Basics of IBIS Modeling

Giuseppe Selli - UMR EMC Laboratory J. Ted DiBene II - Intel Corporation

0

Outline

≻SPICE *vs.* IBIS

≻Why IBIS ?

2

➢IBIS Output/Input Models

Simple Circuit Example

What is SPICE and IBIS?

SPICE (Simulation Program with Integrated Circuit Emphasis) is a general-purpose circuit simulation program for nonlinear dc, nonlinear transient, and linear ac analyses.

3

IBIS (*Input/Output Buffer Information Specification*) is a standard for describing the analog behavior of the buffers of digital devices using plain ASCII text formatted data.

SPICE vs. IBIS

SPICE allows analysis of complex circuit elements for signal integrity – very versatile

✤Usually very accurate

Very common

Portable: virtually every platform

SPICE vs. **IBIS**

IBIS handles large numbers of I/O circuit cells for understanding complex interaction of signal timing and interaction.

Usually computationally fast

Circuit models typically fairly simple: behavioral

Good for complex digital signal circuit analysis

5

When IBIS? -- When SPICE?

Fetures	IBIS	SPICE	
Computational Efficiency	Good	From good to poor	
Model Complexity	Usually fairly simple	Complex, but it depends	
Accuracy	From good to poor	Typically good	
Applications	Signal Integrity	Signal and power integrity	
Programs	Small number	Large number	
I/O Circuit Cells	Very large	Limited	

9

Why IBIS ?

- ➢ SPICE not suitable for large circuit
- Modeling circuit without getting proprietary information
- The first IBIS specifications were written in 1993 and Intel played a major role
- Many EDA tool vendors and companies participate to the IBIS Open Forum today

Blocks for Simple I/O Buffer

INPUT MODEL

10

OUTPUT MODEL

EMC'06, August 14th , Portland

Common Output Configuration

12

- The Push-Pull configuration driving behavior is identical to a I/O buffer for IBIS purpose [3].
- Two I/V characteristics are needed to describe this device according to the IBIS specifications, i.e., Pullup, Pulldown.
- Some models do not need all four I/V characteristics, i.e., Output Only Buffer (Pullup and Pulldown), Open Source Buffer + ESD protection (Pullup, GND Clamp and PWR Clamp).
- ➢ If the ESD protection circuit is present two diodes - the GND/PWR clamp curves are also needed.

EMC'06, August 14th , Portland

- If the ESD protection circuit is present two diodes GND/PWR clamp curves are needed as for the output model.
- The ESD protection circuit is used when the device is simulated beyond the nominal voltage conditions.

Common Features

- ➤ The GND/PWR Clamp curves are obtained in the same fashion as for the output model.
- The C_{comp} represents the capacitance associated with the transistors, the pad die and the on die interconnect: load condition at the receiver
- ➤ The parasitics associated with the package are represented through the keywords : Cpkg, Lpkg and Rpkg.

14

- •Generic I/O only buffer realized by using several NMOS/PMOS models downloaded from <u>www.mosis.org</u> and enclosed into a "component.inc" model
- The driver swings between 0 and Vdd.
- •When the input is HIGH the output is LOW and vice versa

SPICE Model

.include component.inc X_totem Ni No Nu 0 component Ccomp No 0 5pF

High Level SPICE Keywords: the NMOS and PMOS models are Level 49 HSPICE models

 $L_{pkg} \rightarrow 4nH$ $R_{pkg} \rightarrow 4m\Omega$ $C_{pkg} \rightarrow 4pF$

TL $\rightarrow 50\Omega$ & 1ns time delay R_L $\rightarrow 50\Omega$

EMC'06, August 14th , Portland

Translating SPICE into IBIS

18

- The device under test is an only output buffer
- It ≻ Pullup & Pulldown I/V tables are needed.
 - No ESD protection is considered, therefore no GND or PWR Clamp I/V tables

IBIS File : Header

Keyword	Attribute	Req/Opt
[IBIS ver]	3.1	Required
[File name]	iobuffer.ibs	Required
[File Rev]	7.0	Required
[Date]	August, 14 th 2006	Optional
[Source]	UMR EMC LAB	Optional
[Notes]	Notes for clarification	Optional
[Disclaimer]	Test Purpose	Optional
[Copyright]	UMR EMC LAB	Optional

EMC'06, August 14th , Portland

IBIS File : Component

[Component]	IOBUFFER	Required
[Manufacturer]	UMR EMC LAB	Required
[Package]	Required	
Rpkg 10m NA N		
Lpkg 0.5nH NA NA		
Cpkg 5pF NA NA	A	
[Pin] signal_na	me model_name	Required
Sout Pout	driver	

The package is described by means of a series inductance, a series resistance and shunt capacitance

EMC'06, August 14th , Portland

IBIS File : Model

[Model]	driver	Required
Model_Type	output	
C_comp	5pF NA NA	
[Temperature Range]	27 NA NA	Required
[Voltage Range]	3.3 NA NA	Required
[Pullup]		Required [model]
V I(typ) I(m	n) I(max)	
[Pulldown]		Required [model]
V I(typ) I(m	n) I(max)	

 $> C_{comp}$, Temperature and Voltage require 3 values: typical (required), min (optional) and max (optional).

EMC'06, August 14th , Portland

I/V & Switching Tables

[Ramp]						Required
dV/dt_r	1/500p	NA	NA			
dV/dt_f	1/500p	NA	NA			
[Rising Waveform]			Optional			
R_fixture	$R_{fixture} = 50$					
V_fixture	= 0.0					
Time	V(typ)	V(mi	n)	V(max)		
[Falling Waveform]					Optional	
R_fixture	$R_{fixture} = 50$					
V_fixture	= 3.3					
Time	V(typ)	V(mi	n)	V(max)		
[End]						Required

EMC'06, August 14th , Portland

24

- The behavioral model data of the active device are then enclosed into a macromodel containing other components, i.e., resistors, transmission lines, etc., and this macro-model is simulated in a IBIS simulator, e.g. such as Hyperlinx.
- > The active device is a output buffer characterized by one pin (Pout).

In Conclusion

- \succ Use SPICE when accuracy warrants it.
- ➢ Use IBIS when complexity and circuit quantity warrants it.
- ≻ Some Do Not's

27

- ✤Do not rely on behavioral models under all circumstances.
- Do not create modeling efforts without some understanding of expectations of results
- ≻ Some Do's
 - Understand the source of the models you have received.
 - Always verify models with test data.

References

[1]	IBIS Specifications available at http://www.eigroup.org/ibis/
[2]	IBIS Open Forum, "IBIS modeling cookbook for IBIS version 4.0", 2004.
[3]	Bob Ross, "IBIS present and future", 7th IEEE Workshop on Signal Propagation on Interconnects, Siena, Italy, May 11th-14th 2003
[4]	Mercedes Casamayor, "A first approach to IBIS models: what they are and how are they generated", AN-715Application Note, Analog Device.
[5]	Arpad Muranji, "Introduction to IBIS models and IBIS model making", Intel Corporation, Folsom CA, November 3rd-4th 2003.
[6]	"Validating and using IBIS files", Revision 1.0, National Semiconductor Corporation, Interface Product Group, January 2003.
[7]	Vadym Heyfitch, "What makes a better I/O driver model", International Cadence Usergroup.
[8]	Microelectronics, Millman-Grabel, McGraw-Hill, 2nd Ed. 1984
[9]	Syed B. Huq, "Understanding and using IBIS models for Signal Integrity Analysis, High Level System Electronic Conference (HLSEC)1997.

EMC'06, August 14th , Portland