
End-User License Agreement

Trademark Information

Calibre Verification User’s Manual

Software Version v9.1_5

 Calibre 2002.5

Copyright Mentor Graphics Corporation 2002.
All rights reserved.

This document contains information that is proprietary to Mentor Graphics Corporation. The original
recipient of this document may duplicate this document in whole or in part for internal business purposes
only, provided that this entire notice appears in all copies. In duplicating any part of this document, the
recipient agrees to make every reasonable effort to prevent the unauthorized use and distribution of the

proprietary information.
Portions of the regular expression text handling capabilities within Calibre are copyright 1992, 1993, and

1994 Henry Spencer

This document is for information and instruction purposes. Mentor Graphics reserves the right to make
changes in specifications and other information contained in this publication without prior notice, and the
reader should, in all cases, consult Mentor Graphics to determine whether any changes have been
made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in
written agreements between Mentor Graphics and its customers. No representation or other affirmation
of fact contained in this publication shall be deemed to be a warranty or give rise to any liability of Mentor
Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT,
EVEN IF MENTOR GRAPHICS CORPORATION HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

RESTRICTED RIGHTS LEGEND 03/97

U.S. Government Restricted Rights. The SOFTWARE and documentation have been developed
entirely at private expense and are commercial computer software provided with restricted rights. Use,
duplication or disclosure by the U.S. Government or a U.S. Government subcontractor is subject to the
restrictions set forth in the license agreement provided with the software pursuant to DFARS 227.7202-
3(a) or as set forth in subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted
Rights clause at FAR 52.227-19, as applicable.

Contractor/manufacturer is:
Mentor Graphics Corporation

8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777.

This is an unpublished work of Mentor Graphics Corporation.

Table of Contents

..xxi

...xxii

. xxiii
...xxiv
...xxiv

... 1-1

... 1-1
1-1
1-2
... 1-2
.. 1-2
... 1-3
.. 1-3
... 1-3
. 1-3

.. 2-1

... 2-1

... 2-1

.... 2-3

..... 2-7

.... 2-7
.. 2-7
... 2-8
.. 2-9
-13

.. 2-25
2-28
. 2-31
. 2-32

Table of Contents
About This Manual ..

In This Manual...
Command Line Syntax Conventions ...
Audience ...
Related Publications ...

Chapter 1
Overview..

Product Description ...
Calibre DRC / DRC-H / MT DRC-H...
Calibre LVS / LVS-H / MT LVS-H...
Calibre MGC...
Calibre RVE/QDB-H ...
Calibre Interactive...
Calibre Connectivity Interface ...
Calibre CB...
Calibre Verification Utilities...

Chapter 2
Invocation ...

Before Invocation ..
Rule File ..
Layout Database...
Source Database ..

Invocation Procedures ..
Invoking Calibre...
Calibre Command Line ...
Calibre DRC/DRC-H ...
Calibre LVS/LVS-H/MGC .. 2
Examples ..
Calibre RVE/QDB-H ...
Calibre Interactive...
Calibre CB...
Calibre Verification User’s Manual, v9.1_5 iii

Table of Contents (cont.)

Table of Contents

. 3-1

... 3-1
... 3-2
.... 3-3
... 3-4
... 3-4
.. 3-4
3-14
. 3-17
. 3-18
. 3-19
. 3-21
. 3-22
3-22
. 3-23

.. 4-1

.... 4-1
... 4-2
... 4-4
.. 4-5
... 4-7
... 4-9
4-10
.. 4-12
.. 4-13
4-14
. 4-15
4-15
. 4-16
. 4-19
.. 4-19
Chapter 3
Calibre Interactive ..

Graphical Interface Overview..
Graphical Interface Prerequisites ..
Runsets ...

Graphical User Interface Description ..
Calibre Interactive Palette ...
Calibre DRC Window..
Calibre LVS Window...
Run Directory..
Control Files..
Text Editing...

Interface to Calibre RVE ...
Connections to Layout Editors ..

Mentor Graphics Layout Editor Interfaces to Calibre....................................
Cadence Virtuoso Interface...

Chapter 4
DRC Concepts...

Layers ...
Layer Types...
Layer Operations...
Layer Definitions ...
Layer Operation Classifications..
Net-preserving Operations ..
Layer of Origin...

Rule Check Statements ...
Rule Check Comments...
Control of Empty Rule Checks ..
Check Text ..
DRC Rule Check Result Limits ...

Dimensional Check Operations ...
Secondary Keywords ..
Edge Measurement...
Calibre Verification User’s Manual, v9.1_5iv

Table of Contents (cont.)

Table of Contents

. 4-20
.. 4-25
. 4-31
. 4-34
. 4-36
. 4-36
. 4-38
. 4-39
. 4-40
.. 4-44
. 4-45
.. 4-47
4-48

. 4-48
. 4-54
. 4-60
. 4-68
4-71
-73

. 4-76
. 4-76
4-77
4-77
4-78
4-79

.. 5-1

.. 5-1
.... 5-1
.... 5-2
... 5-2
... 5-4
... 5-4
5-5
Measurement Region Construction...
Edge Cluster Generation ..
Interval Constraints for Output Suppression...
Appropriateness Criteria ...
Intersection Criteria...
Edge Breaking...
Polygon Containment Criteria...
Edge-directed Output ..
Polygon-directed Output ...

False Measurement Reduction..
Error Tolerance Setting..
Disk-based Layers ..
Specialized DRC Applications ...

Dual Database Capability..
GDSII DRC Results ..
Incremental Connectivity and Antenna Checks..
Soft Connection Checks..
GDSII Datatypes and Texttypes in Calibre..
GDSII/CIF Input Control in Calibre .. 4
Cell Renaming...
Cell Exclusion ...
Area-based Filtering in Calibre..
Flagging and Snapping Original Geometries in Calibre
Input Layout Database Magnification..
Binary Layout Database Writing ...

Chapter 5
DRC Execution..

Rule File Compilation...
Rule Check Selection..
General Execution Characteristics..

Concurrency ..
Redundancy Elimination...
Layer Operation Scheduling ...
Maximizing Capacity and Minimizing Execution Time..................................
Calibre Verification User’s Manual, v9.1_5 v

Table of Contents (cont.)

Table of Contents

.. 5-10
5-10

. 6-1

... 6-1

.... 6-3
... 6-5
.. 6-6
.... 6-7
... 6-7
... 6-8
.. 6-8
... 6-9

7-1

. 7-2
.. 7-2
.. 7-3
... 7-4
.... 7-4
.... 7-4
... 7-5
.... 7-5
.... 7-6
.... 7-6
... 7-7
7-13
. 7-13
. 7-14
. 7-14
-17

. 7-21
Polygon Segmentation ..
Polygon Segmentation in Calibre DRC ...

Chapter 6
Hierarchical DRC ...

Theory of Operation ..
DRC Data Storage ..
Flat Instantiations...
Hierarchical Operation Efficiency..
False Notch Error Suppression ...
Layer Area Printing ...
Text Mapping...
Additional Hierarchy-specific Statements..

DRC Use of Hcells..

Chapter 7
Connectivity Extraction ..

Establishing and Verifying Connectivity...
Mask Connectivity Extraction..

Connectivity and Rule File Compilation ..
Recognizing Electrical Nets ..

Shapes on a Single Layer ...
Connect ..
Connect By..
Sconnect ...
Stamp..
Ports and Pins...
Port Text and Polygon Objects ...

Transferring Logical Information to Merged Layers..
Attach Operation ...
Net Name Specification ..
Text Specification Statements...
Label Attachment .. 7
Virtual Connect Statements...
Calibre Verification User’s Manual, v9.1_5vi

Table of Contents (cont.)

Table of Contents

. 7-23
7-25

8-1

..... 8-1
.. 8-2
.. 8-3
.. 8-4
.. 8-4
... 8-5
... 8-5
..... 8-6
.. 8-6
.... 8-8

. 9-1

... 9-2
... 9-3
... 9-5
... 9-5
... 9-7
. 9-8
.. 9-8
... 9-9
. 9-10
. 9-11
9-16

. 9-18
. 9-25
9-34
. 9-40
. 9-43
Short Isolation..
Connectivity Extraction Errors and Warnings..

Chapter 8
Electrical Rule Checks..

ERC Statements and Operations..
Execution of ERC Operations in LVS..

Execution of ERC PRINT Options ..
Rule Check Selection in LVS ..

Execution of ERC operations in DRC..
Rule Check selection in DRC ...

ERC Output Files...
ERC Results Database...
ERC Auxiliary Files...

ERC Examples..

Chapter 9
Device Recognition...

Device Rule Overview...
Concepts and Terminology..
Recognition Logic ...

Layer Relations ...
Pin Relations ...
Fill-in Algorithm ...
Ill-formed Devices ...
Recognition Example ..

Property Computation..
Default Property Computations...
Built-in Language Details ..
Notational Conventions...
Data Retrieval Functions...
More Built-in Language Examples ..
Units of Measurement ...
Property Computation Structure ...
Calibre Verification User’s Manual, v9.1_5 vii

Table of Contents (cont.)

Table of Contents

9-44
. 9-52

0-1

. 10-1

.. 10-2

.. 10-4
. 10-5
.. 10-5
.. 10-7
.. 10-9
.. 10-9
10-10
0-11

10-12
10-13
10-14
10-15
10-16
10-17
10-17
10-18
10-19
0-19

10-20
10-21
0-21
10-22
10-22
10-42
10-43
10-46
10-64
0-65
Efficiency Considerations ..
Debugging Property Computations...

Chapter 10
LVS Circuit Comparison .. 1

LVS Comparison ...
Component Types...

Component Subtypes ...
Naming Conventions ...

Instance Pins and Pin Names ...
User-given Names..
Net and Instance Names...
Ports and Port Names ...
Power and Ground Nets ...

Built-in Device Types... 1
MOS Transistors ..
Capacitors...
Resistors ...
Diodes ..
Bipolar Transistors ...
Jfet Transistors ...
Inductors...
Voltage Sources ...
MS and MF Schematic Devices...

Matching of Circuit Elements... 1
Connectivity Comparison Results..
Initial Correspondence Points ..
Resolving Ambiguities... 1

Device Reduction..
Device Reduction Semantics..
Device Reduction Program Structure...
Tolerance in Device Reduction..
User-defined Property Reduction...

Device Filtering ..
Filtering Unused MOS Transistors .. 1
Calibre Verification User’s Manual, v9.1_5viii

Table of Contents (cont.)

Table of Contents

0-66
10-67

10-67
10-68
10-68
10-68

10-69
10-70
10-72
10-85
10-90
10-95
0-96
0-96
10-97
0-103
-103
-104

11-1

. 11-1

. 11-2

.. 11-3

. 11-5
. 11-6
. 11-6
.. 11-6
11-7

.. 11-7

.. 11-8

.. 11-9
11-17
11-33
Filtering Unused Bipolar Transistors ... 1
Nets ...

Global Schematic Bulk Nets ..
Usage of Power and Ground Nets..
Isolated Nets...
Pass-through Nets...

Logic Gate Recognition..
Recognition Processes..
Regular CMOS Gates...
Regular NMOS Gates ..
LDD Gates ...
Excluding Transistors...
Overriding Of Pin Swapping In Logic Gates... 1
Overriding Of Device Swapping In Logic Gates... 1
Pin Swapping ...

Tracing Properties... 1
Built-in Property Classification.. 10
Reading Built-in W/L Partner Properties... 10

Chapter 11
Spice Format..

Introduction..
Spice-like Property Syntax ..

General Spice Syntax ...
Spice Notational Conventions...
Case Sensitivity...
Continuation Character ...
General Spice Syntax Summary...
Arithmetic Expression..
Comments ..
Comment-coded Extensions...
Control Statements ...
Element Statements..
Subcircuits..
Calibre Verification User’s Manual, v9.1_5 ix

Table of Contents (cont.)

Table of Contents

. 12-1

12-1
.. 12-2
. 12-2
. 12-4
.. 12-6
. 12-6
. 12-7
. 12-9
2-12

12-20
2-24
12-24
12-26
12-26
2-29

12-29
-48
2-50
2-50

12-52
12-54
12-54
12-55
12-74
2-75

13-1

13-1
13-2

. 13-2
. 13-2
Chapter 12
Utilities ...

EDIF-to-LVS ..
Usage..
Description ..
Arguments ...
Examples ..
Untranslated EDIF Syntax ..
EDIF vs. Spice Syntax Considerations ...
EDIF-to-Spice Translation Issues ...
EDIF-to-Spice Translations ... 1
Netlist Example..

Verilog-to-LVS... 1
Description ...
Usage..
Arguments ..
Library Files ... 1
Supported Verilog Syntax ..
Using V2LVS Without a Verilog Library File .. 12
Using the –e Switch to Create LVS Box Subcircuits................................... 1
Using –i to Generate Simulation Output.. 1
Generating an xCalibre Source Template File ...

Dracula: File Conversion and User Notes ..
Converting Dracula Command Files..
Dracula User Notes ..

Compare Two GDSII Databases ..
Rules Syntax Checker... 1

Chapter 13
Hierarchical LVS ...

Hierarchical Circuit Extraction...
Hierarchical LVS Comparison ...

Pin Swappability ...
Model Names ..
Calibre Verification User’s Manual, v9.1_5x

Table of Contents (cont.)

Table of Contents

13-2
. 13-3
13-3
13-3
13-3
. 13-3
. 13-3
.. 13-6
.. 13-6
. 13-8
. 13-9
. 13-9
3-10
3-11
13-13
13-16

13-16
13-17
3-17
13-17
13-18
3-18
13-19
3-20

. 14-1

.. 14-1
14-2

. 14-2
14-3
.. 14-4
... 14-9
14-11
14-16
Connectivity Dependent Transformation...
Isolated Layout Nets ...

Hierarchical Device Recognition..
BY NET device recognition...
BY SHAPE device recognition..
Property computation: pin_net(), named_net() ...

Hierarchical Layer Operations...
Cell Pushdown..
Hcells ..

Many-Many Cell Correspondence ..
Hierarchical Pins..

Matching hcell Pins...
Trivial Pin Swappability .. 1
SRAM Bit-Cell Recognition .. 1
High-short Resolution ..

Parameterized Cells ..
Hierarchical Cell Cycles ...
Hierarchical Spice...

Dollar Signs in Cell Names.. 1
Net Names..
Ports and Port Names ...
“M” Device Representation ... 1
Cell Statistics..
Hierarchical Netlister Warnings... 1

Chapter 14
Results...

Session Transcript...
Rule File Compilation ..
Layout Data Input ...
Initialization Section ..
Executive Process...

DRC Results Database...
ASCII and Binary DRC Results Databases ...
GDSII DRC Results Database Format...
Calibre Verification User’s Manual, v9.1_5 xi

Table of Contents (cont.)

Table of Contents

4-17
14-18
14-19
14-20
4-20
4-26
4-35
4-37
14-39
4-40
14-44
4-54
4-54
14-55
4-57

14-59
4-74

-78
14-79
4-80

. 14-81
14-81
14-81
14-84
14-86
14-87
14-87
4-89
14-89

5-1

15-1
.. 15-2
15-3
Result Count Limits ... 1
Hierarchical DRC Results Database ..

DRC Summary Report..
LVS Report ...

Overall Structure—Flat .. 1
Overall Structure — Hierarchical .. 1
Overall Structure — SPICE Syntax Check.. 1
Analyzing the LVS Report... 1
Errors and Warnings ..
LVS Report Listing Conventions... 1
Overall Comparison Results ..
Errors in Names Given for Power/Ground Nets .. 1
Component Types with Non-Identical Signal Pins...................................... 1
Input Errors ..
Hierarchical Cells Forming a Cycle... 1
LVS Discrepancy Types ..
Information and Warnings ... 1
Detailed Instance Connections... 14
Unmatched Elements ...

Circuit Extraction Report.. 1
Mask Results Database ..
Cross-Reference Files...

Instance Cross-reference File...
Net Cross-reference File ..
Hierarchical Instance and Net Cross-reference Files
Source and Layout Placement Hierarchy Files ..
SVDB Header...
Circuit Extraction Report File.. 1
Binary Polygon File (BPF) Database...

Chapter 15
RVE/QDB-H and Query Server... 1

Results Viewing Environment..
Interface Prerequisites..
RVE Overview...
Calibre Verification User’s Manual, v9.1_5xii

Table of Contents (cont.)

Table of Contents

. 15-4
15-8

. 15-24
5-28
. 15-42
15-70
15-71
15-73

15-73
5-75
5-78
15-84
15-91
-143
5-179

.A-1

B-1

....B-1
..B-1

..C-1
Layout Editor Considerations ...
DRC-RVE Interface ...
Usage and Procedures ...
LVS-RVE Interface.. 1
Usage and Procedures ...

Hierarchical Query Database..
SVDB Database ...

Query Server ...
Client Context ..
Viewing, Query, and Query Instance Cells.. 1
Server-Client Communication ... 1
Commands and Queries ...
Parameter Commands ..
Calibre Connectivity Interface ... 15
Query Server Error and Failure Messages ... 1

Appendix A
Application Notes ...

Appendix B
Calibre Interactive Files..

Runset File Example...
Default Configuration...

Appendix C
V2LVS BNF..

Index

Trademark Information

End-User License Agreement
Calibre Verification User’s Manual, v9.1_5 xiii

Table of Contents

... 3-4

. 3-5

... 3-8
.. 3-13
3-19
3-22

... 4-1
... 4-2
... 4-4
. 4-10
. 4-18
. 4-20
. 4-21
4-23
. 4-25
. 4-26
. 4-27
. 4-28
4-29
4-30
.. 4-32
.. 4-33
.. 4-34
. 4-36
4-37
4-39
4-43
.. 4-44
.. 4-44
.. 6-2
... 6-4
.... 7-4
... 7-4
... 7-5
.... 7-5

List of Figures
Figure 3-1. Calibre Interactive Palette..
Figure 3-2. Calibre Interactive - DRC Window ...
Figure 3-3. Select Checks Dialog ...
Figure 3-4. Run Control Pane..
Figure 3-5. Text File Window ...
Figure 3-6. Calibre Pulldown Menu ..
Figure 4-1. Edge-polygon Relationship..
Figure 4-2. Layer Types ...
Figure 4-3. Layer Types and Data Flow in the DRC System.........................
Figure 4-4. Coincident Edge Operation..
Figure 4-5. Measured Edges in the Dimensional Check Operations..............
Figure 4-6. Generation of Output Edges...
Figure 4-7. Measurement Region Formation..
Figure 4-8. Metric Determination of Boundary Formation
Figure 4-9. Opposite Symmetric Example ...
Figure 4-10. Three-Edge Output Cluster ..
Figure 4-11. Trivial Edge Generation...
Figure 4-12. Four-Edge Output Cluster..
Figure 4-13. Point-to-point Trivial Edge Generation
Figure 4-14. Output Adjustments for the OPPOSITE Metric
Figure 4-15. Suppressing Redundant Errors (part 1)....................................
Figure 4-16. Suppressing Redundant Errors (part 2).....................................
Figure 4-17. Edge Inside and Outside Planes..
Figure 4-18. Appropriate Angles Between the Outsides of Edges.................
Figure 4-19. Edge Breaking in a Two-Layer Dimensional Check Operation .
Figure 4-20. Looking Through the Wall Problem...
Figure 4-21. Error Reduction Using Polygon-directed Output
Figure 4-22. False Notch Measurement...
Figure 4-23. False Enclosure Measurement ..
Figure 6-1. Hierarchical AND Operation ..
Figure 6-2. Hierarchical Error Suppression..
Figure 7-1. Connected Shapes on a Single Layer..
Figure 7-2. Polygons Connected Directly ..
Figure 7-3. Polygons Connected By Contact ...
Figure 7-4. Sconnect Operation...
Calibre Verification User’s Manual, v9.1_5xiv

List of Figures (cont.)

Table of Contents

.. 7-9
7-10

. 7-11
7-12
7-23
. 9-26
. 9-28
9-51
0-23
-24
10-26
10-28
10-30
10-32
0-33
0-33
10-35
10-36
10-37
10-38
10-40
10-66
10-67
0-72
0-72
-73
0-74
0-75
0-76
0-77
0-77
0-78
0-79

0-80
Figure 7-5. Port With Multiple Shapes..
Figure 7-6. Connection Through a Pin with Multiple Shapes
Figure 7-7. Connection by Means of a Must-Connect
Figure 7-8. Verifying Must-Connect Conditions...
Figure 7-9. Example of Virtual Connect Box..
Figure 9-1. Perimeter Relationships ...
Figure 9-2. Computation of Bends ...
Figure 9-3. Efficient Function Choice ...
Figure 10-1. Parallel MOS Transistor Reduction .. 1
Figure 10-2. Effective AS/AD computation with pin swapping 10
Figure 10-3. Series MOS Transistor Reduction ..
Figure 10-4. Reduce Semi-series MOS, Example ...
Figure 10-5. Split Gate Reduction ...
Figure 10-6. Reduce Split Gates, Example..
Figure 10-7. Reduce Split Gates SAME ORDER, Example 1
Figure 10-8. Parallel Bipolar Transistor Reduction....................................... 1
Figure 10-9. Series Capacitor Reduction...
Figure 10-10. Parallel Capacitor Reduction ..
Figure 10-11. Series Resistor Reduction ...
Figure 10-12. Parallel Resistor Reduction...
Figure 10-13. Parallel Diode Reduction ..
Figure 10-14. Unused MOS Transistors..
Figure 10-15. Unused Bipolar Transistor ..
Figure 10-16. LVS Logic Gate Selection, Example 1
Figure 10-17. INV - CMOS inverter ... 1
Figure 10-18. NANDn - n-input CMOS NAND ... 10
Figure 10-19. NORn - n-input CMOS NOR ... 1
Figure 10-20. AOI_3_2 - CMOS and-or-invert... 1
Figure 10-21. OAI_3_2 - CMOS or-and-invert... 1
Figure 10-22. SUPn - n-input CMOS serial up ... 1
Figure 10-23. SDWn - n-input CMOS serial down....................................... 1
Figure 10-24. SPUP_3_2 - CMOS serial-parallel up 1
Figure 10-25. SPDW_3_2 - CMOS serial-parallel down.............................. 1
Figure 10-26. SMPn, SMNn, SMn - series of n MP, MN, or M devices 1
Figure 10-27. SPMP_3_2, SPMN_3_2, SPM_3_2 - CMOS series-parallel
Calibre Verification User’s Manual, v9.1_5 xv

List of Figures (cont.)

Table of Contents

10-81
re...

10-84
0-85
-85
0-86
0-86
0-87
0-88
0-89
0-90
0-92
10-94
0-95
12-3
2-25
3-11
3-11
3-13
14-12
4-72
5-4
15-9
5-23
5-31
5-41
5-46
15-47
5-48
5-49

15-51
5-63
5-76
structure ..
Figure 10-28. SPMP((2+1+1)*1) - CMOS High Level Series-Parallel Structu
10-83
Figure 10-29. SPMN(((3*1)+2)*(2+2)) - CMOS High Level Series-Parallel
Structure..
Figure 10-30. INV - NMOS inverter ... 1
Figure 10-31. NANDn - n-input NMOS NAND... 10
Figure 10-32. NORn - n-input NMOS NOR ... 1
Figure 10-33. OAI_3_2 - NMOS OAI .. 1
Figure 10-34. SDWn - n-input NMOS serial-down 1
Figure 10-35. SPDW_3_2 - NMOS serial-parallel down.............................. 1
Figure 10-36. SMDn, SMEn - series of n MD or ME devices 1
Figure 10-37. SPMD_3_2, SPME_3_2 - NMOS series-parallel structure.... 1
Figure 10-38. LDD AOI_3_2 gate... 1
Figure 10-39. SLDDP3 gate ..
Figure 10-40. SPMN-LDDN(D)_3_1 mixed gate ... 1
Figure 12-1. E2LVS Flow ...
Figure 12-2. V2LVS Flow... 1
Figure 13-1. Trivial Pin Swappability ... 1
Figure 13-2. SRAM Bit-cell .. 1
Figure 13-3. Carrying pin swappability up the hierarchy.............................. 1
Figure 14-1. ASCII DRC results database (sample)......................................
Figure 14-2. Split Gate Property Ratio Error... 1
Figure 15-1. Calibre RVE/QDB-H Data Flow Diagram 1
Figure 15-2. DRC-RVE Session Window...
Figure 15-3. DRC-RVE Setup Options ... 1
Figure 15-4. LVS-RVE Session Window.. 1
Figure 15-5. LVS-RVE Setup Options.. 1
Figure 15-6. LVS-RVE Browse Instances Dialog... 1
Figure 15-7. Query Layout Nets..
Figure 15-8. Net Info Browser... 1
Figure 15-9. Query Location Dialog ... 1
Figure 15-10. Query Source Nets Dialog ..
Figure 15-11. Spice Netlist File Viewer .. 1
Figure 15-12. Top Cell A... 1
Calibre Verification User’s Manual, v9.1_5xvi

List of Figures (cont.)

Table of Contents

5-77

15-77
5-78
Figure 15-13. Viewing and Query Cells are both A...................................... 1
Figure 15-14. Viewing Cell is A, Query Cell is B,
Query Instance is X2 ..
Figure 15-15. Viewing and Query Cells are both B 1
Calibre Verification User’s Manual, v9.1_5 xvii

Table of Contents

. 2-2
2-2
.... 2-3
..... 2-7
3-33
... 8-1
.... 8-2
. 9-18
.. 9-27
9-28
9-43
. 9-62
0-11
10-12
10-14
10-14
10-15
10-16
10-17
10-18
10-18
11-5
11-17
11-20
11-22
11-24
11-26
11-28
11-30
11-33
11-34
1-37

12-33
13-14
14-45

List of Tables
Table 2-1. DRC/DRC-H — Required SVRF Rule File Statements
Table 2-2. LVS/LVS-H/MGC — Required SVRF Rule File Statements
Table 2-3. Layout Database Formats ...
Table 2-4. Source Database Formats ..
Table 3-1. Calibre Interactive Variables Summary ...
Table 8-1. ERC Specification Statements ..
Table 8-2. ERC Operations ..
Table 9-1. Built-In Language Statements ...
Table 9-2. Perimeter Functions ..
Table 9-3. Built-in Functions ..
Table 9-4. Value Array Listing ..
Table 9-5. Property Specification Error Messages ...
Table 10-1. Built-in Device Types .. 1
Table 10-2. MOS Transistor Required Pin Names ..
Table 10-3. Capacitor Required Pin Names ..
Table 10-4. Resistor Required Pin Names ...
Table 10-5. Diode Required Pin Names ..
Table 10-6. Bipolar Transistor Required Pin Names
Table 10-7. Jfet Transistor Required Pin Names ...
Table 10-8. Inductor Required Pin Names ..
Table 10-9. Voltage Source Required Pin Names ...
Table 11-1. LVS Spice Netlist Notational Conventions
Table 11-2. Resistor Element ...
Table 11-3. Capacitor Element ...
Table 11-4. Inductor Element ..
Table 11-5. Junction Diode Element ..
Table 11-6. BJT Element ..
Table 11-7. JFET Element ..
Table 11-8. MOSFET Element ...
Table 11-9. Voltage Source Element ..
Table 11-10. Subckt Statement ...
Table 11-11. Subcircuit Call ... 1
Table 12-1. Power Signal Pin Translation ...
Table 13-1. High-shorted Pin Resolution Examples
Table 14-1. Primary Messages ..
Calibre Verification User’s Manual, v9.1_5xviii

List of Tables (cont.)

Table of Contents

14-46
14-49

14-54
14-55
4-74
5-10

5-11
5-14
-17
5-22

5-33
-35

5-36
5-38
5-40
15-64
15-73
5-85
15-91

15-98
5-102
5-106
5-113
5-117
5-133
5-141
5-146
5-159
5-169
5-179
5-181
Table 14-2. Secondary Messages- Errors ..
Table 14-3. Secondary Messages- Warnings ...
Table 14-4. Power/Ground Net Errors ...
Table 14-5. Input Errors ..
Table 14-6. Information and Warnings ... 1
Table 15-1. Help Pulldown Menu Commands .. 1
Table 15-2. DRC-RVE File Pulldown Menu Commands 1
Table 15-3. DRC-RVE View Pulldown Menu Commands 1
Table 15-4. DRC-RVE Highlight Pulldown Menu Commands 15
Table 15-5. DRC-RVE Setup Pulldown Menu Commands 1
Table 15-6. LVS-RVE File Pulldown Menu Commands 1
Table 15-7. LVS-RVE View Pulldown Menu Commands 15
Table 15-8. LVS-RVE Layout Pulldown Menu Commands 1
Table 15-9. LVS-RVE Source Pulldown Menu Commands 1
Table 15-10. LVS-RVE Setup Pulldown Menu Commands 1
Table 15-11. Spice Browser Menu Items ..
Table 15-12. Client Table ...
Table 15-13. Communication and Control Commands 1
Table 15-14. Parameter Commands ...
Table 15-15. Cell Query Commands ...
Table 15-16. Browse Pseudo or Deviceless Cells Commands 1
Table 15-17. Cell Query Placement Commands .. 1
Table 15-18. Query Port Commands .. 1
Table 15-19. Query Net Commands ... 1
Table 15-20. Query Device Commands .. 1
Table 15-21. Query Rule File Commands .. 1
Table 15-22. Layout Netlist Generation Commands 1
Table 15-23. Annotated GDSII Generation Commands 1
Table 15-24. Cross Reference File Generation Commands 1
Table 15-25. Error Messages .. 1
Table 15-26. Failure Messages .. 1
Calibre Verification User’s Manual, v9.1_5 xix

List of Tables (cont.)

Table of Contents
Calibre Verification User’s Manual, v9.1_5xx

rify
set

ation
ion,
About This Manual

This manual contains full functionality updates through version 9.1_4 of the
Calibre Verification applications. For later functionality, see theCalibre
Verification Release Notes.

This document is theCalibre Verification User’s Manual, which explains the
concepts and use of the Calibre Verification toolset. You use this toolset to ve
the physical and electrical integrity of IC designs. The Calibre Verification tool
consists of:

*Includes multi-threaded processing capability.

This application uses Adobe Acrobat Reader as its online help and document
viewer. Online help requires installing the Acrobat Reader. For more informat
refer to the section, “Setting Up Online Manuals and Help” in Using Mentor
Graphics Documentation with Acrobat Reader.

• Calibre DRC • Calibre LVS

• Calibre DRC-H* • Calibre LVS-H*

• Calibre MGC • Calibre RVE/QDB-H and
Query Server
Calibre Verification User’s Manual, v9.1_5 xxi

In This Manual About This Manual

or

s)

r
e

l

f

In This Manual
This manual contains the following chapters:

• Chapter 1,Overview describes Calibre Verification tools and utilities.

• Chapter 2,Invocationdescribes file requirements and invocation syntax f
Calibre Verification tools.

• Chapter 3,Calibre Interactivedescribes the graphical user interfaces (GUI
that assist in the invocation of Calibre Verification applications.

• Chapter 4,DRC Concepts describes concepts of Calibre DRC tools: laye
specification, rule checks, dimensional check operations, and databas
manipulation.

• Chapter 5,DRC Execution describes processes that Calibre DRC tools
perform.

• Chapter 6,Hierarchical DRC describes concepts specific to hierarchical
Calibre DRC tools.

• Chapter 7,Connectivity Extraction describes the connectivity extraction
module used by the Calibre Verification toolset.

• Chapter 8,Electrical Rule Checks describes concepts specific to electrica
rule check applications.

• Chapter 9,Device Recognition describes the concepts and terminology o
device recognition and the built-in language used to define devices.

• Chapter 10,LVS Circuit Comparison describes concepts of Calibre LVS
tools including; connectivity comparison, components and names, and
device reduction.

• Chapter 11,Spice Format describes the Spice netlist syntax and how
Calibre LVS interprets the data.
Calibre Verification User’s Manual, v9.1_5xxii

About This Manual Command Line Syntax Conventions

,

B-H.
• Chapter 12,Utilities describes input requirements, invocation, and
procedures for EDIF-to-LVS, Verilog-to-LVS, Dracula to SVRF file
converter, GDSII database comparison, and rules syntax checker.

• Chapter 13,Hierarchical LVS describes concepts specific to hierarchical
Calibre LVS tools.

• Chapter 14,Results describes the Calibre Verification transcripts, reports
and results output.

• Chapter 15,RVE/QDB-H and Query Server describes the input
requirements, usage, procedures, and commands for Calibre RVE/QD

• Appendix A,Application Notes lists the available Application Notes and
how to access them.

• Appendix B,Calibre Interactive Files shows examples of files used with
Calibre Interactive.

• Appendix C,V2LVS BNF shows the V2LVS binary notation format.

Command Line Syntax Conventions
The notational elements for command line syntax are as follows:

Standard Standard font indicates literal text. This text should be entered
exactly as shown.

Bold A bold font indicates a required argument.

[] Square brackets enclose optional arguments (in command line
syntax only). Do not enter the square brackets.

Italic An italic font indicates a user-supplied argument.

{ } Braces enclose arguments to show grouping. Do not enter the
braces.
Calibre Verification User’s Manual, v9.1_5 xxiii

Audience About This Manual

ot

e.

ain

les.

le
| A vertical bar indicates an either/or choice between items. Do n
enter the vertical bar.

… An ellipsis follows an argument that may appear more than onc
Do not enter the ellipsis.

Audience
This manual addresses two basic audiences, as determined by use of the m
component of the Calibre Verification toolset—therule file:

• Users: Typically, IC Layout Engineers/Specialists who use existing rule
files with the verification tools to check the design of an IC layout.
Sometimes users also write the rule file.

• Programmers: Persons whowrite rule files. Often programmers are
members of a support group whose task is to write and maintain rule fi
Sometimes programmers are also users of the verification tools.

The primary audience for this manual isusers of the Calibre Verification toolset.
However, programmers will find the information in this manual helpful. Rule fi
programming is outside the scope of this manual. For information on rule file
creation and rule file operation, refer to the Standard Verification Rule Format
(SVRF) Manual.

Users of this manual should have knowledge of IC layout techniques and
procedures, and the data formats that are being used.Knowledge of verification
techniques is not required.

Related Publications
Calibre Verification Release Notes — contains information on new or changed
functionality specific to the Calibre DRC/DRC-H, Calibre LVS/LVS-H,
Calibre RVE and Calibre Interactive toolsets.
Calibre Verification User’s Manual, v9.1_5xxiv

About This Manual Related Publications

,

ary

are

x
ging

ate,
cribed.

ey
r your

ol.

t

ty
Configuring and Licensing Calibre/xCalibre Tools Guide—contains information
on system configuration and licensing information for the Calibre Verification
Calibre RET, and xCalibre toolsets.

Calibre LITHO Commands Release Notes — contains information on new or
changed functionality specific to the Calibre RET toolset and includes a summ
of the defect reports that have been addressed by the current release. As
appropriate, significant changes to the documentation since the last release
also described.

Calibre RET User's Manual — describes the prerequisites, key concepts, and
procedures for Calibre OPCpro, ORC, PRINTimage, PSMgate.

Calibre RET Reference Manual— a dictionary style reference. It contains synta
and descriptions of commands, technology setup file keywords, and edge tag
keywords that are shared by these products: Calibre WORKbench, Calibre
OPCpro, Calibre ORC, Calibre PRINTimage, Calibre PSMgate.

Calibre WORKbench Release Notes — contains information on new or changed
functionality specific to Calibre WORKbench and includes a summary of the
defect reports that have been addressed by the current release. As appropri
significant changes to the documentation since the last release are also des

Calibre WORKbench User’s Manual — describes the optical and process
modeling tool, Calibre WORKbench. It describes the Calibre WORKbench k
concepts and procedures to develop accurate optical and process models fo
specific manufacturing process.

Using the xCalibre-H Tool — contains key concepts, input requirements, and
invocation syntax related to the xCalibre-H hierarchical parasitic extraction to

Using the xCalibre PX-C/PX-RC Tool — contains key concepts, input
requirements, and invocation syntax related to the xCalibre PX-C/PX-RC fla
parasitic extraction tool.

xCalibre Release Notes— contains information on new or changed functionali
specific to the xCalibre PX-C/PX-RC and xCalibre-H toolsets.
Calibre Verification User’s Manual, v9.1_5 xxv

Related Publications About This Manual

.

d
olset
nce

 by

ding
ull-
Using RC-Delay and RC-Reduction — describes the input requirements,
invocation usage, and concepts for the RC Delay and RC Reduction toolsets

Using the xCalibrate Rule File Generator — contains key concepts, process an
modeling descriptions, procedures, and reference information that xCalibre to
users use for calibration, validation, and generation of SVRF rule file capacita
specification statements.

Standard Verification Rule Format (SVRF) Manual— contains key concepts and
reference information about rule file statements and operations that are used
Calibre, xCalibre, and ICverify applications.

Using Mentor Graphics Documentation with Acrobat Reader— describes setting
up and using the Mentor Graphics Corporation-supplied Acrobat Reader for
online viewing of Mentor Graphics PDF-based documentation and help. The
manual contains procedures for using Mentor Graphics documentation, inclu
set up for online manuals and help, opening documents, and implementing f
text searches. Also included are tips on using Reader.
Calibre Verification User’s Manual, v9.1_5xxvi

the
t.

ical

nd

,

t

Chapter 1
Overview

This chapter introduces the Calibre Verification toolset. It describes each of
Calibre verification tools, the utilities available, and the licensing environmen
Refer to theConfiguring and Licensing Calibre/xCalibre Tools Guidefor details
on installing, configuring, and licensing Calibre products.

Product Description
The Calibre Verification toolset assists you in verifying the physical and electr
integrity of IC designs.

The Calibre Verification tools operate on rule files written in Standard
Verification Rule Format (SVRF). Rule files can consist of design rule (DRC) a
electrical rule (ERC) checks, layout versus schematic (LVS) device and
connectivity checks, and lithography statements for the Calibre Resolution
Enhancement Technologies (RET) applications. For information about SVRF
refer to theStandard Verification Rule Format (SVRF) Manual. For information
about the Calibre RET applications, refer to the Calibre RET User's Manual.

The Calibre Verification tool set consists of Calibre DRC/DRC-H, Calibre
LVS/LVS-H, Calibre MGC, Calibre RVE/QDB-H, Calibre Interactive, Calibre
Connectivity Interface, Calibre CB and utilities which are described below.

Calibre DRC / DRC-H / MT DRC-H

TheCalibre DRC/DRC-Htools perform physical verification of integrated circui
designs in flat, hierarchical, and multi-threaded configurations:

• Flat—Calibre DRC performs design rule checking by reading the input
layout database flat and operating on the resulting geometries.
Calibre Verification User’s Manual, v9.1_5 1-1

Product Description Overview

es,
nt of

e

g.

.
 per

on

e

r

• Hierarchical—Calibre DRC-H performs design rule checking
hierarchically, which minimizes redundant processing. It stores, analyz
and processes data once per cell instead of once for every flat placeme
the cell.

• Multi-threaded—This configuration of Calibre DRC-H allows you to tak
advantage of multiple CPUs.

Calibre LVS / LVS-H / MT LVS-H

TheCalibre LVS/LVS-H tools compare layout versus schematic in flat and
hierarchical configurations:

• Flat—Calibre LVS performs flat layout versus schematic netlist checkin

• Hierarchical—Calibre LVS-H performs hierarchical layout versus
schematic netlist checking, optimizing the process due to the hierarchy
Like Calibre DRC-H, it also stores, analyzes, and processes data once
cell instead of once for every flat placement of the cell.

• Multi-threaded—This configuration of Calibre LVS-H allows you to take
advantage of multiple CPUs.

Calibre MGC

TheCalibre MGCtool compares layout versus schematic in the flat configurati
only. Calibre MGC allows you to use the Mentor Graphics EDDM Design
Viewpoint.

Calibre RVE/QDB-H

Calibre RVE/QDB-H is a licensed query database and graphical user interfac
that allows you to investigate, debug, and highlight Calibre LVS/LVS-H
discrepancies and Calibre DRC/DRC-H errors. You can use either the Mento
Graphics ICgraph, Cadence Virtuoso, or Seiko System SX9000 layout editor
environments to view results.
Calibre Verification User’s Manual, v9.1_51-2

Overview Product Description

is

et.
-

e
and
cess
g).

S

t

e

re
The results viewing environment (RVE) is the graphical user interface. QDB-H
the hierarchical query database accessed by query server commands, which
returns requested data about a design. RVE uses the query server to return
connectivity information.

Calibre Interactive

Calibre Interactiveis a licensed user interface environment for the Calibre tool s
It can be invoked from standalone Calibre, through ICgraph, or through third
party layout editors such as Cadence Virtuoso.

Calibre Connectivity Interface

TheCalibre Connectivity Interface (CCI) is a set of licensed functionality
associated with the query server. CCI is designed to enable conversion of th
Calibre LVS SVDB results database into standards-based file formats (GDSII
Spice) that can be tailored for and used by downstream tools that need to ac
LVS extraction and comparison results (for example, backannotated netlistin

Calibre CB

Calibre Cell/Block is a license package consisting of flat Calibre DRC and LV
verification tools, Calibre Interactive, Calibre RVE, and Query Server. It is
intended for interactive block verification using a variety of layout editors.

Calibre Verification Utilities

The Calibre Verification toolset comes with the following utility programs tha
increase the capabilities of the Calibre toolset:

• EDIF-to-LVS. EDIF-to-LVS (E2LVS) is a converter that translates an
EDIF structural netlist into a Spice-like netlist for use as input to Calibr
LVS/LVS-H.

• Verilog-to-LVS. Verilog-to-LVS (V2LVS) is a converter that translates a
Verilog structural netlist into a Spice-like netlist for use as input to Calib
LVS/LVS-H.
Calibre Verification User’s Manual, v9.1_5 1-3

Product Description Overview

at

lts
• Dracula: File Conversion and User Notes. The Dracula converter allows
you to convert a Dracula rule file into a Standard Verification Rule Form
rule file.

• Compare Two GDSII Databases. The Compare GDS utility allows you to
compare two GDSII databases. This utility produces a ASCII DRC resu
database based on a layer-by-layer analysis.
Calibre Verification User’s Manual, v9.1_51-4

e
er

nts
out
.

F)
RF
Chapter 2
Invocation

This chapter describes the file requirements and invocation procedures for th
Calibre Verification toolset. For similar information on the utility programs, ref
to chapter12, “Utilities”.

Before Invocation
Ensure your Calibre installation and configuration are correct, including
installation of all applicable licenses. See theConfiguring and Licensing
Calibre/xCalibre Tools Guidefor details.

Before you invoke a Calibre Verification tool, the following data must exist:

• Rule file

• Layout database

• Source database, as applicable

Rule File

Except for invocation arguments on the command line, rule fileSpecification
Statementscontrol Calibre verification operations. These specification stateme
describe the overall “environment” for Calibre tools, such as describing the lay
and source databases, and specifying where to store the results and reports
Specification statements also guide internal heuristics.

All Calibre rule files are written in the Standard Verification Rule Format (SVR
language and are compatible with all Calibre, xCalibre and ICverify tools. SV
is case-insensitive by default.
Calibre Verification User’s Manual, v9.1_5 2-1

Before Invocation Invocation

tailed

s.

ys-
Required statements

The following tables show the specification statements required for Calibre
DRC/DRC-H, Calibre LVS/LVS-H, and Calibre MGC. Each table shows the
names of the required statements, and a description of the statement. For de
descriptions of these statements, refer to theStandard Verification Rule Format
(SVRF) Manual.

Table2-1 shows the required rule file statements for Calibre DRC application

Table2-2 shows the required rule file statements for Calibre LVS and Calibre
MGC applications.

1The Layout Primary and Source Primary statements are not required if your Layout System and Source S
tem statements are set to Spice.

Table 2-1. DRC/DRC-H — Required SVRF Rule File Statements

Statement Purpose

Layout System Specifies the format of the layout data.

Layout Path Specifies the location of the layout data.

Layout Primary Specifies the top-level cell within the layout data.

DRC Results Database Specifies where to save the results.

Table 2-2. LVS/LVS-H/MGC — Required SVRF Rule File Statements

Statement Purpose

Layout System Specifies the format of the layout data.

Layout Path Specifies the location of the layout data.

Layout Primary1 Specifies the top-level cell within the layout data.

Source System Specifies the format of the source data.

Source Path Specifies the location of the source data.

Source Primary1 Specifies the top-level cell within the source data.

LVS Report Specifies where to save the report
Calibre Verification User’s Manual, v9.1_52-2

Invocation Before Invocation

e one

ust

ry
el

y
t
le

ns

d

Layout Database

A layout database contains the geometric description of a circuit. Table2-3shows
the allowed database formats. For a given toolset, the layout database must b
of the following system formats:

CIF Database Format

When the layout database format is CIF (Caltech Intermediate Form), you m
specify the rule fileLayout Path andLayout Primary specification statements.
Layout Path specifies the pathname to the CIF symbol file, and Layout Prima
specifies the top-level layout cell name within the database—only the top-lev
layout cell and the cells below it in the layout hierarchy are processed.

The Layout Path statement may be specified with multiple file names and an
number of times. This facilitates reading in multiple databases. Multiple inpu
databases are treated as if all symbol definitions are embedded in the first fi
specified. Each input file is expected to be syntactically complete.

The original Mead/Conway BNF is followed except for the following extensio
and limitations:

• The user extension command “9” immediately following a “DS” comman
will define the cell name associated with the symbol number.

Table 2-3. Layout Database Formats

System Format DRC DRC-H LVS LVS-H MGC

CIF X X X X X

GDSII Stream X X X X X

Spice X X X

ASCII X X X

Binary X X X

Cnet database X X

V8.x Eddm X
Calibre Verification User’s Manual, v9.1_5 2-3

Before Invocation Invocation

d as
g
icit

s

le

t

y
t

t:
• Implicit commands “P”, “B”, “R”, “W”, “C”, and any implicit user
extension commands are not processed. An implicit command is define
one outside of “DS” … “DF”. A warning or error (depending on the settin
of The Layout Error on Input specification statement) is issued for impl
non-user-extension commands.

• Commands “R” (round flash) and “DD” (definition delete) are not
processed.

• User extension commands “4N”, “94”, “4M”, and “4X” are interpreted a
text objects with the following syntax:

4N/94 string sinteger sinteger
4M string integer point point string
4X string integer point integer string string

• CIF layer names must be resolvable (that is, defined) in the rule file.
Objects will not be added to unresolvable CIF layers. As an example ru
file definition using an alias:

LAYER METAL1 M1// I really want to use the name METAL1.
LAYER M1 12// The way it’s defined in the CIF file.

GDSII Layout Database Format

When the layout database format is GDSII (Layout System GDSII), you mus
specify the pathname to the database in aLayout Pathspecification statement, and
you must identify the top-level cell in aLayout Primary specification statement—
only the top-level layout cell and the cells below it in the layout hierarchy are
processed.

The Layout Path statement may be specified with multiple file names and an
number of times. This facilitates reading in multiple databases. Multiple inpu
databases are treated as if all structure records are embedded in the first file
specified. Each input file is expected to be syntactically complete.

The following GDSII records are processed by the Calibre Verification toolse

HEADER BGNLIB LIBNAME UNITS
Calibre Verification User’s Manual, v9.1_52-4

Invocation Before Invocation

ords
g

ies

as a
g

tal
The Calibre verification tools can process and treat BOX and BOXTYPE rec
as BOUNDARY and DATATYPE records, respectively, by placing the followin
statement in the rule file:

LAYOUT PROCESS BOX RECORDS YES

The default is to not process BOX and BOXTYPE records.

You can also specify the layout depth for geometries via the optional rule file
Layout Depthspecification statement. ALL (the default) specifies that geometr
are read from the top-level cell to the bottom of the hierarchy. PRIMARY
specifies that geometries are read from the top-level cell only.

ASCII Layout Database Formats

When the layout database format is ASCII (Layout System ASCII), it appears
set of polygon files in the form icv_data_n, wheren represents the correspondin
drawn layer number. ASCII databases are user-created.

The ASCII format for a polygon file is simply a list of polygons where each
polygon is a vertex count followed by the vertices. More precisely:

<ascii polygon file> -> WS* [<polygon> WS+ [... <polygon>]] WS*
<polygon> -> <vertex count> WS+ <vertex> WS+ <vertex> [... WS+
<vertex>]

ENDLIB BGNSTR STRNAME ENDSTR

BOUNDARY PATH PATHTYPE WIDTH

BGNEXTN ENDEXTN XY COLROW

LAYER DATATYPE SREF AREF

SNAME TEXT TEXTTYPE STRING

STRANS MAG ANGLE ENDEL

Note

GDSII boundaries and paths with zero vertices will generate a fa
read error.
Calibre Verification User’s Manual, v9.1_5 2-5

Before Invocation Invocation

ne or
en by
its. A

flat

ars

nsure
o

<vertex count> -> positive integer
<vertex> -> <x> WS+ <y>
<x>, <y> -> positive or negative integer

WS* represents zero or more whitespace characters and WS+ represents o
more whitespace characters. The number of vertices for each polygon is giv
the <vertex count> field. The polygon vertices are expressed in database un
two-vertex polygon is understood to represent an orthogonal rectangle.

The ASCII database format does not support text. Text will only be read from
Text specification statements in the rule file. Also, this format is used only by
Calibre DRC applications; it isnot used by Calibre DRC-H.

Binary Layout Database Formats

When the layout database format is binary (Layout System BINARY), it appe
as a set of polygon files in the form icv_data_n, wheren represents the
corresponding drawn layer number.

The binary layout database format allows you to compare two databases to e
database integrity. For instance, you can compare two GDSII databases, tw
MGC databases, or a GDSII database and MGC database.

The following BNF summarizes the binary polygon format:

<bpf file> -> <bpf record> [... <bpf record>] EOF

<bpf_record> -> <node record> | <non-node record>

<node record> -> <node vertex count> <node number> <vertices>
<non-node record> -> <vertex count> <vertices>

<node vertex count> -> <short16 with MSB set>
<vertex count> -> <short16 with MSB unset>
<vertices> -> <vertex> [... <vertex>]

<vertex> -> <x> <y>

<x> -> <int32>
<y> -> <int32>
Calibre Verification User’s Manual, v9.1_52-6

Invocation Invocation Procedures

o
e

rsus

ts:

to

e-

E

<node_number> -> <int32>

Source Database

A source database contains the reference information of a circuit. This is als
called a source schematic or source netlist. Table2-4 shows the allowed databas
formats.

You must use a source database (schematic or netlist) when doing layout ve
schematic checks. TheSource System statement identifies the reference to be
compared. The source database can be in one of the following system forma

Calibre supplies two utilities that convert Verilog and EDIF structural netlists in
a Spice-like netlist format for use with Calibre LVS applications.

• EDIF-to-LVS (E2LVS)—translates an EDIF structural netlist into a Spic
like netlist.

• Verilog-to-LVS (V2LVS)—translates a Verilog structural netlist into a
Spice-like netlist.

Invocation Procedures

Invoking Calibre

Before you invoke a Calibre Verification tool, you must first set the MGC_HOM
environment variable to the location of your Mentor Graphics tree. To set
MGC_HOME and invoke a Calibre Verification tool, follow the procedures
below.

Table 2-4. Source Database Formats

System Format LVS LVS-H MGC

Spice X X X

Cnet database X X

V8.x Eddm X
Calibre Verification User’s Manual, v9.1_5 2-7

Invocation Procedures Invocation

.

Setting the Environment Variable

1. In a C shell window, enter:

setenv MGC_HOME path_to_mgc_tree

In a Bourne or Korn shell window, enter:

MGC_HOME=path_to_mgc_tree

export MGC_HOME

2. In either type of shell window, enter:

echo $MGC_HOME

This verifies the location of your Mentor Graphics tree that you just set

Starting Calibre

In the shell window you are using, enter:

$MGC_HOME/bin/calibre options

For information about the options you can set, refer to the section “Calibre
Command Line” below.

Calibre Command Line

This section describes the following Calibre verification tools command line
options.

• Calibre DRC/DRC-H

• Calibre LVS/LVS-H/MGC

• Calibre RVE/QDB-H

• Calibre Interactive
Calibre Verification User’s Manual, v9.1_52-8

Invocation Invocation Procedures

se
DRC

e
ult
ping

SII

se.
unt

e.

u do
ion:

yers.
Calibre DRC/DRC-H

Usage

calibre { -drc [-writedatabase][-cb]
|| -drc -hier [-turbo [number_of_processors]]
[-turbo_litho [number_of_processors]]
[-turbo_all]
}
[-nowait] [-wait n] [-64]
rule_file_name

Description

Calibre DRC/DRC-H performs either flat (calibre -drc) or hierarchical
(calibre -drc -hier) design rule checking.

Calibre DRC performs traditional design rule checking by reading the databa
flat and operating on the resultant flat geometries. You can also use Calibre
to perform binary layout translation by using -writedatabase. Binary layout
translation allows the input to be used with some third-party tools.

Calibre DRC-H performs hierarchical design rule checking by maintaining th
database hierarchy to reduce processing time, memory usage, and DRC res
counts. Calibre DRC-H imposes no design restrictions on geometries overlap
cell placements, or overlaps of cell placements.

For accepted database formats refer to the section “Layout Database” above.

When you use Calibre DRC-H for mask preparation, you should output a GD
DRC results database (see alsoDRC Check Map in theSVRF Manual). For
general design rule checks, you should output an ASCII DRC results databa
You should follow these guidelines since Calibre DRC-H requires a large amo
of internal overhead to generate a GDSII DRC results database.

You can useRVE/QDB-H and Query Serverto analyze the DRC results databas
If you use Mentor Graphics IC Station, you can load a GDSII DRC results
database into IC Station for interactive debugging.

Both Calibre DRC and Calibre DRC-H use the same rule file. This means yo
not need to add, remove, or modify any statements, with the following except
If you include aLayer Directoryspecification in the rule file for a Calibre DRC-H
run, Calibre DRC-H issues a warning since it does not support disk-based la
Calibre Verification User’s Manual, v9.1_5 2-9

Invocation Procedures Invocation

cks

H.

t.

f

sets
cuted

is
es is
When you perform DRC checking, Calibre selects and runs all DRC rule che
by default. You can override this by using aDRC Select Check(see alsoDRC
Unselect Check) specification statement to run a subset of the rule checks.

Table2-1 shows the required specification statements for Calibre DRC/DRC-

Arguments

To display help information, enter either of the following commands (without
arguments):

calibre -drc

calibre -drc -hier

• [-drc | -drc -hier]

This switch selects the type of DRC to run. Possible values are:

-drc selects flat DRC checking.

-drc -hier selects hierarchical checking.

• -writedatabase (Calibre DRC only)

This switch translates a GDSII layout database into binary polygon forma
Calibre performs no rule checking in this mode.

Calibre writes all processed geometric data (driven by the rule file) to the
current directory as binary polygon files. These files are equivalent to the
binary layout database input format. The name of each file is in the form o
icv_data_n, wheren is the layer number.

The binary polygon files include the simple layers and their geometric sub
that would have been read from the database if the check set had been exe
by DRC. Geometries specified inPolygon specification statements are not
included.

Calibre does not perform rule checks if the database is being written in th
manner. Geometry flagging of acute angles, skew edges, and offgrid vertic
also disabled by this switch.

• -cb

This option is discussed under“Calibre CB” on page 2-32.
Calibre Verification User’s Manual, v9.1_52-10

Invocation Invocation Procedures

ing

g. If
 of

ing

g. If
 of

he -
n if
• -turbonumber_of_processors (Calibre DRC-H)

This switch instructs Calibre DRC-H to use multi-threaded parallel process
for all stages except Litho operations. Thenumber_of_processors argument is
a positive integer that specifies the number of CPUs to use in the processin
you do not specify a value, Calibre DRC-H runs on the maximum number
CPUs available.

Calibre DRC-H runs on the maximum number of CPUs available, if you
specify a number greater than the maximum available. For example:

calibre -drc -hier … -turbo 3 …

will not improve performance on a single-CPU machine.

This switch is not for flat applications. For more information, refer to the
Configuring and Licensing Calibre/xCalibre Tools Guide.

You can specify the-turbo and the-turbo_litho parameters concurrently
in a single command line and the respectivenumber_of_processorsstrings can
vary between the two parameters.

• -turbo_lithonumber_of_processors (Calibre DRC-H)

This switch instructs Calibre DRC-H to use multi-threaded parallel process
when performingLitho operations. Thenumber_of_processors argument is a
positive integer that specifies the number of CPUs to use in the processin
you do not specify a value, Calibre DRC-H runs on the maximum number
CPUs available.

Calibre DRC-H runs on the maximum number of CPUs available, if you
specify a number greater than the maximum available.

This switch is not for flat applications. For more information, refer to the
Configuring and Licensing Calibre/xCalibre Tools Guide.

You can specify the-turbo and the-turbo_litho parameters concurrently
in a single command line and the respectivenumber_of_processorsstrings can
vary between the two parameters.

• -turbo_all (Calibre DRC-H)

The -turbo_all switch is an optional argument you use in conjunction with t
turbo and/or -turbo_litho switches. This switch halts Calibre tool invocatio
Calibre Verification User’s Manual, v9.1_5 2-11

Invocation Procedures Invocation

o or

r of

g:

e

 This

ue

me

nd

of
the tool cannot obtain the exact number of CPUs you specified using -turb
-turbo_litho, or both.

Specifying the -turbo or -turbo_litho switches without specifying a specific
number of CPUs is effectively the same as specifying the maximum numbe
CPUs on the machine. For example, specifying:

% calibre -drc -hier -turbo -turbo_all rule_file

on an 8-CPU machine for a hierarchical DRC run is the same as specifyin

% calibre -drc -hier -turbo 8 -turbo_all rule_file

Without -turbo_all, the Calibre tool normally uses fewer threads than
requested if the requested number of licenses or CPUs is unavailable. Se
“-turbo_all Switch” in theConfiguring and Licensing Calibre/xCalibre Tools
Guide for licensing information.

• -nowait

This switch instructs the MGLS license queueing features to be disabled.
results in Calibre exiting, instead of queueing for a license, if one is not
available.

• -wait n

This switch places a limit on the total time in minutes that Calibre will que
for a license. For example, the command:

calibre -drc -wait 5 rules

will queue on a calibredrc license for 5 minutes. If a license does not beco
available within 5 minutes, the application will exit with the following
message:
// Queue time specified by -wait switch has elapsed.

• -64

This switch invokes the 64-bit version of Calibre. It is available on the HP a
Solaris platforms, which require at least HP-UX 11.0 and Solaris 7,
respectively. The default is 32-bit mode.

The 64-bit executable on HP-UX provides a theoretical process size limit
roughly 1G * 1G / 4 bytes (or 262 bytes) compared to only 4 Gbytes with the
Calibre Verification User’s Manual, v9.1_52-12

Invocation Invocation Procedures

ore

:

32-bit executable. The 64-bit version of Calibre may, however, consume m
memory than 32-bit Calibre executing on the same data.

• rule_file_name

Pathname of the rule file.

Examples

The following examples show how to run both the flat and hierarchical mode

calibre -drc my_rules

calibre -drc -hier /user/project/bicmos.rules

The following example uses the -writedatabase switch for creating a binary
database:

calibre -drc -writedatabase ./my_rules

Calibre LVS/LVS-H/MGC

Usage

Calibre LVS/LVS-H

calibre [-lvs {[{ -tl || -ts } cnet_file_name]
[-nonames] [-cell]
[-dblayers " name1,..."]
[-bpf] [-nl] [-cb]

|| [-hier [-automatch]]
}
[-ixf] [-nxf]

]
[-spice spice_file_name

[-turbo [number_of_processors]]
[-turbo_litho [number_of_processors]]
[-turbo_all]]

 [-hcell cell_correspondence_file_name]
[-nowait][-wait n][-64]
rule_file_name

calibre -lvs [-cs] [-cl] [-nowait] [-wait n] [-64]
[-cb] rule_file_name
Calibre Verification User’s Manual, v9.1_5 2-13

Invocation Procedures Invocation

and

the

tries

nt

st to

e

 a

uting
Calibre MGC

calibre_mgc [arguments as above unless otherwise indicated]

Description

Calibre LVS/LVS-H/MGC performs either flat or hierarchical layout versus
schematic (LVS) checking.

Calibre LVS is a traditional LVS checking tool that flattens the input database
operates on the resulting flat geometries.

Calibre LVS-H is a hierarchical LVS checking tool that maintains and exploits
database hierarchy to reduce processing time, memory usage, and LVS
discrepancy counts. Calibre LVS-H imposes no design restrictions on geome
that overlap cell placements or on overlaps of cell placements.

Calibre MGC operates in the same manner as Calibre LVS, in that it is a
traditional LVS checking tool that flattens the input database and checks the
resulting flat geometries. Calibre MGC primarily performs layout versus
schematic (LVS) checking on a Mentor Graphics v8.x Eddm Design Viewpoi
(EDDM) database.

Calibre LVS/LVS-H/MGC directly read GDSII and CIF databases and can
compare various combinations of design types, such as GDSII to netlist, netli
netlist, and Cnet to Cnet. The rule fileSource System andLayout System
specification statements determine which comparison is in effect.

When you specify theMask SVDB Directory specification statement in the rule
file, you can view Calibre LVS/LVS-H results graphically with Calibre
RVE/QDB-H. Refer to chapter15, “RVE/QDB-H and Query Server” for more
information on the Query Server.

You can load the results from flat Calibre LVS into IC Station for interactive
debugging in ICtrace Mask mode. You can also load and view results with th
Mentor Graphics Verification DataPort tool.

When you perform hierarchical circuit extraction and circuit comparison with
single command line (calibre -lvs -hier -spice …), Calibre verifies that the
source netlist and the LVS report file are specified and accessible before exec
the circuit extraction step.
Calibre Verification User’s Manual, v9.1_52-14

Invocation Invocation Procedures

any

ally)
o the

lled
th
You can use Calibre LVS in one of two methods:

• LVS comparison

• Cnet database translation

Table2-2 shows the required rule file specification statements for Calibre
LVS/LVS-H/MGC.

Calibre LVS applications exit with a non-zero status if they cannot complete
form of requested processing due to fatal error conditions.

Arguments

To display help information, enter any of the following commands (without
arguments):

calibre -lvs

calibre -lvs -hier

calibre_mgc -lvs

• -lvs

This switch specifies to run Calibre LVS.

When you use -lvs with -spice, Calibre extracts a Spice netlist (hierarchic
from the layout system. The extracted netlist then serves as layout input t
LVS comparison module, in place of the original layout system.

• [-tl || -ts] (select one)

This switch determines whether you want to generate a Cnet database ca
cnet_file_namefrom the layout or from the source. Do not use this option wi
the -hier switch. Possible values are:

-tl Selects layout translation. You specify the layout in theLayout Path
specification statement.

-ts Selects source translation. You specify the source in theSource Path
specification statement.

• cnet_file_name

The pathname of the file receiving the layout-data-to-cnet translation.
Calibre Verification User’s Manual, v9.1_5 2-15

Invocation Procedures Invocation

e

ign

base.

ts
 file.

s

the
k

cify

at is

The

is
• -nonames (or -non)

This switch prevents the Cnet writer from generating net and instance nam
files in the Cnet database. Use it only with -tl or -ts.

• -cell (or -c)

This switch specifies that the Cnet writer scan only the top level cell (no
hierarchical evaluation). Use it only with -tl or -ts and when the original des
is an EDDM database.

• -dblayers “name1, …” (or -db “name1, …”)

This switch controls the layer geometries written to the mask results data
You specify an argument of comma-separated layer names, enclosed in
quotation marks. Calibre writes only these layer names to the mask resul
database. Each name is a layer or a layer number that appears in the rule

If you omit this switch, Calibre writes all relevant layers to the mask result
database. The written layers include those that appear inConnectandSconnect
operations, allDevice seed and pin layers from the rule file, and allStamp
target layers, with the possible exception of contact layers as specified with
Mask Results Databasespecification statement. Do not use this option if Mas
Results Database NONE is specified in the rule file.

This option can only select layers that appear inConnect andSconnect
operations, serve asDevice seed or pin layers, or serve asStamp target layers.

• -bpf

This switch generates a binary polygon format (BPF) and trapezoid
segmentation database and a layout cross-reference file. You cannot spe
this switch in the same command line containing both the -nl and -spice
switches; Calibre returns an error if this occurs.

You use BPF databases to interface Calibre to third-party tools. The form
described in the “Binary Layout Database Formats” section. You can use this
switch in both normal operation and in translate operation (-tl argument).
files have names of the formlvs_report_name.layer_name.bpf, where
layer_name is the rule file layer name andlvs_report_name results from the
LVS Report specification statement in the rule file. By default, Calibre
provides all connect and device seed layers as output. You can use the
-dblayers argument to explicitly select layers for generation. Do not use th
option with -hier; it is not applicable with the -spice option.
Calibre Verification User’s Manual, v9.1_52-16

Invocation Invocation Procedures

 C
 a

me

ach
g

le

rt is

en
n

e
e

The header file, DrcBPFReader.h, is the BPF data reader interface and is
located in the $MGC_HOME/shared/include directory. This file provides a
interface to the BPF database, with which you can access and manipulate
BPF file. For additional information concerning this file, refer to the
DrcBPF_example.c provided with DrcBPFReader.h.

The layout cross-reference file is namedlvs_report_name.lxf and lists the
internal net number and layout texted name.

This switch also creates a file containing top level port information. The na
of this file isreport_name.ports wherereport_name is the name specified in
theLVS Report specification statement. If no LVS Report statement is
included, the filename defaults to icv.ports. The file contains one line for e
top level port (unattached ports are not output). Each line has the followin
fields:

port_name port_node_number port_node_name
port_location port_layer_attached

where:

o port_name—specifies the layout name of the port object, for examp
the GDSII text string when using thePort Layer Text specification
statement, or “<UNNAMED>” if the port is not named.

o port_node_number—specifies the layout node number to which the
port is connected.

o port_node_name—specifies the layout node name to which the po
connected; or layout node number if the node is unnamed.

o port_location—specifies the location of the database text object wh
using the Port Layer Text statement, or a vertex on the port polygo
marker when usingPort Layer Polygon. In the form: X Y; in database
units.

o port_layer_attached—specifies the layer of the polygon to which th
port got attached. Rule file layer name or rule file layer number if th
layer is unnamed. This layer appears in a Connect or Sconnect
operation.
Calibre Verification User’s Manual, v9.1_5 2-17

Invocation Procedures Invocation

d to
of the
bject
etlist

e
II,

nd
 if

ce
t be

ll

n an
n

the

 has
• -nl (flat netlist)

This switch produces a flat netlist from the layout. Nets are identified with
numerical IDs only, no names, with the exception of nets that are connecte
texted port objects. Such nets are represented in the netlist by the name
respective port object. If a net is connected to more than one texted port o
then one of the port names is arbitrarily chosen to represent the net. The n
format is affected by theLVS NL Pin Locations specification statement. This
parameter operates in flat Calibre LVS only. You use the netlist to interfac
Calibre to third-party tools. To extract a hierarchical Spice netlist from GDS
use the -spice switch. You cannot specify this switch in the same comma
line containing both the -bpf and -spice switches; Calibre returns an error
this occurs.

• -cb

This option is discussed under“Calibre CB” on page 2-32.

• -hier

This switch runs the LVS comparison hierarchically. Both layout and sour
must be Spice, unless you also specified -spice, in which case layout mus
GDSII or CIF.

• -automatch (-aut[o]; Calibre LVS-H)

This switch specifies automatic correspondenceby name for cells in
hierarchical LVS comparison. Calibre compares cells with thesame name in
the layout and source (plus those specified by the -hcell option or in anHcell
rule file specification statement) as hierarchical entities. Calibre pushes a
other cells down to the next level of hierarchy (correspondence level).

Cell names that appear in a cell correspondence file specified by -hcell or i
Hcell specification statement are not automatically matched by name, eve
when you specify -automatch for the following reason: case-sensitivity in
for hcells is controlled by theLVS Compare Case specification statement.
Hcell names are case-insensitive by default; but are case sensitive if you
specifyLVS Compare Case YES or LVS Compare Case TYPES. Top-level
cells always correspond, regardless of their names. Note that -automatch
no effect on hierarchical circuit extraction.
Calibre Verification User’s Manual, v9.1_52-18

Invocation Invocation Procedures

or
s,

s,
.

m

-ts
the

B
s,
ile

use

use
• -ixf (for flat runs)

This switch generates an instance cross-reference file. The filename is
lvs_report_name.ixf, wherelvs_report_nameis specified by theLVS Report
specification statement in the rule file. This option is not valid with the -tl,
-ts switches. For additional information about instance cross-reference file
refer to theCross-Reference Files section in x.

When you specify the -ixf switch and your rule file includes theMask SVDB
Directoryspecification statement with the QUERY, PHDB, or XDB keyword
Calibre LVS writes the instance cross-reference file to the SVDB directory
This file will not use the LVS Report name from above, but will be in the for
layout_primary.ixf, wherelayout_primary is from the Layout Primary
specification statement, if present in the rule file. If you do not specify the
Layout Primary statement, ICV_UNNAMED_TOP is substituted for
layout_primary.

This option is not valid with the -tl and -ts options.

• -nxf (for flat runs)

This switch generates a net cross-reference file. The filename is
lvs_report_name.nxf, wherelvs_report_name is specified by the LVS Report
specification statement in the rule file. This option is not valid with the -tl or
switches. For additional information about net cross-reference files, refer to
Cross-Reference Files section in the “Results” chapter.

When you specify the -nxf switch and your rule file includes the Mask SVD
Directory specification statement with the QUERY, PHDB, or XDB keyword
Calibre LVS writes the net cross-reference file to the SVDB directory. This f
will not use the LVS Report name from above, but will be in the form
layout_primary.nxf, wherelayout_primary is from the Layout Primary

Note

The cross-reference files generated in flat Calibre LVS, with the
of the -ixf switch, are not equivalent to those generated for
hierarchical Calibre LVS, with the use of the -ixf switch.

Note

The cross-reference files generated in flat Calibre LVS, with the
of the -nxf switch, are not equivalent to those generated for
hierarchical Calibre LVS, with the use of the -nxf switch.
Calibre Verification User’s Manual, v9.1_5 2-19

Invocation Procedures Invocation

hich

t
inst

bre
he

ing.

ibre

Us,

ry.
specification statement, if present in the rule file. If you do not specify the
Layout Primary statement, ICV_UNNAMED_TOP is substituted for
layout_primary.

This option is not valid with the -tl and -ts options.

• -spicespice_file_name(or -spi spice_file_name; Calibre LVS-H)

This switch extracts a hierarchical Spice netlist from the layout system, w
must be GDSII or CIF and directs output tospice_file_name. When you
specify this option with -lvs, Calibre extracts a Spice netlist from the layou
system and uses it in place of the original layout system for comparison aga
the source. When you use the -hcell switch, Calibre preserves hcells as
subcircuits throughout circuit extraction.

You can use the -spice switch when you run xCalibre-H (after running Cali
LVS-H) and specify the Mask SVDB Directory specification statement in t
rule file using the keyword XCALIBRE. This writes the results of circuit
extraction (and device recognition) to a hierarchical database (HDB) and
places it in the SVDB.

• -turbonumber_of_processors (Calibre LVS-H)

This switch instructs Calibre LVS-H to use multi-threaded parallel process
Thenumber_of_processors argument is a positive integer that specifies the
number of CPUs to use in the processing. If you do not specify a value, Cal
LVS-H runs on the maximum number of CPUs available.

This switch applies only to hierarchical circuit extraction, not to the circuit
comparison stage. Therefore, -turbo requires the -spice switch.

Calibre LVS-H is limited to running on the maximum number of CPUs
available. If you specify a number greater than the maximum available CP
Calibre LVS-H will run only on the maximum number. For example:

calibre -spice -turbo 3 …

Note

When you use source names with xCalibre-H,spice_file_namemust
be an explicit pathname that places the file in the SVDB directo
That is: /directory_path/layout_primary.sp, wheredirectory_path
andlayout_primary appear, respectively, in theMask SVDB
Directory theLayout Primary specification statements in the rule
file.
Calibre Verification User’s Manual, v9.1_52-20

Invocation Invocation Procedures

he -
n if
o or

r of

g:

e

will not improve performance on a single-CPU machine.

This switch is not for flat applications. Refer to theConfiguring and Licensing
Calibre/xCalibre Tools Guide for important considerations.

• -turbo_lithonumber_of_processors (Calibre LVS-H)

Similar to the -turbo option; specifies multithreaded execution of OPC
operations only.

• -turbo_all (Calibre LVS-H)

The -turbo_all switch is an optional argument you use in conjunction with t
turbo and/or -turbo_litho switches. This switch halts Calibre tool invocatio
the tool cannot obtain the exact number of CPUs you specified using -turb
-turbo_litho, or both.

Specifying the -turbo or -turbo_litho switches without specifying a specific
number of CPUs is effectively the same as specifying the maximum numbe
CPUs on the machine. For example, specifying:

% calibre -lvs -hier -auto -turbo -turbo_all rule_file

on an 8-CPU machine for a hierarchical DRC run is the same as specifyin

% calibre -lvs -hier -auto -turbo 8 -turbo_all rule_file

Without -turbo_all, the Calibre tool normally uses fewer threads than
requested if the requested number of licenses or CPUs is unavailable. Se
“-turbo_all Switch” in theConfiguring and Licensing Calibre/xCalibre Tools
Guide for licensing information.
Calibre Verification User’s Manual, v9.1_5 2-21

Invocation Procedures Invocation

its.

in

nes

 in

-H
u

t

• -hcellcell_correspondence_file_name(Calibre LVS-H)

This switch specifies a cell correspondence file for hierarchical LVS
comparison. Use of the -hcell switch always preserves hcells as subcircu
Top-level cells do not need to appear in the cell correspondence file.

Cell correspondence can also be controlled using theHcell specification
statement in your rule file. You may use -hcell with a correspondence file
addition to any Hcell rule file statements. The lists of hcells will be
concatenated.

The following is an example of a cell correspondence file:

ABC DEF
ABC GHI
ABC JKL

UVW XYZ
RST XYZ
OPQ XYZ

UVW GHI
OPQ DEF

You can specify a 1-to-n relationship by placing a layout name in several li
with different source names. From the above example:

ABC DEF
ABC GHI
ABC JKL

Similarly, you can specify a m-to-1 relationship by placing a source name
several lines with different layout names. From the previous example:

Note

You must run Calibre LVS-H with the -hcell switch (or withHcell
specification statements in your rule file) before running xCalibre
when source names are specified in the rule file. In addition, yo
must ensure that theMask SVDB Directory specification statement
appears in the rule file. Calibre LVS-H will generate source-to-
layout cross-reference files (XREFs) suitable for hierarchical ne
extraction and place them in the SVDB directory.
Calibre Verification User’s Manual, v9.1_52-22

Invocation Invocation Procedures

ines

 This

ue

me
UVW XYZ
RST XYZ
OPQ XYZ

However, m-to-n relationships are not allowed. From the above example:

UVW XYZ
RST XYZ
OPQ XYZ
OPQ GHI

OPQ DEF
ABC DEF
ABC GHI
ABC JKL

By default, primitive devices correspond by component type as in the flat
mode. You can override this by including their names in the cell
correspondence file. The cell correspondence file then exclusively determ
the correspondence of the primitive devices.

Warnings are issued for cell names that do not exist in the input data.

See also“Hcells” on page 13-6.

• -nowait

This switch instructs the MGLS license queueing features to be disabled.
results in Calibre exiting, instead of queueing for a license, if one is not
available.

• -wait n

This switch places a limit on the total time in minutes that Calibre will que
for a license. For example, the command:

calibre -lvs -wait 5 rules

will queue on a calibrelvs license for 5 minutes. If a license does not beco
available within 5 minutes, the application will exit with the following
message:
// Queue time specified by -wait switch has elapsed.
Calibre Verification User’s Manual, v9.1_5 2-23

Invocation Procedures Invocation

nd

of

ore

ent.
m to
ne

es.

nd

this

ent.
m to
ne

es.

nd
• -64

This switch invokes the 64-bit version of Calibre. It is available on the HP a
Solaris platforms, which require at least HP-UX 11.0 and Solaris 7,
respectively. The default is 32-bit mode.

The 64-bit executable on HP-UX provides a theoretical process size limit
roughly 1G * 1G / 4 bytes (or 262 bytes) compared to only 4 Gbytes with the
32-bit executable. The 64-bit version of Calibre may, however, consume m
memory than 32-bit Calibre executing on the same data.

• -cs

This switch instructs Calibre LVS to read and verify (through a syntax
checker) the Spice netlist specified in the Source Path specification statem
Calibre LVS issues any applicable warnings or errors, and also writes the
the LVS report. Calibre LVS reads the Spice netlist hierarchically (as is do
with the -hier switch) but does not generate any LVS comparison structur

This switch cannot be used with input systems other than Spice netlists a
cannot be used with other switches, besides -cl, -nowait, and -64.

You can combine the usage of -cs and -cl switches. The primary status
message in the LVS report is SYNTAX OK if the check succeeded or
SYNTAX CHECK FAILED if the check failed.

Calibre LVS consumes a flat LVS license when using this switch, or both
and the -cl switch at the same time.

• -cl

This switch instructs Calibre LVS to read and verify (through a syntax
checker) the Spice netlist specified in the Layout Path specification statem
Calibre LVS issues any applicable warnings or errors, and also writes the
the LVS report. Calibre LVS reads the Spice netlist hierarchically (as is do
with the -hier switch) but does not generate any LVS comparison structur

This switch cannot be used with input systems other than Spice netlists a
cannot be used with other switches, besides -cs, -nowait, and -64.

You can combine the usage of -cs and -cl switches. The primary status
message in the LVS report is SYNTAX OK if the check succeeded or
SYNTAX CHECK FAILED if the check failed.
Calibre Verification User’s Manual, v9.1_52-24

Invocation Invocation Procedures

this

d

ice

ice

ice

tem
st
Calibre LVS consumes a flat LVS license when using this switch, or both
and the -cs switch at the same time.

• rule_file_name

Pathname of the rule file.

Examples

Calibre LVS

The following two examples show the syntax for running flat layout versus
schematic (LVS) comparison. The second example creates a Cnet database
without net and instance name files.

calibre -lvs my_rules

calibre -lvs -tl mycirc.cnet -nonames my_rules

Calibre LVS-H

The following example extracts a hierarchical Spice netlist from the layout an
writes it to filefoo.net . It does not perform comparison.

calibre -spice foo.net rules

The following example performs hierarchical LVS comparison between a Sp
layout and a Spice source. Cells correspond by name.

calibre -lvs -hier -automatch rules

The following example performs hierarchical LVS comparison between a Sp
layout and a Spice source. The filecells specifies cell correspondence.

calibre -lvs -hier -hcell cells rules

The following example performs hierarchical LVS comparison between a Sp
layout and a Spice source. Cells with the same name correspond; the filecells

specifies additional cell correspondence.

calibre -lvs -hier -hcell cells -automatch rules

The following example extracts a hierarchical Spice netlist from a layout sys
(which must be GDSII or CIF), and then compares it to a Spice source. Netli
Calibre Verification User’s Manual, v9.1_5 2-25

Invocation Procedures Invocation

ort,
e -lvs

tem
tlist

d
re

fied

es

n
;

extraction is hierarchical and comparison is flat: (This method is not
recommended because it will result in a loss of layout locations in the LVS rep
as well as less than optimal performance in the netlist input stage. Instead, us
-hier with an empty -hcell file.)

calibre -spice foo.net -lvs rules

The following example extracts a hierarchical Spice netlist from a layout sys
(which must be GDSII or CIF) and then compares it to Spice source. Both ne
extraction and comparison are hierarchical. The filecells specifies cell
correspondence.

calibre -spice foo.net -lvs -hier -hcell cells rules

The following example extracts a hierarchical Spice netlist from the layout an
then compares it to a Spice source. Both netlist extraction and comparison a
hierarchical; cells correspond by name:

calibre -spice foo.net -lvs -hier -automatch rules

The following example extracts a hierarchical Spice netlist from a layout speci
in the rule file. The extraction preserves hcells as subcircuits in the extracted
netlist, and the hcells are available in the comparison phase:

calibre -spice foo.net -hcell cells rules

Cell Correspondence Files

The next two examples show cell correspondence files. The first example us
comment lines, which must begin with two slashes (//) that appear at the
beginning of a line. In the second example, Calibre LVS-H flattens the desig
down to the transistor level. This is essentially equivalent to flat Calibre LVS
however, for Spice-to-Spice comparisons, it will often execute faster.

1.

BUFF BUFF
BITL BIT
BITR BIT
TOP TOP
// This is a comment

2.
Calibre Verification User’s Manual, v9.1_52-26

Invocation Invocation Procedures

atic

t net
TOP TOP

Calibre MGC

The following example shows the syntax for running flat layout versus schem
comparison:

calibre_mgc -lvs my_rules

The following example shows the syntax for creating a Cnet database withou
and instance names files:

calibre_mgc -lvs -tl -nonames my_circ.cnet my_rules

Sample LVS Rule File

// Sample rule file to compare GDSII to Spice

 LAYOUT PATH "layout.gds"
 LAYOUT PRIMARY "top"
 LAYOUT SYSTEM GDSII

 SOURCE PATH "source.net"
 SOURCE PRIMARY "top"
 SOURCE SYSTEM SPICE

 LVS ABORT ON SUPPLY ERROR yes
 LVS POWER NAME VDD
 LVS GROUND NAME VSS
 LVS ALL CAPACITOR PINS SWAPPABLE no
 LVS REDUCE PARALLEL MOS yes
 LVS REDUCE PARALLEL BIPOLAR yes
 LVS FILTER UNUSED MOS no
 LVS FILTER UNUSED BIPOLAR no
 LVS REDUCE SERIES CAPACITORS yes
 LVS REDUCE PARALLEL CAPACITORS yes
 LVS REDUCE SERIES RESISTORS yes
 LVS REDUCE PARALLEL RESISTORS yes
 LVS REDUCE PARALLEL DIODES yes
 LVS RECOGNIZE GATES all
 LVS REDUCE SPLIT GATES yes
 LVS COMPONENT TYPE PROPERTY element // ignored for SPICE
 LVS COMPONENT SUBTYPE PROPERTY model // ignored for SPICE
 LVS PIN NAME PROPERTY phy_pin // ignored for SPICE
Calibre Verification User’s Manual, v9.1_5 2-27

Invocation Procedures Invocation

s
ts,

e
g
e, or

e a
t

r
st
 LVS IGNORE PORTS no
 LVS REPORT "lvs.rep"
 LVS REPORT MAXIMUM 50
 MASK SVDB DIRECTORY "svdb" QUERY

 // Connectivity extraction and device recognition
 // operations not shown.

Calibre RVE/QDB-H

Usage

calibre - rve { svdb_directory [layout_primary] || drc_db_file }
[-cb] [-nowait]

calibre - query { svdb_directory [layout_primary]} [-cb]
[-nowait][-64]

Description

The Calibre RVE/QDB-H commands probe Calibre LVS/LVS-H discrepancie
and Calibre DRC/DRC-H results. Calibre RVE/QDB-H consists of two elemen
as follows:

• Results Viewing Environment (RVE)—the graphical user interface of
Calibre RVE/QDB-H. This interface provides two session windows: on
for LVS debugging called LVS RVE, and one for DRC error highlightin
called DRC RVE. Calibre RVE accesses the hierarchical query databas
query server, to return connectivity information about a design.

• Hierarchical Query Database (QDB-H)—the command line interface of
Calibre RVE/QDB-H, which allows you to use the query server to prob
persistent hierarchical database (PHDB). Generally, you do not interac
with the query server directly.

This tool requires that you run Calibre LVS/LVS-H or Calibre DRC/DRC-H prio
to execution. It takes a SVDB directory as input to LVS-RVE. This directory mu
contain a PHDB or XDB. It takes an ASCII DRC results database as input to
DRC-RVE.
Calibre Verification User’s Manual, v9.1_52-28

Invocation Invocation Procedures

er
se
e or

e

his

ins
ss-
me

ent
a

For Calibre LVS/LVS-H results, Calibre RVE attempts to find discrepancy view
and Spice files automatically, based on what the SVDB contains. The databa
stores the SVDB pathname when Calibre created the database. If you renam
copy the SVDB, RVE may not find the Spice files automatically.

Refer to theRVE/QDB-H and Query Server chapter for details on how to use th
Calibre RVE interface to probe your Calibre LVS/LVS-H discrepancies and
Calibre DRC/DRC-H results.

Arguments

Entering the following with no arguments displays a help line:

calibre -rve

calibre -query

• -rve

A switch that invokes the results viewing environment (RVE). When you
specify this switch without optional arguments, a dialog box displays and
prompts you for either the SVDB directory or the DRC results database. T
switch sets automatic access to query server functionality.

• svdb_directory

The absolute or relative pathname to the SVDB directory. This path conta
the results from Calibre LVS/LVS-H execution: hierarchical database, cro
reference files, and discrepancy-viewer file. When you specify this pathna
with the -rve switch, the LVS RVE session window displays.

• layout_primary

The top cell name, as specified by the Layout Primary specification statem
in the rule file. If you do not specify this name, LVS-RVE attempts to locate
single primary cell in the SVDB directory. If it finds multiple top cells, a
dialog displays and prompts you with the top cells it found.

Note

To investigate LVS/LVS-H discrepancies with RVE, you must
make sure the rule file includes theMask SVDB Directory
specification statement. In addition, source-to-netlist cross-
reference files must be present when you are querying source
information.
Calibre Verification User’s Manual, v9.1_5 2-29

Invocation Procedures Invocation

en
n

ot
n
st

s

 This

.

nd

of

ore
When you use the -query switch, you must specify this cell name only wh
thesvdb_directorycontains data from several different primary cells. You ca
omit this cell name when only one primary cell is present. When you do n
specifylayout_primary, the query server looks for a directory called *.phdb i
thesvdb_directory. If one and only one such directory is found then you mu
specify;layout_primary is the directory name excluding the “.phdb” suffix.

• drc_db_file

The absolute or relative pathname to an ASCII DRC results database (thi
includes short-isolation databases created byLVS Isolate Shorts YES). When
you specify this pathname, the DRC-RVE session window displays.

• -cb

This option is discussed under“Calibre CB” on page 2-32.

• -nowait

This switch instructs the MGLS license queueing features to be disabled.
results in Calibre exiting, instead of queueing for a license, if one is not
available.

• -query

A switch that enables command line interaction with the query server only

• -64 (Calibre QDB-H)

This switch invokes the 64-bit version of Calibre. It is available on the HP a
Solaris platforms, which require at least HP-UX 11.0 and Solaris 7,
respectively. The default is 32-bit mode.

The 64-bit executable on HP-UX provides a theoretical process size limit
roughly 1G * 1G / 4 bytes (or 262 bytes) compared to only 4 Gbytes with the
32-bit executable. The 64-bit version of Calibre may, however, consume m
memory than 32-bit Calibre executing on the same data.

Examples

calibre -rve svdb top_cell

calibre -rve results

calibre -query svdb
Calibre Verification User’s Manual, v9.1_52-30

Invocation Invocation Procedures

tte

ne

se

h

ne

se
Calibre Interactive

Usage

calibre -gui [{-drc | -lvs} [runset]]

Description

The Calibre Interactive palette allows you to invoke a Calibre DRC window,
Calibre LVS window, or Calibre RVE. You display the Calibre Interactive pale
by entering the following command line in a shell:

% calibre -gui

• Calibre DRC Window—You can invoke the Calibre DRC window with or
without a runset loaded. A runset is, roughly, a setup file for a specific
Calibre run.

To invoke the Calibre DRC window alone, use the following command li
entry:

% calibre -gui -drc

To invoke the Calibre DRC window with a runset automatically loaded, u
the following command line entry:

% calibre -gui -drc runset

whererunset is an optional replaceable parameter that specifies the pat
name of the runset to be loaded.

• Calibre LVS Window — You can invoke the Calibre LVS window with or
without a runset loaded.

To invoke the Calibre LVS window alone, use the following command li
entry:

% calibre -gui -lvs

To invoke the Calibre LVS window with a runset automatically loaded, u
the following command line entry:

% calibre -gui -lvs runset
Calibre Verification User’s Manual, v9.1_5 2-31

Invocation Procedures Invocation

h

ce if
re

,
ou

ck
ut a

se.
VS
s
lude

e.
any
whererunset is an optional replaceable parameter that specifies the pat
name of the runset to be loaded.

Calibre Interactive can also be invoked through your layout editor user interfa
it supports a Calibre menu item. User interfaces which support this feature a
discussed in“Calibre Interactive” on page 3-1.

Arguments

• -gui

A mandatory switch for invoking Calibre Interactive. When specified alone
you get the Calibre Interactive Palette. When specified with -drc or -lvs, y
get the respective user interface window.

• -drc

Optionally used with-gui to specify the Calibre DRC window.

• -lvs

Optionally used with-gui to specify the Calibre LVS window.

• runset

Optional argument specifying the pathname of a runset.

Calibre CB

The Calibre Cell/Block license package is intended to provide interactive blo
verification to customers using layout editors. Note it is not a separate tool, b
license package that enables some of the Calibre applications described
previously.

The Calibre CB verification license is invoked through the -cb command line
switch. The -cb switch causes Calibre to consume a single caldrclvseve licen
This license can be used to run DRC, LVS, RVE, or Query Server. DRC and L
can only be run in flat mode. DRC rule decks can include flat OPC operation
provided the appropriate OPC licenses are available. LVS rule decks can inc
ERC functionality without acquiring additional licenses.

The caldrclvseve license allows users to do only one verification task at a tim
Therefore you can do DRC, or LVS, or RVE, or access the Query Server at
Calibre Verification User’s Manual, v9.1_52-32

Invocation Invocation Procedures

nse
 until

mple,
lvs)

has
one time with one license. For example, if there is only one caldrclvseve lice
and the user is executing a DRC run, an additional job cannot be performed
the initial DRC run completes.

The caldrclvseve license cannot be used to form a hierarchical pair. For exa
you cannot combine a caldrclvseve license with a hierarchical LVS (calibreh
license to execute hierarchical Calibre LVS.

Calibre Interactive (calinteractive license included in the Calibre CB package)
an option to call this license for DRC, LVS, and RVE runs. When used in this
fashion, and when using Calibre Interactive invoked directly from the layout
editor, this license provides for doing interactive verification.
Calibre Verification User’s Manual, v9.1_5 2-33

Invocation Procedures Invocation
Calibre Verification User’s Manual, v9.1_52-34

s).
,

ks.
Chapter 3
Calibre Interactive

This chapter describes the Calibre Interactive graphical user interfaces (GUI
Calibre Interactive is designed to simplify the invocation of Calibre DRC, LVS
and RVE applications. This chapter includes a description of the Calibre
Interactive GUIs and information on how the tool interacts with other
applications, including layout editors—especially Cadence Virtuoso.

Graphical Interface Overview
Calibre Interactive allows you to invoke Calibre applications using settings
specified within the GUIs. These applications include Calibre DRC/DRC-H,
Calibre LVS/LVS-H, xCalibre PX-C/RC and Calibre RVE.

Calibre Interactive consists of four windows.

• Calibre Interactive Palette—A palette window that allows you to invoke the
Calibre DRC and LVS windows, or Calibre RVE.

• Calibre DRC Window—A session window that allows you to specify
settings for a Calibre DRC run.

• Calibre LVS Window—A session window that allows you to specify
settings for a Calibre LVS run, including the selection of ERC rule chec

• Calibre PEX Window—A session window that allows you to specify
settings for an xCalibre run. SeeUsing the Calibre Interactive PEX User
Interface.
Calibre Verification User’s Manual, v9.1_5 3-1

Graphical Interface Overview Calibre Interactive

a
ents

rce

line

re
Graphical Interface Prerequisites

Calibre Interactive has the following prerequisites:

• Platform support—Calibre Interactive is available on all supported
platforms found in theConfiguring and Licensing Calibre/xCalibre Tools
Guide. Refer to that document for instructions on how to install and
configure Calibre software.

• Licensing—Calibre Interactive requires a calinteractive license. This is
stand-alone license or part of the Calibre CB package. License requirem
are based on the application to be run and are discussed in theConfiguring
and Licensing Calibre/xCalibre Tools Guide.

• Required files—The required files for the Calibre DRC and Calibre LVS
interfaces are as follows.

o Calibre DRC—rule file and a layout database.

o Calibre LVS—rule file, a layout database, and in most cases, a sou
database (for example, a Spice netlist).

For both interfaces, you can (optionally) load a runset on the command
or from theFile dropdown menu. For further information on loading
runsets, refer to the section “Runsets”.

Command line invocation of these interfaces is covered under“Calibre
Interactive” on page 2-31. Setup of layout editors and Calibre Interactive
invocation from layout editor user interfaces is covered in“Connections to Layout
Editors” on page 3-22. If you already have your layout editor set up to call Calib
Interactive from a Calibre menu, you may invoke the Calibre Interactive user
interfaces from the layout editor (this is the preferred method). The basic
command line invocation syntax is this:

calibre -gui [-drc | -lvs | -pex [runset]]

The PEX interface is discussed inUsing the Calibre Interactive PEX User
Interface.
Calibre Verification User’s Manual, v9.1_53-2

Calibre Interactive Graphical Interface Overview

tly

S
d. If
ed, a

n a
s

he

ening
e

t

ence
 that
Runsets

The description of the user interface refers to a file called arunset. We discuss this
file here. A runset is a text file created by Calibre Interactive that stores the
settings you specify in the Calibre DRC and LVS windows. You can save the
current runset by selecting theFile > Save Runset or File > Save Runset As...
menu items (discussed below).

Calibre Interactive saves the runset in the location specified in theSave Runsetor
Save Runset Asdialog box. Calibre Interactive stores a list of your most recen
opened runsets in your home directory as .cgidrcdb or .cgilvsdb for Calibre
Interactive DRC or LVS, respectively. When invoked, the Calibre DRC and LV
windows automatically load the runset used when the last session was close
the rule file specified in the runset has changed since the time it was last load
dialog box is displayed asking if you want to load the new rule file.

You can change the default behavior for runset opening from theSetup > Options
menu. From this menu you can select a specific runset to open, or not to ope
runset upon invocation. The runset filename opened at startup (if no runset i
specified on the command line) can also be specified by setting the
MGC_CALIBRE_DRC_RUNSET_FILE environment variable for DRC, and t
MGC_CALIBRE_LVS_RUNSET_FILE environment variable for LVS. If these
environment variables are set, they take precedence over all other runset op
behavior options. If they are set to “ ” (blank), no runset is open. If the filenam
specified by the environment variable is not readable, then the tool will selec
which runset to open (or none) depending on your selection from theSetup >
Options menu.

Runset files are ASCII text files. As such, you may view and edit them. An
example is shown in AppendixB. Runset files only show the settings you make
that are different than the default settings. There is a one-to-one correspond
between the name-value pairs in a runset file and fields in the user interface
you change. The complete list of all default settings is found in
$MCG_HOME/pkgs/icv/userware/default/cgi/options.tcl.
Calibre Verification User’s Manual, v9.1_5 3-3

Graphical User Interface Description Calibre Interactive

tions

ibre

er

lity.
Graphical User Interface Description
This section describes the Calibre Interactive user interfaces and their interac
with Calibre DRC and LVS applications.

Calibre Interactive Palette

Invoking calibre -gui brings up the Calibre Interactive palette:

Figure 3-1. Calibre Interactive Palette

From this palette you can invoke the Calibre DRC and LVS windows, and Cal
RVE. Simply select the button of your choice by clicking on it with your left
mouse button. It is more likely that you will invoke the DRC, LVS and RVE us
interfaces through your layout editor. See“Connections to Layout Editors” on
page 3-22. (The PEX interface is discussed inUsing the Calibre Interactive PEX
User Interface.)

Calibre DRC Window

The Calibre DRC window allows you to specify command line options and
selected rule file statements that execute the desired Calibre DRC functiona
Calibre Verification User’s Manual, v9.1_53-4

Calibre Interactive Graphical User Interface Description

m

essed
ide

and
bre
nus
icate

you
me
s
d by
You can invoke the DRC window directly from a supporting layout editor, fro
the command line, or from the palette menu.

Figure 3-2. Calibre Interactive - DRC Window

Pulldown menus appear across the top of the window. Setup options are acc
from the Setup menu pulldown in addition to the menu buttons along the left s
of the interface. Underscored letters indicate keystroke letters to press in
conjunction with the Alt button on your keyboard. For example, pressing Alt
o simultaneously opens the Outputs menu (this might not work if you run Cali
through Exceed). Red buttons along the left side of the interface indicate me
that require your input before you can execute a DRC run. Green buttons ind
menus that are completely filled in with required information (note that this
information may need to be changed by you, depending on your situation). If
start with a new runset (that is, an existing runset is not currently loaded), so
menus are pre-populated with default settings and the corresponding button
appear green upon invocation. The last runset you used (if any) will be loade
default, unless you have changed this behavior (see“Runsets” on page 3-3).
Calibre Verification User’s Manual, v9.1_5 3-5

Graphical User Interface Description Calibre Interactive

r an
ens
ntry

 It

r

nt

m.

s. It
Balloon help is on by default. This means that when you put your cursor ove
item in the GUI for a few seconds without selecting the item, a help balloon op
describing the item. Balloon help is available for all menu buttons and user e
fields. Balloon help can be turned off from the Setup pulldown menu.

Calibre DRC Pulldown Menus

There are four pulldown menus across the top of the interface:

File—allows you to open and save runsets, as well as to exit the application.
contains the following options:

• New Runset—restores the GUI to its default configuration.

• Open Runset...—opens a dialog box that allows you to select a runset.

• Open Text File...—opens a dialog box that allows to select a text file fo
viewing (for example, a rule file or runset file).

• Save Runset—opens a dialog box that allows you to save the current
runset.

• Save Runset As...—opens a dialog box that allows you to save the curre
runset under a different name.

• Recent Runsets—displays a list of recent runsets that you can choose fro

• Exit—exits the application

Transcript —allows you to open, save, and search Calibre DRC run transcript
has the following options:

• Save As...—opens a dialog box to save the current run transcript. This
automatically invokes the Transcript menu button.
Calibre Verification User’s Manual, v9.1_53-6

Calibre Interactive Graphical User Interface Description

of

. It

C

ns
ill

n.

r

d as
cified
d,

cks
• Echo to File...—opens a dialog box that enables you to set up copying
run transcripts automatically to a file that you specify.

• Search...—opens a dialogue box that allows you to search the current
transcript for text that you enter.

Setup—allows you to set up Calibre DRC run options and DRC window help
has the following options:

• DRC Options—selectable button that enables you to set up several DR
specification statements. It also activates a DRC Options button on the
GUI. If you load a rule file (or runset containing a rule file) that has
specification statements selectable from DRC Options, the DRC Optio
button will be automatically selected and the current rule file settings w
populate the appropriate fields:

o Output tab—selecting the button is equivalent to specifyingDRC Cell
Name YES CELL SPACE XFORM in your rule file (DRC-H only).

o Maximums tab—allows you to specifyDRC Maximum Results and
DRC Maximum Vertex specification statement settings.

o Includes tab—allows you to select rule files to include in the DRC ru
This is equivalent to the specifying anInclude statement in a rule file.
Included files are checked for correct syntax. An error is reported fo
incorrect Include rule files.

o Area DRC tab—allows you to select the halo size for DRC area
checking (SeeDRC Area Checking below).

• Set Environment...— opens a dialog box that allows you to specify
environment variables for use in rule files. Such variables can be marke
defined and have values assigned through this dialog. The values spe
in the dialog can be saved in a runset file. When the runset is reopene
these environment variables are automatically initialized to the saved
values.

• Select Checks...—opens a browser that allows you to control which DRC
checks to run in a loaded rule file. It allows you to select individual che
Calibre Verification User’s Manual, v9.1_5 3-7

Graphical User Interface Description Calibre Interactive

ified
d X
er
as well as rule check groups found in aGroupstatement. This is equivalent
to specifying theDRC [Un]Select Check rule file statements.

After loading your rule file, the Select Checks dialog box displays all
selected checks and groups with a green check box. Rule checks spec
in a DRC Unselect Check specification statement are marked with a re
box; these checks are not executable even if you select them in the us
interface.

Figure 3-3. Select Checks Dialog
Calibre Verification User’s Manual, v9.1_53-8

Calibre Interactive Graphical User Interface Description

 its
up by

gled

elect
d to

ut

ups
vel.

re is

.

the
ult),

en

eters
ese
with

not
You can toggle the selection of an individual rule check by left-clicking
name in the Checks pane. You can select or unselect a rule check gro
right-clicking on its name in the Groups pane.

The Check Text pane displays the check text for the most recently tog
rule check. You can display the check text for any rule check, without
toggling its status, by clicking it with the middle mouse button.

The Checks menu allows you to sort the checks in the left pane and to s
and unselect all checks. The Groups menu allows you to sort groups an
control how groups are displayed. If you select the Show Groups
Hierarchically setting, groups are displayed with their subgroups. Witho
that setting, groups are displayedflat, that is, with their constituent checks
only. If the Show Toplevel Groups setting is chosen, only top-level gro
(that is, groups that are not part of other groups) are shown at the first le
Without this setting, all groups are shown at the first level.

The settings in the GUI take precedence over the rule file wherever the
the possibility of conflicting settings.

• Options...—opens a Setup Program options dialog with a series of tabs

o Startup tab—offers Runset opening behavior control. You can have
last runset used open upon Calibre Interactive invocation (the defa
open no runset on invocation, or you can specify the pathname of a
runset to open.

o Templates tab—offers control over the settings of various fields wh
Calibre Interactive is started from a layout editor. If you do not start
Calibre Interactive from a layout editor, these fields have no effect.
These template fields can contain %l and %s as replaceable param
for the layout cell name and the source cell name, respectively. If th
parameters are present, they are replaced automatically by the tool
the appropriate names.

The Import Layout Database option is selected by default. If you do
want to import from the layout editor directly, unselect this button.
There is a similar feature on the Inputs menu discussed below.
Calibre Verification User’s Manual, v9.1_5 3-9

Graphical User Interface Description Calibre Interactive

nd

tly

se
ally
e is

out
n
sue.
o Misc. tab—allows you to control if a warning is displayed when an
open runset is not writable (the default is yes) and to control if Input a
Output pane settings are read from the rule file upon loading it (the
default is yes).

You may override any of the settings derived from your most recen
loaded rule file that appear in the GUI. The GUI settings take
precedence in subsequent Calibre runs. Calibre Interactive offers
complete control of inputs and outputs from the Inputs and Outputs
menus accessible from the vertical menu bar.

• Layout...—opens a dialog box that allows you to specify the socket to u
to connect to your layout editor. The setting is 9189 by default and usu
the connection can be established automatically when Calibre Interactiv
invoked through the editor. You can change the default value. If your lay
editor is one that supports Calibre Interactive, but there is no connectio
established between the tools, setting this manually may resolve the is
The socket port number may be specified by the
MGC_CALIBRE_LAYOUT_SERVER environment variable.

Help—allows you to call up end-user documentation. TheAbout... item tells you
the version of Calibre Interactive you are using.
Calibre Verification User’s Manual, v9.1_53-10

Calibre Interactive Graphical User Interface Description

,

y.

ch

 >
ur

it
e

cell
.
e

 of

er
tart

, and
Calibre DRC Menu Buttons

On the left side of the GUI you will see a group of menu buttons:

Rules—activates a menu that allows you to select, view
and load your DRC rule file. A rule file must be
successfully loaded in this menu to run Calibre. This is
equivalent to therule_file_name argument on the
command line. This menu also allows you to select the
Calibre run directory. By default it is the current director

Inputs—activates a menu that allows you to select whi
Calibre DRC license to use (hierarchical, flat, or
caldrclvseve; equivalent to -drc -hier, -drc, or -cb
command line arguments, respectively). If you invoke
Calibre Interactive through a layout editor, theImport
layout database from layout viewer setting is selected
by default (this setting is also controlled from the Setup
Options Templates tab). The current top-level cell in yo
layout editor will be used. If you do not want to take
layout input from the layout editor, unselect that button (
is unselected by default if you invoke Calibre Interactiv

from the command line). You specify the path to a layout file in the Files field
(equivalent to the Layout Path rule file statement). You specify the top-level
in the Primary Cell field (equivalent to the Layout Primary rule file statement)
The latter two items do get read from the loaded rule file, but you can chang
them. TheCheck area setting allows you to check a rectangular area that you
specify (seeDRC Area Checking).

Outputs—activates a menu that allows you to specify the pathname and type
DRC Results Database (equivalent toDRC Results Database specification
statement), to specify an optional DRC Summary Report file (equivalent to
DRC Summary Reportspecification statement), to view the summary report aft
the Calibre run, to append the current summary report or replace it, and to s
DRC-RVE after the Calibre run.

Run Control—activates a menu that allows you to specify performance and
remote queuing options. The Performance tab items control the -nowait, -64
-turbo command line arguments. The Remote Execution tab controls remote
Calibre Verification User’s Manual, v9.1_5 3-11

Graphical User Interface Description Calibre Interactive

es

elect

the
he
e

 plus
 the

y
rsect

e

execution of Calibre. The Calibre Interactive GUI will complete all the text box
for which it can determine the values. SeeSupport for Distributed Queueing for
additional details.

DRC Options—this is discussed under DRC Options onpage 3-7.

Transcript —opens the Calibre DRC run transcript. This works in conjunction
with theTranscript pulldown menu.

Run DRC—executes a Calibre DRC run with the current runset information.

Start RVE—invokes Calibre DRC-RVE.

DRC Area Checking

Calibre Interactive DRC allows you to check a rectangular area of a design. S
theCheck area setting in the Inputs menu pane and specify the lower-left and
upper-right vertex coordinates of the rectangular area. You can also specify
area by first left-clicking on the “...” button and then dragging a rectangle in t
layout editor. Right-click on the “...” button to zoom to the area specified in th
entry field.

While doing area DRC, the area that is actually checked is the specified area
a halo region around the area. The size of the halo can be specified through
Area DRC tab of DRC Options menu pane (Setup > DRC Options). When the
halo width computation is set toAutomatic, the width is computed as half of the
lesser of the width and height of the specified area. You can also specify an
explicit width for the halo in this pane. All objects and instances in the primar
layout cell are clipped to the area and the halo region. Errors that do not inte
the specified area are removed from the output database. If theImport layout
database from viewersetting is selected, only the geometries enclosed in the
specified area and halo region are exported to Calibre.

DRC area checking uses theLayout Windowspecification statement. You can se
the arguments passed to this statement in the control file created by Calibre
Interactive (see“Control Files” on page 3-18).
Calibre Verification User’s Manual, v9.1_53-12

Calibre Interactive Graphical User Interface Description

e)
ing

nd

e

Support for Distributed Queueing

You can invoke Calibre DRC or LVS on a remote cluster (a distributed queu
using commands supplied by the distributed queue software (or load balanc
software). Choose theRun application on remote host option in the Remote
Execution tab of the Run Control pane.

Figure 3-4. Run Control Pane

You can select thehost or cluster button. You can then specify the command to
use which assigns the Calibre run to the queue. You can also specify user a
environment information for the Calibre run from the associated tabs on the
Remote Execution pane. In the text entry fields, you can use the following
parameters, which are replaced by the values in the GUI before executing th
command:

• %c — is replaced by the Calibre command.

• %o — is replaced by the options to Calibre.
Calibre Verification User’s Manual, v9.1_5 3-13

Graphical User Interface Description Calibre Interactive

ent

ent

tion
 will
the

n. It
he
 in

s

It

VS
e

• %C — is replaced by Calibre command and options.

• %u — is replaced by the user name specified in the User tab.

• %m — is replaced by value of the MGC_HOME environment variable
specified in the Environment tab.

• %L — is replaced by licensing variable name specified in the Environm
tab.

• %l — is replaced by licensing variable value specified in the Environm
tab.

For example, you can put “bsub %C” (bsub is a distributed queueing applica
produced by Platform Computing) for the Queueing Command field and this
submit the Calibre job with the appropriate command and options specified in
GUI to the queue.

Calibre LVS Window

The Calibre LVS window allows you to specify command line options and
selected rule file statements that execute the desired Calibre LVS applicatio
looks and behaves very similarly to the DRC window discussed previously. T
LVS-specific functionality that is different from the DRC window is discussed
this section.

Calibre LVS Pulldown Menus

The LVS pulldown menus appear the same as the DRC menus onpage 3-6. The
File, Transcript, andHelp pulldowns have the same features as the DRC
window. TheSetup pulldown appears the same, but has a few different option
than the DRC window:

Setup—allows you to set up Calibre LVS run options and LVS window help.
has the following options:

• LVS Options—selectable button that enables you to set up numerous L
specification statements. It also activates an LVS Options button on th
GUI. If you load a rule file (or runset containing a rule file) that has
Calibre Verification User’s Manual, v9.1_53-14

Calibre Interactive Graphical User Interface Description

s
ill
d

on

n.

the
specification statements selectable from LVS Options, the LVS Option
button will be automatically selected and the current rule file settings w
populate the appropriate fields. Any changes you make to pre-populate
fields will take precedence over the rule file you load.

o Supply tab—allows you to control the behavior ofLVS Abort On
Supply Error, LVS Power Name, andLVS Ground Namespecification
statements.

o Gates tab—allows you to specify the behavior of theLVS Recognize
Gates specification statement.

o Shorts tab—allows you to specify the behavior of theLVS Isolate
Shorts specification statement.

o ERC tab—allows you to control the behavior ofLVS Execute ERC,
ERC Results Database, ERC Summary Report, ERC Maximum
Results, andERC Maximum Vertex statements. TheSelect Checks
button activates a browser that controls the behavior of theERC
[Un]Select Check specification statements. The behavior of this
browser is very similar to the DRC Select Checks browser discussed
page 3-7.

o Name Connect tab—allows you to specify the behavior of theVirtual
Connect Colon, Virtual Connect Name, and Virtual Connect Report
specification statements.

o Includes tab—allows you to select rule files to include in the LVS ru
This is equivalent to the specifying anInclude statement in a rule
file.The syntax of included files is checked and errors are reported if
Include files are incorrect.

o Other tab—allows you to control the behavior of theLVS Abort On
Softchk, LVS Ignore Ports, LVS Report Maximum, LVS Show Seed
Promotions, andLVS Show Seed Promotions Maximum specification
statements.
Calibre Verification User’s Manual, v9.1_5 3-15

Graphical User Interface Description Calibre Interactive

e

es.

they

ve;
,

the

ation

re

rule

,

is
• Options...—this is very similar to the Options... item in the DRC interfac
described onpage 3-9. The Templates tab is different, however, in that it
deals with LVS templates, which have more options than DRC templat

Calibre LVS Menu Buttons

These are very similar in appearance to the DRC menu buttons onpage 3-11. The
Rules, Run Control, Transcript , Run LVS andStart RVE menus are identical
in purpose to their DRC counterparts, with the obvious difference being that
apply to LVS, not DRC. The menus that differ significantly from DRC are the
Inputs, Outputs, andLVS Options (discussed above) menus:

Inputs—activates a menu that allows you to:

• select which Calibre LVS license to use (hierarchical, flat, or caldrclvse
equivalent to -lvs -hier, -lvs, or -cb command line invocation arguments
respectively)

• specify the type of LVS comparison to perform (Layout vs Netlist is
GDSII-to-Spice; Netlist vs Netlist is Spice-to-Spice)

• specify whether to extract a Spice netlist from the Layout (equivalent to
-spice command line invocation argument—LVS-H only)

• specify information about the layout and source databases

There are three tabs in this menu. A tab appears red when it requires inform
from you; green indicates the menu has complete information (although not
necessarily correct information for your specific run). Tabs and entry fields a
grayed out if they are not required for the type of LVS you plan to run.
Information that is read from the loaded rule file populates the corresponding
fields in these tabs. If you change an entry, the GUI information overrides the
file.

• Layout tab—allows you to specify theLayout Path and Layout Primary
specification statements information in the Files and Primary Cell fields
respectively. The Layout Netlist field is the pathname of the extracted
netlist if you enable the Netlist Extraction radio button (LVS-H only). Th
field specifies the path of the layout netlist if you enable the Netlist vs
Calibre Verification User’s Manual, v9.1_53-16

Calibre Interactive Graphical User Interface Description

ut

he

re

line
e are
y

VS
t is
s. If

VS

r
nd

un

files.
Netlist radio button. The default behavior is to take layout database inp
from the layout editor, using the current top-level cell.

• Netlist tab—allows you to specify theSource Path and Source Primary
specification statements information Files and Primary Cell fields,
respectively. You can specify multiple Spice files as the source path. T
delimiter is a newline. If multiple Spice files are specified, LVS-GUI
creates a file “gui.source.net” that includes the multiple Spice files befo
running Calibre LVS.

• Hcells tab—allows you to enable the -hcell and -automatch command
arguments. Do not use -automatch unless you are quite certain that ther
at least some corresponding source and layout cell names that actuall
match (see -automatch onpage 2-18).

Outputs—activates a menu that allows you to specify the pathnames of the L
report, the LVS output database, and other LVS output files. Information tha
read from the loaded rule file populates the corresponding fields in these tab
you change an entry, the GUI information overrides the rule file.

• Report/SVDB tab—allows you to specify theLVS ReportandMask SVDB
Directory specification statement pathnames and options, to view the L
report upon completion of the LVS run, and to start LVS-RVE upon
completion.

• Flat-LVS Output tab—allows you to specifyMask Results Database
specification statement information, to specify the NOFLAT keyword fo
the Mask SVDB Directory statement, and to specify the -ixf, -nxf, -bpf a
-nl command line invocation arguments.

Run Directory

The run directory is a directory location from which the Calibre application is r
and from which all relative path names are resolved. By default, Calibre
Interactive sets the run directory to your current directory.

You can change the run directory in theRulesdialog box of the Calibre DRC and
LVS windows. This may require you to update the paths to input and output
Calibre Verification User’s Manual, v9.1_5 3-17

Graphical User Interface Description Calibre Interactive

le
ses

e

at
ion
Control Files

Before running Calibre DRC or LVS, the Calibre Interactive GUI creates a ru
file, called a control (or header) file, based on your dialog box selections that u
anInclude statement to call the rule file specified in theRules dialog box. The
control file is saved in the run directory with the following naming structure:

_rule_file_name _

where the name of the specified rule file is enclosed in underscores (_). This
control file will be overwritten if you execute another application from the sam
run directory using a similarly-named rule file.

The settings in the Calibre Interactive control file may override statements th
occur in the original rule file. This is not how Include statements usually funct
in SVRF rule files, but it is allowed in Calibre Interactive.
Calibre Verification User’s Manual, v9.1_53-18

Calibre Interactive Graphical User Interface Description

I
ptions
ns a
Text Editing

If you chooseFile > Open Text File...from a DRC or LVS window, you can
open a text window like this (without the shown text, of course):

Figure 3-5. Text File Window

Such a window is also invoked by selecting a View button for a text file in GU
menus that have such buttons. The pulldown menus have these selectable o
using your left mouse button (pressing and holding the right mouse button ope
flyout menu with these items):

File—allows you to open and save text files and has the following options:

• Open—opens a dialog box that allows you to open a text file.

• Save—allows you to save a changed file under its current name.
Calibre Verification User’s Manual, v9.1_5 3-19

Graphical User Interface Description Calibre Interactive

s
ough

fer.

xt.

l

to

e

of

is
ion
• Save As...—opens a dialog box that allows you to save the current file
under a different name.

• Print —opens a dialog box that allows you to print the text file.

• Close—allows you to close the application.

Edit—allows you to perform editing functions.Use of these functions depend
upon the selection of text by pressing the left mouse button and dragging thr
text and/or allowing changes to the file (seeOptions >Edits Are):

• Cut—removes selected text from the file and stores it in a memory buf

• Copy—copies selected text to a memory buffer without removing the te

• Paste—places text from the memory buffer into the file at the current
insertion point.

• Delete—erases selected text.

• Select All—selects all text in the file.

Options—allows you to perform various text search, view, and editing contro
functions:

• Search...—opens a dialog that allows you to search for a text string.

• Go to Line...—opens a dialog box that allows you to scroll immediately
a specified line in the file.

• Line Numbers—toggling this to true displays the line numbers of text. Th
default is false.

• Status Bar—toggling this to true activates the status bar at the bottom
the text window. The default is true. The status bar displays whether
changing the file is allowed or not (the Edit indicator is green if editing
allowed), in addition to the row and column number of your cursor insert
point.
Calibre Verification User’s Manual, v9.1_53-20

Calibre Interactive Interface to Calibre RVE

ult

e

rd.

uts

n
e

tors.
• Font—opens a flyout menu that allows you to select font size. The defa
is Normal.

• Edits Are—opens a flyout menu for toggling the alterability status of th
file. The default is Not Allowed.

• Windows—allows you to select the arrangement pattern of open text
windows. The default is “as is.”

Text windows respond to the Page Up and Page Down keys on your keyboa

Interface to Calibre RVE
Calibre Interactive allows you to invoke Calibre RVE in three ways; from the
Calibre Interactive palette, from the button bar of the Calibre user interface
windows, or automatically after the completion of a Calibre application.

• Calibre Interactive palette—ClickRVE to display the Calibre RVE startup
screen.

• Automatic—You can instruct Calibre Interactive to invoke Calibre RVE
after the Calibre LVS/DRC application finishes, this is done in the Outp
dialog box.

For DRC, you can set this only if the DRC results database is in ASCII
format. For LVS, you can set this only if you selectCreate SVDB
Database.

• Start RVE button bar item—You can invoke Calibre RVE with theStart
RVE button. From the Calibre DRC window, this opens Calibre RVE o
the specified DRC results database only if it is in ASCII format. From th
Calibre LVS window, this opens Calibre RVE with the specified SVDB.

If you do not specify an ASCII formatted DRC results database or an
SVDB directory, the Calibre RVE startup screen is displayed.

You can also access RVE from the Calibre pulldown on supporting layout edi
Calibre Verification User’s Manual, v9.1_5 3-21

Connections to Layout Editors Calibre Interactive

rs:

wn
For information on Calibre RVE, refer to chapter15, “RVE/QDB-H and Query
Server”.

Connections to Layout Editors
Calibre Interactive establishes connections through the following layout edito

• ICgraph

• Calibre LITHOview

• Calibre WORKbench

• DESIGNrev

• Cadence Virtuoso

The first four editors are Mentor Graphics products. All have a Calibre pulldo
menu by default. The Calibre Interactive interfaces are accessible from this
pulldown. Virtuoso setup is covered in a following section.

Mentor Graphics Layout Editor Interfaces to Calibre

Mentor Graphics layout editors have a Calibre pulldown menu similar to the
following:

Figure 3-6. Calibre Pulldown Menu
Calibre Verification User’s Manual, v9.1_53-22

Calibre Interactive Connections to Layout Editors

er

the

ever

ve
libre

at
sh
ure
s

f

his
Selecting any of the first four buttons activates the corresponding Calibre us
interface.

Communications sockets are set up automatically when you invoke Calibre
Interactive through the layout editor. The default socket number is 9189. You
make this connection manually from theSetup menu item.

Calibre Interactive can communicate with any of the previously-mentioned
Mentor Graphics layout editors to enable automatic export of GDSII layout
databases. Calibre Interactive imports thePrimary Cell according to the setting in
theInputs dialog box. By default, the currently open cell in the layout editor is
selected for import.

Cadence Virtuoso Interface

To set up your Virtuoso layout editor with a Calibre pulldown menu, first read
$MGC_HOME/shared/pkgs/icv/tools/queryskl/calibreREADME file. It gives
complete instructions on installing the calibre.skl file that resides at the same
directory level.

The Calibre menu is added by the Skill Interface as a user menu trigger. When
a layout window (of type maskLayout) is opened, the user menu trigger is
executed. The Skill Interface then installs any other user menus that may ha
been defined (either by you or by other applications), and then installs the Ca
menu as the last menu.

If other applications also install menus in layout windows, we recommend th
you load calibre.skl after you load these other applications’ Skill files. If you wi
to load the Calibre menu before other applications’ menus, you need to be s
that the other applications’ Skill code ensures that the Calibre menu also get
loaded.

If you wish to install the Calibre menu in a different type of window (instead o
the default window type maskLayout), you need to set the Skill variable
mgcCalibreMenuViewType to that different type before you load calibre.skl. T
can be done, for example, in the .cdsinit file as shown in the following code:

mgcCalibreMenuViewType = "myLayout"
; instead of "maskLayout"
Calibre Verification User’s Manual, v9.1_5 3-23

Connections to Layout Editors Calibre Interactive

t
ng
l
n

r

ee

nd
 a

if
load("calibre.skl")
; load calibre.skl

Note that if you switch the layout window to another tool (for example, Layou
XL orPcell), the Calibre menu will disappear if you are using the default setti
for mgcCalibreMenuViewType (= "maskLayout"). To access Calibre, you wil
have to switch back to the “Layout” tool. The Calibre menu will reappear whe
you switch to the “Layout” tool. Alternatively, you could set
mgcCalibreMenuViewType to the type of the window installed by the tool (fo
example, “maskLayoutXL” for Layout XL, “maskLayoutParamCell” for Pcell,
and so forth). Note that if you do set mgcCalibreMenuViewType, you will not s
the Calibre menu for the default layout view provided by the “Layout” tool. To
see the type of view installed by a Cadence tool, consult the .ini files
(pCellGen.ini for Pcell, lx.ini forLayout XL) in the
<cadence-install-dir>/tools/dfII/etc/context directory.

The mgc_load_calibre_menu() Skill command is also provided. This comma
installs the Calibre menu in the active window. This command can be tied to
bind key if desired.

The Calibre menu in Virtuoso layout windows (this is, windows of type
maskLayout) has following items:

• Run DRC—starts Calibre Interactive DRC.

• Run LVS—starts Calibre Interactive LVS.

• Start RVE—starts Calibre RVE.

• Clear Highlights—clears RVE highlights in the current cell.

• Setup—this is described below.

• OPC Workbench—contains a submenu for using Calibre WORKbench,
installed.

TheSetup menu has the following items:
Calibre Verification User’s Manual, v9.1_53-24

Calibre Interactive Connections to Layout Editors

f

y
IW

ee

ns
es

t up

ile

fore
he

ort
a

• Set RVE Cell Libnames...—allows you to specify your desired Cadence
Library for RVE. Multiple libraries may be entered in a space-delimited
list.

• Socket...—specifies the socket that Calibre Interactive and RVE use to
communicate with Virtuoso. The socket is not initialized until needed. I
you wish to initialize the socket during the loading of calibre.skl, set the
environment variable MGC_RVE_INIT_SOCKET_AT_STARTUP to an
value before loading calibre.skl. The socket number is displayed in the C
window. The socket port number may be specified by the
MGC_CALIBRE_LAYOUT_SERVER environment variable.

• RVE Highlight Layers—allows you to define error layer appearance. S
Using RVE with Virtuoso.

• Layout Export—displays a dialog that controls options used while
exporting layout databases to Calibre.

You can load Streamout template files into theLayout Export dialog. The
dialog also allows you to save template files.

Calibre's layout export does not provide control over all the various optio
available for Streamout in Virtuoso. However, the export procedure utiliz
all the supported options during export. The recommended flow is to se
all the applicable options for Streamout export through Virtuoso’sFile >
Export > Stream dialog, then save these options in a template file. This f
can be loaded into Calibre’sLayout Export dialog in the Template field.

You can specify the template file to load at startup by specifying the file
name as the Skill variable mgc_calibre_export_layout_template_file be
you load calibre.skl. This is equivalent to loading the template file with t
Skill load command.

When you instruct Calibre Interactive to export a layout database from
Virtuoso, Calibre Interactive directs Virtuoso to display the Layout Exp
dialog box. This dialog box allows you to specify a layer mapping file and
Skill template file to be used during the export of the database.
Calibre Verification User’s Manual, v9.1_5 3-25

Connections to Layout Editors Calibre Interactive

l
are

e
set

g a

ve"

 are

t

ys

re
When exporting a layout to GDSII format (using PIPO strmout), severa
options can be set that govern the export of the layout. These options
stored within Virtuoso as the Skill variable “streamOutKeys”.

Before instructing Virtuoso to export the layout to GDSII format, Calibr
Interactive determines whether the streamOutKeys variable has been
within the Virtuoso editor. If streamOutKeys is set, Calibre Interactive
creates a text file containing the streamOutKeys list variable values.
However, if streamOutKeys is not set, Calibre Interactive initializes
streamOutKeys to default values. The created text file is saved in theRun
Directory and follows the naming convention:

CGI.streamOut.<cell_name>

The streamOutKeys variable may be loaded directly in the CIW, or usin
trigger function.

Lower and upper-case settings are supported. You can set the
streamOutKeys->caseSensitivity variable to "upper", "lower", or "preser
before exporting the layout.

TheLayout Export dialog allows you to specify the run directory to use
during layout export. Relative pathnames specified in the export dialog
qualified with the run directory pathname. The PIPO.LOG.<cellname>
file's location can be controlled by setting the run directory, and by
specifying a relative pathname for the log file. The default is the curren
directory.

Calibre Interactive alters only two options set by existing streamOutKe
within Virtuoso; the case sensitivity and primary cell options. The case
sensitivity option is set topreserve, and the primary cell option is set to the
value specified in theInputs > Primary Cell text box.

After creating the text file based on the streamOutKeys variable, Calib
Interactive instructs Virtuoso to export the layout to GDSII format and
continues with the Calibre application.
Calibre Verification User’s Manual, v9.1_53-26

Calibre Interactive Connections to Layout Editors

ts

ious
d
 is

an
s

s

You can elect to display theLayout Export dialog every time before
export by checking the “Show dialog before export” check button in the
dialog.

• Netlist Export—controls options used while exporting Composer
schematics to Calibre.

The LVS Invocation GUI supports automatic import of Composer netlis
as the source database. TheNetlist Export dialog allows you load and save
cdl netlisting template files.

Calibre LVS uses cdl as its source database format when invoked from
Virtuoso. Consequently, the netlist export routines use the simulation
interface system (“si -batch”) to translate the schematic to cdl. The var
settings in the Netlist Export dialog are similar to cdl export settings an
can be set through the “cdlOutKeys” global Skill variable. This variable
found in the “si.env” file. This variable may be loaded in the CIW, in a
trigger function, or by specifying the
mgc_calibre_export_netlist_template_file Skill variable to point to a
template file.

The Calibre Netlist Export Setup dialog has the following features:

o View name:—this sets the Cadence view of the cell

o Simulator:—sets the tool doing the netlisting (cdl is typical).

o View List:, Stop List:—these settings control hierarchy traversal.

The view and stop lists used for netlist export to Calibre Interactive c
be controlled by setting the CDS_Netlisting_Mode variable, either a
an environment or as a Skill variable. If the variable's value is set to
ANALOG, aucdl views are netlisted. Any other setting (including
DIGITAL) netlists cdl views. The corresponding fields in cdlOutKey
are simSimulator, simViewList, and simStopList.

o Equivalents:—produces *.EQUIV statement in netlist.
Calibre Verification User’s Manual, v9.1_5 3-27

Connections to Layout Editors Calibre Interactive

ys

cell
ns.

do

e

ce

ify

VE
pts
o Connects:—produces *.CONNECT statement in netlist. Specify the
nets with a "=" sign between them. For example, specifying the
following in the dialog entry field:

VDD=VDD! VCC=VCC!=VCC2

will produce the following statements in the generated netlist:

*.CONNECT VDD VDD!
*.CONNECT VCC VCC! VCC2

o Include:—produces *.INCLUDE statement in netlist.

o Check LDD:—produces *.LDD statement in netlist.

o Display pin:—produces *.PININFO statement in netlist.

All settings can be saved to a template file and this creates a cdlOutKe
variable.

The layout and netlist export mechanisms display a dialog if the cell being
exported has been modified. The dialog allows the user to optionally save the
before exporting it. Note that only the top-level cell is checked for modificatio

Using the Virtuoso Interface

The Calibre Interactive allows you to run DRC or LVS on a Virtuoso cell. To
this, start DRC or LVS by clicking on theRun DRC or Run LVS menu item
respectively. The Calibre Interactive will start and the last runset file you wer
using will be read in. TheImport layout database from layout viewer check
box will be selected. This directs the GUI to communicate with the Skill Interfa
before DRC or LVS is run. The Skill Interface exports the layout cell in stream
format using pipo. Before exporting, it displays a dialog that allows you to spec
any layer mapping or Skill file to be used during the translation.

Socket Connections

The Calibre Skill Interface uses a TCP socket to communicate with Calibre R
and the Calibre Interactive. When you load the calibre.skl file, the code attem
Calibre Verification User’s Manual, v9.1_53-28

Calibre Interactive Connections to Layout Editors

CIW

are

(it is
e).
to initialize a server socket at port 9189. If that port is being used, the code
searches for a free socket port in the range 5000-9999.

If the default port number is used, the following message is displayed in the
transcript:

// Calibre layout-server initialized successfully at socket
9189.

If a different port is found after a search for free ports, the following messages
displayed in the CIW transcript:

// Could not initialize Calibre layout-server socket at port
9189. Trying to find free socket . . .
// Calibre layout-server initialized successfully at socket
5000.

You can control the port number used by setting the environment variable
MGC_CALIBRE_LAYOUT_SERVER as follows:

(Bourne Shell)

MGC_CALIBRE_LAYOUT_SERVER=[<host_name>:]<port_number>
export MGC_CALIBRE_LAYOUT_SERVER

or

(C-Shell)

setenv MGC_CALIBRE_LAYOUT_SERVER [<host_name>:]<port_number>

The <host_name> parameter is optional and is ignored by the Skill Interface
provided for compatibility with RVE, which also reads this environment variabl
The <port_number> parameter must be a numerical value.
Calibre Verification User’s Manual, v9.1_5 3-29

Connections to Layout Editors Calibre Interactive

ns.

at is
as
and

xits.

t
e.

ut
Skill Trigger Functions

You can now define pre- and post-Calibre Interactive execution trigger functio
The pre-execution trigger is defined by providing the Skill procedure
mgc_start_calibre_trigger. The trigger function is called just before Calibre
Interactive is launched. The function is called with two parameters: a string th
set to either "drc" or "lvs", and the ID of the window that Calibre Interactive w
started from. The trigger function is expected to return t or nil (true or false),
execution proceeds only if t is returned by the function. Here's a sample pre-
trigger function:

 procedure(mgc_start_calibre_trigger(drc_or_lvs win)
 prog(()
 printf("Starting %s on top cell in window %L...\n"
 upperCase(drc_or_lvs)
 win
)
 return(t)
))

A similar post-execution trigger function is provided as
mgc_close_calibre_trigger. It executes when the Calibre Interactive process e
The return value of the function is not checked. Here’s a sample:

 procedure(mgc_close_calibre_trigger(drc_or_lvs win)
 prog(()
 printf("Closing %s on top cell in window %L...\n"
 upperCase(drc_or_lvs)
 win
)
 return(t)
))

Using RVE with Virtuoso

You can start RVE from theStart RVE menu item in the Calibre menu in layou
windows in Virtuoso. Alternatively, you can also start it from the command lin

• Startup—To tell RVE to use Virtuoso as the layout viewer, choose the
Setup > Layoutmenu item in RVE. Select Cadence Virtuoso as the layo
Calibre Verification User’s Manual, v9.1_53-30

Calibre Interactive Connections to Layout Editors

o is
has
the
on

).

ers

l be

d the
es

g.
the

le

any

e

viewer. In that dialog, you can also specify the name of host that Virtuos
running on, as well as the socket number that the Calibre Skill Interface
initialized. (This socket number is reported in the CIW transcript when
Skill Interface is loaded. You can also get the socket number by clicking
theSet RVE Socket... menu item in the Calibre menu in layout windows

RVE saves these settings in a .rvedb file in your home directory and
restores these settings the next time you run RVE.

If the MGC_CALIBRE_LAYOUT_SERVER environment variable is set
when RVE is started, RVE will use the host name and socket port numb
specified by the variable.

If started from theStart RVE menu item in the Calibre menu, RVE will run
on the same host as Virtuoso. The Skill Interface ensures that RVE wil
able to communicate with itself (the Skill Interface) by setting the
MGC_CALIBRE_LAYOUT_SERVER environment variable before
starting RVE.

• Highlighting —RVE allows you highlight DRC errors from DRC
databases, and nets, instances, and devices from LVS databases, in
Virtuoso. RVE packages the highlight data in a file (go toSetup > Layout
> Send highlight data in file dialog item to specify the file name) and
sends a message to the Skill Interface over the socket directing it to rea
file. The Skill Interface interprets the data from the file and accomplish
the highlighting.

The RVE Highlight Layers dialog (Calibre > Setup > RVE Highlight
Layers...) allows you to choose which layers RVE uses to do highlightin
The default is layers y0-y9. You can also choose the nine "hilite" layers,
warning marker layer, or the error marker layer. You can set the
MGC_RVE_USE_MARKERS (deprecated) environment or Skill variab
to direct the use of the (“warning” or “error”) marker layer. The
MGC_RVE_HIGHLIGHT_LAYERS variable (either specified as an
environment or Skill variable), can also be used to choose from among
of these four choices of highlight layers. The valid values for
MGC_RVE_HIGHLIGHT_LAYERS are "y0", "hilite", "warning", and
"error". This variable overrides MGC_RVE_USE_MARKERS if both ar
specified.
Calibre Verification User’s Manual, v9.1_5 3-31

Connections to Layout Editors Calibre Interactive

g to
ice.

0,
 for

age

e
g

n
e

rst
n

e

 the

e

r if
s
ining
If a hierarchical net or device is highlighted, the schematic correspondin
the containing cell is automatically opened and zoomed to the net or dev
For example, if you highlight net "X0/net1" in cell "XOR", and cell "XOR"
is open in window 1, RVE will descend into the cell corresponding to X
highlight net "net1" and zoom to it. If a subsequent highlight request is
net "net2" in cell "XOR", RVE will pop back up to the "XOR" cell in
window 1 and highlight and zoom to the net. LVS-RVE displays a mess
in the CIW if a schematic object cannot be successfully highlighted.

When RVE requests highlighting in a particular cell, the Skill Interface
checks to see if the cell is already open in a window. If not, it checks th
colon-delimited cell libraries path specified in the Set RVE Library dialo
(choose theSet RVE Library menu item from the Calibre menu) for the
cell. If it cannot find the cell in the path, it prompts you with the cell ope
dialog. When you choose a cell from that dialog from a library not on th
path, that library is automatically added to the cell libraries path. One
consequence of this is that if a cell is in two libraries, the cell from the fi
library in the path will always be picked. If you wish to switch designs i
the midst of an RVE session, you may want to clear or reset the RVE
libraries path explicitly to avoid the Skill Interface picking a cell from th
wrong library.

RVE does not open layout and schematic windows on highlight, unless
environment (or Skill) variable MGC_RVE_RAISE_WINDOW is set to
any value.

• Case sensitivity—Case sensitivity in layout export can be set through th
Skill variable streamOutKeys->caseSensitivity. RVE will search for
highlight cells in a case insensitive fashion if this setting is insensitive, o
the environment or Skill variable MGC_RVE_LAYOUT_CASE_FOLD i
defined. Source cell searching can also be made case insensitive by def
the environment or Skill variable MGC_RVE_SOURCE_CASE_FOLD.

• Working directory —If you wish to direct RVE to always start in a
particular directory, you can set the environment variable
MGC_CALIBRE_DB_DIR to that directory. When RVE starts, it will
change its working directory to the one specified in the variable.
Calibre Verification User’s Manual, v9.1_53-32

Calibre Interactive Connections to Layout Editors
Variables Summary

Table 3-1. Calibre Interactive Variables Summary

Variable Type Description

MGC_CALIBRE_DB_DIR env sets RVE working
directory
(page 3-32)

MGC_CALIBRE_DRC_RUNSET_FILE env sets DRC runset
(page 3-3)

MGC_CALIBRE_LVS_RUNSET_FILE env sets LVS runset
(page 3-3)

MGC_CALIBRE_LAYOUT_SERVER env sets communications
socket number
(page 3-10)

MGC_RVE_INIT_SOCKET_AT_
STARTUP

env sets socket initiation
preference for Virtuoso
(page 3-25)

MGC_RVE_USE_MARKERS
(deprecated)

env or
Skill

sets the use of warning
or error layers by RVE
in Virtuoso (page 3-30)

MGC_RVE_HIGHLIGHT_LAYERS env or
Skill

sets the use of warning
or error layers by RVE
in Virtuoso (page 3-30)

MGC_RVE_RAISE_WINDOW env or
Skill

sets the behavior of
RVE layout and
schematic windows by
Virtuoso (page 3-30)

MGC_RVE_LAYOUT_CASE_FOLD env or
Skill

sets the case sensitivity
behavior of highlight
cells by RVE in
Virtuoso (page 3-30)
Calibre Verification User’s Manual, v9.1_5 3-33

Connections to Layout Editors Calibre Interactive

file

file
MGC_RVE_SOURCE_CASE_FOLD env or
Skill

sets the case sensitivity
behavior of highlight
cells by RVE in
Virtuoso (page 3-30)

mgc_calibre_export_layout_template_file Skill sets layout template
location in Virtuoso
(page 3-25)

mgc_calibre_export_netlist_template_file Skill sets netlist template
location in Virtuoso
(page 3-27)

mgcCalibreMenuViewType Skill specifies window type
in which to load a
Calibre menu
(page 3-23)

CDS_Netlisting_Mode env or
Skill

sets netlisting export
mode in Virtuoso
(page 3-27)

Table 3-1. Calibre Interactive Variables Summary

Variable Type Description
Calibre Verification User’s Manual, v9.1_53-34

.
ays
ges
ed the

f the
f the
ded

 This
he
Chapter 4
DRC Concepts

Calibre DRC/DRC-H is an edge-based design rule checking system. It works
primarily with the edges of polygons rather than with the regions themselves
Basic geometric data types are polygons and edges of polygons. Edges alw
have a reference back to the polygon to which they belong. Polygons and ed
can also have a reference to an electrical node, as long as you have establish
appropriate circuit connectivity.

Figure4-1 shows the edge-polygon relationship: every polygon edge has an
exterior side and an interior side. An edge’s side depends upon which side o
edge borders the exterior of the polygon and which side borders the interior o
polygon. In this manual, all figures show the interior side of an edge as the sha
side.

Figure 4-1. Edge-polygon Relationship

Layers
Calibre DRC works on edges located on layers that the IC designer creates.
section discusses the layers that Calibre DRC recognizes and creates, and t
types of operations it performs on the layers.

POLYGON EDGE
Calibre Verification User’s Manual, v9.1_5 4-1

Layers DRC Concepts

In a

as if it

 data
, the
ygon.
n
 of
Layer Types

A rule file creates or uses data from four types of layers (see Figure4-2):

• Original layers

• Derived polygon layers

• Derived edge layers

• Derived error layers

Figure 4-2. Layer Types

Original Layers

Original layers (or drawn layers) are layers that represent original layout data.
rule file, they are referred to by their name or number. The verification system
also allows you to use layer sets. In this case, the layer set behaves exactly
were a simple layer with all geometries on the constituent layers combined.

In most layer operations, the DRC system automatically merges the polygon
on an original layer before using that layer. In a merged-data representation
DRC system merges any polygons that overlap or share an edge into one pol
The primary exceptions are the one-layer Boolean operations that operate o
unmerged original layers. Merged data is normally a more accurate depiction
the true mask than unmerged data.

Original Derived
Polygon Layers

Derived
Edge Layers

Derived
Error LayersLayers
Calibre Verification User’s Manual, v9.1_54-2

DRC Concepts Layers

 of
cted
rror

erated
dge-

ived

arily,
ion
ny

other
as the
e

ly

 of
Derived Polygon Layers

Derived polygon layers represent merged polygons generated as the output
layer operations, such as Boolean functions, area functions, and polygon-dire
dimensional check operations. Derived polygon layers can also be derived e
layers.

Derived Edge Layers

Derived edge layers represent edges or sub-edges of merged polygons gen
as the output of layer operations, such as topological edge operations, and e
directed dimensional check operations. Derived edge layers can also be der
error layers.

Derived Error Layers

Derived error layers represent clusters of one, two, three, or four edges. Prim
they hold output of error-directed dimensional check operations for instantiat
into the DRC results database. Currently, you cannot use them as input to a
operation in the verification system.

Layer Type Summary

You can assign derived polygon and derived edge layers a name to use in an
operation. You can also place derived layers into the DRC results database
output of design rule checks, where the objects on the derived layers becom
individual results in the database. Any of the three derived layer types can
represent output from the DRC system, although only the third type is actual
called an “error layer.”

Figure4-3 shows the global flow of control through the DRC system, in terms
the layer types supported by the system.
Calibre Verification User’s Manual, v9.1_5 4-3

Layers DRC Concepts

y

s:
Figure 4-3. Layer Types and Data Flow in the DRC System

Layer Operations

The basic unit within a rule file is the layer operation. A layer operation is an
measurement function that creates a derived layer from input consisting of
original layers or other derived layers. There are two types of layer operation

• Dimensional Check Operations. Dimensional check operations provide
the core design-rule checking capability of the DRC system.

Layout
Database

Original
Layers

Layer
Operations

Derived Polygon
Layers

Derived Edge
Layers

Derived Error
Layers

DRC
Results

Database
Calibre Verification User’s Manual, v9.1_54-4

DRC Concepts Layers

k

n use
ase.
ed

es a

 A
hich
ide

;
ule
ny
the
• Auxiliary Operations . Any layer operation that is not a dimensional chec
is an auxiliary operation.

Both types of operations create derived error layers (error-directed layer
operations), derived edge layers (edge-directed layer operations), or derived
polygon layers (polygon-directed layer operations).

Because no operation currently accepts derived error layers as input, you ca
error-directed layer operations only to send results to the DRC results datab
You can use the derived layers created by polygon-directed and edge-direct
layer operations as input to other operations or as output to the DRC results
database. For more information, refer toDRC Results Database in chapter14.

Layer Definitions

Layer definitions assign names to derived layers. When a layer definition nam
derived layer, you can use the derived layer in another rule file operation by
referencing its name. A layer definition has the form:

layer_name = layer_operation

The layer operation creates the derived layer and gives it the namelayer_name.

A layer definition can exist either inside or outside of a rule check statement.
layer definition that is outside a rule check statement is considered global, w
you can use in operations anywhere in the rule file. A layer definition that is ins
of a rule check statement is local to that statement. A local definition is not
available outside the rule check statement.

You can reuse the same local layer names in different rule check statements
however, you cannot use the same local layer name twice within the same r
check statement. You cannot use global layer names twice in one rule file. A
local layer definition supersedes a global definition of the same name within
rule check statement where the global definition appears.

Here is a sample rule file except illustrating layer definitions:
// This section defines diffusion regions, transistor gates,
// and source/drain regions.
n_diff = diffusion NOT p_dope //n+ diffusion
Calibre Verification User’s Manual, v9.1_5 4-5

Layers DRC Concepts

 may

yer
s

yer
 use

ond

put
p_diff = diffusion AND p_dope //p+ diffusion
n_tap = n_diff NOT OUTSIDE n_well //n-tap areas
not_n_tap = n_diff OUTSIDE n_well //areas which are not n-taps
p_tap = p_diff OUTSIDE n_well //p-tap areas
not_p_tap = p_diff NOT OUTSIDE n_well //areas not p-taps
n_gate = poly AND not_n_tap //n-channel gates
p_gate = poly AND not_p_tap //p-channel gates
nsd = not_n_tap NOT n_gate //n-source/drain regions
psd = not_p_tap NOT p_gate // p-source/drain regions

Layer operations must always be usedwithin a layer definition, except when
inside of a rule check statement, as discussed below; in the latter case, they
be “free-standing.”

Implicit Layer Definitions

The syntax for layer definitions is sometimes referred to as an explicit layer
definition, because the specification statement explicitly defines the derived la
name. You can also define layer definitions implicitly. Implicit definition avoid
having to generate explicit derived layer names and provides an expression
capability for layer operations.

An implicit layer definition consists of a pair of parentheses enclosing one la
operation whose input layer(s) can also be implicit layer definitions. You can
an implicit layer definition as an input layer to any operation. Implicit layer
definitions allow expression capability in layer operations and free you from
having to create names for every derived layer. For example:

taps = (pdiff AND (bulk NOT nwell)) OR (ndiff AND nwell)

In this example, an explicit layer definition defines layertaps . The statement
implicitly defines the two input layers to the OR operation, as well as the sec
input layer to the AND operation. Internally, the rule file compiler “unwinds”
implicit layer definitions into a sequence of explicit layer definitions.

The only exception to the use of an implicit layer definition as an operation in
parameter is in edge-directed output in a dimensional check operation.
Calibre Verification User’s Manual, v9.1_54-6

DRC Concepts Layers

er

mple,

 on
Layer Operation Classifications

Layer operations that generate derived edge or polygon layers are either lay
constructors or layer selectors. Some layer operations that affect circuit
connectivity are net-preserving. The following sections describe these
classifications.

Layer Constructors

Operations classified as layer constructors create new polygon data. For exa
a two-layer Boolean operation:

layer1 AND layer2

is a layer constructor because it creates new polygons from the polygon data
both input layers. The following layer operations are layer constructors:

AND Grow Ports

Density [Not] Inside Cell Push

Device Layer Internal
(polygon-directed check)

Rectangles

Enclosure
(polygon-directed check)

Litho Rectangle Enclosure

Expand Edge Magnify Rotate

Expand Text Merge Size

Extent Net Area Ratio [Print] Shift

Extent Cell NOT Shrink

Extents OR Snap

External
(polygon-directed check)

Ornet Stamp

Flatten Pathchk Topex
Calibre Verification User’s Manual, v9.1_5 4-7

Layers DRC Concepts

 from
ayer
 that
Layer Selectors

Operations classified as layer selectors select existing polygon or edge data
the appropriate input layer. For example, the Coincident Edge operation is a l
selector because it selects edges or edge segments from the first input layer
are coincident with edges from the second input layer. The following layer
operations are layer selectors:

Holes Pins XOR

Expand Edge Polynet

[Not] Angle [Not] Area

[Not] Coincident Edge [Not] Coincident Inside Edge

[Not] Coincident Outside Edge Convex Edge

Copy [Not] Cut

[Not] Donut Drawn Acute

Drawn Offgrid Drawn Skew

[Not] Enclose Enclosure (edge-directed
dimensional check)

[Not] Enclose Rectangle External (edge-directed
dimensional check)

[Not] Inside [Not] Inside Edge

[Not] Interact Internal (edge-directed
dimensional check)

[Not] Length [Not] Net

Net Area Offgrid

[Not] Outside [Not] Outside Edge

Path Length Perimeter

[Not] Rectangle [Not] Touch

[Not] Touch Edge [Not] Touch Inside Edge
Calibre Verification User’s Manual, v9.1_54-8

DRC Concepts Layers

he
g
.

ity
he

the

cted
en

s

er
ugh
vity
Layer selector operations select data from the appropriate input layer.

Net-preserving Operations

A net-preserving operation passes connectivity from an input layer through t
operation to the derived layer. All layer selector operations are net-preservin
because they distinctly select polygon or edge data from a single input layer
Calibre DRC passes connectivity information to the derived layer, if the data
contains connectivity information.

TheOrnet, two-layerAND, and the two-layerNOT operations (layer
constructors) are also net-preserving. The Ornet operation passes connectiv
information from both input layers through the operation to the derived layer. T
AND and NOT operations pass connectivity from the first input layer through
operation to the derived layer.

Note that net-preserving operations, with the possible exception of edge-dire
dimensional check operations, pass connectivity from the first input layer (wh
two of them are used) to the derived layer.

The order of the input layers affects connectivity information. In theCoincident
Edgeoperation shown in Figure4-4, connectivity passes from the layer1 polygon
(or edges) to the derived layer. When the operation is written:

x = COINCIDENT EDGE layer2 layer1

the connectivity passes from the layer2 polygon (or edges) to the derived layx .
Reversing the layer order does not produce different geometric output. Altho
both definitions would generate the same geometric edge data, the connecti
attached to the output is not likely the same between the two operations.
Connectivity is dependent on the “layer of origin”, which is discussed next.

[Not] Touch Outside Edge Vertex

[Not] With Edge With Text
Calibre Verification User’s Manual, v9.1_5 4-9

Layers DRC Concepts

 for

ns,

ctor

ors

ons
yer

er
her
Figure 4-4. Coincident Edge Operation

Layer of Origin

This section describes the concept of alayer of origin, which is important for
polygon- or edge-directed dimensional check operations. It is also important
net-preserving operations.

Layer operations are either layer constructors or layer selectors. Layer
constructors actually create new polygon data. For a listing of these operatio
refer to the section “Layer Constructors” and “Layer Selectors” above.

Layer constructor operations generate new polygon data, whereas layer sele
operations simply select existing data from the appropriate input layer. For
example, polygon-directed dimensional check operations are layer construct
and the edge-directed dimensional check operations are layer selectors.

Given the name X of a layer definition, an arbitrarily long sequence of operati
may have produced it. The layer of origin of X is the last layer produced by a la

Note

The layer of origin concept is not applicable to error-directed lay
operations, because you cannot currently use their output in ot
operations.

x = COINCIDENT EDGE layer1 layer2

layer1 and layer2 polygons
Calibre Verification User’s Manual, v9.1_54-10

DRC Concepts Layers

all

ayer
s

.

ct
r

y
ation
lygon
ntical
constructor from which data within X were derived. Recall that Calibre merges
original layers prior to using them in any layer operation. Because the merge
operation is equivalent to the one-layer polygon Boolean OR operation, the l
of origin of every original layer is itself. Also, if no layer constructor operation
existed in the layer definition chain for X, then the layer of origin of X is the
original layer from which it was initially derived.

 For example, consider these layer definitions:

X = AND metal contact
Y = AREA X < 4
Z = RECTANGLE Y

The layer-of-origin for layer Z (and layer Y) is layer X because it was the last
layer that a layer constructor operation generated in the layer definition chain

An important point regarding layer selector operations: these operations sele
data from theappropriate input layer. It may appear, for example, that the laye
definitions

X = A coincident edge B
X = B coincident edge A

produce the same data in the layer X. Another way of saying this is that it ma
appear that the Coincident Edge operation is commutative. Although the oper
generates the same geometric edge data in both cases, it is also true that po
(and node) references are passing through the selector operation. Hence, ide
geometric data selected from A and B will not, in general, be the same data,
because polygon and node references will likely differ. This has important
implications for dimensional check operations. For example, the following
Internal dimensional check sequence:

X = metal coincident edge poly
internal X metal < 3

has an entirely different definition from this sequence:

X = poly coincident edge metal
internal X metal < 3
Calibre Verification User’s Manual, v9.1_5 4-11

Rule Check Statements DRC Concepts

ase,
 is

ny
cify
s

itions

 of
s, it

s, but

the

eck
In the first case, layer X contains geometric data carrying polygon number
information from layermetal . In the second case, this data carries polygon
number information from layerpoly . That is, in the first case, the layer of origin
of the input layers to the Internal operation is the same while in the second c
the input layers have different layers of origin. Thus, the definition of Internal
sensitive to layer of origin.

Rule Check Statements
Rule check statements are specific to Calibre DRC applications (as well as a
other Mentor Graphics tool that uses SVRF rule files). These statements spe
layer operations within the rule file that instantiate the resulting derived layer
into the DRC results database. Refer to Chapter14, Results, for information on the
DRC results database.

Rule check statements are active entities of the system, whereas layer defin
are passive. The output from a rule check statement can consist of derived
polygon layers, derived edge layers, or derived error layers, or combinations
the three. A rule check must have output to the DRC results database (that i
must have at least one standalone layer operation) or it will not compile.

Rule check statements take the following form:
name {

layer_definition | layer_operation
…
layer_definition | layer_operation
}

wherename is the name of the rule check, and each line consists of a layer
definition or a layer operation not within a layer definition. Rule check names
must be unique. Also note a rule check must occur between curly braces.
Oftentimes the braces are omitted in this manual when discussing operation
you must include the braces in your rule file or it will not compile.

When a Calibre DRC application executes a rule check statement, it places
derived layers in the DRC results database (see Figure4-3). All derived layers
created by all layer operations (and not in layer definitions) within the rule ch
Calibre Verification User’s Manual, v9.1_54-12

DRC Concepts Rule Check Statements

rule

f
nd
ut to

to

e
eck
statement are placed in the DRC results database. For example, the following
check statement generates layer definitions and derived error layers:

METAL_WIDTH {
 // Metal width check. Metal width must be greater than or
 // equal to 3 microns except where metal length exceeds 5
// microns; in that case, metal width must be greater than or

 // equal to 4 microns.

long_metal = metal LENGTH > 5 // Layer definition;
 // not output to results db
INTERNAL long_metal < 4 // Output to results db
short_metal = metal NOT LENGTH > 5 //Layer definition
INTERNAL short_metal < 3 //Output to results db
}

The layer operationmetal LENGTH > 5 defines layerlong_metal ; this layer is
then used within the next operation. There is no output to the DRC results
database corresponding to themetal LENGTH > 5 operation, because it is part o
a layer definition. Similarly, the third operation is a layer definition. The seco
and fourth operations are not layer definitions; these operations generate outp
the DRC results database under the nameMETAL_WIDTH.

If you wish to see the results of intermediate layer definitions, such as for
long_metal in the above example, use theCopy operation. For example,
inserting

copy long_metal

into theMETAL_WIDTH rule check would copy thelong_metal layer to the
DRC results database as an “error layer.” You could then see whatlong_metal
will look like. Copy is a very useful debugging tool used in this way. Be sure
comment out any such debugging statements when you finish with them.

Rule Check Comments

You can use two types of comments in a rule check statement. The first is th
standard comment, denoted with a double-slash (//). The second is a rule ch
comment, denoted with an at (@).
Calibre Verification User’s Manual, v9.1_5 4-13

Rule Check Statements DRC Concepts

hich

 the

 a

ong

C
space
at is

the
le
fied,
iated.
The // characters begin a comment that terminates at the end of the line on w
they occur. These comments serve only to annotate the rule file.

The @ character begins a rule check comment. All characters from the @ to
end of the line are part of a rule check comment. A rule check comment can
appear only within the braces ({ }) that delimit a rule check statement. When
Calibre DRC application executes the rule check, it places all rule check
comments within the rule check statement into the DRC results database, al
with the output data for the rule check. For example:

METAL_SPACING {
 @ Metal to metal spacing errors.
 @ Do not confuse with notch errors;
 @ the spacing rule is 4 microns.

metal EXTERNAL < 4 space // Check spacing between different
 // polygons.

}
METAL_NOTCH {
 @ Metal notch errors.
 @ Do not confuse with spacing errors;
 @ the notch rule is 3.5 microns.
 metal EXTERNAL < 3.5 notch // Check spacing in the same
 // polygon.

}

Control of Empty Rule Checks

It is typical in DRC execution that many rule checks do not generate any DR
results (empty rule checks). You may not want these rule checks to take up
in the DRC results database. In some cases, it is the rule check execution th
important, whether or not there were actually results.

Empty Rule Check Suppression in Calibre DRC

In Calibre DRC, suppression of empty rule check instantiation is controlled by
rule file DRC Keep Emptyspecification statement. If NO is specified, empty ru
checks will not be instantiated into the DRC results database. If YES is speci
or the statement is not specified at all, then empty rule checks will be instant
Calibre Verification User’s Manual, v9.1_54-14

DRC Concepts Rule Check Statements

o the

This
nt

ude

lts
and

lled

 and

ule
and

 for

arge
. By

rule

 is
ons
C

Check Text

Each rule check in the DRC results database stores information in addition t
actual results. This information includes the time and date of its previous
execution, and can also consist of text mapped by Calibre DRC applications.
text is known ascheck text. Check text can include either the rule check comme
or the entire ASCII text of the rule check statement. Check text can also incl
the pathname and title of the rule file that last ran the rule check. TheDRC Check
Text specification statement controls mapping of check text to the DRC resu
database in Calibre DRC. The default is to map the rule file pathname and title
rule check comments.

Check Text in Calibre DRC

Mapping of check text to the DRC results database in Calibre DRC is contro
by the rule fileDRC Check Text specification statement. If NONE is specified,
then no check text is mapped. If RFI is specified, then the rule file pathname
title, if present, are mapped. If COMMENTS is specified, then rule check
comments are mapped. If ALL is specified, then the entire ASCII text of each r
check is mapped. The default, if not specified, is to map the rule file pathname
title and rule check comments.

DRC Rule Check Result Limits

You can limit the number of DRC results written to the DRC results database
any given DRC rule check by using the DRC Maximum Results specification
statement, or the MAXIMUM RESULTS parameter to the DRC Check Map
specification statement. This capability can help you avoid the generation of l
DRC results databases due, for example, to specifying a large DRC rule value
default, this maximum result limit, per DRC rule check, is 1000.

Calibre issues a warning whenever the process of writing results for a DRC
check is limited by reaching the DRC maximum result limit.

As a performance optimization in flat Calibre DRC, this maximum result limit
internally passed to the lowest level utilities which implement the DRC operati
External, Internal, and Enclosure. These utilities cease the generation of DR
results accordingly when the results are only to be written to the DRC results
Calibre Verification User’s Manual, v9.1_5 4-15

Dimensional Check Operations DRC Concepts

t the

ory
C

ly,
ill

 the
f the
ning.

bility
 edge
ne or

the
ly to

 any

non-
database (not used in a conjunctive setting), and there the tool is certain tha
maximum result limit will be reached.

This optimization, referred to as short-circuiting, can save CPU time and mem
by not generating and storing results which would later, when writing the DR
results database, be discarded due to reaching the maximum result limit.

For hierarchical Calibre DRC, this performance optimization behaves similar
except that it cannot determine, with certainty, that the maximum result limit w
be reached.

Whenever short-circuiting occurs in the hierarchical External, Internal, and
Enclosure operations, Calibre issues the following warning:

Output operation <name> abbreviated due to high probability of
exceeding DRC maximum result limit.

where <name> is the name of the short-circuited operation. In the event that
maximum result count is not exceeded, for the same operation, it is a result o
short-circuit process halting the process prematurely, this too results in a war

Dimensional Check Operations
Dimensional check operations represent the core design rule checking capa
of the DRC system. These operations generate derived error layers, derived
layers, or derived polygon layers by measuring the separation of edges on o
two input layers.

• Error-directed Dimensional Check Operations. Error-directed
dimensional check operations generate derived error layers consisting
primarily of edge pairs whose members mutually meet the constraint of
operation. You can use error-directed dimensional check operations on
generate output within rule check statements; they do not define layer
definitions because you cannot provide derived error layers as input to
DRC operation.

• Edge-directed Dimensional Check Operations. Edge-directed
dimensional check operations generate derived edge layers by creating
Calibre Verification User’s Manual, v9.1_54-16

DRC Concepts Dimensional Check Operations

-
is

ing
-

is

 and
he
clustered edge output from an individual input layer. You can use edge
directed dimensional check operations to create layer definitions. This
done using the edge-directed output operators “[]” and “()”.

• Polygon-directed Dimensional Check Operations. Polygon-directed
dimensional check operations generate derived polygon layers by form
polygons represented by the outline of edge clusters, which their error
directed counterparts would provide as output. You can use polygon-
directed dimensional check operations to create layer definitions. This
done using the REGION keyword.

There are three primary dimensional check operations: Enclosure, External,
Internal. TheEnclosureoperation is for enclosure checks or extension checks. T
External operation is for spacing checks. TheInternal operation is for width
checks or overlap checks.
Calibre Verification User’s Manual, v9.1_5 4-17

Dimensional Check Operations DRC Concepts

re.
Figure4-5 illustrates the edges that the dimensional check operations measu
Note that full rule check syntax is not used in these examples.

Figure 4-5. Measured Edges in the Dimensional Check Operations

ENCLOSURE layer1 layer2 ENCLOSURE layer2 layer1

EXTERNAL layer1 EXTERNAL layer1 layer2

INTERNAL layer1 INTERNAL layer1 layer2

layer1 and layer2 polygons
Calibre Verification User’s Manual, v9.1_54-18

DRC Concepts Dimensional Check Operations

VRF
hese

 the

es and
n.

he

s of

edge
ut.

f all
ron
; a

edge
ally
Secondary Keywords

The dimensional check operations, as well as many other statements in the S
rule file language, have optional secondary keywords associated with them. T
secondary keywords affect the behavior of the operator to which they are
assigned. There are many such keywords and they are discussed in detail in
SVRF Manual. A number of these secondary keywords are covered in the
following sections.

Edge Measurement

The dimensional check operations measure the separation between the insid
outsides of edges, but only if the edges conform to the criteria of the operatio
This section describes the criteria of the dimensional check operations and t
edge-measurement method that they use.

The edge pairs of dimensional check operations consist only of those portion
measured edges that conform to the measurement constraint. This edge-
measurement method proceeds as follows (refer to Figure4-6).

Assume that the measurement is from the outside of edge A to the outside of
B and that the operation specifies that edges closer than 3 microns are outp

Using the Euclidean metric (refer to“Metrics” on page 4-21), the operation
measures edges A and B by constructing two regions. One region consists o
points in the half-plane on the outside of edge A that are within 3 microns (mic
is the default unit of measurement, but you can specify other units) of edge A
similar region consists of all such points around edge B.

The output is an edge pair consisting of the sub-edge of A that intersects the
region around edge B and the sub-edge of B that intersects the region around
A. The operation provides output of only those portions of the edges that actu
conform to the constraint of the dimensional check operation.
Calibre Verification User’s Manual, v9.1_5 4-19

Dimensional Check Operations DRC Concepts

raint

de or
he
n’s
ce
two

of the
ts of
ding

f all

f all

f the
This example uses a constraint of 3 microns, but any other type of legal const
or value will work in a similar fashion.

Figure 4-6. Generation of Output Edges

Measurement Region Construction

To construct the region about an edge, a boundary forms on either the outsi
inside of the edge, as specified by the operation. This area is referred to as t
half-plane. The radius of this boundary is the numeric value within the operatio
constraint. The boundary consists of all points in the half-plane whose distan
from the edge is the numeric value of the constraint. If the constraint specifies
numbers (an interval), then two such boundaries, each corresponding to one
numbers, are constructed. Given this boundary, a region is forms that consis
all points in the half-plane in which the boundary was constructed and accor
to the operation’s constraint as follows:

• If the constraint evaluates to the form x < a, then the region consists o
points strictly within the boundary.

• If the constraint evaluates to the form x <= a, then the region consists o
points within and including the boundary.

• If the constraint evaluates to the form x = a, then the region consists o
boundary alone.

3

output edges

B

A

Rule1 { external A B < 3 }
Calibre Verification User’s Manual, v9.1_54-20

DRC Concepts Dimensional Check Operations

ts of
e
t,
dii

ion

o be

ns:

es
lt
• If the constraint evaluates to the form a < x < b, then the region consis
all points strictly outside of the boundary with radius a and strictly insid
the boundary with radius b. The other three valid forms of the constrain
a <= x < b, a < x <= b, and a <= x <= b include the boundaries having ra
a and b.

Figure4-7shows region construction about the outside of edge A. The first reg
assumes the constraint x < a and the second region assumes the constraint
a < x <= b. Note that no points on the line containing edge A are considered t
within the region.

Figure 4-7. Measurement Region Formation

Metrics

There are five forms of metrics you can use with dimensional check operatio

• Euclidean. The Euclidean metric forms a region with rounded boundari
at that extend past the corners of the selected edges. This is the defau
metric.

A

B

A

rule1 { external layer1 < A }

rule2 { external layer1 > A < B }

measurement
region

measurement
region

(for this edge)

(for this edge)
Calibre Verification User’s Manual, v9.1_5 4-21

Dimensional Check Operations DRC Concepts

hat

es

cted;
ey are
• Square. The Square metric forms a region with right-angle boundaries t
extend past the corners of the selected edges.

• Opposite. The opposite metric forms a region with right-angle boundari
that do not extend past the corners of the selected edges.

• Opposite Extended. The opposite extended metric forms a region with
right-angle boundaries that can extend past the corners of the selected
edges, dependent upon a value you specify. This metric allows non-
commutative measurements to produce output.

• Opposite Symmetric. The opposite symmetric metric uses the opposite
metric for measurement with post-processing for use with non-parallel
edges.

The metrics determine only how the boundaries about the edges are constru
all other elements of the measurement and output method are unchanged. Th
implemented as secondary keywords to the dimensional check operations.
Calibre Verification User’s Manual, v9.1_54-22

DRC Concepts Dimensional Check Operations

s.

long
l
en

r

the
e
non-
Figure4-8 shows measurement region construction for four main metric type

Figure 4-8. Metric Determination of Boundary Formation

The Opposite Symmetric metric uses the Opposite metric for measurement, a
with post-processing of the output to achieve better symmetry for non-paralle
edges. The following algorithm is used for the opposite symmetric metric, giv
edges A and B, and Figure4-9 illustrates the behavior:

1. Apply only the Opposite metric if A and B are parallel, perpendicular, o
intersecting.

2. Measure A and B by using the Opposite metric; however do not allow
special treatment for only one non-orthogonal edge, as is done with th
Opposite metric, and do not discard the output if the measurement was

Euclidean

Square

Opposite

rule1 { external layer1 < 3 }

rule2 { external layer1 < 3 SQUARE }

rule3 { external layer1 < 3 OPPOSITE }

Opposite Extended

rule4 { external layer1 < 3 OPPOSITE EXTENDED 5}

< - 5 - >< - 5 - >

3

3

3

3

Calibre Verification User’s Manual, v9.1_5 4-23

Dimensional Check Operations DRC Concepts

 in

e.

m
A

ct
PA

m

uce
commutative, as is done with the Opposite metric. This step can result
zero, one, or two outputs from each edge.

3. Discard all trivial output edges. Due to properties within the Opposite
metric, there can remain at most one output edge from each input edg

4. Quit with no output if, after discarding trivial edges, there is no output fro
A and no output from B. Otherwise, name the resulting output edges O
and OB. Note that either OA or OB may be non-existent.

5. Project edge OA, if it exists, onto B, which forms a subedge PB. Proje
edge OB, if it exists, onto A, which forms a subedge PA. Discard either
or PB if they are a result of round-off error.

6. Produce the output of edge A, which is OA+PA. Produce the output fro
edge B, which is OB+PB.

7. Produce no output for edge A if both OA and PA are non-existent. Prod
no output for edge B if both OB and PB are non-existent.
Calibre Verification User’s Manual, v9.1_54-24

DRC Concepts Dimensional Check Operations

ric)

r

hese
ral
most
eate
ause
aries
Figure 4-9. Opposite Symmetric Example

The Opposite metrics (Opposite, Opposite Extended, and Opposite Symmet
treat the constraint a <= x < b as a < x < b, and the constraint a <= x <= b as
a < x <=b, unless there is infinite intersection with the top portion of the inne
curve of the design rule boundary.

Edge Cluster Generation

The edge measurement methods described above generate edge clusters. T
are groups of edges or edge segments that are output by a rule check. Seve
different types of clusters can be formed. Two-edge clusters are probably the
intuitive and are quite common. However, certain orientations of edges can cr
a three-edge cluster instead of a two-edge cluster. This primarily occurs bec
of the side boundary effects of constraints that have two measurement bound
(for example, “>= 1 < 3”). Figure4-10 shows the generation of a three-edge
output cluster.

rule5 {external layer1 < 5 OPPOSITE SYMMETRIC }

A

B

OB

OA

PB
PA
Calibre Verification User’s Manual, v9.1_5 4-25

Dimensional Check Operations DRC Concepts

 the
ple,
nly a

edge
n
nt

trics.
tput
rror
dge

at is
Figure 4-10. Three-Edge Output Cluster

Trivial Edges

The edge measurement regions can create atrivial edge, which is an edge
consisting of only one point. This is the result of measuring two edges when
constraint specifies that the boundary is to be included in the region (for exam
<= a), and one of the edges intersects the region around the other edge at o
single point on the boundary.

The verification system can also force the creation of trivial edges within the
measurement method as follows: For two edges, A and B, it is possible that
A intersects the region about edge B, but edge B does not intersect the regio
about edge A. This is because in general, the intersection of the measureme
regions is not commutative. This is especially true for the non-Euclidean me
Therefore, it seems that output from only one edge is required. However, if ou
is to a derived error layer for results presentation, it is not helpful to have an e
consisting of one edge. In this case, the verification system outputs a trivial e
from edge B to represent it. The trivial edge consists of the point on edge B th

original edges

measurement regions

3-edge output cluster
Calibre Verification User’s Manual, v9.1_54-26

DRC Concepts Dimensional Check Operations

edge

e

ally
ign
er
closest to the output edge from edge A and is also on the appropriate side of
A.

For example, Figure4-11 shows the generation of a trivial edge. This example
uses the square metric for measurement region construction and indicates th
trivial edge with an X.

Trivial edges cannot appear on derived edge layers because they are physic
insignificant and the primary use of derived edge layers is in conjunctive des
rule checking. Therefore, an edge-directed dimensional check operation nev
generates a trivial edge; it discards trivial edges as if they never occurred.

Figure 4-11. Trivial Edge Generation

original edges

measurement
regions

output including trivial edge

layerA

layerB

rule {
 external layerA layerB
 < 3 SQUARE
}

Calibre Verification User’s Manual, v9.1_5 4-27

Dimensional Check Operations DRC Concepts

ly
B, or
ach

his
icates

t
tput
ctual

rons
Four-edge Output Cluster

Trivial edge generation can lead to a four-edge output cluster, which primari
occurs when there are two output sub-edges from edge A but none from edge
vice versa. In this case, the tool constructs two trivial output edges from B, e
corresponding to a sub-edge from A; the output itself is a four-edge cluster.

For example, Figure4-12shows the generation of a four-edge output cluster. T
example uses the square metric for measurement region construction and ind
trivial edges with an X.

Figure 4-12. Four-Edge Output Cluster

Point-to-point Measurement Output

There is special treatment of true point-to-point output from the measuremen
process for error-directed and polygon-directed dimensional checks. This ou
consists of two trivial edges (points) which are generated as a result of the a
measurement process. These are not generated due to measurement region
intersections being non-commutative. For example, if your user units are mic

original edges

measurement regions

four-edge output cluster containing two trivial edges

layerA

layerB
Calibre Verification User’s Manual, v9.1_54-28

DRC Concepts Dimensional Check Operations

ion is

cted

dge
sult
ew
the

ends
o the
 to
and your Precision is 1000, the situation in Figure4-13would result in two output
clusters consisting of trivial edges.

Figure 4-13. Point-to-point Trivial Edge Generation

In order to reduce false measurements and for region formation for polygon
directed output, it is necessary to modify true point-to-point output slightly by
extending each trivial edge in the cluster by two database units. This extens
along the direction of the original edge. Extension of point to point output is
performed only under these circumstances:

• the dimensional check operation must be error-directed or polygon-dire

• the OPPOSITE or OPPOSITE SYMMETRIC metrics are not specified

• the measurement constraint is of the form “<value”

Clustered Output Summary

Output from edge measurement can consist of a one-, two-, three-, or four-e
cluster; the two-edge cluster is the most common. A one-edge cluster can re
from the Inside Also or Outside Also secondary keyword, or from an Drawn Sk
operation. When Calibre sends an edge layer to the DRC results database,
layer becomes an one-edge cluster across that interface.

The concept of edge clustering applies only to derived error layers. The tool s
output edges from an edge-directed dimensional check operation according t
input layer from which they originated. This output does not occur according
any relationships the layers shared with other output edges from edge
measurement.

EXTERNAL layer < 5.001

5 um
Calibre Verification User’s Manual, v9.1_5 4-29

Dimensional Check Operations DRC Concepts

that
e the
t.

f a
no

with
om the

onal
onal
Special Considerations for the OPPOSITE Metric

The algorithms for measurement output generation are slightly different from
discussed above if the OOPOSITE metric has been specified. This is to reduc
number of non-orthogonal edges created when using polygon-directed outpu

First, trivial edges are not generated by the OPPOSITE metric in the event o
non-commutative measurement. Non-commutative measurements produce
output if the opposite metric is specified.

Second, if exactly one of the two edges being measured is non-orthogonal (
respect to the database axes), then the measurement region is constructed fr
orthogonal edge only. The non-orthogonal edge is then intersected with the
measurement region to produce output from that edge. Output from the orthog
edge is the projection onto the orthogonal edge of output from the non-orthog
edge. This is illustrated in the figure below:

Figure 4-14. Output Adjustments for the OPPOSITE Metric

ORIGINAL EDGES WITH OPPOSITE METRIC REGIONS

UNADJUSTED OUTPUT WITH
OPPOSITE METRIC
ADJUSTMENTSOUTPUT
Calibre Verification User’s Manual, v9.1_54-30

DRC Concepts Dimensional Check Operations

rors
ck

e
al

 the
Interval Constraints for Output Suppression

In conjunctive design rule checking, you may want to suppress redundant er
with interval constraints (containing two numerics) in the final dimensional che
operation. For example, consider this rule check statement (refer to Figure4-15):

// Metal spacing must be 3 microns except where metal width is
// less than 3 microns;
//in this case, the metal spacing must be 4 microns.
metal_spacing {

EXTERNAL metal < 3
X = INTERNAL [metal] < 3
EXTERNAL metal X < 4
}

In this rule check statement, the second External operation provides two edg
pairs as output. The first pair is redundant, however, because the first Extern
operation generated a similar error. The cause of the redundant error is that
tool measures an edge on layer X twice.
Calibre Verification User’s Manual, v9.1_5 4-31

Dimensional Check Operations DRC Concepts

cond
tions
Figure 4-15. Suppressing Redundant Errors (part 1)

One way to suppress this duplication is to use an interval constraint in the se
External operation. This prevents generating two errors for the spacing viola

EXTERNAL metal < 3 X = INTERNAL [metal] < 3

EXTERNAL metal X < 4

original polygons
Calibre Verification User’s Manual, v9.1_54-32

DRC Concepts Dimensional Check Operations

es

es.
ates

ints in

heck.

e

ept

.

of 3 microns. For example, consider this rule check statement (refer to Figur
4-15 and4-16):

// Metal spacing must be 3 microns except where metal width is
// less than 3 microns;
// in this case, the metal spacing must be 4 microns.
metal_spacing {

EXTERNAL metal < 3
X = INTERNAL [metal] < 3
EXTERNAL metal X >= 3 < 4 // uses an interval constraint
}

Figure 4-16. Suppressing Redundant Errors (part 2)

Using an interval constraint to suppress redundant errors works for most cas
However, in this particular example, the second External operation still gener
the two edge pairs shown in Figure4-16, with the left-most edge pair being
somewhat non-intuitive.

The left-most edge pair occurs because the Euclidean and square metrics
measurement regions contain area to the sides when you use interval constra
the dimensional check operations. This area can correctly cause unwanted
intersections (and hence output) which were not supposed to be part of the c

The Opposite metric generally eliminates this effect because there are no sid
regions when you use this metric with interval constraints. However, if the
Opposite metric is not appropriate, then you must either understand and acc
errors such as the first one above, or else do not use interval constraints to
suppress possible redundant errors in certain complicated conjunctive DRCs

EXTERNAL metal X >= 3 < 4
Calibre Verification User’s Manual, v9.1_5 4-33

Dimensional Check Operations DRC Concepts

t of
r you

r

of
nd

of

dge

the
.

The use of interval constraints is applicable to both flat and hierarchical DRC
applications. However, when you specify interval constraints in hierarchical
applications, without the Opposite keyword, the tool may use a large amoun
CPU overhead. It is recommended that the Opposite metric be used wheneve
specify interval constraints.

Appropriateness Criteria

The dimensional check operations consider two edges to be “appropriate” fo
measurement if the corresponding sides of the edges face each other:

• TheEnclosure operation measures the separation between the outside
edge A from the first input layer and the inside of edge B from the seco
input layer only if the outside of edge A and inside of edge B face each
other.

• TheExternal operation measures the separation between the outsides
edge A and edge B only if the outsides of the edges face each other.

• TheInternaloperation measures the separation between the insides of e
A and edge B only if the insides of the edges face each other.

Figure4-17 illustrates how to make the notion of “appropriateness” for
measurement more precise. Given edge A, region IN-A is the half-plane
consisting of all points on the same side of the line as the inside of A. Region
OUT-A is the half-plane consisting of all points on the same side of the line as
outside of A. Neither IN-A nor OUT-A contains the line determined by edge A

Figure 4-17. Edge Inside and Outside Planes

edge A

OUT-A

IN-A
Calibre Verification User’s Manual, v9.1_54-34

DRC Concepts Dimensional Check Operations

n

t

 as

if

here

re
e-to-

sider
 of

e
 face

priate
Using the definition of IN-A and OUT-A for an edge A, the line-of-sight betwee
two edges (A and B) is as follows:

• An outside line-of-sight between an edge A and an edge B is any line
segment connecting A and B that intersects both OUT-A and OUT-B.

• An inside line-of-sight between edge A and edge B is any line segmen
connecting A and B that intersects both IN-A and IN-B.

• An outside-to-inside line-of-sight from edge A to edge B is any line
segment connecting A and B that intersects both OUT-A and IN-B.

Note that a line-of-sight of any type does not necessarily exist for any pair of
edges A and B. From this fact you can quantitatively define appropriateness
follows:

• Edges A and B are appropriate for measurement in an external check
there is an outside line-of-sight between A and B.

• Edges A and B are appropriate for measurement in an internal check if t
is an inside line-of-sight between A and B.

• Edge A, from the first input layer, and B, from the second input layer, a
appropriate for measurement in an enclosure check if there is an outsid
inside line-of-sight from A to B.

From the definition of appropriateness, the dimensional check operations con
two edges to face each otheronly if the angle between the corresponding sides
the edges is less than 180 degrees.

For example, Figure4-18 shows the angles between the outsides of some edg
configurations whose outsides are considered (by the External operation) to
each other.

The angle between the corresponding sides of the edges is called the appro
angle. The dimensional check operations use orientation filters to govern the
Calibre Verification User’s Manual, v9.1_5 4-35

Dimensional Check Operations DRC Concepts

o the

k
ygon

r

appropriate angle. These filters are discussed in theSVRF Manual.

Figure 4-18. Appropriate Angles Between the Outsides of Edges

Intersection Criteria

By default, the dimensional check operations do not measure the separation
between the corresponding sides of intersecting edges, even if they conform t
appropriateness criteria. However, this behavior can be altered by using
appropriate secondary keywords.

Edge Breaking

Edge breaking occurs during the evaluation of a two-layer dimensional chec
operation. Calibre DRC breaks edges from each input layer that crosses pol
boundaries of the other input layer into edge segments. This edge-breaking
method eliminates many false errors and makes the output from the two-laye
dimensional check operations more precise.

90 13545
0

The appropriate angle is between
the outsides of the dashed edges.

°°
° °
Calibre Verification User’s Manual, v9.1_54-36

DRC Concepts Dimensional Check Operations

aks
yer2

ks
yer1

he

nd

e or
.

one
ges.
Figure4-19 shows an example of edge-breaking.

Figure 4-19. Edge Breaking in a Two-Layer Dimensional Check
Operation

• Any layer1 edge that lies both inside and outside of a layer2 polygon bre
into edge segments at the point where the layer1 edge intersects the la
edge.

• Any layer2 edge that lies both inside and outside a layer1 polygon brea
into edge segments at the point where the layer2 edge intersects the la
edge.

• Any coincident layer1 and layer2 edges break into edge segments at t
point(s) where they are no longer coincident.

Therefore, after edge breaking, one of the following is true of every layer1 (a
layer2) edge:

• The layer1 edge lies completely inside a layer2 polygon, except that on
two endpoints of the layer1 edge can touch the insides of layer2 edges

• The layer1 edge lies completely outside a layer2 polygon, except that
or two endpoints of the layer1 edge can touch the outsides of layer2 ed

• The layer1 edge is inside or outside coincident with a layer2 edge.

Edges from both layers are broken into

layer1 layer2

x x

xx

edge segments at the X’s
Calibre Verification User’s Manual, v9.1_5 4-37

Dimensional Check Operations DRC Concepts

ut
 as

ng
point

r
 no

r1
nt

ck
ition

t
ygon
ia as

s
 a

es

r2
This edge-breaking method does not fully apply when one or more of the inp
layers is a derived edge layer. This case modifies the edge-breaking method
follows:

• Any layer2 edge that intersects a layer1 edge at a single point (excludi
the endpoint of the layer2 edge) breaks into two edge segments at the
where the layer2 edge intersects the layer1 edge.

• Any layer2 edge that is coincident with a layer1 edge breaks into two o
more edge segments at the point were the layer1 and layer2 edges are
longer coincident.

After edge breaking, Calibre DRC applications use the conditions of the laye
and layer2 edge to determine if an edge conforms to the polygon containme
criteria of the dimensional check operations.

Polygon Containment Criteria

The polygon containment criteria apply only to the two-layer dimensional che
operations where it provides a more precise and physically meaningful defin
of the edge breaking that occurs in two-layer dimensional check operations.

The polygon containment criteria for all dimensional check operations do no
fully apply when layer1, layer2, or both are derived edge layers because pol
boundaries of derived edge layers are not computable. This modifies the criter
follows:

• Enclosure. If layer2 is a derived edge layer, then Calibre DRC measure
edge A only if it is not coincident with any edge from layer2. If layer1 is
derived edge layer, then Calibre DRC measures edge B only if it is not
inside-coincident with any edge from layer2.

• External. If layer1 is a derived edge layer, a pair of layer1 and layer2 edg
will conform only if the layer2 edge is not outside-coincident with any
layer1 edge. If layer2 is a derived edge layer, a pair of layer1 and laye
edges will conform only if the layer1 edge is not outside-coincident with
any layer2 edge.
Calibre Verification User’s Manual, v9.1_54-38

DRC Concepts Dimensional Check Operations

es
e.

f
e

 layer

e-
• Internal . If layer1 is a derived edge layer, a pair of layer1 and layer2 edg
will conform only if the layer2 edge is not coincident with any layer1 edg
If layer2 is a derived edge layer, a pair of layer1 and layer2 edges will
conform only if the layer1 edge is not coincident with any layer2 edge.

The polygon containment criteria for the Enclosure, External, and Internal
operations described above address the “looking through the wall” problem o
two-layer dimensional check operations. That is, these conditions prohibit th
measurement between the edges shown in Figure4-20, even though the correct
sides of the edges face each other.

Figure 4-20. Looking Through the Wall Problem

Edge-directed Output

There may be times when you need to have error-directed measurement
operations result in edge-directed output. For example the rule:

rule {external poly oxide < 4}

would result in a derived-error layer containing edge pairs frompoly andoxide

that are closer than 4 user units. If you want the output to be a derived edge
containing only the edge segments pertaining topoly , you enclose the layer name
in square brackets ([]). Enclosing the layer name in [] is called positive edg

ENCLOSURE layer1 layer2

EXTERNAL

INTERNAL

layer1 layer2
Calibre Verification User’s Manual, v9.1_5 4-39

Dimensional Check Operations DRC Concepts

d
 not

nal
rnal,

C
 rule

yers
directed output. For example:

X = external [poly] oxide < 4

creates a derived layer ofpoly edges that satisfy the operation.

Enclosing the layer name in parentheses, (), is called negative edge-directe
output. Negative edge-directed output returns the edge segments that would
normally be returned. For example:

X = external (poly) oxide < 4

creates a derived layer of poly edges that do NOT satisfy the operation.

Only one edge-directed output specification may appear in a single dimensio
check operation. Edge-directed output specifications apply to Enclosure, Exte
and Internal.

Results from edge-directed output may also be error-directed (sent to the DR
results database). This is done by placing an edge-directed statement into a
check. For example:

rule { enclosure contact [metal1] < .05 }

will have positive edge-directed results frommetal1 sent to the DRC results
database (as opposed to creating a derived edge layer). TheSVRF Manual has a
number of examples listed under Enclosure, External, and Internal.

Polygon-directed Output

Polygon-directed dimensional check operations generate derived polygon la
by forming the polygon projections between edges in edge-clusters whichwould
have been present in the corresponding error-directed dimensional check
operation.

For example the rule:

rule {external poly oxide < 4}
Calibre Verification User’s Manual, v9.1_54-40

DRC Concepts Dimensional Check Operations

on
e

or

d
must
ster

 is
r
e for

 For
the

g a

O
e-

dge
h

n

value
would result in a derived-error layer containing edge pairs frompoly andoxide

that are closer than 4 user units. If you want the output to be a derived polyg
layer containing a region between the poly-to-metal violations, you include th
REGION secondary keyword (often with the OPPOSITE metric specified). F
example:

X = {external poly oxide REGION OPPOSITE}

creates a derived polygon layer of regions between poly andoxide violations.
TheSVRF Manual has a number of examples.

There are three situations where polygon projections from a polygon-directe
dimensional check operation cannot be cleanly formed and special measures
be taken to produce polygonal output. The first case involves a two-edge clu
consisting of coincident edges (most likely from an ABUT==0 secondary
keyword). Forming the polygon projection between such output edges would
yield a zero-area polygon which would be merged away. Therefore, a region
actuallygrown from the edges. For coincident outside edges (from a two-laye
External or Internal operation), the region is grown on the outside of each edg
a distance of approximately 2 database units, yielding a rectangle of width
approximately 4 database units with the edge pair running down the middle.
coincident inside edges (from an Enclosure operation), the region is grown on
inside of each edge for a distance of approximately 4 database units, yieldin
rectangle of width approximately 4 database units with the edge pair running
down one side.

The second case involves output from the INSIDE ALSO and OUTSIDE ALS
options. In an error-directed form, the output from these options consist of on
edge clusters. To form output in the polygon-directed form, these one-edge
clusters are converted to polygons by growing a region on the inside of the e
for a distance of approximately 4 database units, yielding a rectangle of widt
approximately 4 database units with the edge running down one side.

The third case involves true point-to point (seepage 4-28) output from the
measurement process. Since the polygonal projection would be a zero-area
polygon which would be merged away, DRC output using the REGION optio
could miss true errors. The External, Internal, and Enclosure operations will
extend the length of edges output from the measurement process by a small
Calibre Verification User’s Manual, v9.1_5 4-41

Dimensional Check Operations DRC Concepts

n’s

s

her,

be

ers.
(approximately two database units) prior to construction of the REGION optio
polygonal projection under the following conditions:

• two true trivial edges are the result of the measurement process

• the OPPOSITE or OPPOSITE SYMMETRIC metric was not specified

• the operation’s constraint is of the form "< a".

Although primarily intended to construct intermediate layers in conjunctive
processes, many users may wish to use the polygon-directed form of a
dimensional check operation for DRC results database instantiation. This wa
illustrated in the previous example. Polygon-directed output from DRC rule
checks has three potential benefits:

• Adjacent edge clusters which form multiple errors may be merged toget
thereby reducing the error count.

• Spurious errors, especially those associated with the effects of edge
breaking and the INSIDE ALSO and OUTSIDE ALSO options may also
merged together, again reducing the error count.

• Polygon-directed output may seem visually more appealing to some us

To illustrate the first two points, consider the following check, shown in both
error-directed form and polygon-directed form:

Rule5.3 { ENCLOSURE cont met < 2 ABUT == 0 SINGULAR OUTSIDE
ALSO }

Rule5.3 { ENCLOSURE cont met < 2 ABUT == 0 SINGULAR OUTSIDE
ALSO REGION }
Calibre Verification User’s Manual, v9.1_54-42

DRC Concepts Dimensional Check Operations

as

e

The following figure illustrates a scenario where the polygon-directed form h
reduced the total error count:

Figure 4-21. Error Reduction Using Polygon-directed Output

Although primarily used for final error output, the SINGULAR keyword has som
very interesting applications in conjunctive checks when used along with
INTERSECTING ONLY and REGION. Consider the following example:

poly_to_diff {
@ Normally, there is no spacing rule between poly and
@ diffusion. However, when either poly or diffusion bends
@ after forming a gate, the spacing must be 0.2 microns with
@ no touching allowed.
x = EXT poly diffusion < 0.2 ABUT == 0 REGION OPPOSITE
// potential error regions
y = EXT [x] gate < 0.1 ABUT == 0 SINGULAR
// 0.1 is arbitrary
x WITH EDGE y
// real error regions
}

ERROR-DIRECTED OUTPUT (6 ERRORS)

POLYGON-DIRECTED OUTPUT (2 ERRORS)
Calibre Verification User’s Manual, v9.1_5 4-43

False Measurement Reduction DRC Concepts

se.
d are
False Measurement Reduction
There are cases where output from DRC measurement is undesirable, or fal
False output can occur even though the measurement definitions constructe
followed exactly. For example, the following notch measurement is generally
considered false:

Figure 4-22. False Notch Measurement

as is the following enclosure measurement:

Figure 4-23. False Enclosure Measurement

E
EX

Y

E

EX

Y

Calibre Verification User’s Manual, v9.1_54-44

DRC Concepts Error Tolerance Setting

uding
ost

ases

.

, the

ple,

not
This
often

ity
Note that both of the above measurements obey all previous semantics, incl
polygon containment criteria for two-layer DRC operations. Since they are alm
universally considered false, it is desirable to attempt to avoid them. In both c
the measurement is considered false due to the presence of another edge
completely blocking the line of sight between the two edges being measured

Since false measurement elimination in an edge-based system is expensive
DRC application only attempts to eliminate the most blatant examples. The
following algorithm is used:

A measurement between any two edges X and Y is considered false if the
following circumstances are true:

• You did not specify the Opposite metric.

• The edges do not intersect.

• The edges are not orthogonal and projecting.

• The region defining the “violation” (in the sense of that produced by the
REGION keyword) is cut completely in half by an edge intersecting an
endpoint of X or Y.

Note that any of the edges labeled E in the two examples above render the
measurement between X and Y false by this definition. (In the second exam
remember that the edges are first subject to edge-breaking).

In Calibre DRC-H it is possible in rare cases that the blocking edges (E) are
available at the correct level of hierarchy when edges X and Y are measured.
can allow the false measurements to slip through. This phenomenon is most
observed with notch measurements.

Error Tolerance Setting
Calibre DRC can generate some warnings that create a possible data integr
issue, such as when it excludes the objects that cause these warnings from
processing. The rule fileLayout Error On Inputspecification statement allows you
Calibre Verification User’s Manual, v9.1_5 4-45

Error Tolerance Setting DRC Concepts
to convert these warnings into fatal errors. For the following rule:

LAYOUT ERROR ON INPUT YES

the Calibre DRC warnings listed below become fatal errors:

Absolute angle in placement of cell name within cell name not
yet supported.

Absolute magnification in placement of cell name within cell
name not yetsupported.

Another cell record encountered for cell name.
Another cell record encountered for symbol# number (name).
Cell name is referenced but not defined.
Cell symbol# number is referenced but not defined.
Database precision number in GDSII stream file name is

inconsistent with number in file name.
Implicit command name outside symbol definition in CIF input

file name at line number , file offset number .
Invalid box (direction is (0,0) at location point in cell

name on layer layer .
Invalid call (rotation is (0,0)) of symbol number in cell

name.
Invalid symbol scale factor in CIF input file name at line

number , file offset number .
Large number -vertex path (>1024 vertices) at location point

in cell name on layer layer .
Large vertex (>4096) polygon at location point in cell name on

layer layer .
Non-orientable or degenerate polygon at location point in

cell name on layer layer .
Path of absolute width at location point in cell name on

layer layer not yet supported.
Physical precision number in GDSII stream file name is

inconsistent with number in file name.
Process precision number is not consistent with GDSII

precision number .
Problem extending type 4 path at location point in cell name

on layer layer by number .
Round flash at location point in cell name on layer layer

not yet suported.
Trivial (1-vertex) path at location point in cell name on

layer layer .
Calibre Verification User’s Manual, v9.1_54-46

DRC Concepts Disk-based Layers

f

uring

ases,
 to

e run
 scan

h
e
e

.

Unprocessed user extension commands present in the CIF input
database.

Unresolved layers present in the CIF input database.
Unsupported Definition Delete in CIF input file name at line

number , file offset number .

Disk-based Layers
By default, layers created during a verification run use a significant amount o
virtual memory. These layers include:

• Named derived layers

• Merged original layers

• Layers representing output operations of DRC rule checks

In general, these layers consume the vast majority of virtual memory used d
execution.

For selected flat verification applications, you can specify that layers created
during the run use disk-based memory rather than virtual memory. In most c
this can save large amounts of virtual memory by transferring memory usage
disk files. It also uses of network resources for layer storage.

The amount transferred from virtual memory to disk files when you use disk-
based layers depends on the number of large derived layers created during th
that will exist at one time. Because the application reads the database in one
at the beginning, all original layers will be simultaneously present in memory
prior to being written to disk files. In addition, the application first creates eac
individual derived layer in virtual memory before writing it to a disk file. In som
cases, using disk-based layers saves no virtual memory and can increase th
resource requirement by the amount of file space used.

You control the use of disk-based layers in DRC by theLayer Directory
specification statement.

Use of disk-based layers is not supported in hierarchical Calibre applications
Calibre Verification User’s Manual, v9.1_5 4-47

Specialized DRC Applications DRC Concepts

ub-

 of
g is

are
re
ory

re

nd
de.

es. A
-

ile

al
Disk-based Layers in Calibre

The use of disk-based layers in Calibre is controlled by the presence of theLayer
Directory specification statement. If this statement is not specified, then disk-
based layers are not used. Otherwise, layers will be based in disk files in the
specified directory. This specified directory is created if it does not exist. A s
directory is then created in the specified directory to hold the layer files. This
subdirectory is called icv.<number> where <number> is a time stamp at the
resolution of one second. A test open is performed to determine the integrity
this directory. If a directory creation fails or the test open fails, then a warnin
issued and virtual memory based layers will be used. File I/O exceptions
occurring from that point will cause aborts. Files that hold disk-based layers
named L<number> where <number> is an internal layer number. The files a
created and deleted using the same scheduling algorithms as for virtual mem
based layers. When execution completes, all directories that were created a
removed.

Specialized DRC Applications

Dual Database Capability

Dual database capability refers to the ability of Calibre applications to read a
merge two distinct input layout databases. This capability is not a special mo
The merging is transparent and occurs as the application reads the databas
major application of dual database capability in Calibre DRC is layout-versus
layout (LVL) comparison.

Note

Dual database capability is not the same as allowing multiple f
names in theLayout Path specification statement. Calibre
applications treat these multiple files as a single input layout
database (for example, there is only one top-level cell). In a du
database application, there are two distinct layout hierarchies.
Calibre Verification User’s Manual, v9.1_54-48

DRC Concepts Specialized DRC Applications

rly,

ut

ut
ts

alibre

ase

yer

t
n
 a
Rule File Specification Statements

In a dual database application, the Layout System, Layout Path, and Layout
Primary specification statements specify the first input layout database. Simila
the corresponding Layout System2, Layout Path2, and Layout Primary2
specification statements specify the second database. These specification
statements are required to designate a dual database application. (The Layo
Bump2 specification statement is discussed in the next subsection.)

Only the GDSII and CIF layout systems are supported. You can specify Layo
Path2 any number of times. All other layout database specification statemen
apply equally to both databases in a dual database application.

Layer Bump

For a dual database model to have meaningful applications, primitive objects
(geometries and texts) must be distinguishable between the two databases. C
DRC implements this by incrementing the primitive layer number (before
applying anyLayer Map specification statements) of all objects in the second
database by a constant value. You specify this value in theLayout Bump2
specification statement. Each object in the second database of a dual datab
application behaves exactly as if its primitive layer number increases by the
specified layer bump value. For a CIF system, the rule fileLayer specification
statement that defines the CIF database layer name provides the primitive la
number of an object.

Layer and Layer Map specification statements apply to each of the two layou
databases equally in a dual database model. Thus, you must be careful whe
constructing original layer definitions in a rule file and any layer mappings in
dual database application.
Calibre Verification User’s Manual, v9.1_5 4-49

Specialized DRC Applications DRC Concepts

d B,

rger

ject

.

nts
xact
In the following example, assume you want to compare GDSII databases A an
each contains layer 2 (diffusion) and layer 45 (metal1):

LAYOUT SYSTEM GDSII
LAYOUT PATH a.gds
LAYOUT PRIMARY ATOP

LAYOUT SYSTEM2 GDSII
LAYOUT PATH2 b.gds
LAYOUT PRIMARY2 BTOP // Could be ATOP also.

LAYOUT BUMP2 100
LAYER DIFF 2
LAYER METAL1 45

LAYER DIFF_2 102
LAYER METAL1_2 145
A { DIFF XOR (SIZE DIFF_2 BY 0.01) }
B { METAL1 NOT METAL1_2 }
C { METAL1_2 NOT METAL1 }

The choice of 100 as a layer bump value is arbitrary. The value needs to be la
than 45, which is the highest referenced simple layer number from the first
database. A simple layer number refers to the primitive layer number of an ob
after applying any Layer Map specification statements. If you choose a layer
bump value of 20, then an object on layer 25 in the second database would
become layer 45 and appear on the original layermetal1 . This is because Layer
specification statements apply equally to each of the two databases.

For dual databases, the tool ignores all objects in the first database whose
primitive layer number is greater than or equal to the value of Layout Bump2
Objects on layer 102 in the first database, if one exists, will be placed on the
original layerdiff_2 .

Construction of original layer definitions with Layer Map specification stateme
in a dual database application is more complicated. You need to recall the e
definition of how a layer map works and choose the layer bump value that is
greater than the highest simple (not primitive) layer number from the first
database. The layer bump value also applies to text objects, including those
defined inLayout Text specification statements.
Calibre Verification User’s Manual, v9.1_54-50

DRC Concepts Specialized DRC Applications

out
hical
 does

ep 1.

and
e

al
r two
nts,

d
h a
ics.

ll
name

me).
e

atic

r

Special Semantics for Hierarchical Applications

For flat dual database applications, the layer bump value from theLayout Bump2
specification statement controls all semantics for combining the two input lay
databases. The internal combination process is more complicated in hierarc
applications because they preserve, not flatten, the input hierarchy. The tool
this as follows:

1. Renames all cells in database 1 internally (such as A -> A1).

2. Renames all cells in database 2 internally (such as A -> A2), as in St

3. Creates a new top level cell and instantiates the top level cells T1$1$
T2$2$ from databases 1 and 2 with identity transforms. The name of th
new top-level cell is that of the top-level cell from database 1.

4. Attempts merging at critical points in the construction of the hierarchic
database. Creates a new cell A, if it has not done already so wheneve
placements A1 and A2 are in an exact overlap situation (equal exte
transforms, and array characteristics). Places all objects from A1 an
A2 into cell A, and replaces the two placements of A1 and A2 wit
placement of cell A that has the same transform and array characterist

5. Retains internal names of cell templates that were not merged in all
placements and keeps them as part of the hierarchy. If the top-level ce
from database 1 was merged, then the merged cell retains an internal
to avoid naming conflicts with the new top-level cell.

Processes that require cell names, such as Inside Cell operations, and hcell
detection, always use the original cell name (never the internally-generated na
Also, by using theLayout Rename Cellspecification statement, you can force th
merging of differently, or in some cases similarly, named cells from the two
databases.

If the hierarchies of the two databases are not drastically different, the autom
hierarchical database construction processes of dense overlap removal and
hierarchical injection make them as similar as possible. This prevents a majo
impact on performance. If the hierarchies are drastically different, you should
consider running the application flat.
Calibre Verification User’s Manual, v9.1_5 4-51

Specialized DRC Applications DRC Concepts

e two
t also
ore

t

se
ase

all
ng.
C

a,
o
ary
Flat Procedure Example

As discussed above, one application of dual database capability is to compar
layout databases on a layer-by-layer basis. The binary layout database forma
allows the Calibre DRC-F application to compare databases flat, albeit in a m
convoluted fashion. It can be useful, however, when one or both of the layou
databases is in IC Station and, for some reason, translation to GDSII is not
desirable.

As an example of how this is done, consider comparing an IC Station databa
where the top-level cell is called TOPCHIP to its corresponding GDSII datab
called topchip.gdsii. Assume that the design layers are 1-10:

1. Write a rule file called rules.a, which contains DRC rule checks and
operations sufficient to act on all of the design layers (this guarantees
layers are actually read in). It can be the real rule file or just one for testi
It should also contain required specification statements for Calibre DR
using GDSII (just so it can be used twice). An easy example is the
following:

LAYOUT SYSTEM GDSII
LAYOUT PATH topchip.gdsii
LAYOUT PRIMARY TOPCHIP
DRC RESULTS DATABASE drc_results
LAYER XYZ 1 2 3 4 5 6 7 8 9 10
rule { AREA XYZ == 0 } // Any operation on XYZ will do.

2. In IC Station, open a window on cell TOPCHIP, load the rule file rules.
and run CHECK DRC with the WRITEDATABASE option. Make sure t
run it flat (the default) to cover the entire hierarchy. This will create bin
polygon files

icv_data_1 ... icv_data_10

representing the IC Station database in the current directory.
Calibre Verification User’s Manual, v9.1_54-52

DRC Concepts Specialized DRC Applications

on.

rite
s.a,

all it
tion
3. Rename all of the binary data files just created to files with different
numbers. A simple way is to change icv_data_1 to icv_data_100,and so
The purpose is not to overwrite them when we write out the GDSII
database.

icv_data_100 ... icv_data_110

now represent the IC Station database in the current directory.

4. Execute Calibre DRC-F with the -writedatabase command option to w
the GDSII database out to binary polygon files. The same rule file, rule
may be used since it contains the necessary stand-alone specification
statements:

calibre -drc rules.a -writedatabase

This will create binary polygon files

icv_data_1 ... icv_data_10

representing the GDSII database in the current directory.

5. We now are ready to XOR the two databases. Create a new rule file, c
rules.b, which contains DRC rule checks to do the XORs and specifica
statements to use the binary polygon files. One example is:

LAYOUT SYSTEM BINARY
DRC RESULTS DATABASE drc_results

diff_1 { XOR 1 100 }
diff_2 { XOR 2 102 }
diff_3 { XOR 3 103 }
diff_4 { XOR 4 104 }
diff_5 { XOR 5 105 }
diff_6 { XOR 6 106 }
diff_7 { XOR 7 107 }
diff_8 { XOR 8 108 }
diff_9 { XOR 9 109 }
diff_10 { XOR 10 110 }
Calibre Verification User’s Manual, v9.1_5 4-53

Specialized DRC Applications DRC Concepts

 will

 too
ch
les

-

ks
gles,

t of

t, by

u

f

r

6. Now run Calibre DRC-F using rules.b. This will execute all of the XOR
operations:

calibre -drc rules.b

The ASCII DRC results database "drc_results", as specified in rules.b,
contain all of the differences, if any, between the two databases.

Comparing other types of databases is similar. If the binary polygon files are
big to exist together simultaneously, the steps above can be repeated for ea
individual design layer with appropriate modifications. These binary polygon fi
can also be placed around the network and accessed by links.

GDSII DRC Results

TheDRC Check Map specification statement provides a way to designate the
destination (layer,datatype) coordinate for DRC rule check output into GDSII
type DRC result databases. The statement is much more complex than that,
however, and additionally allows an m->n mapping between DRC RuleChec
and DRC results databases, as well as AREF compaction capability for rectan
and per-rule-check specification of the maximum result count.

The m->n mapping is of primary interest. For any given Calibre DRC run, a se
unique DRC rule checks { R1 , ..., Rn } (n > 0) is executed according to selection
semantics described earlier. The output from these DRC RuleChecks is sen
default, to the DRC results database specified in the DRC Results Database
specification statement. Using DRC Check Map specification statements, yo
may expand this output so that a set of DRC result databases { D1 , ..., Dm }
(m > 0) are generated from the Calibre DRC run such that:

[1] Any individual DRC rule check Rj may have output directed to any number o
 different DRC results databases in the set { D1 , ..., Dm }.

[2] Any individual DRC results database Dj may contain output from any numbe
 of different DRC RuleChecks in the set { R1 , ..., Rn }.
Calibre Verification User’s Manual, v9.1_54-54

DRC Concepts Specialized DRC Applications

er-

lso
nt
EF

the
hen

n

ified

C

s

s, as
[3] The set { D 1 , ..., Dm } does not have to have uniform type, that is, ASCII,
 binary, or GDSII.

Attribute Specification

Note that the DRC Check Map specification statement allows local (that is, p
rule-check) specification of a DRC results database and its associated type
(ASCII, binary, GDSII). These attributes are globally-specified in the DRC
Results Database specification statement. The DRC Check Map statement a
allows local specification of the DRC Maximum Results specification stateme
value. Finally, the statement allows locally-specified (layer,datatype) and AR
output specifications for GDSII-type DRC results databases.

The following DRC results database attributes cannot be locally-specified in
DRC Check Map specification statement and, hence, always apply globally w
applicable:

[1] The check text mapping, as specified in the DRC Check Text specificatio
 statement.

[2] The maximum vertex count for result polygons, as specified in the DRC
 Maximum Vertex specification statement.

[3] Whether to retain empty rule checks (those with no DRC results), as spec
 in the DRC Keep Empty specification statement.

[4] Whether to output cell names and transforms in ASCII-type DRC results
 databases, and leave coordinates untransformed, as specified in the DR
 Cell Name specification statement.

[5] Whether pseudo-hierarchy is to be retained, as specified by the PSEUDO
 parameter in the DRC Results Database specification statement.

[6] The append string for cell names in GDSII-type DRC results databases, a
 specified following the GDSII parameter in the DRC Results Database
 specification statement.

[7] Transfer of input layout database text to GDSII-type DRC results database
 specified in the DRC Map Text specification statement.
Calibre Verification User’s Manual, v9.1_5 4-55

Specialized DRC Applications DRC Concepts

base

ck

ut
e

the

r
ry,

ion

al

lar,
[8] The magnification factor for the DRC results database, as specified in the
DRC Magnify Results specification statement.

[9] The DRC results database precision, as specified in the DRC Results Data
 Precision specification statement.

Mapping Algorithm for Output

This section describes the mapping algorithm for multiplexing of DRC rule che
output in detail. Given the set of unique DRC rule checks { R1 , ..., Rn } to be
executed in a Calibre DRC run, a set of unique DRC result databases
{ D 1 , ..., Dm } is determined which will encompass the cumulative DRC outp
from the application. Each results database Dj has an associated (and unique) typ
(ASCII, binary, GDSII). The mapping is n->m: Any given DRC RuleCheck Ri

may map to multiple members of { D1 , ..., Dm } and any given DRC results
database Dj may be mapped into by multiple members of { R1 , ..., Rn }.

In order to allow completely unambiguous and non-conflicting construction of
above mapping, the compiler will enforce strict rules on the DRC Check Map
specification statement:

[1] It is a compilation error for thefile_nameparameter to be specified in anothe
 DRC Check Map specification statement with a different type (ASCII, bina

GDSII) or to be globally specified (in the DRC Results Database specificat
 statement) with a different type.

[2] If file_name is not specified in a DRC Check Map specification statement,
 then the type (ASCII, binary, GDSII) if the statement must match the glob
 type specified (or defaulted) in the DRC Results Database specification
 statement. This is because the defaultfile_nameparameter is the global DRC
 Results Database file name.

[3] Multiple specification of the (rule_name,file_name) coordinate in the set of
DRC Check Map specification statements is a compilation error. In particu

 each of the three scenarios below is an error:

DRC CHECK MAP ruleR ... fileF
DRC CHECK MAP ruleR ... fileF
Calibre Verification User’s Manual, v9.1_54-56

DRC Concepts Specialized DRC Applications

at
ults

ent
in

aps

on of
DRC CHECK MAP ruleR
DRC CHECK MAP ruleR

DRC RESULTS DATABASE fileF
DRC CHECK MAP ruleR ...
DRC CHECK MAP ruleR ... fileF

 The second and third scenarios are errors since thefile_name parameter of a
 DRC Check Map specification statement defaults to the global (that is, th
 specified in the DRC Results Database specification statement) DRC res
 database file name.

[4] If Maximum Results is specified in a DRC Check Map specification statem
for DRC rule check R then it must be specified with exactly the same value

 all DRC Check Map specification statements for rule check R. That is, no
 individual DRC rule check may have different maximum results
 specifications. (This is an internal limitation).

Given any DRC rule check R, the set of DRC results databases into which it m
is determined by the following algorithm. This algorithm, along with the
compilation checks described above, also insures unambiguous determinati
the MAXIMUM RESULTS values and AREF parameters for any Ri -> D j map.
A conceptual pseudocode of this is given as follows:

if R is not in any DRC Check Map specification statement {

 The DRC results database for R is that specified by the global
 (file_name,type) coordinate

}

else {

 for each DRC Check Map statement associated with R {

 if file_name is specified in the DRC Check Map statement {
Calibre Verification User’s Manual, v9.1_5 4-57

Specialized DRC Applications DRC Concepts

es

r R

F
his

erted
ted
F

e

EF

e

The (file_name,type) coordinate of the DRC Check Map statement becom
 a DRC results database for R

 }

 else {

The global (file_name,type) coordinate becomes a DRC results database fo

 }

}

AREF Output

In Calibre DRC-H, the user may request the application to create GDSII ARE
structures in a GDSII-type DRC Results database from arrayed rectangles. T
can save considerable space in the output database when large numbers of
rectangles (which each require 60 bytes in standard GDSII format) are conv
to AREF structures. It is especially valuable in conjunction with output genera
from the Rectangles operation. AREF output is specified by the optional ARE
parameters in the DRC Check Map specification statement:

DRC CHECK MAP rule_name ... [AREF cell_name width length ...

 [AREF cell_name width length]]

Recall that AREF cannot be specified if the DRC results database type of th
statement is not GDSII.

The AREF keyword(s) instruct Calibre DRC-H to attempt to create GDSII AR
structures (that is, array placements of the specifiedcell_name) from rectangles of
the givenwidth andlength(specified in user units) which constitute output of th
given DRC rule check. For example:

output_active { // Planarize the active layer to create the
 // final active mask.
Calibre Verification User’s Manual, v9.1_54-58

DRC Concepts Specialized DRC Applications

re
alibre
s
and

-axis
where
EF of

gles
tput
nced
ny
ell
ting

RC
ng,

ibre
the
o has
sed

RC

RC
 x = (EXTENT) NOT (SIZE active BY 1) // planarized area
 y = (RECTANGLES 2 4 1) INSIDE x // planarization
 // rectangles.
 active OR y // final active
 // layer.

 }
 ...

DRC CHECK MAP output_active 2 AREF rect24 2 4

In this example, output polygons from DRC rule check output_active which a
not 2 x 4 rectangles are sent directly to the DRC results database as before. C
DRC-H will then attempt to create GDSII AREFs from 2 x 4 output rectangle
according to a complex set of internal heuristics intended to maximize the size
number of AREFs created and minimize the number of rectangles not array
referenced. For all 2 x 4 output rectangles (where the dimension along the x
is 2), the system attempts to recognize as many array patterns as possible (
each pattern is as large as possible). For each pattern so recognized, an AR
cell “rect24” of the appropriate dimension and pitch is output, instead of the
rectangles themselves. The process is then repeated for 4 x 2 output rectan
(that is., the dimension along the x-axis is 4); the only difference is that the ou
AREFs will have a rotation component. Rectangles which are not array refere
in the above algorithm are output to the DRC results database as before. If a
AREF is created, then a GDSII structure record is also output representing c
“rect24”; this structure contains only a single boundary on layer #2 represen
the rectangle from (0,0) to (2,4).

Conversion of rectangles into AREFs is completely independent of all other D
Results Database semantics including maximum result limit, GDSII multiplexi
and so on. Of course, all AREFs are created inside the output GDSII cell
structures where the corresponding rectangles would have been output. Cal
DRC-H will not allow an AREF cell name to duplicate any structure name in
input layout database (or any pseudo-cell name) since the latter structure als
the possibility of being output; a warning is issued and AREF output is suppres
for that DRC Check Map AREF component.

Although not common, multiple AREF outputs may be specified in the same D
Check Map specification statement. This allows AREF creation for output
rectangles of various sizes from the same DRC rule check statement. The
restrictions are that [1] an AREF cell name may not appear twice in the same D
Calibre Verification User’s Manual, v9.1_5 4-59

Specialized DRC Applications DRC Concepts

me
cell

l, and
this

check
ve
 can

ated
ingle
 to
an
tal
Check Map specification statement, and [2] no two AREFs in the same DRC
Check Map specification statement can have theirwidth andlength parameters
equal in either order. Restriction [2] is intended to prevent output ambiguity.
These restrictions are checked at rule file compilation time. An AREF cell na
in a DRC Check Map specification statement is allowed to duplicate an AREF
name in another DRC Check Map specification statement providing that the
output layers are equal, the output datatypes are equal, the widths are equa
the lengths are equal (again, this restriction is checked at compilation time);
allows AREFs of the same cell to be created by multiple DRC rule check
statements.

AREFs with less than 16 elements are never created.

Incremental Connectivity and Antenna Checks

This section discusses some details involving incremental connectivity in the
context of antenna checks. These methods may be employed in any problem
involving incremental connectivity, however.

Antenna checks are a broad category of design checks that are intended to
for interconnect paths of sufficient surface area that can accumulate excessi
charge during the fabrication process. These paths are called antennas and
adversely affect yield in the fabrication process. For the purpose of this
discussion, we will limit ourselves to three layers of metal deposition.

Antenna checks for the metal i deposition stage must ignore connectivity cre
by metal j, for j > i. Since Mask mode Connect operations are executed as a s
unit (at the beginning of the executive module), layers must be copied so as
effectively partition the connectivity of the design for each layer of metal. As
example, consider the rule file flow for simple antenna checks on a three-me
layer process:

diode = contact AND diff // Diffusion diodes for all levels.
cp1 = COPY poly // Copy layers for first-level check.
cg1 = COPY gate // This copying only needs to be done if the
 //"standard" set of connect operations are
cm11 = COPY met1 // also present in the rule file.
cc1 = COPY contact
CONNECT cp1 cg1 // Connect for first-level check.
Calibre Verification User’s Manual, v9.1_54-60

DRC Concepts Specialized DRC Applications
CONNECT cm11 cp1 by cc1
cp2 = COPY cp1 // Copy layers for second-level check.
cg2 = COPY cg1 // Note that we copy the previous copies at

// each stage. This insures that the layers
cm12 = COPY cm11 // at each stage are truly different since

// the rule file compiler combines identical
cc2 = COPY cc1 // operations.
cm22 = COPY met2
cv12 = COPY via1
CONNECT cp2 cg2 // Connect for second-level check.
CONNECT cm12 cp2 BY cc2
CONNECT cm22 cm12 BY cv12
cp3 = COPY cp2 // Copy layers for third-level check.
cg3 = COPY cg2
cm13 = COPY cm12
cc3 = COPY cc2
cm23 = COPY cm22
cv13 = COPY cv12
cm33 = COPY met3
cv23 = COPY via2
CONNECT cp3 cg3 // Connect for third-level check.
CONNECT cm13 cp3 BY cc3
CONNECT cm23 cm13 BY cv13
CONNECT cm33 cm23 BY cv23
// First level antenna check:
cdiode1 = cm11 AND diode // Diffusion diodes.
m1_check = NET AREA RATIO cm11 cdiode1 == 0 // Check only m1

//not connected
rule1 { NET AREA RATIO m1_check cg1 > 300 } // to a

//diffusion diode.
// Second level antenna check:
cdiode2 = cm12 AND diode // Diffusion diodes.
m2_check = NET AREA RATIO cm22 cdiode2 == 0 // Check only m2

//not connected
rule2 { NET AREA RATIO m2_check cg2 > 300 } // to a diffusion
 //diode.
// Third level antenna check:
cdiode3 = cm13 AND diode // Diffusion diodes.
m3_check = NET AREA RATIO cm33 cdiode3 == 0 // Check only m3

//not connected
rule3 { NET AREA RATIO m3_check cg3 > 300 } // to a

//diffusion diode.
Calibre Verification User’s Manual, v9.1_5 4-61

Specialized DRC Applications DRC Concepts

 gets
ted
ets,
the
hose

s
ry

, 6)
 level

na

nly

nly

ved

as
Functionally this approach is correct since all layers in each “set” of Connect
operations are disjoint from all layers in any other set. The copying of layers
around the fundamental characteristic that all Connect operations are execu
together and effectively partitions the circuit into independent collections of n
thus insuring correct modeling of connectivity for antenna checking. That is,
nets created at each stage of metal deposition are completely disjoint from t
created at any other stage.

From a performance standpoint, however, it is a bad solution since it require
numerous layer copies and connect operations—this consumes much memo
space. In fact, some very large designs with many metal layers (for instance
cannot be checked in a single run and the user is forced to put each antenna
in a different rule file (and a different run).

From a performance standpoint, the solution to the problem of efficient anten
checking is to supportincremental connectivity. This is the ability to execute a
sequence akin to the following:

[1] Execute some of the Connect operations.

[2] Execute the layer operations where connectivity requirements are derived o
 from the Connect operations executed in step [1].

[3] Execute more of the Connect operations.

[4] Execute the layer operations where connectivity requirements are derived o
 from the Connect operations executed in steps [1] and [3].
...

[n] Execute the remainder of the Connect operations.

[n+1] Execute the layer operations where connectivity requirements are deri
 from all of the Connect operations.

Hence, with incremental connectivity, the flow for the above example could be
follows:

DRC Incremental Connect Yes
diode = contact AND diff
Calibre Verification User’s Manual, v9.1_54-62

DRC Concepts Specialized DRC Applications

ber
 the
lies

t-

ose
if
d.
if
// First level antenna check:
CONNECT poly gate
CONNECT m1 poly BY contact
CONNECT m1 diode
m1_check = NET AREA RATIO m1 diode == 0
rule1 { NET AREA RATIO m1_check gate > 300 }
// Second level antenna check:
CONNECT m2 m1 BY v1 // This changes connectivity of poly,
 // diode, contact, and gate also.
m2_check = NET AREA RATIO m2 diode == 0
rule2 { NET AREA RATIO m2_check gate > 300 }
// Third level antenna check:
CONNECT m3 m2 BY v2 // This changes connectivity of poly,

// diode, contact, gate, m1, and v1 also.
m3_check = NET AREA RATIO m3 diode == 0
rule3 { NET AREA RATIO m3_check gate > 300 }

(We did not connect the diode in the first example simply to minimize the num
of copies and connects required). Note that there is no copying of layers and
number of Connect operations is dramatically fewer. However, this method re
on the rule file beingorder dependent, which it is not by default.

Incremental connectivity is triggered by the specification statementDRC
Incremental Connect YES. (The default is NO). If DRC Incremental Connect YES
is specified, then DRC execution will view the rule file as having a partial fron
to-back ordering as follows:

<layer operations> <- Connectivity zone #0
<connect operations>
<layer operations> <- Connectivity zone #1
<connect operations>
<layer operations> <- Connectivity zone #2
...
<connect operations>
<layer operations> <- Connectivity zone #N

Operations requiring connectivity in connectivity zone #0 are not allowed. Th
requiring connectivity in connectivity zone #i, for i > 0, treat the connectivity as
only the Connect statements prior to connectivity zone #i have been execute
Operations requiring connectivity in connectivity zone #i, i > 0, are not allowed
Calibre Verification User’s Manual, v9.1_5 4-63

Specialized DRC Applications DRC Concepts

tivity
ue to

t (at
nd

s
the

ce
f

l
ters

he

ter
that connectivity can only be established by Connect statements after connec
zone #i. Mask mode Label Order and Sconnect operations are not allowed (d
internal limitations). All errors resulting from this schema are flagged at
compilation time.

Only the DRC applications will support incremental connectivity. Other
applications will ignore the DRC Incremental Connect specification statemen
runtime, not compilation time) and treat the rule file as order-independent (a
Connect statements as global), as usual. The rule file developer has the
responsibility, as always, of mitigating connectivity conflicts, if any, in rule file
covering multiple applications. Of course, this may require greater care with
addition of incremental connectivity.

Verification of connectivity becomes much more complicated with the presen
of DRC Incremental Connect YES. Layer operations requiring connectivity o
their parameter(s) are [Not] Net, Net Area, Net Area Ratio, Stamp, Ornet,
constrained polygon topological operations with BY NET specified, and noda
dimensional check operations. Briefly, connectivity of the appropriate parame
originates from their presence in a Connect or Sconnect operation or their
derivation via a sequence of node-preserving operations from a Connect or
Sconnect parameter. With incremental connectivity, the addition of an order-
dependency to the rule file means that connectivity of a layer may only be
established using Connect operations which appear prior to its reference in t
rule file. More precisely, incremental connectivity adds the following rules for
connectivity verification:

[1] A layer operation defined in connectivity zone #i may not have a forward
 reference to connectivity zone #j, for j > i, that is, may not have a parame
 defined in connectivity zone #j.

[2] A Mask mode Connect parameter must be defined prior to the Connect
 operation.

[3] Mask mode Label Order and Sconnect operations are not allowed.

[4] Connect operations after connectivity zone #i are not used to verify
 connectivity of a layer referenced in connectivity zone #i.
Calibre Verification User’s Manual, v9.1_54-64

DRC Concepts Specialized DRC Applications

ect

hen

ss

er’s
[5] A node-preserving layer derivation may not cross connectivity zones. For
 example, the following is illegal in the presence of DRC Incremental Conn
 YES:

CONNECT m1 poly BY contact
x = AREA m1 > 3
CONNECT m2 m1 BY via
rule { NET AREA x > 10 } // Connectivity of x verifies in a
 // different connectivity zone.

while the following is valid:

CONNECT m1 poly BY contact
x = NET AREA m1 > 3 // Connectivity of m1 verifies in this
 //zone.
CONNECT m2 m1 BY via
rule { AREA x > 10 } // Connectivity of x is not required.

These stricter connectivity verification rules given in [1] - [5] above allow two
existing connectivity restrictions to be removed in Calibre DRC applications w
DRC Incremental Connect YES is specified. First, a Connect layer may be
derived from an operation requiring connectivity in an incremental connect
environment if the layer’s definition appears before the Connect operation (le
restrictive than rule [2] above); this is always prohibited in a non-incremental
environment. For example, the following construction (which can be a key
capability for certain specialized DRC checks) is legal:

DRC INCREMENTAL CONNECT YES
CONNECT metal1
x = NET metal1 VDD
CONNECT x // Starting a new zone. Ok that x is derived from an
 // operation requiring connectivity

Second, a non-Connect layer requiring connectivity may exist in a Connect lay
derivation tree in an incremental connect environment. For Example:

DRC INCREMENTAL CONNECT YES
CONNECT x
y = AREA x > 2 // Layer y requires connectivity
rule { EXT y < 3 CONNECTED }
z = AREA y > 3 // Layer z requires layer y
Calibre Verification User’s Manual, v9.1_5 4-65

Specialized DRC Applications DRC Concepts

C
rted

that

me as
oss
rect

 as

uire
CONNECT z // Layer z in a CONNECT; ok - starting a new
 // CONNECT zone

This removal of the above two connectivity restrictions is only for Calibre DR
applications when DRC Incremental Connect YES is specified. It is not suppo
in ICrules (even though ICrules supports incremental connectivity).

The compiler will also disable operation equality optimizations across
connectivity zones. This is essential for incremental connectivity support so
diode1 and diode2 in the following example are not optimized into the same
operation:

CONNECT m1 poly BY contact
diode1 = contact AND diff
...
CONNECT m2 m1 BY via
diode2 = contact AND diff

The reason is that the contact layer in the first zone is not necessarily the sa
the contact layer in the second zone. Finally, concurrency threads will not cr
connectivity zones in order to prevent inadvertent creation of layers with incor
connectivity.

The DRC execution sequence will also, of course, change if incremental
connectivity is specified. The default execution sequence is briefly described
follows:

[1] Produce layer parameters for all Connect operations.

[2] Execute Connect operations, node-annotate all Connect layers which req
 it, and perform net naming.

[3] Produce data for all DRC RuleCheck output operations.
Calibre Verification User’s Manual, v9.1_54-66

DRC Concepts Specialized DRC Applications

e

the

ew
 or
g

the

” to

 is

g
st
With specification of DRC Incremental Connect YES, the execution sequenc
will change to:

For each connectivity zone from first to last {

[1] Produce layer parameters for all new Connect statements which defined
 zone.

[2] Execute all new Connect operations which defined the zone, appending n
 connectivity to existing connectivity. Node annotate all Connect layers at
 prior to the zone which require it. Perform net naming based upon existin
 connectivity if there are [Not] Net operations in the zone.

[3] Produce data for all DRC rule check output operations in the zone.

[4] Produce data for all referenced connectivity layer operations in the zone

}

Notice the requirement that referenced connectivity layer operations in the
connectivity zone must be executed (if they have not been already) while in
zone. This is to capture the connectivity of the zone and correctly satisfy
backward references to the zone later.

The connectivity extraction operationDisconnect allows total deletion of the
existing connectivity model in an incremental connect sequence. That is, the
presence of a Disconnect operation causes the current connectivity “build-up
be discontinued; the next Connect operation will begin the new connectivity
build-up.

Disconnect may appear any number of times. It is ignored in non-DRC
applications and in DRC applications where DRC Incremental Connect YES
not specified. That is because, in non-incremental connect flow, all Connect
operations are executed as a single block and, hence, there is nothing to
“disconnect.”

A Disconnect operation does not define a new connectivity zone; rather, the
presence of a Disconnect operation in connectivity zone #i causes all existin
connectivity to be deleted prior to execution of the first Connect operation pa
Calibre Verification User’s Manual, v9.1_5 4-67

Specialized DRC Applications DRC Concepts

n
, are
f a

low
ct
d
ed.

DRC

eck
zone #i. Appropriate modifications of the compile-time connectivity verificatio
algorithms for layers in an incremental connect setting, discussed previously
made in the presence of Disconnect operations. For example, connectivity o
layer cannot verify across any Disconnect operation.

Judicious sequencing of Connect operations in an incremental connectivity f
along with, perhaps, careful copying of Connect layers, makes the Disconne
operation rarely useful. It is, however, indispensable in certain very advance
DRC checks where any existing text attachment must be completely discard

Soft Connection Checks

DRC application can check for soft connections with theExternal operation.
Calibre LVS checks for soft connections with theLVS Softchk specification
statement, which you cannot use with DRC applications.

In the following examples, the INSIDE ALSO and NOT CONNECTED
secondary keywords of the External operation check for soft connections in
applications.

The following examples show a pair of statements LVS applications use to ch
for soft connections, followed by the associated DRC rule:

• Example 1

SCONNECTupper_layer lower_layer
LVS SOFTCHK lower_layer LOWER ALL

SOFTCHK {
REJ_UPPER = EXTERNAL lower_layer upper_layer == 0

 INSIDE ALSO REGION NOT CONNECTED
lower_layer NOT OUTSIDE REJ_UPPER
}

• Example 2

SCONNECTupper_layer lower_layer
LVS SOFTCHK lower_layer CONTACT
Calibre Verification User’s Manual, v9.1_54-68

DRC Concepts Specialized DRC Applications
SOFTCHK {
REJ_UPPER = EXTERNAL lower_layer upper_layer == 0

 INSIDE ALSO REGION NOT CONNECTED
upper_layer NOT OUTSIDE REJ_UPPER
}

• Example 3

SCONNECTupper_layer lower_layer
LVS SOFTCHK lower_layer CONTACT ALL

SOFTCHK {
REJ_UPPER = EXTERNAL lower_layer upper_layer == 0

 INSIDE ALSO REGION NOT CONNECTED
CONF_LOWER =lower_layer NOT OUTSIDE REJ_UPPER
upper_layer NOT OUTSIDE CONF_LOWER
}

• Example 4

SCONNECTupper_layer lower_layer ABUT ALSO
LVS SOFTCHK lower_layer LOWER ALL

SOFTCHK {
REJ_UPPER = EXTERNAL lower_layer upper_layer == 0

 INSIDE ALSO REGION NOT CONNECTED ABUT == 0
lower_layer INTERACT REJ_UPPER
}

• Example 5
SCONNECTupper_layer lower_layer ABUT ALSO
LVS SOFTCHK lower_layer CONTACT

SOFTCHK {
REJ_UPPER = EXTERNAL lower_layer upper_layer == 0

 INSIDE ALSO REGION NOT CONNECTED ABUT == 0
upper_layer NOT OUTSIDE REJ_UPPER
}

Calibre Verification User’s Manual, v9.1_5 4-69

Specialized DRC Applications DRC Concepts
• Example 6

SCONNECTupper_layer lower_layer ABUT ALSO
LVS SOFTCHK lower_layer CONTACT ALL
SOFTCHK {

REJ_UPPER = EXTERNAL lower_layer upper_layer == 0
 INSIDE ALSO REGION NOT CONNECTED ABUT == 0

CONF_LOWER =lower_layer INTERACT REJ_UPPER
upper_layer INTERACT CONF_LOWER
}

• Example 7

SCONNECTupper_layer lower_layer BY contact_layer
LVS SOFTCHK lower_layer LOWER ALL
SOFTCHK {

USED_CONTACT =upper_layer AND CONTACT_LAYER
REJ_CONTACT = EXTERNALlower_layer USED_CONTACT == 0

 INSIDE ALSO REGION NOT CONNECTED
lower_layer NOT OUTSIDE REJ_CONTACT
}

• Example 8

SCONNECTupper_layer lower_layer BY contact_layer
LVS SOFTCHK lower_layer CONTACT

SOFTCHK {
USED_CONTACT =upper_layer AND contact_layer
REJ_CONTACT = EXTERNALlower_layer USED_CONTACT == 0

INSIDE ALSO REGION NOT CONNECTED
contact_layer NOT OUTSIDE REJ_CONTACT
}

• Example 9

SCONNECTupper_layer lower_layer BY contact_layer
LVS SOFTCHK lower_layer UPPER
Calibre Verification User’s Manual, v9.1_54-70

DRC Concepts Specialized DRC Applications

es
d on
SOFTCHK {
USED_CONTACT =upper_layer AND contact_layer
REJ_CONTACT = EXTERNALlower_layer USED_CONTACT == 0

INSIDE ALSO REGION NOT CONNECTED
upper_layer NOT OUTSIDE REJ_CONTACT
}

• Example 10

SCONNECTupper_layer lower_layer BY contact_layer
LVS SOFTCHK lower_layer CONTACT ALL

SOFTCHK {
USED_CONTACT =upper_layer AND contact_layer
REJ_CONTACT = EXTERNALlower_layer USED_CONTACT == 0

INSIDE ALSO REGION NOT CONNECTED
CONF_LOWER =lower_layer NOT OUTSIDE REJ_CONTACT
USED_CONTACT NOT OUTSIDE CONF_LOWER
}

• Example 11

SCONNECTupper_layer lower_layer BY contact_layer
LVS SOFTCHK lower_layer UPPER ALL

SOFTCHK {
USED_CONTACT =upper_layer AND contact_layer
REJ_CONTACT = EXTERNALlower_layer USED_CONTACT == 0

INSIDE ALSO REGION NOT CONNECTED
CONF_LOWER = NOT OUTSIDE REJ_CONTACT
CONF_CONTACT = USED_CONTACT NOT OUTSIDE CONF_LOWER
upper_layer NOT OUTSIDE CONF_CONTACT
}

GDSII Datatypes and Texttypes in Calibre

If the layout database format for Calibre is GDSII, then datatypes and texttyp
are ignored by default. However, processing of drawn geometry and text base
datatypes and texttypes is possible viaLayer Map specification statements.
Calibre Verification User’s Manual, v9.1_5 4-71

Specialized DRC Applications DRC Concepts

parate

the

 a

k for
s.

ype

ated
eing

sed
:

As an example, assume that datatypes 7-32 on layer 0 are to comprise a se
original layer, call it "forks". Then the following rule file statements would
correctly define layer "forks":

LAYER forks 108
// Really layer 0, datatypes 7-32. Just picked 108.
LAYER MAP 0 DATATYPE >= 7 <= 32 108

As with all rule file entities, there are no restrictions on the relative ordering of
Layer and Layer Map specification statements.

When the DATATYPE keyword is present, we call a Layer Map specification
statement adatatype map. When the TEXTTYPE keyword is present, we call it
texttype map. Texttype maps work for GDSII texttypes and layers specified in
Text Layer specification statements in the same way that datatype maps wor
GDSII datatypes and original layers defined in Layer specification statement

Specifically, for datatype maps, when reading a geometry G on layer L with
datatype D, the GDSII stream reader will proceed as follows. If for any datat
map

(source-layers, source-types, target-layer)

L is in source-layers and D is in source-types, then for each datatype map

(source-layers, source-types, target-layer)

such that L is in source-layers and D is in source-types, geometry G will be tre
as if it were on target-layer; if G is so mapped, then it is no longer treated as b
on layer L unless L is a target-layer in one of G's datatype maps. If G is in no
datatype map, then it is treated as being on layer L regardless of datatype.

Datatype maps are completely not the same as layer sets.

As another example, assume that all geometries having datatype 1 are to be
ignored regardless of layer. Then, assuming that layer number 1000 is not u
otherwise, the following effectively discards any geometry having datatype 1

LAYER MAP > 0 DATATYPE 1 1000
Calibre Verification User’s Manual, v9.1_54-72

DRC Concepts Specialized DRC Applications

pe 1

 for
,

up"
100 in
ich
d
Since
any

ap.

ns
However, now assume that metal1 is layer 9 and that geometries with dataty
are to be ignored for all layers except metal1. Then

LAYER metal1 9
...
LAYER MAP > 0 DATATYPE 1 1000
LAYER MAP 9 DATATYPE 1 9

A common problem when using layer maps are target layer numbers created
the sole purpose of the mapping which are, in fact, non-empty. For example
consider:

LAYER metal 100
LAYER MAP 6 DATATYPE 1 100

The intent is that metal is on layer 6, datatype 1, and the number 100 is "made
because there needs to be a target layer number. Problems can arise if layer
the input layout database contains geometry not intended to be used, but wh
will be placed on layer 100 by default as per the mapping algorithm describe
above. A simple solution is to map objects on layer 100 to an unused layer.
layer maps are not always that carefully designed, a warning will be issued for
GDSII layer which:

1. is required by the execution flow

2. is the target layer of a datatype map

3. contains objects which themselves are not mapped by any datatype m

GDSII/CIF Input Control in Calibre

GDSII input. The following GDSII records are processed by Calibre applicatio
for a GDSII-type input layout database:

HEADER BGNLIB LIBNAME UNITS ENDLIB
BGNSTR STRNAME ENDSTR

BOUNDARY
PATH PATHTYPE WIDTH BGNEXTN ENDEXTN

XY COLROW
Calibre Verification User’s Manual, v9.1_5 4-73

Specialized DRC Applications DRC Concepts

nd

d as

s

le
LAYER DATATYPE
SREF AREF SNAME

TEXT TEXTTYPE STRING
STRANS MAG ANGLE

PROPATTR PROPVALUE
ENDEL

BOX and BOXTYPE records can be processed and treated exactly like
BOUNDARY and DATATYPE records, respectively, if the specification
statementLayout Process Box Record YES is present in the rule file.

CIF input. The original Mead/Conway BNF is adhered to except for the
following extensions and limitations:

• The user extension command "9" immediately following a "DS" comma
will define the cell name associated with the symbol number.

• Implicit commands "P", "B", "R", "W", "C", and any implicit user
extension commands are not processed. An implicit command is define
one outside of "DS" ... "DF".

• Commands "R" (round flash) and "DD" (definition delete) are not
processed.

• User extension commands "4N", "94", "4M", and "4X" are interpreted a
text objects with the following syntax:

 4N/94 string sinteger sinteger
4M string integer point point string

4X string integer point integer string string

• CIF layer names must be resolvable (that is, defined) in the rule file.
Objects will not be added to unresolvable CIF layers. As an example ru
file definition using an alias:

 LAYER METAL1 M1 // METAL1 is the name I really want to use.
 LAYER M1 12 // The way it's defined in the CIF file.
Calibre Verification User’s Manual, v9.1_54-74

DRC Concepts Specialized DRC Applications

e

ture
t
lly

iple
he
ior

data
 is

cell.

SII
re is
 that
ary
 of

value
the

 a
Layout Depth Control. If the input layout database format is GDSII/CIF, the
layout depth for geometries may be specified via theLayout Depth specification
statement.

Handling Duplicate Cells

TheLayout Pathspecification statement may be specified with multiple file nam
parameters and any number of times. This allows multiple GDSII/CIF input
databases to be used. Multiple input databases are treated as if all the struc
records (for GDSII) or symbol definitions (for CIF) were embedded in the firs
file specified. Each input database file, however, is expected to be syntactica
complete.

Whether or not multiple files are specified for the input layout database, mult
records for the same layout cell are not allowed by default. All records after t
first are discarded (with a warning or error). The user may control this behav
with theLayout Allow Duplicate Cell[s] specification statement.

If YES is specified, then multiple cell records are treated as if the constituent
were concatenated into a single record and there is no warning or error. This
useful, for example, when the database is split into multiple files by layer, not

Wildcards in Layout Primary

TheLayout Primary (and Layout Primary2, discussed later) specification
statement argument may contain one or more wildcard (*) characters. This allows
the system to attempt a degree of auto-recognition of the top-level cell in a GD
or CIF input layout database. The recognition semantics are as follows: If the
a literal match between a cell name and the Layout Primary parameter, then
cell becomes the top-level cell. If there is no literal match and the Layout Prim
parameter contains one or more wildcards, then the system assembles a list
candidate top-level cells in order of their appearance in the input stream. A
candidate top-level cell is defined as any unplaced (that is, unreferenced)
structure. The first such candidate whose name matches the Layout Primary
according to the usual rules of cell name wildcard matching will be selected as
top-level cell; a warning is issued in this event. If there is still no match, then
fatal error is issued.
Calibre Verification User’s Manual, v9.1_5 4-75

Specialized DRC Applications DRC Concepts

 a

asis

 that

r of

yer
ed

cur.
in flat
e to
cur.

abase

se

ers,
from
ll
Database Pre-merging

A layout database which originated from a module generation program, for
example, may often contain massive numbers of overlapping geometries on
single layer within each cell. If merged, however, this number may be
dramatically reduced. It is often desirable to merge on a per-layer, per-cell b
prior to merging the flat representation, which is done automatically by the
verification system for essentially every original layer. For example, assume
on layer L in cell C there are N geometries, which, if merged, would be M
geometries where M << N. If cell C has P flat placements, then the total numbe
geometries due to the flattening of layer L from cell C is NP. If P is large and
M << N, then this can be reduced considerably, to MP. Merging of the flat la
will then be much more efficient and memory will be saved. This is accomplish
with theLayout Merge On Input YES specification statement.

The input layout database format must be GDSII or CIF for the merging to oc
In cases such as the one above, the time for merging of the flattened layers
applications can be considerably reduced, at the expense of slightly more tim
read the input layout database. The default is NO, that is, merging will not oc
YES should generally not be specified if the input layout database lacks the
aforementioned characteristics.

Cell Renaming

The user may also specify cells that are to be renamed as the input layout dat
is being read. This is done with theLayout Rename Cell specification statement.
This is especially useful in establishing cell correspondences for dual databa
capability in hierarchical applications. This is discussed later in this chapter.

Cell Exclusion

All Calibre applications have the capability of excluding one or more layout
database cells from processing. This is important in excluding alignment mark
trademarks, memory cores, and so on. Excluding a cell means that no objects
any placement of the cell will be processed by the application; this includes a
hierarchy within the placement.
Calibre Verification User’s Manual, v9.1_54-76

DRC Concepts Specialized DRC Applications

ded.
ell
for

 via

the

nd

n

same
tions
tion

clude
e

n.
t is,
rily
In Calibre, cell exclusion is controlled by the presence of Exclude Cell
specification statements. These collectively specify the set of cells to be exclu
If no such specification statements are present, then no cells are excluded. C
exclusion is not supported for binary and ASCII input layout database formats
Calibre. The wildcard character “*” may be used within the cell names.

Area-based Filtering in Calibre

In Calibre applications, area filtering of layout database objects is supported
the following three specification statements:Layout Window, Layout Windel, and
Layout Window Clip. See theSVRF Manual for details.

Flagging and Snapping Original Geometries in Calibre

Original geometryflaggingcauses warnings to be generated when original
geometries which fail certain constraints are read from the layout database (
original geometries are still processed, however). Original geometrysnapping
aligns vertices of original geometries on specified grids.

Flagging of original geometries is controlled by the rule file specification
statements Flag Acute, Flag Skew, Flag Offgrid, Flag Nonsimple Polygon, a
Flag Nonsimple Path. The default for all statements is NO. They are fully
discussed in theSVRF Manual.

The error-directed auxiliary operations Drawn Acute, Drawn Skew, and Draw
Offgrid provide an alternative method to flag original geometries than that
provided by the corresponding Flag... statements. Each method checks the
set of original database geometries and flags the same problems. The opera
produce DRC results which can be visually realized by DRC results presenta
commands. The warnings generated by the FLAG... statements, however, in
layer and cell name information, which is not attached to DRC result databas
objects.

Remember that original geometry flagging, whether done via error-directed
auxiliary operations or by FLAG...YES (or both), only checks geometries on
original layers which are actually read from the database in the verification ru
These original layers are only those actually required by the application (tha
layers which are required for layer derivations and rule checks), not necessa
Calibre Verification User’s Manual, v9.1_5 4-77

Specialized DRC Applications DRC Concepts

tion

roup

on
, or
o

fgrid
lution
d in
ures
rid (in

s

e
xt
ner as

ions
he
into

rray
his
) to
 top-
the entire set of original layers referenced in the rule file. In particular, resolu
overrides for original layers specified inLayer Resolutionspecification statements
do not apply unless the original layer is literally required by the application—
layer sets should not be built simply to override the default resolution for a g
of layers.

If Snap Offgrid YES is specified in the rule file, then original layer geometries
read by Calibre are snapped to the grid specified in theResolution specification
statement or, if present, the grid specified in the Layer Resolution specificati
statement for the given original layer. Snapping occurs prior to any acute, skew
off-grid flagging. Snapping preserves 45-degree angles on edges between tw
orthogonal edges if the snap resolution has equal x- and y-values.

For hierarchical applications, placements are also snapped to grid if Snap Of
YES is specified. Geometries are then snapped on a per-cell basis. The reso
for placement snapping is the least common multiple of all grid values specifie
applicable Resolution and Layer Resolution specification statements. This ins
that geometries can be snapped on a per-cell basis and cannot become off-g
the flat view of the input layout database) due to an off-grid placement. For
resolutions where the x- and y-values are unequal, snapping of geometries i
always to the least common multiple of the two values.

Finally, in DRC-H,DRC Map Textobjects are snapped to the grid specified in th
Resolution specification statement if Snap Offgrid YES is specified. These te
objects are treated as single-point geometries and snapped in the same man
geometries, as described previously. No other text objects are snapped.

Input Layout Database Magnification

The input layout database may be magnified as it is read into Calibre applicat
via theLayout Magnify specification statement. This statement specifies that t
input layout database is to be magnified by the given value as it is being read
the Calibre application. The magnification algorithm simply multiplies all
coordinate data (including placement base points—for GDSII and CIF—and a
pitches for GDSII) by the given value, regardless of its hierarchical position. T
algorithm is completely equivalent (disregarding mathematical round-off error
placing the entire input layout database at the given magnification into a new
level cell; the difference is that the new cell is not explicitly created.
Calibre Verification User’s Manual, v9.1_54-78

DRC Concepts Specialized DRC Applications

tool
e rule

ule

gon

me

riate
ase

itten

is
In certain applications, magnification of the input layout database is used as a
to increase the database precision. In such usage, it is recommended that th
file precision be modified accordingly so that dimensioned quantities in the r
file agree with the new precision. For example:

LAYOUT MAGNIFY 10
// Increase database precision for some reason
PRECISION 10000
// Was 1000. Better increase that also.

Binary Layout Database Writing

DRC applications can be directed to write the layout database into binary poly
files in the current directory. (These binary polygon files are equivalent to the
binary layout database input format for Calibre DRC, each having the file na

icv_data_<number>

where <number> represents the corresponding drawn layer number.)

The layers which are written are exactly those simple layers, and the approp
geometric subset thereof, which would have been read from the layout datab
had the check set been executed (except for geometries specified inPolygon
specification statements). Each simple original layer read becomes a binary
polygon file. No rule checks are actually executed if the database is being wr
in this manner. Geometry flagging of acute angles, skew edges, and offgrid
vertices is also disabled.

This is performed by specifying the command line switch -writedatabase. Th
switch is not supported in Calibre DRC-H.
Calibre Verification User’s Manual, v9.1_5 4-79

Specialized DRC Applications DRC Concepts
Calibre Verification User’s Manual, v9.1_54-80

ou
.
the

le

libre

n.
Chapter 5
DRC Execution

The following command lines invoke Calibre DRC and Calibre DRC-H, which
operate on the specified rule file:

calibre -drc [-writedatabase] rule_file_name

calibre -drc -hier rule_file_name

For more information on command usage of Calibre DRC / DRC-H, see
“Calibre DRC/DRC-H” in chapter2, “Invocation”.

Rule File Compilation
You must specify a rule file to invoke Calibre DRC applications. To do this, y
provide the name of the rule file as an argument to the invocation command
Calibre DRC automatically compiles the rule file as the first step of executing
command. Compilation errors abort the program. Compilation errors are
discussed in theSVRF Manual.You can check syntax of statements in the rule fi
before running DRC by using the rules_syntax_checker utility. For more
information on this utility, refer to the section “Rules Syntax Checker” in chapter
12.

Rule Check Selection
You can select one or more rule check statements from a rule file, which Ca
DRC will run as a unit. This unit is called thecheck set.

By default, Calibre DRC selects all rule checks in the rule file during compilatio
You can use theDRC Select Check andDRC Unselect Checkspecification
Calibre Verification User’s Manual, v9.1_5 5-1

General Execution Characteristics DRC Execution

ile,
nly
nts.

lect

that

et

e

e

statements to control compile-time inclusion of any rule checks. Calibre DRC
selects rule checks when it compiles the rule file as follows:

1. If there are no DRC Select Check specification statements in the rule f
Calibre DRC selects all rule checks. Otherwise, Calibre DRC selects o
those rule checks specified in DRC Select Check specification stateme

2. Calibre DRC does not select any rule checks specified with DRC Unse
Check specification statements in the rule file.

General Execution Characteristics
This section discusses some of the general characteristics of Calibre DRC
execution. Much of the discussion applies in general to all verification
applications.

Concurrency

Calibre DRC performs many of the layer operations concurrently. This means
they run together, when required, simultaneously. Whenever Calibre DRC
performs layer operations, it locates all required layer operations within the s
that it can run concurrently and executes them as a single group.

Calibre executes the following layer operations concurrently:

• All dimensional check operations with one input layer that have the sam
input layer.

• All dimensional check operations with two input layers having the sam
two input layers in either order.

• All unconstrained polygon topological operations having the same two
input layers in either order, such as:

(Not) Cut (Not) Enclose

(Not) Inside (Not) Interact

(Not) Outside (Not) Touch
Calibre Verification User’s Manual, v9.1_55-2

DRC Execution General Execution Characteristics

ut

r.

der:

er.

en

w,
• All constrained polygon topological operations having the same two inp
layers in a given order, such as:

• All (Not) Rectangle operations having the same input layer.

• All other polygon measurement operations having the same input laye

• All Expand Edge operations having the same input layer.

• All Path Length operations having the same input layer.

• All Convex Edge operations having the same input layer.

• All topological operations having the same two input layers in either or

• All (Not) Length, and (Not) Angle, operations having the same input lay

• All (Not) With Edge operations having the same two input layers in a giv
order.

• All (Not) Net operations having the same input layer.

• All Net Area operations having the same input layer.

• All Net Area Ratio operations having the same set of input layers, not
including the ACCUMULATE layer, and, if specified, the same
ACCUMULATE layer.

• All Density operations that have the same input layer, boundary, windo
and step parameters.

(Not) Cut (Not) Enclose

(Not) Interact (Not) Touch

(Not) Inside Edge (Not) Outside Edge

(Not) Coincident Edge (Not) Coincident Inside Edge

(Not) Coincident Outside Edge (Not) Touch Edge

(Not) Touch Inside Edge (Not) Touch Outside Edge
Calibre Verification User’s Manual, v9.1_5 5-3

General Execution Characteristics DRC Execution

le
r
shed
all
ore

ions

t the

g
ithin
f rule
o use

ry to

some
ng
Calibre DRC generally execute rule checks in the order they occur in your ru
file. When the executive routine “sees” that it is finished with a particular laye
(that is, no more rule checks are to be performed on a layer), that layer is flu
from memory. You can optimize your rule file and your run times by placing
rule checks for given layers sequentially in the rule file. This is discussed in m
detail in the following sections.

Redundancy Elimination

Calibre DRC combines all identical layer operations during execution. Operat
are identical if they have the same keyword, arguments and input data. For
example, in the following rule check statements, Calibre DRC recognizes tha
operations defining X and P are identical as well as those defining Y and Q:

ABC {
X = poly and diff
Y = X inside metal
…
}

DEF {
P = diff and poly
Q = P inside metal
…
}

Note that you can duplicate layer operations within a rule file without affectin
compilation or execution. This is true whether the duplicated operations are w
the global scope (outside of rule check statements), the local scope (inside o
check statements), or both. For Calibre DRC applications, you do not need t
the global scope to avoid duplicate execution of layer operations.

Layer Operation Scheduling

Calibre DRC applications automatically schedule all layer operations necessa
satisfy any data requirements of a layer operation.

For example, assume that a layer operation required by a check set refers to
layer A defined in the rule file. Calibre DRC locates the layer definition defini
Calibre Verification User’s Manual, v9.1_55-4

DRC Execution General Execution Characteristics

eeds
e A.

om

on
ly

and

hen
ata

ed.

sets

e
le

r
nt to
the

h

:

y an
y

A and evaluates the defining operation. This is a recursive process that proc
through the entire tree of operations that Calibre DRC must evaluate to produc
The process stops when Calibre DRC retrieves data for the original layers fr
the database.

Calibre DRC schedules all involved layer operations for concurrency and to
undergo redundancy elimination, as described above. If a layer operation is
required to evaluate a check set, Calibre DRC does not perform that operati
more than once during execution of the check set. Calibre DRC performs on
those operations necessary to satisfy the data requirements of a check set.

Maximizing Capacity and Minimizing Execution Time

DRC applications produce derived layer data during the course of operation
delete all original and derived data when they are no longer required. Some
systems produce all derived layer data “up front” and delete all of the data w
the run is complete. Calibre DRC attempts to maximize capacity by delaying d
production until it is required and by deleting data when it is no longer requir

DRC applications proceed as follows:

1. Perform one database scan and generate all original layers and layer
required by the check set.

2. If the check set requires connectivity extraction, perform the Mask mod
ConnectandSconnectoperations in the order of their appearance in the ru
file.

3. Execute the rule check statements in the check set in the order of thei
appearance in the rule file. Executing a rule check statement is equivale
generating the derived layers represented by all output operations within
rule check statement (in order within the rule check), and mapping eac
derived layer to the DRC results database.

Given the above order, the following facts apply to generating derived layers

• Calibre DRC never generates a derived layer, including one produced b
output operation within a rule check statement, until the layer is actuall
Calibre Verification User’s Manual, v9.1_5 5-5

General Execution Characteristics DRC Execution

rlier

d,

rder

t use
can

her

As a
gh

mount
curate
needed. The exception to this is if Calibre DRC generated the layer ea
according toConcurrency.

• All layers, original or derived, persist only until they are no longer require
at which point Calibre DRC deletes them.

These data generation guidelines provide you with latitude in arranging the o
of rule check statements in the rule file so as to maximize capacity.

Conjunctive Checks

Calibre DRC performance depends on the amount of data Calibre DRC mus
at any given time. In designing certain conjunctive checks, for example, you
reduce execution time. Consider the following design rule:

All metal contacts must be inside of metal and, in addition, inside of eit
polysilicon or diffusion.

This rule states that metal contacts connect metal to polysilicon or metal to
diffusion. One way to check this rule is as follows:

metal_contact_check {
x = poly or diff
y = x and metal
contact not inside y
}

The problem with this approach is that, in a large design, Calibre DRC may
generate potentially large amounts of data in the intermediate layers x and y.
result, the AND and Not Inside operations are slower than necessary. Althou
correct, you can alter this check to speed up the process by decreasing the a
of intermediate data generated. The method below achieves this and is as ac
as the above check:

metal_contact_check {
bad1 = contact not inside metal
x = contact not inside diff
bad2 = x not inside poly
bad1 or bad2
}

Calibre Verification User’s Manual, v9.1_55-6

DRC Execution General Execution Characteristics

r

l
f

 run

tions,

re is
The OR operation unites any duplicate objects in the error layersbad1 andbad2 .
Since objects inbad1 andbad2 are errors (these layers should be very small, o
empty) the final OR operation will be negligible. The only other intermediate
layer is x, whose size is probably on the order of 1/3 of the size of the origina
contact layer. (In practice, however, the Outside Also option for these type o
contact checks is much more efficient).

Concurrency Checks

One of the most straightforward ways to reduce execution time is to use
concurrency. In general, if Calibre DRC performs N operations concurrently,
time is close to that for one of the operations. For example, consider the
following:

regular_contact = contact outside pad
pad_contact = contact not regular_contact

This involves two potentially expensive operations. An equivalent method
introduces concurrency and reduces the time required for one of the above
operations:

regular_contact = contact outside pad
pad_contact = contact not outside pad

Concurrency can introduce the greatest savings in dimensional check opera
which are usually the most time-consuming and because the amount of
concurrency is open-ended. For example:

gate = poly AND diff
rule_A {

external poly diff < 3
}

rule_B {
enclosure gate poly < 2
}

The output operations inrule_A andrule_B represent two potentially time-
consuming operations. However, because of polygon containment criteria, the
no reason to use the gate layer inrule_B . The layerdiff would work as well and
introduce concurrency, as follows:
Calibre Verification User’s Manual, v9.1_5 5-7

General Execution Characteristics DRC Execution

rge
erage
s a
For

time.

C

rule_A {
external poly diff < 3
}

rule_B {
enclosure diff poly < 2
}

Rectangle Checks

Another general rule for avoiding excessive run time is never to use a very la
design rule constraint in a dimensional check operation on a layer whose av
feature size is much smaller than the rule’s constraint, or where the layer ha
high density of polygons. This can slow DRC down by orders of magnitude.
example, consider the design rule:

Contacts must be rectangles of width greater than or equal 1.2 and less than or
equal to 90.

One way to check this is the following:

contact_size {
internal (contact) >= 1.2 <= 90 // Output edges where

 // width is bad.
}

The combination of the huge constraint value of 90 compared with the large
contact density will cause the dimensional check operation to take excessive
A better way to check the design rule is as follows:

contact_size {
not rectangle contact >= 1.2 <= 90 by >= 1.2 <= 90
}

Pad Checks

Another way to reduce run time (applicable mostly to flat, not hierarchical DR
applications) is in the area of pad checks on a large design. For example:

Rule_5 {
external pad metal2 < 32
}

Calibre Verification User’s Manual, v9.1_55-8

DRC Execution General Execution Characteristics

ible
an a
apes,

f

for
n,

e

Flat Calibre DRC is not optimized to ignore the potentially large number of
metal2 shapes that are in the middle of the circuit and that can have no poss
interaction with the pads. Because a polygon topological operation is faster th
dimensional check operation and because there are generally very few pad sh
the following rule can offer significant speed improvement (at the expense o
additional lines of code):

Rule_5 {
X = pad size by 32.1 //make pads larger by 32.1 units
Y = metal2 not outside X //any metal 2 touching X?

//probably not much
external pad Y < 32 //now do the external check
}

Operation Execution Time

The following is a rough order of comparing the run time of layer operations
flat verification.The order below is slightly different for hierarchical verificatio
as discussed in the section “Hierarchical Operation Efficiency” in chapter6,
“Hierarchical DRC”. This order is not 100 percent applicable for all data
configurations, but it does give a general idea of the relative speed of these
operations. The slowest operations are at the top, the fastest at the bottom:

• Density (can run faster depending on design)

• Internal, External, Enclosure

• (Not) Touch Edge, (Not) Touch Inside Edge, (Not) Touch Outside Edg

• (Not) Inside Edge, (Not) Outside Edge, (Not) Coincident Edge,
(Not) Coincident Inside Edge, (Not) Coincident Outside Edge,
(Not) Enclose, (Not) Touch, (Not) Interact, (Not) Cut (Constrained),
(Not) With Edge (different layer of origin), Convex Edge

• AND (two layer), OR (two layer), NOT, XOR (two layer), (Not) Inside,
(Not) Outside, (Not) Cut (unconstrained), Stamp, (Not) With Text

• Size, Snap, Expand Edge, Holes, Extents, (Not) Length, (Not) Angle,
AND (one layer), OR (one layer), XOR (one layer)
Calibre Verification User’s Manual, v9.1_5 5-9

Polygon Segmentation DRC Execution

)

or
rtex

lygon
ed

heck.

unt

re
m if

unt
• Path Length, Perimeter, Vertex, (Not) Donut, (Not) Area, Net Area,
Net Area Ratio, (Not) Rectangle, (Not) With Edge (same layer of origin

• Copy, Polynet, Rectangles, Shift, Magnify, Rotate, Extent, (Not) Net,
Offgrid

Polygon Segmentation
Calibre DRC places no limit on the vertex count for polygons on original layers
on derived polygon layers. For some database formats, you should limit the ve
count of polygon results. For example:

• The IC Station template database has a vertex limit of 4096.

• The GDSII database format has a vertex limit of 200.

Calibre DRC contains a polygon “segmenter” that breaks up result polygons
whose vertex count exceeds a certain value. The segmenter breaks up a po
vertically, producing polygons with sufficiently small vertex counts. The merg
representation of the segments is equal to the original polygon. Whenever a
polygon result is segmented, Calibre DRC issues a warning—once per rule c

By default, Calibre DRC segments any DRC polygon result whose vertex co
exceeds 4096. You can control the maximum vertex count for polygon
segmentation with theDRC Maximum Vertex specification statement.

Calibre DRC uses the specified value even though some database formats a
specified to contain polygons with fewer vertices. This may present a proble
you use such a database in IC Station.

Calibre DRC computes DRC result counts after applying any polygon
segmentation. These result counts appear in the DRC results database or in
various DRC messages.

Polygon Segmentation in Calibre DRC

By default, Calibre DRC segments any DRC polygon result whose vertex co
exceeds 4096. You can control the maximum vertex count for polygon
Calibre Verification User’s Manual, v9.1_55-10

DRC Execution Polygon Segmentation

ple,
9
res
ase

sults

6,
 for
This

ed
dth.
r near

of the
segmentation via the rule fileDRC Maximum Vertex specification statement.
ALL simply denotes a very large number (2147483647 to be exact). For exam
if the DRC results database type is GDSII, then DRC MAXIMUM VERTEX 19
can be desirable since the GDSII vertex “limit” is 200 and GDSII format requi
the last vertex in a polygon to duplicate the first one. (If the DRC results datab
type is GDSII, a warning is issued if there is no DRC Maximum Vertex
specification statement in the rule file or, if present, its value exceeds 199;
however, polygons will not be segmented simply on the basis of the results
database format being GDSII). The user can even segment DRC polygon re
into quadrilaterals by using DRC MAXIMUM VERTEX 4

A word of caution. If the value specified in DRC Maximum Vertex exceeds 409
Calibre DRC will use this value even through ASCII DRC results databases,
example, are specified not to contain polygons with more than 4096 vertices.
would definitely present a problem if such a DRC results database was later
loaded into IC Station (via REStore DRc Results, for example).

Layout Database End Segment Warning

The Calibre layout data input module will issue a warning for any non-extend
path type such that either end segment length is less than 1/2 of the path wi
The warning is issued because the expanded path may have a notched corne
the short end segment. The warning includes the path’s layer, cell, and one
end segment’s coordinates. This applies to GDSII and CIF databases, and is
issued in both flat Calibre DRC and DRC-H.
Calibre Verification User’s Manual, v9.1_5 5-11

Polygon Segmentation DRC Execution
Calibre Verification User’s Manual, v9.1_55-12

his
esult

libre
the

ping

or
ains

se.
stores

tion

h
o.
Chapter 6
Hierarchical DRC

Calibre DRC-H is afully-hierarchical DRC application. Unlike flat verification
applications, which completely flatten the input database and operate on the
resulting flat geometries, Calibre DRC-H maintains the database hierarchy. T
exploits the hierarchy to reduce processing time, memory usage, and DRC r
counts.

Calibre DRC-H uses the same rule file as its flat counterpart, Calibre DRC.
Therefore, you do not need to add or remove statements. Calibre DRC and Ca
DRC-H are nearly identical, except for hierarchical processing algorithms and
reduction of design rule errors through hierarchical error suppression.

Calibre DRC-H imposes no design restrictions concerning geometry overlap
cell placements or overlaps of cell placements.

Theory of Operation
Flat verification applications work from a flat database representation only. F
GDSII and CIF input, Calibre flattens the layout database up front and maint
no record of the original database hierarchy.

Hierarchical Calibre applications, by contrast, do not flatten the input databa
Instead, Calibre maintains the database hierarchy throughout processing. It
geometry (both original and derived) only once in the cell with which it is
associated instead of replicating every flat placement of the cell. Each opera
uses this hierarchical information to minimize the redundant processing that

Note

Calibre LVS and xCalibre also have hierarchical versions. Muc
of the information in this section applies to those applications als
Calibre Verification User’s Manual, v9.1_5 6-1

Theory of Operation Hierarchical DRC

r all

an
set of
otes

t
nd

sult
occurs in a flat system when Calibre analyzes data within a cell repeatedly fo
flat placements of the cell.

For each cell, every operation determines which portion of the data Calibre c
analyze, independent of the placements of the cell. Calibre analyzes this sub
data only once, regardless of the number of placements of the cell, and prom
the remaining data up the hierarchy, until accurate analysis within context is
ensured.

Storing, analyzing, and processing data once per cell, instead of for every fla
placement of the cell, can generate significant performance improvements a
greatly reduce memory requirements. Figure6-1 provides a simple illustration of
the idea behind hierarchical processing, using a two-layer Boolean AND
operation

Figure 6-1. Hierarchical AND Operation

Cell B contains two placements of cell A and a geometry that overlaps one
placement of cell A. You can combine the two right-hand geometries in cell A
with an AND operation on a cell-specific basis in cell A. Calibre stores the re

Cell B

Cell A Cell A

in Cell B in Cell A

Cell B

Cell A Cell A

Before

AND

AND

After
Calibre Verification User’s Manual, v9.1_56-2

Hierarchical DRC DRC Data Storage

f a

t will

 flat
ion,
rsus
 flat
. This

lat

s the
ning

them

evel
l in
rs
once in cell A, irrespective of the fact that cell A is placed twice. The context o
placement of cell A affects only the left-hand geometry in cell A. Calibre
promotes this geometry to ensure an accurate AND operation, and the resul
become a geometry in cell B

The performance of hierarchical Calibre applications, as compared with their
counterparts, depends on the amount of repetition within the design. In addit
determining per-cell data subsets that Calibre can independently analyze ve
those that it must process in context, represents overhead not present in the
system. On a majority of designs, you can realize significant speed increases
ranges from 2x for many MPU designs to orders of magnitude for memory
designs. Hierarchical processing can similarly reduce memory requirements
because Calibre stores data once per cell, instead of replicating it for every f
placement of the cell.

DRC Data Storage
An important corollary of hierarchical processing is that Calibre DRC-H
maintains data (original or derived layer geometry) at the lowest possible
hierarchical level. For original layer geometries, this means that Calibre store
data once with the cell (just as in the original user design) as opposed to flatte
to the top level, that is, replicating for every flat placement of the cell.

Layer operations that generate derived layer geometries attempt to analyze
within each cell, promoting only when necessary to examine data in context.
Calibre then creates the derived layer geometries at the lowest hierarchical l
and, as with original layer geometries, stores geometries once within the cel
which they were created. Because DRC results are elements of derived laye
mapped to the DRC results database, this implies that Calibre DRC-H
incorporates a natural error suppression device.
Calibre Verification User’s Manual, v9.1_5 6-3

DRC Data Storage Hierarchical DRC

error
 cell

error
ly

libre

ame
s

orld
ase.
For example, consider the design in Figure6-2.

Figure 6-2. Hierarchical Error Suppression

The design consists of three placements of cell A, which contains a spacing
between the two shapes. Calibre DRC-H generates the error when analyzing
A; the error is independent of context. Therefore, Calibre DRC-H stores the
geometry only once, namely in the cell template of A and reports the error on
once. A non-hierarchical DRC application flattens cell A, resulting in six
geometries in the top-level cell and three separate errors. In this example Ca
DRC-H implicitly recognizes that two errors are essentially repeated errors.

Calibre DRC-H generates an ASCII or binary DRC results database with the s
format as its flat counterparts. Calibre DRC-H also transforms all DRC result
into the top-level cell space, consistent with the flat applications. Errors
suppression occurs as follows:

• Assume that DRC result R is a derived geometry in cell A.

• If cell A is the top-level cell, Calibre DRC-H writes result R to the DRC
results database exactly as in the flat systems.

• If cell A is not the top-level cell, then Calibre DRC-H chooses one
placement of cell A throughout the entire hierarchy. Calibre DRC-H
transforms R to the coordinate space of the top-level cell using the to-w
transform of that placement and then writes R to the DRC results datab

• The placement of A chosen is the one that yields the lower-leftmost
placement of cell A in the flattened hierarchy.

CELL A CELL A CELL A

report this error only
Calibre Verification User’s Manual, v9.1_56-4

Hierarchical DRC Flat Instantiations

ally

,

al

.

m

.

, or

her

 or
The only difference in the ASCII or binary DRC result databases that Calibre
DRC-H and Calibre DRC generate is that, in the former case, there will norm
be fewer DRC results.

Flat Instantiations
Calibre DRC-H supports layers in both hierarchical and flattened form. In the
hierarchical form, Calibre DRC-H stores geometry, both original and derived
once in the cell where it is associated, instead of replicating for every flat
placement of the cell.

A layer can exist in one of three forms:

• As an exclusive hierarchical instantiation. The layer exists in hierarchic
form only.

• As an exclusive flat instantiation.The layer exists in flattened form only

• As a dual instantiation. The layer exists in both flat and hierarchical for
simultaneously.

Calibre DRC-H creates flat instantiations for layers in one of three ways:

• The result layer of theFlatten operation has an exclusive flat instantiation

• The result layer of a layer operation that is not supported hierarchically
has an input layer with a flat instantiation, has an exclusive flat
instantiation.

• If an input layer to an operation is not supported hierarchically, or anot
input layer has a flat instantiation, Calibre DRC-H converts to a dual
instantiation. Another possibility is that Calibre DRC-H may create the
input layer a temporary flat copy.

Note that any flattening required to support non-hierarchical layer operations
coexistence of flat and hierarchical instantiations is completely automatic.

Calibre DRC-H explicitly flattened a layer with the Flatten operation.
Calibre Verification User’s Manual, v9.1_5 6-5

Hierarchical Operation Efficiency Hierarchical DRC

les,
 the
ed

r >
ut

ical

f

l
esult

n
op
d

wer
Hierarchical Operation Efficiency
The following differences exist in the efficiency of all layer operations in the
verification suite and in hierarchical Calibre applications:

• Some of the more rarely-used operations including (Not) With Edge, Ho
Extents, Perimeter, Vertex, (Not) Donut, (Not) Enclose Rectangle, and
Size operation with OVERLAP ONLY specified, internally create a merg
copy of the input layer, resulting in a merged form of the output layer.
These commands can be relatively slow if an input layer contains large
polygons distributed throughout the hierarchy.

• Calibre DRC-H performs Magnify, Rotate, Density, Polynet, Ornet, the
one-layer Boolean operations AND (with a constraint other than >= 1 o
1) and XOR, flat. This results in an exclusive flat instantiation of the outp
layer.

• Two-layer Boolean operations are generally faster than polygon topolog
operations.

• Calibre DRC-H also performs Angle flat whenever the measurement
constraint includes zero (0) but not 90, and vice-versa.

• The Shift operation can be performed in a cell if all of the placements o
that cell, in the flat viewpoint of the design, have a consistent
rotational/reflectional transformation component. Otherwise, input
geometry must be promoted up out of the cell to the lowest hierarchica
level having the aforementioned characteristics. This insures that the r
of the Shift operation is correct from the flat viewpoint. However, the
hierarchical implementation of the operation can be exceedingly slow i
designs where transformational consistency is reached only near the t
level. It may be more efficient in such cases to flatten the input layer an
perform the operation flat.

• Dimensional check operations External, Internal, and Enclosure are slo
when using a constrained PROJECTING filter, an interval constraint
without OPPOSITE, a NOT PROJECTING filter, a NOTCH or SPACE
filter, or a CONNECTED or NOT CONNECTED filter.
Calibre Verification User’s Manual, v9.1_56-6

Hierarchical DRC False Notch Error Suppression

r
lly

rchy.
rs. In

fort

 this
That
e

be

ch

gon-
ns

f a
nt
• The Rectangles operation is more complex in hierarchical mode as
compared to flat mode, and is one of the more costly hierarchical
operations.

False Notch Error Suppression
In rare cases, Calibre DRC-H can, report a false notch violation in a one-laye
external check that flat Calibre DRC would not report. Calibre DRC-H genera
reports this false notch error across a bend in a polygon that traverses hiera
The flat system uses a post-processing algorithm to find such false notch erro
the hierarchical system, this post-processing algorithm might not find a false
notch error if the geometry producing the error has certain hierarchical
characteristics.

EXCLUDE FALSE NOTCH is a secondary keyword to the one-layerExternal
operation. This keyword instructs the hierarchical operation to apply extra ef
to minimize or eliminate the possibility of false notch errors. This adds
approximately 10-20 percent extra runtime to the operation. You should use
instructiononly to suppress false notch errors that Calibre actually generates.
is, because the possibility of false notch errors is low, you should not increas
runtime unless required. In fact, a minimal number of false notch errors can
acceptable in certain cases. TheDRC Exclude False Notchspecification statement
essentially applies the EXCLUDE FALSE NOTCH secondary keyword to ea
one-layer External operation.

Layer Area Printing
When first generating the layer, flat applications print the total area of a poly
type layer in the transcript with other related statistics. Hierarchical applicatio
do not do this by default because of the time it requires. However, you can
specifically request this information with theDRC Print Area specification
statement.

This statement directs hierarchical Calibre applications to print the flat area o
layer when generating the layer. This prints the area, along with other releva
Calibre Verification User’s Manual, v9.1_5 6-7

Text Mapping Hierarchical DRC

inal

H
ults
SII-
h the

the

(s) of

se

ally

ess-

t
ed to
ia
ice
statistics for the layer. Each <layer> can be the name, not number, of an orig
layer or derived polygon layer.

Text Mapping
You can use theDRC Map Text specification statement to cause Calibre DRC-
transferall text objects in the input layout database to a GDSII-type DRC res
database. This transfers all text objects in the input layout database to a GD
type DRC results database. The text objects have the same hierarchy in bot
input and results databases, unless Calibre DRC-H expanded or flattened a
placement during hierarchical processing. In that case, Calibre DRC-H moved
text up the hierarchy, as appropriate.

Calibre applications do not retain TEXTTYPE properties from GDSII input
layout databases, and all mapped text in the DRC results database has a
TEXTTYPE of 0. If Calibre maps text with theLayer Map specification
statements, then text in the DRC results database will be on the target layer
the mapping.

Additional Hierarchy-specific
Statements

There are additional specification statements that hierarchical applications u
exclusively:Expand Cell, Flatten Cell, Layout Top Layer, Push Cell, and
Layout Base Cell. By using one or more of these statements, you can dramatic
improve the performance of the hierarchical Calibre application.

Layout Top Layer is highly recommended, and has the benefit of being proc
specific, not design-specific. This statement enumerates a set of “high-level”
original layer names. On designs with many levels of interconnect, the Layou
Top Layer specification statement can enhance internal decision making relat
the design style and similar optimizations. You should include all metal and v
layers from first metal up. You should also include everything except core dev
layers and contacts, such as; pads, solder bumps, and cell boundaries.
Calibre Verification User’s Manual, v9.1_56-8

Hierarchical DRC Additional Hierarchy-specific Statements

ic, for

 of

f

tic

n of
,

nt

(s)

hich
lso
,
hould

not
For example:

LAYOUT TOP LAYER M1 V1 M2 V2 M3 V3 M4
LAYOUT TOP LAYER PAD BUMP BNDRY

When appropriate, include any new original layers defined for dual database
capability as Layout Top Layer.

DRC Use of Hcells

TheHcell specification statement is used by Calibre LVS-H to denote the
correspondence between cells in the layout and cells in the source (schemat
example).

The initial phase of all hierarchical Calibre applications involves construction
an internal hierarchical database from the original input layout database. The
original database is modified in a number of ways for optimal performance o
Calibre’s algorithms. Most notably, certain cell placements are automatically
expanded and new cells and placements are automatically created. Automa
placement expansion, in particular, occurs for many reasons, all of which are
intended to optimize the hierarchy for Calibre algorithms. However, expansio
a layout hcell can obviously introduce problems for Calibre LVS-H. Therefore
the hierarchical database construction phase for Calibre LVS-H will not
automatically expand any layout cell in a rule file Hcell specification stateme
regardless of the performance cost.

In many application flows for Calibre DRC-H, the purpose is database
modification, not necessarily traditional DRC checking. The output database
created by Calibre DRC-H may be subject to future LVS verification. In that
event, it is not desirable that the DRC-H portion of the process expand cells w
may later be designated in the LVS portion as hcells. Therefore, DRC-H will a
inhibit expansion of any layout cell in a rule file Hcell specification statement
again regardless of the performance cost. The Hcell specification statement s
only be in a rule file for a DRC-H execution if the desired flow is as described
herein, that is, future presentation of the results to LVS. This statement should
be used simply to prevent automatic cell expansion by Calibre DRC-H.
Calibre Verification User’s Manual, v9.1_5 6-9

Additional Hierarchy-specific Statements Hierarchical DRC
Calibre Verification User’s Manual, v9.1_56-10

t
tions
driven

lso

y
 to
l
iteria
Chapter 7
Connectivity Extraction

Connectivity extraction recognizes electrically connected regions in the layou
called nets. Nets are recognized from layout geometries by analyzing the rela
between layout shapes and other objects on various layers. The analysis is
by rules you specify in the rule file. Connectivity extraction results are used
internally by various components of the Calibre tool set.

Each electrical path, or net, is given a unique node number for identification
during connectivity extraction. In addition to the node number, the net may a
be named. The results of connectivity extraction are used by Calibre LVS to
compare connections appearing in the layout against the schematic netlist, b
Calibre DRC to perform rule checks involving connectivity, and Calibre RVE
display nets in your layout editor. Connectivity extraction also checks severa
connectivity-related criteria in the layout and issues error messages if such cr
are violated.

The connectivity extraction operations are:

• Attach

• Connect

• Label Order

• Sconnect

• Stamp
Calibre Verification User’s Manual, v9.1_5 7-1

Establishing and Verifying Connectivity Connectivity Extraction

hed
ill

ng
o
rcuit
ask
 also

chy
n
ask
tic

out
ly
 pins

d in

in

s on
ot
Establishing and Verifying Connectivity
Many operations require that the circuit connectivity of the design be establis
prior to executing the operation so that the correct connectivity information w
be present on the input layers as needed.

For example, nodal dimensional check operations (that is, those having a
CONNECTED or NOT CONNECTED filter), measure edges only if they belo
to the same electrical nets or different electrical nets, respectively. In order t
execute such an operation, the verification system automatically computes ci
connectivity beforehand using the connectivity extraction operations in the M
set (discussed below). Parasitic extraction operations and device recognition
require circuit connectivity to be available or computable.

Mask Connectivity Extraction

Mask connectivity extraction is available in Calibre. It analyzes a layout hierar
and extracts connectivity from mask-level geometries. It is only invoked as a
internal subsystem by other components of the layout verification system: M
LVS, Mask parasitic extraction, and Mask DRC. Mask LVS and Mask parasi
extraction store extracted connectivity in their own database on disk, thus
allowing graphic highlighting of nets. DRC only uses connectivity information
internally for connectivity-dependent checks.

Mask LVS, Mask parasitic extraction, and flat DRC completely analyze the lay
hierarchy. Connectivity is then extracted from completely flat geometries. On
external geometries (typically pins) of cell instances are processed. Instance
contribute to connectivity extraction as explained in the section “Instance Pins
with Multiple Shapes”. Ports of the top level cell also participate in Mask
connectivity extraction. Ports contribute to connectivity extraction as explaine
the sections “Ports with Multiple Shapes” and “Must-connect Groups”.

Mask connectivity extraction is driven by connectivity rules from the Mask set
the rule file.

Mask connectivity extraction internally merges overlapping shapes and path
any single database layer. References to the original database objects are n
maintained.
Calibre Verification User’s Manual, v9.1_57-2

Connectivity Extraction Connectivity and Rule File Compilation

rms
ity

e

tion
ask

the

p
orm
Connectivity and Rule File Compilation
The rule file compilation verifies that any operation requiring connectivity will
have, if and when the operation is executed, the requisite connectivity on the
appropriate input layer(s). This consists of verifying that an input layer confo
to one of the requirements outlined in the following subsections on connectiv
extraction.

Mask Mode Connectivity Extraction. A layer must conform to one of these
conditions to have its connectivity established by connectivity extraction in th
Mask verification mode:

• Appear directly in aConnect or Sconnect operation that belongs to the
Mask set.

• If the previous case does not apply, the layer may not appear in a deriva
tree of any layer parameter in a Connect or Sconnect operation in the M
set.

• Be derived (via a sequence of net-preserving operations) from a layer
appearing directly in a Connect or Sconnect operation that belongs to
Mask set.

• Be derived (via a sequence of net-preserving operations) from a Stam
operation. The Stamp operation’s second input layer (layer2) must conf
to one of the conditions outlined in this list.

• Be derived (via a sequence of net-preserving operations) from aPolynet
operation.

Note

DRC Incremental Connect YES relaxes some of the connectivity
derivation criteria. See theSVRF Manual for details.
Calibre Verification User’s Manual, v9.1_5 7-3

Recognizing Electrical Nets Connectivity Extraction

ribed

at

t, as
Recognizing Electrical Nets
The rules that connectivity extraction use to recognize electrical nets are desc
in the following sections.

Shapes on a Single Layer

Abutting or overlapping polygons on a single interconnect layer are always
considered to be part of a single net (see Figure7-1). Interconnect layers are layers
that appear in Connect or Connect By operations in the rule file. Polygons th
touch only at corners are not considered to be part of the same net.

Figure 7-1. Connected Shapes on a Single Layer

Connect

Polygons on different layers can be connected directly by overlap or abutmen
specified inConnect operations in the rule file. For example:

connect polya polyb

Figure 7-2. Polygons Connected Directly

metal

polybpolya
Calibre Verification User’s Manual, v9.1_57-4

Connectivity Extraction Recognizing Electrical Nets

ual

er
wer
rs
een
r

oft
Connect By

Polygons on two interconnect layers can be connected to each other by mut
intersection with a third polygon on a contact layer specified in a Connect By
operation in the rule file. For example:

connect metal poly by cont

Figure 7-3. Polygons Connected By Contact

Sconnect

Sconnect performs soft connections from an upper layer to a lower layer. You
may also establish connectivity by specifying a contact layer and multiple low
layers. Connectivity is unidirectional and is passed from the upper layer to lo
layers. The lower layers and contact layer (if specified) receive node numbe
from the upper layer, never in the other direction. Positive area overlap betw
the upper and lower layers with the contact layer (if specified) must exist. Fo
example:

sconnect metal1 poly by contact // node numbers passed from metal1 to
//contact and poly

Figure 7-4. Sconnect Operation

You can specify polygons from lower layers which are involved in conflicting s
connections by using theLVS Softchk operation. Depending on the options you

contpolymetal

metal1 contact

poly
Calibre Verification User’s Manual, v9.1_5 7-5

Recognizing Electrical Nets Connectivity Extraction

ing

is

cts,

ts,

the
t a

t
rt
 cell.

tion,
 port
 first
can
specify, you can output upper, lower, contact, or all layers involved in conflict
soft connections to a lower layer. In addition,LVS Report Option S turns on
detailed reporting of Sconnect conflicts in the session transcript. This option
ignored in the DRC applications.

You can also cause Calibre LVS to abort after detecting any Sconnect confli
regardless if LVS Softchk statements are present or not, by using theLVS Abort
On Softchkspecification statement. If you wish to abort on detection of conflic
you would specify LVS Abort On Softchk YES in your rule file.

Stamp

Stamp is a layer operation that creates a derived layer which receives its
connectivity information from a “stamping” layer. Connectivity is passed
unidirectionally from the stamping layer to the derived layer. The input layers
used in a Stamp operation are not affected by it. For example:

x = stamp polyc by metal1 // x is a derived layer with metal1 connectivity
// information

Ports and Pins

A port is an entry point to a cell. Ports of a cell form the external interface of
cell. A port becomes an instance pin (or simply “pin”) when the cell is placed a
higher level of the layout hierarchy.

In Calibre LVS applications, ports can be specified for the top level cell usingPort
Layer TextandPort Layer Polygonspecification statements in the rule file. A por
can consist of any number of shapes and paths on any number of layers. Po
shapes and paths always have both an internal and an external aspect in the

Each port geometry is represented in the connectivity extractor by a (x,y) loca
a layer, and an optional port name. Connectivity extraction operates only on
geometries whose layers appear in Connect or Connect By operations, or as
parameters in Attach operations in the rule file. Information on ports and pins
be transferred from original layers to derived polygon layers by means of the
Attach operation (see the section “Attach Operation”). The effects of ports and
pins on connectivity extraction are described in the following sections.
Calibre Verification User’s Manual, v9.1_57-6

Connectivity Extraction Recognizing Electrical Nets

ation

IF

, and
ively.
e

ed in
e

s of
rt
here

ells
pins
his
are
ify
tion

s at
tries.
at
imilar
The process of assigning label names to port objects is based on the label loc
and layer. It is optionally controlled byAttach and/orLabel Order operations in
the rule file.

Port Text and Polygon Objects

Port layer specification statements allow you to specify ports in GDSII and C
layout databases. In Calibre LVS and xCalibre applications, text and polygon
objects on port layers can be read and treated as ports. ThePort Layer Text
specification statement supports text objects where the port’s layer, location
name are the same as the layer, location, and value of the text object, respect
ThePort Layer Polygon specification statement supports geometries where th
port layer is the geometry’s layer, and the port location is the center of the
geometry’s extent (the port has no name). Text objects and geometries defin
the rule file (with theText andPolygon specification statements) cannot becom
ports.

In flat applications, port objects are read from the top level cell only (regardles
a Text Depth specification statement setting). In hierarchical applications, po
objects are read from all levels of hierarchy and are used locally in the cells w
they appear.

Hierarchical Processing of Port Text and Polygon Objects

Port objects are read from all levels of hierarchy and are used locally in the c
where they appear. Port objects in the top-level cell are output as subcircuit
by the hierarchical Spice netlister and thus participate in hierarchical LVS. T
behavior is consistent with flat LVS. Port objects at lower levels of hierarchy
not output by the hierarchical Spice netlister (calibre -spice) and do not spec
cell pins for LVS. They are nevertheless used by xCalibre. For more informa
on hierarchical parasitic extraction with xCalibre refer to thexCalibre User’s
Manual.

Port text and polygon objects at any level of hierarchy can overlap geometrie
lower levels of the hierarchy and can be attached to those lower level geome
The hierarchical connectivity extractor will form any pins in lower level cells th
are necessary to connect to port objects higher up in the hierarchy. This is s
to how text is handled hierarchically.
Calibre Verification User’s Manual, v9.1_5 7-7

Recognizing Electrical Nets Connectivity Extraction

t of

ext

l net
, then
mber
 the

ut

o the

the

ion.

t do
yer
Hierarchical Netlisting of Port Text and Polygon Objects

For the top-level cell, the hierarchical Spice netlister outputs ports in the pin lis
the top .subckt statement. Of course, .subckt pin names are the same as the
respective net names within the subcircuit. Ports contributed by Port Layer T
and Port Layer Polygon statements can be named (text ports) or unnamed
(polygon ports). The name chosen for netlisting is the port name or the origina
name, whichever is present. If both the port and the respective net are texted
the original net name prevails. If neither is texted then a system-generated nu
is used. If several ports with different names are attached to a single net and
net itself is unnamed, then one of the port names is chosen arbitrarily.

You may specify the hierarchical depth for fetching port objects from the layo
database for use in the top-level cell by using thePort Depth specification
statement. Port objects that come from lower levels of the hierarchy are
transformed to the top level coordinate space and are replicated according t
hierarchical structure of the design.

Notes:

• These statements are not used by the Calibre DRC application.

• These statements are not used in BINARY or ASCII layout database
modes.

• Reading of text ports does not depend on Text Layer or Text Depth
statements and reading of polygon ports does not depend on whether
layer is or is not referenced by other operations.

• Unless Layout Merge On Input YES is specified in your rule file, port
polygons use unmerged data with centers computed after path expans

• Port polygons are flagged for non-orientable and non-simple objects bu
not participate in acute, skew, or offgrid flagging (unless the specified la
is referenced by other operations that cause such flagging).
Calibre Verification User’s Manual, v9.1_57-8

Connectivity Extraction Recognizing Electrical Nets

by

er

to be

ts:

he
rlap
ance
ple

cted
ith

t

k
hird
if the
Ports with Multiple Shapes

A port can consist of a group of disjoint shapes or paths that are connected
geometries internal to the cell. Such configurations are sometimes called
feedthroughs. They allow routing of signals through instances of the cell at high
levels of the hierarchy, without actually routing on top of those instances.

Shapes and paths that belong to a single port of a cell are always considered
part of a single net when extracting the connectivity of the cell.

In addition, connectivity extraction verifies the following two rules for cell por

• All shapes and paths of a single port must be physically connected in t
cell. Physical connections are connections formed by abutment or ove
between geometries, connections formed by geometries of a single inst
pin. This rule ensures that connectivity, due to instance pins with multi
shapes at higher levels of hierarchy, is correct.

• The shapes or paths of two distinct ports must not be physically conne
inside the cell. This rule ensures that connectivity, due to instance pins w
multiple shapes at higher levels of hierarchy, is complete, implying tha
connections that are really present are not missed.

Errors are reported when these rules are not followed.

For example, in Figure7-5, port A consists of two metal shapes (drawn with thic
lines): shape 1 and shape 2. The two port shapes are connected through a t
metal shape. Extraction would place the two port shapes in a single net, even
third metal shape was not present, however a warning would be issued.

Figure 7-5. Port With Multiple Shapes

shape 2
port A

shape 1
port A

 metal
Calibre Verification User’s Manual, v9.1_5 7-9

Recognizing Electrical Nets Connectivity Extraction

aths
tries

el of
tion

ssed.
nd
l
 are
is is
apes

pes;
etal
hapes

ingle
er
In Mask extraction, it is possible for a net to be formed entirely of shapes or p
of a single port. This occurs when a port is not connected to any other geome
in the cell.

Instance Pins with Multiple Shapes

A port of a cell becomes an instance pin when the cell is placed at a higher lev
the layout hierarchy. Instance pin geometries participate in connectivity extrac
of the containing cell.

In Mask extraction, internal geometries of some or all instances are not proce
Instead, only external geometries of those instances (typically, pin shapes, a
paths) are processed. The following is done for instances when their interna
geometries are not processed. All shapes and paths of a single instance pin
considered to be part of a single net in the cell that contains the instance. Th
true even if the shapes or paths do not physically touch or overlap. The pin sh
and paths can be on multiple layers. This feature allows for recognition of
connectivity formed by signals that are routed through cell instances
(feedthroughs).

For example, figure7-6 shows how a net is routed through a cell instance. The
figure shows an instance with a single pin A. Pin A consists of two metal sha
shape 1 and shape 2 (drawn with red lines). The example also shows two m
interconnect shapes, each one touching one shape of pin A. All four metal s
are placed in a single net by connectivity extraction.

Figure 7-6. Connection Through a Pin with Multiple Shapes

In Mask extraction, a net can be formed entirely from shapes or paths of a s
instance pin. This happens when an instance pin is not connected to any oth
geometries in the cell.

instance

shape 2
pin A

shape 1
pin A

metal
Calibre Verification User’s Manual, v9.1_57-10

Connectivity Extraction Recognizing Electrical Nets

re

e
ell.
are

s
ingle
 on
. All

d. A
be

cal
her
In Mask extraction, a net can be formed by the direct abutment of two or mo
instance pins. Such net can be formed entirely from pin shapes or paths.

Must-connect Groups

The shapes and paths of all ports in a single must-connect group in a cell ar
considered to be part of a single net when extracting the connectivity of the c
All other geometries in the cell physically connected to any one of those ports
also considered to be part of the same single net.

For example, figure7-7shows two ports (drawn with thick lines); port A consist
of a metal shape, and port B consists of a poly shape. Both ports belong to a s
must-connect group; group 1. Also shown are two interconnect shapes, one
metal and one on poly, touching the shapes of port A and port B, respectively
four shapes will be placed in a single net by connectivity extraction.

Figure 7-7. Connection by Means of a Must-Connect

Ports in a must-connect group can have identical names, but this is not require
port can belong to one must-connect group only. A must-connect group can
specified as either conditional or unconditional.

Must-connects are used when a cell contains disjoint parts of a single electri
signal. The intention is that those parts be physically connected at some hig
level of the layout hierarchy.

See the section “Virtual Connect Statements” on specifying virtual connections
with net names.

poly

must connect 1
port B

port A

metal
Calibre Verification User’s Manual, v9.1_5 7-11

Recognizing Electrical Nets Connectivity Extraction

 a

ce.

e
up.

ause

rt X
 a
in E
Verifying Must-connect Conditions.

One of the following must hold for any two pins of an instance that belong to
single unconditional must-connect group in the instance’s cell template:

• The pins must be directly connected in the cell that contains the instan

• The pins must be connected to ports of the containing cell, which also
belong to a single must-connect group.

An error is reported if neither of these conditions is satisfied.

For a conditional must-connect group, if a connection is made within the
containing cell to one or more of the pins in the must-connect group, then th
group must obey the same conditions as an unconditional must-connect gro
However, if no connections are made to any of the pins, then there are no
conditions to be satisfied and no error is reported.

For example, figure7-8 shows an instance with six pins in three must-connect
groups. The must-connect condition between pin A and pin B is satisfied, bec
they are interconnected in the containing cell. The must-connect condition
between pin C and pin D is also satisfied, because they are connected to po
and port Y of the containing cell, respectively, and these two ports belong to
single must-connect group in the cell. The must-connect condition between p
and pin F is not satisfied.

Figure 7-8. Verifying Must-Connect Conditions

instance

port Y

port X

pin F

pin E

must connect 3

pin D

pin C

pin B
must connect 1
pin A

metal

must connect 2must connect 1
Calibre Verification User’s Manual, v9.1_57-12

Connectivity Extraction Transferring Logical Information to Merged Layers

t

om
on

f the

s.
tion

r

r
he
• Polygons on merged polygon layers inherit port, pin, and must-connec
information from shapes and paths on corresponding original database
layers (refer to section “Transferring Logical Information to Merged
Layers”).

• Port, pin, must-connect, and overflow information can be transferred fr
original database layers to other layers by means of the Attach operati
(refer to section “Attach Operation”).

• Connectivity information can be transferred between layers by means o
Stamp operation.

Transferring Logical Information to
Merged Layers

Layout verification applications that use Mask connectivity extraction merge
original database layers internally before using them for any other operation
Polygons on those merged layers inherit port, pin, and must-connect informa
from shapes and paths of the corresponding original layers. Namely:

• A polygon on an internally merged layer that originated from a shape o
path of a port is considered to belong to the port for the purpose of
connectivity extraction.

• A polygon on an internally merged layer that originated from a shape o
path of an instance pin is considered to belong to the instance pin for t
purpose of connectivity extraction.

Attach Operation

Attachis a connectivity extraction operation that “transfers” connectivity
information (net names, port locations, pin locations, and must-connect
information) from one layer to another layer:

• Net names are discussed in detail in the section “Net Name Specification”.
Calibre Verification User’s Manual, v9.1_5 7-13

Transferring Logical Information to Merged Layers Connectivity Extraction

ing

s that
er.

by the
are

er
(or
jects.

els to
yer,
d to

ext
• Port locations are transferred from port geometries on layer1 to overlapp
polygons on layer2. Port names and port must-connect information are
transferred along with port locations.

• In the same manner, pin locations are transferred from shapes and path
are pin members on one layer, to overlapping polygons on another lay
Pin must-connect information is transferred along with pin locations.

In the above cases, the layer1 shapes and paths must be completely covered
layer2 polygons. The locations and associated information of ports and pins
transferred only from those that actually participate in the particular layout
verification application that is being executed.

You may specify aLabel Order specification statement that determines the ord
in which connectivity extraction looks for shapes that intersect a label location
other significant location). Label Order operates on net labels and on port ob

Net Name Specification

There are two ways to specify net names in connectivity extraction:

• Text and Layout Text specification statements in the rule file.

• Layout database text objects (GDSII and CIF).

In these cases, the connectivity extractor generates internal objects called lab
represent the textual information. A label has three attributes: a location, a la
and a name, which is a string. The rules that govern how names are assigne
nets are similar in all cases, and are based on the label location and layer.

Text Specification Statements

This section describes how net names are set with the Text and Layout Text
specification statements.

• Text Specification Statements. TheText specification statement allows
free-standing text to be specified directly in the rule file. It also allows t
objects read from the layout database to be edited.
Calibre Verification User’s Manual, v9.1_57-14

Connectivity Extraction Transferring Logical Information to Merged Layers

the
if it
ll

hical
S

om

ion.

ts

cts

cts
• Layout Text Specification Statements. This statement is applicable only
when the layout system is GDSII or CIF. TheLayout Text specification
statement allows free-standing cell-based text to be specified directly in
rule file. The statement specifies a text object that behaves exactly as
were in the layout database in the specified cell at x,y location in the ce
coordinate space.

A Layout Text specification statement results in a label object being
generated in the connectivity extractor. The label has the specifiedname, xy
location, andlayer. Refer to “Label Attachment” for a description of how
label names are assigned to nets.

Like any database text, layout text objects can be used both in hierarc
and flat applications. Layout text is particularly useful in hierarchical LV
for specifying local net names in cells. All verification applications use
layout text objects as top level text when specified by Text Depth
statements.

Listed below are differences between text objects in Text and Layout Text
specification statements. Text objects and Layout Text objects refer to text fr
the Text specification statement and Layout Text specification statement,
respectively:

• Text objects are always in world coordinates and have no cell associat

• Text objects can “edit” existing database text, where Layout Text objec
behave exactly as existing database text.

• Layout Text objects observeText Layer andText Depth requirements (as
with any database text used for connectivity extraction), where Text obje
do not.

• Text objects are only used for connectivity extraction. Layout Text obje
can be used forWith Text operations.

• Layout Text objects can have TEXTTYPES, and obeyLayer Map
statements, where Text objects do not.
Calibre Verification User’s Manual, v9.1_5 7-15

Transferring Logical Information to Merged Layers Connectivity Extraction

.

 The

tivity
el

th

 the
tion.

, the
xt
tion
• Only simple layer numbers can be associated with Layout Text objects
Text Objects can have original layer names.

Layout Database Text Objects

With this method, GDSII or CIF database text objects determine net names.
database text must be placed at some location on the net.

A database text object results in a label object being generated in the connec
extractor. The labellocation is the location of the database text object. The lab
layer is the layer of that object, and the labelnameis the value of that object. The
section “Label Attachment” describes how label names are assigned to nets.

Reading of text objects from the layout database to support connectivity
extraction is guided by the specification statements Text Layer and Text Dep
statements the rule file.

Text Layer, Text Depth and Expand Cell Text Specification Statements

The Text Layer and Text Depth specification statements in the rule file guide
reading of text objects from a layout database to support connectivity extrac
They control database text objects only, namely:

• GDSII and CIF text objects

• Text objects entered with Layout Text specification statements (which
behave just as if they were database text).

These statements do not apply to text objects enteredWith Text specification
statements.

The Text Layer statement does not influence text objects used by With Text
operations in the rule file. When reading text objects from a layout database
connectivity extractor uses only those text objects whose layers appear in Te
Layer specification statements. Therefore, if there are no Text Layer specifica
statements in the rule file, then no database text objects will be used by the
connectivity extractor.
Calibre Verification User’s Manual, v9.1_57-16

Connectivity Extraction Transferring Logical Information to Merged Layers

ects
from
nly

 the

t the

ase

level

xt

t

ts to
nts,

f a
The Text Depth statement specifies the hierarchical depth for taking text obj
from the layout database. The Text Depth ALL statement selects text objects
throughout the hierarchy and The Text Depth PRIMARY statement selects o
text objects from the top-level cell. The syntax of the statement allow you to
precisely control the text depth.

Text objects that come from lower levels of the hierarchy are transformed to
top-level coordinate space, and are replicated according to the hierarchical
structure of the design. Such text objects then behave as if they originated a
top level; this is true in flat as well as hierarchical applications.

In flat applications and in the hierarchical DRC application, only those datab
text objects selected by a Text Depth statement are used in the connectivity
extractor.

In hierarchical LVS, text objects fromall levels of the design hierarchy are used
aslocal text in the cells in which they appear, regardless of the Text Depth
specification statement; text objects selected by this statement serve as top-
text in addition to any local role they can perform.

The Text Depth statement supports connectivity extraction only; it does not
influence text objects used by With Text operations in the rule file.

TheExpand Cell Text specification statement allows you to add text from
placements of a cell of origin to a target cell (or cells) higher up in the layout
hierarchy. You specify target cells either explicitly or implicitly. The added te
objects are transformed to the coordinates of the target cell (or cells). This
statement operates on connectivity extraction text and port text, and does no
affect With Text operations.

Label Attachment

As described above, the connectivity extractor generates internal label objec
represent text data from various sources: rule file Text specification stateme
and GDSII and CIF text objects. Each label is represented by alocation, a layer
and aname. A locationcan be a simple (x,y) point, or it can be the whole area o
database shape or path.
Calibre Verification User’s Manual, v9.1_5 7-17

Transferring Logical Information to Merged Layers Connectivity Extraction

and

s

bel
ny

).
bel

nd it
that

osen
.

nd

er,
The process of assigning label names to nets is based on the label location
layer. It is optionally controlled byAttach andLabel Order operations in the rule
file.

• The Attach operation transfers connectivity information, including value
of net properties, from a specified original database source layer to a
specified original or derived target layer that appears in a Connect
operation.

• The Label Order operation determines the order in which connectivity
extraction looks for polygons that intersect a label location when the la
layer does not appear in a Connect operation, and is not attached to a
specific layer.

Connectivity extraction attaches labels to nets as follows, in the order given:

1. Explicitly . For example, if the rule file contains the operation:

ATTACH A B

where A is the labellayer (or A is a layer set that contains the label layer
The connectivity extractor looks for a polygon on B that intersects the la
location. If found, the labelname is assigned to the net that contains that
polygon.

A label location can encompass the area of a complete shape or path, a
can happen that the label location intersects two or more polygons on B
belong to two or more distinct nets. In that case, one of those nets is ch
arbitrarily. The labelnameis assigned to that net and a warning is issued

If no polygons on B overlap the label location, then the label is ignored a
a warning is issued.

The rule file can contain more than one Attach operation for the label lay
such as:

ATTACH A B1
ATTACH A B2
…
ATTACH A Bn
Calibre Verification User’s Manual, v9.1_57-18

Connectivity Extraction Transferring Logical Information to Merged Layers

the

ily,
nd a

the

d.

en.
In this case, the connectivity extractor looks for polygons on any one of
target layers B1, …, Bn that intersect the label location. If exactly one
polygon is found, then the labelname is assigned to the net that contains
that polygon. If more than one polygon is found, one is chosen arbitrar
and a warning is issued. If no polygons are found, the label is ignored a
warning is issued.

Example 1:

connect metal poly by contact
attach poly.txt poly

Example 2:

connect metal poly by cont
attach text metal
attach text poly

2. Implicitly . For example, if the rule file contains the following operation:

CONNECT … A …

where A is the labellayer (or A is a layer set that contains the labellayer).
Then the connectivity extractor looks for a polygon on A that intersects
label location. If found, the labelname is assigned to the net that contains
that polygon.

Example:

connect metal poly by cont

3. Freely. For example, if the rule file contains the following operation:

LABEL ORDER … B1 B2 … Bn

operation. Then, the order specified in the Label Order operation is use
The connectivity extractor looks for polygons on any one of the layers
specified in the Label Order operation that intersect the labellocation. The
polygon whose layer appears first in the Label Order operation is chos
The labelnameis assigned to the net that contains this polygon.
Calibre Verification User’s Manual, v9.1_5 7-19

Transferring Logical Information to Merged Layers Connectivity Extraction

n
el is

he
d. A

ts,
ning

nets

r in

drn
If no Label Order operation is present in the rule file, or if no polygon o
any of the Label Order layers intersects the label location, then the lab
ignored and a warning is issued.

Example:

connect metal poly by cont
label order metal poly

Labels on layer text will be attached to metal if metal is present at the
location of the label. Otherwise, text will be attached to poly if poly is
present.

Additionally, if two or more different names are found on a single net, t
alphabetically least name is chosen and the other names are discarde
warning is issued.

Also, if an attempt is made to assign the same name to two or more ne
one of the nets is arbitrarily chosen; the other nets are unnamed. A war
is issued.

The following examples further illustrate some of the techniques for naming
in connectivity extraction.

• Implicit attachment : The original database layers poly and metal appea
Connect operations in your rule file.

• Explicit attachment: The connectivity of source/drain regions of MOS
transistors in your rule file is determined in terms of a derived layer src_
as follows:

src_drn = NOT diffusion polysilicon
CONNECT src_drn metal BY contact

Diffusion and polysilicon are original database layers. Include the
statement:

ATTACH diffusion src_drn
Calibre Verification User’s Manual, v9.1_57-20

Connectivity Extraction Transferring Logical Information to Merged Layers

on,

for
y net

xt

l
yer

t
ue
gered
n

he
nd
two

ear
e is
in your rule file. To assign a net name directly to a source or drain regi
place a text object on the diffusion layer over this region.

• Free attachment: You use the database layers metal1, metal2, and poly
interconnect and you want to use another database layer text to specif
names. Have a statement:

LABEL ORDER metal1 metal2 poly

in your rule file. To assign a name to a net, place a text object on the te
layer over some metal1, metal2, or poly region of the net.

You can place the text object or the shape over a region where severa
different nets are present on metal1, metal2, or poly respectively. The la
that appears first in the Label Order operation will be chosen.

See also theLayout Property Text andLayout Rename Text specification
statements in theSVRF Manual.

Virtual Connect Statements

Thevirtual connectparadigm in layout verification is the capability of the layou
connectivity extractor to form a single net from two or more disjoint nets by virt
of the fact that the net segments share the same name. Virtual-connect is trig
by the rule file Virtual Connect Colon and Virtual Connect Name specificatio
statements. You can instruct Calibre to report virtual connections using theVirtual
Connect Report YES specification statement.

Virtual Connect Colon

Virtual Connect Coloncan be specified at most once. If YES is specified, then t
connectivity extractor first strips off all characters from the first colon to the e
of the label names. Next, the extractor forms a virtual connection between any
labels that have the same name and originally contained a colon. Names are
compared after colon suffixes have been stripped off, such that names are
considered identical if they are identical up to the first colon. Colons can app
anywhere in the name with the exception that a colon at the beginning of a nam
treated as a regular character (that is, it has no special effect).
Calibre Verification User’s Manual, v9.1_5 7-21

Transferring Logical Information to Merged Layers Connectivity Extraction

labels
l name

cial
 not
 of

off
or

ct
L

ing

is

-H.
Labels can be entered with rule file Text statements, or GDSII or CIF text as
described in section “Label Attachment” above. A virtual connection between
labels causes a virtual connection between the net segments to which those
are assigned, regardless of whether or not the label name becomes the fina
of the net segment.

If NO is specified, or the statement is not specified at all, then there is no spe
treatment of colon characters in label names. In particular, colon suffixes are
stripped off and no virtual connections are performed based on the presence
colon characters per se.

Another effect of the rule file statement Virtual Connect Colon YES is to strip
colon suffixes from node names in .GLOBAL statements in a Spice netlist. F
example, these are equivalent specifications:

.GLOBAL VCC:P VSS:XYZ VDD:

.GLOBAL VCC VSS VDD”

ForLVS Box cells, theVirtual Connect Box Colonspecification statement works
similarly to Virtual Connect Colon. It performs virtual connections by colon
within LVS Box cells. It also connects respective pins. Note that LVS Conne
Box Colon YES does not strip off colon suffixes from node names in .GLOBA
statements in Spice netlists. This statement only applies to Calibre LVS-H.

Virtual Connect Name

Virtual Connect Name can be specified any number of times. Eachname is a
(case-insensitive) net name and can be optionally enclosed in quotes. The
connectivity extractor forms a virtual connection between any two labels hav
the same name such that the label name appears in a Virtual Connect Name
specification statement in the rule file. Note that if Virtual Connect Colon YES
also specified, then Virtual Connect Name operates on names after all colon
suffixes have been stripped off.

For LVS Box Cells, theVirtual Connect Box Namespecification statement works
similarly to Virtual Connect Name. This statement only applies to Calibre LVS
Calibre Verification User’s Manual, v9.1_57-22

Connectivity Extraction Short Isolation

 It

he

ing

o or
base
Examples:

VIRTUAL CONNECT BOX NAME "?"

This connects net segments with identical names in LVS Box cells.
also connects together respective pins. In Figure7-9, if A, B and C are
LVS Box cells then the points marked 1, 2, 3 and 4 will all belong to t
same net.

Figure 7-9. Example of Virtual Connect Box

VIRTUAL CONNECT BOX NAME "VCC" "VSS"

This connects net segments with identical names in LVS Box cells,
provided that the names are either VCC or VSS. It also connects
respective pins.

Short Isolation
When two nets are shorted together, LVS sees, essentially, one net with two
different text names. Normally, finding the short is difficult, especially if the
shorted nets include a power or ground net. To simplify the process of isolat
shorts, you can specify theLVS Isolate Shorts specification statement in the rule
file. This statements isolates the short by finding the shortest path between tw
more pieces of conflicting text. The results are output to an ASCII DRC data
format file.

When short isolation is enabled, it is executed:

• in flat LVS or layout-to-Cnet translation

A B C

1 a a 2 b b 3 c c 4
Calibre Verification User’s Manual, v9.1_5 7-23

Short Isolation Connectivity Extraction

:

e
n,
ent
ll.

the

in

e the

rt
ned.

 at
this
 of
• during hierarchical circuit extraction (calibre -spice).

For example, any of these commands can be used to perform short isolation

calibre -lvs rules
calibre -lvs -tl lay.cnet rules
calibre -spice lay.net rules
calibre -spice lay.net -lvs -hier -hcell cells rules

The first two commands execute short isolation in the flat mode. The last two
commands execute short isolation hierarchically. All short isolation results ar
returned in the coordinate space of the top level cell. In hierarchical operatio
results from lower level cells are shown only once; the lowest leftmost placem
of a cell in the design is used as representative for shorts occurring in that ce

In flat and hierarchical systems, short isolation in the top level cell operates on
text at that level only, subject to Text Depth specification statement. Short
isolation in lower level cells operates on text objects that are present locally
each particular cell, independent of Text Depth.

You can view short isolation results as soon as they are created, even befor
run terminates. You can accomplish this by altering the command line in the
following way:

calibre -lvs … | tee logfile_name

An example of short isolation results are as follows:

SHORT ISOLATION started.
SHORT ISOLATION completed. CPU TIME = 0 REAL TIME = 0 ...
SHORT ISOLATION RESULTS DATABASE = lvs.rep.shorts

In Calibre LVS-H, short isolation is performed as part of hierarchical circuit
extraction. In this mode, circuit extraction is performed hierarchically, the sho
isolation algorithm operates hierarchically, and geometries are no longer flatte

When more than one path exists between a pair of conflicting text points, the
hierarchical short isolation algorithm prefers paths that consist of geometries
higher levels of hierarchy over those that pass through cell placements. For
reason, the indicated path in the results file may not be the shortest in terms
Calibre Verification User’s Manual, v9.1_57-24

Connectivity Extraction Connectivity Extraction Errors and Warnings

cally

d, if

volved
he

t.
nd

It
polygon count. Thus, different paths may be chosen when operating hierarchi
and flat. Within a given level of hierarchy, paths with fewer polygons are
preferred.

The order of execution is this:

1. Hierarchical connectivity extraction performed

2. If shorts exist, short isolation algorithm operates hierarchically and
geometries are not flattened

3. Short isolation results are written out to disk

4. Hierarchical device recognition, hierarchical Spice netlist generation an
requested, hierarchical LVS comparison.

In LVS-H, the short isolator does not process target layers specified by the
Sconnect statement unless those layers contain texted geometries that are in
in a short. Therefore, if you use Connect statements to form connections to t
substrate, replacing them with Sconnect statements can increase processing
efficiency.

Connectivity Extraction Errors and
Warnings

• The errors, warnings and notes reported by connectivity extraction are
summarized in this section. The hierarchical Calibre circuit extraction
module (calibre -spice) reports this information in the session transcrip
Flat Calibre LVS reports this information both in the session transcript a
in the LVS report file. WARNING: Port contains unconnected shapes.
may contribute false feedthroughs on instances of the cell.

Issued for a port with multiple shapes or paths that are not physically
connected inside the cell. The port name is reported.

• WARNING: Direct connection between different ports.
Calibre Verification User’s Manual, v9.1_5 7-25

Connectivity Extraction Errors and Warnings Connectivity Extraction

ort

cal

ing

ct
ains

es

ains
s

es

l, are
to a
rm

ngle
re
ied,
3)
A direct connection was made between distinct ports of the cell. The p
names are reported. LVS Report Option P disables this warning. This
warning is reported only in flat execution and is not reported in hierarchi
execution.

• ERROR: The unconditional must-connect condition between the follow
instance pins has not been satisfied.

Pins of an instance which belong to a single unconditional must-conne
group in the instance's template are not connected in the cell that cont
the instance, and cannot be connected at any higher level. The pin nam
are reported in the form: <instance_name>.<pin_name>.

• ERROR: The conditional must-connect condition between the following
instance pins has not been satisfied.

Pins of an instance which belong to a single conditional must-connect
group in the instance’s template are not connected in the cell that cont
the instance, and cannot be connected at any higher level. This error i
reported only if a connection was made to one of the pins. The pin nam
are reported in the form: <instance_name>.<pin_name>.

• ERROR: A must-connect condition exists on instance pins but is not
defined for the corresponding ports.

Pins of an instance which belong to a single must-connect group in the
instance's template, and which are not connected in the containing cel
connected instead to ports of the cell; however, the ports do not belong
single must-connect group in the cell. The instance pin names in the fo
<instance_name>.<pin_name> and the corresponding port names are
reported.

• WARNING: Short circuit—Different names on one net.

This warning is issued when several different names are found on a si
net. One name is chosen and the other names are ignored. Conflicts a
resolved in favor of, in order of precedence: (1) power names, if specif
in rule file order; (2) ground names, if specified, in rule file order; and (
Calibre Verification User’s Manual, v9.1_57-26

Connectivity Extraction Connectivity Extraction Errors and Warnings

with

l
ers.

e to

ions
lso
ich

nt

re
by
ts is
d. In
ved

The

pin
e
ttach
the alphabetically least name. Power and ground names are specified
optional LVS Power Name and LVS Ground Name statements
in the rule file and are subject to the LVS Compare Case statement. Al
names found on the net are reported, along with their locations and lay
The name actually assigned to the net is indicated. In Mask mode
extraction, the net id is also reported.

• WARNING: Open circuit - Same name on different nets.

This warning is issued when an attempt is made to assign the same nam
two or more different nets. One of the nets is arbitrarily chosen and the
other nets are left unnamed. The name is reported, along with all locat
and layers on which it was found. In Mask mode extraction, the report a
includes the net IDs on which the name was found, and the net ID to wh
the name was actually assigned.

• WARNING: Ambiguous label attachment - One label intersecting differe
nets.

This warning is issued when a label intersects the regions of two or mo
different nets and an attempt is made to assign the label to those nets
means of Attach or Label Order statements in the rule file. One of the ne
arbitrarily chosen. The label name and its location and layer are reporte
Mask mode extraction, the report also includes the IDs of all nets invol
in the conflict, and the ID of the net to which the label was actually
assigned.

• WARNING: Unattached label.

This warning is issued for a label that can not be assigned to any net.
label name, location and layer are reported.

• WARNING: Unattached must-connect pad; must-connect condition
ignored.

This warning is issued when a must-connect condition on an instance
cannot be used. This happens when an Attach statement in the rule fil
cannot be applied to the must-connect because the target layer of the A
Calibre Verification User’s Manual, v9.1_5 7-27

Connectivity Extraction Errors and Warnings Connectivity Extraction

-

 This
bel
 port

n.
and
statement is not present at the location of the must-connect. The must
connect number, pin name, layer and location are reported.

• WARNING: Unattached port pads; port ignored.

This warning is issued when a port cannot be associated with any net.
happens when the port layer does not appear in Connect, Attach or La
Order statements; or, at the port location there is no geometry that the
can be attached to. The port name, layer and location are reported.

• NOTE: Virtually connected...

Indicates a name-based virtual connection, for example, from the
specification statements Virtual Connect Name or Virtual Connect Colo
For each pair of labels that cause a virtual connection, the label name
both label locations are indicated. This reporting is enabled with the
specification statementLVS Report Option V.

Example:

NOTE: Virtually connected "D#2" at (-16,-19) and (19,-19)
NOTE: Virtually connected "D#2" at (-16,-19) and (26,-19)
NOTE: Virtually connected "E#2" at (-16,-25) and (26,-25)
Calibre Verification User’s Manual, v9.1_57-28

s part

them

,

to

ule
side
ons

RC
Chapter 8
Electrical Rule Checks

Electrical rule check (ERC) operations in Calibre perform tasks related to
electrical rule checking. In many respects, ERC is similar to DRC. However,
because ERC is perceived as a separate task and (unlike DRC) performed a
of an LVS run, ERC has a separate results database and a dedicated set of
specification statements to control execution and result generation, many of
are similar to their respective DRC specification statements.

ERC operations, specifically thePathchk operation, can generate derived layers
which in turn can be manipulated by other operations. ERC checking within
Calibre LVS can utilize the entire set of Calibre operations and is not limited
dedicated ERC operations.

ERC operations are layer constructors and can be used to derive layers for r
check output or for other operations. In addition, ERC operations may have
effects, in the form of generating auxiliary result files. Generally, ERC operati
can be used to construct layers, to create auxiliary result files, or both.

ERC Statements and Operations
Two types of Standard Verification Rule Format statements apply to ERC; E
operations and ERC specification statements. Table8-1 lists the specification
statements related to ERC execution.

Table 8-1. ERC Specification Statements

ERC Results Database ERC Keep Empty

ERC Maximum Results ERC Select Check

ERC Maximum Vertex ERC Unselect Check
Calibre Verification User’s Manual, v9.1_5 8-1

Execution of ERC Operations in LVS Electrical Rule Checks

e for

cks
iled

e.

e
ucts
Table8-2 shows the ERC operations.

ERC operations may contain PRINT secondary keywords that are responsibl
the production of auxiliary files. The PRINT secondary keywords and the
auxiliary files that they create are discussed in the section “ERC Output Files”.

For detailed information on each statement, refer to theStandard Verification
Rule Format (SVRF) Manual.

Execution of ERC Operations in LVS
ERC execution within Calibre LVS (including PRINT clauses) is controlled by
the ERC Select Check and LVS Execute ERC specification statements.

All rule check statements in the rule file are candidates for selection; rule che
may contain any layers and are not restricted to ERC operations. For a deta
description of rule check statements refer to the section “Rule Check Statements”,
chapter4, “DRC Concepts”. ERC is executed in the LVS circuit extraction stag

Execution of all selected rule checks in Calibre LVS can be suppressed by th
LVS Execute ERC specification statement. The secondary keyword NO instr

ERC Check Text LVS Execute ERC

ERC Cell Name ERC Pathchk

ERC Summary Report

Table 8-2. ERC Operations

Pathchk Device Layer

Note

If any rule checks are selected, DRC licenses are consumed in
addition to LVS licenses. For further information about licensing
refer to theConfiguring and Licensing Calibre/xCalibre Tools
Guide.

Table 8-1. ERC Specification Statements
Calibre Verification User’s Manual, v9.1_58-2

Electrical Rule Checks Execution of ERC Operations in LVS

RC
fault

tem
DSII

tem
DSII

C

 an

ay
by
Calibre LVS to ignore ERC rule checks. DRC licenses are not consumed if E
execution is disabled by this statement. If this statement is not present, the de
value of YES is assumed, and all selected rule checks are executed.

The following commands execute ERC in Calibre LVS:

• calibre -spice … rules

For this command line syntax, ERC is executed hierarchically.

• calibre -lvs rules

For this command line syntax, ERC is executed flat, and the Layout Sys
statement must specify a format that consists of geometries, such as G
and CIF.

• calibre -lvs -tl … rules

For this command line syntax, ERC is executed flat, and the Layout Sys
statement must specify a format that consists of geometries, such as G
and CIF.

All these commands consume DRC licenses in addition to LVS licenses if ER
rule checks are selected and ERC execution is not disabled.

Execution of ERC PRINT Options

Side effects of ERC operations, such as the PRINT POLYGONS and PRINT
NETS secondary keywords, are executed in LVS applications whenever the
respective ERC operation is performed. PRINT options do not force an ERC
operation to be performed—this is done by specifying the rule check name in
ERC Select Check statement, as shown in the following example:

Note

Some operations, for example DRC measurement operations, m
execute slower and/or consume more memory when executed
ERC within Calibre LVS, compared to similar execution within
Calibre DRC.
Calibre Verification User’s Manual, v9.1_5 8-3

Execution of ERC operations in DRC Electrical Rule Checks

 an
es
Keep

n:

 rule
ty

no
re
X { PATHCHK !POWER PRINT POLYGONS “file1”}
ERC SELECT CHECK X // triggers execution of X

You can perform a PRINT option without writing the information to the ERC
results database by performing an AND operation on the ERC operation and
empty layer. In the following example, the rule check X creates “file1” but do
not write any data to the ERC results database (subject to the use of the ERC
Empty statement):

X {
(PATHCHK !POWER PRINT POLYGONS “file1”) AND 999
} //layer 999 is empty

ERC SELECT CHECK X // triggers execution of X

ERC operations are not executed in xCalibre applications.

Rule Check Selection in LVS

For LVS applications the following process is followed for rule check selectio

1. The tool unselectsall rule checks.

2. The tool selects rule checks from ERC Select Check specification
statements.

3. The tool unselects rule checks from ERC Unselect Check specification
statements.

Execution of ERC operations in DRC
Calibre DRC executes all selected rule check statements subject to the DRC
check selection mechanism described below. ERC operations produce emp
result layers and a warning is generated. PRINT options are not executed.

Note that ERC execution within DRC has little effect and essentially creates
results. The LVS Execute ERC specification statement has no effect in Calib
DRC.
Calibre Verification User’s Manual, v9.1_58-4

Electrical Rule Checks ERC Output Files

on.

s

 of

pes
Rule Check selection in DRC

For DRC applications the following process is followed for rule check selecti
This is the regular mechanism applied in the DRC application:

If DRC Select Check statements are present in the rule file:

1. The tool unselectsall rule checks.

2. The tool selects rule checks from DRC Select Check specification
statements.

otherwise

1. The tool selectsall rule checks.

2. The tool unselects rule checks from ERC Select Check specification
statements.

3. The tool unselects rule checks from DRC Unselect Check specification
statements.

ERC Output Files
In addition to derived layers, ERC execution can produce two different forms
output: an ERC results database and auxiliary files resulting from the use of
PRINT keywords in ERC operations. The following sections describe these ty
of output.
Calibre Verification User’s Manual, v9.1_5 8-5

ERC Output Files Electrical Rule Checks

d

ns
he

n

s

ERC Results Database

ERC execution can generate a results database similar to the type generate
during a DRC run, which is discussed in section “ASCII and Binary DRC Results
Databases”, in chapter14, “Results”.

ERC Auxiliary Files

ERC operations contain secondary keywords that instruct Calibre to produce
auxiliary files during ERC execution.

These secondary keywords contain the keyword PRINT. The following sectio
describe the auxiliary files created with the PRINT keyword, specifically for t
Pathchk operation.

• PRINT POLYGONS filename—Calibre creates an auxiliary file when
you include this syntax in a Pathchk operation. The file contains polygo
output of all nets that satisfy the Pathchk condition.

Calibre writes the polygons in DRC ASCII format with the following
syntax:

PATHCHKcondition [in cell cellname] [(layer_name)]

where:

o condition—specifies the condition of the Pathchk statement, such a
“!POWER” or “GROUND && !POWER”

o in cell cellname—specifies the name of the cell that contains the
reported net. Calibre includes this information when you specify BY
CELL in the Pathchk operation.

Note

You can create only an ASCII format database for an ERC run.
Calibre Verification User’s Manual, v9.1_58-6

Electrical Rule Checks ERC Output Files

tion

ts

s

at
o (layer_name)—specifies the name of the layer that contains the
reported net, enclosed in parentheses. Calibre includes this informa
when you specify BY LAYER in the Pathchk operation.

• PRINT NETS filename—Calibre creates an auxiliary file when you
include this syntax in a Pathchk operation. The file includes a list of ne
that satisfy the Pathchk condition.

Hierarchical Calibre writes the nets tofilename in text format with the
following syntax:

PATHCHK REPORT for layout_primary
PATHCHKcondition

cell name (placement): net1 , net2 , …
cell name (placement): net1 , net2 , …
…

and flat Calibre writes the nets tofilenamein text format with the following
syntax:

PATHCHK REPORT for layout_primary
PATHCHKcondition

net1 , net2 , …

where:

o layout_primary—specifies the top-level cell as defined in the Layout
Primary specification statement.

o condition—specifies the condition of the Pathchk statement, such a
“!POWER” or “GROUND && !POWER”

o cell name (placement)—specifies thename of the cell that contains the
reported nets, followed by theplacement of that cell, enclosed in
parentheses.

o net1, net2, …—lists the net names or numbers in the specific cell th
satisfy the Pathchk condition.
Calibre Verification User’s Manual, v9.1_5 8-7

ERC Examples Electrical Rule Checks

ate a
ng a

 ERC
 of
ck

the

bre

ad:
ERC Examples
The following examples show how you can use the Pathchk operation to cre
layer or generate an auxiliary file. You can also do both of these actions duri
single run.

• Example 1 — Creation of a layer with the Pathchk operation, and how
different invocations on the same rule file affects the output.

Assume the following rule file excerpt exists:

ERC RESULTS DATABASE “ercdb”
ERC SELECT CHECK E1 E2
CONNECT //Connect operations.
DEVICE //Device definitions.
Z = PATHCHK !POWER //Nets with no path to power.
E1 { Z AND MET1 } //MET1 with no path to power.
E2 { COPY XXX } //Entire layer XXX.
E3 { COPY YYY } //Entire layer YYY.

and the following invocation command:

calibre -spice z.net rules

Calibre executes rule checks E1 and E2, and outputs the results to an
results database named “ercdb”. Rule check E1 requires the execution
the Pathchk statement, which generates derived layer “Z”. For rule che
E2, Calibre outputs layer “XXX”, and can involve any ERC operations.
Calibre does not execute rule check E3 because it does not appear in
ERC Select Check statement.

If you add the statement LVS Execute ERC NO to the rule file, then Cali
does not execute any rule checks, and the Pathchk operation is not
executed.

Assume the same rule file, but the following invocation command inste

calibre -drc rules
Calibre Verification User’s Manual, v9.1_58-8

Electrical Rule Checks ERC Examples

hey

ctly
k

ctly
le
yer
Calibre executes rule check E3, but not rule check E1 or E2 because t
appear in the ERC Select Check statement.

• Example 2 — Generating Auxiliary files with the Pathchk operation.

Assume the following rule file statement exists:

ERC RESULTS DATABASE “ercdb”
ERC SELECT CHECK X
X {PATHCHK !POWER PRINT POLYGONS “file1”}

and the following invocation command:

calibre -spice z.net rules

Calibre executes the Pathchk operation and writes the auxiliary file dire
to “file1”. In addition, the PATHCHK output layer is written to rule chec
X in the ERC results database “ercdb”.

• Example 3— Generating Auxiliary files with the Pathchk operation.

Assume the following rule file statement exists:

ERC RESULTS DATABASE “ercdb”
ERC SELECT CHECK X
X {(PATHCHK !POWER PRINT POLYGONS “file1”) AND 999}

and the following invocation command:

calibre -spice z.net rules

Calibre executes the Pathchk operation and writes the auxiliary file dire
to “file1”. No data is written to the ERC results database “ercdb” and ru
check X is not created. We assume that there are no geometries on la
999.
Calibre Verification User’s Manual, v9.1_5 8-9

ERC Examples Electrical Rule Checks
Calibre Verification User’s Manual, v9.1_58-10

vice
s

ss.

vice

s.
ates

iate
bles
Chapter 9
Device Recognition

Device recognition is responsible for recognizinginstances of devices from
collections of shapes in the layout, computing specified properties of these
instances, and preparing the results for use by other processes.

General devices can be modeled using placements of cells from lower in the
hierarchy.

Device recognition deals strictly with geometric shapes. Calibre flattens all de
placements internally to their underlying geometry before recognizing them a
instances.

The Calibre Verification toolset incorporates device recognition into its proce
The executive module manages the entire process, which includes:

• Obtaining required data.

• Generating data.

• Running various processes, such as connectivity extraction and device
recognition.

This chapter describes only those portions of the system directly related to de
recognition.

Connectivity extraction precedes device recognition in the chain of processe
Connectivity extraction recognizes the electrical nets of the layout and annot
layer geometries with net numbers. For further information refer the chapter
“Connectivity Extraction”. Device recognition uses these net numbers to assoc
the pins of recognized devices with the nets to which they connect, which ena
the forming of an internal layout netlist.
Calibre Verification User’s Manual, v9.1_5 9-1

Device Rule Overview Device Recognition

r
n
orts
) for
tor
tween

s
 as

be

ed in
in
Following device recognition are other processes that are clients for the
information produced by device recognition. Which of these clients is active
depends on the command being performed. One client is Mask mode LVS fo
which device recognition prepares a netlist and related information. LVS the
compares this layout netlist to a second netlist, usually a schematic, and rep
discrepancies. A second device recognition client is parasitic extraction (PEX
which device recognition prepares a list of pin and port locations. The extrac
then analyzes the parasitic resistance and capacitance on the interconnect be
these points.

A set of operations in the rule file guides device recognition. These operation
govern how devices are recognized and classified, and how properties, such
resistance and capacitance, are computed.

The main rule file operation that identifies devices is the Device statement.

Device Rule Overview
TheDevice statement:

• Names and classifies a device.

• Specifies how instances of the device are to be recognized.

• Names the pins and their swap groups explicitly, or by default.

• Indicates which, if any, auxiliary layers are associated with the device.

• Defines the properties associated with the device and how they are to
computed.

It has many parts and parameters that supply this information and is discuss
detail in theSVRF Manual. Not all of the parts or parameters need be present
any given statement.
Calibre Verification User’s Manual, v9.1_59-2

Device Recognition Concepts and Terminology

istors,

d

h

es
n a

pes

rm
The following examples illustrate how this statement is used:

DEVICE D diode_layer diode_pin1 diode_pin2
DEVICE R resistor_layer metal_1 metal_2 [1.1]
DEVICE R resistor_layer <implant_layer> metal_1 metal_2 [1.6]
DEVICE R resistor_layer metal_1 metal_2 substrate_layer(SUB)

//3-pin resistor
DEVICE C (CP) diff_and_poly poly diff_not_poly (POS NEG)

[1.6 0.07]
DEVICE C (CM) m_cap metal_1 metal_2 (POS NEG) [1.4 0.095]
DEVICE MP (PMOS) diff_and_poly poly diff_not_poly

diff_not_poly [0.5]
DEVICE Q (BJT) base coll base emitt substrate
DEVICE QE2 (BJT2) base emitt1 (E1) emitt1 (E2) base (B)

coll (C)
DEVICE ARB (MX43) dev_lay pin_lay_1 (G) pin_lay_2 (H)

pin_lay_3 (I)
[property A, P

A = area(dev_lay)
P = perim(dev_lay)]

The examples above show the statements for recognizing a diode, three res
two capacitors, a PMOS transistor, a bipolar transistor with a substrate pin, a
bipolar device with two emitters, and an arbitrary device having three pins an
two user-computed properties.

Concepts and Terminology
Device recognition receives a set of device definitions from the rule file. Eac
definition defines a particular type of device which is to be recognized. Given
these definitions, device recognition analyzes the layout geometry and locat
instances of these devices. It is important to recognize the distinction betwee
device and an instance:

• A device is an abstract template that describes how a collection of sha
can be recognized as an instance of that device.

• An instance is a collection of specific shapes in specific locations that fo
a physical realization of the abstract device.
Calibre Verification User’s Manual, v9.1_5 9-3

Concepts and Terminology Device Recognition

to

d C

ent.

sed

in

nce,

w
fault

ice
pt to
ense,
A Device statement has many parameters, including:

• Element name: Identifies the specific kind of device which corresponds
the element name (also known as component type) in a schematic.
Examples are MN and MP for MOS N and MOS P-type transistors, an
for a capacitor.

• Model name: Corresponds to the component subtype (by default the
MODEL property) in the schematic.

• Device layer:Layer which contains device orseed shapes.

• Pin layers: Layers on which device pins are to be found.

• Pin names: Labels the pins of the device. One or more pins can be pres

• Swap lists: Identify pin swap groups which allow interchangeable
connectivity of device pins.

• Pin recognition algorithm: Specifies the algorithm used for device
recognition. Choices are By Net (default) and By Shape. Both are discus
in this chapter.

• Auxiliary layers : Layers containing shapes that are not pins which aid
the recognition of device instances.

• Text model layer: Specifies a text layer in the layout to be used for
determining model names for device instances.

• Properties: Specify values such as area, perimeter, capacitance, resista
width, or length.

• Property specification: Optional user-defined program that describes ho
the values of properties are to be computed. This program overrides de
property computations for built-in device types.

Device instances are classified based upon the “templates” provided by Dev
statements. What this means is, the device recognition algorithms will attem
match device instances based upon Device statements you provide. In this s
Calibre Verification User’s Manual, v9.1_59-4

Device Recognition Recognition Logic

ting
he

 to

nce

h.

 or
f
 pin

 seed

r

Device statements are patterns, or templates, which the Device recognition
algorithms use to attempt to classify your device instances.

Recognition Logic
The recognition of device instances is the process of identifying sets of interac
device and pin shapes that match the specifications in a Device operation. T
process proceeds as follows:

• Scan each layer that appears as a device layer in one or more Device
operations, together with all relevant auxiliary and pin layers.

• Identify, for each seed shape, an initial set of auxiliary shapes and pins
which it is connected.

• Classify the device if the resulting pattern of auxiliary shapes and insta
pins match one of the Device operations; otherwise attempt to fill in
missing pins from initial pins to obtain a unique match.

• Consider the device ill-formed if the pin fill algorithm fails to find a matc

Layer Relations

Device recognition analyzes each layer that appears as a device layer in one
more statements. At the same time that the device layer is examined, a set o
auxiliary and pin layers is examined. This set consists of all the auxiliary and
layers from all Device operations containing the given device layer. Different
statements sharing the same device layer compete for classification of each
shape on that layer.

In the example below, the three statements compete for each shape on laye
dev_lay .

DEVICE D1 dev_lay pin_lay_1(A) pin_lay_2(B)
DEVICE D2 dev_lay pin_lay_1(A) pin_lay_2(B) pin_lay_2(C)
DEVICE D3 dev_lay pin_lay_3(X) pin_lay_4(Y)
Calibre Verification User’s Manual, v9.1_5 9-5

Recognition Logic Device Recognition

ation
the

s one
il to

tion.
tact

ust
hips

evice
eated
ot

yer

here is

 are

er
Since the combined set of auxiliary and pin layers is examined, the interpret
of a Device operation depends on the existence of other operations sharing
same device layer.

In the example above, assume there is a shape on layer dev_lay that touche
pin on each of layers pin_lay_1, pin_lay_2, and pin_lay_3. This shape will fa
match any of the three operations and will be classified as a “bad” device.
However, if the operation for Device D3 were eliminated, the shape would be
classified as a D1 device. The reason is that in the absence of the D3 opera
Only pin layers pin_lay_1 and pin_lay_2 will be scanned for pins, and the con
with a potential pin on pin_lay_3 would not be noticed.

For device recognition to classify a device shape as an instance the shape m
satisfy both auxiliary layer relationships and pin relationships. These relations
are based in part on the notion of shapestouching (overlapping or abutting).
Contact at a single point such as a corner does not count as touching. The d
recognizer has no concept of the third dimension, therefore geometries are tr
as planar shapes in the x-y coordinate system. Shielding by other layers is n
taken into account.

To satisfy the auxiliary layer relationships, two things must happen.

• The device shape must touch one or more shapes on each auxiliary la
given in the Device operation. It does not matter how many auxiliary
shapes the device shape touches on each of these layers, as long as t
at least one on each listed auxiliary layer.

• The device shape must not touch any shapes on auxiliary layers which
not listed in the Device operation if there are other device statements
sharing the same device layer and they list these auxiliary layers.

Pin relations are considered if a given device shape passes the auxiliary lay
relationship test for one or more Device operations. If not, then the device is
classified as ill-formed.
Calibre Verification User’s Manual, v9.1_59-6

Device Recognition Recognition Logic

ciated

 layer
ly

pes
ore

 to

in”

iliary
as an
ins

to be

nd
Pin Relations

During the scan of device layers, device recognition formsinitial pins when a
device shape touches one or more shapes on a pin layer. All pin layers asso
with the device layer are considered.

• Each shape on a pin layer is treated as a separate pin if the secondary
keyword BY SHAPE is specified in the Device operations.

• The nets assigned to the shapes, not the shapes themselves, on a pin
determine the initial pins on a layer if BY NET is specified either explicit
or by default.

While searching for initial pins on a layer, device recognition classifies all sha
attached to the same net as being part of the same pin. Therefore, two or m
shapes on the same layer, having the same net number, form a single pin.

This “one net equals one pin” rule applies only to a single pin layer, and only
the formation of the initial pin set. Shapes on two different layers that are
connected to the same net will count as two pins, one pin on each layer.
Additional pins for a net on a given layer can also be generated during the “fill
phase.

Note that in both cases—BY SHAPE and BY NET—if a pin shape touches a
device shape in more than one place, it is still counted as only one pin.

Once the initial pin set is formed, the device statements that passed the aux
layer test are examined for an exact pin match. The device shape is classified
instance of that device if the set of initial pins and layers exactly match the p
and layers specified in a Device operation.

The exact match rule allows different devices sharing the same device_layer
recognized on the basis of the layers on which their pins appear. The rules
compiler prevents two Device operations from having identical sets of pins a
layers, so an exact match is guaranteed to be unique.

The instance is classified as ill-formed if the exact match rule fails and BY
SHAPE is specified.
Calibre Verification User’s Manual, v9.1_5 9-7

Recognition Logic Device Recognition

ing

ee

e

g pins
vice

he

ape

es
Device recognition uses a fill-in algorithm to attempt a match if BY NET is
specified, either explicitly or by default.

Fill-in Algorithm

This algorithm tries to find a unique match to an operation by duplicating exist
pins to fill in for missing pins. More precisely, aprovisional match is made
between the initial pin set and any device definition for which the following thr
conditions hold:

• The pins and layers of the initial set can be matched with a subset of th
pins and layers in the operation.

• The initial pin set contains at least one pin on each pin layer of the
operation.

• The initial pin set contains exactly one pin on each pin layer of the
operation for which there are any missing pins.

Device recognition classifies an instance as a device and assigns the missin
on each layer to the same net as the initial pin on that layer if exactly one De
operation generates a provisional match.

The instance is classified as ill-formed if more than one Device operation
generates a provisional match.

Ill-formed Devices

When device recognition classifies a shape on a device layer as ill formed, t
following actions occur:

• Device reduction ignores any pin and auxiliary shapes the ill-formed sh
touches.

• The LVS report lists the ill-formed devices by the (x,y) location of the
lower-left corner of the failed device shape, along with the element nam
from all Device operations using that device layer.
Calibre Verification User’s Manual, v9.1_59-8

Device Recognition Recognition Logic

ape,
l

s

 used

rs coll

1

2

C3

2

 of
Recognition Example

As an example of several Device operations competing to classify a device sh
consider the following operations for recognizing four different types of latera
pnp-bipolar-junction transistors:

DEVICE LPC1 base coll(C) base(B) emitt(E)
DEVICE LPC2 base coll(C1) coll(C2) base(B) emitt (E)
DEVICE LPC3 base coll(C1) coll(C2) coll(C3) base(B) emitt(E)
DEVICE LPE2 base coll(C) base(B) emitt(E1) emitt(E2)

These statements do not specify any auxiliary layers, so device recognition i
based on pin relationships.

Shapes on layer base enclose all other pins of the device, therefore they are
as both the device shape and as the base pin shape.

Analysis of each base shape determines how many shapes it touches on laye
and emitt.

• Shapes that touch exactly one shape on coll, and one on emitt are LPC
devices.

• Shapes that touch exactly one shape on emitt, and two on coll are LPC
devices.

• Shapes that touch exactly one shape on emitt, and three on coll are LP
devices.

• Shapes that touch exactly one shape on coll, and two on emitt are LPE
devices.

• Shapes that touch some combination of shapes on coll and emitt, not
covered by the above cases, are considered ill-formed.

In this example, the fill-in algorithm will not find a provisional match because
the combinations covered by the four statements.
Calibre Verification User’s Manual, v9.1_5 9-9

Property Computation Device Recognition

il.

with

s for
ine

rty

tion:

s for

ment
Property Computation
This section introduces and distinguishes some of the ways in which the
computation of properties can be specified. Later sections go into more deta

LVS uses computed property values when comparing the layout netlist to the
schematic netlist. TheTrace Property specification statement identifies the
property names associated with a device. These properties have nothing to do
parasitic properties associated with interconnect and computed by xCalibre.

After LVS recognizes a device instance, it then computes the property value
the device instance. The property specification and the element name determ
the properties to be computed.

In the Device operation, square brackets ([]) enclose the user-defined prope
specification. The specification can consist of either one or two floating point
numbers, or of a short program written in a special property computation
language.

For each Device operation there are three choices for the property specifica

• No specification given.

• One or two numbers.

• A short program.

For certain reserved element names, some of these choices are invalid.

The element names D, C, R, MN, MP, MD, and ME represent known device
which default property computations are available. The element name Q
represents a bipolar transistor, for which there are no default property
computations available, therefore it is treated the same as a user-specified ele
name.
Calibre Verification User’s Manual, v9.1_59-10

Device Recognition Property Computation

ies to
fault

d
nt
. The

ion

t

E.
The interaction between the element name and the property specification is
summarized as follows:

• The program form of the property specification can be used with any
element name, both reserved and non-reserved. It specifies the propert
be computed and how they are computed. The default properties and de
property computations associated with reserved element names are
suppressed when the program form is used.

• The list of floating point numbers form of the property specification can
only be used with the reserved element names; C, R, MN, MP, MD, an
ME. In these cases, a default property computation is used. The eleme
name determines the names and number of properties to be computed
numbers in the list act as parameters for the computation. An error will
result if you use a list of floating point numbers as a property specificat
with any element name other than those identified above.

• When the property specification is omitted:

o The properties are computed by the default method for the elemen
names D, MN, MP, MD, and ME.

o The property values are zero for the element names C and R.

o No properties are computed for any other element name.

The following section, “Default Property Computations”, discusses the default
property computations available for element names C, R, MN, MP, MD, and M
The sections “Built-in Language Details” through “Debugging Property
Computations” discuss the use of the special property computation language.

Default Property Computations

Default property computations are available for the reserved element names
shown in the following table. You select the default computation by either
Calibre Verification User’s Manual, v9.1_5 9-11

Property Computation Device Recognition

ets.

le
iode,
air of
 they
wing

are

or
MOS
for

 The
 no
omitting the property specification and its square brackets completely, or by
supplying the appropriate number of numeric parameters between the brack

For each Device operation containing a reserved element name from the tab
above, you can supply appropriate property parameters. An exception is the d
which requires no parameters. The property parameters are enclosed in a p
square brackets within the operation. If the property parameters are omitted,
default to zero. The effect of a zero parameter value is discussed in the follo
subsections.

The actual default internal property computations for M*, C, D, and R devices
given in the “Examples” section ofDevice in theSVRF Manual.

The examples below illustrate the four possible property_parameter setups f
reserved element names. Namely, the cases of diode, resistor, capacitor, and
transistor. The following subsections will cover the meaning of the parameters
each of these classes in turn.

DEVICE D dio_layer pin_lay_1 pin_lay_2
DEVICE R res_layer pin_lay pin_lay [1.1]
DEVICE C cap_layer pos_layer neg_layer [1.6 0.07]
DEVICE MP dev_lay gate source drain [0.5]

• Diodes. Area and perimeter are computed for diodes. These are the
geometric area and perimeter of the device shape on the device layer.
values are expressed in square meters and meters, respectively. Since

name meaning properties property parameters property
names

MN transistor width, length effective_width_factor W, L

MP transistor width, length effective_width_factor W, L

MD transistor width, length effective_width_factor W, L

ME transistor width, length effective_width_factor W, L

D diode area, perimeter (none) A, P

C capacitor capacitance area_cap perim_cap C

R resistor resistance resistivity R
Calibre Verification User’s Manual, v9.1_59-12

Device Recognition Property Computation

are

ed;
 a

r. If
The
e by
e

ity

nd

ice

.

ior to
ty

re
ce.
parameters are required for this computation, no property parameters
specified in the operation.

• Resistors. Resistance is computed for resistors. One parameter is need
the resistivity in units of unit_resistance/square. This parameter can be
number, or it can be a reference to a Process variable that contains a
numeric value. This parameter must evaluate to a non-negative numbe
omitted, the value defaults to zero, and a resistance of zero is returned.
unit of resistance defaults to the ohm, but can be set to some other valu
theUnit Resistancespecification statement in the rule file. For example, th
following statements define the resistivity to be 0.1 kohm/square:

UNIT RESISTANCE kohm
DEVICE R res_layer pin_lay pin_lay [0.1]

The formula is:

resistance = r * (L / W)

where, L is the length and W the width of the resistor, and r is the resistiv
parameter supplied by the property parameter in the Device operation.

The width W is computed to be half of the total perimeter of the POS a
NEG pins lying on or within the device shape.

The length L is computed as A / W, where A is the true area of the dev
shape.

This computation is generally valid only for the restricted case of
rectangular resistors whose pins exactly abut the ends of the rectangle
Resistors with other shapes, or whose pins contact the interior of the
resistor, require a different computation. In the general case, it can be
necessary to use appropriate layer operations to alter the geometry pr
computation and then specify the computation using the built-in proper
programming language.

• Capacitors. Capacitance is computed for capacitors. Two parameters a
needed; the proportionality constants for area and perimeter capacitan
Calibre Verification User’s Manual, v9.1_5 9-13

Property Computation Device Recognition

ared.
. If
stant

bers
has

ute
d,

r

the

re the
n.
lable

e

)
a

t
o.
The area parameter is in units of unit_capacitance per unit_length squ
The perimeter parameter is in units of unit_capacitance per unit_length
one parameter is present, they must both be present and the area con
must appear first. These parameters can be numbers, or they can be
references to Process variables that contain numeric values. Both num
must evaluate to non-negative numbers. Specifying either value as zero
a small effect on execution time, since it will eliminate the need to comp
the area or perimeter for each instance of the device. If both are omitte
they default to zero and a capacitance of zero is returned. The
unit_capacitance defaults to the picofarad, but can be set to some othe
value by theUnit Capacitance specification statement in the rule file. The
unit_length defaults to the micron, but can be set to some other value by
Unit Length specification statement in the rule file. For example, the
following statements define the area capacitance to be 300
nanofarads/square mil and the perimeter capacitance to be 10
nanofarads/mil:

UNIT CAPACITANCE nf
UNIT LENGTH mil
DEVICE C cap_layer pos_layer neg_layer [300 10]

The formula is:

capacitance = (ca * area + cp * perimeter)

where area and perimeter are computed as for diodes, and ca and cp a
parameters supplied by the property parameters in the Device operatio
Although the area and perimeter are computed, they are not made avai
as property values.

• MOS Transistors. For MOS transistors, the effective width and effectiv
length of the device are computed with compensation for bends in the
device area. One parameter can be specified; the width effect (weffect
constant. This parameter can be a number, or it can be a reference to
Process variable that contains a numeric value. If omitted, it defaults to
zero, which indicates that bend compensation is not required. The
parameter is a proportionality constant, therefore unitless. If you do no
want angle compensation, omit the parameter or supply a value of zer
Calibre Verification User’s Manual, v9.1_59-14

Device Recognition Property Computation

as

he

as

eft.
f

, do
The computation proceeds as follows:

o Compute the area A of the device.

o Compute the width W of the device. This value is half of the total
perimeter of the source and drain pins lying on or within the device
shape.

o Compute the length L of the device. This value is A / W.

The next process depends on whether a non-zero weffect parameter w
specified in the property parameter of the Device operation.

o The parameter is zero: W and L are computed as above and are
delivered as the width and length properties of the device.

o The parameter is non-zero: The following computation is performed

• Compute the internal angle I of the device shape. This value is t
amount of bend in the centerline of the device shape, and is
expressed in units of “right angles.”

For example, a rectangle has I = 0 and a right-angle “L” shape h
I = 1. More formally, I can be computed using the following
formula:

I = S / 90

where S is computed by setting it to zero then traversing the
boundary of the shape, keeping the interior of the shape on the l
At each vertex where the boundary turns right, add the number o
degrees of turn to S. At each vertex where the boundary turns left
nothing to S.

o After computing I, the width or length is adjusted depending on the
proportions of the device shape.

If W > L, then L is not adjusted, and W is set to the value:

W - weffect * I * L
Calibre Verification User’s Manual, v9.1_5 9-15

Property Computation Device Recognition

th

-in

es

e

tive

urce
ew
nd

n.
s:
If W <= L, then W is left unadjusted, and L is set to the value:

L - weffect * I * W

The resulting values of W and L are returned as the width and leng
properties of the device.

Built-in Language Details

The aspects of the property specification language (hereafter called the built
language), is described in the following subsections.

The property specification, written in the built-in language, is that portion of a
Device operation enclosed in square brackets ([]).

Only one property specification is allowed per Device operation. It lists the nam
and types of the properties to be computed for that device and specifies the
method of computation from available data. Property specifications cannot b
shared by multiple Device operations.

Built-in Language Example

Previously, the only properties available for a PMOS transistor were the effec
width (W) and length (L) of the gate. A typical Device operation might have
looked as follows:

DEVICE mp (pmos) gate gate (G) diff (S) diff (D) [0.5]

Suppose you want to compute not only W and L, but also the areas of the so
(AS) and drain (AD) pins. If we choose to do this, we must not only add the n
computations for AS and AD, but must duplicate the old computations for W a
L since it is not possible to combine the old and new methods of computatio
Using the built-in language, the altered Device operation might look as follow

1 device mp (pmos) gate gate (G) diff (S) diff (D)
2 [
3 property W, L, AS, AD
4 weffect = 0.5
5 AS = area(S)
6 AD = area(D)
Calibre Verification User’s Manual, v9.1_59-16

Device Recognition Property Computation

ers

ly the

ts on

our

ble

 S.
t-in

 D.

eter

vely.

eter
iff
7 W = (perim_co (G,diff) + perim_in (G,diff)) / 2
8 L = perim_outside(G, diff) / 2
9 if (bends(gate) > 0)

10 {
11 if (W > L)
12 W = W - weffect * bends(gate) * L
13 else
14 L = L - weffect * bends(gate) * W
15 }
16]

This example illustrates many of the features of the language. The line numb
on the left are an aid to discussion and are not part of the example text. The
language is case insensitive. In this example we have chosen to capitalize on
property and pin names.

• Line 1 contains all of the Device operation, except the property
specification, which is contained between the matching square bracke
lines 2 and 16.

• Line 3 contains the property statement that declares that there will be f
numeric properties computed and gives their names.

• Line 4 assigns value 0.5 to the temporary variable “weffect”. This varia
is later used in the adjustment of W or L on lines 12 and 14.

• Line 5 computes the value of property AS as the area of the pin named
The pin S is declared on line 1. The “area()” function is one of the buil
functions available for delivering summarized geometric data.

• Line 6 computes the value of property AD as the area of the pin named

• Line 7 computes the physical width of the gate as one half of the perim
of the gate pin, G, which is coincident with or inside of the perimeter of
shapes on the diff layer. The commands perim_co and perim_in are
abbreviated forms of perimeter_coincide and perimeter inside, respecti

• Line 8 computes the physical length of the gate as one half of the perim
of the gate pin, G, which is outside of the perimeter of shapes on the d
layer.
Calibre Verification User’s Manual, v9.1_5 9-17

Property Computation Device Recognition

hen a
is
12,

s.
ule

nd

s
h
s

C,
o

t,

nts.

SE
ge.
• Line 9 tests whether there are any bends in the gate pin. If there are, t
further test on line 11 determines whether the gate pin is wider than it
long. If wider, an adjustment to the effective width, W, is made on line
otherwise an adjustment to the effective length, L, is made on line 14.

The built-in language appears similar to C or AMPLE, without the semicolon
Semicolons were left out for stylistic compatibility with the remainder of the r
file.

Notational Conventions

The notational conventions used in preparing built-in language statements a
functions are identified in Table9-1.

Table 9-1. Built-In Language Statements

Syntactical Element Description

Properties The built-in language is restricted to computation of
numeric-valued properties. All values and computation
are double-precision floating point. The question of whic
units to use for representing physical quantities such a
length and area is covered in the subsection “Units of
Measurement” later in this section.

Style The built-in language is a blend of the expression and
computational statement style common to AMPLE and
together with the conventions common to the rule file. T
this were added necessary declarations and functions.

Structure The built-in language is structured as a sequence of
statements. First there is an optional DEBUG statemen
next a required PROPERTY statement and finally a
sequence of one or more property computation stateme
Each property computation statement is either an
assignment statement, an IF statement, or an IF … EL
statement. There are no loop statements in the langua
Calibre Verification User’s Manual, v9.1_59-18

Device Recognition Property Computation

ust
ts

ued
.

ine,

 a
Statement placement
and continuation

Semicolons or other separating devices are not used
between statements. The DEBUG, PROPERTY, and IF
statements are recognized by their keywords, which m
be the first item in the statement. Assignment statemen
are recognized by the “=” operator, which is always the
second item in the statement. Statements can be contin
onto multiple lines by breaking them at any white space
Continuation characters are not employed. Common
practice dictates that each statement begins on a new l
but this is not required.

Reserved keywords The keywords of the language such as DEBUG,
PROPERTY, IF, and ELSE are reserved. If a word is
surrounded by single (‘) or double (“) quotes, it is not
taken to be a keyword, but rather a normal identifier for
property, pin, layer, and so forth; or possibly a string
valued argument to a function. Therefore, the reserved
nature of keywords places no restrictions on property,
layer, or pin naming.

Table 9-1. Built-In Language Statements [continued]

Syntactical Element Description
Calibre Verification User’s Manual, v9.1_5 9-19

Property Computation Device Recognition

g

 of

d

s are

.
is
Optional keywords
and function
spellings

Long keywords and function names often have a
shortened form consisting of a set of letters from the
complete name. In this document, the letters in the
shortened form are shown uppercase with the remainin
letters lowercase. Thus, PROPerty indicates that the
spelling is either PROPERTY or PROP. If any of the
optional letters are used, they must all be used. Thus,
PROPER is not a valid shortening of PROPerty. Some
the function names are compound and include
underscores. For example, PERIMeter_INside. In this
case, the individual words in the name can be shortene
independently. Thus, of the following is an acceptable
name for the PERIMeter_INside function:
 PERIMETER_INSIDE
 PERIMETER_IN
 PERIM_INSIDE
 PERIM_IN

Case sensitivity The language is case insensitive. All uppercase letter
converted to lowercase for internal purposes. Thus, a
variable can be referred to as “weffect”, “Weffect”, or
“WEFFECT” interchangeably within the same program
The use of mixed uppercase and lowercase letters in th
document is used only to show allowed abbreviations.

Table 9-1. Built-In Language Statements [continued]

Syntactical Element Description
Calibre Verification User’s Manual, v9.1_59-20

Device Recognition Property Computation

ese

.
g
e

ed

d

the
Data sources Data used in the computation can come from any of th
sources:
1. Numeric Constants. You can use numeric floating
point constants directly within the property specification
2. Process Variables. These values are accessed by usin
the Process variable just as any other variable within th
property specification. The Process variable must exist
and have a numeric value at the time the rule file is
loaded, which will be used in all property computations
while that rule file is loaded.
3. Instance Data. Geometric and connectivity data
associated with an instance are accessed by the provid
built-in functions. Examples are the AREA and
PERIMeter functions. A complete list of the functions an
their definitions is given later.

Comments The comment conventions for the built-in language are
same as for the rest of the rule file. Any text beginning
with a double slash (//) through the end of the line is
ignored.

Commas All commas shown in the language are required.

Table 9-1. Built-In Language Statements [continued]

Syntactical Element Description
Calibre Verification User’s Manual, v9.1_5 9-21

Property Computation Device Recognition

or a
n

ent:

to
0.
ll

f
A

th
DEBUG statement Tracing of the property computation can be useful in
finding errors during the development of new property
computation code. Tracing is controlled by the DEBUG
statement, which is an optional statement. If present, it
must be the first statement. It has the following form:

DEBUG range1 [, range2 , … rangek]

where each range is either a device instance number,
pair of device instance numbers separated by a hyphe
“-”. At least one range must be specified although it can
contain only a single instance. For example, the statem

DEBUG 0-2, 50

causes a step by step report of the property computation
be printed for each of the device instances 0,1,2, and 5
The trace can produce much output, so the use of sma
ranges is recommended. The instance numbers can be
obtained from LVS discrepancy reports. See also the
INSTance() built-in function below for another method o
determining the instance number of a particular device.
more complete discussion of the DEBUG statement wi
examples is given in the subsection “Debugging Property
Computations” later in this section.

Table 9-1. Built-In Language Statements [continued]

Syntactical Element Description
Calibre Verification User’s Manual, v9.1_59-22

Device Recognition Property Computation

. This

he

the
ith

ble

s

sed

 so
PROPerty statement Declares the names of the properties to be computed
statement is required and, with the exception of the
DEBUG statement, must be the first statement. It has t
following form:

PROPerty <prop_name_1>,<prop_name_2>, …

In the following example, four properties are declared
with names W, L, SA and DA:

PROPERTY W, L, SA, DA

Property names are treated as variables within
computational statements. The final value assigned to
property name is the value of the property associated w
the instance.

Numeric constants Constructed as valid C or AMPLE integer, float, or dou
constants. Examples:
 3 3.0 -2.5 4.6e-10 5e8 5E9 0 1

Local variables Intermediate values can be assigned to local variable
within a property specification. For compatibility with
rule file style, it is neither necessary nor possible to
declare such variables before use. Any name can be u
that does not conflict with property names or Process
variables. However, it is best to avoid names beginning
with “temp” or “init” since these names are used in
debugging output to identify temporary variables.
Although the compiler and interpreter will not be
confused by your use of these names, you can become
when reading the debugging output.

Table 9-1. Built-In Language Statements [continued]

Syntactical Element Description
Calibre Verification User’s Manual, v9.1_5 9-23

Property Computation Device Recognition

ve
.

e.

d to
,

d
ly
.

Operators A subset of the operators of AMPLE and C. These ha
the same meaning and precedence as in AMPLE and C
They are listed below in order of decreasing precedenc

- (unary minus)
! (logical negation)
* (multiplication)
/ (division)
+ (addition)
- (subtraction)
< <= == >= > != (relational operators:

lt, le, eq, ge, gt, and ne)
&& (logical AND)
|| (logical OR)
= (assignment)

Parenthesis Used in expressions to override normal operator
precedence.

Numeric expressions The arithmetic operators - (unary), +, -, *, and / are use
build up numeric expressions from constants, variables
and function references.

Logical expressions Basic logical expressions are formed by combining
numeric expressions using the relational comparison
operators. Logical expression can be further combined
using parenthesis together with the logical AND (&&) an
logical OR (| |) operators. Logical expressions can on
appear within the parenthesis following the keyword IF

Assignment
statements

The assignment statement has the following form:
<local_variable_or_property_name> =

<numeric_expression>
You can specify only one “=” operator per assignment
statement.

Table 9-1. Built-In Language Statements [continued]

Syntactical Element Description
Calibre Verification User’s Manual, v9.1_59-24

Device Recognition Property Computation

hin

er a
n the

 the
yer,

nly
evice

rrent

.

Data Retrieval Functions

A variety of built-in functions are provided for access to geometric and
connectivity information about an instance. These functions can be used wit
numeric expressions, or as an argument to a relational operator.

Most of the functions take one or more arguments that are references to eith
layer or a pin. When referencing a pin, the compiler uses the name specified i
Device operation. When referencing a layer, the compiler uses the name or
number of the layer, only if it matches the name or number in the layer list of
Device operation. If the reference could be interpreted as either a pin or a la
the pin interpretation is chosen.

When referencing a layer, you do not reference all shapes on the layer, but o
those shapes of the layer that touch or overlap the seed shape of the current d
instance. For example, the statement:

AREA(lay1)

returns the total area of all shapes on layer lay1 that touch or overlap the cu
instance’s seed shape.

Flow control Flow control is provided by the IF and IF ELSE
statements, and have the same meaning and use as in
AMPLE and C. These statements have the following
forms:

IF (<logical-expression>) <statement>
IF (<logical-expression>) <statement>

ELSE <statement>

Statement grouping Curly braces ({}) can be used to group one or more
statements into a single statement as in AMPLE and C
For an example of their use see the subsection “Built-in
Language Example” previously in this section.

Table 9-1. Built-In Language Statements [continued]

Syntactical Element Description
Calibre Verification User’s Manual, v9.1_5 9-25

Property Computation Device Recognition

ll
can

to
d by
by

of

s
eters.
When a pin name is used, the function returns summary information about a
shapes that are part of that pin. Since auxiliary layers have no pin names, you
reference them only by layer name or number.

The shapes on layers involved in device extraction have been merged prior
being presented to the device extractor. For example, if a pin had been forme
two overlapping shapes drawn on original layer lay5, the perimeter returned
“PERIMETER(lay5)” would be the perimeter of the merged shape, not the sum
the perimeters of the two original overlapping shapes.

Perimeter Functions

The six perimeter functions, described in table9-2, deal with perimeter length.
The function PERIMeter(pin_or_layer) gives a simple perimeter while the other
five functions report the length of portions of perimeters on one pin or layer a
they relate to shapes on a second pin or layer. All values are expressed in m

Consider two overlapping shapes on layers A and B as shown in Figure9-1.

Figure 9-1. Perimeter Relationships

 layerB

2b

3

2a

1

layerA
Calibre Verification User’s Manual, v9.1_59-26

Device Recognition Property Computation

h

on
been

ve

the
nvert
, or
The perimeter of layer A can be divided into three portions depending on its
relation to the shape on layer B. These three portions have been labeled wit
numbers as follows:

1: PERIMETER of A is strictly INSIDE the shape of B.
2: PERIMETER of A and of B COINCIDE.
3: PERIMETER of A is strictly OUTSIDE the shape of B.

The portion labeled 2 can be further subdivided into two portions depending
the relation of the shapes where the perimeters are coincident. These have
labeled as follows:

2a: PERIMETER of A and of B COINCIDE, and shape A lies INSIDE
shape B.

2b: PERIMETER of A and of B COINCIDE and shape A lies OUTSIDE
shape B.

Use of the three keywords INside, COincide, and OUTside as illustrated abo
gives rise to the following six perimeter functions:

Determining Bends

The bends value can be found by summing the angle, in degrees, by which
perimeter changes direction at all concave vertices, and dividing by 90 to co
to units of “right angle bends”. The sum is over all shapes in the specified pin

Table 9-2. Perimeter Functions

Function Name Portions Totaled

PERIMeter 1 2a 2b 3

PERIMeter_INside 1

PERIMeter_COincide 2a 2b

PERIMeter_OUTside 3

PERIMeter_COincide_INside 2a

PERIMeter_COincide_OUTside 2b
Calibre Verification User’s Manual, v9.1_5 9-27

Property Computation Device Recognition

fully
s the
hape
x is
eter
/2.

g

on the specified layer. The shapes in Figure9-2 are shown with their concave
vertices emphasized and their respective bends values indicated. Note care
that the change in direction of the perimeter at a vertex is not the same thing a
angle formed by the perimeter at the vertex. For example, in the right most s
in Figure9-2, the angle formed by the perimeter at the indicated concave verte
135 degrees, but the change in perimeter direction as you walk along the perim
is 45 degrees or 1/2 of a right angle. Thus the bends value for this shape is 1

Figure 9-2. Computation of Bends

Built-In Functions

Table lists the data retrieval functions available for the built-in language, alon
with a description of their use.

Table 9-3. Built-in Functions

Function Description

Area functions:

Area The format is:
AREA(pin-or-layer)

Returns the total area of shapes that are part of the
specified pin, or on the specified layer. This value is
expressed in square meters.

Area Common The format is:
AREA_COMmon(pin-or-layer , pin-or-layer)

Returns the total area that is common to shapes on
both of the pins or layers referenced. This value is
expressed in square meters.

bends=2bends=2 bends=.5bends=1
Calibre Verification User’s Manual, v9.1_59-28

Device Recognition Property Computation

d
in
s

s

o it
.

h

es

e

Bends The format is:
BENDS(pin-or-layer)

Returns the total bends in the shapes of the specifie
pin or on the specified layer. The result is expressed
units of right angles. For information about how bend
are calculated, refer to “Determining Bends” above.

Count The format is:
COUNT(pin-or-layer)

Returns the total number of shapes on the specified
layer or in the specified pin. In device extraction, pin
on a given layer are determined by the nets to which
they attach, not by the number of shapes present, s
is possible for a pin to contain more than one shape
The layers are merged before being presented to
device extraction, so the shapes counted will not touc
or overlap.

Perimeter functions:

Perimeter The format is:
PERIMeter(pin-or-layer)

Returns the total length of the perimeter of the shap
in the specified pin or on the specified layer.

Perimeter Inside The format is:
PERIMeter_INside(pin-or-layer ,

pin-or-layer)
Returns the total length of the parts of perimeters on
the first pin or layer that lie strictly inside shapes of the
second pin or layer. Corresponds to portion 1 in figur
9-1 above.

Table 9-3. Built-in Functions [continued]

Function Description
Calibre Verification User’s Manual, v9.1_5 9-29

Property Computation Device Recognition

f
nd

of

e

Perimeter Outside The format is:
PERIMeter_OUTside(pin-or-layer ,

pin-or-layer)
Returns the total length of the parts of perimeters on
the first pin or layer that lie strictly outside shapes of
the second pin or layer. Corresponds to portion 3 in
figure9-1 above.

Perimeter Coincide The format is:
PERIMeter_COincide

(pin-or-layer , pin-or-layer)
Returns the total length of the parts of perimeters on
the first pin or layer which lie strictly inside shapes o
the second pin or layer. Corresponds to portions 2a a
2b in figure9-1 above

Perimeter Coincide
Inside

The format is:
PERIMeter_COincide_INside

(pin-or-layer , pin-or-layer)
Returns the total length of the parts of perimeters on
the first pin or layer that coincide with parts of the
perimeters of shapes of the second pin or layer, and
where the shape of the first layer is inside the shape
the second layer. Corresponds to portion 2a in figure
9-1 above.

Perimeter Coincide
Outside

The format is:
PERIMeter_COincide_OUTside

(pin-or-layer , pin-or-layer)
Returns the total length of the parts of perimeters on
the first pin or layer that coincide with parts of the
perimeters of shapes of the second pin or layer, and
where the shape of the first layer is outside the shap
of the second layer. Corresponds to portion 2a in
figure9-1 above.

Table 9-3. Built-in Functions [continued]

Function Description
Calibre Verification User’s Manual, v9.1_59-30

Device Recognition Property Computation

l
ts
rty

y

d

s
e.

its
to
Instance The format is:
INSTance()

Returns the instance number of the current device
instance. Each device extracted has a non-negative
instance number that is unique over all devices of al
types extracted during that extraction run. LVS repor
the instance numbers of devices as part of the prope
discrepancy report. This function allows these
numbers to be turned into a property value so that the
can seen in other contexts.

Net functions: These functions are useful for detecting pins that are
connected to special nets such as power or ground.

Named Net The format is:
NAMED_NET(net-name)

Returns the number of a net. It requires a net name
enclosed in quotation marks (“ ”) as its argument an
returns the number of the net that has that name. If
there is no net with that name, it returns the special
value 0, which is never a valid net number and in thi
case, indicates that there is no net with the given nam

Pin Net The format is:
PIN_NET(pin-name)

Returns the number of a net. Requires a pin name as
argument and returns the number of the net attached
the pin. As an example, the following construct will
execute case 1 if the D pin is connected to VDD and
will execute case 2 otherwise:

if (pin_net(D) == name_net(“VDD”))
// case 1

else
// case 2

Table 9-3. Built-in Functions [continued]

Function Description
Calibre Verification User’s Manual, v9.1_5 9-31

Property Computation Device Recognition

ic

ic
st

e
on

 be

st
Numeric functions

Absolute Value The format is:
ABS(numeric-expression)

Returns the absolute value of the specified numeric
expression.

Exponent The format is:
EXP(numeric-expression)

Returns the value ofe (Napier’s constant, the base of
natural logarithms) raised to the power of the numer
expression.

Logarithm The format is:
LOG(numeric-expression)

Returns the natural logarithm of the specified numer
expression. The value of the numeric expression mu
be greater than zero.

Power The format is:
POW(numeric-expression ,

numeric-expression)
Returns the value of the first expression raised to th
power of the second expression. If the first expressi
is zero, the second must be positive. If the first
expression is negative, the second expression must
an integer.

Square Root The format is:
SQRT(numeric-expression)

Returns the square root of the specified numeric
expression. The value of the numeric expression mu
be zero or greater.

Table 9-3. Built-in Functions [continued]

Function Description
Calibre Verification User’s Manual, v9.1_59-32

Device Recognition Property Computation

rd

d

in

r

r

Truncate The format is:
TRUNC(numeric-expression)

Returns the result of truncating the fractional part of
the specified numeric expression. Truncation is towa
zero. The absolute value of the numeric expression
must not exceed 2,147,483,647. For example:

TRUNC(2.1) //returns 2
TRUNC(2.9) //returns 2
TRUNC(-2.1) //returns -2
TRUNC(-2.9) //returns -2

Unit functions:

Precision The format is:
PRECISION()

Returns the current value of the process precision
(1000 by default). The precision is the number of
database units per user unit.

Unit Time The format is:
UNIT_TIME()

Returns the current value of the unit-time as specifie
in the rule file by the UNIT TIME statement. The
unit-time is the size of the user time unit expressed
seconds.

Unit Resistance The format is:
UNIT_RESistance()

Returns the current value of the unit-resistance as
specified in the rule file by the UNIT RESISTANCE
statement. The unit-resistance is the size of the use
resistance unit expressed in ohms.

Unit Length The format is:
UNIT_LENgth()

Returns the current value of the process unit-length,
normally 1E-6. The unit-length is the length of a use
unit expressed in meters.

Table 9-3. Built-in Functions [continued]

Function Description
Calibre Verification User’s Manual, v9.1_5 9-33

Property Computation Device Recognition

er

ed

e
tes
s
s,

f
he
More Built-in Language Examples

///
// Example rule file for Computing Device Parameters
// NRS, NRD, AS, AD, PD, PS, L, W
///
//---
//This section contains example layer definitions, layer
//derivations, and connect statements.
//---
layer ipoly 4
layer diff 5
layer contact 6
layer metal1 8
layer pwell 10
ngate = diff AND ipoly

Unit Capacitance The format is:
UNIT_CAPacitance()

Returns the current value of the unit-capacitance as
specified in the rule file by the UNIT CAPACITANCE
statement. The unit-capacitance is the size of the us
capacitance unit expressed in farads.

X-Y location The formats are:
X_LOCation(pin-or-layer)
Y_LOCation(pin-or-layer)

Returns the x and y coordinates in user units associat
with the given pin or layer. This coordinate
information can be used to help locate a pin or devic
instance. For seed layers, the point whose coordina
are reported is the lowest of the leftmost of the point
of the seed shape. For pin layers and auxiliary layer
the point whose coordinates are reported is an
arbitrarily chosen point on the lowest of the leftmost o
the edges common to the given pin or layer and to t
seed shape.

Table 9-3. Built-in Functions [continued]

Function Description
Calibre Verification User’s Manual, v9.1_59-34

Device Recognition Property Computation
nsd = diff NOT ngate
connect metal1 nsd ipoly by contact
connect pwell
nsd_rs1 = nsd not contact
nsd_rs2 = nsd_rs1 coincident edge ngate
nsd_rs3 = nsd_rs1 coincident edge contact
nsd_rs = int nsd_rs2 nsd_rs3 < 100 parallel opposite region
//Note, instead of 100, the above command should use the
//actual largest distance a source/drain contact would ever
//be from the edge of a gate, in your process.
///
//Note, there are two device descriptions below. The first
//addresses ordinary device configurations. The second
//addresses more exotic device configurations, particularly,
// a. devices in which both source and drain regions have no
// contacts (example: three or more devices in series)
// b. devices in which no contact resides within 100u (or
// whatever distance you specify) from gate edge
// c. devices in which no contact has any edge facing the
// gate edge. If you find any computation wherein you
// require more accuracy, please contact Mentor Graphics
// Customer Support.
///
///
// Device Description Example 1
//
//Note, we have added the auxiliary layers “diff” and
//”nsd_rs” to this first device description; we'll use diff
//in the AS, AD, PS, PD property computations below to
//account for shared source/drain; we'll use nsd_rs in the
//NRS, NRD property computations below.
///
device mn ngate ipoly(G) nsd(S) nsd(D) pwell(B) <diff>

<nsd_rs>
[
 property W, L, AD, AS, PD, PS, NRS, NRD
 bend_effect = 0.5
//---
//This section of the property computations measures gate
//length and width. The “if” clause accounts for any bends
//which can exist in the gates.
//---
 W = perimeter_coincide(ngate, nsd) / 2
Calibre Verification User’s Manual, v9.1_5 9-35

Property Computation Device Recognition
 L = (perim(ngate) - perimeter_coincide(ngate, nsd)) / 2
 if (bends(ngate) > 0)
 {
 if (W > L)
 W = W - bend_effect * bends(ngate) * L
 else
 L = L - bend_effect * bends(ngate) * W
 }
//---
//This section of the property computations measures Area of
//Source and Area of Drain, even in cases of shared
//source/drain. Note, Since the capacitance effects of AS and
//AD are a function of source/drain area and perimeter, AS
//and AD are not affected by bends in the source/drain
//regions.
//---
 AS = area(S) * (W / perimeter_inside(S, diff))
 AD = area(D) * (W / perimeter_inside(D, diff))
//---
//This section of the property computations measures
//Perimeter of Source and Perimeter of Drain, even in cases
//of shared source/drain. Note, since the capacitance effects
//of PS and PD are a function of source/drain perimeter, PS
//and PD are not affected by bends in the source/drain
//regions.
//---
 PS = perimeter(S) * W / perimeter_inside(S, diff)
 PD = perimeter(D) * W / perimeter_inside(S, diff)
//---
//This section of the property computations measures Number
//Resistance Squares in Source and Number Resistance
//Squares in Drain, in terms of a first order approximation.
//Note,
//1. The following calculations use edges of contacts,
// instead of centers of contacts. That is, NRS =
// average_distance_from_gate_to_contacts' _nearest_edges /
// width_of_gate
//2. The following calculations fully account for relative
// placement of contacts to gate and to each other, with
// the single exception that contacts which have no edges
// that face the gate edge are not involved in the
// calculation
//3. Calculations assume all contacts are equally sized.
Calibre Verification User’s Manual, v9.1_59-36

Device Recognition Property Computation
 SUM_S_LENGTH = perimeter_inside(nsd_rs, S) -
perimeter_coincide(nsd_rs, S)

 COUNT_S = trunc((count(nsd_rs) *
perimeter_coincide(nsd_rs, S)

 / perimeter_coincide(nsd_rs, G)) + 0.5)
 IF (COUNT_S != 0)
 {
 NRS = SUM_S_LENGTH / COUNT_S / W / 2 }
 ELSE {
 NRS = AS / (W * W)
 }
 SUM_D_LENGTH = perimeter_inside(nsd_rs, D) -
 perimeter_coincide(nsd_rs, D)
 COUNT_D = count(nsd_rs) - COUNT_S
 IF (COUNT_D != 0)
 {
 NRD = SUM_D_LENGTH / COUNT_D / W / 2 }
 ELSE {
 NRD = AD / (W * W)
 }
]
///
// Device Description Example 2
//
//This second device description should be used along with
//the first, if your design has any of the following device
//configurations:
// a. devices in which both source and drain regions have no
// contacts (example: three or more devices in series)
// b. devices in which no contact resides within 100u (or
// whatever distance you specify) from gate edge
// c. devices in which no contact has any edge facing the
// gate edge example: contact resides in source/drain
// “dog-leg”
//Note, we have added the auxiliary layer “diff” to this
//device description; we'll use diff in the AS, AD, PS, PD
//property computations below to account for shared
//source/drain.
///
device mn ngate ipoly(G) nsd(S) nsd(D) pwell(B) <diff>
[
// property W, L, AD, AS, NRD, NRS, PD, PS
// The line above is commented out until NRD and NRS
Calibre Verification User’s Manual, v9.1_5 9-37

Property Computation Device Recognition
// computations are added, to prevent syntax error upon
// loading rule file.
property W, L, AD, AS, PD, PS, NRS, NRD
bend_effect = 0.5
//---
//This section of the property computations measures gate
//length and width. The “if” clause accounts for any bends
//which can exist in the gates.
//---
W = perimeter_coincide(ngate, nsd) / 2
L = (perim(ngate) - perimeter_coincide(ngate, nsd)) / 2
 if (bends(ngate) > 0)
 {
 if (W > L)
 W = W - bend_effect * bends(ngate) * L
 else
 L = L - bend_effect * bends(ngate) * W
 }
//---
//This section of the property computations measures Area of
//Source and Area of Drain, even in cases of shared
//source/drain. Note, since the capacitance effects of AS and
//AD are a function of source/drain area and perimeter, AS
//and AD are not affected by bends in the source/drain
//regions.
//---
AS = area(S) * (W / perimeter_inside(S, diff))
AD = area(D) * (W / perimeter_inside(D, diff))
//---
//This section of the property computations measures
//Perimeter of Source and Perimeter of Drain, even in cases
//of shared source/drain, Note, since the capacitance effects
//of PS and PD are a function of source/drain perimeter, PS
//and PD are not affected by bends in the source/drain
//regions.
//---
PS = perimeter(S) * W / perimeter_inside(S, diff)
PD = perimeter(D) * W / perimeter_inside(S, diff)
//---
//This section of the property computations measures Number
//Resistance Squares in Source and Number Resistance Squares
//in Drain. Note, in the case where neither the source or
//drain has any contacts,
Calibre Verification User’s Manual, v9.1_59-38

Device Recognition Property Computation
//NRS = area of source / width / width
//That is,
//average_length_of_AS = AS / W
//number_resistance_squares = average_length_of_AS / W
//---
NRS = AS / (W * W)
NRD = AD / (W * W)
]

///
// Device Description Example 3
//
//This example computes source and drain areas for transistors
//that share a common source or drain.
//
//The figure below illustrates two MOS transistors that share
//a common pin. The source pin of the top transistor is also
//the drain pin of the bottom transistor. In the device
//property computation, the data retrieval function area (S)
//of the top transistor would give the same area as area (D)
//of the bottom transistor. If both area() functions were
//reported, say to a netlist, then obviously, the common pin
//area is over-calculated.
//
//The solution would be to report only a portion of the common
//area to each transistor. The suggested solution assigns the
//larger transistor the larger area, proportionally. For
//example, the source area of the top transistor might be
//calculated as:
//
// AS = area(S) * (W1 / (W1 + W2))
//
//It is easy to to calculate the width of the transistor. For
//example, W1 of the top transistor can be realized as:
//
// W1 = perimeter_coincide(gate, sd) / 2
//
//Where gate = poly and diff; sd = diff not gate. Note that W2
//could be calculated the same way.
//
//The question might be asked is how to compute (W1 + W2)
//while the top transistor is being recognized. We can
Calibre Verification User’s Manual, v9.1_5 9-39

Property Computation Device Recognition

eric

. The
//compute the total “width” length of all transistors that
//share the common pin using a device property computation.
//In this example, (W1 + W2) can be evaluated as:
//
// shared_source = perimeter_inside(S, diff)
//
// where shared_source equals W1 + W2.
//
// | |
// ____|___________D|____
// | G|
// ____|____________|____poly
// | W1 S|
// \ |
// \ |
// \ diff |
// \ |
// \ |
// | |
// _____|__W2__D|____
// | G|
// _____|_______|____poly
// | S|
// | |
//

Units of Measurement

You should consider the selection of appropriate units when computing num
properties that represent physical quantities.

Consider, for example, the case of computing the capacitance for a capacitor
basic formula might be

C = perim_factor * perim(device) + area_factor * area(device)

To compute a proper value for C, the following seven questions must be
answered:

1. In what units is perim(device) delivered?
Calibre Verification User’s Manual, v9.1_59-40

Device Recognition Property Computation

nce,

or
d by

rs. If
the
uare

e
the
the
rads.

eing
2. In what units is area(device) delivered?

3. In what units should C be expressed?

4. In what units should area_factor be expressed?

5. In what units should perim_factor be expressed?

6. What is the appropriate value for area_factor?

7. What is the appropriate value for perim_factor?

The standard units for representing the values of time, length, area, capacita
and resistance are:

 time: seconds
 length: meters
 area: square meters
 capacitance: farads
 resistance: ohms

The questions above are answered as follows:

1. The value returned by perim(device) would be expressed in meters. F
example, if the device had a perimeter of 4 microns, the number returne
perim(device) would be 4E-6, since 4 microns equals 4E-6 meters.

2. The value returned by area(device) would be expressed in square mete
the device had an area of one square micron, the number returned by
area function would be 1E-12, since one square micron equals 1E-12 sq
meters.

3. The value of C depends on the intended use of the property. If it is to b
used for comparison by LVS with a property value in a schematic, then
units used in the schematic must be known. Typically for capacitance,
schematic units used are farads, although they can appear to be picofa
The reason they can appear to be picofarads is that one is likely to
encounter a property such as “C = 5p”,where the capacitance being
represented is certainly five picofarads. However, the actual number b
Calibre Verification User’s Manual, v9.1_5 9-41

Property Computation Device Recognition

he
 “5
in
, it is

he

since

ess
d in
r is
re it

on 6.

with

its.
presented is 5E-12 because p is a scaling factor of 1E-12. Therefore, t
actual units being used are farads because this number that looks like
picofarads” is really 5 x 1E-12 farads. The “p” allows the reader to think
picofarads while actually using farads. Since the schematic uses farads
obligatory for the property evaluation formula to compute the result in
farads.

4. The units of perim_factor should be expressed in farads/meter, since t
perimeter is in meters and the capacitance is in farads.

5. The units of area_factor should be expressed in farads/square meter,
the area is in square meter and the capacitance is in farads.

6. The value of perim_factor can be answered if information about the proc
is available. You must be careful to give the value in the units determine
question 4. For example, suppose that the perimeter capacitance facto
0.05 pf/u. This value must be re-expressed in units of farads/meter befo
is used in the formula. Now:

0.05 pf/u = 0.05E+6 pf/m = 0.05E-6 f/m = 5E-8 f/m

Therefore, the value 5E-8 should be used in the formula.

7. The value of area_factor can be answered in a similar fashion to questi

This example shows the basic issues involving units that will be encountered
most problems:

• Knowing the units in which information is available.

• Knowing the units in which information must be presented to LVS.

• Knowing the units in which constants must be expressed.

• Determining the constant values when expressed in the appropriate un
Calibre Verification User’s Manual, v9.1_59-42

Device Recognition Property Computation

ice
rties

 to be

eters,
ry
Property Computation Structure

At the time a rule file is loaded, each Device operation containing a property
computation causes the generation of avalue array.

The value array is an array of double-precision numbers indexed from zero
through some maximum number. There is only one value array for each Dev
operation. The entries in this array are used during the computation of prope
for each instance of the device. The same array is used over again for each
instance. Some of the entries in the array represent property values that are
computed for the instance, some contain constants or the values of Process
variables, some represent data values of the instance such as areas or perim
some represent local variables in the program, and some represent tempora
variables that are needed during the course of the computation.

Table9-4 shows a sample listing of a value array:

Table 9-4. Value Array Listing

Index Type Name (as shown in debugging output)

0 property value w

1 property value l

2 property value as

3 property value ad

4 local variable weffect

5 constant 0.5

6 data value area(S)

7 data value area(D)

8 data value perimeter_coincide(G, diff)

9 data value perimeter_inside(G, diff)

10 constant 2

11 data value perimeter_outside(G, diff)
Calibre Verification User’s Manual, v9.1_5 9-43

Property Computation Device Recognition

ries,
stants

zed.

nce
stored
ion
y by
ram,

 are
on is
s are

f

r

e

After device recognition loads the rule file, it creates the array, zeroes all ent
and sets the values of constants and Process variables into the array. The con
and Process variables are never changed. Each time a layout verification
command using device recognition is issued, an initiation computation is
performed, followed by an evaluation computation for each instance recogni

The initialization computation computes values that are independent of insta
specific data, and stores the results into the value array. The results can be
in property variables, local variables, or temporary variables. The determinat
of which parts of the program are instance independent is done automaticall
the rule file compiler. There can be no instance independent parts of the prog
in which case the initialization computation does nothing.

As each instance is recognized, the data values associated with the instance
loaded into the data value positions in the array and the evaluation computati
performed. When the evaluation computation terminates, the property value
retrieved from the array and stored with other information about that specific
instance.

Efficiency Considerations

Since property computations can be performed for each of a large number o
device instances, it is important to consider efficiency when writing property
specifications using the built-in language. This section contains a few tips fo
writing efficient computations. You are assumed to have read the section
“Property Computation Structure” for an understanding of the value array, and th
initiation and evaluation phases of computation.

12 data value bends(G)

13 constant 0

14 temporary variable temp1

15 temporary variable temp2

Table 9-4. Value Array Listing

Index Type Name (as shown in debugging output)
Calibre Verification User’s Manual, v9.1_59-44

Device Recognition Property Computation

tion

ed

ose

e

ase.

he

plit
ill

 the
cates
 of
ary
How the Compiler Optimizes

The rule file compiler seeks to move parts of the computation from the evalua
phase to the initiation phase. This is because the initiation computation is
performed only once per run, whereas the evaluation computation is perform
once per device instance recognized.

The parts of the computation that can be moved to the initiation phase are th
that are instance-independent. That is, they do not depend on data from a
recognized instance. Since they do not depend on instance data, they can b
performed only once during initiation and the results used many times during
evaluation.

The source of instance-dependent data is the following functions:

All other functions, including NAMED_NET(), deliver instance-independent
data.

The compiler uses two strategies for moving computations to the initiation ph

1. Locate the first line in the program that contains a call to an instance
dependent function. This is considered the maximum initial portion of t
program.

2. Move all preceding lines to the initiation phase, provided this does not s
an IF/ELSE structure between initiation and evaluation. If necessary it w
move fewer lines to initiation to avoid splitting an IF/ELSE computation
between phases.

Once it has moved the initial instance-independent portion of the program to
initiation phase, it examines the remaining expressions in the program and lo
all subexpressions that are instance-independent. It moves the computation
these subexpressions to the initiation phase and stores the results in tempor

All AREA functions X_LOCATION()

All PERIMETER functions Y_LOCATION()

COUNT() PIN_NET()

BENDS() INSTANCE()
Calibre Verification User’s Manual, v9.1_5 9-45

Property Computation Device Recognition

 the
ions.

s, and

a
ndent.

le

ot.

lso,
t. A

nce-

head
nt of
 on
d

variables whose names begin with “init.” During the evaluation computation,
values stored in these variables are used in place of the original subexpress

In examining subexpressions the compiler treats constants, Process variable
instance independent function calls as instance-independent. However, it is
currently not clever enough to determine if a reference to a local variable or
property variable is instance-independent, so it treats them as instance-depe

The following example illustrates some of the above concepts. In this examp
you should assume that P and Q represent pin names, and that
“normal_adjustment” is a Process variable.

1 [
2 property ap, aq, inst
3 power_adjustment = 0.04 + normal_adjustment
4 power_net = named_net(“VDD”)
5 if (pin_net(P) == power_net)
6 pin_adjustment = power_adjustment
7 else
8 pin_adjustment = normal_adjustment
9 ap = area(P) + pin_adjustment

10 aq = area(Q) + 2 * normal_adjustment
11 inst = instance()
12]

In the example above, lines 3 and 4 are instance-independent, but line 5 is n
Therefore, the computations performed in lines 3 and 4 are done during the
initiation phase. That is, the values of the variables power_adjustment and
power_net are computed and placed in the value array during initiation. The
evaluation phase will access these variables directly from the value array. A
the subexpression 2 * normal_adjustment on line 10 is instance-independen
variable “init1” will be created in the value array to store the value of this
subexpression. Line 11 will then be treated as if it read aq = area(Q) + init1.

You should note that the compiler’s two strategies do not find all of the insta
independent computations that could be moved. For instance in the example
above, if the statement inst = instance() had been moved from line 11 to just a
of line 3, then there would have been no instance-independent initial segme
the program and the only optimizations the compiler could perform would be
the two instance-independent subexpressions 0.04 + normal_adjustment an
Calibre Verification User’s Manual, v9.1_59-46

Device Recognition Property Computation

ext
s are

tion
orry

will

ove
tly

 are

irst
2 * normal_adjustment. However, by following the programming tips of the n
section, you can insure that absolutely all instance independent computation
computed only once in the initiation phase.

Efficient Code Examples

Given the knowledge of how the value array works and how the compiler
optimizes, here are some tips on writing clear and efficient property specifica
programs. The tips include things to do, as well as things you do not have to w
about.

• Create an instance-free initial segment. Try to create an initial set of
statements in the program in which all of the instance-independent
computations are performed and stored in local variables. This portion
be executed only once in the initiation phase. If, instead, you intermix
independent and dependent portions, the compiler will still attempt to m
independent sub-expressions to the initiation phase, but it is not curren
clever enough to move entire assignment statements.

• Use variables for constants. You can assign constants to mnemonic
variables in the initial instance independent section of your program
without paying a performance penalty. This allows you to give the
constants meaningful names. For example the following two programs
equally efficient in the evaluation phase. The second one performs the
assignment bend_effect = 0.5 during initiation. Then during each
evaluation, it accesses the bend_effect value just as efficiently as the f
program accesses the constant 0.5 value.

[// Use of unnamed constant. (OK)
property w
w = perimeter_coincident(G,pin_layer) - 0.5*bends(G)

]
[// Use of named constant. (Just as fast, but possibly

//more meaningful)
property w
bend_effect = 0.5 // This takes place only once at

//initiation time.
w = perimeter_coincident(G,pin_layer) -

bend_effect*bends(G)
]

Calibre Verification User’s Manual, v9.1_5 9-47

Property Computation Device Recognition

ent
t

var
ce

esis

P).
nd

nts”

.

to
e
ce.

 the
will
• Parenthesize instance-independent subexpressions. You might have to
use parenthesis to get the compiler to notice certain instance-independ
expressions. For example, consider the following assignment statemen
where var is a Process variable:

a = area(P) + 0.5 + var

The compiler will not find the instance independent subexpression 0.5 +
in the above since by default it does additions from left to right and hen
treats it as if were parenthesized as follows:

a = (area(P) + 0.5) + var

To optimize the original statement you can introduce your own parenth
as follows:

a = area(P) + (0.5 + var)

You are telling the compiler to compute 0.5 + var before adding in area(
In this case it recognizes (0.5 + var) as being instance-independent a
will compute it only once during initiation.

A second way to handle this situation is to use the “variables for consta
trick of the previous tip by computing 0.5 + var and storing it in an
appropriately named local variable in the initial portion of your program

• Use data functions directly. The values of any instance data functions,
which you refer, are computed only once per instance and stored in th
value array before the property computation is executed for that instan
That is, if you refer to the same instance data function with the same
arguments in more that one place in your program, you are simply
accessing the precomputed value, not causing it to be computed from
scratch each time you reference it. Therefore, you do not have to store
value away in a local variable. Indeed the assignment to a local variable
be an extra step and will slow the evaluation.
Calibre Verification User’s Manual, v9.1_59-48

Device Recognition Property Computation

to
be

ute

y of,

er

out
y

In
For example, the first of the following two programs will take more time
evaluate since it contains an extra assignment statement, which must
executed at evaluation time.

[// Use of function values indirectly through local
//variable. (SLOWER)

property w, l
common_perim = perimeter_coincident(G, pin_layer)
w = common_perim
l = perim(G) - common_perim

]

[// Use of function values directly. (FASTER)
property w, l
w = perimeter_coincident(G, pin_layer)
l = perim(G) - perimeter_coincident(G, pin_layer)

]

• Avoid expensive geometry functions (if possible). Some of the geometric
instance data functions are more expensive (time consuming) to comp
than others. In some cases an expression involving more expensive
functions can be rewritten to use less expensive functions.

o Functions that request information about geometry on the boundar
or within the interior of the seed shape are the least expensive. For
example AREA(device_layer) or AREA_COMMON(device_layer,
pin_layer) fall in this class.

o Functions that require information about a single pin or auxiliary lay
or about geometry lying strictly outside the seed shape are more
expensive. For example AREA(pin_layer) or
PERIMETER_OUTSIDE(pin_name, device_layer) are in this class.

o The most expensive functions are those that ask for information ab
geometric interactions between different pins, pin layers, or auxiliar
layers. For example AREA_COMMON(pin_1, pin_2) or
PERIMETER_OUTSIDE(pin_1, auxiliary_layer) are in this class.

Shown below is a list of the functions classified according to expense.
the list dev_lay represents the device layer or the device as a pin, and
Calibre Verification User’s Manual, v9.1_5 9-49

Property Computation Device Recognition
pin_lay, pin_lay_1, … represent other pins or layers including auxiliary
layers.

o Least expensive functions (geometry on or within seed shape):
area(dev_lay)
area_common(dev_lay, pin_lay)
area_common(pin_lay, dev_lay)
perimeter(dev_lay)
perimeter_inside(dev_lay, pin_lay)
perimeter_inside(pin_lay, dev_lay)
perimeter_coincide(dev_lay, pin_lay)
perimeter_coincide(pin_lay, dev_lay)
perimeter_outside(dev_lay, pin_lay)
perimeter_coincide_inside(dev_lay, pin_lay)
perimeter_coincide_inside(pin_lay, dev_lay)
perimeter_coincide_outside(dev_lay, pin_lay)
perimeter_coincide_outside(pin_lay, dev_lay)
bends(dev_lay)
x_location(dev_lay) & y_location(dev_lay)
x_location(pin_lay) & y_location(pin_lay)

o More expensive functions (single pin or layer geometry, or geometry
outside of seed shape):
area(pin_lay)
perimeter(pin_lay)
perimeter_outside(pin_lay, dev_lay)
count(pin_lay)
bends(pin_lay)

o Most expensive functions (interaction between non-device layer
shapes)
area_common(pin_lay_1, pin_lay_2)
perimeter_inside(pin_lay_1, pin_lay_2)
perimeter_coincide(pin_lay_1, pin_lay_2)
perimeter_outside(pin_lay_1, pin_lay_2)
perimeter_coincide_inside(pin_lay_1, pin_lay_2)
perimeter_coincide_outside(pin_lay_1, pin_lay_2)
Calibre Verification User’s Manual, v9.1_59-50

Device Recognition Property Computation

the

two

ly
 is
us

t
e
 we

e.
s
e

se
apes
The following is an example that illustrates the above ideas. Suppose
devices to be recognized have a pin “P”, which is know to always lie
strictly within the area of the seed shape on layer dev_lay; therefore the
functions shown below are numerically equivalent. However, the area
requested in the first function is not known by the compiler to lie entire
within the seed shape. In the second function the area to be computed
guaranteed to lie entirely inside of the seed shape on dev_lay and is th
less expensive to compute.

AREA(P)
AREA_COMMON(P, dev_lay)

For another example, in Figure9-3A and B are two rectangular shapes tha
intersect to form a third rectangular shape D. In the device rule, D is th
device shape and A and B are pin shapes. In the property computation
wish to find the length of the vertical boundary at the left of the D shap
Either of the two expressions shown will do the job, but the first involve
the interaction of two pins and the second involves a pin and the devic
shape. Thus the second will be more efficient.

Figure 9-3. Efficient Function Choice

Finally, in some situations, you might have a choice of which layer to u
for the seed layer. If so, you might consider using a seed layer whose sh
contain most of the other shapes involved so that the “geometry on or
within seed shape” rule will apply to more of the functions that must be
computed.

B

D

A

L=perim_in(D,A) //Less expensive
L=perim_in(B,A) //More expensive

L

Calibre Verification User’s Manual, v9.1_5 9-51

Property Computation Device Recognition

in a
. We

ble

iler.
e it
eat

t
these

alues
e

file

on or

step
Debugging Property Computations

This section discusses how to use the DEBUG statement to track down errors
property computation that has been specified by use of the built-in language
assume you have already read the section above section “Property Computation
Structure” on how the property computations are structured.

Suppose you have just written a new Device operation containing a property
specification written in the built-in property computation language. It is possi
you will have made some mistakes within the specification.

The first mistakes seen will probably be errors detected by the rule file comp
The rule file compiler will generate an error message for the first such mistak
finds. After correcting this error, reload the rule file to find the next error. Rep
this process until the rule file loads successfully.

Having successfully loaded the rule file, you now use the rule file in an LVS
comparison of the layout versus the schematic (LVS). Errors can remain tha
cause a PROPERTY ERRORS section to appear in the LVS report. Some of
are apparent by studying the property specification in light of the numbers
produced. Others might not be so apparent. It is at this point that the DEBUG
statement is useful. By using the DEBUG statement you can obtain, for any
device instances you choose, a detailed analysis of the computation, what v
went into it, what values came out of it, and a step by step analysis of how th
computation was performed.

Debug Example

This section is devoted to a single example. The Device operation from a rule
is shown below. The statement appeared on lines 23-38 of the file. The line
numbers shown below are for reference and are not part of the Device operati
the file itself. However, the line numbers are used in the debugging output to
identify which line of the program is responsible for each step in the step by
analysis.

23 device mp(pmos) gate gate(G) diff(S) diff(D) base(B)
24 [
25 property W, L, AS, AD
26 bend_effect = 0.5
Calibre Verification User’s Manual, v9.1_59-52

Device Recognition Property Computation

d in a
ion

.
t the

ore
27 AS = area(S)
28 AD = area(D)
29 W = (perimeter_coincide(G, diff) +

perimeter_inside(G, diff)) / 2
30 L = perimeter_outside(G, diff) / 2
31 if (bends(G) > 0)
32 {
33 if (W > L)
34 W = W - bend_effect * bends(G) * L
35 else
36 L = L - bend_effect * bends(G) * W
37 }
38]

Property Error Report

Now suppose the rule file containing the statement above is loaded and use
flat LVS comparison that results in the following PROPERTY ERRORS sect
of the LVS discrepancy report:

**
 PROPERTY ERRORS
DISC# LAYOUT SOURCE ERROR
**
 1 5 (1258.000,390.000) (mp) m5
 ad: 5.6e-11 ad: 6e-11 7%
 as: 7.2e-11 as: 6e-11 21%
 w: 31u w: 30u 4%

We see that the property values for AD, AS, and W do not compare properly
Having failed to resolve the discrepancy in any other way, we begin to suspec
computation itself and decide that we must use the DEBUG statement to get m
information about the computation for this instance.

The first thing we must do is identify the device instance associated with the
discrepancy as well as the Device operation associated with the instance.

The device instance is identified on the first line of the discrepancy, where:

• “1” is the discrepancy number.

• “5” is the device instance number.
Calibre Verification User’s Manual, v9.1_5 9-53

Property Computation Device Recognition

d
nd

ut

 the
ique
e
ch

ent

t the
ltered
• “1258.000” is the x-coordinate.

• “390.000” is the y-coordinate.

• “mp” is the element name of the device.

In any single run of flat device recognition, the device instances are numbere
consecutively beginning with zero. This numbering is over all device types a
subtypes. Thus the 5 uniquely identifies the device instance we must debug.

Debug Statement Placement

The next step is to determine which Device operation in the rule file was
responsible for generating instance 5. We know in this case that the device
element name is “mp”. If this narrows it down to a single Device operation, p
the DEBUG statement in that statement. However, if more than one Device
operation qualifies, put a DEBUG statement in each one that qualifies. Since
DEBUG statement specifically identifies instance 5, and since instance 5 is un
to only one of the rules, the evaluation computation is only traced for that on
instance. However, the initiation computation will be traced for all rules in whi
DEBUG was placed.

In this case, assume there is only one Device operation for an “mp” device,
namely the one beginning on line 23 of the rule file. Insert the DEBUG statem
into that Device operation. To avoid any possible confusion from line
renumbering, we add the DEBUG statement to the end of line 24. Recall tha
DEBUG statement if present must precede the PROPERTY statement. The a
Device operation now looks as follows:

23 device mp(pmos) gate gate(G) diff(S) diff(D)
base(B)

24 [debug 5
25 property W, L, AS, AD
26 bend_effect = 0.5
27 AS = area(S)
28 AD = area(D)
29 W = (perimeter_coincide(G, diff) +

perimeter_inside(G, diff)) / 2
30 L = perimeter_outside(G, diff) / 2
31 if (bends(G) > 0)
Calibre Verification User’s Manual, v9.1_59-54

Device Recognition Property Computation

not
the

The
the

e
ifies
ys
tion
fter).
32 {
33 if (W > L)
34 W = W - bend_effect * bends(G) * L
35 else
36 L = L - bend_effect * bends(G) * W
37 }
38]

Debug Output

Now, reload the rule file and rerun LVS. It is important to note that you must
alter the layout or any of the Device operation that would cause a change in
number of devices recognized, as this could alter the instance number of the
device instance we are trying to debug.

The debugging output does not appear in the LVS report, but appears as
comments in the transcript of the program that executed device recognition.
output placed in the transcript by the modified rule file is shown below and on
following pages interspersed with paragraphs of comments.

First is a statement identifying the beginning of the debugging output and the
name of the rule file that generated it.

// BEGIN EXTRACTED DEVICE PROPERTY COMPUTATION DEBUG OUTPUT
// Rule file: rules
//

Next appears the output generated by the initiation computation. The first lin
identifies this as initiation output, gives the device type and subtype, and ident
the particular Device operation by giving its starting line number. It then displa
the value array before the initiation computation (Values before), the computa
itself (Interpreter called), and the value array after the computation (Values a

// INITIATION: Device: mp(pmos) (line 22 of rule file)
// Values before:
// 0: w 0
// 1: l 0
// 2: as 0
// 3: ad 0
// 4: bend_effect 0
// 5: 0.5 0.5
Calibre Verification User’s Manual, v9.1_5 9-55

Property Computation Device Recognition

tants
fter
// 6: area(S) 0
// 7: area(D) 0
// 8: perimeter_coincide(G, Diff) 0
// 9: perimeter_inside(G, diff) 0
// 10: 2 2
// 11: perimeter_outside(G, diff) 0
// 12: bends(G) 0
// 13: 0 0
// 14: temp1 0
// 15: temp2 0
// Interpreter called.
// 26: bend_effect
// = 0.5
// = 0.5
// Values after:
// 0: w 0
// 1: l 0
// 2: as 0
// 3: ad 0
// 4: bend_effect 0.5
// 5: 0.5 0.5
// 6: area(S) 0
// 7: area(D) 0
// 8: perimeter_coincide(G, Diff) 0
// 9: perimeter_inside(G, diff) 0
// 10: 2 2
// 11: perimeter_outside(G, diff) 0
// 12: bends(G) 0
// 13: 0 0
// 14: temp1 0
// 15: temp2 0
//

Each value line above contains the following:

• The index position of the value in the array.

• The name of the value.

• The value itself.

Just after a rule file is loaded, these values will all be zero except for the cons
and Process variables. However, if this is not the first device recognition run a
Calibre Verification User’s Manual, v9.1_59-56

Device Recognition Property Computation

can

 that
e it
ment

ns
tep

line
type
n.
ates.
s

that
ain
ce
loading the rule file, the value array can contain values left over from prior
computation. These left-over values will not affect the course of future
computations, since they will be overwritten before they are used. However, it
be easier to debug, by loading the rule file just prior to running each debug
computation. Note that the name of a constant is the same as its value.

The output above consists of a single step. The rule file compiler determined
the assignment statement on line 26 could be executed at initiation time sinc
was independent of any instance data values. The display shows this assign
taking place. See the section “How the Compiler Optimizes” above for more
information on how the compiler optimizes the computation by placing portio
of it into the initiation phase. A more complete discussion of the format of the s
by step trace shown above, follows the evaluation output below.

The next output is the trace of the evaluation for the desired instance. The first
identifies this evaluation output, and as before identifies the device type, sub
and line of the rule file containing the Device operation causing the evaluatio
The second line identifies the instance by instance number and (x,y) coordin
Next are displayed the values in the value array before the evaluation (Value
before) followed by a step by step trace of evaluation computation itself
(Interpreter called) followed by the values in the array after the computation
(Values after). The format of the value displays was discussed above. Note
most of the values in the array are no longer zero. This is because they cont
values leftover from computation of properties for prior instances of this devi
type. The format of the step by step trace is discussed following the output.

// EVALUATION: Device: mp(pmos) (line 22 of rule file)
// Instance: 5 x: 1258 y: 390
// Values before:
// 0: w 2.9999999999999991e-05
// 1: l 1.9999999999999985e-06
// 2: as 5.9999999999999982e-11
// 3: ad 5.9999999999999982e-11
// 4: bend_effect 0.5
// 5: 0.5 0.5
// 6: area(S) 7.1999999999999975e-11
// 7: area(D) 5.5999999999999978e-11
// 8: perimeter_coincide(G, Diff) 6.3999999999999976e-05
// 9: perimeter_inside(G, diff) 0
// 10: 2 2
Calibre Verification User’s Manual, v9.1_5 9-57

Property Computation Device Recognition
// 11: perimeter_outside(G, diff) 3.9999999999999973e-06
// 12: bends(G) 1
// 13: 0 0
// 14: temp1 5.9999999999999982e-05
// 15: temp2 0
// Interpreter called.
// 27: as
// = area(S)
// = 7.1999999999999975e-11
// 28: ad
// = area(D)
// = 5.5999999999999978e-11
// 29: temp1
// = perimeter_coincide(G,Diff)

+perimeter_inside(G,diff)
// = 6.3999999999999976e-05 + 0
// = 6.3999999999999976e-05
// 29: w
// = temp1 / 2
// = 6.3999999999999976e-05 / 2
// = 3.1999999999999988e-05
// 30: l
// = perimeter_outside(G, diff) / 2
// = 3.9999999999999973e-06 / 2
// = 1.9999999999999985e-06
// 31: ?
// bends(G) > 0
// 1 > 0
// TRUE
// 33: ?
// w > l
// 3.1999999999999988e-05 > 1.9999999999999985e-06
// TRUE
// 34: temp2
// = bend_effect * bends(G)
// = 0.5 * 1
// = 0.5
// 34: temp1
// = temp2 * l
// = 0.5 * 1.9999999999999985e-06
// = 9.9999999999999928e-07
// 34: w
// = w - temp1
Calibre Verification User’s Manual, v9.1_59-58

Device Recognition Property Computation

first
the
ay
this

to be
 third

 the

alue

ors
ary
t is
t

// = 3.1999999999999988e-05 - 9.9999999999999928e-07
// = 3.0999999999999996e-05
// Values after:
// 0: w 3.0999999999999996e-05
// 1: l 1.9999999999999985e-06
// 2: as 7.1999999999999975e-11
// 3: ad 5.5999999999999978e-11
// 4: bend_effect 0.5
// 5: 0.5 0.5
// 6: area(S) 7.1999999999999975e-11
// 7: area(D) 5.5999999999999978e-11
// 8: perimeter_coincide(G, Diff) 6.3999999999999976e-05
// 9: perimeter_inside(G, diff) 0
// 10: 2 2
// 11: perimeter_outside(G, diff) 3.9999999999999973e-06
// 12: bends(G) 1
// 13: 0 0
// 14: temp1 9.9999999999999928e-07
// 15: temp2 0.5
//

Each step of the computation above is displayed on three or four lines. The
line gives the rule file line number of the language statement that is causing
step followed by a colon (:). The colon is followed by the name of a value arr
entry to which an assignment is about to be made, or by a question mark (?) if
step is a relational test. The second line shows the expression that is about
computed or tested using the value array names of the values involved. The
line shows the same expression with the corresponding numeric values
substituted. The fourth line shows the numeric result of the expression or, in
case of a test, one of the values TRUE or FALSE. In the case of a simple
assignment, there is no fourth line because the third line already displays the v
to be assigned.

The numeric values are shown to about 17 significant digits so numerical err
due to roundoff or to the inexact representation of decimal fractions on a bin
machine can be better seen. This leads to lots of trailing 9’s in the output, bu
worthwhile. For example with only a few digits you might wonder how the tes
“1.3 < 1.3” could return TRUE, but with 17 digits it becomes clear that
“1.29999999999999996 < 1.29999999999999998” is indeed TRUE.
Calibre Verification User’s Manual, v9.1_5 9-59

Property Computation Device Recognition

nce as
form
the
f the

ric

 in
he
line

e

at

d

ld be
 data
ray
In evaluating a compound logical expression such as (a < b || c < d) the
interpreter does not explicitly perform logical operations NOT (!), AND (&&),
and OR (||). Rather it makes a sequence of relation tests in the proper seque
determined by the results of those tests. In the example here it would first per
the test (a < b). If the result of that test were FALSE, it would then perform
test (c < d), otherwise it would go to the next appropriate step. The action o
OR (||) is implicit in the sequence of tests performed.

Each step of the trace represents only a single relation test or a single nume
operation followed by an assignment. Therefore complex statements in the
program will generate several steps in which intermediate results are stored
temporary locations in the value array. These locations are given names of t
form tempn, wheren is a small integer. In the example above the statement on
34 of the rules is:

34 W = W - bend_effect * bends(G) * L

In the trace, this breaks down into three separate steps, each labeled with lin
number 34, which use the temporary variables temp1 and temp2 to store
intermediate values of subexpressions.

The temporary variables are reused from one statement to the next. Note th
“temp1” was also used by the steps for the statement on line 29.

Although this example doesn't show it, there is a second kind of temporary
variable whose name is of the form initn, wheren is a small integer. These
temporaries are used to store the results of subexpressions that are instance
independent. Their values are computed during the initiation computation an
then used repeatedly for the evaluations computations.

Finally the end of the debugging output is noted by the following line:

// END EXTRACTED DEVICE PROPERTY COMPUTATION DEBUG OUTPUT

Debug Analysis

By examining the value arrays displayed, and the step by step trace, it shou
possible to determine the cause of the discrepancy. Note that the geometric
values such as perimeter_inside(G, diff) are clearly displayed in the value ar
Calibre Verification User’s Manual, v9.1_59-60

Device Recognition Property Computation

e

G
d the

een

 the
erent

his

yers

asy
alue

his is
file.
ys
this

ce

t

within the trace. These values can be checked against the layout to see if th
proper data functions have been used.

In the example covered above, only one Device operation contained a DEBU
statement and that operation referenced a single instance only. The output ha
simple structure of initiation and evaluation. If more than one instance had b
referenced by the DEBUG statement, then the sequence would have been
initiation, evaluation, … , evaluation.

If you placed DEBUG statements in a second Device operation, the order of
output would depend on whether the Device operations used the same or diff
device (seed) layers. If they used the same device layer, then both initiations
would appear, followed by a mixture of evaluations for both types of device. T
occurs since Device operations for a given device layer are processed
simultaneously. If they used different layers, then the output for one of the la
would precede the other. Since each initiation or evaluation output begins by
identifying the device by type, subtype, and rule file line number, it should be e
to keep the output straight. Note also that each Device operation has its own v
array.

Hierarchical Debugging

The previous discussion of debugging procedures focused on flat analysis. T
the easiest to do and this is often the technique employed when building a rule
Hierarchical extracted netlists are more difficult to debug as you cannot alwa
know which device instances to debug. There are two ways of approaching
problem:

1. Go into the rule file and insert something like the following into the devi
property computation:

[PROPERTYprop1 prop2 ... inst
...
inst = instance()
]

Rerun LVS and you can find the flat instance number of the device you
need to debug in the extracted netlist. This is perhaps the more elegan
solution.
Calibre Verification User’s Manual, v9.1_5 9-61

Property Computation Device Recognition

te
2. Rerun the design (or a portion of the design) in flat LVS. This is the bru
force method.

Property Specification Error Messages

Table 9-5. Property Specification Error Messages

Error
Number

Message Description

DPR1 a definition for this
device name may not
have a numeric
parameter set
specification:
<element name>

The only element names
which may take a numeric
parameter set in square
brackets are D, C, R, MN,
MP, MD, and ME. This
element name is not one of
them.

DPR2 the numeric parameter
set specification for this
device definition must
contain a single
number:
<element name>

The element names R, MN,
MP, MD, and ME take only a
single number as a numeric
parameter set. For R it is the
resistivity and for the others it
is the effective width factor.
No additional numbers are
allowed.

DPR3 the numeric parameter
set specification for this
device definition must
contain one or two
numbers:
<element name>

The numeric parameter set
specification for element
name C must contain either
just the area capacitance
factor, or the area capacitance
factor followed by the
perimeter capacitance factor.
No additional numbers are
allowed.
Calibre Verification User’s Manual, v9.1_59-62

Device Recognition Property Computation
DPR4 a statement was
expected at this point
(did you forget a
comma?) :
<syntax element>

The syntax element displayed
was found where a valid
assignment statement, IF
statement, or compound
statement beginning with a
left brace ({) was expected.

DPR5 this was found where
the second number of a
debug range was
expected:
<syntax element>

In a DEBUG statement, the
first number and hyphen (-) of
a debug range was found, but
the second number was
missing. A debug range must
be either a single number or a
pair of numbers separated by
a hyphen.

DPR6 this was found where
the first number of a
debug range was
expected:
<syntax element>

A number must appear
immediately following the
DEBUG keyword and
immediately following each
comma in the DEBUG
statement.

DPR7 this was found where a
right brace, “}” was
expected:
<syntax element>

The syntax element shown
appears where a closing brace
was expected to terminate a
compound statement.

DPR8 this was found where a
left parenthesis, “(” was
expected:
<syntax element>

A left parenthesis must follow
the keyword IF and all
function name keywords.

Table 9-5. Property Specification Error Messages

Error
Number

Message Description
Calibre Verification User’s Manual, v9.1_5 9-63

Property Computation Device Recognition
DPR9 this was found where a
right parenthesis, “)”
was expected:
<syntax element>

The syntax element displayed
could not be parsed in the
current context, but a right
parenthesis would be valid at
this point.

DPR10 this was found where a
relational operator such
as “<=” was expected:
<syntax element>

The expressions used in an IF
test must contain relational
tests possibly combined with
logical operators to form
compound tests.

DPR12 this was found where a
comma was expected:
<syntax element>

Commas must be used to
separate items in lists and the
arguments of functions.

DPR13 this was found where
the keyword
PROPERTY was
expected:
<syntax element>

With the exception of the
DEBUG statement, the first
statement in a property
specification must be a
PROPERTY statement
specifying the properties to be
computed.

DPR14 this was found where a
property identifier was
expected:
<syntax element>

A property identifier must
immediately follow the
keyword PROPERTY and
each comma in the
PROPERTY statement.

DPR15 this property identifier
is declared twice:
<identifier>

Each property identifier may
appear only once in the list of
the PROPERTY statement.

Table 9-5. Property Specification Error Messages

Error
Number

Message Description
Calibre Verification User’s Manual, v9.1_59-64

Device Recognition Property Computation
DPR16 this was found where a
property or variable
name was expected:
<syntax element>

In an assignment statement,
the item just to the left of the
assignment operator (=) must
be a property name as
declared in the PROPERTY
statement, or an identifier
representing a local variable.

DPR17 this was found where a
layer or pin name was
expected:
<syntax element>

The syntax element shown is
not the name of a pin or layer
appearing in this Device
statement, yet it appears as the
argument of a function where
a pin name or layer name is
required.

DPR18 this was found where a
right bracket, “]” was
expected:
<syntax element>

The property specification
appears to end just prior to the
syntax element shown, but no
closing right bracket was
found there.

DPR19 this was found where
an expression
representing a numeric
value was expected:
<syntax element>

The syntax element show was
found where a constant, local
variable, process variable, or
numeric valued function was
expected.

DPR20 this process variable
does not have a
numeric value:
<variable>

The process variable
referenced at this point must
have a numeric value, but this
one does not.

Table 9-5. Property Specification Error Messages

Error
Number

Message Description
Calibre Verification User’s Manual, v9.1_5 9-65

Property Computation Device Recognition
DPR21 this variable was used
on the right before it
was unconditionally
initialized: <variable>

The right hand side of the
statement contains the
variable shown. However, this
variable has either not been
initialized in a prior statement,
or has not been initialized in
every IF/ELSE path leading to
the current statement. For
example, in the following,
before reaching the statement
A = X, the variable X would
not be initialized if the IF
condition were FALSE:
 if (b == 0)

 X = 1
 A = X

DPR22 this was found where a
pin name was expected:
<syntax element>

The syntax element shown is
not the name of a pin
appearing in this Device
statement, yet it appears as the
argument of a function where
a pin name is required.

DPR23 this variable was used
on the right before it
was given a value on
the left: <variable>

The variable displayed is used
on both the left and right sides
of the current statement. It
must have been given a value
before reaching the current
statement so that the value
may be used in the right hand
side of the current statement.

Table 9-5. Property Specification Error Messages

Error
Number

Message Description
Calibre Verification User’s Manual, v9.1_59-66

Device Recognition Property Computation
DPR24 assignment to this
process variable is not
allowed: <variable>

The variable shown is
assigned a value by the
current statement. However,
this variable has been
identified as a process
variable. Changing the value
of a process variable is not
allowed from within a
property computation.

DPR25 this was found where a
net name was expected:
<syntax element>

The syntax element shown
appeared as an argument to a
function where a net name
was expected, but cannot be
interpreted as a net name. It is
best to surround the net name
with double quotes (“ ”).

DPR35 this property was never
assigned a value:
<property name>

All properties declared in the
PROPERTY statement must
be assigned a value in the
property computation. The
property name shown was
never assigned a value.

Table 9-5. Property Specification Error Messages

Error
Number

Message Description
Calibre Verification User’s Manual, v9.1_5 9-67

Property Computation Device Recognition
DPR36 this property was not
assigned a value in all
cases: <property name>

All properties declared in the
PROPERTY statement must
be assigned a value in the
property computation. The
property name shown was
assigned a value in some of
the IF/ELSE cases, but not in
all. That is, it is possible to
find a path through the
program which never assigns
a value to the variable. You
must be sure it receives a
value in all cases.

DPR37 this function cannot
have identical
arguments:
<function name>

The function shown requires
two arguments, but they
cannot be identical.

Table 9-5. Property Specification Error Messages

Error
Number

Message Description
Calibre Verification User’s Manual, v9.1_59-68

Device Recognition Property Computation
DPR38 both arguments of this
function cannot be
associated with the
same layer: <function
name>

The function shown requires
two arguments, but they
cannot represent shapes on the
same layer. For example,
using different pin names
from the same layer is not
allowed. Neither is using a pin
name from a layer together
with the layer itself. In all
these disallowed cases, the
function would return a trivial
value which can be expressed
in another way. For example
if A and B are pins on layer L,
then
PERIMETER_COINCIDE(A,
B) would always be 0 (zero)
since A and B would have to
be disjoint, and
PERIMETER_COINCIDE(A,
L) would be the same as
PERIMETER(A) since pin A
lies on layer L.

Table 9-5. Property Specification Error Messages

Error
Number

Message Description
Calibre Verification User’s Manual, v9.1_5 9-69

Property Computation Device Recognition
Calibre Verification User’s Manual, v9.1_59-70

n.

e
You
 you
lent,

ce

ts of
tween
sed for

differ
n be

ing

e

two
rt

t, and
Chapter 10
LVS Circuit Comparison

This chapter discusses various LVS concepts pertaining to circuit compariso

LVS Comparison
Calibre LVS applications compare electrical circuits from the specified sourc
netlist and layout geometry. (You can also do netlist to netlist comparisons.)
do not need to supply initial correspondence between circuit elements, but if
do, the time of execution decreases. When the compared circuits are equiva
Calibre LVS applications establish a one-to-one correspondence between
elements of one circuit (instances, nets, ports, and instance pins) in the sour
netlist and elements of the layout circuit. When the compared circuits differ,
Calibre LVS applications attempt to match elements of one circuit to elemen
the other. This matching is completed when a one-to-one correspondence be
the elements is established. The correspondence between elements can be u
cross-probing.

Calibre LVS matches as many elements as possible including elements that
in the compared circuits. For example, nets that have different connections ca
matched if most of their connections are equivalent.

To ensure that the matching of different elements does not generate mislead
results, heuristics are applied. These heuristics are internal problem-solving
techniques that select the best solution among those derived from alternativ
methods at different stages of the program.

Discrepancies reported in the LVS report show the differences between the
circuits. Calibre LVS algorithms treat the two circuits similarly. The LVS repo
presents discrepancies from the point of view of both the sourceand the layout.
First, the LVS report presents the discrepancy as if the source data is correc
Calibre Verification User’s Manual, v9.1_5 10-1

Component Types LVS Circuit Comparison

ta is
u to

it. For
ut to

ical
the
have

ding

as
the layout data is incorrect, then it presents the discrepancy as if the layout da
correct, and the source data is incorrect. This form of presentation allows yo
see and compare all possible views of the data.

LVS reports discrepancies in terms of incorrect circuit elements, along with
additional information that helps classify and locate the errors. Calibre LVS
attempts to suggest changes to the layout so that it matches the source circu
example, Calibre LVS may recommend that two nets be connected in the layo
match a single net in the source circuit.

Component Types
A LVS component type is a name that uniquely identifies the electrical or log
function of a layout or source instance. LVS uses component type values in
process of matching layout and source instances. Instances are required to
the same component type in order to be correctly matched. Instances with
different component types are sometimes matched if they are identically
connected, but discrepancies are reported in such cases.

The following sections describe the conventions LVS uses to determine
component types of instances.

• Mask Layout. The component type of an extracted layout device is
equivalent to the value of the element_name argument of the correspon
Device operation in the rule file. For example, the statement:

device MP tran poly srcdrn srcdrn bulk

 specifies a MOS transistor device with component type MP.

• Eddm. The component type of a source Eddm instance is established
follows:

a. LVS searches the list of property names specified in theLVS
Component Type Property specification statement from left to right.
Calibre Verification User’s Manual, v9.1_510-2

LVS Circuit Comparison Component Types

first

on
e

odel

d

ent
ce

ith
b. LVS uses, as the component type of the instance, the value of the
property from the list. The default property name list is:

[“phy_comp”, “element”, “comp”]

If the specified list is null or if none of the specified properties are found
the instance, LVS then determines the component type according to th
following:

c. LVS uses the Eddm component name if the instance has a default
model called “schematic”, or if there is no default model.

d. LVS constructs the component type, if the instance has a default m
other than “schematic”, by appending the default model name as
shown:

eddm-component-name_default-model-name .

For more details on Eddm model selection in general, and default
models in particular, refer to “Model Selection During Evaluation” inA
Guide to Design Process and Database Concepts. This convention is
used to match the behavior of the Place and Route command “LOA
LOgic.”

e. LVS appends the first character of the model property to the compon
type if the component type as determined is M or LDD and the instan
owns a model property whose first character is N, P, E, or D. This
processing is case-insensitive.

For example, suppose that you have:

element = M
model = PMOS

and you use the default LVS setup. Then

LVS component type = MP

• V7.0 erel file. The component type of a source V7.0 erel instance is
established as follows: The list of property names specified in the
lvs_component_type_property application variable (which can be set w
Calibre Verification User’s Manual, v9.1_5 10-3

Component Types LVS Circuit Comparison

) is

 is
used
ol’s
ced

 so

the
ce.
t
ed to
the LVS Component Type Property specification statement in a rule file
searched from left to right. The value of the first property from the list
which is found on the instance is used as the component type of the
instance. If the specified list is null or if none of the specified properties
found on the instance, then the Symed symbol name of the instance is
as its component type. The symbol name is the leaf name from the symb
pathname. In the default property names list, “element” should be repla
with “spicemodel.”

In addition, the following is done: If the component type as determined
far is “M” or “LDD”, and the instance owns a “spicepar” property whose
first character is one of “N”, “P”, “E” or “D”, then the first character of the
spicepar property is appended to the component type. Note that this
processing is case-insensitive. For example, suppose that you have

spicemodel = M

spicepar = PMOS

and your lvs_component_type_property application variable is
[“spicemodel”]. Then

LVS component type = MP

• Spice netlist. The component types of Spice elements are described in
section “General Spice Syntax” in chapter11, “Spice Format”.

Component Subtypes

A LVS component subtype is an optional name that classifies, together with
component type, the electrical or logical function of a layout or source instan
Component subtypes do not affect the matching of source instances to layou
instances. LVS reports differences in the subtypes of instances that are match
each other, only if subtypes are specified for both instances.

The following sections describe the conventions LVS uses to determine
component subtypes of instances.
Calibre Verification User’s Manual, v9.1_510-4

LVS Circuit Comparison Naming Conventions

f a
oes

nt to

cify
e,

es
 an

d in

se.
ay

from
• Mask layout. The component subtype of an extracted layout device is
equivalent to the value of the optional model_name argument in the
correspondingDevice operation. For example, the operation:

device C(PM) cap poly metal

specifies a capacitor device with component type C and subtype PM. I
model_name is not specified in the Device operation, then the device d
not have a subtype.

• Eddm. The component subtype of a source Eddm instance is equivale
the value of the property whose name is specified in theLVS Component
Subtype Property specification statement. If the statement does not spe
a property name, or if the specified property is not found on an instanc
then the instance does not have a subtype.

• V7.0 erel file. The component subtype of a source V7.0 erel instance is
equivalent to the value of the property whose name is specified in theLVS
Component Subtype Propertyspecification statement. If the statement do
not specify a property name, or if the specified property is not found on
instance, then the instance does not have a subtype.

• Spice netlist. The component subtypes of Spice elements are describe
the section “General Spice Syntax” in chapter11, “Spice Format”.

An important thing to note is that during connectivity extraction, component
subtypes as defined in the rule file appear in the extracted netlist as lower ca
This has ramifications in the circuit comparison stage when case sensitivity m
be an issue. SeeLVS Compare Case in theSVRF Manual for details.

Naming Conventions

Instance Pins and Pin Names

LVS uses instance pin names to match circuit elements in the connectivity
comparison process. Pins and pin names are normally inherited by instances
rule file operations, Eddm parts, and Spice netlist elements.
Calibre Verification User’s Manual, v9.1_5 10-5

Naming Conventions LVS Circuit Comparison

n

 the
will

g.

s:

e

t is

r is

 as

e

in
• Mask layout. LVS specifies the pin names of extracted layout devices i
the rule file, or by default convention.

o User-defined devices.Device operations in the rule file specify
user-defined device pin names. By user-defined here, we mean for
purpose of device recognition. Pin ordering in the extracted netlist
follow the order specified in the corresponding Device statement.

Device types J, L, LDD, LDDD, LDDE, LDDN, LDDP, M and V are
user-defined for the purpose of determining pin names and orderin

o Built-in devices. These have default pin naming and ordering
conventions that cannot be overridden.

Device types C, D, MD, ME, MN, MP, Q, and R are built-in for both
recognition and LVS comparison.

• Eddm. LVS establishes pin names of source Eddm instances as follow

a. Searches from left to right, the list of property names specified in th
LVS Pin Name Property specification statement.

b. Uses, as the pin name, the value of the first property from the list tha
found on the pin.

c. If the specified list is null, or if none of the specified properties are
found on the pin, then the value of the pin property is used. An erro
reported if no pin property is found.

• V7.0 erel file. LVS establishes pin names of source V7.0 erel instances
follows:

a. Searches from left to right, the list of property names specified in th
LVS Pin Name Property specification statement.

b. Uses the value of the first property from the list that is found on the p
as the pin name.
Calibre Verification User’s Manual, v9.1_510-6

LVS Circuit Comparison Naming Conventions

r is

 can
or
istors.

t and
s of
urce
pins

ns,
tic

 and
with

ource
wer
rrors.

r-given
VS to
c. If the specified list is null, or if none of the specified properties are
found on the pin, then the value of the pin property is used. An erro
reported if no pin property is found.

• Spice netlist. Pin names of Spice elements are described in section
“General Spice Syntax” in chapter11.

Pin Filtering

LVS operates only on instance pins that have names. In a single design you
use instances with the same component type but different number of pins. F
example, in a single design, you can have two-pin resistors and three-pin res

For a given component type and a given number of pins, corresponding layou
source pins should have identical names. However, it is allowed for instance
layout components to have pins that are not present in the corresponding so
components, and vice versa. The LVS comparison algorithm filters out these
when it establishes correspondence between layout and source elements.

LVS filters out missing pins to allow higher-level layout components to have pi
such as power and ground, that do not appear on the corresponding schema
components.

After this pin filtering process, instances must have the same number of pins
the same pin names in order to be correctly matched to each other. Instances
different numbers of pins, or different pin names can be matched if they are
similarly connected; discrepancies are reported in such cases.

For each component type, layout pins that are not present in the source, and s
pins that are not present in the layout are listed in the LVS report. Missing po
or ground pins are reported as warnings; other missing pins are reported as e

LVS classifies the names of power or ground pins if they are specified in theLVS
Power Name or LVS Ground Name specification statements, respectively.

User-given Names

The nets, instances, and ports of layout and source databases can have use
names, system-generated names, or both. User-given names are used by L
Calibre Verification User’s Manual, v9.1_5 10-7

Naming Conventions LVS Circuit Comparison

rs

 an
me

ers
vel
1”

rs.

,

n-
ept
red.
,
ign;
 in

,

and
s

ion
n

establishInitial Correspondence Points. LVS reports differences between
user-given names of layout and source elements.

LVS determines whether a name is user-given as follows:

• Mask layout. A name qualifies as user-given if it does not start with the
characters n$, N$, i$, or I$ and does not contain any slash (/) characte
(one leading slash is allowed). If a leading slash is present, the slash is
ignored. For example, the layout name “/ABC” is user-given and forms
initial correspondence point with the source name “ABC”. The layout na
“ABC” also is user-given and forms an initial correspondence point with
the source name “ABC”.

• Eddm. A name qualifies as user-given if it does not start with the charact
n$, N$, i$, or I$ and does not contain any slash (/) characters. Only top le
or global names qualify as user-given. For example, “mynode” and “tran
are user-given names, but “/cell1/mynode”, “i$1”, and “n$1” are not.

• V7.0 erel file. A name qualifies as user-given if it does not start with the
characters n$, N$, i$, or I$ and does not contain any slash (/) characte
Only top level or global names qualify as user-given. For example,
“mynode” and “tran1” are user-given names, but “/cell1/mynode”, “i$1”
and “n$1” are not.

• Spice. A nodename qualifies as user-given if it contains at least one no
numeric character (letter), and does not contain any “/” characters, exc
that one leading slash is allowed. If a leading slash is present, it is igno
An elementname qualifies as user-given if, excluding the first character
the name contains at least one character which is not a digit or the “=” s
also, the name must not contain any “/” characters. (The first character
Spice element names is always the spice element type). For example,
“C2a”, “Xabc” and “M1==A” are user given element names, but “C123”
“X1”, “Xabc/X2” and “M1==2” are not.

The prefixes “n$” and “i$” by convention denote system generated net
instance names in Mentor Graphics schematic databases. “/” is used a
delimiter to form hierarchical pathnames. LVS allows a leading slash in
layout names and in Spice node names for compatibility with the IC Stat
command Load Logic. Equal signs (“=”) are used by the Spice parser i
Calibre Verification User’s Manual, v9.1_510-8

LVS Circuit Comparison Naming Conventions

ans of

s are
ted

-

d

t.

ious

he
names that the parser generates for elements that are replicated by me
the M parameter.

Net and Instance Names

This section describes how net and instance names are specified in various
sources of connectivity.

• Mask Layout. LVS obtains layout net names from the values of net
properties on layout shapes and paths in the top level cell. These value
assigned as names to nets in the connectivity extraction process activa
by LVS. Layout instances cannot be named in Mask LVS.

• Eddm. LVS obtains net names from the values of net properties of top
level nets. Instance names are obtained from the values of instance
properties of top-level instances.

• V7.0 erel file. Net names in a V7.0 erel file (in both modes) are obtaine
from the values of net properties of top level nets. Instance names are
obtained from the values of inst properties of top level instances.

• Spice netlist. LVS obtains net names from the node names in the netlis
Instance names are the element names in the netlist.

Ports and Port Names

This section describes how design ports and port names are specified in var
sources of connectivity.

• For GDSII and CIF databases in Calibre LVS, specify ports by using t
Port Layer Text andPort Layer Polygon specification statements.

• Mask layout. Calibre LVS specifies a layout port with thePort Layer Text
specification statement in the rule file.

• Eddm. LVS specifies design ports in three ways.
Calibre Verification User’s Manual, v9.1_5 10-9

Naming Conventions LVS Circuit Comparison

S.
pin.

ue,

net.

.

e)

me

sed
ound
o Any top-level net labeled as external serves as a design port in LV
For example, connected to a port instance, or leading to a symbol

o Any top-level net that has a net_comp property, with an arbitrary val
serves as a design port in LVS.

o All global nets serve as design ports in LVS.

In all cases, the port name is equal to the value of the net property of the

• V7.0 erel file. Design ports are specified in three ways.

o Any top-level net labeled as external (such as connected to a port
instance, or leading to a symbol pin) serves as a design port in LVS

o Any top-level net that owns a net_comp property (with arbitrary valu
serves as a design port in LVS.

o All global nets serve as design ports in LVS. In all cases, the port na
is equal to the value of the net property of the net.

• Spice netlist. LVS specifies design ports are specified in two ways.

o External nodes of a top-level subcircuit, if one is specified, serve as
design ports in LVS.

o All nodes with user-given names specified in .GLOBAL statements
serve as design ports in LVS.

In both cases, the node names serve as port names.

Power and Ground Nets

LVS uses power and ground nets in logic gate recognition, in filtering of unu
MOS transistors and in other applications. Several power nets and several gr
nets are allowed in a single design. A net is a power net (or a ground net,
respectively) if
Calibre Verification User’s Manual, v9.1_510-10

LVS Circuit Comparison Built-in Device Types

ame
t in
 same
of

ype
ly,
• the net name is listed in anLVS Power Name or LVS Ground Name
specification statement; or,

• the net is connected to a port whose name is listed in the LVS Power N
or LVS Ground Name specification statement and there is no other ne
the same design that has this name. If there are several ports with the
power (or ground) name that are connected to different nets, only one
them is used.

Built-in Device Types
Table10-1 lists the built-in device types and their corresponding component t
values. These devices are built-in from the standpoint of LVS comparison on
except as noted. The section “Component Types” shows how component types are
determined in the source circuit and in the layout.

Table 10-1. Built-in Device Types

Device Component Type
CMOS N transistor MNa

CMOS P transistor MPa

NMOS enhancement transistor MEa

NMOS depletion transistor MDa

MOS generic transistor M

CMOS LDD N transistor LDDN

CMOS LDD P transistor LDDP

NMOS LDD enhancement transistor LDDE

NMOS LDD depletion transistor LDDD

MOS LDD generic transistor LDD

Resistor Ra

Capacitor Ca

Diode Da

Bipolar transistor Qa

Jfet transistor J
Calibre Verification User’s Manual, v9.1_5 10-11

Built-in Device Types LVS Circuit Comparison

gate
ed
pins,
ed as

rs,
pin

,
n

but
ile
y

Notes:
a built-in devices for both recognition and LVS comparison

MOS Transistors

MOS regular transistors receive special processing by LVS as follows: logic
recognition, parallel transistor reduction, split-gate reduction, filtering of unus
transistors, source/drain pin swapping by default, processing of soft substrate
and pin names are always case-insensitive. MOS LDD transistors are process
follows (if they conform to Table10-2 pin conventions): logic gate recognition,
parallel transistor reduction, split-gate reduction, filtering of unused transisto
source/drain pin swapping by default, processing of soft substrate pins, and
names are always case-insensitive.

MOS transistor devices (component types MN, MP, ME, MD, M, LDDN, LDDP
LDDE, LDDD, LDD) must have at least three pins—gate, source and drain. I
addition, they may haveany number of additional pins with arbitrary names. The
fourth pin typically represents bulk connection and by convention is called B,
this convention is neither required nor enforced by LVS. (However, the rule f
Device definition syntax does enforce this convention). The optional pins ma
represent one or more bulk connections or they may be used for any other
purpose. Table10-2 lists the three required pin names:

Inductor L

Voltage source V

Table 10-2. MOS Transistor Required Pin Names

Pin Pin Name

MOS transistor gate G or GATE

MOS transistor source S or SOURCE

MOS transistor drain D or DRAIN

optional pins any names

Table 10-1. Built-in Device Types [continued]

Device Component Type
Calibre Verification User’s Manual, v9.1_510-12

LVS Circuit Comparison Built-in Device Types

The
o

g for
ule
e

sed

l
ins,
pe C)
any

ent
LDD devices are MOS transistors with non-swappable source and drain pins.
five LDD transistor types LDDN, LDDP, LDDE, LDDD, and LDD correspond t
the five regular transistor types MN, MP, ME, MD, and M respectively. The
acronym LDD stands for Lightly Doped Drain. The LDD* and M devices are
user-defined from the device recognition standpoint. Remember, pin orderin
user-defined devices is taken from corresponding Device statements in the r
file. Such MOS devices that do not have the required pin names shown abov
receive no special LVS processing.

The following specification statements control special processing functions u
by Calibre LVS to recognize, reduce, and filter MOS transistors:

• LVS Recognize Gates

• LVS Reduce Parallel MOS

• LVS Reduce Series MOS

• LVS Reduce Split Gates

• LVS Filter Unused MOS

• LVS Filter

• LVS Reduce

Capacitors

LVS performs the following for capacitors: series capacitor reduction, paralle
capacitor reduction, pin swapping if requested, processing of soft substrate p
and pin names are always case-insensitive. Capacitor devices (component ty
must have at least two pins (positive and negative). In addition, they can have
number of additional pins with arbitrary names. The optional pins can repres
Calibre Verification User’s Manual, v9.1_5 10-13

Built-in Device Types LVS Circuit Comparison

e.

sed

, and
must

ent
e.
one or more substrate connections or they can be used for any other purpos
Table10-3 lists the two required pin names:

The following specification statements control special processing functions u
by Calibre LVS to reduce capacitors:

• LVS Reduce Series Capacitors

• LVS Reduce Parallel Capacitors

• LVS Filter Unused Capacitors

• LVS Filter

• LVS Reduce

Resistors

LVS performs the following for resistors: series resistor reduction, parallel
resistor reduction, pin swapping by default, processing of soft substrate pins
pin names are always case-insensitive. Resistor devices (component type R)
have at least two pins (positive and negative). In addition, they can have any
number of additional pins with arbitrary names. The optional pins can repres
one or more substrate connections or they can be used for any other purpos
Table10-4 lists the two required pin names:

Table 10-3. Capacitor Required Pin Names

Pin Pin Name

capacitor positive pin POS or P

capacitor negative pin NEG or N

optional pins any names

Table 10-4. Resistor Required Pin Names

Pin Pin Name

resistor positive pin POS or P
Calibre Verification User’s Manual, v9.1_510-14

LVS Circuit Comparison Built-in Device Types

sed

f
es

The
used
The following specification statements control special processing functions u
by Calibre LVS to reduce resistors:

• LVS Reduce Series Resistors

• LVS Reduce Parallel Resistors

• LVS Filter Unused Resistors

• LVS Filter

• LVS Reduce

Diodes

LVS performs the following for diodes: parallel diode reduction, processing o
soft substrate pins, and pin names are always case-insensitive. Diode devic
(component type D) must have at least two pins (positive and negative). In
addition, they can have any number of additional pins with arbitrary names.
optional pins can represent one or more substrate connections or they can be
for any other purpose. Table10-5 lists the two required pin names:

resistor negative pin NEG or N

optional pins any names

Table 10-5. Diode Required Pin Names

Pin Pin Name

diode positive pin POS or P

diode negative pin NEG or N

optional pins any names

Table 10-4. Resistor Required Pin Names

Pin Pin Name
Calibre Verification User’s Manual, v9.1_5 10-15

Built-in Device Types LVS Circuit Comparison

sed

ins,
e Q)
can
lly
ntion
on
more

sed
The following specification statements control special processing functions u
by Calibre LVS to reduce diodes:

• LVS Reduce Parallel Diodes

• LVS Filter Unused Diodes

• LVS Filter

• LVS Reduce

Bipolar Transistors

LVS performs the following for bipolar devices: parallel bipolar transistor
reduction, filtering of unused bipolar transistors, processing of soft substrate p
and pin names are always case-insensitive. Bipolar devices (component typ
must have at least three pins (collector, base, and emitter). In addition, they
have any number of additional pins with arbitrary names. The fourth pin typica
represents substrate connection and by convention is called S, but this conve
is neither required nor enforced by LVS. (However, the rule file Device definiti
syntax does enforce this convention.) The optional pins can represent one or
substrate connections or they can be used for any other purpose. Table10-6 lists
the three required pin names:

The following specification statements control special processing functions u
by Calibre LVS to reduce and filter bipolar transistors:

• LVS Reduce Parallel Bipolar

Table 10-6. Bipolar Transistor Required Pin Names

Pin Pin Name

Q transistor collector C

Q transistor base B

Q transistor emitter E

other pins any names
Calibre Verification User’s Manual, v9.1_510-16

LVS Circuit Comparison Built-in Device Types

s
n
 The
 be
below:

 The
• LVS Filter Unused Bipolar

• LVS Filter

• LVS Reduce

Jfet Transistors

LVS performs the following for Jfets that conform to Table10-7: processes soft
substrate pins; pin names are always case-insensitive. Jfet transistor device
(component type J) must have at least three pins— gate, source and drain. I
addition, they may have any number of additional pins with arbitrary names.
optional pins may represent one or more substrate connections or they may
used for any other purpose. The three required pin names must be as listed

Type J devices are considered user-defined from the standpoint of device
recognition. If you specify them differently than what the table shows, these
devices receive no special processing by LVS.

Inductors

LVS performs the following for inductors that conform to Table10-8: processes
soft substrate pins; pin names are always case-insensitive. Inductor devices
(component type L) must have at least two pins— positive and negative. In
addition, they may have any number of additional pins with arbitrary names.

Table 10-7. Jfet Transistor Required Pin Names

Pin Pin Name

J transistor gate G or GATE

J transistor source S or SOURCE

J transistor drain D or DRAIN

other pins any names
Calibre Verification User’s Manual, v9.1_5 10-17

Built-in Device Types LVS Circuit Comparison

 be
elow:

e
d
ary
r they
 listed
optional pins may represent one or more substrate connections or they may
used for any other purpose. The two required pin names must be as listed b

Type L devices are considered user-defined from the standpoint of device
recognition. If you specify them differently than what the table shows, these
devices receive no special processing by LVS.

Voltage Sources

LVS performs the following for voltage sources that conform to Table10-9:
processes soft substrate pins; pin names are always case-insensitive. Voltag
source devices (component type V) must have at least two pins—positive an
negative. In addition, they may have any number of additional pins with arbitr
names. The optional pins may represent one or more substrate connections o
may be used for any other purpose. The two required pin names must be as
below:

Type V devices are considered user-defined from the standpoint of device
recognition. If you specify them differently than what the table shows, these
devices receive no special processing by LVS.

Table 10-8. Inductor Required Pin Names

Pin Pin Name

inductor positive pin POS or P

inductor negative pin NEG or N

optional pins any names

Table 10-9. Voltage Source Required Pin Names

Pin Pin Name

voltage source positive pin POS or P

voltage source negative pin NEG or N

optional pins any names
Calibre Verification User’s Manual, v9.1_510-18

LVS Circuit Comparison Matching of Circuit Elements

e

he
n

k
he

as to
ins

dm
l,
nces.

 in
MS and MF Schematic Devices

MS and MF are special device types that are supported by Mentor Graphics
analog simulation tools and by LVS. They are 3-pin schematic symbols that
represent 4-pin CMOS transistors. The fourth bulk pin is implied by the devic
type. MS devices have their bulk pin implicitly connected to the source, MF
devices have their bulk pin floating.

LVS internally adds a virtual bulk pin to all MS instances in the schematic. T
bulk pin is internally connected to the source net of the instance. The bulk pi
name is “B”.

LVS internally adds a virtual bulk pin to all MF instances in the schematic. A
virtual net is internally created for each instance to represent the floating bul
node. The bulk pin of the instance is internally connected to this virtual net. T
bulk pin name is “B”.

To trigger this special processing, the LVS component type of the instance h
be either MN, MP, LDDN, or LDDP and the instance must have exactly three p
with standard pin names as specified in the section “Built-in Device Types”. The
device type (MS or MF) is specified as the value of the element property on Ed
instances. This means that some property other then element or spice mode
respectively, must be used to specify the LVS component type for these insta
The phy_comp property is a suggested choice. See the section “Component
Types” for more details on specifying component types in the schematic.

Matching of Circuit Elements
LVS iterates between two methods of matching elements: a signature-based
hashing method and a tracing method.

• Signature-based method. LVS assigns signatures to nets and instances
both circuits according to their type and connections. LVS then hashes
circuit elements according to the:

o Signature of the element

o Signatures of elements in nearby environments
Calibre Verification User’s Manual, v9.1_5 10-19

Matching of Circuit Elements LVS Circuit Comparison

ir of
ely

S
nce
cing

ing

s can
rors.
 is

) into

ave
and

ents
the
ed as
o Presence of previously matched elements in their environments

The environment size increases until at least one uniquely matching pa
elements is found. A correspondence is established between all uniqu
matching elements found.

• Tracing method. LVS uses previously matched elements as initial
correspondence points. Starting from these correspondence points, LV
traces both circuits one step at a time. LVS establishes a corresponde
between elements that can be uniquely matched at each step. The tra
continues until LVS:

o Matches all elements

o Detects discrepancies that prevent further tracing

o Detects interchangeable parts of the circuit that prevent further trac

LVS repeats both methods until all elements are matched, or further element
be matched. In the latter case, LVS tries to correct, internally, some of the er
If errors can be corrected, then more elements are matched and the process
repeated.

Connectivity Comparison Results

LVS classifies elements of both compared circuits (nets, instances, and ports
three categories:

• Correct. These elements belong to correctly implemented parts of the
circuit. They are elements that uniquely match identical elements, and
always have corresponding correct elements in the other circuit.

• Incorrect. These elements are certainly wrong. They are elements that h
no identical elements in the other circuit, based on connectivity tracing
signature hashing. Incorrect elements can be matched to different elem
in the other circuit, or be left unmatched (a suggested match). Although
source circuit is treated as a reference, its elements can also be classifi
incorrect.
Calibre Verification User’s Manual, v9.1_510-20

LVS Circuit Comparison Matching of Circuit Elements

be
ts in
used

you

s are,

its,

uire
u
ce

s
ases,

 to
solve

ly
n

it
size.

LVS
• Unmatched.These elements cannot be determined, by the algorithm, to
correct, or not. These elements cannot be uniquely matched to elemen
the other circuit, nor can they be classified as incorrect. This can be ca
by an incorrect element nearby.

Calibre LVS distinguishes between incorrect and unmatched elements to help
analyze errors. In most cases, it is enough to fix the elements classified as
incorrect and ignore the list of unmatched elements. The unmatched element
in most cases, classified as correct when the incorrect elements are fixed.

Initial Correspondence Points

LVS uses pairs of nets, pairs of instances, and pairs of ports from both circu
which have identicalUser-given Names as initial correspondence points. LVS
trusts initial correspondence points and will match elements that form initial
correspondence points, even if they differ from each other. LVS does not req
that initial correspondence points exist. However, it is recommended that yo
specify initial correspondence points on ports of the top-level cell in the sour
and layout by adding text to the input pins.

Resolving Ambiguities

Ambiguities occur in highly parallel and symmetric circuits. These are circuit
where parts can be interchanged without affecting the connectivity. In these c
it is impossible to distinguish between the interchangeable parts.

LVS uses named nets, instances, and ports as initial correspondence points
resolve ambiguous situations. In addition, component subtypes are used to re
ambiguities. LVS also resolves ambiguities by examining properties that are
traced with theTrace Propertyspecification statement. This last technique is on
applied to groups of ambiguous elements that contain no more than a certai
number of elements each. That number is specified in the rule file with theLVS
Property Resolution Maximum specification statement and defaults to 8.

LVS sets a maximum limit to the size of environments used for hashing circu
elements. Various factors, including circuit size, determines the environment
If the environment limit is exceeded and no unique match can be found, LVS
proceeds to the ambiguity resolution stage. In the ambiguity resolution stage,
Calibre Verification User’s Manual, v9.1_5 10-21

Device Reduction LVS Circuit Comparison

rily
rect,
sign

able
able

uits.

h
re
s

vice
eate

vel
.
ries

ries.
he

by
arbitrarily matches some elements which cannot be resolved otherwise. LVS
allows only a minimal amount of arbitrary matching to take place. The arbitra
matched elements are listed in the LVS report. If the arbitrary match is incor
LVS produces discrepancies at a later stage. In this case, the user should as
names to arbitrarily matched elements, or other nearby elements.

To avoid arbitrary matching, it is recommended to name nets on interchange
parts of the circuit. It is acceptable to name one element on every interchange
part. It is always recommended to name the external ports of symmetric circ

Device Reduction
LVS internally reduces groups of devices in the layout and in the source; eac
group is represented by a single virtual device. After reduction, the circuits a
compared in terms of the virtual devices. Device reduction handles situation
where, for example, a single schematic device is implemented by a group of
several parallel or series devices in the layout.

This section describes the semantics of device reduction, specific to each de
grouping, how to specify tolerance levels for device reduction, and how to cr
programs that define how calculations are made during device reduction.

Here are some issues to be aware of:

• Initial correspondence points—For series device reduction in the top-le
cell, nets that serve as initial correspondence points will break a series
Initial correspondence points do not break a series nor interfere with se
reduction in lower-level cells for hierarchical LVS.

• Ports—For series device reduction, connection to a cell port breaks a se
This affects instances in the top-level cell and in hcells, provided that t
port has not been removed, such as trivial ports.

Device Reduction Semantics

The following sections describe how various groups of devices are reduced
Calibre LVS.
Calibre Verification User’s Manual, v9.1_510-22

LVS Circuit Comparison Device Reduction

e of

tor.
type,
s (if
e and
be

,

Generic Device Reduction

Calibre LVS can reduce generic user-defined or built-in devices through the us
the genericLVS Reduce statement.

Parallel MOS Transistor Reduction

Calibre LVS can reduce a group of parallel MOS transistors to a single transis
All transistors in the group must have the same component type, optional sub
number of pins, and pin names. All gate, source, drain pins, and optional pin
any), must be connected to the same nets. Device reduction can swap sourc
drain connections of MN, MP, ME, MD, and M devices. Optional pins can also
swapped if they are specified as logically equivalent. Section “Logically
Equivalent Pins” describes how to specify logical equivalence. To be reduced
MOS transistors must have at least three pins with standard pin names, as
specified in Table10-2.

Figure10-1 shows an example of parallel MOS transistor reduction.

Figure 10-1. Parallel MOS Transistor Reduction

By default, the effective width and length values of the reduced transistor are
computed as follows:

W = sqrt (P * Q)
L = sqrt (P / Q)

where sqrt is the square root function and

P = W1*L1 + W2*L2 + … + Wn*Ln
Q = W1/L1 + W2/L2 + … + Wn/Ln

where Wi and Li are the width and length of theith transistor, respectively.

C

A

B

A

B

C

Calibre Verification User’s Manual, v9.1_5 10-23

Device Reduction LVS Circuit Comparison

drain
es
any

ource
mulas

e
rily
lled
ple

rce,
By default, device reduction also computes the area of source (AS), area of
(AD), perimeter of source (PS), and perimeter of drain (PD), when these valu
are included in user-defined property calculations. The computation considers
possible swapping of source and drain pins. In the standard case, where all s
pins are connected together and all drain pins are connected together, the for
are as follows:

AS = AS1 + AS2 + … + ASn
AD = AD1 + AD2 + … + ADn
PS = PS1 + PS2 + … + PSn
PD = PD1 + PD2 + … + PDn

The values of AS and AD, and PS and PD are interchangeable if some of th
transistors have source and drain pins swapped. Calibre LVS decides arbitra
which pin of the resulting reduced device is called source and which pin is ca
drain; however, property computation is consistent with that decision. An exam
is shown in figure10-2.

Figure 10-2. Effective AS/AD computation with pin swapping

TheLVS Reduce Parallel MOS specification statement controls parallel MOS
transistor reduction.

Effective property values are computed in both layout and source. If default
effective property computation is used to compute width, length, area of sou
area of drain, perimeter of source, and perimeter of drain values, the built-in
property names “w”, “l”, “as”, “ad”, “ps”, or “pd” must be used, respectively,
except when specified otherwise withTrace Property specification statements.

C

A

B

A

B

C
D
AD1=4

D
AD2=5

S
AS3=6

AS1=7
S

AS2=8
S

AD3=9
D

D
AD = AD1+AD2+AS3 = 4+5+6 = 15

AS = AS1+AS2+AD3 = 7+8+9 = 24
S

Calibre Verification User’s Manual, v9.1_510-24

LVS Circuit Comparison Device Reduction

cally

ut
hen
ted

ulas

tor.
type,
 in

S

d
urce
al
ally

ith
Recall that the L property is made available from the input database automati
in Calibre LVS if L is required for effective W calculations. The following rule
file example shows how this may occur:

LVS REDUCE PARALLEL MOS YES
TRACE PROPERTY MP W W 0 //trace W only

In this example, only W will be traced for MP devices. If L is present in the inp
database, L will also be available automatically for property computations. W
parallel MOS device reduction occurs, effective W and L values will be calcula
for reduced MP devices and the Trace Property statement will have valid W
values to trace.

The default effective property computation can be overridden, and other form
can be specified as described in the section “User-defined Property Reduction”.

Series MOS Transistor Reduction

Calibre LVS can reduce a group of series MOS transistors to a single transis
All transistors in the group must have the same component type, optional sub
number of pins, and pin names. All source and drain pins must be connected
series. TheLVS Reduce Series MOSspecification statement controls series MO
reduction.

Gate, bulk, and optional pins must be connected to the same nets (parallel),
respectively. In MN, MP, ME, MD, and M devices, source and drain are
equivalent and their polarity is immaterial. In LDDN, LDDP, LDDE, LDDD, an
LDD devices, source and drain must alternate within the series; a source-to-so
or drain-to-drain connection will break the chain at that point. Bulk and option
pins, for all transistor types, are interchangeable if they are specified as logic
equivalent. Section “Logically Equivalent Pins” describes how to specify logical
equivalence. To be reduced, MOS transistors must have at least three pins w
standard pin names, as specified in Table10-2.
Calibre Verification User’s Manual, v9.1_5 10-25

Device Reduction LVS Circuit Comparison

AS),
ries

he

ulas
Figure10-3 shows an example of series MOS transistor reduction.

Figure 10-3. Series MOS Transistor Reduction

By default, the effective width and length values of the reduced transistor are
computed as follows:

 W = sqrt (P / Q)
 L = sqrt (P * Q)

where sqrt is the square root function and

 P = W1*L1 + W2*L2 + … + Wn*Ln
 Q = L1/W1 + L2/W2 + … + Ln/Wn

where Wi, Li are the width and length of theith transistor, respectively.

By default, device reduction does not compute the values for area of source (
area of drain (AD), perimeter of source (PS), and perimeter of drain (PD) in se
MOS transistors.

TheLVS Reduce Series MOS specification statement controls series MOS
transistor reduction.

Effective property values are computed in both layout and source. If default
effective property computation is used to compute width and length values, t
built-in property names “w” and “l” must be used respectively, except when
specified otherwise withTrace Property specification statements.

The default effective property computation can be overridden, and other form
can be specified as described in the section “User-defined Property Reduction”.

C

A

B

A

B C
Calibre Verification User’s Manual, v9.1_510-26

LVS Circuit Comparison Device Reduction

type,
 in

me

ill
re

,
ames,

d to
Semi-series MOS Transistor Reduction

Calibre LVS can reduce a group of semi-series MOS transistors to a single
transistor.

All transistors in the group must have the same component type, optional sub
number of pins, and pin names. All source and drain pins must be connected
series, with bypass nets as shown in figure10-4. Gate, bulk, and optional pins
must be connected to the same nets (parallel), respectively.

Gate, bulk, and optional pins must be connected in parallel (that is, to the sa
nets respectively). In MN, MP, ME, MD, and M devices, source and drain are
equivalent and their polarity is immaterial.

In LDDN, LDDP, LDDE, LDDD, and LDD devices, source and drain must
alternate within the series; a source-to-source or drain-to-drain connection w
break the chain at that point. Bulk and optional pins, for all transistor types, a
interchangeable if they are specified as logically equivalent. Section “Logically
Equivalent Pins” describes how to specify logical equivalence. To be reduced
semi-series MOS transistors must have at least three pins with standard pin n
as specified in Table10-2.

Figure10-4illustrates this functionality. The bypass net must not be connecte
any devices outside of the respective “row” of the series-parallel structure.
Calibre Verification User’s Manual, v9.1_5 10-27

Device Reduction LVS Circuit Comparison

ed as
Figure 10-4. Reduce Semi-series MOS, Example

Semi-series MOS reduction is independent of regular series MOS reduction;
either or both may be performed.

By default, the width and length values of the reduced transistor are comput
follows:

W = sqrt (P / Q)
L = sqrt (P * Q)

D

A

E

F

B C

G

A B

E

A B

E

bypass
net

bypass
net

D

A

E

F

B C

G

Calibre Verification User’s Manual, v9.1_510-28

LVS Circuit Comparison Device Reduction

AS),
ries

s

he

ulas

ingle

e

en
Where sqrt is the square root function and

P = W1*L1 + W2*L2 + … + Wn*Ln
Q = L1/W1 + L2/W2 + … + Ln/Wn

where Wi, Li are the width and length of theith transistor, respectively.

By default, device reduction does not compute the values for area of source (
area of drain (AD), perimeter of source (PS), and perimeter of drain (PD) in se
MOS transistors.

TheLVS Reduce Semi Series MOS specification statement controls semi-serie
MOS transistor reduction.

Effective property values are computed in both layout and source. If default
effective property computation is used to compute width and length values, t
built-in property names “w” and “l” must be used respectively, except when
specified otherwise withTrace Property specification statements.

The default effective property computation can be overridden and other form
can be specified as described in the section “User-defined Property Reduction”.

Split Gate Reduction

Calibre LVS can reduce a split-gate structure to a single gate structure.

If you request split gate reduction, then split-gate structures are reduced to s
gate structures. A split-gate structure consists of two or more strings of MOS
transistors (component type MN, MP, ME, MD, M, LDDN, LDDP, LDDE,
LDDD or LDD). The transistors in each string are connected in series and th
strings are tied to a common net at each end. The gate pins of respective
transistors in each string are shared as shown in figure10-5. Each group of
respective transistors in the original structure is represented with a single
transistor in the reduced structure.

Note

Split gate reduction implies parallel MOS transistor reduction ev
whenSeries MOS Transistor Reduction is not requested.
Calibre Verification User’s Manual, v9.1_5 10-29

Device Reduction LVS Circuit Comparison

rs
ion

umber
 of

more
at is,
D

s, the
in pin

pins

al
ial

te”
 are
tive
re
other
WhenLogic Gate Recognition is enabled, then the order of respective transisto
within each string can be different in different strings; when logic gate recognit
is disabled then the order must be the same in all strings.

All the transistors must have the same the same component type, the same n
of pins and the same pin names. Subtypes must be the same in each group
transistors that are collapsed together. For example, in Figure10-5subtypes must
be the same in each row; they can be different in different rows. If there are
then three pins, then all those optional pins must be connected in parallel. Th
they must all be connected to the same nets respectively. In MN, MP, ME, M
and M devices, source and drain pins may be swapped. In LDD-type device
series connection must be between the source pin of one device and the dra
of another. Optional pins may be swapped if they are specified as logically
equivalent. See the section onLogically Equivalent Pins.

To participate in split gate reduction, MOS transistors must have at least three
with the standard pin names as specified in the sectionBuilt-in Device Types.
Initial correspondence points prevent split gate reduction; specifically, intern
nets in a split gate structure are not collapsed with other nets if they form init
correspondence points.

Figure 10-5. Split Gate Reduction

Individual transistors in a split-gate structure are matched based on their “ga
pin connections (transistor pin name G). Internal nets in a split-gate structure
matched to corresponding nets in the other design based solely on their rela
distance from the “top” and “bottom” of the structure. All original internal nets a
matched; as a result, several nets in one design will match a single net in the

IN2

IN1

IN2

IN1
Calibre Verification User’s Manual, v9.1_510-30

LVS Circuit Comparison Device Reduction

et is
ets in

, the

n.

ept

ulas

 to

.
y

gate
ction
s the
is
design. If there is a split-gate structure on both sides then a representative n
chosen from each group of nets that were collapsed together and respective n
the other design are matched to that representative.

By default, for each group of transistors which is reduced to a single transistor
width and length values of the reduced transistor are computed as follows:

L = sqrt (P / Q)
W = sqrt (P* Q)

where sqrt is the square root function and

P = W1*L1 + W2*L2 + … + Wn*Ln
Q = W1/L1 + W2/L2 + … + Wn/Ln

where Wi, Li are the width and length of theith transistor, respectively.

TheLVS Reduce Split Gates specification statement controls split gate reductio

Effective width and length values are computed in both layout and source. If
default effective property computation is used to compute width and length
values, the built-in property names “w” and “l” must be used, respectively, exc
when specified otherwise withTrace Property specification statements.

The default effective property computation can be overridden and other form
can be specified as described in the section “User-defined Property Reduction”.

Semi-split Gate Reduction

Semi-split gate reduction can be performed by using the SEMI ALSO option
the LVS Reduce Split Gates statement.

Calibre LVS can reduce a semi-split gate structure in addition full-split gates
Semi-split gate reduction is similar to full-split gate reduction, except that onl
some of the gate pins in the structure must be shared. Transistors with shared
pins are collapsed; transistors with different gate pins are left separate. Redu
proceeds in horizontal rows from the top and bottom of the structure as long a
transistors in each row have shared gate pins. Reduction stops when a row
encountered where gate pins are not shared.
Calibre Verification User’s Manual, v9.1_5 10-31

Device Reduction LVS Circuit Comparison

gs of
ed.

order
Figure10-6 shows that transistors in row E are not reduced. Unlike full-split
gates, the order of transistors in semi-split gates must be the same for all strin
MOS transistors; regardless of whether or not logic gate recognition is enabl
All strings must consist of the same number of transistors.

Figure 10-6. Reduce Split Gates, Example

The SAME ORDER option of the LVS Reduce Split Gates specification
statement specifies that split gates should be collapsed only when the input
is the same for all strings of transistors that form the split gate.

Figure10-7 shows the effect of the SAME ORDER option.

B

A

C D

E

F G

H

B

A

C D

E

F

H

G

Calibre Verification User’s Manual, v9.1_510-32

LVS Circuit Comparison Device Reduction

nt
onal
p the

,
 as
r

Figure 10-7. Reduce Split Gates SAME ORDER, Example

Parallel Bipolar Transistor Reduction

Calibre LVS can reduce a group of parallel bipolar transistors to a single
transistor. All transistors in the group must have the same optional compone
subtype, number of pins, and pin names. All collector, base, emitter, and opti
pins (if any), must be connected to the same nets. Device reduction can swa
optional pins if they are specified as logically equivalent. Section “Logically
Equivalent Pins” describes how to specify logical equivalence. To be reduced
bipolar transistors must have at least three pins with the standard pin names
specified in table10-6. Figure10-8shows an example of parallel bipolar transisto
reduction.

Figure 10-8. Parallel Bipolar Transistor Reduction

By default, the area of the reduced transistor is computed as follows:

A = A1 + A2 + … + An

IN2

IN1

IN2

IN1

IN2

IN1

Different input order.
Not reduced.

Same input order.
Reduced.

The reduced
structure.

C

A

B

A

B

CQ Q Q Q
Calibre Verification User’s Manual, v9.1_5 10-33

Device Reduction LVS Circuit Comparison

ed as

r

lues,
t

ulas

ingle
nt
 be

e

e

where Ai is the area of theith transistor.

By default, the width and length values of the reduced transistor are comput
follows:

W = sqrt (P * Q)
L = sqrt (P / Q)

where sqrt is the square root function and

P = W1 * L1 + W2 * L2 + … + Wn * Ln
Q = W1 / L1 + W2 / L2 + … + Wn / Ln

where Wi, Li are the width and length of theith transistor, respectively.

TheLVS Reduce Parallel Bipolarspecification statement controls parallel bipola
transistor reduction.

Effective property values are computed in both layout and source. If default
effective property computation is used to compute area, width, and length va
the built-in property names “a”, “w”, and “l” must be used respectively, excep
when specified otherwise withTrace Property specification statements.

The default effective property computation can be overridden and other form
can be specified as described in the section “User-defined Property Reduction”.

Series Capacitor Reduction

Calibre LVS can reduce a group of serially connected capacitor devices to a s
capacitor. All capacitors in the group must have the same optional compone
subtype, number of pins, and pin names. All positive and negative pins must
connected in series. The positive and negative pins must alternate within the
series; a positive-to-positive or negative-to-negative connection will break th
chain at that point, unless they are specified as logically equivalent. Section
“Logically Equivalent Pins” describes how to specify logical equivalence. All
optional pins must be connected to the same nets (parallel), respectively. Th
optional pins can be swapped if they are specified as logically equivalent.
Calibre Verification User’s Manual, v9.1_510-34

LVS Circuit Comparison Device Reduction

ames

ult
built-

ulas

ll
mber
 be

s
s can
itors
To be reduced, capacitors must have at least two pins with the standard pin n
as specified in table10-3.

Figure10-9 shows an example of series capacitor reduction.

Figure 10-9. Series Capacitor Reduction

By default, the capacitance of the resulting device is computed as follows:

C = 1 / (1/C1 + 1/C2 + … + 1/Cn)

where Ci is the capacitance of theith capacitor, respectively.

TheLVS Reduce Series Capacitors specification statement controls series
capacitor reduction.

Effective capacitance values are computed in both layout and source. If defa
effective property computation is used to compute the capacitance value, the
in property name “c” must be used, except when specified otherwise withTrace
Property specification statements.

The default effective property computation can be overridden, and other form
can be specified as described in the section “User-defined Property Reduction”.

Parallel Capacitor Reduction

Calibre LVS can reduce a group of parallel capacitors to a single capacitor. A
capacitors in the group must have the same optional component subtype, nu
of pins, and pin names. All positive, negative, and optional pins (if any) must
connected to the same nets. The positive, negative, and optional pins can be
swapped if they are specified as logically equivalent. Section “Logically
Equivalent Pins” describes how to specify logical equivalence. All optional pin
must be connected to the same nets (parallel), respectively. The optional pin
be swapped if they are specified as logically equivalent. To be reduced, capac
must have at least two pins with the standard pin names as specified in table10-3.

Figure10-10 shows an example of series capacitor reduction.

A B A B
Calibre Verification User’s Manual, v9.1_5 10-35

Device Reduction LVS Circuit Comparison

lting

t and
nce,
 be

ulas

tors
, and
Figure 10-10. Parallel Capacitor Reduction

By default, the effective capacitance, area, and perimeter values of the resu
device are computed as follows:

C = C1 + C2 + … + Cn
A = A1 + A2 + … + An
P = P1 + P2 + … + Pn

where Ci, Ai, and Pi are the capacitance, area, and perimeter of theith capacitor,
respectively.

TheLVS Reduce Parallel Capacitors specification statement controls parallel
capacitor reduction.

Effective capacitance, area, and perimeter values are computed in both layou
source. If default effective property computation is used to compute capacita
area, and perimeter values, the built-in property names “c”, “a”, and “p” must
used, respectively, except when specified otherwise withTrace Property
specification statements.

The default effective property computation can be overridden and other form
can be specified as described in the section “User-defined Property Reduction”.

Series Resistor Reduction

Calibre LVS can reduce a group of serial resistors to a single resistor. All resis
in the group must have the same optional component subtype, number of pins

A BA B
Calibre Verification User’s Manual, v9.1_510-36

LVS Circuit Comparison Device Reduction

itive
hey

cted
they

es as

ows:

 as

es
pin names. All positive and negative pins must be connected in series. The
positive and negative pins must alternate within the series; a positive-to-pos
or negative-to-negative connection will break the chain at that point, unless t
are specified as logically equivalent. Section “Logically Equivalent Pins”
describes how to specify logical equivalence. All optional pins must be conne
to the same nets (parallel), respectively. The optional pins can be swapped if
are specified as logically equivalent.

To be reduced, resistors must have at least two pins with the standard pin nam
specified in table10-4.

Figure10-11 shows an example of series resistor reduction.

Figure 10-11. Series Resistor Reduction

By default, the resistance value of the reduced transistor is computed as foll

R = R1 + R2 + … Rn

where Ri is the resistance of theith resistor, respectively.

By default, the width and length values of the resulting device are computed
follows:

W = sqrt (P / Q)
L = sqrt (P * Q)

where sqrt is the square root function and

P = W1*L1 + W2*L2 + ... + Wn*Ln
Q = L1/W1 + L2/W2 + ... + Ln/Wn

where Wi, Li are the width and length of theith resistor respectively.

TheLVS Reduce Series Resistors specification statement variable controls seri
resistor reduction.

A B A B
Calibre Verification User’s Manual, v9.1_5 10-37

Device Reduction LVS Circuit Comparison

d
ce,

ulas

er of

s
s can

stors

ows:
Effective resistance, width, and length values are computed in both layout an
source. If default effective property computation is used to compute resistan
width, and length values, the built-in property names “r”, “w”, and “l” must be
used, respectively, except when specified otherwise withTrace Property
specification statements.

The default effective property computation can be overridden, and other form
can be specified as described in the section “User-defined Property Reduction”.

Parallel Resistor Reduction

Calibre LVS can reduce a group of parallel resistors to a single resistor. All
resistors in the group must have the same optional component subtype, numb
pins, and pin names. All positive, negative, and optional pins (if any) must be
connected to the same nets. The positive, negative, and optional pins can be
swapped if they are specified as logically equivalent. Section “Logically
Equivalent Pins” describes how to specify logical equivalence. All optional pin
must be connected to the same nets (parallel), respectively. The optional pin
be swapped if they are specified as logically equivalent. To be reduced, resi
must have at least two pins with the standard pin names as specified in table10-4.

Figure10-12 shows an example of parallel resistor reduction.

Figure 10-12. Parallel Resistor Reduction

By default, the resistance value of the reduced transistor is computed as foll

R = 1 / (1/R1 + 1/R2 + … + 1/Rn)

where Ri is the resistance of theith resistor.

A BA B
Calibre Verification User’s Manual, v9.1_510-38

LVS Circuit Comparison Device Reduction

 as

d

 “l”

ulas

s in
, and

the
lly

ndard
By default, the width and length values of the resulting device are computed
follows:

W = sqrt (P * Q)
L = sqrt (P / Q)

where sqrt is the square root function and

P = W1*L1 + W2*L2 + … + Wn*Ln
Q = W1/L1 + W2/L2 + … + Wn/Ln

where Wi and Li are the width and length of theith resistor, respectively.

TheLVS Reduce Parallel Resistors specification statement controls parallel
resistor reduction.

Effective resistance, width, and length values are computed in both layout an
source. If default effective property computation is used, then to compute
resistance, width, and length values, the built-in property names “r”, “w”, and
must be used, respectively, except when specified otherwise withTrace Property
specification statements.

The default effective property computation can be overridden, and other form
can be specified as described in the section “User-defined Property Reduction”.

Parallel Diode Reduction

Calibre LVS can reduce a group of parallel diodes to a single diode. All diode
the group must have the same optional component subtype, number of pins
pin names. All positive, negative pins, and optional pins, must be connected to
same nets. Device reduction can swap all pins if they are specified as logica
equivalent. Section “Logically Equivalent Pins” describes how to specify logical
equivalence. To be reduced, diodes must have at least two pins with the sta
pin names as specified in table10-5.

Figure10-13 shows an example of parallel diode reduction.
Calibre Verification User’s Manual, v9.1_5 10-39

Device Reduction LVS Circuit Comparison

d as

or

. If
r

cept

ulas

e
ame

ly
Figure 10-13. Parallel Diode Reduction

By default, the area and perimeter values of the reduced diode are compute
follows:

A = A1 + A2 + … + An
P = P1 + P2 + … + Pn

where Ai and Pi are the area and perimeter of theith diode respectively.

TheLVS Reduce Parallel Diodesspecification statement controls parallel resist
reduction.

Effective area and perimeter values are computed in both layout and source
default effective property computation is used to compute area and perimete
values, the built-in property names “a” and “p” must be used, respectively, ex
when specified otherwise withTrace Property specification statements.

The default effective property computation can be overridden, and other form
can be specified as described in the section “User-defined Property Reduction”.

Unequally Reduced Devices

Calibre LVS verifies that each group of parallel MOS transistors in the sourc
corresponds to a group of parallel MOS transistors in the layout that has the s
number of elements when parallel MOS transistor reduction is requested.

Warnings are issued in the LVS report if this is not the case. This check is on
performed for properly formed MOS transistors; specifically, instances with

A BA B
Calibre Verification User’s Manual, v9.1_510-40

LVS Circuit Comparison Device Reduction

out
hen

put

s
r

up
de
e in

ula
ion
then
component type MN, MP, ME, MD, M, LDDN, LDDP, LDDE, LDDD, or LDD
that have at least three pins with the standard names as specified in table10-2.

Placing groups of parallel MOS transistors in the source ensures that the lay
will consist of a specified number of transistors. If this is not a requirement, t
single transistors should be used in the source.

Missing and Unknown Property Values

Under certain conditions, LVS may assign “missing” or “unknown” values to
properties during device reduction. This may occur during effective property
calculation, using either built-in or user-defined effective property calculation
formulas, and using either built-in or generic device reduction specification
statements.

Consider a property X for which effective values are being computed, and
consider a group of devices that are being reduced to a single device (the in
group). The following rules apply:

• Original input devices have “missing” property values if the property
values are not found in the input database.

• If property X is “missing” on all devices in the input group then the
effective value for X is “missing”.

• Otherwise, if all input values are present and have valid numeric value
then the effective value for X is calculated as specified by the built-in o
user-specified formulas, whichever applies.

Input values is defined as the set of all property values in the input gro
that participate in the calculation of effective value for X. This may inclu
original values of X as well as values of other properties that participat
the calculation of X (so-called “partner” properties).

If the effective value for X cannot be calculated because there is no form
for the calculation of X, or because of a run-time problem in the calculat
(such as division by zero, overflow, and so on), or for another reason,
the effective value for X is “unknown”.
Calibre Verification User’s Manual, v9.1_5 10-41

Device Reduction LVS Circuit Comparison

of
r

are
l

y are

ion

plies

erty

ny
uction
• Otherwise, the effective value for X is “unknown”.

For example, an “unknown” value is obtained when values of property X are
present on some devices in the input group but missing on others; or if some
devices in the input group already have “unknown” values for X; or if values
property X are present on all devices in the input group but values of anothe
property that participates in the calculation of X are missing; and so on.

Unknown property values are reported as discrepancies in thePROPERTY ERRORS

section of the LVS report if the property in question is traced. Unknown values
represented in the report with “?” characters. Missing property values in origina
input devices are reported as discrepancies in theSOURCE ERRORS or LAYOUT

ERRORS sections of the report (unless disabled withLVS Report Option E).
Missing property values on reduced devices are not reported at all, since the
necessarily caused by missing values on original input devices.

Device Reduction Program Structure

Device reduction programs may appear in various LVS Reduce... specificat
statements. For example, recall the syntax for parallel MOS reduction:

LVS Reduce Parallel MOS { YES [reduction_program] | NO }

A device reduction program is a list of instructions that control how device
reduction is done and what is computed in the process. A device reduction
program is always part of some LVS Reduce... specification statement and ap
to devices on which that statement operates. The basic structure of a device
reduction program consists of a reduction tolerance and/or an effective prop
computation. The entire program is enclosed by square brackets.

The reduction tolerance and effective property computation may appear in a
order. At least one of one of these statements must be present in a device red
program. At most one reduction tolerance section and at most one effective
Calibre Verification User’s Manual, v9.1_510-42

LVS Circuit Comparison Device Reduction

.

-
o

property computation section may be specified per device reduction program
Here is a simple example:

LVS REDUCE PARALLEL RESISTORS YES [
tolerance W 0
effective W
W = min(W)

]

Tolerance in Device Reduction

The device reduction statements, listed below, allow you to limit or prevent
reduction of devices that have different property values.

You specify the desired limitations through the use of the TOLERANCE
secondary keyword set.

[TOLERANCE property_name tolerance_number]

The parameters of this secondary keyword set is fully described on each
dictionary page for the LVS Reduce statements.

For example:

LVS REDUCE PARALLEL MOS YES [TOLERANCE L 0 W 0]

The TOLERANCE keyword is followed by one or moreproperty_name
tolerance_number pairs, indicating property names and respective tolerance
values. Eachtolerance_number parameter belongs to theproperty_name
parameter that precedes it. Property names must be simple names; property
name/Spice-parameter combinations such as “instpar(w)” are not allowed. T
handle such combinations use theLVS Property Map specification statement.

LVS Reduce Parallel Bipolar LVS Reduce Series Capacitors

LVS Reduce Parallel Capacitors LVS Reduce Series MOS

LVS Reduce Parallel Diodes LVS Reduce Series Resistors

LVS Reduce Parallel MOS LVS Reduce Split Gates

LVS Reduce Parallel Resistors
Calibre Verification User’s Manual, v9.1_5 10-43

Device Reduction LVS Circuit Comparison

erty

00
es
lled
ely
are

in at

ction
d. At
been
. In
l

s
y

s if
e is
can

tions.
At most one TOLERANCE section may be specified per device reduction
program.

Devices are not reduced together if they own the indicated property, the prop
has different values and the difference exceedstolerance_number ;
tolerance_number is a floating point number indicating the tolerance in
percentage points. The formula for calculating difference is abs((v1-v2)/v1)*1
where abs is the absolute value function and v1 and v2 are the property valu
being compared. It is, of course, arbitrary which property value gets to be ca
v1 and which one is v2. A property with zero value is considered to be infinit
different from any non-zero property value. Two properties with zero values
identical and the difference between them is zero.

When severalproperty_name tolerance_number pairs are specified, the check
is done for each property separately; devices are not reduced if the difference
least one property exceeds the tolerance specified for that property.

In the process of device reduction, LVS iterates over series and parallel redu
steps; for example, series and parallel capacitor reduction steps are repeate
each iteration, LVS computes effective property values for devices that have
reducedso far(like effective width, length, capacitance, resistance, and so on)
the first iteration, processing of TOLERANCE statements is based on origina
property values specified in the input database. In subsequent iterations,
processing of TOLERANCE statements is based on effective property value
computed so far. At each step, devices may have valid property values, or the
may receive property values of type “missing” or “unknown”, as described in
sectionMissing and Unknown Property Values. The treatment of the latter is
described below.

If a property used in a reduction TOLERANCE statement is “missing” on a
device, then the device participates in the reduction as if the TOLERANCE
statement were not present. In other words, with respect to the reduction
TOLERANCE statement, a device with a “missing” property value behaves a
the property value was identical to the values on all other devices. If the devic
an original input device then a missing-property discrepancy is reported. (You
disable missing-property discrepancies with LVS Report Option E).

If a property used in a reduction TOLERANCE statement is “unknown” on a
device then the device does not participate in any subsequent reduction itera
Calibre Verification User’s Manual, v9.1_510-44

LVS Circuit Comparison Device Reduction

ned
ed
n

and

alues
Devices with “unknown” property values that cause reduction to cease in this
manner are reported under the headings “Source Instances With Undetermi
Reduction TOLERANCE Properties” and “Layout Instances With Undetermin
Reduction TOLERANCE Properties” in the Information And Warnings sectio
of the LVS report. Here is an example:

o Layout Instances With Undetermined Reduction TOLERANCE
Properties:

Listed below are layout instances which caused reduction to
cease because: [a] LVS REDUCE ... [TOLERANCE <property>
<value>] was specified, and [b] the <property> on that
instance was not available. The instance in question was
reduced from other instances, and the effective property
value could not be computed.)

instance property

M2001 (MN) (reduced instance) w: ?
M2014 (MN) (reduced instance) w: ?
M2021 (MN) (reduced instance) w: ?

Reduction Tolerance Examples

The following statement reduces parallel MOS devices only when the length
values are equal.

LVS REDUCE PARALLEL MOS YES [TOLERANCE L 0]

The following statement reduces parallel MOS devices only when both width
length are equal.

LVS REDUCE PARALLEL MOS YES [TOLERANCE L 0 W 0]

The following statement reduces series resistors only when the resistance v
are within 5% tolerance and the length values are equal.

LVS REDUCE SERIES RESISTORS YES [TOLERANCE R 5 L 0]
Calibre Verification User’s Manual, v9.1_5 10-45

Device Reduction LVS Circuit Comparison

ce
fines
ritten
n

ilt-in
ide

r

User-defined Property Reduction

You can specify an effective property computation section in most LVS Redu
statements. This optional section consists of a user-provided program that de
the calculations to take place during device reduction. These programs are w
in a language similar to the one available for defining properties in associatio
with the Device statement.

The presence of an effective property program cancels and overrides any bu
effective property computation for the particular device type. When you prov
an effective property program, you must define formulas for all properties of
interest, including built-in properties.

Some effective property programs can become lengthy and may extend ove
several lines in the rule file.

You can specify an effective property program in the following specification
statements:

For information on the syntax for the rule file statements above, refer to the
Standard Verification Rule Format (SVRF) Manual.

You cannot specify an effective property program in the following statement:

Effective Property Language Example

This section describes a sample usage of the effective property language by
explaining the sample line by line.

LVS Reduce Parallel Bipolar LVS Reduce Series Capacitors

LVS Reduce Parallel Capacitors LVS Reduce Series MOS

LVS Reduce Parallel Diodes LVS Reduce Series Resistors

LVS Reduce Parallel MOS LVS Reduce Split Gates

LVS Reduce Parallel Resistors

LVS Reduce Semi Series MOS
Calibre Verification User’s Manual, v9.1_510-46

LVS Circuit Comparison Device Reduction

ers
 the

he
re

S

This example illustrates many of the features of the language. The line numb
on the left are an aid for discussion and are not part of the example text and
language is case insensitive.

In the explanation that follows the example, the term “input group” refers to t
set of devices being reduced to a single instance. Effective property values a
calculated based upon this input group, and stored on the resulting (effective)
instance.

1 lvs reduce parallel resistors yes
2 [
3 effective r, l, w
4 //
5 p = sum (w*l)
6 q = sum (w/l)
7 w = sqrt (p*q)
8 l = sqrt (p/q)
9 //

10 checkForZero = prod (r)
11 if (checkForZero == 0)
12 r = 0
13 else
14 { // demonstrate curly braces
15 // assign 1/sum(1/r) in two steps:
16 recipSum = sum(1/r)
17 r = 1 / recipSum
18 }
19]

• Line 1—A standard LVS Reduce specification statement.

In this case, it enables parallel resistor reduction.

• Line 2—An opening square bracket.

The opening square bracket ([) is necessary to indicate an effective
property program. This square bracket must immediately follow the YE
keyword. The square bracket may only be present if YES is present.

• Line 3—The EFFECTIVE property statement.
Calibre Verification User’s Manual, v9.1_5 10-47

Device Reduction LVS Circuit Comparison

ies
m.
n

.

d on

rty

lines
put

E

The EFFECTIVE property statement declares the names of all propert
for which effective property values are computed throughout the progra
Each property listed here must be assigned a value in the program. If a
effective property is to be calculated, it must be listed in this statement

In this example, the names represent both input values (properties foun
the input group) and output values (the properties to be calculated and
assigned to the resulting instance).

The properties are part of a comma (,) separated list.

• Line 4—A commented line.

For information on the types of comments allowed in the effective prope
language, refer to section “Comments”.

• Lines 5 and 6—Local variable declaration and value assignment.

o Line 5—The local variable P is declared, and assigned the value:

W1*L1 + W2*L2 + ... + Wn*Ln

where Wi and Li are the width and length of theith device in the input
group, respectively.

o Line 6—The local variable Q is declared, and assigned the value:

W1/L1 + W2/L2 + ... + Wn/Ln

where Wi and Li are the width and length of theith device in the input
group, respectively.

The W and L variables in these equations are not the same variables in
7 and 8. The W and L variables referred to here, are retrieved from the in
group, while the W and L variables in lines 7 and 8 are assigned to the
resulting instance.

• Lines 7 and 8—Value assignment to variables declared in the EFFECTIV
property statement.
Calibre Verification User’s Manual, v9.1_510-48

LVS Circuit Comparison Device Reduction

nt,

nt,

y
atisfy
gle

he

ld

ed
alue
erty

rd
alue

red
o Line 7—The value W, declared in the EFFECTIVE property stateme
is assigned a value.

o Line 8—The value L, declared in the EFFECTIVE property stateme
is assigned a value.

Since W and L are declared in the EFFECTIVE property statement, the
must be assigned values somewhere in the program. These two lines s
that requirement. The resulting W and L values are assigned to the sin
instance which represents the reduced input group.

• Line 9—See line 4

• Lines 10 through 18—Property language usage showing how to avoid t
use of zero (0) values from the input group.

If you only provided the statement:

r = 1/sum(1/r)

and an Ri in the input group had a zero value, the effective R value wou
be set to the unknown value. The unknown value is represented by a
question mark (?) in the LVS Report file. The unknown value is assign
because division by zero is attempted and is undefined. The unknown v
can cause property discrepancies to be reported when the Trace Prop
statement is in use. The unknown value can also cause input group
reduction to be avoided when the you specify the TOLERANCE keywo
in an LVS Reduce statement. Instead, lines 10-18 set the effective R v
to zero if the input group contains any zero-valued Ri values.

o Line 10—The local, and temporary, variable checkForZero is decla
and assigned the value:

R1 * R2 * ... * Rn

where Ri represents the R value for theith instance in the input group.
Note that checkForZero will be zero ifany of the input R values are
zero.

o Line 11—A conditional statement.
Calibre Verification User’s Manual, v9.1_5 10-49

Device Reduction LVS Circuit Comparison

it
in C
ent

t

and
o Line 12—The effective R value is assigned a zero value if the
conditional statement in line 11 is true. This avoids the use of the
unknown value.

o Line 13—The ELSE statement.

o Line 14—Demonstrate the use of the opening curly brace ({) and how
can be used to group statements into a single logical statement. As
or C++, this grouping is useful for indicating the extent of a depend
clause for a conditional statement.

o Line 15—A commented line that describes the goal of the statemen
group.

o Line 16—The local, and temporary, variable recipSum is declared
assigned the value:

1/R1 + 1/R2 + ... 1/Rn

where Ri represents the R value for theith instance in the input group

o Line 17—The effective R value is assigned the value:

1 / recipSum

which is equivalent to

1 / (1/R1 + 1/R2 + ... 1/Rn)

You could replace lines 14-18 with the single statement:

R = 1/SUM(1/R)

but, for this example, we wanted to show the usage of statement
grouping within curly braces ({}).

o Line 18—A closing curly brace (}) ends the statement group.

o Line 19—A closing square bracket (]) ends the effective property
program.
Calibre Verification User’s Manual, v9.1_510-50

LVS Circuit Comparison Device Reduction

der

ies to

e

at the
ion of

s;
d in
he
ver,

input
Note you could replace lines 14-18 by the following:

r = 1 / sum(1/r)

The built-in language is similar to the C programming language without the
semicolons. Semicolons are left out for stylistic compatibility with the remain
of the rule file. The effective property language is derived from, and is quite
similar to, the property specification language provided with the Device
statement.

Effective Property Language Syntax

You can specify at most one effective property program per LVS Reduce
specification statement. The program lists the names and types of the propert
be computed upon reduction, and specifies the method of computation from
available data.

For the sake of the discussion below, “input group” means the set of devices
which are being reduced to a single instance. Effective property values will b
calculated based upon this input group, and stored on the resulting (effective)
instance.

The effective property program is placed between a pair of square brackets
end of an LVS Reduce specification statement. This placement is an extens
the use of square brackets to contain reduction TOLERANCE statements.
Effective property programs cannot be shared by multiple LVS REDUCE
statements.

• Numeric Restriction

The effective property language handles only numeric valued propertie
string valued properties are not supported. All literal values are specifie
double precision floating point and effective calculations, specified by t
user in the program, are also carried out in double precision. Note, howe
that effective values are restricted to single precision during the LVS
comparison phase. Effectively, values are restricted to single precision
when they are assigned to the single instance representing a reduced
group.
Calibre Verification User’s Manual, v9.1_5 10-51

Device Reduction LVS Circuit Comparison

the

an
y a
erty
ent,
age.

ule

nt.
hich

ued

ment

e a

s no
• Language Style

The built-in language is a blend of the expression and computational
statement style of C, together with conventions common to the rest of
rule file, also added were necessary declarations and functions.

• Structure

The effective property computation built-in language is structured as a
sequence of statements. First there is an optional DEBUG statement,
optional WARN statement, a required EFFECTIVE statement, and finall
sequence of one or more property computation statements. Each prop
computation statement is either an assignment statement, an IF statem
or an IF … ELSE statement. There are no loop statements in the langu

• Statement Placement and Continuation

In keeping with the previously established syntactic conventions of the r
file, semicolons or other separating devices are not used between
statements. The DEBUG, WARN, EFFECTIVE, and IF statements are
recognized by their keywords which must be the first item in the stateme
Assignment statements are recognized by the equal sign (=) operator w
is always the second item in the statement. Statements may be contin
onto multiple lines by breaking them at any white space. Continuation
characters are not employed. Common practice dictates that each state
begins on a new line, but this is not required.

• Reserved Keywords

The keywords of the language such as DEBUG, PROPERTY, IF, and
ELSE are reserved. Similar to general rule file syntax, if a word is
surrounded by single quotes (‘) or double quotes (“), it is not taken to b
keyword but rather a normal identifier for a property name or a local
(temporary) variable. Therefore, the reserved nature of keywords place
restrictions on property, or local variable naming.
Calibre Verification User’s Manual, v9.1_510-52

LVS Circuit Comparison Device Reduction

e
g
r
be

to
d to

 is

ces:

n the
ts.

ces
r

list

ed
• Optional Keyword and Function Spellings

The longer keywords and function names often have a shortened form
consisting of a set of letters from the complete name. In this section, th
letters in the shortened form are shown in uppercase with the remainin
letters in lower-case. Thus EFFective indicates that the spelling is eithe
EFFECTIVE or EFF. If any of the optional letters are used, they must all
used; therefore, EFFECT is not a valid shortening of EFFective.

• Case Sensitivity

The language is case insensitive. All upper case letters are converted
lower case for internal purposes. For example, a variable may be referre
as “maxL”, “MaxL”, or “MAXL” interchangeably within the same
program. The use of mixed upper and lower case letters in this section
used only to show allowed abbreviations.

• Data Sources

Data used in the computation may come from any of the following sour

o Numeric constants—You can use numeric floating-point constants
directly within the program.

Numeric constants are constructed according to the same rules as i
rest of the rule file, namely as valid C integer, float, or double constan
The following are some examples:

3 3.0 -2.5 4.6e-10 5e8 5E9 0 1

o Instance data—You can access property data associated with instan
in the input group through the use of built-in vector functions. Vecto
functions include the SUM() and PROD() functions. For a complete
of vector functions, refer to section “Effective Property Language
Vector Functions”.

When you specify a property name “X” inside a vector function, it
refers to individual Xi values on the instances in the input group, treat
Calibre Verification User’s Manual, v9.1_5 10-53

Device Reduction LVS Circuit Comparison

 the

s
s
such

les

mes

ning

r the
the
nd
as a vector or array. In all other cases, “X” is a scalar and refers to
current property value on the reduced or “effective” instance.

o Local variables—You can declare local variables, also referred to a
temporary variables, and assign them scalar values. Local variable
cannot serve as arguments to vector functions because there are no
property values associated with the instances in the input group. In
other words, there are no individual values for local variables
associated per-instance in the input group.

You can assign intermediate values to local variables within an
effective property computation program. For compatibility with rule
file style, it is neither necessary nor possible to declare such variab
before use. Any name may be used which does not conflict with
property names or process variables. However, it is best to avoid na
beginning with “temp” or “init”, because these names are used in
debugging output to identify temporary variables. Although the
compiler and interpreter will not be confused by your use of these
names, you may become so when reading the debugger output.

• Operators

A subset of the operators of C are available. They have the same mea
and precedence as in C and are listed below in order of decreasing
precedence.

- ! (unary minus) (logical negation)
* / (multiplication) (division)
+ - (addition) (subtraction)
< <= == > = > != (relational operators: lt,le,eq,ge,gt,ne)
&& (logical and)
|| (logical or)
= (assignment)

• Comments

The comment conventions for the built-in language are the same as fo
rest of the rule file. Any text beginning with a double slash (//) through
end of the line is ignored. Any text inside a pair of C-style markers (/* a
*/) is also ignored.
Calibre Verification User’s Manual, v9.1_510-54

LVS Circuit Comparison Device Reduction

s.

he
ic
sion
ND

t.

ch
• Commas

All commas shown in the language are required.

• Parentheses

You can use parentheses in expressions to override normal operator
precedence.

• Numeric Expressions

The arithmetic operators - (unary), +, -, *, and / are used to build up
numeric expressions from constants, variables, and function reference

• Logical Expressions

Logical expressions may only appear within the parenthesis following t
keyword IF. Basic logical expressions are formed by combining numer
expressions using the relational comparison operators. Logical expres
may be further combined using parenthesis together with the logical A
(&&) and logical OR (||) operators.

• Assignment Statements

The assignment statement has the following form:

<local-variable-or-property-name> = <numeric-expression>

Only one assignment operator (=) is allowed per assignment statemen

• Flow Control

The only flow control is provided by the IF and IF ELSE statements, whi
have the same meaning and use as in C. These statements have the
following forms:

IF (<logical-expression>) <statement>

IF (<logical-expression>) <statement> ELSE <statement>
Calibre Verification User’s Manual, v9.1_5 10-55

Device Reduction LVS Circuit Comparison

er

ing

tive

by a
in a

urce)
y
gs
al
where the parentheses are required.

• Statement Grouping

You can use curly braces ({ }) to group one or more statements into a
single statement, as in C. For a usage example, refer to the section
“Effective Property Language Example“.

Effective Property Language Statements

This section describes the effective property language statements, in the ord
they need to appear, if specified.

DEBUG Statement

This statement controls the tracing of the effective property computation. Trac
of can be useful in finding errors during the development of new effective
property computation code.

This is an optional statement. If specified, it must be specified first in the effec
property program. The DEBUG statement has the following syntax:

DEBUG <range1> [, <range2> , … <rangeK>]

where each range is either an instance ID, or a pair of instance IDs separated
hyphen (-). You must specify at least one range value, although it can conta
single instance ID.

An instance ID represents a single device to which the input group will be
reduced. Instance IDs are unique across all devices in the design (layout or so
being transformed. Calibre LVS assigns instance IDs and are not necessaril
sequential, merely unique. Instance IDs are most useful in debugging warnin
produced when theWARN Statementis present, and an impossible mathematic
operation is attempted.

The following is an example of a DEBUG statement:

DEBUG 0-2, 508
Calibre Verification User’s Manual, v9.1_510-56

LVS Circuit Comparison Device Reduction

can
ded.

ram
g by

.

 a

also
ify
This statement prints a detailed report to the transcript of the property
computation for each device instance with an ID of 0, 1, 2, and 508. The trace
produce an large amount of output, so the use of small ranges is recommen
You can obtain instance IDs from output produced by the WARN statement.

WARN Statement

This statement prints a warning to the transcript if the effective property prog
attempts to perform an impossible mathematical computation, such as dividin
zero or taking the square root of a negative number. Calibre LVS does not
generate an error when performing an impossible mathematical computation

This is an optional statement. If specified, it must appear after the optional
DEBUG statement and before the required EFFective statement. The WARN
statement has the following syntax:

WARN

This statement takes no arguments.

If the tool performs anyimpossible mathematical computations the effective
property is set to the unknown value, which results in it being represented by
question mark (?) in the LVS Report. When a property is set to the unknown
value, it can cause discrepancies when tracing properties. An unknown value
precludes devices in the input group from being reduced together if you spec
TOLERANCE in the LVS Reduce statement.

The following is a sample transcript of the warning printed by the WARN
statement:

EFFECTIVE property user-program WARNING:
Division by zero (result set to UNKNOWN).
while transforming layout with:
LVS REDUCE ... EFFECTIVE clause: (rule file line 58)
Use instance ID# 92 in DEBUG trace range.

Calibre Verification User’s Manual, v9.1_5 10-57

Device Reduction LVS Circuit Comparison

 the
d)

re
put
alues

L,

you
lue

ted
are
oes

single
You can use the instance ID# 92 in a DEBUG trace range to see exactly how
unknown value was determined for this input group and the effective (reduce
instance.

EFFective Statement

This statement is used to declare the names of the properties for which Calib
LVS computes effective values. Properties listed here are considered both in
(should be present on instances in the input group), and output (calculated v
are assigned to the effective/reduced instance).

This is a required statement. It must follow the optional DEBUG and WARN
statements, if present. The EFFective statement has the following syntax:

EFFective <property_name_1>, <property_name_2>, ...

The following example declares four properties are declared with names W,
AS, and AD:

EFFECTIVE W, L, AS, AD

Property names are treated as variables within computational statements. If
declare a property name in the EFFective statement, you must assign it a va
somewhere in the program. If you do not, a compile error results.

All properties named in the EFFective statement are available to the associa
effective property program. In the following example, the L and W properties
available to the effective property program and the LVS Reduce statement d
not rely on L and W being specified in other property related statements.

lvs reduce parallel mos yes [
effective w, l
w = sum(w*l) // w depends on l
l = min(l)

]

When the program concludes, the value of each property is assigned to the
instance reduced from the input group.
Calibre Verification User’s Manual, v9.1_510-58

LVS Circuit Comparison Device Reduction

 the

mber

T(),
rence

nt,

ot

s of
For information on how Calibre LVS treats the values corresponding to the
specified properties, refer to section “Data Sources”.

Effective Property Language Vector Functions

You use vector functions to evaluate an expression across all N instances in
input group. The resulting set of N expressions can be summed, multiplied,
searched for a minimum, or searched for a maximum. You can count the nu
of instances in the input group with the COUNT() function.

The complete set of vector functions, and their syntax, is listed here:

SUM (<vector_expression>)
PROD (<vector_expression>)
MIN (<vector_expression>)
MAX (<vector_expression>)
COUNT()

where <vector_expression> is required by all vector functions, except COUN
and is the same as any other numeric expression except that it can only refe
property names and simple numeric constants.

For example, if you declared the property name W in the EFFective stateme
then the following assignment:

W = PROD (W+1)

shows a valid <vector_expression>. While the following assignment:

W = PROD (W+sqrt(2))

is not valid because “W+sqrt(2)” is not a valid <vector_expression>. It does n
consist of only property names and simple numeric constants, but instead
references another scalar function (sqrt()).

The following sections describe each vector function and give brief example
their usage.
Calibre Verification User’s Manual, v9.1_5 10-59

Device Reduction LVS Circuit Comparison

ut

nput

d

L

SUM (<vector_expression>)

Returns the sum of <vector_expression> applied to all N instances in the inp
group.

The following example:

P = SUM (W*L)

returns:

W1*L1 + W2*L2 + ... + Wn*Ln

PROD (<vector_expression>)

Returns the product of <vector_expression> applied to all N instances in the i
group.

The following example:

QQ = PROD (W/L+1)

returns:

(W1/L1+1) * (W2/L2+1) * ... * (Wn/Ln+1)

MIN (<vector_expression>)

Evaluates <vector_expression> across all N instances in the input group, an
returns the minimum expression value found.

The following example:

L = MIN (L)

returns the smallest Li found in the input group, where Li represents the value of
for theith instance in the group).
Calibre Verification User’s Manual, v9.1_510-60

LVS Circuit Comparison Device Reduction

d

ful in

ed to
MAX (<vector_expression>)

Evaluates <vector_expression> across all N instances in the input group, an
returns the maximum expression value found.

The following example:

L = MAX (L)

returns the largest Li found in the input group, where Li represents the value of L
for theith instance in the group.

COUNT()

Returns the number of instances present in the input group. This can be use
calculating average values, as in the following example:

W = SUM(W) / COUNT()

Effective Property Language Numeric Functions

The following numeric built-in functions are provided:

ABS (<numeric_expression>)

Returns the absolute value of the specified numeric expression.

The following examples:

ABS(-1.5)
ABS(2.5)

return 1.5 and 2.5, respectively.

EXP (<numeric-expression>)

Returns the value of e (Napier’s constant, the base of natural logarithms) rais
the power of the numeric expression.
Calibre Verification User’s Manual, v9.1_5 10-61

Device Reduction LVS Circuit Comparison

 of

 first

e

LOG (<numeric-expression>)

Returns the natural logarithm of the specified numeric expression. The value
the numeric expression must be greater than zero.

POW (<numeric-expression>, <numeric-expression>)

Returns the value of the first expression raised to the power of the second
expression. If the first expression is zero, the second must be positive. If the
expression is negative, the second expression must be an integer.

SQRT (<numeric-expression>)

Returns the square root of the specified numeric expression. The value of th
numeric expression must be zero or greater.

TRUNC (<numeric-expression>)

Returns the result of truncating the fractional part of the specified numeric
expression. Truncation is toward zero. The absolute value of the numeric
expression must not exceed 2,147,483,647 (2^32-1).

The following examples:

TRUNC(2.1)
TRUNC(2.9)
TRUNC(-2.1)
TRUNC(-2.9)

return 2, 2, -2, and -2, respectively, while:

TRUNC(9999999999)

returns UNKNOWN, because the argument exceeds 2147483647.
Calibre Verification User’s Manual, v9.1_510-62

LVS Circuit Comparison Device Reduction
Further Effective Property Computation Examples

The following rule file examples illustrate effective property computations:

Example 1:

LVS REDUCE PARALLEL MOS YES [
// Reduce MOS devices in parallel

effective W // Calculate effective width value
W = sum(W) // … as sum of original widths,

] // … regardless of length

Example 2

LVS REDUCE PARALLEL MOS YES [
// Reduce MOS devices in parallel

tolerance L 0 // … only if equal lengths
effective W, L // calculate effective width and length
W = sum(W) // Width is sum of original widths
L = min(L) //OK to use minimum since all are equal

]

Example 3

// This is equivalent to the default built-in effective
// property calculation for parallel MOS devices.
//
LVS REDUCE PARALLEL MOS YES [

// Reduce MOS devices in parallel.
effective W, L, AS, AD, PS, PD

// Calculate these effective values.
P = sum(W * L) // Sum of Wi * Li
Q = sum(W / L) // Sum of Wi / Li
W = sqrt(P * Q) // Effective W
L = sqrt(P / Q) // Effective L
AS = sum(AS) // Effective AS: sum of ASi
AD = sum(AD) // Effective AD: sum of ADi
PS = sum(PS) // Effective PS: sum of PSi
PD = sum(PD) // Effective PD: sum of PDi

]

Calibre Verification User’s Manual, v9.1_5 10-63

Device Filtering LVS Circuit Comparison

r to
m is

g

his
not
Example 4

// Reduce resistors in parallel only when all W values are
// equal. Effective W is equal to the original W (in a sense,
// W describes the type of resistor).
//
LVS REDUCE PARALLEL RESISTORS YES [

tolerance W 0
effective W
W = min(W) // OK to use minimum since all are equal

]

Example 5

LVS REDUCE PARALLEL RESISTORS YES [
// Reduce parallel resistors

tolerance W 0 // … only if equal width;
effective R, W

// calculate effective resistance and width
R = 1 / sum(1/R) // same as the default calculation
W = min(W) // //OK to use minimum since all are equal

]

Effective Property Computation Limitations

Property names used in the EFFECTIVE statement must be simple names;
property-name/spice-parameter combinations such as “instpar(w)” are not
accepted in effective property programs. Therefore, if a property string simila
instpar(w) is present on devices in the design, and an effective property progra
provided for that device type, effective properties cannot be calculated durin
reduction.

Device Filtering
Calibre LVS allows you to filter out unused transistors during the LVS run. T
could be done during a preliminary run, if you know that some devices should
be analyzed. The following sections describe how unused MOS and bipolar
transistors are filtered.
Calibre Verification User’s Manual, v9.1_510-64

LVS Circuit Comparison Device Filtering

s;

to a

to a

ower

d net.
You specify which unused devices are to be filtered with heLVS Filter Unused
Option specification statement.

Filtering Unused MOS Transistors

Calibre LVS can internally filter unused MOS transistors from the source and
layout circuits Filtering is performed only for properly formed MOS transistor
specifically, instances with component type MN, MP, ME, MD, M, LDDN,
LDDP, LDDE, LDDD, or LDD and have at least three pins with the standard
names as specified in table10-2.

The following configurations of transistors are filtered out:

1. MN, MP, ME, MD, M, LDDN, LDDP, LDDE, LDDD, and LDD
transistors with floating source or drain pin.

2. MN, MP, ME, MD, M, LDDN, LDDP, LDDE, and LDD transistors with
source, drain and gate pins tied together.

3. MN, MP, ME, MD, M, LDDN, LDDP, LDDE, LDDD, and LDD
transistors with floating gate pin and source and drain pins connected
single power net.

4. MN, MP, ME, MD, M, LDDN, LDDP, LDDE, LDDD, and LDD
transistors with floating gate pin and source and drain pins connected
single ground net.

5. MN, MP, ME, MD, M, LDDN, LDDP, LDDE, LDDD, and LDD
transistors with source shorted to drain, and gate pin connected to a p
net.

6. MN, MP, ME, MD, M, LDDN, LDDP, LDDE, LDDD, and LDD
transistors with source shorted to drain, and gate connected to a groun

7. MP and LDDP transistors with gate pin connected to a power net.

8. MN and LDDN transistors with gate pin connected to a ground net.
Calibre Verification User’s Manual, v9.1_5 10-65

Device Filtering LVS Circuit Comparison

g

rs;

nd
g
es
s as
Figure10-14 shows examples of the above filters, where “x” denotes a floatin
pin and “o” denotes a pin connected to other instances and/or ports.

Figure 10-14. Unused MOS Transistors

TheLVS Filter Unused MOSspecification statement controls unused MOS
transistor filtering.

Filtering Unused Bipolar Transistors

Calibre LVS can internally filter unused MOS transistors from the source and
layout circuits. Filtering is performed only for properly formed MOS transisto
specifically, instances with component type MN, MP, ME, MD, M, LDDN,
LDDP, LDDE, LDDD, or LDD, and have at least three pins with the standard
names as specified in table10-2.

Calibre LVS can internally filter unused bipolar transistors from the source a
layout circuits. Bipolar filtering is useful for verifying gate-array layouts. Filterin
is performed only for properly formed bipolar transistors; specifically, instanc
with component type Q, and have at least three pins with the standard name
specified in table10-6.

The following configurations of transistors are filtered out:

• Q transistors with base and emitter tied together.

MP,MN
ME,MD

MP,MN
ME,MD

GROUND

GROUND

MP,MN
ME,MD

GROUNDMP,MN
ME,MD

MP,MN
ME,MD

1 2

5 7 8

POWER

POWER

POWER

MP,MN
ME,MD

3

POWER MP
GROUND MN

4

6

Calibre Verification User’s Manual, v9.1_510-66

LVS Circuit Comparison Nets

at
ther
s”

rison

cify

m

Figure 10-15. Unused Bipolar Transistor

TheLVS Filter Unused Bipolarspecification statement controls unused bipolar
transistor filtering.

TheLVS Filter specification statement is another useful rule file statement th
enables instance filtering in the source or layout that meet certain criteria. Ano
useful statement isLVS Box, which specifies cells to be treated as “black boxe
during comparison.

Nets
This section discusses how various nets are handled during the LVS compa
phase.

Global Schematic Bulk Nets

This feature is implemented only for Eddm format, where it is possible to spe
implied global bulk nodes for 3-pin MN and MP transistors.

This is done by adding the following parameters to the viewpoint:

• nmos_bulk_node: Specifies the name of the net to serve as the implied
bulk node for 3-pin MN and LDDN transistors.

LVS adds virtual bulk pins to all 3-pin MN transistors, and connects the
to the specified net whennmos_bulk_node is specified.

• pmos_bulk_node: Specifies the name of the net to serve as the implied
bulk node for 3-pin MP and LDDP transistors.

N1

QB

E

C

Calibre Verification User’s Manual, v9.1_5 10-67

Nets LVS Circuit Comparison

to

ave

in

und

ame
t in

 same
of

level
e
ent in

ts and
 their
one
LVS adds virtual bulk pins to all 3-pin MP transistors, and connects them
the specified net whenpmos_bulk_node is specified.

LVS names the bulk pin “B”. To participate in this process, transistors must h
exactly three pins with standard pin names as specified in the section “Built-in
Device Types”. LVS terminates with an error, if the specified net does not exist
the viewpoint.

Usage of Power and Ground Nets

LVS uses power and ground nets forLogic Gate Recognition, Filtering Unused
MOS Transistors, and other applications. Several power nets and several gro
nets are allowed in a single design. A net is a power net (or a ground net,
respectively) if:

• The net name is listed in theLVS Power Name (or LVS Ground Name)
specification statement.

• The net is connected to a port whose name is listed in the LVS Power N
(or LVS Ground Name) specification statement, and there is no other ne
the same design that has this name. If there are several ports with the
power (or ground) name that are connected to different nets, only one
them is used.

Isolated Nets

Isolated nets are not connected to any instances, nor to any ports of the top-
cell on which LVS operates. Isolated layout nets and isolated source nets ar
ignored during comparison, unless they have user-given names that are pres
both circuits. The LVS report lists isolated layout nets.

Pass-through Nets

Pass-through nets are connected to ports of the top-level cell on which LVS
operates, but are not connected to any instance pins. Pass-through layout ne
pass-through source nets are ignored during comparison, unless the nets or
ports have user-given names that are present in both circuits. This filtering is d
Calibre Verification User’s Manual, v9.1_510-68

LVS Circuit Comparison Logic Gate Recognition

ent in
ports.

and

uit by
rted

MP

P

D

onent

 the

type

ns
you
with
because pass-through nets are often present in the layout, but are rarely pres
a schematic design. The LVS report lists pass-through layout nets and their

Logic Gate Recognition
LVS recognizes logic gates and semi-gates (pullup and pulldown structures
other series-parallel logic gates) in transistor-level circuits. LVS internally
represents groups of transistors that form gates and semi-gates in each circ
virtual gate instances, and comparison is done at this level. Results are repo
either on the transistor or the gate level or both, whichever is appropriate.

• LVS forms regular CMOS gates from transistors with component type
(pullup) and MN (pulldown).

• LVS forms LDD CMOS gates from transistors with component type LDD
(pullup) and LDDN (pulldown).

• LVS forms regular NMOS gates from transistors with component type M
(pullup) and ME (pulldown).

• LVS forms LDD NMOS gates from transistors with component type
LDDD (pullup) and LDDE (pulldown).

Other series-parallel gates are formed from the above types as well as comp
types M and LDD. To see how component types are determined refer to the
section “Component Types” above.

TheLVS Recognize Gates specification statement specifies whether logic gate
recognition should be performed. The secondary keyword SIMPLE prevents
formation of complete AOI and OAI gates and higher level series-parallel
structures. In the case of AOI and OAI gates, LVS instead forms structures of
SUP, SDW, SPUP, and SPDW.

Logic gate recognition allows you to swap the order of logically equivalent pi
and devices in transistor level implementations of logic circuits. For example,
can swap the two input pins of a NAND gate. The swappability is described
each gate type.
Calibre Verification User’s Manual, v9.1_5 10-69

Logic Gate Recognition LVS Circuit Comparison

y

n

e
ust
S of

and
rifies
trate

G),

e

.
hen
Only properly configured MOS transistors can form logic gates. Namely, the
must have at least three pins with the standard pin names as specified in the
section “Built-in Device Types” above. Other than this, there is no restriction o
component subtype, number of optional pins, or optional pin names of the
participating transistors. However, the number of pins and pin names must b
identical for all transistors in a gate. By default, all transistors in a half-gate m
have the same component subtype. The secondary keyword MIX SUBTYPE
the LVS Recognize Gates specification statement allows mixing of different
transistor subtypes in the same half-gate. Half-gates are pullup or pulldown
sections of logic gates, serial up and serial down structures, series-parallel up
series-parallel down structures, Sm* and SPm* structures, and so on. LVS ve
that subtypes correspond in layout and source, and that connections of subs
pins and other optional pins are the same in the layout and source.

Recognition Processes

• Internal device and net matching: LVS matches individual transistors in
logic gates based on their “gate” pin connections (transistor pin name
and all gate types are matched.

LVS matches internal nets in logic gates based on their relative distanc
from the output pin or pins of the gate, and all gate types, except for
complete AOI and OAI gates and higher-level series-parallel structures
Note that internal nets are matched in all gate types that are formed w
the secondary keyword SIMPLE is specified.

• Overriding pin and device swapping: The physical order of connections
to logic gate inputs, or of parallel device groups normally considered
logically equivalent, can be checked in by specifying that logic gate
recognition is not to be performed (set theLVS Recognize Gates to
NONE).
Calibre Verification User’s Manual, v9.1_510-70

LVS Circuit Comparison Logic Gate Recognition

ese

,

e,
ade

de
ate
se

ll
• Exceptions: Listed below are various exceptions to the logic gate
recognition process

o MOS transistors with a subtype beginning with “X” or “x” and
followed by at least one other character do not participate in the
formation of logic gates, for example:

DEVICE M(XP) gate poly sd sd well // Does not form
//logic gates.

DEVICE M(XABC) gate poly sd sd well // Does not form
//logic gates.

DEVICE M(X) gate poly sd sd well // Forms logic gates.

By using the XALSO secondary keyword in theLVS Recognize Gates
specification statement, you can override this behavior and allow th
devices to participate in the formation of logic gates.

o A net connected to any pin other than a transistor’s source or drain
such as a substrate pin, is never made internal to a logic gate.

o A net with a user-given name that appears in both layout and sourc
and a net connected to a substrate pin (or any other pin) is never m
internal to a logic gate.

o LVS does not form logic gates in cases where a choice must be ma
between two or more transistors that are equally qualified to particip
in the gate. LVS forms only half-gates in these cases to prevent fal
discrepancies involving subtypes and property values.

In Figure10-16, LVS must make a choice between the mp(x) and
mp(y) transistors. LVS will not form a complete NAND2 gate, but wi
form a SDW2 structure.
Calibre Verification User’s Manual, v9.1_5 10-71

Logic Gate Recognition LVS Circuit Comparison
Figure 10-16. LVS Logic Gate Selection, Example

Regular CMOS Gates

• INV . CMOS inverter.

Figure 10-17. INV - CMOS inverter

mp(x) mp(y)

VCC

A B A

A

B

VSS

MP

MN

OUTININ OUT

POWER

GROUND
Calibre Verification User’s Manual, v9.1_510-72

LVS Circuit Comparison Logic Gate Recognition
• NANDn. n-input CMOS NAND.

Figure 10-18. NANDn - n-input CMOS NAND

LVS considers all input pins of a NANDn gate logically equivalent. In
figure10-18, signals IN1, IN2, …, INn can all be interchanged.

MPIN1 MP MP

MN

MN

...

MN

. . .IN2 INn

IN1

IN2

INn

GROUND

POWER

IN1
IN2

INn
...

...

IN1
IN2

INn
... OUT

OUT
Calibre Verification User’s Manual, v9.1_5 10-73

Logic Gate Recognition LVS Circuit Comparison

re
• NORn. n-input CMOS NOR.

Figure 10-19. NORn - n-input CMOS NOR

LVS considers all input pins of a NORn gate logically equivalent. In figu
10-19, signals IN1, IN2, …, INn can all be interchanged.

OUT

IN1
IN2

INn
...

OUT

MNIN1 MN MNIN2 INn. . .

MP

MP

MP

...

INn

IN2

IN1

...

POWER

GROUND
Calibre Verification User’s Manual, v9.1_510-74

LVS Circuit Comparison Logic Gate Recognition

-

OI

le.
d
>=

A,
• AOI_n1_n2_…_nm. CMOS and-or-invert consisting ofm AND
structures withn1, n2, …, nm inputs each, respectively, leading to an OR
invert structure.

Figure 10-20. AOI_3_2 - CMOS and-or-invert

LVS considers the input pins of each one of the AND structures in an A
gate logically equivalent. In figure10-20, signals A, B and C may be
interchanged. Signals D and E may also be interchanged.

The order of the parallel pullup groups in an AOI gate is interchangeab
Gates that differ only in the order of their parallel groups are considere
equivalent. The name AOI_n1_n2_…_nm always has n1 >= n2 >= …
nm. In the figure, the group of three parallel MP transistors connected to
B, and C, respectively, could have been placed below the group of two
parallel MP transistors connected to D and E, respectively.

You can prevent the formation of AOI gates by including theLVS
Recognize Gates SIMPLE statement in the rule file. In which case, LVS
instead forms separate structures of type SPUP and SDW.

MP MP MP

MN

MN

MN

GROUND

POWER

OUT

MP MP

MN

MN

A B C

ED

A

B

C

D

E

OUT

A
B
C

D

E

Calibre Verification User’s Manual, v9.1_5 10-75

Logic Gate Recognition LVS Circuit Comparison

AI

ps
 n1
rs

 the
y.
• OAI_n1_n2_ … _nm. CMOS or-and-invert consisting ofmOR structures
with n1, n2, … , nm inputs each, respectively, leading to an AND-invert
structure.

Figure 10-21. OAI_3_2 - CMOS or-and-invert

LVS considers the input pins of each one of the OR structures in an O
gate logically equivalent. In figure10-21, signals A, B, and C can be
interchanged. Signals D and E can also be interchanged.

The order of the parallel pulldown groups in an AOI gate is
interchangeable. Gates that differ only in the order of their parallel grou
are considered equivalent. The name OAI_n1_n2_ … _nm always has
>= n2 >= … >= nm. In the figure, the group of three parallel MP transisto
connected to A, B, and C, respectively, could have been placed below
group of two parallel MP transistors connected to D and E, respectivel

You can prevent the formation of OAI gates by including theLVS
Recognize Gates SIMPLE statement in the rule file. In which case, LVS
instead forms separate structures of type SUP and SPDW.

OUT

MN MN MN

MP

MP

MP

POWER

MP

MP

MN MN

GROUND

A

B

C

D

E

A B C

D E

OUT

A
B
C

E
D

Calibre Verification User’s Manual, v9.1_510-76

LVS Circuit Comparison Logic Gate Recognition

re

ed in
gate
• SUPn (serial up). n-input CMOS serial pullup.

Figure 10-22. SUPn - n-input CMOS serial up

LVS considers all input pins of a SUPn gate logically equivalent. In Figu
10-22, signals IN1, IN2, …, INn can all be interchanged.

LVS represents pullups as stand-alone gates when they are not contain
complete gates, or when they are contained in OAI gates but complex
recognition is turned off by including theLVS Recognize Gates SIMPLE
statement in the rule file.

• SDWn (serial down). n-input CMOS serial pulldown.

Figure 10-23. SDWn - n-input CMOS serial down

OUT

IN1
IN2

INn
...

OUT

MP

MP

MP

...

INn

IN2

IN1

...

POWER

SUPn

MN

MN

...

MN

IN1

IN2

INn

GROUND

...

IN1
IN2

INn
... OUT

OUT

SDWn
Calibre Verification User’s Manual, v9.1_5 10-77

Logic Gate Recognition LVS Circuit Comparison

re

ot
but

ally

not
ates

e.
d
…

C,
P

LVS considers all input pins of a SDWn gate logically equivalent. In Figu
10-23, signals IN1, IN2, …, INn can all be interchanged.

LVS represents serial pulldowns as stand-alone gates when they are n
contained in complete gates, or when they are contained in AOI gates
complex gate recognition is turned off by including theLVS Recognize
Gates SIMPLE statement in the rule file.

• SPUP_n1_n2_…_nm (serial-parallel up). CMOS serial-parallel pullup.
This is a series ofmparallel groups consisting ofn1, n2, …, nmtransistors,
respectively, leading to a power net.

Figure 10-24. SPUP_3_2 - CMOS serial-parallel up

LVS considers the inputs to the transistors in each parallel group logic
equivalent. In figure10-24, signals A, B, and C can be interchanged, and
signals D and E can be interchanged.

LVS represents SPUP structures as stand-alone gates when they are
contained in complete AOI gates, or when they are contained in AOI g
but complex gate recognition is turned off by including theLVS Recognize
Gates SIMPLE statement in the rule file.

The order of the parallel groups in a SPUP gate is also interchangeabl
Gates that differ only in the order of their parallel groups are considere
equivalent. The name SPUP_n1_n2_ …_nm always has n1 >= n2 >=
>= nm. The group of three parallel MP transistors connected to A, B, and
respectively could have been placed below the group of two parallel M
transistors connected to D and E, respectively.

MP MP MP

POWER

OUT

MP MP

A B C

ED

OUT

A
B
C

D

E

SPUP_3_2
Calibre Verification User’s Manual, v9.1_510-78

LVS Circuit Comparison Logic Gate Recognition

ally
d

 not
ates

le.
d
 …
o

• SPDW_n1_n2_…_nm (serial-parallel down). CMOS serial-parallel
pulldown. This is a series ofm parallel groups consisting ofn1, n2, …, nm
transistors, respectively, leading to a ground net.

Figure 10-25. SPDW_3_2 - CMOS serial-parallel down

LVS considers the inputs to the transistors in each parallel group logic
equivalent. In Figure10-25, signals A, B, and C can be interchanged, an
signals D and E can be interchanged.

LVS represents SPDW structures as stand-alone gates when they are
contained in complete OAI gates, or when they are contained in OAI g
but complex gate recognition is turned off by including theLVS Recognize
Gates SIMPLE statement in the rule file.

The order of the parallel groups in a SPDW gate is also interchangeab
Gates that differ only in the order of their parallel groups are considere
equivalent. The name SPDW_n1_n2_ …_nm always has n1 >= n2 >=
>= nm. In Figure10-25, the could have been placed below the group of tw
parallel MP transistors connected to D and E, respectively.

OUT

MN MN MN

MN MN

GROUND

A B C

D E

OUT

A
B
C

E
D

SPDW_3_2
Calibre Verification User’s Manual, v9.1_5 10-79

Logic Gate Recognition LVS Circuit Comparison

d

• SMPn, SMNn, SMn.Series ofn MP, MN, or M devices.

Figure 10-26. SMPn, SMNn, SMn - series of n MP, MN, or M devices

LVS considers all input pins of a SMPn, SMNn, or SMn gate logically
equivalent, and the two output pins logically equivalent. In Figure10-26,
signals IN1, IN2, …, INn can all be interchanged, and signals OUT1 an
OUT2 can be interchanged.

OUT1IN1
IN2

INn
...

MP

MP

MP

...

INn

IN2

IN1

...

SMPn

MN

MN

MN

SMNn

OUT1

OUT2

OUT2SMn
Calibre Verification User’s Manual, v9.1_510-80

LVS Circuit Comparison Logic Gate Recognition

ower

ally

o
ps

s

 the

ly.
f

• SPMP_n1_n2_…_nm, SPMN_n1_n2_…_nm, SPM_n1_n2_…_nm.
Serial-parallel structures of MP, MN, or M devices respectively. Each
structure is a series ofm parallel groups consisting ofn1, n2, …, nm
transistors, respectively, connected between any two nets (other then p
in the case of MP, or ground in the case of MN).

Figure 10-27. SPMP_3_2, SPMN_3_2, SPM_3_2 - CMOS series-
parallel structure

LVS considers the inputs to the transistors in each parallel group logic
equivalent and the two outputs logically equivalent. In Figure10-27,
signals A, B and C can be interchanged, signals D and E can be
interchanged, and signals OUT1 and OUT2 can be interchanged.

The order of the parallel groups in a SPMP, SPMN, or SPM gate is als
interchangeable. Gates that differ only in the order of their parallel grou
are considered equivalent. The name suffixes “_n1_n2_ …_nm” alway
have n1 >= n2 >= … >= nm. The group of three parallel transistors
connected to A, B, and C, respectively, could have been placed below
group of two parallel transistors connected to D and E, respectively.

• SPMP(expression), SPMN(expression), SPM(expression). High level
serial-parallel structures consisting of MP, MN, or M devices, respective
The series and parallel groups can be nested to an unlimited number o
levels. The structure can be connected between any two nets.

MP MP MP

MP MP

A B C

ED

OUT1

A
B
C

D

E

SPMP_3_2 MN MN MN

MN MN

SPMN_3_2

OUT1

OUT2

OUT2SPM_3_2
Calibre Verification User’s Manual, v9.1_5 10-81

Logic Gate Recognition LVS Circuit Comparison

a list
ntax:

ins
re.
o

re

f any
two
Theexpressionin parentheses describes the structure, and consists of
of numbers, + and * operators, and parentheses. It has the following sy

o + Denotes connection in parallel.

o * Denotes connection is series.

o (expression) Denotes a substructure.

o expression * n Denotes a parallel group ofn transistors, connected in
series with the structure described byexpression.

o expression + n Denotes a series ofn transistors, connected in parallel
with the structure described byexpression.

The transistor gate pins form the input pins of the structure. The output p
of the structure are the two nets at the “top” and “bottom” of the structu
There can be any number of input pins but there are always exactly tw
output pins.

Inputs to transistors connected in parallel are logically equivalent, as a
transistors connected in series. In general, the order of any group of
substructures connected in parallel is interchangeable, and the order o
group of substructures connected in series is also interchangeable. The
outputs are also logically equivalent.

You can prevent the formation of high level serial-parallel structures by
including the LVS Recognize Gates SIMPLE statement in the rule file.
Calibre Verification User’s Manual, v9.1_510-82

LVS Circuit Comparison Logic Gate Recognition

can
he
top
Figure 10-28. SPMP((2+1+1)*1) - CMOS High Level Series-Parallel
Structure

In Figure10-28, signals A and B can be interchanged, signals C and D
be interchanged, and signals OUT1 and OUT2 can be interchanged. T
single transistor connected to E could be moved from the bottom to the
of the structure.

MP

MP

A

COUT1

A
B
C

D

E

SPMP((2+1+1)*1)

OUT1

OUT2 MPB

MPD

MPE

OUT2
Calibre Verification User’s Manual, v9.1_5 10-83

Logic Gate Recognition LVS Circuit Comparison

r
top
Figure 10-29. SPMN(((3*1)+2)*(2+2)) - CMOS High Level Series-
Parallel Structure

In Figure10-29, the following signals are interchangeable:

o A, B and C

o E and F

o G and H

o I and J

o The pair (G, H) and the pair (I, J)

o OUT1 and OUT2

In addition, transistor D could be placed above A, B and C, and the fou
transistors labeled G, H, I, and J could be moved from the bottom to the
of the structure.

MNA

OUT1

A
B
C
D
E

SPMN(((3*1)+2)*(2+2))

OUT2

OUT1

MNB MNC

MND

MNE

MNF

MNG

MNH

MNI

MNJ

OUT2

F
G
H
I
J

Calibre Verification User’s Manual, v9.1_510-84

LVS Circuit Comparison Logic Gate Recognition
Regular NMOS Gates

• INV . NMOS INVerter.

Figure 10-30. INV - NMOS inverter

• NANDn. n-input NMOS NAND.

Figure 10-31. NANDn - n-input NMOS NAND

OUTIN OUT

POWER

GROUND

IN

MD

ME

...

IN1

IN2

INn

GROUND

POWER

IN1
IN2

INn
...

...

IN1
IN2

INn
... OUT

OUT

MD

ME

ME

ME
Calibre Verification User’s Manual, v9.1_5 10-85

Logic Gate Recognition LVS Circuit Comparison

re

AI
LVS considers all input pins of a NANDn gate logically equivalent. In
Figure10-31, signals IN1, IN2, …, INn can all be interchanged.

• NORn. n-input NMOS NOR.

Figure 10-32. NORn - n-input NMOS NOR

LVS considers all input pins of a NORn gate logically equivalent. In Figu
10-32, signals IN1, IN2, …, INn can all be interchanged.

• OAI_n1_n2_…_nm. NMOS or-and-invert consisting ofm OR structures
with n1, n2, …, nm inputs each, respectively, leading to an AND-Invert
structure.

Figure 10-33. OAI_3_2 - NMOS OAI

LVS considers the input pins of each one of the OR structures in an O
gate logically equivalent. In Figure10-33, signals A, B, and C can be
interchanged, and signals D and E can be interchanged.

OUT

IN1
IN2

INn
... OUT

IN1 IN2 INn. . .

GROUND

MD

ME ME ME

POWER

OUT

GROUND

A B C

D E

OUT

A
B
C

E
D

POWER

MD

MEME ME

MEME
Calibre Verification User’s Manual, v9.1_510-86

LVS Circuit Comparison Logic Gate Recognition

ps
n1

ced

S
ate.

re

y are
The order of the parallel pulldown groups in an AOI gate is also
interchangeable. Gates that differ only in the order of their parallel grou
are considered equivalent. The name OAI_n1_n2_ …_nm always has
>= n2 >= … >= nm. In Figure10-33, the group of three parallel ME
transistors connected to A, B, and C, respectively, could have been pla
below the group of two parallel ME transistors connected to D and E,
respectively.

You can prevent the formation of OAI gates by including the LVS
Recognize Gates SIMPLE statement in the rule file. In which case, LV
instead forms structures of type SPDW from the pulldown part of the g

• SDWn (serial down). n-input NMOS serial pulldown.

Figure 10-34. SDWn - n-input NMOS serial-down

LVS considers all input pins of a SDWn gate logically equivalent. In figu
10-34, signals IN1, IN2, …, INn may all be interchanged.

LVS represents NMOS serial pulldowns as standalone gates when the
not contained in complete gates.

...

IN1

IN2

INn

GROUND

...

IN1
IN2

INn
... OUT

OUT

SDWn ME

ME

ME
Calibre Verification User’s Manual, v9.1_5 10-87

Logic Gate Recognition LVS Circuit Comparison

ally
d

not
ates
ize

le.
d
 …

 the
y.
SPDW_n1_n2_…_nm (serial-parallel down). NMOS serial-parallel
pulldown structure. This is a series ofm parallel groups consisting ofn1,
n2, …, nm transistors, respectively, leading to a ground net.

Figure 10-35. SPDW_3_2 - NMOS serial-parallel down

LVS considers the inputs to the transistors in each parallel group logic
equivalent. In Figure10-35, signals A, B, and C can be interchanged, an
signals D and E can be interchanged.

LVS represents SPDW structures as standalone gates when they are
contained in complete OAI gates, or when they are contained in OAI g
but complex gate recognition is turned off by including the LVS Recogn
Gates Simple statement in the rule file.

The order of the parallel groups in a SPDW gate is also interchangeab
Gates that differ only in the order of their parallel groups are considere
equivalent. The name SPDW_n1_n2_ …_nm always has n1 >= n2 >=
>= nm. In Figure10-35, the group of three parallel ME transistors
connected to A, B, and C, respectively, could have been placed below
group of two parallel ME transistors connected to D and E, respectivel

OUT

GROUND

A B C

D E

OUT

A
B
C

E
D

SPDW_3_2

ME ME ME

ME ME
Calibre Verification User’s Manual, v9.1_510-88

LVS Circuit Comparison Logic Gate Recognition

nt,

 be

the
• SMDn, SMEn - series of n MD or ME devices.

Figure 10-36. SMDn, SMEn - series of n MD or ME devices

LVS considers all input pins of a SMDn or SMEn gate logically equivale
and the two output pins logically equivalent. In Figure10-36, signals IN1,
IN2, …, INn can all be interchanged, and signals OUT1 and OUT2 can
interchanged.

• SPMD_n1_n2_…_nm, SPME_n1_n2_…_nm- Serial-parallel structures
of MD or ME devices, respectively. Each structure is a series ofm parallel
groups consisting ofn1, n2, …, nm transistors, respectively, connected
between any two nets (other then power in the case of MD, or ground in
case of ME).

OUT1IN1
IN2

INn
...

MD

MD

MD

...

INn

IN2

IN1

...

SMDn

ME

ME

ME

SMEn

OUT1

OUT2

OUT2
Calibre Verification User’s Manual, v9.1_5 10-89

Logic Gate Recognition LVS Circuit Comparison

ally

ps

re

.
,

Figure 10-37. SPMD_3_2, SPME_3_2 - NMOS series-parallel
structure

LVS considers the inputs to the transistors in each parallel group logic
equivalent and the two outputs logically equivalent. In Figure10-37,
signals A, B, and C can be interchanged, signals D and E can be
interchanged, and signals OUT1 and OUT2 can be interchanged.

The order of the parallel groups in a SPMD or SPME gate is also
interchangeable. Gates that differ only in the order of their parallel grou
are considered equivalent. The names SPMD_n1_n2_ …_nm and
SPME_n1_n2_ …_nm always have n1 >= n2 >= … >= nm. In Figure
10-37, the group of three parallel transistors connected to A, B and C
respectively may have been placed below the group of two parallel
transistors connected to D and E, respectively.

• SPME(expression), SPMD(expression)- High level serial-parallel
structure consisting of ME or MD devices respectively. The series and
parallel groups can be nested to an unlimited number of levels. For mo
details, refer to the description of SPMP(expression) and
SPMN(expression) on page10-81.

LDD Gates

LDD devices are MOS transistors with non-swappable source and drain pins
Recall that there are five types of LDD devices: LDDN, LDDP, LDDE, LDDD

MD MD MD

MD MD

A B C

ED

OUT1

A
B
C

D

E

SPMD_3_2
ME ME ME

ME ME

SPME_3_2

OUT1

OUT2

OUT2
Calibre Verification User’s Manual, v9.1_510-90

LVS Circuit Comparison Logic Gate Recognition

E,

ates
s.
D

tioned
gates

s
 net.

o the

DD
and LDD corresponding to the four regular MOS transistor types: MN, MP, M
MD, and M.

LDD transistors form logic gates in the way the corresponding regular MOS
transistors form gates with some extra conditions listed below. CMOS style g
are formed with LDDN and LDDP, which replace MN and MP in regular gate
NMOS style gates are formed with LDDE and LDDD, which replace ME and M
in regular gates. Other series-parallel gates are formed from the above men
types as well as component type LDD. Preceding sections describe regular
in detail.

LDD Voltage Gates

Voltage gates are gates that require power and/or ground nets. These gates
include:

The following conditions apply when forming LDD voltage gates:

1. Each parallel group of LDD-type transistors must have their source pin
connected to the same net, and their drain pins connected to the same

2. The net connecting one parallel group to the next must be connected t
source pins of one group, and the drain pins of the other.

3. The power net must be connected to the source pins of the LDDP or LD
transistors.

4. The ground net must be connected to the source pins of the LDDN or
LDDE transistors.

INV NANDn

NORn AOI_n1_n2_…_nm

OAI_n1_n2_…nm SUPn

SDWn SPUP_n1_n2_

SPDW_n1_n2_
Calibre Verification User’s Manual, v9.1_5 10-91

Logic Gate Recognition LVS Circuit Comparison

gates
5. The output of an LDD voltage gate is calledoutput(d)while the output of a
regular MOS gate is calledoutput. The (d) means that the output net is
connected to drain pins of LDD transistors.

Figure10-38 shows a CMOS style AOI_3_2 gate made with LDD-type
transistors.

Figure 10-38. LDD AOI_3_2 gate

LDD Non-Voltage Gates

Non-voltage gates are gates that do not require power or ground nets. These
include:

SLDDPn SLDDNn

SLDDn SPLDDP_n1_n2_…_nm

SPLDDN_n1_n2_…_nm SPLDD_n1_n2_…_nm

LDDP

LDDN

GROUND

POWER

OUT

A B C

ED

A

B

C

D

E

OUT

A
B
C

D

E

s s s

ss

s s

ss

s

d d d

dd

d d

dd

d

LDDP LDDP

LDDP LDDP

LDDN

LDDNLDDN

LDDN

input

output(d)
Calibre Verification User’s Manual, v9.1_510-92

LVS Circuit Comparison Logic Gate Recognition

s
 net.

o the
The following conditions apply when forming LDD non-voltage gates.

1. Each parallel group of LDD-type transistors must have their source pin
connected to the same net, and their drain pins connected to the same

2. The net connecting one parallel group to the next must be connected t
source pins of one group, and the drain pins of the other.

3. The letters LDD replace the letter M in the gate name. For example,
SLDDPn corresponds to SMPn, and SPLDDE(expression) corresponds to
SPME(expression).

4. A LDD-type non-voltage gate has two non-swappable outputs. One is
connected only to source pins and is calledoutput(s). The other is
connected only to drain pins and is calledoutput(d).Recall that the outputs
of a regular MOS gate are both calledoutput.

Figure10-39 shows a SLDDP3 gate.

SPLDDP(expression) SPLDDN(expression)

SPLDD(expression) SLDDDn

SLDDEn SPLDDD_n1_n2_…_nm

SPLDDE_n1_n2_…_nm SPLDDD(expression

SPLDDE(expression)
Calibre Verification User’s Manual, v9.1_5 10-93

Logic Gate Recognition LVS Circuit Comparison

s
f a S
pe.

me

alled

ingle

te is
Figure 10-39. SLDDP3 gate

Mixed Gates

LDD-type and regular MOS transistors form mixed non-voltage gates, such a
gates that do not require power or ground nets. Mixed gates are composed o
or SP gate of one type in series with a unique single transistor of the other ty
The mixed gate is formed if and only if there is auniqueavailable single transistor
of the other type.

One regular and one LDD-type transistor in series also form a mixed gate.

The LDD-type transistors and the regular MOS transistors must be of the sa
kind (D, E, N, P, or generic) to form a mixed gate.

A mixed gate has two outputs, one connected to regular MOS transistors is c
output, and the other is calledoutput(d) if it is connected to drain pins of LDD-
type transistors oroutput(s) if it is connected to source pins of LDD-type
transistors.

A mixed gate contains the name of both transistor types that compose it, the s
transistor first, for example: SPMN-LDDN(D)_3_1. The (D) means that the
output net connected to the LDD transistors is connected to drain pins. This ga
shown in figure10-40.

OUT1IN1

IN2

IN3

LDDP

IN3

IN2

IN1

SLDDP3

OUT1

OUT2

OUT2

s

s

d

d

d

LDDP

LDDP

s

input output(s)

output(d)
Calibre Verification User’s Manual, v9.1_510-94

LVS Circuit Comparison Logic Gate Recognition

ith
 for
uch

r to

 LVS
nd
Figure 10-40. SPMN-LDDN(D)_3_1 mixed gate

Excluding Transistors

MOS transistors do not form logic gates if their component subtype begins w
the characters X or x followed by at least one other character (the shorthand
this situation is X+). Note that if the subtype consists of only one character, s
as X, then the transistorwill form logic gates.

You can use these transistors to prevent pin swapping of logic gate inputs o
verify the order of individual transistors in series/parallel structures. In other
respects, these transistors behave as usual; for example, they are subject to
Reduce Parallel MOS, LVS Reduce Series MOS, LVS Reduce Split Gates, a
similar statements.

Rule file example:

DEVICE M(XP) gate poly sd sd well
// Does not form logic gates.

DEVICE M(XABC) gate poly sd sd well
// Does not form logic gates.

DEVICE M(X) gate poly sd sd well
// Forms logic gates.

A B C

D

OUT1
A
B
C

D

LDDN

SPMN-LDDN(D)_3_1

OUT1

OUT2

OUT2

LDDNLDDN

MN

s s s

s

d

d d d

input output

output(d)
Calibre Verification User’s Manual, v9.1_5 10-95

Logic Gate Recognition LVS Circuit Comparison

ition.

s.

able
Spice netlist example:

M1 1 2 3 4 XP $ Does not form logic gates.
M2 1 2 3 4 XABC $ Does not form logic gates.
M3 1 2 3 4 X $ Forms logic gates.

The optional keyword XALSO in the LVS Recognize Gates specification
statement disables the special treatment of X+ subtypes in logic gate recogn
It instructs LVS to form logic gates from MOS devices even if their subtype
begins with the characters X or x (followed by at least one character).

Overriding Of Pin Swapping In Logic Gates

The physical order of connections to logic gate inputs which are normally
considered logically equivalent can be checked in either of the following way

• Specify that logic gate recognition is not to be performed by specifying
LVS Recognize Gates NO in your rule file.

• Use component subtypes X+ as described in the “Excluding Transistors”
section.

Overriding Of Device Swapping In Logic Gates

The physical order of parallel device groups which are normally interchange
in logic gates can be checked in any of the following ways.

• Specify that logic gate recognition is not to be performed by specifying
LVS Recognize Gates NO in your rule file.

• Use component subtypes X+ as described in the “Excluding Transistors”
section.
Calibre Verification User’s Manual, v9.1_510-96

LVS Circuit Comparison Logic Gate Recognition

f the
ing.

LVS.

s

ype

cing

able.
Pin Swapping

Logically Equivalent Pins

LVS allows the order of connections to logically equivalent pins of layout
instances to differ from the order of connections to the corresponding pins o
corresponding source instances. This is sometimes referred to as pin swapp

LVS forms equivalence of input pins in logic gates. Refer to section “Logic Gate
Recognition” below for a special case of this capability. For other component
types, there are several methods for designating logically equivalent pins.

Pins that have identical names are always considered logically equivalent by

Default Pin Swapping for Devices

• LVS considers source (S) and drain (D) pins of regular MOS transistor
(component types MN, MP, ME, MD, and M) logically equivalent.

• LVS considers POS and NEG pins of all capacitor devices (component t
C) logically equivalent if the value of theLVS All Capacitor Pins
Swappable specification statement is YES. Otherwise, LVS applies the
rules described in this section.

• LVS considers pins of all resistor devices (component type R) logically
equivalent.

Rule File Pin Swap Lists

LVS designates pins of extracted layout devices as logically equivalent by pla
the pin names in a singlepin_swap list in aDevice operation. For example:

DEV C cap1 poly m1 (POS NEG) //swappable POS, NEG

In addition, pins on a single layer in the Device statement are always swapp

DEV FOO seed m1(p1) m1(p2) poly(p3) //swappable p1, p2
Calibre Verification User’s Manual, v9.1_5 10-97

Logic Gate Recognition LVS Circuit Comparison

ems

ions
lar

and

t take
e
inal

),

ents.
 pin

ent
same
nce
Affected Database Systems.LVS utilizes pin swappability information from rule
file Device operations during circuit comparison, for most input database syst
(both source and layout). This is described below.

The following database systems all take pin swappability from Device operat
in the current rule file. (The current rule file is the rule file used for the particu
LVS execution):

• Calibre geometrical database systems (for example, GDSII, CIF, ACSII
BINARY).

• SPICE

• EDDM

• CNET databases derived from SPICE or EDDM.

CNET databases derived from Calibre geometrical database systems do no
pin swappability from Device operations in the current rule file. Instead, thos
CNET databases preserve pin swappability from Device operations in the orig
rule file that was used to create them.

There is an exception. If the layout is a database system with inherent pin
swappability information (specifically: Calibre geometrical database systems
and the source is a database system with no pin swappability information
(specifically: SPICE, EDDM, or CNET derived from SPICE or EDDM), then
source components take pin swappability from corresponding layout compon
This is done based on component type, component subtype, pin number and
names.

Application. Pin swappability from rule file Device operations proceeds as
follows.

For every primitive instance during circuit comparison:

1. LVS looks in the rule file for a Device operation with the same compon
type (element name), the same component subtype (model name), the
number of pins and the same pin names as in the instance. (If the insta
has no component subtype (model name), then LVS looks for a Device
Calibre Verification User’s Manual, v9.1_510-98

LVS Circuit Comparison Logic Gate Recognition

 pin

me
e pin
tion

hen

e pin
t one
 pin

to

are
e
ts
cuit

r are

e

operation with no model name). If such a Device operation exists then
swappability information from the Device operation is applied to the
instance.

2. Otherwise, LVS looks in the rule file for a Device operation with the sa
component type (element name), the same number of pins and the sam
names as in the instance, and no model name. If such a Device opera
exists then pin swappability information from the Device operation is
applied to the instance.

3. Otherwise, if the instance has no component subtype (model name), t
LVS examines all Device operations in the rule file that have the same
component type (element name), the same number of pins and the sam
names as in the instance, regardless of model name. If there is at leas
such Device operation, and all such Device operations have the same
swappability, then that pin swappability is applied to the instance.

4. Otherwise, swappability from rule file Device operations is not applied
the instance.

As mentioned, this process is performed for primitive instances. It is not
performed for non-primitive instances. In flat circuit comparison, all instances
primitive. In hierarchical circuit comparison, instances are primitive if they ar
represented in the input netlist with standard Spice device element statemen
(such as M, C, R, and so forth), or if they are represented with primitive subcir
calls (see“Subcircuits” on page 11-33 for more information), or if they are
instances ofLVS Box cells. Instances of regular (non-empty) hcells in
hierarchical circuit comparison are not primitive and thus do not inherit pin
swappability from Device operations.

Pin swappability in Device operations can be indicated explicitly by listing
swappable pins in parentheses, as in (s d), or implicitly (pins on the same laye
swappable).

Notes:

• The above steps are performedafterany pins have been discarded using th
LVS Discard Pins By Device specification statement, if present.
Calibre Verification User’s Manual, v9.1_5 10-99

Logic Gate Recognition LVS Circuit Comparison

etlist

in

n in

tep
ice

ss
• In the above steps, all name comparisons are case insensitive. In all
examples below, assume that the rule file contains no other Device
operations.

Example 1

Assume that in the rule file you specify 5-pin MOS devices as user-defined
devices as follows:

DEVICE mos5pin gate gate(G) psd(S) psd(D) well1(B)
well2(B2)

You compare Spice to Spice and you enter 5-pin MOS devices in the Spice n
with primitive subcircuit calls like this:

.subckt mos5pin D G S B B2

.ends
x1 1 2 3 4 5 mos5pin

The rule file Device mos5pin definition will be applied to instances of mos5pin
both layout and source. LVS will determine that pins S and D of mos5pin are
swappable (because they are on the same layer) and will use this informatio
circuit comparison.

Example 2

Rule file:
DEVICE C(A) cap1 poly m1 (POS NEG) // C with model A

DEVICE C(B) cap2 m1 m2 // C with model B

Spice:
C1 1 2 $[A] $$ C with model A

C2 3 4 $[B] $$ C with model B

C1 receives pin swappability from the DEVICE C(A) operation according to s
(1) above. Its pins are swappable. C2 receives pin swappability from the Dev
C(B) operation according to step (1) above. Its pins are not swappable (unle
indicated swappable by other means).
Calibre Verification User’s Manual, v9.1_510-100

LVS Circuit Comparison Logic Gate Recognition

tep

g to
e

Example 3

Rule file:
DEVICE C cap poly m1 (POS NEG) // C with no model

Spice:
C1 1 2 $$ C with no model

C1 receives pin swappability from the Device operation according to
step (1) above. Its pins are swappable.

Example 4

Rule file:
DEVICE C cap poly m1 (POS NEG) // C with no model

Spice:
C1 1 2 $[A] $$ C with model A

C1 receives pin swappability from the Device operation according to
step (2) above. Its pins are swappable.

Example 5

Rule file:
DEVICE C(A) cap1 poly m1 // C with model A

DEVICE C cap2 m1 m2 (POS NEG) // C with no model

Spice:
C1 1 2 $[A] $$ C with model A

C2 3 4 $[B] $$ C with model B

C3 5 6 $$ C with no model

C1 receives pin swappability from the DEVICE C(A) operation according to s
(1) above. Its pins are not swappable (unless indicated swappable by other
means). C2 receives pin swappability from the DEVICE C operation accordin
step (2) above. Its pins are swappable. C3 receives pin swappability from th
DEVICE C operation according to step (1) above. Its pins are swappable.
Calibre Verification User’s Manual, v9.1_5 10-101

Logic Gate Recognition LVS Circuit Comparison

n

tion.

en

yout,
 with
Example 6

Rule file:
DEVICE C(A) cap1 poly m1 (POS NEG) // C with model A

DEVICE C(B) cap2 m1 m2 (POS NEG) // C with model B

Spice:
C1 1 2 $$ C with no model

Since both DEVICE C(A) and DEVICE C(B) operations indicate the same pi
swappability, C1 receives pin swappability from those Device operations
according to step (3) above. Its pins are swappable.

Example 7

Rule file:
DEVICE C(A) cap1 poly m1 (POS NEG) // C with model A

DEVICE C(B) cap2 m1 m2 // C with model B

Spice:
C1 1 2 $$ C with no model

Since the DEVICE C(A) and DEVICE C(B) operations indicate different pin
swappability, C1 does not receive pin swappability from either Device opera
Its pins are not swappable (unless indicated swappable by other means).

Spice as Layout System

When a Spice netlist represents the layout, LVS utilizes pin swappability
information from a Device operation during circuit comparison. This occurs wh
the specification statementLayout System SPICE is indicated, or when you
execute:

calibre -spice … -lvs …

This command line entry uses Spice as intermediate representation for the la
and the source can be of any type. This is useful when user-defined devices
swappable pins are entered as primitive subcircuits in Spice netlists.
Calibre Verification User’s Manual, v9.1_510-102

LVS Circuit Comparison Tracing Properties

s

the

ontrol
 the

ilt-in

es

S,
 of
Hcell Pins

Generally, there is no logical equivalence between hcell pins. (Hcells are
hierarchically corresponding cells in LVS-H). There are two exceptions to thi
rule, namely, trivial pin swappability (see“Trivial Pin Swappability” on
page 13-10) and pin swapping in memory cells and containing blocks (see
“SRAM Bit-Cell Recognition” on page 13-11). Refer to those sections for more
information.

Tracing Properties
LVS compares (traces) the values of selected properties on layout instances to
values of corresponding properties on corresponding source instances.
Discrepancies are reported when these values are different. The rules that c
which properties are traced and how the comparison is done are specified in
rule file with theTrace Propertyspecification statement.These rules are
sometimes referred to as “trace property rules.”

Built-in Property Classification

The LVS circuit comparison module recognizes certain property names as bu
properties, for the purpose of device reduction and for other processing. For
example, LVS computes effective values for built-in properties when it reduc
devices in series and parallel. See “Device Reduction”.

Properties are classified based on their names; specifically, W, L, AS, AD, P
PD, C, R, A, P denote width, length, area of source, area of drain, perimeter
source, perimeter of drain, capacitance, resistance, area and perimeter
respectively. This convention is used in the layout as well as in the source.
However,Trace Propertyspecification statements functions may override this
built-in naming convention and may specify different property names in the
source.For example, the statement:

TRACE PROPERTY MP(X) WIDTH W 0

implies that for elements of type MP(X), the width property in the source is
“WIDTH”.
Calibre Verification User’s Manual, v9.1_5 10-103

Tracing Properties LVS Circuit Comparison

ired
are
a
ad

base

uired

erty
he
t

n the
rce
S

Reading Built-in W/L Partner Properties

LVS automatically reads from the input database L properties if they are requ
for the calculation of effective W values during device reduction. L properties
read if required, even when they are not traced themselves. Specifically, for
particular device type and optional subtype, L properties are automatically re
from the input database if the following conditions are all satisfied:

• relevant device reduction is requested for that device type and subtype

• L is required to calculate effective W for the device type and subtype

• W appears in Trace Property, reduction TOLERANCE, or similar
statements for the device type and subtype

If these conditions are satisfied then L properties are read from the input data
even if L itself does not appear in any Trace Property or similar statements.
Similarly, LVS automatically reads W properties if they are required for the
calculation of effective L values.

W and L are sometimes called “partner” properties because one is often req
to calculate effective values for the other during device reduction.

Automatic reading of partner L/W properties is triggered only when one prop
is in fact required to calculate effective values for the other. For example, if t
user specifies their own formula for calculation of effective W, which does no
require L, then L is not automatically read.

If any of the requested properties or their required partners are not present i
input database, then missing property discrepancies are reported in the “Sou
Errors” or “Layout Errors” sections of the LVS report (unless disabled with LV
Report Option E.)

Example:

LVS REDUCE PARALLEL MOS YES
TRACE PROPERTY MP W W 0 // trace W only; L is not mentioned
Calibre Verification User’s Manual, v9.1_510-104

LVS Circuit Comparison Tracing Properties

MP

P

ists.
 as
d
as
e
e M
rty
you
ual

and

n the
 the
In this example, W is the only property traced for MP devices. However, since
devices are being reduced in parallel and property L is required to calculate
effective values for W, both W and L will be read from the input database for M
devices.

Comparing Device Counts After Reduction

The “M” property represents a multiplier factor and can be traced in Spice netl
It is available for tracing in all built-in Spice elements (R, C, L, D, Q, J, M, V)
well as in primitive subcircuit calls (X calls referencing empty subcircuits) an
LVS Box subcircuit calls (X calls referencing subcircuits that are designated
LVS Box elements). For built-in Spice elements, the M property is equal to th
value of the M parameter if one is specified in the Spice element; otherwise, th
property defaults to 1. For primitive and LVS Box subcircuit calls, the M prope
is always equal to 1. (When you specify an M parameter in a subcircuit call,
get M individual subcircuit calls connected in parallel, each with property M eq
to 1). For other subcircuit calls the M property not available for tracing.

With this factor, you can keep track of device counts during device reduction
you can compare those counts in layout and source. For each pair of post-
reduction device instances, you can compare the number of original devices i
layout versus the number of original devices in the source that participated in
formation of the particular pair. This is shown below:

DEVICE MP PGATE PGATE PSD PSD NWELL [
 PROPERTY M // Define a M property for the device.
 M=1 // Set M to constant 1.
]
LVS REDUCE MP PARALLEL [
 EFFECTIVE M
 M=SUM(M) // Add up M values during parallel reduction.
]
TRACE PROPERTY MP M M 0 // Compare M values layout to source.
Calibre Verification User’s Manual, v9.1_5 10-105

Tracing Properties LVS Circuit Comparison

ents.

 in

ce to
Now assume that we compare GDSII to Spice using the above set of statem
Consider the following cases:

Layout GDSII: 3 MP devices in parallel
Source netlist: M1 1 2 3 4 P M=3
Result: Correct

Layout GDSII: 3 MP devices in parallel
Source netlist: M1 1 2 3 4 P

M2 1 2 3 4 P
M3 1 2 3 4 P

Result: Correct (M values in Spice default to 1)

Layout GDSII: 3 MP devices in parallel
Source netlist: M1 1 2 3 4 P M=2

M2 1 2 3 4 P
Result: Correct (M=2 value in M1 is added to the default value M=1

M2)

Layout GDSII: 3 MP devices in parallel
Source netlist: M1 1 2 3 4 P
Result: Property Error (M=3 in layout, M=1 in source)

Layout GDSII: 3 MP devices in parallel
Source netlist: M1 1 2 3 4 P M=2
Result: Property Error (M=3 in layout, M=2 in source)

Note of course that the Device operation is not necessary if you compare Spi
Spice.

See alsoLVS Spice Replicate Devices in theSVRF Manual.
Calibre Verification User’s Manual, v9.1_510-106

the

e,
f the

rt of

the
 a

it

s

its

to
iles
Chapter 11
Spice Format

Introduction
A Spice netlist may serve as a source of connectivity for LVS. LVS will parse
netlist and compare it to the layout. The Spice variety accepted by LVS is
described in this section. It is compatible with most common varieties of Spic
such as Spice 2 and Hspice, as well as the Dracula CDL format. The name o
netlist file and an optional name of the top level subcircuit are specified as pa
the LVS invocation.

If a top-level subcircuit name is specified to LVS, then this subcircuit serves as
top-level network. The pins of this subcircuit serve as design ports in LVS. If
top-level subcircuit name is not specified, then LVS looks for any element
statements and subcircuit calls in the netlist that are not part of any subcircu
definition. These statements then serve as the top-level network.

Some special features:

• Subcircuits that contain no devices are treated as primitive component
(black boxes).

• Parameters are passed between levels of hierarchy. Primitive subcircu
can own arbitrary parameters.

• Alphanumeric names are allowed for nets and devices.

In flat LVS, the LVS Spice parser creates temporary files in directory
$MGC_HOME/tmp. The environment variable $MGC_TMPDIR overrides
$MGC_HOME/tmp; if $MGC_TMPDIR is set then temporary files are written
that directory instead. If neither environment variable is set then temporary f
Calibre Verification User’s Manual, v9.1_5 11-1

Spice-like Property Syntax Spice Format

rser

n
rties

eter
g

s

fore
er of
ns,

)”
ics

al
are written to the current working directory. In hierarchical LVS, the spice pa
does not generate temporary files.

Spice-like Property Syntax
Property names inTrace Property, LVS Filter, LVS Property Map, and similar
specification statements in a rule file can be followed by a parameter name i
parenthesis. This format instructs LVS to interpret the values of these prope
as strings in Spice-like syntax, and to parse those strings to obtain the param
indicated in parentheses. The parameter name should be one of the followin
(either upper or lower case):

• w: MOS width

• l: MOS length

• r : Resistor resistance

• c: Capacitor capacitance

• a: Diode area

• p: Diode perimeter

In EDDM designs, and V7.0 “.erel” designs, LVS uses the values of propertie
whose names start with the string “ms_”. All ms_ property values should be
character strings. For every instance, LVS appends the values of the
ms_ properties found on the instance to the value of the property indicated be
the parentheses. The ms_ property values are appended in alphabetical ord
the ms_ property names. The resulting string is then parsed. In EDDM desig
LVS uses only ms_ properties that are specified as visible in the EDDM
viewpoint.

The “()” naming convention allows you to specify the property name and the
actual parameter name to be parsed out of the string. You need to use the “(
naming convention only to refer to property name-value pairs in Mentor Graph
databases (EDDM or IC Station), and only for properties that have Spice-like
string values. You can also use this convention to refer to parameters in a re
Calibre Verification User’s Manual, v9.1_511-2

Spice Format Spice-like Property Syntax

erty
ame,

ue of

rty

d

ice

vice

”;
nd
es
Spice netlist; in this case, only the letter in parenthesis is used, and the prop
name is ignored. For a Spice netlist, you can simply specify the parameter n
such as “w” or “l”, with no additional property name, or parentheses.

For example,

instpar(w)

indicates that a MOS transistor width value should be extracted from the val
property instpar. Any ms_ properties are appended, if applicable.

foo(r)

indicates that a resistance value should be extracted from the value of prope
foo. Any ms_ properties are appended, if applicable.

The property value, followed by the values of optional ms_ properties, shoul
form a parameter line in Spice-like syntax. The line can contain any Spice
arguments which are valid for the particular device type (not including the dev
name and node numbers).

General Spice Syntax

• MOS Transistors

The width and length values can appear in any order anywhere in the de
parameter line, as follows:

… <L=VAL> <W=VAL> …

The L and W values may also appear without a prefixing “L=” and “W=
in this case they should appear as the first two tokens in the string. “L=” a
“W=” may be specified in upper or lower case. The length and width valu
are specified in meters, and are numeric values with optional scaling
factors.
Calibre Verification User’s Manual, v9.1_5 11-3

Spice-like Property Syntax Spice Format

 The

 first

al

st
nal

a
he
It is not required to start the device parameter line with a model name.
following are some examples:

L=5U W=2U
5U 2U
L=10U W=5U AD=100P AS=100P PD=40U PS=40U
10U 5U 2P 2P
MODM L=5U W=2U
MOD1 L=10U W=5U AD=100P AS=100P PD=40U PS=40U

• Capacitors

The device parameter line should contain the capacitance value as the
token. The capacitance is specified in Farads. It is a number with an
optional scaling factor. The scaling factor may be followed by an option
unit name as in 1PF. This optional unit name is ignored.

VALUE …

The following are some examples:

1PF
10P IC=3V

• Resistors

The device parameter line should contain the resistance value as its fir
token. The resistance is specified in Ohms. It is a number with an optio
scaling factor.

VALUE …

The following are some examples:

100
1K TC=0.001,0.015

• Diodes

The first token of the device parameter line can contain an optional are
value, and the second token can contain an optional perimeter value. T
Calibre Verification User’s Manual, v9.1_511-4

Spice Format Spice-like Property Syntax

a

. The
.

ing

ax in
area and perimeter are numeric values with optional scaling factors. If
non-numeric value is found in the first or second position, the
corresponding area and/or perimeter values are assumed to be missing
area is specified in square meters. The perimeter is specified in meters

<AREA <PERIM>> …

The device parameter line must not contain a model name. The follow
are some examples:

3.0P IC=0.2
3.0P 5.0U IC=0.2

Spice Notational Conventions

Table11-1 shows the notational conventions used to describe the Spice synt
the following sections.

Table 11-1. LVS Spice Netlist Notational Conventions

Syntax Description

< > Indicates an optional argument.

| Indicates choice.

… Indicates repetition (zero or more times).

UPPER Upper case letters indicate literal keywords.

lower Lower case letters indicate arguments to be substituted by
other values.

+ Spice continuation character used when the syntax
description spans across several lines.

bold LVS uses bold arguments.

italic LVS does not use italicized arguments but does check
their syntax.

<ARG=val> Unless indicated otherwise, optional arguments preceded
by literal names can appear in any order.
Calibre Verification User’s Manual, v9.1_5 11-5

Spice-like Property Syntax Spice Format

f

Case Sensitivity

Unless indicated otherwise, all names, identifiers and keywords are case
insensitive. This includes node names, element names, subcircuit names,
parameter names, scaling factors, and so forth.

Continuation Character

The continuation character (+) must be the first non-white-space character o
every line of a statement, other than the first line.

General Spice Syntax Summary

The following is a summary of the general spice syntax.

• White space characters: space, tab, cr, lf, vt, ff, “,”

• Numeric values:

integer 12
floating point 3.14
integer or floating + integer exponent 1E-14, 2.65E3
number + scale factor 12P, 3.14E-2U
number + scale factor + comment unit 3.14FFarad

• Scale factors:

T=1E12 G=1E9 MEG=1E6 K=1E3 MIL=25.4E-6
M=1E-3 U=1E-6 N=1E-9 P=1E-12 F=1E-15

<val> Arguments not preceded by literal names must appear
exactly in the order shown.

Table 11-1. LVS Spice Netlist Notational Conventions [continued]

Syntax Description
Calibre Verification User’s Manual, v9.1_511-6

Spice Format Spice-like Property Syntax

ar.

: (),

tory.

ts.
he

J, M,
ue>.
 be

-

rs
Arithmetic Expression

Generally, arithmetic expressions can appear anywhere a number can appe
Valid operators are (+, -, *, and /). Parenthesis () can be used to specify
precedence. Standard high to low precedence applies, in the following order
*, /, +, then -. Parameter names can be used within arithmetic expressions.
Arithmetic expressions can be enclosed in single quotes, but this is not manda
Examples:

m1 1 2 3 4 p w=2+3 l=k*(3+2*(a+5))
m1 1 2 3 4 p w='2+3' l='k*(3+2*(a+5))’

Comments

Lines that start with an asterisk (*) or a dollar sign ($) are treated as commen
Any text on a Spice line that is preceded by a “$” is treated as a comment. T
following are some examples:

* This is a comment.
$ This is a comment, too.
C1 a 2 100p $ This is also a comment?

There are exceptions to this rule. Element statements, including R, C, D, Q,
and V have comment-coded parameters, such as $W=<value> and $L=<val
These comment-coded parameters do not force everything following them to
ignored.

LVS allows you to mix the order of comment-coded parameters with regular
Spice parameters in R, C, D, Q, J, M, and V elements in Spice netlists. For
example, the following entries are valid:

R0 A B 2.2 $[RN] $W=1 M=2 $L=2
C0 A B 2.2 $[RN] $A=1 W=1 $P=2 M=2

In the first line, the regular Spice parameter M=2 appears after the comment
coded parameters $[RN] and $W=1. In the second line, the regular Spice
parameters W=1 and M=2 are intermixed with the comment-coded paramete
$[RN] $A=1 and $P=2.
Calibre Verification User’s Manual, v9.1_5 11-7

Spice-like Property Syntax Spice Format

t-
nd

tire
sting

ore

le,

-

rs

on
When a comment character ($) is followed by text that is not a valid commen
coded construct, then the ($) and the rest of the line is treated as comment a
ignored. For example, in the following line, everything after $mycomment is
ignored:

R0 A B 2.2 $mycomment $[RN] $W=1 M=2 $L=2

This relaxed syntax may not be valid for Spice simulation because anything
following a ($) comment is ignored by Spice simulators; thus, intermixing of
comment-coded and regular parameters is not recommended.

Comment-coded Extensions

LVS uses two types of comment-coded extensions to extend the basic Spice
syntax: “*.” extensions and “$” extensions. “*.” extensions are used to add en
statements to the language. “$” extensions are used to add new fields to exi
Spice statements. For example:

*.CONNECT 10 20
C1 1 2 100 $A=100 $P=40

Since both * and $designate comments in Spice, a Spice simulator would ign
these extensions and any fields that follow them on the same Spice line.

You can mix the order of comment-coded parameters with regular Spice
parameters in R, C, D, Q, J, M, and V elements in Spice netlists. For examp
these statements are valid:

R0 A B 2.2 $[RN] $W=1 M=2 $L=2
C0 A B 2.2 $[RN] $A=1 W=1 $P=2 M=2

In the first line, the regular Spice parameter M=2 appears after the comment
coded parameters $[RN] and $W=1. In the second line, the regular Spice
parameters W=1 and M=2 are intermixed with the comment-coded paramete
$[RN], $A=1, and $P=2.

Such mixing is valid in LVS, but note that it may not be valid for Spice simulati
because anything following a “$” comment is ignored by Spice simulators;
Calibre Verification User’s Manual, v9.1_511-8

Spice Format Spice-like Property Syntax

ted.

ble
” in
therefore, intermixing of comment-coded and regular parameters is not
recommended.

When a “$” comment character is followed by text that is not a valid LVS
comment-coded construct, then the “$” and the rest of the line is treated as
comment and ignored. For example, in the following line, everything after
$mycomment is ignored:

R0 A B 2.2 $mycomment $[RN] $W=1 M=2 $L=2

Control Statements

.END

.END <comment>

where comment is any text, normally the name of the data file being termina
For example:

.END chip

LVS applications ignore this statement and issue a warning, for example:

Warning: .END ignored in file “z.net” at line 5

Any statements after a .END are ignored.

.INCLUDE or .INC

.INCLUDE pathname
-or-
.INC pathname

where pathname specifies a file. You can enclose pathname in single or dou
quotes. This control statement causes the named file to be included “in place
the netlist. Multiple levels of inclusion are allowed. For example:

.INCLUDE params
C1 1 2 10P
.INC /net/user1/circuitfile
Calibre Verification User’s Manual, v9.1_5 11-9

Spice-like Property Syntax Spice Format

E.

 and

of
.OPTION SCALE

.OPTIONS <option> …
-or-

.OPTION <option> …
-or-

.PC <option> …
-or-

.CONTROL <option> …

Any option can be specified, but the tool ignores all options except for SCAL

Options can have these formats:

opt
opt=x

Where opt is the option name and x is the value assigned to that option.
Expressions are allowed.

You can redefine an option in a netlist. At any point in the netlist, the last
definition seen will be used. Options default to 1 when not assigned a value,
can be reset by specifyingx to be zero (0). Options specified within subcircuit
definitions are used locally in those subcircuits only; those specified outside
subcircuit definitions apply globally.

The option:

SCALE=X

 sets the size multiplier for the following parameters:

• Element R: W, L

• Element C: A, P

• Element D: A, P

• Element Q: A, W, L (includes $EA, if used)
Calibre Verification User’s Manual, v9.1_511-10

Spice Format Spice-like Property Syntax

s by
red

n in

t is
• Element J: A, W, L

• Element M: W, L, AD, AS, PD, PS

LVS multiplies one-dimensional parameters by the value of SCALE, and area
the value of SCALE squared. When SCALE=1, element parameters are ente
with units of meters.

For example, set scale to 1E-6 to enter parameters in microns; areas are the
square microns.

In this example, M1 and M2 have equal sizes:

.OPTIONS SCALE=1E-6 $ Sets scale to 1E-6.

.SUBCKT AAA
M1 1 2 3 4 PMOS W=4 L=1 AS=4 AD=4 $ No scale factors
.ENDS

.OPTIONS SCALE=1 $ Sets scale to 1.

.SUBCKT BBB
M2 1 2 3 4 PMOS W=4U L=1U AS=4E-12 AD=4E-12 $ scale factors
.ENDS

X1 AAA
X2 BBB

*.CAPA

*.CAPA

This statement instructs LVS to ignore capacitor (C) elements in the netlist. I
coded as a comment and has no arguments.

*.CONNECT

*.CONNECT
-or-
*.J
Calibre Verification User’s Manual, v9.1_5 11-11

Spice-like Property Syntax Spice Format

s a
g net

e up
rts”).

of the

ircuit

rcuit
 in

t
bal

al
This statement takes two or more node names as arguments and is coded a
comment. LVS shorts the specified nodes together into one net. The resultin
inherits all user-given names (if any) from the original nodes. Any one of the
original names can serve as an initial correspondence point in LVS.

This control statement can appear at any level of hierarchy; shorts propagat
the hierarchy through subcircuit pins as necessary (these are called “deep sho
Shorts propagate in both hierarchical and flat execution. When LVS reports
information about a shorted net, as in a discrepancy, it uses the name of one
original nets. The choice is arbitrary, but there is preference, in the following
order, for power and ground names, global nets, user-given names, and subc
pin names.

*.CONNECT and *.J statements that appear in a Spice netlist outside of subci
definitions apply to global nets anywhere in the netlist and to non-global nets
the top level subcircuit. The top level subcircuit is specified with theSource
Primary or Layout Primary specification statements in the rule file. If you do no
specify a top level subcircuit the *.CONNECT and *.J statements apply to glo
nets anywhere in the netlist, and to non-global nets in the top level network.

In the following example, global nets VCC1 and VCC2 will be connected
together; local nets A and B in SUB1 also will be connected together, but loc
nets A and B in SUB2 will remain separate.

*.CONNECT VCC1 VCC2
*.CONNECT A B
*.GLOBAL VCC1 VCC2

.SUBCKT SUB2
C1 VCC1 VCC2
C2 A B
.ENDS

.SUBCKT SUB1 $ top level subcircuit
C3 A B
X1 SUB2
.ENDS
Calibre Verification User’s Manual, v9.1_511-12

Spice Format Spice-like Property Syntax

s in

ween
s the

pice
r
hy.

nd
nent

 the

ls of
The *.CONNECT or *.J statements must be used to join together different net
a netlist. The *.EQUIV statement only specifies correlation between different
source and layout names.

*.DIODE

*.DIODE

This statement instructs LVS to ignore diode (D) elements in the netlist. It is
coded as a comment and has no arguments.

*.EQUIV

*.EQUIV < new_name = old_name > …

This statement is coded as a comment. It typically specifies equivalence bet
different source and layout names. It is placed in a Spice netlist and rename
models and nodes in the netlist as follows:

• Model names equal to old_name are replaced with new_name. LVS
performs this translation for model names that are part of the standard S
syntax, and model names coded as comments in the form $[mname] o
$.MODEL=mname. Model names are translated at all levels of hierarc

In the following example, LVS replaces model names TP and TN by P a
N, respectively. This allows LVS to recognize these devices as compo
type MP and MN, respectively.

*.EQUIV P=TP N=TN
M1 1 2 3 4 TP
M2 1 2 3 4 TN

• Node names equal to old_name are replaced with new_name. LVS
performs this translation on global node names, and all node names in
top level subcircuit, or top-level network (if a top-level subcircuit is not
specified). It is not performed on non-global node names at lower leve
hierarchy.
Calibre Verification User’s Manual, v9.1_5 11-13

Spice-like Property Syntax Spice Format

he
d
ged

 the
main
oes

ent
ts in

ere

oes
In the following example, node 1 is renamed VCC and global node 0 is
renamed VSS:

*.GLOBAL 1 0
*.EQUIV VCC=1 VSS=0

In the following example, TOP is the top level subcircuit as specified in t
rule file. Node names SA, SB, and SC in TOP are renamed LA, LB, an
LC, respectively. Node names SA and SB in BOTTOM remain unchan
because they are not top level nodes and are not global.

*.EQUIV LA=SA LB=SB LC=SC

.SUBCKT BOTTOM P1 P2
C1 SA P1 100
C2 SB P2 100
.ENDS

.SUBCKT TOP SA SB
C1 SA SB 100
C2 10 SC 100
X1 20 30 Bottom
.ENDS

*.EQUIV does not connect different nodes together, it merely changes
node names. If the same new_name is assigned to two nodes, they re
distinct but are assigned the same name. LVS issues a warning, and d
not use the name as an initial correspondence point.

*.LDD

*.LDD

This statement is coded as a comment and takes no arguments. This statem
controls how the LVS Spice reader processes $LDD designators in M elemen
Spice. When you specify theLVS Spice Conditional LDDspecification statement
with the YES secondary keyword in the rule file, the Spice reader processes
$LDD designators in M elements only if a *.LDD statement is present somewh
in the netlist and ignores $LDD designators otherwise. When you specify the
secondary keyword NO with the LVS Spice Conditional LDD specification
statement in the rule file, or when the LVS Spice Conditional LDD statement d
Calibre Verification User’s Manual, v9.1_511-14

Spice Format Spice-like Property Syntax

on.
e

 is
or
uit
d as
.

ical
 the

e of

less
ou
cted
not appear in the rule file, the *.LDD statement has no effect on LVS executi
The following example shows how the *.LDD statement can be used in Spic
syntax:

*.LDD
M2 4 5 6 7 P $LDD[PPP]

*.XPINS

*.XPINS

This statement supports the E2LVS EDIF converter and similar programs. It
coded as a comment and takes no arguments. The keyword XPINS stands f
“explicit pin connections”. The statement must be contained within a subcirc
definition, and specifies that pins of the enclosing subcircuit should be treate
standalone objects, distinct from identically named nets within the subcircuit
Connections between pins and nets must be indicated explicitly with *.J or
*.CONNECT statements even when the respective pins and nets have ident
names. Pins of the subcircuit are referred to by preceding the pin name with
string “==”. Pin references are allowed only within *.J or *.CONNECT
statements. The “==” is not part of the pin name and merely indicates the typ
reference.

Example:

.SUBCKT SS1 A B $ Subcircuit SS1 with pins A and B.
*.XPINS $ Subcircuit has explicit pin connections.
*.J A ==A $ Join net A with pin A of SS1.
*.J B ==B $ Join net B with pin B of SS1.
*.J 1 ==B $ Join net 1 with pin B of SS1.
*.J ==A ==B $ Join pins A and B of SS1.
C1 A B $ A capacitor hooked to nets A and B.
.ENDS

In subcircuits with explicit pin connections, nets and pins remain separate un
they are connected explicitly with *.J or *.CONNECT statements. Therefore, y
can have pins and nets with identical names even though they are not conne
Calibre Verification User’s Manual, v9.1_5 11-15

Spice-like Property Syntax Spice Format

B in

 pin

A in
.

nd
e
o to
together. In the following example, capacitor C1 is hooked up to nets A and
SS2 but not to the respective pins A and B:

.SUBCKT SS2 A B
*.XPINS
C1 A B
.ENDS

When LVS reads a Spice netlist, it creates a net for each pin in the .SUBCKT
list, even if the pin is not connected to any elements within the subcircuit.
Therefore, in the example above, there will be two different nets both called
SS2; one hooked up to the subcircuit pin and one hooked up to capacitor C1
Similarly, there will be two nets called B in SS2.

Contrast this with a regular Spice subcircuit (without *.XPINS), where nets a
pins are one and the same thing and pin-to-net connections are implicit. In th
following example, capacitor C1 is connected to nets A and B in SS3 and als
the respective pins A and B of SS3.

.SUBCKT SS3 A B
C1 A B
.ENDS

Other Control Statements

The following list identifies the control statements ignored by the LVS Spice
parser, where warning messages are not transcripted.

The following list identifies the control statements ignored by the LVS Spice
parser, where warning messages are transcripted:

.AC .IC .NOISE .PROTECT .TF

.DC .MEASURE .OP .PZ .TITLE

.DCVOLT .MODEL .PLOT .SAMPLE .TRAN

.DISTO .NET .PRINT .SENS .UNPROTECT

.FOUR .NODESET .PROBE .TEMP .WIDTH

.GRAPH

.ALTER .DATA .DEL .LIB .OPTIONS
Calibre Verification User’s Manual, v9.1_511-16

Spice Format Spice-like Property Syntax

:

ter,
Element Statements

Resistor Element

Rxxx n1 n2 <mname> <r <tc1 <tc2 <scale <m <ac>>>>>>
+ <L=l> <W=w> <parnam=pval> … <$SUB=ns>
+ <$[mname] | $.MODEL=mname> <$W=w> <$L=l> <$X=x> <$Y=y>

Rxxx n1 n2 <mname> <r <TC=tc1 <tc2 <scale>>>><M=m> <AC=ac>
+ <L=l> <W=w> <parnam=pval> … <$SUB=ns>
+ <$[mname] | $.MODEL=mname> <$W=w> <$L=l> <$X=x> <$Y=y>

Rxxx n1 n2 <mname> <R=r><TC1=tc1> <TC2=tc2> <SCALE=scale>
 + <M=m> <AC=ac> <L=l> <W=w> <parnam=pval> … <$SUB=ns>
+ <$[mname] | $.MODEL=mname> <$W=w> <$L=l> <$X=x> <$Y=y>

where the arguments are defined in Table11-2. The following are some examples

R1 1 2 4
R2 n5 n6 4 TC=2 3 4 M=3 W=10U L=20U AAA=5 BBB=7 $[x] $comment
R3 na nb 4 1 1 4 M=3 $SUB=3 $.MODEL=x $W=10U $L=20U

To enter resistor devices with more than one substrate pin, define a primitive
subcircuit as described in the section “.SUBCKT or .SUB or .MACRO”.

LVS first tries to interpret the fourth token as a resistance value. If that is not
possible, for example if it is not a numeric value or previously defined parame
then LVS interprets that token as model name.

Table 11-2. Resistor Element

Argument
Name Description

Trace
Property
Name

Rxxx Resistor element name. Must begin with a “R” followed
by any number of alphanumeric characters.

n1 Positive terminal node name. String of any number of
alphanumeric characters.
Calibre Verification User’s Manual, v9.1_5 11-17

Spice-like Property Syntax Spice Format
n2 Negative terminal node name. String of any number of
alphanumeric characters.

mname Optional model name. String of any number of
alphanumeric characters.

r Resistance in ohms. r

tc1 Ignored.

tc2 Ignored.

scale Optional scale factor. Multiplies resistance (r).

m Optional multiplier factor used to simulate multiple
parallel resistors. Normally, divides resistance (r),
multiplies width (w). If LVS Spice Replicate Devices
YES is specified in the rule file, thenmparallel copies of
the resistor are created instead, andm for each copy is set
to 1. Defaults to 1 if not specified.

m

ac Optional AC resistance for AC analysis. ac

l Optional length. l

w Optional width. w

parnam=
pval

Optional parameter name set to a value. Arbitrary
parameter names are allowed. “parnam” must begin with
a letter followed by any number of alphanumeric
characters or underscores (_). You can specify any
number of parnam=pval pairs.

parnam

ns Optional substrate terminal node name coded as a
comment. String of any number of alphanumeric
characters.

$[mname]
or
$.MODEL
=mname

Optional model name, coded as a comment. String of any
number of alphanumeric characters. Overrides the
regular optional mname parameter.

Table 11-2. Resistor Element [continued]

Argument
Name Description

Trace
Property
Name
Calibre Verification User’s Manual, v9.1_511-18

Spice Format Spice-like Property Syntax

ve
LVS component type: “R”
LVS component subtype: mname
LVS pin names: “pos” (positive), “neg” (negative), “sub” (optional substrate)

Capacitor Element

Cxxx n1 n2 <mname> <c<tc1 <tc2<scale <ic <m>>>>>>>
+ <L=l> <W=w> <parnam=pval> … <$SUB=ns>
+ <$[mname] | $.MODEL=mname> <$A=a> <$P=p> <$X=x> <$Y=y>

Cxxx n1 n2 <mname> <c <TC=tc1<tc2 <scale>>>> <IC=ic><M=m>
+ <L=l> <W=w> <parnam=pval> … <$SUB=ns>
+ <$[mname] | $.MODEL=mname> <$A=a> <$P=p> <$X=x> <$Y=y>

Cxxx n1 n2 <mname> <C=c> <TC1 =tc1> <TC2=tc2> <SCALE =scale>
+ <IC=ic> <M=m> <L=l> <W=w> <parnam=pval> … <$SUB=ns>
+ <$[mname] | $.MODEL=mname> <$A=a> <$P=p> <$X=x> <$Y=y>

where the arguments are described in Table11-3. The following are some
examples:

C1 1 2 10P
C3 n1 n2 10P M=4 W=10U L=20U AAA=5 BBB=7 $[mc] $comment
C4 n1 n2 10P 1 1 4 $SUB=3 $.MODEL=mc $A=10P $P=40U

To enter capacitor devices with more than one substrate pin, define a primiti
subcircuit as described in section “.SUBCKT or .SUB or .MACRO”.

$W=w Optional width, coded as a comment. Overrides the
regular optional w parameter

w

$L=l Optional length, coded as a comment. Overrides the
regular optional l parameter

 l

$X=x
$Y=y

Optional X,Y coordinates coded as comments. Integer
numbers in database units. Used in LVS-H only.

Table 11-2. Resistor Element [continued]

Argument
Name Description

Trace
Property
Name
Calibre Verification User’s Manual, v9.1_5 11-19

Spice-like Property Syntax Spice Format

ter,

LVS first tries to interpret the fourth token as a resistance value. If that is not
possible, for example if it is not a numeric value or previously defined parame
then LVS interprets that token as model name.

Table 11-3. Capacitor Element

Argument
Name Description

Trace
Property
Name

Cxxx Capacitor element name. Must begin with a “C” followed
by any number of alphanumeric characters.

n1 Positive terminal node name. String of any number of
alphanumeric characters.

n2 Negative terminal node name. String of any number of
alphanumeric characters.

mname Optional model name. String of any number of
alphanumeric characters

c Capacitance in farads. c

tc1 Ignored.

tc2 Ignored.

scale Optional scale factor. Multiplies capacitance (c).

ic Optional initial voltage across the capacitor in volts. ic

m Optional multiplier factor used to simulate multiple
parallel capacitors. Normally, divides capacitance (c),
multiplies width (w). If LVS Spice Replicate Devices
YES is specified in the rule file, thenmparallel copies of
the capacitor are created instead, andm for each copy is
set to 1. Defaults to 1 if not specified.

m

l Optional length. l

w Optional width. w

parnam=
pval

Optional parameter name set to a value. Arbitrary
parameter names are allowed. “parnam” must begin with
a letter followed by any number of alphanumeric
characters or underscores (_). You can specify any
number of parnam=pval pairs.

parnam
Calibre Verification User’s Manual, v9.1_511-20

Spice Format Spice-like Property Syntax

:

LVS component type: “C”
LVS component subtype: mname
LVS pin names: “pos” (positive), “neg” (negative), “sub” (optional substrate)

The Dracula CDL statement *.CAPA is supported. It instructs LVS to ignore
capacitor elements in the netlist.

Inductor Element

Lxxx n1 n2 <l <tc1 <tc2>>> <SCALE=scale> <M=m> <R=r>
+ <parnam=pval> … <$SUB=ns> <$[mname] | $.MODEL=mname>
+ <$X=x> <$Y=y>
-or-
Lxxx n1 n2 <L=l> <TC1=tc1> <TC2=tc2> <SCALE=scale> <M=m> <R=r>
+ <parnam=pval> … <$SUB=ns> <$[mname] | $.MODEL=mname>
+ <$X=x> <$Y=y>

where the arguments are defined in Table11-4. The following are some examples

L1 1 2 100

ns Optional substrate terminal node name coded as a
comment. String of any number of alphanumeric
characters.

$[mname]
or
$.MODEL
=mname

Optional model name, coded as a comment. String of any
number of alphanumeric characters. Overrides the
regular optional mname parameter

$A=a Optional area, coded as comment. a

$P=p Optional perimeter, coded as comment. p

$X=x
$Y=y

Optional X,Y coordinates coded as comments. Integer
numbers in database units. Used in LVS-H only.

Table 11-3. Capacitor Element [continued]

Argument
Name Description

Trace
Property
Name
Calibre Verification User’s Manual, v9.1_5 11-21

Spice-like Property Syntax Spice Format
l2 n1 n2 100 10 20 SCALE=2 IC=30 M=4 DTEMP=40 R=200 FOO=300
+ $SUB=n3 $[lmod]
L3 na nb L=100 TC1=10 TC2=20 SCALE=2 IC=30 M=4 DTEMP=40 R=200
+ FOO=300 $SUB=nc $.MODEL=lmod $X=1000 $Y=2000

To enter diode devices with more than one substrate pin, define a primitive
subcircuit as described in the section “.SUBCKT or .SUB or .MACRO”.

Table 11-4. Inductor Element

Argument
Name Description

Trace
Property
Name

Lxxx Inductor element name. Must begin with a “L” followed
by any number of alphanumeric characters.

n1 Positive terminal node name. String of any number of
alphanumeric characters.

n2 Negative terminal node name. String of any number of
alphanumeric characters.

l Optional inductance in Henries. l

tc1 Ignored.

tc2 Ignored.

scale Optional scale factor. Multiplies inductance (l) and
resistance (r).

m Optional multiplier factor used to simulate multiple
parallel inductors. Normally, divides inductance (l) and
resistance (r). If LVS Spice Replicate Devices YES is
specified in the rule file, thenm parallel copies of the
inductor are created instead, andm for each copy is set to
1. Defaults to 1 if not specified.

m

r Optional resistance in Ohms. r

w Optional width. w
Calibre Verification User’s Manual, v9.1_511-22

Spice Format Spice-like Property Syntax

re
ed in
.

by
s-neg
LVS component type: “L”
LVS component subtype: mname
LVS pin names: “pos” (positive), “neg” (negative), “sub” (optional substrate)

By default, positive and negative pins of inductor elements in Spice netlists a
not swappable in LVS. However, like other devices, inductor elements enter
Spice netlists inherit pin swappability from DEVICE operations in the rule file
For example:

DEVICE L ind m1(pos) m1(neg) // implicit swappability
DEVICE L ind m1(pos) m2(neg) well(sub) (pos neg)

// explicit swappability

In the first example, pos-neg pin swappability for inductor devices is implied
the fact that these pins have the same layer, m1. In the second example, po
pin swappability for inductor devices is specified explicitly with a swap list.

parnam=
pval

Optional parameter name set to a value. Arbitrary
parameter names are allowed. “parnam” must begin with
a letter followed by any number of alphanumeric
characters or underscores (_). You can specify any
number of parnam=pval pairs.

parnam

ns Optional substrate terminal node name coded as a
comment. String of any number of alphanumeric
characters.

$[mname]
or
$.MODEL
=mname

Optional model name, coded as a comment. String of any
number of alphanumeric characters.

$X=x
$Y=y

Optional X,Y coordinates coded as comments. Integer
numbers in database units. Used in LVS-H only.

Table 11-4. Inductor Element [continued]

Argument
Name Description

Trace
Property
Name
Calibre Verification User’s Manual, v9.1_5 11-23

Spice-like Property Syntax Spice Format

:

Junction Diode Element

Dxxx nplus nminus mname<AREA=a> <PJ=pj> <M=m> <OFF>
+ <parnam=pval> … <$SUB=ns> <$X=x> <$Y=y>
-or-
Dxxx nplus nminus mname <a <pj>> <M=m> <OFF>
+ <parnam=pval> … <$SUB=ns> <$X=x> <$Y=y>

where the arguments are defined in Table11-5. The following are some examples

D1 1 2 mdio
D2 a b mdio 2P 3U M=3 AAA=5 BBB=7
D3 a b mdio AREA=2P PJ=3U M=3 $SUB=c

To enter diode devices with more than one substrate pin, define a primitive
subcircuit as described in the section “.SUBCKT or .SUB or .MACRO”.

Table 11-5. Junction Diode Element

Argument
Name Description

Trace
Property
Name

Dxxx Diode element name. Must begin with a “D” followed by
any number of alphanumeric characters.

nplus Positive (anode) terminal node name. String of any
number of alphanumeric characters.

nminus Negative (cathode) terminal node name. String of any
number of alphanumeric characters.

mname Model name. String of any number of alphanumeric
characters.

a Optional diode area. a

pj Optional periphery of junction. p

m Optional multiplier factor to simulate multiple diodes.
Normally, multiplies area (a) and perimeter (p). If LVS
Spice Replicate Devices YES is specified in the rule file,
thenm parallel copies of the diode are created instead,
andm for each copy is set to 1. Defaults to 1 if not
specified.

m

Calibre Verification User’s Manual, v9.1_511-24

Spice Format Spice-like Property Syntax

:

LVS component type: “D”
LVS component subtype: mname
LVS pin names: “pos” (positive), “neg” (negative), “sub” (optional substrate).

The Dracula CDL statement *.DIODE is supported. It instructs LVS to ignore
diode elements in the netlist.

BJT Element

Qxxx nc nb ne <[ns]> <ns> mname <AREA=a> <M=m> <OFF>
+ <parnam=pval> … <$SUB=ns> <$EA=a> <$W=w> <$L=l>
+ <$X=x> <$Y=y>
-or-
Qxxx nc nb ne <[ns]> <ns> mname <a> <M=m> <OFF>
+ <IC=vbe, vce> <parnam=pval> …<$SUB=ns> <$EA=a>
+ <$W=w> <$L=l> <$X=x> <$Y=y>

where the arguments are defined in Table11-6. The following are some examples

Q23 10 24 13 QMOD AREA=5P
Q23 10 24 13 QMOD 5P

OFF Ignored.

parnam=
pval

Optional parameter name set to a value. Arbitrary
parameter names are allowed. “parnam” must begin with
a letter followed by any number of alphanumeric
characters or underscores (_). You can specify any
number of parnam=pval pairs.

parnam

ns Optional substrate terminal node name coded as a
comment. String of any number of alphanumeric
characters.

$X=x
$Y=y

Optional X,Y coordinates coded as comments. Integer
numbers in database units. Used in LVS-H only.

Table 11-5. Junction Diode Element [continued]

Argument
Name Description

Trace
Property
Name
Calibre Verification User’s Manual, v9.1_5 11-25

Spice-like Property Syntax Spice Format

rcuit
Q50A neta netb netc netsub modq4 M=3 AAA=5 BBB=7
+ $L=2U $EA=4P $W=6U $comment

To enter Q devices with more than one substrate pin, define a primitive subci
as described in the section “.SUBCKT or .SUB or .MACRO”.

Table 11-6. BJT Element

Argument
Name Description

Trace
Property
Name

Qxxx BJT element name. Must begin with a “Q” followed by
any number of alphanumeric characters.

nc Collector terminal node name. String of any number of
alphanumeric characters.

nb Base terminal node name. String of any number of
alphanumeric characters.

ne Emitter terminal node name. String of any number of
alphanumeric characters.

[ns] Optional substrate terminal node name enclosed in
square brackets. String of any number of alphanumeric
characters. If present, must be enclosed in [].Ignored by
LVS.

ns Optional substrate terminal node name. String of any
number of alphanumeric characters.

mname Model name. String of any number of alphanumeric
characters.

a Optional emitter area. a

areab Used (Optional).

areac Used (Optional).

m Optional multiplier factor to simulate multiple BJTs.
Normally, multiplies area (a) and width (w). If LVS
Spice Replicate Devices YES is specified in the rule file,
thenmparallel copies of the BJT are created instead, and
m for each copy is set to 1. Defaults to 1 if not specified.

m

OFF Ignored.
Calibre Verification User’s Manual, v9.1_511-26

Spice Format Spice-like Property Syntax

4-pin
LVS component type: “Q”
LVS component subtype: mname
LVS pin names: “c” (collector), “b” (base), “e” (emitter), “s” (optional
substrate).

When the syntax is ambiguous and can be interpreted as either a 3-pin or a
device, LVS will interpret it as a 3-pin device.

JFET Element

Jxxx nd ng ns <nb> mname <AREA=a> <W=w> <L=l> <M=m> <OFF>
+ <IC=vds, vgs> <parnam=pval> … <$SUB=nb> <$X=x> <$Y=y>

vbe Used (Optional).

vce Used (Optional).

parnam=
pval

Optional parameter name set to a value. Arbitrary
parameter names are allowed. “parnam” must begin with
a letter followed by any number of alphanumeric
characters or underscores (_). You can specify any
number of parnam=pval pairs.

parnam

$SUB=ns Optional substrate terminal node name, coded as a
comment. Overrides regular Spice substrate terminal
field, if present.

$EA=a Optional emitter area, coded as a comment. Overrides
<AREA=a> or <a>. A practical use would be to use $EA
in the source, calculate the "A" property in the layout,
then use TRACE PROPERTY Q A A 1 for LVS
comparison.

a

$W=w Optional width, coded as a comment. w

$L=l Optional length, coded as a comment. l

$X=x
$Y=y

Optional X,Y coordinates coded as comments. Integer
numbers in database units. Used in LVS-H only.

Table 11-6. BJT Element [continued]

Argument
Name Description

Trace
Property
Name
Calibre Verification User’s Manual, v9.1_5 11-27

Spice-like Property Syntax Spice Format

:

-or-
Jxxx nd ng ns <nb> mname <a> <w> <l> <M=m><OFF> <IC=vds, vgs>
+ <parnam=pval> … <$SUB=nb> <$X=x> <$Y=y>

where the arguments are defined in Table11-7. The following are some examples

J1 10 24 13 JM1
Jabc netd netg nets jmod AREA=8P W=3U L=7U M=2 AAA=5 BBB=7
J234 netd netg nets jmod 8P 3U 7U M=2 $SUB=netb

To enter JFET devices with more than one substrate pin, define a primitive
subcircuit as described in the section “.SUBCKT or .SUB or .MACRO”.

Table 11-7. JFET Element

Argument
Name Description

Trace
Property
Name

Jxxx JFET element name. Must begin with a “J” followed by
any number of alphanumeric characters.

nd Drain terminal node name. String of any number of
alphanumeric characters.

ng Gate terminal node name. String of any number of
alphanumeric characters.

ns Source terminal node name. String of any number of
alphanumeric characters.

<nb> Optional bulk connection node name. String of any
number of alphanumeric characters.

mname Model name. String of any number of alphanumeric
characters.

a Optional area. a

w Optional gate width. w

l Optional gate length. l
Calibre Verification User’s Manual, v9.1_511-28

Spice Format Spice-like Property Syntax
LVS component type: “J”
LVS component subtype: mname
LVS pin names: “d” (drain), “g” (gate), “s” (source), “b” (optional bulk).

MOSFET Element

Mxxx nd ng ns <nb> mname <L=l> <W=w> <AD=ad> <AS=as>
+ <PD=pd> <PS=ps> <NRD=nrd> <NRS=nrs> <RDC=rdc>
+ <RSC=rsc> ,OFF><IC=vds, vgs, vbs> <M=m> <parnam=pval> …
+ <$LDD<[type]>> <$X=x> <$Y=y>
-or-

m Optional multiplier factor to simulate multiple JFETs.
Normally, multiplies area (a) and width (w). If LVS
Spice Replicate Devices YES is specified in the rule file,
thenm parallel copies of the JFET are created instead,
andm for each copy is set to 1. Defaults to 1 if not
specified.

m

OFF Ignored.

vds Ignored.

vgs Ignored.

parnam=
pval

Optional parameter name set to a value. Arbitrary
parameter names are allowed. “parnam” must begin with
a letter followed by any number of alphanumeric
characters or underscores (_). You can specify any
number of parnam=pval pairs.

parnam

$SUB=nb Optional bulk terminal node name coded as a comment.
String of any number of alphanumeric characters.
Overrides the regular fourth terminal field if both are
present.

$X=x
$Y=y

Optional X,Y coordinates coded as comments. Integer
numbers in database units. Used in LVS-H only.

Table 11-7. JFET Element [continued]

Argument
Name Description

Trace
Property
Name
Calibre Verification User’s Manual, v9.1_5 11-29

Spice-like Property Syntax Spice Format

n be

rse
t

ny
Mxxx nd ng ns <nb> mname <l> <w> <ad> <as> <pd> <ps>
+ <nrd> <nrs> <rdc> <rsc> <OFF> <IC=vds, vgs, vbs> <M=m>
+ <parnam=pval> … <$LDD<[type]>> <$X=x> <$Y=y>

where the arguments are defined in Table11-8.

LVS will interpret this as a 4-pin device when the syntax is ambiguous and ca
interpreted as either a 3-pin or a 4-pin device.

LVS does not recognize the Spice statement “.OPTION wl”; specify LVS Reve
WL YES in the rule file instead. Normally, if the prefixes “L=” and “W=” are no
used, then “l” must precede “w”.

Other characters can follow the parameter names W and L. LVS interprets a
parameter name that starts with W as width, and with L as length.

Table 11-8. MOSFET Element

Argument
Name Description

Trace
Property
Name

Mxxx MOSFET element name. Must begin with an “M”
followed by any number of alphanumeric characters.

nd Drain terminal node name. String of any number of
alphanumeric characters.

ng Gate terminal node name. String of any number of
alphanumeric characters.

ns Source terminal node name. String of any number of
alphanumeric characters.

nb Optional bulk terminal node name. String of any number
of alphanumeric characters.

mname Model name. String of any number of alphanumeric
characters.

l Optional channel length. l

w Optional channel width. w

ad Optional drain area. ad
Calibre Verification User’s Manual, v9.1_511-30

Spice Format Spice-like Property Syntax
as Optional source area. as

pd Optional drain perimeter. pd

ps Optional source perimeter. ps

nrd Optional number of squares of drain diffusion. nrd

nrs Optional number of squares of source diffusion. nrs

rdc Optional additional drain resistance due to contact
resistance.

rdc

rsc Optional additional source resistance due to contact
resistance.

rsc

OFF Ignored.

vds Ignored.

vgs Ignored.

vbs Ignored.

m Optional multiplier factor to simulate multiple
MOSFETs. Normally, multiplies w, ad, as, pd and ps. If
LVS Spice Replicate Devices YES is specified in the
rule file, thenm parallel copies of the MOSFET are
created instead, andm for each copy is set to 1. Defaults
to 1 if not specified.

m

parnam=
pval

Optional parameter name set to a value. Arbitrary
parameter names are allowed. “parnam” must begin with
a letter followed by any number of alphanumeric
characters or underscores (_). You can specify any
number of parnam=pval pairs.

parnam

$LDD Optional LDD device designator, coded as a comment.

type Optional LDD device type. String of any number of
alphanumeric characters. Allowed (but not required) only
in conjunction with $LDD. If specified, replaces mname.

$X=x
$Y=y

Optional X,Y coordinates coded as comments. Integer
numbers in database units. Used in LVS-H only.

Table 11-8. MOSFET Element [continued]

Argument
Name Description

Trace
Property
Name
Calibre Verification User’s Manual, v9.1_5 11-31

Spice-like Property Syntax Spice Format

:

LVS component type:

Without $LDD:
If mname starts with 'N' or 'n': “MN”
If mname starts with 'P' or 'p': “MP”
If mname starts with 'E' or 'e': “ME”
If mname starts with 'D' or 'd': “MD”
Otherwise: “M”

With $LDD:
If mname (or type) starts with 'N' or 'n': “LDDN”
If mname (or type) starts with 'P' or 'p': “LDDP”
If mname (or type) starts with 'E' or 'e': “LDDE”
If mname (or type) starts with 'D' or 'd': “LDDD”
Otherwise: “LDD”

LVS component subtype: Normally mname; if [type] is specified then type.
LVS pin names: “d” (drain), “g” (gate), “s” (source), “b” (optional bulk).

The following are some examples:

M2 10 24 13 14 TYPE1
M3 10 24 13 TYPE2
Ma1 netd netg nets netb pmos L=3U W=2U AD=4P AS=5P PD=6U
+ PS=7U NRD=3 NRS=4 M=2 AAA=5 BBB=7
Ma2 netd netg nets netb pmos 3U 2U 4P 5P 6U 7U M=2

To enter MOS devices with more than one substrate pin, define a primitive
subcircuit as described in the section “.SUBCKT or .SUB or .MACRO”.

Voltage Source Element

Vxxx nplus nminus <<DC <=>> dc> <M=m> <parnam=pval> …
+ <$X=x> <$Y=y>

where the arguments are defined in Table11-9. The following are some examples

V1 n1 n2 5
V2 n1 n2 DC 5
V3 n1 n2 DC=5 AAA=5 BBB=7
Calibre Verification User’s Manual, v9.1_511-32

Spice Format Spice-like Property Syntax
LVS component type: “V”
LVS component subtype: none
LVS pin names: “pos” (positive), “neg” (negative).

Subcircuits

.SUBCKT or .SUB or .MACRO

.SUBCKT subname < n1 n2 … < / m1 m2 … > > < parnam = pval > …
-or-

Table 11-9. Voltage Source Element

Argument
Name Description

Trace
Property
Name

Vxxx Voltage source element name. Must begin with a “V”
followed by any number of alphanumeric characters.

nplus Positive terminal node name. String of any number of
alphanumeric characters.

nminus Negative terminal node name. String of any number of
alphanumeric characters.

dc Optional DC and transient analysis value of the source. dc

parnam=
pval

Optional parameter name set to a value. Arbitrary
parameter names are allowed. “parnam” must begin with
a letter followed by any number of alphanumeric
characters or underscores (_). You can specify any
number of parnam=pval pairs.

parnam

m= Optional multiplier factor to simulate multiple voltage
sources. Defaults to 1 if not specified. Normally, its only
effect is to set themvalue of the voltage source. If LVS
Spice Replicate Devices YES is specified in the rule file,
thenm parallel copies of the voltage source are created
instead, andm for each copy is set to 1.

m

$X=x
$Y=y

Optional X,Y coordinates coded as comments. Integer
numbers in database units. Used in LVS-H only.
Calibre Verification User’s Manual, v9.1_5 11-33

Spice-like Property Syntax Spice Format

 or

ate

of
the

“/”
.SUB subname < n1 n2 … < / m1 m2 … > > < parnam = pval > …
-or-
.MACRO subname < n1 n2 … < / m1 m2 … > > < parnam = pval > …

where the arguments are defined in Table11-10.

“.SUBCKT”, “.SUB” and “.MACRO” are all equivalent.

The statements following the subcircuit statement (and preceding the ENDS
EOM statement) define the subcircuit. Subcircuit definitions may contain
subcircuit calls. Subcircuit definitions may contain other (nested) subcircuit
definitions.

When resolving node names inside subcircuit definitions, .GLOBAL nodes
normally have precedence over subcircuit pins with the same name. To indic
the opposite, specify LVS Spice Prefer Pins Yes in the rule file.

Table 11-10. Subckt Statement

Argument
Name Description
subname Subcircuit name. String of any number of alphanumeric

characters.

n1 n2 … Node names for external reference. Strings of any number
alphanumeric characters. Any element nodes appearing in
subcircuit but not included in this list or in a .GLOBAL or
*.GLOBAL statement are strictly local.

/ m1 m2 … Optional additional node names for external reference. The
characters in the node name list are treated as whitespace,
unless you specified the LVS Spice Slash Is Space NO
specification statement in your rule file.

parnam = pval Optional parameter name set to a value for use only in the
subcircuit. The value applies to this subcircuit and to any
subcircuits called by this subcircuit. It is overridden by an
assignment in the subcircuit call or by a value set in a
.PARAM statement. “parnam” must begin with a letter
followed by any number of alphanumeric characters.
Calibre Verification User’s Manual, v9.1_511-34

Spice Format Spice-like Property Syntax

 is

eter

he
 m2

ut

roup
Here is an example:

.SUBCKT res2 in1 in2 res=5
R1 in1 3 res
R2 3 in2 res
.ENDS res2

Primitive Subcircuits:

A subcircuit that does not contain any element statements or subcircuit calls
considered a primitive component in LVS:

LVS component type: subname
LVS component subtype: none
LVS pin names: n1 n2 … (and optional m1 m2 …)

The parameter names “parnam” can be entered as property names in the
$trace_property_numeric() function. This function can be used to trace param
values specified in primitive subcircuit definitions or primitive subcircuit calls.
Here is an example:

.SUBCKT primitive a b c par1=5U par2=10U

.ENDS primiti ve

Design Ports:

When the top-level network is enclosed in a subcircuit definition, LVS uses t
external node names of the top-level subcircuit (“n1 n2 …” and optional “m1
…“) as design ports.

Duplicate Pins:

The LVS Spice parser allows duplicate pin names in subcircuit definitions, b
issues warnings about them. Only the first pin in each group of duplicate pin
names actually connects to elements within the subcircuit; other pins in the g
are unused. For example:

.SUBCKT bar a a
C1 a b 100
.ENDS
X1 1 2 bar
Calibre Verification User’s Manual, v9.1_5 11-35

Spice-like Property Syntax Spice Format

d

of
are
e

ers
cuit

e for
In the subcircuit call X1, node 1 will connect to C1 in “bar” through pin “a” of
“bar”. Node 2 will not connect to any devices in “bar”. A warning will be issue
about duplicate definition of pin “a” in “bar”.

Duplicate .SUBCKT Definitions:

The LVS Spice parser classifies subcircuits by subcircuit name and number
pins. Subcircuit definitions with the same name but different number of pins
allowed and are not considered duplicate. Subcircuit definitions with the sam
name and the same number of pins are duplicate. When duplicate subcircuit
definitions are present in a netlist, one of those definitions is used and all oth
are discarded with warnings. The user should not rely on any specific subcir
definition (first, last or other) to be chosen.

.ENDS or .EOM

.ENDS <subname>
-or-
.EOM <subname>

where “subname” is the subcircuit name. This statement must be the last on
any subcircuit definition. The following are some examples:

.ENDS opamp

.EOM

Subcircuit Calls

Xyyy < n1 n2 … > < / > <subname> < parnam = pval > … <M=m>
+ <$[mname] | $.MODEL=mname> <$T=tx ty r a>
+ <$X=x> <$Y=y> <$PINS <pin=node> … >

where the arguments are defined in Table11-11. Here is an example:

X1 2 4 17 opamp wn=100 ln=5
Calibre Verification User’s Manual, v9.1_511-36

Spice Format Spice-like Property Syntax

of
s in

s

g

it,

,

e

Table 11-11. Subcircuit Call

Argument
Name Description
Xyyy Subcircuit call name. Must begin with an “X” followed by any

number of alphanumeric characters.

n1 n2 … Node names for external reference. Strings of any number
alphanumeric characters. The program references the name
the order they are specified in the subcircuit definition.

 / Optional. The “/” characters in the node name list and in the
subcircuit reference name are treated as whitespace, unles
you specify the LVS Spice Slash Is Space NO specification
statement in your rule file. See $PINS also.

subname Subcircuit reference name. Must appear in a correspondin
.SUBCKT or .MACRO definition in the netlist. A subcircuit
call can appear before or after the corresponding subcircuit
definition.

parnam = pval Optional parameter name set to a value for use only in this
subcircuit call. The value applies to the referenced subcircu
and to any subcircuits called indirectly by the referenced
subcircuit. Overrides a parameter value assigned in the
subcircuit definition, but overridden by a value set in a
.PARAM statement. The parameter does not have to be
specified in the subcircuit definition. “parnam” must begin
with a letter followed by any number of alphanumeric
characters.

m Optional multiplier factor. Generates M subcircuit calls
connected in parallel. The name of the first subcircuit call is
Xyyy. The names of subsequent calls receive “==n” suffixes
where n are serial numbers starting with 2. For example the
line:

X1 1 2 3 AAA M=3
generates 3 subcircuit calls of AAA connected in parallel. Th
subcircuit names are X1, X1==2, X1==3.
Calibre Verification User’s Manual, v9.1_5 11-37

Spice-like Property Syntax Spice Format

e

.
n

mname Optional model name, coded as a comment. String of any
number of alphanumeric characters. Valid only on calls to
primitive subcircuits. Used as LVS component subtype for th
call.

$T=tx ty r a Optional layout transform consisting of x translation, y
translation, reflection and rotation-angle. Used in LVS-H only
The translation components tx and ty are integer numbers i
database units. The reflectionr is along the X axis and is either
0 or 1 which denote the absence or presence of reflection
respectively. The rotation anglea is an integer number in
degrees and the only valid values are 0, 90, 180 or 270;
rotation is counter-clockwise.

$X=x
$Y=y

Optional X,Y coordinates coded as comments. Integer
numbers in database units.

Table 11-11. Subcircuit Call [continued]

Argument
Name Description
Calibre Verification User’s Manual, v9.1_511-38

Spice Format Spice-like Property Syntax

ive

ub-
f
it

-
a

as
in

e
gs
Notes:
1. Duplicate pins are not supported. That is, you cannot use the $PINS specification when the respect
.SUBCKT definition has multiple pins with the same name.
2. The $PINS argument overrides the standard Spice node specification <n1 n2 …> if one is present.
3. The LVS Spice parser performs consistency checking regarding number of pins and pin names in the s
circuit call and the respective .SUBCKT definition. Mismatches are reported as errors. The number o
<pin=node> pairs in a $PINS argument determines number of pins. Note that floating pins in the subcircu
call are usually allowed; see discussion of "Floating Pins" below.
4. Subcircuit definitions and subcircuit calls are classified by subcircuit name and number of pins. For exam
ple, you can have 2-pin and 3-pin versions with the same subcircuit name. The number of pins specified in
$PINS argument in a subcircuit call will classify the subcircuit call.

$PINS
<pin=node>
…

Optional argument that specifies pin connections by name (
opposed to by order). Coded as a comment. Each “pin” is a p
name in the .SUBCKT definition, and each “node” is a node
name in the subcircuit call. The specified node connects to th
specified pin in the subcircuit. Pin and node names are strin
of any number of alphanumeric characters. Imbedded “/”
characters are treated as part of the names. For example:

.SUBCKT FOO A B
$ subcircuit contents…
.ENDS
X1 FOO $PINS B=1 A=2

In subcircuit call X1, pin B connects to node 1 and pin A
connects to node 2.
A subcircuit call may reference fewer pins than specified in
the respective .SUBCKT definition; any pins that are not
referenced in the subcircuit call are floating. For example:

.SUBCKT SSS A B C D

$ subcircuit contents…
.ENDS
X2 1 2 SSS
X3 SSS $PINS B=1 D=2

In subcircuit call X2, pins C and D are floating. In subcircuit
call X3, pins A and C are floating. See notes below.

Table 11-11. Subcircuit Call [continued]

Argument
Name Description
Calibre Verification User’s Manual, v9.1_5 11-39

Spice-like Property Syntax Spice Format

es
ears

le

,
 M

t

y
y

Here is another example that shows how a subcircuit call redefines a defined
subcircuit parameter:

.SUBCKT yyy a b res=5 $ 'res' defaulted to 5 ohm…
R1 a b res $ …and used to specify resistance.
.ENDS yyy
X1 5 6 yyy res=7 $ 'res' redefined on subcircuit call.

Primitive Subcircuit Calls . A primitive subcircuit call is a subcircuit call that
references a primitive subcircuit. A primitive subcircuit is a subcircuit that do
not contain any element statements or subcircuit calls, or a subcircuit that app
in anLVS Box specification statement. For example:

.SUBCKT primitive a b c

.ENDS
X1 1 2 3 primitive par1=5U par2=10U $[model1]

The parameter names, “parnam”, may be entered as property names in theTrace
Property specification statement. As always, they override parameter values
assigned in the subcircuit definition. In the example above, you could trace
properties “par1” and “par2”.

All primitive subcircuit calls own a special property called M, which is availab
for tracing. The “trace property” name is M. The value is always 1. Note that
when you specify the optional M multiplier factor in a primitive subcircuit call
you get M individual subcircuit calls connected in parallel, each with property
equal to 1. The M property isnot available for tracing in non-primitive subcircui
calls.

Floating pins. LVS allows floating pins in subcircuit calls. A subcircuit call ma
reference fewer pins than specified in the respective .SUBCKT definition; an
pins that are not referenced in the subcircuit call are floating. For example:

 .GLOBAL VCC VSS

 .SUBCKT SSS A B C D
 …
 .ENDS

 .SUBCKT XXX E VCC VSS
 …
Calibre Verification User’s Manual, v9.1_511-40

Spice Format Spice-like Property Syntax

al,
the
ng.

e

pin.

net

n the
s
ively.

l

ining
 be
tlist.

ithin
 .ENDS

 .SUBCKT ZZZ
 X1 1 2 SSS $ Pins C and D are floating.
 X2 SSS $PINS B=1 D=2 $ Pins A and C are floating.
 X3 XXX $ Pins E, VCC and VSS are floating.
 .ENDS

As shown in the example, in regular subcircuit calls, pin reference is position
starting with the first pin, and floating pins are at the end of the pin list. When
$PINS syntax is used, pin reference is by name and any other pins are floati

In hierarchical operation, for each floating pin in a subcircuit call, if the pin nam
is not global, then the Spice reader creates a respective floating net in the
subcircuit that contains the call. The floating net is connected to the floating
The floating net name consists of the instance name (including the prefix X)
followed by a slash (/) followed by the pin name. In the example above, pinC of
X1 is connected to a net called X1/C in ZZZ and pin D of X1 is connected to a
called X1/D in ZZZ.

Floating pins with global names are connected to the respective global nets. I
example above, pin E of X3 is connected to a net called X3/E in ZZZ but pin
VCC and VSS of X3 are connected to the global nets VCC and VSS respect

Note that the generated net name, for example X1/C, is in fact a hierarchica
pathname.

If this hierarchical pathname also appears literally as a net name in the conta
subcircuit then they will both refer to the same net. For this reason you must
careful when using hierarchical pathnames as literal net names in a Spice ne

In flat operation, floating pins are represented simply by the respective nets w
the particular subcircuit calls, so no additional nets are created.

Floating pins are not allowed if there is more than one respective .SUBCKT
definition. For example, the following is not allowed:

 .SUBCKT YYY A B C
 …
 .ENDS
Calibre Verification User’s Manual, v9.1_5 11-41

Spice-like Property Syntax Spice Format

ur

iate
rent.

on
 .SUBCKT YYY A B C D
 …
 .ENDS
 X1 1 2 YYY $ Error: Ambiguous pin count.

You can instruct LVS applications to forbid floating pins in subcircuit calls by
specifying the LVS Spice Allow Floating Pins NO specification statement in yo
rule file.

Nested Subcircuits

You can nest subcircuit definitions. Nested subcircuit definitions have local
scope. In other words, an embedded subcircuit is visible only from its immed
parent in the nesting hierarchy and from other subcircuits nested under the pa
It is not visible from places above the parent in the nesting hierarchy or from
siblings of the parent.

For example, the following design has two capacitors (from local bbb definiti
#1) and 4 resistors (from local bbb definition #2).

.subckt aaa d e f $$ Beginning of subcircuit aaa.
$
.subckt bbb a b c $$ Local definition of bbb #1;
c1 a b $$ scope is aaa.
c2 b c
.ends bbb
$
x1 d e f bbb $$ Call to bbb #1.
.ends aaa $$ End of subcircuit aaa.

.subckt ccc d e f $$ Beginning of subcircuit ccc.
$
.subckt bbb a b c $$ Local definition of bbb #2;
r1 a b $$ scope is ccc.
r2 b c
.ends bbb
$
.subckt ddd a b c
x1 a b c bbb $$ Call to bbb #2.
.ends ddd
$
x1 d e f bbb $$ Call to bbb #2.
Calibre Verification User’s Manual, v9.1_511-42

Spice Format Spice-like Property Syntax

lues.

value
eter.
ric

T or
x2 1 2 3 ddd
.ends ccc $$ End of subcircuit ccc.

.subckt top
x1 g h l aaa
x2 i j k ccc
.ends

.PARAM

.PARAM < parnam = pval > …

where “<parnam = pval>…” are parameter names assigned to parameter va

When you use the parameter name in a subcircuit description, the specified
is automatically substituted. This type of value is referred to as a global param
Each “parnam” must begin with a letter, followed by any number of alphanume
characters.

Parameter values set in a .PARAM statement override those set in a .SUBCK
.MACRO statements, or in subcircuit calls. Here is an example:

.PARAM width=1U
X1 9 10 mos2 width=5U length=6U
*
.SUBCKT mos2 in1 in2 width = 10U length=20U aread=30P
+ areas=40P
M1 in1 in2 3 4 pmos w=width l=length ad=aread as=areas
.ENDS mos2

In the above example, M1 has the following values:

w = 1U (from the .PARAM statement)
l = 6U (from the subcircuit call)
ad = 30P (from the .SUBCKT statement)
as = 40P (from the .SUBCKT statement)

SeeLVS Spice Redefine Param in theSVRF Manual as a related specification
statement.
Calibre Verification User’s Manual, v9.1_5 11-43

Spice-like Property Syntax Spice Format

 all

ocks,
d is

 as

ate
.GLOBAL

.GLOBAL < node1 node2 … >
-or-
*.GLOBAL < node1 node2 … >

where “node1 node2 …” are node names defined as external references for
subcircuits in the netlist.

The specified nodes are globally shared by all subcircuits. The .GLOBAL
statement provides a convenient means of communicating power supplies, cl
and so on through the netlist. The form *.GLOBAL is coded as a comment an
entirely equivalent to .GLOBAL. Here is an example:

.GLOBAL 4 7 VDD VSS

Nodes with user-given names specified in a .GLOBAL statement are treated
design ports in LVS, unless you specify the LVS Globals Are Ports NO
specification statement in your rule file.

When resolving node names inside subcircuit definitions, .GLOBAL nodes
normally have precedence over subcircuit pins with the same name. To indic
the opposite, specify LVS Spice Prefer Pins YES in the rule file.

You can discard the post-colon “:” suffixes from node names with the Virtual
Connect Colon specification statement.

The Dracula CDL statement *.GLOBAL is supported and is equivalent to
.GLOBAL as described above.

Subcircuit pin preferences—The preference of .SUBCKT pins over global
signals when resolving Spice netlists is handled by theLVS Spice Prefer Pins
statement.
Calibre Verification User’s Manual, v9.1_511-44

Spice Format Spice-like Property Syntax

to
Example:

.GLOBAL VCC VSS

.SUBCKT MYCELL VCC VSS
C1 VCC VSS
.ENDS
X1 A B MYCELL

Normally, capacitor C1 is connected to the global nets VCC and VSS
respectively. However, if LVS Spice Prefer Pins YES is specified then C1 is
connected to the VCC and VSS pins of MYCELL, which are in turn connected
top level nets A and B.

You can specify that subcircuit pin assignments override global signals
throughout subcircuits and their sub-hierarchies by using theLVS Spice Override
Globals statement.
Calibre Verification User’s Manual, v9.1_5 11-45

Spice-like Property Syntax Spice Format
Calibre Verification User’s Manual, v9.1_511-46

ures

al

n

Chapter 12
Utilities

This chapter describes the input requirements, invocation usage, and proced
for the following utilities:

• EDIF-to-LVS (E2LVS) – a converter that translates a EDIF structural
netlist into a Spice-like netlist for use as input to Calibre LVS/LVS-H.

• Verilog-to-LVS (V2LVS) – a converter that translates a Verilog structur
netlist into a Spice-like netlist for use as input to Calibre LVS/LVS-H.

• Dracula: File Conversion and User Notes

• Compare Two GDSII Databases

• Rules Syntax Checker

EDIF-to-LVS
The EDIF-to-LVS (E2LVS) program translates an EDIF (Electronic Design
Interchange Format) netlist into a LVS Spice netlist suitable for Calibre
LVS/LVS-H comparison against a layout. The following sections describe
invocation, usage, and translation considerations and issues. The last sectio
provides a sample netlist translation.
Calibre Verification User’s Manual, v9.1_5 12-1

EDIF-to-LVS Utilities

tlist

ist.

,

n

e
file
Usage
e2lvs { -e edif_input_file | -l input_list_file }

-o output_file [-s spice_input_file]
 [{ -sb cell_file | -ss cell_file }]
 [-a char1 [char2]] [-b char]
 [-c char1 [char2]] [-r char1 [char2]]
 [-i] [-n cell_name_file] [-p]
 [-w warning_level]

[-cb] [-ictrace]

Description

E2LVS translates a structural EDIF 2 0 0 design into an equivalent Spice ne
for use as input to Calibre LVS/LVS-H. This netlist is an extended form of
traditional Spice. The section “General Spice Syntax” in chapter11, “Spice
Format” describes the netlist format and extensions used in a LVS Spice netl

This tool allows the following inputs:

• An EDIF netlist file, or a file containing an ordered list of EDIF netlist files
one name per line.

The correct EDIF netlist file order is necessary because a cell definitio
must be parsed before it is instantiated in another cell. Thus, if a cell in
EDIF fileA uses a cell defined in EDIF fileB, then fileB must be listed
before fileA in the list of EDIF files. If the files are unordered, E2LVS
issues an error message indicating that a cell is undefined.

• A Spice file (optional) with one or more .INCLUDE statements, one
statement per line.

E2LVS includes the optionally specified Spice file at the beginning of th
output Spice netlist file using a .INCLUDE statement. The input Spice
can contain multiple .INCLUDE statements. The optional Spice file
generally contains leaf-level Spice cell definitions.
Calibre Verification User’s Manual, v9.1_512-2

Utilities EDIF-to-LVS

in
pice
iated
me

ted

n the

se,
he
E2LVS translates the specified EDIF netlist file(s) into a single output Spice
netlist file. This file is overwritten if it already exists. Figure12-1 illustrates the
E2LVS flow:

Figure 12-1. E2LVS Flow

E2LVS creates a file named “e2lvs_names” when cells with the same name
different libraries are found, since these names will collide in the translated S
netlist. The “e2lvs_names” file lists the generated cell names and their assoc
original cell names. The command line switch -n allows you to specify a filena
other than “e2lvs_names”. Refer to section “EDIF Cell Names Versus Spice
Subcircuit Names” for more information.

During translation, non-structural syntax in the EDIF design is ignored by
E2LVS. The EDIF design is assumed to be syntactically correct with only limi
syntax checking to ensure that undesired states are not reached within the
software.

To use the output Spice file as input into Calibre LVS, certain specification
statements must be included in the rule file. These statements are identified i
section“Rule File” on page 2-1.

E2LVS searches initially for a calibrelvs license, then for a caldrclvseve licen
then for an ictrace license. Command line switches may be used to control t
license that gets used for a given run.

EDIF
Netlist(s)

E2LVS
LVS Spice
Netlist

Spice
File
(optional)
Calibre Verification User’s Manual, v9.1_5 12-3

EDIF-to-LVS Utilities

e
efer

e
t is,

not

e

y

DIF
Arguments

Entering e2lvs -h prints a help line.

• {-e edif_input_file | -l input_list_file}

Specifies the location of the EDIF input file(s). Possible choices are:

-e Specifies the location of a single EDIF input file.

-l Specifies the location of a file containing a list of EDIF input files, on
per line. The files must be specified in the order cells are instantiated. R
to section “Cell Statement” for more information.

• -o output_file

Specifies the location of the translated output Spice netlist file.

• -s spice_input_file

Specifies the location of an optional input Spice file.

• {-sb cell_file |-ss cell_file}

Specifies how to translate EDIF cells. Possible choices are:

-sb Specifies to translate EDIF cell names to Spice black boxes.

⇒ -ss Specifies to translate EDIF cell names to Spice subcircuit calls.

If the optionalcell_file parameter is not specified with the -sb command lin
switch, then all empty EDIF cells are translated into Spice black boxes; tha
empty subcircuit calls. Otherwise, the specified file contains the names of
EDIF cells that are to be treated as black boxes. Empty EDIF cells that are
listed are assumed to be specified in an input Spice file. EDIF cells are
considered “empty” when the contents parameter in the view statement is
undefined.

If the optionalcell_file parameter is not specified with the -ss command lin
switch, then definitions of all empty EDIF cells are found in the Spice
subcircuits specified by the -ss command line switch. If the parameter is
specified, then only specified EDIF cells exist as Spice subcircuits and an
empty EDIF cells that are left are translated to Spice black boxes.

The default behavior (-ss) assumes that cell descriptions not found in the E
file(s) are specified in the optional input Spice file.
Calibre Verification User’s Manual, v9.1_512-4

Utilities EDIF-to-LVS

d
s

ndle

ed to
in
e

n
l

.

g.

inal

ed

y

• {-a char1 [char2] }

Specifies one or two array delimiters to use when expanding port, net, an
instance array EDIF names to Spice names. The second array delimiter i
optional. The default is “[]”. The character “_” is permitted.

• -b char

Specifies a bundle delimiter to use when expanding portBundle and netBu
EDIF names to Spice names. The default is “_”.

• {-c char1 [char2] }

Specifies one or two name delimiters to use as substitution characters for
illegal Spice names generated due to EDIF rename statements. It is also us
generate unique Spice subcircuit names when cell names are duplicated
multiple libraries, or when EDIF array and bundle expansion causes nam
collisions. Unique names are created by prepending the specifiedchar in front
of a cell name.

The default delimiter is “#”. It is substituted in place of the illegal Spice
characters “,”, “=” and “$”.The second character delimiter is optional. Whe
specified, it substitutes in place of the “/” character, which can be an illega
Spice character in certain cases. Otherwise, the “/” character is left alone

• {-r char1 [char2] }

Specifies two bus delimiters to use when expanding a renamed array strin
Valid delimiters are “[]”, “< >”, “{}”, and “()”. Refer to section “Arrays and
Bundles” for an example.

• -i

Specifies to ignore names specified in EDIF rename statements. The orig
EDIF names are used in generating the Spice netlist. Refer to section “Rename
and Name Conflict” for an example.

• -n cell_name_file

Specifies the location of a file containing a list of generated cell names us
when duplicated cell names were found during translation.

• -p

Specifies to pass EDIF properties, on instances, as Spice properties. Onl
integer, number, and string properties are passed through. The converter
Calibre Verification User’s Manual, v9.1_5 12-5

EDIF-to-LVS Utilities

tious
alls

F

ignores other properties and issues a warning. The converter also ignores
property options, such as unit, owner, or subproperties. You should be cau
of using this option in hierarchical LVS, because parameters on subcircuit c
in Spice cause flattening of the respective subcircuits.

• -w warning_level

Controls the amount of warning message output. Possible choices are:

-w 0 Selects to output no warning messages.

⇒ -w 1 Selects to output all warning messages.

• -cb

Specifies to use a Calibre CB (caldrclvseve) license.

• -ictrace

Specifies to use an ictrace license.

Examples
e2lvs -e design.edif -o design.spi

e2lvs -e reg.edif -s cells.spi -o reg.spi

e2lvs -l edif_files -a ‘()’ -s prim.spi -c ‘@’
-o spice_file.spi

e2lvs -e mem.edif -s prim.spi -r ‘<>’ -n new_cell_names
-o mem.spi

Untranslated EDIF Syntax

Many aspects of EDIF syntax are not translated into Spice because they are
irrelevant in Spice and to Calibre LVS. In general, only constructs that are
applicable to a structural EDIF netlist are translated. Thus, the following EDI
constructs are ignored in a given input file:

• View statements specified with a view type other than NETLIST.

• Cell statements specified with cell type RIPPER or TIE.

• Multiple NETLIST views of a cell.
Calibre Verification User’s Manual, v9.1_512-6

Utilities EDIF-to-LVS

,

ier
 a

have
d

ow.
• designator, property, comment, userData, parameter, parameterAssign
technology statements.

• portInstance statement.

• Multidimensional arrays.

• Keyword mappings.

EDIF vs. Spice Syntax Considerations

This section describes the following EDIF vs. Spice syntax considerations:

• Identifiers.

• Name scope.

• Arrays and bundles.

Identifiers

EDIF identifiers contain alphanumeric and underscore characters. An identif
must start with an ampersand (“&”) if the first character of the identifier is not
letter. A maximum 255 characters is allowed, exclusive of the ampersand
character.

Spice identifiers are made up of any number of alphanumeric characters and
fewer restrictions. Any printable character is valid except leading “$”, “=”, “,” an
“/” characters. The “/” restriction is relaxed for $PINS strings as described bel
E2LVS supports the following identifiers:

• Embedded and trailing “$”: B$2 or B$

• Embedded and trailing “/” in the $PINS construct: $PINS x=a/a y=a//

The following identifiers are not supported:

• Leading “$”: $B
Calibre Verification User’s Manual, v9.1_5 12-7

EDIF-to-LVS Utilities

ed

 in,
its
legal
le, no
are

ring

 with

31.
e

dle
roup.
sed
in

he
• “/” in .SUBCKT, pin, instance, and node names, unless explicitly specifi
with the -c command line switch.

Name Scope

The scope of a name in EDIF is always defined by the statement it is defined
such as library, cell, and view statements. The name extends from just after
description to just before the end of the smallest enclosing name scope. It is il
for objects to have the same name if they are in the same scope. For examp
two cells in the same library may be given the same name. However, if they
different scopes, identical names can be used.

The scope of a subcircuit name in Spice is global. However, pin names and
instance names within a subcircuit are local to that subcircuit. Because EDIF
allows identical names across different scopes, name collision can occur du
translation due to Spice’s global name scope. Refer to section “EDIF Cell Names
Versus Spice Subcircuit Names” for more information.

Arrays and Bundles

Arrays describe a number of objects (net, port, or instance) of the same type
the same name. For example, the statement “(port (array inbus 32) (direction
input))” creates 32 input ports named “inbus” that are indexed from 0 through
The member statement allows access to each inbus object. For example, th
statement “(member inbus 31)” accesses the last port in “inbus”.

A bundleis a collection of objects that can be referred to by a name. A portBun
is used to collect ports, arrayed ports, and other port bundles together into a g
Ports are collected with the listOfPorts statement. Similarly, a netBundle is u
to collect nets together with a listOfNets construct. A netBundle cannot conta
other net bundles.

Arrays and bundles are flattened during translation. That is, given an array, t
equivalent number of Spice objects are created and named to represent the
individual members of the array. This is applicable to all EDIF net, port, and
instance arrays.
Calibre Verification User’s Manual, v9.1_512-8

Utilities EDIF-to-LVS

isted

 the
e
ine
>”)

de
ision
In the following example, translating the EDIF array “inbus” to Spice involves
appending “[i]”, where i is the array index and “[]” are the default array
delimiters:

EDIF : (port (array inbus 32) (direction input))
SPICE: inbus[0], inbus[1], … inbus[31]

By default, an underscore (“_”) is inserted between the bundle name and the l
items when bundled names are flattened.

The following example shows how a portBundle is translated into Spice:

EDIF : (portBundle pbExample
(listOfPorts (port a)
(port b)
(port (array c 3))))

SPICE: pbExample_a, pbExample_b, pbExample_c[0],
pbExample_c[1], pbExample_c[2]

Default array and bundle delimiters can be changed by invoking E2LVS with
-a and -b command line switches, respectively. In addition, you can recogniz
special bus delimiters in the case of “renamed” arrays with the -r command l
switch. For example, the statement “(port (array (rename A_8_TO_5 “A<8:5
4))”, would expand to A[8], A[7], A[6], A[5] by invoking E2LVS with the -r
command line switch.

If a name collision occurs during array or bundle expansion, the name is ma
unique by prepending as many “#” characters as necessary. The default coll
character, “#”, can be changed with the -c command line switch.

EDIF-to-Spice Translation Issues

This section describes the following EDIF vs. Spice translation issues:

• EDIF cell names versus Spice subcircuit names.

• Rename and name conflict.

• EDIF versus Spice connectivity.
Calibre Verification User’s Manual, v9.1_5 12-9

EDIF-to-LVS Utilities

ly
ause

h

cell”:

T

t
tion
EDIF Cell Names Versus Spice Subcircuit Names

A principal difference between EDIF and Spice is that EDIF utilizes different
name scope levels while Spice names are global. In EDIF, a cell is uniquely
identified by its library, cell, and view names. In Spice, a subcircuit is unique
identified by its subcircuit name and the number of pins. Two issues arise bec
of this difference:

• How to translate EDIF cells to Spice subcircuits and still preserve each
individual EDIF cell.

• How to correlate the Spice subcircuit names when invoking E2LVS wit
the -ss or -sb command line switch.

The first issue can be resolved by mapping the EDIF cell name to a Spice
subcircuit name. In the example below the Spice subcircuit name becomes “f

(library cmoslib
(cell fcell

(view my_netlistview (viewType NETLIST)
…

)))

.SUBCKT fcell …

The following conditions are necessary for successful translation:

• Cells must be a single view of type NETLIST. If there are multiple
NETLIST views, a warning is issued and all views after the first NETLIS
view are ignored.

• Most EDIF cell names are unique across different EDIF libraries.

E2LVS produces a Spice subcircuit name #cellnameif an EDIF cell name appears
in multiple libraries. E2LVS also issues warnings to indicate the name conflic
and subsequent translation to a new name. The translator writes this informa
out to a file named “e2lvs_names”. You can specify a filename other than
“e2lvs_names” with the -n command line switch.
Calibre Verification User’s Manual, v9.1_512-10

Utilities EDIF-to-LVS

LVS
mes

IF

ple

given
e

VS
al

y be
e

he

e

The second issue, how to correlate Spice subcircuit names when invoking E2
with the -ss or -sb switch, is addressed by translating the Spice subcircuit na
directly to EDIF cell names. The following criteria apply:

• EDIF cells either reside inside the EDIF external statement or in an ED
library where the cell’s content in its netlist view is empty.

• Multiple EDIF cells must refer to the same Spice subcircuit, where multi
EDIF cells are defined as those having the same cell names located in
different libraries.

Refer to section “Cell Statement” for more information about EDIF cell
definitions and implementations.

Rename and Name Conflict

The rename statement extends an EDIF name by enabling you to associate a
string with it. For example, in the statement “(rename busA_0 “busA(0)”)”, th
string busA(0) refers to EDIF name busA_0, which is a legal name in Spice.

When a renamed name includes an illegal Spice character, such as “$”, E2L
generates its equivalent Spice name by substituting a “#” in place of the illeg
characters. For example:

(rename dollarbusB_31 “$busB_31”)

The translated Spice name for $busB_31 is #busB_31.

In some cases, such as in Spice pin names, the character “/” is valid and ma
present to show hierarchy. Thus, the translator leaves the “/” characters alon
unless you specify otherwise with the -c command line switch.

All EDIF rename statements are used in the generated Spice netlist unless t
name would be illegal in Spice. The command line -i specifies to ignore the
rename statement and the original EDIF name is used in the generated Spic
netlist.
Calibre Verification User’s Manual, v9.1_5 12-11

EDIF-to-LVS Utilities

pice
 as

s of
llows

nto

tted

s

ice
For example, the statement “(port (rename bus22 “bus(22)”))” generates a S
pin name “bus22” when -i is specified. Otherwise, the renamed names (such
“bus(22)” above) are used in the generated Spice netlist.

EDIF Versus Spice Connectivity

EDIF ports and nets within a cell can be connected to one another or to port
other cells with the joined statement. These connection are represented as fo
in the Spice netlist:

*.J <net> ==<port>
*.J ==<port1> ==<port2> ==<port3>

Ports are preceded by “==” to distinguish then from nets.

EDIF-to-Spice Translations

This section describes how various EDIF statements are translated directly i
Spice. The following statements are covered:

Edif Statement

The edif statement contains all the hierarchy and design information transmi
within a file. The edif statement syntax is as follows:

(edif edifFileNameDef edifVersion edifLevel keywordMap
{< status >| external | library | design | comment| userData }

E2LVS ignores thedesign, comment, anduserDataparameters. The substructure
edifFileNameDef, edifVersion, edifLevel,and keywordMapare required for
reading an EDIF file. They are translated into comments in the generated Sp
netlist.

edif cell

status instance

port and portBundle joined

net and netBundle rename
Calibre Verification User’s Manual, v9.1_512-12

Utilities EDIF-to-LVS

e.

l
t in a
ord

ws:
Valid edifVersion, edifLevel,and keywordMapparameters that provide version
information are:

(edifVersion 2 0 0)
(edifLevel 0)
(keywordMap (keywordLevel 0))

Unsupported specifications cause E2LVS to terminate with an error messag

Thestatus, external, library, design, andcomment parameters embody the actua
design data and can be specified in any order. Not all of them need be presen
given edif statement. The following example shows how version, level, keyw
and status information is translated to Spice comments:

(edif Prototype
(edifVersion 2 0 0)
(edifLevel 0)
(keywordMap (keywordLevel 0))
(status (written (timeStamp 1987 6 1 12 00 00)

(program “EDIF_NETLIST_OUT”)))
(external Standard_Cells …)
(library VHSIC_CMOS …)
(design barrel_shifter

(cellRef b_shift (libraryRef VHSIC_CMOS)))
)
Spice Translation:
* edif Prototype
* edifVersion 2 0 0
* WRITTEN:
* timestamp 1987 6 1 12 00 00
* program EDIF_NETLIST_OUT
…

Status Statement

The status statement can appear in a variety of EDIF sections. It provides
historical information about the edif file. The status statement syntax is as follo

(status { written | comment| userData })
Calibre Verification User’s Manual, v9.1_5 12-13

EDIF-to-LVS Utilities

ple

ls. A
y”.
E2LVS ignores thecomment anduserData parameters. Thewritten parameter is
translated into a comment in the generated Spice netlist. There can be multi
written statements. The syntax is as follows:

(written timeStamp

{< author >|< program >|< dataOrigin >| property | comment| userData }

E2LVS ignores theproperty, comment, anduserDataparameters. ThetimeStamp
parameter is required. Theauthor, program, anddataOrigin parameters are
translated into comments in the generated Spice netlist.

The example below shows how a written statement is translated into Spice:

(written
(timeStamp 1986 11 30 22 7 29)
(author “J.Smith”)
(dataOrigin “Liverpool”)
(program “EdifWriter”))

Spice Translation:
*WRITTEN:
* timestamp 1986 11 30 22 7 29
* author J.Smith
* dataOrigin Liverpool
* program EdifWriter

Port and PortBundle Statements

Ports are the basic means of communicating signal information between cel
port array is declared by prefixing the port name with the reserved word “arra
The port statement syntax is as follows:

(port portNameDef
{< direction >|< unused >|< designator >|< dcFaninLoad >

<dcFanoutLoad >|

<dcMaxFanin >|< dcMaxFanout >| portDelay | property | comment| userDat
a}]

E2LVS ignores all parameters exceptportNameDef. TheportNameDefparameter
is translated to .SUBCKT pin names.
Calibre Verification User’s Manual, v9.1_512-14

Utilities EDIF-to-LVS

s in a

rts

own
Port arrays are expanded into their individual elements and translated to pin
subcircuit. E2LVS generates pin names with indices from 0 ton-1, wheren is the
size of the array, as shown below:

(port (array c 3))

Spice Translation:
c[0] c[1] c[2]

A portBundle is used to collect ports, arrayed ports, and other bundles of po
into a group. The syntax is as follows:

(portBundle portNameDef listOfPorts
{ property | comment| userData }]

E2LVS ignores theproperty, comment, anduserData parameters. portBundle
statements are expanded into individual pins when translated to Spice, as sh
below:

(portBundle pbExample
(listOfPorts (port a) (port b) (port (array c 3))))
…
(portRef (member c 1) (portRef pbExample))

Spice Translation:
pbExample_a pbExample_b pbExample_c[0] pbExample_c[1]
pbExample_c[2]

Net and NetBundle Statements

The net statement syntax is as follows:

(net netNameDef joined

{< criticality >| netDelay | figure | net | instance | commentGraphics |
property | comment| userData }

E2LVS ignores all parameters exceptnetNameDef, joined, net, andinstance. They
are translated to node names in subcircuit calls. Thejoined andinstance
statements are translated by E2LVS. Refer to the sections “Joined Statement” and
“ Instance Statement” for more information.
Calibre Verification User’s Manual, v9.1_5 12-15

EDIF-to-LVS Utilities

t
 *.J

ode

The

me.
ted.

. If
t, but

the
e
e a
In Spice, connections are established by translating pin names to node or ne
names. E2LVS translates net names to node names in a subcircuit call or to
statements only when nets include joined statements. IfnetNameDef is an array,
then the net is expanded into its bits.

netBundles are expanded and individual net names are translated to Spice n
names. Please refer to the section “Arrays and Bundles” for more information.
The syntax is as follows:

(netBundle netNameDef listOfNets
{ figure | commentGraphics | property | comment| userData }

E2LVS ignores all the netBundle parameters exceptnetNameDef andlistOfNets.

Cell Statement

 The cell statement syntax is as follows:

(cell cellNameDef cellType
{< status >| view |< viewMap >| property | comment| userData }

E2LVS ignores all parameters except forcellNameDef andcellType. The cell is
translated into a subcircuit call

.SUBCKT cellNameDef pin1, pin2 …
*.XPINS

where the pins are defined by the ports specified in the interface statement.
*.XPINS call is used to indicate that pin connections for this Spice cell are
specified explicitly through Spice *.J statements. Refer to section “Joined
Statement” for more information.

ThecellNameDefparameter names the cell and translates it to a subcircuit na
ThecellTypeparameter defines the cell’s use. Only GENERIC cells are transla

A cell name in EDIF must be unique within each library or external definition
two cells with the same name are completely defined with a content statemen
they appear in different libraries, the language implies no relationship between
cells. These cells are unique because they exist in different libraries. Becaus
subcircuit names are global in Spice, EDIF cells with the same name produc
Calibre Verification User’s Manual, v9.1_512-16

Utilities EDIF-to-LVS

many

itive
mes

, an
n an
 for

ned

nce

nd
warning message from the translator. During E2LVS translation the first cell
name is used, and any cells bearing the same name are prepended with as
“#” characters as necessary to generate unique names.

If an EDIF cell’s netlist view had no contents, just an interface, then E2LVS
assumes that the cell is implemented external to the input EDIF files as a prim
cell definition in Spice. In this case, E2LVS translates cells with the same na
and does not issue warning messages.

A cell can be instantiated in other cells to build a design hierarchy. However
instantiated cell must have been defined earlier in the file or declared earlier i
external library. Hence, the necessity for EDIF files to be in the correct order
input into E2LVS with the -l command line switch.

Instance Statement

The EDIF instance statement specifies to include a copy of a previously defi
cell view. The instance statement syntax is as follows:

(instance instanceNameDef viewRef | viewList
{< transform >| parameterAssign |< designator >| portInstance

timing | property | comment| userData }]

E2LVS ignores all parameters except forinstanceNameDef andviewRef. The
instance is translated to a Spice subcircuit call “XinstanceNameDef
cellnameDef”, wherecellnameDef is the name of the Spice subcircuit.

An instance statement in EDIF translates to a subcircuit call in Spice. The
instanceNameDef parameter can be an array structure, in which case the insta
arrays are expanded to individual subcircuit calls using the array naming
mechanism mentioned in section “Arrays and Bundles”. The subcircuit call uses
the $PINSpin=node construct. Pin names come from the port names in the
interface of the cell’s netlist view. The nodes are picked up through the net a
joined statements.

TheviewRef parameter references a defined cell view (as defined by the view
statement) thus explicitly pinpointing the cell that is being instantiated.
Calibre Verification User’s Manual, v9.1_5 12-17

EDIF-to-LVS Utilities

he

face.
et
rcuit or

ch
izes of

he

his

in
a

Joined Statement

The joined statement is used to specify ports that are connected together. T
joined statement syntax is as follows:

(joined { portRef | portList | globalPortRef }

E2LVS translates all parameters. Joined statements are translated to *.J
statements.

When used in an interface statement, joined refers to ports defined in the inter
That is, pins in the .SUBCKT definition. When used in a net statement, the n
name is treated as a node name in Spice and seen either as nodes in a subci
in a *.J statement.

When port arrays, lists, or bundles are specified in a joined statement, the
individual members are joined in a parallel manner. The first members of ea
reference are joined, then the second members, and so on. In all cases, the s
the expanded references must be equal.

TheportRefparameter references a port that has been defined earlier. TheportList
parameter specifies an ordered list of ports that have been defined earlier. T
globalPortRef parameter is treated as a portRef. That is, as a reference to a
previously defined port.

Rename Statement

The rename statement allows user-defined names to refer to EDIF names. T
construct is useful because EDIF identifiers are restricted to alphanumeric
characters. The syntax is as follows:

(rename identifier | name| stringToken | stringDisplay

E2LVS ignores thename andstringDisplay parameters. By default, the
stringToken parameter is used in the Spice netlist. WhenstringToken includes
illegal Spice characters, a warning message is issued and “#” is substituted
place of the illegal characters. Sometime the original EDIF name can cause
conflict with a rename construct. In this case, as mentioned earlier for name
Calibre Verification User’s Manual, v9.1_512-18

Utilities EDIF-to-LVS

ique

efers

red
t.
ifier

e
 of
collisions during array and bundle expansion, the collided name becomes un
by prepending as many “#” characters as necessary.

ThestringToken parameter has a special value when the rename statement r
to an array and the -r command line switch is specified. Refer to section “Arrays
and Bundles” for more information.

If the -i command line switch is specified, then the rename statement is igno
and the original EDIF name or theidentifier is used in the generated Spice netlis
The identifier is made up of alphanumeric or underscore characters. An ident
must be preceded with an “&” if the first character is not a letter.

The example below defines a port named “portA(0)” instead of the EDIF nam
“portA0”. By default, E2LVS creates a Spice netlist using the renamed name
“ portA(0)”. If the -i command line switch is specified, the Spice netlist will
contain the original name, “portA0”.

(port
(rename portA0 “portA(0)”)
(direction Input))
Calibre Verification User’s Manual, v9.1_5 12-19

EDIF-to-LVS Utilities

lated
Netlist Example

This section provides a sample EDIF netlist and its Spice equivalent, as trans
by E2LVS.

Assume the following EDIF netlist:

(edif DicTracy
 (edifVersion 2 0 0)
 (edifLevel 0)
 (keywordMap (keywordLevel 0))
 (status(written
 (timestamp 97 12 09 10 49 26)
 (program “XLDF2EDIF X8830”(Version “V00.03”))))
 (external CellLib
 (edifLevel 0)
 (technology(numberDefinition))
 (cell GCG001
 (cellType GENERIC)
 (view LOGIC(viewType NETLIST)
 (interface
 (port P2(direction INOUT))
 (port P1(direction INOUT)))
)
)
 (cell GCG002
 (cellType GENERIC)
 (view LOGIC(viewType NETLIST)
 (interface
 (port P3(direction INOUT))
 (port P1(direction INOUT))
 (port P2(direction INOUT)))
)
)
)
 (library Logic
 (edifLevel 0)
 (technology(numberDefinition))
 (cell (rename b31BLK_h0 “b31BLK-0”)
 (cellType GENERIC)
 (comment
 “A FILE:b31BLK-0 CDATE:970714 UDATE:970714 USEQ:000
ATRB:IBLK JISSOU:JSK1”
Calibre Verification User’s Manual, v9.1_512-20

Utilities EDIF-to-LVS
 “B MODEL:MDL1”
 “PE LOC:VAS”
 “FILE:0 CELL:2 NET:5 PORT:6”
)
 (view LOGIC(viewType NETLIST)
 (interface
 (port (rename P_q1 “P?1”)(direction INOUT))
 (port (rename P_q2 “P?2”)(direction INOUT))
 (port (rename P_q3 “P?3”)(direction INOUT))
 (port (rename P_q4 “P?4”)(direction INOUT))
 (port (rename P_q5 “P?5”)(direction INOUT))
 (port (rename P_q6 “P?6”)(direction INOUT))
)
 (contents
 (instance In1
 (viewRef LOGIC (cellRef GCG002(libraryRef
CellLib))))
 (instance In2
 (viewRef LOGIC (cellRef GCG001(libraryRef
CellLib))))
 (net i1
 (joined
 (portRef P1(instanceRef In1))
 (portRef P_q1)
 (portRef P_q4)))
 (net i2
 (joined
 (portRef P2(instanceRef In1))
 (portRef P_q2)))
 (net i3
 (joined
 (portRef P1(instanceRef In2))
 (portRef P_q3)))
 (net o2
 (joined
 (portRef P3(instanceRef In1))
 (portRef P_q5)))
 (net o3
 (joined
 (portRef P2(instanceRef In2))
 (portRef P_q6)))
)
)
Calibre Verification User’s Manual, v9.1_5 12-21

EDIF-to-LVS Utilities
)
(cell (rename b31REG_h0 “b31REG-0”)
 (cellType GENERIC)
 (comment
 “A FILE:b31REG-0 CDATE:970714 UDATE:970714 USEQ:000
ATRB:IREG JISSOU:JSK1”
 “B MODEL:MDL1”
 “PE LOC:VAS”
 “FILE:1 CELL:0 NET:7 PORT:6”
)
 (view LOGIC(viewType NETLIST)
 (interface
 (port P1001(direction INOUT))
 (port P1002(direction INOUT))
 (port P1003(direction INOUT))
 (port P2001(direction INOUT))
 (port P2002(direction INOUT))
 (port P2003(direction INOUT))
)
 (contents
 (instance B1
 (viewRef LOGIC (cellRef b31BLK_h0)))
 (net ib1
 (joined
 (portRef P1001)
 (portRef P_q1(instanceRef B1))))
 (net ib2
 (joined
 (portRef P1002)
 (portRef P_q2(instanceRef B1))))
 (net ob1
 (joined
 (portRef P2001)
 (portRef P_q4(instanceRef B1))))
 (net ob2
 (joined
 (portRef P2002)
 (portRef P_q5(instanceRef B1))))
 (net ob3
 (joined
 (portRef P2003)
 (portRef P_q6(instanceRef B1))))
 (net GND
Calibre Verification User’s Manual, v9.1_512-22

Utilities EDIF-to-LVS

me

 not
 (joined
 (portRef P_q3(instanceRef B1))))
)
)
)
(design TOP
(cellRef b31REG_h0 (libraryRef Logic))
)
)

Note that CellLib is external, implying the descriptions for those cells must co
from a Spice file. Assume E2LVS was invoked as follows:

e2lvs -e reg.edif -s cells.spi -o reg.spi

Rename statements are processed because the -i command line switch was
specified. The generated Spice netlist located in file reg.spi is:

*
* Translated by e2lvs(version 0.0) on April 22, 1998
*
.INCLUDE cells.spi
*
* edif DicTracy
* edifVersion 2 0 0
* edifLevel 0
* keyWordLevel 0
* status
* written
* timestamp 97 12 09 10 49 26
* program “XLDF2EDIF X8830”
* Version “V00.03”

.SUBCKT b31BLK-0 P?1 P?2 P?3 P?4 P?5 P?6
*.XPINS
XIn1 GCG002 $PINS P1=i1 P2=i2 P3=o2
XIn2 GCG001 $PINS P1=i3 P2=o3
*.J i1 P?1
*.J i1 P?4
*.J i2 P?2
*.J i3 P?3
*.J o2 P?5
Calibre Verification User’s Manual, v9.1_5 12-23

Verilog-to-LVS Utilities

to

VS

to
ut.

ice

or
*.J o3 P?6
.ENDS b31BLK-0

.SUBCKT b31REG-0 P1001 P1002 P1003 P2001 P2002 P2003
*.XPINS
XB1 b31BLK-0 $PINS P?1=ib1 P?2=ib2 P?3=GND
P?4=ob1 P?5=ob2 P?6=ob3
*.J ib1 P1001
*.J ib2 P1002
*.J ob1 P2001
*.J ob2 P2002
*.J ob3 P2003
.ENDS b31REG-0

Verilog-to-LVS
The V2LVS (Verilog-to-LVS) converter translates a Verilog structural netlist in
as LVS Spice netlist suitable for Calibre LVS/LVS-H comparison against a
layout. The following sections describe its usage in detail. The complete V2L
BNF is located in AppendixC.

Description
The V2LVS (Verilog-to-LVS) converter translates a Verilog structural netlist in
a LVS Spice netlist suitable for Calibre LVS/LVS-H comparison against a layo
This netlist is an extended form of traditional Spice. The sectionSpice-like
Property Syntax describes the netlist format and extensions used in a LVS Sp
netlist.

This tool takes three inputs in any order: a Verilog design file (the structural
netlist), a Verilog primitive library file, and an optional Spice library file. The
Verilog library file generally contains the module definitions that are already
implemented in a Spice library file. The Spice library file generally contains
transistor-level details of the primitive modules. Multiple Verilog design files
Verilog library files must be concatenated prior to running V2LVS.
Calibre Verification User’s Manual, v9.1_512-24

Utilities Verilog-to-LVS

s
s. If a
ars

hing
S
f

ules
ed to

n the

se,
he
Figure 12-2. V2LVS Flow

The converter translates the Verilog netlist. The Verilog primitive library file i
accessed to find the pins associated to nets shown in positional cell instance
Spice library file is specified, a .INCLUDE statement referencing the file appe
at the beginning of the output LVS Spice netlist.

The optional Spice library read by LVS and the input Verilog primitive library
must have identical cell names and the cells in both libraries must have matc
terminal names. Only one Verilog primitive library file can be specified. V2LV
supports the ‘include compiler directive, so this library file can contain a set o
‘include directives.

Warning messages for behavioral syntax found in the Verilog netlist and mod
containing behavioral syntax are not translated. The Verilog design is assum
be syntactically correct.

To use the output Spice file as input into Calibre LVS, certain specification
statements must be included in the rule file. These statements are identified i
section“Rule File” on page 2-1.

V2LVS searches initially for a calibrelvs license, then for a caldrclvseve licen
then for an ictrace license. Command line switches may be used to control t
license that gets used for a given run.

Verilog
Structural
Netlist

V2LVS

Verilog
Primitive
Library

LVS Spice
Netlist

Spice
Library
(optional)
Calibre Verification User’s Manual, v9.1_5 12-25

Verilog-to-LVS Utilities

out.

e of
d

e of

obal
Usage
v2lvs -v verilog_design_file -o output_spice_file

[-l verilog_lib_file] [-s spice_library_file]
 [-s0 groundnet] [-s1 powernet] [-sk]
 [-p prefix] [-w warning_level]
 [-a array_delimiters] [-c char1 [char2]]
 [-u unnamed_pin_prefix] [-t svdb_dir]
 [-b] [-n] [-i] [-e] [-h]

 [-cb][-ictrace]

Arguments
• -v verilog_design_file

Specifies the filename of the Verilog structural netlist.

• -o output_spice_file

Specifies where to place the output LVS Spice netlist. Defaults to standard

• -l verilog_lib_file

Specifies the location of the Verilog primitive library file.

• -s spice_library_file

Specifies the location of the Spice library file to be included in the output.

• -s0 groundnet

Specifies the default net name for mapping to pin connections with a valu
zero (0). Outputs the specified names in place of Verilog supply0 nets an
generates .GLOBAL declarations in the output netlist.

• -s1 powernet

Specifies the default net name for mapping to pin connections with a valu
one (1). Outputs the specified names in place of Verilog supply1 nets and
generates .GLOBAL declarations in the output netlist.

• -sk

Specifies that Verilog supply0 and supply1 nets are not connected to the gl
power and ground nets.
Calibre Verification User’s Manual, v9.1_512-26

Utilities Verilog-to-LVS

re:

only.

rays

ions.

al

h

• -p prefix

Addsprefix to Verilog gate level primitive cells.

• -w warning_level

Controls the amount of warning message output. Possible level choices a

0 Selects to output no warning messages.

1 Selects to output warning messages for skipped blocks and modules

⇒ 2 Selects to output level 1 and calls to undeclared modules and pin ar
with widths wider than ports.

3 Selects to output level 2 and called port array mismatches and
unsupported compiler directives.

4 Selects output level 3 plus all ignored constructs.

• -a array_delimiters

Changes the array delimiter characters. The default is “[]”.

• -c char1[char2]

Sets the substitution characters for escaped identifier characters illegal in
Spice.char1 replaces “$”, “,”, and “=” andchar2 replaces “/”. No space is
needed between the two user-supplied arguments.

• -u unnamed_pin_prefix

Specifies a prefix to add to unnamed pin connections in module instantiat

• -t svdb_dir

Specifies the SVDB database directory to add source netlist pin direction
information. This argument is used in xCalibre also.

• -b

Retains the leading backslash for escaped identifiers that are not also leg
Verilog identifiers.

• -n

Specifies unconnected pins to receive numbered connections starting wit
1000.
Calibre Verification User’s Manual, v9.1_5 12-27

Verilog-to-LVS Utilities

no
uits

ed

ble
LVS
ed
s
e
at
• -i

Specifies that calls to subcircuits with pins be done in order according to
traditional Spice rather than with $PINS. Refer to the sectionUsing –i to
Generate Simulation Output later in this chapter for further information.

• -e

Specifies that empty .SUBCKT definitions are generated for all modules (
instances are translated). This is useful for generating “black box” subcirc
from library files. SeeUsing the –e Switch to Create LVS Box Subcircuits
later in this chapter.

• -h

Prints a help message.

• -cb

Specifies to use a Calibre CB (caldrclvseve) license.

• -ictrace

Specifies to use an ictrace license.

V2LVS compiles a structural Verilog design into an equivalent netlist in extend
Spice form. The Spice netlist can be then used as input to Calibre LVS by
specifying this in the rules file:

SOURCE PATH <OutputSpiceFile>
SOURCE PRIMARY <TopCellName>
SOURCE SYSTEM SPICE

If a module contains any behavioral syntax, it is assumed that it will be availa
as a Spice library and it is not translated into Spice (a warning is issued). V2
requires only the -v (Verilog design file) switch. The Spice output (-o) is print
to standard out by default. An optional Verilog library file (-l) normally contain
primitive Verilog module declarations that are already implemented in a Spic
library file (–s). The (-s) spice library file is included (by .INCLUDE statement)
the top of the output Spice file.
Calibre Verification User’s Manual, v9.1_512-28

Utilities Verilog-to-LVS

to

og

log

h

he
hat

les.
 is
Library Files

V2LVS can use a Verilog library file to specify declarations to represent leaf
modules that are actually defined in Spice. V2LVS reads the Verilog library file
gather the port interface names that it can then use during instantiation. The
Verilog library file may contain full Verilog modules including user-defined
primitives and behavioral syntax.

It is also possible to use V2LVS without a Verilog library file. The information
contained in the Verilog library file is not strictly necessary for mapping Veril
to Spice. This is discussed later inUsing V2LVS Without a Verilog Library File.

Supported Verilog Syntax

This section covers each section of the formal BNF specification for the Veri
language as specified in the IEEE standard (IEEE Computer Society,IEEE
Standard Hardware Description Language Based on the Verilog Hardware
Description Language, IEEE-STD 1364-1995). It is best read in conjunction wit
the standard document itself or with another Verilog text (for example, D.E
Thomas and P.R. Moorby,The Verilog Hardware Description Language, 3rd ed.,
Kluwer Academic Publishers, Boston, 1996.) The following section details
specific translations made for each applicable section of Verilog syntax. A
summary BNF derived from the V2LVS Verilog grammar file is included.

Modules

Section F.1 of the formal BNF specification in the IEEE standard describes t
top-level syntax for modules, port declaration and the types of declarations t
can be made within modules.

Modules and macromodules are supported by V2LVS. Modules are mapped
directly into Spice subcircuits. Macromodules are treated identically as modu
If a particular module name is declared more than once, the first declaration
used and subsequent declarations are ignored after a warning is issued.

The list of ports to a module may be represented as simple named identifiers
(portnameA, portnameB). When declared this way, they may be called via
named connections in a module instance.
Calibre Verification User’s Manual, v9.1_5 12-29

Verilog-to-LVS Utilities

 in

1,
Example 1—simple Verilog module to Spice subcircuit

Top level module B creates an instantiation of module A called inst1 passing
the arguments w1, w2, and w3:

module A (in1, in2, out3);
input in1, in2;
output out3;
endmodule

module B ();
wire w1, w2, w3;
A inst1(.in1(w1), .in2(w2), .out3(w3));
endmodule

is translated into the Spice subcircuit:

.SUBCKT A in1 in2 out3

.ENDS

.SUBCKT B
Xinst1 A $PINS in1=w1 in2=w2 out3=w3
.ENDS

The list of ports to a module may also be represented using explicit external
names.

Example 2—named port declarations in a Verilog module

The module A declares ports INA, INB and OUTC which are connected to in
in2 and out3 respectively:

module A (.INA(in1), .INB(in2), .OUTC(out3));
input in1, in2;
output out3;
endmodule

module B ();
wire w1, w2, w3;
A inst1(.INA(w1), .INB(w2), .OUTC(w3));
endmodule
Calibre Verification User’s Manual, v9.1_512-30

Utilities Verilog-to-LVS

on

y.
is translated to the Spice subcircuit:

.SUBCKT A INA INB OUTC
*.CONNECT INA in1
*.CONNECT INB in2
*.CONNECT OUTC out3
.ENDS

.SUBCKT B
Xinst1 A $PINS INA=w1 INB=w2 OUTC=w3
.ENDS

Port and bit selections in port references are also supported.

Example 3—port selection, bit selection and array mapping

Module AA uses a Port Selection [2:3] on the input array TH, a bit selection [4]

the input array UH. SH is a simple array that is used intact as an output arra

module AA (TH[2:3], UH[4], SH) ;
input [3:0] TH;
input [0:7] UH;
output [3:4] SH;
endmodule

module BB ();
wire[0:1] w1;
wire w2;
wire [1:2] w3;

AA inst1 (.TH(w1), .UH(w2), .SH(w3));
endmodule

will translate to the Spice netlist:

.SUBCKT AA TH[2] TH[3] UH[4] SH[3] SH[4]

.ENDS

.SUBCKT BB
Xinst1 AA $PINS TH[2]=w1[0] TH[3]=w1[1] UH[4]=w2 SH[3]=w3[1]
SH[4]=w3[2]
.ENDS
Calibre Verification User’s Manual, v9.1_5 12-31

Verilog-to-LVS Utilities

ns.
DP

e.
ed to
ing

 be
S:

S
l,

e
ter
and

ly1
1 net

idden
User-defined Primitives

UDP declarations are treated the same way as behavioral module declaratio
They are ignored in translation, but they can be called from other modules. U
declarations are used to specify the calling interface of the underlying modul
UDP declarations, like modules containing behavioral statements, are assum
be available as Spice subcircuits directly and are ignored (after warning) dur
translation. This is discussed in Section F.5 of the IEEE standard.

Default Parameters

The defparam (default parameter) declarations are ignored.

Declarations

Section F.2 of the IEEE standard describes the various declarations that can
made within a module.The following declaration types are meaningful to V2LV
input, output, inout, all net types, and parameter (see below).

The following strictly behavioral declaration types are not supported by V2LV
and cause the module they are in not to be translated: reg, time, integer, rea
realtime, event, function, and task.

Port declarations—input, output, and inout declarations are used to determin
direction information and port array width in module port interfaces. A parame
declaration can be used to specify range width information. Simple arithmetic
logical expressions may be used in specifying range width information.

Net types—V2LVS uses the supply0 and supply1 net types to specify net
connections to power and ground nets when numeric values are used for
connections. For example, 1’b1 becomes a power connection using the supp
net name. Multiple nets may be declared for each of the supply0 and supply
types. Ranges may also be declared on these nets.

Interaction Between Net Types and –s0, -s1, and –sk Switches

The –s0 and –s1 command line switches cause all numeric values to be overr
by their respective arguments.
Calibre Verification User’s Manual, v9.1_512-32

Utilities Verilog-to-LVS

laces

ns
gical
s1

d to
e

note
nd all

ets

also
se the
Connecting different supply nets together globally—Certain design flows have
situations where different power and ground net names are used in different p
in the design and the user wishes all of these power and ground nets to be
connected together. This typically happens when different naming conventio
are used in different places in a design and the user wishes to create one lo
net from several names used in different places in the design. The –s0 and –
switches can be used to accomplish this.

For example, when the –s1 PWR switch is used, 1’b1 will always be translate
PWR. Use these switches to translate numeric signals into the same net nam
throughout the design regardless of supply0 and supply1 declarations. Also
that these switches will cause all power nets to be connected to one another a
ground nets to be connected to one another.

Keeping different supply nets separated—Other design flows, most often
mixed digital/analog circuits, have the need for separate power and ground n
which are not connected. The –sk switch causes local supply0 and supply1
declarations to continue to take precedence over –s0 and –s1 arguments. It
causes these power and ground nets not to be connected to one another. U
-sk option in conjunction with –s0, -s1 and local supply0 and supply1 nets to
support circuits with multiple power and ground supplies that are to be kept
separate. The following tables illustrate a power signal pin translation under
various combinations of conditions:

Table 12-1. Power Signal Pin Translation

Power signal
pin

Default
translation

-s1PWR
translation

-s1PWR -sk
translation

//no local
//supply1
1’b1

VDD
.GLOBAL VDD

PWR
.GLOBAL PWR

PWR
.GLOBAL PWR

supply1 VDD1;
1’b1

VDD1
.GLOBAL VDD1
.GLOBAL VDD

PWR
*.CONNECT VDD1 PWR
.GLOBAL PWR

VDD1
.GLOBAL VDD1
.GLOBAL PWR
Calibre Verification User’s Manual, v9.1_5 12-33

Verilog-to-LVS Utilities

, the
 net
supply0 and supply1 nets may be used similarly to other wire nets. In addition
first supply0 net may be used to connect bit values of 0 and the first supply1
may be used to connect bit values of 1. (SeeCalling Conventions).

Example 4—use of supply0 and supply1 net types

The following example uses supply0 and supply1 net types within a module:

module A (in1, out1);
input [0:1] in1;
output [0:1]out1;
endmodule

module B ();
supply1 [0:1] PWR;
supply0 [0:1] GND;
wire [0:1] w1;
A inst1(2’b01, w1);
endmodule

with no optional switches, it is translated into the following Spice circuit:

.SUBCKT A in1[0] in1[1] out1[0] out1[1]

.ENDS

.SUBCKT B
Xinst1 A $PINS in1[0]=GND[0] in1[1]=PWR[0] out1[0]=w1[0]
out1[1]=w1[1]
.ENDS
.GLOBAL PWR[0]
.GLOBAL PWR[1]

Comment Keep nets separate
Use VDD naming

Connect all nets
Change default
power naming
from VDD to PWR

Keep nets separate
Change default
power naming
from VDD to
PWR

Table 12-1. Power Signal Pin Translation

Power signal
pin

Default
translation

-s1PWR
translation

-s1PWR -sk
translation
Calibre Verification User’s Manual, v9.1_512-34

Utilities Verilog-to-LVS

r and
 and
 are

r

.GLOBAL GND[0]

.GLOBAL GND[1]

When the –s1 VDD –s0 VSS switches are used, it translates as follows:

.SUBCKT A in1[0] in1[1] out1[0] out1[1]

.ENDS

.SUBCKT B
*.CONNECT VDD PWR[0]
*.CONNECT VDD PWR[1]
*.CONNECT VSS GND[0]
*.CONNECT VSS GND[1]
Xinst1 A $PINS in1[0]=VSS in1[1]=VDD out1[0]=w1[0]
out1[1]=w1[1]
.ENDS
.GLOBAL VDD
.GLOBAL VSS

Notice that the *.CONNECT statements connect all power nets to one anothe
all ground nets to one another. If the –sk switch is used in addition to the –s1
–s0 switches, the translation is the same except the *.CONNECT statements
omitted and all power and ground nets are made .GLOBAL:

.SUBCKT A in1[0] in1[1] out1[0] out1[1]

.ENDS

.SUBCKT B
Xinst1 A $PINS in1[0]=GND[0] in1[1]=PWR[0] out1[0]=w1[0]
out1[1]=w1[1]
.ENDS
.GLOBAL VDD
.GLOBAL VSS
.GLOBAL PWR[0]
.GLOBAL PWR[1]
.GLOBAL GND[0]
.GLOBAL GND[1]

vectored and scalared connections are all broken apart into individual pins fo
translation to Spice, so these keywords are ignored.
Calibre Verification User’s Manual, v9.1_5 12-35

Verilog-to-LVS Utilities

ths,

ates

ge is
ped in

in
og
ary
ntax
Other Net Types

All other net types are handled as wires for the purposes of LVS. Drive streng
charge strengths and delays are all ignored.

Net Assignment

Net assignment initialization creates a connection between two nets using a
*.CONNECT statement in Spice.

Example 5—use of continuous assignment with nets

module AA (OUT1, OUT2);
output OUT1, OUT2;
assign OUT1=OUT2;
endmodule

is converted to the following Spice netlist:

.SUBCKT AA OUT1 OUT2
*.CONNECT OUT1 OUT2
.ENDS

Primitive Instances

Section F.3 of the IEEE standard describes the use of primitive instances. G
are handled similarly to modules.

Ranges of gates are not supported (that is, xor an_xor[0:1] (a, b, c);). If a ran
encountered on a gate instance, a warning is issued and the instance is skip
translating the module.

Primitive gates that are called must be present in the Spice library for each p
combination called. They must have identical pin ordering between the Veril
definition and the Spice definition. They cannot be present in the Verilog libr
file as modules since the use of a gate type keyword in Verilog will cause a sy
error:

module and (in, out, control); // causes a syntax error.
endmodule
Calibre Verification User’s Manual, v9.1_512-36

Utilities Verilog-to-LVS

re
ually

tive
ing

ves

r,
V2LVS will emit calls to gate level modules using the same name and pin
ordering as the Verilog gate. Gate instances that do not have names are
sequentially numbered by V2LVS (note xor in Example 6 below). Warnings a
always issued for instantiation of gate level primitives since these are not us
part of a purely structural netlist.

Example 6—use of Verilog primitive gates

module A () ;
wire a, b, c, d, e, f;
and i1 (a, b, c);
xor (d, e, f);
endmodule

is converted into the following Spice circuit:

.SUBCKT A
Xi1 a b c and
X0 d e f xor
.ENDS

Use of the –p switch to avoid collisions with gate level primitives—The –p
switch on the command line may be used to add a prefix to all gate level primi
calls. For example, the above Verilog module will be converted into the follow
Spice subckt if the command line switch “–p v2lvs_” is used:

.SUBCKT A
Xi1 a b c v2lvs_and
X0 d e f v2lvs_xor
.ENDS

This can be used to avoid name collisions between Verilog gate level primiti
and incompatible Spice library subcircuits that have the same name.

Supported Gate Level Primitives

V2LVS recognizes the following gate level primitives in Verilog: and, nand, o
nor, xor, xnor, buf, bufif0, bufif1, not, notif0, notif1, pulldown, pullup, nmos,
pmos, rnmos, rpmos, cmos, rcmos, tran, rtran, tranif0, rtranif0, tranif1, and
rtranif1.
Calibre Verification User’s Manual, v9.1_5 12-37

Verilog-to-LVS Utilities

s

ued

y

n

ions
 of

s of

ows a
Module Instantiations

Section F.4 of the IEEE standard describes the instantiation of other module
within a module. Ranges of modules are not supported (that is, A an_A[0:1]
(a, b, c);). If a range is encountered on a module instance, a warning is iss
and the instance is skipped in translating the module.

Generally a module translates directly into a subcircuit. See Example 1 for a
straightforward example of a module instantiation. Verilog also supports arra
and concatenation constructs.

Calling Conventions

V2LVS uses the following calling conventions for modules that have arrays i
their port interface.

Module port connections can be made with:

• simple arrays or ranges (for example a[0:3])

• binary, hex, octal or decimal bit expressions (for example 2’b01)

• concatenations of the above—these join together ranges or bit express
into a single array (for example, { a, 2’b01 } represents a concatenation
wire a[0:3] and the bit expression 2’b01)

• multiple concatenations—these cause an integral number of repetition
the contents of a concatenation (for example { 2 { a, 2’b01 }})

Example 3 shows a simple case of instantiations using ranges. Example 4 sh
simple case of instantiation using bit expressions.

Bit Expressions

Bit expressions take the form n’<t><val> where:

• n is the width of the bit expression

• <t> is one of b, h, o, or d (case does not matter) where b is binary, h is
hexadecimal, o is octal, and d is decimal.
Calibre Verification User’s Manual, v9.1_512-38

Utilities Verilog-to-LVS

ot
ce
re

lobal

for
 net
ly0 or
ment
r nets.)

It

t
and
• <val> is the value represented by the bit expression.

Bit expressions are supported by V2LVS. Special bit values of x and z are n
supported and will cause termination. Bit expressions are converted into Spi
pins using the following conventions: by default, pin connections of value 1 a
assigned to global net VDD and pin connections of value 0 are assigned to g
net VSS.

The V2LVS command line options “–s0” and “–s1” cause a new default value
net connections to 1 or 0. Modules that declare at least 1 supply0 or supply1
cause connections of value 0 or 1 to be connected to the first declared supp
supply1 net respectively. (Note, the –s0 and –s1 options override this assign
and cause the values of 0 and 1 to be connected to global ground and powe

Example 7—module conversion using multiple concatenation

In this example, module B creates an instantiation of module A called inst1.
passes in a multiple concatenation of a simple array and a bit expression:

module A (in1, out1);
input[0:7] in1;
output out1;
endmodule

module B ();
wire [0:1]a;
wire b;
A inst1(.in1({ 2 { a, 2’b01 } }), .out1(b));
endmodule

It is translated into the following Spice netlist. The pins that connect to the bi
expression are tied to VSS and VDD. The concatenation joins together wire a
the bit expression. The multiple concatenation causes two repetitions of the
contents of the concatenation:

.SUBCKT A in1[0] in1[1] in1[2] in1[3] in1[4] in1[5] in1[6]
in1[7] out1
.ENDS

.SUBCKT B
Calibre Verification User’s Manual, v9.1_5 12-39

Verilog-to-LVS Utilities

nly.

st1
Xinst1 A $PINS in1[0]=a[0] in1[1]=a[1] in1[2]=VSS in1[3]=VDD
in1[4]=a[0]
+ in1[5]=a[1] in1[6]=VSS in1[7]=VDD out1=b
.ENDS

Unnamed Concatenation Expressions in Declarations

Example:

module A ({B,C})

The port is unnamed. This module can be instantiated with positional calling o
Attempts to call via named connections will always leave the unnamed port
unconnected.

Example 8—unnamed concatenation in module declaration

In the following example module B creates an instance of module A called in
in which module A is declared with an unnamed concatenation.

module A({B, C});
input B, C;
endmodule

module B();
wire [0:1] a;
A inst1(a);
endmodule

It is converted to the following Spice subcircuit:

.SUBCKT A ##1000[0] ##1000[1]
*.CONNECT ##1000[0] B
*.CONNECT ##1000[1] C
.ENDS

.SUBCKT B
Xinst1 A $PINS ##1000[0]=a[0] ##1000[1]=a[1]
.ENDS
Calibre Verification User’s Manual, v9.1_512-40

Utilities Verilog-to-LVS

that
le.
 ports

ule,

 A
t

he

d

re
Calling Conventions for Mismatched Arrays

In Verilog, it is possible to call instances of modules with array pin arguments
are either wider or narrower than those declared in the interface of the modu
This section documents the conventions used to map calling pins to module
under these circumstances.

When the calling pin expression is wider than the port expression in the mod
calling pins are mapped to called ports from the right-most calling pin:

Example 9—calling connection is wider than called ports

For example, in the following Verilog circuit, module B an instance of module
using a bus wire (IN_ARR) that is wider than the declared interface (P) that i
connects to.

module A (P,Q);
input [3:0]P;
output Q;
endmodule

module B ();
wire [0:7] IN_ARR;
wire X;
A inst1 (IN_ARR, X);
endmodule

In Spice, the module call generated maps the right-most pins of IN_ARR to t
instance pins P:

.SUBCKT A P[3] P[2] P[1] P[0] Q

.ENDS

.SUBCKT B
Xinst1 A $PINS P[3]=IN_ARR[4] P[2]=IN_ARR[5] P[1]=IN_ARR[6]
P[0]=IN_ARR[7] Q=X
.ENDS

A warning is issued when calling pins are wider than the port they are passe
through to pins narrower than module interface ports. When the calling pin
expression is narrower than the port expression in the module, calling pins a
Calibre Verification User’s Manual, v9.1_5 12-41

Verilog-to-LVS Utilities

g a

 and

.
d, it
d nets.
mapped to called ports from the right-most called port. Remaining ports are
mapped to random undeclared nets.

Example 10—calling connection is narrower than called ports

In the following Verilog circuit, module B creates an instance of module A usin
bus wire (IN_ARR) which is narrower than the declared interface (P) that it
connects to:

module A (P,Q);
input [3:0]P;
output Q;
endmodule

module B ();
wire [0:1] IN_ARR;
wire X;
A inst1 (.P(IN_ARR), .Q(X));
endmodule

The generated Spice instance right-justifies the IN_ARR pins with the P pins
connects the leftmost P pins to sequential unconnected nets.

.SUBCKT A P[3] P[2] P[1] P[0] Q

.ENDS

.SUBCKT B
Xinst1 A $PINS P[1]=IN_ARR[0] P[0]=IN_ARR[1] Q=X
.ENDS

Unconnected Pins

Instantiations that leave pins uncalled in Verilog will not appear in the output
Calibre LVS will take care of these unconnected pins. If the –n switch is use
causes unconnected pins to be connected to sequential undeclared numbere
The –i switch also causes V2LVS to generate numbered unconnected pins.
Calibre Verification User’s Manual, v9.1_512-42

Utilities Verilog-to-LVS

an be
to be
nt).
other.

ct as
Example 11—unconnected pins

The following Verilog circuit:

module A (B, C, D);
input B, C;
output [1:0] D;
endmodule

module B ();
wire bb,cc;
A anA (.B(bb), .C(cc));
A anA1 (x, b);
endmodule

converts into the following Spice subcircuit:

.SUBCKT A B C D[1] D[0]

.ENDS

.SUBCKT B
XanA A $PINS B=bb C=cc [1] D[0]=1001
.ENDS

Using the –n switch, this will translate as:

.SUBCKT A B C D[1] D[0]

.ENDS

.SUBCKT B
XanA A $PINS B=bb C=cc D[1]=1000 D[0]=1001
.ENDS

Behavioral Statements

Section F.6 of the IEEE standard describes the behavioral statements that c
used within modules. All behavioral statements cause the module they are in
skipped in translation except for the assign statement (continuous assignme
The assign statement can only be used to permanently connect one net to an
In the translated Spice, the assign statement is mapped to a *.CONNECT
statement to connect one net to another. Net initialization has the same effe
continuous assignment.
Calibre Verification User’s Manual, v9.1_5 12-43

Verilog-to-LVS Utilities

e,
default,
he

.

Example 12—assignment and net initialization

The module:

module B (a);
input [0:1] a;
wire [0:1] a;
wire [0:1] w;
wire [0:1] b;
wire [0:1] c;
wire d,e;
wire [0:1]x=b;
assign w=a;
assign { d,e } = c;
A anA (w[0:1], a[0:1]);
endmodule

will translate to the Spice circuit:

.SUBCKT B a[0] a[1]
*.CONNECT x[0] b[0]
*.CONNECT x[1] b[1]
*.CONNECT w[0] a[0]
*.CONNECT w[1] a[1]
*.CONNECT d c[0]
*.CONNECT e c[1]
XanA w[0] w[1] a[0] a[1] A
XanA1 x[0] x[1] b[0] b[1] A
.ENDS

Other behavioral statements including initial, always, deassign, force, releas
repeat, posedge, negedge, if .. else .. ifnone, case ... endcase, casez, casex,
forever, repeat, while, for, wait, disable, begin .. end, and fork … join cause t
module they are in to be skipped during translation.

Specify Section

Specify blocks are parsed in V2LVS, but result in no output to a Spice netlist
(The Specify block is used to specify timing information for paths across a
Verilog module.)
Calibre Verification User’s Manual, v9.1_512-44

Utilities Verilog-to-LVS

 are
r
and
,

ty is
your

.
places

g port
efault
able
3 of

re

 on
e

Expressions

Expressions are discussed in section F.8 of the IEEE standard. Expressions
used throughout the Verilog language. V2LVS supports expressions used fo
structural description. These include things like identifiers, binary, hex, octal
decimal numbers, port ranges, port selections, bit selections concatenations
multiple concatenations, and so on.

Identifiers—Regular and escaped identifiers are supported. V2LVS supports
identifiers of up to 2048 characters in length. Verilog supports mixed case
identifiers. By default, Spice identifiers are not case sensitive. If case sensitivi
required during LVS, the Source Case YES specification statement is used in
rule file.

Escaped identifiers—Verilog’s escaped identifiers allow any non-white space
ASCII character to be used in an identifier. Escaped identifiers are not
recommended in the V2LVS flow. They can present problems throughout the
flow as each tool tries to deal with the incompatible identifiers in its own way
Debugging is also hindered as various mapped names are used in different
in the flow.

In addition, Spice has a flat namespace that does not include busses. Verilo
and bit selections are mapped to Spice identifiers that contain brackets by d
(see –a switch). Use of brackets in escaped identifiers can lead to unpredict
name pairings that are not specified by the Verilog standard. For example, bit
an array A in Verilog is mapped to the Spice identifier A[3]. Most Verilog
simulators will not map an escaped identifier \A[3] onto bit 3 of array A. They a
required by the Verilog standard to match a regular identifier onto the same
escaped identifier (for example, A is the same as \A).

To help provide alternatives for handling identifiers in V2LVS conversion, the
–b switch is provided. This will cause the leading “\” character to be retained
escaped identifiers that are not also legal Verilog identifiers. This will have th
effect of making sure that bit 3 of A is not the same as \A[3].

Example 13—escaped identifiers and use of the –b switch

module DDD (b, sum, ci);
input [2:0] b;
Calibre Verification User’s Manual, v9.1_5 12-45

Verilog-to-LVS Utilities
input ci;
output [2:0] sum;
 wire \b[2] , \b[1] ;
 wire \ci ;
 assign \b[2] = b[1];
 assign \b[1] = b[0];
 assign sum[2] = \b[2] ;
 assign sum[0] = \b[1] ;
 A A1 (.i(\b[2]), .zn(sum[1]), .ci(\ci));
endmodule

module A (i, zn, ci);
input i, ci;
output zn;
endmodule

will translate as follows when the –b switch is not used:

.SUBCKT DDD b[2] b[1] b[0] sum[2] sum[1] sum[0] ci
*.CONNECT b[2] b[1]
*.CONNECT b[1] b[0]
*.CONNECT sum[2] b[2]
*.CONNECT sum[0] b[1]
XA1 A $PINS i=b[2] zn=sum[1] ci=ci
.ENDS

.SUBCKT A i zn ci

.ENDS

It will translate as follows when the –b switch is used:

.SUBCKT DDD b[2] b[1] b[0] sum[2] sum[1] sum[0] ci
*.CONNECT \b[2] b[1]
*.CONNECT \b[1] b[0]
*.CONNECT sum[2] \b[2]
*.CONNECT sum[0] \b[1]
XA1 A $PINS i=\b[2] zn=sum[1] ci=ci
.ENDS

.SUBCKT A i zn ci

.ENDS
Calibre Verification User’s Manual, v9.1_512-46

Utilities Verilog-to-LVS

ince
ot be
r

. If

ons

ill
n

tion.
ters

ed

 the

rs

s
text.
In V2LVS, most escaped identifiers are mapped directly to Spice identifiers s
Spice supports most ASCII characters in its identifiers. Some characters cann
translated directly to Spice. Leading “$”, “,”, “=”, and “/” are escaped identifie
characters which, under certain circumstances, are illegal in Spice.

Leading “$”, “,”, and “=” are mapped to “#”. For example aa$ is mapped to aa#
multiple identifiers would map to the same name, the second identifier
encountered is mapped to the identifier with a “#” prepended. Multiple collisi
result in additional “#” characters prepended.

“/” characters are left as is in V2LVS. In certain circumstances, “/” characters w
produce undesirable results, however. Any undesired effects from using “/” i
escaped Verilog identifier names can be overcome by using the –c switch.

V2LVS also provides the –c switch to change the characters used for substitu
The first character in the string supplied to the switch will replace the charac
leading “$”, “,”, and “=” while the second character (if present) will replace “/”
characters. For example, if you desire to have leading “$”, “,”, and “=” replac
with “_”, use “–c _”. If you desire to have “/” characters replaced with “#”
characters, use “–c ##” on the command line. (The first # character will keep
substitution for leading “$”, “,”, and “=” as “#” while the second “#” will cause
“/” characters to be changed to “#” as well).

Integer numbers—Decimal, Hex, Octal, and Binary representations of numbe
are supported. V2LVS does not support “x” or “z” in numbers. Translation is
terminated if they are encountered.

Concatenated expressions and multiple concatenations—Concatenated
expressions and multiple concatenations are supported.

Parameters in expressions—Parameters may be referenced in expressions a
long as they return a constant value that can be evaluated in a structural con

Example 14—use of a parameter value in a structural netlist

module A (inA);
parameter width=8;
input [width-1:0] inA;
endmodule
Calibre Verification User’s Manual, v9.1_5 12-47

Verilog-to-LVS Utilities

ation.

ral
on (a

lues.
, ||.

inary
, ||.

e,

r
s

g the
is translated into the following subcircuit:

.SUBCKT A inA[7] inA[6] inA[5] inA[4] inA[3] inA[2]
inA[1] inA[0]
.ENDS

Unsupported expression handling—Function calls and real numbers are not
supported. Ternary expressions (?:) are not supported in any structural applic

Unary and binary expressions—These expressions are often used for behavio
syntax and cause the module they are contained in to be skipped in translati
warning is issued).

Some binary expressions may be used in port declarations to specify range va
The supported binary expressions include +, -, *, /, %, <, =<, >, >=, ==, !=, &&

Some binary expressions may be used with bit expressions. The supported b
expressions for use with bit expressions include +, -, <, =<, >, >=, ==, !=, &&

Other Language Features

V2LVS supports the following compiler directives: `include, `define, `ifdef, `els
`endif, `undef. All other compiler directives are ignored to the end of the line
where they appear.

V2LVS does not support the argument form of `define (`define a(b,c) …).

Using V2LVS Without a Verilog Library File

The information contained in the Verilog library file is not strictly necessary fo
mapping Verilog to Spice. V2LVS implements a number of heuristic algorithm
for mapping undeclared module instances to Spice subcircuits.

Instances of Undeclared Spice Primitive Modules with Named Ports

When a module is instantiated with named ports, connections are made usin
$PINS construct supported by Calibre Spice.
Calibre Verification User’s Manual, v9.1_512-48

Utilities Verilog-to-LVS

he
ed in.

nce

ave
 each
ve
ircuit
Example 15—call to named port of undeclared primitive module

spice_module instance_aa (.A(in1), .B(in2), .C(.in3));

is mapped to the Spice instance:

Xinstance_aa spice_module $PINS A=in1 B=in2 C=in3

When the instantiated module is called with signal pins that contain arrays, t
called port is assumed to be of the same width as the set of signal pins pass
Furthermore, it is assumed to have pin names starting at n-1 and going to 0.

Example 16—call to pin array in undeclared primitive module

wire [3:0] in1;
wire in2, in3;
spice_module instance_aa (.A(in1), .B(in2), .C(.in3));

will map to the Spice instance:

Xinstance_aa spice_module $PINS A[3]=in1[3] A[2]=in[2]
A[1]=in[1] A[0]=in[0] B=in2 C=in3

Instances of Undeclared Spice Primitive Modules with Ordered Ports

When a module is instantiated with ordered ports, the order in the Verilog insta
is assumed to be the same order as the Spice module definition.

Example 17—positional call to undeclared primitive module

spice_module instance_aa (in1, in2, in3);

is mapped to the Spice instance:

Xinstance_aa in1 in2 in3 spice_module

In order for these instances to work properly, the Spice module ports must h
the same order as the Verilog instance calls. Also, pins must be supplied for
port specified in the Spice subcircuit. LVS will support calls to circuits that ha
missing pins as long as the call is not ambiguous (that is, more than one subc
with the same name and different numbers of pins).
Calibre Verification User’s Manual, v9.1_5 12-49

Verilog-to-LVS Utilities

an

r is

d.

gh
ow

ry

vel
rally

i

at is
Correcting Errors

When using V2LVS without a Verilog library, there are two situations which c
caused undesired results:

• When positional instantiations are used in Verilog and the Spice pin orde
not the same as the Verilog pin order, V2LVS has no information with
which to make the correct pin connections if a Verilog library is not use

• When pin arrays are connected to undeclared Verilog modules, V2LVS
assumes that the called array’s pins are named array_name[n-1] throu
array_name[0]. If this is not the case, a Verilog library is necessary to sh
the correct array boundaries on the called pin.

Using the –e Switch to Create LVS Box Subcircuits

The –e switch can be used to generate empty subcircuits from a Verilog libra
file. This can be useful in conjunction with the LVS Box rule file statement to
perform partial comparison of a structural netlist without comparing the low-le
circuit descriptions. To make use of this switch, the following steps are gene
used:

1. Generate a structural netlist using V2LVS in the usual way:
v2lvs –v model.v –l lib.vlib –o model.spi

2. Generate a Spice netlist from the Verilog library file or files using the
–e switch:
v2lvs –v lib.vlib –o lib.spi –e

3. Use the LVS Box specification statement for the layout cells that
correspond to the subcircuits in the Verilog library file (lib.vlib and lib.sp
above).

Using –i to Generate Simulation Output

By default, V2LVS utilizes a Calibre LVS extension ($PINS) to make pin
connections. The –i switch can be used to generate standard Spice output th
acceptable to many spice simulators. These may be used in conjunction with
Calibre Verification User’s Manual, v9.1_512-50

Utilities Verilog-to-LVS

ing

ion
–i

eed

s
t at

ncy
xCalibre generated netlists to perform detailed simulations of critical nets us
Spice-based simulators.

Since named connections are not possible in Spice without use of an extens
like $PINS, in most situations, a Verilog library (-l) will be necessary when the
switch is used.

Note that V2LVS is intended to translate Verilog netlists for use with Calibre
LVS. The –i switch is provided as a convenience only. V2LVS is not guarant
to produce Spice output that is suitable for simulation or compatible with any
particular simulator.

Also note that V2LVS does not read the Spice library file specified with the –
switch. The –s switch merely instructs V2LVS to issue a .INCLUDE statemen
the start of its Spice output. Inconsistencies in pin configuration between the
Verilog and Spice libraries are not detected by V2LVS. This type of inconsiste
can be detected by LVS, however.

Example 18—using the -i switch for standard Spice output

File src.v:

// Verilog source
module top ();
wire w1, w2, w3;
A inst1(.in1(w1), .in2(w2), .out3(w3));
endmodule

File lib.v:

// Verilog library
module A (in1, in2, out3);
input in1, in2;
output out3;
endmodule

File lib.spi:

Spice library with pin order which does not match Verilog library above

.SUBCKT A out3 in2 in1
Calibre Verification User’s Manual, v9.1_5 12-51

Verilog-to-LVS Utilities

ns
.ENDS

Run v2lvs with default ($PINS) and -i:

v2lvs -v src.v -o src_without_pins.spi -l lib.v -s lib.spi -i
v2lvs -v src.v -o src_with_pins.spi -l lib.v -s lib.spi

Rule file:

// This LVS Rule file Compares $PINS output with -i output
SOURCE PATH src_with_pins.spi
SOURCE PRIMARY top
SOURCE SYSTEM SPICE

LAYOUT PATH src_without_pins.spi
LAYOUT PRIMARY top
LAYOUT SYSTEM SPICE

LVS REPORT lvs.rep

Execute calibre -lvs rules

The run comes up INCORRECT showing the mismatched connections on pi
out3 and in1.

Generating an xCalibre Source Template File

The –tsvdb switch may be used to generate a file which xCalibre can use to
determine directions of ports declared in the Verilog netlist.

When the –t switch is used, V2LVS will generate a file named
svdb/template/%source.stl.

This file will contain a single starting line which consists of:

%%SOURCE
Calibre Verification User’s Manual, v9.1_512-52

Utilities Verilog-to-LVS

(that
ut).

l

followed by a .stl format template for each module in the Verilog netlist. The
module template consists of a module name declaration line:

% <module_name> <module_name>

followed by one line per interface pin:

<pin_name> <pin_name> 0 <io_spec>

Where <pin_name> is the expanded pin name used in the spice netlist output
is, busses are expanded and <io_spec> is one of i (input), o (output), io (ino

For example, the Verilog netlist

module A (X, Y, Z);
input X;
output Y;
inout [0:1] Z;
endmodule

module B(V,W);
output V;
input W;
endmodule

produces a source template file:

%%SOURCE
% A A
X X 0 i
Y Y 0 o
Z[0] Z[0] 0 io
Z[1] Z[1] 0 io
% B B
V V 0 o
W W 0 i

xCalibre can read the %source.stl file in the same way that it reads individua
layout .stl files when they are available. See xCalibre documentation for
additional information regarding the use of –t and the svdb database.
Calibre Verification User’s Manual, v9.1_5 12-53

Dracula: File Conversion and User Notes Utilities

om

the

put

nd
e

ext to
Dracula: File Conversion and User Notes

Converting Dracula Command Files

This section describes how to convert a Dracula command file into a rule file fr
the command line.

From the Command Line

To convert a Dracula command file into a rule file from the command line, use
following procedure:

1. Determine where your Dracula command file is and where you want to
the resulting rule file.

2. Enter the following on the command line:

$MGC_HOME/bin/drac_cvt sourcefile destpath
[-nodrac] [-text text_include_file]

wheresourcefile is the pathname of the Dracula command file you want
converted anddestpath is the pathname of the rule file that you want
created.

Invocation of drac_cvt with no arguments displays a usage statement a
the date of the binary build. Use this date to identify the version you ar
using.

3. Use an ASCII text editor to view the rule file.

If you find incorrect operations, use the ASCII text editor to edit the rule
file. The type of editing depends on the Dracula commands that were
converted. Note that the Dracula commands are added as comments n
their rule file counterparts.
Calibre Verification User’s Manual, v9.1_512-54

Utilities Dracula: File Conversion and User Notes

RC
tions.

d
type
les

e
on.

nd.
yer

ly
e

the
Dracula User Notes

This section describes differences between Dracula and Mentor Graphics D
applications that you should be aware of when transitioning to these applica

Acute Angles

Acute angles between adjacent edges in the same polygon are flagged
automatically by Dracula in one-layer DRC commands unless a range-type
measurement is being used. Two-layer acute angle overlaps are also flagge
automatically by Dracula in two-layer DRC commands unless, again, a range-
measurement is being used. In DRC, measurement and output at acute ang
must beexplicitly requested in a dimensional check operation using the
appropriate form of the ABUT keyword. (Acute angles within single layers ar
normally flagged by the Flag Acute statement or by the Drawn Acute operati

Connects

DRC does not have a counterpart to the Dracula CONNECT-LAYER comma
Any shielding is implicit in the order of the input layers in a Connect ... BY la
operation.

DRC allows any number of layers in a Connect operation. Dracula allows on
three. Two or more Dracula CONNECT commands can be combined into on
DRC Connect operation. For example, the Dracula CONNECT commands:

CONNECT met1 poly BY contact
CONNECT met1 psd BY contact
CONNECT met1 nsd BY contact

can be combined into the DRC Connect operation:

CONNECT met1 poly nsd psd BY contact

Dracula only has the connect by contact form. Many times this requires that
“pseudo-contact” layers be generated. Since DRC has a “direct connection”
operation, these “pseudo-contacts” are normally not required. For example,
Dracula commands:
Calibre Verification User’s Manual, v9.1_5 12-55

Dracula: File Conversion and User Notes Utilities

F.

sign,
y be
r

AND nsd nwell nwcont
AND psd psub pscont
CONNECT nsd nwell BY nwcont
CONNECT psd psub BY pscont

are equivalent to the DRC operations:

CONNECT nsd nwell
CONNECT psd pwell

Dracula does not establish connectivity in the contact layer in a Connect
command. A Stamp command is necessary to do this. DRC will establish
connectivity in any layer parameter to a Connect operation.

Description Statements

• CNAMES-CSEN

This command is ignored since there is no accurate translation to SVR

• ABORT-P-G-SHORT

The following commands:

ABORT-P-G-SHORT = YES
ABORT-P-G-SHORT = ALL
ABORT-P-G-SHORT = SHORT
ABORT-P-G-SHORT = OPEN

are translated to:

LVS ABORT ON SUPPLY ERROR YES
LVS POWER NAME VCC VDD
LVS GROUND NAME VSS GND GROUND

Note that these are not necessarily the power/ground names in the de
but these are the names that Dracula LVS uses to identify nets that ma
involved in a power-ground short. You may need to edit the LVS Powe
Name and LVS Ground Name statements to find shorts in a design.

The following Dracula command is ignored:

ABORT-P-G-SHORT = NO
Calibre Verification User’s Manual, v9.1_512-56

Utilities Dracula: File Conversion and User Notes

e

r
 a
-

(:G)
d in
• POWER-NODE and GROUND-NODE

POWER-NODE and GROUND-NODE are translated to LVS Power Nam
and LVS Ground Name operations, respectively.

The following commands:

POWER-NODE = VDD, DVDD, AVDD, PVDD
GROUND-NODE = GND, DGND, AVSS, PVSS

are translated to:

LVS POWER NAME “VDD” “DVDD” “AVDD” “PVDD”
LVS GROUND NAME “GND” “DGND” “AVSS” “PVSS”

Unlike Dracula, SVRF does not allow the use of a wildcard character fo
power and ground names used in the analogous commands. Hence, if
wildcard character is used in the Dracula POWER-NODE or GROUND
NODE statements, a warning is issued. For example, the Dracula
command:

POWER-NODE = VDD, VCC, VAB*

is translated to:

LVS POWER NAME VDD VCC
// Warning! Unused because Wildcard not accepted: VAB*

(near line N in file X)
LVS POWER NAME “VDD” “VCC”

Dracula allows you to use suffixes to designate power (:P) and ground
nodes. SVRF has no such convention, therefore all suffixes are remove
translation. For example, the Dracula command:

POWER-NODE = VCC, VDD:P

is translated to:

LVS POWER NAME “VCC” “VDD”
Calibre Verification User’s Manual, v9.1_5 12-57

Dracula: File Conversion and User Notes Utilities

 by
ns.

a

xt

 the
Device Filtering

Dracula filters out devices depending on the configuration of a given device,
way of the LVSCHK statement. This is a complex statement with many optio
The analogous rule in SVRF is LVS Filter Option.

The default filtering statement:

LVS FILTER OPTION AB RC RE RG

mimics the default Dracula filtering. It is added to the output of all translated
Dracula LVS files,triggeredby the presence of either a CONNECT-LAYER or
TEXTSEQUENCE statement in a Dracula command file.

HEDTEXT files

The contents of Dracula EDTEXT and HEDTEXT files are translated into Te
and Layout Text specification statements, respectively.

By default, the converted EDTEXT and HEDTEXT files go directly into the
translated rule file.

When you specify -texttext_include_file on the command line, the converted
EDTEXT and HEDTEXT files go into the specifiedtext_include_file. The
translated rule file will contain the statement:

INCLUDE “ text_include_file ”

Input Statements

• CONNECT-LAYER and TEXTSEQUENCE

CONNECT-LAYER and TEXTSEQUENCE commands specify texting
layer order and are commonly used in Dracula LVS. They list the chip
layers from bottom to top. For example:

CONNECT-LAYER NSD PSD POLY METAL
TEXTSEQUENCE NSD PSD POLY METAL

One of the two is required to order texting layers in Dracula. If a
TEXTSEQUENCE statement is not present in a rule file, Dracula uses
Calibre Verification User’s Manual, v9.1_512-58

Utilities Dracula: File Conversion and User Notes

eral
les,

the
CONNECT-LAYER statement, which is always present in Dracula LVS
files. This statement establishes the order of text attachment when sev
layers exist under free-floating (unattached) text. For the above examp
the translation to SVRF is:

LABEL ORDER METAL POLY PSD NSD

Note that the layer order is reversed in this translation, as required for
Label Order specification statement in SVRF.

Operation Statements

• ANDNOT

The ANDNOT command is translated as in the following example:

ANDNOT A B C D

is translated to:

C = A AND B
D= A NOT B

• CORNER

The Dracula file converter translates the CORNER operation to an
equivalent sequence of SVRF commands.

The CORNER statement:

CORNER{[A|B|C]} input_layer rel_a rel_b {CORNER_SIZE n}
 output_section

where:

o rel_a: is translated as INSIDE | OUTSIDE

o rel_b: is translated as INNER | OUTER

o n: when greater than 0.0 is translated as the corner size (optional)
Calibre Verification User’s Manual, v9.1_5 12-59

Dracula: File Conversion and User Notes Utilities

h)

s a

ple,
o output_section: is translated as output_layer | output_clause (or bot

o output_clause: is OUTPUT c_name l_num {d_num}

• ELEMENT MOS

ELEMENT MOS {[<type>]} is translated to DEVICE M, MN, MP, MD, or
ME depending on the optional code <type>. In the table below, * mean
string of 0 or more characters (not whitespace)

<type>DEVICE

N* MN(N*)
P* MP(P*)
D* MD(D*)
E* ME(E*)
other M(<type>)
no type M

ELEMENT LDD {[<type>]} is translated to DEVICE LDD, LDDN,
LDDP, LDDD, or LDDE depending on the optional code <type>.

<type> DEVICE

N* LDDN(N*)
P* LDDP(P*)
D* LDDD(D*)
E* LDDE(E*)
other LDD(<type>)
no type LDD

• COVERAGE

COVERAGE is translated to the Density operation in SVRF. For exam
the following Dracula commands:

COVERAGE POLY LT 0.6 100 10 POLYERR
COVERAGE POLY LT 0.6 100 10 LAYER ACTIVE POLYERR1

are translated, respectively, to the SVRF commands:

POLYERR = DENSITY POLY < 0.6 WINDOW 100 STEP 10
POLYERR1 = DENSITY POLY < 0.6 INSIDE OF LAYER

ACTIVE WINDOW 100 STEP 10
Calibre Verification User’s Manual, v9.1_512-60

Utilities Dracula: File Conversion and User Notes
• ECONNECT and NDCOUNT

ECONNECT and NDCOUNT commands are translated to the Density
operation in SVRF. For example, the following Dracula commands:

ECONNECT MOS[N] NDIFF CONN ?:P OUTPUT ENCV 49

NDCOUNT MOS[P] PSRCDRN GT 2 OUTPUT PSDX 42

are translated, with warnings, to the following SVRF commands,
respectively:

// ***** Warning! Use ERC SELECT CHECK to select the desired ERC
// related check

ENCV49 {
(DEVICE LAYER MN(N)) INTERACT (NET NDIFF "?:P")

}

// ***** Warning! Use ERC SELECT CHECK to select the desired ERC
// related check

PSDX42 {
(DEVICE LAYER MP(P)) INTERACT PSRCDRN > 2 BY NET

}

Another example shows that the following Dracula commands:

ECONNECT MOS[N] nsd CONN vdd &
ECONNECT MOS[N] nsd CONN vss OUTPUT vdvsn 48

are translated to the warning and commands:

// ***** Warning! Use ERC SELECT CHECK to select the desired ERC
// related check

vdvsn48 {
((DEVICE LAYER MN(N)) INTERACT (NET nsd "vdd"))

INTERACT (NET nsd "vss")
}

Note that the following limitations cause ECONNECT or NDCOUNT
commands to be ignored:

o An ECONNECT or NDCOUNT command with layer ALL is not
translated.
Calibre Verification User’s Manual, v9.1_5 12-61

Dracula: File Conversion and User Notes Utilities

,

ed
ut
o An elem parameter PAD is not translated.

• LCONNECT

LCONNECT is translated to Net or Not Net for SVRF. The syntax for
LCONNECT is:

LCONNECT layer CONN/DISClabel trapfile OUTPUTc-name l-
name d-name

wherelayer, CONN or DISC,label, c-name, andl-name are used in the
translation. The optional parameterd-nameis used in translation, if present
andtrapfile is ignored.

LCONNECT is used to select geometry on a given layer depending on
whether that geometry is labelled (CONN for “connected”) or not labell
(DISC for “disconnected”) with a specified text string. The Dracula outp
layer designatorsc-name, l-name, andd-name are used to form the SVRF
rule name, as shown below:

The following command:

LCONNECT diff DISC vcc OUTPUT difvcc 40

is translated to:

difvcc40 { NOT NET diff vcc }

The following command:

LCONNECT diff CONN vcc layer_x OUTPUT difvcc 40

is translated to:

difvcc40 { NET diff vcc }
layer_x = NET diff vcc

The following command:

LCONNECT diff DISC vcc layer_x

is translated to:

layer_x = NOT NET diff vcc
Calibre Verification User’s Manual, v9.1_512-62

Utilities Dracula: File Conversion and User Notes

LL
ells

 to
the
ant

nd

r

• LINK

This is a dangerous Dracula statement. It is used to attach a label to A
pieces of geometry on a specified layer. It is commonly used to label w
or the chip bulk. This is why it is dangerous. Stamping should be used
label substrates, so that multiple stamped substrates —which may be
path for an electrical short — can be found. LINK bypasses this import
substrate integrity-checking mechanism.

It is important to create a rule file that verifies substrate connectivity to fi
shorts.

The syntax for LINK is:

LINK layer TO label

For example, the following command:

LINK pwell TO VSS

is translated to:

CONNECT 901
SCONNECT 901 pwell LINK “VSS”

A second LINK statement in the same Dracula rule file, such as:

LINK nwell TO VDD

is translated to:

CONNECT 902
SCONNECT 902 nwell LINK “VDD”

• LVSCHK

If there are Element statements that translate to capacitor devices, and
CAPVAL is specified, then Trace Property statements are produced fo
each Device C(X).
Calibre Verification User’s Manual, v9.1_5 12-63

Dracula: File Conversion and User Notes Utilities

re

r

N,

nts

se,
If there are Element statements that translate to diode devices, and
DIOAREA or DIOPERI are specified, then Trace Property statements a
produced for each Device D(Y).

If there are Element statements that translate to resistor devices and
RESVAL is specified, then Trace Property statements are produced fo
each Device R(Z).

If there are Element statements that translate to MOS/LDD devices (M
MP, MD, ME, M LDDN, LDDP, LDDD, LDDE, and LDD), and
LPERCENT or WPERCENT is specified, then Trace Property stateme
are produced for each Device MN / MP /MD / ME / M / LDDN / LDDP /
LDDD / LDDE / LDD(X). If WEFFECT is specified in the LVSCHK
command, its value is used in MOS/LDD DEVICE statements; otherwi
the default 0 is used.

For example, the following commands:

ELEMENTMOS[NNGATE CPOLY NDIFF PSUB
ELEMENTMOS[P]PGATE CPOLY PDIFF NXWELL
ELEMENTDIO[DP]FUSE PDIO NDIO
ELEMENTRES[MR]MTRES MT1
PARAMETERRES[MR]1.00
ELEMENTRES[WR]RWELL NXWELL
PARAMETERRES[WR]1200.00
ELEMENTCAP[PC]CAPPL CPOLY POLY2
PARAMETERCAP[PC]4.6E-16
LVSCHK[..] LPERCENT=2 WPERCENT=3 CAPVAL=4 RESVAL=5

DIOAREA=6 DIOPERI=7
Calibre Verification User’s Manual, v9.1_512-64

Utilities Dracula: File Conversion and User Notes

d.
are translated to:

DEVICE MN(N) NGATE CPOLY NDIFF NDIFF PSUB [0]
TRACE PROPERTY MN(N) L L 2
TRACE PROPERTY MN(N) W W 3
DEVICE MP(P) PGATE CPOLY PDIFF PDIFF NXWELL [0]
TRACE PROPERTY MP(P) L L 2
TRACE PROPERTY MP(P) W W 3
DEVICE D(DP) FUSE PDIO NDIO
TRACE PROPERTY D A A 6
TRACE PROPERTY D P P 7
DEVICE R(MR) MTRES MT1 MT1 [1]
TRACE PROPERTY R(MR) R R 5
DEVICE R(WR) RWELL NXWELL NXWELL [1200]
TRACE PROPERTY R(WR) R R 5
//PARAMETER CAP [PC] 4.6E-16
DEVICE C(PC) CAPPL CPOLY POLY2 [4.6E-16 0]
TRACE PROPERTY C(PC) C C 4

The following example shows how the use of WEFFECT is implemente
The Dracula commands:

ELEMENT MOS[N] NDEVICE P1NR NSDALL PSUB
ELEMENT MOS[LN] LNDEVIC P1NR NSDALL PSUB
LVSCHK[..] WPERCENT=3 LPERCENT=1.5 WEFFECT=0.3

are translated to the SVRF statements:

DEVICE MN(N) NDEVICE P1NR NSDALL NSDALL PSUB [0.3]
TRACE PROPERTY MN(N) L L 1.5
TRACE PROPERTY MN(N) W W 3
DEVICE M(LN) LNDEVIC P1NR (G) NSDALL (S) NSDALL (D) PSUB (B) [

 property W, L
 weffect = 0.3
// Replace with effective width factor if desired (eg. 0.5).
W = 0.5 * (perim_co(S, LNDEVIC) + perim_in(S, LNDEVIC) +

perim_co(D, LNDEVIC) + perim_in(D, LNDEVIC))
L = area(LNDEVIC) / W
if (weffect != 0) {
Calibre Verification User’s Manual, v9.1_5 12-65

Dracula: File Conversion and User Notes Utilities

RF
ile is
ow
if (bends(LNDEVIC) != 0) {
if (W > L)

W = W - weffect * bends(LNDEVIC) * L
else

L = L - weffect * bends(LNDEVIC) * W
}

}
]
TRACE PROPERTY M(LN) L L 1.5
TRACE PROPERTY M(LN) W W 3

• PATHCHK

The Dracula file converter translates the Pathchk statement to ERC
Pathchk. SVRF does not support, and ignores, the Dracula option X. SV
does not use optional trapfiles, and issues a warning message if a trapf
present in the Dracula PATHCHK statement. The following examples sh
how Pathchk statements are translated:

The Dracula command:

PATHCHK LEVEL 1 OUTPUT NOPW 19

is translated to the command:

// ***** Warning! Use ERC SELECT CHECK to select the desired ERC
// related check

NOPW19 {
PATHCHK GROUND && ! POWER

}

The Dracula command:

PATHCHK[F] LEVEL 2 OUTPUT NOGR 20

is translated, with warnings, to the command:

// ***** Warning! Options F, X allowed only for LEVEL 4
// ***** Warning! Use ERC SELECT CHECK to select the desired ERC
// related check
NOGR20 {

PATHCHK POWER && !GROUND
}

Calibre Verification User’s Manual, v9.1_512-66

Utilities Dracula: File Conversion and User Notes

s

The Dracula command:

PATHCHK LEVEL 3 OUTPUT NOPWGR 21

is translated to the command:

// ***** Warning! Use ERC SELECT CHECK to select the desired ERC
// related check
NOPWGR21 {

PATHCHK !POWER && !GROUND
}

The Dracula command:

PATHCHK[FX] LEVEL 4 ALLF

is translated, with warnings, to the command:

// ***** Warning! Ignoring option X not supported
// ***** Warning! Use ERC SELECT CHECK to select the desired ERC
// related check
allf = PATHCHK !LABELED EXCLUDE UNUSED

Please refer toERC Select Check for information on selecting desired rule
checks.

• SCONNECT

SCONNECT is converted to the SVRF Sconnect operation statement a
shown below.

The following commands:

CONNECT-LAYER A B C D E
SCONNECT D B by CONT
SCONNECT D A by CONT
SCONNECT E C by PCONT

are translated to:

SCONNECT D B A by CONT
SCONNECT E C by PCONT
Calibre Verification User’s Manual, v9.1_5 12-67

Dracula: File Conversion and User Notes Utilities

 as
The following commands:

CONNECT-LAYER A B
SCONNECT A B by C

are translated to:

SCONNECT B A by C

and a warning is issued.

The following commands:

CONNECT-LAYER B A
SCONNECT A B by C

are translated to:

SCONNECT A B by C

• SOFTCHK

SOFTCHK is converted to the SVRF LVS Softchk operation statement
shown below.

The following command:

SOFTCHK lower-layer {trapfile} OUTPUT c-name l-num {d-num}

is translated to:

LVS SOFTCHK lower-layer LOWER

The following command:

SOFTCHK lower-layer {trapfile} OUTPUT[U] c-name l-num {d-num}

is translated to:

LVS SOFTCHK lower-layer CONTACT

The following command:

SOFTCHK lower-layer {trapfile} OUTPUT[A] c-name l-num {d-num}
Calibre Verification User’s Manual, v9.1_512-68

Utilities Dracula: File Conversion and User Notes

e, in

en if

d.
 for a
is translated to:

LVS SOFTCHK lower-layer CONTACT ALL

The following command:

ABORT-SOFTCHK = YES/NO

is translated to:

LVS ABORT ON SOFTCHK YES | NO

Polygon Topologicals

Dracula lacks many of the Not... polygon topological operations. For exampl
a Dracula deck the following commands:

SELECT layA OUTSIDE layB layC
NOT layA layC layD

 can be written:

layD = layA NOT OUTSIDE layB

if layC was only being used to generate layD, thus saving one operation. Ev
layC is used elsewhere, the following should be used in DRC:

layC = layA OUTSIDE layB
layD = layA NOT OUTSIDE layB

Because of concurrency, this is still considered one operation.

Region Option

In Dracula, the [R] option automatically turns on a type of opposite metric. In
DRC, the REGION keyword is completely orthogonal to the metric being use
Refer to the dimensional check operations Enclosure, External, and Internal
description of the REGION keyword.
Calibre Verification User’s Manual, v9.1_5 12-69

Dracula: File Conversion and User Notes Utilities

is a

wo-
st be

nal

 are
Select command

Not all options for the Dracula Select command are translated. The following
list of those options that are translated:

Group I: INSIDE, OUTSIDE, HOLE
Group II: CUT, TOUCH, ENCLOSE, OVERLAP
Group III: LABEL
Group IV: VERTEX
Group V: ANGLE
Group VI: None
Group VII: NOT for the Group I and Group II options
Group VIII: CONN

Singularities

Singularities are flagged automatically by Dracula in Width commands and t
layer DRC commands. In DRC, measurement and output at singularities mu
explicitly requested in a dimensional check operation using the SINGULAR
keyword or an appropriate form of the ABUT keyword. Refer to the dimensio
check operations Enclosure, External, and Internal for a description of the
SINGULAR and ABUT keywords.

In Dracula, when the [C] option is specified with ENC, EXT, INT, or WIDTH,
drac_cvt no longer generates the SINGULAR keyword.

Specification Statements

The following specification statements are required to compile a rule file and
inserted into the output file.

• SVRF DRC and ERC specification statements:

DRC RESULTS DATABASE "drc.db" ASCII
ERC RESULTS DATABASE “erc.db” ASCII
DRC SUMMARY REPORT "drc.sum"
Calibre Verification User’s Manual, v9.1_512-70

Utilities Dracula: File Conversion and User Notes

nt

of
ent
• SVRF LVS specification statements:

SOURCE PRIMARY "top"
SOURCE PATH "lvs.spice"
LVS REPORT "lvs.rep"
MASK RESULTS DATABASE none

• Optional SVRF specification statements: The following specification
statement is inserted, but commented out. Uncommented, this stateme
ensures compatibility with (outmoded) GDSII readers and viewers that
have a polygon vertex limit.

// DRC MAXIMUM VERTEX 199

• Capacitance and resistance unit statements:

UNIT CAPACITANCE F
UNIT RESISTANCE OHM

The Dracula PARAMETER CAP statement specifies values with units
farads/unit area and farads/unit length. The PARAMETER RES statem
specifies a value with units of ohms/square.

The following Dracula statements are translated to SVRF specification
statements.

• LVSCHK[S] and LPECHK[S]

If Dracula uses either of these statements:

LVSCHK[S]
LPECHK[S]

the following is the default translation:

LVS REDUCE SPLIT GATES YES

• CARE-SPLIT ORDER
Calibre Verification User’s Manual, v9.1_5 12-71

Dracula: File Conversion and User Notes Utilities

s

ed to

RC,

ing
If Dracula has any of the following statements:

CARE-SPLIT-ORDER = YES
FIX-INPUT-ORDER = INSTANCE
FIX-INPUT-ORDER = EXCEPT-LOGIC
FIX-INPUT-ORDER = YES

the SVRF translation is:

LVS REDUCE SPLIT GATES YES SAME ORDER

• LISTERROR

LISTERROR is converted to the corresponding DRC Maximum Result
and ERC Maximum Results specification statements.

• SOURCE SYSTEM SPICE

The SVRF specification statement Source System Spice is always add
the converted rule file.

Stamp Command

In Dracula, the command STAMP A BY B stamps layer A in place. Throughout
the remainder of the Dracula rule deck, A represents the stamped layer A. In D
Stamp A BY B is a layer operation and, as such,createsa derived layer
representing the stamped layer A. No input layers are affected. Therefore, a
different layer needs to be defined to represent the stamped layer A.

Substrate Pins

Substrate pins for RES, CAP, and DIO Elements are translated as in the follow
example.

These commands:

ELEMENT DIO[SDP]FUSE PDIO NDIO PSUB
ELEMENT RES[SND]RESD NDIFF PSUB
PARAMETER RES[SND]60
ELEMENT CAP[SPC]CAPPL CPOLY POLY2 PSUB
PARAMETER CAP[SPC]4.7E-16
Calibre Verification User’s Manual, v9.1_512-72

Utilities Dracula: File Conversion and User Notes

ls as
 as
cula
f all

ent

ns.

as

ds:

 the

yer
are translated as:

DEVICE D(SDP) FUSE PDIO NDIO PSUB
DEVICE R(SND) RESD NDIFF PSUB [60]
//PARAMETER CAP[SPC] 5.7E-16
DEVICE C(SPC) CAPPL CPOLY POLY2 PSUB [4.7E-16 0]

Virtual Connections

Colons in label names direct Dracula to treat the nets attached to those labe
connected. For example, geometry labelled as VCC:1 and geometry labelled
VCC:2 are treated as pieces of the same net (VCC). To mimic this default Dra
behavior, the SVRF statement Virtual Connect Colon is added to the output o
translated Dracula LVS files. The insertion of Virtual Connect Colon istriggered
by the presence of either a CONNECT-LAYER or a TEXTSEQUENCE statem
in a Dracula command file.

Miscellaneous

The Dracula file converter:

• Translates Dracula ELEMENT statements describing BJTs with four pi

• Translates operations that create or manipulate a layer named PAD.

• Quotes text strings in converted EDTEXT and HEDTEXT files, as well
Dracula LCONNECT, GROUND-NODE, POWER-NODE, and LINK
rules.

• Ignores, and does not issue a warning for the following Dracula comman
PROGRAM-DIR, PRINTFILE, OUTDISK, KEEPDATA, MULTILAB,
SAMELAB, EXCEPTION-ON, and STATUS-COMMAND.

• Does not generate the SVRF LVS Filter Unused Option statement with
AB option when the Dracula command KEEP-SHORT-MOS = YES is
specified.

• Checks any Attach layer to ensure it is a Connect layer for each input la
declaration.
Calibre Verification User’s Manual, v9.1_5 12-73

Compare Two GDSII Databases Utilities

 flat

to be
nd so

ach

uide
use

1)

and a
are

ill

is to
Compare Two GDSII Databases
The compare_gds utility is used to compare two GDSII databases. It does a
layer-by-layer XOR (or NOT) and writes an ASCII DRC results database. It
allows layers in one database to be compared to different layers in the other
database, sets of layers to be compared to different sets, particular datatypes
compared, sets of datatypes to be compared to different sets of datatypes, a
on. The compare_gds utility (32-bit) is located in $MGC_HOME/bin.

File comparison is done by allowing an optional SVRF parameter to follow e
input database as follows:

compare_gds database1 top_cell1 [-RULES rule-file1]
database2 top_cell2 [-RULES rule-file2]
output-database [-NOT | -XOR] [-NOKEEPEMPTY]

Each rule file is queried for its Layer Map statements and the target layers g
the comparison. You need to know how layer maps work to understand how to
this capability.

This utility compares two GDSII databasesdatabase1 anddatabase2 with TOP-
cellstop_cell1 andtop_cell2. The comparison is between layers (from 0 to 819
that have geometry in at least one of the databases. For each layer L with
geometries in at least one of the input databases, the geometries are flattened
Boolean XOR is done between the resulting two layers. Results of the XOR
written to the output DRC results database with the rule check name “diff_L”
where L is the layer number. If the XOR is empty, diff_L will be an empty rule
check unless the -NOKEEPEMPTY switch is specified; in that event, diff_L w
not exist.

The program does not consider datatype nor does it compare text.

By default, an XOR is performed on the layers. The -NOT switch changes th
do a Boolean NOT ofdatabase1 anddatabase2 in that order.

The TOP cell name in the ASCII DRC results database istop_cell1̂ top_cell2 if
doing XOR, otherwisetop_cell1-top_cell2.
Calibre Verification User’s Manual, v9.1_512-74

Utilities Rules Syntax Checker

red

the

ule
ou

s:

ess.

rate

.

Note, of course, that the data must have the same origin or it will be conside
different data also.

Rules Syntax Checker
The rules_syntax_checker is a utility you can run against a rule file to validate
syntax of its statements. The full path to this executable is
$MGC_HOME/shared/pkgs/icv.${VCO}/tools/misc/rules_syntax_checker. As
shown in the following example, this utility prompts you for the name of the r
file and then runs the check. It creates a zero length file named “compiled” if y
answer “y(es)”.

$ rules_syntax_checker

Please input the file name (CTRL-D to abort): rule_file

Successful compilation; compilation time = 0.02

You can also specify the pathname to the rule file upon invocation, as follow

$ rules_syntax_checker rule_file

You may want to do this if you are writing a shell script to automate the proc

Encountering an error terminates the check. The rules file compiler will gene
an error message for the first such mistake it finds where the offending word
sequence appears in the error message, for example:

Error INP1 on line 15 of rule_file - superfluous or invalid
input object: SORCE.

After correcting the first such error, recheck the rule file to find the next error
Repeat this process until the rules file loads successfully.
Calibre Verification User’s Manual, v9.1_5 12-75

Rules Syntax Checker Utilities
Calibre Verification User’s Manual, v9.1_512-76

d

nd
. It

rule
be
f

yout
etry

ses
ap
lock
 the
by
Chapter 13
Hierarchical LVS

Calibre LVS-H is afully-hierarchical LVS application. Unlike flat verification
applications, which completely flatten the input database and operate on the
resulting flat geometries, Calibre LVS-H maintains the database hierarchy an
exploits this hierarchy to reduce processing time, memory usage, and LVS
discrepancy counts.

Calibre LVS-H may be invoked from the shell command line with the -spice a
-hier command line options. It may also be invoked from the Calibre LVS GUI
includes the hierarchical circuit extractor (which involves hierarchical
connectivity extraction and hierarchical device recognition), the hierarchical
Spice netlister and the hierarchical LVS comparison module. It uses the same
file as its flat counterparts Generally there are no statements which need to
added or removed. (Some limitations do exist, however, regarding the use o
certain operations; those are described below. Also, for hierarchical LVS
comparison you may need to specify the names of cells that correspond in la
and source). Calibre LVS-H imposes no design restrictions concerning geom
overlapping cell placements or overlaps of cell placements.

Hierarchical Circuit Extraction
Specifying hcells with the -spice option can slow down circuit extraction in ca
where it would be beneficial to expand the cells (such as during dense overl
removal). For example, standard cell designs with routing in blocks and one b
per channel can fall into this category. You can circumvent this by specifying
Layout Top Layer specification statement in the rule file, which expands cells
one layer.
Calibre Verification User’s Manual, v9.1_5 13-1

Hierarchical LVS Comparison Hierarchical LVS

d its

l
d

y a
urce

he

s in
is Q

h
.

orted
Hierarchical LVS Comparison
This section describes the differences between flat LVS circuit comparison an
hierarchical variation.

Pin Swappability

Pin swap information, from rule fileDevicestatements, is not used in hierarchica
LVS comparison. It is not possible to specify swappable pins for user-define
devices in LVS-H.

Model Names

Device element names MP, MN, ME, MD, Q, and D must be accompanied b
model name in the rule file that is identical to the model name used in the so
netlist. This is required for the netlist to netlist comparison flow.

There are two exceptions to this rule:

• Device element names MP, MN, ME, and MD can be specified without
model names in the rule file if the corresponding model name used in t
source netlist is P, N, E, and D, respectively.

• Device element names Q and D can be specified without model name
the rule file if the corresponding model name used in the source netlist
and D, respectively.

Connectivity Dependent Transformation

Consider a hierarchically-corresponding cell specified by -hcell or -automatc
that contains two or more nets shorted together at a higher level of hierarchy
These nets will be recognized as one net, if they are shorted together in all
instances of the cell. However, they are treated separately, if the nets are sh
together in some, but not all, instances of the cell. This can affect LVS
transformation operations such as unused device filtering.
Calibre Verification User’s Manual, v9.1_513-2

Hierarchical LVS Hierarchical Device Recognition

ical

gher
de

vice

 is

hers
urs,
can
r pin
Isolated Layout Nets

Hierarchical LVS does not report isolated layout nets.

Hierarchical Device Recognition
The Device operation includes two secondary keywords that apply to hierarch
applications; BY NET and BY SHAPE. The following sections describe the
processes of these keywords, as well as the computation of two hierarchical
properties.

BY NET device recognition

Consider a layout cell with two or more nets that are shorted together at a hi
level of hierarchy in some but not all placements of the cell. The BY NET mo
of the hierarchicalDevice operation (which is the default) currently treats those
nets separately when classifying the device.

BY SHAPE device recognition

The BY SHAPE option of the hierarchical Device operation promotes each de
up the hierarchy until all pin geometries are fully merged, which may be
excessive.

Property computation: pin_net(), named_net()

Hierarchical pin_net() currently returns node numbers local to the cell, which
not generally correct. named_net() is not implemented hierarchically.

Hierarchical Layer Operations
Some hierarchical layer operations preserve the original layout hierarchy. Ot
can cause some amount of hierarchical degradation. When degradation occ
geometries on derived layers that would otherwise be part of a lower level cell
be promoted to higher levels of hierarchy. If those geometries serve as seed o
Calibre Verification User’s Manual, v9.1_5 13-3

Hierarchical Layer Operations Hierarchical LVS

ries,
han

ence

are
VS

one
geometries in device recognition, or if they, in turn, derive seed or pin geomet
then the respective devices can be recognized at higher levels of hierarchy t
would be expected. This promotion is not generally a problem; however, if a
device is promoted up across the boundary of a hierarchical LVS correspond
cell (as specified with the -automatch or -hcell option), then that cell may no
longer match its schematic description, which results in discrepancies in
hierarchical LVS.

The following operations accurately preserve the original layout hierarchy:

One-layer booleans:Or
Two-layer booleans: And, Or, Not
Polygon topologicals: (Not) Inside, (Not) Outside, (Not) Cut, (Not) Enclose

(Not) Touch, (Not) Interact
Polygon measurement: (Not) Area
Sizing: Size with no OVERLAP ONLY
Extent: Extent
Connectivity related: (Not) Net, Net Area, Net Area Ratio, Stamp
Text based selection: Text
Copying: Copy
Connectivity extraction: Connect, Attach, Label Order
Device recognition: Device

The following operations can cause degradation of the layout hierarchy. They
not commonly used in LVS; if they must be used, it is recommended that the L
comparison step be done flat. That is, use the -hier option but specify no
correspondence cells except for the top level cell. Circuit extraction will be d
hierarchically and comparison will be done flat.

Two-layer booleans: Xor
Holes: Holes
Polygon measurement: Perimeter, Vertex, (Not) Donut
Sizing: Size with OVERLAP ONLY
ShiftingShift
Extent: Extents (as opposed to Extent)
Expand edge: Expand Edge
Edge based selection: (Not) With Edge
Edge topologicals: (Not) Inside Edge, (Not) Outside Edge,
Calibre Verification User’s Manual, v9.1_513-4

Hierarchical LVS Hierarchical Layer Operations

t be

 not

are

lect

t

(Not) Coincident Edge, (Not) Coincident Inside Edge,
(Not) Coincident Outside Edge
(Not) Touch Edge, (Not) Touch Inside Edge,
(Not) Touch Outside Edge

Edge measurement: (Not) Angle (note following section for exception),
(Not) Length, Path Length

Merging: Merge
Dimensional check: External, Internal, Enclosure

The following operations produce flat or empty layers by definition and can no
used in hierarchical LVS.

One-layer booleans: And, Xor
Magnification:Magnify
Connectivity related:Polynet, Ornet
Flattening:Flatten
Edge measurement:(Not) Angle operations that would select a 0 degree

edge but not a 90 degree edge, or a 90 degree edge but
not a 0 degree edge.

Density measurement:Density
Methodology:Pins, Ports, Topex

The following operations can generate only DRC error layers and hence are
applicable to LVS.

Error-directed:Drawn Acute, Drawn Offgrid, Drawn Skew

Most types of Angle and Not Angle operations produce hierarchical layers and
allowed in hierarchical LVS. Only two types produce flat layers and are not
allowed:

• Angle OR Not Angle that would select a 0 degree edge but would not se
a 90 degree edge.

• Angle AND Not Angle that would select a 90 degree edge but would no
select a 0 degree edge.

When an illegal type of Angle and Not Angle operation is used, a message is
printed and the application terminates.
Calibre Verification User’s Manual, v9.1_5 13-5

Cell Pushdown Hierarchical LVS

t
This
it is
that

ents
ual
all

ut
n

ch
-H
ts

ers

ibre

igns
d

Cell Pushdown
Cell pushdown is an optimization in the hierarchical database constructor tha
under certain conditions pushes cell placements down into underlying cells.
often provides significant performance benefits. However, in Calibre LVS-H
sometimes desirable to prevent the pushdown of certain cells, such as cells
contain devices. The following rules govern which cells are candidates for
pushdown in Calibre LVS-H:

• If Layout Top Layer is specified in the rule file, then only top-layer cell
placements are candidates for pushdown, and non-top-layer cell placem
are never pushed down. If Layout Top Layer is not specified then the us
criteria are used to select candidates for pushdown (specifically, very sm
cell placements are candidates for pushdown). As a result, when Layo
Top Layer is properly specified, the hierarchical database constructor i
Calibre LVS-H will not push cells that contain devices down into other
cells. This prevents undesired pushdown of devices down into hcells.

• LayoutLVS Box cells in Calibre LVS-H are never considered to be very
small cells or top-layer cells even if they otherwise fit the criteria for su
cells. As a result, the hierarchical database constructor in Calibre LVS
will never push layout LVS Box cells down into other cells. This preven
undesired pushdown of LVS Box cells down into hcells.

Top-layer cell placements are placements of cells that do not contain any lay
other then Layout Top Layer layers.

These rules apply to Calibre LVS-H as well as to certain other hierarchical Cal
applications, including xCalibre (but they do not apply to
Calibre DRC-H).

Hcells
Hcells in Calibre LVS-H are cells that exist in both the layout and source des
and that correspond between layout and source (or are expected to exist an
correspond). The termhcell stands forhierarchically corresponding cell. Hcells
come in pairs, consisting of a layout cell and a corresponding source cell. In
Calibre Verification User’s Manual, v9.1_513-6

Hierarchical LVS Hcells

g,
.

ith
ne
each
hose
s are
re
ed
r, in
ith

may
by
es.

e in

libre
ule

e-
pare
cuit

re

ibre
bre

air
lls
 (or
Calibre applications other then LVS, hcells may have a more general meanin
and may simply designate cells that need to be preserved for some purpose

Hcells in Calibre LVS-H may be specified in a number of ways: in the rule file
with theHcell specification statement; in an external cell correspondence file w
the -hcell command line option; or implicitly with the -automatch command li
option. Each of these methods may establish its own list of cell name pairs,
pair consisting of a layout cell name and a corresponding source cell name. T
lists are combined together and used as a single hcell list. All cell name pair
treated equally, regardless of how they were established. Note that the Calib
LVS-H circuit extraction stage (calibre -spice) is not aware of hcells establish
with the -automatch command line option (since that option operates only late
the circuit comparison stage). Hcells are optional. If you do not specify hcells w
any of the methods described above then the hcell list is empty.

In a pair of hcells, the layout cell name and corresponding source cell name
be the same or they may be different. You may specify a 1-to-many relation
placing a layout cell name in several hcell pairs with different source cell nam
Similarly, you may specify a many-to-1 relation by placing a source cell nam
several hcell pairs with different layout cell names. However, many-to-many
relations are not allowed. Note that the latter restriction is enforced by the Ca
LVS-H circuit comparison stage (calibre -lvs -hier) but is not enforced by the r
file compiler or by the Calibre LVS-H circuit extraction stage (calibre -spice).

Case sensitivity of hcell names in Calibre LVS is controlled by the
LVS Compare Case specification statement. Specifically, hcell names are cas
insensitive by default; hcell names are case sensitive if you specify LVS Com
Case YES or LVS Compare Case TYPES. This applies in Calibre LVS to cir
extraction as well as circuit comparison. (Other Calibre applications, such as
DRC, may behave differently with respect to case sensitivity of hcells; for mo
information refer to“DRC Use of Hcells” on page 6-9).

Hcells in Calibre LVS-H are used mainly in the circuit comparison stage (cal
-lvs -hier). To some extent they also affect hierarchical circuit extraction (cali
-spice) as described below. In any event, hcell specification is optional.

Circuit comparison: Hcells are compared as hierarchical entities. For each p
of hcells, the layout cell is compared to the indicated source cell. All other ce
are expanded in the circuit comparison stage down to the next level of hcells
Calibre Verification User’s Manual, v9.1_5 13-7

Hcells Hierarchical LVS

ells
yout
cell
nt

ls

d by
u
st
ell

ides
ies.

nal

ired.
at

 in
its in
son
s

s to
down to primitive devices when there are no lower level hcells). When no hc
are present, circuit comparison operates at primitive device level. When a la
cell corresponds to several different source cells (a 1-to-n relation), the layout
is compared against each of the indicated source cells. When several differe
layout cells correspond to a single source cell (a n-to-1 relation), each of the
layout cells is compared to the single indicated source cell. The top level cel
(Layout Primary and Source Primary) always correspond and do not need to
appear in the cell correspondence file. By default, primitive devices correspon
component type as in flat LVS. In primitive devices with non-built-in types yo
can override this by including their names in the hcell list as well. The hcell li
then exclusively determines their correspondence. Warnings are issued for c
names that do not exist in the input data.

Hcell instances may be expanded by the circuit comparison algorithm if it dec
that expansion is necessary in order to match the layout and source hierarch
For more information refer toLVS Expand Unbalanced Cells.

Circuit extraction: Hierarchical circuit extraction (calibre -spice) does not
require an hcell list. Extraction is performed hierarchically based on the origi
database hierarchy. Generally, cells in the original database hierarchy are
preserved; however, some cells may be expanded to improve performance.
Calibre utilizes a variety of heuristics to determine when cell expansion is des
A common example is dense overlap removal, which expands dense cells th
overlap each other.

The hcell list prevents cell expansion in the circuit extraction stage. The
hierarchical circuit extractor preserves all layout hcells and will never expand
them as part of dense overlap removal or similar heuristics. Specifying hcells
the circuit extraction phase ensures that all hcells are preserved as subcircu
the extracted layout netlist and are available for use as hcells in the compari
phase. Note that hcell specification may slow down circuit extraction in case
where it would be beneficial to expand those cells (for example due to dense
overlap).

Many-Many Cell Correspondence

Many-many cell correspondence exists when there is at least one pair of
corresponding layout and source cells, where the layout cell also correspond
Calibre Verification User’s Manual, v9.1_513-8

Hierarchical LVS Hierarchical Pins

onds
fied,

ce:

S to
e
he

hed

ry
lly

g

text.
hed
es
other cells in the source (outside of the pair) and the source cell also corresp
to other cells in the layout (outside of the pair). Cell correspondence is speci
for example, with hcell lists and/or with the-automatch command line
argument. Here is an example of an hcell list with many-many corresponden

 aa aa
 aa bb
 bb bb

Many-many cell correspondence is a global error that causes hierarchical LV
abort without comparing individual cells. A pair of cell names that leads to th
many-many correspondence is indicated in the Calibre LVS-H transcript. In t
example above, the following message may appear in the transcript:

ERROR: Correspondence "bb" "bb" leads to a many-many
 correspondence.

This means that adding the pair “bb bb” to the cell correspondences establis
so far leads to a many-many correspondence.

Many-many cell correspondence is also indicated with a respective seconda
comparison status in the LVS report. The primary comparison status is usua
NOT COMPAREDbut may beINCORRECT if input errors also exist.

Hierarchical Pins
Calibre LVS-H treats pins of hcells differently than Calibre LVS. The followin
sections describe a couple of differences between the two applications.

Matching hcell Pins

Pins of hierarchically corresponding cells (hcells) do not have to be texted.
Untexted hcell pins not uniquely matched within the cell are matched by con
In other words, nets, and instances at higher levels of hierarchy can be matc
first and this may, in turn, induce specific matching of pins, nets, and instanc
within cells at lower levels of hierarchy. Nevertheless, texting of hcell pins is
Calibre Verification User’s Manual, v9.1_5 13-9

Hierarchical Pins Hierarchical LVS

rried
he
is is

ble,

 is,
ge

se

ies
nly

ithin
e not

s E
or
recommended; it often improves run time in the hierarchical LVS circuit
comparison module, and it improves discrepancy reporting.

Trivial Pin Swappability

In certain cases, information about the logical equivalence of pins can be ca
up from a device or logic gate level to respective pins of a containing hcell. T
respective hcell pins are then logically equivalent or “swappable” as well. Th
called trivial pin swappability. Specifically, hcell pins connected directly to
swappable pins of a primitive device or logic gate within the hcell are swappa
provided that they are not connected to anything else within the hcell. For
complex gates, only first level pin swapping is allowed at the hcell level; that
you can interchange pins within swappable groups but you cannot interchan
groups at the hcell level. For logic gates, you must use aLVS Recognize Gates
statement to enable logic gate recognition and it is recommended that you u
LVS Power NameandLVS Ground Namestatements to allow formation of
complete gates.

Trivial pin swappability is not carried up from logic gate pins where the propert
or subtypes of respective transistors within the logic gate are not symmetric. O
“traced” properties are considered; values are considered equal if they fall w
the specified tolerances. If a difference exists then the respective hcell pins ar
swappable.

For example, pins A through C of CELLX in Figure13-1 are swappable because
they are connected directly to input pins of a NAND gate and nothing else. Pin
and F are swappable because they are connected directly to pins of a resist
device and nothing else.
Calibre Verification User’s Manual, v9.1_513-10

Hierarchical LVS Hierarchical Pins

s

and
Figure 13-1. Trivial Pin Swappability

SRAM Bit-Cell Recognition

Calibre LVS-H recognizes the common SRAM bit-cell structure. As a result,
hierarchical LVS allows you to swap certain hcell pins in memory designs, a
described below (hcells are corresponding cells used in hierarchical circuit
comparison).

In Figure13-2, the names POWER and GROUND were replaced with SUP1
SUP2 respectively.

Figure 13-2. SRAM Bit-cell

A
B

C

E F

CELLX

D

SUP1 SUP2

SUP1 SUP2

m3 m4

m5 m6

m1

m2

W

B

BN

1

2

Calibre Verification User’s Manual, v9.1_5 13-11

Hierarchical Pins Hierarchical LVS

ins
ay be
cell.

ces in
tively,

y nets
UP2

ins of

ells.
n by

ctions
 of
es,

the
; and

alues
s are

. A
pins

 are
, and
We use the names B, BN, W, SUP1 and SUP2 for reference only; no text is
actually required by LVS. B and BN must serve as pins of the cell that conta
the structure and must not be connected to any other devices in the cell. W m
connected to other devices in the cell and may or may not serve as a pin of the
The internal nets designated 1 and 2 must not be connected to any other devi
the cell. The nets designated SUP1 and SUP2 must be the same nets, respec
in the top and bottom structure; other then that, SUP1 and SUP2 may be an
and do not have to be designated as power or ground supplies. SUP1 and S
may be connected to other devices in the cell and may or may not serve as p
the cell. Transistors may be of any MOS type (M, MN, MP, ME, MD, LDD,
LDDN, LDDP, LDDE, LDDD) as long as symmetry is observed, as described
below.

Note that this processing is performed after expansion of non-corresponding c
Thus, the term “cell” in this context refers to the design hierarchy as it is see
the circuit comparison moduleafter expansion of non-corresponding cells.

LVS checks component types, subtypes, properties and substrate pin conne
to ensure that the structure is indeed symmetric. As a result, there is no loss
information relative to flat comparison. Specifically, component types, subtyp
properties and substrate pin connections must be equal, respectively, on 1)
transistors designated m1 and m2, 2) the transistors designated m3 and m5
3) the transistors designated m4 and m6. If LDD-type devices are used then
polarity is checked and must observe the symmetry of the structure. Only
properties traced with Trace Property specification statements are checked; v
are considered equal if they fall within the specified tolerances. Substrate pin
any pins other then D, G or S.

Given this structure, LVS-H recognizes that pins B and BN of the cell are
swappable. This information is used when processing placements of the cell
cell may contain several such transistor level structures, and respective B/BN
are swappable pairwise.

In addition, LVS-H carries swappability information as far as possible up the
hierarchy. Specifically, swappability information is carried up along nets that
connected only to a respective placement pin and to a external port of the cell
are not connected to any other objects in the cell. In figure13-3, given that pins B
Calibre Verification User’s Manual, v9.1_513-12

Hierarchical LVS Hierarchical Pins

ing
d to

tion,

ts of
nts
ed

t
w.

en

s
es

are
and BN of cell X are swappable, then in cell Y pin B1 will be swappable with
BN1, B2 will be swappable with BN2, and B3 will be swappable with BN3.

Figure 13-3. Carrying pin swappability up the hierarchy

High-short Resolution

High-short resolution is a process used in hierarchical Calibre when process
connectivity information. It is applied to increase performance and capacity an
allow correlation between layout and source databases. In high-short resolu
Calibre looks for net segments that are separate at the cell level but are
consistently connected together at higher levels of hierarchy in all placemen
the particular cell (for example, split power rails). Calibre joins such net segme
together to form a single net at the cell level. High-short resolution is perform
both during hierarchical connectivity extraction and during hierarchical circui
comparison, with some minor differences between the two as described belo

• Connectivity Extraction — A high-shorted group of pins is a group of
pins in a cell that are consistently connected together higher up in the
hierarchy in all placements of the cell in the design. Such pins are also
called “globally connected” pins.

o If a high-shorted group of pins contains pins with different names, th
pins are grouped by name; pins with the same name are merged
together, but pins with different names remain separate.

o If a high-shorted group of pins contains pins with different names a
well as pins with no name at all, then the pins that do not have nam
are in a group of their own; they are merged within that group, but
not merged with pins that do have names.

cell X

B BN

cell X

B BN

cell X

B BN

B1 BN1 B2 BN2 B3 BN3

cell Y
Calibre Verification User’s Manual, v9.1_5 13-13

Hierarchical Pins Hierarchical LVS

d
d

d.

hey
he
tive
. In

are
l

s
to a
that
o If a high-shorted group of pins contains pins with one name only an
other pins with no name at all, then all pins in the group are merge
together.

This processing is identical in all cells, including LVS Box cells. Table
13-1 overviews some possibilities of how high-shorted pins are resolve

Note that it is possible for pins (and respective nets) in a cell to remain
separate within the cell even though they are globally connected and if t
have identical names within the cell. For example, this may happen if t
global connection traverses multiple levels of hierarchy and the respec
nets at a higher level have different names or if one of them is unnamed
such cases, the pins (and respective nets) remain separate within the
original cell; one of them receives the (common) name and the others
left unnamed. However, the connectivity extractor recognizes the globa
connection and does not report false open circuit warnings.

Note also that the LVS hierarchical circuit comparison module perform
high-short resolution of its own in order to bring the layout and source
common representation. There is no change in the algorithm there, and

Table 13-1. High-shorted Pin Resolution Examples

Original
High-shorted Pins

Pins After
High-short
resolution

Notes

A B A B Different names remain separate …

A B 1 A B 1 … even if unnamed pins are present.

A A A B B A B Pins are merged by name.

A A A B B 3 4 5 A B 3 Pins are merged by name, and
unnamed pins are merged.

A 1 A Only one name, therefore all pins are
merged.

A A 1 2 3 A Only one name, therefore all pins are
merged.
Calibre Verification User’s Manual, v9.1_513-14

Hierarchical LVS Hierarchical Pins

ets)
n be

n

. (In
ns

son
hese
ce

:

er

lar
 a

t-in
ox

rts in
nts.
algorithm may in fact merge pins with different names if there is a
difference between pin names in layout and source.

• Circuit Comparison — In hierarchical circuit comparison, high short
resolution is performed equally in both layout and source. Circuit
comparison may combine together high-shorted pins (and respective n
even when they have different user-given names, except when this ca
safely avoided. More precisely, circuit comparison will not combine
together high-shorted pins with different user-given names if:

1) all names involved in the high-short are user-given
2) all names involved in the corresponding high-short in the other desig
 are also user-given
3) all names involved in the high-short appear in both layout and source
 cases of many-to-one or one-to-many hcell relations, these conditio
 must hold in all variants of the hcell).

When pins with different names are combined together, circuit compari
remembers all original names and stores them on the combined pin. T
names can be used later, for example, to establish initial corresponden
points. The same is true for high-shorted nets. However, this isnot done in
LVS Box cells; in those cells, one of the original names is chosen to
represent the combined pin and the other names are rejected. Name
conflicts in such cases are resolved in favor of, in order of precedence

1) names which appear in both layout and source
2) power names, in rule file order
3) ground names, in rule file order
4) names that begin with the letter 'V' or 'v' ('V' is commonly used in pow
 supplies)
5) alphabetically lesser names.

Circuit comparison resolves high shorts in LVS Box cells as well as regu
cells, even when the LVS Box cells are entered as empty subcircuits in
Spice netlist. But circuit comparison does not resolve high shorts in buil
devices such as R, C, MP, and so on, even when they appear in LVS B
statements. Furthermore, circuit comparison does not resolve high sho
user-defined primitive devices unless they appear in LVS Box stateme
Calibre Verification User’s Manual, v9.1_5 13-15

Parameterized Cells Hierarchical LVS

ized
that

ed

rchy,

ns, if

the

bort
orts.
Parameterized Cells
By default, the Spice netlist reader in hierarchical LVS flattens all parameter
subcircuits. A subcircuit is parameterized if it has at least one subcircuit call
references it and that specifies parameter values. Note that the subcircuit is
parameterized regardless of whether or not those parameters are actually us
within the subcircuit. In the following example, both subcircuitsAAA andBBB are
parameterized:

 .SUBCKT AAA 1 2
 M1 1 2 VCC VCC P W=WIDTH L=LENGTH
 .ENDS

 .SUBCKT BBB 1 2
 M1 1 2 VCC VCC P
 .ENDS

 X1 N1 N2 AAA WIDTH=5 LENGTH=6
 X2 N1 N2 BBB WIDTH=5 LENGTH=6

Parameterized subcircuits are flattened down to the bottom of their sub-hiera
that is, down to primitive devices. Empty subcircuits are treated as primitive
devices and are not flattened. Parameter passing is handled and (X,Y) locatio
present in the netlist, are transformed to the top level of the subcircuit being
flattened.

Flattening of parameterized subcircuits can be disabled in the rules file with
LVS Preserve Parameterized Cellsspecification statement.

Hierarchical Cell Cycles
Cycles in the cell hierarchy are global errors that cause hierarchical LVS to a
prior to the comparison stage. This error appears only in hierarchical LVS rep
See the section “Hierarchical Cells Forming a Cycle” on page14-57 of the
“Results” chapter.
Calibre Verification User’s Manual, v9.1_513-16

Hierarchical LVS Hierarchical Spice

ice
f the

egin
g
o avoid
d is
t

out

e
en
st be

and
 off

y of

t
have
Hierarchical Spice
When you use a Spice netlist with Calibre LVS-H, you can control how the Sp
netlist reader treats the Spice netlist. The following sections describe some o
variations you can control.

Dollar Signs in Cell Names

The LVS hierarchical Spice netlister (calibre -spice) netlists cell names that b
with a dollar sign “$” with leading underscore characters. Usually, two leadin
underscores are added. Additional underscores can be added as necessary t
conflicts with user cell names. Specifically, the number of underscores adde
one larger then the number of leading underscores in any user cell name tha
begins with a series of underscores followed by a “$” character; and, it is not
smaller than two.

For example, the cell name “$xyz” will appear as “__$xyz” in the extracted lay
netlist. This convention allows the extracted netlist to be used by downstream
tools.

Net Names

Usually, if a net is named (texted) in the layout, then that name appears in th
hierarchical Spice netlist. However, if a net name is not valid for netlisting, th
the internal net number appears instead. To be valid for netlisting, a name mu
non-empty and obey the following semantics:

• It must not contain embedded whitespace or control characters; leading
trailing whitespace and control characters are allowed and are stripped
from the output);

• It must not contain Spice special characters and must not consist solel
digits.

The latter restriction prevents collisions with internal net numbers. Recall tha
every layout net receives a internal net number; in addition, some nets may
names.
Calibre Verification User’s Manual, v9.1_5 13-17

Hierarchical Spice Hierarchical LVS

on
y.
ister
hat
lows:

not
d in

ent,
ence

 on a

e

d for

d for
h).

le,
Ports and Port Names

Port objects created with Port Layer Text and Port Layer Polygon specificati
statements are output in the hierarchical Spice netlist in the top level cell onl
Port objects appear as pins in the top level .SUBCKT line. Of course, the netl
ensures that the identifier used for the top level subcircuit pin is identical to t
used for the respective net within the subcircuit. The naming rules are as fol

• Calibre does not consider ports and nets are texted if their names are
valid for netlisting, which follows the same rules as net names describe
the above section.

• Calibre determines the net names in the top cell, if port objects are pres
from net or port names, whichever is texted. The net name has preced
if both a net and its port are texted.

• Calibre issues a warning and ignores a port name if the name appears
different net.

• Calibre arbitrarily chooses a port name if two port names appear on th
same net; Calibre silently discards the unselected port name.

To be valid for netlisting, a port name must obey the same rules as describe
nets in section 11.12.2.

“M” Device Representation

Devices with element name M in the rule file are considered to be user-define
the purpose of device recognition (they are built-in for LVS comparison, thoug
Nevertheless, in the hierarchical layout netlist they are represented, when
possible, with Spice MOS elements, not primitive subcircuit calls. For examp
the following in your rule file:

DEVICE m(h) gate gate(g) sd(s) sd(d) bulk(b)
[

property w, l
]

Calibre Verification User’s Manual, v9.1_513-18

Hierarchical LVS Hierarchical Spice

ing
 4
and
ins; a
ce is

ith
ple:

ell
 in
the

e

es
t,
x
l size.

d
list.
generates something like this in the layout netlist:

M1 1 2 3 4 h w=2e-6 l=1e-6 $X=210000 $Y=200000

To qualify for the M representation, the Device operation must meet the follow
conditions: the element name must be “M” or “m”; the device must have 3 or
pins named G, S, D and optional B (upper or lower case, in any order); pins D
S must be swappable; pins G and B may not be swappable with any other p
model name must be indicated. If these conditions are not met then the devi
represented with primitive subcircuit calls.

Cell Statistics

.SUBCKTstatements in the hierarchical Spice layout netlist are each followed w
a comment line containing statistics about the respective layout cell. For exam

.SUBCKT PVDD2 1 2
** N=452 EP=2 IP=516 FDC=249

N is the number of nets in the cell. EP is the number of external pins in the c
(pins of the cell). IP is the number of internal pins in the cell (placement pins
the cell). Note that N and IP may not be identical to what is actually present in
netlist, because not all layout nets and placement pins are represented in th
netlist. For example, the netlist normally does not contain floating nets or
placements of cells that have no devices.

FDC is the flat device count in the cell. This is the number of all primitive devic
in the cell, including the sub-hierarchy of the cell, counted flat. In this contex
primitive devices are objects formed with rule file Device operations. LVS Bo
cells are treated as normal cells. The FDC number is a good measure of cel

Note that this data is provided for information only. It is not used or interprete
by the LVS circuit comparison module and it is not an integral part of the net
Calibre Verification User’s Manual, v9.1_5 13-19

Hierarchical Spice Hierarchical LVS

sue
ppear

al
p-
he
, the
valid

ts
t net
he

ation
ame

nd
port
t,
Hierarchical Netlister Warnings

The hierarchical Spice netlister, used in the Calibre -spice functionality, may is
the warnings described below. Unless indicated otherwise, these warnings a
in the Calibre transcript and in the circuit extraction report file.

• Port naming conflict

WARNING: Top level port name "<name>" on net <net-number>
at location (<x>,<y>) already used on net <net-number>;
ignored.

This warning indicates a top-level port naming conflict in the hierarchic
Spice netlister. This occurs when two or more nets are connected to to
level-cell ports with identical names. The warning appears only when t
port names would have been otherwise used for netlisting; specifically
two nets in question must be unnamed or must have names that are not
for netlisting, and the port name must be valid for netlisting. The
hierarchical Spice netlister uses the port name to identify one of the ne
and its port, and uses the internal number of the other net to identify tha
and its port. The net that receives the port name is chosen arbitrarily. T
warning message indicates the port name, the net number and port loc
where the port name was rejected, and the net number where the port n
was used. For example:

WARNING: Top level port name "aaa" on net 1 at location
(5,5) already used on net 2; ignored.

• Bad device

WARNING: BAD DEVICE on layer <layer> at location
(<x>,<y>) in cell <name>

This warning indicates a bad device. The device seed layer, location, a
cell name are reported. This warning appears in the circuit extraction re
file and also in the respective subcircuit in the hierarchical Spice netlis
Calibre Verification User’s Manual, v9.1_513-20

Hierarchical LVS Hierarchical Spice

re
where it is preceded with “**”. This warning does not appear in the Calib
transcript. For example:

WARNING: BAD DEVICE on layer pgate at location (20,20) in
cell zcel
Calibre Verification User’s Manual, v9.1_5 13-21

Hierarchical Spice Hierarchical LVS
Calibre Verification User’s Manual, v9.1_513-22

jor
Chapter 14
Results

This chapter discusses the various files and reports generated by Calibre
applications. The various files and reports include:

• Session Transcript

• DRC Results Database

• DRC Summary Report

• LVS Report

• Circuit Extraction Report

• Mask Results Database

• Cross-Reference Files

Session Transcript
Calibre applications produce a transcript showing statistics relative to the ma
program functions. These functions are:

• Rule file compilation

• Layout data input

• Initialization section

• Executive processes
Calibre Verification User’s Manual, v9.1_5 14-1

Session Transcript Results

nt of

the

the
Rule File Compilation

The transcript section “Standard Verification Rule File Compilation Module”
shows the pathname of the rule file, the contents of the rule file, and the amou
CPU and real time required for execution.

Errors, when encountered, terminate the execution, and are reported below
line identifying the pathname of the rule file.

--- RULE FILE = drc.db/gds/brules_drc

Refer to theStandard Verification Rule Format (SVRF) Manual for a description
of the compilation error messages.

Layout Data Input

The section “Calibre Layout Data Input Module”, shows cell, layer, and text
information, and a summary of the layout data. This information is reported in
following subsections:

• GDSII Stream Summary Information

• GDSII Stream Data for Individual Cells

• Text Objects for Connectivity Extraction

• Text Objects for With Text Operations

• Ports (Calibre LVS / LVS-H / MGC only)

• Layer Read Summary (Geometries)

• Layer Read Summary (Text for Connectivity Extraction)

• Layer Read Summary (Text for With Text Operations)

• Cell and Placement Summary (Calibre DRC-H only)

• Layout Data Input Module Summary
Calibre Verification User’s Manual, v9.1_514-2

Results Session Transcript

cts
 the

ide
ppear

lat

ses:
The Calibre layout data input module will report as notes in the transcript all
GDSII (layer,datatype) pairs that contain geometric data which will not be
required in the run.

Limiting Transcript Output

In the transcript, Calibre applications print all connectivity extraction text obje
in the run. Since the number of these objects can be excessive, you can use
Text Print Maximum specification statement to limit the number of objects
printed in each block.

Hierarchical and Flat Counts

In Calibre DRC-H, both the transcript and the DRC summary report file prov
many statistics independent of the derived layer statistics. These statistics a
as a pair of numbers, with the second in parenthesis. For example:

--- TOTAL GEOMETRIES WRITTEN TO ORIGINAL LAYERS = 866804
(6508994)

or

DRC RuleCheck 5.2.1.1 COMPLETED. Number of Results = 20
(134567)

The first number is the hierarchical count and the second is the (estimated) f
count.

Initialization Section

This section is included for LVS applications, and reports the following proces

• Global initialization

• Connectivity extraction

• Device recognition

• LVS initialization
Calibre Verification User’s Manual, v9.1_5 14-3

Session Transcript Results

ch as
d

ayout

g it
re

is

ble
• Database creation.

Executive Process

This section, titled “Calibre:: Executive Module”, reports event logs, warning
messages, and summary information. It also reports operating parameters, su
maximum results per check, maximum vertices per result polygon (DRC), an
connect node number placement and device extraction (LVS). The executive
module performs gate reduction, recognition, and comparison and reads the l
and source databases.

The following sections discuss specifics of the executive module section.

Layer Statistics

When you generate a layer in the executive module, the operation generatin
prints statistics about the generated layer. The sample statistics for a layer a
different among Calibre applications.

Layer Statistics in Calibre DRC

The following example shows layer statistics:

nplus = diff NOT plus

nplus (TYP=1 CFG=1 ECT=504382 OCT=381317 SRT=1 CMP=T

MPN=14231 AREA=166961.875)
CPU TIME = 140 REAL TIME = 142 LVHEAP = 40/55/56

The following list describes what each line specifies.

• The first line shows the layer operation as it appears in the rule file. Th
line is followed by a dashed line.

A rule check name replaces the derived layer name when the layer
operation is within a rule check. The rule check name is followed by dou
colons (::) and the valuen, which indicates thenth layer operation of the
rule check.

• If the layer operation is within a rule check
Calibre Verification User’s Manual, v9.1_514-4

Results Session Transcript

ck.
rent

k

er.

er

es
It is important to note that multiple operations may appear in a single blo
This indicates concurrency. The following example shows three concur
operations in the same block:

5.4.2.2::<1> = EXT poly < 1.2 SINGULAR
5.8.3::pg24 = EXT poly < 2.4 REGION OPPOSITE
5.4.1::<1> = INT poly < 0.98
--
5.4.2.2::<1> (TYP=3 ECT=0 CCT=0)
5.8.3::pg24 (TYP=1 CFG=0 ECT=55264 OCT=32611 SRT=1 CMP=T

MPN=0 AREA=1941002.595)
5.4.1::<1> (TYP=3 ECT=0 CCT=0)
CPU TIME = 383 REAL TIME = 388 LVHEAP = 58/61/63

• The second line shows the name of the generated layer, or a rule chec
identifier, followed by several statistics. The following sections describe
these statistics:

o TYP: This specifies the type of derived layer.

1: Derived polygon layer

2: Derived edge layer

3: Derived error layer

o CFG: This specifies the numbering configuration of the derived lay

0 Neither polygon nor node numbers

1 Polygon numbers

2 Node numbers

3 Both polygon and node numbers

This configuration is a space-saving device, and ensures that a lay
receives the minimal configuration required.

o ECT: This specifies the number of edges on the derived layer. It do
not count vertical edges for type 1 layers.
Calibre Verification User’s Manual, v9.1_5 14-5

Session Transcript Results

r. It

 is

ed

y

o CCT: This specifies the number of edge clusters on the derived laye
is only generated for TYP=3.

o OCT: This specifies the number of objects on the derived layer and
an internal statistic.

o SRT: This specifies whether the derived layer is sorted.

1 Sorted

o CMP: This specifies whether the derived layer is compressed.

T Compressed

o MPN: This specifies the maximum number of polygons for the deriv
layer. This is only reported for TYP=1 and CFG=1 or CFG=3.

For layer selectors, this number may not correspond to the actual
number of polygons on the layer, but it generally will for layer
constructors.

o AREA : This specifies the total area of the derived layer. This is onl
reported for TYP=1. The value is reported in square user units.

• The third line shows the time required to generate the layer, and the
LVHEAP statistics. Refer to the section “LVHEAP Statistics” for further
information.

Layer Statistics in Calibre DRC-H

The following shows an example of hierarchical instantiation:

nplus = sdm NOT ppm

nplus (HIER TYP=1 CFG=1 HGC=4578 FGC=316325 VHC=F VPC=F)
CPU TIME = 4 REAL TIME = 4 LVHEAP = 27/31/31

The following list describes what each line specifies.
Calibre Verification User’s Manual, v9.1_514-6

Results Session Transcript

is

eral

If
e
flat

e

er.
• The first line shows the layer operation as it appears in the rule file. Th
line is followed by a dashed line.

• The second line shows the name of the generated layer followed by sev
statistics. The following sections describe these statistics:

o HIER : This specifies that the layer has a hierarchical instantiation.
nplus had an exclusively flat instantiation, the statistics would be th
same as in Calibre DRC. If the layer had a dual instantiation, both
and hierarchical statistics would be reported.

There are four variations of the HIER statement:

• HIER : Indicates a “natural” hierarchical instantiation.

• HIER-FMF : Indicates a layer in fully-merged form.

• HIER-PMF : Indicates a layer in partially-merged form.

• HIER-LSL : Indicates a “large-shape” layer (such as the databas
extent), and initiates special internal optimizations.

o TYP: This specifies the type of derived layer.

1: Derived polygon layer

2: Derived edge layer

3: Derived error layer

o CFG: This specifies the numbering configuration of the derived lay

0 Neither polygon nor node numbers

1 Polygon numbers

2 Node numbers

3 Both polygon and node numbers
Calibre Verification User’s Manual, v9.1_5 14-7

Session Transcript Results

r

r.
cts

” is
dge

t.

abytes

e

This configuration is a space-saving device and ensures that a laye
receives the minimal configuration required.

o HGC: This specifies the number of objects on the layer, which are
counted hierarchically.

o FGC: This specifies an estimated number of flat objects on the laye
The operation computes this value by multiplying the number of obje
in the cell by the total number of flat placements of the cell in the
hierarchy. The operation adds up this total for each cell. An “object
a polygon for type 0 and 1 layers, an edge for type 2 layers, and an e
cluster for type 3 layers.

o VHC andVPC: Internal statistics that identify the connectivity status
of the layer.

The flat statistics, MPN and AREA, do not appear in the Calibre DRC-H
report. However, if the layer appears in a DRC Print Area specification
statement, then the total flat area of the layer does appear in the repor
Reporting of flat area is optional for Calibre DRC-H because it requires
significant calculation time.

• The third line shows the time required to generate the layer, and the
LVHEAP statistics.

LVHEAP Statistics

The LVHEAP numbers, which appear with all derived layer statistics in the
transcript, report approximate current memory usage for Calibre DRC
applications. These applications run completely in memory when layers are
memory-based.

The report of memory usage consists of three numbers, represented in meg
(220 bytes). For example:

LVHEAP = 28/47/49

• The first number is the amount of memory being used at the time of th
report.
Calibre Verification User’s Manual, v9.1_514-8

Results DRC Results Database

en

t

d by
jects
n(s)
ferred

lts
ges)
e

RC
cuted,

 also
.
), or
may
hich
ext is
• The second number is the total amount of memory allocated by the
application.

• The third number is the maximum amount of memory that has ever be
allocated up to the time of the report.

Therefore, the maximum memory requirement of the application is the larges
number reported, which is generally the third LVHEAP number.

DRC Results Database
This section describes the DRC results database, which you can generate in
ASCII, binary, or GDSII outputs.

The DRC results database is simply a collection of geometric objects groupe
rule check. Each rule check in the DRC results database contains a list of ob
which comprise the DRC execution output from the unassigned layer operatio
associated with the rule check statement in the rule file; these objects are re
to as DRC results. There are two types of DRC results in the DRC results
database: polygons and edge clusters (see the “DRC Concepts” chapter for
details). Derived polygon layer data becomes polygons within the DRC resu
database, derived error layer data becomes edge clusters (of 1, 2, 3, or 4 ed
within the DRC results database, and derived edge layer data becomes edg
clusters (of 1 edge) within the DRC results database.

Each DRC result has an associated number which is unique within the set of D
results for each rule check statement. When the rule check statement is exe
this numbering is consecutive, beginning with 1.

In addition to DRC results, each rule check in the DRC results database may
contain text which has been mapped from the rule file during DRC execution
This is called check text. Check text may consist of the rule check comment(s
the complete text of the rule check statement from the rule file, or neither. It
also contain the rule file pathname and title, if present, of the rule file over w
the rule check was (last) executed. The presence and composition of check t
controlled by the DRC Check Text specification statement.
Calibre Verification User’s Manual, v9.1_5 14-9

DRC Results Database Results

each

. The
base
 by
DRC
ands.

sults

s

 the

base
sults
soon

eck
r in
fore,
ing of
er in

sults
ty.
ution
(one
tains
 A DRC results database created by Calibre DRC is always created new for
invocation of the enabling command. A file (specified using aDRC Results
Database statement in the rule file) is produced to represent a DRC results
database. This file can be an ASCII, binary, or GDSII DRC results database
former is in human-readable form and is the most common DRC results data
format produced by Calibre DRC. An ASCII DRC results database produced
Calibre DRC can be loaded by ICrules into ICgraph and hence, as an ICrules
results database, be scanned by the ICrules DRC results presentation comm
An ICrules DRC results database can also be written out as an ASCII DRC re
database.

Calibre DRC/DRC-H allows you to output as many DRC results databases a
needed during one DRC/DRC-H execution. This allows you to easily view a
subset of rule checks or more easily integrate with third-party tools. Refer to
DRC Check Map specification statement for more details.

Calibre DRC will complete the write (including file close) to a DRC results
database as soon as all of the DRC rule checks which contribute to that data
have completed. A message is transcribed when output to a specific DRC re
database is completed. This allows users to begin processing DRC results as
as they are available without having to wait for LVS, ERC or PEX modules to
complete.

The DRC results database has an intrinsic ordering on its constituent rule ch
statements. In addition, all DRC applications execute a check set in the orde
which the rule check statements in the check set appear in the rule file. There
assuming that the DRC results database is created by Calibre DRC, the order
rule check statements in the DRC results database will correspond to the ord
the rule file.

The list of DRC results associated with a rule check statement in the DRC re
database may be empty. In this case, we say that the rule check itself is emp
Empty rule checks in the DRC results database may be created by DRC exec
itself. Hence, there is a difference between an empty DRC results database
containing no rule check statements) and a DRC results database which con
rule check statements but no results.
Calibre Verification User’s Manual, v9.1_514-10

Results DRC Results Database

tion

le
e
with

gons

cuted,

een
eck
, or
ence

eck
r in
fore,
ing of
er in

sults
ty.
cution
ASCII and Binary DRC Results Databases

ASCII and binary DRC results databases are very similar structurally. This sec
describes their basic structures, then presents information specific to each.

The DRC results database is a collection of geometric objects grouped by ru
check statements from the rule file. Each section in the DRC results databas
contains the DRC output from the unassigned layer operation(s) associated
the rule check statement in the rule file; these objects are referred to as DRC
results. There are two types of DRC results in the DRC results database: poly
and edge clusters.

• Derived polygon layer data become polygons.

• Derived error layer data become edge clusters (of 1, 2, 3, or 4 edges).

• Derived edge layer data become edge clusters (of 1 edge).

Each DRC result has an associatednumberthat is unique within the set of DRC
results for each rule check statement. When the rule check statement is exe
this numbering is consecutive, beginning with 1 (one).

Each rule check in the DRC results database can also contain text that has b
mapped from the rule file during DRC execution; this is called check text. Ch
text can consist of rule check comments, the complete text of the rule check
neither. It can also contain the rule file pathname and title, if present. The pres
and composition of check text is controlled by theDRC Check Textspecification
statement.

The DRC results database has an intrinsic ordering on its constituent rule ch
statements. In addition, all DRC applications execute a check set in the orde
which the rule check statements in the check set appear in the rule file. There
assuming that the DRC results databases created by Calibre DRC, the order
rule check statements in the DRC results database will correspond to the ord
the rule file.

The list of DRC results associated with a rule check statement in the DRC re
database can be empty. In this case, we say that the rule check itself is emp
Empty rule checks in the DRC results database can be created by DRC exe
Calibre Verification User’s Manual, v9.1_5 14-11

DRC Results Database Results

en an
DRC

ord

art at
itself, as described in the next chapter. Therefore, there is a difference betwe
empty DRC results database (one containing no rule check statements) and a
results database which contains rule check statements but no results.

ASCII DRC Results Database Format

Calibre DRC can generate an ASCII DRC results database if the ASCII keyw
is specified in theDRC Results Database specification statement.

No blank lines appear in the ASCII DRC results database, and data always st
the beginning of the line. Figure14-1 shows an example ASCII DRC results
database.

Figure 14-1. ASCII DRC results database (sample)

tsiram 1000
metal_spacing
3 5 4 Oct 4 03:27:52 1989
Rule File Pathname: /idea/user/lgrodd/drc.dsee/rules.sub
Rule File Title: DESIGN RULE CHECK -- PROCESS CMOS-987
Metal spacing and overlap check.
Both spacing and notch are checked.
e 18 1
29345 34289 10934 256958
p 22 8
62340 84935
104612 123989
29245 82870
98910 -22000
23435 78456
21123 7677
34153 29564
23986 9056
e 29 2
45787 98465 23576 687768
575354 5612 24787 -29238
poly_width
 …

Top-cell Name

Database Precision
RuleCheck Name

Current DRC

Original DRC Results Count
Check Text Line Count

Date/time Stamp

Check Text

DRC Results

Polygon

Edge Cluster

Ordinals
Vertices

Edges

Coordinate Data

Edge Data

Results Count

Header
Calibre Verification User’s Manual, v9.1_514-12

Results DRC Results Database

e

f the

are
t, but

Rule
ree

eck
:

Cell Name and Database Precision

The first line shows the top-cell name. The top-cell name is the value of the
Layout Primaryspecification statement. The string “drc” is shown if no cell nam
is specified in the statement.

An integer specifying the database precision follows the cell name. The rest o
ASCII DRC results database is organized by rule check statement, with the
information for each rule check statement beginning on a new line. Blank lines
permitted only before and after rule check statement blocks and as check tex
leading and trailing spaces are otherwise always permitted.

Rule Check Name, Result Count, and Execution Time

The first line for each rule check group contains the name of the rule check.
check statement names are assumed to be unique. The next line contains th
numbers followed by a date/time stamp, separated by one or more spaces.

• The first number is the current count of DRC results.

• The second number is the original count of DRC results.

• The third number is the number of check text lines.

• The date/time stamp shows when the rule check was executed. The
date/time format is as follows (blanks are significant):

mmm dd hh:mm:ss yyyy

Check Text Report

After the rule check name, result counts, and date/time stamp, the default ch
text is shown as header information. The default header information includes

• The pathname of the rule file.

• The title of the rule file.

• Any rule check comments.
Calibre Verification User’s Manual, v9.1_5 14-13

DRC Results Database Results

e

ing
r an

cifies
the
 the

n the

ach

ted in

e
e
-

C
e
t

d is
t

This information can be removed from the header, or more information can b
added with theDRC Check Text specification statement.

DRC Result Listing

Following the header information is a list of DRC results. Each DRC result list
begins on a new line. The DRC results can be one of two types: a polygon o
edge cluster; distinguished by the respective signatures “p” and “e”. These
signatures begin the listing for each DRC result.

Following the signature are one or more spaces and then a number that spe
the ordinal of the DRC result within the rule check statement. For polygons,
ordinal is followed one or more spaces, then by the number of vertices within
polygon. For edge clusters, the ordinal is followed by one or more spaces, the
number of edges in the cluster.

The DRC result coordinate data begin on the line following the signature for e
result, and consist of integers in database units.

• For polygons, the coordinate data include a list of coordinates; each
coordinate occupies one line showing the x-coordinate then the
y-coordinate, separated by one or more spaces. The coordinates are lis
counterclockwise order; the number of coordinates corresponds to the
vertex count on the signature line and will not exceed 4096.

• For edge clusters, the coordinate data are a list of the edges; each edg
occupies one line showing the x-coordinate and the y-coordinate of on
endpoint, separated by spaces, followed by the x-coordinate and the y
coordinate of the other endpoint, separated by one or more spaces.

Optionally, you can append additional data to the signature lines for each DR
result by using theDRC Cell Name specification statement. You can append th
cell name of an individual DRC result and the transformation matrix data tha
represents a cell’s position in top-level or cell-level coordinate space.

Binary DRC Results Database Format

Calibre DRC generates a binary DRC results database if the BINARY keywor
specified in theDRC Results Databasespecification statement. The binary forma
Calibre Verification User’s Manual, v9.1_514-14

Results DRC Results Database

se
ller
is primarily intended as an intermediate step to translation to external databa
formats where file size is an issue—the binary format is approximately 2X sma
than ASCII format.

The BNF for a binary DRC results database is similar to that of its ASCII
counterpart and is as follows:

// '' delimits a literal byte.

<binary DRC results database>
-> <signature> <version>

<top cell name> <precision>
<rule check> [… <rule check>] EOF//EOF is just that.

<rule check>
-> <check name>

<current result count> <original result count>
<text line count> <date string>

[<text line> …] // Number = <text line count>
[<result> …] // Number = <current result count>

<result> -> <edge cluster result> | <polygon result>

<edge cluster result> -> 'e' <result number> <edge count>
<edge> [… <edge>] // Number = <edge count>

<edge> -> <x1> <y1> <x2> <y2>

<polygon result> -> 'p' <result number> <vertex count>
<vertex> [… <vertex>] // Number = <vertex count>

<vertex> -> <x> <y>

<top cell name> -> <string>
<check name> -> <string>
<date string> -> <string>
<text line> -> <string>

<precision> -> <long>
<current result count> -> <long>
<original result count> -> <long>
<text line count> -> <long>
<result number> -> <long>
Calibre Verification User’s Manual, v9.1_5 14-15

DRC Results Database Results

 is

ults
r to

r to
<edge count> -> <short>
<vertex count> -> <short>

<x1> -> <long>
<y1> -> <long>
<x2> -> <long>
<y2> -> <long>
<x> -> <long>
<y> -> <long>

<string> -> [<character> [… <character>]] '0x00'

<signature> -> 'C' 'A' 'L' 'I' 'B' 'R' 'E' 'B' 'I' 'N' 'A' 'R'
'Y' 'D' 'R' 'C' 'R' 'E' 'S' 'U' 'L' 'T' 'S' 'D'
'A' 'T' 'A' 'B' 'A' 'S' 'E' '0x00'

<version> -> byte // Currently 2.

<character> -> byte except '0x00'
<short> -> 2-byte integer, MSB first, LSB last
<long> -> 4-byte integer, MSB first, LSB last

GDSII DRC Results Database Format

Calibre DRC generates a GDSII DRC results database if the GDSII keyword
specified in theDRC Results Database specification statement.

The GDSII format is a standard GDSII stream representation of the DRC res
database. A GDSII DRC results database has the following BNF (please refe
GDSII documentation for more information):

HEADER BGNLIB LIBNAME UNITS <structure> ENDLIB
<structure> -> BGNSTR STRNAME { <boundary> | <path> }* ENDSTR
<boundary> -> BOUNDARY LAYER DATATYPE XY ENDEL
<path> -> PATH LAYER DATATYPE XY ENDEL

Note

This section applies only to flat Calibre applications. Please refe
section “Hierarchical DRC Results Database” for potentially
different semantics in the hierarchical case.
Calibre Verification User’s Manual, v9.1_514-16

Results DRC Results Database

 0

e
n
t the

s

es

Map
d

 lost.

RC
se) or

ults
RC

entire
Where

• The GDSII version number in the header record will be 3.0.

• The modification and last access times in the BGNLIB and BGNSTR
records will be the date/time of database creation. Years are relative to
BC and January is month 1.

• The library name in the LIBNAME structure will be “drc.db”.

• The UNITS will be drawn from the rule filePrecision andUnit Length
specification statements, or their defaults.

There is only one cell record. The name of the cell is the value of theLayout
Primaryspecification statement with an optional string appended, which is th
string following the GDSII keyword in the DRC Results Database specificatio
statement. If there is no Layout Primary specification statement (meaning tha
input layout system was not GDSII), then the cell name is “drc”. DRC
applications will issue a warning if any cell name longer than 32 characters i
written to a GDSII-type DRC Results Database.

You can assign GDSII rule check output to specific GDSII layers and datatyp
by specifying theDRC Check Mapspecification statement. Calibre DRC/DRC-H
issues a warning for each rule check not having a corresponding DRC Check
specification statement. By default, it assigns rule check output to layer 0 an
datatype 0.

Calibre DRC/DRC-H writes edges and edge clusters to a GDSII DRC results
database as 0-width paths, one path per edge in the latter case; clustering is

Result Count Limits

Often, you may want to limit the number of results that DRC places into the D
results database. This is useful when debugging the rules (on a large databa
during initial checks of new databases.

Calibre DRC allows you to specify an upper bound on the number of DRC res
per rule check written to the DRC results database. This limits the number of D
results added per rule check, not the total number of results generated in the
Calibre Verification User’s Manual, v9.1_5 14-17

DRC Results Database Results

e

ule
his

s

ring

a

y to
udo

p the
lts

. The
abase

ses,
 used
run. If you specify a value forupper_bound, whenever DRC generates
upper_bound results for any single rule check, it adds no further results into th
DRC results database for that rule check and issues a warning message.

Limiting the Result Count in Calibre DRC

Limiting the DRC result count in Calibre DRC is accomplished by the rule file
DRC Maximum Results specification statement. Thenumber parameter (which
can be zero) specifies the maximum number of DRC results generated per r
check. ALL simply denotes a very large number (2147483647 to be exact). T
value defaults to 1000 if the statement is omitted.

Hierarchical DRC Results Database

The database hierarchy is completely preserved in a GDSII-type DRC result
database generated by Calibre DRC-H, and there is no suppression or
transformation of DRC results. Cell names are maintained with an optional st
appended. This optional string is determined by theDRC Results Database
specification statement. Recall that the flat Calibre DRC applications output
GDSII DRC results database with exactly one cell. The GDSII BNF and the
semantics ofDRC Check Map andDRC Maximum Vertex specification
statements are identical to flat Calibre DRC.

Hierarchical Calibre applications internally create additional levels of hierarch
support their hierarchical algorithms. These new internal cells are called “pse
cells”. They are named “ICV_n” wheren is incremental so that the cell names
unique. By default, DRC results that end up in pseudo cells are transformed u
hierarchy to the first true user cell prior to being instantiated in the DRC resu
database.

For a GDSII-type DRC results database, no pseudo-hierarchy is instantiated
user can reverse this suppression of pseudo-hierarchy in the DRC results dat
by specifying the secondary keyword PSEUDO in the requiredDRC Results
Database specification statement. For an ASCII- or binary-type DRC results
database from Calibre DRC-H, use of the PSEUDO keyword acts, in many ca
as an error-suppression mechanism. For GDSII-type DRC results databases
for mask-preparation, as opposed to DRC checking, use of the PSEUDO
parameter can reduce output database size.
Calibre Verification User’s Manual, v9.1_514-18

Results DRC Summary Report

ty
DRC
re
d
cell,

e

TheDRC Keep Emptyspecification statement, which regulates retention of emp
rule checks in ASCII and binary DRC results databases generated by Calibre
applications, also affects GDSII-type DRC results databases written by Calib
DRC-H. when DRC Keep Empty YES is specified in the rule file, then cell an
placement records are not written to GDSII-type DRC results databases if the
or the placement’s cell, respectively, contain no DRC results.

DRC Summary Report
The DRC summary report is created by using theDRC Summary Report
specification statement in the rule file. The DRC summary report includes th
following information:

• Heading information. The first part of the DRC summary report lists
general information about the execution. The following is an example:

===
=== CALIBRE::DRC-F SUMMARY REPORT
===
Execution Date/Time: Wed Apr 28 15:04:33 1999
Rule File Pathname: rule_file
Rule File Title: Basic DRC Rule File
Layout System: GDSII
Layout Path(s): ./layout/basic_drc.gds
Layout Primary Cell: basic_drc
Current Directory: /user/johns/drc_example
User Name: johns
Maximum Results/RuleCheck:1000
Maximum Result Vertices: 4096
DRC Results Database: ./drc_results_db (ASCII)
Layout Depth: ALL
Text Depth: PRIMARY
Summary Report File: ./drc_summary (REPLACE)
Geometry Flagging: ACUTE = NO SKEW = NO OFFGRID = NO

NONSIMPLE = NO
Excluded Cells:
CheckText Mapping: COMMENT TEXT+RULE FILE INFORMATION
Layers: MEMORY-BASED
Keep Empty Checks: YES
Calibre Verification User’s Manual, v9.1_5 14-19

LVS Report Results

d

ule

er
 and

nce

ary

he

this

ors,
• Runtime Warnings. This section lists any warnings that were generate
during execution.

• Original Layer Statistics. This section lists the original layers and the
number of original geometries processed for that layer.

• Rule Check Results Statistics. This section lists the rule checks and the
number of results generated. The DRC summary report also lists the r
checks that were not executed.

• Summary information. This section shows the total run time, the numb
of original geometries processed, the number of rule checks executed,
the number of results generated.

Summary report file in Calibre DRC

In Calibre DRC, generation of a summary report file is controlled by the prese
of the rule fileDRC Summary Report specification statement. When this
statement is present, a summary report file will be generated in the specified
filename. The keywords REPLACE and APPEND specify whether this summ
report file is to be opened in replace mode or append mode. If opened in
REPLACE mode, the previous contents of the file, if any, are overwritten. If
opened in APPEND mode, an existing summary report file is appended to. T
APPEND option is useful in creating a log of DRC runs.

LVS Report
The LVS report contains the results of an LVS run in text form. You can use
report, along with graphical results, to locate discrepancies.

Overall Structure—Flat

A flat LVS report consists of the following information:

• Transcript of connectivity extraction errors and warnings, and stamp err
if any were found.

• LVS netlist compiler errors and warnings, if any were found.
Calibre Verification User’s Manual, v9.1_514-20

Results LVS Report

s
nt
ate

,

d

ed
ces.
• An LVS header section, specifying the report file name, the layout and
source design names (top-level cell names are indicated in parenthesi
when applicable), the rule file name, the rule file title (if a Title stateme
was specified), the external hcell file name (if specified), the time and d
when the report was created, the current working directory, user name
Calibre version and other information.

• Overall Comparison Results section.

• Optional lists of input errors and other problems found in the layout an
source.

• Optional list of discrepancies (incorrect elements). This section is divid
into subsections for incorrect nets, incorrect ports, and incorrect instan

• LVS parameters section, showing the LVS settings used.

• Optional information and warnings section.

• Optional detailed instance connections section.

• Optional list of unmatched elements.

The next example shows a flat LVS report:
Calibre Verification User’s Manual, v9.1_5 14-21

LVS Report Results
##
##
C A L I B R E S Y S T E M
##
L V S R E P O R T
##
##

REPORT FILE NAME: mix.rep
LAYOUT NAME: mix.gds
SOURCE NAME: zmix.net.src ('mix')
RULE FILE: rules
RULE FILE TITLE: lvs rules
CREATION TIME: Mon Jun 22 16:40:47 2000
CURRENT DIRECTORY: /user/johns/hlvs/test
USER NAME: johns
CALIBRE VERSION: v8.7_30.1 Fri Jun 16 12:47:12 PDT 2000

**
 OVERALL COMPARISON RESULTS
**

#####################
 # # # #
 # # INCORRECT #
 # # # #
#####################

 Error: Different numbers of nets (see below).
 Error: Different numbers of instances (see below).

--

INITIAL NUMBERS OF OBJECTS

 Layout Source Component Type
 ------ ------ --------------
 Nets: 8 12 *
Calibre Verification User’s Manual, v9.1_514-22

Results LVS Report
 Instances: 4 4 mn (4 pins)
 4 4 mp (4 pins)
 0 2 * C (2 pins)
 ------ ------
 Total Inst: 8 10

NUMBERS OF OBJECTS AFTER TRANSFORMATION

 Layout Source Component Type
 ------ ------ --------------
 Nets: 7 11 *

 Instances: 0 2 * C (2 pins)
 2 2 INV (2 pins)
 1 1 NAND2 (3 pins)
 ------ ------
 Total Inst: 3 5

*=Number of objects in layout different from number in source.

**
 INCORRECT OBJECTS
**

LEGEND:

 ne = Naming Error (same layout name found in source
 circuit, but object was matched otherwise).

**
 INCORRECT NETS

DISC# LAYOUT NAME ne SOURCE NAME
**

 1 ** missing net ** 0/1
Calibre Verification User’s Manual, v9.1_5 14-23

LVS Report Results
--

 2 ** missing net ** 0/2

--

 3 ** missing net ** 1/1

--

 4 ** missing net ** 1/2

**
 INCORRECT INSTANCES

DISC# LAYOUT NAME ne SOURCE NAME
**

 5 ** missing instance ** 0/C1 C

--

 6 ** missing instance ** 1/C1 C
Calibre Verification User’s Manual, v9.1_514-24

Results LVS Report
**
 LVS PARAMETERS
**

o LVS Setup:

 Component Type Properties:
 Subtype Property:
 Pin Name Properties:
 Power Net Names: VCC
 Ground Net Names: GROUND
 Non User Name Port:
 Non User Name Net:
 Non User Name Instance:
 Ignore Ports: YES
 All Capacitor Pins Swappable: NO
 Reduce Series Mos Transistors: NO
 Reduce Parallel Mos Transistors: YES [TOLERANCE L 0]
 Recognize Gates: ALL MIX SUBTYPES
 Reduce Split Gates: YES
 Reduce Parallel Bipolar Transistors: YES
 Reduce Series Capacitors: YES
 Reduce Parallel Capacitors: YES
 Reduce Series Resistors: YES
 Reduce Parallel Resistors: YES
 Reduce Parallel Diodes: YES
 Unused Device Filter Options:
 LVS Report Options:
 Reverse WL: NO
 Preserve Parametrized Cells: NO
 Property Resolution Maximum: 8
 Signature Maximum: None
 Layout Case: NO
 Source Case: NO
 Compare Case: NO
 Report List Limit: 50
Calibre Verification User’s Manual, v9.1_5 14-25

LVS Report Results

rce
**
 INFORMATION AND WARNINGS
**

 Matched Matched Unmatched Unmatched Component
 Layout Source Layout Source Type
 ------- ------- --------- --------- ---------
Nets: 7 7 0 4

Instances: 0 0 0 2 C
 2 2 0 0 INV
 1 1 0 0 NAND2
 -------- ------- --------- ---------
Total Inst: 3 3 0 2

o Statistics:

 2 layout nets had all their pins removed.
 2 source nets had all their pins removed.

 1 net was matched arbitrarily.

o Initial Correspondence Points:

 Nets: VCC GROUND

**
 SUMMARY
**
Total CPU Time: 0 sec
Total Elapsed Time: 0 sec

Overall Structure — Hierarchical

A hierarchical LVS report consists of the following information:

• LVS netlist compiler errors and warnings, if any were found.

• LVS header section, specifying the report file name, the layout and sou
design names (top level cell names are indicated in parenthesis when
Calibre Verification User’s Manual, v9.1_514-26

Results LVS Report

hen
re

d

ls.

xist

ated
ay

uch
applicable), the rule file name, the rule file title (if a Title statement was
specified), the external hcell file name (if specified), the time and date w
the report was created, the current working directory, user name, Calib
version and other information.

• Overall Comparison Results section, consisting of:

o Primary comparison status message. This status isCORRECTif all
individual cells are correct,INCORRECTif at least one cell is
incorrect, and, otherwise,NOT COMPAREDif at least one cell is not
compared. The usual graphics are provided as well (check mark an
smiley face, or X respectively). Refer to section “Overall Comparison
Results” for the meaning of individual status messages.

o Secondary comparison status messages. This is a collection of all
secondary comparison status messages reported for individual cel
Refer to section “LVS Netlist Compiler” for the meaning of individual
status messages.

o A Cell Summary, listing the primary comparison status for each
individual cell (CORRECT,INCORRECTor NOT COMPARED). The
respective layout and source cell names are indicated. Cells that e
only in the layout or only in the source but contain input errors (for
example, missing property errors) appear in theCELL SUMMARY
section as well. In that case, the layout or source cell name is indic
with no corresponding cell name in the other design. This section m
be omitted if global problems are found in the design.

o Optional sections describing global problems found in the design, s
as hierarchy cycles.

o LVS Parameters section. This section shows the LVS program
configuration.

• Cell-by-cell Comparison Results section. This section represents each
hierarchical correspondence cell (hcell) with a section of its own. The
section for each individual cell resembles a complete flat LVS report;
including a header, overall comparison results, optional input errors,
optional discrepancies, optional information and warnings, optional
Calibre Verification User’s Manual, v9.1_5 14-27

LVS Report Results

the
detailed instance connections, optional list of unmatched elements for
cell, and so on.

A hierarchical LVS report example is shown below:

 ###
 ## ##
 ## C A L I B R E S Y S T E M ##
 ## ##
 ## L V S R E P O R T ##
 ## ##
 ###

REPORT FILE NAME: mix.rep
LAYOUT NAME: z.net ('mix')
SOURCE NAME: zmix.net.src ('mix')
RULE FILE: rules
RULE FILE TITLE: lvs rules
HCELL FILE: cells
CREATION TIME: Mon Jun 22 16:42:00 2000
CURRENT DIRECTORY: /user/johns/hlvs/test
USER NAME: johns
CALIBRE VERSION: v8.7_30.1 Fri Jun 16 12:47:12 PDT 2000

 OVERALL COMPARISON RESULTS

 # # #####################
 # # # #
 # # INCORRECT #
 # # # #
 # # #####################

 Error: Different numbers of nets (see below).
 Error: Different numbers of instances (see below).
Calibre Verification User’s Manual, v9.1_514-28

Results LVS Report
**
 CELL SUMMARY
**

 Result Layout Source
 ----------- ----------- --------------
 INCORRECT inv inv
 CORRECT nand nand
 CORRECT mix mix

**
 LVS PARAMETERS
**
o LVS Setup:

 Component Type Properties:
 Subtype Property:
 Pin Name Properties:
 Power Net Names: VCC
 Ground Net Names: GROUND
 Non User Name Port:
 Non User Name Net:
 Non User Name Instance:
 Ignore Ports: YES
 All Capacitor Pins Swappable: NO
 Reduce Series Mos Transistors: NO
 Reduce Parallel Mos Transistors: YES [TOLERANCE L 0]
 Recognize Gates: ALL MIX SUBTYPES
 Reduce Split Gates: YES
 Reduce Parallel Bipolar Transistors: YES
 Reduce Series Capacitors: YES
 Reduce Parallel Capacitors: YES
 Reduce Series Resistors: YES
 Reduce Parallel Resistors: YES
 Reduce Parallel Diodes: YES
 Unused Device Filter Options:
 LVS Report Options:
 Reverse WL: NO
 Preserve Parametrized Cells: NO
 Property Resolution Maximum: 8
 Signature Maximum: None
 Layout Case: NO
 Source Case: NO
Calibre Verification User’s Manual, v9.1_5 14-29

LVS Report Results
 Compare Case: NO
 Report List Limit: 50

 CELL COMPARISON RESULTS

 # # #####################
 # # # #
 # # INCORRECT #
 # # # #
 # # #####################

 Error: Different numbers of nets (see below).
 Error: Different numbers of instances (see below).

LAYOUT CELL NAME: inv
SOURCE CELL NAME: inv

--

INITIAL NUMBERS OF OBJECTS

 Layout Source Component Type
 ------ ------ --------------
 Ports: 3 3

 Nets: 4 6 *

 Instances: 1 1 MN (4 pins)
 1 1 MP (4 pins)
 0 1 * C (2 pins)
 ------ ------
 Total Inst: 2 3

NUMBERS OF OBJECTS AFTER TRANSFORMATION

 Layout Source Component Type
 ------ ------ --------------
 Ports: 3 3
Calibre Verification User’s Manual, v9.1_514-30

Results LVS Report
 Nets: 4 6 *

 Instances: 0 1 * C (2 pins)
 1 1 INV (2 pins: output input)
 ------ ------
 Total Inst: 1 2

*=Number of objects in layout different from number in source.

**
 INCORRECT OBJECTS
**

LEGEND:

 ne = Naming Error (same layout name found in source
 circuit, but object was matched otherwise).

 INCORRECT NETS

DISC# LAYOUT NAME ne SOURCE NAME

 1 ** missing net ** 1

--

 2 ** missing net ** 2

**
 INCORRECT INSTANCES

DISC# LAYOUT NAME ne SOURCE NAME
**

 3 ** missing instance ** C1 C
Calibre Verification User’s Manual, v9.1_5 14-31

LVS Report Results
**
 INFORMATION AND WARNINGS
**

 Matched Matched Unmatched Unmatched Component
 Layout Source Layout Source Type
 ------- ------- --------- --------- ---------
 Ports: 3 3 0 0

 Nets: 4 4 0 2

 Instances: 0 0 0 1 C
 1 1 0 0 INV
 ------- ------- --------- ---------
 Total Inst: 1 1 0 1

o Statistics:

 2 layout nets were reduced to passthrough nets.
 2 source nets were reduced to passthrough nets.

o Initial Correspondence Points:

 Ports: VCC GROUND OUT
 Nets: IN

 CELL COMPARISON RESULTS

 # ################### _ _
 # # # * *
 # # # CORRECT # |
 # # # # ___/
 # ###################

LAYOUT CELL NAME: nand
SOURCE CELL NAME: nand

--
Calibre Verification User’s Manual, v9.1_514-32

Results LVS Report
INITIAL NUMBERS OF OBJECTS

 Layout Source Component Type
 ------ ------ --------------
 Ports: 4 4

 Nets: 6 6

 Instances: 2 2 MN (4 pins)
 2 2 MP (4 pins)
 ------ ------
 Total Inst: 4 4

NUMBERS OF OBJECTS AFTER TRANSFORMATION

 Layout Source Component Type
 ------ ------ --------------
 Ports: 4 4

 Nets: 5 5

 Instances: 1 1 NAND2 (3 pins)
 ------ ------
 Total Inst: 1 1

**
 INFORMATION AND WARNINGS
**

 Matched Matched Unmatched Unmatched Component
 Layout Source Layout Source Type
 ------- ------- --------- --------- ---------
 Ports: 4 4 0 0

 Nets: 5 5 0 0
Calibre Verification User’s Manual, v9.1_5 14-33

LVS Report Results
 Instances: 1 1 0 0 NAND2
 ------- ------- --------- ---------
 Total Inst: 1 1 0 0

o Statistics:

 2 layout nets were reduced to passthrough nets.
 2 source nets were reduced to passthrough nets.

o Initial Correspondence Points:

 Ports: VCC GROUND I1 I2
 Nets: OUT

 CELL COMPARISON RESULTS (TOP LEVEL)

 # ################### _ _
 # # # * *
 # # # CORRECT # |
 # # # # ___/
 # ###################

Warning:Ambiguity points were found and resolved arbitrarily.

LAYOUT CELL NAME: mix
SOURCE CELL NAME: mix

--

NUMBERS OF OBJECTS

 Layout Source Component Type
 ------ ------ --------------
 Nets: 4 4
Calibre Verification User’s Manual, v9.1_514-34

Results LVS Report

of
 Instances: 2 2 inv (3 pins): ground vcc out
 1 1 nand (4 pins)
 ------ ------
 Total Inst: 3 3

**
 INFORMATION AND WARNINGS
**

 Matched Matched Unmatched Unmatched Component
 Layout Source Layout Source Type
 ------- ------- --------- --------- ---------
 Nets: 4 4 0 0

 Instances: 2 2 0 0 inv
 1 1 0 0 nand
 ------- ------- --------- ---------
 Total Inst: 3 3 0 0

o Statistics:

 1 net was matched arbitrarily.

o Initial Correspondence Points:

 Nets: VCC GROUND

**
 SUMMARY
**

Total CPU Time: 0 sec
Total Elapsed Time: 0 sec

Overall Structure — SPICE Syntax Check

This kind of report is written only from the -cl and -cs command line options
Calibre LVS (Spice syntax check mode).
Calibre Verification User’s Manual, v9.1_5 14-35

LVS Report Results

rce
A Spice syntax check report consists of:

• LVS netlist compiler errors and warnings, if any were found.

• A header section, specifying the report file name, the layout and/or sou
design names (top level cell names are indicated in parenthesis when
applicable), the rule file name, the rule file title (if aTitle statement was
specified), the time and date when the report was created, the current
working directory, user name, Calibre version and other information.

• Overall syntax check results section.

Here is an example:

LVS Netlist Compiler - Errors and Warnings for "z2.net"

Error: Syntax Error in file "z2.net" at line 7.
 Expected "Cxxx n1 n2 <mname> <c <tc1 <tc2 <scale>>>> <M=m> <L=l> <W=w>
 + <parnam=pval> ... <$SUB=ns> <$[mname] | $.MODEL=mname>
 + <$A=a> <$P=p> <$X=x> <$Y=y>"

 ##
 ## ##
 ## C A L I B R E S Y S T E M ##
 ## ##
 ## L V S R E P O R T ##
 ## ##
 ##

REPORT FILE NAME: lvs.rep
LAYOUT NAME:
SOURCE NAME: z2.net ('top')
RULE FILE: rules
CREATION TIME: Wed Apr 17 15:15:19 2002
CURRENT DIRECTORY: /scratch1/kobi/play
USER NAME: kobi
CALIBRE VERSION: v9.1_5.1 Tue Apr 16 22:14:21 PDT 2002
Calibre Verification User’s Manual, v9.1_514-36

Results LVS Report

s:

and
s

f a

nd
**
 OVERALL SYNTAX CHECK RESULTS
**

 # # #########################
 # # # #
 # # SYNTAX CHECK FAILED #
 # # # #
 # # #########################

 Syntax errors were found in the source.

**
 SUMMARY
**

Total CPU Time: 0 sec
Total Elapsed Time: 0 sec

Analyzing the LVS Report

View the report as a “results summary” of the LVS comparison run as follow

• Read the error and warning messages at the beginning of the report.

o The report first shows connectivity extraction errors and warnings,
stamp errors. For example, it will report a warning giving text value
and locations if conflicting signal name texts were found on a single
net.

o The report next shows netlist compiler errors and warnings. For
example, it would report any syntax errors or undefined subcircuits o
Spice deck if you are using one for a reference netlist.

Errors reported here cause LVS to abort. Investigate these errors a
correct them before running LVS again.
Calibre Verification User’s Manual, v9.1_5 14-37

LVS Report Results

.

n

es
risk

lem,

 of
atch,

 net
ot.

ot
any

the

on
any
• Look for the following, before the Numbers of Objects After
Transformation section:

o Correct layout and source files, and the correct rules file pathname
These are listed in the report header.

o Correct or Incorrect errors or warning messages in the Overall
Comparison Results section. Investigate the messages to debug a
Incorrect run.

• Check the Number of Objects After Transformation report for differenc
between layout and source counts. Differences are indicated with aste
(*) characters. The following is an example of this section.

Ensure that LVS is finding the same kind and number of objects in the
layout and source. Differences can indicate a rules problem, setup prob
or viewpoint problem. Consult your rule file writer if necessary.

• Analyze the Incorrect Objects section. This section lists the differences
nets and instances between the layout and source that LVS could not m
or could partially match with some differences.

o The Incorrect Nets section explains net differences. For example, a
in the source may have connections that a net in the layout does n

o The Incorrect Instances section explains instance differences. For
example, an instance in the layout may have connections that do n
match the connections of the source instance, may be missing, or
other type of discrepancy.

Often, data will be redundant between the two sections.

• Skim the Information and Warnings section before trying to understand
problem in detail.

The Information and Warnings section includes statistics and informati
about the comparison run, including an exact set of numbers on how m
objects in both source and layout are identified and not identified.
Calibre Verification User’s Manual, v9.1_514-38

Results LVS Report

d,

xists

 part

ected
ts in

in the

gs
r to
re

S

This section also reports information about isolated nets that are delete
nets that are reduced to pass-through nets, and initial correspondence
points.

The Matched/Unmatched statistics specifies whether correspondence e
between the source and layout.

• Review the Detailed Instance Connections section. This section shows
detailed information about matched instances whose pins are listed as
of discrepancies on nets. For each pair of instances, the information
includes: the layout instance, corresponding source instance, nets conn
to their pins in the layout and source respectively, and corresponding ne
the source and layout, respectively.

Calibre LVS results can be viewed graphically with the Calibre RVE/QDB-H
query server when theMask SVDB Directoryspecification statement is specified
in the rule file. Refer to chapter15, “RVE/QDB-H and Query Server” chapter for
further information.

Errors and Warnings

The following sections discuss possible errors and warnings that can appear
LVS report.

• Connectivity Extraction

In flat LVS, a transcript of any connectivity extraction errors and warnin
that were found during the LVS run appears at the top of the report, prio
the LVS header section. Connectivity extraction errors and warnings a
described in theStandard Verification Rule Format (SVRF) Manual.

• Stamp Operation

In flat LVS, a transcript of any stamp errors that were found during the LV
run appears at the top of the report, prior to the LVS header section.

TheStampoperation maps electrical net references from one layer to
another. There are two kinds of stamp errors:
Calibre Verification User’s Manual, v9.1_5 14-39

LVS Report Results

ot

us.
ore

e

gs
 to
ot.

cies.
he
f the
e

o A list of locations where layer X cannot be stamped by layer Y is
provided. Each location is a vertex of a polygon on layer x that is n
overlapped by any polygon on layer y.

Missing connections STAMPing layer X by layer Y.

o A list of locations where the node reference assignment is ambiguo
For example, where a polygon on layer X is overlapped by two or m
polygons on layer Y belonging to different electrical nets. For each
location, the net IDs and net names of two of the conflicting nets ar
provided; in addition, one vertex of the layer x polygon is provided.

Conflicting connections STAMPing layer X by layer Y.

• LVS Netlist Compiler

When a Spice netlist is used as input, a transcript of errors and warnin
that are found during compilation appears at the top of the report, prior
the LVS header section. Errors cause LVS to abort, but warnings do n

LVS Report Listing Conventions

Discrepancies

LVS reports differences between the layout and source circuits as discrepan
A serial discrepancy number identifies each discrepancy in the LVS report. T
layout elements involved in each discrepancy appear on the left hand side o
report. The source elements appear on the right hand side of the report. In th
following example, LVS reports a “missing net” discrepancy:

--
5 ** missing net ** /N$716
--

The discrepancy number is 5, source net N$716 is missing in the layout.
Calibre Verification User’s Manual, v9.1_514-40

Results LVS Report

l
me

, or
user

e.

ice
Net, Instance and Port Identification

• Eddm or V7.0 erel.A schematic net or instance, in a Eddm or V7.0 ere
design, is identified by its hierarchical pathname. A hierarchical pathna
has one of two forms:

 /<instance-name-1>/.../<instance-name-n>/<net-name>

 /<instance-name-1>/.../<instance-name-n>/<instance-name>

where“n ” is zero or more. Instance names are either user given names
system generated names in the form i$<number>. Net names are either
given names, or system generated names in the form n$<number>.
Examples:

 /CLOCK
 /i$23
 /i$767/MP/MP/i$702

A schematic port, in a Eddm or V7.0 erel design, is identified by its nam
Example: INPUT1

• Spice netlist.A hierarchical pathname identifies a net or instance in a Sp
netlist. The pathname has one of three forms:

 /subckt_call_name_1/ … /subckt_call_name_n/node_name
 /subckt_call_name_1/ … /subckt_call_name_n/element_name
 /subckt_call_name_1/ … /subckt_call_name_n/subckt_call_name

where'n' is zero or more. In flat LVS, <subckt-call-name-1> through
<subckt-call-name-n> appear without the preceding 'X'. Examples:

Flat:
 NETA
 1/netb
 fred/4/7/R7
 fred/Xabc

Hierarchical:
 NETA
 X1/netb
Calibre Verification User’s Manual, v9.1_5 14-41

LVS Report Results

an

ut

m

ed
 Xfred/X4/X7/R7
 Xfred/Xabc

A design port in a Spice netlist is identified by its name. For example:

PORT1

• Mask layout. LVS identifies the following:

o An extracted layout device instance by its numerical ID followed by
(x,y) layout location.

o A named layout net by an (x,y) layout location.

o An unnamed layout net by its numerical ID followed by an (x,y) layo
location.

Logic Gate Identification

LVS forms logic gates internally by the logic gate recognition feature. A logic
gate instance is identified by its type, in parentheses, followed by a list of
transistor instances forming the gate. For example:

(INV)

Transistors:
/I$767/MP/MP/I$702
/I$767/MN/MN/I$786

This shows that transistors /I$767/MP/MP/I$702 and /I$767/MN/MN/I$78 for
an inverter.

Instance Pin Identification

LVS identifies an instance pin by the instance name or ID, and location; follow
by a colon (:) and the pin name. For example:

I$702:G -

identifies pin G of schematic instance I$702, and
Calibre Verification User’s Manual, v9.1_514-42

Results LVS Report

of

rs,
that

e (S)

6

t that
For
27(230,540):B -

identifies pin B of an extracted mask device with an ID of 27, and a location
X=230, Y=540.

Logic Gate Pin Identification

LVS identifies a pin of an internally generated logic gate with the following
format:

(gate_type): {INPUT | OUTPUT}

In the case of an INPUT pin, this identification is followed by a list of transisto
which are part of the logic gate implementation, and whose gate (G) pins form
particular input of the logic gate.

In the case of an OUTPUT pin, this identification is followed by a list of
transistors, which are part of the logic gate implementation, and whose sourc
or drain (D) pins form the output of the gate. For example:

(INV):OUTPUT
/I$767/MP/MP/I$702:D
/I$767/MN/MN/I$786:S

This shows the output pin of an inverter (INV). The D (drain) pin of transistor
/I$767/MP/MP/I$702 and the S (source) pin of transistor /I$767/MN/MN/I$78
form the inverter.

Unconnected Instance Pin Identification

LVS treats an unconnected instance pin as if it was connected to a virtual ne
has no other connections. Such a net is identified by the corresponding pin.
example:

Net Pin INST1:IN(34)

refers to the “virtual net” that leads to unconnected instance pin

INST1:IN(34).
Calibre Verification User’s Manual, v9.1_5 14-43

LVS Report Results

lts

s the

d

Overall Comparison Results

The overall results of the LVS run are listed in the Overall Comparison Resu
section of the LVS report. In hierarchical LVS, a similar section, titled Cell
Comparison Results, is also present for each individual cell, and summarize
results for that cell.

The following sections show an example, summarize possible messages, an
discuss the section.

 OVERALL COMPARISON RESULTS
**
 # # #####################
 # # # #
 # # INCORRECT #
 # # # #
 # # #####################
 Error: Different numbers of nets (see below).
 Error: Different numbers of instances (see below).

--
INITIAL NUMBERS OF ELEMENTS

 Layout Source Component Type
 ------ ------ --------------
 Nets: 966 967 *
 Instances: 1182 1184 * MP (4 pins)
 1182 1184 * MN (4 pins)
 ------ ------
 Total Inst: 2364 2368

NUMBERS OF ELEMENTS AFTER TRANSFORMATION
--
Calibre Verification User’s Manual, v9.1_514-44

Results LVS Report

o

n

ut
re
 Layout Source Component Type
 ------ ------ --------------
 Nets: 784 785 *
 Instances: 471 472 * MP (4 pins)
 471 472 * MN (4 pins)
 347 348 * INV (2 pins)
 59 59 NOR2 (3 pins)
 123 123 NAND2 (3 pins)
 ------ ------
 Total Inst: 1471 1474

 * = Number of elements in layout different from number
 in source.

Primary Messages

The overall results section begins with one of the primary comparison status
messages listed in Table14-1.

Table 14-1. Primary Messages

Message Description

CORRECT The layout connectivity is equivalent t
the source connectivity.

CORRECT except for naming or
swap-override errors

The layout connectivity is equivalent to
the source connectivity, except for
differences in element names, or
violations of restrictions on swapping
of pins.

INCORRECT Discrepancies were detected betwee
the two circuits.

NOT COMPARED LVS aborted prior to the comparison
stage because of problems in the layo
or source data. The actual problems a
listed further down in the report.
Calibre Verification User’s Manual, v9.1_5 14-45

LVS Report Results

These
s
 be

the

t
s”

rt
rs”

r to
hen
er

ul
ate

ic
hese
e.
Secondary Messages

Secondary messages, if any, follow the primary comparison status message.
messages, listed in Table14-2, present additional information on the difference
between the compared circuits. “Error” conditions cause the overall result to
incorrect, while “warning” conditions do not.

Table 14-2. Secondary Messages- Errors

Error Description

Error: Connectivity
errors.

Connectivity errors were found, for example, incorrect
nets, incorrect instances, unmatched elements.

Error: Incorrect names
for power/ground nets.

The lvs_power_names and lvs_ground_names
application variables specify badly formed power or
ground names. This error causes LVS to abort prior to
comparison stage. The “Errors in Names Given for
Power/Ground Nets” section lists the badly formed
names.

Error: Errors in layout. LVS found errors in the layout that caused it to abor
prior to the comparison stage. The “Layout Input Layer
section lists the actual problems.

Error: Errors in source. LVS found errors in the source that caused it to abo
prior to the comparison stage. The “Source Input Laye
section lists the actual problems.

Error:
Power net missing in
layout.
Power net missing in
source.
Ground net missing in
layout.
Ground net missing in
source.

Indicates that a power or ground net is missing in the
layout or source. These errors cause LVS to abort prio
the comparison stage. These errors are issued only w
they are relevant and only when the absence of a pow
and/or ground net prevents LVS from generating usef
results in the comparison stage. For example, if logic g
recognition is requested, power and ground nets are
provided, and the source contains logic gates, then a
“Power net missing” or “Ground net missing” error is
issued for the layout. But if the source contains no log
gates, then those error messages may not be issued. T
error messages may be combined together on one lin
Calibre Verification User’s Manual, v9.1_514-46

Results LVS Report

ll

g

c

er
ear
en

er
ear

pe,
e
tual
r

atic

.

Error: Power or
ground net missing.

Indicates that “Power net missing” or “Ground net
missing” errors were issued for one or more cells in
hierarchical LVS. This error may appear in the “Overa
Comparison Results” section in hierarchical LVS, with
more information provided in the report sections
pertaining to the individual cells.

Error: Components
with non-identical
signal pins were found.

The number of signal pins or the signal pin names of
some layout components differ from the correspondin
schematic components. The “Component Types with
Non-Identical Signal Pins” section lists the problemati
component types and pin names.

Error: Different
numbers of ports
(see below).

The number of ports in the layout differ from the numb
of ports in the source. The actual numbers of ports app
further down in the report.This error is issued only wh
the lvs_ignore_ports application variable is false.

Error: Different
numbers of nets
(see below).

The number of nets in the layout differ from the numb
of nets in the source. The actual numbers of nets app
further down in the report.

Error: Different
numbers of instances
(see below).

The number of instances, of one or more component ty
in the layout differ from the number of instances, of th
corresponding component type, in the source. The ac
numbers of instances of each component type appea
further down in the report.

Error: Instances of
different types or
subtypes were
matched.

Some layout instances were matched to some schem
instances, which had different component types or
subtypes. These instances are listed as discrepancies

Table 14-2. Secondary Messages- Errors [continued]

Error Description
Calibre Verification User’s Manual, v9.1_5 14-47

LVS Report Results

e
ot

t

d

rted

m

ut

in

l
lls
Error: Cells with
non-floating extra
pins.

A cell contains instances of other cells that have extra
pins in the source or layout, and in those instances th
extra pins are connected to other elements (they are n
floating). The “Instances of Cells with Non-Floating
Extra Pins” section reports these instances as
discrepancies.

Error: Property errors. LVS found differences in values of source and layou
properties. The “Property Errors” section lists these
instances, with their corresponding property values an
error percentages.

Error: Substrate pin
errors.

LVS found instances with incorrect substrate
connections. The “Incorrect Substrate Connections”
section reports these discrepancies. This error is repo
only whenLVS Soft Substrate Pins YES is indicated in
the rule file.

Error: Components
with non-identical
power or ground pins
were found.

The number of power or ground pins, or the power or
ground pin names of some layout components differ fro
the corresponding schematic components. The
“Component Types with Non-identical Signal Pins”
section lists these component types.

Error: Cell hierarchy
contains a cycle

Indicates that the cell hierarchy, consisting of the layo
and source hierarchies as well as cell correspondence
information, contained a cycle. This error appears only
hierarchical LVS. It is a global error that causes
hierarchical LVS to abort without comparing individua
cells. Details are provided in a report section titled “Ce
in Hierarchy Forming a Cycle”.

Table 14-2. Secondary Messages- Errors [continued]

Error Description
Calibre Verification User’s Manual, v9.1_514-48

Results LVS Report

cal

m

tors
ut

ts.
Error: Many-to-many
correspondence in cell
names.

Indicates that the cell correspondence specified to
hierarchical LVS in the hcell list leads to a many-many
relationship. This is a global error that causes hierarchi
LVS to abort without comparing individual cells. This
error may appear only in hierarchical LVS.
Here’s an example of an hcell list with many-many
correspondence:

aa aa
aa bb
bb bb

Table 14-3. Secondary Messages- Warnings

Warning Description

Warning: Bad devices
in layout.

Issued only in mask LVS. Means that badly formed
devices were found while recognizing devices from
layout geometries. The bad devices are listed in the
“Information and Warnings” section of the report.

Warning: Components
with non-identical
power or ground pins
were found.

The number of power or ground pins, or the power or
ground pin names of some layout components differ fro
the corresponding schematic components. The
“Information and Warnings” section lists these
component types.

Warning: Unbalanced
smashed mosfets were
matched.

The source contains at least one group of MOS transis
connected in parallel. That is, implemented in the layo
with only a single transistor or with a group of parallel
transistors that consists of a different number of elemen
The “Information and Warnings” section lists these
transistors.

Table 14-2. Secondary Messages- Errors [continued]

Error Description
Calibre Verification User’s Manual, v9.1_5 14-49

LVS Report Results

he

se
re

se
re

e
”

r

rce

s
en
Warning: User-names
were overridden.

Some layout elements with user-given names were
matched to source elements with different user-given
names. The “Information and Warnings” section lists
these elements.

Warning: Ambiguity
points were found and
resolved arbitrarily.

The compared circuits contain interchangeable parts. T
“Information and Warnings” section lists the elements
which were matched arbitrarily.

Warning: Extra ports
in layout.

A cell has extra ports in the layout. The “Instances of
Cells with Non-Floating Extra Pins” section reports the
cells as discrepancies if instances of the cell exist whe
the extra pins are not floating.

Warning: Extra ports
in source.

A cell has extra ports in the source. The “Instances of
Cells with Non-Floating Extra Pins” section reports the
cells as discrepancies if instances of the cell exist whe
the extra pins are not floating.

Warning: FY, GY, M,
and N filters did not
connect some s and d
pins.

Unused device filter options FY, GY, M, or N did not
connect together the source and drain nets of some
transistor devices that were filtered out because the
source and drain were connected to different pads. th
transistors are listed in the “Information and Warnings
section of the LVS report.

Warning: Source and
layout refer to the
same data.

Means that the source and layout, as seen by the LVS
circuit comparison module, refer to the same data. Fo
example, in Calibre LVS, if the -spice command line
option is not used, then the warning appears when Sou
Path is identical to Layout Path and Source Primary is
identical to Layout Primary (or neither Primary name i
specified). If the -spice command line option is used, th
the indicated -spice file name replaces the original
Layout Path in triggering the warning.

Table 14-3. Secondary Messages- Warnings [continued]

Warning Description
Calibre Verification User’s Manual, v9.1_514-50

Results LVS Report

)

- for
ixed
r

ve
 Note

n,
red
t, net

yout
s but
Numbers of Elements

The numbers of ports, numbers of nets, the numbers of instances of each
component type in the layout and source are specified in the Overall (or Cell
Comparison Results section of the report. The total number of instances are
specified as well.

For each component type, the number of pins is indicated. When applicable
example, when components with the same name but different pin count are m
together - the number of pins may be replaced with the actual pin names. Fo
example:

FOO (5 pins): (a b) c (d e)

Logically equivalent or swappable pins are shown in parenthesis. In the abo
example, pins a and b are swappable, and pins d and e are also swappable.
however that pin swappability isnot indicated for logic gates formed by LVS.

When LVS performs logic gate recognition, series or parallel device reductio
filtering of nets or devices, or any other internal transformation of the compa
circuits which results in a change in the number of nets or instances, the por
and instance numbers are shown both for the original circuits (INITIAL NUMBERS

OF OBJECTS section) and for the new modified circuits (NUMBERS OF OBJECTS

AFTER TRANSFORMATION section).

Component types that have different number of instances in the source and la
are marked with an asterisk (*). Component types with standard device name
non-standard pin configurations are marked with the text** non standard
device ** .
Calibre Verification User’s Manual, v9.1_5 14-51

LVS Report Results
Here is a complete example of the OVERALL COMPARISON RESULTSsection.

 OVERALL COMPARISON RESULTS

 # # #####################
 # # # #
 # # INCORRECT #
 # # # #
 # # #####################

 Error: Different numbers of nets (see below).
 Error: Different numbers of instances (see below).

INITIAL NUMBERS OF OBJECTS

 Layout Source Component Type
 ------ ------ --------------
 Nets: 966 967 *

 Instances: 1182 1184 * MP (4 pins)
 1182 1184 * MN (4 pins)
 ------ ------
 Total Inst: 2364 2368

NUMBERS OF OBJECTS AFTER TRANSFORMATION

 Layout Source Component Type
 ------ ------ --------------
 Nets: 784 785 *

 Instances: 471 472 * MP (4 pins)
 471 472 * MN (4 pins)
 347 348 * INV (2 pins)
 59 59 NOR2 (3 pins)
 123 123 NAND2 (3 pins)
 ------ ------
 Total Inst: 1471 1474
Calibre Verification User’s Manual, v9.1_514-52

Results LVS Report

ntax
 * = Number of elements in layout different from number
 in source.

Overall SPICE Syntax Check Results

This section appears only in reports created with the -cl or -cs command line
options of Calibre LVS (Spice syntax check mode).

The overall syntax check results are shown in theOVERALL SYNTAX CHECK
RESULTS section of the LVS report. The overall syntax check results section
begins with a primary syntax check status which is one of the following:

• SYNTAX OK
Means that no syntax errors were found.

• SYNTAX CHECK FAILED
Means that syntax errors were found.

The primary syntax check status may be followed by one or two secondary sy
check status messages, as follows:

• Syntax errors were found in the layout.
Means that syntax errors were found in the layout netlist (the netlist
indicated with Layout Path statement in the rule file).

• Syntax errors were found in the source.
Means that syntax errors were found in the source netlist (the netlist
indicated with Source Path statement in the rule file).
Calibre Verification User’s Manual, v9.1_5 14-53

LVS Report Results

wer
e by

ers
tion
 in the
:

d
n

nd

VS
Errors in Names Given for Power/Ground Nets

This sub-section contains a list of badly formed power or ground names. A po
or ground name is badly formed if it is classified as a non-user-given net nam
LVS criteria in both layout and source. Table14-4 shows the two sub-sections.

Component Types with Non-Identical Signal Pins

This section is present only if LVS found component types with different numb
of signal pins or different signal pin names in the layout and source. The sec
lists the component types and pin names, and indicates each pin as missing
layout or source component type. The following is an example of this section

Table 14-4. Power/Ground Net Errors

Error Description

Badly Formed
Power/Ground
Net Names

Contains a list of badly formed power or ground names foun
in the LVS Power Name and LVS Ground Name specificatio
statements. A name is badly formed if it is not considered
user-given by LVS criteria; namely, if it starts with “n$”,
“N$”, “i$”, “I$”, or contains a slash (/) character. Badly
formed power or ground names cause LVS to abort prior to
the comparison stage.

Contradictory
Power/Ground
Net Names

Contains a list of names that are specified as both power a
ground names; for example, names that appear both in the
LVS Power Name and LVS Ground Name specification
statements. Contradictory power or ground names cause L
to abort prior to the comparison stage.
Calibre Verification User’s Manual, v9.1_514-54

Results LVS Report

the
 be

The

ve
t

**
 COMPONENT TYPES WITH NON-IDENTICAL SIGNAL PINS
**
(Component types that have different numbers of signal pins or
different signal pin names in the layout and source are listed
below. Layout pins missing in the source and source pins
missing in the layout are ignored by the comparison algorithm.
Note that differences in power or ground pins, if any, are
listed separately in the INFORMATION AND WARNINGS section.)
 Layout Pin Name Source Pin Name Component Type
 --------------- ----------------- --------------
 ** missing pin ** B MN
 RESET ** missing pin ** REG5
**

In this example, component type MN has a pin B in the source but not in the
layout, and component type REG5 has a pin RESET in the layout but not in
source. MN and REG5 are component types, not instance names (there can
many instances of MN and REG5).

Input Errors

LVS lists Input errors in two sections of the report: “Layout Input Errors” and
“Source Input Errors”. Input errors indicate severe conditions in the layout or
source, respectively, that cause LVS to abort prior to the comparison stage.
following lists types of input errors:

Table 14-5. Input Errors

Error Description

MISSING
COMPONENT
TYPES

A list of instances whose component types cannot be
determined.

MISSING PIN
NAMES

A list of instances, grouped by component type, that ha
pins whose names cannot be determined. Componen
subtypes are indicated in parentheses, if specified.
Calibre Verification User’s Manual, v9.1_5 14-55

LVS Report Results

rs

t
s, if

rst
f
s of

t

BAD INSTANCES A list of built-in device type instances that have numbe
of pins or pin names that do not follow the LVS
conventions. The instances are grouped by componen
type. Component subtypes are indicated in parenthese
specified. Refer to the section “Built-in Device Types” in
chapter10.

CONFLICTING
INSTANCES

A list of instances with conflicting pin configurations.
The instances are grouped by component type. The fi
instance in each group represents one configuration o
pins. The other instances in each group have number
pins, pin names, values of the swap_set property, or
values of the my_net property, which differ from the firs
instance. Component subtypes are indicated in
parentheses, if specified. Refer to “Instance Pins and Pin
Names” in chapter10.

SERIES PIN NAMES
NOT FOUND

This is a list of instances that are subject to a
specification statement of the form
LVS REDUCE ... SERIESpin-name-1 pin-name-2 but
have no pins calledpin-name-1 or have no pins called
pin-name-2. For each instance, LVS indicates the
component type, optional subtype, instance name and
expected pin names (one pin per line).

AMBIGUOUS
SERIES PIN NAMES
SPECIFIED

This is a list of instances that are subject to a
specification statement of the form
LVS REDUCE ... SERIESpin-name-1 pin-name-2 but
have more then one pin calledpin-name-1 or more than
one pin calledpin-name-2. For each instance, LVS
indicates the component type, optional component
subtype, instance name and ambiguous pin names.

Table 14-5. Input Errors

Error Description
Calibre Verification User’s Manual, v9.1_514-56

Results LVS Report

ell
 well

rrors
ion

the
Hierarchical Cells Forming a Cycle

This section appears in the hierarchical LVS report if a cycle is found in the c
hierarchy. The cell hierarchy consists of the layout and source hierarchies as
as cell correspondence information. Cycles in the cell hierarchy are global e
that cause hierarchical LVS to abort prior to the comparison stage. This sect
may appear only in hierarchical LVS reports and does not appear in flat LVS
reports.

The report indicates cell names that form the cycle. For example:

 CELLS IN HIERARCHY FORMING A CYCLE

 Layout Cells Source Cells
 ------------ ------------
 lay3
 lay2
 lay1 src4
 src3
 src2
 lay4 src1
 lay3

INCORRECT
SERIES PIN SWAP
SETS

This is a list of instances that are subject to a
specification statement of the form
LVS REDUCE ... SERIESpin-name-1 pin-name-2but in
which pinspin-name-1 andpin-name-2 of the instance
are swappable with other pins (i.e. pins not named in
particular LVS Reduce ... Series statement). For each
instance, LVS indicates the component type, optional
component subtype, instance name and offending pin
names (one pin per line).

Table 14-5. Input Errors

Error Description
Calibre Verification User’s Manual, v9.1_5 14-57

LVS Report Results

rchy,
chy,
dence

ow
ugh
ill

how
This means the following:

Layout cell lay3 contains an instance of lay2
 lay2 contains an instance of lay1
 lay1 corresponds to source cell src4 in the hcell list.
Source cell src4 contains an instance of src3
 src3 contains an instance of src2
 src2 contains an instance of src1
 src1 corresponds to layout cell lay4 in the hcell list.
Layout cell lay4 contains an instance of lay3 (closing the cycle).

Note that cycles may be present in the layout hierarchy, or in the source hiera
or they may consist of a combination of the layout hierarchy, the source hierar
and the cell correspondence as shown in the example above. (Cell correspon
is specified explicitly in the hcell list or implicitly with the-automatch
command line switch).

Here is another example:

Layout Cells Source Cells
------------ ------------
lay3 src3
 src2
lay4 src1
lay3 src3

Here is what happened:

Layout cell lay3 corresponds to source cell src3.
Source cell src3 contains an instance of src2
 src2 contains an instance of src1
 src1 corresponds to layout cell lay4
Layout cell lay4 contains an instance of lay3 (which closes the cycle).

Note that in this example, it is not immediately apparent from the transcript h
the cycle is formed. For example, with this transcript, it is possible to go thro
src1 --> src3 --> lay3 instead of src1 --> lay4 --> lay3. In cases like this you w
need to examine the layout and source netlist and/or the hcell list to figure out
the cycle is formed.
Calibre Verification User’s Manual, v9.1_514-58

Results LVS Report

, the

s

ing

it
o a

ding
Similar information appears in the transcript of the Calibre LVS-H circuit
comparison module.

LVS Discrepancy Types

The LVS discrepancy types are described below. For each discrepancy type
report format and a graphic representation are specified.

• Short Circuit : This indicates a short-circuit in the layout. A short-circuit i
detected when two source nets are connected together in the layout.

The report format shows the layout net on the left, and two correspond
source nets on the right. For example:

5 Net VDD //VDD
 /N$87

For the above example, source nets //VDD and /N$87 are connected
together in the layout to form the single layout net VDD.

• Open Circuit : This indicates an open-circuit in the layout. An open circu
is detected when two layout nets should be connected to correspond t
single net in the source.

The report format shows two layout nets on the left, and the correspon
source net on the right. For example:

 5 Net N4 /SIG1
 N87

For the above example, layout nets N4 and N87 should be connected
together to correspond to the single source net /SIG1.
Calibre Verification User’s Manual, v9.1_5 14-59

LVS Report Results

ic
urs
 the
e

net;
nted

For

ns to

ns to
is
d

of a
• Missing Connection: This indicates a missing connection in a layout or
source net. The connection may be to an instance pin or a pin of a log
gate, which was generated internally by LVS. A missing connection occ
when a net in circuit A is connected to more pins of a certain type than
corresponding net in circuit B, and all the connections of this type in th
second net have been matched

The report format shows the layout net and the corresponding source
followed by a list of the missing connections. Connections are represe
by the respective instance pins. The “Detailed Instance Connections”
section also lists matched instances whose pins are listed as missing.
example:

--
5 Net N716 /N$781
 ------------------ ------------------
 ** missing connection ** /I$274/XGATE/I$702:S
 ** missing connection ** /I$274/XGATE/I$703:S

Layout net N716 was matched to source net /N$781 but the connectio
instance pins /I$274/XGATE/I$702.S and /I$274/XGATE/I$703.S in the
source net are missing in the layout net.

5 Net N720 /N$790
 ------------------- -------------------
 (NAND):INPUT ** missing connection **
 MP1:G
 MN1:G

Layout net N720 was matched to source net /N$790 but the connectio
the NAND input formed by the gate pins of transistors /MP1 and MN1
missing in the source net. The indicated transistors are a pair of MP an
MN transistors which form one input of the NAND gate.

• Unmatched Connection: This indicates an unmatched connection in a
layout or source net. The connection may be to an instance pin or a pin
Calibre Verification User’s Manual, v9.1_514-60

Results LVS Report

rs
e
is

ns

net,

n to
s

. A
hed,
tched
eck
ion.
logic gate generated internally by LVS. An unmatched connection occu
when some of the connections of a net in circuit A are different from th
connections of the corresponding net in circuit B, and the LVS algorithm
not able to match these connections or recommend how the connectio
should be changed.

The report format shows the layout net and the corresponding source
followed by a list of the unmatched connections. The connections are
represented by the respective instance pins. For example:

5 Net N716 /N$781
 ------------------- -------------------
 ** unmatched connection ** /I$274/XGATE/I$702:S
 ** unmatched connection ** /I$274/XGATE/I$703:S
 I22:S ** unmatched connection **

Layout net N716 was matched to source net /N$781, but the connectio
instance pin I22:S in the layout net and the connections to instance pin
/I$274/XGATE/I$702:S and /I$274/XGATE/I$703:S in the source net
could not be matched.

• Missing Net: This indicates a missing net in the layout or source circuit
missing net occurs when all nets in one of the circuits have been matc
and there are some unmatched nets left in the other circuit. The unma
nets are reported as missing. When encountering this discrepancy, ch
the numbers of nets reported in the “Overall Comparison Results” sect

The report format shows the missing net. For example:

 5 ** missing net ** /N$716

Source net /N$716 is missing in the layout.
Calibre Verification User’s Manual, v9.1_5 14-61

LVS Report Results

it.

he

ce

e
er

d in

t

e
it is

f a
here
rcuit.
s

• Missing Port: This indicates a missing port in the layout or source circu
A missing port occurs when all ports in one of the circuits have been
matched and there are some unmatched ports left in the other circuit. T
unmatched ports are reported as missing.

The report format shows the missing port. For example:

 5 ** missing port ** IN2 on net: /IN2

Source port IN2 on net /IN2 is missing in the layout.

• Missing Instance: This indicates a missing instance in the layout or sour
circuit. A missing instance occurs when all instances of a particular
component type in one of the circuits have been matched and there ar
some unmatched instances of the same component type left in the oth
circuit. The unmatched instances are reported as missing. When
encountering this discrepancy, check the numbers of instances reporte
the “Overall Comparison Results” section.

The report format shows the missing instance. For example:

 5 I75 C(A) ** missing instance **

Layout instance I75 is missing in the source circuit. C is the componen
type, and A is the component subtype.

• Missing Gate: This indicates a missing logic gate in the layout or sourc
circuit. This is similar to the Missing Instance discrepancy, except that
reported for gates which are generated internally by the logic gate
recognition feature of LVS. A missing gate occurs when all instances o
particular logic gate type in one of the circuits have been matched and t
are some unmatched instances of the same gate type left in the other ci
The unmatched gates are reported as missing. When encountering thi
Calibre Verification User’s Manual, v9.1_514-62

Results LVS Report

t of

er
t
the

t is

ts
discrepancy, check the “Numbers of Elements After Transformation
section.

The report format shows the gate type in parentheses followed by a lis
transistors forming the gate. For example:

 5 ** missing gate ** (INV)

 Transistors:
 /I$767/MP/MP/I$702 MP
 /I$767/MN/MN/I$786 MN

The inverter formed by source transistors /I$767/MP/MP/I$702 and
/I$767/MN/MN/I$786 is missing in the layout. MP and MN are the
component types.

• No Similar Net: This indicates a net in the layout or source circuit for
which there is no corresponding net with similar connections in the oth
circuit. This discrepancy is reported only when the LVS algorithm is no
able to match the net using its internal error correction mechanisms, and
net can not be classified as missing.

The report format shows the net. For example:

 5 ** no similar net ** /N$716

Source net /N$716 has no similar net in the layout.

• No Similar Port: This indicates a port in the layout or source circuit for
which there is no similar corresponding port in the other circuit. The por
usually connected to a net for which a No Similar Net discrepancy was
reported. Note that this discrepancy is reported only when the LVS
algorithm is not able to match the port or the corresponding net using i
Calibre Verification User’s Manual, v9.1_5 14-63

LVS Report Results

d as

r
s
out
ch

ic

rce.

 the
s.

e

internal error correction mechanisms, and the port can not be classifie
missing.

The report format shows the port and its net. For example:

 5 ** no similar port ** IN2 on net: /IN2

Source port IN2 on net /IN2 has no similar port in the layout.

• Bad Component Type: This indicates that an instance of the wrong cell o
device was placed in the layout. It is reported when a layout instance i
matched to a source instance with a different component type. The lay
instance should be replaced by an instance of a layout component whi
corresponds to the indicated source component.

This discrepancy can be reported for logic gates that are generated
internally by the logic gate recognition feature of LVS. In this case, a log
gate of the wrong type was implemented in the layout. The layout gate
structure should be replaced by a gate of the type indicated for the sou

LVS matches instances of different component types when they have
similar connections in the source and layout circuits.

The report format shows, for regular instances, the layout instance and
source instance followed by their corresponding component type name
For logic gates generated internally by LVS, the layout and source gat
types are indicated in parentheses followed by a list of the transistors
forming each gate. For example:

 5 I75 MP /I$34 MN
 bad component type: MP component type: MN

Calibre Verification User’s Manual, v9.1_514-64

Results LVS Report

e

6,
ed
es;

ll
t
e but
e

Layout instance I75 is an instance of a MP transistor. It corresponds to
source instance /I$34 which is an MN transistor. The type of /I$75 in th
layout should be changed to MN.

 6 (NAND) (NOR)
 bad component type: NAND component type: NOR

 Transistors:
 MP27 MP
 MP28 MP
 MN13 MN
 MN14 MN
 /MP6 MP
 /MP7 MP
 /MN10 MN
 /MN12 MN

The NAND gate formed by layout transistors MP27, MP28, MN13, and
MN14 was matched to the NOR gate formed by source transistors /MP
/MP7, /MN10, and /MN12. The layout NAND structure should be replac
by a NOR. The layout and source transistors are listed on separate lin
this indicates that the transistors were not matched to each other.
Component types are indicated next to each transistor.

• Bad Component Subtype: This indicates that an instance of the wrong ce
or device subtype was placed in the layout. It is reported when a layou
instance is matched to a source instance with identical component typ
a different component subtype. The layout and source type and subtyp
names are indicated.
Calibre Verification User’s Manual, v9.1_5 14-65

LVS Report Results

heir
re

rce

that

rce

 on
t
s
No
The report format shows the layout and source instances followed by t
respective component type and subtype names. The subtype names a
indicated in parentheses. For example:

5 I75 R(X) /I$34 R(Y)
 bad component subtype: R(X) component subtype: R(Y)

Layout instance I75 is a resistor R with subtype X. It corresponds to sou
instance /I$34 which is a resistor R with subtype Y.

• Badly Connected Instance: This indicates a badly connected layout
instance. A Badly Connected Instance is generated only for instances
are not listed elsewhere as part of net discrepancies.

The report format shows the layout instance and its corresponding sou
instance on the left and right side of the report, respectively. Next, the
correct connections of both instances are listed in the form:

layout_pin_name:layout_net_name src_pin_name:src_net_name

Next, the bad layout connections are listed in one of four forms:

layout_pin_name:layout_net_name ** src_net_name **
layout_pin_name:layout_net_name ** missing net **
layout_pin_name:layout_net_name ** no similar net **
layout_pin_name:layout_net_name ** unmatched net **

In all forms, the layout pin name and the layout net name are indicated
the left. If the layout net is matched, then the corresponding source ne
name is indicated on the right. Otherwise, the text on the right indicate
whether the layout net was classified as a Missing Net discrepancy, a
Similar Net discrepancy, or an unmatched net.
Calibre Verification User’s Manual, v9.1_514-66

Results LVS Report

d on
et

 No

net
g
et

e is

ncy

urce
d/or
 are

ted
Next, the bad source connections are listed in one of four forms:

** layout_net_name ** src_pin_name:src_net_name
** missing net ** src_pin_name:src_net_name
** no similar net ** src_pin_name:src_net_name
** unmatched net ** src_pin_name:src_net_name

In all forms, the source pin name and the source net name are indicate
the right. If the source net is matched, then the corresponding layout n
name is indicated on the left. Otherwise, the text on the left indicates
whether the source net was classified as a Missing Net discrepancy, a
Similar Net discrepancy, or an unmatched net. For example:

 I23 BUFF /I$34 BUFF
 input: SIGA input: /SIGA
 output: NET1 ** missing net **
 ** SIGB ** output: /SIGB

Layout instance I23 corresponds to source instance /I$34 but is badly
connected. The input pin in the layout is correctly connected to layout
SIGA, and the input pin in the source is connected to the correspondin
source net, /SIGA. The output pin in the layout is connected to layout n
NET1, which is missing in the source, while the output pin in the sourc
connected to source net /SIGB which corresponds to layout net SIGB.
BUFF is the component type.

• Bad Power Supply: This indicates a logic gate whose power or ground
supply in the layout is different from the one in the source. The discrepa
is only reported in logic gates formed by LVS.

The report format shows the layout gate type and the corresponding so
gate type on the left and right side, respectively. Next, the bad power an
ground connections are listed in the layout and source. Power supplies
indicated with the words “power supply” and ground supplies are indica
with the words “ground supply”. Layout supplies are listed in one of the
following forms:
Calibre Verification User’s Manual, v9.1_5 14-67

LVS Report Results

t is
right.

 or

 net
left.

 or

. For
power supply: layout_net_name ** source_net_name **
power supply: layout_net_name ** missing net **
power supply: layout_net_name ** no similar net **
power supply: layout_net_name ** unmatched net **

In all forms, the layout net name is indicated on the left. If the layout ne
matched, then the corresponding source net name is indicated on the
Otherwise, the text on the right indicates whether the layout net was
classified as a Missing Net discrepancy, a No Similar Net discrepancy,
an unmatched net.

Source supplies are listed in one of the following forms:

** layout_net_name ** power supply: source_net_name
** missing net ** power supply: source_net_name
** no similar net ** power supply: source_net_name
** unmatched net ** power supply: source_net_name

In all forms, the source net name is indicated on the right. If the source
is matched, then the corresponding layout net name is indicated on the
Otherwise, the text on the left indicates whether the source net was
classified as a Missing Net discrepancy, a No Similar Net discrepancy,
an unmatched net.

Next, the transistors forming the gate in the layout and source are listed
example:

 5 (NAND) (NAND)
 ground supply: GND1 ** GND1 **
 ** GND2 ** ground supply: GND2

 Transistors:
 mp20 2/mp0
 mp21 2/mp1
 mp22 2/mp2
 mp23 2/mp3

Calibre Verification User’s Manual, v9.1_514-68

Results LVS Report

ding
e

re
nd
ins are
in a

It

 a net
g

For
The ground supply to this NAND gate in the layout is GND1 which is
matched to net GND1 in the source. The power supply to the correspon
NAND gate in the source is GND2 which is matched to net GND2 in th
layout.

• Instance With Non-Floating Extra Pins: This indicates an instance of a
cell with extra pins in the layout or source. LVS looks for instances whe
the extra pins are actually connected to other elements (not floating) a
reports those instances as discrepancies. Instances where the extra p
floating are not reported. All discrepancies of this type appear together
section called Instances of Cells With Non-Floating Extra Pins.

This type of in-context reporting of extra pins is performed for
corresponding cells (hcells) as well as primitive cells like LVS Box cells.
is especially useful in cases where higher level nets in the layout are
inadvertently shorted to internal nets in subcells (which results in extra
layout pins).

The report format shows the layout instance on the left followed by its
component type in parentheses. The corresponding source instance is
shown on the right. This is followed by list of extra pins in the form:

pin_name:net_name

where pin_name indicates the extra pin, and net_name is the name of
to which that pin is connected in the containing cell. The string “** missin
pin **” appears in the other side to indicate that the pin is missing there.
example:

 INSTANCES OF CELLS WITH NON-FLOATING EXTRA PINS

DISC# LAYOUT NAME ne SOURCE NAME

 1 x2 mux x2 mux
 C:net1 ** missing pin **

Calibre Verification User’s Manual, v9.1_5 14-69

LVS Report Results

he

s

rs”
tion.

 for
f a

lel

 can

p is
was
In this example, cell mux has an extra pin C in the layout. LVS shows
instance x2 of cell mux at a higher level of hierarchy. In that instance, t
extra pin C is connected to net net1 in the layout (and this net is also
connected to other elements).

• Property Error : This indicates an instance with different property value
in the layout and source. Property checking is driven by trace property
rules. Discrepancies of this type are listed together in the “Property Erro
section. The trace property rules are listed in the “LVS Parameters” sec

The report format shows the layout instance on the left followed by its
component type in parentheses. The corresponding source instance is
shown on the right. This is followed by the names and values of the
properties that are different in both circuits, one property per line, and,
numeric properties, the corresponding error percentages. The values o
particular property are listed only if they are different, and, for numeric
properties, the difference exceeds the specified tolerance.

Devices that are the result of device reduction (such as series or paral
reduction) may own properties with theunknown value.Unknown values
are assigned under certain conditions when an effective property value
not be computed for the device; see“Missing and Unknown Property
Values” on page 10-41 for more information. Aunknown property value is
indicated with a question mark and the words "reduced instance". For
example,

p: ? (reduced instance)

indicates that the value of property p is unknown.This could be because
not one of the standard properties for that device type, or because there
Calibre Verification User’s Manual, v9.1_514-70

Results LVS Report

the

ce
lue

.

 not

rce
S

te
d

not sufficient data to compute an effective value for p. For example, in
latter case:

 PROPERTY ERRORS

DISC# LAYOUT SOURCE ERROR

 1 27(230,540) MD /I$867 MD
 w: 5.2u w = 5u 4%
 l: 2.2u l = 2u 10%

 2 35(120,70) ME /I$302 ME
 L = 12.2u L = 12u 2%

Two discrepancies are listed. Discrepancy number 1 involves layout
instance 27 at location (X=230, Y=540), with component type MD, and
source instance /I$867. The layout width value is 5.2 microns, the sour
width value is 5 microns, and the error is 4 percent. The layout length va
is 2.2 microns, the source length value is 2 microns, and the error is 10
percent. Discrepancy number 2 involves layout instance 35 at location
(X=230, Y=540), with component type ME, and source instance /I$302
The layout length value is 12.2 micron, the source length value is 12
microns, and the error is 2 percent. The width value for this instance is
listed because it is not involved in an error.

• Split Gate Property Ratio Error : This indicates a split gate ratio property
error. For more information refer to theLVS Split Gate Ratio specification
statement. Discrepancies of this type appear in the LVS report in the
“Layout Errors” and “Source Errors” sections for layout devices and sou
devices respectively. The LVS Split Gate Ratio rules are listed in the “LV
Parameters” section of the report.

The report format shows individual devices in each “row” of the split ga
along with respective property values, the computed property ratio, an
Calibre Verification User’s Manual, v9.1_5 14-71

LVS Report Results

ted;

ts of
in

he
tors

 as

a
y is
ice
error percentage for the row. The base row and all error rows are indica
correct rows are not listed.

Figure 14-2. Split Gate Property Ratio Error

**
Property Ratio Errors in Split Gates:

1 property w
 base: m1 MP(P): 1u, m4 MP(P): 4u. ratio: 4
 m2 MP(P): 2u, m5 MP(P): 9u. ratio: 4.5 error: 12.5%
 m3 MP(P): 3u, m6 MP(P): 15u. ratio: 5 error: 25%
**

In the above example LVS checks the property w. The base row consis
transistor m1 with w=1u and transistor m4 with w=4u. The property ratio
the base row is 4/1 = 4. The second row consists of transistors m2 with
w=2u and m5 with w=9u. The property ratio in this row is 9/2 = 4.5 and t
error percentage is (4.5 - 4)/4 = 12.5%. The third row consists of transis
m3 with w=3u and m6 with w=15u. The property ratio in this row is
(5 - 4)/4 = 25%. All transistors have component type MP and subtype P
indicated.

• Properties Missing on Instances. This type of discrepancy indicates that
property is missing on an instance in the layout or source. The propert
required because it is referenced by Trace Property statements or dev
reduction Tolerance statements or similar statements, or participates in

w=1 w=4

w=2 w=9

ratio1 = 4/1 = 4

ratio2 = 9/2 = 4.5

w=3 w=15 ratio3 = 15/3 = 5
Calibre Verification User’s Manual, v9.1_514-72

Results LVS Report

ppear
 in

” is
at

c
ncy.
ort

e

effective property calculation for other properties that appear in such
statements, or is needed for other reasons. Discrepancies of this type a
in the LVS report in the “Layout Errors” section for layout devices and
the “Source Errors” section for source devices.

Here is an example:

**
Properties Missing on Instances:
 5 property r not found on 2/r1 (R)
 6 property c not found on 2/c2 (C)
**

Two discrepancies are shown. Discrepancy 5 indicates that property “r
missing on instance 2/r1 which is of type R. Discrepancy 6 indicates th
property “c” is missing on instance 2/c2 which is of type C.

• Incorrect Substrate Connection: This indicates an instance with an
incorrect substrate connection. This discrepancy, its format and graphi
representation are all similar to the Badly Connected Instance discrepa
Incorrect substrate connections appear in a separate section of the rep
when theLVS Soft Substrate Pinsspecification statement is indicated in th
rule file. For example:

 INCORRECT SUBSTRATE CONNECTIONS
DISC# LAYOUT NAME ne SOURCE NAME

 5 1/m1 MP(P) 1/m1 MP(P)
 b: vssd ** vssd **
 ** no similar net ** b: vssa
Calibre Verification User’s Manual, v9.1_5 14-73

LVS Report Results

rrors,
Information and Warnings

The “Information and Warnings” section of the LVS report provides warnings
about conditions that are deemed out of the ordinary but are not considered e
and additional information that can be useful in verifying a design.

Table 14-6. Information and Warnings

Numbers of Matched
And Unmatched
Elements

Provides the numbers of matched and unmatched
ports and nets, and instances of each component
type and subtype in the layout and source. LVS
reports Instance counts by component type and
subtype. When an instance with a subtype is
matched to an instance with no subtype, the one
with a specified subtype determines the subtype of
both. In case of conflict, the source instance
determines the subtype.

Statistics Provides various statistical information about the
LVS run.

Component Types With
Non-Identical Power
Or Ground Pins

Provides a list of component types that have
different power or ground pins in the layout and
source. LVS lists the component types and pin
names, and indicates each pin as missing in either
the layout or source component type. The format is
similar to the one used for “Component Types with
Non-Identical Signal Pins” on page14-54. While
LVS treats differences in signal pins as errors,
differences in power or ground pins are treated as
warnings.
Calibre Verification User’s Manual, v9.1_514-74

Results LVS Report

r

s

ce.
Bad Devices Provides a list of badly formed layout devices.
These can be present only in mask LVS, and are
formed when a shape on a device recognition laye
in the rule file is not recognized as a valid device
because the combination of pin shapes that it
touches does not match any of the Device
statements for this layer. For each bad device, LVS
reports the X and Y layout coordinates of the device
shape, plus a list of possible element names for thi
device. The list contains element_name values from
all Device statements in the rule file that use this
device recognition layer.

Matched Mosfets
Which Have Been
Unequally Reduced

Provides a list of MOS transistor groups
(component types MN, MP, ME, MD, LDDN,
LDDP, LDDE, LDDD), which are connected in
parallel in the source, but correspond to single
transistors in the layout or groups of parallel
transistors that consist of different numbers of
elements. See the section“Unequally Reduced
Devices” on page 10-40 for more details. In each
group, the layout transistors are listed on the left and
the source transistors are listed on the right. LVS
indicates missing transistors with the string “**
missing smashed mosfet **” in the column were
they are missing.

Isolated Layout Nets Provides a list of layout nets which are not
connected to any instances, nor connected to any
ports of the top-level cell. LVS ignores these nets
during comparison, unless they have user-given
names that are also present in the source.

Passthrough Layout
Nets And Their Ports

Provides a list of layout nets that are connected only
to ports of the top-level cell; the ports are also
reported. LVS ignores these nets during
comparison, unless they or their ports have
user-given names that are also present in the sour

Table 14-6. Information and Warnings [continued]
Calibre Verification User’s Manual, v9.1_5 14-75

LVS Report Results

e

Layout Names That
Are Missing In The
Source

Provides a list of user-given net, instance, and port
names in the layout, which are not present in the
source.

Layout Names That
Appear On More Than
One Element

Provides a list of user-given names that appear on
more than one layout net, more than one layout
instance, or more than one layout port. LVS does
not use these names as initial correspondence
points.

Source Names That
Appear On More Than
One Element

Provides a list of user-given names that appear on
more than one source net, more than one source
instance, or more than one source port. LVS does
not use these names as initial correspondence
points.

Conflicting Layout
Names

Provides a list of name conflicts, in the layout,
caused by the representation of several circuit
elements by a single virtual element. For example,
all ports found on a single net are represented by a
single virtual port, or a group of parallel transistors
can be represented by a single virtual transistor. Th
new virtual element inherits all user-given names
from the original elements. Each name listed
appears with another name on a single virtual
element in the layout, but the two names appear on
different elements in the source. LVS does not use
these names as initial correspondence points.

Table 14-6. Information and Warnings [continued]
Calibre Verification User’s Manual, v9.1_514-76

Results LVS Report

e

n

.

r

d

Conflicting Source
Names

Provides a list of name conflicts, in the source,
caused by the representation of several circuit
elements by a single virtual element. For example,
all ports found on a single net are represented by a
single virtual port, or a group of parallel transistors
can be represented by a single virtual transistor. Th
new virtual element inherits all user-given names
from the original elements. Each name listed
appears with another name on a single virtual
element in the source, but the two names appear o
different elements in the layout. LVS does not use
these names as initial correspondence points.

Initial Correspondence
Points

Provides a list containing pairs of identically named
nets, ports, and instances used as initial
correspondence points. See the section “Initial
Correspondence Points” in chapter10, for more
information.

Cpoints Pairs of nets that were matched by LVS Cpoint
specification statements are reported in this section
Only Cpoints that are actually used by LVS appear
in this section. Cpoints that could not be used appea
in the Failed Cpoints section.
Note that the format used for reporting Cpoint net
names in the LVS report is the same as for nets in
general. This may be different from the way Cpoints
are entered in the rule file. Specifically, flat LVS
omits the X subcircuit call designators in
hierarchical pathnames in Spice.

Failed Cpoints Cpoints that could not be used by LVS are reporte
in this section. Note that the format used for
reporting Cpoint net names in the LVS report is the
same as for nets in general. This may be different
from the way Cpoints are entered in the rule file.
Specifically, flat LVS omits the X subcircuit call
designators in hierarchical pathnames in Spice.

Table 14-6. Information and Warnings [continued]
Calibre Verification User’s Manual, v9.1_5 14-77

LVS Report Results

ncies
nce,
d

f

t

Detailed Instance Connections

The “Detailed Instance Connections” section of the LVS report provides
information about matched instances whose pins are listed as part of discrepa
on nets. For each pair of instances, the information includes: the layout insta
corresponding source instance, nets connected to their pins in the layout an
source, respectively, and the corresponding nets in the source and layout,
respectively.

Ambiguity Resolution
Points

Provides a list containing pairs of nets, instances,
and ports, which belong to interchangeable parts o
the circuit, and are matched arbitrarily by LVS. For
each pair of arbitrarily matched elements, the layou
element is reported on the left and the source
element is reported on the right. See the section
“Resolving Ambiguities” in chapter10, for more
information.

Layout/Source FY, GY,
M, and N Filtered
Devices That Did Not
Connect S And D Pins

These two sections (one for layout and one for
source) report transistors for which unused device
filter options FY, GY, M, or N could not connect
together the source and drain nets because the
source and drain were connected to different pads.
For each transistor, the report shows the instance
name, the respective filter option, and the source
and drain nets.

Layout/Source
Instances With
Undetermined
Reduction
TOLERANCE
Properties

These two sections (one for layout and one for
source) report instances that caused device
reduction to cease locally because a device
reduction TOLERANCE clause was specified but
the value for the respective property was unknown
on the instance. The instance in question was
reduced from other instances, and the effective
property value could not be computed. For each
instance, LVS reports the instance name,
component type, and respective property name.

Table 14-6. Information and Warnings [continued]
Calibre Verification User’s Manual, v9.1_514-78

Results LVS Report

port,

ic
nts in
y
ircuit
n
 LVS
ncies
will

ot be

at
not
ally
IN2

ut
ther
The report format is identical to the Badly Connected Instance discrepancy re
except there is no discrepancy number.

Unmatched Elements

Unmatched elements are nets, ports, instances, and internally generated log
gates in the layout or source that cannot be matched to corresponding eleme
the other circuit, and can not be classified as any of the available discrepanc
types. This can happen when there are elements of similar type in the other c
that have similar connections, but the LVS algorithm can not make a decisio
because of a discrepancy nearby. The “Unmatched Elements” section of the
report lists unmatched elements. In most cases it is best to correct all discrepa
first, ignoring this section list, and run LVS again. The unmatched elements
usually disappear from the report once all discrepancies are corrected.

• Unmatched Net: An unmatched net is a net in the layout or source that
cannot be matched to a corresponding net in the other circuit, and cann
classified as any of the available discrepancy types. In the following
example, source net /N$716 cannot be matched.

** unmatched net ** /N$716

• Unmatched Port: An unmatched port is a port in the layout or source th
cannot be matched to a corresponding port in the other circuit, and can
be classified as any of the available discrepancy types. The port is usu
connected to an unmatched net. In the following example, source port
cannot be matched.

** unmatched port ** IN2

• Unmatched Instance: An unmatched instance is an instance in the layo
or source that cannot be matched to a corresponding instance in the o
Calibre Verification User’s Manual, v9.1_5 14-79

Circuit Extraction Report Results

s. In

ce

ror is
ition
list

nd

n

d for
circuit and can not be classified as any of the available discrepancy type
the following example, layout instance I75 could not be matched.

I75 ** unmatched instance **

• Unmatched Gate: An unmatched gate is a logic gate in the layout or sour
that cannot be matched to a corresponding gate in the other circuit and
cannot be classified as any of the available discrepancy types. This er
reported for gates that are generated internally by the logic gate recogn
feature of LVS. The gate type is indicated in parentheses, followed by a
of transistors that form the gate. In the following example, The inverter
formed by source transistors /I$767/MP/MP/I$702 and
/I$767/MN/MN/I$786 cannot be matched.

** unmatched gate ** (INV)

/I$767/MP/MP/I$702
/I$767/MN/MN/I$786

Circuit Extraction Report
The circuit extraction report is written during the circuit extraction phase of
Calibre LVS-H. This report contains a summary of circuit extraction warnings a
errors that until now appeared only in the Calibre LVS-H transcript or in the
extracted layout netlist. Items included in the report are:

• Connectivity extraction errors and warnings, such as short circuits, ope
circuits, unattached labels.

• Sconnect conflicts.

• Sconnect and LINK usage errors, such as the case when no data is foun
a net name.
Calibre Verification User’s Manual, v9.1_514-80

Results Mask Results Database

ted
ns

he
 the
ion.
g

s:

e

• Stamp discrepancies.

• Bad devices.

• Top level port name conflicts from the hierarchical Spice netlister.

The report is written to a file namedlvs_report .ext wherelvs_report is the
name specified in the LVS Report specification statement. If no LVS Report
specification statement exists then the report is written to the filelvs.rep.ext in
the current working directory.

Mask Results Database
The LVS mask results database is an optional database type. It is the extrac
nets and devices resulting from the execution of connectivity related operatio
and statements contained in a rule file. You use this type when interpreting t
results graphically. You can exclude Information from this database by using
NOPROBE and NOCONTACT options, and the -dblayers command line opt
You must use a Mask Results Database specification statement when runnin
Calibre MGC.

Cross-Reference Files
The following applications can generate instance and net cross-reference file

• Calibre LVS

• Calibre MGC

• xCalibre PX-C/PX-RC

• xCalibre MGC

Instance Cross-reference File

The -ixf command line switch instructs the application to generate the file. Th
reference pages for the applications describe the use of the switch.
Calibre Verification User’s Manual, v9.1_5 14-81

Cross-Reference Files Results

ent
 the

II

The

The

.

”.

 in
The IXF secondary keyword to the Mask SVDB Directory specification statem
also creates an instance cross-reference file within the directory specified in
Mask SVDB Directory statement.

Whenever Calibre creates an instance cross-reference file, it is named
layout_primary.ixf, wherelayout_primary is taken from the Layout Primary
specification statement.

The instance cross-reference file contains matched instances, and is in ASC
format. The file contains one line per instance in the following form:

layout_id layout_name source_id source_name [SL | SS] [X]

where:

• layout_id is a number that represents the instance (ID) in the layout.

• layout_name is a user-given name that represents the layout instance.
value oflayout_id is used if no user-given name was specified.

• source_id is a number that represents the instance (ID) in the source.

• source_nameis a user-given name that represents the source instance.
value ofsource_id is used if no user-given name was specified.

• SL indicates a reduced layout device. SL is short for “smashed layout”

• SS indicates a reduced source device. SS is short for “smashed source

• X indicates a MOS device with swapped source and drain pins.

Mask-mode Instance Coordinates

In Mask-mode extracted devices, the (x,y) location is included with the name
the formname(x,y). For example:

1 1(-12.000,-1.000) 4 R1
Calibre Verification User’s Manual, v9.1_514-82

Results Cross-Reference Files

ginal
ice, all
nal
s are
vice

 are
hosen

er X.

in of
r SS)
at

with
Matched Devices

The instance cross-reference file represents a reduced device by listing its ori
devices. When a reduced layout device is matched to a reduced source dev
original layout devices are listed in consecutive lines on the left, with the origi
source device repeated on the right. All the remaining original source device
listed in consecutive lines on the right, with a representative original layout de
repeated on the left. The representative devices are chosen at random.

For example:

0 0(-12.000,-1.000) 4 R1
1 1(-18.000,-1.000) 4 R1 SL
0 0(-12.000,-1.000) 5 R2 SS
0 0(-12.000,-1.000) 6 R3 SS

In this example, layout devices 0 and 1 are reduced to a single device. The
reduced layout device corresponds to source devices R1, R2, and R3, which
also reduced to a single device. Layout device 0 and source device R1 are c
as representative devices.

Swapped Pins

MOS devices with swapped source and drain pins are indicated with the lett
For example:

2 2(-12.000,-1.000) 5 M1 X

X indicates that the source pin of the layout device corresponds to the drain p
the source device and vice versa. Lines that represent reduced devices (SL o
have correct X values as well, with respect to the two devices reported on th
particular line.

Logic Gates

The instance cross-reference file represents LVS logic gates by the original
transistors that form them, and lists all matched transistors in the layout gate
the corresponding transistors in the source gate.
Calibre Verification User’s Manual, v9.1_5 14-83

Cross-Reference Files Results

hat
are
ing

he

ed in

he
When you specify the BY GATE secondary keyword to the Mask SVDB
Directory specification statement in your rule file, LVS labels transistor pairs t
belong to logic gates. The labels are “G” and “GC” and refer to transistors that
the beginning of a gate and a continuation of a gate, respectively. The follow
example shows a possible output, comments are not part of the output:

364 M048 364 M048 // This transistor is not in a gate.
256 M030 256 M030 G // Beginning of gate.
49 M005 256 M030 SL GC // Other transistors in the gate
256 M030 49 M005 SS GC // .
265 M031 265 M031 GC // .
40 M004 265 M031 SL GC // .
265 M031 40 M004 SS GC // .
22 M002 22 M002 G // Beginning of another gate.
13 M001 13 M001 GC // Other transistors in the gate.
31 M003 31 M003 GC // .
4 M000 4 M000 GC // .
91 M81 91 M91 // This transistor is not in a gate.

Net Cross-reference File

The -nxf command line switch instructs the application to generate the file. T
reference pages for the applications describe the use of the switch.

The NXF secondary keyword to the Mask SVDB Directory specification
statement also creates an net cross-reference file within the directory specifi
the Mask SVDB Directory statement.

Whenever Calibre creates a net cross-reference file, it is named
layout_primary.nxf, wherelayout_primary is taken from the Layout Primary
specification statement.

The net cross-reference file contains matched nets, and is in ASCII format. T
file contains one line per net in the following form:

layout_id layout_name source_id source_name

where:

• layout_id is a number that represents the net (ID) in the layout.
Calibre Verification User’s Manual, v9.1_514-84

Results Cross-Reference Files

lue

alue

e

e

r
er) to
LVS
tative

ource
ion,

each

o

• layout_nameis a user-given name that represents the layout net. The va
of layout_id is used if no user-given name was specified.

• source_id is a number that represents the net (ID) in the source.

• source_nameis a user-given name that represents the source net. The v
of source_id is used if no user-given name was specified.

Mask-mode Net Coordinates

In Mask-mode extracted nets, the (x,y) location is included in the name in th
form name-or-id(x,y), with no blanks. For example:

1 blip(-12.000,-1.000) 4 VCC
2 2(-12.000,-1.000) 11 up

Matched Nets

The net cross-reference file repeats a net when two nets in one database ar
matched to a single net in the other database. For example:

3 aaa(-20.000,-1.000) 5 xyz
4 bbb(-30.000,-1.000) 5 xyx

In certain situations, LVS can match several layout nets to one source net, o
several source nets to one layout net, or a group of several layout nets (togeth
a group of several source nets. This can occur in split gate reduction or when
detects an open circuit or short circuit discrepancy. In these cases, a represen
net is chosen for the layout side and a representative net is chosen for the s
side. The representative pair appears in the net cross reference file. In addit
each of the remaining layout nets appears with the source representative, and
of the remaining source nets appears with the layout representative.

In the following example, layout nets 1, 2 and 3 were matched (as a group) t
source nets n1, n2 and n3.

1 1(10.000,-1.000) 51 n1
1 1(10.000,-1.000) 52 n2
1 1(10.000,-1.000) 53 n3
2 2(20.000,-1.000) 51 n1
Calibre Verification User’s Manual, v9.1_5 14-85

Cross-Reference Files Results

never

t

 in

cept
r,
n
 the
3 3(30.000,-1.000) 51 n1

LVS can be successful, and leave nets unmatched. Examples of nets that are
matched include:

• Nets internal to certain types of logic gates formed by LVS.

• Nets removed because of series device reduction.

Unmatched nets do not appear in the net cross-reference file.

Hierarchical Instance and Net Cross-reference Files

The comparison stage of Calibre LVS-H creates hierarchical instance and ne
cross-reference files when the rule file specifies theMask SVDB Directory
specification statement. The files establish layout-to-source correspondence
Calibre RVE/QDB-H and xCalibre applications.

The hierarchical cross-reference file formats are similar to the flat formats, ex
that the information is provided per cell. Each file begins with a SVDB heade
see sectionSVDB Header. After the SVDB header, the file contains one sectio
for each LVS correspondence cells (or hcells). The following example shows
general structure of hierarchical instance and net cross-reference files:

SVDB: header_line
SVDB: header_line
…
SVDB: header_line
% layout_cell layout_pin_count source_cell source_pin_count
layout_id layout_name source_id source_name
layout_id layout_name source_id source_name
…
% layout_cell layout_pin_count source_cell source_pin_count
layout_id layout_name source_id source_name
layout_id layout_name source_id source_name
…
…
…

Calibre Verification User’s Manual, v9.1_514-86

Results Cross-Reference Files

(sph)

t just
rchy

ent
his
ate
Source and Layout Placement Hierarchy Files

The comparison stage of Calibre LVS-H creates source placement hierarchy
and layout placement hierarchy (lph) files when the rule file specifies theMask
SVDB Directory specification statement. The files establish layout-to-source
correspondence in Calibre RVE/QDB-H and xCalibre applications, and are in
ASCII format.

Each file begins with a SVDB header, see section “SVDB Header”. After the
SVDB header, the file contains one section for each cell in the hierarchy, no
hcells. The following example shows the general structure of placement hiera
files:

SVDB: header_line
SVDB: header_line
…
SVDB: header_line
% cell_name pin_count
placement_name cell_or_device_name number_of_pins
placement_name cell_or_device_name number_of_pins
…
% cell_name pin_count
placement_name cell_or_device_name number_of_pins
placement_name cell_or_device_name number_of_pins
…
…
…

SVDB Header

The instance and net cross-reference files, and the source and layout placem
hierarchy files created in the SVDB directory begin with SVDB header lines. T
header identifies the type of file and the source of the information used to cre

Note

Each section represents cells, not devices. Pin count is the only
connectivity information present.
Calibre Verification User’s Manual, v9.1_5 14-87

Cross-Reference Files Results

ine
first

hird,
t

s

that file. Each line begins with the string “# SVDB: “. The following example
shows the SVDB header from a instance cross-reference file:

SVDB: Instance Cross Reference (ixf) (File format 1)
SVDB: Layout Primary mix
SVDB: Rules -0 play.rules Wed Dec 10 10:07:38 1997
SVDB: GDSII -0 (none) (none)
SVDB: SNL -0 (none) (none)
SVDB:
SVDB:
SVDB:
SVDB:
SVDB: End of header.

The first line identifies the type of file and its format version, and is the only l
that differs between files that represent the same design. The following shows
line from each cross-reference and placement hierarchy file:

SVDB: Layout Placement Hierarchy (lph) (File format 1)
SVDB: Source Placement Hierarchy (sph) (File format 1)
SVDB: Instance Cross Reference (ixf) (File format 1)
SVDB: Net Cross Reference (nxf) (File format 1)

The second line gives the name of the top (primary) cell of the design. The t
fourth, and fifth lines identify the rule file, layout GDSII file, and source net lis
file. The format for each line is:

file_type path_name date_time_stamp

where:

• file_type can be: Rules, GDSII, or SNL, followed by a checksum for the
file. The string “-0” specifies that no checksum is present.

• path_name is the pathname of thefile_type. The string “(none)” specifies
that a path name is not present.

• date_time_stampis the time stamp of the file. The string “(none)” specifie
that a time stamp is not present. The date_time_stamp takes the form:

week_day month day hh:mm:ss year
Calibre Verification User’s Manual, v9.1_514-88

Results Cross-Reference Files

n

.

the

nd
e is

ts of a

fied in

rt
Circuit Extraction Report File

The circuit extraction report file is written out during Calibre LVS-H circuit
extraction (calibre -spice). This report contains a summary of circuit extractio
warnings and errors that also appear in the Calibre LVS-H transcript or in the
extracted layout netlist. Items included in the report are:

• Connectivity extraction errors and warnings (short circuit, open circuit,
unattached label, and so on).

• Sconnect conflicts.

• Sconnect Link usage errors (for example, no data found for net name)

• Stamp discrepancies.

• Bad devices.

• Top level port name conflicts from the hierarchical Spice netlister.

The report is written to a file namedlvs_report.ext wherelvs_report is the name
specified in the LVS Report specification statement. If no LVS Report
specification statement exists then the report is written to the file lvs.rep.ext in
current working directory.

Binary Polygon File (BPF) Database

The BPF database is used to interface flat Calibre LVS to external tools. It
provides access to geometries on layers involved in connectivity extraction a
device recognition, and to some other related information. The BPF databas
created with the-bpf command line option in flat Calibre LVS. The BPF
database cannot be created in hierarchical Calibre LVS. The database consis
set of files, described below.

File names in the BPF database are based on the LVS report name, as speci
the rule file with the LVS Report specification statement. If no LVS Report
statement is specified in the rule file then the name “icv” is used for the repo
prefix.
Calibre Verification User’s Manual, v9.1_5 14-89

Cross-Reference Files Results

ice
mbers
evice
ce
 the

ort

de
BPF Binary Polygon Files. BPF files contain polygons from certain layers of
interest. The BPF files created have names of the form
lvs_report.layer_name.bpf. The layer_name field is the rule file layer name. By
default, all Connect and Device seed layers are output. The Calibre LVS
-dblayers command line option can be used to explicitly select layers for
generation.

Polygons in BPF files are annotated with node numbers (for Connect layers,
Device pin layers, Stamp layers, and so on) or with device numbers (for Dev
seed layers). In case of conflict, node numbers are stored and the device nu
are not preserved. For example, if a layer serves as both a pin layer and a d
seed layer then the respective BPF file contains node numbers and the devi
numbers are lost. If you need the device numbers as well then you can copy
seed layer so that separate layers can be used. For example:

ngate1 = COPY ngate
DEVICE MN(NFET) ngate1 ngate(G) nact(S) nact(D) dpsub(B)
 <ndif> <poly> (S D)

BPF Layout Cross Reference File. The layout cross-reference file,
lvs_report.lxf, is an ASCII text file that provides a cross reference between
internal net numbers and layout texted names.

BPF Ports File. Thelvs_report.ports file contains information about top level
ports. This is an ASCII text file. The file contains one line for each top level p
(unattached ports are not output). Each line has the following fields:

port_name node_number node_name port_location port_layer_attached

Where each field is defined as follows:

port_name—The layout name of the port object. For example, the GDSII text
string when using Port Layer Text. OrUNNAMED if the port is not named.

node_number—The layout node number to which the port is connected.

node_name—The layout node name to which the port is connected; layout no
number if the node is unnamed.
Calibre Verification User’s Manual, v9.1_514-90

Results Cross-Reference Files

gon

le
port_location—In the form: X Y; in database units. This is the location of the
database text object when using Port Layer Text, or a vertex on the port poly
marker when using Port Layer Polygon.

port_layer_attached—Layer of the polygon to which the port got attached. Ru
file layer name or rule file layer number if the layer is unnamed. This layer
appears in a Connect or Sconnect operation.

Examples:

CONF3 5 CONF -98000 -90000 metal
CONF3 5 5 -98000 -90000 metal
<UNNAMED> 5 5 -98000 -90000 metal
CONF 5 CONF -98000 -90000 17
Calibre Verification User’s Manual, v9.1_5 14-91

Cross-Reference Files Results
Calibre Verification User’s Manual, v9.1_514-92

mands

e
re

urns
he

own
t

for

user
 a
Chapter 15
RVE/QDB-H and Query Server

This chapter describes the input requirements, usage, procedures, and com
for Calibre RVE/QDB-H and the Query Server.

Calibre RVE/QDB-H consists of:

• Results viewing environment (RVE): This is the graphical user interfac
that allows you to debug Calibre LVS/LVS-H results and highlight Calib
DRC/DRC-H results.

• Hierarchical query database (QDB-H): This is the query database. It ret
requested data about a design. RVE uses the Query Server to probe t
query database.

The Query Server is licensed functionality that allows you to query results
database information. RVE serves as a user interface for the Query Server;
however, the Query Server may also be run from the command line or your
user interface. The Calibre Connectivity Interface is licensed functionality tha
uses the Query Server to probe for connectivity information that is intended
backannotation and other uses.

Results Viewing Environment
This section describes the Results Viewing Environment (RVE), a graphical
interface designed to help you browse and debug Calibre results. It includes
product overview, layout editor considerations, invocation, description of the
GUIs, and usage procedures.
Calibre Verification User’s Manual, v9.1_5 15-1

Results Viewing Environment RVE/QDB-H and Query Server

see

en

r to
Refer to“Calibre RVE/QDB-H” on page 2-28 for invocation information.

Interface Prerequisites

Use of RVE/QDB-H is dependent on the following:

• Availability of hpux, Solaris, or Linux platforms.

• Access to a supporting layout editor (ICgraph, Calibre WORKbench,
Calibre LITHOview, DESIGNrev, Cadence Virtuoso, or Seiko SX9000)

• For investigating DRC/DRC-H results: an ASCII DRC results database (
DRC Results Databasein the SVRF Manual)

• For investigating ERC results: an ASCII ERC results database (seeERC
Results Databasein the SVRF Manual)

• For investigating flat and hierarchical LVS results: an SVDB directory.
This directory is required for accessing query data and is generated wh
the Mask SVDB Directory specification statement is specified in the rule
file.

• For investigating LVS shorts: a short isolation database (seeLVS Isolate
Shortsin the SVRF Manual)

• Familiarity with Query Server concepts such as viewing cell and query
instance, as described in section “Viewing, Query, and Query Instance
Cells”.

Note

Calibre RVE/QDB-H requires a calibreqdb or a caldrclvseve
license. This allows you to run RVE and the Query Server. Refe
theConfiguring and Licensing Calibre/xCalibre Tools Guide for
more details.
Calibre Verification User’s Manual, v9.1_515-2

RVE/QDB-H and Query Server Results Viewing Environment

,

re

rror-

g

re
ut

 a

 for
tion
RVE Overview

The termResults Viewing Environment refers to two interfaces. These are:

• DRC-RVE: This interface allows you to browse DRC results databases
ERC results databases, and LVS short isolation databases.

• LVS-RVE: This interface allows you to investigate and debug your Calib
LVS/LVS-H discrepancies by using the SVDB directory.

RVE provides the following main features:

• The ability to browse DRC, ERC, and short isolation databases on an e
by-error or cell-by-cell basis.

• The ability to highlight connectivity and device information in supportin
layout editors. Refer to section“Layout Editor Considerations” on
page 15-4 for information.

• The ability to view LVS discrepancies on a cell-by-cell basis, obtain mo
information by selecting specific errors, and cross-probe between layo
views and Spice netlist browsers (layout and source).

RVE uses the Query Server to probe connectivity information. When you use
layout editor to view results, RVE obtains the Query Server results from the
hierarchical query database (QDB-H) and sends the data to the layout editor
highlighting. For more information about the query database, refer to the sec
“Hierarchical Query Database” on page 15-70.
Calibre Verification User’s Manual, v9.1_5 15-3

Results Viewing Environment RVE/QDB-H and Query Server

et
rpret
cket
lt.

ive
own
Figure15-1 shows the data flow associated with RVE:

Figure 15-1. Calibre RVE/QDB-H Data Flow Diagram

Refer to section “Calibre RVE/QDB-H” in chapter2, for the command line
invocation syntax. You will probably want to invoke RVE through your layout
editor using Calibre Interactive (see“Interface to Calibre RVE” on page 3-21).

Layout Editor Considerations

Calibre RVE can send highlighting information as commands to your layout
editor and schematic viewer. The communication is accomplished with sock
ports. The layout editor loads custom interface software that enables it to inte
commands sent by RVE. The following sections describe how to install the so
port software into the layout editors that do not support the sockets by defau

IC Station

Within ICgraph, there is a Calibre pulldown menu that includes a selectable
button for starting RVE. Refer to theIC Station User Interface Manual for more
information about ICgraph.

Communication—By default, Calibre RVE uses socket port 9189 to
communicate with ICgraph. You can customize the socket port used to rece
RVE commands. You can do this through the Setup item on the Calibre pulld
menu or by setting the MGC_CALIBRE_LAYOUT_SERVER environment

RVE InterfaceQuery
Server

query for data

Query Server
results

view
results

Spice Netlist
Browser

Layout
Editor

LVS
Discrepancy
Viewer

DRC Error
Viewer

Calibre RVE/QDB-H

QDB-H
Calibre Verification User’s Manual, v9.1_515-4

RVE/QDB-H and Query Server Results Viewing Environment

et

e
vide
es

f the
an

ent

ing

s

re
variable tohostname:portnumber. The hostname is optional, in which case you s
the environment variable to :portnumber. The following statements are
equivalent:

setenv MGC_CALIBRE_LAYOUT_SERVER sunsvr:9189
setenv MGC_CALIBRE_LAYOUT_SERVER :9189
setenv MGC_CALIBRE_LAYOUT_SERVER 9189

If hostname is specified, the layout editor interface code ignores it because th
layout editor always runs on the local node. The hostname is specified to pro
compatibility with RVE’s method of parsing this environment variable. RVE us
the hostname to locate the layout viewer.

If your specified port number, or port 9189, is being used by another session o
editor or by another program, the port will not be initialized for RVE use. You c
set a different port from theCalibre > Setup dialog. Alternatively, the following
command allows you to specify a different port without resetting the environm
variable and restarting ICgraph:

mgc_rve_init_socket socket_port_number

Type the command in ICgraph to initialize the specified socket port for RVE
communication. In addition, specify the socket port number in RVE by select
theSetup > Layoutpulldown menu and specifying the port number in theSocket
Number: text entry field.

To disable socket communication completely, set the
MGC_CALIBRE_LAYOUT_SERVER environment variable to empty. The
layout server will not attempt to open the socket.

Highlighting— RVE supports multiple highlighting layers in ICgraph. RVE use
the system layers 4168 (rve_layer_1) through 4177 (rve_layer_10) for its
highlighting. SeeTable 15-4 for more details on error highlighting using RVE.

Other Mentor Graphics Layout Viewers

Mentor Graphics layout viewers such as Calibre WORKbench, Calibre
LITHOview, and DESIGNrev behave similarly to ICgraph in terms of the Calib
Calibre Verification User’s Manual, v9.1_5 15-5

Results Viewing Environment RVE/QDB-H and Query Server

 use.

e

 the

ill

r.
 it
the

x.

 by

e
vide
es
pulldown menu and socket port setup. See“IC Station” on page 15-4 for a
description. Refer to the specific viewer’s documentation for more details on

Cadence Virtuoso

You may have the necessary Skill code already installed, especially if you ar
using Calibre Interactive; the instructions for setting up the Calibre pulldown
menu are found in the section“Cadence Virtuoso Interface” on page 3-23. You
have this setup if you see a Calibre pulldown menu on the main menu bar of
session window. The section cited in the previous link contains detailed
information on using RVE and Calibre Interactive with the Virtuoso Calibre Sk
Interface.

Environment Variables for Use With Virtuoso

By default, RVE uses socket port 9189 to communicate with the layout edito
The RVE-Virtuoso interface automatically searches for an available socket if
cannot obtain the default socket. It initializes the first available socket between
numbers 5000 and 9999 and reports the socket number through a dialog bo

You can customize the socket port used to receive RVE commands. Do this
setting the MGC_CALIBRE_LAYOUT_SERVER environment variable to
hostname:portnumber. The hostname is optional, in which case you set the
environment variable to :portnumber. The following statements are equivalent:

setenv MGC_CALIBRE_LAYOUT_SERVER sunsvr:9189
setenv MGC_CALIBRE_LAYOUT_SERVER :9189
setenv MGC_CALIBRE_LAYOUT_SERVER 9189

If hostname is specified, the layout editor interface code ignores it because th
layout editor always runs on the local node. The hostname is specified to pro
compatibility with RVE’s method of parsing this environment variable. RVE us
the hostname to locate the layout viewer.

If RVE cannot initialize the specified socket from the
MGC_CALIBRE_LAYOUT_SERVER environment variable, it will search for
another available socket between the values of 5000 and 9999.
Calibre Verification User’s Manual, v9.1_515-6

RVE/QDB-H and Query Server Results Viewing Environment

ort

ays.

E by

the

acts
Performing one of the following processes allows you to specify a different p
without resetting the environment variable and restarting Virtuoso.

• In the Virtuoso layout editor, selectCalibre > Set RVE Socket… and
specify the port number for the server socket in the dialog box that displ

or

• In the Virtuoso layout editor, type the command:

mgc_rve_init_socket socket_port_number

at the CIW prompt to initialize the specified socket port for RVE
communication.

In addition to either of these processes, specify the socket port number in RV
selecting theSetup > Layout pulldown menu and specifying the port number in
theSocket Number: text entry field.

While in the Setup Layout Viewer dialog box, click the Help button to display
information concerning connection problems between RVE and your layout
editor.

To disable socket communication completely, set the
MGC_CALIBRE_LAYOUT_SERVER environment variable to empty. The
layout server then won't attempt to open the communication socket.

A table of environment and Skill variables is onpage 3-33.

Seiko System SX9000

Before using the Seiko SX9000 layout editor with Calibre RVE, you must run
sxserver interface program. You can run the program with the following
command line:

% $MGC_HOME/bin/sxserver

You should run sxserver on the same node containing SX9000. This program
as an interface between Calibre RVE and SX9000, translating highlighting
Calibre Verification User’s Manual, v9.1_5 15-7

Results Viewing Environment RVE/QDB-H and Query Server

t

d is

the
VE

nd
tions
information from Calibre RVE into SX9000 format. The sxserver program is
available on Sun Solaris and HP-UX only.

To set the layers used by sxserver to highlight in SX9000, select theSetup >
Highlight Layers menu item. The sxserver program sets ten layers by defaul
(layers 201-210).

To specify a location for the temporary files used by sxserver, select theSetup >
Temporary Files menu item.

This setup information is saved to a file (.sxrvedb) in your home directory an
restored automatically when you restart sxserver.

To use the Seiko SX9000 as layout viewer with Calibre RVE, select it as the
layout viewer in Calibre RVE’sSetup > Layout dialog box.

DRC-RVE Interface

When invoked from your layout editor or the command line, the DRC-RVE
session window appears. From this window, you can view your DRC errors in
layout editor. If you don’t specify the results database on the command line, R
prompts you for its pathname upon invocation.

DRC-RVE Session Window

Figure15-2 shows the session window that appears when you invoke RVE a
load DRC (ERC and short isolation are also possible) results database. All ac
related to investigating your DRC/DRC-H results are initiated from here.
Calibre Verification User’s Manual, v9.1_515-8

RVE/QDB-H and Query Server Results Viewing Environment

ses

elp

ys

r
se
Figure 15-2. DRC-RVE Session Window

For the operating procedures associated with using DRC-RVE, this section u
the following terms to describe window areas, whose locations Figure15-2
illustrates.

• Title area: Thetitle area is located at the top of a session window. This
area usually contains the name of the application.

• Main menu bar: Themain menu bar appears directly below the title area
of a session window. It contains the File, View, Highlight, Setup and H
pulldown menus.

• Toolbar: Thetoolbarappears directly below the main menu bar. It displa
buttons that represent short cuts to functionality located within the
pulldown menus. As applicable, a dialog box appears to prompt you fo
more information. To preview the button functionality, position the mou

error data area

results viewing area
Calibre Verification User’s Manual, v9.1_5 15-9

Results Viewing Environment RVE/QDB-H and Query Server

that

k

r

tch

e

ibre
 the

n

over a button and pause momentarily. A help message balloon appears
describes the button.

• Results viewing area: Theresults viewing areadisplays a hierarchical tree
view of the DRC rules. DRC rules with errors are flagged with red chec
boxes.

• Error data area: Theerror data area displays the coordinates of an erro
selected in the results viewing area. TheCell andTop radio buttons allow
you to display the selected error’s coordinates in either the error-cell’s
context or in the top-cell’s context, respectively. DRC-RVE does not swi
between the two contexts if the coordinate transform information is not
available in the database.

• Checktext window: Thechecktext window displays the design rule check
that corresponds to a selected rule in the results viewing area.

• Message area: Themessage area is located at the bottom of the session
window. This area displays the name of the selected rule check and th
currently highlighted error number.

On-line Documentation Help

Both Calibre RVE windows feature a Help menu that allows you to access Cal
on-line documentation. The Help button appears on the session windows on
right end of the main menu bar as shown in Figure15-2. When you click on the
Help button, a selection menu appears.

Mentor Graphics uses Adobe Acrobat Exchange as its default on-line
documentation viewer. Table15-1 lists and describes the commands located o
the Help pulldown menu.

Table 15-1. Help Pulldown Menu Commands

Command Description

Open Bookcase Opens an Adobe Acrobat Exchange session
displaying the Calibre Bookcase, which lists all
the Mentor Graphics documentation related to the
Calibre Verification toolsuite.
Calibre Verification User’s Manual, v9.1_515-10

RVE/QDB-H and Query Server Results Viewing Environment

 you

enu.
age
le
File Pulldown Menu

From the DRC-RVE session window, the File pulldown menu appears when
selectFile.

Table15-2 lists and describes the commands located on the File pulldown m
The dialog box displayed for a particular entry is described in the section “Us
and Procedures” below. When you open a rule file, report file, or other text fi
from the File pulldown menu, and that file is already open, the File Viewer
window containing the desired file is redisplayed.

Open User’s Manual Opens an Adobe Acrobat Exchange session
displaying theCalibre Verification User’s
Manual.

Open Release Notes Opens an Adobe Acrobat Exchange session
displaying theCalibre Verification Release
Notes.

Set Up
Environment…

Displays the Set Up Online Documentation
Environment dialog box, which explains Mentor
Graphics on-line documentation system
requirements. Use this menu item to set up the
Adobe Acrobat reader.

About... Displays Calibre RVE version information.

Table 15-2. DRC-RVE File Pulldown Menu Commands

Command Description

Open DB… Displays the Open Calibre DB dialog box where
you specify the pathname to a DRC or ERC
results database, LVS (short isolation database),
or Spice file. The Open Calibre DB dialog box
can also be accessed through the tool bar by
selecting the folder icon.

Table 15-1. Help Pulldown Menu Commands [continued]

Command Description
Calibre Verification User’s Manual, v9.1_5 15-11

Results Viewing Environment RVE/QDB-H and Query Server
The behavior of text editing windows is discussed under“Text Editing” on
page 3-19.

DRC Rules File… Displays the File viewer window. A rule file used
in the Calibre run (started from Calibre
Interactive, for example) that invoked Calibre
DRC-RVE is automatically displayed. Otherwise
dialog box displays allowing you to select a rule
file for viewing. The File Viewer main menu bar
contains theFile, Edit , Options, andWindows
pulldown menus, which allow you to edit and
browse the rule file, or to open and modify other
rule files.

DRC Summary File… Displays the Open Calibre—DRC Summary
Report File dialog box where you specify the
pathname to a DRC summary file. The summary
file displays in the File viewer window. The File
Viewer main menu bar contains theFile, Edit ,
Options, andWindows pulldown menus, which
allow you to edit and browse the file.

Open Text File… Displays the Open File dialog box where you
specify the pathname to a text file. It displays in
the File Viewer window. The File Viewer main
menu bar contains theFile, Edit , Options, and
Windows pulldown menus, which allow you to
edit and browse the file.

Close Exits the DRC-RVE session. Terminates the
RVE session if this is the last open RVE window.

Exit Terminates the RVE session.

Table 15-2. DRC-RVE File Pulldown Menu Commands [continued]

Command Description
Calibre Verification User’s Manual, v9.1_515-12

RVE/QDB-H and Query Server Results Viewing Environment

 and
ou a

u

lbar

a
the

utton

h

you

nu.
age
Database Modification Monitoring

DRC-RVE monitors the modification date/time of the DRC results database,
issues a warning if the database is changed after loading. DRC-RVE gives y
choice of continuing with the current version of the database, reloading the
database, or exiting the application. DRC-RVE may not operate reliably if yo
choose to continue with the current version of the database.

Open Calibre Database Toolbar Button

The Open Calibre Database toolbar button is located at the far left of the too
and is depicted by a folder icon. This button is a shortcut to theFile > Open DB
menu item.

Optionally, you can set the MGC_CALIBRE_DB_DIR environment variable to
valid database path. Calibre RVE will attempt to set the working directory to
valid path, specified in this environment variable.

You can reload the current database by clicking the Open Calibre Database b
at the same time you press the Control (Ctrl) key on the keyboard.

LVS Short Isolation Database in DRC-RVE

LVS short isolation is handled by a DRC results database accessible throug
DRC-RVE. This is described inLVS Short Isolation on page15-69.

View Pulldown Menu

From the DRC-RVE session window, the View pulldown menu appears when
selectView.

Table15-3lists and describes the commands located on the View pulldown me
The dialog box displayed for a particular entry is described in the section “Us
Calibre Verification User’s Manual, v9.1_5 15-13

Results Viewing Environment RVE/QDB-H and Query Server

he
and Procedures”. Items on this menu are grayed out if they do not apply to t
mode you are in.

Table 15-3. DRC-RVE View Pulldown Menu Commands

Command Description

Radio button toggle:
By Cell

By Check

Displays a list of all cells in the results viewing
area.
Displays a list of all design rule checks in the
results viewing area.

Error Checks Only
toggle button

Alters the list of design rule checks in the results
viewing area to show only checks with errors.
This is only available whenBy Check is selected.

Sort Cells Displays a cascading submenu that list options
for sorting cells. Choices are: by error count,
ASCII alphabetic sorting or dictionary sorting.

Sort Checks Displays a cascading submenu that list options
for sorting design rule checks. Choices are:
results database order, by error count, ASCII
alphabetic, or dictionary order.

Show Error Data
toggle button

Specifies to display the coordinates of an error
selected in the results viewing area. Click on any
coordinate in the error data area to zoom to it in
the layout editor.

Show Error Tips
toggle button

As you move the cursor over errors in the results
viewing area, specifies to display a popup box
with their first coordinates as follows:

• Polygons: “P 4 (x,y)”

• Edges: “E 2 (x,y)”

The toggle does not affect DRC rules that were
previously expanded.
Calibre Verification User’s Manual, v9.1_515-14

RVE/QDB-H and Query Server Results Viewing Environment
Select Error Displays a cascading menu that allows you to
specify the previous or next error. This is
equivalent to the < and > buttons on the toolbar.
The same behavior is available from the up and
down arrows of your keyboard.

Mark Fixed Displays a cascading menu having the following
toggle button items:

Current Error—Specifies to mark current DRC
error as corrected. This option is only available
when you have a specific error selected. This is
for notational purposes only; you must fix errors
in the layout editor. This action can also be
performed through the right-click popup menu or
the alt+F button combination on your keyboard.

Current Cluster—Specifies to mark a selected
group of DRC errors as corrected. This option is
available when you have a design rule check or a
specific error selected. This is for notational
purposes only; you must fix errors in the layout
editor. This action can also be performed through
the right-click popup menu or the alt+Shift+F
combination on your keyboard.

Current Cell—Specifies to mark cell as corrected.
This is for notational purposes only; you must fix
errors in the layout editor. This action can also be
performed through the right-click popup menu or
the alt+Ctrl+F combination on your keyboard.

Table 15-3. DRC-RVE View Pulldown Menu Commands [continued]

Command Description
Calibre Verification User’s Manual, v9.1_5 15-15

Results Viewing Environment RVE/QDB-H and Query Server
(cont.) Cells...—Opens a dialog box that displays fixed
cells and allows you to select cells as fixed.

Checks...—Opens a dialog box that displays
fixed checks and allows you to select checks as
fixed.

Mark Waived Opens a flyout menu that allows you to mark
cells, clusters, or individual checks as fixed.
These actions can also be initiated by the alt+W,
alt+Shift+W, and alt+Ctrl+W keyboard
combinations. Click onCells... or Checks... to
mark errors in cells or checks respectively. You
can select discrete multiple entries in the list
displayed in the ensuing dialog by Ctrl-left-
clicking. Ranges can be selected by Shift-left-
clicking. All entries can be selected or unselected
by right-clicking and choosing the appropriate
command in the pop-up menu.

Waived error information is saved in a file in the
.rve subdirectory in the directory of the DRC
database. This file is named the same as the
original DRC database file name, along with a
.waived extension. Waived errors remain marked
as waived even when the DRC database is
regenerated by Calibre DRC.

Table 15-3. DRC-RVE View Pulldown Menu Commands [continued]

Command Description
Calibre Verification User’s Manual, v9.1_515-16

RVE/QDB-H and Query Server Results Viewing Environment

hen
he
Highlight Pulldown Menu

From the DRC-RVE session window, the Highlight pulldown menu appears w
you selectHighlight . Table15-4lists and describes the commands located on t
Highlight pulldown menu. The dialog box displayed for a particular entry is
described in the section “Usage and Procedures”.

Table 15-4. DRC-RVE Highlight Pulldown Menu Commands

Command Description

Highlight in Context
checkbox

Specifies to highlight errors in the coordinate
space of the cell rather than top-level coordinate
space. This checkbox is disabled if you did not
specify the DRC Cell Name specification
statement in the rule file. For details refer to the
section “DRC Cell Name Considerations” after
this table.

Skip Fixed Errors Specifies to not highlight errors that have been
marked as fixed under View. You can also set
this on theSetup > Options Startup tab.

Skip Waived Errors Specifies to not highlight errors that have been
marked as waived under View. You can also set
this on theSetup > Options Startup tab.

Clear All Highlights Clears all highlights from the layout editor. By
default, highlights accumulate in the layout
editor. This action can also be performed through
the toolbar button that looks like a pencil eraser.
Keyboard shortcut (alt+C).

Current Error Highlights the current design rule error in the
layout editor. This action can also be performed
through the H on the toolbar and the right-click
popup menu. Keyboard shortcut (alt+H).

Next Error Highlights the next design rule error in the layout
editor. This action can also be performed through
the > on the toolbar and the right-click popup
menu. Keyboard shortcut (alt+N).
Calibre Verification User’s Manual, v9.1_5 15-17

Results Viewing Environment RVE/QDB-H and Query Server
Previous Error Highlights the previous design rule error in the
layout editor. This action can also be performed
through the < on the toolbar and the right-click
popup menu. Keyboard shortcut (alt+P)

Highlight Error
Range...

Displays a dialog box that allows you to highlight
(in the layout editor) ranges of errors in a cluster,
or all of the errors in a cell (if viewingBy Cell) or
a check (if viewingBy Check).

Highlight All Errors Highlights all the design rule errors in the layout
editor.

Set Highlight Layers... Opens a palette that allows you to set the
highlight layer index (1-10) for the highlighting
layer assigned to individual RuleChecks.

Highlight layers for individual RuleChecks can
be assigned in your rule file by using this check
text comment:
@ RVE Highlight Index: index
whereindex is a highlight layer from 1 to 10.

Export to Layout... Opens a dialog box that allows you to export
error objects on a cell-by-cell basis to the layout
editor. You can export all errors from a cell, all
errors from a particular check in the cell, or a
range of errors from a cell/check pair. Specify the
name or number of the layer to export to in the
Export to Layer: field. (Virtuoso users can
specify a layer name or number and an optional
layer purpose separated by " " (space). If layer
purpose is not specified, it defaults to drawing).

Note that RVE does not provide for deletion of
such exported objects. They can be deleted
through operations provided in the layout editor.

Table 15-4. DRC-RVE Highlight Pulldown Menu Commands

Command Description
Calibre Verification User’s Manual, v9.1_515-18

RVE/QDB-H and Query Server Results Viewing Environment

ng

CE

u

ate
the
CE
ppear
ell-
 or
You can zoom to an error without highlighting it. Press the Ctrl key while clicki
on the highlight buttons in the toolbar (<, H, and >).

DRC Cell Name Considerations

TheHighlight > Highlight in Context menu item described in Table15-4
depends on theDRC Cell Name specification statement; the syntax is:

DRC CELL NAME { YES [CELL SPACE] [XFORM] [ALL] | NO }

Refer to theStandard Verification Reference Format (SVRF) Manual for a full
explanation of the syntax. The following discussion relates to the CELL SPA
and XFORM optional keywords, which affect DRC-RVE behavior.

The results viewing area displays errors by cell (within each rule check) if yo
specified CELL SPACE.

When you specify CELL SPACE, Calibre DRC-H reports errors in the coordin
space of the cell that the error appears in. If you do not specify CELL SPACE,
errors appear in top-level coordinate space, which is the default. If CELL SPA
is specified, the error data area displays the DRC error coordinates as they a
in the DRC results database. Therefore, these coordinates will be in either c
space or top-level-space depending on whether you specified CELL SPACE
not.

(cont.) All the settings that affect highlighting also affect
the Export operation. These settings are the
Highlight in Context , Skip Fixed Errors, and
Skip Waived Errors menu items from the
Highlight menu. TheDisplay check names
while highlighting errors setting (Setup >
Options Text pane) allows for the export of
check names along with the error objects.

Table 15-4. DRC-RVE Highlight Pulldown Menu Commands

Command Description
Calibre Verification User’s Manual, v9.1_5 15-19

Results Viewing Environment RVE/QDB-H and Query Server

use
ides
tes,

 the
. The

vides

s to
ly.

d a
ts
le
last
When you specify the XFORM optional keyword, Calibre DRC-H reports the
transformation data for each cell. This keyword affects whether or not you can
DRC-RVE to highlight in both cell-space and top-level-space because it prov
the data DRC-RVE requires to transform cell coordinates to top-level coordina
or vice versa.

For optimal DRC-RVE highlighting behavior specify either:

DRC CELL NAME YES CELL SPACE XFORM

or

DRC CELL NAME YES XFORM

The first statement outputs DRC errors in cell coordinate space and provides
transformation data necessary to convert those coordinates to top-level space
second statement outputs DRC errors in top-level coordinate space and pro
the data necessary to convert those coordinates to cell space.

Highlighting With User-defined Keyboard Shortcuts

In the Mentor Graphics ICgraph and Cadence Virtuoso layout editors, the
following functions are available:

mgc_rve_hl_next_error
mgc_rve_hl_prev_error
mgc_rve_hl_curr_error

Following the directions for your layout editor, you can map keyboard shortcut
these functions to highlight the next, previous, and current errors, respective

Prior to using these commands, you must have Calibre DRC-RVE started an
connection to the layout editor socket, established from RVE. These shortcu
allow you to highlight errors without leaving the editing environment. If multip
Calibre DRC-RVE windows are open, these commands communicate with the
window that had input focus.
Calibre Verification User’s Manual, v9.1_515-20

RVE/QDB-H and Query Server Results Viewing Environment

n
es

e

-

he
ase

. The
DRC Highlighting in Virtuoso

TheHighlight > Clear All Highlights menu item has a corresponding button o
the Tool Bar; it is the icon of the pencil and eraser. The following list describ
how different clicking scenarios of this button will clear highlights in Virtuoso
windows.

• Single-left-click — Clears highlights in the currently selected Virtuoso
window.

• Shift-left-click — Clears the highlights in all Virtuoso windows. This is th
same action as a double-left-click.

• Ctrl-left-click — Clears highlights corresponding to the error-cell in DRC
RVE.

Error Highlighting of Antenna Violations

DRC-RVE displays antenna ratios associated with each error polygon forNet
Area Ratio accumulation output layers if it can read the associated print file. T
name of the file is obtained from the check text output to the DRC output datab
(by specifyingDRC Check TextALL in the rule file). The ratio is displayed along
with the coordinates of each error in the error data area of DRC-RVE.

Using Query Help

The Highlight Error Range dialog is the first dialog
related to our discussion that has access to Query
Help through a button like the one appearing here.

We will describe this feature now. To use the Query Help feature, do the
following:

1. In any dialog box, click on theTurn On Query Help button, located in the
lower right corner of the dialog box.

Query help is enabled and your cursor displays as a question mark (?)
Turn On Query Help button is renamedTurn Off Query Help . Note that
query help is only activated for the dialog box that is displayed.
Calibre Verification User’s Manual, v9.1_5 15-21

Results Viewing Environment RVE/QDB-H and Query Server

e of

n

enu.
2. As desired, place the cursor over text entry boxes, buttons, or button
options, and click the left mouse button.

A popup text screen appears that describes a button’s function or the typ
data to enter into a text entry box.

3. Click the left mouse button again to dismiss the popup text screen.

4. Click on theTurn Off Query Help button to deactivate query help.

Note that you must turn off the query help facility before completing an
action or proceeding to another dialog box.

Setup Pulldown Menu

From the DRC-RVE session window, the Setup pulldown menu appears whe
you selectSetup. Figure15-3 shows the Setup pulldown menu items.

Table15-5lists and describes the commands located on the Setup pulldown m

Table 15-5. DRC-RVE Setup Pulldown Menu Commands

Command Description

Options… Displays the Setup DRC-RVE Options dialog
box where you specify numerous tool options.
These are discussed in detail below.

Layout… Displays the Setup Layout Viewer dialog box,
which connects you to a layout editor. This
allows you to view graphical query results.
Choices are: ICgraph, Calibre WORKbench (also
LITHOview), DESIGNrev, Cadence Virtuoso,
and Seiko SX9000. The default is no layout
viewer. This dialog also allows you to set your
communications socket and your query results
file (typically you will use the default settings).

Show Toolbar
checkbox

Displays the toolbar that allows you to access
commonly used dialog boxes. This is activated by
default.
Calibre Verification User’s Manual, v9.1_515-22

RVE/QDB-H and Query Server Results Viewing Environment

-

n

s

 top
Setup > Options...—there are a number of tabs that appear in the Setup DRC
RVE Options dialog:

Figure 15-3. DRC-RVE Setup Options

• View—settings on this tab control panning, zooming, and highlighting
settings for how RVE interacts with your layout editor. Zoom control ca
also be accessed by the Z button on the toolbar.

• Text—controls text appearance in short-isolation databases. Also allow
you to display RuleCheck names while highlighting errors.

• Displace—controls coordinate offsets for RVE highlighting. Select the
Displace coordinates button to perform a displacement. Choices are in
cell or in all cells. The X and Y displacement values go in theDelta fields.

Show Tool Tips
checkbox

Specifies to display balloon help messages that
describe each toolbar button. This is activated by
default. Click the right mouse button with the
mouse located on a button to view the messages.

Table 15-5. DRC-RVE Setup Pulldown Menu Commands

Command Description
Calibre Verification User’s Manual, v9.1_5 15-23

Results Viewing Environment RVE/QDB-H and Query Server

y in

le,

you

 to

cess

w.

e

• Startup—controls various startup settings. You should visit this tab earl
your RVE sessions to select the behaviors you desire.

• Exit—controls exit settings. You should visit this tab early in your RVE
sessions to select the behaviors you desire.

• Window—controls position and size of RVE window.

• Files—controls database selection and display features.

Usage and Procedures

This section provides an overview of the DRC-RVE functionality. As applicab
it provides procedural sequences or usage descriptions.

Getting Started

Before investigating your DRC results, you can set the options. All changes
make from the default RVE settings are saved to a .rvedb file located in your
working directory. This file is accessed every time you invoke RVE. To return
a default option setting, you must restore it.

To ready DRC-RVE for your queries, do the following, as desired:

1. In the DRC-RVE session window, selectSetup > Options…

The Setup DRC-RVE Options dialog box displays, as shown in Figure
15-3. This dialog box contains the window tabs, as shown. You can ac
each one by clicking on the applicable tab title to bring the window
forward. The steps below describe what you can specify in each windo

2. In theView tab window, specify the layout editor behavior for viewing th
DRC errors. The default is not to change cell view after highlighting.

3. As desired, select the checkbox for clearing existing highlights before
showing new highlights.

This is equivalent to selectingClear All Highlights before each new
highlight.
Calibre Verification User’s Manual, v9.1_515-24

RVE/QDB-H and Query Server Results Viewing Environment

ary.

ges

t if

E

.

ut

ion
e

u
an
4. Click theStartup tab and check its settings. Change defaults as necess

5. Click OK to enable your changes and dismiss the dialog box.Your chan
are saved in the .rvedb file in your home directory.

6. In the DRC-RVE session window, selectSetup > Layout… to select the
layout editor.

The Setup Layout Viewer dialog box opens.

7. In the Setup Layout Viewer dialog box, specify the following, as
applicable:

o Choose your editor (or none, the default).

o Hostname the layout editor is running on. Generally, this is localhos
the layout editor is running on the same node as RVE.

o Socket port the layout editor listens on; default is 9189.

Refer to section“Layout Editor Considerations” on page 15-4 for
information on customizing the port.

Click theHelp! button for information about connections between RV
and your layout editor.

o The intermediate file into which you want your query results stored
The default filename is query_results. Confirm that the path to the
specified file is accessible to the layout editor, especially if the layo
editor is running on another host.

o If the layout editor is running but you do not seem to have a connect
to RVE, click on theConnectbutton to establish the connection. Mak
sure the Hostname and Socket Number fields are correct.

Error Browsing in the Layout Editor

As shown in Figure15-2, the DRC-RVE session window opens with a
hierarchical tree view of the DRC rule checks. For rule checks with errors, yo
can click on any square with a plus sign (+) to view errors numerically. You c
Calibre Verification User’s Manual, v9.1_5 15-25

Results Viewing Environment RVE/QDB-H and Query Server

 >

heir
sing

rted:

 it.

ng

dy

ove
ove
ght
then double-click on a specific error to highlight it. You can use the <, H, and
toolbar buttons or the right-click menu to move from error to error.

By default, errors are listed in DRC results database order and grouped by t
design rule check. You can change the order of appearance in RVE by choo
View > Sort Checks.

The following procedure acts as an error browsing tutorial to help get you sta

1. Select a design rule check from the results viewing area by clicking on

This is the active rule check. You can investigate all of its errors.

2. SelectHighlight > Next Error .

The first error within the active rule check highlights. The status bar
indicates this. For example:

poly150 : 1 of 39

You can also click the > button to highlight the next error.

3. To view the next error select> again.

The previous highlight remains unless you clear it, unless your Setup >
Options > View settings indicate to clear existing highlights.

4. Continue highlighting the next error, as desired.

When you finish one rule check,Highlight Next Error automatically
begins with the first error of the next rule check listed in the results viewi
area.

5. As desired, select< to proceed backwards through errors you have alrea
seen.

As an option, you can also use the up and down keyboard arrows to m
the error selection up and down by one error. Shift-up and shift-down m
the selection up or down one rule check. The right and left arrows highli
the next and previous errors.
Calibre Verification User’s Manual, v9.1_515-26

RVE/QDB-H and Query Server Results Viewing Environment

rs

u to
and
ts

o the

ms
ally

al
ror
ual
vel

a

the
6. As desired, selectHighlight > Highlight Error Range… to select a range
of errors from a particular rule check.

The errors you specify highlight in the layout editor.

7. As desired, select theHighlight > Highlight in Context checkbox to
highlight errors in their cell coordinate space rather than top-level
coordinate space.

Refer to section“DRC Cell Name Considerations” on page 15-19 for
information about the DRC Cell Name specification statement. This
statement is required in your SVRF rule file if you wish to highlight erro
in cell coordinate space.

8. As desired, you can use theZ button on the Toolbar. When you click on the
Z button in the toolbar, you see a drop-down menu. The menu allows yo
change the zoom settings (to: no view change, pan view to highlights,
zoom view to highlights). You can also control whether existing highligh
are deleted before new highlights are drawn. This menu allows access t
same settings as those in theSetup > Optionsdialog in the View tab.

9. As desired, selectView > Mark Fixed after you fix the DRC errors in your
layout editor. You can chooseCurrent Error , Current Cluster , or
Current Cell . You can also use the right-mouse-click menu to select ite
to mark as fixed.This is a notational convenience for you; you must actu
correct the DRC error in the layout editor.

SeeFigure 15-2. It shows the cell errors as expanded, but not the individu
rule checks. To mark individual errors as fixed, select a specific DRC er
number (you should completely expand the error tree to see the individ
error numbers; this is done by clicking on the + signs at the rule check le
of the tree). When you toggle theError Fixed button from the right-click
menu (or fromView > Mark Fixed > Current Error), the selected DRC
error appears as fixed (green). As each DRC error is marked as fixed,
count of the fixed errors displays for the entire rule check.

If you want to mark an entire rule check as fixed, select the rule check in
error tree. When you select theCluster Fixed toggle button, all the DRC
errors in a rule check appear as fixed along with a count of total fixed
Calibre Verification User’s Manual, v9.1_5 15-27

Results Viewing Environment RVE/QDB-H and Query Server

rs

.
ll

ed

eck

e

ich

ic
es

ices;
errors. A rule check cluster will automatically appear as fixed if all erro
beneath it have been marked as fixed.

If you want to show a cell as fixed, select the cell name in the error tree
When you selectCell Fixed, all the errors for the cell appear as fixed. If a
rule checks beneath a particular cell are marked as fixed, the cell will
automatically appear as fixed.

You can change the state of any error, cluster, or cell back to the unfix
state.

Fixed error-states are saved in the DRC database as checktext in a ch
added to the end of the DRC database. This check is named
__RVE_ERROR_TAGS__ and contains no errors.

LVS-RVE Interface

This section describes the RVE interface to LVS/LVS-H. It describes the
LVS-RVE session window and associated pulldown menus, as well as usag
details.

When invoked, the LVS-RVE session window appears. From this window, wh
is described in section“LVS-RVE Session Window” on page 15-30, the
information you can query includes:

• Cells: query layout or source cell names; corresponding hcell pairs.

• Nets: query net names appearing in the cell (flat or hierarchical); specif
source or layout nets; net paths through the hierarchy; layout net shap
corresponding to a specific net; name of the closest net to a given
coordinate; and pins and ports on a net.

• Devices: device names and instances appearing in the cell (flat or
hierarchical); seed shapes on bad devices; specific source or layout dev
device information; name of the closest device to a given coordinate.

• Ports: query port names appearing in the cell (flat or hierarchical); port
information; name of the closest port to a given coordinate.
Calibre Verification User’s Manual, v9.1_515-28

RVE/QDB-H and Query Server Results Viewing Environment

n
,

etlist

er,

r
the
the

fied

st,
• Placements: query layout pathnames of each cell placement that meets
specific criteria; sub-cell placements in a cell.

LVS-RVE allows you to highlight nets and devices using your layout editor. I
addition, RVE includes cross-probing capabilities between the source netlist
layout netlist, and layout editor.

You access LVS Report data through the discrepancy viewer and the Spice n
with the Spice browser. For example, you can select a net name listed in the
discrepancy viewer, then highlight it in the layout editor. The net name also
highlights in the layout and source netlists if they are open in their respective
browsers. For more information on the discrepancy viewer and Spice Brows
refer to sections“Cross-probing with the Discrepancy Viewer” on page 15-59and
“Cross-probing with the Spice Browser”.

If you do not specify the SVDB directory, RVE prompts you for its pathname
upon invocation.

The help features for this tool are the same as for DRC-RVE. Balloon help fo
toolbar items is on by default. The documentation bookcase in accessible from
Help pulldown menu. For detailed descriptions of the dialog box contents, use
Query Help button, which is described in section“Using Query Help” on
page 15-21.

Mask SVDB Directory Considerations

LVS-RVE performs different tasks depending on the files located in the speci
SVDB directory. The rule file statement:

Mask SVDB Directory QUERY

produces all necessary files to perform the tasks mentioned above.

However, when you specify the rule file statement:

Mask SVDB Directory PHDB

Calibre generates only thelayout_primary.phdb andlayout_primary.dv files. This
statement allows LVS-RVE to only highlight in the layout and the layout netli
Calibre Verification User’s Manual, v9.1_5 15-29

Results Viewing Environment RVE/QDB-H and Query Server

ce

and
with cross-probing. It does not allow highlighting or cross-probing to the sour
netlist.

When you specify the rule file statement:

Mask SVDB Directory XDB

Calibre generates only thelayout_primary.xdb andlayout_primary.dv files. This
statement allows LVS-RVE to only highlight in the schematic and the source
layout netlists. It does not allow highlighting in the layout.

LVS-RVE Session Window

Figure15-4 shows the session window that appears when you invoke RVE
through Calibre Interactive, your layout editor, orcalibre -rve <filename>on
the command line. All actions related to investigating your LVS/LVS-H
discrepancies are initiated from here.
Calibre Verification User’s Manual, v9.1_515-30

RVE/QDB-H and Query Server Results Viewing Environment

ses

ou
 cuts
Figure 15-4. LVS-RVE Session Window

For the operating procedures associated with using LVS-RVE, this section u
the following terms to describe window areas, whose locations Figure15-4
illustrates.

• Title area: Thetitle area is located at the top of a session window. This
area usually contains the name of the application.

• Main menu bar: Themain menu bar appears directly below the title area
of a session window. It contains theFile, View, Layout, Source, Setup,
and Help pulldown menus.

• Toolbar: Thetoolbarappears directly below the main menu bar. When y
place the cursor over the icons, it displays buttons that represent short

file browser

discrepancy
viewer

discrepancy information pane
Calibre Verification User’s Manual, v9.1_5 15-31

Results Viewing Environment RVE/QDB-H and Query Server

og

d a

ut
ith

o

n
.

tus

you

enu.
age
le
to functionality located within the pulldown menus. As applicable, a dial
box appears to prompt you for more information when you select these
buttons.

To preview the button functionality, position the mouse over a button an
help message appears that describes the button.

• File browser: The file browser displays a tree view of the input and outp
files related to the particular LVS run. Selecting the items in the tree w
your mouse opens them.

• Discrepancy viewer: The discrepancy viewer displays a tree view of
discrepancies on a cell-by-cell basis.

• Discrepancy information pane: The discrepancy information pane
displays an excerpt from the LVS report related to the Discrepancy
highlighted in the discrepancy viewer. You can right-click in this pane t
display a popup menu with various options depending on the context.

• Message area: The message area is located at the bottom of the sessio
window. It provides you with information such as the current query cell

When loading the SVDB in LVS-RVE, the message area displays a sta
bar showing the loading progress.

File Pulldown Menu

From the LVS-RVE session window, the File pulldown menu appears when
selectFile.

Table15-6 lists and describes the commands located on the File pulldown m
The dialog box displayed for a particular entry is described in the section “Us
and Procedures” below. When you open a rule file, report file, or other text fi
Calibre Verification User’s Manual, v9.1_515-32

RVE/QDB-H and Query Server Results Viewing Environment
from the File pulldown menu, and that file is already open, the File Viewer
window containing the desired file is redisplayed.

Table 15-6. LVS-RVE File Pulldown Menu Commands

Command Description

Open DB Displays the Open Calibre DB dialog box where
you specify the pathname to a results database.
The Open Calibre DB dialog box can also be
accessed through the file folder toolbar item.

Rules File... Displays the rule file in the File viewer window.
The File viewer main menu bar contains theFile,
Edit , Options, andWindows pulldown menus,
which allow you to edit and browse the rule file.
If RVE does not find a rule file, a dialog box
prompt displays. This is also accessible from the
file browser pane.

Extraction Report... Opens the extraction report file named
lvs_report_name.ext in a File window. If the
extraction report file is not found, it displays the
Open LVS Report File dialog box where you
specify the pathname of the extraction report file.
This is also accessible from the file browser pane.

LVS Report... Displays the LVS Report in the File Viewer
window. The File Viewer main menu bar
contains theFile, Edit , Options, andWindows
pulldown menus, which allow you to edit and
browse the LVS Report. This is also accessible
from the file browser pane.

Source Netlist... Opens the Spice netlist in a File Viewer window.
If the Spice netlist is not found, displays the Open
Source Netlist dialog box where you specify the
pathname of the Spice source netlist. See section
“Cross-probing with the Spice Browser” on
page 15-62 for more information. This is also
accessible from the file browser pane.
Calibre Verification User’s Manual, v9.1_5 15-33

Results Viewing Environment RVE/QDB-H and Query Server

lbar

you
The behavior of text editing windows is discussed under“Text Editing” on
page 3-19.

Open Calibre Database Toolbar Button

The Open Calibre Database toolbar button is located at the far left of the too
and is depicted by a folder icon. This button is a shortcut to theFile > Open DB
menu item.

You can also reload the current database by clicking theOpen Calibre Database
button at the same time you press theCtrl key on the keyboard.

LVS-RVE monitors the open LVS database for changes. If it detects that the
database has changed, LVS-RVE displays a warning dialog that allows for
reloading of the database.

View Pulldown Menu

From the LVS-RVE session window, the View pulldown menu appears when
selectView. This menu allows you to control various viewing features like
highlighting, panning, and zooming.

Layout Netlist... Displays the Open Layout Netlist dialog box
where you specify the pathname of the layout
netlist. The layout netlist displays in a File
Viewer window, which allows you to trace nets
down the hierarchy and cross-probe with the
discrepancy viewer. See section“Cross-probing
with the Discrepancy Viewer” on page 15-59 for
more information.This is also accessible from the
file browser pane.

Exit Terminates the RVE session.

Table 15-6. LVS-RVE File Pulldown Menu Commands [continued]

Command Description
Calibre Verification User’s Manual, v9.1_515-34

RVE/QDB-H and Query Server Results Viewing Environment

nu.
age

l

Table15-7lists and describes the commands located on the View pulldown me
The dialog box displayed for a particular entry is described in the section “Us
and Procedures” below.

LVS Highlighting in Virtuoso

The following list describes how different clicking scenarios of this button wil
clear highlights in Virtuoso windows.

Table 15-7. LVS-RVE View Pulldown Menu Commands

Command Description

View Discrepancies Accesses the discrepancy viewer and displays
LVS discrepancies in the results viewing area.

Show All Cells

Show Discrep. Cells

Displays all cells in the discrepancy viewer.

Displays those cells with discrepancies in the
discrepancy viewer.

Sort Cells Displays a cascading submenu that lists options
for sorting cells in the discrepancy viewer.
Choices are: by discrepancy count, ASCII
alphabetical by layout names, ASCII alphabetical
by source names, and LVS Report order.

Zoom To Last
Highlight

Zooms to the last highlighted net, device,
instance, or port using the zoom factor specified
in theSetup > Options View tab. The default
zoom factor is .7. This action can also be
performed through the left-most Z button on the
toolbar. The zoom options toolbar button (the
right-most Z button) also controls zoom features.

Clear Highlights Clears all highlights from the layout cell being
viewed on a layout editor. By default, highlights
accumulate in the layout editor. This action can
also be performed through the pencil eraser
button on the toolbar.
Calibre Verification User’s Manual, v9.1_5 15-35

Results Viewing Environment RVE/QDB-H and Query Server

e

-

en
s.

tion
• Single-left-click—Clears highlights in the currently selected Virtuoso
window.

• Shift-left-click—Clears the highlights in all Virtuoso windows. This is th
same action as a double-left-click.

• Ctrl-left-click—Clears highlights corresponding to the query-cell in LVS
RVE.

Layout Pulldown Menu

From the LVS-RVE session window, the Layout pulldown menu appears wh
you selectLayout. This menu allows you to perform queries on layout feature

Table15-8 lists and describes the commands located on the Layout pulldown
menu. The dialog box displayed for a particular entry is described in the sec
“Usage and Procedures” below.

Table 15-8. LVS-RVE Layout Pulldown Menu Commands

Command Description

Set Query
Context...

Displays the Set Layout Context dialog box where
you can specify the viewing cell and query instance
for your queries. The Set Layout Context dialog box
can also be accessed through the C button on the
toolbar. Refer to section“Viewing, Query, and
Query Instance Cells” on page 15-75 for more
information.

Set Query Filters Displays a flyout menu that allows you to set your
layout query filters. Your choices are:Layers… and
Devices… Both options display dialog boxes where
you select only those layers or device types you want
included in your queries. The submenu can also be
accessed through the F button on the toolbar.
Calibre Verification User’s Manual, v9.1_515-36

RVE/QDB-H and Query Server Results Viewing Environment
Net Queries... Displays the Query Layout Nets inlayout_cell
dialog box, wherelayout_cell is the query cell as
specified in the Set Layout Context dialog box. This
dialog box has numerous highlighting options for
you to choose from. This dialog box can also be
accessed through the N button with the transistor
symbol by it on the toolbar.

Device Queries... Displays the Query Layout Devices inlayout_cell
dialog box, wherelayout_cell is the query cell as
specified in the Set Layout Context dialog box. This
dialog box has several highlighting options for you
to choose from.This dialog box can also be accessed
through the D button with the transistor symbol by it
on the toolbar.

Instance Queries... Displays the Query Layout Instance inlayout_cell
dialog box, wherelayout_cell is the query cell as
specified in the Set Layout Context dialog box. This
dialog box can also be accessed through the I button
with the transistor symbol by it on the toolbar.

Port Queries... Displays the Query Layout Ports inlayout_cell
dialog box, wherelayout_cell is the query cell as
specified in the Set Layout Context For Queries
dialog box. This dialog box can also be accessed
through the P button on the toolbar.

Location Queries... Displays the Query Layout Location inlayout_cell
dialog box, wherelayout_cell is the query cell as
specified in the Set Layout Context dialog box. This
dialog box has several highlighting options for you
to choose from. This dialog box can also be accessed
through the L button on the toolbar.

Table 15-8. LVS-RVE Layout Pulldown Menu Commands

Command Description
Calibre Verification User’s Manual, v9.1_5 15-37

Results Viewing Environment RVE/QDB-H and Query Server

en

tion
Source Pulldown Menu

From the LVS-RVE session window, the Source pulldown menu appears wh
you selectSource.

Table15-9 lists and describes the commands located on the Source pulldown
menu. The dialog box displayed for a particular entry is described in the sec
“Usage and Procedures” below.

Unconnected
nets...

Displays the Unconnected Nets inlayout_celldialog
box, wherelayout_cell is the query cell as specified
in the Set Layout Context dialog box. This dialog
box allows you to locate instances in which a
specified target cell and net does not connect to a
reference net in the query cell.

Find Cell
Instances...

Displays the Find Layout Instances inlayout_cell
dialog box, wherelayout_cell is the query cell as
specified in the Set Layout Context dialog box.

Layout Cells... Displays the Layout Cells dialog box where you can
view a list of layout cell names and their
corresponding source cell names.

Table 15-9. LVS-RVE Source Pulldown Menu Commands

Command Description

Net Queries... Displays the Query Source Nets insource_cell
dialog box, wheresource_cell is the source cell
that corresponds to the query cell specified in the
Set Layout Context dialog box. The Query
Source Nets dialog box can also be accessed
through the N button with the netlist symbol by it
on the toolbar.

Table 15-8. LVS-RVE Layout Pulldown Menu Commands

Command Description
Calibre Verification User’s Manual, v9.1_515-38

RVE/QDB-H and Query Server Results Viewing Environment
Device Queries... Displays the Query Source Devices in
source_cell dialog box, wheresource_cell is the
source cell that corresponds to the query cell
specified in the Set Layout Context dialog box.
The Query Source Devices dialog box can also be
accessed through the D button with the netlist
symbol by it on the toolbar.

Instance Queries... Displays the Query Source Instances in
source_cell dialog box, wheresource_cell is the
source cell that corresponds to the query cell
specified in the Set Layout Context dialog box.
This dialog box can also be accessed through the
I button with the netlist symbol by it on the
toolbar.

Source Cells Displays the Source Cells dialog box where you
can view a list of source cell names and their
corresponding layout cell names.

Table 15-9. LVS-RVE Source Pulldown Menu Commands

Command Description
Calibre Verification User’s Manual, v9.1_5 15-39

Results Viewing Environment RVE/QDB-H and Query Server

you

d in
Setup Pulldown Menu

From the LVS-RVE session window, the Setup pulldown menu appears when
selectSetup.

Table15-10 lists and describes the commands located on the Setup pulldown
menu. Some of the dialog boxes displayed for particular entries are describe
the section “Usage and Procedures”.

Table 15-10. LVS-RVE Setup Pulldown Menu Commands

Command Description

Options... Displays the Setup LVS-RVE Options dialog box
where you specify setup options such as location
query filter distance, marker size, and how you
want the highlighted query results displayed.
Refer to Table15-14, Parameter Commands, for
details about Query Server filters and markers.

Layout... Displays the Setup Layout Viewer dialog box,
which connects you to a layout editor. This
allows you to view graphical query results.
Choices are: Mentor Graphics editors, Cadence
Virtuoso, and Seiko SX9000. The default is no
layout viewer.

Schematic... Displays the Setup Schematic Viewer dialog box,
which connects you to either the Design Architect
or Cadence Composer schematic viewer. This
allows you to view schematic graphical query
results. The default is no schematic viewer.

Show Toolbar
checkbox

Displays the toolbar that allows you to access
commonly used dialog boxes. This is activated by
default.

Show Tool Tips
checkbox

Specifies to display balloon help messages that
describe each toolbar button. This is activated by
default. Click the right mouse button with the
mouse located on a button to view the messages.
Calibre Verification User’s Manual, v9.1_515-40

RVE/QDB-H and Query Server Results Viewing Environment

ing
an

e

se

y

cell

ell
Setup > Options... opens the Setup LVS-RVE Options dialog box has the
following tabs:

Figure 15-5. LVS-RVE Setup Options

• Highlight—settings on this tab control panning, zooming, and highlight
settings for how RVE interacts with your layout editor. These controls c
also be accessed by the rightmost Z button on the toolbar.

• Layout—controls layout highlighting and viewing preferences. It has th
following tabs:

o Filters—allows you to specify layer and device distance filters. The
are used for location queries.

o Highlight—controls whether highlights are shown in the discrepanc
cell or the top-cell. When highlighting in the top cell, LVS-RVE will
choose a representative instance of the discrepancy cell in the top
and set the query context to that instance. Layout highlighting of
objects within the discrepancy cell will then be displayed in the top-c
within the boundary of the chosen instance.
Calibre Verification User’s Manual, v9.1_5 15-41

Results Viewing Environment RVE/QDB-H and Query Server

he
e in

ut.

 a

ss

le,

ut
dure

in
o Displace—controls coordinate offsets for RVE highlighting. Select t
Displace coordinates button to perform a displacement. Choices ar
top cell or in all cells. The X and Y displacement values go in theDelta
fields.

o Misc.—controls marker size and maximum vertices for polygon outp

• Schematic—controls whether you use a Spice prefix when highlighting
schematic device (true is the default).

• View—controls startup and exit settings, toolbar button appearance,
database warnings, and browse settings for pseudo cells and devicele
cells. You should visit this tab early in your RVE sessions to select the
behaviors you desire.

• Windows—controls position and size of RVE window.

• Files—controls database selection filters.

Usage and Procedures

This section provides an overview of the LVS-RVE functionality. As applicab
it provides procedural sequences or usage descriptions.

Getting Started

Before investigating your LVS-H results, you can set the query options, layo
editor, schematic editor, and filters as desired. This section provides a proce
to help you tailor your RVE environment to your needs.

All changes you make to the RVE settings are saved to a .rvedb file located
your working directory. This file is accessed every time you invoke RVE. To
return a setting to its default, you must specify the default explicitly.

To ready LVS-RVE for your queries, do any or all of the following steps:

1. In the LVS-RVE session window, selectSetup > Options(seeFigure 15-5)
Calibre Verification User’s Manual, v9.1_515-42

RVE/QDB-H and Query Server Results Viewing Environment

g.

res

on-
d.

ing

ion

bar

to
t for

the

m

2. In theHighlight tab, specify the layout editor behavior for viewing the
LVS errors. By default, the cell view does not change during highlightin
Alternatively, you can pan the cell view or zoom to the cell view on
highlight.

3. TheLayout tab enables you to control various layout presentation featu
using the following tabs:

a. Select theFilters tab if you want to specify filters. You can specify the
following:

o The filter distance in user units from the location point of a locati
based query beyond which a port, device, or net shape is ignore

o The layers to include in your queries by selecting theLayer Filters
button. All layers are queried by default.

o The device types you want searched in device queries by select
theDevice Filters button. All devices are queried by default.

You can also set your layer and device type filters through the sess
windowLayout > Set Query Filters menu item or the toolbar. When
you set filters, the layer names and device types display in the status
at the bottom of the session window.

b. Select theMisc. tab if you want to change the size of the marker used
mark pin and seed shape locations, or set the maximum vertex coun
polygons output at highlighted data.

TheMisc. tab comes forward and you can specify the marker size in
Marker Size: text entry box or a customized vertex count in the
Custom: text entry box. By default, the vertex count is 4096 or the
value specified by the optional DRC Maximum Vertex specification
statement in the rule file.

c. Select theDisplace tab if you want to displace LVS-RVE highlighting
coordinates by an X or Y increment while highlighting in a layout
viewer. This might be used, for example, if the GDSII produced fro
Calibre Verification User’s Manual, v9.1_5 15-43

Results Viewing Environment RVE/QDB-H and Query Server

its

.
dded

rs
ing
tab.

r
s.

or

t if
the viewer has been displaced by a corresponding increment from
original location in the layout editor.

Click theDisplace coordinates check box to enable this feature. You
can choose to displace highlighting in just the top cell, or in all cells
The increments are specified in user units. These increments are a
to each highlighting coordinate generated by LVS-RVE.

4. Click theView tab if you want to change the opening and closing behavio
of LVS-RVE. You can also choose to browse pseudocells (created dur
seed promotion, for instance) and deviceless cells (like vias) from this

5. Click theWindows tab if you want to customize the size and location fo
the Calibre LVS-RVE session, source netlist, and layout netlist window

TheWindows tab comes forward and you can record window positions f
future use. First, arrange the windows as you desire, then click theRecord
Positions button.

6. Click OK to enable your changes and dismiss the dialog box.

Your changes are saved in the .rvedb file in your home directory.

7. In the LVS-RVE session window, selectSetup > Layout… to select the
layout editor.

The Setup Layout Viewer dialog box opens.

8. In the Setup Layout Viewer dialog box, specify the following, as
applicable:

o Mentor Graphics, Cadence Virtuoso, Seiko SX9000, or no layout
viewer.

o Hostname the layout editor is running on. Generally, this is localhos
the layout editor is running on the same node as RVE.

o Socket port the layout editor listens on, which defaults to 9189.
Calibre Verification User’s Manual, v9.1_515-44

RVE/QDB-H and Query Server Results Viewing Environment

E

.

ut

ion

atic
he
ent

me

e

or
for
Refer to section“Layout Editor Considerations” on page 15-4 for
information on customizing the port.

Click theHelp button for information about connections between RV
and your layout editor.

o The intermediate file into which you want your query results stored
The default filename is query_results. Confirm that the path to the
specified file is accessible to the layout editor, especially if the layo
editor is running on another host.

o If the layout editor is running but you do not seem to have a connect
to RVE, click on theConnect button to create the connection. Make
sure the Hostname and Socket Number fields are correct.

9. Click OK to enable your changes and dismiss the dialog box.

10. In the LVS-RVE session window, selectSetup > Schematic…to select the
Mentor Graphics or Cadence schematic viewer. The Setup Schematic
Viewer dialog box opens.

o In the Setup Schematic Viewer dialog box, select the desired schem
viewer to enable highlighting in schematics. You can either reuse t
layout connection to the layout editor, or you can set up an independ
socket to the schematic viewer. You do this by specifying a hostna
and socket port number for the schematic viewer.

o If the schematic viewer is running but you do not seem to have a
connection to RVE, click on theConnect button to create the
connection. Make sure the Hostname and Socket Number fields ar
correct.

11. ClickOK to enable your changes and dismiss the dialog box.

Browse Button for Query Dialog Boxes

For all of the query dialog boxes we are about to discuss, there is aBrowsebutton
that opens an instance browser. The hierarchy is displayed on a cell basis. F
each unique cell instanced, a node will display the current instance number
Calibre Verification User’s Manual, v9.1_5 15-45

Results Viewing Environment RVE/QDB-H and Query Server

u

tion.

e
 the
d,
that cell. You can sequence through to the next instance of that cell by left-
clicking on the instance number string (for example, click on1 of 2 instances).
You can also right-click on this string to display a popup menu that allows yo
scan through and access a random instance index in the sequence.

Figure 15-6. LVS-RVE Browse Instances Dialog

This behavior is true of all instance browsers in LVS-RVE.

Net Queries

This section describes the various options you have for querying net informa

You can zoom to a desired instance in the schematic editor by highlighting th
instance within RVE. The schematic editor zooms to the top-level instance if
top-level is displayed in the window. If the top-level schematic is not displaye
the view is not adjusted.

You query nets through the Query Layout Nets inlayout_cell and Query Source
Nets insource_cell dialog boxes, which this section describes.
Calibre Verification User’s Manual, v9.1_515-46

RVE/QDB-H and Query Server Results Viewing Environment
Query Layout Nets in layout_cell Dialog Box. From the LVS-RVE session
window, the Query Layout Nets inlayout_cell dialog box displays when you:

• SelectLayout > Net Queries…

or

• Click on the toolbar button designated with a layoutN.

Figure 15-7. Query Layout Nets
Calibre Verification User’s Manual, v9.1_5 15-47

Results Viewing Environment RVE/QDB-H and Query Server

t.

Net

l

ht
Given a layout net name that you specify in theLayout Name text entry
field, you can do the following:

o Click the Net Info… button to view detailed information about the ne

Figure 15-8. Net Info Browser

A browser opens that displays a tree with connectivity information
about the net (N icon). Click on any square with a plus sign (+) to
access the next data branch. The tree includes information about the
Layers (L icon), Instances on net (I icon), Devices on net (D icon),
Ports on net (P icon), Corresponding Source Nets, and Hierarchica
Names. A blue icon indicates a layout item, a green one indicates a
source item. Selecting any of the small icons in the tree will highlig
the associated item in your layout editor.
Calibre Verification User’s Manual, v9.1_515-48

RVE/QDB-H and Query Server Results Viewing Environment

 the
on
nu

. By
ht
elf.
For example, The first entry in that panel is the Net Layers node.
Expand this node to display all the layers that contribute shapes to
net. Left-click on the icon next to the layer name to highlight the net
that layer. You may also right-click on the net name to display a me
that will allow you to highlight the net on that layer.

As shown inFigure 15-8, theInstances on net branch displays the
net’s name in the instance and a list of instances that the net visits
clicking on the T icon to the right of the net’s name, you can highlig
the net in the layout viewer in either the query cell or the instance its

o Click theNet by Location… button to display the Query Layout
Location inlayout_cell dialog box.

Figure 15-9. Query Location Dialog

Enter the X-Y coordinates in the appropriate fields, or selectClick in
layout for point... and then select a point in your layout editor view.
Calibre Verification User’s Manual, v9.1_5 15-49

Results Viewing Environment RVE/QDB-H and Query Server

y.
ct

ing
ng

ets
SelectingZoom to point will zoom the view in your layout editor to the
selected point by the currentSetup > Options > View zoom factor
setting.

Click theFind closest overlapping: button to return a list of nets that
overlap the location of interest.

Click on theHighlight button to see the results of your location quer
Objects that overlap the location you specify will be displayed. Sele
theList top-level only check box if you want results in top-cell
coordinates.

You can highlight any item in the list by selecting the item and press
the H key on your keyboard, or by right-clicking the item and selecti
highlight .

o Select from among the radio button choices in the Query Layout N
dialog. ClickHighlight to see the results of your query in the layout
editor.
Calibre Verification User’s Manual, v9.1_515-50

RVE/QDB-H and Query Server Results Viewing Environment

t.

a
ayout
n

Query Source Nets insource_cell Dialog Box. From the LVS-RVE session
window, the Query Source Nets insource_cell dialog box displays when you:

• SelectSource > Net Queries…

or

• Click on the toolbar button designated with a netlistN.

Figure 15-10. Query Source Nets Dialog

Given a source net name that you specify in theSource Nettext entry field,
you can do the following:

o Click theNet Info… button to view detailed information about the ne
A browser similar toFigure 15-8 appears.

The Netnet_name in cell_name dialog box opens and displays a tree
with connectivity information about the net. Click on any square with
+ to access the next data branch. The tree includes the associated l
net name and associated connectivity information. Selecting an ico
from the tree highlights it in your layout editor.

The Netnet_name in cell_name also allows you to view parasitic
information from Spice files extracted by xCalibre by expanding the
xCalibre PEX Info node. To view the RC net model for the net, left-
click theShow RC Net Modellabel. To view the lumped capacitors on
the net, left-click on theLumped C subnode. These actions will ask
Calibre Verification User’s Manual, v9.1_5 15-51

Results Viewing Environment RVE/QDB-H and Query Server

r

ow
k
or

n this
re not
you for the extracted netlist file name. To change the associated
filename ctrl-left-click on the nodes.

o Click theProbe net in schematic…button to use the schematic viewe
to select a net.

This button is only selectable if the schematic viewer’s session wind
is open. When you press this button, LVS-RVE waits for you to clic
on a net in the schematic. The net then highlights in the layout edit
and Spice browser, if open.

o Select theHighlight button in the Query Source Nets dialog to
highlight the net in the layout editor.

The various dialog boxes and browsers for the other query tools discussed i
section are very similar to the ones discussed above. Screen shots for them a
shown.

Device Queries

This section describes the various options you have for querying device
information. You query devices through the Query Layout Devices inlayout_cell
and Query Source Devices insource_cell dialog boxes, which this section
describes.

Query Layout Devices inlayout_cell Dialog Box. From the LVS-RVE session
window, the Query Layout Devices inlayout_cell dialog box displays when you:

• SelectLayout > Device Queries…

or

• Click on the toolbar button designated with a layoutD.

Given a layout device name that you specify in theLayout Device text
entry field, you can do the following:

o Click theShow Device Info… button to view detailed information
about the device.
Calibre Verification User’s Manual, v9.1_515-52

RVE/QDB-H and Query Server Results Viewing Environment

ata
d

ed

y.

ing
g

out
A browser opens that displays a tree with connectivity information
about the device. Click on any square with a + to access the next d
branch. Selecting any of the icons in the tree displays the associate
item in your layout editor.

o Click theDevice by Location…Query Layout Location inlayout_cell
dialog box.

Enter the X-Y coordinates in the appropriate fields, or selectClick in
layout for point... and then select a point in your layout editor view.
SelectingZoom to point will zoom the view in your layout editor to the
selected point by the currentSetup > Options > View zoom factor
setting.

Click theFind closest overlapping: button to return a list of devices
nearest the location of interest. Note that device locations are defin
by seed shapes that mark the lowest of the left-most vertices

Click on theHighlight button to see the results of your location quer
Select theList top-level only check box if you want results in top-cell
coordinates.

You can highlight any item in the list by selecting the item and press
the H key on your keyboard, or by right-clicking the net and selectin
highlight .

o Choose from among the three radio button settings in the Query Lay
Devices in layout_cell dialog and clickHighlight to show your query
results.

Query Source Devices insource_cell Dialog Box. From the LVS-RVE session
window, the Query Source Devices insource_cell dialog box displays when you:

• SelectSource > Device Queries…

or

• Click on the toolbar button designated with a netlistD.
Calibre Verification User’s Manual, v9.1_5 15-53

Results Viewing Environment RVE/QDB-H and Query Server

ow
k
to

.

e
 the
ot

:

Given a source device name that you specify in theSource Device text
entry field, you can do the following:

o Click Device Info… to view detailed information about the device.

A browser opens that displays a tree with connectivity information
about the device and its marker location in the layout. Click on any
square with a + to access the next data branch.

o Click Probe device in schematic… to use the schematic viewer to
select an instance.

This button is only selectable if the schematic viewer’s session wind
is open. When you press this button, LVS-RVE waits for you to clic
on a device in the schematic. Calibre LVS-RVE uses this information
determine the Spice suffix for the device. If multiple device suffixes
match, you will be given a list to choose from.

o Click theHighlight button to highlight your query in the layout editor

Instance Queries

This section describes the various options you have for querying instance
information.

You can zoom to a desired instance in the schematic editor by highlighting th
instance within RVE. The schematic editor zooms to the top-level instance if
top-level schematic is displayed in the window. If the top-level schematic is n
displayed, the view is not adjusted.

You query instances through the Query Layout Instances inlayout_celland Query
Source Instances insource_cell dialog boxes, which this section describes.

Query Layout Instances inlayout_cellDialog Box.From the LVS-RVE session
window, the Query Layout Instances inlayout_celldialog box displays when you

• SelectLayout > Instance Queries…

or
Calibre Verification User’s Manual, v9.1_515-54

RVE/QDB-H and Query Server Results Viewing Environment

and
ss

e

ing
ng
• Click on the button designated with a layoutI .

Given a layout instance name that you specify in theLayout Instance Path
text entry field, you can do the following:

o Click theInstance Info… button to view detailed information about the
instance.

A browser opens that displays a tree with the instance’s cell name
its marker location in the layout. Click on any square with a + to acce
the next data branch. Selecting any icon in the tree highlights the
associated item in the layout editor.

o Click theInstance by Location… Query Layout Instances in
layout_cell dialog box.

Enter the X-Y coordinates in the appropriate fields, or selectClick in
layout for point... and then select a point in your layout editor view.
SelectingZoom to point will zoom the view in your layout editor to the
selected point by the currentSetup > Options > View zoom factor
setting.

Click theFind closest overlapping: button to return a list of instances
nearest the location of interest.

Click theHighlight button to see the results of your query. Select th
List top-level only check box if you want results in top-cell
coordinates.

You can highlight any item in the list by selecting the item and press
the H key on your keyboard, or by right-clicking the item and selecti
highlight .

o Click Highlight In the Query Layout Instances dialog to show your
query results.

Query Source Instances insource_cellDialog Box.From the LVS-RVE session
window, the Query Layout Instances insource_cell dialog box displays when
you:
Calibre Verification User’s Manual, v9.1_5 15-55

Results Viewing Environment RVE/QDB-H and Query Server

and
ess

ow
k

tion.
• SelectSource > Instance Queries…

or

• Click on the first toolbar button from the right, designated with a netlistI .

Given a source instance name that you specify in theSource Instancetext
entry box, you can do the following:

o Click theInstance Info… button to view detailed information about the
instance.

A browser opens that displays a tree with the instance’s cell name
its marker location in the source. Click on any square with a + to acc
the next data branch. Selecting any icon in the tree highlights the
associated item in the layout editor.

o Click theProbe inst. in schematic… button to use the schematic
viewer to select an instance.

This button is only selectable if the schematic viewer’s session wind
is open. When you press this button, LVS-RVE waits for you to clic
on an instance in the schematic. The instance then highlights in the
layout editor and Spice browser, if open.

o Click theHighlight button to highlight the instance marker in your
layout editor.

Port Queries

This section describes the various options you have for querying port informa
You query ports through the Query Layout Ports inlayout_celldialog box, which
this section describes.

Query Layout Ports in layout_cell Dialog Box. From the LVS-RVE session
window, the Query Layout Ports inlayout_cell dialog box displays when you:

• SelectLayout > Port Queries…

or
Calibre Verification User’s Manual, v9.1_515-56

RVE/QDB-H and Query Server Results Viewing Environment

t

are
ree

e

by

e

ing
ng

y

• Click on the fifth toolbar button from the right, designated with a layoutP.

Given a layout port name that you specify in theLayout Port text entry
box, you can do the following:

o Click theShow Port Info… button to view detailed information abou
the port.

A browser opens that displays a tree with connectivity information
about the port and its marker location in the layout. Click on any squ
with a + to access the next data branch. Selecting any icon in the t
highlights the associated item in the layout editor.

o Click thePort by Location… button to display the Query Layout
Location inlayout_celldialog box, which is also accessible through th
toolbar.

Enter the X-Y coordinates in the appropriate fields, or selectClick in
layout for point... and then select a point in your layout editor view.
SelectingZoom to point will zoom the view in your layout editor to the
selected point by the currentSetup > Options > View zoom factor
setting.

Click theFind closest overlapping: button to return a list of ports
nearest your location of interest. Note that port locations are defined
seed shapes that mark the lowest of the left-most vertices

Click theHighlight button to see the results of your query. Select th
List top-level only check box if you want results in top-cell
coordinates.

You can highlight any item in the list by selecting the item and press
the H key on your keyboard, or by right-clicking the item and selecti
highlight .

o Click Highlight In the Query Layout Ports dialog to show your quer
results.
Calibre Verification User’s Manual, v9.1_5 15-57

Results Viewing Environment RVE/QDB-H and Query Server

, or
t

tem

:

apes

e

Location Queries

This section describes the various options you have for querying cell location
placement, information. You query cell placements through the Query Layou
Location inlayout_cell dialog box, which this section describes. This dialog is
accessible from all of the other Query Layout dialog boxes by selecting the i
by Location... button.

Query Layout Location in layout_cellDialog Box.From the LVS-RVE session
window, the Query Layout Location inlayout_cell dialog box displays when you

• SelectLayout > Location Queries…

or

• Click toolbar button designated with a layoutL . SeeFigure 15-9.

Given X-Y coordinates that you specify in theViewing Cell Coordinates
text entry boxes, you can do the following:

o Select theNets, Devices, Instances, orPorts radio button and then
click theFind closest overlapping: button to return the nets, devices,
instances, or ports overlapping the specified coordinate. The nets,
devices, instances, or ports appear in the text box below the radio
buttons. Note that device and port locations are defined by seed sh
that mark the lowest of the left-most vertices.

Click theHighlight button to highlight the net, device seed shape,
instance, or port seed shape returned by theFind closest overlapping:
command.

o You can specify the viewing cell coordinates by selecting theClick in
layout for point button, then clicking in the layout editor. The
coordinates corresponding to that location in the layout appear in th
Viewing Cell Coordinates text entry boxes.

Click Zoom to point to change the focus of the layout editor to the
point specified in the dialog box.
Calibre Verification User’s Manual, v9.1_515-58

RVE/QDB-H and Query Server Results Viewing Environment

en

ows

This

 in

LVS

and
iated
his

d

r

le
k

Zoom Settings Toolbar Button

The rightmost Z toolbar button facilitates easy changes of zoom settings. Wh
you click on the rightmostZ button in the toolbar, you see a drop-down menu.
The menu allows you to select zoom settings. You can also control whether
existing highlights are deleted before new highlights are drawn. This menu all
access to similar settings as those in theSetup > Options dialog Highlight tab.

Cross-probing with the Discrepancy Viewer

The discrepancy viewer allows you to investigate LVS Report discrepancies.
section describes its capabilities and how to use it to cross-probe the layout,
source netlist, and layout netlist.

To use the discrepancy viewer, follow these steps:

1. In the LVS-RVE session window, select theView pulldown menu and click
on theView Discrepancies radio button (this is selected by default).

LVS discrepancies display in the discrepancy viewing pane, as shown
Figure15-4.

By default, the discrepancies appear in the order the cells appear in the
Report. You can selectView > Sort Cells to choose a different sort mode.

Each cell with a discrepancy has a discrepancy branch. When you exp
the branch and select individual discrepancies in the branch, the assoc
connectivity information appears in the Discrepancy Information pane. T
discrepancy is considered active.

In the discrepancy information pane, note that certain data is highlighte
with colored text boxes, which indicate that you can access further
information. Click on a colored text box to make it active, then click you

Note

To use the discrepancy viewer you must have alayout_primary.dv
file in your SVDB directory, wherelayout_primary is the name
specified by the Layout Primary specification statement in the ru
file. This file is generated when you run Calibre LVS with the Mas
SVDB Directory specification statement in the rule file.
Calibre Verification User’s Manual, v9.1_5 15-59

Results Viewing Environment RVE/QDB-H and Query Server

 you
s its
t

u
ou

g

ut

e

out

ils
right mouse button. A popup menu appears, and from the popup menu
can, for example, highlight a selected net in your layout editor or acces
connectivity information. You can also double click on a net to highligh
nets.

2. SelectFile > Layout Netlist… (or select this item from the file browser)

A file viewer window opens with the layout netlist. Position it so that yo
can view the discrepancy viewer, layout editor, and layout netlist. As y
highlight items (nets, devices, or instances, for example) in the layout
editor, they also highlight in the layout netlist. This functions in reverse
also; an item you select in the layout netlist highlights the correspondin
item in the layout editor.

In the layout netlist, double click on a net to highlight the net in the layo
editor.

3. SelectFile > Source Netlist…(or select this item from the file browser)

Another file viewer window opens to display the source netlist. Refer to
section“Cross-probing with the Spice Browser” on page 15-62for detailed
information about using the browser. Position it so you can see all four
open windows. Note that as you highlight nets, they highlight in both th
layout and source netlists.

In the source netlist, double click on a net to highlight the net in the lay
editor and layout netlist.

4. In the discrepancy viewer, as desired, selectView > Show Discrep. Cells.
This shows only the cells with discrepancies. The default view mode is
Show All Cells.

5. In the results viewing area, click on any square with a + to display deta
about the mismatched cells.

6. Select a discrepancy to activate it and click your right mouse button.

A popup menu displays.
Calibre Verification User’s Manual, v9.1_515-60

RVE/QDB-H and Query Server Results Viewing Environment

w
it it,

are

u
u
pe

een

cies
in a

to
7. From the discrepancy viewer popup menu you can do the following:

• Click Set Context to Cellto set the RVE context to the cell containing
the current active discrepancy.

• Click theView Report File Entry button to view the portion of the
LVS Report that lists the active discrepancy.

The file viewer window opens to display the LVS Report. The windo
contains four pulldown menus that allow you to save the report, ed
reformat it, and execute searches.

• Click theList All Discreps in Cell button to display all the LVS
discrepancies associated with the applicable layout cell.

A new window opens that displays the LVS Report INCORRECT
NETS section for that layout cell.

Note the colored text boxes, which are described in step 1.

• Click theDiscrepancy Fixed toggle button to note that you have
corrected a discrepancy.

This is simply a notational convenience for you; you must actually
correct the discrepancy in the layout editor. Tagged discrepancies
saved in thelayout_primary.dv file.

To use the toggle button, select a specific discrepancy. Anytime yo
specify a corrected discrepancy, a green box appears next to it. Yo
mark all discrepancies within a type or cell at once by selecting the ty
or cell and clicking the toggle button.

When all discrepancies of a certain type within a cell are fixed, a gr
box also displays next to the discrepancy type’s listing. As each
discrepancy is marked as corrected, a count of the fixed discrepan
displays for the type as well as the cell. When all discrepancies with
cell are fixed, the red X icon displayed next to the cell listing changes
a transparent X icon.
Calibre Verification User’s Manual, v9.1_5 15-61

Results Viewing Environment RVE/QDB-H and Query Server

s by

te, as
ore

ut

or
s
,

r

t its
d

ser
You can change the state of a discrepancy or group or discrepancie
toggling theDiscrepancy Fixed button back to its off position.

8. In the discrepancy information pane, select a net, instance, or coordina
desired. They are denoted by their colored text boxes. A black undersc
appears when an item is active.

If you double-click a colored text box, the item is highlighted in the layo
editor and any netlist browsers you have open.

9. In the discrepancy information pane, click the right mouse button.

A popup window displays. Its menu items depend on the active item. F
example, if you selected a net, you can highlight it in the layout, acces
further net information, or do a text search. If you selected a coordinate
you can zoom to it in your layout, or highlight the closest net, device, o
port.

Cross-probing with the Spice Browser

The Spice browser allows you to investigate a Spice netlist and highligh
elements in your layout editor. This section describes its capabilities an
how to use it to cross-probe the layout editor and the other Spice brow
(layout or source), if open.
Calibre Verification User’s Manual, v9.1_515-62

RVE/QDB-H and Query Server Results Viewing Environment

of
when
Figure 15-11. Spice Netlist File Viewer

Table15-11provides an overview of the Spice browser menu bar items. Many
these menu bar items also appear on the right-click popup menus that appear

menu bar

toolbar

hierarchy tree

status bar
Calibre Verification User’s Manual, v9.1_5 15-63

Results Viewing Environment RVE/QDB-H and Query Server

hy
you place the cursor either over empty window space, an item in the hierarc
tree, or an item in the Spice netlist and you right-click.

Table 15-11. Spice Browser Menu Items

Command Description

File Open… Opens a text file.
Current Files… Opens a dialog box that shows
.include files. You can display any of the listed files in
the Spice browser’s netlist pane. This is also accessible
through the toolbar files icon.
Close Closes the Spice browser.

Select Select by Name...Allows you to select devices and nets
by name in the Spice netlist. You can also add paths to
your selection environment.
Clear Selection Environment Clears the selection
environment.
Unselect All Clears all highlights in the Spice netlist
and layout editor (as applicable).

View Sort Hierarchy by NameSorts the subcircuits,
instances, and non-instances listed in the hierarchy tree
in alpha-numeric order.
Sort Hierarchy by Called Subckt Sorts instances in
the hierarchy tree by called subcircuit name.
Hide Empty Subckts Shows/hides empty subcircuits.
Hierarchy Window Shows/hides the hierarchy
window on the left side of the browser.
Line Numbers Shows/hides line numbers.
Line Wrapping Activates/deactivates line wrapping.
Font Adjusts font size.
Status BarShows/hides the status bar.
Calibre Verification User’s Manual, v9.1_515-64

RVE/QDB-H and Query Server Results Viewing Environment

.

Go Search…Searches the netlist for text you specify. This
is also accessible through the toolbar binoculars icon.
Go to line… Goes to the line you specify.
Go to Select Env Goes to the selection environment
you have chosen, if any, under
Select > Select by Name...
Search Hierarchy for Instance... Opens the Search
Hierarchy for Instance dialog. You can specify which
subckt to search in (the "top" subckt) by clicking on that
subckt's primary entry in the hierarchy pane. Type in the
name of the instance to search for in the text field in the
dialog.

• TheForward andBackward buttons allow you
search up or down for the instance from the
currently selected position.

• SelectFind From Top if you want to begin at
the top level subckt and search in a depth-wise
fashion. SelectFind Next if you want to find
the next instance (either forward or backward).
When an instance is found, the hierarchy pane is
opened to that particular instance and the path
to the instance is displayed in the Location field
(below the toolbar). Right click in the Location
area to display a menu that now allows you to
set the select environment to that location.

Back Go back through locations in the hierarchy tree.
This is also accessible through the toolbar.
Forward Go forward through locations in the hierarchy
tree. This is also accessible through the toolbar buttons
Clear History Clears the search history used by Back
and Forward functions.

Table 15-11. Spice Browser Menu Items [continued]

Command Description
Calibre Verification User’s Manual, v9.1_5 15-65

Results Viewing Environment RVE/QDB-H and Query Server

 the

,

.

e
w it
text
x
s in
ed

list,
The following procedure steps through the various actions you can take with
Spice browser. After step 1, you can highlight and browse as you desire; the
sequence is for instructional purposes only.

1. In the LVS-RVE session window, selectFile > Source Netlist…or choose
Source Netlist from the file browser.

The File viewer window displays with the Spice netlist in the righthand
window and a hierarchy tree of Spice subcircuits in the lefthand window
similar to that shown in Figure15-11.

As shown above, you can display the cell hierarchy by clicking on any
square with a + to access the next data branch. The + turns to a - sign

Notice that theLocation: text box displays the path of your location in th
subcircuit hierarchy tree. You can select any element in this path to vie
in the Spice netlist. Forward and backward arrows at either end of the
box allow you to move along the path when it is longer than the text bo
itself. You can also select any item in the hierarchy tree. Selecting item
either the path or the tree scrolls the netlist to the item you have select
and places a >> marker by it in the netlist.

When you click on any net name, number, or instance in the Spice net
all references to it in the applicable subcircuit highlight. This also

Windows Arrange File Viewer Windows: Changes the File
Viewer window display to the specified choice.
Cascadearranges files in an overlapping cascade.
Tile Horizontally arranges windows horizontally, not
overlapping.
Tile Vertically arranges windows vertically, not
overlapping.
Tile in a 2X2 Grid arranges files in two columns and
two rows, not overlapping.
Original Locations Reverts to the original File Viewer
window display.

Table 15-11. Spice Browser Menu Items [continued]

Command Description
Calibre Verification User’s Manual, v9.1_515-66

RVE/QDB-H and Query Server Results Viewing Environment

r

ty

n

ce

ws.

r
tlist

n in

o

highlights the corresponding objects in all open views. With your curso
over a highlighted object in a netlist, you can right-click and choose
Unselect Objectto clear the currently selected object highlights.
Alternatively, right-click and chooseUnselect all in Subcktto unselect all
highlights in the selected subcircuit. You can also right-click in the emp
Spice browser window space to the right of the netlist text and choose
Unselect All to unselect all highlights.

You can highlight elements in the current Spice netlist only (that is, no
other views will display the highlighted objects) by right-clicking over a
element. In the popup menu that appears you can then choose either
Select Object or Select By Name...

2. To highlight a net or instance in the layout editor, click the net or instan
name.

Note that if you highlight an object in the layout editor from a Spice
browser, the corresponding source cell name highlights in the Spice
browser. In addition, the object highlights in all associated open windo
For example, highlighting a layout netlist object will also highlight the
corresponding object in the source netlist, if a corresponding object is
found. In this way, you can do a netlist-to-netlist comparison of
corresponding items. Selecting discrepancies in the discrepancy viewe
causes the corresponding objects to highlight in all open layout and ne
windows associated with the discrepancy.

3. To view an item in the hierarchy tree from the corresponding item show
the Spice netlist, you have many options:

o Right-click the cursor over an item in the Spice netlist. SelectingFind
in Hierarchy from the right-click menu will open the hierarchy tree t
the object you select. If you right-click a .Subckt call and chooseGo to
Called Subckt, the hierarchy tree and Spice browser will go to the
called subcircuit.

o Click on theBack andForward arrows in the toolbar to move through
previously highlighted locations in the hierarchy tree.
Calibre Verification User’s Manual, v9.1_5 15-67

Results Viewing Environment RVE/QDB-H and Query Server

ith

to

me.

ou
nd

or
nd
o the
cted

turn

 the
Each time you change location within the hierarchy tree, LVS-RVE
adds it to its history of locations. TheBack andForward buttons move
through this location history, which you can clear with theGo > Clear
History pulldown menu item.

4. To follow a net’s connection through hierarchy, do the following:

a. In the Spice netlist window, select the net of interest by selecting it w
the left mouse button.

The net is highlighted everywhere it appears in the subcircuit.

b. In the hierarchy tree window, find the net’s subcircuit and click the +
display the instances within it.

The subcircuit name is listed in parenthesis beside the instance na

c. In the hierarchy tree window, pick the instance/subcircuit pair that y
want to trace the highlighted net into by placing the mouse over it a
clicking the right mouse button.

A popup menu displays.

d. SelectAdd to Select Env.

This command specifies to follow the connectivity of the net, device
instance into the instantiated subcircuit. A red square appears arou
the instance and subcircuit name to indicate that it has been added t
selection environment. A corresponding red S appears next to sele
instances in the netlist.

Once you add a subcircuit to the selection environment, you can re
to it in the hierarchy tree at any time by selecting theGo to selection
environment item on the toolbar.

You can also add a subcircuit to the selection environment through
Add path to select environment button in theSelect > Select by
Name dialog box.
Calibre Verification User’s Manual, v9.1_515-68

RVE/QDB-H and Query Server Results Viewing Environment

it

e

eck

heir
t

heck.
are
e
log.

t the
is
e. In the hierarchy tree window, double-click on the selected subcircu
name.

The selected subcircuit displays in the Spice netlist window with th
connections of the net, device, or instance highlighted.

You can follow the net, device, or instance up to the next level of
hierarchy by adding successive subcircuits to the selection
environment. The connections highlight as you do this.

5. As desired, in the Netlist window, selectSelect > Clear Selection Env to
clear the selection environment.

LVS Short Isolation

Calibre LVS generates a short isolation database if you specifyLVS Isolate Shorts
YES in your rule file. The database is a DRC database and is named
lvs_report_name.shorts, wherelvs_report_name is the report name specified by
theLVS Report statement in your rule file.

You can open the short isolation database by selectingFile > Open DB....
Navigate to the short isolation database and selectOK . The short isolation
database you specify will open in a DRC-RVE window. When you select a ch
in the DRC-RVE window, right-click and chooseHighlight All Check Errors .
The geometry associated with the short will highlight in your layout editor
window.

Short isolation databases contain information about shorted text labels and t
locations. DRC-RVE can parse this information and optionally display the tex
while highlighting each short.

Short isolation databases represent each short as a group of polygons in a c
When you highlight all the check polygons from DRC-RVE, the shorted texts
also drawn in the layout. You can control the size of text in the Text tab of th
Setup/Options dialog. You can also turn off the drawing of the text in that dia

The shorted text for each short (check) is displayed in the Checktext pane a
bottom of the DRC-RVE window. If you click on the location for the text in th
pane, DRC-RVE will zoom the layout window to that location.
Calibre Verification User’s Manual, v9.1_5 15-69

Hierarchical Query Database RVE/QDB-H and Query Server

e

tivity

ical

le
he
hen

r. It is
 a

 to
ical

the

ge
Text Selection in LVS-RVE Text Fields and Listboxes

Whenever you select any item in a text field or in a listbox, that selection is
automatically copied to the X selection and can be pasted by a middle mous
button click. You can turn off this feature by setting the
MGC_UI_NO_EXPORT_SELECTION environment variable before starting
LVS-RVE.

Hierarchical Query Database

This section describes the Query Server employed by RVE to return connec
information.

A PHDB is a persistent hierarchical database that contains selected hierarch
geometries, connectivity, extracted devices, #ifdef statement definitions, and
Variable specification statement definitions. It also stores environment variab
settings during rule file compilation of an original Calibre run and will reuse t
stored values when the rule file is restored by the Query Server. It is created w
the compiled rules operate on a GDSII layout and is stored in the SVDB.

The Query Server acts as an intermediary between a persistent hierarchical
database (PHDB) and a program, such as a Perl script, layout editor, or a use
primarily for program-to-program communication, such as between RVE and
PHDB. However, you can also use it interactively to examine a PHDB.

The Query Server returns requested data about a design, which can be used
construct netlists, investigate the details of discrepancies listed in a hierarch
LVS report or for xCalibre debugging. The Query Server can also provide
information such as:

• A list of all cells or hierarchical cells in a layout design.

• The geometric representation of a net or device.

Note

The information in this section describes the Query Server from
perspective of the user who wants to access query database
information from the command line. This is not required knowled
for RVE users.
Calibre Verification User’s Manual, v9.1_515-70

RVE/QDB-H and Query Server Hierarchical Query Database

.

this

DB,

n
ready

uery
 can

e
al

uring
rms.

n

t
tion.
• A list of all devices attached to a given net.

• Alist of all nets attached to a given device.

• Cell, net, and device correspondences between the layout and source

In addition, the Query Server can produce standard format files that contain
type of information through the Calibre Connectivity Interface (CCI), which is
discussed later in this chapter.

Upon invocation or when accessed by RVE, the Query Server reads the PH
the GDSII file specified by theLayout System specification statement in the rule
file, and, if available, reads in the source-to-netlist cross-reference informatio
contained in the cross-reference database (XDB). It then announces that it is
to respond to query commands.

Query Server commands are in ASCII format. Commands either control the
Query Server or request design information. They are read as standard in. Q
Server indirect responses are in ASCII DRC results database file format, and
be viewed with IC Station. Case-sensitivity is driven by the Layout Case and
Source Case specification statements in the rule file.

SVDB Database

The Standard Verification Database (SVDB) is composed of several separat
databases that are generated during Calibre LVS. The Persistent Hierarchic
Database (PHDB) contains information produced during the LVS Extraction
(calibre -spice) phase of execution. Cross Reference information produced d
the LVS comparison phase of execution may also be generated in several fo

The Mask SVDB Directory rule file statement controls the types of informatio
written to the SVDB database. For additional information, see the SVRF Manual.

Note

The rule file must include theMask SVDB Directory specification
statement to use the Query Server. In addition, source-to-netlis
cross-reference data is required when querying source informa
These must be obtained by running Calibre LVS-H with the -hcell
option.
Calibre Verification User’s Manual, v9.1_5 15-71

Hierarchical Query Database RVE/QDB-H and Query Server

es,

ayers

LVS
ntains:

d to

rely
The PHDB database contains the following information:

• Cell and cell placement information (hierarchical mode only).

• The complete text of the rule file(s) used for extraction.

• Summary extracted device information including device coordinates, typ
calculated properties, pin and pin location information.

• Net connectivity information through the hierarchy of cell placements.

• Geometry information for database layers that appear in Connect and
Sconnect operations, serve as Device seed or pin layers, or are target l
of Stamp operations (second argument of Stamp).

• Device seed shape information.

The XDB (Cross Reference Database) contains information generated after
comparison associating devices and nets with one another. This database co

• Net cross reference for nets matched during LVS including nets matche
multiple nets.

• Unmatched incorrect nets and undecided nets.

• Instance cross reference for instances matched during LVS including
smashed instances and gate membership information.

• Unmatched instances (except filtered instances).

• Original netlist placement hierarchy information (for hierarchical mode
only).

Information from each database is available independently. Some commands
on both databases to generate results.
Calibre Verification User’s Manual, v9.1_515-72

RVE/QDB-H and Query Server Query Server

file,
B). It

e

ctive

ecify
r

ID 0
can

t

h

The
Query Server
Upon invocation, the Query Server reads the GDSII file specified in the rule
and if available, reads in the source-to-netlist cross-reference database (XD
then announces that it is ready to respond to client query commands:

OK: Ready to serve.

Client Context

The server is aware that the application has multiple client contexts. From th
server’s point of view client contexts are created, go through phases of being
active and inactive and eventually are deleted. Exactly one client context is a
at any given time and is called the current client.

Commands are provided for the application to create new client contexts, sp
which client context is currently active, and delete client contexts. The serve
treats all queries as having come from the currently active client context. The
server assigns client ID numbers (non negative integers) to the clients. Client
represents the application itself as a client context. It initially exists, is active,
become inactive, but can never be deleted. A client context can only be
inactivated by activating another client context. Only an inactive client contex
can be deleted. Thus there is always exactly one active client context.

The server maintains a small table, the client table, of information about eac
client context. Commands exist which allow a client to modify its client table
information. Note that there is no scanner state information in the client table.
server does not directly support scanning paradigms. Any scanning state
information must be maintained by the application.

Table15-12 describes the data stored as the current context for each client:

Table 15-12. Client Table

Entry Description

ID Client ID number of this client context.
Calibre Verification User’s Manual, v9.1_5 15-73

Query Server RVE/QDB-H and Query Server

s

Query Cell The name of a cell (not a cell instance) about which
queries are currently being made. The default value is
the name of the top cell of the design.

Viewing Cell The name of a cell (not a cell instance) whose
coordinate space is used for the return of geometric
results. The value must either be the query cell or a cell
containing an instance (possibly separated by several
levels of hierarchy) of the query cell.

Query Instance If the viewing and query cells are the same, this value i
NULL. Otherwise it is the pathname relative to the
viewing cell of an instance of the query cell.

Response Mode The method in which the server will respond: direct
(standard out) or indirect (response file). NULL if this
client is receiving direct responses, otherwise the
pathname of the user-specified response file for this
client. The default value is NULL.

Marker Size The width in user units of the geometric squares used to
mark pin and seed shape locations in responses. The
default value is 0.25.

Filter Distance The distance from the location point of a location-based
query beyond which a port, device, or net shape is
ignored. The default value is 0, which means the port or
device coordinate must exactly match the location point
and the edge of a net shape must pass through the
location point. In normal use, this value should be set a
larger value.

Filter Layers A list of layer names and/or numbers. In NET
LOCATION or PORT LOCATION queries, ports or net
shapes not on one of these layers are ignored. This filter
has no effect on any other queries. The default value is
ALL, which represents all possible layers.

Table 15-12. Client Table [continued]

Entry Description
Calibre Verification User’s Manual, v9.1_515-74

RVE/QDB-H and Query Server Query Server

ch

nses,
ll is
g
ed

ell or
cell

ll. If
tance
h

 the
tem.

,y)
bject

t

Viewing, Query, and Query Instance Cells

A hierarchical LVS report contains a layout-to-source cell comparison for ea
corresponding hierarchical cell, or hcell. The hcell about which queries are
currently being made is the query cell. In commands and Query Server respo
pathnames are always relative to the query cell. For example, if the query ce
ADDER2 and the command contains the net path X2/CLK.Then the net bein
specified is the net named CLK in the cell instance named X2 in the cell nam
ADDER2.

Geometric results are either returned in the coordinate system of the query c
in the coordinate system of a cell containing an instance of the query cell. The
in whose coordinate system the results are returned is called the viewing ce
the viewing cell is not the same as the query cell, then it must contain an ins
(possibly separated by several levels of hierarchy) of the query cell. One suc
instance is designated as the query instance and the geometric results from
query cell are mapped onto that instance in the viewing cell’s coordinate sys

In commands which require the specification of a geometric location using (x
coordinates, the coordinates are those of the viewing cell, even though the o

Filter Devices A list of device type numbers. In DEVICE LOCATION
queries, devices whose types are not present on the lis
are ignored. The default value is ALL, which represents
all possible device types. See sectionDevice Tablesfor
more details.

Filter Windows A set of rectangular viewing windows beyond which
location-based query responses are ignored. Setting
filter windows can decrease response time of a
command.

Filter Cull The (x, y) dimensions specifying the minimum extent
dimensions required for a polygon to be reported in
results sets. If a polygon is not either wider than x, or
taller than y, it is not reported.

Table 15-12. Client Table [continued]

Entry Description
Calibre Verification User’s Manual, v9.1_5 15-75

Query Server RVE/QDB-H and Query Server

r

e
cell.

ains
X1

2.

us,
.

being specified is in the query instance. The coordinates are specified in use
units.

In summary, when the viewing cell and query cell are distinct, pathnames ar
relative to the query cell but geometric coordinates are relative to the viewing

To illustrate these concepts, consider the design in Figure15-12. Top cell A
contains instances, X1 and X2 of cell B and nets N3 and N4. Cell B also cont
nets named N3 and N4. Net N3 in cell A connects nets N3 and N4 of instance
and net N3 of instance X3. Net N4 of cell A connects to net N4 of instance X

Figure 15-12. Top Cell A

Consider the query “NET SHAPES N3” in the following three examples.

Example 1: The viewing and query cells are both A (see Figure15-13). In this
case the user is viewing cell A and asking about objects relative to cell A. Th
N3 in the query refers to net N3 of cell A. The results are mapped into cell A

A

X1 B

N3 N4

X2 B

N3 N4

N3 N4
Calibre Verification User’s Manual, v9.1_515-76

RVE/QDB-H and Query Server Query Server

2

3 in
ape

us,
ll B.
The Query Server will return the gray shapes shown below in the coordinate
system of A:

Figure 15-13. Viewing and Query Cells are both A

Example 2: The viewing cell is A, the query cell is B and the query instance is X
(see Figure15-14). In this case the user is viewing cell A but making queries
relative to cell B and expects the results to be mapped on instance X2. Thus, N
the query refers to net N3 of cell B. The Query Server will return the gray sh
shown below in the coordinate system of A:

Figure 15-14. Viewing Cell is A, Query Cell is B,
Query Instance is X2

Example 3: The query and viewing cells are both B (see Figure15-15). In this
case the user is viewing cell B and asking about objects relative to cell B. Th
N3 in the query refers to net N3 of cell B. The results are to be mapped into ce

A

X1 B

N3 N4

X2 B

N3 N4

N3 N4

A

X1 B

N3 N4

X2 B

N3 N4

N3 N4
Calibre Verification User’s Manual, v9.1_5 15-77

Query Server RVE/QDB-H and Query Server

o
irect
ent.
ion

until
 set to
 no
writes
irst,
d,

ete
he
have

ious

lines
ion.
“//”
The Query Server will return the gray shape shown below in the coordinate
system of B:

Figure 15-15. Viewing and Query Cells are both B

Server-Client Communication

The server communicates with the client application by reading standard in t
receive commands and writing standard out to return acknowledgements. D
responses are written to standard out immediately following the acknowledgm
Indirect responses are written to the current response file where the applicat
can read it directly.

When a response file is established for a client ID, it is used for all responses
another response file is established or the client context’s response mode is
direct. It is the application’s responsibility to delete these files when they are
longer needed. Each time a response is generated, the server opens the file,
the response into the file, and closes the file. This has several implications. F
any previous contents of the file are overwritten by the new response. Secon
after receiving the “OK” acknowledgment, the application can rename or del
the file if it wishes. The server will use the file again for the next response. T
application can establish a new response file whenever it wishes. Thus it can
each response directed to a different response file or can have all responses
directed to the same file. In the latter case, new responses will overwrite prev
responses unless the application renames the file between responses.

Command Format

Commands are used by the applications to control the server. Blank lines and
beginning with “#” are ignored and may be used in test scripts for documentat
All other lines are treated as command lines. Here are some examples (the

B

N3 N4
Calibre Verification User’s Manual, v9.1_515-78

RVE/QDB-H and Query Server Query Server

ter.
y
mes.
ty and
are

of the
le

ing
d

nt
rary

(the
comments are not part of the command and would not be allowed on the
command line):

NET SHAPES X12/X45/CLOCK1
// app asks for geometries of a net relative to the current
// query cell
DEVICE INFO X95/X4/X312/C4
// app asks for information about a device relative to the
// current query cell
ACTIVATE 12
// app asks server to deactivate the current context
// and activate client id 12

Each command is a single string of ASCII text terminated by a return charac
The command consists of one or more fixed command words followed by an
additional information required by the command such as numbers or path na
The words chosen to represent a command are a compromise between brevi
human legibility. Later sections cover each command in detail. Although they
shown in upper case in this document, the server is not sensitive to the case
command words. Case sensitivity of the arguments depends upon the rule fi
Layout Case and Source Case statements.

Acknowledgements

Each command between application and server is replied to by an
acknowledgment. An acknowledgment is a single string of ASCII text beginn
with three spaces and terminated by a carriage return character. A comman
which generates responses will generate a response if and only if its
acknowledgment begins with “OK”.

Since some acknowledgement lines contain pathnames and other design
information, there is no guaranteed limit on the length of an acknowledgeme
line. The application must be prepared to accept acknowledgements of arbit
length and to reformat them for display if necessary. Here are some examples
“//” comments are not part of the acknowledgment):

OK. // command succeeded

OK: 7 // command succeeded; returned value 7
Calibre Verification User’s Manual, v9.1_5 15-79

Query Server RVE/QDB-H and Query Server

son

are

s

 and
s of

nt of
y
ent

d to
s

ining
 and
t is
he
uest

 is

01-
may
rite
NOK(1): There are no pins on layout net FOO. // command failed for given rea

ERROR(108): Client id 0 can never be disconnected.
// command failed for given reason

The four examples above illustrate the four types of acknowledgment. They

• Simple success: This acknowledges that the command succeeded. It i
always the string “OK.”. Any additional information generated by the
command is returned in a response.

• Success with value: This acknowledges that the command succeeded
returns some information produced by the command. It always consist
the string “OK:” followed by the information. This form of
acknowledgment is used with commands which generate a small amou
information which can fit on a single line. It is possible (but not currentl
done) that a command could given a success with value acknowledgm
and also return information in a response.

• Failure: This acknowledges that the command was performed but faile
produce any of the requested information. In particular no response wa
generated. It is always of the form “ NOK(<num>): <reason>”, where
<num> is a number in the range 1-99 and <reason> is a sentence expla
the reason for failure. The reason is formatted for human consumption
may be displayed to the human client. The <num> is provided so that i
easy for a computer program to identify the message without parsing t
reason. This type of acknowledgment is only used for queries which req
design information.

• Error: This acknowledgment is given when a problem has arisen which
more serious or which could have been avoided. It is always of the form
“ERROR(<num>): <reason>”, where <num> is a number in the range 1
199 and <reason> is a sentence explaining the reason for the error. It
represent a failure of the environment (such as the inability to open or w
to the response file) or misuse of the communication channel by the
application (such as an unknown command or a command which is
inappropriate but could have been avoided).
Calibre Verification User’s Manual, v9.1_515-80

RVE/QDB-H and Query Server Query Server

e to a
even
onse
ion

the

e
the
ver,
rved

xt

he
f a

d the

er,
tes
ntly
Response Format

A response contains the design information returned by the server in respons
query and is formatted as an ASCII DRC Results Database file. This is true
in direct response mode where the response is not written to a file. The resp
format allows for return of both textual and graphical information. The definit
of the ASCII DRC Results Database is found in“ASCII and Binary DRC Results
Databases” on page 14-11. The coordinate system used in a response is
determined by the current context.

Responses are formatted as follows:

• Header line followed by one or more check sections. The header line
contains a cell name followed by the precision of the design.

• Check sections beginning with a check title line containing the name of
check, which may contain embedded white space.

• Count line containing the number geometries currently in the check, th
number of geometries originally in the check, the number of text lines in
check, and the date. The two geometry counts are always equal. Howe
response readers must ignore the original geometry count which is rese
for future expansion.

• Zero or more text lines, the number of lines having been given in the te
line count field of the count line.

• Zero or more polygons, the number of polygons having been given in t
current geometry count field of the count line. Each polygon consists o
polygon header line containing the character p, a polygon number (in
responses the polygons are numbered sequentially from 1 upward), an
vertex count of the polygon.

• Vertex lines contain the vertices of the polygon in counterclockwise ord
one vertex per line, each line containing the x followed by the y coordina
of the vertex. Note that the edge cluster form of geometries is not curre
used in responses.
Calibre Verification User’s Manual, v9.1_5 15-81

Query Server RVE/QDB-H and Query Server

nt
om

d

bout
sign

ce
• End of response check title and count lines. Because it is always prese
and always the same, the END OF RESPONSE response is omitted fr
the command descriptions later in this document.

Below is a visual representation of the response format. The angle-brackete
items on each line are separated by spaces, and with the exceptions of the
<check_name> and <text_line> items contain no white space.

<response_name> <precision>// leader line
<check_name>// first check title line
<curr_count> <orig_count> <text_count> <date>// count line
<text_line>// first text line
… // more text lines
p <poly_number> <vertex_count>// polygon header line
<x> <y>// first vertex line
… // more vertex lines
… // more polygons
… // more check sections
END OF RESPONSE// end check title line
0 0 0 <date>// end check count line

Device Tables

The device table consists of an indexed set of entries containing information a
each device type in the design. There is only one such table for the entire de
and it is independent of context. The indices range from 0 ton-1, where there aren
Device specification statements in the rule file. These indices are called devi
type numbers. Each entry contains the following information:

The device type is one of the following constants: “DIODE”, “RESISTOR”,
“CAPACITOR”, “MOS”, “BIPOLAR”, “USER”.

device type pin names

element name pin layers

model name pin swap group numbers

netlist element name auxiliary layers

netlist model name property names
Calibre Verification User’s Manual, v9.1_515-82

RVE/QDB-H and Query Server Query Server

ice
ws
mple

e

ntry

r the
ICE

the

 in

 is
ble
will
een
Responses that describe devices or device pins use the indices into the dev
table to reduce the size of the response. The DEVICE TABLE command allo
the user to view the device table to interpret the device type numbers. For exa
in a response giving the device pins on a net, each pin is described by the
following five items:

• <device_path> path name ending with device instance name

• <device_type> the 0-based index of the device entry in the device tabl

• <pin_index> the 0-based index of the pin in the pin lists of the device e

• <x> the x coordinate of the pin in the current view cell

• <y> the y coordinate of the pin in the current view cell

Additional information about the device, such as the values of its properties o
nets to which its other pins are connected, can be obtained by using the DEV
INFO command.Pin and property names are lowercase. Layer names have
same case as the rule file.

Net Names

Nets in a command may be referred to by name or by number. Nets returned
acknowledgements or responses are always returned by name if possible,
otherwise by number.

PHDB and XDB Only Modes

The Query Server normally provides information gathered during circuit
extraction (PHDB) and LVS comparison (XDB). If one or the other database
missing, a subset of commands which require only information from the availa
database will continue to work. So, for example, the NET SHAPES command
work even if no LVS comparison has occurred (and no XDB database has b
written). The DEVICE SOURCE command will work for Spice to Spice
comparisons where no PHDB has been written.
Calibre Verification User’s Manual, v9.1_5 15-83

Query Server RVE/QDB-H and Query Server

ery
n

olve
ry

ond

 next
he

ing

.
rrent

es are
hown
, none
Flat Database Mode

Flat LVS runs can generate an SVDB database which can be read by the Qu
Server. The SVDB for a flat LVS run contains no cell or placement informatio
since all layout and source information is flattened during the LVS run. All
devices and nets appear to be in a single top-level cell. Commands which inv
placement arguments or involve multiple cells are not available from the Que
Server in FLAT mode.

Limitations

The Query Server has the following limitations:

• It has no knowledge of the LVS discrepancy report and thus cannot resp
to discrepancy number based queries.

• It will not retain the type of state information which allows it to produce
sequencing or scanning behavior. For example, there is no “return the
device on this net” query. All such sequencing must be performed by t
application. (The browse operations help with this type of operation).

• No progress information is generated as the response to a query is be
generated.

• Filter Devices only affects the DEVICE NAMES and DEVICE
LOCATION queries. It could also be made to affect NET PINS by
returning only pins of device types on the filter list.

Commands and Queries

Tables15-13 through15-21 describe the commands the Query Server accepts
Unless specified otherwise, commands and their arguments pertain to the cu
query cell, and pathnames are relative to the current query cell. Nets in a
command can be referred to by name or by number. Nets returned in respons
always returned by name if possible, otherwise by number. Responses are s
for commands that issue responses. If a command does not issue a response
is indicated in the command descriptions.
Calibre Verification User’s Manual, v9.1_515-84

RVE/QDB-H and Query Server Query Server

l

s

y
t

is
y

Communication and Control Commands

The commands described inTable 15-13are used for communication and contro
between the Query Server and the client.

Table 15-13. Communication and Control Commands

Command Acknowledgments

Description

ACTIVATE client_id OK.
ERROR(106), ERROR(107)

Description: Deactivates the current client and activates the given client
and its current context.
Notes: In case of error, the current client remains active.

CONNECT OK: new_client_id

Description: Deactivates the current client context, creates an unused
client ID number, initializes the client table entries for that context to their
default values, makes the new client context the active context, and return
the new client ID.
Notes:
a) Client IDs are non-negative integers.
b) There is no reasonable limit to the number of client contexts which ma
be defined at any given time, but only one may be the current active clien
context.
c) When the server is initiated it creates client id zero and activates it. Th
client context can never be deleted. It is suggested it be reserved for use b
the application acting on its own behalf when multiple client contexts are
being maintained. For example some application implementations may
wish to cache information such as the device table so they can use it
directly without requesting it of the server for each operation.
Calibre Verification User’s Manual, v9.1_5 15-85

Query Server RVE/QDB-H and Query Server
DISCONNECT client_id OK.
ERROR(106), ERROR(107),
ERROR(108), ERROR(109)

Description: Deletes the stored current context about aninactive client,
which makes the client id undefined for the rest of the Query Server
session.

ECHO OK: ECHO {ON | OFF}

Description: Intended only for use in testing the Query Server, this toggles
the echo state. Normally the server does not echo standard in to standard
out. However in testing the server with a script, it is convenient that it do
this so that the output contains a complete transcript of the session
including comments and blank lines in the input. When the echo
state is ON, all input is echoed to output. The echo state is initially OFF.
Notes:
a) The acknowledgement shows the new echo state.
b) The echo state applies to all clients.

Table 15-13. Communication and Control Commands [continued]

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_515-86

RVE/QDB-H and Query Server Query Server

e

HELP COMMANDS OK.
Error(1)

Description: Returns a list of the valid Query Server commands and
arguments (including the Calibre Connectivity Interface). Each command
is listed together with its arguments on a separate line. Alternate forms ar
listed on separate lines. The list is intended to serve as a crib sheet for
people already familiar with the command set and its function. It does not
attempt to explain the commands.
Response:
Help_Commands <precision> // “Help_Commands” and precision
Commands: // “Commands:”
0 0 <n> <date> // n lines of text follow (no geometries)
protocol version // first command description
help commands // next command description
. . . // additional command descriptions
device info <layout_device_path> // last command description

Table 15-13. Communication and Control Commands [continued]

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_5 15-87

Query Server RVE/QDB-H and Query Server

t

,
e

e

).
PROTOCOL VERSION OK: major_version,minor_version

Description: Returns the communication protocol version used by the
Query Server. This allows socket clients to verify that they are dealing with
a protocol they understand. Protocol here refers to the command set, and
the actions it invokes in the system including the content of
acknowledgment and responses.
Notes:
a) The protocol version consists of two integers separated by a period.
b) When a protocol change is made, if the new protocol is a strict superse
of the old, the minor_version number is incremented but the major_version
number is retained. Otherwise the major_version is incremented and the
minor_version is set to zero. Thus a client which understands protocol k.m
can use any protocol k.n where n greater than or equal m, but could not us
protocol j.l where j is unequal to k. (For an exception, see the next note.)
c) Note that changes in the text explanations returned in failure and error
acknowledgements are considered to produce a superset of the previous
protocol. The would cause the minor_version to be incremented, but not th
major. Any client which is dependent on the content of these text
explanations would not be compatible with the new minor
version.

RESPONSE DIRECT OK.

Description: Sets the Query Server response mode to direct (standard out
If a response file exists at the time this command is processed, it is
abandoned but not deleted.
Notes:
a) If there was a response file established at the time this command is
received, the server abandons it. It is the application’s responsibility to
delete it.

Table 15-13. Communication and Control Commands [continued]

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_515-88

RVE/QDB-H and Query Server Query Server

r

d

d

s

y

s

RESPONSE[MULTIPLE] FILE
response_file_path

OK.
ERROR(101), ERROR(102)

Description: Establishes file as the response file for the current client
context. If the MULTIPLE keyword is used, multiple sequential responses
are all appended to the file in DRC Results format. Normal response heade
and trailer information is not issued for subsequent commands. The
MULTIPLE setting is useful for viewing responses to several commands
simultaneously.
Response:
Response_File <precision> // “Response_File” and design precision
File: <response_file_path>
// “File:” followed by the response file path name
0 0 0 <date> // no geometries and no lines of text follow
Notes:
a) There is no information content in the response. However it may be rea
by the client as a confirmation that the response mechanism has been
properly set up. Of course the client should first check that the
acknowledgment was “OK.”.
b) The response file may already exist in which case the response written
into it at the front of the file, overwriting any exiting content.
c) If there was a current response file established at the time this comman
is received, the server abandons it. It is the client’s responsibility to delete
it.
d) If this command fails with an error, the response mode is set to direct a
if the command had been RESPONSE DIRECT. This is because any
current response file may no longer be appropriate. That is, the client ma
have deleted or renamed it as well as the directory containing it before
issuing this command. The client must watch for this error since it change
the nature of acknowledgment channel traffic.

Table 15-13. Communication and Control Commands [continued]

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_5 15-89

Query Server RVE/QDB-H and Query Server

h

e) Once the file_path_name has been validated as descibed above, the
server will attempt to use for all following commands until another
RESPONSE DIRECT or RESPONSE FILE command is issued. If for
whatever reason the server is no longer able to write to this file path, eac
command which attempts to generate a response will fail with an
“ERROR(101): File <response_file_path> could not be opened for
writing.” error. That is, once the RESPONSE FILE command has accepted
the path, the only way to change it is with a RESPONSE DIRECT or
RESPONSE FILE command.

TERMINATE OK: Terminating.

Description: Causes Query Server to terminate and exit.

Table 15-13. Communication and Control Commands [continued]

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_515-90

RVE/QDB-H and Query Server Query Server

s

o
s,
ng

he
th
try

nt
the
tor

is
Parameter Commands

The commands described inTable 15-14are used to set and inquire about variou
parameters and settings that affect the results of queries.

Table 15-14. Parameter Commands

Command Acknowledgments

Description

CONTEXT view_cell
[query_instance_path]

OK: Query cell:query_cell
ERROR(103), ERROR(104)

Description: Given a cell name and optionally a cell instance path relative t
that cell, change the client table context entries for the current client. That i
establish the view cell, query cell and query instance path if any. Any existi
filter windows are deleted.
Notes:
a) If OK is returned, the following changes are made to the client table for t
current client: the viewing cell entry is set to view_cell. If query_instance_pa
was absent, the query cell entry is set to view_cell and the query instance en
is set to NULL, otherwise the query instance entry is set to
query_instance_path and the query cell entry
is set to the name of the cell of which that is an instance.
b) The acknowledgement returns the name of the query cell so that the clie
may confirm the query_instance_path lead to the desired type of cell, or in
case where a human user issued the query path through an editor, the edi
easily determine the newly established query cell.
c) The instance path must be of the form Xn 1 /Xn 2 /.../Xn k , where each n i
an integer.
d) If an error is returned, the current context remains unchanged.
Calibre Verification User’s Manual, v9.1_5 15-91

Query Server RVE/QDB-H and Query Server

ght

se

E
ed
FILTER CULL x y OK.
ERROR(117)

Description: Given a minimum width X, and a minimum height Y, this
command causes result shapes which do not exceed X in width or Y in hei
to be filtered from the results presentation.
Notes:
a) Marker squares are never filtered.
b) FILTER CULL 0 0 eliminates this filtering (default behavior).

FILTER DEVICES {ALL | device_list}
or
FILTER DEVICENAMES
element_name [(model_name)]...

OK.
ERROR(115), ERROR(126)

Description: Given the keyword ALL or a list of device type numbers or
names, these commands set the filter device list for the current client to tho
values. The new list will be effective beginning with the next response. See
section “Device Tables” for more details.
Notes:
a) The device_list> consists of a white space separated list of device type
numbers. Valid numbers range from 0 to one less than the number DEVIC
statements in the rule file. The meaning of a given number can be determin
from the device table.
b) For FILTER DEVICENAMES, all devices that match the element_name
(model_name) combination are added to the filtered list.
c) If an invalid list is given, the former list is retained.
d) The value ALL represents all possible device type numbers, in effect
causing no filter-ing.
e) The default value for new clients is ALL.

Table 15-14. Parameter Commands [continued]

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_515-92

RVE/QDB-H and Query Server Query Server

ve

 a

e of
.
that
int
FILTER DISTANCE distance OK.
ERROR(113)

Description: Given a non-negative number, this command sets the filter
distance for the current client to that value. The new distance will be effecti
beginning with the next response.
Notes:
a) The filter distance is expressed in user units and may be represented as
decimal integer or fraction. It must be non-negative. It is not checked for a
reasonable maximum size, but large values may significantly delay the
response.
b) If an invalid distance is given, the former value is retained.
c) The default value for new clients is 0.
d) Large values of the filter distance cause the Query Server to search mor
the design space. The prudent client will use the smallest reasonable value
e) In general, the filter distance may be set to 0 as long as the user is aware
the hierarchy is searched only for placements which overlap the search po
directly (not placements which are nearby).

Table 15-14. Parameter Commands [continued]

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_5 15-93

Query Server RVE/QDB-H and Query Server

he

g.
FILTER LAYERS {ALL | layer_list} OK.
ERROR(114)

Description: Given the keyword ALL or a list of layer names and numbers,
this command sets the filter layer list for the current client to those values. T
new list will be effective beginning with the next response.
Notes:
a) The layer_list consists of a white space separated list of layer names or
numbers as they are used in the rule file.
b) If an invalid list is given, the former list is retained.
c) The value ALL represents all possible layers, in effect causing no filterin
d) The default value for new clients is ALL.
e) In any given command, layers in the list which are not relevant to that
command will be ignored. For example, the NET LOCATION x y command
will ignore any non-connectivity
layers.
f) If a layer has a name then the layer number can not be used.

Table 15-14. Parameter Commands [continued]

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_515-94

RVE/QDB-H and Query Server Query Server

ies.

e

e

r

e

or
FILTER WINDOW
{INCLUDE x1 y1 x2 y2|
EXCLUDE x1 y1 x2 y2 | NONE }

OK.
ERROR(117)

Description: Given a set of rectangular coordinates, these commands
manipulate a set of viewing windows which apply to coordinate based quer
Notes:
a) FILTER WINDOW INCLUDE causes results from the specified area to b
included in results.
b) FILTER WINDOW EXCLUDE causes results from the specified area to b
excluded from results.
c) Successive calls to FILTER WINDOW INCLUDE and FILTER WINDOW
EXCLUDE build up complex viewing area consisting of multiple rectangula
areas that are either included or excluded.
d) FILTER WINDOW NONE clears all windows and returns to the default
state (results from the entire set of coordinates are presented).
e) The SET CONTEXT command eliminates all FILTER WINDOWS (same
as FILTER WINDOW NONE).

MARKER SIZE size OK.
ERROR(110)

Description: Given a marker size, this command sets the marker size for th
current client to that value. The new size will be effective beginning with the
next response.

MAXIMUM VERTEX COUNT count OK.
ERROR(119)

Description: Given a value, this command sets the maximum vertex count f
results for all clients. The new size will be effective beginning with the next
response.

Table 15-14. Parameter Commands [continued]

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_5 15-95

Query Server RVE/QDB-H and Query Server

ent

s the

be
STATUS [CLIENT | VIEW CELL |
QUERY INSTANCE |
QUERY CELL |
RESPONSE MODE |
MARKER SIZE |
MAXIMUM VERTEX COUNT |
FILTER DISTANCE |
FILTER LAYERS |
FILTER DEVICES | FILTER CULL |
FILTER WINDOWS]

If no entry_name was given, the
acknowledgement is “OK.” and
information is
returned in a response. If an
entry_name was supplied, the
acknowledgement is of the
form “OK: entry_name:
entry_value” where entry value is
the value of the entry for
the current client. Note the colon
separating the entry_name from
the entry_value.

Description: Responds with the status of the current client for the specified
argument, whether it be a numeric value or a text string. If no argument is
specified, responds with the values for all the arguments in the client’s curr
context.
Response:
If an entry_name was given, there is no response. Otherwise the response i
following:
Status <precision> // “Status” followed by design precision
Entries: // “Entries:”
0 0 <n> <date> // n lines of text follow (no geometries)
<entry_name_1>: <entry_value_1> // first entry name and value
. . . // intermediate names and values
<entry_name_n>: <entry_value_n> // last name an value
Notes:
a) The <entry_name_n>’s are the same text strings as listed above in the
Command section but in lower case. Note that some are a single word and
others are multiple words. The value is separated from the last word of the
name by a colon and white space.
b) If the response mode is currently direct, the value for response mode will
“(direct)”.

Table 15-14. Parameter Commands [continued]

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_515-96

RVE/QDB-H and Query Server Query Server

 be

s

se
ed
c) If the view and query cells are the same, the value of query instance will
“(null)”.
d) If the filter layers list contains all layers, the value of filter layers will be
“(all)”.
e) If the filter devices list contains all device types, the value of filter device
will be“(all)”.
f) The order in which the entry_name_n: entry_value_n pairs appear in the
response is not guaranteed. Program clients who wish to parse this respon
should do so on the bases of the value of entry_name_n, not on an assum
position of a given item in the list. (Such clients will have a longer and more
graceful life!)
g) MAXIMUM VERTEX is global, not client-specific

Table 15-14. Parameter Commands [continued]

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_5 15-97

Query Server RVE/QDB-H and Query Server

e

.

Cell Query Commands

The commands described inTable 15-15 are used to query cell information.

Table 15-15. Cell Query Commands

Command Acknowledgment

Description

CELLS CORRESPONDING OK.
NOK(21), ERROR(102)

Description: Returns a list of corresponding hcell pairs as determined by
LVS. Each pair consists of a layout cell name and the corresponding sourc
cell name. (Also see the commands CELL CORRESPONDING SOURCE
and CELL CORRESPONDING LAYOUT.)
Response:
Corresponding_Cells <precision> // “Corresponding_Cells” and precision
Correspondences: // “Correspondences:”
0 0 <n> <date> // n lines of text follow (no geometries)
<layout_cell_name_1> <source_cell_name_1>
...
<layout_cell_name_n> <source_cell_name_n>
Notes:
a) Cell are listed in top to bottom order. That is, if cell A directly or
indirectly contains an instance of cell B, then cell A will appear earlier in
the list than cell B. Thus the first cell in the list is the top cell of the design
b) This list contains only the cells which correspond between layout and
source. The complete list of layout cells or source cells can be obtained
using the CELLS LAYOUT or CELLS SOURCE commands.
c) Due to the match by name option for hierarchical lvs, this list may be
more comprehensive than the “hcells” list given to LVS. That is, it will also
include all cells matched by name.
Calibre Verification User’s Manual, v9.1_515-98

RVE/QDB-H and Query Server Query Server

ed

d

ed

cell
re
CELL CORRESPONDING
LAYOUT
source_cell_name

OK:
corresponding_layout_cell_name
NOK(21), NOK(26)

Description: Given the name of a source cell, returns the name of the
corresponding layout cell. The correspondence is the same as that return
by the CELLS CORRESPONDING command. That command returns all
cell correspondences as a response. This returns only the single layout
cell corresponding to a single source cell as an acknowledgement. This is
more efficient for the client who is only interested in a single
correspondence. (See also the commands CELLS CORRESPONDING an
CELL CORRESPONDING SOURCE.)

CELL CORRESPONDING
SOURCE
layout_cell_name

OK:
corresponding_source_cell_name
NOK(2), NOK(21)

Description: Given the name of a layout cell, returns the name of the
corresponding source cell. The correspondence is the same as that return
by the CELLS CORRESPONDING command. That command returns all
cell correspondences as a response. This returns only the single source
corresponding to a single layout cell as an acknowledgement. This is mo
efficient for the client who is only interested in a single correspondence.
(See also the commands CELLS CORRESPONDING and CELL
CORRESPONDING LAYOUT.)

Table 15-15. Cell Query Commands

Command Acknowledgment

Description
Calibre Verification User’s Manual, v9.1_5 15-99

Query Server RVE/QDB-H and Query Server

n

CELLS LAYOUT OK.
ERROR(101), ERROR(102)

Description: Responds with a list of all layout cell names in a design.
Response:
Cells_Layout <precision> // “Cells_Layout” followed by design precision
Cells: // “Cells:”
0 0 <n> <date> // n lines of text follow (no geometries)
<cell_name_1> // top cell in layout design
. . . // intermediate cells in layout design
<cell_name_n> // last cell in layout design
Notes:
a) Cell are listed in top to bottom order. That is, if cell A contains an
instance of cell B, then cell A will appear earlier in the list than cell B. Thus
the first cell in the list is the top cell of the design.
b) The list of cell names contains all cells in the layout, not just those which
correspond to source cells.
c) The list returned can be used by the client to set up a scan over all cells i
the layout design.

Table 15-15. Cell Query Commands

Command Acknowledgment

Description
Calibre Verification User’s Manual, v9.1_515-100

RVE/QDB-H and Query Server Query Server

n

CELLS SOURCE OK.
NOK(21), ERROR(101),
ERROR(102)

Description: Responds with a list of all source cell names in a design. Cells
are listed top-to-bottom.
Response:
Cells_Source <precision> // “Cells_Source” followed by design precision
Cells: // “Cells:”
0 0 <n> <date> // n lines of text follow (no geometries)
<cell_name_1> // top cell in source design
. . . // intermediate cells in source design
<cell_name_n> // last cell in source design
Notes:
a) Cell are listed in top to bottom order. That is, if cell A contains an
instance of cell B, then cell A will appear earlier in the list than cell B. Thus
the first cell in the list is the top cell of the design.
b) The list of cell names contains all cells in the source, not just those which
correspond to layout cells.
c) The list returned can be used by the client to set up a scan over all cells i
the source design.

CELL TOP OK: top_cell_name

Description: Returns the name of the top-level cell.

Table 15-15. Cell Query Commands

Command Acknowledgment

Description
Calibre Verification User’s Manual, v9.1_5 15-101

Query Server RVE/QDB-H and Query Server

h
ces--

t

"
e

Browse Pseudo or Deviceless Cells

The commands described inBrowse Pseudo or Deviceless Cells Commandsallow
for simpler browsing functionality within the Query Server by peeking throug
certain uninteresting cells (pseudo cells and/or cells that do not contain devi
like vias).

Table 15-16. Browse Pseudo or Deviceless Cells Commands

Command Acknowledgments

Description

BROWSE PSEUDO CELLS
{ NO | YES}

OK.

Description: Causes the Query Server's BROWSE commands to peek/no
peek through artificially-created pseudo cells. The Calibre hierarchical
database causes creation of various pseudo cells with names like "ICV_nn
(where nn is a number). By default, pseudo cells are peeked through for th
purposes of BROWSE commands (BROWSE PSEUDO CELLS NO).
Notes:
By default, pseudo cells are peeked through by the BROWSE
commands.
Ouput with NO specified (pseudo cells are transparent):

NET BROWSE DEVICES GND X34
Net_Browse_Devices 1000
Devices:
0 0 6 Dec 11 10:27:34 2001
X34/X0/M6 1
X34/X0/M7 1
X34/X0/M8 1
X34/X1/M6 1
X34/X1/M7 1
X34/X1/M8 1
Placements:
0 0 0 Dec 11 10:27:34 2001
END OF RESPONSE
0 0 0 Dec 11 10:27:34 2001

OK.
Calibre Verification User’s Manual, v9.1_515-102

RVE/QDB-H and Query Server Query Server
Output with YES specified:
NET BROWSE DEVICES GND X34
Net_Browse_Devices 1000
Devices:
0 0 0 Dec 11 10:27:34 2001
Placements:
0 0 2 Dec 11 10:27:34 2001
X34/X0 ICV_22
X34/X1 ICV_22
END OF RESPONSE
0 0 0 Dec 11 10:27:34 2001

OK.
Here ICV_22 is a pseudo cell.

Table 15-16. Browse Pseudo or Deviceless Cells Commands

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_5 15-103

Query Server RVE/QDB-H and Query Server

t
,

BROWSE DEVICELESS CELLS
{ NO | YES}}

OK.

Description: Causes the Query Server's BROWSE commands to peek/no
peek through cells that do not contain any devices hierarchically (via cells
for example).
Notes:
By default, deviceless cells are peeked through by the BROWSE
commands.
Output with NO specified (deviceless cells are transparent):

NET BROWSE SHAPES gnd x649
Net_Browse_Shapes 1000
M1
1 1 0 Dec 11 10:27:34 2001
p 1 8
364900 13800
365700 13800
365700 19700
368800 19700
368800 13800
369600 13800
369600 21900
364900 21900
VIA1 <<< (shapes on layer VIA1 come from cell VIA12)
2 2 0 Dec 11 11:22:27 2001
p 1 4
364850 13750
365750 13750
365750 19750
364850 19750
p 2 4
365300 20350
369200 20350
369200 21250
365300 21250

Table 15-16. Browse Pseudo or Deviceless Cells Commands

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_515-104

RVE/QDB-H and Query Server Query Server
Placements:
0 0 1 Dec 11 11:22:27
2001
X649/X4 NAND
END OF RESPONSE
0 0 0 Dec 11 11:22:27
2001

OK.
Output with YES specified:

NET BROWSE SHAPES gnd
x649
Net_Browse_Shapes 1000
M1
1 1 0 Dec 11 10:27:34
2001
p 1 8
364900 13800
365700 13800
365700 19700
368800 19700
368800 13800
369600 13800
369600 21900
364900 21900
Placements:
0 0 3 Dec 11 10:27:34
2001
X649/X2 VIA12
X649/X3 VIA12
X649/X4 NAND
END OF RESPONSE
0 0 0 Dec 11 10:27:34
2001

OK.
VIA12 is a deviceless cell.

Table 15-16. Browse Pseudo or Deviceless Cells Commands

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_5 15-105

Query Server RVE/QDB-H and Query Server
Cell Query Placement Commands

The commands described inTable 15-17 are used to query cell placement
information.

Table 15-17. Cell Query Placement Commands

Command Acknowledgment

Description

PLACEMENT BROWSE
DEVICES
placement_name

OK.
NOK(18), ERROR(32),
ERROR(33)

Description: List devices within a particular cell placement.
Response:
Placement_Browse_Devices <precision>
// Placement_Browse_Devices and design precision
0 0 n <date_stamp>
// 0 0 <number_of_devices> date/time stamp
<device_name> ...
// <device_name> of <placement_cell>
...additional devices

PLACEMENT BROWSE NETS
placement_name

OK.
NOK(16), ERROR(32),
ERROR(33)

Description: List nets within a particular cell placement.
Response:
Placement_Browse_Nets <precision>
// Placement_Browse_Nets and design precision
0 0 n <date_stamp>
// 0 0 <number_of_nets> date/time stamp
<net_name> ...
// <net_name> of <placement_cell>
...additional nets
Calibre Verification User’s Manual, v9.1_515-106

RVE/QDB-H and Query Server Query Server
PLACEMENT BROWSE
PLACEMENTS
placement_name

OK.
NOK(22), ERROR(32),
ERROR(33)

Description: List cell placements within a particular cell placement.
Response:
Placement_Browse_Placements <precision>
// Placement_Browse_Placements and design precision
 <placement_cell>
// The following placements are of cell <placement_cell>
0 0 n <date_stamp>
// 0 0 <number_of_placements> date/time stamp
 <placement_name> ...
// <placement_name> of <placement_cell>
...additional cells
...additional placements

PLACEMENT BROWSE PORTS
placement_name

OK.
NOK(10), ERROR(32),
ERROR(33)

Description: List ports within a particular cell placement.
Response:
Placement_Browse_Ports <precision>
// Placement_Browse_Ports and design precision
0 0 n <date_stamp>
// 0 0 <number_of_ports> date/time stamp
<port_name> ...
// <port_name> of <placement_cell>
...additional ports

Table 15-17. Cell Query Placement Commands [continued]

Command Acknowledgment

Description
Calibre Verification User’s Manual, v9.1_5 15-107

Query Server RVE/QDB-H and Query Server
PLACEMENT INFO
placement_name

OK.
NOK(32), ERROR(102),
ERROR(104)

Description: Given the name of a cell instance placement in the current
query cell, returns the name of the cell and its extent. If a device instance
placement name is provided, this has the same effect as using theDEVICE
INFO command.
Response:
Placement_Info 1000 // “Placement_Info” and design precision
cell_name // placement_name is a placement of cell_name
1 1 0 <date> // 1 polygon in response
p 1 4
... // 4 sets of vertices marking the extent of the placement

PLACEMENT LAYOUT
source_placement

OK.
NOK(2), NOK(8), NOK(21)

Description: Given the name of a source placement, returns the name of
the corresponding layout placement. Since device and placement
correspondence are maintained in the same data structures,
this command is simply an alias for the Device Layout command.

Table 15-17. Cell Query Placement Commands [continued]

Command Acknowledgment

Description
Calibre Verification User’s Manual, v9.1_515-108

RVE/QDB-H and Query Server Query Server

nt

f
s
h

PLACEMENT LOCATION
{ cell_name x y ll_x ll_y ur_x ur_y |
m n [FLAT] }

OK: placement_path1…
placement_pathn
NOK(24)

Description: Given a placement’s cell name, origin, and lower-left and
upper-right coordinates, returns the path name of each matching placeme
in the layout. See the notes for the matching criteria.

The first form of this command is expected to be used primarily by clients
which are layout editors and have knowledge of the origins and extents o
cell placements. It is necessary because, given a placement of a cell in it
data base, an editor cannot on its own determine the layout path by whic
that placement is known to the Query Server. This is because it cannot
know the numbering system used in the layout from which the Query
Server works and because that layout may have had additional cells and
placement added to the design by hierarchical injection.

A second form of the command is expected to be used directly by end
users. It returns all placements of any cell placed under a specified point
with coordinatesm n. Hierarchy is descended and all placements at any
point in the hierarchy are reported if the FLAT option is included.

Filter: FILTER DISTANCE

Response:
Form 1: None
Form 2:
Placement_Location 1000 // “Placement_Location” and design precision
placement_name cell_name // placement_name of cell cell_name
...
Notes:
a) Thecell_name is the layout name of the cell whose placement is being
sought.
b) The pointx y is the origin of the placement in viewing cell coordinates.

Table 15-17. Cell Query Placement Commands [continued]

Command Acknowledgment

Description
Calibre Verification User’s Manual, v9.1_5 15-109

Query Server RVE/QDB-H and Query Server

re

al

e
e
p

c) The points ll_x ll_y ur_x ur_y are the lower left and upper right corners
of the placement extent.
d) A placement is selected by the first form of this command if it meets the
following criteria:
- It is a placement of cellcell_name in the layout hierarchy in or below the
current query cell.
- The rectangular extent of the placement in the layout database overlaps
the rectangular extent given in the command.
- The origin of the placement in viewing cell coordinates is within the
current filter distance from the point specified by x y.
e) The layout path names of each placement meeting the above criteria a
returned in the acknowledgement. See the next note for the ordering.
f) The placement extents known to the Query Server are based on the actu
geometries used for the placement when the hierarchical data base was
created from the original GDSII file. For this reason they may differ from
the extent known to the editor. The matching placements are
returned in order of decreasing overlap between the hierarchical data bas
extent and the editor extent. That is, the first placement path returned is th
most likely to be the desired placement because it has the greatest overla
with the editor’s placement extent specified asll_x ll_y ur_x ur_y in the
command.

Table 15-17. Cell Query Placement Commands [continued]

Command Acknowledgment

Description
Calibre Verification User’s Manual, v9.1_515-110

RVE/QDB-H and Query Server Query Server

g

PLACEMENT NAMES [FLAT] OK.
NOK(22), NOK(23), NOK(33)
ERROR(101), ERROR(102)

Description: Responds with a list of all cell placement names that appear
in the current query cell. If FLAT is specified, all cell placements in the
flattened query cell are reported.
Response:
Placement_Names <precision> // “Placement_Names” and design
precision
Placements: // “Placements:”
0 0 <n> <date> // n lines of text follow
<placement_name_1> // first placement name in current context
. . . // intermediate placement names in current context
<placement_name_n> // last placement name in current context
Notes:
a) If the optional command word FLAT is used, all cell placements in the
flattened query cell are reported. Otherwise only cell placements appearin
directly in the query cell are reported.
b) The order in which the placements are listed is arbitrary.

PLACEMENT SOURCE
layout_placement

OK.
NOK(2), NOK(7), NOK(21)

Description: Given the name of a layout placement, returns the name of
the corresponding source placement. Since device and placement
correspondence are maintained in the same data structures,
this command is simply an alias for the Device Source command.

Table 15-17. Cell Query Placement Commands [continued]

Command Acknowledgment

Description
Calibre Verification User’s Manual, v9.1_5 15-111

Query Server RVE/QDB-H and Query Server

ice

e

PLACEMENT TRANSFORM
placement_name

OK: x-offset y-offset reflection
rotation
NOK(32)

Description: Given the name of a placement in the current query cell,
returns the transform information (x offset, y offset, reflection, rotation)
about the placement. Offsets are in database units, reflection is 0 for no
reflection and 1 for reflection, rotation is in degrees.

PLACEMENT VALID { SOURCE
| LAYOUT } device_path

OK: device_path
NOK(7), NOK(8), NOK(9)

Description: Returns with a message stating whether the Query Server
recognizes the path name to the placement. This is the same as the Dev
Valid command.

PLACEMENTS OF cell_name
[FLAT]

OK.
NOK(22), NOK(23), NOK(33)
ERROR(101), ERROR(102)

Description: Responds with the placements of the specifiedcell_name. If
FLAT is specified, all placements ofcell_name in the flattened query cell
are reported. Otherwise, only placements that appear in the query cell ar
reported. The order in which the placements are listed is arbitrary.
Response:
Placements_Of <precision> // “Placements_Of” and design precision
Placements: // “Placements:”
0 0 <n> <date> // n lines of text follow
<placement_name_1> // first placement name rooted in current context
. . . // intermediate names rooted in current context
<placement_name_n> // last placement name rooted in current context
Notes:
a) If the optional command word FLAT is used, all placements of in the
flattened query cell are reported. If FLAT is omitted, only placements
appearing directly in the query cell are reported.
b) The order in which the placements are listed is arbitrary.

Table 15-17. Cell Query Placement Commands [continued]

Command Acknowledgment

Description
Calibre Verification User’s Manual, v9.1_515-112

RVE/QDB-H and Query Server Query Server

e

Query Port Commands

The commands described inTable 15-18 are used to query port information.

Table 15-18. Query Port Commands

Command Acknowledgments

Description

PORT INFO port_name OK.
NOK(11), ERROR(101),
ERROR(102)

Description: Given the name of a port in the current query cell, returns the
name of the net to which the port is attached, the signal direction of the
port, and for each location associated with the port, a marker square
centered at that location on the appropriate layer.
Response:
Port_Info <precision> // “Port_Info” and design precision
Port: <port_name> // constant “Port:” followed by port name
0 0 2 <date> // two lines of text follow
<net_name> // net attached to port
<signal_direction> // signal direction number: 0 = in, 1 = out, 2 = in/out
Layer_name_1 // first layer on which port has a presence
k k 0 <date> // k squares on this layer
p 1 4 // first square on this layer
. . . // the four vertices of the first square
. . . // remaining k-1 squares on this layer
. . . // remaining layers on which port has a presence.
Notes:
a) The size of the marker squares is determined by the current value of th
MARKER SIZE parameter.
Calibre Verification User’s Manual, v9.1_5 15-113

Query Server RVE/QDB-H and Query Server
PORT LOCATION x y OK: port_name
NOK(13), ERROR(116)

Description: Given a location in the current viewing cell coordinate
system, returns the pathname of the closest port in the current query
instance to that location.
Filter: FILTER LAYERS
Notes:
a) Ports of cells with placements in the query cell are ignored. That is, only
ports of the query cell itself are examined.
b) Ports which are not on a layer in the current client’s filter layer list are
ignored.
c) If two or more ports are equidistant from the location, one is arbitrarily
selected and the others are ignored.

Table 15-18. Query Port Commands [continued]

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_515-114

RVE/QDB-H and Query Server Query Server

ll
PORT NAMES [FLAT] OK.
NOK(10), NOK(15), NOK(33)
ERROR(101), ERROR(102)

Description: Returns a list of all port names in the current (optionally
flattened) query cell.
Response:
Port_Names <precision> // “Port_Names” and design precision
Ports: // “Ports:”
0 0 <n> <date> // n lines of text follow
<port_name_1> // first port name in current context
. . . // intermediate port names in current context
<port_name_n> // last port name in current context
Notes:
a) If the optional command word FLAT is used, all ports in the flattened
query cell are re-ported. That is, ports of cells placed in the query cell at
any level are reported with a query cell based path name leading to the ce
instance containing the port. If FLAT is omitted, only ports appearing
directly in the query cell are reported.
b) The ports are listed in alphabetically increasing order.
c) Ports with more than one location are listed only once.

Table 15-18. Query Port Commands [continued]

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_5 15-115

Query Server RVE/QDB-H and Query Server

e

PORT TEXT MAP [INVALID] OK.
NOK(47)

Description: Generates a list of port names corresponding to Calibre LVS
generated net numbers.
Response:
Port_Text_Map <precision>
// “Port_Text_Map” and design precision
Port Texts:
0 0 <n> <date> // n lines of text follow
<port_text> <net_number>
// port_text is the name of a port connected to net net_number
Notes:
a) Certain texts are not used for Spice netlist net names by Calibre. Thes
texts are not included in the map.
b) The INVALID option causes only those net names that are invalid for
spice netlisting by Calibre to be shown.

Table 15-18. Query Port Commands [continued]

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_515-116

RVE/QDB-H and Query Server Query Server

 a
ate
.

ices.

e

Query Net Commands

The commands described inTable 15-19 are used to query net information.

Table 15-19. Query Net Commands

Command Acknowledgments

Description

NET BROWSE DEVICES
layout_net_path [placement_name]

OK.
NOK(5), NOK(32), NOK(33), NOK(34),
NOK(35)

Description: Given a layout net path, return devices on that net which are in
particular placement (the current query context by default). In addition, indic
placements which contain additional devices on that net down the hierarchy
Filter: FILTER DEVICES
Response:
Net_Browse_Devices <precision>
// “Net_Browse_Devices” and design precision
Devices: // “Devices:”
0 0 k <date> // 0 0 number_of_devices datestamp
<device_name_1> <device_index_1>
// name of the device, index into the device table
... additional devices ... // additional names and indices
Placements: // “Placements”
0 0 k <date> // 0 0 number_of_placements datestamp
<placement_name_1><cell_name> // placements containing additional dev
... additional placements ... // additional placements.
Notes:
a) layout_net_path is traced upward to its highest hierarchical representativ
before browsing occurs.
Calibre Verification User’s Manual, v9.1_5 15-117

Query Server RVE/QDB-H and Query Server

s.

e

NET BROWSE NETS
layout_net_path [placement_name]

OK.
NOK(5), NOK(32), NOK(33), NOK(35)

Description:
Filter: FILTER LAYERS
Response:
Net_Browse_Nets <precision> // “Net_Browse_Nets” and design precision
Nets: // “Nets:”
0 0 k <date> // 0 0 number_of_nets datestamp
<net_name_1> // name of the net
... additional nets ... // additional names
Placements: // “Placements”
0 0 k <date> // 0 0 number_of_placements datestamp
<placement_name_1> <cell_name> // placements containing additional net
... additional placements ... // additional placements and cells.
Notes:
a) layout_net_path is traced upward to its highest hierarchical representativ
before browsing occurs.

Table 15-19. Query Net Commands [continued]

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_515-118

RVE/QDB-H and Query Server Query Server

lar

ts.

e

NET BROWSE PORTS
layout_net_path [placement_name]

OK.
NOK(5), NOK(12), NOK(32), NOK(33),
NOK(35)

Description: Given a net name, return ports on that net which are in a particu
placement (the current query context by default). In addition, indicate
placements which contain additional ports on that net down the hierarchy.
Filter: FILTER LAYERS
Response:
Net_Browse_Ports <precision> // “Net_Browse_Ports” and design precision
Ports: // “Ports:”
0 0 k <date> // 0 0 number_of_ports datestamp
<port_name_1> <device_index_1> // name of the port
... additional ports ... // additional names
Placements: // “Placements”
0 0 k <date> // 0 0 number_of_placements datestamp
<placement_name_1> <cell_name> // placements containing additional por
... additional placements ... // additional placements and cells.
Notes:
a) layout_net_path is traced upward to its highest hierarchical representativ
before browsing occurs.

Table 15-19. Query Net Commands [continued]

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_5 15-119

Query Server RVE/QDB-H and Query Server

 a
ate
.

ision

ices.

e

NET BROWSE SHAPES
layout_net_path [placement_name]

OK.
NOK(5), NOK(29), NOK(32), NOK(33),
NOK(35)

Description: Given a net name, return shapes making up that net that are in
particular placement (the current query context by default). In addition, indic
placements which contain additional shapes on that net down the hierarchy
Filter: FILTER LAYERS
Response:
Net_Browse_Shapes <precision> // “Net_Browse_Shapes” and design prec
Layer_name_1 // first layer on which the net has a presence
<k> <k> 0 <date> // k polygons on this layer
p 1 4 // first polygon on this layer
. . . // the vertices of the first polygon
. . . // remaining k-1 polygons on this layer
. . . // remaining layers on which net has a presence.
Placements: // “Placements”
0 0 k <date> // 0 0 number_of_placements datestamp
<placement_name_1><cell_name> // placements containing additional dev
... additional placements ... // additional placements.
Notes:
a) layout_net_path is traced upward to its highest hierarchical representativ
before browsing occurs.

Table 15-19. Query Net Commands [continued]

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_515-120

RVE/QDB-H and Query Server Query Server

vice

in
f the

er
NET DEVICENAMES net_name OK.
NOK(5), NOK(33), NOK(34)

Description: Give a net name, return all devices on that net.
Filter: FILTER DEVICES
Response:
Net_Devicenames <precision> // “Net_Devicenames” and design precision
Devices: // “Devices:”
0 0 k <date> // 0 0 number_of_devices datestamp
<device_name_1> <device_index_1>// name of the device, index into the de
table
... additional devices ... // additional names and indices

NET EXTERNAL SHAPES OK.
NOK(29), NOK(33), ERROR(101),
ERROR(102)

Description: Determines which nets in the current query cell connect upwards
the design hierarchy. Flattens all of these nets into the coordinate system o
current context and returns them as a response.
Filters: FILTER LAYERS, FILTER WINDOW, FILTER CULL
Response:
Net_Shapes <precision> // “Net_Shapes” and design precision
Layer_name_1 // first layer on which shapes were found
<k> <k> 0 <date> // k polygons on this layer
p 1 4 // first polygon on this layer
. . . // the vertices of the first polygon
. . . // remaining k-1 polygons on this layer
. . . // remaining layers on which shapes were found.
Notes:
a) Only shapes on the layers allowed by the current setting of the FILTER
LAYERS parameter will be returned.
b) Only pins allowed by the current setting of the FILTER WINDOW paramet
will be returned.

Table 15-19. Query Net Commands [continued]

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_5 15-121

Query Server RVE/QDB-H and Query Server

e net
m

the
 the

nets.
ven
g to

er

T
ose
NET LAYERS layout_net_path OK.
NOK(5)

Description: Given the path name of a net relative to the current query cell,
returns the names of layers with shapes on the net.
Response:
Net_Layers <precision> // “Net_Shapes” and design precision
Layers: // first layer on which shapes were found
0 0 n <date> // n unique layers on this net
Layer_name_1 // first layer on this net
. . . // remaining n-1 layers on this net
Notes:
a) The net path name specified need not be the highest representative of th
in query cell. It will be traced through out the query cell, not just downward fro
the given path.

NET LAYOUT source_net_path OK:
layout_net_path1…layout_net_path_n
NOK(2), NOK(4), NOK(21), NOK(44)

Description: Given the path name of a net in the source cell corresponding to
current query cell, returns the path name of all corresponding layout nets in
query cell.
Notes:
a) LVS may create one to many or many to many correspondences between
The Acknowledgment returns a list of all layout nets corresponding to the gi
source net. The first net in the list is the primary corresponding net accordin
the cross reference. The remaining nets are listed in an arbitrary order.
b) See the NET SOURCE command for a description of circumstances und
which LVS will remove nets for comparison purposes.
c) The cross reference database (XDB) includes nets from the "INCORREC
NETS" section of the report that are listed with "no similar net" as well as th
listed as under "UNMATCHED OBJECTS" as "unmatched net".

Table 15-19. Query Net Commands [continued]

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_515-122

RVE/QDB-H and Query Server Query Server

at

ut all

m it,
NET LOCATION x y OK: net_path_name
NOK(14), NOK(116)

Description: Given a location in the current viewing cell coordinate system,
returns the pathname of the net in the current query instance overlapping th
location.
Filter: FILTER LAYERS
Notes:
a) The search for a closest net considers not only shapes in the query cell b
shapes obtained by flattening the hierarchy directly below the query point.
b) Shapes which are not on a layer in the current client’s filter layer list are
ignored.
c) Layers in the filter layer list which are not connectivity layers are ignored.
d) If two or more net shapes overlap the location and are equally distant fro
one is arbitrarily selected and the others are ignored.

Table 15-19. Query Net Commands [continued]

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_5 15-123

Query Server RVE/QDB-H and Query Server

d)

y
re
ning
al
 in

ed.
NET NAMES [FLAT] OK.
NOK(15), NOK(16), NOK(33),
ERROR(101), ERROR(102)

Description: Returns a list of all net names in the current (optionally flattene
query cell.
Response:
Net_Names <precision> // “Net_Names” and design precision
Nets: // “Nets:”
0 0 <n> <date> // n lines of text follow
<net_name_1> // first net name in current context
. . . // intermediate net names in current context
<net_name_n> // last net name in current context
Notes:
a) If the optional command word FLAT is used, all nets in the flattened quer
cell are reported. That is, nets of cells placed in the query cell at any level a
reported with a query cell based net name leading to the cell instance contai
the net. The resulting list will contain the same design wide net under sever
names. For example if the net CLK in the top cell connects to the net CLK1
cell instance X23, the resulting list will contain both “CLK” and “X23/CLK”.
b) If FLAT is omitted, only nets appearing directly in the query cell are report
c) The order in which the nets are listed is arbitrary.

Table 15-19. Query Net Commands [continued]

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_515-124

RVE/QDB-H and Query Server Query Server

all

ion

pty

 is
nt

re

re
nd
NET NOT CONNECTED
reference_net[<reference_net> ...]
target_cell target_net

OK.
NOK(5), NOK(33), NOK(36), NOK(37),
NOK(38), NOK(39)

Description: Given a set of reference net paths, a target cell which resides
farther down the hierarchy, and a target net within that cell, returns a list of
placements of the target cell for which the target net is not connected to any
reference net.
Response:
Net_Not_Connected <precision>// “Net_Not_Connected” and design precis
Placements: // “Placements:”
0 0 <n> <date> // n lines of text follow
<placement_name_1> // first placement name rooted in current context
. . . // intermediate names rooted in current context
<placement_name_n> // last placement name rooted in current context
Notes:
a) The order in which the placements are listed is arbitrary.
b) if target_net is connected to reference_net throughout the hierarchy, an em
list is returned.
c) A net path may be used. A path which extends upward in the hierarchy is
searched from its highest point in the hierarchy. For example if net X1/X3/2
used as the reference net, and this net connects to the net GND in the curre
query cell, the commands
NET NOT CONNECTED X1/X3/2 NANDCELL GND and NET NOT
CONNECT-ED
GND NANDCELL GND are equivalent.
Example:
NET NOT CONNECTED GND NANDCELL GND
When executed from the top level cell, finds placements of NANDCELL whe
the GND net in the cell NANDCELL is not connected to top level GND net.
NET NOT CONNECTED VCC VCCA NANDCELL VCC
When executed from the top level cell, finds placements of NANDCELL whe
the VCC net in the cell NANDCELL is not connected to top level VCC net a
not connected to the VCCA net.

Table 15-19. Query Net Commands [continued]

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_5 15-125

Query Server RVE/QDB-H and Query Server

nted
f the
try,

R

er
NET PINS layout_net_path OK.
NOK(1), NOK(5), NOK(33),
ERROR(101), ERROR(102)

Description: Given the path name of a net relative to the current query cell,
return the intentional device pins attached to the net. Each pin will be represe
as a device path name, the device type number (that is, the 0-based index o
device in the device table), the 0-based index of the pin in the device table en
and a marker square centered at the pin location on the pin layer.
Filters: FILTER LAYERS, FILTER WINDOW
Response:
Net_Pins <precision> // “Net_Pins” and design precision
Pins: // “Pins”
0 0 <n> <date> // n lines of text follow (n pins were found)
<pin_info_1> // pin number 1 (see notes below for definition of pin_info)
. . . // more pins
<pin_info_n> // pin number n
Layer_name_1 // first layer on which pins are present
<k> <k> 0 <date> // k pins on this layer
p <i> 4 // i is the number of this pin in the “Pins:” check section
. . . // the four vertices of the first square
. . . // remaining m-1 pins on this layer
. . . // remaining layers on which pins are present
Notes:
a) Only pin shapes on the layers allowed by the current setting of the FILTE
LAYERS parameter will be returned.
b) Only pins allowed by the current setting of the FILTER WINDOW paramet
will be returned.
c) The pins are listed in the “Pins:” check section in an arbitrary order.

Table 15-19. Query Net Commands [continued]

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_515-126

RVE/QDB-H and Query Server Query Server

:

dex.
e it

actual

 one
l be

e

d) Each pin_info_k line is a white space separated list of the following items
pin_number // number of pin in the list of pins
device_path // instance path name ending with device instance name
device_type // the index of the device in the device table
pin_index // the index of the pin in the ordered list of device pins
See the Device Table section for the meaning of device_number and pin_in
e) The pin_number included in the Pins: check is not logically necessary sinc
simply counts up by 1 for each line, but is included for convenience.
f) The location on which the square is centered is the lowest of the left most
points where the pin shape touches or overlaps the device seed shape. The
shape of the pin is not known to the Query Server.
g) Under certain circumstances the device recognizer will assign more than
logical device pin to the same physical pin shape. In this case, a marker wil
present for each of the logical device pins, but they will all center on the sam
location.
h) The size of the marker squares is determined by the current value of the
MARKER SIZE parameter.

NET PORTNAMES net_name OK.
NOK(5), NOK(12), NOK(33)

Description: Given a net name, return all ports on that net.
Filter: FILTER LAYERS
Response:
Net_Portnames <precision> // “Net_Portnames” and design precision
Ports: // “Ports:”
0 0 k <date> // 0 0 number_of_ports datestamp
<port_name_1> // name of the port
... additional ports ... // additional ports

Table 15-19. Query Net Commands [continued]

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_5 15-127

Query Server RVE/QDB-H and Query Server

e

er

ly in
r each

ell

e is

nd.
NET PORTS net_path OK.
NOK(5), NOK(12), NOK(33),
ERROR(101), ERROR(102)

Description: Given the pathname of a net in the current query cell, returns th
names of the ports attached to that net and a marker square for each port.
Filters: FILTER LAYERS, FILTER WINDOW
Response:
Net_Ports <precision> // “Net_Ports” and design precision
Ports: // “Ports:”
0 0 <n> <date> // n lines of text follow (n ports were found)
1 <port_name_1> // index of first port and first port name
. . . // more indices and ports
<n> <port_name_n> //index of last port last port name
Layer_name_1 // first unfiltered layer on which ports are present
<k> <k> 0 <date> // k ports on this layer
p <i> 4 // i is the number of this port in the “Ports:” check section
. . . // the four vertices of the first square
. . . // remaining m-1 ports on this layer
. . . // remaining unfiltered layers on which ports are present
Notes:
a) Only ports on the layers allowed by the current setting of the FILTER
LAYERS parameter will be returned.
b) Only ports allowed by the current setting of the FILTER WINDOW paramet
will be returned.
c) A port may have more than one location. Each location is listed separate
the Ports: check and a separate marker is given on the appropriate layer fo
location.
d) The ports returned are not only those in the query cell, but those in any c
placement into which the net extends.
e) The ports are listed in an arbitrary order.
f) The number <i> which appears in the polygon entry for each marker squar
the index number of the corresponding port in the Ports: check.
g) Information on any given port may be obtained by the PORT INFO comma

Table 15-19. Query Net Commands [continued]

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_515-128

RVE/QDB-H and Query Server Query Server

y

ative

er

nted
for

ving
NET SHAPES layout_net_path OK.
NOK(5), NOK(29), NOK(33)
ERROR(101), ERROR(102)

Description: Given the layout path name of a net relative to the current quer
cell, return the shapes of the net flattened into the coordinate system of the
current context. The path name specified need not be the highest represent
of the net in query cell. It will be traced through out the query cell, not just
downward from the given path.
Filters: FILTER LAYERS, FILTER WINDOW, FILTER CULL
Response:
Net_Shapes <precision> // “Net_Shapes” and design precision
Layer_name_1 // first layer on which the net has a presence
<k> <k> 0 <date> // k polygons on this layer
p 1 4 // first polygon on this layer
. . . // the vertices of the first polygon
. . . // remaining k-1 polygons on this layer
. . . // remaining layers on which net has a presence.
Notes:
a) Only shapes on the layers allowed by the current setting of the FILTER
LAYERS parameter will be returned.
b) Only pins allowed by the current setting of the FILTER WINDOW paramet
will be returned.
c) Polygons in the response are limited to a maximum number of vertices.
Polygons which would have a more than this number of vertices are segme
into polygons which obey the maximum vertex limitation. See the next note
how to determine the maximum.
d) The maximum vertex count of response polygons can be set by using the
MAXIMUM VERTEX <v> statement in the rules file. If no such statement is
found, the maximum value will be 4096.
e) Any layer which contains node numbers, including CONNECT layers and
those that get connectivity from STAMP operations and through node-preser
layer constructors (NOT, AND, topological operations, and so on) will be
returned if it is on the net requested.

Table 15-19. Query Net Commands [continued]

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_5 15-129

Query Server RVE/QDB-H and Query Server

cell.

nets.
ven
 to

ched

cts

at
d

e
e

T
ose
NET SOURCE layout_net_path OK:
source_net_path1…source_net_path_n
NOK(2), NOK(3), NOK(21), NOK(45)

Description: Given the path name of a net relative to the current query cell,
returns the path names of all corresponding nets in the corresponding source
Notes:
a) LVS may create one to many or many to many correspondences between
The Acknowledgment returns a list of all source nets corresponding to the gi
layout net. The first net in the list is the primary corresponding net according
the cross reference.
b) LVS may discard certain nets during comparison. The Query Server has
limited ability to cross reference nets which have been discarded during
comparison. Nets that can be traced down in the layout database will be mat
to a lower level net if an unambiguous correspondence point can be found
(PHDB database must be present).
c) Net names may also be lost during comparison for the following reasons:
i) a lower level net is flattened to a higher level in the hierarchy where it conne
to a higher level net--if so, LVS will use the name of the higher level net.
ii) A net is filtered out for comparison purposes if it only connects devices th
are combined into a structure for comparison purposes (device reduction an
gate recognition).
iii) A net is filtered out for comparison purposes if it does not connect to mor
than one device (floating). This includes nets that are left floating after devic
filtering.
iv) The cross reference database (XDB) includes nets from the "INCORREC
NETS" section of the report that are listed with "no similar net" as well as th
listed as under "UNMATCHED OBJECTS" as "unmatched net".

Table 15-19. Query Net Commands [continued]

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_515-130

RVE/QDB-H and Query Server Query Server

ll as
n net.

rnal

s
ot
ces,
one

lk2
NET TRACE layout_net_path OK: high_net_path
net_name1…net_namen
NOK(5)

Description: Given the path name of a net relative to the current query cell,
returns the path name of the highest representative of that net in the query ce
well as all intermediate net path names between the highest net and the give
Notes:
a) Consider the following command and acknowledgment:
NET TRACE X1/X2/X3/X4/X5/clk5
OK: X1/X2/clk2 X1/X2/X3/clk3 X1/X2/X3/X4/clk4 X1/X2/X3/X4/X5/clk5
This response means the following:
Net X1/X2/clk2 is the highest representative of X1/X2/X3/X4/X5/clk5 relative
to the current query cell. That is, net X1/X2/clk2 is not connected to an exte
pin of instance X1/X2.
Net X1/X2/clk2 connects to net X1/X2/X3/clk3
Net X1/X2/X3/clk3 connects to net X1/X2/X3/X4/clk4
Net X1/X2/X3/X4/clk4 connects to net X1/X2/X3/X4/X5/clk5
b) Note that the trace proceeds upward from the given net until it reaches it
highest hierarchical representative within the current query cell. This does n
imply that the net does not also descend into other below the query cell instan
or that it does not descend into the instances on the given path by more than
pin, or that it does not connect through an external pin of the query cell into
higher levels of the design. For instance, in the example above net X1/X2/c
may very well be connected not only to net X1/X2/X3/clk3 but also to net
X1/X2/X3/sync by a second pin in instance X1/X2/X3.

Table 15-19. Query Net Commands [continued]

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_5 15-131

Query Server RVE/QDB-H and Query Server

exts

e

 in
re
NET TEXT MAP [INVALID] OK.
NOK(46)

Description: Generates a list of net names corresponding to Calibre LVS
generated net numbers.
Response:
Net_Text_Map <precision> // “Net_Text_Map” and design precision
Net Texts:
0 0 <n> <date> // n lines of text follow
<net_text> <net_number>// net_text is the name of net net_number
Notes:
a) Certain texts are not used for Spice netlist net names by Calibre. These t
are not included in the map.
b) The INVALID option causes only those net names that are invalid for spic
netlisting by Calibre to be shown.

NET VALID
{SOURCE | LAYOUT} net_path

OK: net_path
NOK(3), NOK(4), NOK(5)

Description: Given the name of a net, indicates if it is valid.
Notes: If a PHDB is available it is searched for a layout net name. If running
XDB only mode, the XDB is searched for the layout name. Source names a
always searched for in the XDB.

Table 15-19. Query Net Commands [continued]

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_515-132

RVE/QDB-H and Query Server Query Server

d

Query Device Commands

The commands described inTable 15-20 are used to query device information.

Table 15-20. Query Device Commands

Command Acknowledgments

Description

DEVICE BAD OK.
NOK(20), ERROR(101), ERROR(102)

Description: Return a seed shape for each bad device in the query cell.
Response:
Device_Bad <precision> // “Device_Bad” and design precision
<seed_layer_name_1> // name of first seed shape containing bad devices
<n> <n> 0 <date> // <n> seed shapes follow
p 1 n // first bad device seed shape
. . . // the vertices of the first shape
. . . // remaining n-1 shapes on this layer
. . . // remaining seed layers on which bad devices are present
Notes:
a) Only bad devices in the query cell itself are reported. That is, no bad
devices from lower level cell placements are reported. To obtain all the ba
devices in the design, each cell must be queried for bad devices.
Calibre Verification User’s Manual, v9.1_5 15-133

Query Server RVE/QDB-H and Query Server

ist

ice

the

s in

he
ll
DEVICE INFO
layout_device_path

OK.
NOK(9), NOK(33),
ERROR(101), ERROR(102)

Description: Given the path name of a device relative to the current query
cell, return its device type number, a list of the nets attached to its pins, a l
of its property values, and the seed shape. See alsoPLACEMENT INFO.
Response:
Device_Info <precision> // “Device_Info” and design precision
Info: // “Info:”
0 0 <n> <date> // n lines of text follow
<device_type_number> // 0-based index of this device type in device table
<layout_net_path_1> // net connected to first pin in device table
. . . // nets connected to other pins in device table order
<property_value_1> // value of first device property in device table
. . . // value of other properties in device table order
<seed_layer_name>:
// name of layer containing seed shape followed by a colon
1 1 0 <date> // one seed shape follows
p 1 n // the seed shape with n vertices
. . . // the n vertices of the seed shape
Notes:
a) The number of device pins and properties must be obtained from the dev
table.
b) The layout net paths listed appear in the same order as the pin names in
device table.
The property names must be obtained from that table.
c) The property values listed appear in the same order as the property name
the device table. The property names must be obtained from that table.
d) The layout_net_path_i’s are reported at the same hierarchical level as t
device. That is, they are not shortened to their highest point in the query ce
hierarchy.

Table 15-20. Query Device Commands [continued]

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_515-134

RVE/QDB-H and Query Server Query Server

g

,
r

re

e

DEVICE LAYOUT
source_device_path

OK: source_device_path
NOK(2), NOK(8), NOK(21)

Description: Given the path name of a device relative to the source cell
corresponding to the current query cell, returns the path names of all
corresponding layout devices relative to the current query cell.
Notes:
a) LVS may create many to many correspondences between devices. The
acknowledgement returns a list of all layout devices corresponding to the
given source device. The first device in the list is the primary correspondin
device according to the cross reference.

DEVICE LOCATION x y OK: device_path_name
NOK(6), ERROR(116)

Description: Given a location in the current viewing cell coordinate system
returns the pathname of a device composed of a seed shape directly unde
location.
Filters: FILTER DEVICES, FILTER LAYERS
Notes:
a) Devices whose device type number is not on the client’s filter device list a
ignored.
b) Devices whose seed shape layers are not in the clients filter layer list ar
ignored.
c) If two or more device seed shapes overlap the location, one is arbitrarily
selected and the others are ignored.

Table 15-20. Query Device Commands [continued]

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_5 15-135

Query Server RVE/QDB-H and Query Server

 in
DEVICE NAMES [FLAT} OK.
NOK(18), NOK(19),
ERROR(101), ERROR(102)

Description: Returns a list of all devices in the current (optionally flattened)
query cell.
Filter: FILTER DEVICES
Response:
Device_Names <precision> // “Device_Names” and design precision
Devices: // “Devices:”
0 0 <n> <date> // n lines of text follow
<device_name_1> <device_type_1> // first device name and type
. . . // intermediate device names and types
<device_name_n> <device_type_n> // last device name and type
Notes:
a) If the optional command word FLAT is used, all devices in the flattened
query cell are reported. That is, devices contained in cell instances placed
the query cell at any level are reported with a query cell based path name
leading to the cell instance containing the device. If FLAT is omitted, only
devices appearing directly in the query cell are reported.
b) The devices are listed in an arbitrary order.

Table 15-20. Query Device Commands [continued]

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_515-136

RVE/QDB-H and Query Server Query Server

the
tent

the

he
ll
DEVICE PINS layout_device_path OK.
NOK(18), NOK(19),
ERROR(101), ERROR(102)

Description: Given the path name of a device relative to the current query
cell, return its device type number, a list of the nets attached to its pins, and
pin shapes. Pin shapes reported within an area equal to the rectangular ex
of the seed shape plus the marker size.
Response:
Device_Pins <precision> // “Device_Pins” and design precision
Info: // “Info:”
0 0 <n> <date> // n lines of text follow
<device_type_number> // 0-based index of this device type in device table
<layout_net_path_1> // net connected to first pin in device table
. . . // nets connected to other pins in device table order
<pin_layer_name> // name of layer containing pin shape
np np 0 <date> // np pin shapes follow
p 1 n // the seed shape with n vertices
. . . // the n vertices of the seed shape
... // additional pin shapes
<pin_layer_name> // name of layer containing last pin shape
... // polygon information for last pin shape
Notes:
a) The layout net paths listed appear in the same order as the pin names in
device table.
The property names must be obtained from that table.
b) The layout_net_path_i’s are reported at the same hierarchical level as t
device. That is, they are not shortened to their highest point in the query ce
hierarchy.

Table 15-20. Query Device Commands [continued]

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_5 15-137

Query Server RVE/QDB-H and Query Server

ing

en
DEVICE SOURCE
layout_device_path

OK:
source_dev_path1…source_dev_pathn
NOK(2), NOK(7), NOK(21)

Description: Given the path name of a device relative to the current query
cell, returns the path names of all corresponding devices in the correspond
source cell.
Notes:
a) LVS may create one to many or many to many correspondences betwe
devices. The acknowledgment returns a list of all source devices
corresponding to the given layout device. The first device in the list is the
primary corresponding device according to the cross reference.

Table 15-20. Query Device Commands [continued]

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_515-138

RVE/QDB-H and Query Server Query Server

if

e

DEVICE TABLE OK.
ERROR(101), ERROR(102)

Description: Responds with the device table. See the section “Device Tables”
for more information.
Response:
Device_Table <precision> // “Device_Table” and design precision
Table Count // “Table Count”
0 0 1 <date> // 1 line of text follows
<k> // k device entries are defined (indexed 0 through k-1)
Device Entry 0 // constant “Device Entry” followed by the device number
0 0 <n> <date> // n lines of text follow
<device_layer_name> // name of seed layer for this device
<device_type> // basic type of device (see notes for values)
<element_name> // the element name of the device
<model_name> // the model name of the device; “(null)” if none
<netlist_element_name> // the netlist element name of the device; “(null)”
none
<netlist_model_name> // the netlist model name of the device; “(null)” if non
<pin_count> // number of pins of device
<pin_info_0> // information about first pin (see notes)
. . . // information about remaining pins
<aux_layer_count> // number of auxiliary layers associated with device
<aux_layer_0> // name of first auxiliary layer
. . . // remaining auxiliary layers
<property_count> // number of device properties
<property_name_0> // first property name
. . . // remaining property names
. . . // remaining device entries 1 through k-1
Notes:
a) The device table is design wide and independent of the current context.
b) device_type is one of the following constants: “DIODE”, “RESISTOR”,
“CAPACITOR”, “MOS”, “BIPOLAR”, “USER”.

Table 15-20. Query Device Commands [continued]

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_5 15-139

Query Server RVE/QDB-H and Query Server

ce

ed
c) The pin_info_i lines contain the following entries separated by white spa
<pin_name> <pin_layer> <swap_group>.
d) Pin and property names have been lower cased.
e) If any of <model_name>, <netlist_element_name>, or
<netlist_model_name> were not specified in the rule file, they are represent
in the response by the constant string “(null)”.
f) The layer names have the same case as in the rule file.

DEVICE VALID {SOURCE |
LAYOUT} device_path

OK: device_path
NOK(7), NOK(8), NOK(9)

Description: Given the name of a device, indicates if it is valid. This
command is identical to PLACEMENT VALID.
Notes:
If a PHDB is available it is searched for a layout net name. If running in XDB
only mode, the XDB is searched for the layout name. Source names are
always searched for in the XDB.

Table 15-20. Query Device Commands [continued]

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_515-140

RVE/QDB-H and Query Server Query Server

nt
Query Rule File Commands

The commands described inTable 15-21 are used to query rule file information.

Table 15-21. Query Rule File Commands

Command Acknowledgments

Description

RULES FILE NAME OK: rule_file_name
NOK(43)

Description: Returns the file name of the rule file.

RULES LAYOUT NETLIST OK: netlist_path_name

Description: Returns the path name of the netlist used for LVS
comparison. This may be either the path given in the Source Path stateme
in the rule file (for spice-to-spice comparison) or the argument to the
calibre -spice command line switch (for GDSII-to-spice comparison).

RULES LVS REPORT OK: lvs_report_file_name
NOK(27), NOK(43)

Description: Returns the file name from theLVS Report specification
statement in the rule file.

RULES [SOURCE | LAYOUT]
PATH

OK: source_path or
layout_path
NOK(30), NOK(31)

Description: Returns the source or layout path.

RULES [SOURCE | LAYOUT]
SYSTEM

OK: source_system or
layout_system

Description: Returns the source or layout system as specified it the rule
file.

RULES SVDB DIRECTORY OK: svdb_directory_path
NOK(28)

Description: Returns the pathname from theMask SVDB Directory
specification statement in the rule file.
Calibre Verification User’s Manual, v9.1_5 15-141

Query Server RVE/QDB-H and Query Server

top

t and

nts
D:

ified
Examples

The following command asks for geometries of net CLOCK1 relative to the
current query cell:

NET SHAPES X12/X45/CLOCK1

The following command asks for information about device C4 relative to the
cell:

DEVICE INFO X95/X4/X312/C4

The following command asks the Query Server to deactivate the current clien
activate client 12:

ACTIVATE 12

When executed from the top level cell, the following command finds placeme
of NANDCELL where the GND net in the cell is not connected to top level GN

NET NOT CONNECTED GND NANDCELL GND

The following two examples show the information available from the Query
Server given various Calibre LVS-H and Query Server invocations and spec
rule file statements. Given

LAYOUT PRIMARY top
MASK SVDB DIRECTORY svdb QUERY

the following commands provide layout and source information:

Calibre LVS-H: calibre -spice lay.net -lvs -hier -hcell cells rules
Query Server: calibre -query svdb top

Calibre LVS-H:calibre -spice lay.net rules.ext
calibre -lvs -hier -hcell cells rules.cmp

Query Server:calibre -query svdb top

and the following commands provide layout information only (because-lvs was
not specified):

Calibre LVS-H: calibre -spice lay.net rules
Query Server: calibre -query svdb top
Calibre Verification User’s Manual, v9.1_515-142

RVE/QDB-H and Query Server Query Server

e

bre

hird
.

re
n
alibre

Issues

in
rate.
Given

LAYOUT PRIMARY top
MASK SVDB DIRECTORY /scratch/svdb PHDB

the following commands provide layout information only (because the rule fil
specifies PHDB):

Calibre LVS-H:calibre -spice lay.net -lvs -hier -hcell cells rules
Query Server:calibre -query /scratch/svdb top

Calibre LVS-H:calibre -spice lay.net rules
Query Server:calibre -query /scratch/svdb top

Calibre Connectivity Interface

The following commands govern the creation of files that are part of the Cali
Connectivity Interface (CCI). The CCI provides a way for downstream tools,
including third party tools, to gain access to layout connectivity information
extracted by Hierarchical Calibre LVS. This information includes layout
geometries, nets, devices, and corresponding schematic or source names. T
party parasitic extractors are an example of potential clients for this interface

The interface consists of a set of files with documented format. These files a
created upon request by the Calibre Query Server. This is a command-drive
interactive application which reads the SVDB results database created by C
LVS. All data required for CCI interface is enabled when the Mask SVDB
Directory rule file statement is specified with the CCI option. Conventions for
CCI commands are unlike other Query Server commands in that these are
intended to dump data from the databases that the Query Server manages.
of client context are not important here. Also, the file formats produced are
standard formats and so do not conform to the usual presentation of results
DRC results format. These commands all require a “calibreci” license to ope

This interface consists of the following file formats:

• Annotated GDSII Files (AGF) from the layout database

These files are GDSII stream files which use the PROPATTR and
PROPVALUE fields in GDSII to specify device ids, node numbers and
Calibre Verification User’s Manual, v9.1_5 15-143

Query Server RVE/QDB-H and Query Server

t

.

r

 the
t

r

nd

ST
instance placement names. Your Mask SVDB Directory statement mus
include the GDSII, or CCI options to generate AGF files.

• Hierarchical Layout Netlist

This is a Spice netlist representing network connectivity in the AGF file

your Mask SVDB Directory statement must include NETLIST, GDSII, o
CCI options to generate a Layout Netlist.

• Layout Netlist Names (LNN)

This provides a mapping between net names and net numbers used in
Hierarchical Layout Netlist. Your Mask SVDB Directory statement mus
include NETLIST, GDSII, or CCI options to generate a Layout Netlist
Names file.

• Port Table (PORTS)

This provides port location information.

Your Mask SVDB Directory statement must include NETLIST, GDSII, o
CCI options to generate a Ports file.

• Cross Reference files

These indicate correspondence as determined by LVS between nets a
instances between source and layout netlists.

Your Mask SVDB Directory statement must include XDB, QUERY, or
CCI options to generate any cross reference files.

Customized Layout Netlist Generation

The following Query Server commands produce customized netlists from the
SVDB results database generated during Calibre LVS. The LAYOUT NETLI
Calibre Verification User’s Manual, v9.1_515-144

RVE/QDB-H and Query Server Query Server

 be

t

s

WRITE command creates a Spice netlist. The construction of this netlist can
tailored by using the following commands:

• LAYOUT NETLIST DEVICE LOCATION to control device coordinate
presentation

• LAYOUT NETLIST EMPTY CELLS to present cells (like vias) that do no
contain devices

• LAYOUT NETLIST HIERARCHY to expand various cells within the
netlist

• LAYOUT NETLIST NAMES to use layout names, source names, or no
names

• LAYOUT NETLIST PIN LOCATIONS to present pin locations of device

• LAYOUT NETLIST PRIMITIVE DEVICE SUBCKTS to present
primitive device cells

• LAYOUT NETLIST TRIVIAL PINS to present pins that do not have
devices attached

• FILTER DEVICES | FILTER DEVICENAMES (seepage 15-92) to select
which devices are presented.

These commands are discussed inTable 15-22.
Calibre Verification User’s Manual, v9.1_5 15-145

Query Server RVE/QDB-H and Query Server

is

a

Table 15-22. Layout Netlist Generation Commands

Command Acknowledgments

Description

LAYOUT NETLIST DEVICE
LOCATION
 {VERTEX | CENTER}

OK
ERROR(130)

Description: Alters the netlist generated by the LAYOUT NETLIST
WRITE command by giving device locations. The netlist may be generated
with $X= $Y= comments to indicate either a vertex or the center of the
device seed shape.
Notes:
a) By default, the layout netlist is written with vertex locations.
b) This option requires use of either the CCI or ANNOTATE DEVICES
option to the Mask SVDB Directory rule file statement.
c) If CENTER is specified and the CENTER of a device seed shape lies
outside the seed shape (on a C-shaped device, for example), then a vertex
used for the $X= $Y= location.

LAYOUT NETLIST EMPTY
CELLS {YES | NO}

OK

Description: This command alters the netlist generated by the LAYOUT
NETLIST WRITE command to give calls to empty cells. The netlist may
be generated with calls to cells that do not contain devices (for example, vi
cells).
Notes:
a) By default, the layout netlist is written with no calls to cells that do not
contain devices.
Calibre Verification User’s Manual, v9.1_515-146

RVE/QDB-H and Query Server Query Server

e
-

LAYOUT NETLIST
HIERARCHY {ALL | FLAT}

OK
ERROR(128)

Description: Alters the netlist generated by the LAYOUT NETLIST
WRITE command so that it provides the specified hierarchy. The netlist
may be generated with certain cells expanded. ALL implies that no cells ar
expanded. FLAT implies that all cell placements are expanded into the top
level cell.
Notes:
a) If Layout Netlist Names SOURCE is not specified, the layout netlist is
written with ALL cells by default.
b) If Layout Netlist Names SOURCE is specified, the layout netlist is
written FLAT by default.
c) If Layout Netlist Names SOURCE is specified, the LAYOUT NETLIST
HIERARCHY ALL command is invalid and will be rejected.

Table 15-22. Layout Netlist Generation Commands

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_5 15-147

Query Server RVE/QDB-H and Query Server

t

.

LAYOUT NETLIST NAMES
{LAYOUT | NONE | SOURCE}
[NETS | INSTANCES]

OK
ERROR(129)

Description: Alters the netlist generated by the LAYOUT NETLIST
WRITE command to provide the specified netlist names. The netlist may
be generated with original layout net names for texted nets (generated ne
numbers for untexted nets), with generated net numbers or with source
names. By default, the command applies to both NETS and INSTANCES
The optional [NETS | INSTANCES] keywords cause it to apply
specifically to NETS or INSTANCES, respectively.
Notes:
a) By default, the layout netlist is written with layout names.
b) If Layout Netlist Names SOURCE is executed and Layout Netlist
Hierarchy is currently set to ALL, the Query Server will automatically
change the HIERARCHY setting to FLAT and issue a NOTE to that effect
(see LAYOUT NETLIST HIERARCHY command).
c) Unmatched nets are identified using a prefix when SOURCE is
specified. The prefix is typically _Layout_, but if there are source names
that begin with _Layout_, additional “_” characters are added to the prefix
to insure that it is unique.

Table 15-22. Layout Netlist Generation Commands

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_515-148

RVE/QDB-H and Query Server Query Server

e

a

t.

t

LAYOUT NETLIST PIN
LOCATIONS {YES|NO}

OK

Description: Alters the netlist generated by the LAYOUT NETLIST
WRITE command to provide pin locations. This command configures the
netlist to include the locations of pins for all devices. The pin location
information includes a device template for each device type that shows th
ordering of pins and a $PIN_XY comment after each device instance
showing the coordinates of the pins.

The device template has the following format:
*.DEVTMPLT <d> <el>([<mod>])<seed> <pl_1>(<pn_1>)
[<pl_2>(pl_2)...]
*.DEVTMPLT indicates the device template comment record.
<d> represents the device template number. Each device is identified with
$dt=<n> comment field that matches it with a specific DEVTMPLT.
<el> is the element name specified in the rule file DEVICE statement.
<mod> is the model name, when present, specified in the rule file DEVICE
statement.
<seed> is the device seed layer specified in the rule file DEVICE statemen
<pl_n> is the nth device pin layer specified in the rule file DEVICE
statement.
<pn_n> is the nth device pin name specified in the rule file DEVICE
statement.
The device instances in this netlist have the following additional commen
line:
<regular_device_record>
+$dt=<d> $PIN_XY=X1,Y1[,X2,Y2...]
$dt=<d> shows that this is a device corresponding to *.DEVTMPLT d
$PIN_XY= specifies ordered X,Y coordinates for each pin in the order
shown on the *.DEVTMPLT record (this order can be different than the pin
order specified in the netlist instance when the device is a standard MOS
device).

Table 15-22. Layout Netlist Generation Commands

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_5 15-149

Query Server RVE/QDB-H and Query Server

o

is

t.
For example:
*.DEVTMPLT 0 mp() PSEED GPIN(g) SDPIN(s) SDPIN(d)
represents provides pin layer and ordering information for all netlist
devices that include the $dt=0 comment. It represents an MP device with n
model name. The seed layer is PSEED, the pin layers are GPIN, SDPIN
and SDPIN for the pin names g, s, and d, respectively. The following
device instance in the netlist:
M0 2 4 1 p L=5e-06 W=3e-06 $X=-6000 $Y=1000
+$dt=0 $PIN_XY=-4000,3500,-6000,2500,-2000,2500
corresponds with *DEVTMPLT 0 above. Pin locations for this device are
as follows (recall
that Spice standard syntax puts pins in the order d g s):
GPIN(g) connected to net 4: (-4000,3500)
SDPIN(s) connected to net 1: (-6000,2500)
SDPIN(d) connected to net 2: (-2000,2500)
Notes:
a) By default, the layout netlist is written with no pin location information.
b) The CENTER option requires use of either the “CCI” or “ANNOTATE
DEVICES” option to the Mask SVDB Directory rule file statement.
c) If CENTER is specified and the CENTER of a device seed shape lies
outside the seed shape (on a C shaped device, for example), then a vertex
used for the $X= $Y= location.

LAYOUT NETLIST PRIMITIVE
DEVICE SUBCKTS {YES | NO}

OK

Description: Alters the netlist generated by the LAYOUT NETLIST
WRITE command to provide primitive device subcircuits. The netlist may
be generated with or without .SUBCKT statements for user-defined
primitive devices. Normally, empty primitive device subckts are included
for all user defined devices defined in
the rule file. This command configures the Query Server to leave them ou

Table 15-22. Layout Netlist Generation Commands

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_515-150

RVE/QDB-H and Query Server Query Server

.

n

to
LAYOUT NETLIST RESET OK

Description: Resets layout netlist generation information to default values
Notes:
a) This command does not reset FILTER DEVICES/DEVICENAMES (see
page 15-92). Use FILTER DEVICES ALL to reset the device filter.

LAYOUT NETLIST TRIVIAL
PINS {YES | NO}

OK

Description: Alters the netlist generated by the LAYOUT NETLIST
WRITE command to provide trivial pins. The netlist may be generated with
pins not connected to devices.
Notes:
a) By default, the layout netlist includes only pins connected to other pins
or to devices.

LAYOUT NETLIST WRITE
file_path

OK
NOK(33),
ERROR(101), ERROR(102)

Description: Given the name of an output filefile_path, writes a Spice
netlist describing devices, placements, and network connectivity present i
the layout. Several supporting commands configure the netlist.
Response:
writes layout netlist file
Notes:
a) Details of the layout netlist format are included below.
b) By default, the netlist written is similar to the netlist produced by
calibre -spice.
c) The command may generate warnings as it executes. These are sent
stdout and are prefixed by the string “WARNING”.
d) Requires calibreci and calibreqdb licenses.

Table 15-22. Layout Netlist Generation Commands

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_5 15-151

Query Server RVE/QDB-H and Query Server

and
Layout Netlist File Format

This is a Spice netlist representing the layout connectivity.

The netlist conforms to the extended Spice netlist format used in Calibre LVS
described in the “Spice Format” chapter. Note that comment-coded fields, when
used, are ignored by most Spice simulators.

By default, the netlist is identical in structure to the netlist produced by
calibre -spice. Various configuration options alter the structure of the netlist
produced.

• Subcircuit definitions

.SUBCKT definitions in the layout netlist represent original cells in the
input database or pseudo-cells created by Calibre hierarchical pre-
processing. For original database cells, subcircuit names in the layout

STATUS LAYOUT NETLIST OK

Description: Presents current layout netlist generation options.
Response:
Status Layout Netlist <prec>
// "Status Layout Netlist" followed by design precision
Entries: // "Entries:"
0 0 <n> <date> // n lines of text follow
Hierarchy: <hierarchy_setting>
// setting for LAYOUT NETLIST HIERARCHY
Names: <names_setting>
// setting for LAYOUT NETLIST NAMES
Device Location: <dev_loc>
// setting for LAYOUT NETLIST DEVICE LOCATION
Filter Devices: <filter_info>
// setting for FILTER {DEVICES | DEVICENAMES}
END OF RESPONSE

Table 15-22. Layout Netlist Generation Commands

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_515-152

RVE/QDB-H and Query Server Query Server

curs
ll
id
here
cell

t
ke
ent

s in

ion

 first
the
 1,
netlist are identical to cell names in the input database. An exception oc
when a cell name in the input database begins with a ‘$’ character. Ce
names that start with ‘$’ usually have the prefix “__”. In general, to avo
conflicts with database names, the prefix consists of N underscores, w
N is one larger than the number of leading underscores in any database
named “___*$.*” (that is, any database cell whose name begins with a
least two underscores followed by a ‘$’). This prefix is necessary to ma
those cell names valid in Spice; recall that a leading ‘$’ denotes a comm
in Spice.

Subcircuit definitions indicate which nets in the cell serve as pins of the
cell. All nets in a cell that make connections to nets outside of the cell
appear as pins in the .SUBCKT line for the cell.

For example:

.SUBCKT ABC 1 2
R1 1 2 50
.ENDS

describes cell ABC with two pins: 1, 2. These numbers are net number
the cell.

• Subcircuit calls

Subcircuit calls are represented by standard Spice subcircuit call notat
‘X’. Comments provide some additional information.

For example, the line:

X3 5 7 ABC $T=-375 13750 1 0 $X=2250 $Y=2000

describes a placement of cell ABC with nets 5, and 7 connected to the
and second pins of ABC respectively. The comment field $T represents
transform of the placement (X translation, Y translation, reflection (0 or
indicating false or true, with the X-axis being the axis of symmetry) and
rotation (0, 90, 180 or 270 degrees, counter-clockwise), and $X and $Y
represent coordinates of the placement.
Calibre Verification User’s Manual, v9.1_5 15-153

Query Server RVE/QDB-H and Query Server

ar
,
t
t

and
Y
 the

ain,
 W/L
e:

ccur

ape

tes of
ion
• Devices

When possible, devices in the layout netlist are represented with regul
Spice elements (M, R, C, D, Q, and so on). In other cases (for example
when the device is not a standard Spice element), devices in the layou
netlist are represented with subcircuit calls. In the latter case, the layou
netlist will contain an empty subcircuit definition describing the device.
Device lines provide the type of device, pin connections, model name
parameters or properties. Location of the device is presented as an X
coordinate pair in database units encoded as a comment at the end of
device.

For example, the line:

M2 4 5 6 7 p L=1 W=2 $X=-6000 $Y=1000

describes a MOS device instance of type P (Calibre device MP) with dr
gate, source and bulk connected to nets 4, 5, 6 and 7 respectively and
as specified at the coordinates (-6000,1000) in the current cell. The lin

X2 7 8 9 10 11 Q3E $X=1000 $Y=1000

describes a device instance of type Q3E with five pins. In this case, the
netlist will also contain a subcircuit definition such as this:

.SUBCKT Q3E C B E1 E2 E3

.ENDS

Actual seed and pin device geometries that make up the device may o
at various levels above and below the device coordinates. Their actual
location is governed by the LVS circuit extraction Seed Promotion
functionality. The device coordinates appear at a vertex of the seed sh
after translation into the current cell. Device coordinates can also be
configured to appear at the center of the seed shape when the coordina
the center lie on the seed shape using the Layout Netlist Device Locat
Query Server command.
Calibre Verification User’s Manual, v9.1_515-154

RVE/QDB-H and Query Server Query Server

 on

s a

e
n

s

Some built-in devices make use of optional substrate pins defined by
Calibre. They are specified as:

R0 1 2 50 $SUB=3

where R0 is a resistor with terminals on nets 1 and 2 and substrate pin
net 3. This feature is controlled with the LVS Netlist Comment Coded
Substrate specification statement. If LVS Netlist Comment Coded
Substrate NO is specified in the rule file, the above resistor is output a
call to a subcircuit:

.SUBCKT R pos neg sub

.ENDS

X0 1 2 3 r=50

Devices included in the netlist are affected by the FILTER DEVICES
setting currently active in the Query Server. Only devices of FILTERED
types are included in the netlist.

• Nets

The nets in the layout netlist can be specified in one of three ways:

a. Using a combination of layout net names available from text in the
layout database (default) and net numbers for untexted nets.

b. Pure net numbers.

c. Source names where source names are available, layout names
prepended by a prefix where matching names are not available. Th
prefix is typically _Layout_, but if there are source names that begi
with _Layout_, additional “_” characters are added to the prefix to
insure that it is unique.

Name format is controlled with the Query Server’s Layout Netlist Name
command.
Calibre Verification User’s Manual, v9.1_5 15-155

Query Server RVE/QDB-H and Query Server

on.
ut

letter
out
t is
e
g

• Net numbers

Net numbers are determined arbitrarily by Calibre during circuit extracti
The combination of subcircuit calls and subcircuit definitions in the layo
netlist describes how electrical nets traverse levels of hierarchy in the
design.

• Expanded placements

The Layout Netlist Hierarchy command can be used to expand cells in
place within the netlist. When cells are expanded, the names of cell
placements are of the form XXi/[Xj...]/Xk.

Note that all device and cell placement names have exactly one extra
at the front when compared with names in the unexpanded netlist (Lay
Netlist Hierarchy ALL). This extra letter insures that the generated netlis
compatible with Spice readers and that the generated names can all b
easily mapped to regular Calibre hierarchical names by simply removin
the first letter. The extra letter is applied within all cells (those that have
expanded placements as well as those that do not).

For example, consider the following unflattened circuit:

.SUBCKT CELL_1 14 13
M0 11 IN 10 13 p L=1e-06 W=1.8e-05 $X=3000 $Y=9500
M1 9 IN 8 14 n L=1e-06 W=1.8e-05 $X=3000 $Y=-10500
X2 23 13 24 14 26 CELL_2
.ENDS

.SUBCKT CELL_2 I1 13 OUT 14 I2
M0 13 I1 OUT 13 p L=1e-06 W=1e-05 $X=-20000 $Y=20500
M1 13 I2 OUT 13 p L=1e-06 W=1e-05 $X=0 $Y=24500
M2 6 I2 14 14 n L=1e-06 W=1e-05 $X=-10000 $Y=-50500
M3 OUT I1 6 14 n L=1e-06 W=1e-05 $X=-10000 $Y=-29500
.ENDS

.SUBCKT TOP 14 13
M0 13 4 5 13 p L=3e-06 W=1.3e-05 $X=47000 $Y=-2000
M1 3 2 14 14 n L=1e-06 W=9e-06 $X=-52000 $Y=-35000
M2 5 4 14 14 n L=2e-06 W=1e-05 $X=49000 $Y=-42000
Calibre Verification User’s Manual, v9.1_515-156

RVE/QDB-H and Query Server Query Server

n

f the

qdb,
X3 14 13 CELL_1 $T=-104000 -58000 0 0 $X=-108000
$Y=-76000
.ENDS

when CELL_1 is expanded, the circuit is represented as:

.SUBCKT CELL_2 I1 13 OUT 14 I2
MM0 13 I1 OUT 13 p L=1e-06 W=1e-05 $X=-20000 $Y=20500
MM1 13 I2 OUT 13 p L=1e-06 W=1e-05 $X=0 $Y=24500
MM2 6 I2 14 14 n L=1e-06 W=1e-05 $X=-10000 $Y=-50500
MM3 OUT I1 6 14 n L=1e-06 W=1e-05 $X=-10000 $Y=-29500
.ENDS

SUBCKT TOP 14 13
MM0 13 4 5 13 p L=3e-06 W=1.3e-05 $X=47000 $Y=-2000
MM1 3 2 14 14 n L=1e-06 W=9e-06 $X=-52000 $Y=-35000
MM2 5 4 14 14 n L=2e-06 W=1e-05 $X=49000 $Y=-42000
MX3/M0 X3/11 X3/1 X3/10 6 p L=1e-06 W=1.8e-05 $X=3000
$Y=9500
MX3/M1 X3/9 X3/1 X3/8 1 n L=1e-06 W=1.8e-05 $X=3000
$Y=-10500
XX3/X2 X3/23 13 X3/24 14 X3/26 CELL_2 $T=0 -22000 0 0
$X=-40000 $Y=-102000
.ENDS

See the LAYOUT NETLIST HIERARCHY command for more details o
types of flattening available.

• Example use

To generate a flat netlist consisting only of a specific diode device,
D(probe), using source net names, with device locations at the center o
seed shape, use the following sequence of operations:

a. Ensure that you have access to a calibreci license as well as calibre
calibrelvs, and calibrehlvs licenses.

b. Use the following rule file statement to enable full CCI functionality
within the PHDB:

MASK SVDB DIRECTORY "svdb_dir" CCI
Calibre Verification User’s Manual, v9.1_5 15-157

Query Server RVE/QDB-H and Query Server

use

s:

s.
Run Calibre as you normally would:

calibre -spice lay.net -lvs -hier -hcell cells rules

Run the Query Server on svdb_dir generated in step ii).

calibre -query svdb_dir

c. After getting the “OK: Ready to serve.” prompt, issue the following
Query Server commands:

FILTER DEVICENAMES D(probe)
LAYOUT NETLIST HIERARCHY FLAT
LAYOUT NETLIST DEVICE LOCATION CENTER
LAYOUT NETLIST NAMES SOURCE NETS
LAYOUT NETLIST WRITE probe.net
TERMINATE

This will create the desired netlist in the file probe.net.

Annotated GDSII File Generation

The following Query Server commands produce annotated GDSII output that
GDSII PROPATTR and PROPVALUE records to present connectivity
information with geometry information.

The GDS WRITE command can be configured using the following command

• GDS MAP controls or lists layer name to layer number and datatype
mapping

• GDS [DEVPROP | NETPROP | PLACEPROP] NUMBER configures
PROPATTR record

• GDS RESET resets the default parameters for AGF file generation

• GDS SEED PROPERTY controls the output of device seed geometrie

• LAYOUT NAMETABLE WRITE associates names with net IDs used in
the AGF file
Calibre Verification User’s Manual, v9.1_515-158

RVE/QDB-H and Query Server Query Server

r
S

3.
.

• PORT TABLE presents port information in a separate file

These commands are discussed in the following table:

Table 15-23. Annotated GDSII Generation Commands

Command Acknowledgments

Description

GDS MAP
[layer_name gdsii_layer]
[gdsii_datatype] [{DEVICE |
ORIGINAL}]

OK
ERROR(114), ERROR(123),
ERROR(124), ERROR(133)

Description: Returns the present layer name to layer number/datatype
mapping in effect. Given a layer name or number and a desired GDSII laye
number and an optional GDSII datatype, this command configures the GD
WRITE command to use the desired layer number and datatype for
geometries associated with this layer. If GDS SEED PROPERTY DEVICE
ORIGINAL is specified, the DEVICE or ORIGINAL keyword must be
supplied in order to configure the proper layer.
Response:
Gds_Map <precision> // “Gds_Map” and design precision
Layers: // “Layers:”
0 0 <n> <date> // n lines of text follow
<name> <layer> <datatype> // mapping for layer <name>
... continuing for all meaningful layers.
Notes:
a) GDSII standard specifies layer and datatypes are numbers between 0-6
Values specified between -32768 and +32768 will be accepted and used
Values beyond that range are not representable in GDSII and will not be
accepted.
b) Multiple layers may be configured with successive invocations of the
command.
c) By default, layers are arbitrarily numbered sequentially starting with 1.
Calibre Verification User’s Manual, v9.1_5 15-159

Query Server RVE/QDB-H and Query Server
GDS [DEVPROP | NETPROP |
PLACEPROP] NUMBER number

OK

Description: Changes the value of the PROPATTR value inserted in the
GDSII output of the GDS WRITE command. GDS NETPROP NUMBER
changes the PROPATTR value for net numbers, GDS PLACEPROP
NUMBER changes the PROPATTR value for placement names. GDS
DEVPROP NUMBER changes the PROPATTR value for device names.
Notes:
a) Default PROPATTR values are 1 for device IDs, net IDs and
placement names.

GDS RESET OK

Description: Causes default settings to take effect for the GDS WRITE
command.
Notes:
a) Affects the GDS MAP, GDS NETPROP, and GDS PLACEPROP
 commands.
b) Does not affect the MAXIMUM VERTEX COUNT.

GDS SEED PROPERTY
{[DEVICE] [ORIGINAL]}

OK

Description: Given the DEVICE and/or ORIGINAL argument, causes
either the original database shapes (without device annotations) or the
recognized seed shapes (with device annotations) to be written. Both
arguments cause both layers to be written on different output layers.
Notes:
a) Due to seed promotion, original layer geometries may occur at a
different level than the recognized seed shapes.
b) If net ids are available on the ORIGINAL layer, they will be
annotated using the NETPROP annotations.

Table 15-23. Annotated GDSII Generation Commands

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_515-160

RVE/QDB-H and Query Server Query Server

ts

.

GDS WRITE file_path OK
NOK(33), ERROR(102),
ERROR(103), ERROR(130)

Description: Writes annotated layout geometry in GDSII format to the
specified file.
Filters: FILTER LAYERS, FILTER DEVICES/DEVICENAMES
Response: Writes an Annotated GDSII File (AGF)
Notes:
a) Net numbers are written to GDSII property fields using PROPATTR and
PROPVALUE records on BOUNDARY elements representing geometry
contained in the design.
b) Device ids are written to GDSII property fields using PROPATTR and
PROPVALUE records on BOUNDARY elements representing seed
geometry for the device.
c) Placement names are written to GDSII property fields using PROPATTR
and PROPVALUE records on SREF elements representing cell placemen
in the design.
d) The FILTER DEVICES and FILTER LAYERS filters both apply to
which device seed shapes are written to the file.
e) Details of the AGF format are provided below.
f) By default, the net, device, and placement number PROPATTR value
is 1. The value for attributes may be changed using the GDS NETPROP
NUMBER, GDS DEVPROP and GDS PLACEPROP commands.
g) By default, the maximum vertex count is 200 (same as GDSII standard)
It may be adjusted up or down with the MAXIMUM VERTEX COUNT
command.
h) Requires calibreci license in addition to calibreqdb license.

Table 15-23. Annotated GDSII Generation Commands

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_5 15-161

Query Server RVE/QDB-H and Query Server

t to

s a
Y)
ords
Annotated GDSII File (AGF) Format

This file provides geometric and connectivity information for the design.

LAYOUT NAMETABLE WRITE
file_path

OK
NOK(33), ERROR(102),
ERROR(103), ERROR(130)

Description: Writes Layout Netlist Names (LNN) file describing
correspondence of generated net numbers to original layout names.
Response: Writes Layout Netlist Names file (discussed below)
Notes:
a) Details of the Layout netlist names format are provided below.
b) The command may generate warnings as it executes. These transcrip
the standard out and are prefixed by the string “WARNING.”
c) Requires calibreci license in addition to calibreqdb license.

PORT TABLE [CELLS] WRITE
file_path

OK
ERROR(101), ERROR(102),
ERROR(130)

Description: Writes a port table file.
Response:
Without the CELLS option, writes a port table file for the top-level ports in
the design (discussed below). If the CELLS option is specified, writes a
port table file for ports in all cells in the design.
Notes:
a) Requires calibreci license in addition to calibreqdb license.

Note

This file is a GDSII file that uses the GDSII PROPERTY record a
mechanism for attaching net numbers to geometry (BOUNDAR
records and placement names to instance (SREF or AREF) rec
stored in the file.

Table 15-23. Annotated GDSII Generation Commands

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_515-162

RVE/QDB-H and Query Server Query Server

N

in

mes,
layout

s

The AGF file is designed to be used in conjunction with a layout netlist and LN
file generated in the following manner:

LAYOUT NETLIST NAMES NONE
LAYOUT NETLIST TRIVIAL PINS YES
LAYOUT NETLIST EMPTY CELLS YES
LAYOUT NETLIST WRITE <filename.net>
LAYOUT NETLIST NAMES WRITE <filename.lnn>

The layout netlist is required in order to follow nets through levels of hierarchy
the AGF.

The Annotated GDSII File contains net numbers but does not contain net na
even for texted nets. The correspondence between layout net numbers and
net names (for texted nets) is given in the Layout Net Name file (LNN).

The Annotated GDSII File consists of a collection of GDSII Records in the
following format:

A HEADER record.
A BGNLIB record including a current timestamp.
A LIBNAME record (the name is always lvs.db).
A UNITS record (based on rule file PRECISION and UNIT LENGTH
parameters.

For each Cell in the design:

a) A BGNSTR record with current time stamp.
b) A STRNAME record with the name of the current cell.
c) Cell instances [optional]. Also called “cell placements” or
 “placements”. Cell instances are presented as GDSII SREF element
 with cell names written as STRNAME records. Transformation
 information is included in an STRANS record if applicable. Location
 information for the placement is written as an XY record. The range
 of instance numbers (including device and cell instance numbers) is
 well-behaved. Instance numbers normally begin with a zero, tend to
 be consecutive, and are usable as array indices.
d) Placement names are written as GDSII PROPATTR and
 PROPVALUE records. These placement names correspond with the
Calibre Verification User’s Manual, v9.1_5 15-163

Query Server RVE/QDB-H and Query Server

se,
e
s
s

n

 in
this

st

n

t

e
th
 placement names written in the Layout Netlist file, for example “X3”.
 (The names do not correspond when LAYOUT NETLIST NAMES
 SOURCE is specified before generating the layout netlist).
e) [Optional] Polygons are written as GDSII BOUNDARY records.
 Polygons on all layers of interest are present. Layers of interest are
 specified using the Query Server’s FILTER LAYERS command. The
 layers of interest must be layers that are saved in the PHDB databa
 that is, layers that appear in Connect and Sconnect operations, serv
 as Device seed or pin layers, or are target layers of Stamp operation
 (second argument of Stamp). Layers that are not in one of these set
 are not available. These BOUNDARY records include LAYER and
 DATATYPE records which can be controlled with the Query
 Server’s GDS MAP command.
f) An XY record represents coordinate information as part of the
 BOUNDARY element. An array of (X,Y) locations in database units,
 in the coordinate space of the cell. Maximum number of XY pairs ca
 be controlled by the Query Server’s MAXIMUM VERTEX COUNT
 command.
g) The PROPATTR and PROPVALUE fields in the BOUNDARY
 record are used to represent net number (also called node number)
 layers that are not device seed layers. These records are present if
 polygon belongs to a layer that carries connectivity. These net
 numbers correspond to the net numbers specified in the layout netli
 when the LAYOUT NETLIST NAMES NONE option is used. The
 PROPATTR attribute number may be specified using the Query
 Server’s GDS NETPROP NUMBER command. The PROPVALUE
 record indicates the number of the electrical net to which the polygo
 belongs in the cell. Net numbers are local to the cell and are unique
 within the cell. Net numbers are assigned by Calibre LVS during
 circuit extraction.
h) Some nets in the AGF may be omitted from the layout netlist.
 Specifically, nets that are not connected to devices nor to placemen
 pins and that do not serve as pins of the cell that contains them are
 omitted.
i) Most nets are represented by simple net numbers. The range of thes
 net numbers is well-behaved. That is, net numbers normally start wi
 1, tend to be consecutive, and are safe for use as array indices.
j) Sometimes nets and instances are represented by short hierarchical
Calibre Verification User’s Manual, v9.1_515-164

RVE/QDB-H and Query Server Query Server

e

g

n

hen
ward

E
ard

rm

bers

nd
e

o
ith a
ed
 strings which represent entities at lower levels of hierarchy which ar
 not present in the AGF file. For example, X3/2 or X4/X1/3. Each of
 these strings represents a net unique in the cell. These hierarchical
 paths come from expanded cells as described below.
k) In device seed layers, the PROPATTR and PROPVALUE fields
 represent the device ID string as seen in the layout netlist file. (Note
 that device ID annotations are available only if the Mask SVDB
 Directory statement in the rule file contains the CCI option or the
 ANNOTATE DEVICES option). The PROPATTR attribute number
 may be specified using the Query Server’s GDS DEVPROP
 NUMBER command. The PROPVALUE record indicates the device
 ID associated with the seed shape as assigned by Calibre LVS durin
 circuit extraction.
l) Devices are represented by the same types of strings that are used i
 the Spice netlist. For example “M0”, “D1”, “C3”. Like net numbers,
 they may be represented by hierarchical pathnames like “X1/M3”.

• Expanded Cells

Certain cell placements are expanded in place in the AGF file output. W
this occurs, geometry from the expanded placement is transformed up
into the containing cell. If geometry is connected to a net within the
containing cell, the higher level net number is used in the PROPVALU
record for each transformed polygon. If the net does not propagate upw
from the placement, it is represented with a hierarchical string of the fo
“Xn/[[Xm/]...]i. These paths may be used in conjunction with the cross
reference files described below. They are formed using placement num
available in the LPH file. Only cells generated by Calibre during circuit
extraction are expanded in this manner.

Layout Netlist Names (LNN) File Format

The Layout Net Name file provides correspondence between net numbers a
user-specified net names, for texted layout nets. It is intended for use with th
LAYOUT NETLIST NAMES NONE option to the LAYOUT NETLIST WRITE
command and the AGF file by tying net numbers in the AGF file and netlist t
layout net names specified using text in the layout database. The file begins w
number of “SVDB” header lines indicated with #. The header format is describ
Calibre Verification User’s Manual, v9.1_5 15-165

Query Server RVE/QDB-H and Query Server

t

, and

s of
 The

“$”
ted
later in this section. Following that there is a section for each cell in the layou
hierarchy (not just corresponding cells or hcells, but all cells). The first line in
each section consists of a percent “%” sign, a space, the cell name, a space
finally the number of pins of the cell. The format is:

% cell_name pin_count

Each of the following lines represents a net within the current cell and consist
the net number (local to the cell), a space, and the user-specified net name.
format is:

number name

Only texted nets have entries in the Layout Net Name file.

In summary, the format of the Layout Net Name file is this:

SVDB: header_line
SVDB: header_line
....
SVDB: header_line
% cell_name pin_count
number name
number name
....
....
....
....

Cells with no named nets will appear in the file with no number-name pairs
following. Cells that have been renamed in the netlist due to the presence of a
character at the beginning of the cell name will have the modified name prin
inside brackets at the end of the line.
Calibre Verification User’s Manual, v9.1_515-166

RVE/QDB-H and Query Server Query Server

s (of

has

]

ut

rt
Here’s an example of a Layout Net Name file:

 # SVDB:

 # SVDB:
 % NAND 5
 4 I1
 5 I2
 6 OUT
 % TOP 0
 2 VDD
 3 VSS
 17 CLOCK
 % $VIA2 1 [__$VIA2]

The Layout Net Name file is required in order to translate layout net number
texted layout nets) into net names for lookup in the hierarchical Net Cross
Reference file (NXF).

Port Table File Format

The port table identifies locations of identified ports in the design. The file
contains one line for each port. (Unattached ports are not output). Each line
the following fields:

port-name node-number node-name location layer-attached [cell-name

Where:

port-name—layout name of the port object, for example the GDSII text
string when using Port Layer Text, or <UNNAMED> if the port is not
named.

node-number—layout node number to which the port is connected.

node-name—layout node name to which the port is connected, or layo
node number if the node is unnamed.

location—in the form: X Y; in database units. This is the location of the
database text object when using Port Layer Text, or a vertex on the po
polygon marker when using Port Layer Polygon.
Calibre Verification User’s Manual, v9.1_5 15-167

Query Server RVE/QDB-H and Query Server

le
er

the
ell
layer-attached—layer of the polygon to which the port got attached. Ru
file layer name or rule file layer number if the layer is unnamed. This lay
appears in a Connect or Sconnect operation.

cell-name—cell name field is present only when the file is produced by
PORT TABLE CELLS WRITE command. It specifies the name of the c
in which the port resides. The PORT TABLE WRITE command only
writes ports from the top-level cell.

Examples:

 PORT TABLE WRITEfile_path may produce the following output:

 CONF3 5 CONF -98000 -90000 metal
 CONF3 5 5 -98000 -90000 metal
 <UNNAMED> 5 5 -98000 -90000 metal
 CONF 5 CONF -98000 -90000 17

PORT TABLE CELLS WRITEfile_pathmay produce the following output:

 CONF3 5 CONF -98000 -90000 metal cellA
 CONF3 5 5 -98000 -90000 metal cellA
 <UNNAMED> 5 5 -98000 -90000 metal cellB
 CONF 5 CONF -98000 -90000 17 CHIP
Calibre Verification User’s Manual, v9.1_515-168

RVE/QDB-H and Query Server Query Server

tion:
Cross Reference File Generation

The following table discusses commands used in cross reference file genera

Table 15-24. Cross Reference File Generation Commands

Command Acknowledgments

Description

INSTANCE XREF WRITE
file_path

OK
NOK(33), ERROR(101),
ERROR(102)

Description: Writes instance correspondence as determined by LVS.
Response: Writes an instance cross reference file
Notes:
a) Details of the Instance Cross Reference format are provided below.
b) The format and content of this file is similar to the one
 generated by the calibre -ixf switch and the “Mask SVDB Directory

file IXF” SVRF rule file statement.
c) Requires calibreci license in addition to calibreqdb license.

{LAYOUT | SOURCE}
HIERARCHY WRITE file_path

OK
NOK(33), ERROR(101),
ERROR(102)

Description: writes Source or Layout Placement Hierarchy file describing
original netlist placement hierarchy.
Response: Writes a Placement Hierarchy file.
Notes:
a) Details of the Placement Hierarchy format are provided below.
b) A similar file is generated by Calibre when the Mask SVDB
Directory <dir> SLPH option is set in the rule file.
c) Requires calibreci license in addition to calibreqdb license.
Calibre Verification User’s Manual, v9.1_5 15-169

Query Server RVE/QDB-H and Query Server

 the
fied
eir

fied

ppear
t
ote

, for

d
and
Cross Reference System File Formats

In this section we describe how individual instances and nets are identified in
IXF, NXF, LPH and SPH cross reference files. Untexted layout nets are identi
with their net number, for example, 17. Texted layout nets are identified with th
user-specified names, for example, CLOCK. Layout cell instances are identi
with the letter X followed by the instance number, for example, X25. Layout
device instances are identified with a letter designating their device type (for
example M, R, C, D, Q, X, and so on), followed by the instance number, for
example, M5. Source instances and nets are identified with names as they a
in the original source netlist. Note that this identification scheme is somewha
different from the one used in the AGF and the Layout Netlist. In particular, n
that all nets in the AGF and the Layout Netlist are identified solely by their
numbers. The correspondence between numbers and user-specified names
texted layout nets, is provided in the Layout Net Name file (LNN).

• Placement Hierarchy (LPH/SPH) File Format

The layout placement hierarchy file (LPH) and the source placement
hierarchy file (SPH) describe the hierarchical structure of the layout an
source respectively. They map cell instances to cell names in the layout

NET XREF WRITE file_path OK
NOK(33), ERROR(101),
ERROR(102)

Description: Writes net correspondence as determined by LVS.
Response: Writes a net cross reference file
Notes:
a) Details of the Net Cross Reference format are provided below.
b) The format and content of this file is similar to the one generated by
the calibre -nxf switch and the “Mask SVDB Directoryfile NXF”
SVRF rule file statement.
c) Requires calibreci license in addition to calibreqdb license.

Table 15-24. Cross Reference File Generation Commands

Command Acknowledgments

Description
Calibre Verification User’s Manual, v9.1_515-170

RVE/QDB-H and Query Server Query Server

.
this

y
h
, and

vice
cal
a

 not.
nts.
t is,
source. These files complement the IXF and NXF cross reference files
Note: the terms “placement” and “instance” are used interchangeably in
discussion.

Each placement hierarchy file begins with a number of “SVDB” header
lines indicated with #. The header format is described later in this
document. Following that there is a section for each cell in the hierarch
(not just corresponding cells or hcells, but all cells). The first line in eac
section consists of a percent “%” sign, a space, the cell name, a space
finally the number of pins of the cell. The format is:

% cell_name pin_count

Each of the following lines represents a cell instance (placement) or de
instance within the current cell and consists of the instance identifier (lo
to the cell), a space, the name of the cell or device being instantiated,
space and the number of pins on the instance. The format is:

instance_identifier cell_or_device_name number_of_pins

Note that only cells are represented by sections in the file. Devices are
Note also that no connectivity information is present other than pin cou
Also, cells that do not contain devices or placements of other cells (tha
vias) are not represented.

In summary, the file format is this:

SVDB: header_line
SVDB: header_line
....
SVDB: header_line
% cell_name pin_count
instance_identifier cell_or_device_name number_of_pins
instance_identifier cell_or_device_name number_of_pins
....
%cell_name pin_count
instance_identifier cell_or_device_name number_of_pins
instance_identifier cell_or_device_name number_of_pins
....
Calibre Verification User’s Manual, v9.1_5 15-171

Query Server RVE/QDB-H and Query Server

is

urce
ith a
ing
ing

own
....

....

Example:

 # SVDB:

 # SVDB:
 % NAND 5
 M1 MP 4
 M2 MP 4
 M3 MN 4
 M4 MN 4
 % TOP 0
 X1 NAND 5
 X2 NAND 5

• Net/Instance Cross Reference File (IXF/NXF) File Format

There are two hierarchical cross reference files:

IXF: Instance Cross Reference File
NXF: Net Cross Reference File

Each hierarchical cross reference file begins with a number of “SVDB”
header lines indicated with #. The header format is described later in th
document. The remainder of each file contains sections for individual
correspondence cells or “hcells.” These cells exist in both layout and so
netlists. There is one section for each hcell. Each hcell section begins w
% line specifying the layout cell name and pin count and the correspond
source cell name and pin count. This is followed by lines of correspond
layout-source elements in the cell. The general structure of the file is sh
below.

SVDB: header_line
SVDB: header_line
....
SVDB: header_line
% layout_cell layout_pin_count source_cell source_pin_count
layout_id layout_path source_id source_path
Calibre Verification User’s Manual, v9.1_515-172

RVE/QDB-H and Query Server Query Server

s
F
e
is

per

ut
mes

by
_id

ce

e
s.

hen
layout_id layout_path source_id source_path
....
% layout_cell layout_pin_count source_cell source_pin_count
layout_id layout_path source_id source_path
layout_id layout_path source_id source_path
....
....

The layout_path and source_path fields contain hierarchical pathname
rooted in the particular hcell that owns them. Note that the IXF and NX
files produced by the Query Server always have “layout ID” and “sourc
id” values of 0. More information about individual instance and net lines
provided below.

o Instance Cross Reference File (IXF) Line Format

The instance cross reference file contains matched instances. This
includes device instances as well as cell instances. There is one line
instance in the following form:

layout_id layout_path source_id source_path [SL | SS] [X]

The layout_path and source_path fields identify corresponding layo
and source instances. Instances are identified by hierarchical pathna
rooted in the particular hcell to which this line belongs. A instance
pathname consists of zero or more cell instance identifiers, followed
a device instance identifier, separated by “/” characters. The layout
and source_id fields are for internal use and should be ignored. In
particular, note that the layout_id field does not contain layout instan
numbers. For example:

 % ALU 25 ALU 25
 0 X2/X3/M1 0 MFOO
 0 D2 0 X3/X1/D8

Reduced devices (such as those created by series or parallel devic
reduction) are represented in the file by all their original constituent
The original devices appear in consecutive lines in the file, with the
corresponding device from the other design repeated in each line. W
Calibre Verification User’s Manual, v9.1_5 15-173

Query Server RVE/QDB-H and Query Server

en all
,
l the
ght,
e
es

ich
he

gle
 also
1

e

the

pect
are

g

per
a reduced layout device is matched to a reduced source device, th
the original layout devices are listed in consecutive lines on the left
with a representative original source device repeated on the right; al
other original source devices are listed in consecutive lines on the ri
with a representative original layout device repeated on the left. Th
representative devices are chosen arbitrarily. Reduced layout devic
(other then the representative) are indicated with the string “SL” wh
stands for “smashed layout.” Reduced source devices (other then t
representative) are indicated with the string “SS” which stands for
“smashed source.” For example:

 0 R10 0 R1
 0 R11 0 R1 SL
 0 R10 0 R2 SS
 0 R10 0 R3 SS

In this example, layout devices R10 and R11 were reduced to a sin
device, and correspond to source devices R1, R2 and R3 that were
reduced to a single device. Layout device R10 and source device R
were chosen as representatives.

MOS devices with swapped source/drain pins are indicated with th
letter X. For example:

 0 M10 0 M1 X

X indicates that the source pin of the layout device corresponds to
drain pin of the source device and vice versa. Lines that represent
reduced devices (SL or SS) have correct X values as well, with res
to the two devices reported on that particular line. LVS logic gates
represented by the original transistors that form them. All matched
transistors in the layout gate are listed, along with the correspondin
transistors in the source gate.

o Net Cross Reference File (NXF) Line Format

The net cross reference file contains matched nets. There is one line
net in the following form:

layout_id layout_path source_id source_path
Calibre Verification User’s Manual, v9.1_515-174

RVE/QDB-H and Query Server Query Server

ut
d in
ists

 for
t_id

rce
yout
or
t or
osen
side.

h the
d 3

in
s

er
The layout_path and source_path fields identify corresponding layo
and source nets. Nets are identified by hierarchical pathnames roote
the particular hcell to which this line belongs. A net pathname cons
of zero or more cell instance identifiers, followed by a net identifier,
separated by “/” characters. The layout_id and source_id fields are
internal use and should be ignored. In particular, note that the layou
field does not contain layout net numbers. For example:

 % ALU 25 ALU 25
 0 X2/X3/7 0 SIG1
 0 13 0 X3/X1/8

In certain situations, LVS may match several layout nets to one sou
net, or several source nets to one layout net, or a group of several la
nets (together) to a group of several source nets. This may occur, f
example, in split gate reduction or when LVS detects an open circui
short circuit discrepancy. In these cases, a representative net is ch
for the layout side and a representative net is chosen for the source
The representative pair appears in the net cross reference file. In
addition, each of the remaining layout nets appears with the source
representative, and each of the remaining source nets appears wit
layout representative. In the following example, layout nets 1, 2 an
were matched (as a group) to source nets n1, n2 and n3.

 0 1 0 n1
 0 1 0 n2
 0 1 0 n3
 0 2 0 n1
 0 3 0 n1

Note that some nets are unmatched even when LVS is successful.
Examples of nets that are never matched are: nets internal to certa
types of logic gates formed by LVS; nets removed because of serie
device reduction. Unmatched nets do not appear in the net cross
reference file.

• SVDB Header Description

As mentioned, the IXF, NXF, LPH and SPH files each begin with a numb
of SVDB header lines. The acronym SVDB stands for Standard
Calibre Verification User’s Manual, v9.1_5 15-175

Query Server RVE/QDB-H and Query Server

rce
es.

on

the
ut
n

tter
o

ion
p of
me
Verification Data Base. The header identifies the type of file and the sou
of the information used to create the file. The header consists of 10 lin
Each line begins with the string “# SVDB:”. Here is an example of the
SVDB header from a IXF file:

 # SVDB: Instance Cross Reference (ixf) (File format 1)
 # SVDB: Layout Primary mix
 # SVDB: Rules -0 play.rules Wed Dec 10 10:07:38 1997
 # SVDB: GDSII -0 (none) (none)
 # SVDB: SNL -0 (none) (none)
 # SVDB:
 # SVDB:
 # SVDB:
 # SVDB:
 # SVDB: End of header.

The first line in the header identifies the type of file and its format versi
and is the only line which differs between files representing the same
design. Here are the first lines from each of the four different files
mentioned above:

#SVDB: Layout Placement Hierarchy (lph) (File format 1)
#SVDB: Source Placement Hierarchy (sph) (File format 1)
#SVDB: Instance Cross Reference (ixf) (File format 1)
#SVDB: Net Cross Reference (nxf) (File format 1)

The second line in the header gives the name of the top (primary) cell of
design. The third, fourth, and fifth lines identify the Calibre rule file, layo
GDSII file, and source netlist file used in creating the file. The entries o
these lines are the type of file (Rules, GDSII or SNL respectively, the la
standing for Source NetList) followed by a checksum for the file (or -0 if n
checksum is present), the pathname to the file at the time the informat
was captured (or “(none)” if a pathname is not present) and a time stam
the file which was used (or “(none)” if a time stamp is not present). A ti
stamp, when specified, is of the form:

 week_day month day hh:mm:ss year
Calibre Verification User’s Manual, v9.1_515-176

RVE/QDB-H and Query Server Query Server

 full

ry
• Step by Step Example

The following example describes a step by step process for generating
CCI output from Calibre.

1) Ensure that the calibre rule file includes the line Mask SVDB
 Directory “output_dir” CCI

2) Run hierarchical Calibre LVS.

3) Run the Calibre Query Server on the SVDB directory generated
 during step 1.

Use the following commands to generate CCI output from the Que
Server:

 #################################
 ##### Generate the Annotated GDSII File
 #################################
set the value used for the PROPATTR record in GDSII

 ### BOUNDARY element to indicate node id
 gds netprop number 5

set the value used for the PROPATTR record in GDSII
 ### SREF element to indicate placement name
 gds placeprop number 6

set the value used for the PROPATTR record in GDSII
 ### BOUNDARY element to indicate device name
 gds devprop number 7

 ### Set layer name to number mappings if desired
 gds map LayerRed 2
 gds map BlueSeed 3
 gds map GreenPin 4

write out the gds map showing layer name to number
 ### mappings
 response file output/gds_map
 gds map
 response direct
Calibre Verification User’s Manual, v9.1_5 15-177

Query Server RVE/QDB-H and Query Server
 ### write the agf file in annotated GDSII format
 gds write output/svdb.agf

 #################################
 ##### Generate the Layout Netlist
 #################################

Include trivial pins and empty cells in the layout
 ### netlist
 layout netlist trivial pins YES
 layout netlist empty cells YES

 ### Use only node numbers for netlists
 layout netlist names NONE

 ### write the layout netlist
 layout netlist write output/svdb.spi

 #####################################
 ##### write the net to name mapping file (LNN)
 #####################################
 layout nametable write output/svdb.lnn
 #####################################
 ###### Generate Cross Reference Information
 #####################################
 ### write the source and layout placement hierarchy
 ### files (sph,lph)

not necessary if the Mask SVDB Directory <dir> SLPH
 ### option is used
 source hierarchy write output/svdb.sph
 layout hierarchy write output/svdb.lph

 ### write the net and instance cross reference
 ### Mask SVDB Directory <dir> NXF IXF options are used
 net xref write output/svdb.nxf
 instance xref write output/svdb.ixf

 #####################################
 ##### Generate the Port Table File
 #####################################
 ### write the port table
 port table write output/svdb.ports
Calibre Verification User’s Manual, v9.1_515-178

RVE/QDB-H and Query Server Query Server

rrors
Query Server Error and Failure Messages

Error Messages

Table 15-25describes the errors that may be returned as acknowledgments. E
generally involve avoidable problems, such as unknown commands, missing
arguments, or environment failures.

Table 15-25. Error Messages

Message Description

ERROR(101) Fileresponse_file_pathcould not be opened for writing.

ERROR(102) Problems writing to fileresponse_file_path.

ERROR(103) There is no layout cell namedcell_name. (Current
context remains unchanged.)

ERROR(104) Layout cellviewing_cell has no instance
query_instance. (Current context remains unchanged.)

ERROR(105) Due problems parsing cross-reference files, the Query
Server cannot be initialized.

ERROR(106) This client id is negative or malformed:client_id.

ERROR(107) There is no client with id:client_id.

ERROR(108) Client 0 can never be disconnected.

ERROR(109) The active client cannot be disconnected.

ERROR(110) Marker size value is negative or malformed:size.

ERROR(111) Unknown command or wrong number of arguments.

ERROR(112) Command not yet implemented.

ERROR(113) Filter distance is negative or malformed:distance.

ERROR(114) Unknown layer name or number:
layer_name_or_number.

ERROR(115) Unknown device type number:device_type_number.
Calibre Verification User’s Manual, v9.1_5 15-179

Query Server RVE/QDB-H and Query Server

,

ERROR(116) The x y location is malformed:coordinate.

ERROR(117) Invalid or malformed window coordinates:x1 x2 y1 y2

ERROR(118) Invalid or malformed cull distances: x y

ERROR(119) The maximum vertex count was malformed or less than
4.

ERROR(120) Query instance argumentquery_instance not valid in
XDB only mode.

ERROR(121) Zoom factor is negative or malformed:z_factor (RVE
only).

ERROR(122) Command not available in FLAT mode.

ERROR(123) Invalid arguments to GDS MAP
[gdsii_layer][gdsii_datatype].

ERROR(124) Value specified <value> is not representable in GDSII.

ERROR(125) Invalid cell name/pin count combination:
<layout_cell> <pin_count> <source_cell> <pin_count>

ERROR(126) Unknown device element name: <name>

ERROR(127) (not currently used).

ERROR(128) Layout netlist hierarchy must be FLAT when layout
netlist source is specified.

ERROR(129) SVDB Database revision does not support this feature
rerun Calibre.

ERROR(130) Incorrect MASK SVDB DIRECTORY options for this
function.

ERROR(131) CALIBRE CONNECTIVITY INTERFACE license is
unavilable.

ERROR(132) Delta XY setting is malformed <x> <y>.

Table 15-25. Error Messages [continued]

Message Description
Calibre Verification User’s Manual, v9.1_515-180

RVE/QDB-H and Query Server Query Server

.

Failure Messages

Table 15-26 describes the failures that may be returned as acknowledgments
They indicate the command (usually a request for design information) was
performed but failed to produce the requested response.

ERROR(133) Must specify DEVICE or ORIGINAL layer.

Table 15-26. Failure Messages

Message Description

NOK(1) There are no unfiltered pins on layout net
layout_net_path.

NOK(2) No source cell corresponds to layout cellcell_name.

NOK(3) Either layout celllayout_cell has no net
layout_net_path or it was removed before comparison.

NOK(4) Either source cellsource_cell has no net
source_net_path or it was removed before comparison.

NOK(5) Layout cellquery_cell has no net named
layout_net_path.

NOK(6) No device of the filtered type found within the filter
distance.

NOK(7) Either layout cellquery_cell has no device
layout_device_path or it was filtered.

NOK(8) Either source cellsource_cell has no device
source_dev_path or it was filtered.

NOK(9) Layout cellquery_cell has no device
layout_device_path.

NOK(10) Layout cellquery_cell has no ports.

NOK(11) Layout cellquery_cell has no port namedport_name.

Table 15-25. Error Messages [continued]

Message Description
Calibre Verification User’s Manual, v9.1_5 15-181

Query Server RVE/QDB-H and Query Server

g

NOK(12) There are no ports on layout netlayout_net_path.

NOK(13) No port found on the filter layers.

NOK(14) No net found on the filter layers.

NOK(15) Flattened layout cellquery_cell has no ports.

NOK(16) Layout cellquery_cell has no nets.

NOK(17) Flattened layout cellquery_cell has no nets.

NOK(18) Layout cellquery_cell has no devices.

NOK(19) Flattened layout cellquery_cell has no devices.

NOK(20) Layout cellquery_cell has no bad devices.

NOK(21) Cross-reference commands are disabled due to missin
cross-reference.

NOK(22) Layout cellquery_cell has no placements.

NOK(23) Flattened layout cellquery_cell has no placements.

NOK(24) No placements were selected.

NOK(25) Layout cellquery_cell has no such placement.

NOK(26) No layout cell corresponds to source cellcell_name.

NOK(27) No LVS report was specified in the rules.

NOK(28) No SVDB directory was specified in the rules.

NOK(29) Layout cellquery_cell has no unfiltered shapes on net
net_names.

NOK(30) No source directory was specified in the rules.

NOK(31) No layout file was specified in the rules.

NOK(32) Layout cellquery_cell has no placement
placement_name.

Table 15-26. Failure Messages [continued]

Message Description
Calibre Verification User’s Manual, v9.1_515-182

RVE/QDB-H and Query Server Query Server

file
is

n.
When the Query Server or RVE restore the PHDB database, the SVRF rule
stored in the PHDB is recompiled. There are circumstances that will cause th
compilation to fail even when it was successful during the original Calibre ru

NOK(33) Interrupted.

NOK(34) Layout cellquery_cell had no unfiltered devices on net
net_name.

NOK(35) Layout cellquery_cell had no netnet_name extending
into placement_name.

NOK(36) There is no layout cell namedtarget_cell.

NOK(37) Target nettarget_net must be a top level net of
target_cell.

NOK(38) Layout celltarget_cell is topologically higher than net
reference_net.

NOK(39) No placement oftarget_cell lies within the current
query context.

NOK(40) Layout database query commands are disabled due to
missing PHDB database.

NOK(41) source_device was not matched to a layout device.

NOK(42) layout_device was not matched to a source device.

NOK(43) File name not available.

NOK(44) Netsource_net_path was not matched to a layout net.

NOK(45) Netlayout_net_path was not matched to a source net.

NOK(46) Layout cell <cell_name> has no [INVALID] net texts.

NOK(47) Layout cell <cell_name> has no [INVALID] port texts.

Table 15-26. Failure Messages [continued]

Message Description
Calibre Verification User’s Manual, v9.1_5 15-183

Query Server RVE/QDB-H and Query Server
The query Server and RVE issue a diagnostic message when the rule file
compilation fails similar to:

RESTORATION OF PHDB FAILED.
PHDB STATUS IS -13
Rules file is invalid or incomplete.
Error ENV1 on line 233 of rules1.4497 - undefined or
empty environment variable: DESIGN_DIR.
Calibre Verification User’s Manual, v9.1_515-184

,

otes

g

Appendix A
Application Notes

This appendix lists the application notes available for the Calibre Verification
Calibre RET, and xCalibre products.

Application notes are created outside of the documentation group, as an
addendum to the manual. Normally, they provide procedural information to a
depth greater than can be covered within the product manuals. Application n
may not include the latest functionality of the toolset.

The following list shows the titles of the application notes available. Followin
the list of titles there are instructions on accessing these documents.

• Antenna Rule Checks with Calibre DRC

• Bent Gate Device Extraction With Calibre

• Debugging Electrical Shorts

• How to Create Scattering Bars Using Calibre

• Single-Layer Runs with Calibre DRC

• What to Look for in the Calibre LVS Transcript

• Calibre RVE Debugging of HLVS Results

• Multithreaded Hierarchical Calibre Performance Characteristics

• Calibre RVE Debugging of HLVS Results

• File Input/Output of Calibre DRC
Calibre Verification User’s Manual, v9.1_5 A-1

Application Notes

the

ote
s

ng

user
orm.
• Conditionals and Scripting in SVRF

• Calibre Architectural Features for High Performance

• Advanced Rule-Based OPC with Calibre SVRF

• Common situations encountered with Calibre LVS

• Converting Dracula Antenna Checks to Calibre

• Dracula ERC Translations

• Writing OPC Rules with Calibre DRC

• How Calibre LVS Uses Text

• Benchmarking and Optimizing Calibre DRC

• Converting Dracula LVS Files to Calibre

• Post Processing the Dracula Rule File Converter

• xCalibrate and Local Interconnect

• xCalibrate and Planar/nonPlanar Processes

You can obtain these application notes by navigating with a web browser to
Mentor GraphicsCustomer Access site. If your PDF viewer is connected to your
web browser, the following address will take you directly to the application n
site, however, if your PDF viewer is not connected, you can enter the addres
manually.

http://www.mentor.com/dsm/customer/appnotes

Customer Accessis a website designed specifically for Calibre customers to bri
you the latest technical information and software updates.

This information is part of your support contract and you must be a registered
to access the website. To obtain your login, please submit this “sign up” webf
Calibre Verification User’s Manual, v9.1_5A-2

http://www.mentor.com/dsm/customer/appnotes

Application Notes
http://www.mentor.com/dsm/cust_signup.cfm

You will receive your login within one business day.
Calibre Verification User’s Manual, v9.1_5 A-3

http://www.mentor.com/dsm/cust_signup.cfm

Application Notes
Calibre Verification User’s Manual, v9.1_5A-4

Calibre Interactive Files Runset File Example

re

unset
s as

e

Appendix B
Calibre Interactive Files

This appendix contains files which are useful for configuring and using Calib
Interactive.

Runset File Example
Runsets are ASCII files that set up Calibre Interactive for a Calibre run. They
contain only information that differs from the default configuration of Calibre
Interactive. There is a one-to-one correspondence between entry lines in the r
file and fields and button items in the Calibre Interactive user interface. Here i
example of a DRC runset:

*drcRulesFile: rule_file
*drcRulesFileLastLoad: 1009224452
*drcLayoutPaths: ./lab3.gds
*drcLayoutPrimary: lab3
*drcResultsFile: ./lab3.db
*drcSummaryFile: drc_report
*drcRunTurbo: 0
*drcRunRemoteOn: Cluster
*drcRemoteLICENSEFILEName: MGLS_LICENSE_FILE
*drcRemoteLICENSEFILEValue: /scratch1/mgls/mgclicenses
*drcDontWaitForLicense: 0

Default Configuration
The default settings for Calibre Interactive are stored in the file
$MCG_HOME/pkgs/icv/userware/default/cgi/options.tcl. There is a one-to-on
Calibre Verification User’s Manual, v9.1_5 B-1

Default Configuration Calibre Interactive Files

 the
t file:

ION
correspondence between entry lines in this file and fields and button items in
Calibre Interactive user interface. Here is a copy of the settings section of tha

#
Copyright Mentor Graphics Corporation 2002
All Rights Reserved.
THIS WORK CONTAINS TRADE SECRET AND PROPRIETARY INFORMAT
WHICH IS THE PROPERTY OF MENTOR GRAPHICS CORPORATION
OR ITS LICENSORS AND IS SUBJECT TO LICENSE TERMS.
#
#

namespace eval options {
 variable opts_vars

namespace export init readFile saveFile areOptionsChanged
resetOptions

 set opts_vars(drc_opts) [list \
 [list RulesFile "rules"] \
 [list RulesFileLastLoad 0] \
 [list RunDir "."] \
 [list LayoutPaths ""] \
 [list LayoutSystem GDSII] \
 [list LayoutPrimary ""] \
 [list LayoutGetFromViewer 0] \
 [list ResultsFile drc.results] \
 [list ResultsFormat ASCII] \
 [list CellName 0] \
 [list CellNameSpace 1] \
 [list CellNameXform 1] \
 [list CellNameAll 0] \
 [list CellText 0] \
 [list DRCMaxResultsAll 0] \
 [list DRCMaxResultsCount 1000] \
 [list AutoHalo 1] \
 [list HaloSize 0.0] \
 [list LayoutPrecision 1000] \
 [list StartRVE 1] \
 [list WriteSummary 1] \
 [list SummaryFile drc.summary] \
 [list AppendSummary 0] \
 [list ViewSummary 1] \
Calibre Verification User’s Manual, v9.1_5B-2

Calibre Interactive Files Default Configuration
 [list RunHier 1] \
 [list Run64 0] \
 [list RunTurbo 1] \
 [list UseAllProcessors 1] \
 [list NumProcessors ""] \
 [list TranscriptFile ""] \
 [list TranscriptFileAppend 0] \
 [list TranscriptEchoToFile 0] \
 [list ShowChecksAlpha 0] \
 [list ShowGroupsAlpha 0] \
 [list ShowGroupsHier 0] \
 [list ShowGroupsTop 0] \
 [list DontWaitForLicense 1] \
 [list DRCCheckArea 0] \
 [list DRCAreaCoords ""] \
 [list IncludeFiles ""] \
 [list EnvVars ""] \
 [list Template_LP "%l.gds"] \
 [list Template_RD "%l.drc.results"] \
 [list Template_SF "%l.drc.summary"] \
 [list Template_IL 1] \
]

 set opts_vars(lvs_opts) [list \
 [list RulesFile "rules"] \
 [list RulesFileLastLoad 0] \
 [list RunDir "."] \
 [list LayoutPaths ""] \
 [list LayoutSystem GDSII] \
 [list LayoutPrimary ""] \
 [list LayoutGetFromViewer 0] \
 [list LayoutPrecision 1000] \
 [list SourcePath ""] \
 [list SourceSystem SPICE] \
 [list SourcePrimary ""] \
 [list SourceGetFromViewer 0] \
 [list ReportFile lvs.report] \
 [list ViewReport 1] \
 [list CreateSVDB 1] \
 [list SVDBContents QUERY] \
 [list SVDBphdb 0] \
 [list SVDBxdb 0] \
 [list SVDBinxf 0] \
Calibre Verification User’s Manual, v9.1_5 B-3

Default Configuration Calibre Interactive Files
 [list SVDBslph 0] \
 [list SVDBcci 0] \
 [list SVDBbygate 0] \
 [list SVDBanndev 0] \
 [list SVDBdv 0] \
 [list SVDBDir svdb] \
 [list SVDBNoflat 0] \
 [list StartRVE 1] \
 [list WriteMaskDB 0] \
 [list MaskDBFile maskdb] \
 [list WriteINXF 0] \
 [list WriteBPF 0] \
 [list WriteNL 0] \
 [list RunHier 1] \
 [list RunWhat LVN] \
 [list SpiceFile lay.net] \
 [list AutoMatch 0] \
 [list UseHCells 0] \
 [list HCellsFile hcells] \
 [list Run64 0] \
 [list RunTurbo 1] \
 [list UseAllProcessors 1] \
 [list NumProcessors ""] \
 [list TranscriptFile ""] \
 [list TranscriptFileAppend 0] \
 [list TranscriptEchoToFile 0] \
 [list ReportMaximumAll 0] \
 [list ReportMaximumCount 50] \
 [list AbortOnSoftchk 0] \
 [list AbortOnSupplyError 1] \
 [list IgnorePorts 0] \
 [list PowerNames ""] \
 [list GroundNames ""] \
 [list ShowSeedPromotions 0] \
 [list ShowSeedPromotionsMax 50] \
 [list RecognizeGates ALL] \
 [list RecognizeGatesMixSubtypes 0] \
 [list RunERC 1] \
 [list ERCDatabase ""] \
 [list ERCSummaryFile ""] \
 [list ERCAppendSummary 0] \
 [list ERCMaxResultsAll 0] \
 [list ERCMaxResultsCount 1000] \
Calibre Verification User’s Manual, v9.1_5B-4

Calibre Interactive Files Default Configuration
 [list ERCMaxVertexAll 0] \
 [list ERCMaxVertexCount 4096] \
 [list IsolateShorts 0] \
 [list IsolateShortsByLayer 0] \
 [list IsolateShortsFlat 0] \
 [list IsolateShortsInTopCell 1] \
 [list IsolateShortsOp AND] \
 [list IsolateShortsAllNames 1] \
 [list IsolateShortsNames ""] \
 [list VConnectColon 0] \
 [list VConnectReport 0] \
 [list VConnectNamesState "NONE"] \
 [list VConnectNames ""] \
 [list VConnectBoxColon 0] \
 [list VConnectBoxNamesState "NONE"] \
 [list VConnectBoxNames ""] \
 [list ShowChecksAlpha 0] \
 [list ShowGroupsAlpha 0] \
 [list ShowGroupsHier 0] \
 [list ShowGroupsTop 0] \
 [list DontWaitForLicense 1] \
 [list IncludeFiles ""] \
 [list EnvVars ""] \
 [list Template_LP "%l.gds"] \
 [list Template_SP "%s.src.net"] \
 [list Template_LR "%l.lvs.report"] \
 [list Template_ES "%l.lay.net"] \
 [list Template_ED "%l.erc.results"] \
 [list Template_EU "%l.erc.summary"] \
 [list Template_SV "svdb"] \
 [list Template_MD "%l.maskdb"] \
 [list Template_HF "hcells"] \
 [list Template_IL 1] \
 [list Template_IS 0] \
]

 set opts_vars(pex_opts) [list \
 [list RulesFile "rules"] \
 [list RulesFileLastLoad 0] \
 [list RunDir "."] \
 [list LayoutPaths ""] \
 [list LayoutSystem GDSII] \
Calibre Verification User’s Manual, v9.1_5 B-5

Default Configuration Calibre Interactive Files
 [list LayoutPrimary ""] \
 [list LayoutGetFromViewer 0] \
 [list Precision 1000] \
 [list SourcePath ""] \
 [list SourceSystem SPICE] \
 [list SourcePrimary ""] \
 [list SourceGetFromViewer 0] \
 [list PexNetlistType DIST] \
 [list PexNetlistFormat SPICE] \
 [list PexNetlistNameSource SOURCE] \
 [list PexNetlistFile ""] \
 [list ViewPexNetlist 1] \
 [list PexReport 0] \
 [list PexReportFormat ASCII] \
 [list PexReportFile ""] \
 [list ViewPexReport 0] \
 [list ExcludeNets 0] \
 [list ExcludeNetsValue ""] \
 [list GroundName 0] \
 [list GroundNameValue 0] \
 [list Loop 0] \
 [list Separator 0] \
 [list SeparatorValue "/"] \
 [list Location 0] \
 [list Rlocation 0] \
 [list Rwidth 0] \
 [list Rlayer 0] \
 [list CoupledRunType 0] \
 [list LumpRunType 0] \
 [list LumpFile ""] \
 [list LumpFormat ""] \
 [list LumpSizeMultiplier "1e-06"] \
 [list LumpNameSource ""] \
 [list LumpGroundName 0] \
 [list LumpGroundNameValue ""] \
 [list LumpLoop 0] \
 [list LumpSeparator 0] \
 [list LumpSeparatorValue ""] \
 [list LumpLocation 0] \
 [list LumpRlocation 0] \
 [list LumpRwidth 0] \
 [list LumpRlayer 0] \
 [list LumpGenerateReport 0] \
Calibre Verification User’s Manual, v9.1_5B-6

Calibre Interactive Files Default Configuration
 [list LumpReportFile ""] \
 [list LumpReportFormat ASCII] \
 [list LumpExcludeNets 0] \
 [list LumpExcludeNetsValue ""] \
 [list DistRunType 0] \
 [list DistFile ""] \
 [list DistFormat ""] \
 [list DistSizeMultiplier "1e-06"] \
 [list DistNameSource ""] \
 [list DistGroundName 0] \
 [list DistGroundNameValue ""] \
 [list DistLoop 0] \
 [list DistSeparator 0] \
 [list DistSeparatorValue ""] \
 [list DistLocation 0] \
 [list DistRlocation 0] \
 [list DistRwidth 0] \
 [list DistRlayer 0] \
 [list DistGenerateReport 0] \
 [list DistReportFile ""] \
 [list DistReportFormat ""] \
 [list DistExcludeNets 0] \
 [list DistExcludeNetsValue ""] \
 [list FDBName "myfdb"] \
 [list FDBPolygonCount "1000"] \
 [list FDBExcludeNets 0] \
 [list FDBExcludeNetsValue ""] \
 [list CreateSVDB 1] \
 [list SVDBContents "XCALIBRE"] \
 [list SVDBDir svdb] \
 [list SVDBcustom ""] \
 [list SVDBNoflat 0] \
 [list StartRVE 0] \
 [list WriteMaskDB 0] \
 [list MaskDBFile maskdb] \
 [list WriteINXF 0] \
 [list WriteBPF 0] \
 [list WriteNL 0] \
 [list MergeDatabase 0] \
 [list RunHier 1] \
 [list RunExt 1] \
 [list SpiceFile lay.net] \
 [list RunCmp 1] \
Calibre Verification User’s Manual, v9.1_5 B-7

Default Configuration Calibre Interactive Files
 [list AutoMatch 0] \
 [list TranscriptFile ""] \
 [list TranscriptFileAppend 0] \
 [list TranscriptEchoToFile 0] \
 [list ShowGroupsTop 0] \
 [list DontWaitForLicense 1] \
 [list ViaReductionLimit 0] \
 [list ViaReductionLimitValue "0"] \
 [list FMTGlobal 0] \
 [list FMTGlobalValue ""] \
 [list NameFilterMode 0] \
 [list KeywordUpcase 0] \
 [list NetNameSeparator 0] \
 [list NetNameSeparatorValue "_"] \
 [list UseShortNames 0] \
 [list IncludeFiles ""] \
]

 set opts_vars(cmn_opts) [list \
 [list HostName "localhost"] \
 [list HostPort 9189] \
 [list ShowToolTips 1] \
 [list ProcessLocalLinks 1] \
 [list DRCMaxVertexAll 0] \
 [list DRCMaxVertexCount 4096] \
 [list RunRemote 0] \
 [list RunRemoteOn Host] \
 [list RemoteHostName ""] \
 [list RemoteQueueCmd ""] \
 [list RemoteUserIsCurrentUser 1] \
 [list RemoteUserName ""] \
 [list RemoteShellDefault 1] \
 [list RemoteShellName ""] \
 [list RemoteMGCHOMEUseCurrent 1] \
 [list RemoteMGCHOME ""] \
 [list RemoteLICENSEFILEName ""] \
 [list RemoteLICENSEFILEValue ""] \
 [list WarnRunsetNotWritable 1] \
 [list ReadIOFromRules 1] \
]
}

Calibre Verification User’s Manual, v9.1_5B-8

V2LVS BNF
Appendix C
V2LVS BNF

This differs from the BNF described in the IEEE standard in order to remove
ambiguities that cannot be handled by Berkeley YACC.

%start source_text
%token YYID
%token YYINUMBER
%token YYRNUMBER
%token YYSTRING
%token YYALLPATH
%token YYALWAYS
%token YYAND
%token YYASSIGN
%token YYBEGIN
%token YYBUF
%token YYBUFIF0
%token YYBUFIF1
%token YYCASE
%token YYCASEX
%token YYCASEZ
%token YYCMOS
%token YYCONDITIONAL
%token YYDEASSIGN
%token YYDEFAULT
%token YYDEFPARAM
%token YYDISABLE
%token YYELSE
%token YYEDGE
%token YYEND
%token YYENDCASE
%token YYENDMODULE
%token YYENDFUNCTION
%token YYENDPRIMITIVE
%token YYENDSPECIFY
%token YYENDTABLE
%token YYENDTASK
%token YYENUM
%token YYEVENT
%token YYFORCE
%token YYFOR
Calibre Verification User’s Manual, v9.1_5 C-1

V2LVS BNF
%token YYFOREVER
%token YYFORK
%token YYFUNCTION
%token YYGEQ
%token YYHIGHZ0
%token YYHIGHZ1
%token YYIF
%token YYIFNONE
%token YYINITIAL
%token YYINOUT
%token YYINPUT
%token YYINTEGER
%token YYJOIN
%token YYLARGE
%token YYLEADTO
%token YYLOGAND
%token YYCASEEQUALITY
%token YYCASEINEQUALITY
%token YYLOGNAND
%token YYLOGNOR
%token YYLOGOR
%token YYLOGXNOR
%token YYLOGEQUALITY
%token YYLOGINEQUALITY
%token YYLSHIFT
%token YYMACROMODULE
%token YYMEDIUM
%token YYMODULE
%token YYNAND
%token YY_LF_ARROW
%token YYNEGEDGE
%token YYNMOS
%token YYNOR
%token YYNOT
%token YYNOTIF0
%token YYNOTIF1
%token YYOR
%token YYOUTPUT
%token YYPARAMETER
%token YYPMOS
%token YYPOSEDGE
%token YYPRIMITIVE
%token YYPULL0
%token YYPULL1
%token YYPULLUP
%token YYPULLDOWN
%token YYRCMOS
%token YYREAL
%token YYREG
%token YYRELEASE
%token YYREPEAT
Calibre Verification User’s Manual, v9.1_5C-2

V2LVS BNF
%token YYRIGHTARROW
%token YYRNMOS
%token YYRPMOS
%token YYRSHIFT
%token YYRTRAN
%token YYRTRANIF0
%token YYRTRANIF1
%token YYSCALARED
%token YYSMALL
%token YYSPECIFY
%token YYSPECPARAM
%token YYSTRONG0
%token YYSTRONG1
%token YYSUPPLY0
%token YYSUPPLY1
%token YYTABLE
%token YYTASK
%token YYTIME
%token YYREALTIME
%token YYTRAN
%token YYTRANIF0
%token YYTRANIF1
%token YYTRI
%token YYTRI0
%token YYTRI1
%token YYTRIAND
%token YYTRIOR
%token YYuTYPE
%token YYTYPEDEF
%token YYVECTORED
%token YYTRIREG
%token YYWAIT
%token YYWAND
%token YYWEAK0
%token YYWEAK1
%token YYWHILE
%token YYWIRE
%token YYWOR
%token YYXNOR
%token YYXOR
%token YYsysSETUP
%token YYsysID
%token YYsysHOLD /* $hold */
%token YYsysPERIOD /* $period */
%token YYsysRECOVERY /* $recovery */
%token YYsysSETUP /* $setup */
%token YYsysSETUPHOLD /* $setuphold */
%token YYsysSKEW /* $skew */
%token YYsysWIDTH /* $width */
%token YYsysNOCHANGE /* $nochange */
%token YYCONDITIONING_AND /* &&& */
Calibre Verification User’s Manual, v9.1_5 C-3

V2LVS BNF
%token LEX_ERROR /* not used in the grammar anywhere, so it can
produce an error */
%right '?' ':'
%left YYOR
%left YYLOGOR
%left YYLOGAND
%left YYLOGNAND
%left '|'
%left '&' '^' YYLOGXNOR
%left YYLOGEQUALITY YYLOGINEQUALITY YYCASEEQUALITY YYCASEINEQUALITY
%left '<' YY_LF_ARROW '>' YYGEQ
%left YYLSHIFT YYRSHIFT
%left '+' '-'
%left '*' '/' '%'
%right '~' '!' YYUNARYOPERATOR
%type <desc> source_text
%type <desc> description
%type <modu> module_declaration
%type <prim> udp_declaration
%type <lstp> list_of_ports_opt list_of_ports
%type <port> port
%type <lstidr> port_expression_opt port_expression
%type <lstidr> port_ref_list
%type <idrng> port_reference
%type <rang> port_reference_arg
%type <rangdcl> module_item
%type <rangdcl> module_item_declaration
%type <lstd> module_item_clr
%type <paradcl> parameter_declaration
%type <rangdcl> input_declaration output_declaration inout_declaration
%type <rangdcl> reg_declaration
%type <netdcl> net_declaration
%type <bascdcl> time_declaration realtime_declaration event_declaration
%type <bascdcl> integer_declaration real_declaration
%type <type> gate_instantiation
%type <type> user_instance
%type <paradcl> parameter_override
%type <lsta> continuous_assign
%type <prcstmt> initial_construct always_construct
%type <task> task_declaration
%type <func> function_declaration
%type <lstidr> variable_list
%type <lstp> udp_port_declaration_eclr
%type <lstp> udp_body
%type <lstp> table_entries combinational_entry_eclr sequential_entry_eclr
%type <ntry> combinational_entry sequential_entry
%type <lstp> input_list level_symbol_or_edge_eclr
%type <ival> output_symbol state next_state
%type <ival> level_symbol edge level_symbol_or_edge edge_symbol
%type <type> udp_port_declaration
%type <lstp> tf_item_declaration_clr tf_item_declaration_eclr
Calibre Verification User’s Manual, v9.1_5C-4

V2LVS BNF
%type <lstp> statement_opt
%type <rngtyp> range_or_type_opt range_or_type
%type <rang> range
%type <type> tf_item_declaration
%type <lsta> assignment_list
%type <rang> range_opt
%type <expr> expression expression_opt
%type <ival> drive_strength_opt drive_strength drive_strength_rest
%type <ival> charge_strength_opt charge_strength
%type <ntype> net_type
%type <dlay> delay_opt delay
%type <lstp> register_variable_list
%type <lstp> name_of_event_list
%type <idrng> identifier function_identifier
%type <idrng> register_variable
%type <charp> name_of_register
%type <idrng> name_of_event
%type <ival> strength0 strength1
%type <assign> assignment
%type <lstp> drive_delay_clr
%type <lstg> gate_instance_list
%type <gtype> gatetype
%type <ival> drive_delay
%type <gtinst> gate_instance
%type <lste> terminal_list
%type <name> name_of_module name_of_instance
%type <idrng> name_of_gate_instance
%type <lstt> instance_list
%type <dlay> parameter_value_assignment parameter_value_assignment_opt
%type <mod_inst> instance named_instance
%type <lstpc> module_connection_list module_port_connection_list
%type <lstpc> named_port_connection_list
%type <connect> module_port_connection named_port_connection
named_port_connection_name
%type <type> statement
%type <lstp> statement_clr case_item_eclr
%type <caseitem> case_item
%type <dlay> delay_control
%type <evnt> event_control
%type <lval> lvalue
%type <lste> expression_list
%type <seqstmt> seq_block
%type <parstmt> par_block
%type <idrng> name_of_block
%type <lstp> block_declaration_clr
%type <type> block_declaration
%type <taskenablestmt> task_enable
%type <lste> concatenation
%type <expr> multiple_concatenation
%type <expr> mintypmax_expression
%type <expr> constant_primary
Calibre Verification User’s Manual, v9.1_5 C-5

V2LVS BNF
%type <expr> primary
%type <expr> function_call
%type <evnt> event_expression ored_event_expression
%%

/* A.1 Source text */
source_text
 :
 | source_text description
 ;

description
 : module_declaration
 | udp_declaration
 ;

module_declaration
 : module_keyword YYID
 list_of_ports_opt ';'
 module_item_clr
 YYENDMODULE
 ;

module_keyword
 : YYMODULE
 | YYMACROMODULE
 ;

list_of_ports_opt
 :
 | '(' list_of_ports ')'
 ;

list_of_ports
 : port
 | list_of_ports ',' port
 ;

port
 : port_expression_opt
 | '.' YYID
 '(' port_expression_opt ')'
 ;

port_expression_opt
 :
 | port_expression
 ;

port_expression
 : port_reference
Calibre Verification User’s Manual, v9.1_5C-6

V2LVS BNF
 | '{' port_ref_list '}'
 ;

port_ref_list
 : port_reference
 | port_ref_list ',' port_reference
 ;

port_reference
 : YYID
 port_reference_arg
 ;

port_reference_arg
 :
 | '[' expression ']'
 | '[' expression ':' expression ']'
 ;

module_item_clr
 :
 | module_item_clr module_item
 ;

module_item
 : module_item_declaration
 | gate_instantiation
 | user_instance
 | parameter_override
 | continuous_assign
 | specify_block
 | initial_construct
 | always_construct
 ;

module_item_declaration
 : parameter_declaration
 | input_declaration
 | output_declaration
 | inout_declaration
 | net_declaration
 | reg_declaration
 | integer_declaration
 | real_declaration
 | time_declaration
 | realtime_declaration
 | event_declaration
 | task_declaration
 | function_declaration
 ;
Calibre Verification User’s Manual, v9.1_5 C-7

V2LVS BNF
parameter_override
 : YYDEFPARAM assignment_list ';'
 ;

/* A.2 Declarations */

parameter_declaration
 : YYPARAMETER range_opt param_assignment_list ';'
 ;

param_assignment_list
 : param_assignment
 | param_assignment_list ',' param_assignment
 ;

param_assignment
 : identifier '=' mintypmax_expression
 ;

assignment_list
 : assignment
 | assignment_list ',' assignment
 ;

assignment
 : lvalue type_action '=' expression
 | lvalue type_action YY_LF_ARROW expression
 ;

type_action
 :
 ;

input_declaration
 : YYINPUT range_opt variable_list ';'
 ;

output_declaration
 : YYOUTPUT range_opt variable_list ';'
 ;

inout_declaration
 : YYINOUT range_opt variable_list ';'
 ;

variable_list
 : identifier
 | variable_list ',' identifier
 ;
Calibre Verification User’s Manual, v9.1_5C-8

V2LVS BNF
reg_declaration
 : YYREG range_opt register_variable_list ';'
 ;

time_declaration
 : YYTIME register_variable_list ';'
 ;

integer_declaration
 : YYINTEGER register_variable_list ';'
 ;

real_declaration
 : YYREAL variable_list ';'
 ;

realtime_declaration
 : YYREALTIME variable_list ';'
 ;

event_declaration
 : YYEVENT name_of_event_list ';'
 ;

name_of_event_list
 : name_of_event
 | name_of_event_list ',' name_of_event
 ;

name_of_event
 : YYID
 ;

register_variable_list
 : register_variable
 | register_variable_list ',' register_variable
 ;

register_variable
 : name_of_register
 | name_of_register '[' expression ':' expression ']'
 ;

name_of_register
 : YYID
 ;

range_opt
 :
 | range
 ;
Calibre Verification User’s Manual, v9.1_5 C-9

V2LVS BNF
range
 : '[' expression ':' expression ']'
 ;

net_declaration
 : net_type range delay_opt variable_list ';'
 | net_type vectored_or_scalared range delay_opt variable_list ';'
 | net_type delay_opt variable_list ';'
 | net_type vectored_or_scalared delay_opt variable_list ';'

| YYTRIREG vectored_or_scalared_opt charge_strength_opt range_opt
delay_opt variable_list ';'
 | net_type drive_strength range delay_opt assignment_list ';'
 | net_type vectored_or_scalared drive_strength range delay_opt
assignment_list ';'
 | net_type range delay_opt assignment_list ';'
 | net_type vectored_or_scalared range delay_opt assignment_list
';'
 | net_type drive_strength delay_opt assignment_list ';'
 | net_type vectored_or_scalared drive_strength delay_opt
assignment_list ';'
 | net_type delay_opt assignment_list ';'
 | net_type vectored_or_scalared delay_opt assignment_list ';'
 ;

vectored_or_scalared_opt
 :
 | vectored_or_scalared
 ;

vectored_or_scalared
 : YYVECTORED
 | YYSCALARED
 ;

/* all net types are handled as wires except supply0 and supply1 */
net_type
 : YYWIRE
 | YYTRI
 | YYTRI1
 | YYSUPPLY0
 | YYWAND
 | YYTRIAND
 | YYTRI0
 | YYSUPPLY1
 | YYWOR
 | YYTRIOR
 ;

drive_strength_opt
 :
Calibre Verification User’s Manual, v9.1_5C-10

V2LVS BNF
 | drive_strength
 ;

drive_strength
 : '(' strength0 ',' strength1 ')'
 | '(' strength1 ',' strength0 ')'
 ;

strength0
 : YYSUPPLY0
 | YYSTRONG0
 | YYPULL0
 | YYWEAK0
 | YYHIGHZ0
 ;

strength1
 : YYSUPPLY1
 | YYSTRONG1
 | YYPULL1
 | YYWEAK1
 | YYHIGHZ1
 ;

charge_strength_opt
 :
 | charge_strength
 ;

charge_strength
 : '(' YYSMALL ')'
 | '(' YYMEDIUM ')'
 | '(' YYLARGE ')'
 ;

delay_opt
 :
 | delay
 ;

delay
 : '#' YYINUMBER
 | '#' YYRNUMBER
 | '#' identifier
 | '#' '(' mintypmax_expression ')'
 | '#' '(' mintypmax_expression ',' mintypmax_expression ')'
 | '#' '(' mintypmax_expression ',' mintypmax_expression ','
mintypmax_expression ')'
 ;
Calibre Verification User’s Manual, v9.1_5 C-11

V2LVS BNF
function_declaration
 : YYFUNCTION range_or_type_opt YYID
 ';' tf_item_declaration_eclr statement
 YYENDFUNCTION
 ;

range_or_type_opt
 :
 | range_or_type
 ;

range_or_type
 : range
 | YYINTEGER
 | YYREAL
 | YYTIME
 | YYREALTIME
 ;

tf_item_declaration_clr
 :
 | tf_item_declaration_clr tf_item_declaration
 ;

tf_item_declaration_eclr
 : tf_item_declaration
 | tf_item_declaration_eclr tf_item_declaration
 ;

tf_item_declaration
 : parameter_declaration
 | input_declaration
 | output_declaration
 | inout_declaration
 | reg_declaration
 | integer_declaration
 | real_declaration
 | time_declaration
 | realtime_declaration
 | event_declaration
 ;

task_declaration
 : YYTASK YYID
 ';' tf_item_declaration_clr statement_opt
 YYENDTASK
 ;

/* A.3 Primitive Instances */
Calibre Verification User’s Manual, v9.1_5C-12

V2LVS BNF
gate_instantiation
 : gatetype drive_delay_clr gate_instance_list ';'
 ;

drive_delay_clr
 :
 | drive_delay_clr drive_delay
 ;

drive_delay
 : drive_strength
 | delay
 ;

gatetype
 : YYAND
 | YYNAND
 | YYOR
 | YYNOR
 | YYXOR
 | YYXNOR
 | YYBUF
 | YYBUFIF0
 | YYBUFIF1
 | YYNOT
 | YYNOTIF0
 | YYNOTIF1
 | YYPULLDOWN
 | YYPULLUP
 | YYNMOS
 | YYPMOS
 | YYRNMOS
 | YYRPMOS
 | YYCMOS
 | YYRCMOS
 | YYTRAN
 | YYRTRAN
 | YYTRANIF0
 | YYRTRANIF0
 | YYTRANIF1
 | YYRTRANIF1
 ;

gate_instance_list
 : gate_instance
 | gate_instance_list ',' gate_instance
 ;

gate_instance
 : '(' terminal_list ')'
Calibre Verification User’s Manual, v9.1_5 C-13

V2LVS BNF
 | name_of_gate_instance '(' terminal_list ')'
 ;

name_of_gate_instance
 : YYID range_opt
 ;

terminal_list
 : expression
 | terminal_list ',' expression
 ;

/* A.4 Module Instantiation */
user_instance
 : name_of_module '(' drive_strength_rest
parameter_value_assignment_opt instance_list ';'
 | name_of_module '(' module_connection_list ')' ';'
 | name_of_module parameter_value_assignment instance_list ';'
 | name_of_module named_instance instance_list ';'
 ;

drive_strength_rest
 : strength0 ')'
 | strength0 ',' strength1 ')'
 | strength1 ')'
 | strength1 ',' strength0 ')'
 ;

name_of_module
 : YYID
 ;

name_of_instance
 : YYID
 ;

/* A.5 UDP declaration */
udp_declaration
 : YYPRIMITIVE YYID
 '(' list_of_ports ')' ';'
 udp_port_declaration_eclr
 udp_body
 YYENDPRIMITIVE
 ;

udp_port_declaration_eclr
 : udp_port_declaration
 | udp_port_declaration_eclr udp_port_declaration
 ;
Calibre Verification User’s Manual, v9.1_5C-14

V2LVS BNF
udp_port_declaration
 : output_declaration
 | reg_declaration
 | input_declaration
 ;

udp_body
 : initial_construct_opt YYTABLE table_entries YYENDTABLE
 ;

table_entries
 : combinational_entry_eclr
 | sequential_entry_eclr
 ;

combinational_entry_eclr
 : combinational_entry
 | combinational_entry_eclr combinational_entry
 ;

combinational_entry
 : input_list ':' output_symbol ';'
 ;

sequential_entry_eclr
 : sequential_entry
 | sequential_entry_eclr sequential_entry
 ;

sequential_entry
 : input_list ':' state ':' next_state ';'
 ;

input_list
 : level_symbol_or_edge_eclr
 ;

level_symbol_or_edge_eclr
 : level_symbol_or_edge
 | level_symbol_or_edge_eclr level_symbol_or_edge
 ;

level_symbol_or_edge
 : level_symbol
 | edge
 ;

edge
 : '(' level_symbol level_symbol ')'
 | edge_symbol
 ;
Calibre Verification User’s Manual, v9.1_5 C-15

V2LVS BNF
state
 : level_symbol
 ;

next_state
 : output_symbol
 | '-'
 ;

output_symbol
 : '0'
 | '1'
 | 'x'
 | 'X'
 ;

level_symbol
 : '0'
 | '1'
 | 'x'
 | 'X'
 | '?'
 | 'b'
 | 'B'
 ;

edge_symbol
 : 'r'
 | 'R'
 | 'f'
 | 'F'
 | 'p'
 | 'P'
 | 'n'
 | 'N'
 | '*'
 ;

/* A.6 Behavioral statements */
continuous_assign
 : YYASSIGN {}
 drive_strength_opt delay_opt assignment_list ';'

 ;

initial_construct_opt
 :
 | initial_construct
 ;
Calibre Verification User’s Manual, v9.1_5C-16

V2LVS BNF
initial_construct
 : YYINITIAL {} statement
 ;

always_construct
 : YYALWAYS {} statement
 ;

statement_opt
 :
 | statement
 ;

statement_clr
 :
 | statement_clr statement
 ;

statement
 : ';'
 | assignment ';'
 | YYIF '(' expression ')' statement
 | YYIF '(' expression ')' statement YYELSE statement
 | YYCASE '(' expression ')' case_item_eclr YYENDCASE
 | YYCASEZ '(' expression ')' case_item_eclr YYENDCASE
 | YYCASEX '(' expression ')' case_item_eclr YYENDCASE
 | YYFOREVER statement
 | YYREPEAT '(' expression ')' statement
 | YYWHILE '(' expression ')' statement

| YYFOR '(' assignment ';' expression ';' assignment ')' statement
 | delay_control statement
 | event_control statement
 | lvalue type_action '=' delay_control expression ';'
 | lvalue type_action '=' event_control expression ';'

| lvalue type_action '=' YYREPEAT '(' expression ')' event_control
expression ';'
 | lvalue type_action YY_LF_ARROW delay_control expression ';'
 | lvalue type_action YY_LF_ARROW event_control expression ';'
 | lvalue type_action YY_LF_ARROW YYREPEAT '(' expression ')'
event_control expression ';'
 | YYWAIT '(' event_expression ')' statement
 | YYRIGHTARROW name_of_event ';'
 | seq_block
 | par_block
 | task_enable
 | system_task_enable
 | YYDISABLE identifier ';'
 | YYASSIGN assignment ';'
 | YYFORCE assignment ';'
 | YYDEASSIGN lvalue ';'
Calibre Verification User’s Manual, v9.1_5 C-17

V2LVS BNF
 | YYRELEASE lvalue ';'
 ;

delay_control
 : '#' YYINUMBER
 | '#' YYRNUMBER
 | '#' identifier
 | '#' '(' mintypmax_expression ')'
 ;

event_control
 : '@' identifier
 | '@' '(' event_expression ')'
 | '@' '(' ored_event_expression ')'
 ;

event_expression
 : expression
 | YYPOSEDGE expression
 | YYNEGEDGE expression
 | YYEDGE expression
 ;

ored_event_expression
 : event_expression YYOR event_expression
 | ored_event_expression YYOR event_expression
 ;

case_item_eclr
 : case_item
 | case_item_eclr case_item
 ;

case_item
 : expression_list ':' statement
 | YYDEFAULT ':' statement
 | YYDEFAULT statement
 ;

seq_block
 : YYBEGIN statement_clr YYEND
 | YYBEGIN ':' name_of_block block_declaration_clr statement_clr
YYEND
 ;

par_block
 : YYFORK statement_clr YYJOIN
 | YYFORK ':' name_of_block block_declaration_clr statement_clr
YYJOIN
 ;
Calibre Verification User’s Manual, v9.1_5C-18

V2LVS BNF
name_of_block
 : YYID
 ;

block_declaration_clr
 :
 | block_declaration_clr block_declaration
 ;

block_declaration
 : parameter_declaration
 | reg_declaration
 | integer_declaration
 | real_declaration
 | time_declaration
 | event_declaration
 ;

task_enable
 : identifier ';'
 | identifier '(' expression_list ')' ';'
 ;

system_task_enable
 : name_of_system_task ';'
 | name_of_system_task '(' expression_list ')' ';'
 ;

name_of_system_task
 : system_identifier
 ;

system_identifier
 : YYsysID
 ;

/* A.7 Specify Section */

specify_block
 : YYSPECIFY
 specify_item_list YYENDSPECIFY
 ;

specify_item_list
 : /* empty */
 | specify_item_list specify_item
 ;

specify_item
Calibre Verification User’s Manual, v9.1_5 C-19

V2LVS BNF
 : specparam_declaration
 | path_declaration
 | system_timing_check
 ;

specparam_declaration
 : YYSPECPARAM list_of_specparam_assignments ';'
 ;

list_of_specparam_assignments
 : specparam_assignment
 | list_of_specparam_assignments ',' specparam_assignment
 ;

specparam_assignment
 : YYID '=' mintypmax_expression
 | YYID '=' '(' mintypmax_expression_list_2 ')'
 ;

path_declaration
 : path_conditional_opt '(' edge_identifier_opt
list_of_path_terminals
 polarity_operator_opt arrow list_of_path_terminals ')'
 '=' path_delay_value ';'
 | path_conditional_opt '(' edge_identifier_opt
list_of_path_terminals
 polarity_operator_opt arrow

'(' list_of_path_terminals polarity_operator_opt ':' expression
')' ')'
 '=' path_delay_value ';'
 ;

path_conditional_opt
 : /* empty */
 | YYIF '(' expression ')'
 | YYIFNONE
 ;

arrow
 : YYLEADTO
 | YYALLPATH
 ;

list_of_path_terminals
 : specify_terminal_descriptor
 | list_of_path_terminals ',' specify_terminal_descriptor
 ;

specify_terminal_descriptor
 : YYID
 | YYID '[' expression ']'
Calibre Verification User’s Manual, v9.1_5C-20

V2LVS BNF
 | YYID '[' expression ':' expression ']'
 ;

path_delay_value
 : mintypmax_expression_list
 | '(' mintypmax_expression_list_2 ')'
 ;

edge_identifier_opt
 : /* empty */
 | YYPOSEDGE
 | YYNEGEDGE
 ;

mintypmax_expression_list
 : mintypmax_expression
 | mintypmax_expression_list ',' mintypmax_expression
 ;

mintypmax_expression_list_2
 : mintypmax_expression ',' mintypmax_expression
 | mintypmax_expression_list_2 ',' mintypmax_expression
 ;

system_timing_check
 : YYsysSETUP '(' timing_check_event ',' timing_check_event ','
 mintypmax_expression notify_register ')' ';'
 | YYsysHOLD '(' timing_check_event ',' timing_check_event ','
 mintypmax_expression notify_register ')' ';'
 | YYsysPERIOD '(' controlled_timing_check_event ','
 mintypmax_expression notify_register ')' ';'
 | YYsysWIDTH '(' controlled_timing_check_event ','
 mintypmax_expression ')' ';'
 | YYsysWIDTH '(' controlled_timing_check_event ','
 mintypmax_expression ',' mintypmax_expression notify_register
')' ';'
 | YYsysSKEW '(' timing_check_event ',' timing_check_event ','
 mintypmax_expression notify_register ')' ';'
 | YYsysRECOVERY '(' controlled_timing_check_event ','

timing_check_event ',' mintypmax_expression notify_register ')'
';'

| YYsysSETUPHOLD '(' timing_check_event ',' timing_check_event ','
 mintypmax_expression ',' mintypmax_expression ')' ';'

| YYsysSETUPHOLD '(' timing_check_event ',' timing_check_event ','
mintypmax_expression ',' mintypmax_expression ',' sys_arglist ')'

';'
| YYsysNOCHANGE '(' timing_check_event ',' timing_check_event ','

 mintypmax_expression ',' mintypmax_expression notify_register
')' ';'
 ;
Calibre Verification User’s Manual, v9.1_5 C-21

V2LVS BNF
timing_check_event
 : timing_check_control_opt specify_terminal_descriptor
 timing_check_condition
 ;

controlled_timing_check_event
 : timing_check_control specify_terminal_descriptor
 timing_check_condition
 ;

timing_check_control_opt
 : /* empty */
 | timing_check_control
 ;

timing_check_control
 : YYPOSEDGE
 | YYNEGEDGE
 | YYEDGE '[' edge_descriptor_list ']'
 ;

edge_descriptor_list
 : edge_descriptor
 | edge_descriptor_list ',' edge_descriptor
 ;

edge_descriptor
 : YYINUMBER
 ;

timing_check_condition
 : /* empty */
 | YYCONDITIONING_AND expression
 ;

notify_register
 : /* empty */
 | ',' YYID
 ;

sys_arglist
 : expression
 | sys_arglist ',' expression
 ;

polarity_operator_opt
 :
 | polarity_operator
 ;

polarity_operator
Calibre Verification User’s Manual, v9.1_5C-22

V2LVS BNF
 : '+'
 | '-'
 ;

parameter_value_assignment_opt
 : /* empty */
 | parameter_value_assignment
 ;

parameter_value_assignment
 : '#' '(' expression_list ')'
 | '#' YYINUMBER
 | '#' identifier
 ;

instance
 : named_instance
 | '(' module_connection_list ')'
 ;

instance_list
 : /* empty */
 | instance
 | instance_list ',' instance
 ;

named_instance
 : name_of_instance
 range_opt '(' module_connection_list ')'
 ;

module_connection_list
 : module_port_connection_list
 | named_port_connection_list
 ;

module_port_connection_list
 : module_port_connection
 | module_port_connection_list ',' module_port_connection
 ;

named_port_connection_list
 : named_port_connection
 | named_port_connection_list ',' named_port_connection
 ;

module_port_connection
 :
 | expression
 ;
Calibre Verification User’s Manual, v9.1_5 C-23

V2LVS BNF
named_port_connection
 : '.' named_port_connection_name '(' expression ')'
 | '.' named_port_connection_name '(' ')'
 ;

named_port_connection_name
 : YYID

/* A.8 Expressions */
lvalue
 : identifier
 | identifier '[' expression ']'
 | identifier '[' expression ':' expression ']'
 | concatenation
 ;

mintypmax_expression
 : expression
 | expression ':' expression ':' expression
 ;

expression_list
 : expression_opt
 | expression_list ',' expression_opt
 ;

expression_opt
 :
 | expression
 ;

expression
 : primary
 | '+' primary %prec YYUNARYOPERATOR
 | '-' primary %prec YYUNARYOPERATOR
 | '!' primary %prec YYUNARYOPERATOR
 | '~' primary %prec YYUNARYOPERATOR
 | '&' primary %prec YYUNARYOPERATOR
 | '|' primary %prec YYUNARYOPERATOR
 | '^' primary %prec YYUNARYOPERATOR
 | YYLOGNAND primary %prec YYUNARYOPERATOR
 | YYLOGNOR primary %prec YYUNARYOPERATOR
 | YYLOGXNOR primary %prec YYUNARYOPERATOR
 | expression '+' expression
 | expression '-' expression
 | expression '*' expression
 | expression '/' expression
 | expression '%' expression
 | expression YYLOGEQUALITY expression
 | expression YYLOGINEQUALITY expression
Calibre Verification User’s Manual, v9.1_5C-24

V2LVS BNF
 | expression YYCASEEQUALITY expression
 | expression YYCASEINEQUALITY expression
 | expression YYLOGAND expression
 | expression YYLOGOR expression
 | expression YYLOGNAND expression
 | expression '<' expression
 | expression '>' expression
 | expression '&' expression
 | expression '|' expression
 | expression '^' expression
 | expression YY_LF_ARROW expression
 | expression YYGEQ expression
 | expression YYLSHIFT expression
 | expression YYRSHIFT expression
 | expression YYLOGXNOR expression
 | expression '?' expression ':' expression
 | YYSTRING
 ;

constant_primary
 : YYINUMBER
 | YYRNUMBER
 | identifier
 | concatenation
 | multiple_concatenation
 ;

primary
 : constant_primary
 | identifier '[' expression ']'
 | identifier '[' expression ':' expression ']'
 | function_call
 | '(' mintypmax_expression ')'
 | YYsysID
 | YYsysID '(' expression_list ')'
 ;

concatenation
 : '{' expression_list '}'
 ;

multiple_concatenation
 : '{' expression '{' expression_list '}' '}'
 ;

function_call
 : function_identifier '(' expression_list ')'
 ;

function_identifier
 : YYID
Calibre Verification User’s Manual, v9.1_5 C-25

V2LVS BNF
 | selected_name
 ;

identifier
 : YYID
 | selected_name
 ;

selected_name
 : YYID '.' YYID
 | selected_name '.' YYID
 ;
%start source_text
%token YYID
%token YYINUMBER
%token YYRNUMBER
%token YYSTRING
%token YYALLPATH
%token YYALWAYS
%token YYAND
%token YYASSIGN
%token YYBEGIN
%token YYBUF
%token YYBUFIF0
%token YYBUFIF1
%token YYCASE
%token YYCASEX
%token YYCASEZ
%token YYCMOS
%token YYCONDITIONAL
%token YYDEASSIGN
%token YYDEFAULT
%token YYDEFPARAM
%token YYDISABLE
%token YYELSE
%token YYEDGE
%token YYEND
%token YYENDCASE
%token YYENDMODULE
%token YYENDFUNCTION
%token YYENDPRIMITIVE
%token YYENDSPECIFY
%token YYENDTABLE
%token YYENDTASK
%token YYENUM
%token YYEVENT
%token YYFORCE
%token YYFOR
%token YYFOREVER
%token YYFORK
%token YYFUNCTION
Calibre Verification User’s Manual, v9.1_5C-26

V2LVS BNF
%token YYGEQ
%token YYHIGHZ0
%token YYHIGHZ1
%token YYIF
%token YYINITIAL
%token YYINOUT
%token YYINPUT
%token YYINTEGER
%token YYJOIN
%token YYLARGE
%token YYLEADTO
%token YYLEQ
%token YYLOGAND
%token YYCASEEQUALITY
%token YYCASEINEQUALITY
%token YYLOGNAND
%token YYLOGNOR
%token YYLOGOR
%token YYLOGXNOR
%token YYLOGEQUALITY
%token YYLOGINEQUALITY
%token YYLSHIFT
%token YYMACROMODULE
%token YYMEDIUM
%token YYMODULE
%token YYNAND
%token YYNBASSIGN
%token YYNEGEDGE
%token YYNMOS
%token YYNOR
%token YYNOT
%token YYNOTIF0
%token YYNOTIF1
%token YYOR
%token YYOUTPUT
%token YYPARAMETER
%token YYPMOS
%token YYPOSEDGE
%token YYPRIMITIVE
%token YYPULL0
%token YYPULL1
%token YYPULLUP
%token YYPULLDOWN
%token YYRCMOS
%token YYREAL
%token YYREG
%token YYRELEASE
%token YYREPEAT
%token YYRIGHTARROW
%token YYRNMOS
%token YYRPMOS
Calibre Verification User’s Manual, v9.1_5 C-27

V2LVS BNF
%token YYRSHIFT
%token YYRTRAN
%token YYRTRANIF0
%token YYRTRANIF1
%token YYSCALARED
%token YYSMALL
%token YYSPECIFY
%token YYSPECPARAM
%token YYSTRONG0
%token YYSTRONG1
%token YYSUPPLY0
%token YYSUPPLY1
%token YYTABLE
%token YYTASK
%token YYTIME
%token YYREALTIME
%token YYTRAN
%token YYTRANIF0
%token YYTRANIF1
%token YYTRI
%token YYTRI0
%token YYTRI1
%token YYTRIAND
%token YYTRIOR
%token YYuTYPE
%token YYTYPEDEF
%token YYVECTORED
%token YYTRIREG
%token YYWAIT
%token YYWAND
%token YYWEAK0
%token YYWEAK1
%token YYWHILE
%token YYWIRE
%token YYWOR
%token YYXNOR
%token YYXOR
%token YYsysSETUP
%token YYsysID
%token YYsysHOLD /* $hold */
%token YYsysPERIOD /* $period */
%token YYsysRECOVERY /* $recovery */
%token YYsysSETUP /* $setup */
%token YYsysSETUPHOLD /* $setuphold */
%token YYsysSKEW /* $skew */
%token YYsysWIDTH /* $width */
%token YYsysNOCHANGE /* $nochange */
%token YYCONDITIONING_AND /* &&& */
%token LEX_ERROR /* not used in the grammar anywhere, so it can
produce an error */
Calibre Verification User’s Manual, v9.1_5C-28

V2LVS BNF
source_text
 :
 | source_text description
 ;

description
 : module_declaration
 | udp_declaration
 ;

module_declaration
 : module_keyword YYID
 ;

module_keyword
 : YYMODULE
 | YYMACROMODULE
 ;

list_of_ports_opt
 :
 | '(' list_of_ports ')'
 ;

list_of_ports
 : port
 | list_of_ports ',' port
 ;

port
 : port_expression_opt
 | '.' YYID
 ;

port_expression_opt
 :
 | port_expression
 ;

port_expression
 : port_reference
 | '{' port_ref_list '}'
 ;

port_ref_list
 : port_reference
 | port_ref_list ',' port_reference
 ;

port_reference
 : YYID
Calibre Verification User’s Manual, v9.1_5 C-29

V2LVS BNF
 ;

port_reference_arg
 :
 | '[' expression ']'
 | '[' expression ':' expression ']'
 ;

module_item_clr
 :
 | module_item_clr module_item
 ;

module_item
 : module_item_declaration
 | gate_instantiation
 | module_instantiation
 | parameter_override
 | continuous_assign
 | specify_block
 | initial_construct
 | always_construct
 ;

module_item_declaration
 : parameter_declaration
 | input_declaration
 | output_declaration
 | inout_declaration
 | net_declaration
 | reg_declaration
 | integer_declaration
 | real_declaration
 | time_declaration
 | realtime_declaration
 | event_declaration
 | task_declaration
 | function_declaration
 ;

parameter_override
 : YYDEFPARAM assignment_list ';'
 ;

parameter_declaration
 : YYPARAMETER range_opt param_assignment_list ';'
 ;

param_assignment_list
 : param_assignment
 | param_assignment_list ',' param_assignment
Calibre Verification User’s Manual, v9.1_5C-30

V2LVS BNF
 ;

param_assignment
 : identifier '=' expression

 ;

assignment_list
 : assignment
 | assignment_list ',' assignment
 ;

assignment
 : lvalue type_action '=' expression
 | lvalue type_action YYNBASSIGN expression
 ;

type_action
 :
 ;

input_declaration
 : YYINPUT range_opt variable_list ';'
 ;

output_declaration
 : YYOUTPUT range_opt variable_list ';'
 ;

inout_declaration
 : YYINOUT range_opt variable_list ';'
 ;

variable_list
 : identifier
 | variable_list ',' identifier
 ;

reg_declaration
 : YYREG range_opt register_variable_list ';'
 ;

time_declaration
 : YYTIME register_variable_list ';'
 ;

integer_declaration
 : YYINTEGER register_variable_list ';'
 ;

real_declaration
 : YYREAL variable_list ';'
Calibre Verification User’s Manual, v9.1_5 C-31

V2LVS BNF
 ;

realtime_declaration
 : YYREALTIME variable_list ';'
 ;

event_declaration
 : YYEVENT name_of_event_list ';'
 ;

name_of_event_list
 : name_of_event
 | name_of_event_list ',' name_of_event
 ;

name_of_event
 : YYID
 ;

register_variable_list
 : register_variable
 | register_variable_list ',' register_variable
 ;

register_variable
 : name_of_register
 | name_of_register '[' expression ':' expression ']'
 ;

name_of_register
 : YYID
 ;

range_opt
 :
 | range
 ;

range
 : '[' expression ':' expression ']'
 ;

net_declaration
 : net_type range delay_opt variable_list ';'
 | net_type vectored_or_scalared range delay_opt variable_list ';'
 | net_type delay_opt variable_list ';'
 | net_type vectored_or_scalared delay_opt variable_list ';'

| YYTRIREG vectored_or_scalared_opt charge_strength_opt range_opt
delay_opt variable_list ';'
 | net_type drive_strength range delay_opt assignment_list ';'
Calibre Verification User’s Manual, v9.1_5C-32

V2LVS BNF
 | net_type vectored_or_scalared drive_strength range delay_opt
assignment_list ';'
 | net_type range delay_opt assignment_list ';'
 | net_type vectored_or_scalared range delay_opt assignment_list
';'
 | net_type drive_strength delay_opt assignment_list ';'
 | net_type vectored_or_scalared drive_strength delay_opt
assignment_list ';'
 | net_type delay_opt assignment_list ';'
 | net_type vectored_or_scalared delay_opt assignment_list ';'
 ;

vectored_or_scalared_opt
 :
 | vectored_or_scalared
 ;

vectored_or_scalared
 : YYVECTORED
 | YYSCALARED
 ;

net_type
 : YYWIRE
 | YYTRI
 | YYTRI1
 | YYSUPPLY0
 | YYWAND
 | YYTRIAND
 | YYTRI0
 | YYSUPPLY1
 | YYWOR
 | YYTRIOR
 ;

drive_strength_opt
 :
 | drive_strength
 ;

drive_strength
 : '(' strength0 ',' strength1 ')'
 | '(' strength1 ',' strength0 ')'
 ;

strength0
 : YYSUPPLY0
 | YYSTRONG0
 | YYPULL0
 | YYWEAK0
 | YYHIGHZ0
Calibre Verification User’s Manual, v9.1_5 C-33

V2LVS BNF
 ;

strength1
 : YYSUPPLY1
 | YYSTRONG1
 | YYPULL1
 | YYWEAK1
 | YYHIGHZ1
 ;

charge_strength_opt
 :
 | charge_strength
 ;

charge_strength
 : '(' YYSMALL ')'
 | '(' YYMEDIUM ')'
 | '(' YYLARGE ')'
 ;

delay_opt
 :
 | delay
 ;

delay
 : '#' YYINUMBER
 | '#' YYRNUMBER
 | '#' identifier
 | '#' '(' mintypmax_expression ')'
 | '#' '(' mintypmax_expression ',' mintypmax_expression ')'
 | '#' '(' mintypmax_expression ',' mintypmax_expression ','
mintypmax_expression ')'
 ;

function_declaration
 : YYFUNCTION range_or_type_opt YYID
 ;

range_or_type_opt
 :
 | range_or_type
 ;

range_or_type
 : range
 | YYINTEGER
 | YYREAL
 | YYTIME
 | YYREALTIME
Calibre Verification User’s Manual, v9.1_5C-34

V2LVS BNF
 ;

tf_item_declaration_clr
 :
 | tf_item_declaration_clr tf_item_declaration
 ;

tf_item_declaration_eclr
 : tf_item_declaration
 | tf_item_declaration_eclr tf_item_declaration
 ;

tf_item_declaration
 : parameter_declaration
 | input_declaration
 | output_declaration
 | inout_declaration
 | reg_declaration
 | integer_declaration
 | real_declaration
 | time_declaration
 | realtime_declaration
 | event_declaration
 ;

task_declaration
 : YYTASK YYID
 ;

gate_instantiation
 : gatetype drive_delay_clr gate_instance_list ';'
 ;

drive_delay_clr
 :
 | drive_delay_clr drive_delay
 ;

drive_delay
 : drive_strength
 | delay
 ;

gatetype
 : YYAND
 | YYNAND
 | YYOR
 | YYNOR
 | YYXOR
 | YYXNOR
 | YYBUF
Calibre Verification User’s Manual, v9.1_5 C-35

V2LVS BNF
 | YYBUFIF0
 | YYBUFIF1
 | YYNOT
 | YYNOTIF0
 | YYNOTIF1
 | YYPULLDOWN
 | YYPULLUP
 | YYNMOS
 | YYPMOS
 | YYRNMOS
 | YYRPMOS
 | YYCMOS
 | YYRCMOS
 | YYTRAN
 | YYRTRAN
 | YYTRANIF0
 | YYRTRANIF0
 | YYTRANIF1
 | YYRTRANIF1
 ;

gate_instance_list
 : gate_instance
 | gate_instance_list ',' gate_instance
 ;

gate_instance
 : '(' terminal_list ')'
 | name_of_gate_instance '(' terminal_list ')'
 ;

name_of_gate_instance
 : YYID range_opt
 ;

terminal_list
 : expression
 | terminal_list ',' expression
 ;

module_instantiation
 : name_of_module module_option_clr
 ;

name_of_module
 : YYID
 ;

module_option_clr
 :
 | module_option_clr module_option
Calibre Verification User’s Manual, v9.1_5C-36

V2LVS BNF
 ;

module_option
 : drive_strength
 | parameter_value_assignment
 ;

udp_declaration
 : YYPRIMITIVE YYID
 ;

udp_port_declaration_eclr
 : udp_port_declaration
 | udp_port_declaration_eclr udp_port_declaration
 ;

udp_port_declaration
 : output_declaration
 | reg_declaration
 | input_declaration
 ;

udp_body
 : initial_construct_opt YYTABLE table_entries YYENDTABLE
 ;

table_entries
 : combinational_entry_eclr
 | sequential_entry_eclr
 ;

combinational_entry_eclr
 : combinational_entry
 | combinational_entry_eclr combinational_entry
 ;

combinational_entry
 : input_list ':' output_symbol ';'
 ;

sequential_entry_eclr
 : sequential_entry
 | sequential_entry_eclr sequential_entry
 ;

sequential_entry
 : input_list ':' state ':' next_state ';'
 ;

input_list
 : level_symbol_or_edge_eclr
Calibre Verification User’s Manual, v9.1_5 C-37

V2LVS BNF
 ;

level_symbol_or_edge_eclr
 : level_symbol_or_edge
 | level_symbol_or_edge_eclr level_symbol_or_edge
 ;

level_symbol_or_edge
 : level_symbol
 | edge
 ;

edge
 : '(' level_symbol level_symbol ')'
 | edge_symbol
 ;

state
 : level_symbol
 ;

next_state
 : output_symbol
 | '-'
 ;

output_symbol
 : '0'
 | '1'
 | 'x'
 | 'X'
 ;

level_symbol
 : '0'
 | '1'
 | 'x'
 | 'X'
 | '?'
 | 'b'
 | 'B'
 ;

edge_symbol
 : 'r'
 | 'R'
 | 'f'
 | 'F'
 | 'p'
 | 'P'
 | 'n'
Calibre Verification User’s Manual, v9.1_5C-38

V2LVS BNF
 | 'N'
 | '*'
 ;

continuous_assign
 : YYASSIGN {}
 ;

initial_construct_opt
 :
 | initial_construct
 ;

initial_construct
 : YYINITIAL {} statement
 ;

always_construct
 : YYALWAYS {} statement
 ;

statement_opt
 :
 | statement
 ;

statement_clr
 :
 | statement_clr statement
 ;

statement
 : ';'
 | assignment ';'
 | YYIF '(' expression ')' statement
 | YYIF '(' expression ')' statement YYELSE statement
 | YYCASE '(' expression ')' case_item_eclr YYENDCASE
 | YYCASEZ '(' expression ')' case_item_eclr YYENDCASE
 | YYCASEX '(' expression ')' case_item_eclr YYENDCASE
 | YYFOREVER statement
 | YYREPEAT '(' expression ')' statement
 | YYWHILE '(' expression ')' statement

| YYFOR '(' assignment ';' expression ';' assignment ')' statement
 | delay_control statement
 | event_control statement
 | lvalue type_action '=' delay_control expression ';'
 | lvalue type_action '=' event_control expression ';'

| lvalue type_action '=' YYREPEAT '(' expression ')' event_control
expression ';'
 | lvalue type_action YYNBASSIGN delay_control expression ';'
 | lvalue type_action YYNBASSIGN event_control expression ';'
Calibre Verification User’s Manual, v9.1_5 C-39

V2LVS BNF
 | lvalue type_action YYNBASSIGN YYREPEAT '(' expression ')'
event_control expression ';'
 | YYWAIT '(' event_expression ')' statement
 | YYRIGHTARROW name_of_event ';'
 | seq_block
 | par_block
 | task_enable
 | system_task_enable
 | YYDISABLE YYID ';'
 | YYASSIGN assignment ';'
 | YYFORCE assignment ';'
 | YYDEASSIGN lvalue ';'
 | YYRELEASE lvalue ';'
 ;

delay_control
 : '#' YYINUMBER
 | '#' YYRNUMBER
 | '#' identifier
 | '#' '(' mintypmax_expression ')'
 ;

event_control
 : '@' identifier
 | '@' '(' event_expression ')'
 | '@' '(' ored_event_expression ')'
 ;

event_expression
 : expression
 | YYPOSEDGE expression
 | YYNEGEDGE expression
 | YYEDGE expression
 ;

ored_event_expression
 : event_expression YYOR event_expression
 | ored_event_expression YYOR event_expression
 ;

case_item_eclr
 : case_item
 | case_item_eclr case_item
 ;

case_item
 : expression_list ':' statement
 | YYDEFAULT ':' statement
 | YYDEFAULT statement
 ;
Calibre Verification User’s Manual, v9.1_5C-40

V2LVS BNF
seq_block
 : YYBEGIN statement_clr YYEND
 | YYBEGIN ':' name_of_block block_declaration_clr statement_clr
YYEND
 ;

par_block
 : YYFORK statement_clr YYJOIN
 | YYFORK ':' name_of_block block_declaration_clr statement_clr
YYJOIN
 ;

name_of_block
 : YYID
 ;

block_declaration_clr
 :
 | block_declaration_clr block_declaration
 ;

block_declaration
 : parameter_declaration
 | reg_declaration
 | integer_declaration
 | real_declaration
 | time_declaration
 | event_declaration
 ;

task_enable
 : identifier ';'
 | identifier '(' expression_list ')' ';'
 ;

system_task_enable
 : name_of_system_task ';'
 | name_of_system_task '(' expression_list ')' ';'
 ;

name_of_system_task
 : system_identifier
 ;

system_identifier
 : YYsysID
 ;

specify_block
 : YYSPECIFY
 ;
Calibre Verification User’s Manual, v9.1_5 C-41

V2LVS BNF
specify_item_list
 : /* empty */
 | specify_item_list specify_item
 ;

specify_item
 : specparam_declaration
 | path_declaration
 | system_timing_check
 ;

specparam_declaration
 : YYSPECPARAM list_of_specparam_assignments ';'
 ;

list_of_specparam_assignments
 : specparam_assignment
 | list_of_specparam_assignments ',' specparam_assignment
 ;

specparam_assignment
 : YYID '=' mintypmax_expression
 | YYID '=' '(' mintypmax_expression_list_2 ')'
 ;

path_declaration
: path_conditional_opt '(' edge_identifier_opt list_of_path_terminals
| path_conditional_opt '(' edge_identifier_opt list_of_path_terminals
;

path_conditional_opt
 : /* empty */
 | YYIF '(' expression ')'
 ;

arrow
 : YYLEADTO
 | YYALLPATH
 ;

list_of_path_terminals
 : specify_terminal_descriptor
 | list_of_path_terminals ',' specify_terminal_descriptor
 ;

specify_terminal_descriptor
 : YYID
 | YYID '[' expression ']'
 | YYID '[' expression ':' expression ']'
 ;
Calibre Verification User’s Manual, v9.1_5C-42

V2LVS BNF
path_delay_value
 : mintypmax_expression_list
 | '(' mintypmax_expression_list_2 ')'
 ;

edge_identifier_opt
 : /* empty */
 | YYPOSEDGE
 | YYNEGEDGE
 ;

mintypmax_expression_list
 : mintypmax_expression
 | mintypmax_expression_list ',' mintypmax_expression
 ;

mintypmax_expression_list_2
 : mintypmax_expression ',' mintypmax_expression
 | mintypmax_expression_list_2 ',' mintypmax_expression
 ;

system_timing_check
 : YYsysSETUP'(' timing_check_event ',' timing_check_event ','
 | YYsysHOLD'(' timing_check_event ',' timing_check_event ','
 | YYsysPERIOD'(' controlled_timing_check_event ','
 | YYsysWIDTH'(' controlled_timing_check_event ','
 | YYsysWIDTH'(' controlled_timing_check_event ','
 | YYsysSKEW'(' timing_check_event ',' timing_check_event ','
 | YYsysRECOVERY'(' controlled_timing_check_event ','
timing_check_event ','
 | YYsysSETUPHOLD'(' timing_check_event ',' timing_check_event ','
 | YYsysSETUPHOLD'(' timing_check_event ',' timing_check_event ','
 | YYsysNOCHANGE '('timing_check_event ',' timing_check_event ','
 ;

timing_check_event
 : timing_check_control_opt specify_terminal_descriptor
 ;

controlled_timing_check_event
 : timing_check_control specify_terminal_descriptor
 ;

timing_check_control_opt
 : /* empty */
 | timing_check_control
 ;

timing_check_control
 : YYPOSEDGE
Calibre Verification User’s Manual, v9.1_5 C-43

V2LVS BNF
 | YYNEGEDGE
 | YYEDGE '[' edge_descriptor_list ']'
 ;

edge_descriptor_list
 : edge_descriptor
 | edge_descriptor_list ',' edge_descriptor
 ;

edge_descriptor
:YYINUMBER

 ;

timing_check_condition
 : /* empty */
 | YYCONDITIONING_AND expression
 ;

notify_register
 : /* empty */
 | ',' YYID
 ;

sys_arglist
 : expression
 | sys_arglist ',' expression
 ;

polarity_operator_opt
 :
 | polarity_operator
 ;

polarity_operator
 : '+'
 | '-'
 ;

parameter_value_assignment
 : '#' '(' expression_list ')'
 ;

module_instance_list
 : module_instance
 | module_instance_list ',' module_instance
 ;

module_instance
 : identifier
 ;
Calibre Verification User’s Manual, v9.1_5C-44

V2LVS BNF
module_connection_list
 : module_port_connection_list
 | named_port_connection_list
 ;

module_port_connection_list
 : module_port_connection
 | module_port_connection_list ',' module_port_connection
 ;

named_port_connection_list
 : named_port_connection
 | named_port_connection_list ',' named_port_connection
 ;

module_port_connection
 :
 | expression
 ;

named_port_connection
 : '.' named_port_connection_name '(' expression ')'
 | '.' named_port_connection_name '(' ')'
 ;

named_port_connection_name
 : YYID

lvalue
 : identifier
 | identifier '[' expression ']'
 | identifier '[' expression ':' expression ']'
 | concatenation
 ;

mintypmax_expression
 : expression
 | expression ':' expression ':' expression
 ;

expression_list
 : expression_opt
 | expression_list ',' expression_opt
 ;

expression_opt
 :
 | expression
 ;

expression
Calibre Verification User’s Manual, v9.1_5 C-45

V2LVS BNF
 : primary
 | '+' primary %prec YYUNARYOPERATOR
 | '-' primary %prec YYUNARYOPERATOR
 | '!' primary %prec YYUNARYOPERATOR
 | '~' primary %prec YYUNARYOPERATOR
 | '&' primary %prec YYUNARYOPERATOR
 | '|' primary %prec YYUNARYOPERATOR
 | '^' primary %prec YYUNARYOPERATOR
 | YYLOGNAND primary %prec YYUNARYOPERATOR
 | YYLOGNOR primary %prec YYUNARYOPERATOR
 | YYLOGXNOR primary %prec YYUNARYOPERATOR
 | expression '+' expression
 | expression '-' expression
 | expression '*' expression
 | expression '/' expression
 | expression '%' expression
 | expression YYLOGEQUALITY expression
 | expression YYLOGINEQUALITY expression
 | expression YYCASEEQUALITY expression
 | expression YYCASEINEQUALITY expression
 | expression YYLOGAND expression
 | expression YYLOGOR expression
 | expression YYLOGNAND expression
 | expression '<' expression
 | expression '>' expression
 | expression '&' expression
 | expression '|' expression
 | expression '^' expression
 | expression YYLEQ expression
 | expression YYNBASSIGN expression
 | expression YYGEQ expression
 | expression YYLSHIFT expression
 | expression YYRSHIFT expression
 | expression YYLOGXNOR expression
 | expression '?' expression ':' expression
 | YYSTRING
 ;

constant_primary
 : YYINUMBER
 | YYRNUMBER
 | identifier
 | concatenation
 | multiple_concatenation
 ;

primary
 : constant_primary
 | identifier '[' expression ']'
 | identifier '[' expression ':' expression ']'
 | function_call
Calibre Verification User’s Manual, v9.1_5C-46

V2LVS BNF
 | '(' mintypmax_expression ')'
 | YYsysID
 | YYsysID '(' expression_list ')'
 ;

concatenation
 : '{' expression_list '}'
 ;

multiple_concatenation
 : '{' expression '{' expression_list '}' '}'
 ;

function_call
 : function_identifier '(' expression_list ')'
 ;

function_identifier
 : YYID
 | selected_name
 ;

identifier
 : YYID
 | selected_name
 ;

selected_name
 : YYID '.' YYID
 | selected_name '.' YYID
 ;
Calibre Verification User’s Manual, v9.1_5 C-47

V2LVS BNF
Calibre Verification User’s Manual, v9.1_5C-48

Index

Index
.CAPA control statements,11-11

.CONNECT control statements,11-11

.DIODE control statements,11-13

.END control statement,11-9

.ENDS statement,11-36

.EOM statement,11-36

.EQUIV control statements,11-13

.GLOBAL statement,7-22, 11-44

.INCLUDE or .INC control statement,11-9

.J control statements,11-11

.MACRO statement,11-33

.OPTION SCALE control statement,11-10

.PARAM statement,11-43

.SUB statement,11-33

.SUBCKT statement,7-8, 11-33

.XPINS Control Statements,11-15

-64 switch,2-12, 2-24, 2-30

A
-a array_delimiters argument,12-27
-a char1 argument,12-5
ABS() numeric expression,10-61
AGF format,15-162
Ambiguities

defined,10-21
LVS report,14-78
resolution points,14-78
resolving,10-21

AND operation,4-6
hierarchical,6-2

Annotated GDSII
file format,15-162
file generation,15-158

Antenna checks,4-60
Appropriate angle,4-35
Appropriateness criteria,4-34
AREF output,4-58

Arguments
-64 (DRC),2-12
-64 (LVS),2-24
-64 (RVE),2-30
-a array_delimiters,12-27
-a char1,12-5
-automatch,2-18
-b, 12-27
-b char,12-5
-bpf, 2-16
-c char1,12-5
-c subs_char,12-27
-cb,2-10, 2-18, 2-30, 2-32
-cb (V2LVS),12-28
-cell, 2-16
-cl, 2-24
cnet_file_name,2-15
-cs,2-24
-dblayers,2-16
-drc,2-10, 2-32
-drc -hier,2-10
-e,12-28
-e edif_input_file,12-4
-gui, 2-32
-h (V2LVS),12-28
-hcell,2-22
-hier,2-18
-i (E2LVS),12-5
-i (V2LVS), 12-28
-ictrace (V2LVS),12-28
-ixf (LVS), 2-19
-l input_list_file,12-4
-l verilog_lib_file, 12-26
layout_primary (RVE),2-29
-lvs, 2-15, 2-32
-n, 12-27
-n cell_name_file,12-5
-nl, 2-18
-nonames,2-16
-nowait,2-12, 2-23, 2-30
Calibre Verification User’s Manual, v9.1_5 Index-1

Index (cont.)

Index
-nxf, 2-19
-o output_file,12-4
-o output_spice_file,12-26
-p prefix,12-27
-query,2-30
-r char1,12-5
rule_file_name (DRC),2-13
rule_file_name (LVS),2-25
runset,2-32
-rve,2-29
-s spice_input_file (E2LVS),12-4
-s spice_input_file (V2LVS),12-26
-s0 groundnet,12-26
-s1 powernet,12-26
-sb cell_file,12-4
-sk,12-26
-spice,2-20
-ss cell_file,12-4
svdb_directory,2-29
-t svdb_dir,12-27
-tl, 2-15
-ts,2-15
-turbo no_of_cpus (DRC),2-11
-turbo no_of_cpus (LVS),2-20
-turbo_all,2-11, 2-21
-turbo_litho,2-11, 2-21
-u unnamed_pin_prefix,12-27
-v verilog_design_file,12-26
-w warning_level (E2LVS),12-6
-w warning_level (V2LVS),12-27
-wait n,2-12, 2-23
-writedatabase,2-10

Array reference output,4-58
ASCII DRC results database format,14-12
ASCII layout database format,2-5
Attach operation,7-13

connectivity extraction,7-13
net names,7-14

-automatch switch,2-18

B
-b argument,12-27
-b char argument,12-5
Binary DRC results database format,14-14
Binary layout database

writing, 4-79
Binary layout database formats,2-6
Binary polygon file (BPF),14-89
Binary polygon format,2-6
BJT element (Table),11-26
Boolean operations,4-7

one-layer,4-2
two-layer,4-7, 4-9

-bpf switch,2-16
bpf, see Binary polygon format, 2-6
Browse Deviceless Cells command,15-102
Browse Pseudo Cells command,15-102
Built-in device types

bipolar transistors,10-16
capacitors,10-13
defined,10-11
inductors,10-17
Jfet transistors,10-17
MOS transistors,10-12
resistors,10-14
voltage sources,10-18

Built-in language
area functions,9-28
assignment statements,9-18
bend determination,9-27
bends function,9-29
case sensitivity,9-18
commas,9-18
comments,9-18
count function,9-29
data retrieval functions,9-25
data sources,9-18
debug statement,9-18
described,9-16
examples,9-16, 9-34
Calibre Verification User’s Manual, v9.1_5Index-2

Index

Index (cont.)
flow control,9-18
for devices,9-18
function listing,9-28
instance function,9-31
language style,9-18
local variables,9-18
location functions,9-34
logical expression,9-18
net functions,9-31
numeric constants,9-18
numeric expressions,9-18
numeric functions,9-32
numeric restriction,9-18
operators,9-18
optional keyword and function spellings,

9-18
parenthesis,9-18
perimeter functions,9-29
property statement,9-18
reserved keywords,9-18
statement grouping,9-18
statement placement and continuation,9-18
structure,9-18
unit functions,9-33

Built-in property classification,10-103
Built-in W/L partner properties,10-104

C
-c char1 argument,12-5
-c subst_char argument,12-27
Cadence Virtuoso,15-6
Cadence Virtuoso Interface,3-23
Calibre CB

described,1-3, 2-32
Calibre command line,2-8
Calibre Connectivity Interface,15-143

described,1-3
Calibre DRC

described,1-1
invocation,2-9

Calibre DRC window,3-4
displaying,2-31

Calibre DRC-H
described,1-2

Calibre Interactive
(see also Graphical user interface),3-1
command line,2-31
described,1-3
distributed queueing,3-13
DRC,3-4
DRC area checking,3-12
environment and Skill variables,3-33
palette,2-31, 3-4
prerequisites,3-2

Calibre LVS
described,1-2
example invocation,2-25

Calibre LVS window,3-14
displaying,2-31

Calibre LVS-H
described,1-2
example invocation,2-25

Calibre MGC
described,1-2

Calibre RVE/QDB-H
also see Hierarchical query database,15-1
also seeResults viewing environment,15-2
arguments,2-29
described,1-2, 2-28
example invocation,2-30
usage,2-28

Calibre verification overview,1-1
Calling conventions for Verilog modules,

12-38
Capacitor element (Table),11-20
-cb argument (V2LVS),12-28
-cb switch,2-10, 2-18, 2-30, 2-32
Cell

query,15-75
viewing,15-75
Calibre Verification User’s Manual, v9.1_5 Index-3

Index (cont.)

Index
Cell correspondence file
example,2-22

Cell exclusion,4-76
Cell ports,7-9
Cell pushdown,13-6
Cell renaming,4-76
-cell switch,2-16
Check set,5-1
Check text

defined,4-15
CIF database format,2-3
CIF input control,4-73
CIF layout database format,2-3
Circuit extraction report file,14-89
Circuit matching

signature based,10-19
tracing,10-20

-cl switch,2-24
Clustered output

four-edge,4-28
summary,4-29
three-edge,4-25
trivial edges,4-26

Cnet layout database format,2-3
Cnet source database format,2-7
cnet_file_name argument,2-15
Command line

Calibre Interactive,2-31
Compare GDSII,12-74
Dracula file conversion,12-55
DRC,2-9
E2LVS,12-2
LVS, 2-13
MGC, 2-13
RVE/QDB-H,2-28
V2LVS, 12-26

Commands
V2LVS, 12-26

Compare GDSII
command line,12-74

compare_gds,12-74
Comparison

layout versus layout,4-48
Component subtype

defined,10-4
EDDM instance,10-5
extracted layout device,10-5
V7.X erel instance,10-5

Component type
defined,10-2
EDDM instance,10-2
extracted layout device,10-2
V7.X erel instance,10-3

Concurrency checks,5-7
Concurrency of rule checks,5-2
Conjunctive checks,5-6
Connect By operation,7-5
Connect operation,7-4
Connectivity

establishing and verifying,7-2
Connectivity comparison

correct elements,10-20
incorrect elements,10-20
initial correspondence points,10-21
matching of circuit elements,10-19
resolving ambiguities,10-21
results,10-20
unmatched elements,10-21

Connectivity extraction
cell ports,7-9
errors and warnings,7-25
mask mode,7-2
operations,7-1, 7-4
recognizing electrical nets,7-4
Virtual Connect statements,7-21

Constraints,4-20
for output suppression,4-31

Contact checks,5-8
Control file,3-18
Control statements
Calibre Verification User’s Manual, v9.1_5Index-4

Index

Index (cont.)
*.CAPA, 11-11
*.CONNECT,11-11
*.DIODE, 11-13
*.EQUIV, 11-13
*.J, 11-11
*.XPINS, 11-15
.END,11-9
.INC or .INCLUDE,11-9
.OPTION SCALE,11-10
other,11-16

Correspondence file
hcell,2-22

COUNT() vector expression,10-61
Cross reference file generation (CCI),15-169
-cs switch,2-24

D
Database pre-merging,4-76
Databases

ASCII, 2-5
binary,2-6
CIF, 2-3
combining,4-48
DRC results,14-9
GDSII, 2-4
GDSII comparison,12-74
layout,2-3
mask results,14-81
source,2-7
SVDB, 15-71

Datatypes,4-71
-dblayers switch,2-16
DEBUG statement,9-52, 10-56
Debugging rule checks using Copy,4-13
Derived edge layers,4-3
Derived error layers,4-3
Derived layers,4-3
Derived polygon layers,4-3
Device

defined,9-3

property specification error messages,9-62
Device operation,9-2, 9-3, 10-2, 10-5, 10-6,

10-97, 13-2, 13-3
Device recognition

aspects of a device,9-4
defined,9-1
device definitions,9-3
example,9-9
hierarchical,13-3
ill-formed devices,9-8
layer relations,9-5
pin fill-in algorithm,9-8
process,9-1
property computation,seeProperty

computation,9-10
Device reduction

defined,10-22
parallel bipolar transistors,10-33
parallel capacitor,10-35
parallel MOS transistors,10-23
parallel resistor,10-38
programs,10-42
property definition,10-46
semi-series MOS transistors,10-27
semi-split gate,10-31
series capacitor,10-34
series resistor,10-36
split gate,10-29
tolerance,10-43, 10-45
unequally reduced devices,10-40

Dimensional check operations
appropriate angle,4-35
appropriateness criteria,4-34
edge breaking,4-37
edge measurement,4-19
edge output clusters,4-25
edge-directed,4-16
error-directed,4-16
four-edge output cluster,4-28
intersection criteria,4-36
Calibre Verification User’s Manual, v9.1_5 Index-5

Index (cont.)

Index
key concepts,4-19
metrics,4-21
output suppression,4-31
polygon containment criteria,4-38
polygon-directed,4-17
trivial edges,4-26

Discrepancies
LVS report,14-40
types,14-59

Disk-based layers,4-47
Distributed queueing,3-13
Dracula conversion,12-54
DRC

area checking (Calibre Interactive),3-12
arguments,2-10
hcells and,6-9
invocation,2-13

DRC Check Map statement,14-17, 14-18
DRC Check Text statement,14-11, 14-14
DRC Exclude False Notch statement,6-7
DRC executive

check set,5-1
disk-based layers,4-47
empty rule checks,4-14
execution characteristics,5-2
limiting the result count,14-17
polygon segmentation,5-10
transcript section,14-4
transferring text,4-15

DRC Keep Empty statement,4-14, 14-19
DRC Map Text statement,6-8
DRC Maximum Results statement,14-17,

14-18
DRC Maximum Vertex statement,14-18
DRC Print Area statement,6-7
DRC results

limiting, 14-17
limits, 4-15

DRC results database,14-9
empty rule checks,4-14

format,14-12
GDSII format,4-54
hierarchical DRC,14-18
limiting the result count,14-17
polygon segmentation,5-10
transferring text,4-15

DRC Results Database statement,14-12,
14-14, 14-16, 14-18

DRC summary report,14-19
DRC Summary Report statement,14-20
-drc switch,2-10, 2-32
drc_db_file argument (RVE),2-30
DRC-H

arguments,2-10
usage,2-9

DRC-RVE,15-3, 15-8
Dual database capability,4-48

flat example,4-52
hierarchical semantics,4-51
layer bump process,4-50
rule file statements,4-49
supported formats,4-49

Duplicate cells,4-75

E
-e argument,12-28
-e edif_input_file argument,12-4
E2LVS

command line arguments,12-4
described,12-2
EDIF-to-Spice translations,12-12
examples,12-6
invoking,12-2
netlist example,12-20
overview,1-3
syntax considerations,12-7
translation issues,12-9
untranslated EDIF syntax,12-6
usage,12-2

Eddm layout database format,2-3
Calibre Verification User’s Manual, v9.1_5Index-6

Index

Index (cont.)

,

Eddm pin instance,10-6
Eddm source database format,2-7
Edge breaking,4-37
Edge measurement

described,4-19
region construction,4-20

Edge output clusters,4-25
Edge-directed dimensional check operations,

4-16
Edge-directed output,4-39

negative,4-40
positive,4-39, 4-41

EDIF-to-LVS,see E2LVS
Effective property language

example,10-46
numeric functions,10-61
statements,10-56
syntax,10-51
vector functions,10-59

Effective property program,10-46
EFFective statement,10-58
Efficiency

concurrency checks,5-7
conjunctive checks,5-6
hierarchical operation,6-6
pad checks,5-8
property computation,9-44
rectangle checks,5-8
rule file, 5-5

Element statements
BJT,11-25
capacitor,11-19
JFET,11-27
junction diode,11-24
MOSFET,11-29
resistor,11-17
voltage source,11-32

Empty rule check suppression,4-14
Enclosure operation,4-17, 4-34, 4-38
Environment variables

Calibre Interactive,3-33
ERC

definition,8-1
DRC execution,8-4
DRC rule check selection,8-5
LVS execution,8-2
LVS rule check selection,8-4
operations,8-2
PRINT keyword,8-2
PRINT NETS operation,8-7
PRINT POLYGONS operation,8-6
result files,8-5
results,8-5
statements,8-1
usage examples,8-8

erel pin instance,10-6
Error suppression, false notch,6-7
Error tolerance,4-45
Error-directed dimensional check operations

4-16
Establishing connectivity,7-2
Execution characteristics

maximizing capacity,5-5
minimizing time,5-5

EXP() numeric expression,10-61
Expand Cell statement,6-8
Explicit layer definition,4-5
External operation,4-17, 4-34, 4-38, 6-7
Extracted layout device

pin names,10-6

F
False enclosure reduction,4-44
False measurement algorithm,4-45
False notch error reduction

hierarchical DRC,6-7
False notch reduction,4-44
Feedthroughs,7-9
Filtering unused devices

bipolar transistors,10-66
Calibre Verification User’s Manual, v9.1_5 Index-7

Index (cont.)

Index
MOS transistors,10-65
Flagging geometries,4-77
Flat instantiations, hierarchical DRC,6-5
Flatten Cell statement,6-8
Flatten operation,6-5
Four-edge output cluster,4-28

G
Gate level primitives in V2LVS,12-37
GDSII

datatypes,4-71
DRC results,4-54
DRC results database format,14-16
input control,4-73
layout database format,2-4
texttypes,4-71

Geometry flagging,4-77
Geometry grid-snapping,4-77
Getting started,2-1
Global schematic bulk nets,10-67
Graphical user interface

control file,3-18
description and use,3-1
distributed queueing,3-13
DRC,3-4
interface to Calibre RVE,3-21
LVS, 3-14
prerequisites,3-2
run directory,3-17
runset,3-3
Virtuoso export settings,3-26

-gui switch,2-32

H
-h argument (V2LVS),12-28
Hcell

connectivity,13-2
DRC treatment,6-9
list, 2-22
pins,13-9

specification,13-1
Hcell pins,10-103
-hcell switch,2-22
Hcells,13-6
-hier switch,2-10, 2-18
Hierarchical application semantics,4-51
Hierarchical cell statistics,13-19
Hierarchical cells

forming a cycle,14-57
Hierarchical DRC

described,6-1
efficiency,6-6
false notch error suppression,6-7
flat instantiations,6-5
layer area printing,6-7
performance,6-3
results database,14-18
text mapping,6-8

Hierarchical query database
described,15-1, 15-70
example,15-142

Hierarchy-specific statements,6-8
High-short resolution,13-13

I
-i argument (E2LVS),12-5
-i argument (V2LVS),12-28
-ictrace argument (V2LVS),12-28
ICverify transcript

rule file compilation,14-2
Ill-formed device

defined,9-8
Implicit layer definition,4-6
Incremental connectivity,4-60
Inductor element (Table),11-22
Information and warnings

ambiguity resolution points,14-78
bad devices,14-75
conflicting layout names,14-76
conflicting source names,14-77
Calibre Verification User’s Manual, v9.1_5Index-8

Index

Index (cont.)
defined,14-74
identical layout names,14-76
identical source names,14-76
initial correspondence points,14-77
isolated layout nets,14-75
matched and unmatched elements,14-74
missing names in the source,14-76
non-identical power/ground pins,14-74
passthrough layout nets,14-75
statistics,14-74
unequally reduced mosfets,14-75

Initial correspondence points
defined,10-21
LVS report,14-77

Initialization section,14-3
Input control

GDSII and CIF,4-73
Input errors

bad instances,14-56
conflicting instances,14-56
defined,14-55
missing component types,14-55
missing pin names,14-55

Instance
defined,9-3

Instance cross-reference file,see ixf
Instance pins and pin names,10-5
Instance pins with multiple shapes,7-10
Internal operation,4-17, 4-34, 4-39
Intersection criteria,4-36
Interval constraints,4-31
Invocation of Calibre tools,2-7
Isolated nets,10-68
ixf file format, 14-86
-ixf switch,2-19

J
JFET element (Table),11-28
Junction diode element (Table),11-24

L
-l input_list_file argument,12-4
-l verilog_lib_file argument,12-26
Labels, net names,7-14
Layer area printing

hierarchical DRC,6-7
Layer constructors,4-7
Layer definition

explicit, 4-5
implicit, 4-6

Layer Map statement,6-8
Layer of origin,4-10
Layer operations,4-4, 4-7

executing concurrently,5-2
hierarchical,13-3
layer constructors,4-7
layer selectors,4-8
net preserving,4-9
redundancy elimination,5-4
scheduling,5-4

Layer selectors,4-8
Layer statistics,14-4

DRC,14-4
DRC-H,14-6
flat count,14-3
hierarchical count,14-3
LVHEAP, 14-8

Layers,4-1
using derived layers,4-3

Layout data input section,14-2
Layout database

formats
ASCII, 2-3, 2-5
binary,2-3, 2-6
CIF, 2-3
Cnet,2-3
Eddm,2-3
GDSII, 2-3, 2-4
Spice,2-3

Layout database magnification,4-78
Calibre Verification User’s Manual, v9.1_5 Index-9

Index (cont.)

Index

t,

t,
Layout Depth statement,2-5
Layout Injection Factor statement,6-8
Layout netlist file format (CCI),15-152
Layout netlist generation

customized,15-144
Layout netlist names file format,15-165
Layout Path statement,2-3, 2-4, 2-15
Layout Primary statement,2-3, 2-4, 14-13,

14-17
wildcards,4-75

Layout Process Box Record statement,2-5
Layout Top Layer statement,6-8, 13-1
Layout translation,see tl / ts
Layout versus layout

comparison,4-48
flat example,4-52

Layout versus schematic,see alsoconnectivity
comparison, LVS

layout_primary argument (RVE),2-29
LOG() numeric expression,10-62
Logic gate recognition

CMOS and-or-invert,10-75
CMOS gates,10-72, 10-85
CMOS inverter,10-72
CMOS NAND,10-73
CMOS NOR,10-74
CMOS or-and-invert,10-76
CMOS serial pulldown,10-77
CMOS serial pullup,10-77
CMOS serial-parallel pulldown,10-79
CMOS serial-parallel pullup,10-78
high level serial-parallel structures of MP

or MN devices,10-81
NMOS gates,10-85
NMOS inverter,10-85
NMOS NAND,10-85
NMOS NOR,10-86
NMOS or-and-invert,10-86
NMOS serial pulldown,10-87

NMOS serial-parallel pulldown structure,
10-88

serial-parallel structure,10-89
serial-parallel structure of MP or MN

devices,10-81
series of MD or ME devices,10-89
series of MP or MN devices,10-80

Logically equivalent pins
default pin swapping for devices,10-97
defined,10-97

lph file format,14-87
LVHEAP statistics,14-8
LVS

built-in device types,10-11
circuit comparison,10-1
circuit extraction,7-1
command line arguments,2-15
command line examples,2-25
component subtype,10-4
component type,10-2
device reduction,10-22
filtering unused devices,10-64
global schematic bulk nets,10-67
instance pins and pin names,10-5
logically equivalent pins,10-97
MS and MF schematic devices,10-19
net and instance names,10-9
ports and port names,10-9
power and ground nets,10-68
sample rule file,2-27
short isolation,15-69
spice-like property syntax,11-2
user given names,10-7

LVS All Capacitor Pins Swappable statemen
10-97

LVS Component Subtype Property statemen
10-5

LVS Component Type Property statement,
10-2

LVS Filter
Calibre Verification User’s Manual, v9.1_5Index-10

Index

Index (cont.)
spice-like property syntax,11-2
statement,11-2

LVS Filter Unused Bipolar statement,10-67
LVS Filter Unused MOS Transistors statement,

10-66
LVS Ground Name statement,10-7, 10-68,

13-10
LVS Pin Name Property statement,10-6
LVS Power Name statement,10-7, 10-68,

13-10
LVS Recognize Gates statement,10-69, 13-10
LVS Reduce Parallel Bipolar statement,10-34
LVS Reduce Parallel Capacitors statement,

10-36
LVS Reduce Parallel Diodes statement,10-40
LVS Reduce Parallel MOS statement,10-24
LVS Reduce Parallel Resistors statement,

10-39
LVS Reduce Series Capacitors statement,

10-35
LVS Reduce Series Resistors statement,10-37
LVS Reduce Split Gates statement,10-31
LVS report

analysis,14-37
connectivity extraction,14-39
detailed instance connections,14-39, 14-78
discrepancies,14-40
discrepancy types,14-59
discrepancy types,seeDiscrepancies,

14-59
error and warning messages

analysis,14-37
flat example,14-21
hierarchical example,14-28
incorrect objects,14-38
information and warnings,14-38, 14-74
information and warnings,seeInformation

and warnings,14-74
input errors,14-55
instance identification,14-41

instance pin identification,14-42
layout input errors,14-55
listing conventions,14-40
logic gate identification,14-42
logic gate pin identification,14-43
net identification,14-41
non-identical signal pins,14-54
numbers of objects after transformation,

14-38
overall comparison results,14-44
overall structure, flat,14-20
overall structure, hierarchical,14-26
port identification,14-41
power and ground nets,14-54
primary messages,14-45
source input errors,14-55
Spice netlist,14-40
stamp errors,14-39
unconnected instance pin identification,

14-43
LVS Report statement,2-19
LVS Spice netlist notational conventions

(Table),11-5
-lvs switch,2-15, 2-32
LVS-H command line

examples,2-25
LVS-RVE, 15-3, 15-28

interface,15-28

M
Many-many cell correspondence,13-8
Mask connectivity extraction,7-2, 7-3
Mask Results Database statement,14-81
Mask SVDB directory files

LVS-RVE, 15-29
Mask SVDB Directory statement,2-20, 2-22,

14-39
MAX() vector expression,10-61
Measurement metrics,4-21
Measurement regions,4-20
Calibre Verification User’s Manual, v9.1_5 Index-11

Index (cont.)

Index
Merged layers, transferring info to,7-13
Metrics,4-21

Euclidean,4-21
Opposite,4-21
Opposite (special considerations),4-30
Opposite extended,4-21
Opposite symmetric,4-21
Square,4-21

MIN() vector expression,10-60
Missing and unknown property values,10-41
Module instantiations in V2LVS,12-38
MOSFET element (Table),11-30
MS and MF schematic devices,10-19
Multiple shapes

instance pins,7-10
ports,7-9

Must-connect groups,7-11

N
-n argument,12-27
-n cell_name_file argument,12-5
Negative edge-directed output,4-40
Net and instance names

defined,10-9
Direct LVS,10-9
EDDM, 10-9
Eddm,10-9
mask LVS,10-9
Spice netlist,10-4, 10-5, 10-7, 10-9
spice netlist,10-10
V7.0 erel file,10-9, 10-10

Net name attachment operations,7-13, 7-17
Net names

Expand Cell Text statement,7-17
label attachment,7-17
labels,7-14
layout database text objects

in Calibre applications,7-16
Layout Text statements,7-15
specifying,7-14

Text Depth statement,7-16
Text Layer statement,7-16
Text statements,7-14

Net-preserving operations,4-9
-nl switch,2-18
-nonames switch,2-16
NOT operation,4-6
-nowait switch,2-12, 2-23, 2-30
Numeric expression

ABS(), 10-61
EXP(),10-61
LOG(), 10-62
POW(),10-62
SQRT(),10-62
TRUNC(),10-62

nxf file format,14-86
-nxf switch,2-19

O
-o output_file argument,12-4
-o output_spice_file argument,12-26
One-layer Boolean operations,4-2
Operations

connectivity extraction,7-1, 7-4
Device,10-2, 10-5, 10-6, 10-97, 13-2
execution time,5-9
layer,4-4
net name attachment,7-13, 7-17
pin related,7-6
port polygon related,7-7
port related,7-6
port text related,7-7
text attachment,7-17
text related,7-14

Opposite metric
special considerations,4-30

OR operation,4-6
Original (drawn) layers,4-2
Overall comparison results

correct,14-45
Calibre Verification User’s Manual, v9.1_5Index-12

Index

Index (cont.)
defined,14-44
error,14-46
example,14-44
incorrect,14-45
not compared,14-45
number of instances,14-51
number of nets,14-51
number of ports,14-51

Overall structure, LVS report, flat,14-20
Overall structure, LVS report, hierarchical,

14-26

P
-p prefix argument,12-27
pad checks,5-8
Parallel bipolar transistor reduction,10-33
Parallel capacitor reduction,10-35
Parallel MOS transistor reduction,10-23
Parallel resistor reduction,10-38
Parameterized cells,13-16
Pass-through nets,10-68
Performance optimization,5-5
Pin operations,7-6
Pin swapping,10-97

hierarchical,13-2
Pins

hcell,13-9
Point-to-point measurement output,4-28
Polygon containment criteria

and derived edge layers,4-38
edge breaking,4-37
justifying, 4-39
overview,4-38

Polygon objects,7-7
hierarchical netlisting,7-8
hierarchical processing,7-7

Polygon segmentation,5-10
Polygon statement,2-10
Polygon-directed dimensional check

operations,4-17

Polygon-directed output,4-41
Port depth,7-8
Port Layer Text statement,10-9
Port operations,7-6
Port polygon operations,7-7
Port table file format,15-167
Port text object operations,7-7
Port text objects,7-7

hierarchical netlisting,7-8
hierarchical processing,7-7

Ports and port names,10-9
Ports with multiple shapes,7-9
Positive edge-directed output,4-39
POW() numeric expression,10-62
Power and ground nets,10-10, 10-68
Precision statement,14-17
PRINT NETS opeartion (ERC),8-7
PRINT POLYGONS operation (ERC),8-6
PROD() vector expression,10-60
Property computation

built-in language examples,9-34
built-in language,see also Built-in

language,9-16
debugging,9-52
default computations,9-11
described,9-10
devices,9-11
efficiency considerations,9-44
for capacitors,9-13
for diodes,9-12
for MOS transistors,9-14
for resistors,9-13
structure,9-43
units of measurement,9-40

Property specification
error messages,9-62

Property tracing functions,10-103

Q
QDB-H, 15-1
Calibre Verification User’s Manual, v9.1_5 Index-13

Index (cont.)

Index

,

,

also see Hierarchical query database,15-1
Query cell,15-75
Query help,15-21
Query Server

commands and queries
browse pseudo and deviceless cells,

15-102
cell queries,15-98
control commands,15-85
device queries,15-133
net queries,15-117
parameter commands,15-91
placement queries,15-106
port queries,15-113
rule file queries,15-141

described,15-73
device tables,15-82
error messages (table),15-179
failure messages (table),15-181
query cell,15-75
response format,15-81
rule file compilation failure message,

15-184
viewing cell,15-75

Query server client context,15-73
-query switch,2-30

R
-r char1 argument,12-5
Reading LVS report,14-37
Recognizing electrical nets

Attach operation,7-13
Connect By operation,7-5
Connect operation,7-4
hierarchical netlisting,7-8
hierarchical processing,7-7
instance pins with multiple shapes,7-10
must-connect groups,7-11
port polygon objects,7-7
port text objects,7-7

hierarchical netlisting,7-8
hierarchical processing,7-7

ports and pins,7-6
ports with multiple shapes,7-9
shapes on a single layer,7-4
summary,7-4
transferring logical information to merged

layers,7-13
Required rule file statements,2-2
Resistor element (Table),11-17
Results viewing environment

Cadence Virtuoso,15-6
crossprobing with the discrepancy viewer

15-59
crossprobing with the Spice browser,15-62
described,15-1, 15-3
DRC-RVE,15-3, 15-8
DRC-RVE file dropdown menu

commands,15-11
DRC-RVE highlight dropdown menu

commands,15-17
DRC-RVE session window,15-8
DRC-RVE setup dropdown menu

commands,15-22
DRC-RVE view dropdown menu

commands,15-13
GUI procedures and dialog boxes,15-24,

15-42
IC Station,15-4
interface prerequisites,15-2
invocation,15-2
layout editor considerations,15-4
LVS-RVE, 15-3, 15-28
LVS-RVE file dropdown menu commands

15-32
LVS-RVE layout dropdown menu

commands,15-36
LVS-RVE session window,15-30
LVS-RVE setup dropdown menu

commands,15-40
Calibre Verification User’s Manual, v9.1_5Index-14

Index

Index (cont.)
LVS-RVE source dropdown menu
commands,15-38

LVS-RVE view dropdown menu
commands,15-35

query help facility,15-21
text selection,15-70

Rule checks
comments,4-13
concurrent,5-7
conjunctive,5-6
debugging,4-13
empty,4-14
results limits,4-15
selection,5-1
statements,4-12

Rule file
basics,2-1
control file,3-18
Dracula command conversion,12-54
DRC required statements,2-2
layers,4-4
LVS required statements,2-2
MGC required statements,2-2
optimized,5-5
required statements,2-2

rule_file_name (LVS) argument,2-25
rule_file_name argument,2-13
Run directory,3-17
Runset,3-3
runset argument,2-32
RVE, 15-1

also seeResults viewing environment,15-1
rve argument,2-29
-rve switch,2-29

S
-s spice_input_file (V2LVS),12-26
-s spice_input_file argument (E2LVS),12-4
-s0 groundnet argument,12-26
-s1 powernet argument,12-26

-sb cell_file argument,12-4
Sconnect

description,7-5
Secondary keywords,4-19
Semi-series MOS transistor reduction,10-27
Semi-split gate reduction,10-31
Series capacitor reduction,10-34
Series MOS Transistor Reduction,10-25
Series resistor reduction,10-36
Short isolation,7-23, 15-69
Signature based circuit matching,10-19
Single layer, shapes on,7-4
Single net,7-4
-sk argument,12-26
Skill trigger functions,3-30
Skill variables

Calibre Interactive,3-33
Snapping geometries to grid,4-77
Socket connections with Virtuoso,3-28
Soft connections

checking for,4-68
Source database

accepted formats,2-7
format

Cnet,2-7
Eddm,2-7
Spice,2-7

Source Path statement,2-15
Source System statement,2-7
Source translation,see tl / ts
Special cases in layout

isolated nets,10-68
pass-through nets,10-68

Specification statement
described,2-1
Layout Path,2-4, 2-15
Layout Primary,2-4
Layout Process Box Record,2-5
LVS All Capacitor Pins Swappable,10-97
LVS Component Subtype Property,10-5
Calibre Verification User’s Manual, v9.1_5 Index-15

Index (cont.)

Index
LVS Component Type Property,10-2
LVS Filter, 11-2
LVS Filter Unused Bipolar,10-67
LVS Filter Unused MOS Transistors,10-66
LVS Ground Name,10-7, 10-68, 13-10
LVS Pin Name Property,10-6
LVS Power Name,10-7, 10-68, 13-10
LVS Property Map,11-2
LVS Recognize Gates,10-69, 13-10
LVS Reduce Parallel Bipolar,10-34
LVS Reduce Parallel Capacitors,10-36
LVS Reduce Parallel Diodes,10-40
LVS Reduce Parallel MOS,10-24
LVS Reduce Parallel Resistors,10-39
LVS Reduce Series Capacitors,10-35
LVS Reduce Series Resistors,10-37
LVS Reduce Split Gates,10-31
LVS Report,2-19
Mask Results Database,14-81
Mask SVDB Directory,2-20, 2-22
Port Layer Text,10-9
Source Path,2-15
Source System,2-7
Text Print Maximum,14-3

sph file format,14-87
Spice

hierarchical,13-17
layout database format,2-3
source database format,2-7

Spice netlist
subcircuit statements,11-33
syntax summary,11-6

-spice switch,2-20
Spice syntax check report,14-35
Spice syntax check results,14-53
Spice-like property syntax

capacitors,11-4
defined,11-2
diodes,11-4
MOS transistors,11-3

resistors,11-4
subcircuits,11-33
summary,11-3

Split gate reduction,10-29
SQRT() numeric expression,10-62
SRAM Bit-Cell, 13-11
-ss cell_file argument,12-4
Stamp operation,7-6
Statistics

counts, flat,14-3
counts, hierarchical,14-3
DRC layers,14-4
DRC-H layers,14-6
layer,14-4
LVHEAP, 14-8

Subcircuit call (Table),11-37
Subcircuit statement,11-33

.ENDS,11-36

.EOM,11-36

.GLOBAL, 11-44

.MACRO,11-33

.PARAM, 11-43

.SUB,11-33

.SUBCKT,11-33
calls,11-36

Subckt statement (Table),11-34
SUM() vector expression,10-60
SVDB database,15-71
SVDB header,14-87
svdb_directory argument (RVE),2-29
SVRF,1-1

syntax checker,12-75

T
-t svdb_dir argument,12-27
Tables

BJT element,11-26
capacitor element,11-20
inductor element,11-22
JFET element,11-28
Calibre Verification User’s Manual, v9.1_5Index-16

Index

Index (cont.)
junction diode element,11-24
LVS Spice netlist notational conventions,

11-5
MOSFET element,11-30
resistor element,11-17
subcircuit Call,11-37
subckt statement,11-34
voltage source element,11-33

Text attachment operations,7-17
Text Depth

behavior,7-17
Text Layer

behavior,7-16
Text mapping

hierarchical DRC,6-8
Text operations,7-14
Text Print Maximum statement,14-3
Texttypes,4-71
-tl switch,2-15
Tolerance

device reduction,10-43
Trace Property statement,9-10
Tracing circuit matching,10-20
Tracing properties,10-103

spice-like property syntax,11-2
Transcript,14-1

DRC executive section,14-4
initialization section,14-3
layout data input section,14-2
rule file compilation section,14-2

Trivial edges,4-26
TRUNC() numeric expression,10-62
-ts switch,2-15
turbo no_of_cpus argument (LVS),2-20
turbo number_of_processors argument (DRC),

2-11
-turbo switch,2-11, 2-20
-turbo_all switch,2-11, 2-21
-turbo_litho switch,2-11, 2-21
Two-layer Boolean operations,4-7

U
-u unnamed_pin_prefix argument,12-27
Unit Capacitance statement,9-14
Unit Length statement,9-14, 14-17
Unit Resistance statement,9-13
Usage

DRC,2-9
DRC-H,2-9
E2LVS,12-2
LVS, 2-13
LVS-H, 2-13
RVE/QDB-H,2-28
V2LVS, 12-26

User given names,10-7
User-defined properties

device reduction,10-46
Using derived layers,4-3
Utilities

Dracula converter,12-54
E2LVS,1-3, 12-1
GDSII comparison,12-74
overview,1-3
SVRF syntax checker,12-75
V2LVS, 1-3, 12-24
Verilog-to-LVS,1-3

V
-v verilog_design_file argument,12-26
V2LVS

command line arguments,12-26
described,12-24
gate level primitives,12-37
generating xCalibre source template,12-52
invoking,12-26
Library Files,12-29
LVS Box subcircuits,12-50
module instantiations,12-38
overview,1-3
usage,12-26
using without Verilog library,12-48
Calibre Verification User’s Manual, v9.1_5 Index-17

Index (cont.)

Index
Vector expression
COUNT(),10-61
MAX(), 10-61
MIN(), 10-60
PROD(),10-60
SUM(), 10-60

Verifying connectivity,7-2
Verilog

behavioral statements,12-43
bit expressions,12-38
calling conventions,12-38
expressions,12-45
gate level primitives,12-37
module instantiations,12-38
modules,12-29
primitive instances,12-36
specify blocks,12-44
syntax in V2LVS,12-29
user-defined primitives,12-32

Verilog-to-LVS,see V2LVS
Viewing cell,15-75
Virtual Connect statements,7-21

LVS Box and,7-22
Virtual Connect Box Colon,7-22
Virtual Connect Box Name,7-22
Virtual Connect Colon,7-21
Virtual Connect Name,7-22

Virtuoso
environment variables,15-6

Virtuoso interface
using,3-28

Voltage source element (Table),11-33

W
-w warning_level argument (E2LVS),12-6
-w warning_level argument (V2LVS),12-27
W/L partner properties,10-104
-wait n switch,2-12, 2-23
WARN statement,10-57
-writedatabase switch,2-10

Z
zoom settings,15-59
Calibre Verification User’s Manual, v9.1_5Index-18

Trademark Information
Mentor Graphics Trademarks

The following names are trademarks, registered trademarks, and service marks of Mentor Graphics Corporation:

3D Design, A World of LearningSM, ABIST, Arithmetic BIST, AccuPARTner, AccuParts, AccuSim, ADEPT, ADVance MS, ADVance RFIC,
AMPLE, Analog Analyst, Analog Station, AppNotesSM, ARTgrid, ArtRouter, ARTshape, ASICPlan, ASICVector Interfaces, Aspire Assess2000SM,
AutoActive, AutoCells, AutoDissolve, AutoFilter, AutoFlow, AutoLib, AutoLinear, AutoLink, AutoLogic, AutoLogic BLOCKS, AutoLogic
FPGA, AutoLogic VHDL, AutomotiveLib, AutoPAR, AutoTherm, AutoTherm Duo, AutoThermMCM, AutoView, Autowire Station, AXEL,
AXEL Symbol Genie, BISTArchitect, BIST CompilerSM, BIST-In-PlaceSM, BIST-ReadySM, Board Architect, Board Designer, Board Layout, Board Link,
Board Process Library, Board Station, Board Station Consumer, BOLD Administrator, BOLD Browser, BOLD Composer, BSDArchitect,
BSPBuilder, Buy on Demand, Cable Analyzer, Cable Station, CAECO Designer, CAEFORM, Calibre, Calibre CB, Calibre DESIGNrev, Calibre
DRC, Calibre DRC-H, Calibre FRACTUREh, Calibre FRACTUREj, Calibre FRACTUREk, Calibre FRACTUREm, Calibre FRACTUREt, Calibre
Interactive, Calibre LITHOview, Calibre LVS, Calibre LVS-H, Calibre MDPview, Calibre MGC, Calibre OPCpro, Calibre OPCsbar, Calibre ORC,
Calibre PRINTimage, Calibre PSMgate, Calibre PSMcheck, Calibre RVE, Calibre TDopc, Calibre WORKbench, Calibre xRC, CAM Station, Capture
Station, CAPITAL, CAPITAL Analysis, CAPITAL Bridges, CAPITAL Documents, CAPITAL H, CAPITAL Harness, CAPITAL Harness Systems,
CAPITAL H the complete desktop engineer, CAPITAL Insight, CAPITAL Integration, CAPITAL Manager, CAPITAL Manufacturer, CAPITAL Support,
CAPITAL Systems, Cell Builder, Cell Station, CellFloor, CellGraph, CellPlace, CellPower, CellRoute, Centricity, CEOC, ChaseX,
CheckMate, CHEOS, Chip Station, ChipGraph, CommLib, CommLib BMC, Concurrent Board ProcessSM, Concurrent Design Environment,
Connectivity Dataport, Continuum, Continuum Power Analyst, CoreAlliance, CoreBIST, Core Builder, Core Factory, Co-Verification Environment,
CTIntegrator, DataCentric Model, DataFusion, Datapath, Data Solvent, dBUG, Debug Detective, DC Analyzer, Design Architect, Design Architect
Elite, DesignBook, Design Capture, Design Manager, Design Station, DesignView, DesktopASIC, Destination PCB, DFTAdvisor, DFTArchitect,
DFTInsight, DirectConnectSM, DSV, Direct System Verification, Documentation Station, DSS (Decision Support System), DSV, E3LCable, ECO
ImmunitySM, EDGE (Engineering Design Guide for Excellence)SM, EDT, Eldo, EldoNet, ePartners, EParts, Empowering Solutions, Engineer’s Desktop,
EngineerView, ENRead, ENWrite, ESim, Exemplar, Exemplar Logic, Expedition, Expert2000SM, Explorer CAECO Layout, Explorer CheckMate,
Explorer Datapath, Explorer Lsim, Explorer Lsim-C, Explorer Lsim-S, Explorer Ltime, Explorer Schematic, Explorer VHDLsim, ExpressI/O,
FabLink, Falcon, Falcon Framework, FastScan, FastStart, FastTrack ConsultingSM, First-Pass Design Success, First-Pass successSM, FlexSim, FlexTest,
FDL (Flow Definition Language), FlowTabs, FlowXpert, FORMA, FormalPro, FPGA Advantage, FPGAdvisor, FPGA BoardLink, FPGA Builder,
FPGASim, FPGA Station, FrameConnect, Galileo, Gate Station, GateGraph, GatePlace, GateRoute, GDT, GDT Core, GDT Designer, GDT
Developer, GENIE, GenWare, Geom Genie, HDL2Graphics, HDL Architect, HDL Architect Station, HDL Author, HDL Designer, HDL Designer
Series, HDL Detective, HDL Inventor, HDL Pilot, HDL Processor, HDL Sim, HDLWrite,Hardware Modeling Library, HIC rules, Hierarchical
Injection, Hierarchy Injection, HotPlot, Hybrid Designer, Hybrid Station, IBD, IC Design Station, IC Designer, IC Layout Station, IC Station,
ICbasic, ICblocks, ICcheck, ICcompact, ICdevice, ICextract, ICGen, ICgraph, ICLink, IClister, ICplan, ICRT Controller Lcompiler, ICrules,
ICtrace, ICverify, ICview, ICX, ICX Active, ICX Custom Model, ICX Custom Modeling, ICX Plan, ICX Pro, ICX Project Modeling, ICX
Sentry, ICX Standard Library, ICX Verify, ICX Vision, IDEA Series, Idea Station, INFORM, IFX, Inexia, Integrated Product Development,
Integra Station, Integration Tool Kit, INTELLITEST, Interactive Layout, Interconnect Table, Interface-Based Design, IntraStepSM, Inventra,
InventraIPX, Inventra Soft Cores, IP Engine, IP Evaluation Kit, IP Factory, IP -PCB, IP QuickUse, IPSim, IS_Analyzer, IS_Floorplanner,
IS_MultiBoard, IS_Optimizer, IS_Synthesizer, ISD CreationSM, ITK, It's More than Just ToolsSM, Knowledge CenterSM, Knowledge-SourcingSM, LAYOUT,
LNL, LBIST, LBISTArchitect, Language Neutral Licensing, Lc, Lcore, Leaf Cell Toolkit, Led, LED LAYOUT, Leonardo, LeonardoInsight,
LeonardoSpectrum, LIBRARIAN, Library Builder, Logic Analyzer on a ChipSM, Logic Builder, Logical Cable, LogicLib, logio, Lsim, Lsim DSM,
Lsim-Gate, Lsim Net, Lsim Power Analyst, Lsim-Review, Lsim-Switch, Lsim-XL, Mach PA, Mach TA, Manufacture View, Manufacturing
Advisor, Manufacturing Cable, MaskCompose, MaskPE, MBIST, MBISTArchitect, MBIST Full-Speed, MBIST Flex, MBIST Manager, MCM
Designer, MCM Station, MDV, MegaFunction, Memory Builder, Memory Builder Conductor, Memory Builder Mozart, Memory Designer, Memory
Model Builder, Mentor, Mentor Graphics, Mentor Graphics Support CDSM, Mentor Graphics SupportBulletinSM, Mentor Graphics SupportCenterSM, Mentor
Graphics SupportFaxSM, Mentor Graphics SupportNet-EmailSM, Mentor Graphics SupportNet-FTPSM, Mentor Graphics SupportNet-TelnetSM, Mentor Graphics We
Mean Business, MicroPlan, MicroRoute, Microtec, Mixed-Signal Pro, ModelEditor, ModelSim, ModelSim LNL, ModelSim VHDL, ModelSim
VLOG, ModelSim SE, ModelStation, Model Technology, ModelViewer, ModelViewerPlus, MODGEN, Monet, Mslab, Msview, MS Analyzer,
MS Architect, MS-Express, MSIMON, MTPISM, Nanokernel, NetCheck, NETED, Nucleus, Online Knowledge CenterSM, OpenDoorSM, Opsim,
OutNet, P&RIntegrator, PACKAGE, PARADE, ParallelRoute-Autocells, ParallelRoute-MicroRoute, PathLink, Parts SpeciaList, PCB-Gen, PCB-
Generator, PCB IGES, PCB Mechanical Interface, PDLSim, Personal Learning Program, Physical Cable, Physical Test Manager:SITE, PLA
Lcompiler, Platform Express, PLDSynthesis, PLDSynthesis II, Power Analyst, PowerAnalyst Station, Power To Create, Precision, Precision
Synthesis, Precision HLS, Precision PNR, Precision PTC, Pre-Silicon, ProjectXpert, ProtoBoard, ProtoView, QNet, QualityIBIS, QuickCheck,
QuickConnect, QuickFault, QuickGrade, QuickHDL, QuickHDL Express, QuickHDL Pro, QuickPart Builder, QuickPart Tables, QuickParts,
QuickPath, QuickSim, QuickSimII, QuickStart, QuickUse, QuickVHDL, RAM Lcompiler, RC-Delay, RC-Reduction, RapidExpert, REAL Time
Solutions!, Registrar, Reinstatement 2000SM, Reliability Advisor, Reliability Manager, REMEDI, Renoir, RF Architect, RF Gateway, RISE, ROM
Lcompiler, RTL X-Press, Satellite PCB Station, ScalableModels, Scaleable Verification, SCAP, Scan-Sequential, Scepter, Scepter DFF, Schematic
View Compiler, SVC, Schemgen, SDF (Software Data Formatter), SDL2000 Lcompiler, Seamless, Seamless C-Bridge, Seamless Co-Designer,
Seamless CVE, Seamless Express, Selective Promotion, SignaMask OPC, Signal Spy, Signal Vision, Signature Synthesis, Simulation Manager,
SimExpress, SimPilot, SimView, SiteLine2000SM, SmartMask, SmartParts, SmartRouter, SmartScripts, Smartshape, SNX, SneakPath Analyzer,
SOS Initiative, Source Explorer, SpeedGate, SpeedGate DSV, SpiceNet, SST Velocity, Standard Power Model Format (SPMF), Structure Recovery,
Super C, Super IC Station, Support Services BaseLineSM, Support Services ClassLineSM, Support Services LatitudesSM, Support Services OpenLineSM, Support
Services PrivateLineSM, Support Services SiteLineSM, Support Services TechLineSM, Support Services RemoteLineSM, Symbol Genie, Symbolscript, SYMED,
SynthesisWizard, System Architect, System Design Station, System Modeling Blocks, Systems on Board Initiative, System Vision, Target Manager,
Tau, TeraCell, TeraPlace, TeraPlace-GF, TechNotes, The Ultimate Tool for HDL Simulation, TestKompress, Test Station, Test Structure Builder,
The Ultimate Site For HDL Simulation, TimeCloser, Timing Builder, TNX, ToolBuilder, TrueTiming, Vlog, V-Express, V-Net, VHDLnet,
VHDLwrite, Verinex, ViewCreator, ViewWare, Virtual Library, Virtual Target, Virtual Test Manager:TOP, VR-ProcessSM, VRTX, VRTXmc,
VRTXoc, VRTXsa, VRTX32, Waveform DataPort, We Make TMN Easy, Wiz-o-matic, WorkXpert, xCalibre, xCalibrate, Xconfig, XlibCreator,
Xpert, Xpert API, XpertBuilder, Xpert Dialogs, Xpert Profiler, XRAY, XRAY MasterWorks, XSH, Xtrace, Xtrace Daemon, Xtrace Protocol,
Zeelan, Zero Tolerance Verification, Zlibs
TM-3

tor
Third-Party Trademarks
The following names are trademarks, registered trademarks, and service marks of other companies that appear in Men
Graphics product publications:

Adobe, the Adobe logo, Acrobat, the Acrobat logo, Exchange, FrameMaker, FrameViewer, PostScript,and Reader are registered trademarks of Adobe Systems
Incorporated in the United States and/or other countries.

Altera, ByteBlaster, Excalibur, and Quartus are trademarks or registered trademarks of Altera Corporation in the United States and other countries.

AM188, AMD, AMD-K6, and AMD Athlon Processor are trademarks of Advanced Micro Devices, Inc.

Apple and Laserwriter are registered trademarks of Apple Computer, Inc.

ARIES is a registered trademark of Aries Technology.

AMBA, ARM, ARMulator, ARM7TDMI, ARM7TDMI-S, ARM9TDMI, ARM9E-S, ARM946E-S, ARM966E-S, EmbeddedICE, StrongARM, TDMI, and
Thumb are trademarks or registered trademarks of ARM Limited.

ASAP, Aspire, C-FAS, CMPI, Eldo-FAS, EldoHDL, Eldo-Opt, Eldo-UDM, EldoVHDL, Eldo-XL, Elga, Elib, Elib-Plus, ESim, Fidel, Fideldo, GENIE,
GENLIB, HDL-A, MDT, MGS-MEMT, MixVHDL, Model Generator Series (MGS), Opsim, SimLink, SimPilot, SpecEditor, Success, SystemEldo,
VHDeLDO and Xelga are registered trademarks of ANACAD Electrical Engineering Software, a unit of Mentor Graphics Corporation.

Avant! and Star-Hspice are trademarks of Avant! Corporation.

AVR is a registered trademark of Atmel Corporation.

Cadence, Affirma signalscan, Allegro, Analog Artist, Composer, Concept, Design Planner, Dracula, GDSII, GED, HLD Systems, Leapfrog, Logic DP, NC-
Verilog, OCEAN, Physical DP, Pillar, Silicon Ensemble, Spectre, Verilog, Verilog XL, Veritime, and Virtuoso are trademarks or registered trademarks of
Cadence Design Systems, Inc.

CAE+Plus and ArchGen are registered trademarks of Cynergy System Design.

CalComp is a registered trademark of CalComp, Inc.

Canon is a registered trademark of Canon, Inc. BJ-130, BJ-130e, BJ-330, and Bubble Jet are trademarks of Canon, Inc.

Centronics is a registered trademark of Centronics Data Computer Corporation.

ColdFire and M-Core are registered trademarks of Motorola, Inc.

Ethernet is a registered trademark of Xerox Corporation.

Foresight and Foresight Co-Designer are trademarks of Nu Thena Systems, Inc.

FLEXlm is a trademark of Globetrotter Software, Inc.

GenCAD is a trademark of Teradyne Inc.

Hewlett-Packard (HP), LaserJet, MDS, HP-UX, PA-RISC, APOLLO, DOMAIN and HPare registered trademarks of Hewlett-Packard Company.

HCL-eXceed and HCL-eXceed/W are registered trademark of Hummingbird Communications. Ltd.

HyperHelp is a trademark of Bristol Technology Inc.

Installshield is a registered trademark and service mark of InstallShield Corporation.

IBM, PowerPC, and RISC Systems/6000 are trademarks of International Business Machines Corporation.

I-DEAS and UG/Wiring are registered trademarks of Electronic Data Systems Corporation.

IKON is a trademark of Tahoma Technology.

IKOS and Voyager are registered trademarks of IKOS Systems, Inc.

Imagen, QMS, QMS-PS 820, Innovator, and Real Time Rasterization are registered trademarks of MINOLTA-QMS Inc. imPRESS and UltraScript are
trademarks of MINOLTA-QMS Inc.

ImageGear is a registered trademark of AccuSoft Corporation.

Infineon, TriCore, and C165 are trademarks of Infineon Technologies AG.

Intel, i960, i386, and i486 are registered trademarks of Intel Corporation.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc.

Linux is a registered trademark of Linus Torvalds.

MemoryModeler MemMaker are trademarks of Denali Software, Inc.

MIPS is a trademark of MIPS Technologies, Inc.

MS-DOS, Windows 95, Windows 98, Windows 2000, and Windows NT are registered trademarks of Microsoft Corporation.

MULTI is a registered trademark of Green Hills Software, Inc.

NEC and NEC EWS4800 are trademarks of NEC Corp.

Netscape is a trademark of Netscape Communications Corporation.

Novas, Debussy, and nWave are trademarks or registered trademarks of Novas Software, Inc.

OakDSPCore is a registered trademark for DSP Group, Inc.

Oracle, Oracle8i, and SQL*Plus are trademarks or registered trademarks of Oracle Corporation.

OSE is a registered trademark of OSE Systems.

PKZIP is a registered trademark of PKWARE, Inc.

Pro/CABLING and HARNESSDESIGN are trademarks or registered trademarks of Parametric Technology Corporation.

Quantic is a registered trademark of Quantic EMC Inc.

QUASAR is a trademark of ASM Lithography Holding N.V.
TM-4

o

marks of
Red Hat is a registered trademark of Red Hat Software, Inc.

SCO and the SCO logo are trademarks or registered trademarks of Caldera International, Inc.

Sneak Circuit Analysis Tool (SCAT) is a registered trademark of SoHaR Incorporated.

SPARC is a registered trademark, and SPARCstation is a trademark, of SPARC International, Inc.

Sun Microsystems, Sun Workstation, and NeWS are registered trademarks of Sun Microsystems, Inc. Sun, Sun-2, Sun-3, Sun-4, OpenWindows, SunOS,
SunView, NFS, and NSE are trademarks of Sun Microsystems, Inc.

SuperH is a trademark of Hitachi, Ltd.

Synopsys, Design Compiler, DesignWare, Library Compiler, LM-family, PrimeTime, SmartModel, Speed-Model, Speed Modeling, SimWave, and Chronolgic
VCS are trademarks or registered trademark of Synopsys, Inc.

TASKING is a registered trademark of Altium Limited.

Teamwork is a registered trademark of Computer Associates International, Inc.

Tensilica and Xtensa are registered trademarks of Tensilica, Inc.

Times and Helvetica are registered trademarks of Linotype AG.

TimingDesigner and QuickBench are registered trademarks of Forte Design Systems

Tri-State, Tri-State Logic, tri-state, and tri-state logic are registered trademarks of National Semiconductor Corporation.

UNIX, Motif, and OSF/1 are registered trademarks of The Open Group in the United States and other countries.

Versatec is a trademark of Xerox Engineering Systems, Inc.

ViewDraw, Powerview, Motive, and PADS-Perform are registered trademarks of Innoveda, Inc. Crosstalk Toolkit (XTK), Crosstalk Field Solver (XFX), Pre-
Route Delay Quantifier (PDQ), and Mentor Graphics Board Station Translator (MBX) are trademarks of Innoveda, Inc.

Visula is a registered trademark of Zuken-Redac.

VxSim, VxWorks and Wind River Systems are trademarks or registered trademarks of Wind River Systems, Inc.

XVision is a registered trademark of Tarantella, Inc.

X Window System is a trademark of MIT (Massachusetts Institute of Technology).

Z80 is a registered trademark of Zilog, Inc.

ZSP and ZSP400 are trademarks of LSI Logic Corporation.

Other brand or product names that appear in Mentor Graphics product publications are trademarks or registered trade
their respective holders.

Updated 5/14/02
TM-5

TM-6

ith
are")

t.
fees,
de

ich an
lf mile
ware,
cation
by a

s); (c)
nt

ware,
 to

m as

 to
ware,

"Beta

lusive
iod of
trued
e not

Beta
ics

r as
End-User License Agreement

IMPORTANT - USE OF THIS SOFTWARE IS SUBJECT TO LICENSE RESTRICTIONS CAREFULLY
READ THIS LICENSE AGREEMENT BEFORE USING THE SOFTWARE

END-USER LICENSE AGREEMENT

1. GRANT OF LICENSE . The software programs you are installing, downloading, or have acquired w
this Agreement, including any updates, modifications, revisions, copies, and documentation ("Softw
are copyrighted, trade secret and confidential information of Mentor Graphics or its licensors who
maintain exclusive title to all Software and retain all rights not expressly granted by this Agreemen
Mentor Graphics or its authorized distributor grants to you, subject to payment of appropriate license
a nontransferable, nonexclusive license to use Software solely: (a) (in machine-readable, object-co
form; (b) for your internal business purposes; and (c) on the computer hardware or at the site for wh
applicable license fee is paid, or as authorized by Mentor Graphics. A site is restricted to a one-ha
(800 meter) radius. Mentor Graphics' then-current standard policies, which vary depending on Soft
license fees paid or service plan purchased, apply to the following and are subject to change: (a) relo
of Software; (b) use of Software, which may be limited, for example, to execution of a single session
single user on the authorized hardware or for a restricted period of time (such limitations may be
communicated and technically implemented through the use of authorization codes or similar device
eligibility to receive updates, modifications, and revisions; and (d) support services provided. Curre
standard policies are available upon request.

2. ESD SOFTWARE. If you purchased a license to use embedded software development (ESD) Soft
Mentor Graphics or its authorized distributor grants to you a nontransferable, nonexclusive license
reproduce and distribute executable files created using ESD compilers, including the ESD run-time
libraries distributed with ESD C and C++ compiler Software that are linked into a composite progra
an integral part of your compiled computer program, provided that you distribute these files only in
conjunction with your compiled computer program. Mentor Graphics does NOT grant you any right
duplicate or incorporate copies of Mentor Graphics' real-time operating systems or other ESD Soft
except those explicitly granted in this section, into your products without first signing a separate
agreement with Mentor Graphics for such purpose.

3. BETA CODE

3.1.Portions or all of certain Software may contain code for experimental testing and evaluation (
Code"), which may not be used without Mentor Graphics' explicit authorization. Upon Mentor
Graphics' authorization, Mentor Graphics grants to you a temporary, nontransferable, nonexc
license for experimental use to test and evaluate the Beta Code without charge for a limited per
time specified by Mentor Graphics. This grant and your use of the Beta Code shall not be cons
as marketing or offering to sell a license to the Beta Code, which Mentor Graphics may choos
to release commercially in any form.

3.2. If Mentor Graphics authorizes you to use the Beta Code, you agree to evaluate and test the
Code under normal conditions as directed by Mentor Graphics. You will contact Mentor Graph

This license is a legal "Agreement" concerning the use of Software between you, the end-user, either individually o
an authorized representative of the company purchasing the license, and Mentor Graphics Corporation, Mentor
Graphics (Ireland) Limited, Mentor Graphics (Singapore) Private Limited, and their majority-owned subsidiaries
("Mentor Graphics"). USE OF SOFTWARE INDICATES YOUR COMPLETE AND UNCONDITIONAL
ACCEPTANCE OF THE TERMS AND CONDITIONS SET FORTH IN THIS AGREEMENT. If you do not agree to
these terms and conditions, promptly return or, if received electronically, certify destruction of Software and all
accompanying items within 10 days after receipt of Software and receive a full refund of any license fee paid

cs a

s or
ent,
tor
e

 to its
entor
ies of
entor
n your
ance

re that

pean
gineer
ansfer

will
ntor

ware
r
of
een
periodically during your use of the Beta Code to discuss any malfunctions or suggested
improvements. Upon completion of your evaluation and testing, you will send to Mentor Graphi
written evaluation of the Beta Code, including its strengths, weaknesses and recommended
improvements.

3.3.You agree that any written evaluations and all inventions, product improvements, modification
developments that Mentor Graphics conceives or makes during or subsequent to this Agreem
including those based partly or wholly on your feedback, will be the exclusive property of Men
Graphics. Mentor Graphics will have exclusive rights, title and interest in all such property. Th
provisions of this subsection shall survive termination or expiration of this Agreement.

4. RESTRICTIONS ON USE. You may copy Software only as reasonably necessary to support the
authorized use. Each copy must include all notices and legends embedded in Software and affixed
medium and container as received from Mentor Graphics. All copies shall remain the property of M
Graphics or its licensors. You shall maintain a record of the number and primary location of all cop
Software, including copies merged with other software, and shall make those records available to M
Graphics upon request. You shall not make Software available in any form to any person other tha
employer's employees and contractors, excluding Mentor Graphics' competitors, whose job perform
requires access. You shall take appropriate action to protect the confidentiality of Software and ensu
any person permitted access to Software does not disclose it or use it except as permitted by this
Agreement. Except as otherwise permitted for purposes of interoperability as specified by the Euro
Union Software Directive or local law, you shall not reverse-assemble, reverse-compile, reverse-en
or in any way derive from Software any source code. You may not sublicense, assign or otherwise tr
Software, this Agreement or the rights under it without Mentor Graphics' prior written consent. The
provisions of this section shall survive the termination or expiration of this Agreement.

5. LIMITED WARRANTY

5.1.Mentor Graphics warrants that during the warranty period Software, when properly installed,
substantially conform to the functional specifications set forth in the applicable user manual. Me
Graphics does not warrant that Software will meet your requirements or that operation of Soft
will be uninterrupted or error free. The warranty period is 90 days starting on the 15th day afte
delivery or upon installation, whichever first occurs. You must notify Mentor Graphics in writing
any nonconformity within the warranty period. This warranty shall not be valid if Software has b
subject to misuse, unauthorized modification or installation. MENTOR GRAPHICS' ENTIRE
LIABILITY AND YOUR EXCLUSIVE REMEDY SHALL BE, AT MENTOR GRAPHICS'
OPTION, EITHER (A) REFUND OF THE PRICE PAID UPON RETURN OF SOFTWARE TO
MENTOR GRAPHICS OR (B) MODIFICATION OR REPLACEMENT OF SOFTWARE THAT
DOES NOT MEET THIS LIMITED WARRANTY, PROVIDED YOU HAVE OTHERWISE
COMPLIED WITH THIS AGREEMENT. MENTOR GRAPHICS MAKES NO WARRANTIES
WITH RESPECT TO: (A) SERVICES; (B) SOFTWARE WHICH IS LOANED TO YOU FOR A
LIMITED TERM OR AT NO COST; OR (C) EXPERIMENTAL BETA CODE; ALL OF WHICH
ARE PROVIDED "AS IS."

5.2.THE WARRANTIES SET FORTH IN THIS SECTION 5 ARE EXCLUSIVE. NEITHER
MENTOR GRAPHICS NOR ITS LICENSORS MAKE ANY OTHER WARRANTIES, EXPRESS
OR IMPLIED, WITH RESPECT TO SOFTWARE OR OTHER MATERIAL PROVIDED UNDER
THIS AGREEMENT. MENTOR GRAPHICS AND ITS LICENSORS SPECIFICALLY
DISCLAIM ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE.

6. LIMITATION OF LIABILITY . EXCEPT WHERE THIS EXCLUSION OR RESTRICTION OF
LIABILITY WOULD BE VOID OR INEFFECTIVE UNDER APPLICABLE STATUTE OR
REGULATION, IN NO EVENT SHALL MENTOR GRAPHICS OR ITS LICENSORS BE LIABLE
FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES (INCLUDING
LOST PROFITS OR SAVINGS) WHETHER BASED ON CONTRACT, TORT OR ANY OTHER

ou

and
notify

hority

place
e

e and

of
 of
n or
hics'

to
otice
ally
use of
all

hich
f the

r any
te
LEGAL THEORY, EVEN IF MENTOR GRAPHICS OR ITS LICENSORS HAVE BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. IN NO EVENT SHALL MENTOR GRAPHICS' OR
ITS LICENSORS' LIABILITY UNDER THIS AGREEMENT EXCEED THE AMOUNT PAID BY
YOU FOR THE SOFTWARE OR SERVICE GIVING RISE TO THE CLAIM. IN THE CASE WHERE
NO AMOUNT WAS PAID, MENTOR GRAPHICS AND ITS LICENSORS SHALL HAVE NO
LIABILITY FOR ANY DAMAGES WHATSOEVER.

7. LIFE ENDANGERING ACTIVITIES . NEITHER MENTOR GRAPHICS NOR ITS LICENSORS
SHALL BE LIABLE FOR ANY DAMAGES RESULTING FROM OR IN CONNECTION WITH THE
USE OF SOFTWARE IN ANY APPLICATION WHERE THE FAILURE OR INACCURACY OF THE
SOFTWARE MIGHT RESULT IN DEATH OR PERSONAL INJURY. YOU AGREE TO INDEMNIFY
AND HOLD HARMLESS MENTOR GRAPHICS AND ITS LICENSORS FROM ANY CLAIMS,
LOSS, COST, DAMAGE, EXPENSE, OR LIABILITY, INCLUDING ATTORNEYS' FEES, ARISING
OUT OF OR IN CONNECTION WITH SUCH USE.

8. INFRINGEMENT

8.1.Mentor Graphics will defend or settle, at its option and expense, any action brought against y
alleging that Software infringes a patent or copyright in the United States, Canada, Japan,
Switzerland, Norway, Israel, Egypt, or the European Union. Mentor Graphics will pay any costs
damages finally awarded against you that are attributable to the claim, provided that you: (a)
Mentor Graphics promptly in writing of the action; (b) provide Mentor Graphics all reasonable
information and assistance to settle or defend the claim; and (c) grant Mentor Graphics sole aut
and control of the defense or settlement of the claim.

8.2. If an infringement claim is made, Mentor Graphics may, at its option and expense, either (a) re
or modify Software so that it becomes noninfringing, or (b) procure for you the right to continu
using Software. If Mentor Graphics determines that neither of those alternatives is financially
practical or otherwise reasonably available, Mentor Graphics may require the return of Softwar
refund to you any license fee paid, less a reasonable allowance for use.

8.3.Mentor Graphics has no liability to you if the alleged infringement is based upon: (a) the
combination of Software with any product not furnished by Mentor Graphics; (b) the modification
Software other than by Mentor Graphics; (c) the use of other than a current unaltered release
Software; (d) the use of Software as part of an infringing process; (e) a product that you desig
market; (f) any Beta Code contained in Software; or (g) any Software provided by Mentor Grap
licensors which do not provide such indemnification to Mentor Graphics' customers.

8.4.THIS SECTION 8 STATES THE ENTIRE LIABILITY OF MENTOR GRAPHICS AND ITS
LICENSORS AND YOUR SOLE AND EXCLUSIVE REMEDY WITH RESPECT TO ANY
ALLEGED PATENT OR COPYRIGHT INFRINGEMENT BY ANY SOFTWARE LICENSED
UNDER THIS AGREEMENT.

9. TERM . This Agreement remains effective until expiration or termination. This Agreement will
automatically terminate if you fail to comply with any term or condition of this Agreement or if you fail
pay for the license when due and such failure to pay continues for a period of 30 days after written n
from Mentor Graphics. If Software was provided for limited term use, this Agreement will automatic
expire at the end of the authorized term. Upon any termination or expiration, you agree to cease all
Software and return it to Mentor Graphics or certify deletion and destruction of Software, including
copies, to Mentor Graphics' reasonable satisfaction.

10. EXPORT. Software is subject to regulation by local laws and United States government agencies, w
prohibit export or diversion of certain products, information about the products, and direct products o
products to certain countries and certain persons. You agree that you will not export in any manne
Software or direct product of Software, without first obtaining all necessary approval from appropria
local and United States government agencies.

e by
the
forth in
AR

an

ics
this

land
ean
tware
d the

ada,

be

g to
ed to
atter of
his
ent of

ct
' fees
11. RESTRICTED RIGHTS NOTICE . Software has been developed entirely at private expense and is
commercial computer software provided with RESTRICTED RIGHTS. Use, duplication or disclosur
the U.S. Government or a U.S. Government subcontractor is subject to the restrictions set forth in
license agreement under which Software was obtained pursuant to DFARS 227.7202-3(a) or as set
subparagraphs (c)(1) and (2) of the Commercial Computer Software - Restricted Rights clause at F
52.227-19, as applicable. Contractor/manufacturer is Mentor Graphics Corporation, 8005 Boeckm
Road, Wilsonville, Oregon 97070-7777 USA.

12. THIRD PARTY BENEFICIARY . For any Software under this Agreement licensed by Mentor Graph
from Microsoft or other licensors, Microsoft or the applicable licensor is a third party beneficiary of
Agreement with the right to enforce the obligations set forth in this Agreement.

13. CONTROLLING LAW . This Agreement shall be governed by and construed under the laws of Ire
if the Software is licensed for use in Israel, Egypt, Switzerland, Norway, South Africa, or the Europ
Union, the laws of Japan if the Software is licensed for use in Japan, the laws of Singapore if the Sof
is licensed for use in Singapore, People's Republic of China, Republic of China, India, or Korea, an
laws of the state of Oregon if the Software is licensed for use in the United States of America, Can
Mexico, South America or anywhere else worldwide not provided for in this section

14. SEVERABILITY . If any provision of this Agreement is held by a court of competent jurisdiction to
void, invalid, unenforceable or illegal, such provision shall be severed from this Agreement and the
remaining provisions will remain in full force and effect.

15. MISCELLANEOUS . This Agreement contains the entire understanding between the parties relatin
its subject matter and supersedes all prior or contemporaneous agreements, including but not limit
any purchase order terms and conditions, except valid license agreements related to the subject m
this Agreement which are physically signed by you and an authorized agent of Mentor Graphics. T
Agreement may only be modified by a physically signed writing between you and an authorized ag
Mentor Graphics. Waiver of terms or excuse of breach must be in writing and shall not constitute
subsequent consent, waiver or excuse. The prevailing party in any legal action regarding the subje
matter of this Agreement shall be entitled to recover, in addition to other relief, reasonable attorneys
and expenses.

 (10/99 rev B)

	Bookcase
	Table of Contents
	List of Figures
	List of Tables
	About This Manual
	In This Manual
	Command Line Syntax Conventions
	Audience
	Related Publications

	Chapter 1 Overview
	Product Description
	Calibre DRC / DRC-H / MT DRC-H
	Calibre LVS / LVS-H / MT LVS-H
	Calibre MGC
	Calibre RVE/QDB-H
	Calibre Interactive
	Calibre Connectivity Interface
	Calibre CB
	Calibre Verification Utilities

	Chapter 2 Invocation
	Before Invocation
	Rule File
	Required statements

	Layout Database
	CIF Database Format
	GDSII Layout Database Format
	ASCII Layout Database Formats
	Binary Layout Database Formats

	Source Database

	Invocation Procedures
	Invoking Calibre
	Setting the Environment Variable
	Starting Calibre

	Calibre Command Line
	Calibre DRC/DRC-H
	Usage
	Description
	Arguments
	Examples

	Calibre LVS/LVS-H/MGC
	Usage
	Calibre LVS/LVS-H
	Calibre MGC
	Description
	Arguments

	Examples
	Calibre LVS
	Calibre LVS-H
	Cell Correspondence Files
	Calibre MGC
	Sample LVS Rule File

	Calibre RVE/QDB-H
	Usage
	Description
	Arguments
	Examples

	Calibre Interactive
	Usage
	Description
	Arguments

	Calibre CB

	Chapter 3 Calibre Interactive
	Graphical Interface Overview
	Graphical Interface Prerequisites
	Runsets

	Graphical User Interface Description
	Calibre Interactive Palette
	Calibre DRC Window
	Calibre DRC Pulldown Menus
	Calibre DRC Menu Buttons
	DRC Area Checking
	Support for Distributed Queueing

	Calibre LVS Window
	Calibre LVS Pulldown Menus
	Calibre LVS Menu Buttons

	Run Directory
	Control Files
	Text Editing

	Interface to Calibre RVE
	Connections to Layout Editors
	Mentor Graphics Layout Editor Interfaces to Calibre
	Cadence Virtuoso Interface
	Using the Virtuoso Interface
	Socket Connections
	Skill Trigger Functions
	Using RVE with Virtuoso
	Variables Summary

	Chapter 4 DRC Concepts
	Layers
	Layer Types
	Original Layers
	Derived Polygon Layers
	Derived Edge Layers
	Derived Error Layers
	Layer Type Summary

	Layer Operations
	Layer Definitions
	Implicit Layer Definitions

	Layer Operation Classifications
	Layer Constructors
	Layer Selectors

	Net-preserving Operations
	Layer of Origin

	Rule Check Statements
	Rule Check Comments
	Control of Empty Rule Checks
	Empty Rule Check Suppression in Calibre DRC

	Check Text
	Check Text in Calibre DRC

	DRC Rule Check Result Limits

	Dimensional Check Operations
	Secondary Keywords
	Edge Measurement
	Measurement Region Construction
	Metrics

	Edge Cluster Generation
	Trivial Edges
	Four-edge Output Cluster
	Point-to-point Measurement Output
	Clustered Output Summary
	Special Considerations for the OPPOSITE Metric

	Interval Constraints for Output Suppression
	Appropriateness Criteria
	Intersection Criteria
	Edge Breaking
	Polygon Containment Criteria
	Edge-directed Output
	Polygon-directed Output

	False Measurement Reduction
	Error Tolerance Setting
	Disk-based Layers
	Disk-based Layers in Calibre

	Specialized DRC Applications
	Dual Database Capability
	Rule File Specification Statements
	Layer Bump
	Special Semantics for Hierarchical Applications
	Flat Procedure Example

	GDSII DRC Results
	Attribute Specification
	Mapping Algorithm for Output
	AREF Output

	Incremental Connectivity and Antenna Checks
	Soft Connection Checks
	GDSII Datatypes and Texttypes in Calibre
	GDSII/CIF Input Control in Calibre
	Handling Duplicate Cells
	Wildcards in Layout Primary
	Database Pre-merging

	Cell Renaming
	Cell Exclusion
	Area-based Filtering in Calibre
	Flagging and Snapping Original Geometries in Calibre
	Input Layout Database Magnification
	Binary Layout Database Writing

	Chapter 5 DRC Execution
	Rule File Compilation
	Rule Check Selection
	General Execution Characteristics
	Concurrency
	Redundancy Elimination
	Layer Operation Scheduling
	Maximizing Capacity and Minimizing Execution Time
	Conjunctive Checks
	Concurrency Checks
	Rectangle Checks
	Pad Checks
	Operation Execution Time

	Polygon Segmentation
	Polygon Segmentation in Calibre DRC
	Layout Database End Segment Warning

	Chapter 6 Hierarchical DRC
	Theory of Operation
	DRC Data Storage
	Flat Instantiations
	Hierarchical Operation Efficiency
	False Notch Error Suppression
	Layer Area Printing
	Text Mapping
	Additional Hierarchy-specific Statements
	DRC Use of Hcells

	Chapter 7 Connectivity Extraction
	Establishing and Verifying Connectivity
	Mask Connectivity Extraction

	Connectivity and Rule File Compilation
	Recognizing Electrical Nets
	Shapes on a Single Layer
	Connect
	Connect By
	Sconnect
	Stamp
	Ports and Pins
	Port Text and Polygon Objects
	Hierarchical Processing of Port Text and Polygon Objects
	Hierarchical Netlisting of Port Text and Polygon Objects
	Ports with Multiple Shapes
	Instance Pins with Multiple Shapes
	Must-connect Groups
	Verifying Must-connect Conditions.

	Transferring Logical Information to Merged Layers
	Attach Operation
	Net Name Specification
	Text Specification Statements
	Layout Database Text Objects
	Text Layer, Text Depth and Expand Cell Text Specification Statements

	Label Attachment
	Virtual Connect Statements
	Virtual Connect Colon
	Virtual Connect Name

	Short Isolation
	Connectivity Extraction Errors and Warnings

	Chapter 8 Electrical Rule Checks
	ERC Statements and Operations
	Execution of ERC Operations in LVS
	Execution of ERC PRINT Options
	Rule Check Selection in LVS

	Execution of ERC operations in DRC
	Rule Check selection in DRC

	ERC Output Files
	ERC Results Database
	ERC Auxiliary Files

	ERC Examples

	Chapter 9 Device Recognition
	Device Rule Overview
	Concepts and Terminology
	Recognition Logic
	Layer Relations
	Pin Relations
	Fill-in Algorithm
	Ill-formed Devices
	Recognition Example

	Property Computation
	Default Property Computations
	Built-in Language Details
	Built-in Language Example

	Notational Conventions
	Data Retrieval Functions
	Perimeter Functions
	Determining Bends
	Built-In Functions

	More Built-in Language Examples
	Units of Measurement
	Property Computation Structure
	Efficiency Considerations
	How the Compiler Optimizes
	Efficient Code Examples

	Debugging Property Computations
	Debug Example
	Property Error Report
	Debug Statement Placement
	Debug Output
	Debug Analysis
	Hierarchical Debugging
	Property Specification Error Messages

	Chapter 10 LVS Circuit Comparison
	LVS Comparison
	Component Types
	Component Subtypes

	Naming Conventions
	Instance Pins and Pin Names
	Pin Filtering

	User-given Names
	Net and Instance Names
	Ports and Port Names
	Power and Ground Nets

	Built-in Device Types
	MOS Transistors
	Capacitors
	Resistors
	Diodes
	Bipolar Transistors
	Jfet Transistors
	Inductors
	Voltage Sources
	MS and MF Schematic Devices

	Matching of Circuit Elements
	Connectivity Comparison Results
	Initial Correspondence Points
	Resolving Ambiguities

	Device Reduction
	Device Reduction Semantics
	Generic Device Reduction
	Parallel MOS Transistor Reduction
	Series MOS Transistor Reduction
	Semi-series MOS Transistor Reduction
	Split Gate Reduction
	Semi-split Gate Reduction
	Parallel Bipolar Transistor Reduction
	Series Capacitor Reduction
	Parallel Capacitor Reduction
	Series Resistor Reduction
	Parallel Resistor Reduction
	Parallel Diode Reduction
	Unequally Reduced Devices
	Missing and Unknown Property Values

	Device Reduction Program Structure
	Tolerance in Device Reduction
	Reduction Tolerance Examples

	User-defined Property Reduction
	Effective Property Language Example
	Effective Property Language Syntax
	Effective Property Language Statements
	DEBUG Statement
	WARN Statement
	EFFective Statement

	Effective Property Language Vector Functions
	SUM (<vector_expression>)
	PROD (<vector_expression>)
	MIN (<vector_expression>)
	MAX (<vector_expression>)
	COUNT()

	Effective Property Language Numeric Functions
	ABS (<numeric_expression>)
	EXP (<numeric-expression>)
	LOG (<numeric-expression>)
	POW (<numeric-expression>, <numeric-expression>)
	SQRT (<numeric-expression>)
	TRUNC (<numeric-expression>)

	Further Effective Property Computation Examples
	Effective Property Computation Limitations

	Device Filtering
	Filtering Unused MOS Transistors
	Filtering Unused Bipolar Transistors

	Nets
	Global Schematic Bulk Nets
	Usage of Power and Ground Nets
	Isolated Nets
	Pass-through Nets

	Logic Gate Recognition
	Recognition Processes
	Regular CMOS Gates
	Regular NMOS Gates
	LDD Gates
	LDD Voltage Gates
	LDD Non-Voltage Gates
	Mixed Gates

	Excluding Transistors
	Overriding Of Pin Swapping In Logic Gates
	Overriding Of Device Swapping In Logic Gates
	Pin Swapping
	Logically Equivalent Pins
	Default Pin Swapping for Devices
	Rule File Pin Swap Lists
	Spice as Layout System
	Hcell Pins

	Tracing Properties
	Built-in Property Classification
	Reading Built-in W/L Partner Properties
	Comparing Device Counts After Reduction

	Chapter 11 Spice Format
	Introduction
	Spice-like Property Syntax
	General Spice Syntax
	Spice Notational Conventions
	Case Sensitivity
	Continuation Character
	General Spice Syntax Summary
	Arithmetic Expression
	Comments
	Comment-coded Extensions
	Control Statements
	.END
	.INCLUDE or .INC
	.OPTION SCALE
	*.CAPA
	*.CONNECT
	*.DIODE
	*.EQUIV
	*.LDD
	*.XPINS
	Other Control Statements

	Element Statements
	Resistor Element
	Capacitor Element
	Inductor Element
	Junction Diode Element
	BJT Element
	JFET Element
	MOSFET Element
	Voltage Source Element

	Subcircuits
	.SUBCKT or .SUB or .MACRO
	.ENDS or .EOM
	Subcircuit Calls
	Nested Subcircuits

	.PARAM
	.GLOBAL

	Chapter 12 Utilities
	EDIF-to-LVS
	Usage
	Description
	Arguments
	Examples
	Untranslated EDIF Syntax
	EDIF vs. Spice Syntax Considerations
	Identifiers
	Name Scope
	Arrays and Bundles

	EDIF-to-Spice Translation Issues
	EDIF Cell Names Versus Spice Subcircuit Names
	Rename and Name Conflict
	EDIF Versus Spice Connectivity

	EDIF-to-Spice Translations
	Edif Statement
	Status Statement
	Port and PortBundle Statements
	Net and NetBundle Statements
	Cell Statement
	Instance Statement
	Joined Statement
	Rename Statement

	Netlist Example

	Verilog-to-LVS
	Description
	Usage
	Arguments
	Library Files
	Supported Verilog Syntax
	Modules
	User-defined Primitives
	Default Parameters
	Declarations
	Interaction Between Net Types and –s0, -s1, and –sk Switches
	Other Net Types
	Net Assignment
	Primitive Instances
	Supported Gate Level Primitives
	Module Instantiations
	Calling Conventions
	Bit Expressions
	Unnamed Concatenation Expressions in Declarations
	Calling Conventions for Mismatched Arrays
	Unconnected Pins
	Behavioral Statements
	Specify Section
	Expressions
	Other Language Features

	Using V2LVS Without a Verilog Library File
	Instances of Undeclared Spice Primitive Modules with Named Ports
	Instances of Undeclared Spice Primitive Modules with Ordered Ports
	Correcting Errors

	Using the –e Switch to Create LVS Box Subcircuits
	Using –i to Generate Simulation Output
	Generating an xCalibre Source Template File

	Dracula: File Conversion and User Notes
	Converting Dracula Command Files
	From the Command Line

	Dracula User Notes
	Acute Angles
	Connects
	Description Statements
	Device Filtering
	HEDTEXT files
	Input Statements
	Operation Statements
	Polygon Topologicals
	Region Option
	Select command
	Singularities
	Specification Statements
	Stamp Command
	Substrate Pins
	Virtual Connections
	Miscellaneous

	Compare Two GDSII Databases
	Rules Syntax Checker

	Chapter 13 Hierarchical LVS
	Hierarchical Circuit Extraction
	Hierarchical LVS Comparison
	Pin Swappability
	Model Names
	Connectivity Dependent Transformation
	Isolated Layout Nets

	Hierarchical Device Recognition
	BY NET device recognition
	BY SHAPE device recognition
	Property computation: pin_net(), named_net()

	Hierarchical Layer Operations
	Cell Pushdown
	Hcells
	Many-Many Cell Correspondence

	Hierarchical Pins
	Matching hcell Pins
	Trivial Pin Swappability
	SRAM Bit-Cell Recognition
	High-short Resolution

	Parameterized Cells
	Hierarchical Cell Cycles
	Hierarchical Spice
	Dollar Signs in Cell Names
	Net Names
	Ports and Port Names
	“M” Device Representation
	Cell Statistics
	Hierarchical Netlister Warnings

	Chapter 14 Results
	Session Transcript
	Rule File Compilation
	Layout Data Input
	Limiting Transcript Output
	Hierarchical and Flat Counts

	Initialization Section
	Executive Process
	Layer Statistics
	Layer Statistics in Calibre DRC
	Layer Statistics in Calibre DRC-H

	LVHEAP Statistics

	DRC Results Database
	ASCII and Binary DRC Results Databases
	ASCII DRC Results Database Format
	Cell Name and Database Precision
	Rule Check Name, Result Count, and Execution Time
	Check Text Report
	DRC Result Listing

	Binary DRC Results Database Format

	GDSII DRC Results Database Format
	Result Count Limits
	Limiting the Result Count in Calibre DRC

	Hierarchical DRC Results Database

	DRC Summary Report
	Summary report file in Calibre DRC

	LVS Report
	Overall Structure—Flat
	Overall Structure — Hierarchical
	Overall Structure — SPICE Syntax Check
	Analyzing the LVS Report
	Errors and Warnings
	LVS Report Listing Conventions
	Discrepancies
	Net, Instance and Port Identification
	Logic Gate Identification
	Instance Pin Identification
	Logic Gate Pin Identification
	Unconnected Instance Pin Identification

	Overall Comparison Results
	Primary Messages
	Secondary Messages
	Numbers of Elements
	Overall SPICE Syntax Check Results

	Errors in Names Given for Power/Ground Nets
	Component Types with Non-Identical Signal Pins
	Input Errors
	Hierarchical Cells Forming a Cycle
	LVS Discrepancy Types
	Information and Warnings
	Detailed Instance Connections
	Unmatched Elements

	Circuit Extraction Report
	Mask Results Database
	Cross-Reference Files
	Instance Cross-reference File
	Mask-mode Instance Coordinates
	Matched Devices
	Swapped Pins
	Logic Gates

	Net Cross-reference File
	Mask-mode Net Coordinates
	Matched Nets

	Hierarchical Instance and Net Cross-reference Files
	Source and Layout Placement Hierarchy Files
	SVDB Header
	Circuit Extraction Report File
	Binary Polygon File (BPF) Database

	Chapter 15 RVE/QDB-H and Query Server
	Results Viewing Environment
	Interface Prerequisites
	RVE Overview
	Layout Editor Considerations
	IC Station
	Other Mentor Graphics Layout Viewers
	Cadence Virtuoso
	Environment Variables for Use With Virtuoso

	Seiko System SX9000

	DRC-RVE Interface
	DRC-RVE Session Window
	On-line Documentation Help
	File Pulldown Menu
	Database Modification Monitoring
	Open Calibre Database Toolbar Button
	LVS Short Isolation Database in DRC-RVE

	View Pulldown Menu
	Highlight Pulldown Menu
	DRC Cell Name Considerations
	Highlighting With User-defined Keyboard Shortcuts
	DRC Highlighting in Virtuoso
	Error Highlighting of Antenna Violations

	Using Query Help
	Setup Pulldown Menu

	Usage and Procedures
	Getting Started
	Error Browsing in the Layout Editor

	LVS-RVE Interface
	Mask SVDB Directory Considerations
	LVS-RVE Session Window
	File Pulldown Menu
	Open Calibre Database Toolbar Button

	View Pulldown Menu
	LVS Highlighting in Virtuoso

	Layout Pulldown Menu
	Source Pulldown Menu
	Setup Pulldown Menu

	Usage and Procedures
	Getting Started
	Browse Button for Query Dialog Boxes
	Net Queries
	Device Queries
	Instance Queries
	Port Queries
	Location Queries
	Zoom Settings Toolbar Button
	Cross-probing with the Discrepancy Viewer
	Cross-probing with the Spice Browser
	LVS Short Isolation
	Text Selection in LVS-RVE Text Fields and Listboxes

	Hierarchical Query Database
	SVDB Database

	Query Server
	Client Context
	Viewing, Query, and Query Instance Cells
	Server-Client Communication
	Command Format
	Acknowledgements
	Response Format
	Device Tables
	Net Names
	PHDB and XDB Only Modes
	Flat Database Mode
	Limitations

	Commands and Queries
	Communication and Control Commands

	Parameter Commands
	Cell Query Commands
	Browse Pseudo or Deviceless Cells
	Cell Query Placement Commands
	Query Port Commands
	Query Net Commands
	Query Device Commands
	Query Rule File Commands
	Examples

	Calibre Connectivity Interface
	Customized Layout Netlist Generation
	Layout Netlist File Format
	Annotated GDSII File Generation
	Annotated GDSII File (AGF) Format
	Layout Netlist Names (LNN) File Format
	Port Table File Format
	Cross Reference File Generation
	Cross Reference System File Formats

	Query Server Error and Failure Messages
	Error Messages
	Failure Messages

	Appendix A Application Notes
	Appendix B Calibre Interactive Files
	Runset File Example
	Default Configuration

	Appendix C V2LVS BNF
	Index
	Trademark Information
	Mentor Graphics Trademarks
	Third-Party Trademarks

	End-User License Agreement
	Send us feedback

