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ABSTRACT 
 
 
The complexity of today's System On Chip (SoC) designs requires a faster and simpler 
flow and methodology for new SoC design projects. 
 
To get more SoCs to market faster and less expensively, STMicroelectronics combined 
forces with Synopsys® Professional Services to conceive a new flow and methodology 
for digital audio system platform. 
 
This paper describes how SYNOPSYS® coreAssembler simplifies the process of 
assembling an AMBA system using AMBA DesignWare® by automating the 
configuration and interconnection steps, providing an automated path to implement the 
AMBA platform, and improving the verification by using the VIP. This flow has been 
used for designing and validating a Digital Radio System Controller and Audio Decoder 
architecture developed by ST Microelectronics Digital Broadcasting Radio Division 
(Automotive Product Group). 
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1.0 List of acronyms 
 
Aac+ MPEG-4 high efficiency advanced audio coding 
AHB advanced high-performance bus 
AMBA advanced microcontroller bus architecture 
APB advanced peripheral bus 
cA coreAssembler 
cB coreBuilder 
DAB digital audio broadcasting 
DMA direct memory access 
DW DesignWare 
GPIO general purpose input output 
HVL hardware verification language 
I2C inter-integrated circuit 
IP intellectual property 
IRDA infrared data association 
Mp3 acronym for ISO MPEG Audio Layer 3 
PTG protocol transaction generator 
RTC real time clock 
SDR-DRAM single data rate synchronous dynamic random access memory 
SDRAM synchronous dynamic random access memory 
SPS Synopsys Professional Services  
SRAM static random access memory 
SoC system on chip 
TCG transaction choice generator 
TCL tool command language 
TSG transaction sequence generator 
UDMA ultra direct memory access 
USB universal serial bus 
VHDL VHSIC hardware description language 
VIP verification intellectual property  
Wma windows media audio 



SNUG Boston 2005   Usage of coreAssembler in Digital Audio  
               Device System Controller & Decoder 

 

4

2.0 Content of the paper 
 
This paper is structured in eight sections. 

1.0 List of acronyms 

2.0 Content of the paper 

3.0 Introduction 
A generic introduction to the platform used as a digital radio system controller & audio 
decoder and a brief explanation of the architecture, together with a description of the 
most critical point and their impact on the chosen architecture. 
List of acronyms 

4.0 IP Reuse and System Integration  

4.1 IP challenge 
Pointing out the main principles in creating and delivering a reusable IP. 

4.2 coreAssembler 
General introduction of coreAssembler and how the automatic system integration can 
save design timing. 

5.0 System Verification 
General description of system verification issue. 
 
5.1 Traditional flow 
Functional pattern generation. 
 
5.2 Synopsys DesignWare® VIP approach 
Transaction oriented pattern.  
Pointing out the benefits of using VIP. 
 
5.3 Mapping the VIP approach on the system 
Describing in details the process of mapping the system with the VIP. 
 
6.0 Results 
 
7.0 Acknowledgments 

8.0 References 
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3.0 Introduction 
Digital Audio decoders are becoming very popular devices in portable players. At the 
same time, these audio decoders are also involved in Digital Radio systems as one of the 
block of the receiver system.  
 
Companies like ST are considering Digital Radios a good business opportunity. Even if 
this business is in the starting phase, there are countries where these systems are already 
growing very fast, for example XM Radio and Sirius in the USA, DAB in UK and other 
European countries. 
 
If ST wants to compete and win this market, it has to be able to develop the right devices 
to support all the new functionalities required by the market. 
 
Consider digital radio as the sum of three main tasks: Receiver, decoder and system 
controller this paper will address the last two. 
 
The features required for the audio decoding and the system controlling are:  
 

• High instruction throughput to implement the decoding phase of all the available 
digital audio formats such as mp3, wma and aac+, and to be powerful enough to 
decode the future evolution and new algorithms. 

 
• High capability of data management and storage. It has to control most of the 

available on the market external memories: SDRAM, NAND flash, Secure digital, 
Multimedia Cards and IDE devices. 

 
• Highly flexible user interface and general-purpose system controller. It has to 

integrate all the needed standard interfaces: synchronous and asynchronous serial 
interface, master and slave I2C controller, GPIO lines, keypad controller, USB 
and so on, to control and communicate with the receiver devices. 

 
• Low power consumption. This requirement is becoming more and more important 

especially on portable devices. 
 
The idea of the cooperation between ST APG-DBR and Synopsys SPS is not to develop a 
general-purpose architecture but to implement a methodology, which is capable to 
optimize a device starting from a customer specification in a minimum time. 
Architectural comparison requires a lot of time and effort to build all the needed systems 
and to perform the wanted evaluation. To reduce the complexity of this step a new flow 
has been developed using CoreAssembler, AMBA DesignWare and VIP.  
 
In the following lines, we will try to approach the main steps executed in the developed 
flow to compare different AMBA based architecture with the goal of identifying the best 
solution that fits the customer specifications. In the next paragraphs, you will find more 
details on each of the following points. 
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First step is to identify all the IPs needed to implement the specification requirements.  
Usually at the end of this phase, we find in a solution using custom and third party IPs.  
 
Second step is to define architectures implementing all the selected IPs. By using 
CoreAssembler together with the AMBA DesignWare®, we are able to quickly build all 
the architectures needed by the designers without losing any time for debugging errors 
during the bus generation and the system connectivity. To be able to use non 
DesignWare® IPs in coreAssembler, a package activity within coreBuilder has been 
performed.  
The result of this step is the possibility to build, with a minimum effort, all the wanted or 
needed architectures. 
 
Third step of our flow is dedicated to building a test bench able to stress the different 
systems produced in the step two. This test bench is used to identify the pro and cons of 
all the developed architectures. Our traditional way to perform this task was to run a 
piece of software. Everyone knows that the ideal test is the real application, but at this 
point, that code is really far from being available. We approach this problem by 
identifying the possible critical points of the application and trying to write pieces of code 
that are able to stress the identified critical points. Synopsys improved our traditional 
verification flow with the DesignWare Verification IP (DW_VIP) technology. 
 

3.1 Architecture implementation 
To understand the flow described on this paper, a real system developed by ST APG-
DBR will be discussed. 
 
The requirements of the customer for this device are the following: 

• Audio decoder capability: The device has to provide enough MIPS (70 is the 
fixed value) to perform generic audio decoding. 

• System controller capability: The device has to control the Receiver System 
through an I2C bus. Between the device and the receiver there should be a 
powerful communication channel in order to allow bi-directional data exchange. 

• Storage capability: The device has to provide different solutions for data storage. 
Both volatile and not volatile devices have to be controlled. 

• Powerful user interface: the device has to provide the set of common features 
available on portable players. 

• Low power consumption . 
 
To satisfy the request of a powerful user interface a lots of IPs have been implemented. A 
keypad controller allows the user to use a keypad with up to 32 keys. A Real time clock 
(RTC) clocked by external crystal or internal frequency is implemented to be used as a 
clock and also to perform some power-up and power-down features. A USB 1.1 interface 
adds the capability of downloading data from a PC or any USB Host. An IRDA interface 
manages an infrared data exchange between the system and the external world. A simple 
A2D (7 effective bits) can be used to monitor battery level or supply values. To complete 
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the user interface 24 GPIO lines have been added and two different serial protocols 
(synchronous and asynchronous) are supported. 
 
The MicroDrive is becoming quite common in portable players; these hard disks offer a 
high storage capacity with a very small dimension. The system being developed controls 
IDE devices including MicroDrive- supporting IO, DMA and UDMA data transfer. 
If MicroDrive is the most interesting solution to satisfy high storage capability, NAND 
flash is becoming the better tradeoff between storage capability, dimension, consumption, 
performance and cost. To support this kind of memory a NAND flash controller has been 
implemented in this platform. 
The IDE device and NAND flash cover the needs of high storage capability but what is 
still missing is the possibility to have removable storage devices. Memory cards complete 
the needs of our applications. The cards controlled by the system are Secure Digital, 
Multimedia and compact flash. 
To be as flexible as the market requires in terms of controlling the memory, a flexible 
memory controller has been integrated to control synchronous SDR- DRAM as well as 
static memory SRAM NOR flash and ROM and It can also be configured to control 
memory mapped devices. 
Considering the system as a general-purpose system controller an I2C master interface is 
available to guarantee the control of all the I2C slave devices. A data communication 
channel between the devices and the slaves has been designed to support most of the 
common serial protocols.  This channel allows the exchange of data with the controlled 
devices. 
 
The requirement to realize an Audio decoder performing up to 70 MIPS together with the 
spec of a low power device pushed us to choose an ARM7TDMIS core. Pros of this core 
are the small area and the low power consumption, the con is the difficulty to reach a 
high frequency. The challenge of having audio decoding together with controller 
capability and data managing drove us to consider multi layer architecture. To reach the 
70 MIPS the system runs at 80 MHz and a separate bus AHB1 is dedicated to the core in 
order to have a Lite AHB wrapper able to improve the MIPS for the MHz provided by 
the core. Data storing can be performed at the same time of audio decoding without 
affecting the performance using the second layer AHB2. Master of this bus is a powerful 
and flexible DMA controller. 
Buffer of internal memories are available on each bus. Program Code, being that the 
ARM7TDMI is not a cached core, has to be stored in the internal ROM, but the 
possibility to execute code from internal or external RAM are also available.  
To reduce power consumption clock control logic has been implemented. This logic 
provides the features of changing the system frequency dynamically following the 
requirement of the piece of program code executed at that time. 
 
Figure 1. Illustrates the implemented system: 
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Figure 1: Digital Radio System Controller & Audio Decoder overview 

4.0 IP Reuse and System Integration 

4.1 IP challenge 
The main objectives in creating and delivering a reusable IP can be summarized as 
follows: 

 Easily configurable to fit different applications 
 Designed for use in multiple technologies 
 Thorough commenting 
 Well designed verification environments and suites 
 Robust scripts 
 Easy to use and friendly implementation interface 
 Good documentation 

The methodology described here addresses most of the above. 
As an IP developer, you need to deliver an IP that can reliably be used by the integrator. 
The IP has to be easy to support and maintain, enabling long-term maintenance by 
capturing design knowledge. The business solution, which required direct support and a 
one-on-one knowledge transfer with every end user for an IP provider, would not be a 
viable one. The integration flow of an IP has to reduce all costs (not only the 
development cost but also synthesis, testing, integration in SoC, support and 
maintenance). In most cases, the end users want to customize the IP for specific 
applications. In order to achieve this effectively, the creation of every stage of design, 
from specification to silicon has to be done with the understanding that it will be 
modified and reused in other projects by other design teams. It needs to use tools and 
processes that capture the design information in a consistent, easy to communicate form, 
and that make it easy to integrate modules into a design when the original designer is not 
available. Eventually, it should also force the integrator to go through specific tasks to 
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synthesize and verify the core. The integration flow has to ensure quality of results, ease 
of use and tool support over multiple versions or licenses. The package has to provide all 
the necessary views and tests across all possible parameter values. This core has to be not 
only easily configurable but also technology independent. Of course, the protection of 
your IP is an important requirement for the developer.  
Finally, this IP has to be easily integrated in an IP library and easy to be checked for 
reliability. 
The innovation of core tools is to address all the previous needs: it has to provide 
industry-leading tools that enable our users to create, package, deploy, integrate and 
assemble configurable soft IP. 
The solution can be found in the new methodology offered by Synopsys’s suite of reuse 
tools. 

4.2 coreAssembler 
The coreAssembler (cA) tool simplifies the process of assembling a subsystem of 
components by automating the configuration and interconnection steps, providing an 
automated path to implementation for the entire subsystem, and providing a starting point 
for verification. 
 
In the coreAssembler environment, the user is guided through the integration process 
using an “activity” based methodology. These activities are undertaken sequentially, and 
where necessary the tool ensures that all steps essential for later integration work are 
completed before the next activity can be initiated. 
One of the main features in coreAssembler is to automatically generate the top-level 
VHDL or Verilog code for the subsystem. 
  
Creating the system’s RTL code is divided into the following, relatively intuitive, steps 
shown in Figure 2. 
 

• Adding the system components. 
• Configuring the system components. 
• Completing the connections. 
• Generating the system RTL. 

 
 
 

 
 

Figure 2: coreAssembler’s Activity List 

4.2.1 Adding the system components 
Three different kinds of components have been used in this project; AMBA 
DesignWare®, ST custom and third party components. 
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AMBA DesignWare® components 
The Synopsys DesignWare® AMBA Synthesizable Components environment is a 
parameterizable bus system containing AMBA version 2.0-compliant AHB and APB 
(Advanced Peripheral Bus) components. 
Pre-design, pre-verified and fully technology independent DW IPs is delivered as 
coreKits.  
By setting the tool’s search path variables pointed to the DW home directory, all available 
modules should be accessible via a convenient, browseable location within the cA 
environment shown in Figure 3. 
 

 
Figure 3: The Add Subsystem Components Activity View 

 
DesignWare (DW) IPs have pre-attached interfaces, which provide instructions to the tool on 
how to connect a system component based on AMBA 2.0 standard. By adding these IPs to 
the system, cA will automatically connect them together. 
 
The DW components that have been used in this project are: 
 

• 2 x DW_AHB 
• 2 x DW_APB 
• 5 x DW_ICM ( Inter Connect Matrix) 
• 1 x DW_memctl 

 
Custom and third party IP  
There are two different ways to add these kinds of IPs to the system. 
The first way is to import the component and then create and attach the interfaces. This 
method can be used if a component has not been packaged using the coreBuilder. The 
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second way is to package the IP within coreBuilder and install it as coreKit into the 
coreAssembler where the interfaces are already being created (see Figure 4). The 
advantage of the second choice is that the same IP can be used to create different 
workspace versions without recreating the interfaces every time a new workspace is 
needed. 
This reason was enough to choose packaging alternative for this project. 
 

 
Figure 4: coreKit and Workspaces 

 
Packaging with coreBuilder 
One part of the complete set of IP reuse tools available from Synopsys is coreBuilder, 
which can package the core into a coreKit with all of the associated design files such as 
verification files, test bench files and the documentation for the core. This provides a 
convenient format for the distribution, installation, and integration into the core 
integrator’s design and verification environment. For this project, it was decided to use 
only few limited features of this tool in order to have a coreKit version with all interfaces 
of needed custom and 3rd party IPs.  
To create the interfaces, there is a specified activity in coreBuilder where the interface 
definition needs to be defined. For this particular project that is an AMBA based design 
the DW_interface_definition.tcl file, which is AMBA compliant, either AHB or APB has 
been defined.  
Like modules, interfaces also have ports, which reflect module ports in them. Their width can 
be parameterizeable, or their inclusion made optional based upon individual requirements. 
However when the port is created, instead of a typical ‘input’ or ‘output’ declaration 
being made, the direction is specified in terms of  “Provider” or “Consumer”. 
 
At this point in the integration process, it is also necessary to perform system-level 
configuration. This involves specifying parameters (through the relevant interfaces) that 
are important to multiple modules, such as AHB bus widths. These values, which require 
setting only once, are then propagated downwards to the component level where they are 
no longer modifiable on an individual basis, thus preventing inconsistency. 
 
Once you have successfully added all components and configured your interfaces, the 
“Configure Components” activity can begin. 

4.2.2 Configuring the system components. 
The Configure Components activity is component-specific and provides one top-level 
entry per component in a tree dialog. You need to review and update component 
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parameters as needed for the proper configuration of your subsystem i.e. AHB memory 
map can easily be configured as shown in Figure 5. 
Some component configuration parameters are set automatically based on values of 
interface parameters. These parameters will appear disabled in the component 
configuration dialogs. 
 

 
Figure 5: Configure the memory map of AHB bus  

4.2.3 Completing the connections. 
This activity is to connect any remaining pins that were not automatically connected (see 
Figure 6). Unconnected input pins can be connected to unconnected output pins, tied off 
to a constant value, or exported from the subsystem (that is, connected to an 
automatically created input port of the subsystem). Unconnected output pins can be 
connected to an existing input pin, explicitly marked as unconnected (open), or exported 
from the subsystem. 

 
Figure 6:  Complete Connection Activity View 



SNUG Boston 2005   Usage of coreAssembler in Digital Audio  
               Device System Controller & Decoder 

 

13

4.2.4 Generating the system RTL. 
At this point in the integration process, the subsystem is ready and by clicking the 
[Apply] button, the top-level RTL code for the subsystem will be created as shown in 
Figure 7 . 
By clicking the Apply button in this dialog, coreAssembler (cA) will write the top-level 
HDL code to the file <workspace>/src/<design>.v[hd] where <workspace> is the 
current workspace name and <design> is the subsystem top-level design name. 
 

 
Figure 7: Generate Subsystem RTL Activity View 

 

5.0 System Verification 
Processor complexity, custom logic content and system performance are all increasing at 
the same time that schedules are being squeezed and resources are stretched. Today’s IC 
and System-on-Chip (SoC) design trends have placed an immense burden on the 
shoulders of verification engineers. The now-famous Collett study shows that 70% of 
project effort for complex ICs is spent on verification. Over 60% of design re-spins are 
caused by functional errors.  
Not surprisingly, project teams are looking for more effective methods to verify their 
designs. The need for these methods is driven by complex protocols and IPs, ambiguous 
or misleading specifications, unanticipated or untested usages and corner case behaviors. 
Verification engineers are consequently looking towards new methodologies that reduce 
test bench development time, and speed-up the time it takes to achieve complete 
verification of their ASIC or SoC.  
 
System verification has changed dramatically in past years, from using bus functional 
models, driven at pin or bus cycle level, to yet higher levels of abstraction that include 
constrained random test methodologies, typically found in high-level verification 
languages. The new enhanced verification models use their protocol knowledge to drive 
transactions onto the bus within the user defined application specific needs of the design. 
Additionally a divide and conquer strategy allows for an incremental verification strategy 
by using standards as boundaries to partition the verification problem.  
Reusability and smart verification techniques are key elements of state of the art 
verification strategies. 
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5.1 Traditional flow 
Manually creating vectors to accurately reflect system behavior was major task of 
traditional flow. System complexity allowed concentrating on building test cases and 
even building verification models.  

 

5.2 Synopsys DesignWare® Verification IP approach 
New enhanced verification models use their protocol knowledge to drive transactions 
onto the bus within the user defined application specific needs of the design. They allow 
engineers to build adaptive, reactive test benches that preclude the drudgery of directed 
tests and hard-to-maintain ‘golden’ reference files. Creating a test suite now becomes 
significantly simpler for verification engineers who do not need to spend time learning 
the details of the protocol and weeks or months writing a directed test suite. The 
advantage of using these enhanced models is immense and results from both simplified 
usage and improved coverage. 
A key element of such verification models are constrained random test capabilities, 
which allow engineers to rapidly test their designs across a range of parameters and assist 
in creating test benches that are adaptive and reactive. Instead of specifying each 
individual event to exercise the design, the engineer specifies ranges within which the test 
bench then exercises the target device. In addition, the possibility to access information 
of every transaction by usage of notifications can be counted as an element. Feedback 
from monitors and models identify test suite hits and allows the test bench to adapt and 
check new areas. This new functionality in the models replaces much of the effort 
associated with manually creating vectors to accurately reflect system behavior. 
Functional coverage reports are written automatically. Thus, statistics of the simulation 
are available without spending effort in programming such functionality. 
 
Since the verification IP is language independent, it can be used in VHDL, Verilog and 
VERA environments. It can be applied on different strategies: 

• Block level test bench written by the designer in Verilog or VHDL 
• Sub-system test bench written by verification team in HVL, C, Verilog or VHDL 

 This language neutrality eases reuse and debug. 
 

5.3  Mapping the DW Verification IP (VIP) approach on the 
system. 

A number of verification scenarios needed to be implemented in order to do system 
verification for the current system shown in Figure 1. Besides creating sufficient test 
scenarios, it is essential the VIP approach, not break the ST-used verification method. 
Thus VHDL was used as the test bench language. Reuse of already existing test benches 
and applying only minor changes was essential.  
 
To generate “realistic” traffic on the AHB/APB busses, the ARM 7TDMI was exchanged 
with a VIP AHB master, as depicted in Figure 10. By using constrained random test 
capabilities, different peripherals on AHB and APB busses can be accessed in a wide 
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range. To use constrained random test features the user needs to define a protocol 
transaction generator, PTG as shown in Figure 8. The shown VHDL command creates 
equally distributed transactions of type write and read for the address region 
32'h98000000:32'h9801FFFF=1. 
 

Figure 8: Definition of a protocol transaction generator 
 
 
All transaction created are of undefined INCR type with a number of beats between 1 and 
4. Using the above method different transaction types were created for the IORAM, the 
PRAM, the ROM and the USB interface on APB bus 1. The given method frees the user 
from knowing the AHB2.0 specification in detail. The user can instead concentrate on 
creating test cases matching its needs. To issue transactions for the listed peripherals the 
user additionally needs to define a distribution for those as well. 
 

Figure 9: Defining a distribution for different protocol transaction generators. 
 
In the shown case, Figure 9, all peripherals will be accessed equally often. To do so, a 
transaction choice generator (tcg) is used. To track all transactions on the busses, 
checking  
 

-- reads and writes form/to IORAM
ahb_master_vmt_pkg.new_ahb_master_ptg ("ARM_master",ptg_AHB_1_IORAM_RW, 
                              &"XFER_TYPE WRITE=1,READ =1" 
                              &"XFER_SIZE 32=1, 16=1, 8=1; " 
                 &"BURST_TYPE INCR=1;" 
                 &"NUM_BEATS  1:4=1;"  
                              &"ADDRESS 32'h98000000:32'h9801FFFF=1;");  

-- define a tcg to chose between all possible reads and writes 
ahb_master_vmt_pkg.new_tcg("ARM_master",tcgARM); 
ahb_master_vmt_pkg.add_tcg_item ("ARM_master",tcgARM,ptg_AHB_1_ROM_R, 20); 
ahb_master_vmt_pkg.add_tcg_item ("ARM_master",tcgARM,ptg_AHB_1_PRAM_RW, 
20); 
ahb_master_vmt_pkg.add_tcg_item ("ARM_master",tcgARM,ptg_AHB_1_IORAM_RW, 
20); 
ahb_master_vmt_pkg.add_tcg_item ("ARM_master",tcgARM,ptg_AHB_1_USB_RW, 20); 
ahb_master_vmt_pkg.add_tcg_item ("ARM_master",tcgARM,tsgDMA, 20) 
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Figure 10: Verification IP applied on the system 

 
for protocol conformance and creating coverage reports, monitor models have been 
attached to the AHB and APB busses. The Monitor can be configured for any valid AHB 
bus configuration from 8 to 1024-bits. The monitor connects to the actual AHB signals, 
as defined in the AMBA Specification. There is one monitor-per-AHB bus, which is 
capable of supporting up to 16 masters and 16 slaves. The monitor can control protocol 
checkers, which can be stopped and started using configuration parameters. 
Functional coverage is used to monitor particular states on the bus. Errors, logged by the 
monitor, are also tracked by the coverage object. Statistical reports are available for both 
valid and error states. This allows the monitor to be used to help ensure verification tests 
are covering the complete functionality. Functional coverage data is saved and restored 
for incremental coverage reporting. 
 
Major effort has been spent on imitating the DMA by usage of DesignWare verification 
IP (VIP) models. A master and a slave VIP AHB model were used to rebuild the DMA. 
A certain slave region of the DMA slave was used to acknowledge a start of a DMA 
transaction. For that the replacement of the ARM 7TDMI (VIP AHB master) needed to 
issue a transaction sequence to notify a DMA transaction. This was achieved by using 
transaction sequence generators (tsg) as shown in Figure 11. This transaction sequence 
generator became an integral part of all AHB transactions, depicted in Figure 9. As a 
result, 20% of all AHB transactions issued by the ARM 7TDMI replacement were DMA 
transfers. 
 
 



SNUG Boston 2005   Usage of coreAssembler in Digital Audio  
               Device System Controller & Decoder 

 

17

  
 
 
 
 
 

Figure 11: Definition of a transaction sequence generator. 
 
Once the DMA slave recognized a DMA transaction notification, the DMA master 
initiated a READ from IORAM and a WRITE with same data to the PRAM. Figure 12 
shows the VHDL source code for the DMA rebuilt. An endless DMA loop ensures that 
during whole simulation the DMA slave is looking for the DMA transaction notification 
sequence. After recognition, a read_burst command is used to read data from IORAM 
and afterwards a write_burst command is used to write the just read from the PRAM.  
Using the above method, system verification and bus utilization could be achieved 
without having the actual DMA implementation in place.  
 
 
 
 

--define a tsg for writing instructions to the DMA 
  ahb_master_vmt_pkg.new_tsg ("ARM_master",tsgDMA); 
  ahb_master_vmt_pkg.add_tsg_item ("ARM_master",tsgDMA,ptg_DMA_7); 
  ahb_master_vmt_pkg.add_tsg_item ("ARM_master",tsgDMA,ptg_DMA_0); 
  master[1].set_tg_payload(tsgDMA, payload); 
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Figure 12: DMA functionality rebuilt by usage of VIP AHB master and slave 
 
 
 
Besides the described verification scenarios, extensive transaction logging of the 
monitors was used to do post simulation analysis of bus utilization. A TCL based 
approach was applied.     
   
 
 

-- create a burst buffer for DMA data transfer  
ahb_master_vmt_pkg.new_burst_buffer("DMA_master_ahb2", 32,       
 VMT_MEM_PATTERN_INCR, to_stdlogic(0,1024), 4, MA_burst_buffer_hanle); 
ahb_master_vmt_pkg.set_burst_buffer_xfer_attr("DMA_master_ahb2",         
 DMA_burst_buffer_handle,1, DMA_DataAttr);  
 
 
DMA_LOOP:loop 
    
  WAIT UNTIL hclk'event AND hclk = '1'; 
  WAIT UNTIL hclk'event AND hclk = '1'; 
    
  -- check if ARM master has sent appropriate instructions    
ahb_slave_vmt_pkg.get_mem("DMA_slave_ahb1",DMA_sid, DMA_Address, 32,  
                          DMA_get_mem_buffer); 

  write(DMA_l, STRING'("  ******** DMA_get_mem_buffer = ")); 
  write(DMA_l, STD_LOGIC_VECTOR'(DMA_get_mem_buffer)); 
  writeline(output, DMA_l); 
     
if DMA_get_mem_buffer = to_stdlogic(7,1024) then   

  -- "111" to establish DMA transfer 
   write(DMA_l, STRING'("  ******** DMA is wrting data from PRAM to  
         IORAM ")); 

     writeline(output, DMA_l); 
 
     -- read from IO RAM and write same values to PRAM 
          
     ahb_master_vmt_pkg.read_burst("DMA_master_ahb2", DMA_sid,  
               DMA_IORAM_address, 4, DMA_burst_buffer_handle,   
               DMA_read_burst_buffer_handle);   
     ahb_master_vm2t_pkg.get_burst_result("DMA_master_ahb2", DMA_sid,  
                DMA_read_burst_buffer_handle, DMA_read_buffer); 
     ahb_maste_vmt_pkg.write_burst("DMA_master_ahb2", DMA_sid,  
               DMA_ARM_Address, 4, DMA_read_buffer, DMA_write_buffer); 
          
 
  end if;                 
  
 end loop DMA_LOOP; 
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6.0 Results 
As a result, STMicroelectronics is finding that even the most complex subsystem requires 
less in-depth knowledge of the IP, and also reduces the configuration, integration and 
verification time. Usage of the Synopsys' AMBA DesignWare® even decreases the 
silicon area by not including the unneeded and unused features. 
 

7.0 Acknowledgments 
At the end, we want to point out that the achievement of the results described in this 
paper has been possible thanks to the close cooperation between the STMicroelectronics 
and the Synopsys Professional Services division, whose contribution to the development 
of the new flow has been fundamental to shorten the time and to increase the quality of 
the work. 

8.0 References 
[1] Reuse Methodology Manual 
[2] coreAssembler User Guide 


