization
Compile Cost Function 10-5

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
For example, if the critical range is 2.0 ns and the worst violator has a delay of 10.0 ns,
Design Compiler optimizes all paths that have a delay between 8.0 and 10.0 ns.

The critical range negative slack is the sum of all negative slack values within the critical
range for each path group. When the critical range is large enough to include all violators,
the critical negative slack is equal to the total negative slack.

Using the critical negative slack method, the equation for the maximum delay cost is

m is the number of path groups.

n is the number of paths in the critical range in the path group.

vij is a violator within the critical range of the i th path group.

wi is the weight assigned to the i th path group.

Design Compiler calculates the maximum delay violation for each path within the critical
range as

max (0, (actual_path_delay - max_delay))

Calculating Minimum Delay Cost
The equation for the minimum delay cost is

m is the number of paths affected by set_min_delay or set_fix_hold.

vi is the i th minimum delay violation.

Design Compiler calculates the minimum delay violation for each path as

max (0, (min_delay - actual_path_delay))

The minimum delay cost for a design differs from the maximum delay cost. Path groups do
not affect the minimum delay cost. In addition, all violators, not just the most critical path,
contribute to the minimum delay cost.

vij
j 1=

n

∑〈 〉 wi×
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

i 1=

m

∑

vi

i 1=

m

∑

Chapter 10: Gate-Level Optimization
Compile Cost Function 10-6

Design Compiler Optimization Reference Manual Version D-2010.03
Calculating Maximum Power Cost
Design Compiler computes the maximum power cost only if you have a Power-Optimization
license and your technology library is characterized for power.

The maximum power cost has two components:

• Maximum dynamic power

Design Compiler calculates the maximum dynamic power cost as

max (0, actual_power - max_dynamic_power)

• Maximum leakage power

Design Compiler calculates the maximum leakage power cost as

max (0, actual_power - max_leakage_power)

For more information about the maximum power cost, see the Power Compiler User Guide.

Calculating Maximum Area Cost
Design Compiler computes the area of a design by summing the areas of each of its
components (cells) on the design hierarchy’s lowest level (and the area of the nets). Design
Compiler ignores the following components when calculating circuit area:

• Unknown components

• Components with unknown areas

• Technology-independent generic cells

The cell and net areas are technology dependent. Design Compiler obtains this information
from the technology library.

Design Compiler calculates the maximum area cost as

max (0, actual_area - max_area)

Changing the Cost Function

You can change the cost function described in “Compile Cost Function” on page 10-2 in the
following ways:

• Reorder priorities of constraints by using the set_cost_priority command

• Disable evaluation of the design rule cost function or optimization constraints cost
function by using the -no_design_rule or -no_only_design_rule options of the
compile_ultra command or compile command
Chapter 10: Gate-Level Optimization
Changing the Cost Function 10-7
Chapter 10: Gate-Level Optimization
Changing the Cost Function 10-7

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
• Prioritize area over total negative slack by using the set_max_area command

Reordering the Default Priority of Constraints
Design Compiler tries to meet both design rule constraints and optimization constraints, but
design rule constraints take precedence. Table 10-1 shows the default order of priorities.

Table 10-1 shows that, by default, design rule constraints have priority over optimization
constraints. However, you can reorder the priorities of the constraints listed in bold type, by
using the set_cost_priority command.

For example, the following are circumstances under which you might want to move the
optimization constraint max_delay ahead of the maximum design rule constraints.

• In many technology libraries, the only significant design rule violations that cannot be
fixed without hurting delay are overconstrained nets, such as input ports with large
external loads or around logic marked dont_touch. Placing max_delay ahead of the

Table 10-1 Constraints Default Cost Vector

Priority (descending order) Notes

connection classes

multiple_port_net_cost

min_capacitance Design Rule Constraint

max_transition Design Rule Constraint

max_fanout Design Rule Constraint

max_capacitance Design Rule Constraint

cell_degradation Design Rule Constraint

max_delay Optimization Constraint

min_delay Optimization Constraint

power Optimization Constraint

area Optimization Constraint

cell count
Chapter 10: Gate-Level Optimization
Changing the Cost Function 10-8

Design Compiler Optimization Reference Manual Version D-2010.03
design rule constraints in priority allows these design rule constraint violations to be fixed
in a way that does not hurt delay. Design Compiler might, for example, resize the drivers
in another module.

• In compilation of a small block of logic, such as an extracted critical region of a larger
design, the possibility of overconstraints at the block boundaries is high. In this case,
design rule fixing might better be postponed until the small block has been regrouped into
the larger design.

The syntax is

set_cost_priority [-default] [-delay] cost_list

-default

Directs Design Compiler to use its default priority, as shown in Table 10-1 on page 10-8.

-delay

Specifies that max_delay has higher priority than the maximum design rule constraints.

cost_list

Specifies the order of priority (listing the highest first) of the following costs: max_delay,
min_delay, max_transition, max_fanout, max_capacitance, cell_degradation,
and max_design_rules.

Note:
Use of the cost_list option requires a DC Ultra license.

Disabling the Cost Function
You can direct Design Compiler to avoid design rule fixing or to compile with only design rule
fixing. Use the following options to the compile_ultra command or compile command to
control design rule fixing:

• The -no_design_rule option causes compile to exit before fixing design rule violations.
This allows you to check the results in a constraint report.

• The -only_design_rule option causes compile to perform only design rule fixing.

• The -only_hold_time option causes compile to fix only hold time. Design Compiler fixes
hold time requirements only when directed by the set_fix_hold command. The
compile_ultra command does not support this option.
Chapter 10: Gate-Level Optimization
Changing the Cost Function 10-9
Chapter 10: Gate-Level Optimization
Changing the Cost Function 10-9

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Prioritizing Area Over Total Negative Slack
Use the -ignore_tns option of the set_max_area command to prioritize area over total
negative slack during area optimization. When you use this option, the ignore_tns
attribute is set on the the design and compile might increase delay violations at an endpoint
in order to improve area (as long as the new delay violation is smaller than the violation on
the endpoint od the most critical path in the same path group)

Compile Log

The compile log records the status of the compile run. Each optimization task has an
introductory heading, followed by the actions taken while that task is performed. There are
three tasks in which Design Compiler works to reduce the compile cost function described
in “Compile Cost Function” on page 10-2:

• Delay optimization (see “Delay Optimization” on page 10-12)

• Design rule fixing (see “Design Rule Fixing” on page 10-14)

• Area recovery (see “Area Recovery” on page 10-14)

While completing these tasks, Design Compiler performs many trials to determine how to
reduce the cost function. For this reason, these tasks are collectively known as the trials
phase of optimization. The compile log displays reduction in costs as shown in
Example 10-1. You can customize the trials phase output by setting the
compile_log_format variable.
Chapter 10: Gate-Level Optimization
Compile Log 10-10

Design Compiler Optimization Reference Manual Version D-2010.03
Example 10-1 Compile Log
Beginning Delay Optimization Phase

 ELAPSED WORST NEG TOTAL NEG DESIGN
 TIME AREA SLACK SLACK RULE COST ENDPOINT
 --------- --------- --------- --------- --------- --------------------
 0:00:18 15003.8 0.00 0.0 33.8
 0:00:18 15003.8 0.00 0.0 33.8
 0:00:18 15003.8 0.00 0.0 33.8
 0:00:18 15003.8 0.00 0.0 33.8
 0:00:18 15003.8 0.00 0.0 33.8
 0:00:18 15003.8 0.00 0.0 33.8
 0:00:18 15003.8 0.00 0.0 33.8

 Beginning Design Rule Fixing (max_capacitance)

 ELAPSED WORST NEG TOTAL NEG DESIGN
 TIME AREA SLACK SLACK RULE COST ENDPOINT
 --------- --------- --------- --------- --------- ---------------------
 0:00:18 15003.8 0.00 0.0 33.8
 0:00:19 15172.8 0.00 0.0 0.0
 0:00:20 15172.8 0.00 0.0 0.0
 0:00:20 15172.8 0.00 0.0 0.0
 0:00:20 15172.8 0.00 0.0 0.0

 Beginning Area-Recovery Phase (max_area 0)

 ELAPSED WORST NEG TOTAL NEG DESIGN
 TIME AREA SLACK SLACK RULE COST ENDPOINT
 --------- --------- --------- --------- --------- ---------------------
 0:00:20 15172.8 0.00 0.0 0.0
 0:00:21 15085.7 0.00 0.0 0.0
 0:00:21 15085.7 0.00 0.0 0.0
 0:00:21 15085.7 0.00 0.0 0.0
 0:00:21 15085.7 0.00 0.0 0.0

Loading db file '/remote/srm147/LS_IMAGES/D20061217/libraries/syn/
tc6a_cbacore.db'
 Optimization Complete

1

Chapter 10: Gate-Level Optimization
Compile Log 10-11
Chapter 10: Gate-Level Optimization
Compile Log 10-11

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Delay Optimization

In this phase, Design Compiler attempts to fix existing delay violations by traversing the
critical path. It applies local transformations such as upsizing, load isolation and splitting,
and revisits mapping of sequential paths.

Figure 10-3 shows some common local optimization steps. Design Compiler takes design
rules into account during this phase. When two circuit solutions offer the same delay
performance, Design Compiler implements the solution that has the lower design rule cost.

Design Compiler also performs critical path resynthesis on your design improves timing. It
identifies the critical path and attempts to do a full compile on only the logic along that path.
This process then repeats on the new critical path. The compile command, with its
-map_effort high, option enables critical path resynthesis.

Additionally, Design Compiler resizes or speeds up sequential cells on the critical path. The
tool also uses a high-effort algorithm to remove sequential elements for which the logic
leading to a constant value is particularly complex. If you do not want Design Compiler to
perform this extra optimization, set the compile_seqmap_propagate_high_effort
variable to false (the default is true). For more information, see “Automatically Removing
Unnecessary Registers” on page 8-9.
Chapter 10: Gate-Level Optimization
Delay Optimization 10-12

Design Compiler Optimization Reference Manual Version D-2010.03
Figure 10-3 Delay Optimization Steps

The compile log displays the delay optimization phase as shown in Example 10-2.

1X

1X
1X

2X

2X

2X
2X

4X

critical

critical

Upsizing

Load Isolation

critical critical

Load Splitting
Chapter 10: Gate-Level Optimization
Delay Optimization 10-13
Chapter 10: Gate-Level Optimization
Delay Optimization 10-13

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Example 10-2 Delay Optimization in Compile Log
Beginning Delay Optimization Phase

ELAPSED WORST NEG TOTAL NEG DESIGN
TIME AREA SLACK SLACK RULE COST ENDPOINT
--------- --------- --------- --------- --------- ----------------------
0:00:05 136 2.11 23.2 18.0 out_reg[10]/D
0:00:05 138 1.53 16.9 18.0 out_reg[10]/D

Design Rule Fixing

During this phase, the goal is to correct design rule violations by inserting buffers or resizing
existing cells. Design Compiler tries to fix these violations without affecting timing and area
results, but if necessary, it does violate the optimization constraints. Design rules are
provided in the vendor technology library to ensure that the product meets specifications
and works as intended. Whenever possible, Design Compiler fixes design rule violations by
resizing gates across multiple logic levels—as opposed to adding buffers to the circuitry.

The compile log displays the design rule fixing phase as shown in Example 10-3.

Example 10-3 Design Rule Fixing in Compile Log

Beginning Design Rule Fixing
(max_capacitance)(max_fanout)(max_capacitance)

ELAPSED WORST NEG TOTAL NEG DESIGN
TIME AREA SLACK SLACK RULE COST ENDPOINT

--------- --------- --------- --------- --------- -----------------------
0:00:08 153 0.60 6.6 8.0
0:00:08 146 0.60 6.6 5.0

You can direct Design Compiler to avoid design rule fixing or to compile with only design rule
fixing. See “Changing the Cost Function” on page 10-7.

Area Recovery

If you have placed area constraints on your design (with the set_max_area command),
Design Compiler now attempts to minimize the number of gates in the design. The goal is to
reduce design area without introducing design rule and delay violations. The tool downsizes
cells to recover area. It performs downsizing only on paths that have positive slack as shown
in Figure 10-4.
Chapter 10: Gate-Level Optimization
Design Rule Fixing 10-14

Design Compiler Optimization Reference Manual Version D-2010.03
Figure 10-4 Example of Downsizing Cells During Area Recovery

In addition, the tool includes a fast back-end sequential mapper that does automatic
sequential area recovery. It identifies clusters of registers with similar functionality and
timing and optimizes the area of these register clusters as a whole. See “Automatically
Removing Unnecessary Registers” on page 8-9.

The compile log displays the area recovery phase as shown in Example 10-4.

Example 10-4 Area Recovery in Compile Log

Beginning Area-Recovery Phase (max_area 145)

ELAPSED WORST NEG TOTAL NEG DESIGN
TIME AREA SLACK SLACK RULE COST ENDPOINT
--------- --------- --------- --------- --------- -----------------------
0:00:09 149.0 1.05 8.5 0.0

If you do not place area constraints on your design, Design Compiler performs a limited
series of downsizing and area cleanup steps as shown in Example 10-5.

Example 10-5 Area Recovery in Compile Log

Beginning Area-Recovery Phase (cleanup)

ELAPSED WORST NEG TOTAL NEG DESIGN
TIME AREA SLACK SLACK RULE COST ENDPOINT
--------- --------- --------- --------- --------- -----------------------
0:00:10 16413.4 0.00 0.0 0.0
0:00:10 16413.4 0.00 0.0 0.0
0:00:10 16408.2 0.00 0.0 0.0

Using the -map_effort or -area_effort option of the compile command, you can direct
Design Compiler to put a medium, or high effort into area optimization.

• Medium effort
Design Compiler does gate sizing and buffer and inverter cleanup. In addition, the tool
performs.

1X

2X
2X

3X

1X

1X
1X

2X

non-critical path non-critical path
Chapter 10: Gate-Level Optimization
Area Recovery 10-15
Chapter 10: Gate-Level Optimization
Area Recovery 10-15

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
• High effort
Design Compiler tries still more gate minimization strategies. The tool adds gate
composition to the process and allocates more CPU time than medium effort.

Note:
Whichever area optimization effort level you choose, the overall constraints cost vector
(described in “Compile Cost Function” on page 10-2) prevails. Even during area
optimization, if Design Compiler finds a new opportunity to improve delay cost, it makes
the change—even if it increases area cost. Area always has a lower priority than delay.
Chapter 10: Gate-Level Optimization
Area Recovery 10-16

11
Verifying Functional Equivalence 11

After optimization, you can use an equivalence checking tool to verify that your gate-level
netlist is functionally equivalent to your RTL. This verification step ensures that the synthesis
process or manual design changes did not introduce functional errors. You can use the
Synopsys Formality tool or a third-party formal verification tool to perform functional
equivalence checking.

This chapter contains the following sections:

• Using Formality

• Adjusting Optimization For Successful Verification

• Using Third-Party Formal Verification Tools
11-1

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Using Formality

The Formality tool uses formal techniques to prove or disprove the functional equivalence of
two designs. Formality performs RTL-to-RTL, RTL-to-gate, and gate-to-gate verifications.
Functional equivalence checking does not take into account timing; it is a static verification
process.

By default, Design Compiler automatically creates a Formality automated setup file in your
working directory. This file has the extension .svf (setup verification file) and is named
default.svf. The automated setup file provides a method for automatically conveying setup
information to Formality. It alleviates the need to enter setup information manually, a task
that can be time-consuming and error-prone.

The automated setup file is a binary file. When Formality reads this binary data, it will
automatically convert it to ASCII and write it to a text file. This gives you to opportunity to
review the setup information before you use it in the verification process.

The automated setup file can contain the following information:

• The settings of certain Tcl variables that affect how the names of design objects in the
netlist are created, such as the bus_naming_style and template_* variables

• Optimizations that occur during RTL elaboration

• Name changes resulting from operations such as ungroup, group, uniquify,
rename_design, or the automatic uniquify process in compile with combinations of
group and ungroup (these operations can change the names of design objects such as
registers, black boxes, and top-level ports)

• Phase inversion and constant propagation optimizations performed during sequential
mapping

• Datapath transformations, including information about multiplier architectures chosen
during synthesis

• Retiming optimizations

• Information about FSM extraction

Additionally, the automated setup file records implicit ungroup operations. Implicit ungroup
operations can occur in the following situations:

• During automatic ungrouping with the compile_ultra command, the compile
-ungroup -all command, or the compile -auto_ungroup command

• If a design has an ungroup attribute set on it

• When DesignWare auto-ungroups DesignWare parts
Chapter 11: Verifying Functional Equivalence
Using Formality 11-2

Design Compiler Optimization Reference Manual Version D-2010.03
• When certain user hierarchies are auto-ungrouped for datapath optimization

You can use the Design Compiler set_svf command to control the name of the automated
setup file or to save it to a location other than your current working directory. To disable the
generation of the .svf file, use the -off option. If you use the set_svf command, you must
do so at the beginning of the synthesis process, before you read your design files.

The syntax of the set_svf command is

set_svf filename [-append] [-off]

For more information, see the Formality User Guide.

Adjusting Optimization For Successful Verification

Datapath intensive designs or designs containing complex design components, such as
parity generators, XOR trees, or very large cones of logic can cause Formality to issue hard
verification failures.

When you have hard verifications in Formality, you can use the
set_verification_priority command in Design Compiler to help reduce hard
verifications. These constructs enable Design Compiler to adjust optimizations such that the
potential for hard verifications is reduced. Hard verifications occur when Formality cannot
complete verification due to issues such as design complexity.

To enable Design Compiler to adjust optimizations for hard verifications, use the following
methodology:

1. Run Design Compiler

2. Run Formality

3. Analyze the Formality verification reports.

The analyze_points command runs analysis on the most recent failed or aborted
verification. An aborted verification is called a hard verification.

The analyze_points command generates a recommendation as to what blocks the
set_verification_priority command, described in the next step, could be used with
in Design Compiler to reduce hard verifications. An example of the output of the
analyze_points command is shown below:

...
Use 'report_svf_operation { 1027 }' for more information.
Try adding the following command(s) to your Design Compiler script:
set_verification_priority -high [get_designs { data_bl_0 }]
...
Chapter 11: Verifying Functional Equivalence
Adjusting Optimization For Successful Verification 11-3
Chapter 11: Verifying Functional Equivalence
Adjusting Optimization For Successful Verification 11-3

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
4. To help reduce hard verifications, re-run Design Compiler as follows:

a. To identify which blocks may be contributing to the hard verifications, use the Formality
analyze_points command. Consider using the set_verification_priority
command with these problem blocks.

b. Before compiling your GTECH netlist in Design Compiler, use the
set_verification_priority command to adjust the optimizations done during
compile such that the potential for hard verifications is reduced.

Note:
The set_verification_priority command is only available in DC Ultra.

 For more details, see the respective man pages and the Formality User Guide.

Using Third-Party Formal Verification Tools

To record setup information for formal verification tools other than Formality, use the
set_vsdc command.

The syntax is

set_vsdc filename [-append] [-off]

The command records setup information in V-SDC format for efficient compare point
matching in third-party formal verification tools. The V-SDC format is a subset of the
automated setup file used by Formality. The V-SDC file is written in plain text, whereas the
automated setup file is encrypted and compressed. The set_vsdc command records the
following operations:

• Name changes resulting from operations such as ungroup, group, or uniquify, or the
automatic uniquify process in compile with combinations of group and ungroup. These
operation can change the names of design objects such as registers, black boxes, and
top-level ports

• Operations performed by the compile command that result in register optimizations.
Chapter 11: Verifying Functional Equivalence
Using Third-Party Formal Verification Tools 11-4

12
Latch-Based Design Code Examples 12

This chapter provides code examples of designs that use various types of latches. It
includes these sections:

• SR Latch

• D Latch

• D Latch With Asynchronous Reset

• D Latch With Asynchronous Set and Reset

• D Latch With Enable (avoiding clock gating)

• D Latch With Enable and Asynchronous Reset

• D Latch With Enable and Asynchronous Set

• D Latch With Enable and Asynchronous Set and Reset
12-1

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
SR Latch

This section shows the VHDL and Verilog code that implements a design that uses an SR
latch. It includes these subsections:

• VHDL and Verilog Code Examples for SR Latch

• Inference Report for an SR Latch

• Synthesized Design for an SR Latch

VHDL and Verilog Code Examples for SR Latch
To implement an SR latch in either VHDL or Verilog, you must set the following variable to
true:

hdlin_report_inferred_modules

You must also set the following attribute:

attribute async_set_reset of RESET, SET : signal is "true";

Example 12-1 shows the VHDL code that infers an SR latch.

Example 12-1 VHDL Code for an SR Latch
library IEEE, SYNOPSYS;
use IEEE.std_logic_1164.all;
use SYNOPSYS.attributes.all;

entity SR_LATCH is
 port (RESET, SET : in std_logic;
 Y : out std_logic);
end SR_LATCH;

architecture BEHAVIORAL of SR_LATCH is
attribute async_set_reset of RESET, SET : signal is "true";
begin
 infer : process (RESET, SET)
 begin
 if (RESET = ’0’) then
 y <= ’0’;
 elsif (SET = ’0’) then
 y <= ’1’;
 end if;
 end process infer;
end BEHAVIORAL;

Example 12-2 shows Verilog code that infers an SR latch.
Chapter 12: Latch-Based Design Code Examples
SR Latch 12-2

Design Compiler Optimization Reference Manual Version D-2010.03
Example 12-2 Verilog Code Example for an SR Latch
module SR_LATCH(reset,set, y);
input reset,set ;
output y ;
// synopsys async_set_reset "reset,set"
reg y ;

always @(set or reset)
begin : infer
 if (reset == 0)

y = 1’b0 ;
 else if (set == 0)

y = 1’b1 ;
end

endmodule

Inference Report for an SR Latch
Example 12-3 shows the inference report generated for an SR latch from the VHDL code
shown in Example 12-1 or the Verilog code in Example 12-2.

Example 12-3 Inference Report for an SR Latch

Inferred memory devices in process ’infer’
 in routine SR_LATCH line 13 in
 file ’/home/sudipto/work/latch_appl/rtl/vhdl/sr_latch.vhdl’.

==
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| Y_reg | Latch | 1 | - | - | Y | Y | - | - | - |
===

 Y_reg

 Async-reset: RESET’
 Async-set: SET’
 Async-set and Async-reset ==> Q: 0

Synthesized Design for an SR Latch
Figure 12-1 shows the synthesized design for the SR-latch-based design resulting from
compilation of the code shown in Example 12-1 or Example 12-2. In this synthesis, LSR0 is
an SR latch and both S and R are active-low Inputs. Here is the target library description of
the latch for the cell LSR0:
Chapter 12: Latch-Based Design Code Examples
SR Latch 12-3
Chapter 12: Latch-Based Design Code Examples
SR Latch 12-3

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
 latch ("IQ","IQN") {
 clear : "R’";
 preset : "S’";
 clear_preset_var1 : L;
 clear_preset_var2 : L;
 }

Figure 12-1 Synthesized Design for an SR Latch

D Latch

This section shows the VHDL code that implements a design that uses a simple D latch. It
includes these subsections:

• VHDL Code for a D Latch

• Inference Report for a D Latch

• Synthesized Design for a D Latch

VHDL Code for a D Latch
To implement a D latch in VHDL, you must set the following variable to true:

hdlin_report_inferred_module

Example 12-4 shows the VHDL code that implements a design using a simple D latch.
Chapter 12: Latch-Based Design Code Examples
D Latch 12-4

Design Compiler Optimization Reference Manual Version D-2010.03
Example 12-4 VHDL Code for a D Latch
library IEEE, SYNOPSYS;
use IEEE.std_logic_1164.all;
use SYNOPSYS.attributes.all;

entity d_latch is
 port (enable, data : in std_logic;
 y : out std_logic);
end d_latch;

architecture behavioral of d_latch is
begin
 infer : process (enable, data)
 begin
 if (enable = ’1’)
 then
 y <= data;
 end if;
 end process infer;
end behavioral;

Inference Report for a D Latch
Example 12-5 shows the inference report for a D latch resulting from compilation of the code
in Example 12-4.

Example 12-5 Inference Report for a D Latch
Inferred memory devices in process ’infer’
 in routine d_latch line 13 in file
 ’/home/sudipto/work/latch_appl/rtl/vhdl
 /d_latch.vhdl’.
==
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
==
| y_reg | Latch | 1 | - | - | N | N | - | - | - |
==
y_reg

reset/set: none

Synthesized Design for a D Latch
Figure 12-2 shows the synthesized design for the D latch resulting from compilation of the
code in Example 12-4. In this design, LD1 is the simple D latch. Here is the target library
description of the latch for the cell LD1:

 latch ("IQ","IQN") {
 enable : "G";
 data_in : "D";
 }
Chapter 12: Latch-Based Design Code Examples
D Latch 12-5
Chapter 12: Latch-Based Design Code Examples
D Latch 12-5

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Figure 12-2 Synthesized Design for a D Latch

D Latch With Asynchronous Reset

This section shows the VHDL and Verilog code that implements a design that uses a D latch
with asynchronous reset. It includes these subsections:

• VHDL and Verilog Code for a D Latch With Asynchronous Reset

• Inference Report for a D Latch With Asynchronous Reset

• Synthesized Design for a D Latch With Asynchronous Reset

VHDL and Verilog Code for a D Latch With Asynchronous Reset
To implement a D latch with asynchronous reset in either VHDL or Verilog, you must set the
following variable to true:

hdlin_report_inferred_modules

You must also set the following attribute, as illustrated by the code examples:

attribute async_set_reset of RESET, SET : signal is "true";

Example 12-6 shows VHDL code for a D latch with asynchronous reset.
Chapter 12: Latch-Based Design Code Examples
D Latch With Asynchronous Reset 12-6

Design Compiler Optimization Reference Manual Version D-2010.03
Example 12-6 VHDL Code for a D Latch With Asynchronous Reset
library IEEE, SYNOPSYS;
use IEEE.std_logic_1164.all;
use SYNOPSYS.attributes.all;

entity d_latch_async_reset is
 port (enable, reset, data : in std_logic;
 q : out std_logic);
end d_latch_async_reset;

architecture behavioral of d_latch_async_reset is
attribute async_set_reset of reset : signal is "true";
begin
 infer : process (enable, reset, data)
 begin
 if (reset = ’1’)
 then
 q <= ’0’;
 elsif (enable = ’1’)
 then
 q <= data;
 end if;
 end process infer;
end behavioral;

Example 12-7 shows Verilog code for the D latch with asynchronous reset.

Example 12-7 Verilog Code for a D Latch With Asynchronous Reset
module d_latch_async_reset (enable, reset, data, q) ;
input enable, data, reset ;
output q ;
// synopsys async_set_reset "reset"
reg q ;

always @(reset or enable or data)
begin : infer
 if (reset == 1)

q = 1’b0 ;
 else if (enable == 1)

q = data ;
end

endmodule

Inference Report for a D Latch With Asynchronous Reset
Example 12-8 shows the inference report for a D latch with asynchronous reset resulting
from compilation of the code in Example 12-6 or Example 12-7.

Example 12-8 Inference Report for a D Latch With Asynchronous Reset
Inferred memory devices in process ’infer’
Chapter 12: Latch-Based Design Code Examples
D Latch With Asynchronous Reset 12-7
Chapter 12: Latch-Based Design Code Examples
D Latch With Asynchronous Reset 12-7

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
 in routine d_latch_async_reset
 line 13 in file
 ’/home/sudipto/work/latch_appl/rtl/vhdl/d_latch_async_reset.vhdl’.
==
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
==
| q_reg | Latch | 1 | - | - | Y | N | - | - | - |
==

q_reg

 Async-reset: reset

Synthesized Design for a D Latch With Asynchronous Reset
Figure 12-3 shows the synthesized design for the D latch resulting from compilation of the
code shown in Example 12-6 and Example 12-7. In this design, LD3 is the simple D latch.
Here is the target library description of the latch for the cell LD3:

LD3 is a D latch with asynchronous active-low reset (CD). The description of the latch for the
cell LD3 in the target library is as follows:

 latch ("IQ","IQN") {
 enable : "G";
 data_in : "D";
 clear : "CD’";
 }

Figure 12-3 Synthesized Design for a D Latch With Asynchronous Reset
Chapter 12: Latch-Based Design Code Examples
D Latch With Asynchronous Reset 12-8

Design Compiler Optimization Reference Manual Version D-2010.03
D Latch With Asynchronous Set and Reset

This section shows the VHDL and Verilog code that implements a design that uses a D latch
with asynchronous set and reset. It includes these subsections:

• VHDL and Verilog Code for a D Latch With Asynchronous Set and Reset

• Inference Report for a D Latch With Asynchronous Set and Reset

• Synthesized Design for a D Latch With Asynchronous Set and Reset

VHDL and Verilog Code for a D Latch With Asynchronous Set and
Reset
To implement a D latch with asynchronous set and reset in either VHDL or Verilog, you must
set the following variable to true:

hdlin_report_inferred_modules

You must also set the following attributes, as illustrated by the code examples:

attribute async_set_reset of set, reset : signal is "true";
attribute one_hot of set, reset : signal is "true";

Example 12-9 shows the VHDL code for a D latch with asynchronous set and reset
attributes.
Chapter 12: Latch-Based Design Code Examples
D Latch With Asynchronous Set and Reset 12-9
Chapter 12: Latch-Based Design Code Examples
D Latch With Asynchronous Set and Reset 12-9

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Example 12-9 VHDL Code for a D Latch With Asynchronous Set and Reset
library IEEE, SYNOPSYS;
use IEEE.std_logic_1164.all;
use SYNOPSYS.attributes.all;

entity d_latch_async_set_reset is
 port (enable, set, reset, data : in std_logic;
 q : out std_logic);
end d_latch_async_set_reset;

architecture behavioral of d_latch_async_set_reset is
attribute async_set_reset of set, reset : signal is "true";
attribute one_hot of set, reset : signal is "true";
begin
 infer : process (enable, set, reset, data)
 begin
 if (reset = ’1’)
 then
 q <= ’0’;
 elsif (set = ’1’)
 then
 q <= ’1’;
 elsif (enable = ’1’)
 then
 q <= data;
 end if;
 end process infer;
end behavioral;

Example 12-10 shows the Verilog code for a D latch with asynchronous set and reset
attributes.
Chapter 12: Latch-Based Design Code Examples
D Latch With Asynchronous Set and Reset 12-10

Design Compiler Optimization Reference Manual Version D-2010.03
Example 12-10 Verilog Code for a D Latch With Asynchronous Set and Reset
module d_latch_async_set_reset
(enable, set, reset, q, data) ;

input enable, set, reset, data ;
output q ;

// synopsys async_set_reset "set, reset"
// synopsys one_hot "set, reset"

reg q ;

always @(enable or set or reset or data)
 begin : infer

 if (reset == 1)
q = 1’b0 ;

 else if (set == 1)
q = 1’b1 ;

 else if (enable == 1)
q = data ;

end
endmodule

Inference Report for a D Latch With Asynchronous Set and Reset
Example 12-11 shows the inference report for a D latch with asynchronous set and reset
resulting from compilation of the code shown in Example 12-9 on page 12-10 or
Example 12-10.

Example 12-11 Inference Report for a D Latch With Asynchronous Set and Reset
Inferred memory devices in process ‘infer’
 in routine d_latch_async_set_reset
 line 14 in file
 ’/home/sudipto/work/latch_appl/rtl/vhdl/d_latch_async_set_reset.vhdl’.
==
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
==
| q_reg | Latch | 1 | - | - | Y | Y | - | - | - |
==

q_reg

 Async-reset: reset
 Async-set: set
 Async-set and Async-reset ==> Q: X
Chapter 12: Latch-Based Design Code Examples
D Latch With Asynchronous Set and Reset 12-11
Chapter 12: Latch-Based Design Code Examples
D Latch With Asynchronous Set and Reset 12-11

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Synthesized Design for a D Latch With Asynchronous Set and
Reset
Figure 12-4 shows the synthesized design for the D latch resulting from compilation of the
code in Example 12-9 and Example 12-10. In this design, LDSR is a D latch with active-low
asynchronous set (SET) and reset (CLR).

The description of the latch for the cell LDSR in the target library is as follows:

 latch ("IQ","IQN") {
 enable : "G";
 data_in : "D";
 clear : "CLR’";
 preset : "SET’";
 clear_preset_var1 : L;
 clear_preset_var2 : L;
 }

Figure 12-4 Synthesized Design for a D Latch With Asynchronous Set and Reset

D Latch With Enable (avoiding clock gating)

This section shows the VHDL and Verilog code that implements a design that uses a D latch
with the enable attribute to avoid clock gating. It includes these subsections:

• VHDL and Verilog Code for a D Latch With Enable

• Inference Report for a D Latch With Enable
Chapter 12: Latch-Based Design Code Examples
D Latch With Enable (avoiding clock gating) 12-12

Design Compiler Optimization Reference Manual Version D-2010.03
• Synthesized Design for a D Latch With Enable

• Inferring Gated Clocks

VHDL and Verilog Code for a D Latch With Enable
To implement a D latch with enable in either VHDL or Verilog, you must set the following
variable to true:

hdlin_report_inferred_modules

You must also set the following attribute to true:

hdlin_keep_feedback

Example 12-12 shows the VHDL code for a D latch with enable.

Example 12-12 VHDL Code for a D Latch With Enable
library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity d_latch_enab is
 port (enable, clock, data : in std_logic;
 q : buffer std_logic);
end d_latch_enab;

architecture behavioral of d_latch_enab is
begin
 infer : process (enable, clock, data)
 begin
 if (clock = ’1’)
 then
 if (enable = ’1’)
 then
 q <= data;
 else
 q <= q;
 end if;
 end if;
 end process infer;
end behavioral;

Example 12-13 shows the Verilog code for a D latch with enable.
Chapter 12: Latch-Based Design Code Examples
D Latch With Enable (avoiding clock gating) 12-13
Chapter 12: Latch-Based Design Code Examples
D Latch With Enable (avoiding clock gating) 12-13

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Example 12-13 Verilog Code for a D Latch With Enable
module d_latch_enab (enable, clock, data, q) ;

input enable, clock, data ;
output q ;

reg q ;

always @(enable or clock or data)
begin :infer
 if (clock == 1)
 begin
 if (enable == 1)
 q = data ;
 else
 q = q ;
 end
 end

endmodule

Inference Report for a D Latch With Enable
Example 12-14 shows the inference report for a D latch with enable resulting from
compilation of the code in Example 12-12 on page 12-13 or Example 12-13.

Example 12-14 Inference Report for a D Latch With Enable
Inferred memory devices in process ’infer’
 in routine d_latch_enab line 13 in
 file ’/home/sudipto/work/latch_appl/rtl/vhdl/d_latch_enab.vhdl’.
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| q_reg | Latch | 1 | - | - | N | N | - | - | - |
===

q_reg

 reset/set: none

Synthesized Design for a D Latch With Enable
Figure 12-5 shows the synthesized design for the D latch with enable resulting from
compilation of the code in Example 12-12 on page 12-13 or Example 12-13 on page 12-14.
Chapter 12: Latch-Based Design Code Examples
D Latch With Enable (avoiding clock gating) 12-14

Design Compiler Optimization Reference Manual Version D-2010.03
Figure 12-5 Synthesized Design for a D Latch With Enable

Inferring Gated Clocks
This section describes two cases—Case 1 and Case 2—in which HDL Compiler infers
gated clocks.

Case 1
If the variable hdlin_keep_feedback is not set to true, then HDL Compiler assumes the
default value of false and removes all feedback loops. For example, feedback loops inferred
from a statement such as the following

 Q = Q

are removed.

The loop that is inferred from the following statement, shown in VHDL code, is removed.

 if (enable = ’1’)
 then
 q<= data;
 else
 q <= q;
 end if;

The code indicates that the gated clock in the synthesized design in Figure 12-6, which does
not have a feedback loop, is removed.
Chapter 12: Latch-Based Design Code Examples
D Latch With Enable (avoiding clock gating) 12-15
Chapter 12: Latch-Based Design Code Examples
D Latch With Enable (avoiding clock gating) 12-15

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Case 2
Gated clocks can also be inferred from the coding style used to implement a design. For
example, if the VHDL code is written in either of the coding styles in Example 12-15 or
Example 12-16, regardless of whether hdlin_keep_feedback is set to true, Design
Compiler will create a gated clock for the design.

Example 12-15 implies a priority coding style— that is, the clock value is assessed first and
enable is considered only if the clock is a certain value.

Example 12-15 Coding Style A
library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity d_latch_enab is
 port (enable, clock, data : in std_logic;
 q : out std_logic);
end d_latch_enab;

architecture behavioral of d_latch_enab is
begin
 infer : process (enable, clock, data)
 begin
 if (clock = ’1’)
 then
 if (enable = ’1’)
 then
 q <= data;
 end if;
 end if;
 end process infer;
end behavioral;

For Example 12-16, no priority is implied.
Chapter 12: Latch-Based Design Code Examples
D Latch With Enable (avoiding clock gating) 12-16

Design Compiler Optimization Reference Manual Version D-2010.03
Example 12-16 Coding Style B
library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity d_latch_enab is
 port (enable, clock, data : in std_logic;
 q : out std_logic);
end d_latch_enab;

architecture behavioral of d_latch_enab is
begin
 infer : process (enable, clock, data)
 begin
 if (clock = ’1’ and enable = ’1’)
 q <= data;
 end if;
 end process infer;
end behavioral;

Synthesized Design With Enable and Gated Clock
Figure 12-6 shows the synthesized design for the D latch with enable and clock gating
resulting from compilation of the code in Example 12-15 on page 12-16 and Example 12-16.

Figure 12-6 D Latch With Enable and Gated Clock

D Latch With Enable and Asynchronous Reset

This section shows the VHDL and Verilog code that implements a design that uses a D latch
with the enable and asynchronous reset attributes. It includes these subsections:

• VHDL and Verilog Code for a D Latch With Enable and Asynchronous Reset
Chapter 12: Latch-Based Design Code Examples
D Latch With Enable and Asynchronous Reset 12-17
Chapter 12: Latch-Based Design Code Examples
D Latch With Enable and Asynchronous Reset 12-17

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
• Synthesized Design for a D Latch With Enable and Asynchronous Reset

VHDL and Verilog Code for a D Latch With Enable
and Asynchronous Reset
To implement a D latch with enable and asynchronous reset in either VHDL or Verilog, you
must set the following variables to true:

hdlin_report_inferred_modules
hdlin_keep_feedback

You must also set the following attribute:

attribute async_set_reset of reset : signal is "true";

Example 12-17 shows the VHDL code for a D latch with enable and asynchronous reset.

Example 12-17 VHDL Code for a D Latch With Enable and Asynchronous Reset
library IEEE, SYNOPSYS;
use IEEE.STD_LOGIC_1164.all;
use SYNOPSYS.attributes.all;

entity d_latch_enab_async_reset is
 port (enable, clock, reset, data : in std_logic;
 q : buffer std_logic);
end d_latch_enab_async_reset;

architecture behavioral of d_latch_enab_async_reset is
attribute async_set_reset of reset : signal is "true";
begin
 infer : process (enable, clock, reset, data)
 variable temp : std_logic;
 begin
 temp := q;
 if (reset = ’1’) then
 q <= ’0’;
 elsif (clock = ’1’) then
 case enable is
 when ’1’ => q <= data;
 when others => q <= temp;
 end case;
 end if;
 end process infer;
end behavioral;

Example 12-18 shows the Verilog code for a D latch with enable and asynchronous reset.
Chapter 12: Latch-Based Design Code Examples
D Latch With Enable and Asynchronous Reset 12-18

Design Compiler Optimization Reference Manual Version D-2010.03
Example 12-18 Verilog Code for a D Latch With Enable and Asynchronous Reset
module d_latch_enab_async_reset

(enable, clock, reset, q, data) ;

input enable, clock, reset, data ;
output q ;

// synopsys async_set_reset "reset"

reg q ;

always @(enable or clock or reset or data)
 begin : infer

 if (reset == 1)
q = 1’b0 ;

 else if (clock == 1)
 begin
 if (enable == 1)

q = data ;
 else
 q = q ;
end

end
endmodule

Synthesized Design for a D Latch With Enable and
Asynchronous Reset
Figure 12-7 shows the synthesized design for the D latch with enable and asynchronous
reset resulting from compilation of the code in Example 12-17 on page 12-18 or
Example 12-18 on page 12-19.
Chapter 12: Latch-Based Design Code Examples
D Latch With Enable and Asynchronous Reset 12-19
Chapter 12: Latch-Based Design Code Examples
D Latch With Enable and Asynchronous Reset 12-19

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Figure 12-7 Synthesized Design for a D Latch With Enable and Asynchronous Reset

D Latch With Enable and Asynchronous Set

This section shows the VHDL and Verilog code that implements a design that uses a D latch
with the enable and asynchronous set attributes. It includes these subsections:

• VHDL and Verilog Code for a D Latch With Enable and Asynchronous Set

• Synthesized Design for D Latch With Enable and Asynchronous Set

VHDL and Verilog Code for a D Latch With Enable and
Asynchronous Set
To implement a D latch with enable and asynchronous set in either VHDL or Verilog, you
must set the following variables to true:

hdlin_report_inferred_modules
hdlin_keep_feedback

You must also set the following attribute:

attribute async_set_reset of set : signal is "true";

Example 12-19 shows the VHDL code for a D latch with enable and asynchronous reset.
Chapter 12: Latch-Based Design Code Examples
D Latch With Enable and Asynchronous Set 12-20

Design Compiler Optimization Reference Manual Version D-2010.03
Example 12-19 VHDL Code for D Latch With Enable and Asynchronous Set
library IEEE, SYNOPSYS;
use IEEE.STD_LOGIC_1164.all;
use SYNOPSYS.attributes.all;

entity d_latch_enab_async_set is
 port (enable, clock, set, data : in std_logic;
 q : buffer std_logic);
end d_latch_enab_async_set;

architecture behavioral of d_latch_enab_async_set is
attribute async_set_reset of set : signal is "true";
begin
 infer : process (enable, clock, set, data)
 begin
 if (set = ’1’)
 then
 q <= ’1’;
 elsif (clock = ’1’)
 then
 if (enable = ’1’)
 then
 q<= data;
 else
 q <= q;
 end if;
 end if;
 end process infer;
end behavioral;

Example 12-20 shows the Verilog code for a D latch with enable and asynchronous set.
Chapter 12: Latch-Based Design Code Examples
D Latch With Enable and Asynchronous Set 12-21
Chapter 12: Latch-Based Design Code Examples
D Latch With Enable and Asynchronous Set 12-21

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Example 12-20 Verilog Code for D Latch With Enable and Asynchronous Set
module d_latch_enab_async_set (enable, clock, set, q, data) ;

input enable, clock, set, data ;
output q ;

// synopsys async_set_reset "set"

reg q ;

always @(enable or clock or set or data)
 begin : infer

 if (set == 1)
q = 1’b1 ;

 else if (clock == 1)
 begin
 if (enable == 1)

q = data ;
 else
 q = q ;
end

end
endmodule

Synthesized Design for D Latch With Enable and Asynchronous Set
Figure 12-8 shows the synthesized design for the D latch with enable and asynchronous set
resulting from compilation of the code shown in Example 12-19 on page 12-21 or
Example 12-20 on page 12-22.
Chapter 12: Latch-Based Design Code Examples
D Latch With Enable and Asynchronous Set 12-22

Design Compiler Optimization Reference Manual Version D-2010.03
Figure 12-8 Synthesized Design for D Latch With Enable and Asynchronous Set

D Latch With Enable and Asynchronous Set and Reset

This section shows the VHDL and Verilog code that implements a design that uses a D latch
with the enable and asynchronous set and reset attributes. It includes these subsections:

• VHDL and Verilog Code for D Latch With Enable and Asynchronous Set and Reset

• Synthesized Design for D Latch With Enable and Asynchronous Set and Reset

VHDL and Verilog Code for D Latch With Enable and
Asynchronous Set and Reset
To implement a D latch with enable and asynchronous set and reset in either VHDL or
Verilog, you must set the following variables to true:

hdlin_report_inferred_modules
hdlin_keep_feedback

You must also set the following attributes:

attribute async_set_reset of set : signal is "true";
attribute one_hot of set, reset: signal is "true";
Chapter 12: Latch-Based Design Code Examples
D Latch With Enable and Asynchronous Set and Reset 12-23
Chapter 12: Latch-Based Design Code Examples
D Latch With Enable and Asynchronous Set and Reset 12-23

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Example 12-21 shows the VHDL code for a D latch with enable and asynchronous set and
reset.

Example 12-21 VHDL Code for D Latch With Enable and Asynchronous Set and Reset
library IEEE, SYNOPSYS;
use IEEE.STD_LOGIC_1164.all;
use SYNOPSYS.attributes.all;

entity d_latch_enab_async_set_reset is
 port (enable, clock, set, reset, data : in std_logic;
 q : buffer std_logic);
end d_latch_enab_async_set_reset;

architecture behavioral of d_latch_enab_async_set_reset is
attribute async_set_reset of set, reset : signal is "true";
attribute one_hot of set, reset : signal is "true";
begin
 infer : process (enable,clock, set, reset, data)
 begin
 if (set = ’1’) then
 q <= ’1’;
 elsif (reset = ’‘1’) then
 q <= ’0’;
 elsif (clock = ’1’) then
 if (enable = ’1’) then
 q <= data;
 else
 q <= q;
 end if;
 end if;
 end process infer;
end behavioral;

Example 12-22 shows the Verilog code for a D latch with enable and asynchronous set and
reset.
Chapter 12: Latch-Based Design Code Examples
D Latch With Enable and Asynchronous Set and Reset 12-24

Design Compiler Optimization Reference Manual Version D-2010.03
Example 12-22 Verilog Code for D Latch With Enable and Asynchronous Set and Reset
module d_latch_enab_async_set_reset (enable, clock, set,
reset, q, data);
input enable, clock, set, reset, data ;
output q ;
// synopsys async_set_reset "set, reset"”
// synopsys one_hot "set, reset"
reg q ;

always @(enable or clock or set or reset or data)
 begin : infer

 if (reset == 1)
q = 1’b0 ;

 else if (set == 1)
q = 1’b1 ;

 else if (clock == 1)
 begin
 if (enable == 1)

q = data ;
 else
 q = q ;
end

end
endmodule
Chapter 12: Latch-Based Design Code Examples
D Latch With Enable and Asynchronous Set and Reset 12-25
Chapter 12: Latch-Based Design Code Examples
D Latch With Enable and Asynchronous Set and Reset 12-25

Design Compiler Optimization Reference Manual D-2010.03Design Compiler Optimization Reference Manual Version D-2010.03
Synthesized Design for D Latch With Enable and
Asynchronous Set and Reset
Figure 12-9 shows the synthesized design for the D latch with enable and asynchronous set
and reset resulting from compilation of the code shown in Example 12-21 on page 12-24 or
Example 12-22 on page 12-25.

Figure 12-9 Synthesized Design for D Latch With Enable and Asynchronous Set and Reset
Chapter 12: Latch-Based Design Code Examples
D Latch With Enable and Asynchronous Set and Reset 12-26

Index

A
architecture of an FSM 7-3
area

exploring design space 1-3
assign statements in gate-level netlist,

preventing 3-29
asynchronous reset example

D latch 12-6
D latch with enable and 12-17

asynchronous set and reset example
D latch 12-9
D latch with enable and 12-23

asynchronous set example
D latch with enable with 12-20

attributes
clocked_on_also 3-31
dont_touch_network 3-19
fix_multiple_port_nets 3-29
minimum_multibit_width 3-26
multibit_mode 3-26
multibit_width 3-28

auto encoding style for FSMs 7-5
auto_ungroup_preserve_constraints variable

4-3
automatic compile flow for FSMs 7-7
automatic methodology for FSMs 7-8

B
balance_buffer command 3-6
balanced buffering 3-30
binary encoding style for FSMs 7-5
boundary optimization 3-8
bus_multiple_separator_style variable 3-26
bus_range_separator_style variable 3-26

C
capacitance

cost calculation 10-3
case statements

used in multiplexing logic 6-1
cells

ungroup 3-16
characterize command

-connections option 3-10
clock network

preserving after clock tree synthesis 3-19
clock network latency

multiple clocks per register 3-18
clock pins, slave 3-31
clock tree synthesis

preserving clock network 3-19
clocked_on_also attribute 3-31
clocks
IN-1
IN-1

Design Compiler Optimization Reference Manual Version D-2010.03
multiple clocks per register
optimization 3-17

unattached slave 3-31
commands 11-2

balance_buffer 3-6
characterize 3-10

-connections option 3-10
compile

-boundary_optimization 3-11
-map_effort high option 3-15

compile_ultra 2-3
create_clock 3-18, 10-4
create_generated_clock 3-18
create_multibit 3-27
find 3-26
group 3-6
group -fsm 7-7
group_path 10-4
optimize_registers 1-13
remove_isolate_ports 3-14
remove_multibit 3-28
report_auto_ungroup 4-4
report_cell 8-7
report_design 3-22, 8-7
report_fsm 7-7, 7-13
report_isolate_ports 3-14
report_multibit 3-25
report_path_group 10-5
report_port 3-22
report_resources 6-11
report_timing 3-15
report_transitive_fanout 3-19
report_wire_load 3-22
set_boundary_optimization 3-10, 3-11
set_case_analysis 3-17
set_clock_latency 3-18
set_cost_priority 10-8
set_critical_range 3-5
set_disable_timing 3-17
set_dont_touch_network 3-19, 3-20
set_dont_use 3-28
set_equal 3-10

set_fix_multiple_port_nets 3-29
set_fsm_encoding 7-5, 7-7, 7-13
set_fsm_encoding_style 7-5, 7-7, 7-13
set_fsm_minimize 7-7
set_fsm_order 7-7
set_fsm_preserve_state 7-7
set_fsm_state_vector 7-4, 7-7, 7-13
set_isolate_ports 3-11
set_logic_one 3-10
set_logic_zero 3-10
set_max_area

-ignore_tns option 3-8
set_min_library 3-22
set_multibit_options 3-26
set_operating_conditions 3-23
set_opposite 3-10
set_register_type 8-6
set_scan_configuration 8-21, 8-25
set_ungroup 3-16
set_vsdc 11-4
ungroup 3-16

compilation
top level 2-8

compilation strategy 2-11
compile-characterize-write script-recompile

2-13
how to determine 2-9
top-down hierarchical compile 2-10

compile
full 1-9
high effort 3-7
incremental 3-8
log 2-16
test-ready 8-24
variables 2-5

compile command
-auto_ungroup area option 3-4
-boundary_optimization 3-11
incompatible options of 2-8
-incremental_mapping option 2-6
limitations 2-9
-map_effort high option 3-15
IN-2
Index IN-2

Design Compiler Optimization Reference Manual Version D-2010.03
compile cost function 10-2
compile flow chart 1-10
compile log

customizing 10-10
compile_auto_ungroup_count_leaf_cells

variable 4-3
compile_auto_ungroup_override_wlm 4-3
compile_auto_ungroup_override_wlm variable

4-3
compile_delete_unloaded_sequential_cells

variable 8-9
compile_enable_register_merging variable

8-12
compile_seqmap_propagate_constants

variable 8-10
compile_seqmap_propagate_high_effort

variable 10-12
compile_ultra command 2-3
compile_variables command 2-5
compiler_log_format variable 10-10
compiles

list of variables 2-5
completely and incompletely specified FSMs

7-6
components

multibit 3-24
removing 3-28

congestion
routing 3-28

constraints
commands, list of 3-21
design rule 10-2
optimization 10-4
priorities

set_cost_priority command 10-8
violation fixing 2-8

cost calculation
capacitance 10-3
fanout 10-3
maximum delay 10-4
minimum delay 10-6

transition time 10-3
cost function 1-1, 2-1, 10-1, 10-2

design rule constraints 1-1, 2-1, 10-1, 10-2
optimization constraints 1-1, 2-1, 10-1, 10-2

create_clock command
and path groups 10-4
multiple clocks per register 3-18

create_generated_clock command
multiple clocks per register 3-18

create_multibit command 3-27
critical negative slack, defined 10-5
critical path

defined 3-15
resynthesis 3-15

critical range, defined 10-5
critical-path resynthesis 3-7

D
D latch example 12-4
D latch with asynchronous reset example 12-6
D latch with asynchronous set and reset

example 12-9
D latch with enable and asynchronous reset

example 12-17
D latch with enable and asynchronous set and

reset example 12-23
D latch with enable and asynchronous set

example 12-20
D latch with enable example 12-12
data path logic, synthesis of 3-24
datapath extraction

DC Ultra 5-10
DC Ultra datapath optimization

datapath extraction 5-10
datapath report 5-13
licenses required 5-9

default.svf file 11-2
definitions

critical path 3-15
critical range 10-5
IN-3
Index IN-3

Design Compiler Optimization Reference Manual Version D-2010.03
negative slack
critical 10-5
total 10-6
worst 10-4

delay
optimize for 3-3

delay analysis
control and report 3-23

delay cost, calculating
maximum 10-4
minimum 10-6

design rule
constraints 10-2

design rule fixing
control 2-7

design rule violations
fixing 2-9

design space
exploring speed and area 1-3

design space curve 1-4
designs

exploring design space 1-3
space curve 1-4
ungroup 3-16

DesignWare library
specifying 5-5

don’t care conditions for FSMs 7-2
dont_touch_network attribute 3-19

E
exploring design space 1-3

F
fanin gates

mapping to wide- 3-16
fanout load

cost calculation 10-3
feedthrough nets, eliminating 3-29
files

compile log 2-16
find command 3-26
finite state machine

architecture 7-3
auto encoding style 7-5
automatic flow compile process 7-9
basic description 7-2
binary encoding style 7-5
completely and incompletely specified FSMs

7-6
DC Ultra automatic compile flow 7-7, 7-10

supported commands 7-7
DC Ultra automatic methodology 7-8
design file requirements 7-8
don’t care condition 7-2
FSM 7-1
gray encoding style 7-5
Mealy machine 7-3
Moore machine 7-3
one-hot encoding style 7-5
reports 7-13
state assignment 7-2
state encoding styles 7-3, 7-5
state encodings 7-2, 7-3, 7-4
state vector 7-2, 7-3
synthesizing 7-6
verifying 7-13

fix_multiple_port_nets attribute 3-29
flatten hierarchy 3-16
flip-flops

negative edge 8-13
Formality

default.svf 11-2
set_svf command 11-2

FSM
finite state machine 7-1
optimization 1-11

fsm_auto_inferring variable 7-9
fsm_enable_state_minimization variable 7-9,

7-13
fsm_export_formality_state_info variable 7-9
IN-4
Index IN-4

Design Compiler Optimization Reference Manual Version D-2010.03
full compile 1-9

G
gated clock inference example 12-15
gate-level netlist

preventing assign statements 3-29
gray encoding style for FSMs 7-5
group command 3-6
group -fsm command 7-7
group_path command 10-4

-critical_range option 3-5

H
hdlin_infer_mux variable 6-6
hierarchical boundaries

optimize 3-11
hierarchical compile 2-10
hierarchical design

optimization strategy 2-12
hierarchy

flatten 3-16
remove 3-16

high-effort compile 3-7

I
implementation selection, synthetic library

1-13
incremental compile 3-8
incremental mapping 2-6
input port

isolation
propagating constraints 3-13
set_isolate_ports command 3-11
size_only attribute 3-12
supporting commands 3-14

L
latch-based designs

code examples
D latch with asynchronous reset, Verilog

12-7
D latch with asynchronous reset, VHDL

12-7
D latch with asynchronous set and reset,

Verilog 12-11
D latch with asynchronous set and reset,

VHDL 12-10
D latch with enable and asynchronous

reset, Verilog 12-19
D latch with enable and asynchronous

reset, VHDL 12-18
D latch with enable and asynchronous set

and reset, Verilog 12-25
D latch with enable and asynchronous set

and reset, VHDL 12-24
D latch with enable and asynchronous set,

Verilog 12-22
D latch with enable and asynchronous set,

VHDL 12-21
D latch with enable, Verilog 12-14
D latch with enable, VHDL 12-13
D latch, VHDL 12-5
SR latch, Verilog 12-3
SR latch, VHDL 12-2

libraries
multiple, using for min/max delay analyses

3-22
optimization and 1-4
vendor

multibit cells in 3-24

M
mapping

incremental 2-6
mapping optimization

control 2-5
effort levels 2-5

maximum delay, calculating cost 10-4
IN-5
Index IN-5

Design Compiler Optimization Reference Manual Version D-2010.03
Mealy finite state machine 7-3
minimum and maximum optimization 3-21
minimum and maximum timing analysis 3-21
minimum delay, calculating cost 10-6
minimum_multibit_width attribute 3-26
Moore finite state machine 7-3
multibit components

creating 3-27
removing 3-28
reporting 3-24, 3-25

multibit library cells 3-24
multibit_mode attribute 3-26
multibit_width attribute 3-28
multiple clocks per register

optimization 3-17
setting network latency 3-18

multiplexer
library cell requirements 6-7
MUX_OP cell 6-4

naming convention 6-5
multiplexing logic

Design Compiler implementation 6-4
implement conditional operations implied by

if and case statements 6-3
MUX_OP cells 6-1
preferentially map multiplexing logic to

multiplexers 6-1
SELECT_OP cells 6-1
with if and case statements 6-1

MUX_OP cell 6-4
naming convention 6-5

N
negative edge flip-flops 8-13
negative slack

ignored 3-8
nets

buffering 3-29
connected to multiple ports 3-29
feedtthrough, eliminating 3-29

heavily loaded, fixing 3-6

O
one-hot encoding style for FSMs 7-5
operating conditions

optimization 3-21
optimization

across hierarchical boundaries 3-8
all paths 3-8
area 3-3
boundary 3-8
constraints 10-4
delay 3-3
flow 1-9
flow chart 1-10
FSM 1-11
hierarchical compile 2-10
how it works 10-10
incremental 3-8
mapping effort levels 2-5
mapping sequential cells 1-7
minimum and maximum 3-21
multiple clocks per register 3-17
operating conditions 3-21
process 1-9
technology libraries and 1-4
technology-specific 1-7
timing-critical sequential cells 1-7
trials phase 10-10

optimize_registers
command syntax 1-13

output port
isolation

propagating constraints 3-13
set_isolate_ports command 3-11
size_only attribute 3-12
supporting commands 3-14

P
path groups
IN-6
Index IN-6

Design Compiler Optimization Reference Manual Version D-2010.03
and delay cost 10-5
creating 10-4
defined 10-4
listing 10-5

port
isolation, input and output 3-11

port_complement_naming_style variable 3-11

R
register

report the type 8-7
type

report for cell 8-7
report for design 8-7

register implementations 8-6
remove_isolate_ports command 3-14
remove_multibit command 3-28
report_auto_ungroup 4-4
report_cell command 8-7
report_design command 3-22, 8-7
report_design command and output example

8-7
report_fsm command 7-7, 7-13
report_isolate_ports command 3-14
report_multibit command 3-25
report_path_group command 10-5
report_port command 3-22
report_resources command 6-11
report_timing command 3-15
report_transitive_fanout command 3-19
report_wire_load command 3-22
reports

examples 8-7
finite state machine 7-13
list of 3-22
multibit component 3-24
register types

for design 8-7
resynthesis

critical path 3-15
retiming

forward example 8-32
routing congestion 3-28

S
sample scripts 2-11
scan style

selecting 8-24
specifying 8-25

scripts
compile strategy 2-11

SEQGEN
definition 1-12

sequential cells
eliminating constant output cells 8-9
optimization mapping 1-7
removing unconnected cells 8-9
timing critical optimization 1-7

set_boundary_optimization command 3-10,
3-11

set_case_analysis command 3-17
set_clock_latency command 3-18
set_cost_priority command 10-8
set_critical_range command 3-5
set_disable_timing command 3-17
set_dont_touch_network command 3-19, 3-20
set_dont_use command 3-28
set_equal command 3-10
set_fix_multiple_port_nets command 3-29
set_fsm_encoding command 7-5, 7-7, 7-13
set_fsm_encoding_style command 7-5, 7-7,

7-13
set_fsm_minimize command 7-7
set_fsm_order command 7-7
set_fsm_preserve_state command 7-7
set_fsm_state_vector command 7-4, 7-7, 7-13
set_isolate_ports command 3-11
set_logic_one command 3-10
IN-7
Index IN-7

Design Compiler Optimization Reference Manual Version D-2010.03
set_logic_zero command 3-10
set_max_area command

-ignore_tns option 3-8
set_min_library command 3-22
set_multibit_options command 3-26
set_operating_conditions command 3-23
set_opposite command 3-10
set_register_type command 8-6
set_scan_configuration command

-style option 8-21, 8-25
set_svf 11-2
set_ungroup command 3-16
set_vsdc command 11-4
slack

critical negative 10-5
total negative 10-6
worst negative 10-4

slave clock pins
setting default signal 3-31

specifying
libraries

DesignWare 5-5
scan style 8-25

SR latch example 12-2
state assignment for FSMs 7-2
state encoding styles for FSMs 7-3, 7-5
state encodings for FSMs 7-2, 7-3, 7-4
state vector of an FSM 7-2, 7-3
structured logic

synthesis of 3-24
-style option, set_scan_configuration

command 8-21, 8-25
supported commands

automatic compile flow for FSMs 7-7
synthesis of data path logic 3-24
synthesis of structured logic 3-24
synthesizing FSMs 7-6
synthetic library, implementation selection 1-13

T
technology-specific optimization 1-7
test_default_scan_style variable 8-21, 8-25
test-ready compile 8-24
timing

exploring design space 1-3
timing analysis

minimum and maximum 3-21
timing_enable_multiple_clocks_per_reg

variable 3-17
top-down hierarchical compile strategy 2-10
total negative slack, defined 10-6
transition time

cost calculation 10-3

U
ungroup command 3-16
ungrouping

automatically
compile_auto_ungroup_count_leaf_cells

4-3

V
variables

auto_ungroup_preserve_constraints 4-3
bus_multiple_separator_style 3-26
bus_range_separator_style 3-26
compile_auto_ungroup_count_leaf_cells 4-3
compile_autoungroup_override_wlm 4-3
compile_delete_unloaded_sequential_cells

8-9
compile_enable_register_merging variable

8-12
compile_log_format 10-10
compile_seqmap_enable_output_inversion

8-12
compile_seqmap_propagate_constants

8-10
IN-8
Index IN-8

Design Compiler Optimization Reference Manual Version D-2010.03
compile_seqmap_propagate_high_effort
10-12

compile_top_all_paths 2-9
for compile 2-5
fsm_auto_inferring 7-9
fsm_enable_state_minimization 7-9, 7-13
fsm_export_formality_state_info 7-9
hdlin_infer_mux 6-6
port_complement_naming_style 3-11
test_default_scan_style 8-21, 8-25

timing_enable_multiple_clocks_per_reg
variable 3-17

verification
using Formality 11-2
using third-party tools 11-4

set_vsdc command 11-4
verifying FSMs 7-13

W
worst negative slack, defined 10-4
IN-9
Index IN-9

	Preface
	Basic Concepts for Optimizing Designs
	Using DC Ultra
	Exploring the Design Space
	Optimization Phases
	Combinational Optimization
	Technology-Independent Optimization
	Mapping
	Technology-Specific Optimization

	Initial Sequential Optimization
	Final Sequential Optimization
	Local Optimizations

	Optimization Flow
	Automatic Ungrouping
	High-Level Optimization and Datapath Optimization
	Multiplexer Mapping and Optimization
	Finite State Machine Optimization
	Sequential Mapping
	Structuring and Mapping
	Auto-Uniquification
	Implementing Synthetic Parts
	Timing-Driven Combinational Optimization
	Register Retiming
	Delay Optimization
	Design Rule Fixing
	Area Optimization

	Compiling a Design
	Before You Start
	The compile_ultra Command
	The compile Command
	Controlling Mapping Optimization
	Customizing the compile Command

	Performing High-Effort Synthesis
	Performing an Incremental Compile
	Performing Test-Ready Compile
	Controlling Design Rule Fixing
	Performing a Top-Level Compile
	Using The -top Option With Other Compile Options
	Limiting Optimization to Paths Within a Specific Range
	Fixing Timing Violations For All Paths

	Choosing a Compile Strategy
	Mixing Compilation Strategies
	Using the Top-Down Hierarchical Compile Strategy
	Running a Top-Down Hierarchical Compile Strategy
	Using the Compile-Characterize-Write Script-Recompile Strategy

	Redirecting the Output of Commands
	Checking the Compile Log

	Optimization Techniques
	Optimizing for Delay
	Optimizing for Area
	Creating Path Groups
	Optimizing Near-Critical Paths
	Fixing Heavily Loaded Nets
	Performing High-Effort Compile
	Performing a High-Effort Incremental Compile
	Disabling Total Negative Slack Optimization
	Optimizing Across Hierarchical Boundaries
	Optimizing Across Specified Boundaries
	Optimizing Across All Boundaries

	Isolating Input and Output Ports
	Propagating Constants
	Enabling Critical Path Resynthesis
	Logic Duplication and Mapping to Wide-Fanin Gates
	Removing Hierarchy
	Optimizing for Multiple Clocks per Register
	Preserving the Clock Network After Clock Tree Synthesis
	Optimizing Once for Best- and Worst-Case Conditions
	Optimizing With Multiple Libraries
	Synthesizing to Multibit Components
	Reporting Multibit Components
	Finding Multibit Components
	Controlling Multibit-Component Optimization
	Inferring Multibit Library Cells From Already Mapped Designs
	Creating Multibit Components
	Removing Multibit Components
	Recompiling the Design With Multibit Components
	Controlling the Use of Multibit Library Cells

	Buffering Nets Connected to Multiple Ports
	Building a Balanced Buffer Tree
	Defining a Signal for Unattached Master Clocks

	Automatic Ungrouping
	Ungrouping of Hierarchies
	Exceptions to Automatic Ungrouping
	Preventing Automatic Ungrouping
	Reporting Ungrouped Hierarchies

	High-Level Optimization and Datapath Optimization
	Design Compiler Arithmetic Optimization
	Synthetic Operators
	Checking DesignWare Licenses
	High-Level Optimizations
	Tree Delay Minimization and Arithmetic Simplifications
	Resource Sharing
	Common Subexpression Elimination
	Sharing Mutually Exclusive Operations

	Datapath Optimization With DC Ultra
	Enabling DC Ultra Datapath Optimization
	Datapath Extraction
	Datapath Implementation
	Advanced Datapath Transformations with DC Ultra

	Reporting Resources and Datapath Blocks

	Multiplexer Mapping and Optimization
	Inferring SELECT_OPs
	Inferring MUX_OPs
	Library Cell Requirements for Multiplexer Optimization
	Optimization of Multiplexers
	Mapping to One-Hot Multiplexers
	Inferring One-hot Multiplexers
	Library Requirements for One-Hot Multiplexers
	Optimization of One-Hot Multiplexers

	Reporting MUX_OP Cells

	Optimizing Finite State Machines
	Basic Description of Finite State Machines
	General Behavior of a Finite State Machine
	Finite State Machine Architecture
	State Vector, State Encodings, and Encoding Styles
	State Vector
	State Encodings
	State Encoding Styles

	Completely and Incompletely Specified Finite State Machines

	Synthesizing Finite State Machines
	Finite State Machine Design File Requirements
	DC Ultra Automatic Methodology
	How Design Compiler Processes a Finite State Machine in the DC Ultra Automatic Flow
	The Finite State Machine DC Ultra Automatic Flow

	Verifying a Finite State Machine
	Creating Finite State Machine Reports

	Sequential Mapping
	Register Inference
	Directing Register Mapping
	Specifying The Default Flip-Flop or Latch
	Reporting Register Types
	Reporting the Register Type Specifications for the Design
	Reporting the Register Type Specifications for Cells

	Unmapped Registers in a Compiled Design
	Automatically Removing Unnecessary Registers
	Removing Unconnected Registers
	Eliminating Constant Registers

	Merging Equal and Opposite Registers
	Inverting the Output Phase of Sequential Elements
	Mapping to Falling-Edge Flip-Flops
	Resizing Black Box Registers
	Preventing The Exchange of the Clock and Clock Enable Pin Connections
	Mapping to Registers With Synchronous Reset or Preset Pins
	Performing Test-Ready Compile
	Overview of Test-Ready Compile
	Scan Replacement
	Selecting a Scan Style
	Mapping to Libraries Containing Only Scan Registers
	Mapping To The Dedicated Scan-Out Pin
	Automatic Identification of Shift Registers

	Using Register Replication to Solve Timing QoR, Congestion, and Fanout Problems

	Adaptive Retiming
	Comparing optimize_registers With compile_ultra -retime
	Adaptive Retiming Examples
	Performing Adaptive Retiming
	Controlling Adaptive Retiming
	Reporting the dont_retime Attribute
	Removing the dont_retime Attribute
	Verifying Retimed Designs

	Gate-Level Optimization
	Compile Cost Function
	Design Rules Cost Function
	Calculating Transition Time Cost
	Calculating Fanout Cost
	Calculating Capacitance Cost

	Optimization Constraints Cost Function
	Calculating Maximum Delay Cost
	Calculating Minimum Delay Cost
	Calculating Maximum Power Cost
	Calculating Maximum Area Cost

	Changing the Cost Function
	Reordering the Default Priority of Constraints
	Disabling the Cost Function
	Prioritizing Area Over Total Negative Slack

	Compile Log
	Delay Optimization
	Design Rule Fixing
	Area Recovery

	Verifying Functional Equivalence
	Using Formality
	Adjusting Optimization For Successful Verification
	Using Third-Party Formal Verification Tools

	Latch-Based Design Code Examples
	SR Latch
	VHDL and Verilog Code Examples for SR Latch
	Inference Report for an SR Latch
	Synthesized Design for an SR Latch

	D Latch
	VHDL Code for a D Latch
	Inference Report for a D Latch
	Synthesized Design for a D Latch

	D Latch With Asynchronous Reset
	VHDL and Verilog Code for a D Latch With Asynchronous Reset
	Inference Report for a D Latch With Asynchronous Reset
	Synthesized Design for a D Latch With Asynchronous Reset

	D Latch With Asynchronous Set and Reset
	VHDL and Verilog Code for a D Latch With Asynchronous Set and Reset
	Inference Report for a D Latch With Asynchronous Set and Reset
	Synthesized Design for a D Latch With Asynchronous Set and Reset

	D Latch With Enable (avoiding clock gating)
	VHDL and Verilog Code for a D Latch With Enable
	Inference Report for a D Latch With Enable
	Synthesized Design for a D Latch With Enable
	Inferring Gated Clocks
	Case 1
	Case 2

	Synthesized Design With Enable and Gated Clock

	D Latch With Enable and Asynchronous Reset
	VHDL and Verilog Code for a D Latch With Enable and Asynchronous Reset
	Synthesized Design for a D Latch With Enable and Asynchronous Reset

	D Latch With Enable and Asynchronous Set
	VHDL and Verilog Code for a D Latch With Enable and Asynchronous Set
	Synthesized Design for D Latch With Enable and Asynchronous Set

	D Latch With Enable and Asynchronous Set and Reset
	VHDL and Verilog Code for D Latch With Enable and Asynchronous Set and Reset
	Synthesized Design for D Latch With Enable and Asynchronous Set and Reset

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

