
AMBA DesignWare® and coreAssembler Simplify the
Design Flow and Improve Design Timing for ST

Microelectronics Digital Radio Controller
& Audio Decoder

Mauro Bosco, ST Microelectronics

Sam Bordbar, Synopsys Professional Services

Andreas Vielhaber, Synopsys, Inc

Milan, Italy

ABSTRACT

The complexity of today's System On Chip (SoC) designs requires a faster and simpler
flow and methodology for new SoC design projects.

To get more SoCs to market faster and less expensively, STMicroelectronics combined
forces with Synopsys® Professional Services to conceive a new flow and methodology
for digital audio system platform.

This paper describes how SYNOPSYS® coreAssembler simplifies the process of
assembling an AMBA system using AMBA DesignWare® by automating the
configuration and interconnection steps, providing an automated path to implement the
AMBA platform, and improving the verification by using the VIP. This flow has been
used for designing and validating a Digital Radio System Controller and Audio Decoder
architecture developed by ST Microelectronics Digital Broadcasting Radio Division
(Automotive Product Group).

SNUG Boston 2005 Usage of coreAssembler in Digital Audio
 Device System Controller & Decoder

2

Table of Contents
1.0 List of acronyms ... 3
2.0 Content of the paper.. 4
3.0 Introduction... 5

3.1 Architecture implementation .. 6
4.0 IP Reuse and System Integration .. 8

4.1 IP challenge... 8
4.2 coreAssembler... 9

4.2.1 Adding the system components .. 9
4.2.2 Configuring the system components... 11
4.2.3 Completing the connections.. 12
4.2.4 Generating the system RTL. ... 13

5.0 System Verification .. 13
5.1 Traditional flow .. 14
5.2 Synopsys DesignWare® Verification IP approach... 14
5.3 Mapping the DW Verification IP (VIP) approach on the system..................... 14

6.0 Results... 19
7.0 Acknowledgments... 19
8.0 References... 19

SNUG Boston 2005 Usage of coreAssembler in Digital Audio
 Device System Controller & Decoder

3

1.0 List of acronyms

Aac+ MPEG-4 high efficiency advanced audio coding
AHB advanced high-performance bus
AMBA advanced microcontroller bus architecture
APB advanced peripheral bus
cA coreAssembler
cB coreBuilder
DAB digital audio broadcasting
DMA direct memory access
DW DesignWare
GPIO general purpose input output
HVL hardware verification language
I2C inter-integrated circuit
IP intellectual property
IRDA infrared data association
Mp3 acronym for ISO MPEG Audio Layer 3
PTG protocol transaction generator
RTC real time clock
SDR-DRAM single data rate synchronous dynamic random access memory
SDRAM synchronous dynamic random access memory
SPS Synopsys Professional Services
SRAM static random access memory
SoC system on chip
TCG transaction choice generator
TCL tool command language
TSG transaction sequence generator
UDMA ultra direct memory access
USB universal serial bus
VHDL VHSIC hardware description language
VIP verification intellectual property
Wma windows media audio

SNUG Boston 2005 Usage of coreAssembler in Digital Audio
 Device System Controller & Decoder

4

2.0 Content of the paper

This paper is structured in eight sections.

1.0 List of acronyms

2.0 Content of the paper

3.0 Introduction
A generic introduction to the platform used as a digital radio system controller & audio
decoder and a brief explanation of the architecture, together with a description of the
most critical point and their impact on the chosen architecture.
List of acronyms

4.0 IP Reuse and System Integration

4.1 IP challenge
Pointing out the main principles in creating and delivering a reusable IP.

4.2 coreAssembler
General introduction of coreAssembler and how the automatic system integration can
save design timing.

5.0 System Verification
General description of system verification issue.

5.1 Traditional flow
Functional pattern generation.

5.2 Synopsys DesignWare® VIP approach
Transaction oriented pattern.
Pointing out the benefits of using VIP.

5.3 Mapping the VIP approach on the system
Describing in details the process of mapping the system with the VIP.

6.0 Results

7.0 Acknowledgments

8.0 References

SNUG Boston 2005 Usage of coreAssembler in Digital Audio
 Device System Controller & Decoder

5

3.0 Introduction
Digital Audio decoders are becoming very popular devices in portable players. At the
same time, these audio decoders are also involved in Digital Radio systems as one of the
block of the receiver system.

Companies like ST are considering Digital Radios a good business opportunity. Even if
this business is in the starting phase, there are countries where these systems are already
growing very fast, for example XM Radio and Sirius in the USA, DAB in UK and other
European countries.

If ST wants to compete and win this market, it has to be able to develop the right devices
to support all the new functionalities required by the market.

Consider digital radio as the sum of three main tasks: Receiver, decoder and system
controller this paper will address the last two.

The features required for the audio decoding and the system controlling are:

• High instruction throughput to implement the decoding phase of all the available
digital audio formats such as mp3, wma and aac+, and to be powerful enough to
decode the future evolution and new algorithms.

• High capability of data management and storage. It has to control most of the

available on the market external memories: SDRAM, NAND flash, Secure digital,
Multimedia Cards and IDE devices.

• Highly flexible user interface and general-purpose system controller. It has to

integrate all the needed standard interfaces: synchronous and asynchronous serial
interface, master and slave I2C controller, GPIO lines, keypad controller, USB
and so on, to control and communicate with the receiver devices.

• Low power consumption. This requirement is becoming more and more important

especially on portable devices.

The idea of the cooperation between ST APG-DBR and Synopsys SPS is not to develop a
general-purpose architecture but to implement a methodology, which is capable to
optimize a device starting from a customer specification in a minimum time.
Architectural comparison requires a lot of time and effort to build all the needed systems
and to perform the wanted evaluation. To reduce the complexity of this step a new flow
has been developed using CoreAssembler, AMBA DesignWare and VIP.

In the following lines, we will try to approach the main steps executed in the developed
flow to compare different AMBA based architecture with the goal of identifying the best
solution that fits the customer specifications. In the next paragraphs, you will find more
details on each of the following points.

SNUG Boston 2005 Usage of coreAssembler in Digital Audio
 Device System Controller & Decoder

6

First step is to identify all the IPs needed to implement the specification requirements.
Usually at the end of this phase, we find in a solution using custom and third party IPs.

Second step is to define architectures implementing all the selected IPs. By using
CoreAssembler together with the AMBA DesignWare®, we are able to quickly build all
the architectures needed by the designers without losing any time for debugging errors
during the bus generation and the system connectivity. To be able to use non
DesignWare® IPs in coreAssembler, a package activity within coreBuilder has been
performed.
The result of this step is the possibility to build, with a minimum effort, all the wanted or
needed architectures.

Third step of our flow is dedicated to building a test bench able to stress the different
systems produced in the step two. This test bench is used to identify the pro and cons of
all the developed architectures. Our traditional way to perform this task was to run a
piece of software. Everyone knows that the ideal test is the real application, but at this
point, that code is really far from being available. We approach this problem by
identifying the possible critical points of the application and trying to write pieces of code
that are able to stress the identified critical points. Synopsys improved our traditional
verification flow with the DesignWare Verification IP (DW_VIP) technology.

3.1 Architecture implementation
To understand the flow described on this paper, a real system developed by ST APG-
DBR will be discussed.

The requirements of the customer for this device are the following:

• Audio decoder capability: The device has to provide enough MIPS (70 is the
fixed value) to perform generic audio decoding.

• System controller capability: The device has to control the Receiver System
through an I2C bus. Between the device and the receiver there should be a
powerful communication channel in order to allow bi-directional data exchange.

• Storage capability: The device has to provide different solutions for data storage.
Both volatile and not volatile devices have to be controlled.

• Powerful user interface: the device has to provide the set of common features
available on portable players.

• Low power consumption .

To satisfy the request of a powerful user interface a lots of IPs have been implemented. A
keypad controller allows the user to use a keypad with up to 32 keys. A Real time clock
(RTC) clocked by external crystal or internal frequency is implemented to be used as a
clock and also to perform some power-up and power-down features. A USB 1.1 interface
adds the capability of downloading data from a PC or any USB Host. An IRDA interface
manages an infrared data exchange between the system and the external world. A simple
A2D (7 effective bits) can be used to monitor battery level or supply values. To complete

SNUG Boston 2005 Usage of coreAssembler in Digital Audio
 Device System Controller & Decoder

7

the user interface 24 GPIO lines have been added and two different serial protocols
(synchronous and asynchronous) are supported.

The MicroDrive is becoming quite common in portable players; these hard disks offer a
high storage capacity with a very small dimension. The system being developed controls
IDE devices including MicroDrive- supporting IO, DMA and UDMA data transfer.
If MicroDrive is the most interesting solution to satisfy high storage capability, NAND
flash is becoming the better tradeoff between storage capability, dimension, consumption,
performance and cost. To support this kind of memory a NAND flash controller has been
implemented in this platform.
The IDE device and NAND flash cover the needs of high storage capability but what is
still missing is the possibility to have removable storage devices. Memory cards complete
the needs of our applications. The cards controlled by the system are Secure Digital,
Multimedia and compact flash.
To be as flexible as the market requires in terms of controlling the memory, a flexible
memory controller has been integrated to control synchronous SDR- DRAM as well as
static memory SRAM NOR flash and ROM and It can also be configured to control
memory mapped devices.
Considering the system as a general-purpose system controller an I2C master interface is
available to guarantee the control of all the I2C slave devices. A data communication
channel between the devices and the slaves has been designed to support most of the
common serial protocols. This channel allows the exchange of data with the controlled
devices.

The requirement to realize an Audio decoder performing up to 70 MIPS together with the
spec of a low power device pushed us to choose an ARM7TDMIS core. Pros of this core
are the small area and the low power consumption, the con is the difficulty to reach a
high frequency. The challenge of having audio decoding together with controller
capability and data managing drove us to consider multi layer architecture. To reach the
70 MIPS the system runs at 80 MHz and a separate bus AHB1 is dedicated to the core in
order to have a Lite AHB wrapper able to improve the MIPS for the MHz provided by
the core. Data storing can be performed at the same time of audio decoding without
affecting the performance using the second layer AHB2. Master of this bus is a powerful
and flexible DMA controller.
Buffer of internal memories are available on each bus. Program Code, being that the
ARM7TDMI is not a cached core, has to be stored in the internal ROM, but the
possibility to execute code from internal or external RAM are also available.
To reduce power consumption clock control logic has been implemented. This logic
provides the features of changing the system frequency dynamically following the
requirement of the piece of program code executed at that time.

Figure 1. Illustrates the implemented system:

SNUG Boston 2005 Usage of coreAssembler in Digital Audio
 Device System Controller & Decoder

8

D
W

_A
PB

1

SSP

UART

SSP

I2S

I2C
Master

RTC

I2S

I2CUSB UART SSP GPIO A/D Timer
(wd)

KeyPad
(8x4)

SD
MMC

Keys CardsGENERIC INTERFACE

DW_APB2

DW_memctl

VIC

E
B
I

SDRAM

Nor nand flash
Sync RAM

DW_AHB1

ARM
7TDMI

DMA

Bridge
DW_APB2

I
C
M

DW_AHB2

ROM

I
C
M

PRAM
IORAM

Bridge
DW_APB1

I
C
M

IDE
DEVICE

System
Cntl

SYS PLL

AUD PLL
CMU

ATA
Controller

DATA
CHANNEL
IN-OUT

MUSIC IN

MUSIC OUT

I
C
M

I
C
M

DesignWare

Third party

D
W

_A
PB

1

SSP

UART

SSP

I2S

I2C
Master

RTC

I2S

I2CUSB UART SSP GPIO A/D Timer
(wd)

KeyPad
(8x4)

SD
MMC

Keys CardsGENERIC INTERFACE

DW_APB2

DW_memctl

VICVIC

E
B
I

SDRAM

Nor nand flash
Sync RAM

DW_AHB1

ARM
7TDMI

DMA

Bridge
DW_APB2

I
C
M

DW_AHB2

ROM

I
C
M

PRAM
IORAM

Bridge
DW_APB1

I
C
M

IDE
DEVICE

System
Cntl

SYS PLL

AUD PLL
CMU

ATA
Controller

DATA
CHANNEL
IN-OUT

MUSIC IN

MUSIC OUT

I
C
M

I
C
M

DesignWare

Third party

Figure 1: Digital Radio System Controller & Audio Decoder overview

4.0 IP Reuse and System Integration

4.1 IP challenge
The main objectives in creating and delivering a reusable IP can be summarized as
follows:

 Easily configurable to fit different applications
 Designed for use in multiple technologies
 Thorough commenting
 Well designed verification environments and suites
 Robust scripts
 Easy to use and friendly implementation interface
 Good documentation

The methodology described here addresses most of the above.
As an IP developer, you need to deliver an IP that can reliably be used by the integrator.
The IP has to be easy to support and maintain, enabling long-term maintenance by
capturing design knowledge. The business solution, which required direct support and a
one-on-one knowledge transfer with every end user for an IP provider, would not be a
viable one. The integration flow of an IP has to reduce all costs (not only the
development cost but also synthesis, testing, integration in SoC, support and
maintenance). In most cases, the end users want to customize the IP for specific
applications. In order to achieve this effectively, the creation of every stage of design,
from specification to silicon has to be done with the understanding that it will be
modified and reused in other projects by other design teams. It needs to use tools and
processes that capture the design information in a consistent, easy to communicate form,
and that make it easy to integrate modules into a design when the original designer is not
available. Eventually, it should also force the integrator to go through specific tasks to

SNUG Boston 2005 Usage of coreAssembler in Digital Audio
 Device System Controller & Decoder

9

synthesize and verify the core. The integration flow has to ensure quality of results, ease
of use and tool support over multiple versions or licenses. The package has to provide all
the necessary views and tests across all possible parameter values. This core has to be not
only easily configurable but also technology independent. Of course, the protection of
your IP is an important requirement for the developer.
Finally, this IP has to be easily integrated in an IP library and easy to be checked for
reliability.
The innovation of core tools is to address all the previous needs: it has to provide
industry-leading tools that enable our users to create, package, deploy, integrate and
assemble configurable soft IP.
The solution can be found in the new methodology offered by Synopsys’s suite of reuse
tools.

4.2 coreAssembler
The coreAssembler (cA) tool simplifies the process of assembling a subsystem of
components by automating the configuration and interconnection steps, providing an
automated path to implementation for the entire subsystem, and providing a starting point
for verification.

In the coreAssembler environment, the user is guided through the integration process
using an “activity” based methodology. These activities are undertaken sequentially, and
where necessary the tool ensures that all steps essential for later integration work are
completed before the next activity can be initiated.
One of the main features in coreAssembler is to automatically generate the top-level
VHDL or Verilog code for the subsystem.

Creating the system’s RTL code is divided into the following, relatively intuitive, steps
shown in Figure 2.

• Adding the system components.
• Configuring the system components.
• Completing the connections.
• Generating the system RTL.

Figure 2: coreAssembler’s Activity List

4.2.1 Adding the system components
Three different kinds of components have been used in this project; AMBA
DesignWare®, ST custom and third party components.

SNUG Boston 2005 Usage of coreAssembler in Digital Audio
 Device System Controller & Decoder

10

AMBA DesignWare® components
The Synopsys DesignWare® AMBA Synthesizable Components environment is a
parameterizable bus system containing AMBA version 2.0-compliant AHB and APB
(Advanced Peripheral Bus) components.
Pre-design, pre-verified and fully technology independent DW IPs is delivered as
coreKits.
By setting the tool’s search path variables pointed to the DW home directory, all available
modules should be accessible via a convenient, browseable location within the cA
environment shown in Figure 3.

Figure 3: The Add Subsystem Components Activity View

DesignWare (DW) IPs have pre-attached interfaces, which provide instructions to the tool on
how to connect a system component based on AMBA 2.0 standard. By adding these IPs to
the system, cA will automatically connect them together.

The DW components that have been used in this project are:

• 2 x DW_AHB
• 2 x DW_APB
• 5 x DW_ICM (Inter Connect Matrix)
• 1 x DW_memctl

Custom and third party IP
There are two different ways to add these kinds of IPs to the system.
The first way is to import the component and then create and attach the interfaces. This
method can be used if a component has not been packaged using the coreBuilder. The

SNUG Boston 2005 Usage of coreAssembler in Digital Audio
 Device System Controller & Decoder

11

second way is to package the IP within coreBuilder and install it as coreKit into the
coreAssembler where the interfaces are already being created (see Figure 4). The
advantage of the second choice is that the same IP can be used to create different
workspace versions without recreating the interfaces every time a new workspace is
needed.
This reason was enough to choose packaging alternative for this project.

Figure 4: coreKit and Workspaces

Packaging with coreBuilder
One part of the complete set of IP reuse tools available from Synopsys is coreBuilder,
which can package the core into a coreKit with all of the associated design files such as
verification files, test bench files and the documentation for the core. This provides a
convenient format for the distribution, installation, and integration into the core
integrator’s design and verification environment. For this project, it was decided to use
only few limited features of this tool in order to have a coreKit version with all interfaces
of needed custom and 3rd party IPs.
To create the interfaces, there is a specified activity in coreBuilder where the interface
definition needs to be defined. For this particular project that is an AMBA based design
the DW_interface_definition.tcl file, which is AMBA compliant, either AHB or APB has
been defined.
Like modules, interfaces also have ports, which reflect module ports in them. Their width can
be parameterizeable, or their inclusion made optional based upon individual requirements.
However when the port is created, instead of a typical ‘input’ or ‘output’ declaration
being made, the direction is specified in terms of “Provider” or “Consumer”.

At this point in the integration process, it is also necessary to perform system-level
configuration. This involves specifying parameters (through the relevant interfaces) that
are important to multiple modules, such as AHB bus widths. These values, which require
setting only once, are then propagated downwards to the component level where they are
no longer modifiable on an individual basis, thus preventing inconsistency.

Once you have successfully added all components and configured your interfaces, the
“Configure Components” activity can begin.

4.2.2 Configuring the system components.
The Configure Components activity is component-specific and provides one top-level
entry per component in a tree dialog. You need to review and update component

SNUG Boston 2005 Usage of coreAssembler in Digital Audio
 Device System Controller & Decoder

12

parameters as needed for the proper configuration of your subsystem i.e. AHB memory
map can easily be configured as shown in Figure 5.
Some component configuration parameters are set automatically based on values of
interface parameters. These parameters will appear disabled in the component
configuration dialogs.

Figure 5: Configure the memory map of AHB bus

4.2.3 Completing the connections.
This activity is to connect any remaining pins that were not automatically connected (see
Figure 6). Unconnected input pins can be connected to unconnected output pins, tied off
to a constant value, or exported from the subsystem (that is, connected to an
automatically created input port of the subsystem). Unconnected output pins can be
connected to an existing input pin, explicitly marked as unconnected (open), or exported
from the subsystem.

Figure 6: Complete Connection Activity View

SNUG Boston 2005 Usage of coreAssembler in Digital Audio
 Device System Controller & Decoder

13

4.2.4 Generating the system RTL.
At this point in the integration process, the subsystem is ready and by clicking the
[Apply] button, the top-level RTL code for the subsystem will be created as shown in
Figure 7 .
By clicking the Apply button in this dialog, coreAssembler (cA) will write the top-level
HDL code to the file <workspace>/src/<design>.v[hd] where <workspace> is the
current workspace name and <design> is the subsystem top-level design name.

Figure 7: Generate Subsystem RTL Activity View

5.0 System Verification
Processor complexity, custom logic content and system performance are all increasing at
the same time that schedules are being squeezed and resources are stretched. Today’s IC
and System-on-Chip (SoC) design trends have placed an immense burden on the
shoulders of verification engineers. The now-famous Collett study shows that 70% of
project effort for complex ICs is spent on verification. Over 60% of design re-spins are
caused by functional errors.
Not surprisingly, project teams are looking for more effective methods to verify their
designs. The need for these methods is driven by complex protocols and IPs, ambiguous
or misleading specifications, unanticipated or untested usages and corner case behaviors.
Verification engineers are consequently looking towards new methodologies that reduce
test bench development time, and speed-up the time it takes to achieve complete
verification of their ASIC or SoC.

System verification has changed dramatically in past years, from using bus functional
models, driven at pin or bus cycle level, to yet higher levels of abstraction that include
constrained random test methodologies, typically found in high-level verification
languages. The new enhanced verification models use their protocol knowledge to drive
transactions onto the bus within the user defined application specific needs of the design.
Additionally a divide and conquer strategy allows for an incremental verification strategy
by using standards as boundaries to partition the verification problem.
Reusability and smart verification techniques are key elements of state of the art
verification strategies.

SNUG Boston 2005 Usage of coreAssembler in Digital Audio
 Device System Controller & Decoder

14

5.1 Traditional flow
Manually creating vectors to accurately reflect system behavior was major task of
traditional flow. System complexity allowed concentrating on building test cases and
even building verification models.

5.2 Synopsys DesignWare® Verification IP approach
New enhanced verification models use their protocol knowledge to drive transactions
onto the bus within the user defined application specific needs of the design. They allow
engineers to build adaptive, reactive test benches that preclude the drudgery of directed
tests and hard-to-maintain ‘golden’ reference files. Creating a test suite now becomes
significantly simpler for verification engineers who do not need to spend time learning
the details of the protocol and weeks or months writing a directed test suite. The
advantage of using these enhanced models is immense and results from both simplified
usage and improved coverage.
A key element of such verification models are constrained random test capabilities,
which allow engineers to rapidly test their designs across a range of parameters and assist
in creating test benches that are adaptive and reactive. Instead of specifying each
individual event to exercise the design, the engineer specifies ranges within which the test
bench then exercises the target device. In addition, the possibility to access information
of every transaction by usage of notifications can be counted as an element. Feedback
from monitors and models identify test suite hits and allows the test bench to adapt and
check new areas. This new functionality in the models replaces much of the effort
associated with manually creating vectors to accurately reflect system behavior.
Functional coverage reports are written automatically. Thus, statistics of the simulation
are available without spending effort in programming such functionality.

Since the verification IP is language independent, it can be used in VHDL, Verilog and
VERA environments. It can be applied on different strategies:

• Block level test bench written by the designer in Verilog or VHDL
• Sub-system test bench written by verification team in HVL, C, Verilog or VHDL

 This language neutrality eases reuse and debug.

5.3 Mapping the DW Verification IP (VIP) approach on the
system.

A number of verification scenarios needed to be implemented in order to do system
verification for the current system shown in Figure 1. Besides creating sufficient test
scenarios, it is essential the VIP approach, not break the ST-used verification method.
Thus VHDL was used as the test bench language. Reuse of already existing test benches
and applying only minor changes was essential.

To generate “realistic” traffic on the AHB/APB busses, the ARM 7TDMI was exchanged
with a VIP AHB master, as depicted in Figure 10. By using constrained random test
capabilities, different peripherals on AHB and APB busses can be accessed in a wide

SNUG Boston 2005 Usage of coreAssembler in Digital Audio
 Device System Controller & Decoder

15

range. To use constrained random test features the user needs to define a protocol
transaction generator, PTG as shown in Figure 8. The shown VHDL command creates
equally distributed transactions of type write and read for the address region
32'h98000000:32'h9801FFFF=1.

Figure 8: Definition of a protocol transaction generator

All transaction created are of undefined INCR type with a number of beats between 1 and
4. Using the above method different transaction types were created for the IORAM, the
PRAM, the ROM and the USB interface on APB bus 1. The given method frees the user
from knowing the AHB2.0 specification in detail. The user can instead concentrate on
creating test cases matching its needs. To issue transactions for the listed peripherals the
user additionally needs to define a distribution for those as well.

Figure 9: Defining a distribution for different protocol transaction generators.

In the shown case, Figure 9, all peripherals will be accessed equally often. To do so, a
transaction choice generator (tcg) is used. To track all transactions on the busses,
checking

-- reads and writes form/to IORAM
ahb_master_vmt_pkg.new_ahb_master_ptg ("ARM_master",ptg_AHB_1_IORAM_RW,
 &"XFER_TYPE WRITE=1,READ =1"
 &"XFER_SIZE 32=1, 16=1, 8=1; "
 &"BURST_TYPE INCR=1;"
 &"NUM_BEATS 1:4=1;"
 &"ADDRESS 32'h98000000:32'h9801FFFF=1;");

-- define a tcg to chose between all possible reads and writes
ahb_master_vmt_pkg.new_tcg("ARM_master",tcgARM);
ahb_master_vmt_pkg.add_tcg_item ("ARM_master",tcgARM,ptg_AHB_1_ROM_R, 20);
ahb_master_vmt_pkg.add_tcg_item ("ARM_master",tcgARM,ptg_AHB_1_PRAM_RW,
20);
ahb_master_vmt_pkg.add_tcg_item ("ARM_master",tcgARM,ptg_AHB_1_IORAM_RW,
20);
ahb_master_vmt_pkg.add_tcg_item ("ARM_master",tcgARM,ptg_AHB_1_USB_RW, 20);
ahb_master_vmt_pkg.add_tcg_item ("ARM_master",tcgARM,tsgDMA, 20)

SNUG Boston 2005 Usage of coreAssembler in Digital Audio
 Device System Controller & Decoder

16

D
W

_A
PB

1

SSP

UART

SSP

I2S

I2C
Master

RTC

I2S

I2CUSB UART SSP GPIO A/D Timer
(wd)

KeyPad
(8x4)

SD
MMC

DW_APB2

DW_memctl

VIC

E
B
I

SDRAM

Nor nand flash
Sync RAM

DW_AHB1

ARM
7TDMI

DMA

Bridge
DW_APB2

I
C
M

DW_AHB2

ROM

I
C
M

PRAM
IORAM

Bridge
DW_APB1

I
C
M

IDE
DEVICE

System
Cntl

SYS PLL

AUD PLL
CMU

ATA
Controller

I
C
M

I
C
M

DesignWare

Third party

V
 I

P

ACTIVITY

VMT
Master

VMT
Master

VMT
Master

AHB1
Monitor

AHB2
Monitor

APB2
Monitor

APB1
Monitor

Figure 10: Verification IP applied on the system

for protocol conformance and creating coverage reports, monitor models have been
attached to the AHB and APB busses. The Monitor can be configured for any valid AHB
bus configuration from 8 to 1024-bits. The monitor connects to the actual AHB signals,
as defined in the AMBA Specification. There is one monitor-per-AHB bus, which is
capable of supporting up to 16 masters and 16 slaves. The monitor can control protocol
checkers, which can be stopped and started using configuration parameters.
Functional coverage is used to monitor particular states on the bus. Errors, logged by the
monitor, are also tracked by the coverage object. Statistical reports are available for both
valid and error states. This allows the monitor to be used to help ensure verification tests
are covering the complete functionality. Functional coverage data is saved and restored
for incremental coverage reporting.

Major effort has been spent on imitating the DMA by usage of DesignWare verification
IP (VIP) models. A master and a slave VIP AHB model were used to rebuild the DMA.
A certain slave region of the DMA slave was used to acknowledge a start of a DMA
transaction. For that the replacement of the ARM 7TDMI (VIP AHB master) needed to
issue a transaction sequence to notify a DMA transaction. This was achieved by using
transaction sequence generators (tsg) as shown in Figure 11. This transaction sequence
generator became an integral part of all AHB transactions, depicted in Figure 9. As a
result, 20% of all AHB transactions issued by the ARM 7TDMI replacement were DMA
transfers.

SNUG Boston 2005 Usage of coreAssembler in Digital Audio
 Device System Controller & Decoder

17

Figure 11: Definition of a transaction sequence generator.

Once the DMA slave recognized a DMA transaction notification, the DMA master
initiated a READ from IORAM and a WRITE with same data to the PRAM. Figure 12
shows the VHDL source code for the DMA rebuilt. An endless DMA loop ensures that
during whole simulation the DMA slave is looking for the DMA transaction notification
sequence. After recognition, a read_burst command is used to read data from IORAM
and afterwards a write_burst command is used to write the just read from the PRAM.
Using the above method, system verification and bus utilization could be achieved
without having the actual DMA implementation in place.

--define a tsg for writing instructions to the DMA
 ahb_master_vmt_pkg.new_tsg ("ARM_master",tsgDMA);
 ahb_master_vmt_pkg.add_tsg_item ("ARM_master",tsgDMA,ptg_DMA_7);
 ahb_master_vmt_pkg.add_tsg_item ("ARM_master",tsgDMA,ptg_DMA_0);
 master[1].set_tg_payload(tsgDMA, payload);

SNUG Boston 2005 Usage of coreAssembler in Digital Audio
 Device System Controller & Decoder

18

Figure 12: DMA functionality rebuilt by usage of VIP AHB master and slave

Besides the described verification scenarios, extensive transaction logging of the
monitors was used to do post simulation analysis of bus utilization. A TCL based
approach was applied.

-- create a burst buffer for DMA data transfer
ahb_master_vmt_pkg.new_burst_buffer("DMA_master_ahb2", 32,
 VMT_MEM_PATTERN_INCR, to_stdlogic(0,1024), 4, MA_burst_buffer_hanle);
ahb_master_vmt_pkg.set_burst_buffer_xfer_attr("DMA_master_ahb2",
 DMA_burst_buffer_handle,1, DMA_DataAttr);

DMA_LOOP:loop

 WAIT UNTIL hclk'event AND hclk = '1';
 WAIT UNTIL hclk'event AND hclk = '1';

 -- check if ARM master has sent appropriate instructions
ahb_slave_vmt_pkg.get_mem("DMA_slave_ahb1",DMA_sid, DMA_Address, 32,
 DMA_get_mem_buffer);

 write(DMA_l, STRING'(" ******** DMA_get_mem_buffer = "));
 write(DMA_l, STD_LOGIC_VECTOR'(DMA_get_mem_buffer));
 writeline(output, DMA_l);

if DMA_get_mem_buffer = to_stdlogic(7,1024) then

 -- "111" to establish DMA transfer
 write(DMA_l, STRING'(" ******** DMA is wrting data from PRAM to
 IORAM "));

 writeline(output, DMA_l);

 -- read from IO RAM and write same values to PRAM

 ahb_master_vmt_pkg.read_burst("DMA_master_ahb2", DMA_sid,
 DMA_IORAM_address, 4, DMA_burst_buffer_handle,
 DMA_read_burst_buffer_handle);
 ahb_master_vm2t_pkg.get_burst_result("DMA_master_ahb2", DMA_sid,
 DMA_read_burst_buffer_handle, DMA_read_buffer);
 ahb_maste_vmt_pkg.write_burst("DMA_master_ahb2", DMA_sid,
 DMA_ARM_Address, 4, DMA_read_buffer, DMA_write_buffer);

 end if;

 end loop DMA_LOOP;

SNUG Boston 2005 Usage of coreAssembler in Digital Audio
 Device System Controller & Decoder

19

6.0 Results
As a result, STMicroelectronics is finding that even the most complex subsystem requires
less in-depth knowledge of the IP, and also reduces the configuration, integration and
verification time. Usage of the Synopsys' AMBA DesignWare® even decreases the
silicon area by not including the unneeded and unused features.

7.0 Acknowledgments
At the end, we want to point out that the achievement of the results described in this
paper has been possible thanks to the close cooperation between the STMicroelectronics
and the Synopsys Professional Services division, whose contribution to the development
of the new flow has been fundamental to shorten the time and to increase the quality of
the work.

8.0 References
[1] Reuse Methodology Manual
[2] coreAssembler User Guide

