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         What is this Book About? 

 This book should be the fi rst one you read to learn the SystemVerilog verifi cation 
language constructs. It describes how the language works and includes many exam-
ples on how to build a basic coverage-driven, constrained-random, layered test-
bench using Object-Oriented Programming (OOP). The book has many guidelines 
on building testbenches, to help you understand how and why to use classes, 
randomization, and functional coverage. Once you have learned the language, pick 
up some of the methodology books listed in the References section for more infor-
mation on building a testbench.  

   Who Should Read this Book? 

 If you create testbenches, you need this book. If you have only written tests using 
Verilog or VHDL and want to learn SystemVerilog, this book shows you how to 
move up to the new language features. Vera and Specman users can learn how one 
language can be used for both design and verifi cation. You may have tried to read 
the SystemVerilog Language Reference Manual but found it loaded with syntax 
but no guidelines on which construct to choose. 

 Chris originally wrote this book because, like many of his customers, he spent 
much of his career using procedural languages such as C and Verilog to write tests, 
and had to relearn everything when OOP verifi cation languages came along. He made 
all the typical mistakes, and wrote this book so you won’t have to repeat them. 

 Before reading this book, you should be comfortable with Verilog-1995. You do 
not need to know about Verilog-2001 or SystemVerilog design constructs, or 
SystemVerilog Assertions in order to understand the concepts in this book.  

   Preface 
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   What is New in the Third Edition? 

 This new edition of SystemVerilog for Verifi cation has many improvements over the 
fi rst two editions, written in 2006 and 2008, respectively.

   Our universities need to train future engineers in the art of verifi cation. This • 
edition is suitable for the academic environment, with exercise questions at the 
end of each chapter to test your understanding.  
  Qualifi ed instructors should visit   • http://extras.springer.com     for additional mate-
rials such as slides, tests, homework problems, solutions, and a sample syllabus 
suitable for a semester-long course.  
  The 2009 version of the IEEE 1800 SystemVerilog Language Reference Manual • 
(LRM) has many changes, both large and small. This book tries to include the 
latest relevant information.  
  Accellera created UVM (Universal Verifi cation Methodology) with ideas from • 
VMM (Verifi cation Methodology Manual), OVM (Open Verifi cation 
Methodology), eRM (e Reuse Methodology), and other methodologies. Many of 
the examples in this book are based on VMM because its explicit calling of phases 
is easier to understand if you are new to verifi cation. New examples are provided 
that show UVM concepts such as the test registry and confi guration database.  
  When looking for a specifi c topic, engineers read books backwards, starting with • 
the index, so we boosted the number of entries.  
  Lastly, a big thanks to all the readers who spotted mistakes in the previous • 
editions, from poor grammar to code that was obviously written on the morning 
after an 18-hour fl ight from Asia to Boston, or, even worse, changing a diaper. 
This edition has been checked and reviewed many times over, but once again, 
all mistakes are ours.     

   Why was SystemVerilog Created? 

 In the late 1990s, the Verilog Hardware Description Language (HDL) became the 
most widely used language for describing hardware for simulation and synthesis. 
However, the fi rst two versions standardized by the IEEE (1364-1995 and 1364-
2001) had only simple constructs for creating tests. As design sizes outgrew the 
verifi cation capabilities of the language, commercial Hardware Verifi cation 
Languages (HVLs) such as OpenVera and  e  were created. Companies that did not 
want to pay for these tools instead spent hundreds of man-years creating their own 
custom tools. 

 This productivity crisis, along with a similar one on the design side, led to the 
creation of Accellera, a consortium of EDA companies and users who wanted to 
create the next generation of Verilog. The donation of the OpenVera language 
formed the basis for the HVL features of SystemVerilog. Accellera’s goal was met 

http://extras.springer.com
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in November 2005 with the adoption of the IEEE standard 1800-2005 for 
SystemVerilog, IEEE (2005). In December 2009, the latest Verilog LRM, 1364-
2005, was merged with the aforementioned 2005 SystemVerilog standard to create 
the IEEE standard 1800-2009 for SystemVerilog. Merging these two standards into 
a single one means there is now one language, SystemVerilog, for both design and 
verifi cation.  

   Importance of a Unifi ed Language 

 Verifi cation is generally viewed as a fundamentally different activity from design. 
This split has led to the development of narrowly focused languages for verifi cation 
and to the bifurcation of engineers into two largely independent disciplines. This 
specialization has created substantial bottlenecks in terms of communication 
between the two groups. SystemVerilog addresses this issue with its capabilities for 
both camps. Neither team has to give up any capabilities it needs to be successful, 
but the unifi cation of both syntax and semantics of design and verifi cation tools 
improves communication. For example, while a design engineer may not be able to 
write an object-oriented testbench environment, it is fairly straightforward to read 
such a test and understand what is happening, enabling both the design and verifi ca-
tion engineers to work together to identify and fi x problems. Likewise, a designer 
understands the inner workings of his or her block, and is the best person to write 
assertions about it, but a verifi cation engineer may have a broader view needed to 
create assertions between blocks. 

 Another advantage of including the design, testbench, and assertion constructs in 
a single language is that the testbench has easy access to all parts of the environment 
without requiring a specialized Application Programming Interface (API). The 
value of an HVL is its ability to create high-level, fl exible tests, not its loop con-
structs or declaration style. SystemVerilog is based on the Verilog, VHDL, and 
C/C++ constructs that engineers have used for decades.  

   Importance of Methodology 

 There is a difference between learning the syntax of a language and learning how to 
use a tool. This book focuses on techniques for verifi cation using constrained- 
random tests that use functional coverage to measure progress and direct the verifi -
cation. As the chapters unfold, language and methodology features are shown side 
by side. For more on methodology, see Bergeron et al. (2006). 

 The most valuable benefi t of SystemVerilog is that it allows the user to construct 
reliable, repeatable verifi cation environments, in a consistent syntax, that can be 
used across multiple projects.  
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   Overview of the Book 

 The SystemVerilog language includes features for design, verifi cation, assertions, 
and more. This book focuses on the constructs used to verify a design. There are 
many ways to solve a problem using SystemVerilog. This book explains the trade-
offs between alternative solutions. 

 Chapter 1,  Verifi cation Guidelines , presents verifi cation techniques to serve as 
a foundation for learning and using the SystemVerilog language. These guidelines 
emphasize coverage-driven random testing in a layered testbench environment. 

 Chapter 2,  Data Types , covers the new SystemVerilog data types such as arrays, 
structures, enumerated types, and packed arrays and structures. 

 Chapter 3,  Procedural Statements and Routines , shows the new procedural 
statements and improvements for tasks and functions. 

 Chapter 4,  Connecting the Testbench and Design , shows the new SystemVerilog 
verifi cation constructs, such as program blocks, interfaces, and clocking blocks, and 
how they are used to build your testbench and connect it to the design under test. 

 Chapter 5,  Basic OOP , is an introduction to Object-Oriented Programming, 
explaining how to build classes, construct objects, and use handles. 

 Chapter 6,  Randomization , shows you how to use SystemVerilog’s constrained-
random stimulus generation, including many techniques and examples. 

 Chapter 7,  Threads and Interprocess Communication , shows how to create 
multiple threads in your testbench, use interprocess communication to exchange 
data between these threads and synchronize them. 

 Chapter 8,  Advanced OOP and Testbench Guidelines , shows how to build a 
layered testbench with OOP so that the components can be shared by all tests. 

 Chapter 9,  Functional Coverage , explains the different types of coverage and 
how you can use functional coverage to measure your progress as you follow a 
verifi cation plan. 

 Chapter 10,  Advanced Interfaces , shows how to use virtual interfaces to sim-
plify your testbench code, connect to multiple design confi gurations, and create 
interfaces with procedural code so your testbench and design can work at a higher 
level of abstraction. 

 Chapter 11,  A Complete SystemVerilog Testbench , shows a constrained ran-
dom testbench using the guidelines shown in Chapter 8. Several tests are shown to 
demonstrate how you can easily extend the behavior of a testbench without editing 
the original code, which always carries risk of introducing new bugs. 

 Chapter 12,  Interfacing with C / C++ , describes how to connect your C or 
C++ Code to SystemVerilog using the Direct Programming Interface.  



xiPreface

   Icons used in this book     

   Table i.1    Book icons   

       The compass shows verifi cation methodology to guide 
your usage of SystemVerilog testbench features. 

       The bug shows common coding mistakes such as 
syntax errors, logic problems, or threading issues. 

   About the Authors 

 Chris Spear has been working in the ASIC design and verifi cation fi eld for 30 
years. He started his career with Digital Equipment Corporation (DEC) as a CAD 
Engineer on DECsim, connecting the fi rst Zycad box ever sold, and then a hard-
ware Verifi cation engineer for the VAX 8600, and a hardware behavioral simula-
tion accelerator. He then moved on to Cadence where he was an Application 
Engineer for Verilog-XL, followed a a stint at Viewlogic. Chris is currently 
employed at Synopsys Inc. as a Verifi cation Consultant, a title he created a dozen 
years ago. He has authored the fi rst and second editions of SystemVerilog for 
Verifi cation. Chris earned a BSEE from Cornell University in 1981. In his spare 
time, Chris enjoys road biking in the mountains and traveling with his wife. 

 Greg Tumbush has been designing and verifying ASICs and FPGAs for 13 
years. After working as a researcher in the Air Force Research Labs (AFRL) he 
moved to beautiful Colorado to work with Astek Corp as a Lead ASIC Design 
Engineer. He then began a 6 year career with Starkey Labs, AMI Semiconductor, 
and ON Semiconductor where he was an early adopter of SystemC and 
SystemVerilog. In 2008, Greg left ON Semiconductor to form Tumbush 
Enterprises, where he has been consulting clients in the areas of design, verifi ca-
tion, and backend to ensure fi rst pass success. He is also a 1/2 time Instructor at 
the University of Colorado, Colorado Springs where he teaches senior and gradu-
ate level digital design and verifi cation courses. He has numerous publications 
which can be viewed at    www.tumbush.com     . Greg earned a PhD from the 
University of Cincinnati in 1998.  

http://www.tumbush.com


xii Preface

   Final comments 

 If you would like more information on SystemVerilog and Verifi cation, you can fi nd 
many resources at:   http://chris.spear.net/systemverilog    . This site 
has the source code for many of the examples in this book. Academics who want to 
use this book in their classes can access slides, tests, homework problems, solutions, 
and a sample syllabus at   http://extras.springer.com     .

 Most of the code samples in the book were verifi ed with Synopsys’ Chronologic 
VCS, Mentor’s QuestaSim, and Cadence Incisive. Any errors were caused by Chris’ 
evil twin, Skippy. If you think you have found a mistake in this book, please check 
his web site for the Errata page. If you are the fi rst to fi nd a technical mistake in a 
chapter, we will send you a free, autographed book. Please include “SystemVerilog” 
in the subject line of your email.

Chris Spear 
Greg Tumbush

http://chris.spear.net/systemverilog
http://extras.springer.com
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    Some believed we lacked the programming language 
to describe your perfect world … 

 ( The Matrix, 1999 )   

 Imagine that you are given the job of building a house for someone. Where should 
you begin? Do you start by choosing doors and windows, picking out paint and 
carpet colors, or selecting bathroom fi xtures? Of course not! First you must consider 
how the owners will use the space, and their budget, so you can decide what type of 
house to build. Questions you should consider are: Do they enjoy cooking and want 
a high-end kitchen, or will they prefer watching movies in their home theater room 
and eating takeout pizza? Do they want a home offi ce or an extra bedroom? Or does 
their budget limit them to a more modest house? 

 Before you start to learn details of the SystemVerilog language, you need to 
understand how you plan to verify your particular design and how this infl uences 
the testbench structure. Just as all houses have kitchens, bedrooms, and bathrooms, 
all testbenches share some common structure of stimulus generation and response 
checking. This chapter introduces a set of guidelines and coding styles for designing 
and constructing a testbench that meets your particular needs. These techniques use 
some of the same concepts that are shown in the  Verifi cation Methodology Manual 
for SystemVerilog  (VMM), Bergeron et al. (2006), but without the base classes. 
Other methodologies such as UVM and OVM share the same concepts. 

 The most important principle you can learn as a verifi cation engineer is: “Bugs 
are good.” Don’t shy away from fi nding the next bug, do not hesitate to ring a bell 
each time you uncover one, and furthermore, always keep track of the details 
of each bug found. The entire project team assumes there are bugs in the design, so 
each bug found before tape-out is one fewer that ends up in the customer’s hands. 
At each stage in the design cycle such as specifi cation, coding, synthesis, manufac-
turing, the cost of fi xing a bug goes up by a factor of 10, so fi nd those bugs early and 
often. You need to be as devious as possible, twisting and torturing the design to 

    Chapter 1   
 Verifi cation Guidelines                  



2 1 Verifi cation Guidelines

extract all possible bugs now, while they are still easy to fi x. Don’t let the designers 
steal all the glory — without your craft and cunning, the design might never work! 

 This book assumes you already know the Verilog language and want to learn the 
System Verilog Hardware Verifi cation Language (HVL). Some of the typical fea-
tures of an HVL that distinguish it from a Hardware Description Language such as 
Verilog or VHDL are:

   Constrained-random stimulus generation  • 
  Functional coverage  • 
  Higher-level structures, especially Object-Oriented Programming, and transaction-• 
level modeling  
  Multi-threading and interprocess communication (IPC)  • 
  Support for HDL types such as Verilog’s 4-state values  • 
  Tight integration with event-simulator for control of the design    • 

 There are many other useful features, but these allow you to create testbenches 
at a higher level of abstraction than you are able to achieve with an HDL or a 
 programming language such as C. 

    1.1   The Verifi cation Process 

 What is the goal of verifi cation? If you answered, “Finding bugs,” you are only 
partly correct. The goal of hardware design is to create a device that performs a 
particular task, such as a DVD player, network router, or radar signal processor, 
based on a design specifi cation. Your purpose as a verifi cation engineer is to make 
sure the device can accomplish that task successfully — that is, the design is an 
accurate representation of the specifi cation. Bugs are what you get when there is a 
discrepancy. The behavior of the device when used outside of its original purpose is 
not your responsibility, although you want to know where those boundaries lie. 

 The process of verifi cation parallels the design creation process. A designer reads 
the hardware specifi cation for a block, interprets the human language description, 
and creates the corresponding logic in a machine-readable form, usually RTL code. 
To do this, he or she needs to understand the input format, the transformation func-
tion, and the format of the output. There is always ambiguity in this interpretation, 
perhaps because of ambiguities in the original document, missing details, or con-
fl icting descriptions. As a verifi cation engineer, you must also read the hardware 
specifi cation, create the verifi cation plan, and then follow it to build tests showing 
the RTL code correctly implements the features. Therefore, as a verifi cation engi-
neer, not only do you have to understand the design and its intent, but also, you have 
to consider all the corner test cases that the designer might not have thought about. 

 By having more than one person perform the same interpretation, you have 
added redundancy to the design process. As the verifi cation engineer, your job is 
to read the same hardware specifi cations and make an independent assessment of 
what they mean. Your tests then exercise the RTL to show that it matches your 
interpretation. 



31.1 The Verifi cation Process

    1.1.1   Testing at Different Levels 

 What types of bugs are lurking in the design? The easiest ones to detect are at the 
block level, in modules created by a single person. Did the ALU correctly add two 
numbers? Did every bus transaction successfully complete? Did all the packets make 
it through a portion of a network switch? It is almost trivial to write directed tests to 
fi nd these bugs, as they are contained entirely within one block of the design. 

 After the block level, the next place to look for discrepancies is at boundaries 
between blocks. This is known as the integration phase. Interesting problems arise 
when two or more designers read the same description yet have different interpreta-
tions. For a given protocol, what signals change and when? The fi rst designer builds 
a bus driver with one view of the specifi cation, while a second builds a receiver with 
a slightly different view. Your job is to fi nd the disputed areas of logic and maybe 
even help reconcile these two different views. 

 To simulate a single design block, you need to create tests that generate stimuli 
from all the surrounding blocks — a diffi cult chore. The benefi t is that these low-
level simulations run very fast. However, you may fi nd bugs in both the design and 
testbench, as the latter requires a great deal of code to provide stimuli from the 
missing blocks. As you start to integrate design blocks, they can stimulate each 
other, reducing your workload. These multiple block simulations may uncover more 
bugs, but they also run slower. Analyzing the behavior to determine the root cause 
of a bug is more time consuming at higher levels. 

 At the highest level of the Design Under Test (DUT), the entire system is tested, 
but the simulation performance is greatly reduced. Your tests should strive to have 
all blocks performing interesting activities concurrently. All I/O ports are active, 
processors are crunching data, and caches are being refi lled. With all this action, 
data alignment and timing bugs are sure to occur. 

 At this level you are able to run sophisticated tests that have the DUT executing 
multiple operations concurrently so that as many blocks as possible are active. What 
happens if an MP3 player is playing music and the user tries to download new music 
from the host computer? Then, during the download, the user presses several of the 
buttons on the player? You know that when the real device is being used, someone 
is going to do all this, so why not try it out before it is built? This testing makes the 
difference between a product that is seen as easy to use and one that repeatedly 
locks up. 

 Once you have verifi ed that the DUT performs its designated functions correctly, 
you need to see how it operates when there are errors. Can the design handle a par-
tial transaction, or one with corrupted data or control fi elds? Just trying to enumer-
ate all the possible problems is diffi cult, not to mention determining how the design 
should recover from them. Error injection and handling can be the most challenging 
part of verifi cation. 

 As you move to system-level verifi cation, the challenges also move to a higher 
level. At the block level, you can show that individual cells fl ow through the blocks 
of an ATM router correctly, but at the system level you might have to consider what 
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happens if there are streams of different priority. Which cell should be chosen next 
is not always obvious at the highest level. You may have to analyze the statistics 
from thousands of cells to see if the aggregate behavior is correct. 

 One last point: you can never prove there are no bugs left, so you need to con-
stantly come up with new verifi cation tactics.  

    1.1.2   The Verifi cation Plan 

 The verifi cation plan is derived from the hardware specifi cation and contains a 
description of what features need to be exercised and the techniques to be used. These 
steps may include directed or random testing, assertions, HW/SW co-verifi cation, 
emulation, formal proofs, and use of verifi cation IP. For a more complete discussion 
on verifi cation see Bergeron (2006).   

    1.2   The Verifi cation Methodology Manual 

 The book in your hands draws upon the VMM that has its roots in a methodology 
developed by Janick Bergeron and others at Qualis Design. They started with 
industry-standard practices and refi ned them based on their experience on many 
projects. VMM’s techniques were originally developed for use with the OpenVera 
language and were extended in 2005 for SystemVerilog. VMM and its predecessor, 
the Reference Verifi cation Methodology (RVM) for Vera, have been used success-
fully to verify a wide range of hardware designs, from networking devices to pro-
cessors. Newer methodologies such as OVM and UVM use many similar ideas. 
This book is based on many of the same concepts as all these methodologies, 
though greatly simplifi ed. 

 This book serves as a user guide for the SystemVerilog language. It describes 
many language constructs and provides guidelines for choosing the ones best suited 
to your needs. If you are new to verifi cation, have little experience with Object-
Oriented Programming (OOP), or are unfamiliar with constrained-random tests 
(CRT), this book can show you the right path to choose. Once you are familiar with 
them, you will fi nd UVM and VMM to be an easy step up. 

 So why doesn’t this book teach you UVM or VMM? Like any advanced tool, 
these methodologies were designed for use by an experienced user, and excel on 
diffi cult problems. Are you in charge of verifying a 100 million-gate design with 
many communication protocols, complex error handling, and a library of IP? If so, 
UVM or VMM are the right tools for the job. However, if you are working on smaller 
modules with a single protocol, you may not need such a robust methodology. Just 
remember that your block is part of a larger system; UVM- or VMM-compliant code 
is reusable both during a project and on later designs. The cost of verifi cation goes 
beyond your immediate project. 
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 The UVM and VMM have a set of base classes for data and environment, utilities 
for managing log fi les and interprocess communication, and much more. This book 
is an introduction to SystemVerilog and shows the techniques and tricks that go into 
these classes and utilities, giving you insight into their construction.  

    1.3   Basic Testbench Functionality 

 The purpose of a testbench is to determine the correctness of the DUT. This is 
accomplished by the following steps.

   Generate stimulus  • 
  Apply stimulus to the DUT  • 
  Capture the response  • 
  Check for correctness  • 
  Measure progress against the overall verifi cation goals    • 

 Some steps are accomplished automatically by the testbench, while others are 
manually determined by you. The methodology you choose determines how the 
preceding steps are carried out.  

    1.4   Directed Testing 

 Traditionally, when faced with the task of verifying the correctness of a design, you 
probably used directed tests. Using this approach, you look at the hardware specifi -
cation and write a verifi cation plan with a list of tests, each of which concentrated 
on a set of related features. Armed with this plan, you write stimulus vectors that 
exercise these features in the DUT. You then simulate the DUT with these vectors 
and manually review the resulting log fi les and waveforms to make sure the design 
does what you expect. Once the test works correctly, you check it off in the verifi ca-
tion plan and move to the next one. 

 This incremental approach makes steady progress, which is always popular with 
managers who want to see a project making headway. It also produces almost imme-
diate results, since little infrastructure is needed when you are guiding the creation 
of every stimulus vector. Given ample time and staffi ng, directed testing is suffi cient 
to verify many designs. 

 Figure  1.1   shows how directed tests incrementally cover the features in the veri-
fi cation plan. Each test is targeted at a very specifi c set of design elements. If you 
had enough time, you could write all the tests needed for 100% coverage of the 
entire verifi cation plan.  

 What if you do not have the necessary time or resources to carry out the directed 
testing approach? As you can see, while you may always be making forward prog-
ress, the slope remains the same. When the design complexity doubles, it takes 
twice as long to complete or requires twice as many people to implement it. 
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Neither of these situations is desirable. You need a methodology that fi nds bugs 
faster in order to reach the goal of 100% coverage. Brute force does not work; if 
you tried to verify every combination of inputs for a 32-bit adder, your simulations 
would still be running years after the project should have shipped. 

 Figure  1.2   shows the total design space and features that are covered by directed 
test cases. In this space there are many features, some of which have bugs. You need 
to write tests that cover all the features and fi nd the bugs.   

Test

Feature

BugTestTest

Feature

Bug

Feature

Bug

  Fig. 1.2     Directed test coverage       
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  Fig. 1.1     Directed test progress over time       

    1.5   Methodology Basics 

 This book uses the following principles.

   Constrained-random stimulus  • 
  Functional coverage  • 
  Layered testbench using transactors  • 
  Common testbench for all tests  • 
  Test case-specifi c code kept separate from testbench    • 
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 All these principles are related. Random stimulus is crucial for exercising 
 complex designs. A directed test fi nds the bugs you expect to be in the design, 
whereas a random test can fi nd bugs you never anticipated. When using random 
stimuli, you need functional coverage to measure verifi cation progress. Furthermore, 
once you start using automatically generated stimuli, you need an automated way 
to predict the results — generally a scoreboard or reference model. Building the 
testbench infrastructure, including self-prediction, takes a signifi cant amount of 
work. A layered testbench helps you control the complexity by breaking the prob-
lem into manageable pieces. Transactors provide a useful pattern for building these 
pieces. With appropriate planning, you can build a testbench infrastructure that can 
be shared by all tests and does not have to be continually modifi ed. You just need 
to leave “hooks” where the tests can perform certain actions such as shaping 
the stimulus and injecting disturbances. Conversely, code specifi c to a single test 
must be kept separate from the testbench to prevent it from complicating the 
infrastructure. 

 Building this style of testbench takes longer than a traditional directed 
testbench — especially the self-checking portions. As a result, there may be a 
signifi cant delay before the fi rst test can be run. This gap can cause a manager to 
panic, so make this effort part of your schedule. In Fig.  1.3  , you can see the initial 
delay before the fi rst random test runs.  
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  Fig. 1.3     Constrained-random test progress over time vs. directed testing       

 While this up-front work may seem daunting, the payback is high. Every random 
test you create shares this common testbench, as opposed to directed tests where 
each is written from scratch. Each random test contains a few dozen lines of code to 
constrain the stimulus in a certain direction and cause any desired exceptions, such 
as creating a protocol violation. The result is that your single constrained-random 
testbench is now fi nding bugs faster than the many directed ones. 

 As the rate of discovery begins to drop off, you can create new random con-
straints to explore new areas. The last few bugs may only be found with directed 
tests, but the vast majority of bugs will be found with random tests. If you create a 
random testbench, you can always constrain it to created directed tests, but a directed 
testbench can never be turned into a true random testbench.  
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    1.6   Constrained-Random Stimulus 

 Although you want the simulator to generate the stimulus, you don’t want totally 
random values. You use the SystemVerilog language to describe the format of the 
stimulus (“address is 32-bits; opcode is ADD, SUB or STORE; length < 32 bytes”), 
and the simulator picks values that meet the constraints. Constraining the random 
values to become relevant stimuli is covered in   Chapter 6    . These values are sent into 
the design, and are also sent into a high-level model that predicts what the result 
should be. The design’s actual output is compared with the predicted output. 

 Figure  1.4   shows the coverage for constrained-random tests over the total design 
space. First, notice that a random test often covers a wider space than a directed one. 
This extra coverage may overlap other tests, or may explore new areas that you did 
not anticipate. If these new areas fi nd a bug, you are in luck! If the new area is not 
legal, you need to write more constraints to keep random generation from creating 
illegal design functionality. Lastly, you may still have to write a few directed tests to 
fi nd cases not covered by any other constrained-random tests.  

 Figure  1.5   shows the paths to achieve complete coverage. Start at the upper 
left with basic constrained-random tests. Run them with many different seeds. 
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  Fig. 1.4     Constrained-random test coverage       
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  Fig. 1.5     Coverage convergence       
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When you look at the functional coverage reports, fi nd the holes where there are 
gaps in the coverage. Then you make minimal code changes, perhaps by using new 
constraints, or by injecting errors or delays into the DUT. Spend most of your time 
in this outer loop, writing directed tests for only the few features that are very 
unlikely to be reached by random tests.   

    1.7   What Should You Randomize? 

 When you think of randomizing the stimulus to a design, you might fi rst pick 
the data fi elds. These values are is the easiest to create — just call  $random () . The 
problem is that this choice gives a very low payback in terms of bugs found. The 
primary types of bugs found with random data are data path errors, perhaps with 
bit-level mistakes. You need to fi nd bugs in the control logic, source of the most 
devious problems. 

 Think broadly about all design inputs, such as the following.

   Device confi guration  • 
  Environment confi guration  • 
  Input data  • 
  Protocol exceptions  • 
  Errors and violations  • 
  Delays    • 

 These are discussed in sections  1.7.1  through  1.7.4 . 

    1.7.1   Device and Environment Confi guration 

 What is the most common reason why bugs are missed during testing of the RTL 
design? Not enough different confi gurations are tried. Most tests just use the design 
as it comes out of reset, or apply a fi xed set of initialization vectors to put it into a 
known state. This is like testing a PC’s operating system right after it has been 
installed, but without any of the applications installed. Of course the performance is 
fi ne and there aren’t any crashes. 

 In a real world environment, the DUT’s confi guration becomes more random the 
longer it is in use. For example, I helped a company verify a time-division multi-
plexor switch that had 2000 input channels and 12 output channels. The verifi cation 
engineer said, “These channels could be mapped to various confi gurations on the 
other side. Each input could be used as a single channel, or further divided into 
multiple channels. The tricky part is that although a few standard ways of breaking 
it down are used most of the time, any combination of breakdowns is legal, leaving 
a huge set of possible customer confi gurations.” 

 To test this device, the engineer had to write several dozen lines of directed test-
bench code to confi gure each channel. As a result, she was never able to try confi gura-
tions with more than a handful of channels. Together, we wrote a testbench that 
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randomized the parameters for a single channel and then put this in a loop to confi gure 
all the switch’s channels. Now she had confi dence that her tests would uncover 
 confi guration-related bugs that would have been missed before. 

 In the real world, your device operates in an environment containing other compo-
nents. When you are verifying the DUT, it is connected to a testbench that mimics this 
environment. You should randomize the entire environment confi guration, including 
the length of the simulation, number of devices, and how they are confi gured. 
Of course you need to create constraints to make sure the confi guration is legal. 

 In another Synopsys customer example, a company created an I/O switch chip 
that connected multiple PCI buses to an internal memory bus. At the start of simula-
tion they randomly chose the number of PCI buses (1–4), the number of devices on 
each bus (1–8), and the parameters for each device (master or slave, CSR addresses, 
etc.). They kept track of the tested combinations using functional coverage so that 
they could be sure that they had covered almost every possible one. 

 Other environment parameters include test length, error injection rates, and delay 
modes. See Bergeron (2006) for more examples.  

    1.7.2   Input Data 

 When you read about random stimulus, you probably thought of taking a transac-
tion such as a bus write or ATM cell and fi lling the data fi elds with random values. 
Actually, this approach is fairly straightforward as long as you carefully prepare 
your transaction classes as shown in   Chapters 5     and   8    . You need to anticipate any 
layered protocols and error injection, plus scoreboarding and functional coverage.  

    1.7.3   Protocol Exceptions, Errors, and Violations 

 There are few things more frustrating than when a device such as a PC or cell phone 
locks up. Many times, the only cure is to shut it down and restart. Chances are that 
deep inside the product there is a piece of logic that experienced some sort of error 
condition from which it could not recover and thus prevented the device from work-
ing correctly. 

 How can you prevent this from happening to the hardware you are building? If 
something can go wrong in the real hardware, you should try to simulate it. Look at 
all the errors that can occur. What happens if a bus transaction does not complete? 
If an invalid operation is encountered? Does the design specifi cation state that two 
signals are mutually exclusive? Drive them both and make sure the device continues 
to operate properly. 

 Just as you are trying to provoke the hardware with ill-formed commands, 
you should also try to catch these occurrences. For example, recall those mutually 
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exclusive signals. You should add checker code to look for these violations. Your 
code should at least print a warning message when this occurs, and preferably gen-
erate an error and wind down the test. It is frustrating to spend hours tracking back 
through code trying to fi nd the root of a malfunction, especially when you could 
have caught it close to the source with a simple assertion. See Vijayaraghavan 
[2005] for more guidelines on writing assertions in your testbench and design code. 
Just make sure that you can disable the code that stops simulation on error so that 
you can easily test error handling.  

    1.7.4   Delays and Synchronization 

 How fast should your testbench send in stimulus? You should pick random delays 
to help catch protocol bugs. A test with the shortest delays is easy to write, but won’t 
create all possible stimulus combinations. Subtle bugs around boundary conditions 
are often revealed when realistic delays are chosen. 

 A block may function correctly for all possible permutations of stimulus from a 
single interface, but subtle errors may occur when transactions are fl owing into 
multiple inputs. Try to coordinate the various drivers so they can communicate at 
different timing rates. What if the inputs arrive at the fastest possible rate, but the 
output is being throttled back to a slower rate? What if stimulus arrives at multiple 
inputs concurrently? What if it is staggered with different delays? Use functional 
coverage, which will be discussed in   Chapter 9    , to measure what combinations have 
been randomly generated.  

    1.7.5   Parallel Random Testing 

 How should you run the tests? A directed test has a testbench that produces a unique 
set of stimulus and response vectors. To change the stimulus, you need to change the 
test. A random test consists of the testbench code plus a random seed. If you run the 
same test 50 times, each time with a unique seed, you will get 50 different sets of 
stimuli. Running with multiple seeds broadens the coverage of your test and lever-
ages your work. 

 You need to choose a unique seed for each simulation. Some people use the time 
of day, but that can still cause duplicates. What if you are using a batch queuing 
system across a CPU farm and tell it to start 10 jobs at midnight? Multiple jobs 
could start at the same time but on different computers, and will thus get the same 
random seed and run the same stimulus. You should blend in the processor name to 
the seed. If your CPU farm includes multiprocessor machines, you could have two 
jobs start running at midnight with the same seed, so you should also throw in the 
process ID. Now all jobs get unique seeds. 
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     You need to plan how to organize your fi les to handle multiple 
simulations. Each job creates a set of output fi les, such as log fi les 
and functional coverage data. You can run each job in a different 
directory, or you can try to give a unique name to each fi le. The easiest 
approach is to append the random seed value to the directory name.   

    1.8   Functional Coverage 

 Sections  1.6  and  1.7  showed how to create stimuli that can randomly walk through 
the entire space of possible inputs. With this approach, your testbench visits some 
areas often, but takes too long to reach all possible states. Unreachable states will 
never be visited, even given unlimited simulation time. You need to measure what 
has been verifi ed in order to check off items in your verifi cation plan. 

 The process of measuring and using functional coverage consists of several 
steps. First, you add code to the testbench to monitor the stimulus going into the 
device, and its reaction and response, to determine what functionality has been 
exercised. Run several simulations, each with a different seed. Next, merge the 
results from these simulations into a report. Lastly, you need to analyze the results 
and determine how to create new stimulus to reach untested conditions and logic. 
  Chapter 9     describes functional coverage in SystemVerilog. 

    1.8.1   Feedback from Functional Coverage to Stimulus 

 A random test evolves using feedback. The initial test can be run with many differ-
ent seeds, thus creating many unique input sequences. Eventually the test, even with 
a new seed, is less likely to generate stimulus that reaches areas of the design space. 
As the functional coverage asymptotically approaches its limit, you need to change 
the test to fi nd new approaches to reach uncovered areas of the design. This is 
known as “coverage-driven verifi cation” and is shown in Fig.  1.6  .  
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  Fig. 1.6     Test progress with and without feedback       
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 What if your testbench were smart enough to do this for you? In a previous job, 
I wrote a test that generated every bus transaction for a processor and additionally 
fi red every bus terminator (Success, Parity Error, Retry) in every cycle. This was 
before HVLs, so I wrote a long set of directed tests and spent days lining up the 
terminator code to fi re at just the right cycles. After much hand analysis I declared 
success — 100% coverage. Then the processor’s timing changed slightly! Now 
I had to reanalyze the test and change the stimuli. 

 A more productive testing strategy uses random transactions and terminators. 
The longer you run it, the higher the coverage. As a bonus, the test can be made 
fl exible enough to create valid stimuli even if the design’s timing changed. You can 
accomplish this by adding a feedback loop that looks at the stimulus created so far 
(generated all write cycles yet?) and then change the constraint weights (drop write 
weight to zero). This improvement would greatly reduce the time needed to get to 
full coverage, with little manual intervention. 

 This is not a typical situation however, because of the trivial feedback from func-
tional coverage to the stimulus. In a real design, how should you change the stimu-
lus to reach a desired design state? This requires deep knowledge of the design and 
powerful formal techniques. There are no easy answers, so dynamic feedback is 
rarely used for constrained-random stimulus. Instead, you need to manually analyze 
the functional coverage reports and alter your random constraints. 

 Feedback is used in formal analysis tools such as Magellan (Synopsys 2003). 
It analyzes a design to fi nd all the unique, reachable states. It then runs a short simu-
lation to see how many states were visited. Lastly, it searches from the state machine 
to the design inputs to calculate the stimulus needed to reach any remaining states 
and then Magellan applies this to the DUT.   

    1.9   Testbench Components 

 In simulation, the testbench wraps around the DUT, just as a hardware tester con-
nects to a physical chip, as shown in Fig.  1.7  . Both the testbench and tester provide 
stimulus and capture responses. The difference between them is that your testbench 
needs to work over a wide range of levels of abstraction, creating transactions and 
sequences, which are eventually transformed into bit vectors. A tester just works at 
the bit level.  
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  Fig. 1.7     The testbench — design environment       
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 What goes into that testbench block? It is comprised of many Bus Functional 
Models (BFM), which you can think of as testbench components — to the DUT 
they look like real components, but they are part of the testbench, not the RTL 
design. If the real device connects to AMBA, USB, PCI, and SPI buses, you have to 
build equivalent components in your testbench that can generate stimulus and check 
the response, as shown in Fig.  1.8  . These are not detailed, synthesizable models, but 
instead highlevel transactors that obey the protocol, and execute more quickly. On 
the other hand, if you are prototyping using FPGAs or emulation, the BFMs do need 
to be synthesizable.   
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  Fig. 1.8     Testbench components       

    1.10   Layered Testbench 

 A key concept for any modern verifi cation methodology is the layered testbench. 
Although this process may seem to make the testbench more complex, it actually 
helps to make your task easier by dividing the code into smaller pieces that can be 
developed separately. Don’t try to write a single routine that can randomly generate 
all types of stimuli, both legal and illegal, plus inject errors with a multi-layer 
 protocol. The routine quickly becomes complex and unmaintainable. In addition, a 
layered approach allows reuse and encapsulation of Verifi cation IP (VIP) which are 
OOP concepts. 

    1.10.1   A Flat Testbench 

 When you fi rst learned Verilog and started writing tests, they probably looked like 
the low-level code in Sample  1.1  , which does a simplifi ed APB (AMBA Peripheral 
Bus) Write. (VHDL users may have written similar code).  
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 After a few days of writing code like this, you probably realized that it is very 
repetitive, so you created tasks for common operations such as a bus write, as shown 
in Sample  1.2  .  

  Sample 1.1     Driving the APB pins       
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 By taking the common actions (such as reset, bus reads and writes) and putting 
them in a routine, you became more effi cient and made fewer mistakes. This cre-
ation of the physical and command layers is the fi rst step to a layered testbench.  

 Now your testbench became simpler, as shown in Sample  1.3      

  Sample 1.2     A task to drive the APB pins       

  Sample 1.3     Low-level Verilog test        



171.10 Layered Testbench

    1.10.2   The Signal and Command Layers 

 Figure  1.9   shows the lower layers of a testbench.  
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  Fig. 1.9     Signal and command layers       
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  Fig. 1.10    Testbench with functional layer added       

 At the bottom is the signal layer that contains the design under test and the sig-
nals that connect it to the testbench. 

 The next higher level is the command layer. The DUT’s inputs are driven by the 
driver that runs single commands, such as bus read or write. The DUT’s output 
drives the monitor that takes signal transitions and groups them together into com-
mands. Assertions also cross the command/signal layer, as they look at individual 
signals and also changes across an entire command.  

    1.10.3   The Functional Layer 

 Figure  1.10  shows the testbench with the functional layer added, which feeds down 
into the command layer. The agent block (called the transactor in the VMM) receives 
higher-level transactions such as DMA read or write and breaks them into individ-
ual commands or transactions. These commands are also sent to the scoreboard that 
predicts the results of the transaction. The checker compares the commands from 
the monitor with those in the scoreboard.   
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    1.10.4   The Scenario Layer 

 The functional layer is driven by the generator in the scenario layer, as shown in 
Fig.  1.11 . What is a scenario? Remember that your job as a verifi cation engineer is 
to make sure that this device accomplishes its intended task. An example device is 
an MP3 player that can concurrently play music from its storage, download new 
music from a host, and respond to input from the user, such as adjusting the vol-
ume and track controls. Each of these operations is a scenario. Downloading a 
music fi le takes several steps, such as control register reads and writes to set up the 
operation, multiple DMA writes to transfer the song, and then another group of 
reads and writes. The scenario layer of your testbench orchestrates all these steps 
with constrained-random values for parameters such as track size and memory 
location.  
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  Fig. 1.11    Testbench with scenario layer added       

 The blocks in the testbench environment (inside the dashed line of Fig.  1.11 ) are 
written at the beginning of development. During the project they may evolve and 
you may add functionality, but these blocks should not change for individual tests. 
This is done by leaving “hooks” in the code so that a test can change the behavior 
of these blocks without having to rewrite them. You create these hooks with factory 
patterns (Section 8.2) and callbacks (Section 8.7).  

    1.10.5   The Test Layer and Functional Coverage 

 You are now at the top of the testbench, in the test layer, as shown in Fig.  1.12 . 
Design bugs that occur between DUT blocks are harder to fi nd as they involve mul-
tiple people reading and interpreting multiple specifi cations.  

 This top-level test is the conductor: he does not play any musical instrument, but 
instead guides the efforts of others. The test contains the constraints to create the 
stimulus. 

 Functional coverage measures the progress of all tests in fulfi lling the verifi ca-
tion plan requirements. The functional coverage code changes through the project 
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as the various criteria complete. This code is constantly being modifi ed and thus it 
is not part of the environment. 

 You can create a directed test in a constrained-random environment. Simply 
insert a section of directed test code into the middle of a random sequence, or put 
the two pieces of code in parallel. The directed code performs the work you want, 
but the random “background noise” may cause a bug to become visible, perhaps in 
a block that you never considered. 

DUT

AssertionsDriver Monitor

Test

Scoreboard Checker

Generator

F
unctional C

overage

Environment

AgentAgent

  Fig. 1.12    Full testbench with all layers       

 Do you need all these layers in your testbench? The answer depends on what 
your DUT looks like. A complicated design requires a sophisticated testbench. You 
always need the test layer. For a simple design, the scenario layer may be so simple 
that you can merge it with the agent. When estimating the effort to test a design, 
don’t count the number of gates; count the number of designers. Every time you add 
another person to the team, you increase the chance of different interpretations of 
the specifi cations. Typical hardware teams need more than two verifi cation engi-
neers for every designer. 

 You may need more layers. If your DUT has several protocol layers, each should 
get its own layer in the testbench environment. For example, if you have TCP traffi c 
that is wrapped in IP and sent in Ethernet packets, consider using three separate lay-
ers for generation and checking. Better yet, use existing verifi cation components. 

 One last note about Fig.  1.12 . It shows some of the possible connections between 
blocks, but your testbench may have a different set. The test may need to reach 
down to the driver layer to force physical errors. What has been described here is 
just guidelines — let your needs guide what you create.   

    1.11   Building a Layered Testbench 

 Now it is time to take the preceding fi gures and learn how to map the components 
into SystemVerilog constructs. 
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 The driver shown in Fig.  1.13  receives commands from the agent. The driver 
may inject errors or add delays. It then breaks the command down into individual 
signal changes such as bus requests and handshakes. The general term for such a 
testbench block is a “transactor,” which, at its core, is a loop. Sample code for a 
transactor is shown in Sample  1.4  .   

    1.11.1   Creating a Simple Driver 

 First, take a closer look at one of the blocks, the driver. 

  Sample 1.4     Basic transactor code       

DUT

Driver

Agent

  Fig. 1.13    Connections for the driver       

   Chapter 5     presents basic OOP and how to create an object that includes the rou-
tines and data for a transactor. Another example of a transactor is the agent. It might 
break apart a complex transaction such as a DMA read into multiple bus commands. 
Also in   Chapter 5    , you will see how to build an object that contains the data and 
routines that make up a command. These objects are sent between transactors using 
SystemVerilog mailboxes. In   Chapter 7    , you will learn about many ways to exchange 
data between the different layers and to synchronize the transactors.   

    1.12   Simulation Environment Phases 

 Up until now you have been learning what parts make up the environment. When do 
these parts execute? You want to clearly defi ne the phases to coordinate the test-
bench so that all the code for a project works together. The three primary phases are 
Build, Run, and Wrap-up. Each is divided into smaller steps. These three are a sub-
set of the many phases of the UVM and VMM. 
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 The Build phase is divided into the following steps:
    • Generate confi guration : Randomize the confi guration of the DUT and the sur-
rounding environment.  
   • Build environment : Allocate and connect the testbench components based on the 
confi guration. A testbench component is one that only exists in the testbench, as 
opposed to physical components in the design that are built with RTL code. For 
example, if the confi guration chose three bus drivers, the testbench would allo-
cate and initialize them in this step.  
   • Reset the DUT .  
   • Confi gure the DUT : Based on generated confi guration from the fi rst step, load 
the DUT command registers.    

 The Run phase is where the test actually runs. It has the following steps:
    • Start environment : Run the testbench components such as BFMs and stimulus 
generators.  
   • Run the test : Start the test and then wait for it to complete. It is easy to tell when 
a directed test has completed, but doing so can be complex for a random test. You 
can use the testbench layers as a guide. Starting from the top, wait for a layer to 
drain all the inputs from the previous layer (if any), wait for the current layer 
to become idle, and then wait for the next lower layer. You should also use time-
out checkers to ensure that the DUT or testbench does not lock up.    

 The Wrap-up phase has two steps:
    • Sweep : After the lowest layer completes, you need to wait for the fi nal transac-
tions to drain out of the DUT.  
   • Report : Once the DUT is idle, sweep the testbench for lost data. Sometimes the 
scoreboard holds transactions that never came out, perhaps because they were 
dropped by the DUT. Armed with this information, you can create the fi nal report 
on whether the test passed or failed. If it failed, be sure to delete any functional 
coverage results, as they may not be correct.    

 As shown in Fig.  1.12 , the test starts the environment, which, in turn, runs each of 
the steps. More details can be found in   Chapter 8    .  

    1.13   Maximum Code Reuse 

 To verify a complex device with hundreds of features, you have to write hundreds 
of directed tests. If you use constrained-random stimulus, you would write fewer 
tests. Instead, the real work is put into constructing the testbench, which contains all 
the lower testbench layers: scenario, functional, command, and signal. This test-
bench code is used by all the tests, so it remains generic. 

 These guidelines appear to recommend an overly complicated testbench, but 
remember that every line that you put into a testbench can eliminate a line in every 
single test. If you know you will be creating a few dozen tests, there is a high pay-
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back in making a more sophisticated testbench. Keep this in mind when you read 
  Chapter 8    .  

    1.14   Testbench Performance 

 If this is the fi rst time you have seen this methodology, you probably have some 
qualms about how it works compared to directed testing. A common objection is 
testbench performance. A directed test often simulates in a few seconds, whereas 
constrained-random tests will wander around through the state space for minutes or 
even hours. The problem with this argument is that it ignores a real verifi cation 
bottleneck: the time required by you to create a test. You may be able to hand-craft 
a directed test in a day and debug it and manually verify the results by hand in 
another day or two. The actual simulation run time is dwarfed by the amount of time 
that you personally invested. 

 There are several steps to creating a constrained-random test. The fi rst and most 
signifi cant step is building the layered testbench, including the self-checking por-
tion. The benefi t of this work is shared by all tests, so it is well worth the effort. The 
second step is creating the stimulus specifi c to a goal in the verifi cation plan. You 
may be crafting random constraints, or devious ways of injecting errors or protocol 
violations. Building one of these may take more time than making several directed 
tests, but the payoff will be much higher. A constrained-random test that tries thou-
sands of different protocol variations is worth more than the handful of directed 
tests that could have been created in the same amount of time. 

 The third step in constrained-random testing is functional coverage. This task 
starts with the creation of a strong verifi cation plan with clear goals that can be easily 
measured. Next you need to create the SystemVerilog code that adds instrumentation 
to the environment and gathers the data. Finally, it is essential that you analyze the 
results to determine if you have met the goals, and, if not, how you should modify 
the tests.  

    1.15   Conclusion 

 The continuous growth in complexity of electronic designs requires a modern, sys-
tematic, and automated approach to creating testbenches. The cost of fi xing a bug 
grows by tenfold as a project moves from each step of specifi cation to RTL coding, 
gate synthesis, fabrication, and fi nally into the user’s hands. Directed tests only test 
one feature at a time and cannot create the complex stimulus and confi gurations that 
the device would be subjected to in the real world. To produce robust designs, you 
must use constrained-random stimulus combined with functional coverage to create 
the widest possible range of stimuli.  
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    1.16   Exercises 

     1.    Write a verifi cation plan for an Arithmetic Logic Unit (ALU) with:

   Asynchronous active high input reset  • 
  Input clock  • 
  4-bit signed inputs, A and B  • 
  5-bit signed output C that is registered on the positive edge of input clock.  • 
  4 opcodes• 

   Add: A + B   –
  Sub: A − B   –
  Bit-wise invert: A   –
  Reduction Or: B         –

    2.    What are the advantages and disadvantages to testing at the block level? Why?  
    3.    What are the advantages and disadvantages to testing at the system level? Why?  
    4.    What are the advantages and disadvantages to directed testing? Why?  
    5.    What are the advantages and disadvantages to constrained random testing? Why?         
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 SystemVerilog offers many improved data structures compared with Verilog. Some 
of these were created for designers but are also useful for testbenches. In this chapter 
you will learn about the data structures most useful for verifi cation. 

 System Verilog introduces new data types with the following benefi ts.
   Two-state: better performance, reduced memory usage  • 
  Queues, dynamic and associative arrays: reduced memory usage, built-in support • 
for searching and sorting  
  Classes and structures: support for abstract data structures  • 
  Unions and packed structures: allow multiple views of the same data  • 
  Strings: built-in string support  • 
  Enumerated types: code is easier to write and understand    • 

    2.1   Built-In Data Types 

 Verilog-1995 has two basic data types: variables and nets, both which hold 4-state 
values: 0, 1, Z, and X. RTL code uses variables to store combinational and sequen-
tial values. Variables can be unsigned single or multi-bit ( reg [7:0] m ), signed 
32-bit variables ( integer ), unsigned 64-bit variables ( time ), and fl oating point 
numbers ( real ). Variables can be grouped together into arrays that have a fi xed 
size. A net is used to connect parts of a design such as gate primitives and module 
instances. Nets come in many fl avors, but most designers use scalar and vector 
wires to connect together the ports of design blocks. Lastly, all storage is static, 
meaning that all variables are alive for the entire simulation and routines cannot use 
a stack to hold arguments and local values. Verilog-2001 allows you to switch 
between static and dynamic storage, such as stacks. 

 SystemVerilog adds many new data types to help both hardware designers and 
verifi cation engineers. 

    Chapter 2   
 Data Types                  
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    2.1.1   The Logic Type 

 The one thing in Verilog that always leaves new users scratching their heads is the 
difference between a  reg  and a  wire . When driving a port, which should you use? 
How about when you are connecting blocks? SystemVerilog improves the classic 
 reg  data type so that it can be driven by continuous assignments, gates, and mod-
ules, in addition to being a variable. It is given the synonym  logic  as some people 
new to Verilog thought that  reg  declared a digital register, and not a signal. A  logic  
signal can be used anywhere a net is used, except that a  logic  variable cannot 
be driven by multiple structural drivers, such as when you are modeling a bidirec-
tional bus. In this case, the variable needs to be a net type such as  wire  so that 
SystemVerilog can resolve the multiple values to determine the fi nal value. 

 Sample  2.1   shows the SystemVerilog  logic  type.  

  Sample 2.1     Using the logic type       

     You can use the  logic  type to fi nd netlist bugs as this type can 
only have a single driver. Rather than trying to choose between 
 reg  and  wire , declare all your signals as  logic , and you’ll get a 
compilation error if it has multiple drivers. Of course, any signal 
that you do want to have multiple drivers, such as a bidirectional 
bus, should be declared with a net type such as  wire  or  tri .  

    2.1.2   2-State Data Types 

 SystemVerilog introduces several 2-state data types to improve simulator perfor-
mance and reduce memory usage, compared to variables declared as 4-state types. 
The simplest type is the  bit , which is always unsigned. There are four signed 2-state 
types:  byte, shortint, int , and  longint . as shown in Sample  2.2  .  
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  Sample 2.2     Signed data types       

  Sample 2.3     Checking for 4-state values       

     You might be tempted to use types such as  byte  to replace more 
verbose declarations such as  logic [7:0] . Hardware design-
ers should be careful as these new types are signed variables, so 
a  byte  variable can only count up to 127, not the 255 you may 

expect. (It has the range −128 to +127.) You could use  byte  unsigned, but that is 
more verbose than  just bit [7:0] . Signed variables can also cause unexpected 
results with randomization, as discussed in   Chapter 6    . 

     Be careful connecting 2-state variables to the design under test, 
especially its outputs. If the hardware tries to drive an X or Z, these 
values are converted to a 2-state value, and your testbench code 
may never know. Don’t try to remember if they are converted to 
0 or 1; instead, always check for propagation of unknown values. 

Use the  $isunknown()  operator that returns 1 if any bit of the expression is X or Z, 
as shown in Sample  2.3  .  

 The format  %0t  and the argument  $time  print the current simulation time, for-
matted as specifi ed with the  $timeformat()  routine. Time values are explored in 
more detail in Section 3.7.   

    2.2   Fixed-Size Arrays 

 SystemVerilog offers several fl avors of arrays beyond the single-dimension, fi xed-
size Verilog-1995 arrays. Additionally, many new features have been added to sup-
port these data types. 
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    2.2.1   Declaring and Initializing Fixed-Size Arrays 

 Verilog requires that the low and high array limits must be given in the declaration. 
Since almost all arrays use a low index of 0, SystemVerilog lets you use the shortcut 
of just giving the array size, which is similar to C’s style, as shown in Sample  2.4  .  

  Sample 2.6     Declaring and using multi-dimensional arrays       

  Sample 2.5     Calculating the address width for a memory       

  Sample 2.4     Declaring fi xed-size arrays       

 How can you compute the number of bits needed to address a given array size? 
SystemVerilog has the  $clog2()  function that calculates the ceiling of log base 2, 
as shown in Sample  2.5  .  

 You can create multi-dimensional fi xed-size arrays by specifying the dimensions 
after the variable name. Sample  2.6   creates several two-dimensional arrays of inte-
gers, 8 entries by 4, and sets the last entry to 1. Multi-dimensional arrays were 
introduced in Verilog-2001, but the compact declaration style is new.  

 If your code accidently tries to read from an out-of-bounds address, System-
Verilog will return the default value for the array element type. That just means 
that an array of 4-state types, such as  logic , will return X’s, whereas an array of 
2-state types, such as  int  or  bit , will return 0. This applies for all array types – 
fi xed, dynamic, associative, or queue, and also if your address has an X or Z. An 
undriven net is Z. 

 Many SystemVerilog simulators store each element on a 32-bit word boundary. 
So a  byte, shortint , and  int  are all stored in a single word, whereas a  longint  
is stored in two words. 

 An unpacked array, such as the one shown in Sample  2.7  , stores the values in the 
lower portion of the word, whereas the upper bits are unused. The array of bytes, 
 b_unpack , is stored in three words, as shown in Fig.  2.1  .   
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  Sample 2.7     Unpacked array declarations       

b_unpack[1]
234567

Unused space
b_unpack[2]

b_unpack[0] 01
01234567
01234567

  Fig. 2.1     Unpacked array storage       

 Packed arrays are explained in Section  2.2.6 . 
 Simulators generally store 4-state types such as  logic  and  integer  in two or 

more consecutive words, using twice the storage as 2-state variables.  

    2.2.2   The Array Literal 

 Sample  2.8   shows how to initialize an array using an array literal, which is an apos-
trophe followed by the values in curly braces. (This is not the accent grave used for 
compiler directives and macros.) You can set some or all elements at once. You can 
replicate values by putting a count before the curly braces.  

  Sample 2.8     Initializing an array       

 Notice that in Sample  2.8  , the declaration of the array ascend includes an initial 
value. The 2009 LRM states that these variables must be declared either in a static 
block, or have the  static  keyword. Since this book recommends always declaring 
your test modules and programs as  automatic , you need to add the  static  key-
word to a declaration plus initialization when it is inside an  initial  block. 

 A great new feature in the 2009 LRM is printing with the %p format specifi er. 
This prints an assignment pattern that is equivalent to the data object’s value. You can 
print any data type in SystemVerilog including arrays, structures, classes, and more. 
Sample  2.9   shows how to print an array with the %p format specifi er.   
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    2.2.3   Basic Array Operations —  for  and  Foreach  

 The most common way to manipulate an array is with a  for  or  foreach  loop. In 
Sample  2.10 , the variable i is declared local to the  for  loop. The SystemVerilog 
function  $size  returns the size of the array. In the  foreach  loop, you specify the 
array name and an index in square brackets, and SystemVerilog automatically steps 
through all the elements of the array. The index variable is automatically declared 
for you and is local to the loop.  

  Sample 2.10    Using arrays with for- and foreach loops       

  Sample 2.11    Initialize and step through a multi-dimensional array       

  Sample 2.9     Printing with %p print specifi er       

 Note that in Sample  2.11 , the syntax of the  foreach  loop for multi-dimensional 
arrays may not be what you expected. Instead of listing each subscript in separate 
square brackets,  [i][j] , they are combined with a comma:  [i,j] .  

 The output from Sample  2.11  is shown in Sample  2.12 .  
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 You can omit some dimensions in the  foreach  loop if you don’t need to step 
through all of them. Sample  2.13  prints a two-dimensional array in a rectangle. 
It steps through the fi rst dimension in the outer loop, and then through the second 
dimension in the inner loop.  

  Sample 2.12    Output from printing multi-dimensional array values       

  Sample 2.13    Printing a multi-dimensional array       

 Sample  2.13  produces the output shown in Sample  2.14  .  

  Sample 2.14    Output from printing multi-dimensional array values       

 Lastly, a  foreach  loop iterates using the ranges in the original declaration. The 
array  f[5]  is equivalent to  f[0:4] , and a  foreach  (f[i])  is equivalent to  for 
 (int  i=0;i<=4;  i++ ). With the array  rev[6:2] , the statement  foreach(rev[i] ) is 
equivalent to  for(int i=6; i>=2; i-- ).  
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    2.2.4   Basic Array Operations – Copy and Compare 

 You can perform aggregate compare and copy of arrays without loops. (An aggregate 
operation works on the entire array as opposed to working on just an individual 
element.) Comparisons are limited to just equality and inequality. Sample  2.15  shows 
several examples of compares. The  ? :  conditional operator is a mini  if-else  state-
ment. In Sample  2.15 , it is used to choose between two strings. The fi nal compare 
uses an array slice,  src[1:4] , which creates a temporary array with 4 elements.  

  Sample 2.15    Array copy and compare operations       

 A copy between fi xed arrays of different sizes causes a compile error. You can 
not perform aggregate arithmetic such as addition or subtraction on arrays, for 
example,  a  =  b  +  c . Instead, use  foreach  loops. For logical operations such as  xor , 
you have to either use a loop or use packed arrays as described in Section  2.2.6 .  

    2.2.5   Bit and Array Subscripts, Together at Last 

 A common annoyance in Verilog-1995 is that you cannot use array and bit sub-
scripts together. Verilog-2001 removes this restriction for fi xed-size arrays. Sample 
 2.16  prints the fi rst array element (binary 101), its lowest bit (1), and the next two 
higher bits (binary 10).  
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 Although this change is not new to SystemVerilog, many users may not 
know about this useful improvement in Verilog-2001. FYI - a double comma in a 
 $display  statement inserts a space.  

    2.2.6   Packed Arrays 

 For some data types, you may want both to access the entire value and also to divide 
it into smaller elements. For example, you may have a 32-bit register that sometimes 
you want to treat as four 8-bit values and at other times as a single, unsigned value. 
A SystemVerilog packed array is treated as both an array and a single value. It is 
stored as a contiguous set of bits with no unused space, unlike an unpacked array.  

    2.2.7   Packed Array Examples 

 The packed bit and array dimensions are specifi ed as part of the type, before the 
variable name. These dimensions must be specifi ed in the  [msb:lsb]  format, not 
 [size] . Sample  2.17  shows the variable  bytes , a packed array of four bytes that 
are stored in a single 32-bit word as shown in Fig.  2.2  .   

  Sample 2.16    Using word and bit subscripts together       

  Sample 2.17    Packed array declaration and usage       

bytes 01234567

bytes[3]

012345670123456701234567

bytes[3][7]

  Fig. 2.2     Packed array layout       

 

 

 



34 2 Data Types

 You can mix packed and unpacked dimensions. You may want to make an array 
that represents a memory that can be accessed as bits, bytes, or longwords. Sample 
 2.18  shows  barray , an unpacked array of fi ve packed elements, each four bytes 
wide, which are stored in memory as shown in Fig.  2.3  .   

  Sample 2.18    Declaration for a mixed packed/unpacked array       

barray[0][3] barray[0][1][6]

barray[1] 01234567012345670123456701234567
barray[0] 01234567012345670123456701234567

barray[2] 01234567012345670123456701234567
barray[3] 01234567012345670123456701234567
barray[4] 01234567012345670123456701234567

  Fig. 2.3     Packed array bit layout       

 With a single subscript, you get a word of data,  barray[0] .With two subscripts, 
you get a byte of data,  barray[0][3] . With three subscripts, you can access a 
single bit,  barray[0][1][6] . Because one dimension is specifi ed after the name, 
 barray[5] , that dimension is unpacked, so you must always give at least one 
subscript. 

 The last line of Sample  2.18  copies between two packed arrays. Since the under-
lying values are just bits, you can copy even if the arrays have different dimensions.  

    2.2.8   Choosing Between Packed and Unpacked Arrays 

 Which should you choose — a packed or an unpacked array? A packed array is 
handy if you need to convert to and from scalars. For example, you might need to 
reference a memory as a byte or as a word. The  barray  in Fig.  2.3   can handle this 
requirement. Any array type can be packed, including dynamic arrays, queues and 
associative arrays, which are explained in Sections  2.3 ,  2.4 , and  2.5 . 

 If you need to wait for a change in an array, you have to use a packed array. 
Perhaps your testbench might need to wake up when a memory changes value, so 
you want to use the  @  operator. This is only legal with scalar values and packed 
arrays. In Sample  2.18  you can block on the variables  lw  or  barray[0] , but not the 
entire array  barray  unless you expand it:  @(barray[0] or barray[1] or 
barray[2] or barray[3] or barray[4]) .   
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    2.3   Dynamic Arrays 

 The basic Verilog array type shown so far is known as a fi xed-size array, as its size 
is set at compile time. What if you do not know the size of the array until run time? 
For example, you may want generate a random number of transactions at the start 
of simulation. If you stored the transactions in a fi xed-size array, it would have to be 
large enough to hold the maximum number of transactions, but would typically hold 
far fewer, thus wasting memory. SystemVerilog provides a dynamic array that can 
be allocated and resized during simulation so your simulation consumes a minimal 
amount of memory. 

 A dynamic array is declared with empty word subscripts  [] . This means that you 
do not specify the array size at compile time; instead, give it at run time. The array is 
initially empty, so you must call the  new[]  constructor to allocate space, passing in 
the number of entries in the square brackets. If you pass an array name to the  new[]  
constructor, the values are copied into the new elements, as shown in Sample  2.19 .  

  Sample 2.19    Using dynamic arrays       

 In Sample  2.19 , Line A calls  new[5]  to allocate 5 array elements. The dynamic 
array  dyn  now holds 5  int’s . Line B sets the value of each element of the array to 
its index value. Line C allocates another array and copies the contents of  dyn  into 
it. Lines D and E show that the arrays  dyn  and  d2  are separate. Line F allocates 20 
new elements, and copies the existing 5 elements of  dyn  to the beginning of the 
array. Then the old 5-element  dyn  array is deallocated. The result is that  dyn  points 
to a 20-element array. The last call to  new[]  allocates 100 elements, but the existing 
values are not copied. The old 20-element array is deallocated. Finally, line H 
deletes the  dyn  array. 

 The  $size  function returns the size of a fi xed or dynamic array. Dynamic arrays 
have several built-in routines, such as  delete  and  size . 

 If you want to declare a constant array of values but do not want to bother counting 
the number of elements, use a dynamic array with an array literal. In Sample  2.20  
there are 9 mask elements of 8-bits each. You should let SystemVerilog count them, 
rather than making a fi xed-size array and accidently choosing the wrong array size.  
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 You can make assignments between fi xed-size and dynamic arrays as long as 
they have the same base type such as  int . You can assign a dynamic array to a fi xed 
array as long as they have the same number of elements. 

 When you copy a fi xed-size array to a dynamic array, SystemVerilog calls the 
 new[]  constructor to allocate space, and then copies the values. 

 You can have multi-dimensional dynamic arrays, so long as you are careful when 
constructing the sub-arrays. Remember, a multi-dimensional array in SystemVerilog 
can be thought of as an array of other arrays. First you need to construct the left-
most dimension. Then construct the sub-arrays. In Sample  2.21 , each sub-array has 
a different size.   

  Sample 2.20    Using a dynamic array for an uncounted list       

  Sample 2.21    Multi-dimensional dynamic array       

    2.4   Queues 

 SystemVerilog introduces a new data type, the queue, which combines the best of a 
linked list and array. Like a linked list, you can add or remove elements anywhere 
in a queue, without the performance hit of a dynamic array that has to allocate a new 
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array and copy the entire contents. Like an array, you can directly access any ele-
ment with an index, without linked list’s overhead of stepping through the preced-
ing elements. 

 A queue is declared with word subscripts containing a dollar sign:  [$] . The ele-
ments of a queue are numbered from 0 to $. Sample  2.22  shows how you can add 
and remove values from a queue using methods. Note that queue literals only have 
curly braces, and are missing the initial apostrophe of array literals. 

 The SystemVerilog queue is similar to the Standard Template Library’s deque 
data type. You create a queue by adding elements. SystemVerilog typically allocates 
extra space so you can quickly insert additional elements. If you add enough ele-
ments that the queue runs out of that extra space, SystemVerilog automatically allo-
cates more. As a result, you can grow and shrink a queue without the performance 
penalty of a dynamic array, and SystemVerilog keeps track of the free space for you. 
Note that you never call the  new[]  constructor for a queue.  

  Sample 2.22    Queue methods       

 The LRM does not allow inserting a queue in another queue using the above 
methods, though some simulators permit this. 

 You can use word subscripts and concatenation instead of methods. As a short-
cut, if you put a $ on the left side of a range, such as  [$:2] , the  $  stands for the 
minimum value,  [0:2] . A  $  on the right side, as in  [1:$] , stands for the maximum 
value,  [1:2] , in fi rst line of the initial block of Sample  2.23 .  
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 The queue elements are stored in contiguous locations, so it is effi cient to push 
and pop elements from the front and back. This takes a fi xed amount of time no 
matter how large the queue. Adding and deleting elements in the middle of a queue 
requires shifting the existing data to make room. The time to do this grows linearly 
with the size of the queue. 

 You can copy the contents of a fi xed or dynamic array into a queue.  

    2.5   Associative Arrays 

 Dynamic arrays are good if you want to occasionally create a big array, but what if 
you want something really large? Perhaps you are modeling a processor that has a 
multi-gigabyte address range. During a typical test, the processor may only touch a 
few hundred or thousand memory locations containing executable code and data, so 
allocating and initializing gigabytes of storage is wasteful. 

 SystemVerilog offers associative arrays that store entries in a sparse matrix. This 
means that while you can address a very large address space, SystemVerilog only 
allocates memory for an element when you write to it. In the following picture, the 
associative array holds the values 0:3, 42, 1000, 4521, and 200,000. The memory 
used to store these is far less than would be needed to store a fi xed or dynamic array 
with 200,000 entries, as shown in Figure  2.4  .  

  Sample 2.23    Queue operations        
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 An associative array can be stored by the simulator as a tree or hash table. This 
additional overhead is acceptable when you need to store arrays with widely sepa-
rated index values, such as packets indexed with 32-bit addresses or 64-bit data 
values. An associative array is declared with a data type in square brackets, such as 
 [ int ]. or [ Packet ]. Sample  2.24  shows declaring, initializing, printing, and step-
ping through an associative array.  

  Sample 2.24    Declaring, initializing, and using associative arrays       

data

0…..3 42 1000 4521 200,000index

  Fig. 2.4     Associative array       

 Sample  2.24  has the associative array, assoc, with very scattered elements: 1, 2, 
4, 8, 16, etc. A simple  for  loop cannot step through them; you need to use a  foreach  
loop. If you want fi ner control, you can use the  fi rst  and  next  functions in a 
 do…while  loop. These functions modify the index argument, and return 0 or 1 
depending on whether any elements are left in the array. You can fi nd the number of 
elements in an associative array with the  num  or  size  functions. 

 Associative arrays can also be addressed with a string index, similar to Perl’s 
hash arrays. Sample  2.25  reads a fi le with strings and builds the associative array 

 

 



40 2 Data Types

 switch  so you can quickly map from a string value to a number. Strings are 
explained in more detail in Section  2.15 . 

 If you try to read an element of an associative array that has not been written, 
SystemVerilog returns the default value for the array base type, such as 0 for 2-state 
types such as  bit  or  int , or X for 4-state types such as  logic . The simulator may 
also give a warning message. You can use the function  exists()  to check if an 
element has been allocated, as shown in Sample  2.25 .  

  Sample 2.25    Using an associative array with a string index       

 You can initialize an associative array with the array literal with index:element 
pairs as shown in Sample  2.26 . When you print the array with  %p , the elements are 
displayed in the same format.  
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 You can also declare an associative array with wildcard subscripts, as in wild[*]. 
However, this style is not recommended as you are allowing an index of almost any 
data type. One of the many resulting problems is with  foreach –loops: what type is 
the variable j in  foreach(wild[j] )? Integer, string, bit, or logic?  

    2.6   Array Methods 

 There are many array methods that you can use on any unpacked array types: fi xed, 
dynamic, queue, and associative. These routines can be as simple as giving the cur-
rent array size or as complex as sorting the elements. The parentheses are optional 
if there are no arguments. 

    2.6.1   Array Reduction Methods 

 A basic array reduction method takes an array and reduces it to a single value, as 
shown in Sample  2.27 . You can calculate the sum, product, or perform a logical 
operation on all the elements.  

  Sample 2.26    Initializing and printing associative arrays       

  Sample 2.27    Array reduction operations       

 Other array reduction methods are  or , and  xor . 
 SystemVerilog does not have a method specifi cally for choosing a random ele-

ment from an array, so use the index  $urandom_range(array.size()−1)  for 
queues and dynamic arrays, and  $urandom_range($size(array)−1)  for fi xed 
arrays, queues, dynamic and associative arrays. See Section 6.10 for more informa-
tion on  $urandom_range . 

 If you need to choose a random element from an associative array, you need to step 
through the elements one by one as there is no one-line way to access the  N th element. 
Sample  2.28  shows how to choose a random element from an associative array 
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indexed by integers by fi rst picking a random number, then stepping through the array. 
If the array was indexed by a string, just change the type of  idx  to  string .   

  Sample 2.29    Array locator methods: min, max, unique       

  Sample 2.28    Picking a random element from an associative array       

    2.6.2   Array Locator Methods 

 What is the largest value in an array? Does an array contain a certain value? The 
array locator methods fi nd data in an unpacked array. At fi rst you may wonder why 
these return a queue of values. After all, there is only one maximum value in an 
array. However, SystemVerilog needs a queue for the case when you ask for a value 
from an empty queue or dynamic array. 

 Sample  2.29  shows the array locator methods:  min  and  max  functions fi nd the 
smallest and largest elements in an array. These methods also work for associative 
arrays. The  unique  method returns a queue of the unique values from the array — 
duplicate values are not included.  

 You could search through an array using a  foreach  loop, but SystemVerilog can 
do this in one operation with a locator method. The  with  expression tells 
SystemVerilog how to perform the search, as shown in Sample  2.30 . These methods 
return an empty queue if the value you are searching for does not exist in the array.  
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 In a  with  clause, the name  item  is called the iterator argument and represents a 
single element of the array. You can specify your own name by putting it in the argu-
ment list of the array method as shown in Sample  2.31 .  

  Sample 2.30    Array locator methods: fi nd       

  Sample 2.31    Declaring the iterator argument       

  Sample 2.32    Array locator methods       

 Sample  2.32  shows various ways to total up a subset of the values in the array. 
The fi rst line compares the item with 7. This relational returns a 1 (true) or 0 (false) 
so the calculation is a sum of the array {1,0,1,0,0,0}. The second multiplies the bool-
ean result with the array element being tested. So the total is the sum of {9,0,8,0,0,0}, 
which is 17. The third calculates the total of elements less than 8. The fourth total is 
computed using the ? : conditional operator. The last counts the number of 4’s.  

 When you combine an array reduction such as  sum  using the  with  clause, the 
results may surprise you. In Sample  2.32 , the  sum  operator totals the number of 
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times that the expression is true. For the fi rst statement in Sample  2.32 , there are two 
array elements that are greater than 7 (9 and 8) so  count  is set to 2. 

     The array locator methods that return an index, such as  fi nd_
index , return a queue of type  int , not  integer . Your code 
may not compile if you use the wrong queue type with these 
statements. 

     Be careful of SystemVerilog’s rules for the width of operations. 
Normally, if you were to add a set of single bit values, SystemVer-
ilog would make the calculations with enough precision not to 
lose any bits. But the  sum  method uses the width of the array. So, 

if you add the values of a single-bit array, the result is a single bit, which is probably 
not what you expected. The solution is to use a  with  expression as shown in 
Sample  2.33 .   

  Sample 2.34    Sorting an array       

  Sample 2.33    Creating the sum of an array of single bits       

    2.6.3   Array Sorting and Ordering 

 SystemVerilog has several methods for changing the order of elements in an array. 
You can sort the elements, reverse their order, or shuffl e the order as shown in 
Sample  2.34 . Notice that these change the original array, unlike the array locator 
methods in Section  2.6.2 , which create a queue to hold the results.  
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 The  reverse  and  shuffl e  methods have no  with -clause, so they work on the 
entire array. Sample  2.35  shows how to sort a structure by sub-fi elds. Structures and 
packed structures are explained in Section  2.9 .  

  Sample 2.35    Sorting an array of structures       

  Sample 2.36    A scoreboard with array methods       

 Only fi xed and dynamic arrays, plus queues can be sorted, reversed, or shuffl ed. 
Associative arrays can not be reordered.  

    2.6.4   Building a Scoreboard with Array Locator Methods 

 The array locator methods can be used to build a scoreboard. Sample  2.36  defi nes 
the  Packet  structure, then creates a scoreboard made from a queue of these struc-
tures. Section  2.8  describes how to create structures with  typedef .  
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 The  check_addr()  function in Sample  2.36  looks up an address in the score-
board. The  fi nd_index()  method returns an  int  queue. If the queue is empty 
(size==0), no match was found. If the queue has one member (size==1), a single 
match was found, which the  check_addr()  function deletes. If the queue has mul-
tiple members (size > 1), there are multiple packets in the scoreboard whose address 
matching the requested one. 

 A better choice for storing packet information is a class, which is described in 
  Chapter 5    . You can read more about structures in Section  2.9 .   

    2.7   Choosing a Storage Type 

 Here are some guidelines for choosing the right storage type based on fl exibility, 
memory usage, speed, and sorting. These are just rules of thumb, and results may 
vary between simulators. 

    2.7.1   Flexibility 

 Use a fi xed-size or dynamic array if it is accessed with consecutive positive integer 
indices: 0, 1, 2, 3… Choose a fi xed-size array if the array size is known at compile 
time, or choose a dynamic array if the size is not known until run time. For example, 
variable-size packets can easily be stored in a dynamic array. If you are writing 
routines to manipulate arrays, consider using just dynamic arrays, as one routine 
can work with any size dynamic array as long as the element types match:  int, 
string , etc. Likewise, you can pass a queue of any size into a routine as long as the 
element type matches the queue argument. Associative arrays can also be passed 
regardless of size. However, a routine with a fi xed-size array argument only accepts 
arrays of the specifi ed length. 

 Choose associative arrays for nonstandard indices such as widely separated val-
ues because of random values or addresses. Associative arrays can also be used to 
model content-addressable memories. 

 Queues are a good way to store values when the number of elements grows and 
shrinks a lot during simulation, such as a scoreboard that holds expected values.  

    2.7.2   Memory Usage 

 If you want to reduce the simulation memory usage, use 2-state elements. You 
should choose data sizes that are multiples of 32 bits to avoid wasted space. 
Simulators usually store anything smaller in a 32-bit word. For example, an array of 
1024 bytes wastes ¾ of the memory if the simulator puts each element in a 32-bit 
word. Packed arrays can also help conserve memory. 
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 For arrays that hold up to a thousand elements, the type of array that you choose 
does not make a big difference in memory usage (unless there are many instances of 
these arrays). For arrays with a thousand to a million active elements, fi xed-size and 
dynamic arrays are the most memory effi cient. You may want to reconsider your 
algorithms if you need arrays with more than a million active elements. 

 Queues are slightly less effi cient to access than fi xed-size or dynamic arrays 
because of additional pointers. However, if your data set grows and shrinks often, 
and you store it in a dynamic memory, you will have to manually call  new[]  to 
allocate memory and copy. This is an expensive operation and would wipe out any 
gains from using a dynamic memory. 

 Modeling memories larger than a few megabytes should be done with an associa-
tive array. Note that each element in an associative array can take several times more 
memory than a fi xed-size or dynamic memory because of pointer overhead.  

    2.7.3   Speed 

 Choose your array type based on how many times it is accessed per clock cycle. For 
only a few reads and writes, you could use any type, as the overhead is minor com-
pared with the DUT. As you use an array more often, its size and type matters. 

 Fixed-size and dynamic arrays are stored in contiguous memory, so any element 
can be found in the same amount of time, regardless of array size. 

 Queues have almost the same access time as a fi xed-size or dynamic array for 
reads and writes. The fi rst and last elements can be pushed and popped with almost 
no overhead. Inserting or removing elements in the middle requires many elements 
to be shifted up or down to make room. If you need to insert new elements into a 
large queue, your testbench may slow down, so consider changing how you store 
new elements. 

 When reading and writing associative arrays, the simulator must search for the 
element in memory. The LRM does not specify how this is done, but popular ways 
are hash tables and trees. These require more computation than other arrays, and 
therefore associative arrays are the slowest.  

    2.7.4   Data Access 

 Since SystemVerilog can sort any single-dimension array (fi xed-size, dynamic, and 
associative arrays plus queues), you should pick the array type based on how often 
the values are added to it. If the values are received all at once, choose a fi xed-size 
or dynamic array so that you only have to allocate the array once. If the data slowly 
dribbles in, choose a queue, as adding new elements to the head or tail is very 
effi cient. 

 If you have unique and noncontiguous values, such as  ¢  {1, 10, 11, 50} , you 
can store them in an associative array by using them as an index. Using the routines 
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 fi rst, next , and  prev , you can search an associative array for a value and fi nd 
successive values. Lists are doubly linked, so you can fi nd values both larger and 
smaller than the current value. Both of these support removing a value. However, 
the associative array is much faster in accessing any given element given an index. 

 For example, you can use an associative array of bits to hold expected 32-bit 
values. When the value is created, write to that location. When you need to see if a 
given value has been written, use the  exists  function. When done with an element, 
use  delete  to remove it from the associative array.  

    2.7.5   Choosing the Best Data Structure 

 Here are some suggestions on choosing a data structure.
    • Network packets . Properties: fi xed size, accessed sequentially. Use a fi xed-size or 
dynamic array for fi xed- or variable-size packets.  
   • Scoreboard of expected values . Properties: array size not known until run time, 
accessed by value, and a constantly changing size. In general, use a queue, as you 
are continually adding and deleting elements during simulation. If you can give 
every transaction a fi xed ID, such as 1, 2, 3, …, you could use this as an index 
into the queue. If your transaction is fi lled with random values, you can just push 
them into a queue and search for unique values. If the scoreboard may have hun-
dreds of elements and you are often inserting and deleting them from the middle, 
an associative array may be faster. If you model your transactions as objects, the 
scoreboard can be a queue of handles. See   Chapter 5     for more information of 
classes.  
   • Sorted structures . Use a queue if the data comes out in a predictable order or an 
associative array if the order is unspecifi ed. If the scoreboard never needs to be 
searched, just store the expected values in a mailbox as shown in Section 7.6.  
   • Modeling very large memories, greater than a million entries . If you do not need 
every location, use an associative array as a sparse memory. If you do plan on 
accessing every location, try a different approach where you do not need so much 
live data. Be sure to use 2-state values packed into 32-bits to conserve simulation 
memory.  
   • Command names or opcodes from a fi le . Property: translate a string to a fi xed 
value. Read string from a fi le, and then look up the commands or opcodes in an 
associative array using the command as a string index.      

    2.8   Creating New Types with typedef 

 You can create new types using the  typedef  statement. For example, you may have 
an ALU that can be confi gured at compile time to use 8, 16, 24, or 32-bit operands. 
In Verilog you would defi ne a macro for the operand width and another for the type 
as shown in Sample  2.37 .  
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 You are not really creating a new type; you are just performing text substitution. 
In SystemVerilog you create a new type as shown in Sample  2.38 . This book uses 
the convention that user-defi ned types use the suffi x “ _t ” except for the basic  uint .  

  Sample 2.37    User-defi ned type-macro in Verilog       

  Sample 2.39    Defi nition of uint       

  Sample 2.38    User-defi ned type in SystemVerilog       

 In general, SystemVerilog lets you copy between these basic types with no warning, 
either extending or truncating values if there is a width mismatch. 

 Note that  parameter  and  typedef  statements can be put in a package so they 
can be shared across the design and testbench, as shown in Section  2.10 . 

     One of the most useful types you can create is an unsigned, 2-state, 
32-bit integer as shown in Sample  2.39 . Most values in a testbench are 
positive integers such as fi eld length or number of transactions 
received, and so having a signed integer can cause problems. Put the 
defi nition of  uint  in a package of common defi nitions so it can be 
used anywhere.  

 The syntax for defi ning a new array type is not obvious. You need to put the array 
subscripts on the new name. Sample  2.40  creates a new type,  fi xed_array5_t , 
a fi xed array with 5 elements. It then declares an array of this type and initializes it.  

 

 

 



50 2 Data Types

 A good use for a user defi ned type is an associative array, which must be declared 
with an index that is a simple type. You could change Sample  2.24  to use 64 bit 
values by changing the fi rst line as shown in Sample  2.41 .   

  Sample 2.40    User-defi ned array type       

  Sample 2.42    Creating a single pixel type       

  Sample 2.41    User-defi ned associative array index       

    2.9   Creating User-Defi ned Structures 

 One of the biggest limitations of Verilog is the lack of data structures. In SystemVer-
ilog you can create a structure using the  struct  statement, similar to what is avail-
able in C. However, a  struct  has just a subset of the functionality of a class, so use 
a class instead for your testbenches, as shown in   Chapter 5    . Just as a Verilog module 
combines both data (signals) and code (always/initial blocks plus routines), a class 
combines data and routines to make an entity that can be easily debugged and 
reused. A  struct  just groups data fi elds together. Without the code that manipu-
lates the data, you are only creating half of the solution. 

 Since a  struct  is just a collection of data, it can be synthesized. If you want to 
model a complex data type, such as a pixel, in your design code, put it in a  struct . 
This can also be passed through module ports. Eventually, when you want to gener-
ate constrained random data, look to classes. 

    2.9.1    Creating a   Struct   and a New Type  

 You can combine several variables into a structure. Sample  2.42  creates a structure 
called  pixel  that has three unsigned bytes for red, green, and blue.  
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 The problem with the preceding declaration is that it creates a single pixel of this 
type. To be able to share pixels using ports and routines, you should create a new 
type instead, as shown in Sample  2.43 .  

  Sample 2.43    The pixel struct       

  Sample 2.44    Initializing a struct       

 Use the suffi x “ _s ” when declaring a  struct . This makes it easier to spot user-
defi ned types, simplifying the process of sharing and reusing code.  

    2.9.2   Initializing a Structure 

 You can assign multiple values to a struct just like an array, either in the declaration 
or in a procedural assignment. Just surround the values with an apostrophe and 
braces, as shown in Sample  2.44 .   

    2.9.3   Making a Union of Several Types 

 In hardware, the interpretation of a set of bits in a register may depend on the value 
of other bits. For example, a processor instruction may have many layouts based on 
the opcode. Immediate-mode operands might store a literal value in the operand 
fi eld. This value may be decoded differently for integer instructions than for fl oating 
point instructions. Sample  2.45  stores both the unsigned bit vector  b  and the integer  i  
in the same location.  
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 Use the suffi x “ _u ” when declaring a union. 

     Unions are useful when you frequently need to read and write a 
register in several different formats. However, don’t go overboard, 
especially just to save memory. Unions may help squeeze a few 
bytes out of a structure, but at the expense of having to create and 
maintain a more complicated data structure. Instead, make a class 
with a discriminant variable, as shown in Section 8.4.4. This “kind” 

variable indicates which type of transaction you have, and thus which fi elds to read, 
write, and randomize. If you just need an array of values, plus all the bits, use a 
packed array as described Section in  2.2.6   

    2.9.4   Packed Structures 

 SystemVerilog allows you more control in how bits are laid out in memory by using 
packed structures. A packed structure is stored as a contiguous set of bits with no 
unused space. The  struct  for a pixel in Sample  2.43  has three values, so it is stored 
in three longwords, even though it only needs three bytes. You can specify that it 
should be packed into the smallest possible space with the  packed  keyword, as 
shown in Sample  2.46 .  

  Sample 2.45    Using typedef to create a union       

  Sample 2.46    Packed structure       

   Packed structures are used when the underlying bits represent a numerical value or 
when you are trying to reduce memory usage. For example, you could pack together 
several bit-fi elds to make a single register. Or you might pack together the opcode and 
operand fi elds to make a value that contains an entire processor instruction.  

    2.9.5   Choosing Between Packed and Unpacked Structures 

 When you are trying to choose between packed and unpacked structures, consider 
how the structure is most commonly used and the alignment of the elements. If you 
plan on making aggregate operations on the structure, such as copying the entire 
structure, a packed structure is more effi cient. However, if your code accesses 
the individual members more than the entire structure, use an unpacked structure. 
The difference in performance is greater if the elements are not aligned on byte 
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boundaries, have sizes that don’t match the typical byte, or have word instructions 
used by processors. Reading and writing elements with odd sizes in a packed struc-
ture requires expensive shift and mask operations.   

    2.10   Packages 

 At the start of a project, you need to create new types and parameters. For example, 
if your processor communicates with your company’s ABC bus, your testbench 
needs to defi ne ABC data types, and parameters to specify the bus width and timing. 
Another project may want to use these types, plus those for the XYZ bus. 

 You could create separate fi les for each bus and use the  'include  statement to 
bring in the fi les during compilation. But then every name associated with each bus 
must be unique, even those that are internal variables, never intended to be visible. 
How can you organize these types to avoid name confl icts? 

 The SystemVerilog package allows you to share declarations among modules, 
packages, plus programs and interface, which are described in   Chapter 4    . Sample 
 2.47  shows the package for the ABC bus.  

  Sample 2.48    Importing packages       

  Sample 2.47    Package for ABC bus       

 You import symbols from a package with the  import  statement. The compiler only 
looks in imported packages when a symbol is not defi ned in the usual search path. In 
Sample  2.48 , the fi rst  import  statement makes the symbols  abc_data_width, 
abc_data_t , and  timeout  visible if there is no local variable with the same name. 
The variable  message  in ABC is hidden by the one in the module.  
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 If you really want to see the  message  variable in ABC, use ABC:: message . 
 You can import specifi c symbols from a package with the scope operator, ::. 

Sample  2.49  imports all the symbols from ABC, plus just the  timeout  variable 
from XYZ.  

  Sample 2.49    Importing selected symbols from a package       

 Packages can only see symbols defi ned inside themselves, or packages that they 
import. You can not have hierarchical references to symbols such as signals, rou-
tines, or modules from outside the package. Think of a package as being completely 
standalone, able to plug in where needed, with no outside dependencies. 

 A package can contain routines, plus classes, as shown in Section 5.4.  

    2.11   Type Conversion 

 SystemVerilog has several rules to ensure that expressions are evaluated with little 
or no loss of accuracy. For example, if you add two 8-bit values, the addition is done 
with 9-bit precision to avoid overfl ow. Multiply two 8-bit values, and SystemVerilog 
calculates a 16-bit result. 

 The proliferation of data types in SystemVerilog means that you may need to 
convert between them. If the layout of the bits between the source and destination 
variables are the same, such as an integer and enumerated type, cast between the 
two values. If the bit layouts differ, such as an array of bytes and words, use the 
streaming operators to rearrange the bits as described in Section  2.12 . 

    2.11.1   The Static Cast 

 The static cast operation converts between two types with no checking of values. 
You specify the destination type, an apostrophe, and the expression to be converted 
as shown in Sample  2.50 . Note that Verilog has always implicitly converted between 
types such as integer and real, and also between different width vectors.   
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    2.11.2   The Dynamic Cast 

 The dynamic cast,  $cast , allows you to check for out-of-bounds values. See Section 
 2.13.3  for an explanation and example with enumerated types. 

     Use a static cast when you want SystemVerilog to use a type with 
more precision, like when using the  sum  method for a single bit 
array. Use the dynamic cast when converting from a type with a 
larger number of values than the destination, such as int to an enu-
merated variable.   

    2.12   Streaming Operators 

 When used on the right side of an assignment, the streaming operators << and >> 
take an expression, structure, or array, and packs it into a stream of bits. The >> 
operator streams data from left to right while << streams from right to left, as shown 
in Sample  2.51 . You can also give a slice size, used to break up the source before 
being streamed. You can not assign the bit stream result directly to an unpacked 
array. Instead, use the streaming operators on the left side of an assignment to 
unpack the bit stream into an unpacked array.  

  Sample 2.51    Basic streaming operator       

  Sample 2.50    Converting between int and real with static cast        
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 You could do the same operations with many concatenation operators, {}, but 
the streaming operators are more compact and easier to read. 

 If you need to pack or unpack arrays, use the streaming operator to convert 
between arrays of different element sizes. For instance, you can convert an array of 
bytes to an array of words. You can use fi xed size arrays, dynamic arrays, and 
queues. Sample  2.52  converts between queues, but would also work with dynamic 
arrays. Array elements are automatically allocated as needed.  

  Sample 2.52    Converting between queues with streaming operator       

      A common mistake when streaming between arrays is mis-
matched array subscripts. The word subscript [ 256 ] in an array 
declaration is equivalent to [ 0:255 ], not [ 255:0 ]. Since many 
arrays are declared with the word subscripts [ high:low ], 

streaming them to an array with the subscript [ size ] would result in the elements 
ending up in reverse order. Likewise, streaming an unpacked array declared as bit
 [ 7:0 ]  src[255:0]  to the packed array declared as bit [ 7:0 ] [ 255:0 ] dst will 
scramble the order of values. The correct declaration for a packed array of bytes is 
 bit [255:0] [7:0] dst . 

 You can also use the streaming operator to pack and unpack structures, such as 
an ATM cell, into an array of bytes. In Sample  2.53  a structure is streamed into a 
dynamic array of bytes, then the byte array is streamed back into the structure.   
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    2.13   Enumerated Types 

 An enumerated type allows you to create a set of related but unique constants such 
as states in a state machine or opcodes. In classic Verilog, you had to use text mac-
ros. Their global scope is too broad, and their value might not be visible in the 
debugger. An enumeration creates a strongly typed variable that is limited to a set of 
specifi ed names. For example, the names ADD, MOVE, or ROTW make your code 
easier to write and maintain than if you had used literals such as  8 ' h01  or macros. 
A weaker alternative for defi ning constants is a parameter. These are fi ne for indi-
vidual values, but an enumerated type automatically gives a unique value to every 
name in the list. 

 The simplest enumerated type declaration contains a list of constant names and 
one or more variables as shown in Sample  2.54 . This creates an anonymous enumer-
ated type, but it cannot be used for any other variables than the ones in this 
declaration.  

  Sample 2.53    Converting between a structure and an array with streaming operators       

  Sample 2.54    A simple enumerated type, not recommended       
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 Use the suffi x “ _e ” when declaring an enumerated type name. 

    2.13.1   Defi ning Enumerated Values 

 The actual values default to  int  starting at 0 and then increase. You can choose your 
own enumerated values. The code in Sample  2.56  uses the default value of 0 for 
 INIT , then 2 for  DECODE , and 3 for  IDLE .  

  Sample 2.55    Enumerated types, recommended style       

  Sample 2.56    Specifying enumerated values       

 Enumerated constants, such as  INIT  in Sample  2.56 , follow the same scoping 
rules as variables. Consequently, if you use the same name in several enumerated 
types (such as  INIT  in different state machines), they have to be declared in differ-
ent scopes such as modules, program blocks, packages, routines, or classes. 

 It is recommended to create a named enumerated type so you can declare 
multiple variables of the same type, especially if these are used as routine argu-
ments or module ports. You fi rst create the enumerated type, and then the vari-
ables of this type, as shown in Sample  2.55 . You can get the string representation 
of an enumerated variable with the built-in function  name() .  
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      An enumerated type is stored as  int  unless you specify other-
wise. Be careful when assigning values to enumerated constants, 
as the default value of an  int  is 0. In Sample  2.57 ,  position  is 
initialized to 0, which is not a legal  ordinal_e  variable. This 

behavior is  not  a tool bug – it is how the language is specifi ed. So always specify an 
enumerated constant with the value of 0, as shown in Sample  2.58 , just to catch the 
testbench error.    

  Sample 2.57    Incorrectly specifying enumerated values       

  Sample 2.58    Correctly specifying enumerated values       

    2.13.2   Routines for Enumerated Types 

 SystemVerilog provides several functions for stepping through enumerated types.

    • fi rst ()  returns the fi rst member of the enumeration.  
   • last()  returns the last member of the enumeration.  
   • next()  returns the next element of the enumeration.  
   • next (N)  returns the  N   th  next element.  
   • prev ()  returns the previous element of the enumeration.  
   • prev(N)  returns the  N   th  previous element.    

 The functions  next  and  prev  wrap around when they reach the beginning or end 
of the enumeration. 

 Note that there is no clean way to write a  for  loop that steps through all members 
of an enumerated type if you use an enumerated loop variable. You get the starting 
member with  fi rst  function and the  next  member with next. A for loop ends when 
the loop variable is outside the defi ned bounds, but the  next  function always returns 
a value inside the enumeration. If you use the test  current!= current.last() ,  
the loop ends before using the last value. If you use  current<=current.  last  () , you 
get an infi nite loop, as  next  never gives you a value that is greater than the fi nal 
value. This is similar to trying to make a  for  loop that steps through the values 0..3 
with an index declared as  bit [1:0] . The loop never exits! You can get around this 
limitation by either using an integer variable in the loop, or incrementing the 
 enumerated variable, but both of these solutions can give illegal values if your 
 enumerated values are not contigious, such as 1, 2, 3, 5, 8. 

 You can use a  do…while  loop to step through all the values, checking when the 
value wraps around, as shown in Sample  2.59 .   
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    2.13.3   Converting to and from Enumerated Types 

 The default type for an enumerated type is  int  (2-state). You can take the value of an 
enumerated variable and assign it to a non-enumerated variable such as an  int  with 
a simple assignment. SystemVerilog does not, however, let you store an integer value 
in an  enum  without explicitly changing the type. Instead, it requires you to explicitly 
cast the value to make you realize that you could be writing an out-of-bounds value.  

  Sample 2.59    Stepping through all enumerated members       

  Sample 2.60    Assignments between integers and enumerated types       

 When called as a function as shown in Sample  2.60 ,  $cast()  tried to assign 
the right value to the left variable. If the assignment succeeds,  $cast()  returns 1. 
If the assignment fails because of an out-of-bounds value, no assignment is made 
and the function returns 0. If you use  $cast()  as a task and the operation fails, 
SystemVerilog prints an error. 

 You can also cast the value using the  type ' (val)  as shown in the example, but 
this does not do any type checking, so the result may be out-of-bounds. For example, 
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after the static cast in Sample  2.60 ,  c2  has an out-of-bounds value. You should avoid 
this style of casting with enumerated types.   

    2.14   Constants 

 There are several types of constants in SystemVerilog. The classic Verilog way to 
create a constant is with a text macro. On the plus side, macros have global scope 
and can be used for bit fi eld defi nitions and type defi nitions. On the negative side, 
macros are global, so that they can cause confl icts if you just need a local constant. 
Lastly, a macro requires the ` character so that it is recognized and expanded by the 
compiler. 

 A Verilog  parameter  was loosely typed and was limited in scope to a single 
module. Verilog-2001 added typed parameters, but their limited scope kept param-
eters from being widely used. In SystemVerilog, parameters can be declared in a 
package so they can be used across multiple modules. This approach can replace 
most Verilog macros that were just being used as constants. 

 SystemVerilog also supports the  const  modifi er that allows you to make a vari-
able that can be initialized in the declaration but not written by procedural code.  

  Sample 2.61    Declaring a const variable       

 In Sample  2.61 , the value of  colon  is initialized at run time, when the  initial  
block is entered. In the next chapter, Sample 3.11 shows a  const  routine argument.  

    2.15   Strings 

 If you have ever tried to use a Verilog  reg  variable to hold a string of characters, 
your suffering is over. The SystemVerilog  string  type holds variable-length 
strings. An individual character is of type  byte . The elements of a string of length 
 N  are numbered 0 to  N -1. Note that, unlike C, there is no null character at the end of 
a string, and any attempt to use the character “\0” is ignored. Memory for strings is 
dynamically allocated, so you do not have to worry about running out of space to 
store the string. 

 Sample  2.62  shows various string operations. The function  getc ( N ) returns the 
byte at location  N , while  toupper  returns an upper-case copy of the string and 
 tolower  returns a lowercase copy. The curly braces {} are used for concatenation. 
The task  putc ( M ,  C ) writes a byte  C  into a string at location  M , that must be between 0 
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and the length as given by  len . The  substr(start,end)  function extracts 
 characters from location  start  to  end .  

  Sample 2.62    String methods       

 Note how useful dynamic strings can be. In other languages such as C, you have 
to keep making temporary strings to hold the result from a function. In Sample  2.62 , 
the  $sformatf  function is used instead of  $sformat , from Verilog-2001. This new 
function returns a formatted temporary string that, as shown above, can be passed 
directly to another routine. This saves you from having to declare a temporary string 
and passing it between the formatting statement and the routine call. The undocu-
mented function  $psprintf  has the same functionality as  $sformatf , but is not in 
the LRM, even though most vendors support this non-standard system function. 

      There are two ways to compare strings, but they behave differ-
ently. The equality operator,  s1==s2 , returns 1 if the strings are 
identical, and 0 if they are not. The string comparison function, 
 s1.compare(s2) , returns 1 if s1 is greater than s2, 0 if they are 

equal, and −1 if s1 is less than s2. While this matches the ANSI C  strcmp()  behav-
ior, it may not be what you expect.  

    2.16   Expression Width 

 A prime source for unexpected behavior in Verilog has been the width of expres-
sions. Sample  2.63  adds 1+1 using four different styles. Addition A uses two 1-bit 
variables, so with this precision 1+1=0. Addition B uses 8-bit precision because 
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there is an 8-bit variable on the left side of the assignment. In this case, 1+1=2. 
Addition C uses a dummy constant to force SystemVerilog to use 2-bit precision. 
Lastly, in addition D, the fi rst value is cast to be a 2-bit value with the cast operator, 
so 1+1=2.  

  Sample 2.63    Expression width depends on context       

 There are several tricks you can use to avoid this problem. First, avoid situations 
where the overfl ow is lost, as in addition A. Use a temporary, such as  b8 , with the 
desired width. Or, you can add another value to force the minimum precision, such 
as  2 ' b0 . Lastly, in SystemVerilog, you can cast one of the variables to the desired 
precision.  

    2.17   Conclusion 

 SystemVerilog provides many new data types and structures so that you can create 
high-level testbenches without having to worry about the bit-level representation. 
Queues work well for creating scoreboards for which you constantly need to add 
and remove data. Dynamic arrays allow you to choose the array size at run time for 
maximum testbench fl exibility. Associative arrays are used for sparse memories and 
some scoreboards with a single index. Enumerated types make your code easier to 
read and write by creating groups of named constants. 

 Don’t go off and create a procedural testbench with just these constructs. Explore 
the OOP capabilities of SystemVerilog in   Chapter 5     to learn how to design code at 
an even higher level of abstraction, thus creating robust and reusable code.  
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    2.18   Exercises 

     1.    Given the following code sample:      

   a.    What is the range of values  my_byte  can take?  
   b.    What is the value of  my_int  in hex?  
   c.    What is the value of  my_bit  in decimal?  
   d.    What is the value of  my_short_int1  in decimal?  
   e.    What is the value of  my_short_int2  in decimal?      

    2.    Given the following code sample:       

 Evaluate the following statements in the given order and give the result for 
each assignment

   a.     my_mem[2] = my_logicmem[4] ;  
   b.     my_logic = my_logicmem[4] ;  
   c.     my_logicmem[3] = my_mem[3] ;  
   d.     my_mem[3] = my_logic ;  
   e.     my_logic = my_logicmem[1] ;  
   f.     my_logic = my_mem[1] ;  
   g.     my_logic = my_logicmem[my_logicmem[41] ;      
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    3.    Write the SystemVerilog code to:

   a.    Declare a 2-state array,  my_array , that holds four 12-bit values  
   b.    Initialize  my_array  so that:

   *  my_array[0] = 12 ' h012   
  *  my_array[1] = 12 ' h345   
  *  my_array[2] = 12 ' h678   
  *  my_array[3] = 12 ' h9AB      

   c.    Traverse  my_array  and print out bits [5:4] of each 12-bit element

   * With a  for  loop  
  * With a  foreach  loop         

    4.    Declare a 5 by 31 multi-dimensional unpacked array,  my_array1 . Each element 
of the unpacked array holds a 4-state value.

   a.    Which of the following assignment statements are legal and not out of bounds?

   *  my_array1[4][30] = 1 ' b1 ;  
  *  my_array1[29][4] = 1 ' b1 ;  
  *  my_array1[4] = 32 ' b1 ;     

   b.    Draw  my_array1  after the legal assignments complete.      

    5.    Declare a 5 by 31 multi-dimensional packed array,  my_array2 . Each element of 
the packed array holds a 2-state value.

   a.    Which of the following assignment statements are legal and not out of bounds?

   *  my_array2[4][30] = 1 ' b1 ;  
  *  my_array2[29][4] = 1 ' b1 ;  
  *  my_array2[3] = 32 ' b1 ;     

   b.    Draw  my_array2  after the assignment statements complete.      

    6.    Given the following code, determine what will be displayed.        
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    7.    Write code for the following problems.

   a.     Create memory using an associative array for a processor with a word width of 
24 bits and an address space of 2 20  words. Assume the PC starts at address 0 at 
reset. Program space starts at 0´400. The ISR is at the maximum address.  

   b.    Fill the memory with the following instructions:

   *  24 ' hA50400; // Jump to location 0´400 for the main code   
  *  24 ' h123456; // Instruction 1 located at location 0´400   
  *  24 ' h789ABC; // Instruction 2 located at location 0´401   
  *  24 ' h0F1E2D; // ISR = Return from interrupt      

   c.    Print out the elements and the number of elements in the array.      

    8.    Create the SystemVerilog code for the following requirements

   a.    Create a 3-byte queue and initialize it with 2, −1, and 127  
   b.    Print out the sum of the queue in the decimal radix  
   c.    Print out the min and max values in the queue  
   d.    Sort all values in the queue and print out the resulting queue  
   e.    Print out the index of any negative values in the queue  
   f.    Print out the positive values in the queue  
   g.    Reverse sort all values in the queue and print out the resulting queue      

    9.    Defi ne a user defi ned 7-bit type and encapsulate the fi elds of the following 
packet in a structure using your new type. Lastly, assign the header to 7 ' h5A.        

header datacmd crc

07 61314202127

    10.    Create the SystemVerilog code for the following requirements

   a.    Create a user-defi ned type, nibble, of 4 bits  
   b.    Create a real variable, r, and initialize it to 4.33  
   c.    Create a short int variable, i_pack  
   d.     Create an unpacked array, k, containing 4 elements of your user defi ned type 

nibble and initialize it to 4 ' h0, 4 ' hF, 4 ' hE, and 4 ' hD  
   e.    Print out k  
   f.    Stream k into i_pack right to left on a bit basis and print it out  
   g.    Stream k into i_pack right to left on a nibble basis and print it out  
   h.    Type convert real r into a nibble, assign it to k[0], and print out k      
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    11.    An ALU has the opcodes shown in Table  2.1  .  

 Write a testbench that performs the following tasks.

   a.    Create an enumerated type of the opcodes:  opcode_e   
   b.    Create a variable,  opcode , of type  opcode_e   
   c.    Loop through all the values of variable  opcode  every 10ns  
   d.    Instantiate an ALU with one 2-bit input opcode               

   Table 2.1    ALU Opcodes   

  Opcode    Encoding  

 Add: A + B  2 ' b00 
 Sub: A − B  2 ' b01 
 Bit-wise invert: A  2 ' b10 
 Reduction Or: B  2 ' b11 
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 As you verify your design, you need to write a great deal of code, most of which is in 
tasks and functions. SystemVerilog introduces many incremental improvements to 
make this easier by making the language look more like C, especially around argu-
ment passing. If you have a background in software engineering, these additions 
should be very familiar. 

    3.1   Procedural Statements 

 SystemVerilog adopts many operators and statements from C and C++. You can 
declare a loop variable inside a  for  loop that then restricts the scope of the loop 
variable and can prevent some coding bugs. The new auto-increment ++ and auto-
decrement −− operators are available in both pre- and post-forms. The compound 
assignments, +=, −=, ˆ=, and many more make your code tighter. If you have a label 
on a  begin  or  fork  statement, you can put the same label on the matching  end  or 
 join  statement. This makes it easier to match the start and fi nish of a block. You can 
also put a label on other SystemVerilog end statements such as  endmodule, end-
task, endfunction , and others that you will learn in this book. Sample  3.1   demon-
strates some of the new constructs.  

    Chapter 3   
 Procedural Statements and Routines                  
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 Two new statements help with loops. First, if you are in a loop, but want to skip 
over the rest of the statements and do the next iteration, use  continue . If you want 
to leave the loop immediately, use  break . 

 The compound assignment in Sample  3.1   is equivalent to  sum = sum + array[j] ; 
The loop in Sample  3.2   reads commands from a fi le using the fi le I/O system tasks 
that are part of Verilog-2001. If the command is just a blank line, the code does a 
 continue , skipping any further processing of the command. If the command is 
“ done ,” the code does a break to terminate the loop.  

  Sample 3.1     New procedural statements and operators       

  Sample 3.2     Using break and continue while reading a fi le       
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 SystemVerilog expands the  case  statement so that you no longer have to give 
every possible value, but can instead give a range values as shown in Sample  3.3  . This 
is a version of the  inside  operator shown more in more detail in Section 6.4.5.   

  Sample 3.4     Void function for debug       

  Sample 3.3     Case-inside statement with ranges       

    3.2   Tasks, Functions, and Void Functions 

 Verilog makes a very clear differentiation between tasks and functions. The most 
important difference is that a task can consume time whereas a function cannot. 
A function cannot have a delay,  #100 , a blocking statement such as  @(posedge 
clock)  or   wait   (ready) , or call a task. Additionally, a Verilog function must 
return a value and the value must be used, as in an assignment statement. 

 SystemVerilog relaxes this rule a little in that a function can call a task, but only in 
a thread spawned with the  fork…  join_none  statement, which is described in 
Section 7.1. 

     If you have a SystemVerilog task that does not consume time, you 
should make it a  void function , which is a function that does not 
return a value. Now it can be called from any task or function. For 
maximum fl exibility, any debug routine should be a void function 
rather than a task so that it can be called from any task or function. 
Sample  3.4   prints values from a state machine.  

 In SystemVerilog, if you want to call a function and ignore its return value, cast the 
result to  void , as shown in Sample  3.5  . Some simulators, such as VCS, allow you to 
ignore the return value without using the  void  syntax. The LRM says this should be 
a warning.   

  Sample 3.5     Ignoring a function’s return value       
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    3.3   Task and Function Overview 

 SystemVerilog makes several small improvements to tasks and functions to make 
them look more like C or C++ routines. In general, a routine defi nition or call with no 
arguments does not need the empty parentheses (). This book includes them for added 
clarity. 

    3.3.1    Routine   Begin…End   Removed  

 The fi rst improvement you may notice in SystemVerilog routines is that  begin…end  
blocks are optional, while Verilog-1995 required them on all but single-line routines. 
The  task  /  endtask  and  function  /  endfunction  keywords are enough to 
defi ne the routine boundaries, as shown in Sample  3.6  .    

  Sample 3.6     Simple task without begin…end       

  Sample 3.7     Verilog-1995 routine arguments       

    3.4   Routine Arguments 

 Many of the SystemVerilog improvements for routines make it easier to declare argu-
ments and expand the ways you can pass values to and from a routine. 

    3.4.1   C-style Routine Arguments 

 SystemVerilog and Verilog-2001 allow you to declare task and function arguments 
more cleanly and with less repetition. The following Verilog task requires you to 
declare some arguments twice: once for the direction, and once for the type, as shown 
in Sample  3.7  .  
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 With SystemVerilog, you can use the less verbose C-style, shown in Sample  3.8  . 
Note that you should use the universal input type of  logic .   

  Sample 3.8     C-style routine arguments       

    3.4.2   Argument Direction 

 You can take even more shortcuts with declaring routine arguments. The direction 
and type default to “input logic” and are sticky, so you don’t have to repeat these for 
similar arguments. Sample  3.9   shows a routine header written using the Verilog-1995 
style and SystemVerilog data types.  

  Sample 3.9     Verbose Verilog-style routine arguments       

 You could rewrite this as shown in Sample  3.10 .  

  Sample 3.10    Routine arguments with sticky types       

 The arguments a and b are input logic, 1-bit wide. The arguments u and v are 
16-bit output bit types. Now that you know this, don’t depend on the defaults, as your 
code will be infested with subtle and hard to fi nd bugs, as explained in Section  3.4.6 . 
Always declare the type and direction for every routine argument.  

    3.4.3   Advanced Argument Types 

 Verilog had a simple way to handle arguments: an  input  or  inout  was copied to a 
local variable at the start of the routine, whereas an  output  or  inout  was copied 
when the routine exited. No memories could be passed into a Verilog routine, only 
scalars. 
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 In SystemVerilog, you can specify that an argument is passed by reference, rather 
than copying its value. This argument type,  ref , has several benefi ts over  input, 
output , and  inout . First, you can now pass an array into a routine, here one that 
prints the checksum.  

  Sample 3.11    Passing arrays using ref and const       

 The = compound assignment in Sample  3.11  is a shorthand way of writing the 
statement:  checksum = checksum ^ a[i];  

 SystemVerilog allows you to pass array arguments without the  ref  direction, but 
the array is copied onto the stack, an expensive operation for all but the smallest 
arrays. 

 The SystemVerilog LRM states that  ref  arguments can only be used in routines 
with automatic storage. If you specify the  automatic  attribute for programs and 
module, all the routines inside are automatic. See Section  3.6  for more details on 
storage. 

 Sample  3.11  also shows the  const  modifi er. As a result, the array a points to the 
array in the routine call, but the contents of the array cannot be modifi ed. If you try to 
change the contents, the compiler prints an error. 

     Always use  ref  when passing arrays to a routine for best perfor-
mance. If you don’t want the routine to change the array values, use 
the  const  ref  type, which causes the compiler to check that your 
routine does not modify the array. 

 The second benefi t of  ref  arguments is that a task can modify a variable and is 
instantly seen by the calling function. This is useful when you have several threads 
executing concurrently and want a simple way to pass information. See   Chapter 7     for 
more details on using  fork-join . 

 In Sample  3.12 , the  thread2  block in the initial block can access the data from 
memory as soon as enable is asserted, even though the  bus_read  task does 
not return until the bus transaction completes, which could be several cycles later. 
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The data argument is passed as  ref , and as a result, the  @data  statement triggers as 
soon as  data  changes in the task. If you had declared  data as output , the  @data  
statement would not trigger until the end of the bus transaction.   

    3.4.4   Default Value for an Argument 

 As your testbench grows in sophistication, you may want to add additional controls 
to your code but not break existing code. For the function in Sample  3.11 , you might 
want to print a checksum of just the middle values of the array. However, you don’t 
want to go back and rewrite every call to add extra arguments. In SystemVerilog you 
can specify a default value that is used if you leave out an argument in the call. 
Sample  3.13  adds  low  and  high  arguments to the  print_csm  function so you can 
print a checksum of a range of values.  

  Sample 3.12    Using ref across threads        
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 You can call this function in the following ways, as shown in Sample  3.14 . Note 
that the fi rst call is compatible with both versions of the  print_csm  routine.  

  Sample 3.13    Function with default argument values       

  Sample 3.14    Using default argument values       

 Using a default value of −1 (or any out-of-range value) is a good way to see if the 
call specifi ed a value. 

 A Verilog  for  loop always executes the initialization ( int i=low ), and test 
( i<=high ) before starting the loop. Thus, if you accidently passed a low value that 
was larger than  high  or the array size, the  for  loop would never execute the body.  

    3.4.5   Passing Arguments by Name 

 You may have noticed in the SystemVerilog LRM that the arguments to a task or func-
tion are sometimes called “ports,” just like the connections for a module. If you have 
a task or function with many arguments, some with default values, and you only want 
to set a few of those arguments, you can specify a subset by specifying the name of 
the routine argument with a port-like syntax, as shown in Sample  3.15 .   
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    3.4.6   Common Coding Errors 

     The most common coding mistake that you are likely to make 
with a routine is forgetting that the argument type is sticky with 
respect to the previous argument, and that the default type for the 
fi rst argument is a single-bit input. Start with the simple task 
header in Sample  3.16 .  

  Sample 3.15    Binding arguments by name       

  Sample 3.16    Original task header       

 The two arguments are input integers. As you are writing the task, you realize that 
you need access to an array, so you add a new array argument, and use the  ref  type 
so it does not have to be copied. Your routine header now looks like Sample  3.17 .  

  Sample 3.17    Task header with additional array argument       

 What argument types are a and  b?  They take the direction of the previous argu-
ment that is a  ref . Using  ref  for a simple variable such as an int is not usually 
needed, but you would not get even a warning from the compiler, and thus would not 
realize that you were using the wrong direction. 

 If any argument to your routine is something other than the default input type, 
specify the direction for all arguments as shown in Sample  3.18 .    

  Sample 3.18    Task header with additional array argument       
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    3.5   Returning from a Routine 

 Verilog had a primitive way to end a routine; after you executed the last statement in 
a routine, it returned to the calling code. In addition, a function returned a value by 
assigning that value to a variable with the same name as the function. 

    3.5.1   The Return Statement 

 SystemVerilog adds the  return  statement to make it easier for you to control the 
fl ow in your routines. The task in Sample  3.19  needs to return early because of error 
checking. Otherwise, it would have to put the rest of the task in an  else  clause, 
which would cause more indentation and be more diffi cult to read.  

  Sample 3.19    Return in a task       

  Sample 3.20    Return in a function       

 The  return  statement in Sample  3.20  can simplify your functions.   

    3.5.2   Returning an Array from a Function 

 Verilog routines could only return a simple value such as a bit, integer, or vector. If 
you wanted to compute and return an array, there was no simple way. In System 
Verilog, a function can return an array, using several techniques. 

 The fi rst way is to defi ne a type for the array, and then use that in the function 
declaration. Sample  3.21  uses the array type from Sample 2.40, and creates an func-
tion to initialize the array.  
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 One problem with the preceding code is that the function  init  creates an array, 
which is copied into the array f5. If the array was large, this could be a large perfor-
mance problem. 

 The alternative is to pass the routine by reference. The easiest way is to pass the 
array into the function as a  ref  argument, as shown in Sample  3.22 .  

  Sample 3.21    Returning an array from a function with a typedef       

  Sample 3.22    Passing an array to a function as a ref argument       

 The last way for a function to return an array is to wrap the array inside of a class, 
and return a handle to an object.   Chapter 5     describes classes, objects, and handles.   

    3.6   Local Data Storage 

 When Verilog was created in the 1980s, it was tightly tied to describing hardware. As 
a result, all objects in the language were statically allocated. In particular, routine 
arguments and local variables were stored in a fi xed location, rather than pushing 
them on a stack like other programming languages. Why try to model dynamic code 
such as a recursive routine when there is no way to build this in silicon? However, 
software engineers verifying the designs, who were used to the behavior of stack-
based languages such as C, were bitten by these subtle bugs, and were thus limited in 
their ability to create complex testbenches with libraries of routines. 
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    3.6.1   Automatic Storage 

 In Verilog-1995, if you tried to call a task from multiple places in your testbench, the 
local variables shared common, static storage, and so the different threads stepped on 
each other’s values. In Verilog-2001 you can specify that tasks, functions, and mod-
ules use automatic storage, which causes the simulator to use the stack for local 
variables. 

     In SystemVerilog, routines still use static storage by default, for both 
modules and program blocks. You should always make program 
blocks (and their routines) use automatic storage by putting the 
 automatic  keyword in the program statement. In   Chapter 4     you 
will learn about  program  blocks that hold the testbench code. 
Section 7.1.6 shows how automatic storage helps when you are cre-
ating multiple threads. 

 Sample  3.23  shows a task to monitor when data are written into memory.  

  Sample 3.23    Specifying automatic storage in program blocks       

 You can call this task multiple times concurrently, as the  addr  and  expect_data  
arguments are stored separately for each call. Without the  automatic  modifi er, if you 
called  wait_f  or_bus  a second time while the fi rst was still waiting, the second call 
would overwrite the two arguments.  

    3.6.2   Variable Initialization 

     A similar problem occurs when you try to initialize a local vari-
able in a declaration, as it is actually initialized before the start of 
simulation. The general solution is to avoid initializing a variable 
in a declaration to anything other than a constant. Use a separate 
assignment statement to give you better control over when initial-
ization is done. 
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 The task in Sample  3.24  looks at the bus after fi ve cycles and then creates a local 
variable and attempts to initialize it to the current value of the address bus.  

  Sample 3.24    Static initialization bug       

  Sample 3.25    Static initialization fi x: use automatic       

 The bug is that the variable  local_addr  is statically allocated, so it is actually ini-
tialized at the start of simulation, not when the  begin…end  block is entered. Once 
again, the solution is to declare the program as  automatic  as shown in Sample  3.25 .  

 Additionally, you can avoid this by never initializing a variable in the declaration, 
but this is harder to remember, especially for C programmers. Sample  3.26  show the 
recommended style of separating the declaration and initialization.    

  Sample 3.26    Static initialization fi x: break apart declaration and initialization       

    3.7   Time Values 

 SystemVerilog has several new constructs to allow you to unambiguously specify 
time values in your system. 

    3.7.1   Time Units and Precision 

 When you rely on the ` timescale  compiler directive, you must compile the fi les in 
the proper order to be sure all the delays use the proper scale and precision. One way 
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avoiding this compilation ordering problem is to require that every fi le that starts 
with a ` timescale  compiler directive should end with one that resets it back to a 
company-specifi c default such as 1ns/1ns. 

 The timeunit and  timeprecision  declarations eliminate this ambiguity by 
precisely specifying the values for every module. Sample  3.27  shows these declara-
tions. Note that if you use these instead of ` timescale , you must put them in every 
module that has a delay. See the LRM for more on these declarations.  

    3.7.2   Time Literals 

 SystemVerilog allows you to unambiguously specify a time value plus units. Your 
code can use delays such as  0.1ns  or  20ps . Just remember to use  timeunit  and 
 timeprecision  or ̀  timescale . You can make your code even more time aware by 
using the classic Verilog  $timeformat(), $time , and  $realtime  system tasks. 
The four arguments to $timeformat are the scaling factor (−9 for nanoseconds, −12 
for picoseconds), the number of digits to the right of the decimal point, a string to 
print after the time value, and the minimum fi eld width. 

 Sample  3.27  shows various delays and the result from printing the time when it is 
formatted by  $timeformat()  and the %t specifi er.   

  Sample 3.27    Time literals and $timeformat       

    3.7.3   Time and Variables 

 You can store time values in variables and use them in calculations and delays. The 
values are scaled and rounded according to the current time scale and precision. 
Variables of type time cannot hold fractional delays as they are just 64-bit integers, 
so delays will be rounded. You should use  realtime  variables if this is a problem. 

 Sample  3.28  shows how  realtime  variables are rounded when used as a delay.   
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    3.7.4   $time vs. $realtime 

 The system task  $time  returns an integer scaled to the time unit of the current mod-
ule, but missing any fractional units, while  $realtime  returns a real number with 
the complete time value, including fractions. This book uses  $time  in the examples 
for brevity, but your testbenches may need to use  $realtime .   

    3.8   Conclusion 

 The new SystemVerilog procedural constructs and task/function features make it 
easier for you to create testbenches by making the language look more like other 
programming languages such as C/C++. As a bonus, SystemVerilog has additional 
HDL constructs such as timing controls, simple thread control, and 4-state logic.  

    3.9   Exercises 

     1.    Create the SystemVerilog code with the following requirements:

    a.    Create a 512 element integer array  
    b.    Create a 9-bit address variable to index into the array  
    c.    Initialize the last location in the array to 5  
    d.    Call a task,  my_task() , and pass the array and the address  

  Sample 3.28    Time variables and rounding        
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    e.    Create  my_task()  that takes two inputs: a constant 512-element integer array 
passed by reference, and a 9-bit address. The task calls a function,  print_
int() , and passes the array element indexed by the address, pre-decrementing 
the address.  

    f.    Create  print_int()  that prints out the simulation time and the value of the 
input. The function has no return value.      

    2.    For the following SystemVerilog code, what is displayed if the task  my_task2()  
is automatic?        

    3.    For the same SystemVerilog code in Exercise 2, what is displayed if the task  my_
task2()  is not automatic?  

    4.    Create the SystemVerilog code to specify that the time should be printed in ps 
(picoseconds), display 2 digits to the right of the decimal point, and use as few 
characters as possible  
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    5.    Using the formatting system task from Exercise 4, what is displayed by the 
 following code?                 
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 There are several steps needed to verify a design: generate stimulus, capture 
responses, determine correctness, and measure progress. However, fi rst you need 
the proper testbench, connected to the design, as shown in Fig.  4.1  .  

 Your testbench wraps around the design, sending in stimulus and capturing the 
design’s response. The testbench forms the “real world” around the design, mimick-
ing the entire environment. For example, a processor model needs to connect to 
various buses and devices, which are modeled in the testbench as bus functional 
models. A networking device connects to multiple input and output data streams that 
are modeled based on standard protocols. A video chip connects to buses that send 
in commands, and then forms images that are written into memory models. The key 
concept is that the testbench simulates everything not in the design under test. 

 Your testbench needs a higher-level way to communicate with the design than 
Verilog’s ports and the error-prone pages of connections. You need a robust way to 
describe the timing so that synchronous signals are always driven and sampled at 
the correct time and all interactions are free of the race conditions so common to 
Verilog models. 

    Chapter 4   
 Connecting the Testbench and Design                  

Testbench

Design

Under

Test

inputs outputs

  Fig. 4.1     The testbench – design environment       
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    4.1   Separating the Testbench and Design 

 In an ideal world, all projects have two separate groups: one to create the design and 
one to verify it. In the real world, limited budgets may require you to wear both hats. 
Each team has its own set of specialized skills, such as creating synthesizable RTL 
code, or fi guring out new ways to fi nd bugs in the design. These two groups each 
read the original design specifi cation and make their own interpretations. The 
designer has to create code that meets that specifi cation, whereas your job as the 
verifi cation engineer is to create scenarios where the design does not match its 
description. 

 Likewise, your testbench code is in a separate block from design code. In classic 
Verilog, each goes in a separate module. However, using a module to hold the test-
bench often causes timing problems around driving and sampling, so SystemVerilog 
introduces the program block to separate the testbench, both logically and tempo-
rally. For more details, see Section  4.3 . 

 As designs grow in complexity, the connections between the blocks increase. 
Two RTL blocks may share dozens of signals, which must be listed in the correct 
order for them to communicate properly. One mismatched or misplaced connection 
and the design will not work. You can reduce errors by using the connect-by-name 
syntax, but this more than doubles your typing burden. If it is a subtle error, such as 
swapping pins that only toggle occasionally, you may not notice the problem for 
some time. Worse yet is when you add a new signal between two blocks. You have 
to edit not only the blocks to add the new port but also the higher-level modules that 
wire up the devices. Again, one wrong connection at any level and the design stops 
working. Or worse, the system only fails intermittently! 

 The solution is the interface, the SystemVerilog construct that represents a bun-
dle of wires. Additionally, you can specify timing, signal direction, and even add 
functional code. An interface is instantiated like a module but is connected to ports 
like a signal. 

    4.1.1   Communication Between the Testbench and DUT 

 The next few sections show a testbench connected to an arbiter, using individual 
signals and again using interfaces. Figure  4.2   is a diagram of the top level design 
including a testbench, arbiter, clock generator, and the signals that connect them. 
This DUT (Design Under Test) is a trivial design, so you can concentrate on the 
SystemVerilog concepts and not get bogged down in the design. At the end of the 
chapter, an ATM router is shown.   
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    4.1.2   Communication with Ports 

 The following code shows the steps needed to connect an RTL block to a testbench. 
First is the header for the arbiter model, shown in Sample  4.1  . This uses the 
Verilog-2001 style port declarations where the type and direction are in the header. 
Some code has been left out for clarity. 

 As discussed in Section 2.1.1, SystemVerilog has expanded the classic  reg  type 
so that you can use it like a  wire  to connect blocks. In recognition of its new capa-
bilities, the  reg  type has the new name of  logic . The only place where you cannot 
use a  logic  variable is a net with multiple structural drivers, where you must use a 
net such as  wire .  

Arbiter

Testbench

clk

grant[1:0]request[1:0]

rst

  Fig. 4.2     Testbench – Arbiter without interfaces       

  Sample 4.1     Arbiter model using ports       

 The testbench in Sample  4.2   is kept in a module to separate it from the design. 
Typically, it connects to the design with ports.  
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 In Sample  4.3  , the modules are simple, but real designs with hundreds of pins 
require pages of signal and port declarations. All these connections can be error 
prone. As a signal moves through several layers of hierarchy, it has to be declared 
and connected over and over. Worst of all, if you just want to add a new signal, it 
has to be declared and connected in multiple fi les. SystemVerilog interfaces can 
help in each of these cases.   

    4.2   The Interface Construct 

 Designs have become so complex that even the communication between blocks may 
need to be separated out into separate entities. To model this, SystemVerilog uses 
the interface construct that you can think of as an intelligent bundle of wires. It con-

 The top module connects the testbench and DUT, and includes a simple clock 
generator.  

  Sample 4.2     Testbench module using ports       

  Sample 4.3     Top-level module with ports       
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tains the connectivity, synchronization, and optionally, the functionality of the com-
munication between two or more blocks and, optionally, error checking. They 
connect design blocks and/or testbenches. 

 Design-level interfaces are covered in Sutherland (2006). This book concentrates 
on interfaces that connect design blocks and testbenches. 

    4.2.1   Using an Interface to Simplify Connections 

 The fi rst improvement to the arbiter example is to bundle the wires together into an 
interface. Figure  4.3   shows the testbench and arbiter, communicating using an inter-
face. Note how the interface extends into the two blocks, representing the drivers 
and receivers that are functionally part of both the test and the DUT. The clock can 
be part of the interface or a separate port.  

Testbench ArbiterInterfaceInterface

  Fig. 4.3     An interface straddles two modules       

 The simplest interface is just a bundle of bidirectional signals as shown in Sample  4.4  . 
Use the  logic  data type so you can drive the signals from procedural statements.  

  Sample 4.4     Simple interface for arbiter       

 Sample  4.5   is the device under test, the arbiter, that uses an interface instead of 
ports.  
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 Sample  4.6   shows the testbench. You refer to a signal in an interface by making 
a hierarchical reference using the instance name:  arbif.request . Interface sig-
nals should always be driven using nonblocking assignments. This is explained in 
more detail in Section  4.4.3  and  4.4.4 .  

  Sample 4.6     Testbench using a simple arbiter interface       

  Sample 4.5     Arbiter using a simple interface       

 All these blocks are instantiated and connected in the  top  module as shown in 
Sample  4.7  .  

  Sample 4.7     Top module with a simple arbiter interface       
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 You can see an immediate benefi t, even on this small device: the connections 
become cleaner and less prone to mistakes. If you wanted to put a new signal in an 
interface, you would just have to add it to the interface defi nition and the modules 
that actually used it. You would not have to change any module such as  top  that just 
passes the interface through. This language feature greatly reduces the chance for 
wiring errors. 

 This book only shows interfaces with a single clock that is connected to a genera-
tor at the top level. If your interface requires multiple clocks, treat them like the 
other signals inside the interface, and connect the interface to a clock generator. You 
are more productive if you work at a high level and treat the interface as a cycle 
based construct. The next level up is transaction-based, which is beyond typical 
RTL code. 

     Make sure you declare your interfaces outside of modules and 
program blocks. If you forget, expect all sorts of trouble. Some 
compilers may not support defi ning an interface inside a mod-
ule. If allowed, the interface would be local to the module and 

thus not visible to the rest of the design. Sample  4.8   shows the common mistake of 
including the interface defi nition right after other include statements.   

  Sample 4.8     Bad test module includes interface       

  Sample 4.9     Connecting an interface to a module that uses ports       

    4.2.2   Connecting Interfaces and Ports 

 If you have a Verilog-2001 legacy design with ports that cannot be changed to use an 
interface, you can just connect the interface’s signals to the individual ports. Sample  4.9   
connects the original arbiter from Sample  4.1   to the interface in Sample  4.4  .   
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    4.2.3   Grouping Signals in an Interface Using Modports 

 Sample  4.5   uses a point-to-point connection scheme with no signal directions in the 
interface. The original modules using ports had this information that the compiler 
uses to check for wiring mistakes. The  modport  construct in an interface lets you 
group signals and specify directions. The MONITOR modport in Sample  4.10  allows 
you to connect a monitor module to the interface.  

  Sample 4.10    Interface with modports       

 Sample  4.11  shows the arbiter model and testbench, with the modport in their 
port connection list. Note that you put the modport name,  DUT  or  TEST , after the 
interface name,  arb_if . Other than the modport name, these are identical to the 
previous examples.   

  Sample 4.12    Testbench with interface using modports       

  Sample 4.11    Arbiter model with interface using modports       

 Even though the code didn’t change much (except that the interface grew larger), 
this interface more accurately represents the real design, especially the signal 
direction. 

 There are two ways to use these modport names in your design. You can specify 
them in the modules that connect to the interface signals. In this case, the top 
model does not change from Sample  4.7  , except for the module names. This book 
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recommends this style, as the modport is an implementation detail that should not 
clutter the top level module. 

 The alternative is to specify the modport when you instantiate the module as 
shown in Sample  4.13  .  

  Sample 4.13    Top level module with modports       

 With this style, you have the fl exibility to instantiate a module more than once, 
with each instance connected to a different modport, that is, a different subset of 
interface signals. For example, a byte-wide RAM model could connect to one of 
four slots on a 32-bit bus. In this case, you would need to specify the modport when 
you instantiate the module, not in the module itself. 

 Note that modports are defi ned in the interface, and specifi ed in the module port 
list, but never in the signal name. The name  arb_if.TEST.grant  is illegal!  

    4.2.4   Using Modports with a Bus Design 

 Not every signal needs to go in every modport. Consider a CPU – memory bus mod-
eled with an interface. The CPU is the bus master and drives a subset of the signals, 
such as  request, command , and  address . The memory is a slave and receives 
those signals and drives  ready . Both master and slave drive  data . The bus arbiter 
only looks at  request  and  grant , and ignores all other signals. So your interface 
would have three modports for master, slave, and arbiter, plus an optional monitor 
modport.  

    4.2.5   Creating an Interface Monitor 

 You can create a bus monitor using the  MONITOR  modport. Sample  4.14   shows a 
trivial monitor for the arbiter. For a real bus, you could decode the commands and 
print the status: completed, failed, etc.   
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    4.2.6   Interface Trade-Offs 

 An interface cannot contain module instances, only instances of other interfaces. 
There are trade-offs in using interfaces with modports as compared with traditional 
ports connected with signals. 

 The advantages to using an interface are as follows.

   An interface is ideal for design reuse. When two blocks communicate with a • 
specifi ed protocol using more than two signals, consider using an interface. If 
groups of signals are repeated over and over, as in a networking switch, you 
should additionally use virtual interfaces, as described in   Chapter 10    .  
  The interface takes the jumble of signals that you declare over and over in every • 
module or program and puts it in a central location, reducing the possibility of 
misconnecting signals.  
  To add a new signal, you just have to declare it once in the interface, not in • 
higher-level modules, once again reducing errors.  
  Modports allow a module to easily tap a subset of signals from an interface. You • 
can specify signal direction for additional checking.    

 The disadvantages of using an interface are as follows.

   For point-to-point connections, interfaces with modports are almost as verbose • 
as using ports with lists of signals. Interfaces have the advantage that all the 
declarations are still in one central location, reducing the chance for making an 
error.  
  You must now use the interface name in addition to the signal name, possibly • 
making the modules more verbose, but more readable for debugging.  
  If you are connecting two design blocks with a unique protocol that will not be • 
reused, interfaces may be more work than just wiring together the ports.  

  Sample 4.14    Arbiter monitor with interface using modports        
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  It is diffi cult to connect two different interfaces. A new interface ( • bus_if ) may 
contain all the signals of an existing one ( arb_if ), plus new signals (address, 
data, etc.). You may have to break out the individual signals and drive them 
appropriately.     

    4.2.7   More Information and Examples 

 The SystemVerilog LRM specifi es many other ways for you to use interfaces. See 
Sutherland (2006) for more examples of using interfaces for design.  

    4.2.8   Logic vs. Wire in an Interface 

 This book recommends declaring the signals in your interface as  logic  while the 
VMM has a rule that says to use a  wire . The difference is ease-of-use vs. 
reusability. 

 If your testbench drives an asynchronous signal in an interface with a procedural 
assignment, the signal must be a  logic  type. A  wire  can only be driven with a 
continuous assignment statement. Signals in a clocking block are always synchro-
nous and can be declared as  logic  or  wire . Sample  4.15  shows how the  logic  
signal can be driven directly, whereas the  wire  requires additional code.  

  Sample 4.15    Driving logic and wires in an interface       

 Another reason to use  logic  for interface signals is that the compiler will give 
an error if you unintentionally use multiple structural drivers. 

 The VMM takes a more long-term approach. Take the case where you have cre-
ated test code that works well on the current project and is later used in a new 
design. 
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 What if your interface with all its  logic  signals is connected such that now a 
signal has multiple structural drivers? The engineers will have to change that  logic  
to a  wire , and, if the signal does not go through a clocking block, change the pro-
cedural assignment statements. Now there are two versions of the interface, and 
existing tests must be modifi ed before they can be reused. Rewriting good code 
goes against the VMM principles.   

    4.3   Stimulus Timing 

 The timing between the testbench and the design must be carefully orchestrated. 
At a cycle level, you need to drive and receive the synchronous signals at the proper 
time in relation to the clock. Drive too late or sample too early, and your testbench 
is off a cycle. Even within a single time slot (for example, everything that happens 
at time 100ns), mixing design and testbench events can cause a race condition, such 
as when a signal is both read and written at the same time. Do you read the old 
value, or the one just written? In Verilog, nonblocking assignments help when a test 
module drives the DUT, but the test could not always be sure it sampled the last 
value driven by the design. SystemVerilog has several constructs to help you control 
the timing of the communication. 

    4.3.1   Controlling Timing of Synchronous Signals 
with a Clocking Block 

 An interface should contain a clocking block to specify the timing of synchronous 
signals relative to the clocks. Clocking blocks are mainly used by testbenches but 
also allow you to create abstract synchronous models. Signals in a clocking block 
are driven or sampled synchronously, ensuring that your testbench interacts with the 
signals at the right time. Synthesis tools do not support clocking blocks, so your 
RTL code can not take advantage of them. The chief benefi t of clocking blocks is 
that you can put all the detailed timing information in here, and not clutter your 
testbench. 

 An interface can contain multiple clocking blocks, one per clock domain, as there 
is a single clock expression in each block. Typical clock expressions are  @(posedge 
clk)  for a single edge clock and  @(clk)  for a DDR (double data rate) clock. 

 You can specify a clock skew in the clocking block using the  default  statement, 
but the default behavior is that input signals are sampled just before the design exe-
cutes, and the outputs are driven back into the design during the current time slot. The 
next section provides more details on the timing between the design and testbench. 

 Once you have defi ned a clocking block, your testbench can wait for the clocking 
expression with  @arbif.cb  rather than having to spell out the exact clock and 
edge. Now if you change the clock or edge in the clocking block, you do not have 
to change your testbench. 
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 Sample  4.16  is similar to Sample  4.10  except that the  TEST  modport now treats 
 request  and grant as synchronous signals. The clocking block cb declares that 
the signals are active on the positive edge of the clock. The signal directions are 
relative to the  modport  where they are used. So  request  is a synchronous output 
in the  TEST   modport, and  grant  is an synchronous input. The signal  rst  is asyn-
chronous in the TEST modport.   

  Sample 4.16    Interface with a clocking block       

    4.3.2   Timing Problems in Verilog 

 Your testbench needs to be separate from the design, not just logically but also tem-
porally. Consider how a hardware tester interacts with a chip for synchronous sig-
nals. In a real hardware design, the DUT’s storage elements latch their inputs from 
the tester at the active clock edge. These values propagate through the storage ele-
ment outputs, and then the logic clouds to the inputs of the next storage element. The 
time from the input of the fi rst storage to the next must be less than a clock cycle. 
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So a hardware tester needs to drive the chip’s inputs at the clock edge, and read the 
outputs just before the following edge. 

 A testbench has to mimic this tester behavior. It should drive on or after the 
active clock edge, and should sample as late as possible as allowed by the protocol 
timing specifi cation, just before the active clock edge. 

 If the DUT and testbench are made of Verilog modules only, this outcome is 
nearly impossible to achieve. If the testbench drives the DUT at the clock edge, 
there could be race conditions. What if the clock propagates to some DUT inputs 
before the testbench stimulus, but is a little later to other inputs? From the outside, 
the clock edges all arrive at the same simulation time, but in the design, some inputs 
get the value driven during the last cycle, whereas other inputs get values from the 
current cycle. 

 One way around this problem is to add small delays to the system, such as #0. 
This forces the thread of Verilog code to stop and be rescheduled after all other 
code. Invariably though, a large design has several sections that all want to execute 
last. Whose #0 wins out? It could vary from run to run and be unpredictable between 
simulators. Multiple threads using #0 delays cause indeterministic behavior. Avoid 
using #0 as it will make your code unstable and not portable. 

 The next solution is to use a larger delay, #1. RTL code has no timing, other than 
clock edges, so one time unit after the clock, the logic has settled. However, what if 
one module uses a time precision of 1ns, whereas another used a resolution of just 
10ps? Does that #1 mean 1ns, 10ps, or something else? You want to drive as soon 
as possible after the clock cycle with the active clock edge, but not during that time, 
and before anything else can happen. Worse yet, your DUT may contain a mix of 
RTL code with no delays and gate code with delays. Just as you should avoid using 
#0, stay away from #1 delays to fi x timing problems. See Cummings (2000) and 
other papers by him for additional guidelines.  

    4.3.3   Testbench – Design Race Condition 

 Sample  4.17  shows a potential race condition between the testbench and design. 
The race condition occurs when the test drives the  start  signal and then the other 
ports. The memory is waiting on the  start  signal and could wake up immediately, 
whereas the  write  signal still has its old value, while  addr  and  data  have new 
values. This behavior is perfectly legal according to the LRM. You could delay all 
these signals slightly by using nonblocking assignments, as recommended by 
Cummings (2000), but remember that the testbench and the design are both using 
these assignments. It is still possible to get a race condition between the testbench 
and design. 

 Sampling the design outputs has a similar problem. You want to grab the values 
at the last possible moment, just before the active clock edge. Perhaps you know the 
next clock edge is at 100ns. You can’t sample right at the clock edge at 100ns, as 
some design values may have already changed. You should sample at  Tsetup  just 
before the clock edge.   



1014.3 Stimulus Timing

    4.3.4   The Program Block and Timing Regions 

 The root of the problem is the mixing of design and testbench events during the 
same time slot, though even in pure RTL the same problem can happen. Good cod-
ing guidelines such as proper use of nonblocking assignments can reduce these race 
conditions, but improperly coded assignments have the habit of creeping in. What if 
there were a way you could separate these events temporally, just as you separated 
the code? At 100ns, your testbench could sample the design outputs before the clock 
has had a chance to change and any design activity has occurred. By defi nition, 
these values would be the last possible ones from the previous time slot. Then, after 
all the design events are done, your testbench would start. 

 How does SystemVerilog know to schedule the testbench events separately from 
the design events? In SystemVerilog, your testbench code is in a program block, 
which is similar to a module in that it can contain code and variables and be instanti-
ated in other modules. However, a program cannot have any hierarchy such as 
instances of modules, interfaces, or other programs. 

 A new region of the time slot was introduced in SystemVerilog as shown in Fig. 
 4.4  . In Verilog, most events are executed in the Active region. There are dozens of 
other regions for nonblocking assignments, PLI execution, etc., but they can be 

  Sample 4.17    Race condition between testbench and design        
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 Sample  4.18  shows part of the testbench code for the arbiter. Note that the state-
ment  @arbif.cb  waits for the active edge of the clocking block,  @(posedge 
clk) , as shown in Sample  4.16 . This sample shows that your testbench code is 

ignored for the purposes of this book. See Table  4.1  , the LRM, and Cummings 
(2006) for more details on the SystemVerilog event regions.   

 First to execute during a time slot is the Active region, where design events run. 
These include your traditional RTL and gate code plus the clock generator. The 
second region is the Observed region, where SystemVerilog Assertions are evalu-
ated. Following that is the Reactive region where the testbench code in a program 
executes. Note that time does not strictly fl ow forwards — events in the Observed 
and Reactive regions can trigger further design events in the Active region in the 
current cycle. Last is the Postponed region, which samples signals at the end of the 
time slot, in the readonly period, after design activity has completed. 

To next
time slot

From previous
time slot

Active
(design)

Observed
(assertions)

Reactive
(testbench)

Loop back
if more events

Postponed
(sample)

Active
(design)

Observed
(assertions)

Reactive
(testbench)

Postponed
(sample)

  Fig. 4.4     Main regions inside 
a SystemVerilog time step       

   Table 4.1     Primary SystemVerilog scheduling regions   

  Name    Activity  

 Active  Simulation of design code in modules 
 Observed  Evaluation of SystemVerilog Assertions 
 Reactive  Execution of testbench code in programs 
 Postponed  Sampling design signals for testbench input 
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  Sample 4.18    Testbench using interface with clocking block       

     Your test should be contained in a single program. You should use 
OOP to build a dynamic, hierarchical testbench from objects instead 
of modules. A simulation may have multiple program blocks if you 
are using code from other people or combining several tests. 

     As discussed in Section 3.6.1, you should always declare your pro-
gram block as  automatic  so that it behaves more like the routines 
in stack-based languages you may have worked with, such as C. 

 Note that not all vendors regard program blocks equally. See Rich (2009) for an 
alternate opinion.  

    4.3.5   Specifying Delays Between the Design and Testbench 

 The default timing of the clocking block is to sample inputs with a skew of  #1step   
and to drive the outputs with a delay of #0. The  1step  delay specifi es that signals 
are sampled in the Postponed region of the previous time slot, before any design 
activity. So you get the output values just before the clock changes. The testbench 
outputs are synchronous by virtue of the clocking block, so they fl ow directly into the 
design. The program block, running in the Reactive region, generates the stimulus 

 written at a slightly higher level of abstraction, using cycle-by-cycle timing instead 
of worrying about individual clock edges.  

 Section  4.4  explains more about the driving and sampling of interface signals. 
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that is applied to the DUT, which is then evaluated in the Active region during the 
same time slot. The DUT evaluates its logic and drives its outputs, which are the 
inputs to the testbench through the clocking blocks. These are then sampled in 
the Postponed region and the cycle repeats. If you have a design background, you can 
remember this by imagining that the clocking block inserts a synchronizer between 
the design and testbench, as shown in Fig.  4.5  . With proper use of program and 
clocking blocks, race conditions between the testbench and DUT can be all but 
eliminated.    

Design
Under Test

Testbench

out
test
out

clk

test
inin d q

  Fig. 4.5     A clocking block synchronizes the DUT and testbench       

    4.4   Interface Driving and Sampling 

 Your testbench needs to drive and sample signals from the design, primarily through 
interfaces with clocking blocks. The next section uses the arbiter interface from 
Sample  4.16  and the top-level module from Sample  4.9  . 

 Asynchronous signals such as  rst  pass through the interface with no delays. The 
signals in the clocking block get synchronized as shown in the sections below. 

    4.4.1   Interface Synchronization 

 You can use the Verilog  @  and  wait  constructs to synchronize the signals in a test-
bench. Sample  4.19  shows the various constructs.   
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 The waveforms in Fig.  4.6   show that in the program,  arbif.cb.grant  gets the 
value from just before the clock edge. When the interface input changes right at a 
clock edge, such as 250ns, the value does not propagate to the testbench until the 
next cycle, which starts at 350ns.   

  Sample 4.20    Synchronous interface sample and drive from module       

  Sample 4.19    Signal synchronization       

    4.4.2   Interface Signal Sample 

 When you read a signal from a clocking block, you get the value sampled from just 
before the last clock edge, i.e., from the Postponed region. Sample  4.20  shows a 
program block that reads the synchronous grant signal from the DUT. The  arb  
module drives  grant  to 1 & 2 in the middle of the 100ns cycle, and then to 3 exactly 
at the clock edge. This code is for illustration only and is not real,  synthesizable 
RTL.  
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    4.4.3   Interface Signal Drive 

 Sample  4.21  has an abbreviated version of the arbiter test program, which uses the 
arbiter interface defi ned in Sample  4.16 .  

  Sample 4.21    Testbench using interface with clocking block       

clk

DUT  arb.grant

TEST arbif.cb.grant

1 32X

32X 1
150ns 250ns 350ns50ns

  Fig. 4.6     Sampling a synchronous interface       

     When using modports with clocking blocks, a synchronous 
interface signal such as  request  must be prefi xed with both the 
interface name,  arbif , and the clocking block name,  cb . So in 
Sample  4.21 ,  arbif.cb.request  is legal, but  arbif.

request  is not. This is the most common coding mistake with interfaces and clock-
ing blocks.  

    4.4.4   Driving Interface Signals Through a Clocking Block 

 You should always drive interface signals in a clocking block with a synchronous 
drive using a nonblocking assignment. This is because the design signal does not 
change immediately after your assignment – remember that your testbench executes 
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in the Reactive region while design code is in the Active region. If your testbench 
drives  arbif.cb.request  at 100ns, the same time as  arbif.cb  (which is 
 @(posedge clk)  according to the clocking block),  request  changes in the design 
at 100ns. However, if your testbench tries to drive  arbif.cb.request  at time 
101ns, between clock edges, the change does not propagate until the next clock 
edge. In this way, your drives are always synchronous. In Sample  4.20 ,  arbif.
grant  is driven by a module and can use a blocking assignment. 

 If the testbench drives the synchronous interface signal at the active edge of the 
clock, as shown in Sample  4.22 , the value propagates immediately to the design. 
This is because the default output delay is #0 for a clocking block. If the testbench 
drives the output just after the active edge, the value is not seen in the design until 
the next active edge of the clock.  

  Sample 4.23    Driving a synchronous interface       

  Sample 4.22    Interface signal drive       

 Sample  4.23  shows what happens if you drive a synchronous interface signal at 
various points during a clock cycle. This uses the interface from Sample  4.16  and 
the top module and clock generator from Sample  4.9  .  

 Note that in Fig.  4.7  , the value 3, driven in the middle of the fi rst cycle, is seen 
by the DUT at the start of the second cycle. The value 2 is driven in the middle of 
the second cycle. It is never seen by the DUT as the testbench drives a 1 at the end 
of the second cycle.  
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 Driving clocking block signals asynchronously can lead to dropped values. 
Instead, drive at the clock edge by using a cycle delay prefi x on your drives as 
shown in Sample  4.24 .  

clk

TEST arb.cb.request

DUT     arbif.request

3 12X

1X 3
150ns 250ns 350ns50ns

1

  Fig. 4.7     Driving a synchronous interface       

  Sample 4.24    Interface signal drive       

 If you want to wait for two clock cycles before driving a signal, you can either 
use “ repeat (2) @arbif.cb ;” or use the cycle delay  ##2 . This latter delay only 
works as a prefi x to a drive of a signal in a clocking block, as it needs to know which 
clock to use for the delay. 

 The cycle delay of  ##0  in an assignment that drives the value immediately if the 
clock was asserted in this time slot, according to the clocking block. If the clock was 
not just asserted, the signal is driven at the next active edge of the clock. The cycle 
delay of  ##1  always waits for the next active edge of the clock, even if the clock was 
asserted in the current time slot. 

 The naked cycle delay statement  ##3 ; works if you have a default clocking block 
for your program or module. This book only recommends putting a clocking block in 
an interface and not creating a default clocking block. You should always be specifi c 
about which clock is being referenced.  

    4.4.5   Bidirectional Signals in the Interface 

 In Verilog-1995, if you want to drive a bidirectional signal such as a port from 
procedural code, you need a continuous assignment to connect the  reg  to the  wire . 
In SystemVerilog, synchronous bidirectional signals in interfaces are easier to use 
as the continuous assignment is added for you, as shown in Sample  4.25 . When you 
write to the net from a program, SystemVerilog actually writes to a temporary vari-
able that drives the net. Your program reads directly from the wire, seeing the value 
that is resolved from all the drivers. Design code in a module still uses the classic 
register plus continuous assignment statement.  
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 The SystemVerilog LRM is not clear on driving an asynchronous bidirectional 
signal using an interface. Two possible solutions are to use a cross-module reference 
and continuous assignment or to use a virtual interface as shown in   Chapter 10    .  

    4.4.6   Specifying Delays in Clocking Blocks 

 A clocking block ensures that your signals are driven and sampled at the specifi ed 
clock edge. You can skew these times with either a  default  statement, or by speci-
fying the delays for individual signals. This can be useful when simulating netlists 
with real delays. Sample  4.26  shows a clocking block with a default statement that 
has the skews for all signals. In this example, the inputs are sampled 15ns before the 
posedge of the clock and the outputs are driven 10ns after the posedge of the clock.  

  Sample 4.26    Clocking block with default statement       

  Sample 4.25    Bidirectional signals in a program and interface       

 Sample  4.27  shows the equivalent clocking block, but with the delays specifi ed 
on the individual signals.    
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    4.5   Program Block Considerations 

    4.5.1   The End of Simulation 

 In Verilog, simulation continues while there are scheduled events, or until a   $fi nish  
is executed. SystemVerilog adds an additional way to end simulation. A program 
block is treated as if it contains a test. If there is only a single program, simulation 
ends when you complete the last statement in every  initial  block in the program, 
as this is considered the end of the test. Simulation ends even if there are threads 
still running in the program or modules. As a result, you don’t have to shut down 
every monitor and driver when a test is done. 

 If there are several program blocks, simulation ends when the last program com-
pletes. This way simulation ends when the last test completes. You can terminate 
any program block early by executing  $exit . Of course you can still explicitly call 
 $fi nish    to end simulation, but this might cause issues if you have multiple 
programs. 

 However, simulation is not yet over. A module or program can have a  fi nal  
block that contains code to be run just before the simulator terminates, as shown in 
Sample  4.28 . This is a great place to perform clean up work such as closing fi les, 
and printing a report of the number of errors and warnings encountered. You cannot 
schedule any events, or have any delays in a  fi nal  block that could cause time to 
elapse. You do not have to worry about freeing any memory that was allocated as 
this will be done automatically.   

  Sample 4.27    Clocking block with delays on individual signals       

  Sample 4.28    A fi nal block       
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    4.5.2   Why are Always Blocks not Allowed in a Program? 

 In SystemVerilog you can put  initial  blocks in a program, but not always blocks. 
This may seem odd if you are used to Verilog modules, but there are several reasons 
SystemVerilog programs are closer to a program in C, with one (or more) entry 
points, than Verilog’s many small blocks of concurrently executing hardware. In a 
design, an always block might trigger on every positive edge of a clock from the 
start of simulation. In contrast, a testbench has the steps of initialization, stimulate 
and respond to the design, and then wrap up simulation. An  always  block that runs 
continuously would not work. 

 When the last  initial  block completes in the program, simulation implicitly 
ends just as if you had executed  $fi nish . If you had an  always  block, it would run 
for ever, so you would have to explicitly call  $exit  to signal that the program com-
pleted. But don’t despair. If you really need an  always  block, you can use  initial 
forever  to accomplish the same thing.  

    4.5.3   The Clock Generator 

 Now that you have seen the program block, you may wonder if the clock generator 
should be in a module. The clock is more closely tied to the design than the test-
bench, and so the clock generator should remain in a module. The generator should 
be instantiated at the same level as the DUT so it can drive both the DUT and test-
bench As you refi ne the design, you create clock trees, and you have to carefully 
control the skews as the clocks enter the system and propagate through the blocks. 

 The testbench is much less picky. It just wants a clock edge to know when to 
drive and sample signals. Functional verifi cation is concerned with providing the 
right values at the right cycle, not with fractional nanosecond delays and relative 
clock skews. 

 The program block is not the place to put a clock generator. Sample  4.29  tries to 
put the generator in a program block but just causes a race condition. The  clk  and 
 data  signals both propagate from the Reactive region to the design in the Active 
region and could cause a race condition depending on which one arrived fi rst.  

  Sample 4.29    Bad clock generator in program block        
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     Avoid race conditions by always putting the clock generator in a 
module. If you want to randomize the generator’s properties, create 
a class with random variables for skew, frequency, and other char-
acteristics, as shown in   Chapter 6    . You can use this class in the 
generator module, or in the testbench. 

 Sample  4.30  shows a good clock generator in a module. It deliberately avoids an 
edge at time 0 to prevent race conditions. All clock edges are generated with a 
blocking assignment to trigger events during the Active region. If you must generate 
a clock edge at time 0, use a nonblocking assignment to set the initial value so all 
clock sensitive logic such as  always  blocks will have started before the clock 
changes value.  

  Sample 4.30    Good clock generator in module       

     Lastly, don’t try to verify the low-level timing with functional veri-
fi cation. The testbenches described in this book check the behavior 
of the DUT but not the timing, which is better done with a static 
timing analysis tool. Your testbenches should be fl exible enough to 
be compatible with gate-level simulations run with back-annotated 
timing.   

    4.6   Connecting It All Together 

 Now you have a design described in a module, a testbench in a program block, and 
interfaces that connect them together. Sample  4.31  has the top-level module that 
instantiates and connects all the pieces.  

  Sample 4.31    Top module with implicit port connections       
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 This is almost identical to Sample  4.7  . It uses a shortcut notation.* (implicit port 
connection) that automatically connects module instance ports to signals at the cur-
rent level if they have the same name and data type. 

    4.6.1   An Interface in a Port List Must Be Connected 

 The SystemVerilog compiler won’t let you compile a single module or program that 
uses an interface in the port list. Why not? After all, a module or program with ports 
made of individual signals can be compiled without being instantiated, as shown in 
Sample  4.32 .  

  Sample 4.33    Module with an interface       

  Sample 4.34    Top module connecting DUT and interface       

  Sample 4.32    Module with just port connections       

 The compiler creates wires and connects them to the dangling signals. However, 
a module or program with an interface in its port list must be connected to an 
instance of the interface.  

 For Sample  4.33 , the compiler is not able to build even a simple interface. If you 
have modports or a program block using clocking blocks in an interface, the com-
piler has an even more diffi cult time. Even if you are just looking to wring out 
syntax bugs, you must complete the connections. This can be done as shown in 
Sample  4.34 .    
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    4.7   Top-Level Scope 

 Sometimes you need to create things in your simulation that are outside of a 
program or module so that they are seen by all blocks. In Verilog, only macros 
extend across module boundaries, and so are used for creating global constants. 
SystemVerilog introduces the  compilation unit , that is a group of source fi les 
that are compiled together. The scope outside the boundaries of any  module, 
 macromodule, interface, program, package , or  primitive  is known as the 
 compilation-unit scope , also referred to as  $unit . Anything such as a parameter 
defi ned in this scope is similar to a global because it can be seen by all lower-level 
blocks. However, it is not truly global as the parameter cannot be seen during 
 compilation of other fi les. 

 This leads to some confusion. Some simulators compile all the SystemVerilog 
code together, so  $unit  is global. Other simulators and synthesis tools compile a 
single module or group of modules at a time, so  $unit  may be just the contents of 
one or a few fi les. As a result, $unit is not portable. Packages allow you to have 
code outside of a program or module while eliminating the requirement of compil-
ing all the modules at the same time. 

 This book calls the scope outside blocks the “top-level scope.” You can defi ne 
variables, parameters, data types and even routines in this space. Sample  4.35  
declares a top-level parameter,  TIMEOUT , that can be used anywhere in the hierar-
chy. This example also has a  const  string that holds an error message. You can 
declare top-level constants either way.  

  Sample 4.35    Top-level scope for arbiter design       

 The instance name  $root  allows you to unambiguously refer to names in the 
system, starting with the top-level scope. In this respect,  $root  is similar to “/” in 
the Unix fi le system. For tools such as VCS that compile all fi les at once,  $root  
and  $unit  are equivalent. The name  $root  also solves an old Verilog problem. 
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When your code refers to a name in another module, such as  i1.var , the compiler 
fi rst looks in the local scope, then looks up to the next higher scope, and so on until 
it reaches the top. You may have wanted to use  i1.var  in the top module, but an 
instance named i1 in an intermediate scope may have sidetracked the search, giving 
you the wrong variable. You use  $root  to make unambiguous cross module refer-
ences by specifying the absolute path. 

 Sample  4.36  shows a program that is instantiated in the module  top  that is 
implicitly instantiated in the top-level scope. The program can use a relative or 
absolute reference to the  clk  signal in the module. You can use a macro to hold the 
hierarchical path so that when the path changes, you only have to change one piece 
of code. The LRM does not allow modules to be explicitly instantiated in the top-
level scope.   

  Sample 4.36    Cross-module references with $root       

    4.8   Program–Module Interactions 

 The program block can read and write all signals in modules, and can call routines 
in modules, but a module has no visibility into a program. This is because your test-
bench needs to see and control the design, but the design should not depend on 
anything in the testbench. 

     A program can call a routine in a module to perform various 
actions. The routine can set values on internal signals, also known 
as “backdoor load.” Next, because the current SystemVerilog stan-
dard does not defi ne how to force signals from a program block, 
you need to write a task in the design to do the force, and then call 
it from the program. 
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 Lastly, it is a good practice for your testbench to use a function to get information 
from the DUT. Reading signal values can work most of the time, but if the design 
code changes, your testbench may interpret the values incorrectly. A function in the 
module can encapsulate the communication between the two and make it easier for 
your testbench to stay synchronized with the design.   Chapter 10     shows how to 
embed functions and SystemVerilog Assertions in an interface.  

    4.9   SystemVerilog Assertions 

 You can create temporal assertions about signals in your design to check their 
behavior and temporal relationship with SystemVerilog Assertions (SVA). The sim-
ulator keeps track of what assertions have triggered, so you can gather functional 
coverage data on them. 

    4.9.1   Immediate Assertions 

 An immediate assertion checks if an expression is true when the statement is exe-
cuted. Your testbench procedural code can check the values of design signals and 
testbench variables and take action if there is a problem. For example, if you have 
asserted the bus request, you expect that grant will be asserted two cycles later. You 
could use an  if -statement as shown in Sample  4.37 .  

  Sample 4.39    Error from failed immediate assertion       

  Sample 4.37    Checking a signal with an if-statement       

  Sample 4.38    Simple immediate assertion       

 An assertion is more compact than an  if -statement. However, note that the logic 
is reversed compared to the  if -statement above. You want the expression inside the 
parentheses to be true; otherwise, print an error as shown in Sample  4.38 .  

 If the grant signal is asserted correctly, the test continues. If the signal does not 
have the expected value, the simulator produces a message similar Sample  4.39 .  
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 This says that on line 7 of the fi le  test.sv , the assertion  top.t1.a1  started at 
55ns to check the signal  arbif.cb.grant , but failed immediately. The label  a1  
should be unique so that you can quickly locate the failing assertion. 

     You may be tempted to use the full SystemVerilog Assertion syntax 
to check an elaborate sequence over a range of time, but use care as 
they can be hard to debug. Assertions are declarative code, and exe-
cute very differently than the surrounding procedural code. In just a 
few lines of assertions, you can verify temporal relations; the equiv-

alent procedural code would be more complicated and verbose, but easier for the next 
person to understand when they have to read your code. 

     If you are a VHDL programmer, you may be tempted at this 
point to start sprinkling immediate assertions across your code. 
Resist the temptation! Your code will work correctly for weeks 
or months until someone decides to improve simulation perfor-

mance by disabling assertions. The simulator will no longer execute the expression 
in the assertion. If the expression has a side effect such as incrementing a value or 
calling a function, it will no longer occur.  

    4.9.2   Customizing the Assertion Actions 

 An immediate assertion has optional then- and else-clauses. If you want to augment 
the default message, you can add your own as shown in Sample  4.40  . 

  Sample 4.40    Creating a custom error message in an immediate assertion       

 If grant does not have the expected value, you’ll see an error message similar to 
Sample  4.41 .  

  Sample 4.41    Error from failed immediate assertion       

 SystemVerilog has four functions to print messages:  $info, $warning, $error , 
and  $fatal . These are allowed only inside an assertion, not in procedural code, 
though future versions of SystemVerilog may allow this. 

 You can use the then-clause to record when an assertion completed success-
fully as shown in Sample  4.42 .   
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    4.9.3   Concurrent Assertions 

 The other type of assertion is the concurrent assertion that you can think of as a small 
model that runs continuously, checking the values of signals for the entire simulation. 
These are instantiated similarly to other design blocks and are active for the entire 
simulation. You need to specify a sampling clock in the assertion. Sample  4.43  has 
a small assertion to check that the arbiter request signal does not have X or Z values 
except during reset. This code is placed outside of procedural blocks such as  initial  
and  always . Sample  4.43  is for illustration only. See one of the books listed below 
for a more information.   

  Sample 4.42    Creating a custom error message       

  Sample 4.43    Concurrent assertion to check for X/Z       

    4.9.4   Exploring Assertions 

 There are many other uses for assertions. For example, you can put assertions in an 
interface. Now your interface not only transmits signal values but also checks the 
protocol. 

 This Section has provided a brief introduction to SystemVerilog Assertions. For 
more information, see Vijayaraghhavan and Ramanathan (2005) and Haque et al. 
(2007).   
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    4.10   The Four-Port ATM Router 

 The arbiter example is a good introduction to interfaces, but real designs have more 
than a single input and output. This section discusses a four-port ATM (Asynchronous 
Transfer Mode) router, shown in Fig.  4.8  .  
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  Fig. 4.8     Testbench – ATM router diagram without interfaces       

    4.10.1   ATM Router with Ports 

 The following code fragments show the tangle of wires you would have to endure to 
connect an RTL block to a testbench. First is the header for the ATM router model. 
This uses the Verilog-1995 style port declarations, where the type and direction are 
separate from the header. 

 The actual code for the router in Sample  4.44  is crowded out by nearly a page of 
port declarations.  
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 So what sort of synthesizable code goes in the “…” at the end of Sample  4.44  ? 
See Sutherland (2006) for more information and examples of using interfaces in 
modules and other SystemVerilog design constructs.  

    4.10.2   ATM Top-Level Module with Ports 

 Sample  4.45  contains the top-level module.  

  Sample 4.44    ATM router model header with ports        
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 Sample  4.46  shows the top of the testbench module. Once again, note that the 
ports and wires take up the majority of the module.  

  Sample 4.45    Top-level module without an interface        
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  Sample 4.46    Verilog-1995 testbench using ports        



1234.10 The Four-Port ATM Router

 You just saw three pages of code, and it was all just connectivity — no testbench, 
no design! Interfaces provide a better way to organize all this information and elimi-
nate the repetitive parts that are so error prone.  

    4.10.3   Using Interfaces to Simplify Connections 

 Figure  4.9   shows the ATM router connected to the testbench, with the signals 
grouped into interfaces.   

4x4 ATM

router

Testbench

Rx Tx

  Fig. 4.9     Testbench - router diagram with interfaces       
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    4.10.5   ATM Router Model Using an Interface 

 Sample  4.49  contains the ATM router model and testbench, which need to specify 
the  modport  in their port connection list. Note that you put the  modport  name after 
the interface name,  Rx_if .   

  Sample 4.48    Tx interface with modports and clocking block       

  Sample 4.47    Rx interface with modports and clocking block       

    4.10.4   ATM Interfaces 

 Sample  4.47  and  4.48  show the  Rx  and  Tx  interfaces with modports and clocking 
blocks.    
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    4.10.7   ATM Testbench with Interface 

 Sample  4.51  shows the part of the testbench that captures cells coming in from the 
TX port of the router. Note that the interface names are hard-coded, so you have to 
duplicate the same code four times for the 4´4 ATM router. For example, only the 
task  receive_cell0  is shown, and the fi nal code would also have  receive_
cell1, receive_cell2 , and  receive_cell30 .   Chapter 10     shows how to sim-
plify the code by using virtual interfaces.    

  Sample 4.49    ATM router model with interface using modports       

    4.10.6   ATM Top Level Module with Interfaces 

 The top module, shown in Sample  4.50 , has shrunk considerably, along with the 
chances of making a mistake.   

  Sample 4.50    Top-level module with interface       
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    4.11   The Ref Port Direction 

 SystemVerilog introduces a new port direction for connecting modules:  ref . You 
should be familiar with the  input, output , and inout directions. The last is for 
modeling bidirectional connections. If you drive a signal with multiple  inout  ports, 
SystemVerilog will calculate the value of the signal by combining the values of all 
drivers, taking in to account driver strengths and Z values. 

 A  ref  port is a different beast. It is essentially a way to make two names that 
both reference the same variable. There is only one storage location, but multiple 
aliases. Ref ports can only connect to variables, not signals. See Section 3.4.3 for 
information on the  ref  direction for routine arguments. 

  Sample 4.51    Testbench using an interface with a clocking block        
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 In Sample  4.52 , the  incr  module has two ref ports,  c  and  d . These two variables 
share storage with the  c  and  d  variables in the top module. When top changes the 
value of  c , it is seen immediately by  incr . Then incr increments  c  and the result 
is seen back in the  top  module. If the port  c  was declared as  inout , you would 
have had to build tristate drivers such as continuous assignment statements, and 
make sure you properly drove an enable signal and Z values. Don’t consider  ref  
ports as a convenient replacement for inout ports as only the latter are supported 
for synthesis.   

  Sample 4.52    Ref ports       

    4.12   Conclusion 

 In this chapter you have learned how to use SystemVerilog’s interfaces to organize 
the communication between design blocks and your testbench. With this design 
construct, you can replace dozens of signal connections with a single interface, 
making your code easier to maintain and improve, and reducing the number of wir-
ing mistakes. 

 SystemVerilog also introduces the program block to hold your testbench and to 
reduce race conditions between the device under test and the testbench. With a 
clocking block in an interface, your testbenches will drive and sample design sig-
nals correctly relative to the clock.  
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    4.13   Exercises 

     1.    Design an interface and testbench for the ARM Advanced High-performance 
Bus (AHB). You are provided a bus master as verifi cation IP that can initiate 
AHB transactions. You are testing a slave design. The testbench instantiates the 
interface, slave, and master. Your interface will display an error if the transaction 
type is not IDLE or NONSEQ on the negative edge of HCLK. The AHB signals 
are described in Table  4.2  .   

   Table 4.2     AHB Signal Description   

  Signal    Width    Direction    Description  

 HCLK  1  Output  Clock 
 HADDR  21  Output  Address 
 HWRITE  1  Output  Write fl ag: 1=write, 0=read 
 HTRANS  2  Output  Transaction type: 

2 ¢ b00=IDLE, 2 ¢ b10=NONSEQ 
 HWDATA  8  Output  Write data 
 HRDATA  8  Input  Read data 

    2.    For the following interface, add the following code.

   a.     A clocking block that is sensitive to the negative edge of the clock, and all I/O 
that are synchronous to the clock.  

   b.     A modport for the testbench called  master , and a modport for the DUT called 
 slave   

   c.    Use the clocking block in the I/O list for the  master  modport.            
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    3.    For the clocking block in Exercise 2, fi ll in the  data_in  and  data_out  signals 
in the following timing diagram.        

reg_bus/clk

reg_bus/data_in

reg_bus/data_out

reg_bus/cb/data_in

reg_bus/cb/data_out

reg_bus/cb/write

reg_bus/write

16 h0000 16 h0001

16 h0000 16 h0001 16 h0002 16 h0003

2

4

test/reg_bus/clk

test/reg_bus/data_in

test/reg_bus/data_out 16 h0000 16 h0001

reg_bus/cb/data_in 16 h0000 16 h0001 16 h0002 16 h0003

reg_bus/cb/data_out

    4.    Modify the clocking block in Exercise 2 to have:

   a.    output skew of 25ns for output write and address  
   b.    input skew of 15ns  
   c.    restrict  data_in  to only change on the positive edge of the clock      

    5.    For the clocking block in Exercise 4, fi ll in the following timing diagram, assuming 
a clock period of 100ns.                 
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    5.1   Introduction 

 With procedural programming languages such as Verilog and C, there is a strong 
division between data structures and the code that uses them. The declarations and 
types of data are often in a different fi le than the algorithms that manipulate them. 
As a result, it can be diffi cult to understand the functionality of a program, as the 
two halves are separate. 

 Verilog users have it even worse than C users, as there are no structures in Verilog, 
only bit vectors and arrays. If you wanted to store information about a bus transac-
tion, you would need multiple arrays: one for the address, one for the data, one for 
the command, and more. Information about transaction N is spread across all the 
arrays. Your code to create, transmit, and receive transactions is in a module that 
may or may not be actually connected to the bus. Worst of all, the arrays are all 
static, so if your testbench only allocated 100 array entries, and the current test 
needed 101, you would have to edit the source code to change the size and recom-
pile. As a result, the arrays are sized to hold the greatest conceivable number of 
transactions, but during a normal test, most of that memory is wasted. 

 Object-Oriented Programming (OOP) lets you create complex data types and tie 
them together with the routines that work with them. You can create testbenches and 
system-level models at a more abstract level by calling routines to perform an action 
rather than toggling bits. When you work with transactions instead of signal transi-
tions, you are working at a higher level, and your code is more easily written and 
understood. As a bonus, your testbench is decoupled from the design details, 
making it more robust and easier to maintain and reuse on future projects. 

    Chapter 5   
 Basic OOP                  
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 If you already are familiar with OOP, skim this chapter, as SystemVerilog 
follows OOP guidelines fairly closely. Be sure to read Section  5.18  to learn how 
to build a testbench.   Chapter 8     presents advanced OOP concepts such as inheri-
tance and more testbench techniques; it should be read by everyone.  

    5.2   Think of Nouns, not Verbs 

 Grouping data and code together helps you in creating and maintaining large test-
benches. How should data and code be brought together? You can start by thinking 
of how you would perform the testbench’s job. 

 The goal of a testbench is to apply stimulus to a design and then check the result 
to see if it is correct. The data that fl ows into and out of the design is grouped 
together into transactions such as bus cycles, opcodes, packets, or data samples. The 
best way to organize the testbench is around the transactions, and the operations that 
you perform on them. In OOP, the transaction is the focus of your testbench. 

 You can think of an analogy between cars and testbenches. Early cars required 
detailed knowledge about their internals (nouns) to operate. You had to advance or 
retard the spark, open and close the choke, keep an eye on the engine speed and be 
aware of the traction of the tires if you drove on a slippery surface such as a wet 
road. Today your interactions with the car are at a high level. When you get into a 
car, you perform discrete actions (verbs), such as starting, moving forward, turning, 
stopping, and listening to music while you drive. If you want to start a car, just turn 
the key in the ignition, and you are done. Get the car moving by pressing the gas 
pedal; stop it with the brakes. Are you driving on snow? Don’t worry: the anti-lock 
brakes help you stop safely and in a straight line. You don’t have to think about the 
low level details. 

 Your testbench should be structured the same way. Traditional testbenches were 
oriented around the operations that had to happen: create a transaction, transmit it, 
receive it, check it, and make a report. Instead, you should think about the structure 
of the testbench, and what each part does. The generator creates transactions and 
passes them to the next level. The driver talks with the design that responds with 
transactions that are received by a monitor. The scoreboard checks these against the 
expected data. You should divide your testbench into blocks, and then defi ne how 
they communicate. This chapter shows many examples of these components. 

 How do you represent these blocks in SystemVerilog? A class may describe a 
data-centric block such as a bus transaction, network packet, or CPU instruction. Or 
a class might represent a control block such as a driver or scoreboard. Either way, a 
class encapsulates the data together with the routines that manipulate it. The details 
of how the class implements actions such as data generation or checking is hidden 
from the outside, making the class more reusable.  
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    5.3   Your First Class 

 Sample  5.1   shows a class for a generic transaction. It contains an address, a check-
sum, and an array of data values. There are two routines in the  Transaction  class: 
one that displays the address, and another that computes a checksum of the data. 

     To make it easier to match the beginning and end of a named block, 
you can put a label on the end of it. In Sample  5.1   these end labels 
may look redundant, but in complex code, with many nested blocks, 
the labels help you fi nd the mate for a simple  end, endtask, 
endfunction , or  endclass .  

  Sample 5.1     Simple transaction class       

     Every company has its own naming style. This book uses the follow-
ing convention: Class names start with a capital letter and avoid 
using underscores, as in  Transaction  or  Packet . Constants are all 
upper case, as in  CELL_SIZE , and variables are lower case, as in 
 count  or  opcode . You are free to use whatever style you want.  

    5.4   Where to Defi ne a Class 

 You can defi ne and use classes in SystemVerilog in a  program, module, package , 
or outside of any of these. 

 When you start a project, you might store a single class per fi le. When the num-
ber of fi les gets too large, you can group a set of related classes and type defi nitions 
into a SystemVerilog  package  as shown in Sample  5.2  . For instance, you might 
group together all USB3 transactions and BFMs into a single  package . Now you 
can compile the package separately from the rest of the system. Unrelated classes, 
such as those for other transactions, scoreboards, or different protocols, should 
remain in separate fi les. 
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 Code samples in this book leave out the packages to keep the text more compact.

  Sample 5.3     Importing a package in a program       

  Sample 5.2     Class in a package       

    5.5   OOP Terminology 

 What separates you, an OOP novice, from an expert? The fi rst thing is the words 
you use. You already know some OOP concepts from working with Verilog. Here 
are some OOP terms, defi nitions, and rough equivalents in Verilog 2001.

   Class – a basic building block containing routines and variables. The analogue in • 
Verilog is a module.  
  Object – an instance of a class. In Verilog, you need to instantiate a module to use it.  • 
  Handle – a pointer to an object. In Verilog, you use the name of an instance when • 
you refer to signals, and routines from outside the module. A handle is like the 
address of the object, but stored in a pointer that can only refer to one type. 
A handle is similar to a reference in other OOP languages.  
  Property – a variable that holds data. In Verilog, this is a signal such as a register • 
or wire.  
  Method – the procedural code that manipulates variables, contained in tasks and • 
functions. Verilog modules have tasks and functions plus  initial  and  always  
blocks.  
  Prototype – the header of a routine that shows the name, type, and argument list • 
plus return type. The body of the routine contains the executable code. See 
Section  5.10  for more on prototypes and out-of-body experiences.    

Sample  5.3  shows how to import a package into a program.     
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 This book uses the more traditional terms from Verilog of “variable” and “routine” 
when discussing non-OOP code, and “property” and “method” for classes. 

 In Verilog you build complex designs by creating modules and instantiating them 
hierarchically. In OOP you create classes and construct them (creating objects) to 
create a similar hierarchy. Modules are instantiated during compilation while classes 
are constructed at run time. 

 Here is an analogy to explain these OOP terms. Think of a class as the blueprint for 
a house. This plan describes the structure of the house, but you cannot live in a blue-
print; you need to build the physical house. An object is the actual house. Just as one 
set of blueprints can be used to build a whole subdivision of houses, a single class can 
be used to build many objects. The house address is like a handle in that it uniquely 
identifi es your house. Inside your house you have things such as lights (on or off), 
with switches to control them. A class has variables that hold values, and routines that 
control the values. A class for the house might have many lights. A single call to 
 turn_on_porch_light()  sets the light variable ON in a single house.  

    5.6   Creating New Objects 

 Both Verilog and OOP have the concept of instantiation, but there are some differ-
ences in the details. A Verilog module, such as a counter, is instantiated when you 
compile your design. A SystemVerilog class, such as a network packet, is instanti-
ated during simulation, when needed by the testbench. Verilog instances are static, 
as the hardware does not change during simulation; only signal values change. 
SystemVerilog stimulus objects are constantly being created and used to drive the 
DUT and check the results. Later, the objects may be freed so their memory can be 
used by new ones. Back to the house analogy: the address is normally static, unless 
your house burns down, causing you to construct a new one. Garbage collection at 
home is not automatic, especially if you have teenagers. 

 The analogy between OOP and Verilog has a few other exceptions. The top-level 
Verilog module is implicitly instantiated. However, a SystemVerilog class must be 
instantiated before it can be used. Next, a Verilog instance name only refers to a 
single instance, whereas a SystemVerilog handle can refer to many objects, though 
only one at a time. 

    5.6.1   Handles and Constructing Objects 

 In Sample  5.4  ,  tr  is a handle that points to an object of type  Transaction . For 
brevity, you can just say  tr  is a  Transaction  handle.  
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 When you declare the handle  tr , it is initialized to the special value  null . 
On the next line, call the new() function to construct the  Transaction  object. 

 This special new function allocates space for the  Transaction , initializes the 
variables to their default value (0 for 2-state variables and X for 4-state ones), and 
returns the address where the object is stored. For example, the  Transaction  class 
has two 32-bit registers ( addr  and  csm ) and an array with eight values (data), for a 
total of 10 longwords, or 40 bytes. So when you call  new , SystemVerilog allocates 
at least 40 bytes of storage. If you have used C, this step is similar to calling the 
 malloc  function. Note that SystemVerilog requires additional memory for 4-state 
variables and housekeeping information such as the object’s type. 

 This process is called instantiation as you are making an instance of the class. 
The  new  function is sometimes called the constructor, as it builds the object, just as 
your carpenter constructs a house from wood and nails. For every class, SystemVerilog 
creates a default  new  function to allocate and initialize an object.  

    5.6.2   Custom Constructor 

 You can defi ne your own  new()  function to set your own values. Note that you must 
not give a return value type as the constructor is a special function and automatically 
returns a handle to an object of the same type as the class.  

  Sample 5.5     Simple user-defi ned new() function       

  Sample 5.4     Declaring and using a handle       

 In Sample  5.5  , fi rst SystemVerilog allocates the space for the object automati-
cally. Next it sets  addr  and  data  to fi xed values but leaves  csm  at its default value 
of X. You can use arguments with default values to make a more fl exible constructor, 
as shown in Sample  5.6  . Now you can specify the value for  addr  and  data  when 
you call the constructor, or use the default values.  
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 How does SystemVerilog know which  new() function to call? It looks at the type 
of the handle on the left side of the assignment. In Sample  5.7  , the call to  new  inside 
the  Driver  constructor calls the  new()  function for  Transaction , even though 
the one for  Driver  is closer. Since  tr  is a  Transaction  handle, SystemVerilog 
does the right thing and creates an object of type  Transaction .   

  Sample 5.6     A new() function with arguments       

  Sample 5.7     Calling the right new() function       

    5.6.3   Separating the Declaration and Construction 

     You should avoid declaring a handle and calling the constructor, 
 new , all in one statement. While this is legal syntax and less verbose, 
it can create ordering problems, as the constructor is called before 
the fi rst procedural statement. You might need to initialize objects in 
a certain order, but if you call  new()  in the declaration, you won’t 

have the same control. Additionally, if you forget to use  automatic  storage, the 
constructor is called at the start of simulation, not when the block is entered.  
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    5.6.4   The Difference Between New() and New[] 

 You may have noticed that this  new()  function looks a lot like the  new[]  operator 
described in Section 2.3, used to set the size of dynamic arrays. They both allocate 
memory and initialize values. The big difference is that the  new()  function is called 
to construct a single object, whereas the  new[]  operator is building an array with 
multiple elements.  new()  can take arguments for setting object values, whereas 
 new[]  only takes a single value for the number of elements in the array. Just remem-
ber that the new with square brackets  []  is for arrays, while the one with paren-
theses  ()  is for classes, which usually contain methods.  

    5.6.5   Getting a Handle on Objects 

     New OOP users often confuse an object with its handle. The two 
are very distinct. You  declare  a handle and  construct  an object. 
Over the course of a simulation, a handle can point to many 
objects. This is the dynamic nature of OOP and SystemVerilog. 
Don’t get the handle confused with the object. 

 In Sample  5.8  ,  t1  fi rst points to one object, then another. Fig.  5.1   shows the 
resulting handles and objects.   

  Sample 5.8     Allocating multiple objects       

First
Transaction
object

t2Second
Transaction
object

t1 t2t1

  Fig. 5.1     Handles and objects after allocating multiple objects       

 Why would you want to create objects dynamically? During a simulation you 
may need to create hundreds or thousands of transactions. SystemVerilog lets you 
create objects automatically, when you need them. In Verilog, you would have to 
use a fi xed-size array large enough to hold the maximum number of transactions. 

 Note that this dynamic creation of objects is different from anything else offered 
before in the Verilog language. An instance of a Verilog module and its name are 
bound together statically during compilation. Even with  automatic  variables, which 
come and go during simulation, the name and storage are always tied together. 
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 An analogy for handles is people who are attending a conference. Each person is 
similar to an object. When you arrive, a badge is “constructed” by writing your 
name on it. This badge is a handle that can be used by the organizers to keep track 
of each person. When you take a seat for the lecture, space is allocated. You may 
have multiple badges for attendee, presenter, or organizer. When you leave the con-
ference, your badge may be reused by writing a new name on it, just as a handle can 
point to different objects through assignment. Lastly, if you lose your badge and 
there is nothing to identify you, you will be asked to leave. The space you take, your 
seat, is reclaimed for use by someone else.   

    5.7   Object Deallocation 

 Now you know how to create an object — but how do you get rid of it? For example, 
your testbench creates and sends thousands of transactions, such as packets, instruc-
tions, frames, interrupts, etc. into your DUT. Once you know the transaction has 
completed successfully, you don’t need to keep it around. You should reclaim the 
memory; otherwise, a long simulation might run out of memory. 

 Garbage collection is the process of automatically freeing objects that are no 
longer referenced. One way SystemVerilog can tell if an object is no longer being 
used is by keeping track of the number of handles that point to it. When the last 
handle no longer references an object, SystemVerilog releases the memory for it. 
(The actual algorithm to fi nd unused objects varies between simulators. This section 
describes reference counting, which is the easiest to understand).  

  Sample 5.9     Creating multiple objects       

 The second line in Sample  5.9   calls  new()  to construct an object and store the 
address in the handle t. The next call to  new()  constructs a second object and stores 
its address in  t , overwriting the previous value. Since there are no handles pointing 
to the fi rst object, SystemVerilog can deallocate it. The object may be deleted imme-
diately, or after a short wait. The last line explicitly clears the handle so that now the 
second object can be deallocated. 

 If you are familiar with C++, these concepts of objects and handles are familiar, 
but there are some important differences. A SystemVerilog handle can only point to 
objects of one type, so they are called “type-safe.” In C, a typical void pointer is only 
an address in memory, and you can set it to any value or modify it with operators 
such as pre-increment. You cannot be sure that a pointer is valid. A C++ typed pointer 
is much safer, but you may be tempted by C’s fl exibility. SystemVerilog does not 
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allow any modifi cation of a handle or using a handle of one type to refer to an object 
of another type. (SystemVerilog’s OOP specifi cation is closer to Java than C++). 

 Since SystemVerilog garbage collects an object when no more handles refer to it, 
you can be sure your code always uses valid handles. In C / C++, a pointer can refer 
to an object that no longer exists. Garbage collection in those languages is manual, so 
your code can suffer from “memory leaks” when you forget to deallocate objects. 

     SystemVerilog cannot garbage collect an object that is still refer-
enced somewhere by a handle. For example, if you keep objects in 
a linked list, SystemVerilog cannot deallocate the objects until you 
manually clear all handles by setting them to  null . If an object 
contains a routine that forks off a thread, the object is not deallo-
cated while the thread is running. Likewise, any objects that are 

used by a spawned thread may not be deallocated until the thread terminates. See 
  Chapter 7     for more information on threads.  

    5.8   Using Objects 

 Now that you have allocated an object, how do you use it? Going back to the Verilog 
module analogy, you can refer to variables and routines in an object with the “.” 
notation, as shown in Sample  5.10 .  

  Sample 5.10    Using variables and routines in an object       

 In strict OOP, the only access to variables in an object should be through accessor 
functions such as  get()  and  put() . This is because accessing variables directly 
limits your ability to change the underlying implementation in the future. If a better 
(or simply different) algorithm comes along in the future, you may not be able to 
adopt it because you would also need to modify all of the references to the variables. 

     The problem with this methodology is that it was written for large 
software applications with lifetimes of a decade or more. With dozens 
of programmers making modifi cations, stability is paramount. 
However, you are creating a testbench, where the goal is maximum 
control of all variables to generate the widest range of stimulus  values. 
One of the ways to accomplish this is with constrained-random stimu-

lus generation, which cannot be done if a variable is hidden behind a screen of meth-
ods. While the  get()  and  put()  methods are fi ne for compilers, GUIs, and APIs, 
you should stick with public variables that can be directly accessed anywhere in 
your testbench. 
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 The exception to this rule is for verifi cation IP that is created and maintained by 
a group such as a company that has no direct relationship to the end user. For exam-
ple, if you purchase a PCI transactor from another company, they will restrict access 
to the internals, forcing you to treat it as a black box. The developer must give you 
enough methods to generate both good transactions and inject all fl avors of errors.  

    5.9   Class Methods 

 A method in a class is just a  task  or  function  defi ned inside the scope of the class. 
Sample  5.11  defi nes  display()  methods for the  Transaction  and  PCI_Tran . 
SystemVerilog calls the correct one, based on the handle type.  

  Sample 5.11    Routines in the class       

 A method in a class uses automatic storage by default, so you don’t have to worry 
about remembering the  automatic  modifi er.  
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    5.10   Defi ning Methods Outside of the Class 

     A good rule of thumb is you should limit a piece of code to one 
“page” or screen in your favorite editor to keep it understandable. 
You may be familiar with this rule for routines, but it also applies 
to classes. If you can see everything in a class on the screen at one 
time, it is easier to understand. 

 However, if each method takes a page, how can the whole class fi t on a page? In 
SystemVerilog you can break a method into the prototype (method name and argu-
ments) inside the class, and the body (the procedural code) that goes after the class. 

 Here is how you create out-of-block declarations. Copy the fi rst line of the 
method, with the name and arguments, and add the  extern  keyword at the begin-
ning. Now take the entire method and move it after the class body, and add the class 
name and two colons (:: the scope operator) before the method name. The above 
classes could be defi ned as shown in Sample  5.12 .  

  Sample 5.12    Out-of-block method declarations       

     A common coding mistake is when the prototype does not match 
the out-of-body. SystemVerilog requires that the prototype be 
identical to the out-of-block method declaration, except for the 
class name and scope operator, ::. The prototype can have qual-

ifi ers such as  local, protected , or  virtual , but not the out-of-body. If any 
arguments have default values, they must be given in the prototype, but they are 
optional in the out-of-body. 
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     Another common mistake is to leave out the class name when you 
declare the method outside of the class. As a result, it is defi ned at 
the next higher scope (probably the program or package scope), 
and the compiler gives an error when the task tries to access class-
level variables and methods. This is shown in Sample  5.13 .   

  Sample 5.13    Out-of-body method missing class name       

    5.11   Static Variables vs. Global Variables 

 Every object has its own local variables that are not shared with any other object. If 
you have two  Transaction  objects, each has its own  addr, csm , and  data  variables. 
Sometimes though, you need a variable that is shared by all objects of a certain type. 
For example, you might want to keep a running count of the number of transactions 
that have been created. Without OOP, you would probably create a global variable. 
Then you would have a global variable that is used by one small piece of code, but 
is visible to the entire testbench. This “pollutes” the global name space and makes 
variables visible to everyone, even if you want to keep them local. 

    5.11.1   A Simple Static Variable 

 In SystemVerilog you can create a static variable inside a class. This variable is 
shared amongst all instances of the class, but its scope is limited to the class. In 
Sample  5.14 , the static variable  count  holds the number of objects created so far. It 
is initialized to 0 in the declaration because there are no transactions at the begin-
ning of the simulation. Each time a new object is constructed, it is tagged with a 
unique value, and count is incremented.  
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 In Sample  5.14 , there is only one copy of the static variable  count , regardless of 
how many  Transaction  objects are created. You can think that  count  is stored 
with the class and not the object. The variable  id  is not static, so every  Transaction  
has its own copy, as shown in Fig.  5.2  . Now you don’t need to make a global vari-
able for the count.  

class Transaction;
static int count = 0;
int id;

endclass

id: 0
count

id: 1
count

  Fig. 5.2     Static variables in a class       

  Sample 5.14    Class with a static variable       

     Using the ID fi eld is a good way to track objects as they fl ow 
through a design. When debugging a testbench, you often need a 
unique value. SystemVerilog does not let you print the address of 
an object, but you can make an ID fi eld. Whenever you are tempted 
to make a global variable, consider making a class-level static vari-
able. A class should be self-contained, with as few outside refer-
ences as possible.  

    5.11.2   Accessing Static Variables Through the Class Name 

 Sample  5.14  showed how you can reference a static variable using a handle. You 
don’t need a handle; you could use the class name followed by ::, the class scope 
resolution operator, shown in Sample  5.15.    
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    5.11.4   Static Methods 

 As you employ more static variables, the code to manipulate them may grow into a full 
fl edged routine. In SystemVerilog you can create a static method inside a class that can 
read and write static variables, even before the fi rst instance has been created. 

 Sample  5.17  has a simple static function to display the values of the static variables. 
SystemVerilog does not allow a static method to read or write non-static variables, 
such as  id . You can understand this restriction based on the code below. When the 
function  display_statics  is called at the end of the example, no  Transaction  
objects have been constructed, so no storage has been created for  id  variables.    

  Sample 5.15    The class scope resolution operator       

  Sample 5.16    Static storage for a handle       

    5.11.3   Initializing Static Variables 

 A static variable is usually initialized in the declaration. You can’t easily initialize it 
in the class constructor, as this is called for every single new object. You would need 
another static variable to act as a fl ag, indicating whether the original variable had 
been initialized. If you have a more elaborate initialization, you could use an initial 
block. Make sure static variables are initialized before the fi rst object is constructed. 

 Another use for a static variable is when every instance of a class needs informa-
tion from a single object. For example, a transaction class may refer to a confi gura-
tion object that has the number of transactions. If you have a non-static handle in the 
 Transaction  class, every object will have its own copy, wasting space. Sample 
 5.16  shows how to use a static variable instead.   
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    5.12   Scoping Rules 

 When writing your testbench, you need to create and refer to many variables. 
SystemVerilog follows the same basic rules as Verilog, with a few helpful 
improvements. 

 A scope is a block of code such as a module, program, task, function, class, or 
 begin/end  block. The  for  and  foreach  loops automatically create a block so 
that an index variable can be declared or created local to the scope of the loop. 

 You can only defi ne new variables in a block. New in SystemVerilog is the abil-
ity to declare a variable in an unnamed  begin-end  block. 

 A name can be relative to the current scope or absolute starting with  $root . For 
a relative name, SystemVerilog looks up the list of scopes until it fi nds a match. If 
you want to be unambiguous, use  $root  at the start of a name. Variables can not be 
declared in  $root , that is, outside of any  module, program  or package. 

 Sample  5.18  uses the same name in several scopes. Note that in actual code, you 
would use more meaningful names! The name  limit  is used for a global variable, 
a program variable, a class variable, a function variable, and a local variable in an 
initial block. The latter is in an unnamed block, so the label created is tool depen-
dent, along with the signal’s hierarchical name.  

  Sample 5.17    Static method displays static variable        
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 For testbenches, you can declare variables in the  program  or in the  initial  
block. If a variable is only used inside a single  initial  block, such as a counter, 
you should declare it there to avoid possible name confl icts with other blocks. Note 
that if you declare a variable in an unnamed block, such as the  initial  in Sample 
 5.18 , there is no hierarchical name that works consistently across all tools. 

     Declare your classes outside of any  program  or  module  in a 
 package . This approach can be shared by all the testbenches, and 
you can declare temporary variables at the innermost possible 
level. This style also eliminates a common bug that happens when 
you forget to declare a variable inside a class. SystemVerilog looks 
for that variable in higher scopes. 

     If a block uses an undeclared variable, and another variable with 
that name happens to be declared in the program block, the class 
uses it instead, with no warning. In Sample  5.19 , the function 
 Bad::display  did not declare the loop variable  i , so SystemVer-

ilog uses the program level  i  instead. Calling the function changes the value of 
 test.i , probably not what you want!  

  Sample 5.18    Name scope       
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 If you move the class into a package, the class cannot see the program-level 
variables, and thus won’t use them unintentionally as shown in Sample  5.20 .  

  Sample 5.19    Class uses wrong variable       

  Sample 5.20    Move class into package to fi nd bug       

    5.12.1   What is This? 

 When you use a variable name, SystemVerilog looks in the current scope for it, and 
then in the parent scopes until the variable is found. This is the same algorithm 
used by Verilog. What if you are deep inside a class and want to unambiguously 
refer to a class-level object? This style code is most commonly used in constructors, 
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where the programmer uses the same name for a class variable and an argument. 
In Sample  5.21 , the keyword “ this ” removes the ambiguity to let SystemVerilog 
know that you are assigning the local variable,  name , to the class variable,  name .  

class Transaction;
bit [31:0] addr, crc, data[8];
Statistics stats;

endclass

endclass

class Statistics;
time startT, stopT;
static int ntrans= 0;
static time total_elapsed_time;

  Fig. 5.3     Contained objects Sample 5.22       

  Sample 5.21    Using this to refer to class variable       

 Some people think this argument naming style makes the code easier to read; 
others think it is a shortcut by a lazy programmer.   

    5.13   Using One Class Inside Another 

 A class can contain an instance of another class, using a handle to an object. This is 
just like Verilog’s concept of instantiating a module inside another module to build 
up the design hierarchy. A common reason for using containment are code reuse and 
controlling complexity. For example, every one of your transactions may have a 
statistics block, including timestamps indicating when the transaction started and 
ended transmission, and information about all transactions, as shown in Fig.  5.3   and 
Sample  5.22 .   
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 Now you can use the Statistics class inside another class such as a transaction as 
can been seen in Sample  5.23 .  

  Sample 5.23    Encapsulating the Statistics class       

  Sample 5.22    Statistics class declaration       

 The outermost class,  Transaction , can refer to things in the  Statistics  class 
using the usual hierarchical syntax, such as  stats.startT . 

 Remember to instantiate the object; otherwise, the handle  stats  is  null  and the 
call to  start  fails. This is best done in the constructor of the outer class, 
 Transaction . 
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 As your classes become larger, they may become hard to manage. When your 
variable declarations and method prototypes grow larger than a page, you should 
see if there is a logical grouping of items in the class so that it can be split into 
 several smaller ones. 

 This is also a potential sign that it’s time to refactor your code, i.e., split it into 
several smaller, related classes. See   Chapter 8     for more details on class inheritance. 
Look at what you’re trying to do in the class. Is there something you could move 
into one or more base classes, i.e., decompose a single class into a class hierarchy? 
A classic indication is similar code appearing at various places in the class. You 
need to factor that code out into a function in the current class, one of the current 
class’s parent classes, or both. 

    5.13.1   How Big or Small Should My Class Be? 

     Just as you may want to split up classes that are too big, you should 
also have a lower limit on how small a class should be. A class with 
just one or two members makes the code harder to understand as it 
adds an extra layer of hierarchy and forces you to constantly jump 
back and forth between the parent class and all the children to 

understand what it does. In addition, look at how often it is used. If a small class is 
only instantiated once, you might want to merge it into the parent class. 

 One Synopsys customer put each transaction variable into its own class for fi ne 
control of randomization. The transaction had a separate object for the address, 
checksum, data, etc. In the end, this approach only made the class hierarchy more 
complex. On the next project they fl attened the hierarchy. 

 See Section 8.4 for more ideas on partitioning classes.  

    5.13.2   Compilation Order Issue 

 Sometimes you need to compile a class that includes another class that is not yet 
defi ned. The declaration of the handle causes an error, as the compiler does not 
recognize the new type. Declare the class name with a  typedef  statement, as shown 
in Sample  5.24 .    
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    5.14   Understanding Dynamic Objects 

 In a statically allocated language such as Verilog, every signal has a unique variable 
associated with it. For example, there may be a wire called  grant , the integer 
 count , and a module instance  i1 . In OOP, there is not the same one-to-one corre-
spondence. There can be many objects, but only a few named handles. A testbench 
may allocate a thousand transaction objects during a simulation, but may only have 
a few handles to manipulate them. This situation takes some getting used to if you 
have only written Verilog code. 

 In reality, there is a handle pointing to every active object. Some handles may be 
stored in arrays or queues, or in another object, like a linked list. For objects stored 
in a mailbox, the handle is in an internal SystemVerilog structure. See Section 7.6 
for more information on mailboxes. Remember that as soon as you assign a new 
value to the last handle pointing to an object, that object can be garbage collected. 

    5.14.1   Passing Objects and Handles to Methods 

 What happens when you pass an object into a method? Perhaps the method only 
needs to read the values in the object, such as  transmit  above. Or, your method 
may modify the object, like a method to create a packet. Either way, when you call 
the method, you pass a handle to the object, not the object itself. 

  Sample 5.24    Using a typedef class statement       

Transaction

task generator;
Transaction t;
t = new;
transmit(t);

endtask

task transmit(input Transaction t);
…

endtask

  Fig. 5.4     Handles and objects across methods       
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 In Fig.  5.4  , the  generator  task has just called  transmit . There are two 
handles,  generator.t  and  transmit.t , that both refer to the same object.  

 When you call a method, if you pass a scalar variable such as a handle into a  ref  
argument, SystemVerilog passes the address of the variable so the method can mod-
ify it. If you don’t use  ref , SystemVerilog copies the scalar’s value into the argu-
ment variable, so any change to the argument in the method does not affect the 
original value.  

  Sample 5.25    Passing objects       

 In Sample  5.25 , the initial block allocates a  Transaction  object and calls the 
 transmit  task with the handle that points to the object. Using this handle,  trans-
mit  can read and write values in the object. However, if  transmit  tries to modify 
the handle, the result won’t be seen in the initial block, as the  t  argument was not 
declared as  ref . 

      A method can modify an object, even if the handle argument 
does not have a  ref  modifi er. This frequently causes confusion 
for new users, as they mix up the handle with the object. As 
shown above,  transmit  can modify  data[0]  in the object 

without changing the value of  t . If you don’t want an object modifi ed in a method, 
pass a copy of it so that the original object is untouched. See Section  5.15  for more 
on copying objects.  

    5.14.2   Modifying a Handle in a Task 

     A common coding mistake is to forget to use  ref  on method 
arguments that you want to modify, especially handles. In 
Sample  5.26 , the argument  tr  is not declared as  ref , so any 
change to it is not be seen by the calling code. The argument  tr  
has the default direction of  input .  
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  Sample 5.26    Bad transaction creator task, missing ref on handle       

 Even though  create  modifi ed the argument  tr , the handle  t  in the calling 
block remains  null . You need to declare the argument  tr  as  ref  as can be seen in 
Sample  5.27 .  

  Sample 5.27    Good transaction creator task with ref on handle       

      If a method is only going to modify the properties of the object, the 
method should declare the handle as an input argument. If a method 
is going to modify the handle, for example to make it point to a new 
object, the method must declare the handle as a ref argument.  

    5.14.3   Modifying Objects in Flight 

     A very common mistake is forgetting to create a new object for 
each transaction in the testbench. In Sample  5.28 , the  generate_
bad  task creates a  Transaction  object with random values, and 
transmits it into the design over several cycles.  
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 What are the symptoms of this mistake? The code above creates only one 
 Transaction , so every time through the loop,  generator_bad  changes the object 
at the same time it is being transmitted. When you run this, the  $display  shows 
many  addr  values, but all transmitted  Transaction  objects have the same value 
of  addr . The bug becomes visible when  transmit  spawns off a thread that takes 
several cycles to send the transaction, and so the values in the object are  re-randomized 
in the middle of transmission. If your  transmit  task makes a copy of the object, 
you can recycle the same object over and over. This bug can also happen with 
mailboxes as shown in Sample 7.32 

 To avoid this bug, you need to create a new  Transaction  during each pass 
through the loop as seen in Sample  5.29 .   

  Sample 5.29    Good generator creates many objects       

  Sample 5.28    Bad generator creates only one object       

    5.14.4   Arrays of Handles 

 As you write testbenches, you need to be able to store and reference many objects. 
You can make arrays of handles, each of which refers to an object. Sample  5.30  
shows storing ten bus transaction handles in an array.  
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 The array  tarray  is made of handles, not objects. So you need to construct each 
object in the array before using it, just as you would for a normal handle. There is 
no way to call  new  on an entire array of handles. 

 There is no such thing as an “array of objects”, though you may use this term as 
a shorthand for an array of handles that points to objects. Keep in mind that some 
handles may be set to  null , or that multiple handles could point to a single object.   

    5.15   Copying Objects 

 You may want to make a copy of an object to keep a method from modifying the origi-
nal, or in a generator to preserve the constraints. You can either use the simple, built-in 
copy available with  new  operator or you can write your own for more complex classes. 
See Section 8.2 for more reasons why you should make a copy method. 

    5.15.1   Copying an Object with the  New  Operator 

 Copying an object with the  new  operator is easy and reliable as shown in Sample 
 5.31 . Memory for the new object is allocated and all variables from the existing 
object are copied. However any  new()  function that you may have defi ned is not 
called.  

  Sample 5.30    Using an array of handles       

  Sample 5.31    Copying a simple class with new       
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 This is a shallow copy, similar to a photocopy of the original, blindly transcribing 
values from source to destination. If the class contains a handle to another class, 
only the handle’s value is copied by the  new  operator, not a full copy of the lower 
level object. In Sample  5.32 , the  Transaction  class contains a handle to the 
 Statistics  class, originally shown in Sample  5.22 .  

  Sample 5.32    Copying a complex class with new operator       

id=0
stats

dst

src
startT=42

  Fig. 5.5     Objects and handles before copy with the new operator       

 The initial block creates the fi rst  Transaction  object and modifi es a variable in 
the contained object  stats  as shown in Fig.  5.5  .  

 When you use the  new  operator to make a copy, the  Transaction  object is 
copied, but not the  Statistics  one. This is because the  new  operator does not call 
your own  new()  function. Instead, the values of variables and handles are copied. 
So now both  Transaction  objects have the same  id  as shown in Fig.  5.6  .  

 

 



158 5 Basic OOP

 Worse yet, both  Transaction  objects point to the same  Statistics  object so 
modifying  startT  with the  src  handle affects what is seen with the  dst  handle as 
you can see in Figure  5.7  .   

id=0
stats  

dst

src
startT=42

id=0
stats  

  Fig. 5.6     Objects and handles after copy with the new operator       

id=0
stats  

dst

src
startT=96

id=0
stats  

  Fig. 5.7     Both src and dst objects refer to a single statistics object and see updated startT value       

  Sample 5.33    Simple class with copy function       

    5.15.2   Writing Your Own Simple Copy Function 

 If you have a simple class that does not contain any references to other classes, writing 
a  copy  function is easy as you can see in Samples  5.33  and  5.34 . Instead of calling 
the  new()  function and copying each individual variable, the  copy  function could 
have instead used the  new  operator, but then it would need to replicate any processing 
done in  new() , such as setting the  id .    
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    5.15.3   Writing a Deep Copy Function 

 For nontrivial classes, you should always create your own  copy  function as seen in 
Sample  5.35 . You can make it a deep copy by calling the  copy  functions of all the 
contained objects. Your own  copy  function makes sure all your user fi elds (such as 
 id ) remain consistent. The downside of making your own  copy  function is that you 
need to keep it up to date as you add new variables – forget one and you could spend 
hours debugging to fi nd the missing value.  

  Sample 5.34    Using a copy function       

  Sample 5.35    Complex class with deep copy function       

 The  new()  constructor is called by  copy  so every object gets a unique  id . Add 
a  copy()  method for the  Statistics  class as shown in Sample  5.36 , and every 
other class in the hierarchy.  
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 The good news is that the UVM data macros create the  copy  function automati-
cally, so you are spared from having to write them by hand. Manually creating these 
is very error prone, especially when you add new variables.  

  Sample 5.37    Copying a complex class with new operator       

id=0
stats  

dst

src

startT=96
id=1
stats  

startT=42

  Fig. 5.8     Objects and handles after deep copy       

  Sample 5.36    Statistics class declaration       

 Now when you make a copy of the  Transaction  object, it will have its own 
 Statistics  object as shown in Sample  5.37 .   
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  Sample 5.38    Transaction class with pack and unpack functions       

    5.15.4   Packing Objects to and from Arrays Using 
Streaming Operators 

 Some protocols, such as ATM, transmit control and data values one byte at a time. 
Before you send out a transaction, you need to pack together the variables in the 
object to a byte array. Likewise, after receiving a string of bytes, you need to unpack 
them back into a transaction object. For both of these functions, use the streaming 
operators, as shown in Section 2.12. 

 You can’t just stream the entire object as this would gather all properties, 
including both data and also meta-data such as timestamps and self-checking 
information that you may not want packed. You need to write your own  pack  
function like the one in Samples  5.38  and  5.39  that only uses the properties that 
you choose. 

 More good news - the UVM data macros create the pack and unpack methods.     
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    5.16   Public vs. Local 

 The core concept of OOP is encapsulating data and related methods into a class. 
Variables are kept local to the class by default to keep one class from poking around 
inside another. A class provides a set of accessor methods to access and modify the 
data. This would also allow you to change the implementation without needing to 
let the users of the class know. For instance, a graphics package could change its 
internal representation from Cartesian coordinates to polar as long as the user inter-
face (accessor methods) have the same functionality. 

 Consider the  Transaction  class that has a payload and a checksum so that the 
hardware can detect errors. In conventional OOP, you would make a method to set 
the payload also set the checksum so they would stay synchronized. Thus your 
objects would always be fi lled with correct values. 

 However, testbenches are not like other programs, such as a web browser or word 
processor. A testbench needs to create errors. You want to have a bad checksum so 
you can test how the hardware reacts to errors. 

 OOP languages such as C++ and Java allow you to specify the visibility of vari-
ables and methods. By default, everything in a class is local unless labeled otherwise. 

     In SystemVerilog, everything is public unless labeled  local  or 
 protected . You should stick with this default so you have the 
greatest control over the operation of the DUT, which is more 
important than long-term software stability. For example, making 
the checksum visible allows you to easily inject errors into the 

  Sample 5.39    Using the pack and unpack functions        
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DUT. If the checksum was local, you would have to write extra code to bypass the 
data-hiding mechanisms, resulting in a larger and more complex testbench.  

    5.17   Straying Off Course 

 As a new OOP student, you may be tempted to skip the extra thought needed to 
group items into a class, and just store data in a few variables. Avoid the temptation! 
A basic DUT monitor samples several values from an interface. Don’t just store them 
in some integers and pass them to the next stage. This saves you a few minutes at 
fi rst, but eventually you need to group these values together to form a complete trans-
action. Several of these transactions may need to be grouped to create a higher-level 
transaction such as a DMA transfer. Instead, immediately put those interface values 
into a transaction class. Now you can store related information (port number, receive 
time) along with the data, and easily pass this object to the rest of your testbench.  

    5.18   Building a Testbench 

 Now that you have seen the basics of OOP, you can see how to create a layered test-
bench from a set of classes. Figure  5.9   is the diagram from   Chapter 1    . Obviously, 
the transactions fl owing between the blocks are objects, but each block is also 
 modeled with a class.  

DUT

AssertionsDriver Monitor

Test

Scoreboard Checker

Generator

F
un

ct
io

na
l C

ov
er

ag
eEnvironment

Agent

  Fig. 5.9     Layered testbench       
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 How do you exchange transactions between blocks? With procedural code you 
could have one object call the next, or you could use a data structure such as a FIFO 
to hold transactions in fl ight between blocks. In   Chapter 7    , you will learn how to use 
mailboxes, which are FIFOs with the ability to stall a thread until a new value is 
added.  

    5.19   Conclusion 

 Using Object-Oriented Programming is a big step, especially if your fi rst computer 
language was Verilog. The payoff is that your testbenches are more modular and 
thus easier to develop, debug, and reuse. 

  Sample 5.40    Basic Transactor       

 The  Generator, Agent, Driver, Monitor, Checker , and  Scoreboard  are 
all classes, modeled as transactors (described below). They are instantiated inside 
the Environment class. For simplicity, the test is at the top of the hierarchy, as is the 
program that instantiates the Environment class. The Functional coverage defi ni-
tions can be put inside or outside the Environment class. See Section 1.10 for a 
description of the layered verifi cation environment and its components. 

 A transactor is made of a simple loop that receives a transaction object from a 
previous block, makes some transformations, and sends it to the following one as 
you can see in Sample  5.40 . Some, such as the  Generator , have no upstream 
block, so this transactor constructs and randomizes every transaction, while others, 
such as the  Driver , receive a transaction and send it into the DUT as signal 
transitions.  
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 Have patience — your fi rst OOP testbench may look more like Verilog with a 
few classes added. As you get the hang of this new way of thinking, you begin to 
create and manipulate classes for both transactions and the transactors in the test-
bench that manipulate them. 

 In   Chapter 8     you will learn more OOP techniques so your test can change 
the behavior of the underlying testbench without having to change any of the exist-
ing code.  

    5.20   Exercises 

     1.    Create a class called  MemTrans  that contains the following members, then con-
struct a  MemTrans  object in an  initial  block.

   a.    An 8-bit  data_in  of logic type  
   b.    A 4-bit  address  of logic type  
   c.    A void function called  print  that prints out the value of  data_in  and  address       

    2.    Using the  MemTrans  class from Exercise 1, create a custom constructor, the  new  
function, so that  data_in  and  address  are both initialized to 0.  

    3.    Using the  MemTrans  class from Exercise 1, create a custom constructor so that 
 data_in  and  address  are both initialized to 0 but can also be initialized through 
arguments passed into the constructor. In addition, write a program to perform 
the following tasks.

   a.    Create two new  MemTrans  objects.  
   b.    Initialize  address  to 2 in the fi rst object, passing arguments by name.  
   c.     Initialize  data_in  to 3 and  address  to 4 in the second object, passing argu-

ments by name.      

    4.    Modify the solution from Exercise 3 to perform the following tasks.

   a.    After construction, set the  address  of the fi rst object to 4’hF.  
   b.     Use the  print  function to print out the values of  data_in  and  address  for 

the two objects.  
   c.    Explicitly deallocate the 2nd object.      

    5.    Using the solution from Exercise 4, create a static variable  last_address  that 
holds the initial value of the  address  variable from the most recently created 
object, as set in the constructor. After allocating objects of class  MemTrans  (done 
in Exercise 4) print out the current value of  last_address .  

    6.    Using the solution from Exercise 5, create a static method called  print_last_
address  that prints out the value of the static variable  last_address . After 
allocating objects of class  MemTrans , call the method  print_last_address  
to print out the value of  last_address .  



166 5 Basic OOP

    7.    Given the following code, complete the function  print_all  in class  MemTrans  
to print out  data_in  and  address  using the class  PrintUtilities . 
Demonstrate using the function  print_all .        
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    8.    Complete the following code where indicated by the comments starting with //.        

    9.    For the following class, create a  copy  function and demonstrate its use. Assume 
the  Statistics  class has its own  copy  function.                 
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    6.1   Introduction 

 As designs grow larger, it becomes more diffi cult to create a complete set of stimuli 
needed to check their functionality. You can write a directed testcase to check a 
certain set of features, but you cannot write enough directed testcases when the 
number of features keeps doubling on each project. Worse yet, the interactions 
between all these features are the source for the most devious bugs and are the least 
likely to be caught by going through a laundry list of features. 

 The solution is to create test cases automatically using constrained-random tests 
(CRT). A directed test fi nds the bugs you think are there, but a CRT fi nds bugs you 
never thought about, by using random stimulus. You restrict the test scenarios to 
those that are both valid and of interest by using constraints. 

 Creating the environment for a CRT takes more work than creating one for 
directed tests. A simple directed test just applies stimulus, and then you manually 
check the result. These results are captured as a golden log fi le and compared with 
future simulations to see whether the test passes or fails. A CRT requires an environ-
ment to predict the result, using a reference model, transfer function, or other tech-
niques, plus functional coverage to measure the effectiveness of the stimulus. 
However, once this environment is in place, you can run hundreds of tests without 
having to hand-check the results, thereby improving your productivity. This trade-
off of test-authoring time (your work) for CPU time (machine work) is what makes 
CRT so valuable. 

 A CRT is made of two parts: the test code that uses a stream of random values to 
create input to the DUT, and a seed to the pseudo-random number generator (PRNG), 
shown in Section  6.16.1  at the end of this chapter. You can make a CRT behave dif-
ferently just by using a new seed. This feature allows you to leverage each test so 
each is the functional equivalent of many directed tests, just by changing seeds. You 
are able to create more equivalent tests using these techniques than with directed 
testing. 

    Chapter 6   
 Randomization                  
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 You may feel that these random tests are like throwing darts. How do you know 
when you have covered all aspects of the design? The stimulus space is too large to 
generate every possible input, so you need to generate a useful subset. In   Chapter 9     
you will learn how to measure verifi cation progress by using functional coverage. 

 There are many ways to use randomization, and this chapter gives many exam-
ples. It highlights the most useful techniques, but choose what works best for you.  

    6.2   What to Randomize 

 When you think of randomizing the stimulus to a design, the fi rst thing you may 
think of are the data fi elds. These are the easiest to create – just call  $random . The 
problem is that this approach has a very low payback in terms of bugs found: you 
only fi nd data-path bugs, perhaps with bit-level mistakes. The test is still inherently 
directed. The challenging bugs are in the control logic. As a result, you need 
to randomize all decision points in your DUT. Everywhere control paths diverge, 
randomization increases the probability that you’ll take a different path in each 
test case. 

 You need to think broadly about all design input such as the following items.

   Device confi guration  • 
  Environment confi guration  • 
  Primary input data  • 
  Encapsulated input data  • 
  Protocol exceptions  • 
  Delays  • 
  Transaction status  • 
  Errors and violations    • 

    6.2.1   Device Confi guration 

 What is the most common reason why bugs are missed during testing of the RTL 
design? Not enough different confi gurations have been tried! Most tests just use the 
design as it comes out of reset, or apply a fi xed set of initialization vectors to put it 
into a known state. This is like testing a PC’s operating system right after it has been 
installed, and without any applications; of course the performance is fi ne, and there 
are no crashes. 

 Over time, in a real world environment, the DUT’s confi guration becomes more 
and more random. In a real world example, a verifi cation engineer had to verify a 
timedivision multiplexor switch that had 600 input channels and 12 output chan-
nels. When the device was installed in the end-customer’s system, channels would 
be allocated and deallocated over and over. At any point in time, there was little 
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correlation between adjacent channels. In other words, the confi guration would 
seem random. 

 To test this device, the verifi cation engineer had to write several dozen lines of 
Tcl code to confi gure each channel. As a result, she was never able to try confi gura-
tions with more than a handful of channels enabled. Using a CRT methodology, she 
wrote a testbench that randomized the parameters for a single channel, and then put 
this in a loop to confi gure the whole device. Now she had confi dence that her tests 
would uncover bugs that previously would have been missed.  

    6.2.2   Environment Confi guration 

 The device that you are designing operates in an environment containing other 
devices. When you are verifying the DUT, it is connected to a testbench that mimics 
this environment. You should randomize the entire environment, including the num-
ber of objects and how they are confi gured. 

 Another company was creating a PCI switch that connected multiple buses to an 
internal memory bus. At the start of simulation the customer used randomization to 
choose the number of PCI buses (1–4), the number of devices on each bus (1–8), 
and the parameters for each device (master or slave, CSR addresses, etc.). Even 
though there were many possible combinations, this company knew all had been 
covered.  

    6.2.3   Primary Input Data 

 This is what you probably thought of fi rst when you read about random stimulus: 
take a transaction such as a bus write or ATM cell and fi ll it with some random 
 values. How hard can that be? Actually it is fairly straightforward as long as you 
carefully prepare your transaction classes. You should anticipate any layered proto-
cols and error injection.  

    6.2.4   Encapsulated Input Data 

 Many devices process multiple layers of stimulus. For example, a device may create 
TCP traffi c that is then encoded in the IP protocol, and fi nally sent out inside 
Ethernet packets. Each level has its own control fi elds that can be randomized to try 
new combinations. So you are randomizing the data and the layers that surround it. 
You need to write constraints that create valid control fi elds but that also allow 
injecting errors.  
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    6.2.5   Protocol Exceptions, Errors, and Violations 

 Anything that can go wrong, will, eventually. The most challenging part of design 
and verifi cation is how to handle errors in the system. You need to anticipate all the 
cases where things can go wrong, inject them into the system, and make sure the 
design handles them gracefully, without locking up or going into an illegal state. 
A good verifi cation engineer tests the behavior of the design to the edge of the func-
tional specifi cation and sometimes even beyond. 

 When two devices communicate, what happens if the transfer stops partway 
through? Can your testbench simulate these breaks? If there are error detection and 
correction fi elds, you must make sure all combinations are tried. 

 The random component of these errors is that your testbench should be able to 
send functionally correct stimuli and then, with the fl ip of a confi guration bit, start 
injecting random types of errors at random intervals.  

    6.2.6   Delays 

 Many communication protocols specify ranges of delays. The bus grant comes one 
to three cycles after request. Data from the memory is valid in the fourth to tenth bus 
cycle. However, many directed tests, optimized for the fastest simulation, use the 
shortest latency, except for that one test that only tries various delays. Your test-
bench should always use random, legal delays during every test to try to fi nd that 
(hopefully) one combination that exposes a design bug. 

 Below the cycle level, some designs are sensitive to clock jitter. By sliding the 
clock edges back and forth by small amounts, you can make sure your design is not 
overly sensitive to small changes in the clock cycle. 

 The clock generator should be in a module outside the testbench so that it creates 
events in the Active region along with other design events. However, the generator 
should have parameters such as frequency and offset that can be set by the testbench 
during the confi guration phase. 

 Note that the methodology described in this book is for fi nding functional 
errors, not timing errors. Your constrained random testbench should not purpose-
fully violate setup and hold and hold requirements. These are better validated using 
timing analysis tools.   

    6.3   Randomization in SystemVerilog 

 The random stimulus generation in SystemVerilog is most useful when used with 
OOP. You fi rst create a class to hold a group of related random variables, and then 
have the random-solver fi ll them with random values. You can create constraints to 
limit the random values to legal values, or to test specifi c features. 



1736.3 Randomization in SystemVerilog

 You can randomize individual variables, but this case is the least interesting. True 
constrained-random stimuli is created at the transaction level, not one value at a time. 

    6.3.1   Simple Class with Random Variables 

 Sample  6.1  shows a packet class with random variables and constraints, plus test-
bench code that constructs and randomizes a packet.  

  Sample 6.1    Simple random class       

 This class has four random variables. The fi rst three use the  rand  modifi er, so 
that every time you randomize the class, the variables are assigned a value. Think of 
rolling dice where each roll could be a new value or repeat the current one. The 
 kind  variable is  randc , which means random cyclic, so that the random solver 
does not repeat a random value until every possible value has been assigned. Think 
of dealing cards from a deck where you deal out every card in the deck in random 
order, then shuffl e the deck, and deal out the cards in a different order. Note that the 
cyclic pattern is for a single variable. A  randc  array with fi ve elements has fi ve dif-
ferent patterns, like fi ve decks of cards, dealt in parallel. Simulators are only required 
to implement  randc  variables up to 8 bits wide with 256 different values, but most 
support much larger ranges. 

 A constraint is just a set of relational expressions that must be true for the chosen 
value of the variables. In this example, the  src  variable must be greater than 10 and 
less than 15. Note that the constraint expression is grouped using curly braces: {}. 
This is because this code is declarative, not procedural, which uses  begin…end . 

 The  randomize  function returns 0 if a problem is found with the constraints. 
The code checks the result and stops simulation with  $fi nish  if there is a problem. 
Alternatively, you might want to call a special routine to end simulation, after doing 
some housekeeping chores like printing a summary report. The rest of the book uses 
a macro instead of this extra code. 
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     You should not randomize an object in the class constructor. Your 
test may need to turn constraints on or off, change weights, or even 
add new constraints before randomization. The constructor is for 
initializing the object’s variables, and if you called  randomize  at 
this early stage, you might end up throwing away the results. 

     Variables in your classes should be random and public. This gives 
your test the most control over the DUT’s stimulus and control. 
You can disable randomization of a variable, as shown in Section 
 6.11.2 . If you forget to make a variable random, you must edit 
the environment, which you want to avoid. The exception is that 
confi guration variables such as weights and limits should not be 

random in transaction classes as their values are chosen at the start of simulation and 
do not change.  

    6.3.2   Checking the Result from Randomization 

     The  randomize  function assigns random values to any variable in 
the class that has been labeled as  rand  or  randc , and also makes 
sure that all active constraints are obeyed. Randomization can fail 
if your code has confl icting constraints (see next section), so you 
should always check the status. If you don’t check, the variables 
may get unexpected values, causing your simulation to fail. 

 The remaining code samples in this book employ the macro in Sample  6.2  to check 
for the result of randomization. If you adopt this style, you can easily add code to give 
meaningful error messages and gracefully wind down simulation. The macro shows 
off several coding tricks, including wrapping the generated code in a  do…while  state-
ment so it can be used like a normal statement terminated with a semicolon, including 
in an  if-else  statement, something that VMM log macros did right, but not OVM.   

  Sample 6.2    Randomization check macro and example        



1756.4 Constraint Details

    6.3.3   The Constraint Solver 

 The process of solving constraint expressions is handled by the SystemVerilog 
 constraint solver. The solver chooses values that satisfy the constraints. The values 
come from SystemVerilog’s PRNG, that is started with an initial seed. If you give a 
SystemVerilog simulator the same seed and the same testbench, it should always 
produce the same results. Note that changing the tool version or switches such as 
debug level can change results. See the exercises at the end of this chapter to see 
how to specify the initial seed. 

 The solver is specifi c to the simulation vendor, and a constrained-random test 
may not give the same results when run on different simulators, or even on different 
versions of the same tool. The SystemVerilog standard specifi es the meaning of the 
expressions, and the legal values that are created, but does not detail the precise 
order in which the solver should operate. See Section  6.16  for more details on ran-
dom number generators.  

    6.3.4   What can be Randomized? 

 SystemVerilog allows you to randomize integral variables, that is, variables that 
contain a simple set of bits. This includes 2-state and 4-state types, though random-
ization only generates 2-state values. You can have integers, bit vectors, etc. You 
cannot have a random string, or refer to a handle in a constraint. Randomizing  real  
variables is not yet defi ned in the LRM.   

    6.4   Constraint Details 

 Useful stimulus is more than just random values — there are relationships between 
the variables. Otherwise, it may take too long to generate interesting stimulus val-
ues, or the stimulus might contain illegal values. You defi ne these interactions in 
SystemVerilog using constraint blocks that contain one or more constraint expres-
sions. SystemVerilog chooses random values so that the expressions are true. 

     At least one variable in each expression should be random, either 
 rand  or  randc . The following class fails when randomized, 
unless age happens to be in the right range. The solution is to 
add the modifi er  rand  or  randc  before age.  

  Sample 6.3    Constraint without random variables        



176 6 Randomization

 The  randomize  function tries to assign new values to random variables and to 
make sure all constraints are satisfi ed. In Sample  6.3 , since there are no random vari-
ables,  randomize  just checks the value of age to see if it is in the bounds specifi ed 
by the constraint  c_teenager . Unless the variable falls in the range of 13:19,  ran-
domize  fails. While you can use a constraint to check that a non-random variable has 
a valid value, use an  assert  or  if -statement instead. It is much easier to debug your 
procedural checker code than read through an error message from the random solver. 

    6.4.1   Constraint Introduction 

 Sample  6.4  shows a simple class with random variables and constraints. The spe-
cifi c constructs are explained in the following sections. Notice that in constraint 
blocks, you use curly braces, { }, to group together multiple expressions. The 
 begin…end  keywords are for procedural code.   

  Sample 6.4    Constrained-random class       

    6.4.2   Simple Expressions 

 Sample  6.4  showed a constraint block with several expressions. The fi rst two control 
the values for the  len  variable. As you can see, a variable can be used in multiple 
expressions. 

     There should be a maximum of only one operator in an expres-
sion, such as <, <=, ==, >=, or >. Sample  6.5  shows a 
SystemVerilog gotcha in that it incorrectly tries to generate three 
variables in a fi xed order.   
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 Sample  6.6  shows the results, which are not what was intended. The constraint 
 bad  in Sample  6.5  is broken down into multiple binary relational expressions, going 
from left to right: (( lo  <  med ) <  hi ). First, the expression ( lo  <  med ) is evaluated, 
which gives 0 or 1. Then  hi  is constrained to be greater than the result. The variables 
 lo  and med are randomized but not constrained. The correct constraint is shown in 
Sample  6.7 . For more examples, see Sutherland (2007).   

  Sample 6.5    Bad ordering constraint       

  Sample 6.7    Constrain variables to be in a fi xed order       

  Sample 6.6    Result from incorrect ordering constraint       

    6.4.3   Equivalence Expressions 

     The most common mistake with constraints is trying to make 
an assignment in a constraint block, which can only contain 
expressions. Instead, use the equivalence operator to set a ran-
dom variable to a value, e.g.,  len==42 . You can build complex 

relationships between one or more random variables:  len == (header.addr_
mode * 4 + payload.size()) .  

    6.4.4   Weighted Distributions 

 A bug in the DUT may be found with constrained random stimulus if you apply 
enough patterns. However, it may take a long time for a particular corner case to be 
generated. When reviewing functional coverage result, see if corner cases are being 
generated. If not, you can use a weighted distribution to skew the stimulus in a 
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particular direction, and thus accelerate fi nding bugs. The  dist  operator allows you 
to create weighted distributions so that some values are chosen more often than 
others. 

 The  dist  operator takes a list of values and weights, separated by the : = or 
the : / operator. The values and weights can be constants or variables. The values 
can be a single value or a range such as  [lo:hi] . The weights are not percentages 
and do not have to add up to 100. The : = operator specifi es that the weight is the 
same for every specifi ed value in the range, whereas the : / operator specifi es that 
the weight is to be equally divided between all the values.  

  Sample 6.8    Weighted random distribution with dist       

 In Sample  6.8 ,  src  gets the value 0, 1, 2, or 3. The weight of 0 is 40, whereas, 1, 
2, and 3 each have the weight of 60, for a total of 220. The probability of choosing 
0 is 40/220, and the probability of choosing 1, 2, or 3 is 60/220 each. 

 Next,  dst  gets the value 0, 1, 2, or 3. The weight of 0 is 40, whereas 1, 2, and 3 
share a total weight of 60, for a total of 100. The probability of choosing 0 is 40/100, 
and the probability of choosing 1, 2, or 3 is only 20/100 each. 

 Once again, the values and weights can be constants or variables. You can use 
variable weights to change distributions on the fl y or even to eliminate choices by 
setting the weight to zero, as shown in Sample  6.9 .  
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 In Sample  6.9 , the  len  enumerated variable has three values. With the default 
weighting values, longword lengths are chosen more often, as  w_lwrd  has the larg-
est value. Don’t worry, you can change the weights on the fl y during simulation to 
get a different distribution.  

    6.4.5   Set Membership and the Inside Operator 

 You can create sets of values with the  inside  operator. The SystemVerilog solver 
chooses between the values in the set with equal probability, unless you have other 
constraints on the variable. As always, you can use variables in the sets.  

  Sample 6.9    Dynamically changing distribution weights       

  Sample 6.10    Random sets of values       

 In Sample  6.10 , SystemVerilog uses the values for  lo  and  hi  to determine the 
range of possible values. You can use the variables as parameters for your con-
straints so that the testbench can alter the behavior of the stimulus generator without 
rewriting the constraints. Note that if  lo  >  hi , an empty set is formed, and the con-
straint fails. 

 If you want any value, as long as it is not inside a set, invert the constraint with 
the NOT operator: ! as shown in Sample  6.11 .   
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    6.4.6   Using an Array in a Set 

 Sample  6.12  shows how you can choose from a set of values by storing them in an 
array.  

  Sample 6.11    Inverted random set constraint       

  Sample 6.12    Random set constraint for an array       

 This is expanded into the constraints in Sample  6.13 .  

  Sample 6.13    Equivalent set of constraints       

 Likewise, you can use the NOT operator to tell SystemVerilog to choose any 
value except those in an array as shown in Sample  6.14 .  

  Sample 6.14    Choose any value except those in an array       

 Always make sure your constraints work as you expect. You could create func-
tional coverage groups and generate reports, or print a histogram of values with the 
code in Sample  6.15 , with the output in Sample  6.16 .   
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 Samples  6.17  and  6.18  choose a day of the week from a list of enumerated val-
ues. You can change the list of choices on the fl y. If you make  choice  a  randc  
variable, the simulator tries every possible value before repeating.   

  Sample 6.15    Printing a histogram       

  Sample 6.16    Histogram for inside constraint       

  Sample 6.17    Class to choose from an array of possible values       

 

 

 



182 6 Randomization

 The  name  function returns a string with the name of an enumerated value. 

     If you want to dynamically add or remove values from a set, think 
twice before using the  inside  operator because of its perfor-
mance. Perhaps you have a set of values that you want to choose 
just once. You could use  inside  to choose values from a queue, 
and delete them to slowly shrink the queue. This requires the solver 
to solve N constraints, where N is the number of elements left in 

the queue. Instead, use a  randc  variable that is an index into an array of choices as 
shown in Samples  6.19  and  6.20 . Choosing a  randc  value takes a short, constant 
time, whereas solving a large number of constraints is more expensive, especially if 
your array has more than a few dozen elements.   

  Sample 6.18    Choosing from an array of values       

  Sample 6.19    Using randc to choose array values in random order       
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 Note that constraints and routines can be mixed in any order.  

    6.4.7   Bidirectional Constraints 

 By now you may have realized that constraint blocks are not procedural code, exe-
cuting from top to bottom. They are declarative code, all active at the same time. If 
you constrain a variable with the  inside  operator with the set  [10:50]  and have 
another expression that constrains the variable to be greater than 20, SystemVerilog 
solves both constraints simultaneously and only chooses values between 21 and 50. 

 SystemVerilog constraints are solved bidirectionally, which means that the con-
straints on all random variables are solved concurrently. Adding or removing a con-
straint on any one variable affects the value chosen for all variables that are related 
directly or indirectly. Consider the constraint in Sample  6.21 .  

  Sample 6.20    Testbench for randc choosing array values in random order       

  Sample 6.21    Bidirectional constraints       

 The SystemVerilog solver looks at all four constraints simultaneously. The variable 
 r  has to be less than  t , which has to be less than 10. However,  r  is also constrained 
to be equal to s, which is greater than 5. Even though there is no direct constraint on 
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    6.4.8   Implication Constraints 

 Normally, all constraint expressions are active in a block. What if you want to have 
an expression active only some of the time? Set the highest address, but only for IO 
space mode. SystemVerilog supports two implication operators, -> and  if .  

   Table 6.1     Solutions for bidirectional constraint   

  Solution    r    s    t  

 A  6  6  7 
 B  6  6  8 
 C  6  6  9 
 D  7  7  8 
 E  7  7  9 
 F  8  8  9 

  Sample 6.22    Constraint block with implication operator       

 The expression  A->B  is equivalent to the expression (! A || B ). When the impli-
cation operator appears in a constraint, the solver picks values for  A  and  B  so the 
expression is true. Truth Table  6.2   shows the value of the expression for the logical 
values of  A  and  B .  

   Table 6.2     Implication operator truth table   

  A -> B    B = false    B = true  

  A=false   true  true 
  A=true   false  true 

the lower value of  t , the constraint on  s  restricts the choices. Table  6.1   shows the 
possible values for these three variables.   
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 When  A  is true,  B  must be true, but when  A  is false,  B  can be true or false. Note 
that this is a partly bidirectional constraint, but that  A->B  does not imply that  B->A . 
The two expressions produce different results. 

 In Sample  6.23 , when  d==1 , the variable e must be 1, but when  e==1, d  can be
 0 or 1.  

  Sample 6.24    Constraint block with if implication operator       

  Sample 6.23    Implication operator       

 If you add the constraint { e==0; }, the variable  d  must be 0; But if you add a 
constraint { e==1; } the values of  d  are not constrained, it can still be 0 or 1. 

 Sample  6.24  shows how Sample  6.22  could be written with an  if  implication 
constraint.  

 The  if-else  operator is a great way to choose between multiple expressions. 
For example, the bus defi ned in Sample  6.9  might support byte, word, and longword 
reads, but only longword writes if written like Sample  6.25 .  

  Sample 6.25    Constraint block with if-else operator       
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 The constraint  if (A) B else C ; is equivalent to the two constraints ( A && B ); and 
( !A && C );. Sample  6.26  shows how you can chain together multiple choices.   

  Sample 6.26    Constraint block with multiple if-else operator       

    6.4.9   Equivalence Operator 

 The equivalence operator <-> is bidirectional.  A<−>B  is defi ned as ((A->B) &&
 (B->A)). Table  6.3    is the truth table for the logical values of A and B as constrained 
in Sample  6.27 .   

   Table 6.3     Equivalence operator truth table   

  A <-> B    B=false    B=true  

 A=false  true  false 
 A=true  false  true 

 When  d  is true,  e  must also be true, and when  d  is false,  e  must also be false. So this 
operator is the same as a logical XNOR. If you start with the constraint  d<−>e , and add 
a constraint such as  d==1, e  is set to 1 by the solver. The constraint  d<−>e  and  e==0  
cause d to be set to 0 by the solver. If your class has all three of the constraints, 
 d<−>e, d==1 , and  e==0 , the solver will not be able to choose values for d and  e .   

    6.5   Solution Probabilities 

 Whenever you deal with random values, you need to understand the probability 
of the outcome. SystemVerilog does not guarantee the exact solution found by 
the random constraint solver, but you can infl uence the distribution. Any time you 

  Sample 6.27    Equivalence constraint       
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work with random numbers, you have to look at thousands or millions of values to 
average out the noise. Some simulators, such as Synopsys VCS, have multiple solv-
ers to allow you to trade memory usage vs. performance. The distributions will vary 
between different simulators. The tables were generated with Synopsys VCS 
2011.03. 

    6.5.1   Unconstrained 

 Start with two random variables in a class with no constraints as shown in Sample 
 6.28 .  

  Sample 6.28    Class Unconstrained       

 Table  6.4   shows the eight possible solutions. Since there are no constraints, each 
has the same probability. You have to run thousands of randomizations to see the 
actual results approach the listed probabilities.   

   Table 6.4     Solutions for  Unconstrained class    

  Solution    x    y    Probability  

 A  0  0  1/8 
 B  0  1  1/8 
 C  0  2  1/8 
 D  0  3  1/8 
 E  1  0  1/8 
 F  1  1  1/8 
 G  1  2  1/8 
 H  1  3  1/8 

    6.5.2   Implication 

 In Sample  6.29 , the value of y depends on the value of x. This is indicated with the 
implication operator in the following constraint. This example and the rest in this 
section also behave in the way same with the  if  implication operator.  
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 Table  6.5    shows the possible solutions and probability. You can see that the ran-
dom solver recognizes that there are eight combinations of x and y, but all the solu-
tions where  x==0  (solutions A–D) have been merged together.   

   Table 6.5     Solutions for Imp1 class   

  Solution    x    y    Probability  

 A  0  0  1/2 
 B  0  1  0 
 C  0  2  0 
 D  0  3  0 
 E  1  0  1/8 
 F  1  1  1/8 
 G  1  2  1/8 
 H  1  3  1/8 

  Sample 6.29    Class with implication constraint       

    6.5.3   Implication and Bidirectional Constraints 

 Note that the implication operator says that when  x==0, y  is forced to 0, but when 
 y==0 , there is no constraint on x. However, implication is bidirectional in that if y 
were forced to a nonzero value, x would have to be 1. Sample  6.30  has the constraint 
 y>0 , so x can never be 0 and Table  6.6    shows the solutions.    
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    6.5.4   Guiding Distribution with Solve…Before 

 You can guide the SystemVerilog solver using the “ solve…before ” constraint as 
seen in Sample  6.31 .  

   Table 6.6     Solutions for  Imp2  class   

  Solution    x    y    Probability  

 A  0  0  0 
 B  0  1  0 
 C  0  2  0 
 D  0  3  0 
 E  1  0  0 
 F  1  1  1/3 
 G  1  2  1/3 
 H  1  3  1/3 

  Sample 6.30    Class with implication constraint and additional constraint       

  Sample 6.31    Class with implication and solve…before       
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 The  solve…before  constraint does not change the solution space, just the prob-
ability of the results. The solver chooses values of x (0, 1) with equal probability. 
In 1000 calls to  randomize , x is 0 about 500 times, and 1 about 500 times. When 
x is 0, y must be 0. When x is 1, y can be 0, 1, 2, or 3 with equal probability as 
shown in Table  6.7   .  

   Table 6.7     Solutions for  solve x before y  
constraint   

  Solution    x    y    Probability  

 A  0  0  1/2 
 B  0  1  0 
 C  0  2  0 
 D  0  3  0 
 E  1  0  1/8 
 F  1  1  1/8 
 G  1  2  1/8 
 H  1  3  1/8 

 If you use the constraint  solve y before x , you get a very different distribu-
tion as shown in Table  6.8   .  

   Table 6.8     Solutions for  solve y before x  
constraint   

  Solution    x    y    Probability  

 A  0  0  1/8 
 B  0  1  0 
 C  0  2  0 
 D  0  3  0 
 E  1  0  1/8 
 F  1  1  1/4 
 G  1  2  1/4 
 H  1  3  1/4 

     Only use  solve…before  if you are dissatisfi ed with how often 
some values occur. Excessive use can slow the constraint solver 
and make your constraints diffi cult for others to understand. 

 For the simple class in Sample  6.31 , the equivalence operator, <->, gives the same 
solution as the implication operator ->. Try adding additional constraints and plot 
the results for your favorite simulator.   
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    6.6   Controlling Multiple Constraint Blocks 

 A class can contain multiple constraint blocks. One block might ensure you have a 
valid transaction, as described in Section  6.7 , but you might need to disable this 
when testing the DUT’s error handling. Or you might want to have a separate con-
straint for each test. Perhaps one constraint would restrict the data length to create 
small transactions (great for testing congestion), whereas another would make long 
transactions. 

 You can turn constraints on and off with the  constraint_mode  function. You can 
control a single constraint with  handle. constraint. constraint_mode (arg) . 
To control all constraints in an object, use  handle. constraint_mode (arg) , as 
shown in Sample  6.32 . When the argument for  constraint_mode  is 0, the con-
straint is turned off, and when it is 1, the constraint is turned on.  

  Sample 6.32    Using constraint_mode       

 While many small constraints may give you more fl exibility, the process of turn-
ing them on and off is more complex. For example, when you turn off all constraints 
that create data, you are also disabling all the ones that check the data’s validity. 

 If you just want to make a random variable non-random, use  rand_mode  as 
described in Section  6.11.2 .  
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    6.7   Valid Constraints 

 A good randomization technique is to create several constraints to ensure the 
correctness of your random stimulus, known as “valid constraints.” In Sample 
 6.33 , a bus read-modify-write command is only allowed for a longword data 
length.  

  Sample 6.33    Checking write length with a valid constraint       

 Now you know the bus transaction obeys the rule. Later, if you want to violate 
the rule, use  constraint_mode  to turn off this one constraint. You can turn these 
off with  constraint_mode  when you want to generate errors. For example, what 
if a packet has a zero-length payload? You should have a naming convention to 
make these constraints stand out, such as using the prefi x  valid  as shown above.  

    6.8   In-Line Constraints 

 As you write more tests, you can end up with many constraints. They can interact 
with each other in unexpected ways, and the extra code to enable and disable them 
adds to the test complexity. Additionally, constantly adding and editing constraints 
to a class could cause problems in a team environment. 

 Many tests only randomize objects at one place in the code. SystemVerilog 
allows you to add an extra constraint using  randomize with . This is equivalent to 
adding an extra constraint to any existing ones in effect. Sample  6.34  shows a base 
class with constraints, then two  randomize with  statements.  
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 The extra constraints are added to the existing ones in effect. Use  constraint_
mode  if you need to disable a confl icting constraint. Note that inside the  with{}  
statement, SystemVerilog uses the scope of the class. That is why Sample  6.34  used 
just  addr , not  t.addr . 

     A common mistake is to surround your in-line constraints with 
parenthesis instead of curly braces {}. Just remember that con-
straint blocks use curly braces, so your in-line constraint must 
use them too. Braces are for declarative code.  

    6.9   The pre_randomize and post_randomize Functions 

 Sometimes you need to perform an action immediately before every  randomize  
call or immediately afterwards. For example, you may want to set some nonrandom 
class variables (such as limits or weights) before randomization starts, or you may 
need to calculate the error correction bits for random data. SystemVerilog lets you 
do this with two functions,  pre_randomize  and  post_randomize  that are cre-
ated automatically in any class with random variables. 

    6.9.1   Building a Bathtub Distribution 

 For some applications, you want a nonlinear random distribution. For instance, 
small and large packets are more likely to fi nd a design bug such as buffer overfl ow 

  Sample 6.34    The randomize()  with   statement        
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than medium-sized packets. So you want a bathtub shaped distribution; high on 
both ends, and low in the middle. You could build an elaborate  dist  constraint, but 
it might require lots of tweaking to get the shape you want. Verilog has several func-
tions for nonlinear distribution, such as  $dist_exponential , but none for a bath-
tub. The graph in Fig.  6.1  shows how you can combine two exponential curves to 
make a bathtub curve. The  pre_randomize  method in Sample  6.35  calculates a 
point on an exponential curve, then randomly chooses to put this on the left curve, 
or right. As you pick points on either the left and right curves, you gradually build a 
distribution of the combined values.   
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  Fig. 6.1    Building a bathtub distribution       

  Sample 6.35    Building a bathtub distribution       

 Every time this object is randomized, the variable  value  gets updated. Across 
many randomizations, you will see the desired nonlinear distribution. Since the 
variable is calculated procedurally, not through the random constraint solver, it does 
not need the  rand  modifi er. 

 See Sample  6.64  for another example of  post_randomize .  
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    6.9.2   Note on Void Functions 

     The functions  pre_randomize  and  post_randomize  can only 
call other functions, not tasks that could possibly consume time. 
You cannot have a delay in the middle of a call to  randomize . 
When you are debugging a randomization problem, you can call 
your display routines if you planned ahead and made them void 
functions. 

   Chapter 8     describes advanced OOP concepts including extended classes and virtual 
methods. The  pre_randomize  and  post_randomize  functions are not virtual and 
so they are called based on the type of the handle, not the object. Additionally, if your 
extended class’s  pre_randomize or post_randomize  need functionality in the 
base class’s  pre_randomize  and  post_randomize  functions, they should call 
these methods using the super prefi x, as in  super.pre_randomize .   

    6.10   Random Number Functions 

 You can use all the Verilog-1995 distribution functions, plus several that are new for 
SystemVerilog. Consult a statistics book for more details on the “dist” functions. 
Some of the useful functions include the following.

    • $random  — Flat distribution, returning signed 32-bit random  
   • $urandom  — Flat distribution, returning unsigned 32-bit random  
   • $urandom_range  — Flat distribution over a range  
   • $dist_exponential  — Exponential decay, as shown in Fig.  6.1   
   • $dist_normal  — Bell-shaped distribution  
   • $dist_poisson  — Bell-shaped distribution  
   • $dist_uniform  — Flat distribution    

 The  $urandom_range  function takes two arguments, an optional low value, and 
a high value as shown in Sample  6.36 .   

  Sample 6.36    $urandom range usage        
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    6.11   Constraints Tips and Techniques 

 How can you create constrained-random tests that can be easily modifi ed? There are 
several tricks you can use. The most general technique is to use OOP to extend the 
original class as described in sections  6.11.8  and   8.2.4     but this requires more plan-
ning. So fi rst learn some simple techniques, but keep your mind open to other ways. 

    6.11.1   Constraints with Variables 

 Most constraint examples in this book use constants to make them more readable. 
In Sample  6.37 ,  length  is randomized over a range that uses a variable for the 
upper bound.  

  Sample 6.37    Constraint with a variable bound       

 By default, this class creates random lengths between 1 and 100, but by changing 
the variable  max_length , you can vary the upper limit. 

 You can use variables in the  dist  constraint to turn on and off values and ranges. 
In Sample  6.38 , each bus command has a different weight variable.  

  Sample 6.38    dist constraint with variable weights       

 By default, this constraint produces each command with equal probability. If you 
want to have a greater number of  READ8  commands, increase the  read8_wt  weight 
variable. Most importantly, you can turn off generation of a command by dropping 
its weight to 0.  
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    6.11.2   Using Nonrandom Values 

 If you have a set of constraints that produces stimulus that is almost what you want, 
but not quite, you could call  randomize , and then set a variable to the value you 
want — you don’t have to use the random value. However, your stimulus values 
may not be correct according to the constraints you created to check validity. 

 If there are just a few random variables that you want to override, use the  rand_
mode  function to make them nonrandom. When you call this method with the argu-
ment 0 for a random variable, the  rand  or  randc  qualifi er is disabled and the 
variable’s value is no longer changed by the random solver, but the value is still 
checked in if it appears in a constraint. Setting the random mode to 1 turns the quali-
fi er back on so the variable can changed by the solver.  

  Sample 6.39    rand_mode disables randomization of variables       

 In Sample  6.39 , the packet size is stored in the random variable  length . The 
fi rst half of the test randomizes both the  length  variable and the contents of the 
 payload  dynamic array. The second half calls  rand_mode  to make  length  a non-
random variable, sets it to 42, then calls  randomize . The constraint sets the  pay-
load  size at the constant 42, but the array is still fi lled with random values.  
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    6.11.3   Checking Values Using Constraints 

 If you randomize an object and then modify some variables, you can check that the 
object is still valid by checking if all constraints are still obeyed. Call  handle.
randomize(null)  and SystemVerilog treats all variables as nonrandom (“state 
variables”) and just ensures that all constraints are satisfi ed, i.e all expressions are 
true. If any constraints are not satisfi ed, the  randomize  function returns 0.  

    6.11.4   Randomizing Individual Variables 

 Suppose you want to randomize a few variables inside a class. You can call  ran-
domize  with the subset of variables. Only those variables passed in the argument 
list will be randomized; the rest will be treated as state variables and not random-
ized. All constraints remain in effect. In Sample  6.40 , the fi rst call to randomize 
only changes the values of two  rand  variables  med  and  hi . The second call only 
changes the value of  med , whereas  hi  retains its previous value. Surprisingly, you 
can pass a non-random variable, as shown in the last call, and  low  is given a random 
value, as long as it obeys the constraint.  

  Sample 6.40    Randomizing a subset of variables in a class       

 This trick of only randomizing a subset of the variables is not commonly used in 
real testbenches as you are restricting the randomness of your stimulus. You want 
your testbench to explore the full range of legal values, not just a few corners.  

    6.11.5   Turn Constraints Off and On 

 Sections  6.6  and  6.7  discuss valid constraints and  constraint_mode . Turning off 
individual constraints is fi ne for error generation, but should be used in moderation.  
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    6.11.6   Specifying a Constraint in a Test Using In-Line 
Constraints 

 If you keep adding constraints to a class, it becomes hard to manage and control. 
Soon, everyone is checking out the same fi le from your source control system. Many 
times a constraint is only used by a single test, so why have it visible to every test? 
One way to localize the effects of a constraint is to use in-line constraints,  random-
ize with , shown in Section  6.8 . This works well if your new constraint is additive 
to the default constraints. If you follow the recommendations in Section  6.7  to cre-
ate “valid constraints”, you can quickly constrain valid sequences. For error injec-
tion, you can disable any constraint that confl icts with what you are trying to do. 
A test that injects a particular fl avor of corrupted data would fi rst turn off the par-
ticular validity constraint that checks for that error. 

 There are several tradeoffs with using in-line constraints. The fi rst is that now 
your constraints are in multiple locations which can make it more diffi cult to under-
stand all the active constraints. If you add a new constraint to the original class, it 
may confl ict with the in-line constraint. The second is that it can be very hard for 
you to reuse an in-line constraint across multiple tests. By defi nition, an in-line 
constraint only exists in one piece of code. You could put it in a routine in a separate 
fi le and then call it as needed. At that point it has become nearly the same as an 
external constraint.  

    6.11.7   Specifying a Constraint in a Test with External 
Constraints 

 The body of a constraint does not have to be defi ned within the class, just as a rou-
tine body can be defi ned externally, as shown in Section   5.10     . Your data class could 
be defi ned in one fi le, with one empty constraint. Then each test could defi ne its own 
version of this constraint to generate its own fl avors of stimulus as shown in Samples 
 6.41  and  6.42 .   

  Sample 6.41    Class with an external constraint        
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 External constraints have several advantages over in-line constraints. They can 
be put in a fi le and thus reused between tests. An external constraint applies to all 
instances of the class, whereas an in-line constraint only affects the single call to 
 randomize . Consequently, an external constraint provides a primitive way to 
change a class without having to learn advanced OOP techniques. Keep in mind that 
with this technique, you can only add constraints, not alter existing ones, and you 
need to defi ne the external constraint prototype in the original class. 

 Like in-line constraints, external constraints can cause problems, as the con-
straints are spread across multiple fi les. The LRM requires external constraints to be 
defi ned in the same scope as the original class. A class defi ned in a package must 
have its external constraint also defi ned in the same package, limiting its usefulness. 
That is why Sample  6.42  includes the class defi nition rather than using a package. 

 A fi nal consideration is what happens when the body for an external constraint is 
never defi ned. The SystemVerilog LRM does not currently specify what should 
happen in this case. Before you build a testbench with many external constraints, 
fi nd out how your simulator handles missing defi nitions. Is this an error that pre-
vents simulation, just a warning, or no message at all?  

    6.11.8   Extending a Class 

 In   Chapter 8    , you will learn how to extend a class. With this technique, you can take 
a testbench that uses a given class, and swap in an extended class that has additional 
or redefi ned constraints, routines, and variables. See Sample   8.10     for a typical test-
bench. Note that if you defi ne a constraint in an extended class with the same name 
as one in the base class, the extended constraint replaces the base one. 

 Learning OOP techniques requires a little more study, but the fl exibility of this 
new approach repays with great rewards.   

    6.12   Common Randomization Problems 

 You may be comfortable with procedural code, but writing constraints and under-
standing random distributions requires a new way of thinking. Here are some issues 
you may encounter when trying to create random stimulus. 

  Sample 6.42    Program defi ning an external constraint        
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    6.12.1   Use Signed Variables with Care 

 When creating a testbench, you may be tempted to use the  int, byte , or other 
signed types for counters and other simple variables. Don’t use them in random 
constraints unless you really want signed values. What values are produced when 
the class in Sample  6.43  is randomized? It has two random variables and wants to 
make the sum of them 64.  

  Sample 6.43    Signed variables cause randomization problems       

 Obviously, you could get pairs of values such as (32, 32) and (2, 62). Additionally, 
you could see (−63, 127), as this is a legitimate solution of the equation, even though 
it may not be what you wanted. To avoid meaningless values such as negative 
lengths, use only unsigned random variables, as shown in Sample  6.44 .  

  Sample 6.44    Randomizing unsigned 32-bit variables       

 Even this version causes problems, as large values of  pkt1_len  and  pkt2_len , 
such as  32'h80000040  and  32'h80000000 , wrap around when added together 
and give  32'd64  or  32'h40 . You might think of adding another pair of constraints 
to restrict the values of these two variables, but the best approach is to make them 
only as wide as needed, and to avoid using 32-bit variables in constraints. In Sample 
 6.45 , the sum of two 8-bit variables is compared to a 9-bit value.   

  Sample 6.45    Randomizing unsigned 8-bit variables       
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    6.12.2   Solver Performance Tips 

 Each constraint solver has its strengths and weaknesses but there are some guide-
lines that you can follow to improve the speed of your simulations with constrained 
random variables. Tools are always being improved, so check with your vendor for 
more specifi c information. 

 If you just need to fi ll an array with raw data, don’t use the solver as it has some 
overhead choosing values, even for a variable that has no constraints. Don’t declare 
these arrays as rand, instead calculate the values in  pre_randomize  with  $urandom  
or  $urandom_range . These functions calculate a value up to 100 times faster than the 
solver, which is important when you need a 1000 values quickly. Generally, the larger 
the array, the less important are the individual values, and the less likely that there 
is a need to use a solver. Even if you need a non-uniform range of values, or there is 
a simple relationship between values, you might be able to employ an  if  statement.  

    6.12.3   Choose the Right Arithmetic Operator to Boost Effi ciency 

     Simple arithmetic operators such as addition and subtraction, bit 
extracts, and shifts are handled very effi ciently by the solver in a 
constraint. However, multiplication, division, and modulo are 
very expensive with 32-bit values. Remember that any constant 
without an explicit size, such as 42, is treated as a 32-bit value, 
 32'd42 . 

 If you want to generate random addresses that are near a page boundary, where a 
page is 4096 bytes, you could write the following code, but the solver may take a 
long time to fi nd suitable values for  addr  if you use the constraint in Sample  6.46 .  

  Sample 6.46    Expensive constraint with mod and unsized variable       

 Many constants in hardware are powers of 2, so take advantage of this with a bit 
extraction rather than division and modulo. Only constrain the bits that matter, not 
the upper bits. Likewise, multiplication by a power of two can be replaced by a shift. 
Note that some constraint solvers make these optimizations automatically Sample 
 6.47  replaces the MOD operator with a bit extract.    

  Sample 6.47    Effi cient constraint with bit extract       
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    6.13   Iterative and Array Constraints 

 The constraints presented so far allow you to specify limits on single variables. 
What if you want to randomize an array? The  foreach  constraint and several array 
functions let you shape the distribution of the values. 

     Using the  foreach  constraint creates many constraints that can 
slow down simulation. A good solver can quickly solve hundreds 
of constraints but may slow down with thousands. Especially slow 
are nested  foreach  constraints, as they produce N 2  constraints for 
an array of size N. See Section  6.13.5  for an algorithm that used 
 randc  variables instead of nested  foreach . 

    6.13.1   Array Size 

 The easiest array constraint to understand is the  size  function. In Sample  6.48 , you 
are specifying the number of elements in a dynamic array or queue.  

  Sample 6.48    Constraining dynamic array size       

 Using the  inside  constraint lets you set a lower and upper boundary on the 
array size. In many cases you may not want an empty array, that is,  size==0 . 
Remember to specify an upper limit; otherwise, you can end up with thousands or 
millions of elements, which can cause the random solver to take an excessive 
amount of time.  

    6.13.2   Sum of Elements 

 You can send a random array of data into a design, but you can also use it to control 
the fl ow. Perhaps you have an interface that has to transfer four data words. 
The words can be sent consecutively or over many cycles. A strobe signal tells when 
the data signal is valid. Figure  6.2  shows some legal strobe patterns, sending four 
values over ten cycles.  
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 You can create these patterns using a random array as shown in Sample  6.49 . 
Constrain it to have four bits enabled out of the entire range using the  sum  function.  

  Fig. 6.2    Random strobe waveforms       

  Sample 6.49    Random strobe pattern class       

 As you remember from   Chapter 2    , the sum of an array of single-bit elements 
would normally be a single bit, e.g., 0 or 1. Sample  6.49  compares  strobe.sum  to 
a 4-bit value (4'h4), so the sum is calculated with 4-bit precision. The example uses 
4-bit precision to store the maximum number of elements, which is 10.  
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    6.13.3   Issues with Array Constraints 

 The  sum  function looks simple but can cause several problems because of Verilog’s 
arithmetic rules. The following is a simple problem that one of the authors experi-
enced creating constrained random stimulus. You want to generate from one to eight 
transactions, such that the total length of all of them is less than 1024 bytes. Sample 
 6.50  shows a fi rst attempt,  6.51  has the test program, and  6.52  shows the output. The 
 len  fi eld is a byte in the original transaction.    

  Sample 6.50    First attempt at sum constraint: bad_sum1       

  Sample 6.51    Program to try constraint with array sum       

  Sample 6.52    Output from bad_sum1       

 This generates some smaller lengths, but the sum is sometimes negative and is 
always less than 127 — defi nitely not what you wanted! Sample  6.53  shows another 
attempt, but this time replace the  byte  data type with an unsigned fi eld. The  display  
function is unchanged. Sample  6.54  shows the output.   
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 Sample  6.53  has a subtle problem. The sum of all transaction lengths is always 
less than 256, even though you constrained the array sum to be less than 1024. The 
problem here is that in Verilog, the sum of many 8-bit values is computed using an 
8-bit result. Sample  6.55  bumps the  len  fi eld up to 32 bits using the  uint  type from 
Section   2.8     .   

  Sample 6.54    Output from bad_sum2       

  Sample 6.53    Second attempt at sum constraint: bad_sum2       

  Sample 6.55    Third attempt at sum constraint: bad_sum3       

  Sample 6.56    Output from bad_sum3       

 Wow – what happened here in Sample  6.56 ? This is similar to the signed problem 
in Section  6.12.1 , in that the sum of two very large numbers can wrap around to a 
small number. You need to limit the size based on the comparison in the constraint. 
Samples  6.57  and  6.58  show the next attempt and result.   
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 This does not work either as the individual  len  fi elds are more than 8 bits, so the 
 len  values are often greater than 255. You need to specify that each  len  fi eld is 
between 1 and 255, but use a 10-bit fi eld so they sum correctly. This requires con-
straining every element of the array, as shown in the following section.  

    6.13.4   Constraining Individual Array and Queue Elements 

 SystemVerilog lets you constrain individual elements of an array using  foreach . 
While you might be able to write constraints for a fi xed-size array by listing every 
element, the  foreach  style is more compact. The only practical way to constrain a 
dynamic array or queue is with  foreach  as shown in Samples  6.59  and  6.60 .   

  Sample 6.58    Output from bad_sum4       

  Sample 6.59    Simple foreach constraint: good_sum5       

  Sample 6.57    Fourth attempt at sum constraint: bad_sum4       

  Sample 6.60    Output from good_sum5       
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 The addition of the constraint for individual elements fi xed the example. Note 
that the len array can be 10 or more bits wide, but must be unsigned. 

 You can specify constraints between array elements as long as you are careful 
about the endpoints. The class in Sample  6.61  creates an ascending list of values by 
comparing each element to the previous, except for the fi rst.  

  Sample 6.61    Creating ascending array values with foreach       

  Sample 6.62    Creating unique array values with foreach       

 How complex can these constraints become? Constraints have been written to 
solve Einstein’s problem (a logic puzzle with fi ve people, each with fi ve separate 
attributes), the Eight Queens problem (place eight queens on a chess board so that 
none can capture each other), and even Sudoku.  

    6.13.5   Generating an Array of Unique Values 

 How can you create an array of random unique values? If your array has N ele-
ments, and the element values range from 0..N-1, you can simply use the array 
 shuffl e  function as described in Section   2.6.3     . 

 What if the range of values is greater than the number of array elements? If you 
try to make a  randc  array, each array element will be randomized independently, so 
you are almost certain to get repeated values. 

 You may be tempted to use a constraint solver to compare every element with 
every other with nested  foreach  loops as shown in Sample  6.62 . This creates over 
4000 individual constraints, which could slow down simulation.  
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 Instead, you should use procedural code as shown in Sample  6.63  with a helper 
class containing a  randc  variable so that you can randomize the same variable over 
and over.  

  Sample 6.64    Unique value generator       

  Sample 6.63    Creating unique array values with a randc helper class       

 Samples  6.64  and  6.65  give a more general solution. For example, you may need 
to assign ID numbers to N bus drivers, which are in the range of 0 to MAX-1 where 
MAX >=N.   
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 Sample  6.66  has a program. Here is a program that uses the  UniqueArray  
class.   

  Sample 6.65    Class to generate a random array of unique values       

  Sample 6.66    Using the UniqueArray class       
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    6.13.6   Randomizing an Array of Handles 

 If you need to create multiple random objects, you might create a random array of 
handles. Unlike an array of integers, you need to allocate all the elements before 
randomization as the random solver never constructs objects. If you have a dynamic 
array, allocate the maximum number of elements you may need, and then use a 
constraint to resize the array as shown in Sample  6.67 . A dynamic array of handles can 
remain the same size or shrink during randomization, but it can never increase in size.  

  Sample 6.67    Constructing elements in a random array class       

 The above code works well for a single array randomization. If you need to repeatedly 
randomize the same array over and over, allocate the array and construct the elements 
in  pre_randomize . See Section   5.14.4     for more on arrays of handles.   

    6.14   Atomic Stimulus Generation vs. Scenario Generation 

 Up until now, you have seen atomic random transactions. You have learned how to 
make a single random bus transaction, a single network packet, or a single processor 
instruction. This is a good start, however your job is to verify that the design works 
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with real-world stimuli. A bus may have long sequences of transactions such as 
DMA transfers or cache fi lls. Network traffi c consists of extended sequences of 
packets as you simultaneously read e-mail, browse a web page, and download music 
from the net, all in parallel. Processors have deep pipelines that are fi lled with the 
code for routine calls,  for  loops, and interrupt handlers. Generating transactions 
one at a time is unlikely to mimic any of these scenarios. 

    6.14.1   An Atomic Generator with History 

 The easiest way to create a stream of related transactions is to have an atomic gen-
erator base some of its random values on ones from previous transactions. The class 
might constrain a bus transaction to repeat the previous command, such as a write, 
80% of the time, and also use the previous destination address plus an increment. 
You can use the  post_randomize  function to make a copy of the generated trans-
action for use by the next call to  randomize . 

 This scheme works well for smaller cases but gets into trouble when you need 
information about the entire sequence ahead of time. A DUT may need to know the 
length of a sequence of network transactions before it starts.  

    6.14.2   Random Array of Objects 

 If you want to generate stimulus for a complex, multi-level protocol, you could 
build up a combination of code and arrays of random objects. The UVM and VMM 
both allow you to generate random sequences through a sophisticated set of classes 
and macros. This section shows a simplifi ed random sequence. 

 One way to generate random sequences is to randomize an entire array of objects. 
You can create constraints that refer to the previous and next objects in the array, 
and the SystemVerilog solver solves all constraints simultaneously. Since the entire 
sequence is generated at once, you can then extract information such as the total 
number of transactions or a checksum of all data values before the fi rst transaction 
is sent. Alternatively, you can build a sequence for a DMA transfer that is con-
strained to be exactly 1024 bytes, and let the solver pick the right number of transac-
tions to reach that goal. 

 Sample  6.68  shows a simple sequence of transactions, each one with a destina-
tion address that is greater than the one before. It builds on the array constraint 
shown in Sample  6.61 .   
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    6.14.3   Combining Sequences 

 You can combine multiple sequences together to make a more realistic fl ow of 
transactions. For example, for a network device, you could make one sequence that 
resembles downloading e-mail, a second that is viewing a web page, and a third that 
is entering single characters into web-based form.The techniques to combine these 
fl ows is beyond the scope of this book, but you can learn more from the VMM, as 
described in Bergeron, et al. (2005).  

    6.14.4   Randsequence 

 You may fi nd it challenging to write random constraints as they don’t execute 
sequentially like procedural statements. An alternative way to create random 
sequences is to describe the grammar of a protocol with a declarative style using a 
syntax similar to BNF (Backus-Naur Form) and random weighted case statements. 

  Sample 6.68    Simple random sequence with ascending values        
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SystemVerilog’s  randsequence  construct resembles the algorithmic code that you 
have traditionally used but can still be challenging. 

 Sample  6.69  generates a sequence called  stream . A  stream  can be either  cfg_
read, io_read , or  mem_read . The random sequence engine randomly picks one. 
The  cfg_read  label has a weight of 1,  io_read  has twice the weight and so is 
twice as likely to be chosen as  cfg_read . The label  mem_read  is most likely to be 
chosen, with a weight of 5.  

  Sample 6.69    Command generator using randsequence       

 A  cfg_read  can be either a single call to  cfg_read_task , or a call to the task 
followed by another  cfg_read . As a result, the task is always called at least once, 
and possibly many times. 

 One big advantage of  randsequence  is that it is procedural code and you can 
debug it by stepping though the execution, or adding  $display  statements. When 
you call  randomize  for an object, it either all works or all fails, but you can’t see 
the steps taken to get to a result. 

 There are several problems with using  randsequence . The code to generate the 
sequence is separate and a very different style from the classes with data and con-
straints used by the sequence. So if you use both  randomize  and  randsequence , 
you have to master two different forms of randomization. More seriously, if you 
want to modify a sequence, perhaps to add a new branch or action, you have to 
modify the original sequence code. You can’t just make an extension. As you will 
see in   Chapter 8    , you can extend a class to add new code, data, and constraints with-
out having to edit the original class.   
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    6.15   Random Control 

 At this point you may be thinking that this process is a great way to create long 
streams of random input into your design. Or you may think that this is a lot of work 
if all you want to do is occasionally to make a random decision in your code. You may 
prefer a set of procedural statements that you can step through using a debugger. 

    6.15.1   Introduction to  randcase  

 You can use  randcase  to make a weighted choice between several actions, without 
having to create a class and instance. Sample  6.70  chooses one of the three branches 
based on the weight. SystemVerilog adds up the weights (1+8+1 = 10), chooses a 
value in this range, and then picks the appropriate branch. The branches are not 
order dependent, the weights can be variables, and they do not have to add up to 
100%. The function  $urandom_range  is described in Section  6.10 .  

  Sample 6.70    Random control with randcase and $urandom_range       

 You can write Sample  6.70  using a class and the  randomize  function. For this 
small case, the OOP version in Sample  6.71  is a little larger. However, if this were 
part of a larger class, the constraint would be more compact than the equivalent 
 randcase  statement.  

  Sample 6.71    Equivalent constrained class       
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 Code using  randcase  is more diffi cult to override and modify than random 
constraints. The only way to modify the random results is to rewrite the code or use 
variable weights. 

 Be careful using  randcase , as it does not leave any tracks behind. For example, 
you could use it to decide whether or not to inject an error in a transaction. The 
problem is that the downstream transactors and scoreboard need to know of this 
choice. The best way to inform them would be to use a variable in the transaction or 
environment. However, if you are going to create a variable that is part of these 
classes, you could have made it a random variable and used constraints to change its 
behavior in different tests.  

    6.15.2   Building a Decision Tree with  randcase  

 You can use the  randcase  statement to create a decision tree. Sample  6.72  has just 
two levels of procedural code, but you can see how it can be extended to use more.    

  Sample 6.72    Creating a decision tree with randcase        
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    6.16   Random Number Generators 

 How random is SystemVerilog? On the one hand, your testbench depends on an 
uncorrelated stream of random values to create stimulus patterns that go beyond any 
directed test. On the other hand, you need to repeat the patterns over and over during 
debug of a particular test, even if the design and testbench make minor changes. 

    6.16.1   Pseudorandom Number Generators 

 Verilog uses a simple PRNG that you could access with the $random function. The 
generator has an internal state that you can set by providing a seed to  $random . All 
IEEE-1364-compliant Verilog simulators use the same algorithm to calculate 
values. 

 Sample  6.73  shows a simple PRNG, not the one used by SystemVerilog. The 
PRNG has a 32-bit state. To calculate the next random value, square the state to 
produce a 64-bit value, take the middle 32 bits, then add the original value.  

  Sample 6.73    Simple pseudorandom number generator       

 You can see how this simple code produces a stream of values that seem random, 
but can be repeated by using the same seed value. SystemVerilog calls its own 
PRNG to generate a new value for  randomize  and  randcase .  

    6.16.2   Random Stability — Multiple Generators 

 Verilog has a single PRNG that is used for the entire simulation. What would hap-
pen if SystemVerilog kept this approach? Testbenches often have several stimulus 
generators running in parallel, creating data for the design under test. If two streams 
share the same PRNG, they each get a subset of the random values. 
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 In Fig.  6.3 , there are two stimulus generators and a single PRNG producing 
values  a, b, c , etc.  Gen2  has two random objects, so during every cycle, it uses 
twice as many random values as Gen1.  

 A problem can occur when one of the classes changes as shown in Fig.  6.4 . Gen1 
gets an additional random variable, and so consumes two random values every time 
it is called. This approach changes the values used not only by Gen1, but also by 
Gen2.  

class Gen1;
Transaction tr;

forever @(int1.cb)
tr.randomize()

endclass

class Gen2;
Transaction tr1, tr2;

forever @(int2.cb)
tr1.randomize();
tr2.randomize();

endclass  

a
d
g

b,c
e,f
h,i

PRNGPRNG

  Fig. 6.3    Sharing a single random generator       

PRNG

class Gen1;
Transaction tra, trb;

forever @(int1.cb)
tra.randomize();
trb.randomize();

endclass

class Gen2;
Transaction tr1, tr2;

forever @(int2.cb)
tr1.randomize();
tr2.randomize();

endclass

a,b
e,f
i,j

c,d
g,h
k,l

PRNG

  Fig. 6.4    First generator uses additional values       

 In SystemVerilog, there is a separate PRNG for every object and thread. Figure  6.5  
shows how changes to one object don’t affect the random values seen by others.   
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    6.16.3   Random Stability and Hierarchical Seeding 

 In SystemVerilog, every object and thread has its own PRNG and unique seed. 
When a new object or thread is started, its PRNG is seeded from its parent’s PRNG. 
Thus a single seed specifi ed at the start of simulation can create many streams of 
random stimulus, each distinct. 

 When you are debugging a testbench, you add, delete, and move code. Even with 
random stability, your changes may cause the testbench to generate different ran-
dom values. This can be very frustrating if you are in the middle of debugging a 
DUT failure, and the testbench no longer creates the same stimulus. You can mini-
mize the effect of code modifi cations by adding any new objects or threads after 
existing ones. Sample  6.74  shows a routine from testbench that constructs objects, 
and runs them in parallel threads.  

class Gen1;
Transaction tra, trb;

forever @(int1.cb)
tra.randomize();
trb.randomize();

endclass

class Gen2;
Transaction tr1, tr2;

forever @(int2.cb)
tr1.randomize();
tr2.randomize();
endclass

a,b
c,d
e,f

m,n
o,p
q,r

PRNG 1 PRNG 2

  Fig. 6.5    Separate random generators per object       

  Sample 6.74    Test code before modifi cation       

 Sample  6.75  adds a new generator, and runs it in a new thread. The new object is 
constructed after the existing ones, and the new thread is spawned after the old ones.  
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 As new code is added, you may not be able to keep the random streams the same as 
the old ones, but you might be able to postpone any side effects from these changes.   

    6.17   Random Device Confi guration 

     An important part of your DUT to test is the confi guration of both 
the internal DUT settings and the system that surrounds it. As 
described in Section  6.2.1 , your tests should randomize the environ-
ment so that you can be confi dent it has been tested in as many 
modes as possible. 

 Sample  6.76  shows a random testbench confi guration that can be modifi ed as needed 
at the test level. The  EthCfg  class describes the confi guration for a 4-port Ethernet 
switch. It is instantiated in an environment class, which in turn is used in the test. 
The test overrides one of the confi guration values, enabling all 4 ports.  

  Sample 6.75    Test code after modifi cation        
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 The confi guration class is used in the  Environment  class during several phases. 
The confi guration is constructed in the  Environment  constructor, but not random-
ized until the  gen_cfg  phase as shown in Sample  6.77 . This allows you to turn 
constraints on and off before  randomize  is called. Afterwards, you can override 
the generated values before the build phase creates the virtual components around 
the DUT. (The classes such as  EthGen  and  EthMii  are not shown).  

  Sample 6.76    Ethernet switch confi guration class       

  Sample 6.77    Building environment with random confi guration       
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 Now you have all the components to build a test, which is described in a program 
block. The test in Sample  6.78  instantiates the environment class and then runs each 
step.  

  Sample 6.78    Simple test using random confi guration       

 You may want to override the random confi guration, perhaps to reach a corner 
case. The test in Sample  6.79   randomizes the confi guration class and then enables 
all the ports.  
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     Notice how in Sample  6.77  all generators were constructed, but 
only a few were run, depending on the random confi guration. 
If you only constructed the generators that are in-use, you would 
have to surround any reference to  gen [i]  with a test of  in_
use [i] , otherwise your testbench would crash when it tried to 

refer to the non-existent generator. The extra memory taken up by these generators 
that are not used is a small price to pay for a more stable testbench.  

    6.18   Conclusion 

 Constrained-random tests are the only practical way to generate the stimulus needed 
to verify a complex design. SystemVerilog offers many ways to create a random 
stimulus and this chapter presents many of the alternatives. 

 A test needs to be fl exible, allowing you either to use the values generated by 
default or to constrain or override the values so that you can reach your goals. 
Always plan ahead when creating your testbench by leaving suffi cient “hooks” so 
that you can steer the testbench from the test without modifying existing code.  

  Sample 6.79    Simple test that overrides random confi guration        
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    6.19   Exercises 

     1.    Write the SystemVerilog code for the following items.

   a.    Create a class  Exercise1  containing two random variables, 8-bit  data  and 
4-bit  address . Create a constraint block that keeps  address  to 3 or 4.  

   b.    In an  initial  block, construct an  Exercise1  object and randomize it. 
Check the status from randomization.      

    2.    Modify the solution for Exercise 1 to create a new class  Exercise2  so that:

   a.     data  is always equal to 5  
   b.    The probability of  address==0  is 10%  
   c.    The probability of  address  being between [1:14] is 80%  
   d.    The probability of  address==15  is 10%      

    3.    Using the solution to either Exercise 1 or 2, demonstrate its usage by generating 
20 new  data  and  address  values and check for success from the constraint 
solver.  

    4.    Create a testbench that randomizes the  Exercise2  class 1000 times.

   a.    Count the number of times each  address  value occurs and print the results in 
a histogram. Do you see an exact 10% / 80% / 10% distribution? Why or why 
not?  

   b.    Run the simulation with 3 different random seeds, creating histograms, and 
then comment on the results. Here is how to run a simulation with the seed 42.

VCS:  > simv +ntb_random_seed=42  
IUS:  > irun exercise4.sv −svseed 42  
Questa:  > vsim −sv_seed 42             

    5.    For the code in Sample  6.4 , describe the constraints on the  len, dst , and  src  
variables.  

    6.    Complete Table  6.9   below for the following constraints.         
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     7.    For the following class, create:

   a.    A constraint that limits read transaction addresses to the range 0 to 7, 
inclusive.  

   b.    Write behavioral code to turn off the above constraint. Construct and ran-
domize a  MemTrans  object with an in-line constraint that limits read trans-
action addresses to the range 0 to 8, inclusive. Test that the in-line constraint 
is working.            

   Table 6.9     Solution probabilities   

  Solution    x    y    Probability  

 A  0  0 
 B  0  1 
 C  0  2 
 D  0  3 
 E  1  0 
 F  1  1 
 G  1  2 
 H  1  3 

     8.    Create a class for a graphics image that is 10x10 pixels. The value for each 
pixel can be randomized to black or white. Randomly generate an image that is, 
on average, 20% white. Print the image and report the number of pixels of each 
type.  

     9.    Create a class,  StimData , containing an array of integer samples. Randomize 
the size and contents of the array, constraining the size to be between 1 and 
1000. Test the constraint by generating 20 transactions and reporting the size.  
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    10.    Expand the  Transaction  class below so back-to-back transactions of the 
same type do not have the same address. Test the constraint by generating 20 
transactions.        
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    11.    Expand the  RandTransaction  class below so back-to-back transactions of 
the same type do not have the same address. Test the constraint by generating 
20 transactions.               
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 In real hardware, the sequential logic is activated on clock edges, whereas combina-
tional logic is constantly changing when any inputs change. All this parallel activity is 
simulated in Verilog RTL using  initial  and  always  blocks, plus the occasional gate 
and continuous assignment statement. To stimulate and check these blocks, your test-
bench uses many threads of execution, all running in parallel. Most blocks in your 
testbench environment are modeled with a transactor and run in their own thread. 

 The SystemVerilog scheduler is the traffi c cop that chooses which thread runs 
next. You can use the techniques in this chapter to control the threads and thus your 
testbench. 

 Each of these threads communicates with its neighbors. In Fig.  7.1 , the generator 
passes the stimulus to the agent. The environment class needs to know when the 
generator completes and then tell the rest of the testbench threads to terminate. This 
is done with interprocess communication (IPC) constructs such as the standard 
Verilog events, event control and  wait  statements, and the SystemVerilog mail-
boxes and semaphores. 1   

    Chapter 7   
 Threads and Interprocess Communication                  

    1  The SystemVerilog LRM uses “thread” and “process” interchangeably. The term “process” is 
most commonly associated with Unix processes, in which each contains a program running in its 
own memory space. Threads are lightweight processes that may share common code and memory, 
and consume far fewer resources than a typical process. This book uses the term “thread.” However, 
“interprocess communication” is such a common term that it is used in this book.  
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    7.1   Working with Threads 

 While all the thread constructs can be used in both modules and program blocks, 
your testbenches belong in program blocks. As a result, your code always starts with 
 initial  blocks that start executing at time 0. You cannot put an  always  block in 
a program. However, you can easily get around this by using a  forever  loop in an 
 initial  block. 

 Classic Verilog has two ways of grouping statements — with a  begin…end  or 
 fork…join . Statements in a  begin…end  run sequentially, whereas those in a 
 fork…join  execute in parallel. The latter is very limited in that all statements 
inside the  fork…join  have to fi nish before the rest of the block can continue. As a 
result, it is rare for Verilog testbenches to use this feature. 

 SystemVerilog introduces two new ways to create threads — with the  fork…
join_none  and  fork…join_any  statements, shown in Fig.  7.2 .  

Agent

DUT

AssertionsDriver Monitor

Scoreboard Checker

Generator Environment

Agent

  Fig. 7.1    Testbench environment blocks       

join_any join_nonejoin

forkfork fork

  Fig. 7.2    Fork…join blocks       

 

 



2317.1 Working with Threads

 Your testbench communicates, synchronizes, and controls these threads with 
existing constructs such as events, @ event control, the  wait  and  disable  state-
ments, plus new language elements such as semaphores and mailboxes. 

    7.1.1   Using  fork…join  and  begin…end  

 Sample  7.1  has a  fork…join  parallel block with an enclosed  begin…end  sequen-
tial block, and shows the difference between the two.   

  Sample 7.1    Interaction of begin…end and fork…join       

initial
$display
#10 $display
fork
.
join
$display
#80 $display

$display

#30 $display
#10 $display

#50 $display

#10 $display

Parent

Child
threads

  Fig. 7.3    Fork…join block       
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 In the output below, the code in the  fork…join  executes in parallel, so statements 
with shorter delays execute before those with longer delays. As shown in Sample  7.2 , 
the  fork…join  completes after the last statement, which starts with  #50 .   

  Sample 7.2    Output from begin…end and fork…join       

    7.1.2   Spawning Threads with  fork…join_none  

 A  fork…join_none  block schedules each statement in the block, but execution 
continues in the parent thread. Sample  7.3  is identical to Sample  7.1  except that the 
 join  has been converted to  join_none .  

  Sample 7.3    Fork…join_none code       
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 The diagram for this block is similar to Fig.  7.3 . Note that the statement after the 
 join_none  block in Sample  7.4  executes before any statement inside the  fork…
join_none .   

  Sample 7.5    Fork…join_any code       

  Sample 7.4    Fork…join_none output       

    7.1.3   Synchronizing Threads with  fork…join_any  

 A  fork…join_any  block schedules each statement in the block. Then, when the 
fi rst statement completes, execution continues in the parent thread. All other remain-
ing threads continue. Sample  7.5  is identical to the previous examples, except that 
the  join  has been converted to  join_any .  

 Note in Sample  7.6 , the statement  $display(“after join_any”)  completes 
after the fi rst statement in the parallel block.   
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    7.1.4   Creating Threads in a Class 

 You can use a  fork…join_none  to start a thread, such as the code for a random 
transactor generator. Sample  7.7  shows a generator / driver class with a  run  task 
that creates N packets. The full testbench has classes for the driver, monitor, checker, 
and more, all with transactors that need to run in parallel.  

  Sample 7.6    Output from fork…join_any       

  Sample 7.7    Generator / Driver class with a run task       
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     There are several points to note with Sample  7.7 . First, the trans-
actor is not started in the  new()  function. The constructor should 
just initialize values, not start any threads. Separating the con-
structor from the code that does the real work allows you to change 
any variables before you start executing the code in the object. 
This allows you to inject errors, modify the defaults, and alter the 

behavior of the object. Next, the  run  task starts a thread in a  fork…join_none  
block. The thread is a part of the transactor and should be spawned there, not in the 
parent class.  

    7.1.5   Dynamic Threads 

 Verilog’s threads are very predictable. You can read the source code and count the 
 initial, always , and  fork…join  blocks to know how many threads were in a 
module. On the other hand, SystemVerilog lets you create threads dynamically, and 
does not require you to wait for them to fi nish. 

 In Sample  7.8 , the testbench generates random transactions and sends them to a 
DUT that stores them for some predetermined time, and then returns them. The 
testbench has to wait for the transaction to complete, but does not want to stop the 
generator.  

  Sample 7.8    Dynamic thread creation        
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 When the  check_trans  task is called, it spawns off a thread to watch the bus 
for the matching transaction data. During a normal simulation, many of these threads 
run concurrently. In this simple example, the thread just prints a message, but you 
could add more elaborate controls.  

    7.1.6   Automatic Variables in Threads 

     A common but subtle bug occurs when you have a loop that 
spawns threads and you don’t save variable values before the 
next iteration. Sample  7.8  only works in a  program  or  module  
with automatic storage. If  check_trans  used static storage, 
each thread would share the same variable  tr , so later calls 

would overwrite the value set by earlier ones. Likewise, if the example had the 
 fork…join_none  inside the  repeat  loop, it would try to match incoming transac-
tions using  tr , but its value would change the next time through the loop. Always 
use automatic variables to hold values in concurrent threads. 

 Sample  7.9  has a  fork…join_none  inside a for loop. SystemVerilog schedules 
the threads inside a  fork…join_none  but they are not executed until after the 
original code blocks, here because of the #0 delay. So Sample  7.9  prints “ 3 3 3 ” 
which are the values of the index variable  j  when the loop terminates.   

  Sample 7.9    Bad fork…join_none inside a loop        
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 The  #0  delay blocks the current thread and reschedules it to start later during the 
current time slot. In Sample  7.10 , the delay makes the current thread run after the 
threads spawned in the  fork…join_none  statement. This delay is useful for block-
ing a thread, but you should be careful, as excessive use causes race conditions and 
unexpected results. 

 You should use  automatic  variables inside a  fork…join  statement to save a 
copy of a variable as shown in Sample  7.11 .  

  Sample 7.10    Execution of bad fork…join_none inside a loop       

  Sample 7.11    Automatic variables in a fork…join_none       

 The  fork…join_none  block is split into two parts, declarations and procedural 
code. The automatic variable declaration with initialization runs in the thread inside 
the for loop. During each loop, a copy of  k  is created and set to the current value 
of j. Then the body of the  fork…join_none ($write)  is scheduled, including a 
copy of  k . After the loop fi nishes, #0 blocks the current thread, so the three threads 
run, printing the value of their copy of  k . When the threads complete, and there is 
nothing else left during the current time-slot region, SystemVerilog advances to the 
next statement and the  $display  executes. 
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 Sample  7.12  traces the code and variables from Sample  7.11 . The three copies of 
the automatic variable k are called  k0, k1 , and  k2  for this sample.  

  Sample 7.12    Steps in executing automatic variable code       

 Another way to write Sample  7.11  is to declare the automatic variable outside of 
the  fork…join_none . Sample  7.13  works inside a program with automatic storage.   

  Sample 7.13    Automatic variables in a fork…join_none       

    7.1.7   Waiting for all Spawned Threads 

 In SystemVerilog, when all the  initial  blocks in the program are done, the simu-
lator exits. Sample  7.14  shows how you can spawn many threads, which might still 
be running. Use the  wait fork  statement to wait for all child threads.   
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    7.1.8   Sharing Variables Across Threads 

     Inside a class’s routines, you can use local variables, class variables, 
or variables defi ned in the program. If you forget to declare a 
variable, SystemVerilog looks up the higher scopes until it fi nds 
a match. This can cause subtle bugs if two parts of the code are 

unintentionally sharing the same variable, perhaps because you forgot to declare it 
in the innermost scope. 

 For example, if you like to use the index variable, i, be careful that two different 
threads of your testbench don’t concurrently modify this variable by each using it in 
a  for  loop. Or you may forget to declare a local variable in a class, such as  Buggy , 
shown below. If your program block declares a global i, the class just uses the 
global instead of the local that you intended. You might not even notice this unless 
two parts of the program try to modify the shared variable at the same time.  

  Sample 7.14    Using wait  fork to wait for child threads        
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 The solution is to declare all your variables in the smallest scope that encloses all 
uses of the variable. In Sample  7.15 , declare index variables inside the  for  loops, 
not at the program or class level. Better yet, use the  foreach  statement whenever 
possible.   

    7.2   Disabling Threads 

 Just as you need to create threads in the testbench, you also need to stop them. The 
Verilog  disable  statement works on SystemVerilog threads. The following sec-
tions show how you can asynchronously disable threads. This can cause unexpected 
behavior, so you should watch out for side effects when a thread is stopped mid-
stream. You may, instead, want to design your algorithm to check for interrupts at 
stable points, then gracefully give up its resources. 

  Sample 7.15    Bug using shared program variable        
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    7.2.1   Disabling a Single Thread 

 Here is the  check_trans  task, this time using a  fork…join_any  plus a  disable  
to create a watch with a time-out. In this case, you are disabling a labelled block, to 
precisely specify what to stop. 

 The outermost  fork…join_none  is identical to Sample  7.8 . This version imple-
ments a time-out with two threads inside a  fork…join_any  so that the simple wait 
statement is executed in parallel with a delayed  $display . If the correct bus data 
comes back quickly enough, the wait construct completes, the  join_any  executes, 
and then the disable kills off the remaining thread. However, if the bus data does 
not get the right value before the  TIME_OUT  delay completes, the error message is 
printed, the  join_any  executes, and the  disable  kills the thread with the  wait .  

  Sample 7.16    Disabling a thread       

     Watch out, as you might unintentionally stop too many threads 
with  disable  label. This statement stops every process execut-
ing the labeled block, as might occur if you have multiple driver 
or monitor objects running in parallel. If your code only has one 
instance,  disable  label is a safe way to stop a thread.  

    7.2.2   Disabling Multiple Threads 

 Sample  7.16  used the classic Verilog  disable  statement to stop the threads in a 
named block. SystemVerilog introduces the  disable fork  statement so you can 
stop all child threads that have been spawned from the current thread. 
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     Watch out, as you might unintentionally stop too many threads 
with  disable fork , such as those created from surrounding 
task calls. You should always surround the target code with 
a  fork…join  to limit the scope of a  disable fork  
statement. 

 The next few samples use the  check_trans  task from Sample  7.16 . You can just 
think of this task as doing a  #TIME_OUT . Sample  7.17  has an additional  begin…end  
block inside the  fork…join  to make the statements sequential.  

  Sample 7.17    Limiting the scope of a disable fork       

 Fig.  7.4  shows a diagram of the spawned threads.  

initial begin
check_trans(tr0)
fork
...
join
end

thread 1
check_trans(tr1)
fork
...
join
#TIME_OUT/2

disable fork

thread 0
thread 2

thread 3
check_trans(tr2)

thread 4

  Fig. 7.4    Fork…join block diagram       

 The code calls  check_trans  that starts thread 0. Next a  fork…join  creates 
thread 1. Inside this thread, one is spawned by the  check_trans  task and one by 
the innermost  fork…join , which spawns thread 4 by calling the task. After a delay, 
a  disable fork  stops and all the child threads, 2-4. Thread 0 is outside the  fork…
join  block that has the  disable , so it is unaffected. 

 Sample  7.18  is the more robust version of Sample  7.17 , with  disable  with a 
label that explicitly names the threads that you want to stop.   
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    7.2.3   Disable a Task that was Called Multiple Times 

 Be careful when you disable a block from inside that block - you might end up stopping 
more than you expected. As expected, if you disable a task from inside the task, it is like 
a return statement, but it also kills all threads started by the task. Additionally, a single 
 disable  label terminates all threads using that code, not just the current one. 

 In Sample  7.19 , the  wait_for_time_out  task is called three times, spawning 
three threads. Then, thread 0 also disables the task after #2ns. When you run this code, 
you will see the three threads starting, but none fi nishes, because of the  disable  in 
thread 0 stops all three threads, not just one. If this task was inside a driver class that 
was instantiated multiple times, a  disable  label in one could stop all the blocks.    

  Sample 7.19    Using disable label to stop a task       

  Sample 7.18    Using disable label to stop threads        
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    7.3   Interprocess Communication 

 All these threads in your testbench need to synchronize and exchange data. At the 
most basic level, one thread waits for another, such as the environment object wait-
ing for the generator to complete. Multiple threads might try to access a single 
resource such as bus in the DUT, so the testbench needs to ensure that one and only 
one thread is granted access. At the highest level, threads need to exchange data 
such as transaction objects that are passed from the generator to the agent. All of 
this data exchange and control synchronization is called interprocess communica-
tion (IPC), which is implemented in SystemVerilog with events, semaphores, and 
mailboxes. These are described in the remainder of this chapter. 

 There are generally three parts to IPC: a producer that creates the information, a 
consumer that accepts the information, and the channel that carries the information. 
The producer and consumer are in separate threads.  

    7.4   Events 

 A Verilog event synchronizes threads. It is similar to a phone, where one person 
waits for a call from another person. In Verilog a thread waits for an event with the 
@ operator. This operator is edge sensitive, so it always blocks, waiting for the event 
to change. Another thread triggers the event with the -> operator, unblocking the 
fi rst thread. 

 System Verilog enhances the Verilog event in several ways. An event is now a 
handle to a synchronization object that can be passed around to routines. This fea-
ture allows you to share events across objects without having to make the events 
global. The most common way is to pass the event into the constructor for an 
object. 

 There is always the possibility of a race condition in Verilog where one thread 
blocks on an event at the same time another triggers it. If the triggering thread exe-
cutes before the blocking thread, the trigger is missed. SystemVerilog introduces the 
 triggered  status that lets you check whether an event has been triggered, includ-
ing during the current time-slot. A thread can wait on this function instead of block-
ing with the @ operator. 
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    7.4.1   Blocking on the Edge of an Event 

 When you run Sample  7.20 , one initial block starts, triggers its event, and then 
blocks on the other event, as shown in the output in Sample  7.21 . The second block 
starts, triggers its event (waking up the fi rst), and then blocks on the fi rst event. 
However, the second thread locks up because it missed the fi rst event, as it is a zero-
width pulse.    

  Sample 7.21    Output from blocking on an event       

  Sample 7.20    Blocking on an event in Verilog       

    7.4.2   Waiting for an Event Trigger 

 Instead of the edge-sensitive block  @e1 , use the level-sensitive  wait(e1.trig-
gered) . This does not block if the event has been triggered during this time step. 
Otherwise, it waits until the event is triggered.  

 

 



246 7 Threads and Interprocess Communication

 When you run Sample  7.22 , one initial block starts, triggers its event, and then 
blocks on the other event. The second block starts, triggers its event (waking up the 
fi rst) and then blocks on the fi rst event, producing the output in Sample  7.23 .  

  Sample 7.22    Waiting for an event       

  Sample 7.23    Output from waiting for an event       

 Several of these samples have race conditions and may not execute exactly the 
same on every simulator. For example, the output in Sample  7.23  assumes that when 
the second block triggers e2, execution jumps back to the fi rst block. It would also 
be legal for the second block to trigger e2, wait on e1, and display a message before 
control is returned back to the fi rst block.  

    7.4.3   Using Events in a Loop 

 You can synchronize two threads with an event, but use caution. 

     If you use wait ( handshake.triggered ) in a loop, be sure to 
advance the time before waiting again. Otherwise your code will 
go into a zero delay loop as the wait continues over and over 
again on a single event trigger. Sample  7.24  incorrectly uses a 

level-sensitive blocking statement for notifi cation that a transaction is ready.  
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 Just as you learned to always put a delay inside an  always  block you need to put 
a delay in a transaction process loop. The edge-sensitive delay statement in Sample 
 7.25  continues once and only once per event trigger.  

  Sample 7.25    Waiting for an edge on an event       

  Sample 7.24    Waiting on event causes a zero delay loop       

 You should avoid events if you need to send multiple notifi cations in a single 
time slot, and look at other IPC methods with built-in queuing such as semaphores 
and mailboxes, discussed later in this chapter.  

    7.4.4   Passing Events 

 As described above, an event in SystemVerilog can be passed as an argument to a 
routine. In Sample  7.26 , an event is used by a transactor to signal when it has 
completed.   
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    7.4.5   Waiting for Multiple Events 

 In Sample  7.26 , you had a single generator that fi red a single event. What if your 
testbench environment class must wait for multiple child processes to fi nish, such as 
N generators? The easiest way is to use  wait fork , that waits for all child pro-
cesses to end. The problem is that this also waits for all the transactors, drivers, and 
any other threads that were spawned by the environment. You need to be more 
selective. You still want to use events to synchronize between the parent and child 
threads. 

 You could use a  for  loop in the parent to wait for each event, but that would only 
work if thread 0 fi nished before thread 1, which fi nished before thread 2, etc. If the 
threads fi nish out of order, you could be waiting for an event that triggered many 
cycles ago. 

 The solution is to make a new thread and then spawn children from there that 
each block on an event for each generator, as shown in Sample  7.27 . Now you can 
do a  wait fork  because you are being more selective.  

  Sample 7.26    Passing an event into a constructor        
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 Another way to solve this problem is to keep track of the number of events that 
have triggered, as shown in Sample  7.28 .  

  Sample 7.27    Waiting for multiple threads with wait fork       

  Sample 7.28    Waiting for multiple threads by counting triggers       

 That was slightly less complicated. Why not get rid of all the events and just wait 
on a count of the number of running generators? This count can be a static variable 
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in the  Generator  class. Note that most of the thread manipulation code has been 
replaced with a single wait construct. The last block in Sample  7.29  waits for the 
count using the class scope resolution operator, ::. You could have used any handle, 
such as  gen[0] , but that would be less direct.    

  Sample 7.29    Waiting for multiple threads using a thread count       

    7.5   Semaphores 

 A semaphore allows you to control access to a resource. Imagine that you and your 
spouse share a car. Obviously, only one person can drive it at a time. You can man-
age this situation by agreeing that whoever has the key can drive it. When you are 
done with the car, you give up the car so that the other person can use it. The key is 
the semaphore that makes sure only one person has access to the car. In operating 
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system terminology, this is known as “mutually exclusive access,” so a semaphore 
is known as a “mutex” and is used to control access to a resource. 

 Semaphores can be used in a testbench when you have a resource, such as a bus, 
that may have multiple requestors from inside the testbench but, as part of the physi-
cal design, can only have one driver. In SystemVerilog, a thread that requests a key 
when one is not available always blocks. Multiple blocking threads are queued in 
FIFO order. 

    7.5.1   Semaphore Operations 

 There are three basic operations for a semaphore. You create a semaphore with one 
or more keys using the new method, get one or more keys with the blocking task 
 get() , and return one or more keys with  put() . If you want to try to get a sema-
phore, but not block, use the  try_get()  function. If keys are available,  try_get()  
obtains them and returns 1. If there are not suffi cient keys, it just returns a 0. Sample 
 7.30  shows how to control access to a resource with a semaphore.   

  Sample 7.30    Semaphores controlling access to hardware resource        
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    7.5.2   Semaphores with Multiple Keys 

 There are two things you should watch out for with semaphores. First, you can  put  
more keys back than you took out. Suddenly you may have two keys but only one car! 
Secondly, be careful if your testbench needs to get and put multiple keys. Perhaps you 
have one key left, and a thread requests two, causing it to block. Now a second thread 
requests a single semaphore – what should happen? In SystemVerilog the second 
request,  get(1) , sneaks ahead of the earlier  get(2) , bypassing the FIFO ordering. 

 If you are mixing different sized requests, you can always write your own class. 
That way you can be very clear on who gets priority.   

    7.6   Mailboxes 

 How do you pass information between two threads? Perhaps your generator needs to 
create many transactions and pass them to a driver. You might be tempted to just have 
the generator thread call a task in the driver. If you do that, the generator needs to know 
the hierarchical path to the driver task, making your code less reusable. Additionally, 
this style forces the generator to run at the same speed as the driver, that can cause 
synchronization problems if one generator needs to control multiple drivers. 

     Think of your generator and driver as transactors that are autonomous 
objects that communicate through a channel. Each object gets a trans-
action from an upstream object (or creates it, as in the case of a gen-
erator), does some processing, and then passes it to a downstream 
object. The channel must allow its driver and receiver to operate asyn-

chronously. You may be tempted to just use a shared array or queue, but it can be 
diffi cult to create threads that read, write, and blocks safely. 

 The solution is a SystemVerilog mailbox. From a hardware point of view, the easiest 
way to think about a mailbox is that it is just a FIFO, with a source and sink. The 
source puts data into the mailbox, and the sink gets values from the mailbox. 
Mailboxes can have a maximum size or can be unlimited. When the source thread 
tries to put a value into a sized mailbox that is full, that thread blocks until the value 
is removed. Likewise, if a sink threads tries to remove a value from a mailbox that 
is empty, that thread blocks until a value is put into the mailbox. 

 Figure  7.5  shows a mailbox connecting a generator and driver.  

generator driver

mailbox

  Fig. 7.5    A mailbox connecting two transactors       
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 A mailbox is an object and thus has to be instantiated by calling the  new  func-
tion. This takes an optional  size  argument to limit the number of entries in the 
mailbox. If the size is 0 or not specifi ed, the mailbox is unbounded and can hold an 
unlimited number of entries. 

 You put data into a mailbox with the  put()  task, and remove it with the blocking 
 get()  task. A  put()  blocks if the mailbox is full, and  get()  blocks if the mailbox 
is empty. Use  try_put()  if you want to see if the mailbox is full. and  try_get()  
to see if it is empty. The  peek()  task gets a copy of the data in the mailbox but does 
not remove it. 

     The data is a single value, such as an integer, or logic of any size or 
a handle. A mailbox never contains objects, only references to 
them. By default, a mailbox does not have a type, so you could put 
any mix of data into it. Don’t do it! Enforce one data type per mail-
box by sticking with parameterized mailboxes as shown in Sample 
 7.31  to catch type mismatches at compile time.  

  Sample 7.31    Mailbox declarations       

     A classic mailbox bug, shown in Sample  7.32 , is a loop that ran-
domizes objects and puts them in a mailbox, but the object is 
only constructed once, outside the loop. Since there is only one 
object, it is randomized over and over.  

  Sample 7.32    Bad generator creates only one object       

 Figure  7.6  shows all the handles pointing to a single object. A mailbox only 
holds handles, not objects, so you end up with a mailbox containing multiple han-
dles that all point to the single object. The code that gets the handles from the mail-
box just sees the last set of random values.  
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 The solution, shown in Sample  7.33 , is to make sure your loop has all three steps 
of constructing the object, randomizing it, and putting it in the mailbox. This bug is 
so common that it is also mentioned in Section 5.14.3.  

All handles refer
to the same object

  Fig. 7.6    A mailbox with multiple handles to one object       

  Sample 7.33    Good generator creates many objects       

 The result, shown in Fig.  7.7 , is that every handle points to a unique object. This 
type of generator is known as the Blueprint Pattern and described in Section 8.2.  

  Fig. 7.7    A mailbox with multiple handles to multiple objects       

  Sample 7.34    Good driver receives transactions from mailbox       

 Sample  7.34  shows the driver that waits for transactions from the generator.  
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 If you don’t want your code to block when accessing the mailbox, use the  try_
get()  and  try_peek()  functions. If they are successful, they return a nonzero 
value; otherwise, they return 0. These are more reliable than the  num()  function, as 
the number of entries can change between when you measure it and when you next 
access the mailbox. 

    7.6.1   Mailbox in a Testbench 

 Sample  7.35  shows a program with a Generator and Driver exchanging transactions 
using a mailbox.   

  Sample 7.35    Exchanging objects using a mailbox: the Generator class          
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    7.6.2   Bounded Mailboxes 

 By default, mailboxes are similar to an unlimited FIFO — a producer can put any 
number of objects into a mailbox before the consumer gets the objects out. However, 
you may want the two threads to operate in lockstep so that the producer blocks 
until the consumer is done with the object. 

 You can specify a maximum size for the mailbox when you construct it. The 
default mailbox size is 0 which creates an unbounded mailbox. Any size greater 
than 0 creates a bounded mailbox. If you attempt to put more objects than this limit, 
 put()  blocks until you  get  an object from the mailbox, creating a vacancy.  

  Sample 7.36    Bounded mailbox        
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 Sample  7.36  creates the smallest possible mailbox, which can hold a single message. 
The Producer thread tries to put three messages (integers) in the mailbox, and the 
Consumer thread slowly gets messages every 1ns. As Sample  7.37  shows, the fi rst 
 put()  succeeds, then the Producer tries  put(2)  which blocks. The Consumer 
wakes up, gets a message 1 from the mailbox, so now the Producer can fi nish put-
ting the message 2.  

  Sample 7.37    Output from bounded mailbox       

 The bounded mailbox acts as a buffer between the two processes. You can see how 
the Producer generates the next value before the Consumer reads the current value.  

    7.6.3   Unsynchronized Threads Communicating with a Mailbox 

     In many cases, two threads that are connected by a mailbox should 
run in lockstep, so that the producer does not get ahead of the con-
sumer. The benefi t of this approach is that your entire chain of stimu-
lus generation now runs in lock step. The highest level generator 
only completes when the last low level transaction completes trans-
mission. Now your testbench can tell precisely when all stimulus has 

been sent. In another example, if your generator gets ahead of the driver, and you are 
gathering functional coverage on the generator, you might record that some transac-
tions were tested, even if the test stopped prematurely. So even though a mailbox 
allows you to decouple the two sides, you may still want to keep them synchronized. 

 If you want two threads to run in lockstep, you need a handshake in addition to the 
mailbox. In Sample  7.38  the Producer and Consumer are now classes that exchange 
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integers using a mailbox, with no explicit synchronization between the two objects. 
As a result, as shown in Sample  7.39 , the producer runs to completion before the 
consumer even starts.  

  Sample 7.38    Producer–consumer without synchronization       

 The above sample holds the mailbox in a global variable to make the code more 
compact. In real code, you should pass the mailbox into the class through the con-
structor and save a reference to it in a class-level variable. 
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 Sample  7.38  has no synchronization so the Producer puts all three integers into 
the mailbox before the Consumer can get the fi rst one. This is because a thread 
continues running until there is a blocking statement, and the Producer has none. 
The Consumer thread blocks on the fi rst call to  mbx.get .  

  Sample 7.39    Producer–consumer without synchronization output       

 This example has a race condition, so on some simulators the consumer could 
activate earlier. The result is still the same as the values are determined by the pro-
ducer, not by how quickly the consumer sees them.  

    7.6.4   Synchronized Threads Using a Bounded Mailbox 
and a Peek 

 In a synchronized testbench, the Producer and Consumer operate in lock step. This 
way, you can tell when the input stimuli is complete by waiting for any of the 
threads. If the threads operate unsynchronized, you need to add extra code to detect 
when the last transaction is applied to the DUT. 

 To synchronize two threads, the Producer creates and puts a transaction into a 
mailbox, then blocks until the Consumer fi nishes with it. This is done by having the 
Consumer remove the transaction from the mailbox only when it is fi nally done 
with it, not when the transaction is fi rst detected. 

 Sample  7.40  show the fi rst attempt to synchronize two threads, this time with a 
bounded mailbox. The Consumer uses the built-in mailbox method  peek()  to look 
at the data in the mailbox without removing. When the Consumer is done process-
ing the data, it removes the data with  get() . This frees up the Producer to generate 
a new value. If the Consumer loop started with a  get()  instead of the  peek() , the 
transaction would be immediately removed from the mailbox, so the Producer could 
wake up before the Consumer fi nished with the transaction. Sample  7.41  has the 
output from this code.   
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 You can see that the Producer and Consumer are in lockstep, but the Producer is 
still one transaction ahead of the Consumer. This is because a bounded mailbox 
with size=1 only blocks when you try to do a put of the second transaction. 2   

  Sample 7.41    Output from producer–consumer with bounded mailbox       

  Sample 7.40    Producer–consumer synchronized with bounded mailbox       

    2  This behavior is different from the VMM channel. If you set a channel’s full level to 1, the very fi rst 
call to put() places the transaction in the channel, but does not return until the transaction is removed.  
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    7.6.5   Synchronized Threads Using a Mailbox and Event 

 You may want the two threads to use a handshake so that the Producer never gets ahead 
of the Consumer. The Consumer already blocks, waiting for the Producer using a mail-
box. The Producer needs to block, waiting for the Consumer to fi nish the transaction. 
Do this by adding a blocking statement to the Producer such as an event, a semaphore, 
or a second mailbox. Sample  7.42  uses an event to block the Producer after it puts data 
in the mailbox. The Consumer triggers the event after it consumes the data. 

     If you use wait ( handshake.triggered ) in a loop, be sure to 
advance the time before waiting again, as previously shown in 
Section  7.4.3 . This wait blocks only once in a given time slot, so 
you need move into another. Sample  7.42  uses the edge-sensitive 
blocking statement  @handshake  instead to ensure that the 

Producer stops after sending the transaction. The edge-sensitive statement works 
multiple times in a time slot but may have ordering problems if the trigger and block 
happen in the same time slot.  

  Sample 7.42    Producer–consumer synchronized with an event        
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 Now the Producer does not advance until the Consumer triggers the event, as 
shown in Sample  7.43 .  

  Sample 7.43    Output from producer–consumer with event       

 You can see that the Producer and Consumer are successfully running in lockstep by 
the fact that the Producer never produces a new value until after the old one is read.  

    7.6.6   Synchronized Threads Using Two Mailboxes 

 Another way to synchronize the two threads is to use a second mailbox that sends a 
completion message back to the Producer, as shown in Sample  7.44 .  
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 The return message in the  rtn  mailbox is just a negative version of the original 
integer. You could use any value, but this one can be checked against the original for 
debugging purposes.  

  Sample 7.44    Producer–consumer synchronized with a mailbox        
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 You can see from Sample  7.45  that the Producer and Consumer are successfully 
running in lockstep.  

    7.6.7   Other Synchronization Techniques 

 You can also complete the handshake by blocking on a variable or a semaphore. An 
event is the simplest construct, followed by blocking on a variable. A semaphore is 
comparable to using a second mailbox, but no information is exchanged. SystemVer-
ilog’s bounded mailbox just does not work as well as these other techniques as there 
is no way to block the producer when it puts the fi rst transaction in. Sample  7.41  
shows that the Producer is always one transaction ahead of the Consumer.   

    7.7   Building a Testbench with Threads and IPC 

 Way back in Section 1.10 you learned about layered testbenches. Figure  7.8  shows 
the relationship between the different parts. Now that you know how to use threads 
and IPC, you can construct a basic testbench with transactors.  

  Sample 7.45    Output from producer–consumer with mailbox        
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    7.7.1   Basic Transactor 

 Sample  7.46  is the Agent class that sits between the Generator and the Driver.   

Agent

DUT

AssertionsDriver Monitor

Scoreboard Checker

Generator Environment

Agent

Scenario

Signal

Command

Functional

  Fig. 7.8    Layered testbench with environment       

  Sample 7.46    Basic Transactor       
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    7.7.2   Confi guration Class 

 The confi guration class allows you to randomize the confi guration of your system 
for every simulation. Sample  7.47  has just one variable and a basic constraint.   

  Sample 7.47    Confi guration class       

    7.7.3   Environment Class 

 The Environment class, shown as a dashed line in Fig.  7.8 , holds the Generator, 
Agent, Driver, Monitor, Checker, Scoreboard, and Confi g objects, and the mail-
boxes between them. Sample  7.48  shows a basic Environment class.  

  Sample 7.48    Environment class         
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 Chapter   8     shows more details on how to build these classes.  

    7.7.4   Test Program 

 Sample  7.49  shows the main test, which is in a program block. As discussed in 
Section 4.3.4, you can also put a test in a module, but at a slight increase in the 
chances of race conditions.    
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    7.8   Conclusion 

 Your design is modeled as many independent blocks running in parallel, so your 
testbench must also generate multiple stimulus streams and check the responses 
using parallel threads. These are organized into a layered testbench, orchestrated by 
the toplevel environment. SystemVerilog introduces powerful constructs such as 
 fork…join_none  and  fork…join_any  for dynamically creating new threads, in 
addition to the standard  fork…join . These threads communicate and synchronize 
using events, semaphores, mailboxes, and the classic @ event control and wait 
statements. Lastly, the  disable  command is used to terminate threads. 

 These threads and the related control constructs complement the dynamic nature 
of OOP. As objects are created and destroyed, they can run in independent threads, 
allowing you to build a powerful and fl exible testbench environment.  

  Sample 7.49    Basic test program        
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    7.9   Exercises 

     1.    For the following code determine the order and time of execution for each state-
ment if a  join  or  join_none  or  join_any  is used. Hint: the order and time of 
execution between the  fork  and  join/join_none/join_any  is the same, 
only the order and execution time of the statements after the  join  are different.        
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    2.    For the following code what would the output be with and without a  wait fork  
inserted in the indicated location?        
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    3.    What would be displayed with the following code? Assume that the events and 
task  trigger  is declared inside a program declared as automatic.        

    4.    Create a task called  wait10  that for 10 tries will wait for 10ns and then check 
for 1 semaphore key to be available. When the key is available, quit the loop and 
print out the time.  
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    5.    What would be displayed with the following code that calls the task from Exercise 4?        

    6.    What would be displayed with the following code?        

    7.    Look at Fig.  7.8  “Layered testbench with environment” on page 265 and  create 
the  Monitor  class. You can make the following assumptions.

   a.    The  Monitor  class has knowledge of class  OutputTrans  with member vari-
ables  out1  and  out2 .  

   b.    The DUT and  Monitor  are connected with an interface called  my_bus , with 
signals  out1  and  out2 .  

   c.    The interface  my_bus  has a clocking block,  cb .  
   d.    On every active clock edge, the Monitor class will sample the DUT outputs, 

 out1  and  out2 , assign them to an object of type  OutputTrans , and place 
the object in a mailbox.              
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 How would you create a complex class for a bus transaction that also performs error 
injection and has random delays? The fi rst approach is to put everything in a large, 
fl at class. This approach is simple to build, easy to understand (all the code is right 
there in one class) but can be slow to develop and debug. Additionally, such a large 
class is a maintenance burden, as anyone who wants to make a new transaction 
behavior has to edit the same fi le. Just as you would never create a complex RTL 
design using just one Verilog module, you should break classes down into smaller, 
reusable blocks. 

 Another approach is composition. As you learned in Chapter   5    , you can instan-
tiate one class inside another, just as you instantiate modules inside another, build-
ing up a hierarchical testbench. You write and debug your classes from the top 
down or bottom up, always looking for natural partitions when deciding what vari-
ables and method go into the various classes. A pixel could be partitioned into its 
color and coordinate. A packet might be divided into header and payload. You 
might break an instruction into opcode and operands. See Section  8.4  for guidelines 
on partitioning. 

 Sometimes it is diffi cult to divide the functionality into separate parts. Consider 
injecting errors during a bus transaction. When you write the original class for the 
transaction, you may not think of all the possible error cases. Ideally, you would like 
to make a class for a good transaction, and later add different error injectors. 
The transaction has data fi elds and an error-checking checksum fi eld generated from 
the data. One form of error injection is corruption of the checksum fi eld. If you use 
composition, you need separate classes for good transactions and error transactions. 
Testbench code that used good objects would have to be rewritten to process the 
new error objects. What you need is a class that resembles the original class but adds 
a few new variables and methods. This result is accomplished through inheritance. 

    Chapter 8   
 Advanced OOP and Testbench Guidelines                  
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 Inheritance allows a new class to be extended from an existing one by adding 
new variables and methods. The original class is known as the base class. Since the 
new class extends the capability of the base class, it is called the extended class. 
Inheritance provides reusability by overlaying features, such as error injection, on 
an existing class, without modifying that class. 

 A real power of OOP is that it gives you the ability to take an existing class, 
such as a transaction, and selectively update parts of its behavior by replacing 
methods, but without having to change the surrounding infrastructure. All your 
original tests that depend on the base class keep working, and you can now create 
new tests with the extended class. With some planning, you can create a testbench 
solid enough to send basic transactions, but able to accommodate any extensions 
needed by the test. 

 Note that this chapter goes into a wide range of advanced OOP topics, many of 
which you won’t need when learning SystemVerilog. Feel free to skip the later sec-
tions for now, and save them for when you are digging into the internals of UVM 
and VMM. 

    8.1   Introduction to Inheritance 

 Figure  8.1  shows a simple testbench. The test controls the generator. The generator 
creates transactions, randomizes them, and sends them to the driver along the dotted 
line. The driver breaks down the transaction into pin wiggles and sends it into the 
DUT along the dashed line. The rest of the testbench is left out.  

  Fig. 8.1    Simplifi ed layered testbench       
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    8.1.1   Basic Transaction 

 The basic transaction class in Sample  8.1  has variables for the source and destina-
tion addresses, eight data words, and a checksum for error checking, plus methods 
for displaying the contents and calculating the checksum. The  calc_csm  function 
is tagged as  virtual  so that it can be redefi ned if needed, as shown in the next sec-
tion. Virtual methods are explained in more detail later in this chapter in Section 
 8.3.2 . The class is simple enough that it uses the default SystemVerilog constructor 
that allocates memory and initializes variables to their default value.  

  Sample 8.1    Base Transaction class       

 Normally calculating the checksum would be done in post_randomize(), but in 
this example it has been separated from the randomization to show how to inject errors. 

 Figure  8.2  shows a diagram for the class with both the variables and methods.   

    8.1.2   Extending the  Transaction  Class 

 Suppose you have a testbench that sends good transactions through the DUT and 
now you want to inject errors. If you follow the guidelines from Chapter   1    , you 
would want to make as few code changes as possible to your existing testbench. 
So how can you reuse the existing  Transaction  class? Take the existing class and 

  Fig. 8.2    Base Transaction class diagram       

Transaction src data[0]

dst

csm data[7]

display()data[1]

calc_csm()

 

 



276 8 Advanced OOP and Testbench Guidelines

extend it to create a new class. This is done by declaring a new class,  BadTr , as an 
extension of the current class.  Transaction  is the base class, and  BadTr  is the 
extended class. The code is shown in Sample  8.2  and in a diagram in Fig.  8.3 .   

  Sample 8.2    Extended Transaction class       

 Note that in Sample  8.2 , the variable  csm  is does not need a hierarchical identi-
fi er. The BadTr class can see all the variables from the original  Transaction  plus 
its own variables such as  bad_csm , as shown in Fig.  8.3 . The  calc_csm  function 
in the extended class calls  calc_csm  in the base class using the  super  prefi x. You 
can call a single level up, but going across multiple levels such as  super.super.
new  is not allowed in SystemVerilog. This style, that reaches across multiple levels, 
would violate the rules of encapsulation by reaching across multiple boundaries. 

 The original  display  method printed a single line, starting with the prefi x. So 
the extended  display  method prints the prefi x, class name, and  bad_csm  with 
 $write  so the result is still on a single line. 

  Fig. 8.3    Extended Transaction class diagram       
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     Always declare methods inside a class as virtual so that they can be 
redefi ned in an extended class. This applies to all tasks and func-
tions except the new function, which is called when the object is 
constructed, so there is no way to extend it. SystemVerilog always 
calls the new function based on the handle’s type. Virtual methods 
are described fully in Section  8.3.2 .  

    8.1.3   More OOP Terminology 

 Here is a quick glossary of terms. As explained in Chapter   5    , the OOP term for a 
variable in a class is “property,” and a task or function is called a “method.” A base 
class is one that is not derived from any other class. When you extend a class, the 
original class (such as  Transaction ) is called the parent class or superclass. The 
extended class ( BadTr ) is also known as the derived or subclass. The “prototype” 
for a method is just the fi rst line that shows the argument list and return type, if 
any. The prototype is used when you move the body of the method outside the 
class, but is needed to describe how the method communicates, as shown in 
Section 5.10.  

    8.1.4   Constructors in Extended Classes 

 When you start extending classes, there is one rule about constructors ( new  func-
tions) to keep in mind. If your base class constructor has any arguments, the 
extended class must have a constructor and must call the base’s constructor on its 
fi rst line. In Sample  8.3 , since  Base::new  has an argument,  Extended::new  
must call it.   

  Sample 8.3    Constructor with arguments in an extended class        
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    8.1.5   Driver Class 

 The driver class in Sample  8.4  receives transactions from the generator and drives 
them into the DUT.  

  Sample 8.4    Driver class       

 This class receives  Transaction  objects from the generator though the mailbox 
gen2drv, breaks them down into signal changes in the interface to stimulate the 
DUT. What happens if your generator instead sends a BadTr object into the class? 
OOP rules say that if you have a handle of the base type ( Transaction ), it can also 
point to an object of an extended type ( BadTr ). The handle tr can only reference 
things in the base class such as the variables  src, dst, csm , and  data , and the 
method  calc_csm . So you can send BadTr objects into the driver without changing 
the  Driver  class. 

 See Chapter   10     and   11     for examples of fully functional drivers with advanced 
features such as virtual interfaces and callbacks. 

 When the driver calls  tr.calc_csm , which one will be called, the one in 
Transaction or BadTr? Since  calc_csm  was declared as a virtual method in the 
base class in Sample  8.1 , SystemVerilog chooses the proper method based on the 
type of object stored in  tr . If the object is of type  Transaction , SystemVerilog 
calls the task  Transaction::calc_csm . If it is of type  BadTr , SystemVerilog calls 
the function  BadTr::calc_csm .  
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    8.1.6   Simple Generator Class 

 The generator in Sample   8.5   for this testbench creates a random transaction and puts 
it in the mailbox to the driver. The following (bad) example shows how you might 
create the class from what you have learned so far. Note that this avoids a very com-
mon testbench bug by constructing a new transaction object every pass through the 
loop instead of just once outside. This bug is discussed in more detail in Section 7.6 
on mailboxes.  

  Sample 8.5    Bad generator class       

 There is a big limitation with this generator. The  run  task constructs a transac-
tion and immediately randomizes it. This means that the transaction uses whatever 
constraints are turned on by default. The only way you can change this would be to 
edit the  Transaction  class, which goes against the verifi cation guidelines pre-
sented in this book. Worse yet, the generator only uses  Transaction  objects — 
there is no way to use an extended object such as  BadTr . The fi x is to separate the 
construction of tr from its randomization as shown below in Section  8.2 . 

 As you build data-oriented classes such as network and bus transactions, you 
will see that they have common properties ( id ) and methods ( display ). Control-
oriented classes such as the  Generator  and  Driver  classes also have a common 
structure. You can enforce this by making both of these classes extensions of a 
base  Transactor  class, with virtual methods for  run , and  wrap_up . Both the 
UVM and VMM has an extensive set of base classes for transactors, data, and 
much more.   
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    8.2   Blueprint Pattern 

     A useful OOP technique is the “blueprint pattern.” If you have a 
machine to make signs, you don’t need to know the shape of every 
possible sign in advance. You just need a stamping machine and 
then change the die to cut different shapes. Likewise, when you 
want to build a transactor generator, you don’t have to know how to 
build every type of transaction; you just need to be able to stamp 

new ones that are similar to a given transaction. 

 Instead of constructing and then immediately using an object, as in Sample  8.5 , 
 construct a blueprint object (the cutting die), and then modify its constraints with 
 constraint_mode , or even replace it with an extended object, as shown in Fig.  8.4 . 
Now when you randomize this blueprint, it will have the random values that you want. 
Make a copy of this object and send the copy to the downstream transactor.  

Generator
BlueprintBlueprint

(from test)(from test)
CopyCopy

GeneratedGenerated
streamstream

Generator
BlueprintBlueprint

(from test)(from test)
CopyCopy

GeneratedGenerated
streamstream

  Fig. 8.4    Blueprint pattern 
generator       
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BlueprintBlueprint

(from test)(from test)
CopyCopy

GeneratedGenerated
streamstream

Generator
BlueprintBlueprint

(from test)(from test)
CopyCopy

GeneratedGenerated
streamstream

  Fig. 8.5    Blueprint generator 
with new pattern       

 The beauty of this technique is that if you change the blueprint object, your gen-
erator creates an object of a different type. Using the sign analogy, you change the 
cutting die from a square to a triangle to make Yield signs, as shown in Fig.  8.5 .  

 The blueprint is the “hook” that allows you to change the behavior of the genera-
tor class without having to change its code. You need to make a copy method that 
can make a copy of the blueprint to transmit, so that the original blueprint object is 
kept around for the next pass through the loop. 

 Sample  8.6  shows the generator class using the blueprint pattern. The important 
thing to notice is that the blueprint object is constructed in one place (the new function) 
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and used in another (the run task). Previous coding guidelines in this book said to 
separate the declaration and construction; similarly, you need to separate the con-
struction and randomization of the blueprint object.  

 The  copy  method, which makes a duplicate of an object by copying its variables 
into a new object, is discussed in Sections 5.15 and  8.5 . For now, remember that you 
must add it to the  Transaction  and  BadTr  classes. Sample  8.34  on page 304 
shows an advanced generator using templates. 

 This generator constructs a new transaction every time the blueprint is random-
ized. This coding style prevents the classic OOP mailbox bug, as the mailbox will 
store handles to multiple unique objects, not that same single object. 

 Another advantage of randomizing the blueprint object over and over is that 
randc variables work correctly. The bad generator in Sample  8.5  constructed new 
objects every pass through the loop. Every object with a randc variable maintains 
a history of previous values generated for the variable. Every time you construct a 
new object, that history is lost, and the bad generator creates objects with separate 
 randc  variables. In Sample  8.6 , only the blueprint object is randomized, so the 
 randc  history is maintained. 

 Section  8.2.3  shows how to change the blueprint. 

    8.2.1   The  Environment  Class 

 Chapter   1     discussed the three phases of execution: Build, Run, and Wrap-up. Sample 
 8.7  shows the environment class that instantiates all the testbench components, and 
runs these three phases. Also notice how the mailbox  gen2drv  carries transactions 
from the generator to the driver, and so is passed into the constructor for each.   

  Sample 8.6    Generator class using blueprint pattern        
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    8.2.2   A Simple Testbench 

 The test is contained in the top-level program shown in Sample  8.8 . The basic test 
just lets the environment run with all the defaults.   

  Sample 8.7    Environment class       

  Sample 8.8    Simple test program using environment defaults       
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    8.2.3   Using the Extended  Transaction  Class 

     To inject an error, you need to change the blueprint object from a 
 Transaction  object to a  BadTr . You do this between the build 
and run phases in the environment. The top-level testbench in 
Sample  8.9  runs each phase of the environment and changes the 
blueprint. Note how all the references to BadTr are in this one fi le, 
so you don’t have to change the  Environment  or  Generator  

classes. You want to restrict the scope of where BadTr can be used, so a standalone 
begin…end block is used in the middle of the  initial  block. This makes a visu-
ally distinctive block of code. You can take a shortcut and construct the extended 
class in the declaration.   

  Sample 8.9    Injecting an extended transaction into testbench       

    8.2.4   Changing Random Constraints with an Extended Class 

     In Chapter   6     you learned how to generate constrained random data. 
Most of your tests are going to need to further constrain the data, 
which is best done with inheritance. In Sample  8.10 , the original 
Transaction class is extended to include a new constraint that keeps 
the destination address in the range of +/−100 of the source address. 

 Sample  8.10  replaces the generator’s blueprint with an extended object that has an 
additional constraint. As you will learn later in this chapter, the  Nearby  class should 
have a  copy  method, but hold on for a few sections.  
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 Note that if you defi ne a constraint in an extended class with the same name as 
one in the base class, the extended constraint replaces the base one. This allows you 
to change the behavior of existing constraints.   

    8.3   Downcasting and Virtual Methods 

 As you start to use inheritance to extend the functionality of classes, you need a few 
OOP techniques to control the objects and their functionality. In particular, a handle 
can refer to an object for a certain class, or any extended class. So what happens 
when a base handle points to an extended object? What happens when you call a 
method that exists in both the base and extended classes? This section explains what 
happens using several examples. 

    8.3.1   Downcasting with  $cast  

 Downcasting or conversion is the act of casting a base class handle to point to an 
object that is a class extended from that base type. Consider the base and extended 
classes in Sample  8.11  and Fig.  8.6 .   

  Sample 8.10    Adding a constraint with inheritance        
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 You can assign an extended handle to a base handle, and no special code is 
needed, as shown in Sample  8.12 . When a class is extended, all the base class vari-
ables and methods are included, so  src  is in the extended object. The assignment to 
 tr  is permitted, as any reference using the base handle  tr  is valid, such as  tr.src  
and  tr.display .  

  Sample 8.11    Base and extended class       

srcTransaction

bad_csmBadTr display()

display()

  Fig. 8.6    Simplifi ed extended transaction       

  Sample 8.12    Copying extended handle to base handle       

 What if you try going in the opposite direction, copying a handle to a base object 
into an extended handle, as shown in Sample  8.13 ? This fails because the base 
object is missing properties that only exist in the extended class, such as  bad_csm . 
The SystemVerilog compiler does a static check of the handle types and will not 
compile the second line.  
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 It is not always illegal to assign a base handle to an extended handle, but you 
must always use  $cast . The assignment is allowed when the base handle points to 
an extended object. The  $cast  method checks the type of object referenced by the 
handles, not just the handle. If the source object is the same type as the destination, 
or a class extended from the destination’s class, you can copy the address of the 
extended object from the base handle,  tr , into the extended handle,  bad2 .  

  Sample 8.13    Copying a base handle to an extended handle       

  Sample 8.14    Using $cast to copy handles       

 When you use  $cast  as a task, SystemVerilog checks the type of the source 
object at run time and gives an error if it is not compatible with the destination. 
When you use  $cast  as a function, SystemVerilog still checks the type, but no 
longer prints an error if there is a mismatch. The  $cast  function returns zero when 
the types are incompatible, and one for compatible types. 

 As an alternative to the if statement in Sample  8.14 , you could use something 
like the  SV_RAND_CHECK  macro from Section 6.3.2. You should not use an immedi-
ate  assert  statement as the assertion expression is not evaluated if you disable 
assertions, which means the  $cast  and  bad2  assignment will never execute.  

    8.3.2   Virtual Methods 

 By now you should be comfortable using handles with extended classes. What hap-
pens if you try to call a method using one of these handles? Sample  8.15  and  8.16  
show base and extended classes and code that calls methods inside these classes.  
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 Sample  8.16  contains a block of code that uses handles of different types.  

  Sample 8.15    Transaction and BadTr  classes       

  Sample 8.16    Calling class methods       

 To decide which virtual method to call, SystemVerilog uses the object’s type, not 
the handle’s type. In the last statement of Sample  8.16 ,  tr  points to an extended 
object ( BadTr ) and so  BadTr::calc_csm  is called. 

 If you leave out the  virtual  modifi er on  Transaction::calc_csm , 
SystemVerilog checks the type of the handle  tr (Transaction) , not the object. 
That last statement in Sample  8.16  calls  Transaction::calc_csm  – probably not 
what you wanted. 

 The OOP term for multiple methods sharing a common name is “polymorphism.” 
It solves a problem similar to what computer architects faced when trying to make 
a processor that could address a large address space but had only a small amount of 
physical memory. They created the concept of virtual memory, where the code and 

 

 



288 8 Advanced OOP and Testbench Guidelines

data for a program could reside in memory or on a disk. At compile time, the program 
didn’t know where its parts resided — that was all taken care of by the hardware 
plus operating system at run time. A virtual address could be mapped to some RAM 
chips, or the swap fi le on the disk. Programmers no longer needed to worry about 
this virtual memory mapping when they wrote code — they just knew that the 
processor would fi nd the code and data at run time. See also Denning (2005).  

    8.3.3   Signatures and Polymorphism 

 There is a downside to using virtual methods: once you defi ne one, all extended 
classes that defi ne the same method must use the same “signature,” i.e., the same 
number and type of arguments, plus return value, if any. You cannot add or remove 
an argument in an extended virtual method. This means you need to plan ahead. 

 There is a good reason that SystemVerilog and other OOP languages require that 
a virtual method must have the same signature as the one in the parent (or grandpar-
ent). If you were able to add an additional argument, or turn a task into a function, 
polymorphism would no longer work. Your code needs to be able to call a virtual 
method with the assurance that a method in a extended class will have the same 
interface.  

    8.3.4   Constructors are Never Virtual 

 When you call a virtual method, SystemVerilog checks the type of the object to 
decide if it should call the method in the base class or the extended. Now you can 
see why a constructor can not be virtual. When you call it, there is no object whose 
type can be checked. The object only exists after the constructor call starts.   

    8.4   Composition, Inheritance, and Alternatives 

 As you build up your testbench, you have to decide how to group related variables 
and methods together into classes. In Chapter   5     you learned how to build basic 
classes and include one class inside another. Previously in this chapter, you saw the 
basics of inheritance. This section shows you how to decide between the two styles, 
and also shows an alternative. 

    8.4.1   Deciding Between Composition and Inheritance 

 How should you tie together two related classes? Composition uses a “has-a” rela-
tionship. A packet has a header and a body. Inheritance uses an “is-a” relationship. 
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A  BadTr  is a  Transaction , just with more information. Table  8.1  is a quick guide, 
with more detail below. 

   Table 8.1    Comparing inheritance to composition   

 Question 
 Inheritance 
(is-a relationship) 

 Composition 
(has-a relationship) 

 1. Do you need to group multiple extended classes 
together? (SystemVerilog does not support 
multiple inheritance) 

 No  Yes 

 2. Does the higher-level class represent objects at a 
similar level of abstraction? 

 Yes  No 

 3. Is the lower-level information always present or 
required? 

 Yes  No 

 4. Does the additional data need to remain attached 
to the original class while it is being processed 
by pre-existing code? 

 Yes  No 

      1.    Are there several small classes that you want to combine into a larger class? For 
example, you may have a data class and header class and now want to make a 
packet class. SystemVerilog does not support multiple inheritance, where one 
class extends from several classes at once. Instead you have to use composition. 
Alternatively, you could extend one of the classes to be the new class, and manu-
ally add the information from the others.  

    2.    In Sample  8.15 , the  Transaction  and  BadTr  classes are both bus transactions 
created in a generator and driven into the DUT, so inheritance makes sense.  

    3.    The lower-level information such as  src, dst , and data must always be present 
for the Driver to send a transaction.  

    4.    In Sample  8.15 , the new BadTr class has a new fi eld  bad_csm  and the extended 
 calc_csm  function. The  Generator  class just transmits a transaction and does 
not care about the additional information. If you use composition to create the 
error bus transaction, the  Generator  class would have to be rewritten to handle 
the new type.     

 If two objects seem to be related by both “is-a” and “has-a,” you may need to 
break them down into smaller components.  

    8.4.2   Problems with Composition 

 The classical OOP approach to building a class hierarchy partitions functionality 
into small blocks that are easy to understand. However, testbenches are not standard 
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software development projects, as was discussed in Section 5.16 on public vs. local 
attributes. Concepts such as information hiding (using local variables) confl ict with 
building a testbench that needs maximum visibility and controllability. Similarly, 
dividing a transaction into smaller pieces may cause more problems than it solves. 

 When you are creating a class to represent a transaction, you may want to parti-
tion it to keep the code more manageable. For example, you may have an Ethernet 
MAC frame and your testbench uses two fl avors, normal (II) and Virtual LAN 
(VLAN). Using composition, you could create a basic cell  EthMacFrame  with all the 
common fi elds such as  da  and sa and a discriminant variable,  kind , to indicate the 
type as shown in Sample  8.17 . There is a second class to hold the VLAN informa-
tion, which is included in  EthMacFrame .  

  Sample 8.17    Building an Ethernet frame with composition       

 There are several problems with composition. First, it adds an extra layer of 
hierarchy, so you are constantly having to add an extra name to every reference. The 
VLAN information is called  eth_h.vlan_h.vlan . If you start adding more lay-
ers, the hierarchical names become a burden. 

 A more subtle issue occurs when you want to instantiate and randomize 
the hierarchy of classes. What does the  EthMacFrame  constructor create? Since 
 kind  is random, you don’t know whether to construct a Vlan object when new 
is called. When you randomize the class, the constraints set variables in both the 
 EthMacFrame  and Vlan objects based on the random kind fi eld. You have a cir-
cular dependency in that randomization only works on objects that have been 
instantiated, but you can’t instantiate these objects until  kind  has been chosen. 

 The only solution to the construction and randomization problems is to always 
instantiate all objects in  EthMacFrame::new . However, if you are always using all 
alternatives, why divide the Ethernet cell into two different classes?  
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    8.4.3   Problems with Inheritance 

 Inheritance can solve some of these issues. Variables in the extended classes can be 
referenced without the extra hierarchy as in  eth_h.vlan . You don’t need a dis-
criminant, but you may fi nd it easier to have one variable to test rather than doing 
type-checking as shown in Sample  8.18 .  

  Sample 8.18    Building an Ethernet frame with inheritance       

 On the downside, a set of classes that use inheritance always requires more effort 
to design, build, and debug than a set of classes without inheritance. Your code must 
use  $cast  whenever you have an assignment from a base handle to an extended 
handle. Building a set of virtual methods can be challenging, as they all have to have 
the same signature. If you need an extra argument, you need to go back and edit the 
entire set, and possibly the method calls too. 

 There are also problems with randomization. How do you make a constraint that 
randomly chooses between the two kinds of frame and sets the proper variables? 
You can’t put a constraint in  EthMacFrame  that references the  vlan  fi eld. 

 The fi nal issue is with multiple inheritance. In Fig.  8.7 , you can see how the 
VLAN frame is extended from a normal MAC frame. The problem is that these dif-
ferent standards reconverged. SystemVerilog does not support multiple inheritance, 
so you could not create the VLAN / Snap / Control frame through inheritance.   
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    8.4.4   A Real-World Alternative 

 If composition leads to large hierarchies, but inheritance requires extra code and 
planning to deal with all the different classes, and both have diffi cult construction 
and randomization, what can you do? You can instead make a single, fl at class that 
has all the variables and methods. This approach leads to a very large class, but it 
handles all the variants cleanly. You have to use the discriminant variable often to 
tell which variables are valid, as shown in Sample  8.19 . It contains several condi-
tional constraints, which apply in different cases, depending on the value of  kind .  

Ethernet MAC Frame

Ethernet II FrameEthernet VLAN Frame Ethernet Control Frame

Ethernet Snap Frame

Ethernet VLAN Snap Control Frame

  Fig. 8.7    Multiple inheritance problem       

  Sample 8.19    Building a fl at Ethernet frame       

 Regardless of how you build your classes, defi ne the typical behavior and con-
straints in the class, and then use inheritance to inject new behavior at the test level.   
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    8.5   Copying an Object 

 In Sample  8.6 , the generator fi rst randomized, and then copied the blueprint to make 
a new transaction. Take a closer look at the  copy  function in Sample  8.20 . Also see 
Section 5.15 for more examples of  copy  functions.  

  Sample 8.20    Base transaction class with a virtual copy function       

 When you extend the  Transaction  class to make the class  BadTr , the  copy  
function still has to return a  Transaction  object. This is because the extended 
virtual function must match the base  Transaction::copy , including all argu-
ments and return type, as shown in Sample  8.21   

  Sample 8.21    Extended transaction class with virtual copy method       
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    8.5.1   Specifying a Destination for Copy 

 The previous  copy  methods always constructed a new object. An improvement for 
 copy  is to specify the location where the copy should be put. This technique is useful 
when you want to reuse an existing object, and not allocate a new one.  

  Sample 8.22    Base transaction class with copy function       

 The only difference is the additional argument to specify the destination, and the 
code to test that a destination object was passed to this method. If nothing was 
passed (the default), construct a new object, or else use the existing one. 

 Since you have added a new argument to a virtual method in the base class, you 
will have to add it to the same method in the extended classes, such as  BadTr .  

  Sample 8.23    Extended transaction class with new copy function       

 Notice how  BadTr::copy  only needs to copy the fi elds in the extended class 
and can use the base class method,  Transaction::copy  to copy its own fi elds.   
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    8.6   Abstract Classes and Pure Virtual Methods 

 By now you have seen classes with methods to perform common operations such as 
copying and displaying. One goal of verifi cation is to create code that can be shared 
across multiple projects. If your company standardizes on a common set of classes 
and methods, it is easier to reuse code between projects. 

 OOP languages such as SystemVerilog have two constructs to allow you to build 
a shareable base class. The fi rst is an abstract class, which is a class that can be 
extended, but not instantiated directly. It is defi ned with the  virtual  keyword. The 
second is a pure virtual method, which is a prototype without a body. A class 
extended from an abstract class can only be instantiated if all pure virtual methods 
have bodies. The  pure  keyword specifi es that a method declaration is a prototype, 
and not just an empty virtual method. A pure method has no  endfunction  or  end-
task . Lastly, pure virtual methods can only be declared in an abstract class. An 
abstract class can contain pure virtual methods, virtual methods with and without a 
body, and non-virtual methods. Note that if you defi ne a virtual method without a 
body, i.e. no code inside, you can call it but it just immediately returns. 

 Sample  8.24  shows an abstract class,  BaseTr , which is a base class for transac-
tions. It starts with a some useful properties such as  id  and  count . The constructor 
makes sure every instance has a unique ID. Next are pure virtual methods to com-
pare, copy, and display the object.  

  Sample 8.24    Abstract class with pure virtual methods       

 You can declare handles of type  BaseTr , but you cannot construct objects of this 
type. You need to extend the class and provide implementations for all the pure 
virtual methods. 
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 Sample  8.25  shows the defi nition of the  Transaction  class, which has been 
extended from  BaseTr . Since  Transaction  has bodies for all the pure virtual 
methods extended from  BaseTr , you can construct objects of this type in your 
testbench.  

  Sample 8.25    Transaction class extends abstract class       

 Abstract classes and pure virtual methods let you build testbenches that have a 
common look and feel. This allows any engineer to read your code and quickly 
understand the structure.  
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    8.7   Callbacks 

 One of the main guidelines of this book is to create a single verifi cation environ-
ment that you can use for all tests with no changes. The key requirement is that this 
testbench must provide a “hook” where the test program can inject new code with-
out modifying the original classes. Your driver may want to do the following.

   Inject errors  • 
  Drop the transaction  • 
  Delay the transaction  • 
  Synchronize this transaction with others  • 
  Put the transaction in the scoreboard  • 
  Gather functional coverage data    • 

 Rather than try to anticipate every possible error, delay, or disturbance in the fl ow 
of transactions, the driver just needs to “call back” a method that is defi ned in the 
top-level test. The beauty of this technique is that the callback method can be defi ned 
differently in every test. As a result, the test can add new functionality to the driver 
using callbacks, without editing the  Driver  class. For some drastic behaviors such 
as dropping a transaction, you need to code this in the class ahead of time, but this is 
a known pattern. The reason why the transaction is dropped is left to the callback. 

task Driver::run;
forever begin
...
<pre_callback>
transmit(tr);
<post_callback> 
...

end
endtask

task pre_callback; 
...

endtask

task post_callback;
...

endtask

  Fig. 8.8    Callback fl ow       

 In Fig.  8.8 , the  Driver::run  task loops forever with a call to a  transmit  task. 
Before sending the transaction,  run  calls the pre-transmit callback, if any. After 
sending the transaction, it calls the post-callback task, if any. By default, there are 
no callbacks, so  run  just calls  transmit .  

 You could make  Driver::run  a virtual method and then override its behavior 
in an extended class, perhaps  MyDriver::run . The drawback to this is that you 
might have to duplicate all the original method’s code in the new method if you are 
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injecting new behavior. Now if you made a change in the base class, you would 
have to remember to propagate it to all the extended classes. Additionally, you can 
inject a callback without modifying the code that constructed the original object. 

    8.7.1   Creating a Callback 

 A callback task is created in the top-level test and called from the driver, the lowest 
level of the environment. However, the driver does not have to have any knowledge 
of the test – it just has to use a generic class that the test can extend. The driver in 
Sample  8.27  uses a queue to hold the callback objects, which allows you to add 
multiple objects. The base callback class in Sample  8.26  is an abstract class that 
must be extended before being used. Your callback is a task so it can have delays.   

  Sample 8.26    Base callback class       

  Sample 8.27    Driver class with callbacks       
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 Note that while  Driver_cbs  is an abstract class,  pre_tx  and  post_tx  are not 
pure virtual methods. This is because a typical callback uses only one of them. If a 
class has even one pure virtual method without an implementation, OOP rules won’t 
allow you to instantiate it. 

 Callbacks are part of both VMM and UVM. This callback technique is not related 
to Verilog PLI callbacks or SVA callbacks.  

    8.7.2   Using a Callback to Inject Disturbances 

 A common use for a callback is to inject some disturbance such as causing an error 
or delay. The testbench in Sample  8.28  randomly drops packets using a callback 
object. Callbacks can also be used to send data to the scoreboard or to gather func-
tional coverage values. Note that you can put callback objects in the queue with the 
 push_back()  or  push_front()  depending on the order in which you want these 
to be called. For example, you probably want the scoreboard called after any tasks 
that may delay, corrupt, or drop a transaction. You should only gather coverage after 
a transaction has been successfully transmitted.   

  Sample 8.28    Test using a callback for error injection        
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    8.7.3   A Quick Introduction to Scoreboards 

 The design of your scoreboard depends on the design under test. A DUT that processes 
atomic transactions such as packets may have a scoreboard that contains a trans-
form function to turn the input transactions into expected values, a memory to hold 
these values, and a compare method. A processor design needs a reference model to 
predict the expected output, and the comparison between expected and actual values 
may happen at the end of simulation. 

 Sample  8.29  shows a simple scoreboard that stores transactions in a queue of 
expected values. The fi rst method saves an expected transaction, and the second 
tries to fi nd an expected transaction that matches an actual one that was received by 
the testbench. Note that when you search through a queue, you can get 0 matches 
(transaction not found), 1 match (ideal case) or multiple matches (you need to do a 
more sophisticated match).   

  Sample 8.29    Simple scoreboard for atomic transactions       

    8.7.4   Connecting to the Scoreboard with a Callback 

 The testbench in Sample  8.30  creates its own extension of the driver’s callback class 
and adds a reference to the driver’s callback queue. Note that the scoreboard call-
back needs a handle to the scoreboard so it can call the method to save the expected 
transaction. This example does not show the monitor side, which will need its own 
callback to send the actual transaction to the scoreboard for comparison.  
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 The VMM recommends that you use callbacks for scoreboards and functional 
coverage. The monitor transactor can use a callback to compare received transac-
tions with expected ones. The monitor callback is also the perfect place to gather 
functional coverage on transactions that are actually sent by the DUT. 

 You may have thought of putting the scoreboard or functional coverage group in 
a transactor, and connect it to the testbench using a mailbox. This is a poor solution 
for several reasons. These testbench components are almost always passive and 
asynchronous, so they only wake up when the testbench has data for them, plus they 
never pass information to a downstream transactor. Thus a transactor that has to 
monitor multiple mailboxes concurrently is an overly complex solution. Additionally, 
you may sample data from several points in your testbench, but a transactor is 
designed for a single source. Instead, put methods in your scoreboard and coverage 
classes to gather data, and connect them to the testbench with callbacks. 

  Sample 8.30    Test using callback for scoreboard        
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 The UVM recommends a TLM analysis port for connecting monitors / drivers to 
scoreboards and functional coverage. A description of this construct is beyond the 
scope of this book, but you can think of it as a mailbox with an optional consumer.  

    8.7.5   Using a Callback to Debug a Transactor 

 If a transactor with callbacks is not working as expected, you can add a debug call-
back. You can start by adding a callback to display the transaction. If there are mul-
tiple instances of the transactor, create a unique identifi er for each. Put debug code 
before and after the other callbacks to locate the one that is causing the problem. 
Even for debug, you want to avoid making changes to the testbench environment.   

    8.8   Parameterized Classes 

 As you become more comfortable with classes, you may notice that a class, such as 
a stack or generator, only works on a single data type. This section shows how you 
can defi ne a single parameterized class that works with multiple data types. 

    8.8.1   A Simple Stack 

 A common data structure is a stack, which has  push  and  pop  methods to store and 
retrieve data. Sample  8.31  shows a simple stack that works with the  int  data type.  

  Sample 8.31    Stack using the int type        
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 The problem with this class is that it only works with integers. If you want to 
make a stack for real numbers, you would have to copy the class, and change the 
data type from  int  to  real . This quickly leads to a proliferation of classes, which 
can become a maintenance problem if you ever want to add new operations such as 
traversing or printing the stack contents. 

 In SystemVerilog you can add a data type parameter to a class and then specify a 
type when you declare handles to that class. This is similar to, but more powerful 
than, a parameterized module, where you can specify a value such as bus width 
when it is instantiated. SystemVerilog’s parameterized classes are similar to tem-
plates in C++. 

 Sample  8.32  is a parameterized class for a stack. Notice how the type T is defi ned 
on the fi rst line with a default type of  int .  

  Sample 8.32    Parameterized class for a stack       

 The step of specifying values to a parameterized class is called specialization. 
Sample  8.33  declares a handle to the stack class with a real data type.  

  Sample 8.33    Creating the parameterized stack class       

 Generators are a great example of a class that can be parameterized. Once you 
have defi ned the class for one, the same structure works for any data type. Sample 
 8.34  takes the atomic generator from Sample  8.6  and adds a parameter so you can 
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generate any random object. The generator should be part of a package of verifi cation 
classes. It needs to specify a the default type, so it uses  BaseTr  from Sample  8.24  
as this abstract class should also be part of the verifi cation package.  

  Sample 8.34    Parameterized generator class using blueprint pattern       

 Using the  Transaction  class from Sample  8.25  and the generator in Sample  8.34 , 
you can build a simple testbench like in Sample  8.35 . It starts the generator and prints 
the fi rst fi ve transactions, using the mailbox synchronization shown in Sample 7.40.   

  Sample 8.35    Simple testbench using parameterized generator class       
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    8.8.2   Sharing Parameterized Classes 

 When you specialize a parameterized class, as in the  real  stack in Sample  8.33 , you 
are creating a new data type, with no OOP relationship to any other specialization. For 
example, you can not use  $cast()  to convert between a stack of real variables and 
one of integers. For that, you need a common base class as shown in Sample  8.36 .  

  Sample 8.36    Common base class for parameterized generator class       

 Upcoming sections show more examples of parameterized classes.  

    8.8.3   Parameterized Class Suggestions 

 When creating parameterized classes, you should start with a non-parameterized 
class, debug it thoroughly, and then add parameters. This separation reduces your 
debug effort. 

 A common set of virtual methods in your transaction class help you when creat-
ing parameterized classes. The  Generator  class uses the  copy  method, knowing 
that it always has the same signature. Likewise, the  display  method allows you to 
easily debug transactions as they fl ow through your testbench components. 

 The system functions  $typename()  and  $bits()  are helpful when your class 
needs to know the name and width of the parameter. The  $typename(T)  function 
returns the name of the parameter type such as  int, real , or the class name for a 
handle. The  $bits()  function returns the width of the parameter. For complex 
types such as structures and arrays, it returns the number of bits required to hold an 
expression as a bit stream. The UVM transaction print methods use this function to 
get the fi elds to line up correctly. 

 Macros are an alternative to parameterized classes. For example, you could defi ne 
a macro for the generator and pass it the transaction data type. Macros are harder to 
debug than parameterized classes, unless your compiler outputs the expanded code. 
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 If you need to defi ne several related classes that all share the same transaction 
type, you could use parameterized classes or a single large macro. In the end, how 
you defi ne your classes is not as important as what goes into them.   

    8.9   Static and Singleton Classes 

 This section and the next show advanced OOP concepts that are used extensively in 
the UVM and VMM. You could try to understand UVM’s factory mechanism by 
reading the source code with its many methods, but this section should save you 
several days of experimentation with a greatly simplifi ed example. This chapter 
shows several alternatives so you can understand why the UVM did not pick a more 
simple alternative. 

 One of the goals of OOP is to eliminate global variables and methods as the 
resulting code is hard to maintain and reuse. Their names exist in the global name 
space, potentially causing name space collisions. Does  packet_count  refer to 
TCP/IP packets or some other protocol? Instead, put a variable called  count  in the 
 Packet  class to avoid any ambiguity. 

    8.9.1   Dynamic Class to Print Messages 

 Sometimes, however, you really need globals. For example, all verifi cation method-
ologies provide a print service so you can fi lter messages and count errors. If you try 
to build such a class with what you have learned so far, it might look something like 
Sample  8.37 .  

  Sample 8.37    Dynamic print class with static variables        
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 This is a greatly simplifi ed version of the VMM log class. The VMM code allows 
you to fi lter messages by the class and instance names, and many other features. 

 Sample  8.38  has a class that prints an error message with the  Print  class from 
Sample  8.37 .  

  Sample 8.38    Transactor class with dynamic print object       

 The biggest limitation for the  Print  class is that every component in your test-
bench needs to instantiate it. The simple  Print  class above has a small footprint, 
but a realistic one, like VMM’s, could have many strings and arrays, consuming a 
signifi cant amount of memory. This overhead, when added to a transactor class 
might not be signifi cant, but could overwhelm a small transaction class, such as an 
ATM cell, which only has 53 bytes.  

    8.9.2   Singleton Class to Print Messages 

 An alternative to constructing all these print objects is to not construct any. As you 
saw in section 5.11.4, you could declare the methods in the  Print  class to be static. 
These methods can only reference static variables, as shown in Sample  8.39 .  

  Sample 8.39    Static print class       
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 Now that the class is static, you can no longer have per-instance information such as 
the parent class’s name and instance. Any fi ltering has to be based on other criteria.  

  Sample 8.40    Transactor class with static print class       

 Sample  8.40  shows the call to the  error()  method using the  Print  class name. 
 This style of class is known as a singleton class, as there is only one copy, the one 

allocated at elaboration time with the static variables. 
 As your static classes, such as the one in Sample  8.39 , grow larger, you have to 

label everything with the  static  keyword, a small annoyance. Next, the class is 
allocated before simulation time, even if you never use it. Additionally, there is no 
handle to this class, so you can not pass it around your testbench. The alternative to 
a static class is a singleton class (or singleton pattern) with a single instance, which 
is a non-static class that is only constructed once. They are more diffi cult to create 
initially, but they can simplify your program’s architecture. Many of the UVM’s 
classes are singletons. 

 The singleton pattern is implemented by creating a class with a method that cre-
ates a new instance of the class if one does not exist. If an instance already exists, it 
simply returns a handle to that object. To make sure that the object cannot be instan-
tiated any other way, you must make the constructor  protected . Don’t make it 
 local , because an extended class might need to access the constructor.  

    8.9.3   Confi guration Database with Static Parameterized Class 

 Another good use for static classes in verifi cation is a database of confi guration 
parameters. At the start of simulation you randomize the confi guration of your sys-
tem. In a small system, you can simply store these in a single class or hierarchy of 
classes and pass them around the testbench as needed. At some point though, this 
becomes too complicated as handles are passed up and down the hierarchy. Instead, 
create a global database of parameters, indexed by a name, that you can access any-
where in the testbench. UVM 1.0 introduced this concept, which is the basis for the 
following set of examples. This code has a single string index into the database, 
while a real database such as UVM’s could have a property name, instance name, and 
other values. You could concatenate these to create a more complex index string. 

 One issue with a database is that you need to store values of different types, such 
as bit vectors, integers, real numbers, enumerated values, string, class handles, virtual 
interfaces, and more in a single database. While you could fi nd a few common types 
such as bit vectors and a common base class, there are some type such as virtual 
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interfaces that are unique, so there is no easy way to store them in a common database. 
Earlier versions of OVM and UVM recommended creating a class wrapper around 
virtual interfaces, but this required extra coding and was a common source of bugs. 

 What if you made a different database for each data type? You could use an asso-
ciative array indexed by the parameter name. A real database might also have an 
instance name, but for this simple example, you can just concatenate all the names 
together to make a single index. Sample  8.41  shows the code for an integer database 
made from global methods.  

  Sample 8.41    Confi guration database with global methods       

 You can generalize this into a parameterized class with the concepts from Section 
 8.8 , as shown in Sample  8.42 .  

  Sample 8.42    Confi guration database with parameterized class       

 You can now construct objects for an integer database, a real database, etc. The 
fi nal problem is that each instance of the database is local to the scope where this 
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class is instantiated. The solution shown in Sample  8.43  is to go global and make 
this a static class, that is a class with static properties and methods.  

  Sample 8.43    Confi guration database with static parameterized class       

 You can test the above code with Sample  8.44  and see how the parameterized 
class creates a new database for each type.  

  Sample 8.44    Testbench for confi guration database       
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 With singletons implemented as single instances instead of static class members, 
you can initialize the singleton lazily, creating it only when it is needed. 

 The UVM database allows wildcards and other regular expressions, which 
requires a more complex lookup scheme than associative arrays.   

    8.10   Creating a Test Registry 

 In a real design, compiling your test and DUT takes a signifi cant amount of time. 
If you want to run 100 tests, each in a separate program block, you need to recom-
pile before each test, 100 times in all. This is a waste of CPU time as most of the 
code has not changed. If you make 100 program blocks, each with a single test, 
and connect all these programs in the model, you then need a way to disable all 
but one program block. The best solution is to include all tests and testbenches 
inside one program block, compile this once with the DUT. This section shows 
how you can select one test per run with a Verilog command line switch. 

    8.10.1   Test registry with Static Methods 

 Earlier examples in this book have a program that contains one test. For this new 
approach, each test is a separate class, all which are in a single program block, either 
imported from a package or included at compile time. The test classes are con-
structed, registered in a test registry, and then, at run time, you can choose the 
desired test at runtime. This follows an early VMM style. 

 First you need a base test class that your tests can extend from. Sample  8.45  
shows an abstract class that contains a handle for the Environment class and a pure 
virtual task that is a placeholder for the method that contains your test code.  

  Sample 8.45    Base test class       

 The core of the test registry class is an associative array of handles to all the tests, 
indexed by the test name. The  TestRegistry  class, shown in Sample  8.46 , is a 
static class with only static variables and methods, and is never constructed. The 
 get_test()  method reads the Verilog command line argument to determine which 
test to execute.  
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 Sample  8.47  show how you can extend  TestBase  to create a simple test that 
runs all the environment phases. The last line of the example is a declaration that 
calls the constructor, which also registers the test. All the test objects are constructed, 
but only one is run.  

  Sample 8.46    Test registry class       

  Sample 8.47    Simple test in a class       

 The program in Sample  8.48  now just asks the test registry for a test object and 
runs it. The test classes can be declared in a package and imported, or declared 
inside or outside the program block.  
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 Sample  8.49  shows how you can create a test class that injects new behavior by 
changing the generator’s blueprint to create bad transactions.  

  Sample 8.48    Program block for test classes       

  Sample 8.49    Test class that puts a bad transaction in the generator       

 This short example allows you to compile many tests into a single simulation 
executable and choose your test at runtime, saving many recompiles. This pattern is 
fi ne when you are starting out with a handful of tests, but the next section shows 
more powerful approach.  

    8.10.2   Test Registry with a Proxy Class 

 The previous section’s test registry works well for smaller test environments, but 
has several limitations for real projects. First, you need to remember to con-
struct every test class, otherwise the registry can not locate it. Second, every test 
gets constructed at the start of simulation, even though only one is actually run. 
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When verifying a large design, there could be hundreds of tests, so constructing all 
of them wastes valuable simulation time and memory. 

 Consider this analogy. When you are looking to buy a car, you can go to a dealer 
to see the choices. If there are only a few variants, white or black, with or without 
sunroof, the dealer can stock one of each model with little overhead. This is what you 
saw in the previous section, where the test registry had an object of each test type. 

 What if there are many different models, each in one of a dozen colors, with vari-
ants such as radios, sunroofs, air conditioning, sports packages, and engines? The 
dealer could never have one of each type on his lot as there are hundreds of combi-
nations. Instead he would show you a catalog with all the choices. You pick the 
options that you want, and the factory builds one to your specifi cation. Likewise, the 
test registry can have a lot of small classes, each which knows how to build a com-
plete test. The small class has low overhead, so even a thousand objects would not 
consume much memory. Now when you want to run test N, imagine fl ipping through 
the catalog (test registry) until you fi nd a picture of your test, and you then tell the 
factory to build an object of that type. 

 The test registry needs a table (analogous to the above catalog) that goes from 
test names to objects. In section  8.10.1 , this table is an associative array of  TestBase  
handles, indexed by a string, shown in Sample  8.46 . What if instead, you had a 
parameterized class whose only job is to construct a test? The UVM uses a design 
pattern called a proxy class whose only role is to build the actual desired class. The 
proxy class is lightweight in that it only contains a few properties and methods, and 
thus consumes little memory or CPU time. It acts like the picture in the car dealer’s 
catalog, holding a representation of what you can build. 

 The next few code samples show how the UVM class factory works. Because the 
code in this book is a simplifi ed version of the real UVM classes, the name has been 
changed to SVM, SystemVerilog Methodology, so that you won’t confuse it with 
the real thing. Hopefully you will fi nd this explanation of a simple factory easier to 
understand than trying to read the UVM source code. 

 First is Sample  8.50  which has the common base class from which everything 
else is built. It is a abstract class because you should never construct an object of this 
type, only classes extended from this one.  

  Sample 8.50    Common SVM base class        
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 Now defi ne  svm_object_wrapper , the abstract common base class for the 
proxy class as shown in Sample  8.52 . It has pure virtual methods to return the name 
of the class type, and create an object of this type.  

  Sample 8.51    Component class       

  Sample 8.52    Common base class for proxy class       

 Now for the crucial class,  svm_component_registry  shown in Sample  8.53 . 
This is a lightweight class that can be constructed with little overhead. It is param-
eterized with the test class type and name. Once you have an instance of this class, 
your testbench can construct the actual test class at any time, using the  create_
object  method. This is a singleton class as you only need one copy to create an 
instance of the test class. At the start of simulation, the static handle  me  is initialized 
by calling the  get()  method that constructs the fi rst instance if needed.  

 Next is the component class in Sample  8.51 . In the UVM, a component is a time-
consuming object that forms the testbench hierarchy, similar to a VMM transactor. 
In this simplifi ed example, the hierarchical parent handle has been removed.  
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 The last major class is  svm_factory , which, at its core, is just a singleton class 
that holds the array,  m_type_names , to go from test case name to the proxy class 
that creates an instance of the test class. Also in this class in Sample  8.54  is the 
 get_test  method that reads the test name from the simulation run command line 
and constructs an instance of the test class. Unlike Sample  8.46 , you even get a little 
self checking.  

  Sample 8.53    Parameterized proxy class        
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 Lastly is a base test class, extended from  svm_component  shown in Sample  8.55 . 
It uses the macro  svm_component_utils  to defi ne a new data type,  type_id , that 
points to the proxy class. The macro stringifi es the token  T  that holds the class name, 
and turns it into a string containing the value of  T  with the syntax: `" T ̀".   

  Sample 8.54    Factory class        
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  Sample 8.55    Base test class and registration macro       

 Here are the steps that happen when you start a simulation with the command line 
switch  +SVM_TESTNAME=TestBase .

   With the macro  • svm_component_utils , the class  TestBase  defi nes the type 
 type_id  based on the class  svm_component_registry , with the parameters 
 TestBase  and " TestBase ". Because this is a new type, the simulator initial-
izes the static variable  svm_component_registry::me  by calling the get 
method that instantiates the class. This instance is registered in the factory. What 
does all this mean? There is now an object that can construct the  TestBase  
class, and you can get to it through the factory.  
  Simulation now starts and the factory’s  • get_test  method reads the test name 
from the command line. This string is used an index into the registry to get a 
handle to the proxy object. This object’s  create_object  method constructs an 
instance of the  TestBase  object.  

  Sample 8.56    Test program       
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  The program calls the test object’s  • run_test  method, which calls the steps for 
the specifi c class. Now the TestBase class in Sample  8.55  does not do anything 
interesting, but add a call to  svm_component_utils  macro to the test classes 
in Sample  8.47  and Sample  8.49  and you can run tests.    

 Now you can see the basic UVM fl ow to start tests. The registry contains a list of 
proxy classes that can construct test objects.  

    8.10.3   UVM Factory Build 

 The UVM factory can also construct objects for any class in the testbench with the 
create method in Sample  8.53 . Sample  8.57  show how to build a driver.  

  Sample 8.57    UVM factory build example       

 The above code calls the static method create to construct an object of type 
driver. In UVM, the second argument points to the parent of the component being 
created. 

 The UVM factory allows you to override the component so that when you build 
a component, you get an extended one instead. 

 You may have noticed a change in terminology. In classic OOP, you “construct” 
a class by calling the new method, based on the handle type and assigning the 
address to the handle on the left side of the assignment statement. With the UVM 
factory pattern, you “build” an object by calling the static  create  method. This 
could make an object of the same type as the handle, or an extended type.   

    8.11   Conclusion 

 The software concept of inheritance, where new functionality is added to an exist-
ing class, parallels the hardware practice of extending the design’s features for each 
generation, while still maintaining backwards compatibility. 

 For example, you can upgrade your PC by adding a larger capacity disk. As long 
as it uses the same interface as the old one, you do not have to replace any other part 
of the system, yet the overall functionality is improved. 

 Likewise, you can create a new test by “upgrading” the existing driver class to 
inject errors. If you use an existing callback in the driver, you do not have to change 
any of the testbench infrastructure. 

 You need to plan ahead if you want use these OOP techniques. By using virtual 
methods and providing suffi cient callback points, your test can modify the behavior 
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of the testbench without changing its code. The result is a robust testbench that does 
not need to anticipate every type of disturbance (error-injection, delays, synchroni-
zation) that you may want as long as you leave a hook where the test can inject its 
own behavior. 

 The testbench is more complex than what you have previously constructed, but 
there is a payback in that the tests become smaller and easier to write. The testbench 
does the hard work of sending stimulus and checking responses, so the test only has 
to make small tweaks to cause specialized behavior. An extra few lines of testbench 
code might replace code that would have to be repeated in every single test. 

 Lastly, OOP techniques improve your productivity by allowing you to reuse 
classes. For example, a parameterized class for a stack that operates on any other 
class, rather than a single type, saves you from having to create duplicate code.  

    8.12   Exercises 

     1.    Given the following class, create a method in an extended class  ExtBinary  that 
multiplies  val1  and  val2  and returns an integer.        

    2.    Starting with the solution to Exercise 1, use the  ExtBinary  class to initialize 
 val1=15, val2=8 , and print out the multiplied value.  

    3.    Starting with the solution to Exercise 1, create an extended class  Exercise3  
that constrains  val1  and  val2  to be less than 10.  

    4.    Starting with the solution to Exercise 3, use the  Exercise3  class to randomize 
 val1  and  val2 , and print out the multiplied value.  
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     5.    Given the class in Exercise 1, and the following declarations, and an extended 
class  ExtBinary , what will handles  mc, mc2 , and  b  point to after executing 
each code snippet a-d, or will a compile error occur?      

   a.     mc = new(15,8);  
   b = mc;   
   b.     b = new(15, 8);  
   mc = b;   
   c.     mc = new(15, 8);  
   b = mc;  
   mc2 = b;   
   d.     mc = new(15, 8);  
   b = mc;  
   if($cast(mc2, b))  
   $display(“Success”);  
   else  
   $display(“Error: cannot assign”);       

     6.    Given the classes  Binary  and  Ext Binary  in Exercise 1 and the following 
copy function for class  Binary , create the function  Ext Binary::copy .        

     7.    From the solution to Exercise 6, use the copy function to copy the object pointed 
to by the extended class handle mc to the extended class handle mc2.  

     8.    Using code Sample  8.26  to Sample  8.28  in Section  8.7.1  and  8.7.2  of the text, 
add the ability to randomly delay a transaction between 0 and 100ns.  

     9.    Create a class that can compare any data type using the case equality operators, 
 ===  and  !== . It contains a compare function that returns a 1 if the two values 
match, 0 otherwise. By default it compares two 4-bit data types.  

    10.    Using the solution from Exercise 9, use the comparator class to compare two 
4-bit values,  expected_4bit  and  actual_4bit . Next, compare two values 
of type  color_t, expected_color  and  actual_color . Increment an error 
counter if an error occurs.         
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 As designs become more complex, the only effective way to verify them effectively 
is with constrained-random testing (CRT). This approach elevates you above the 
tedium of writing individual directed tests, one for each feature in the design. 
However, if your testbench is taking a random walk through the space of all design 
states, how do you know if you have reached your destination? Even directed tests 
should be double checked with functional coverage. Over the life of a project, small 
changes in the DUT’s timing or functionality can subtly alter the results from a 
directed test, so it no longer verifi es the same features. Whether you are using ran-
dom or directed stimulus, you can gauge progress using coverage. 

 Functional coverage is a measure of which design features have been exercised by the 
tests. Start with the design specifi cation and create a verifi cation plan with a detailed list 
of what to test and how. For example, if your design connects to a bus, your tests need to 
exercise all the possible interactions between the design and bus, including relevant 
design states, delays, and error modes. The verifi cation plan is a map to show you where 
to go. For more information on creating a verifi cation plan, see Bergeron (2006). 

 In many complex systems, you may never achieve 100% coverage as schedules 
don’t allow you to reach every possible corner case. After all, you didn’t have time 
to write directed tests to get suffi cient coverage, and even CRT is limited by the time 
it takes you to create and debug test cases, and analyze the results. 

 Figure  9.1  shows the feedback loop to analyze the coverage results and decide on 
which actions to take in order to converge on 100% coverage. Your fi rst choice is to 
run existing tests with more seeds; the second is to build new constraints. Only 
resort to creating directed tests if absolutely necessary.  

 Back when you exclusively wrote directed tests, the verifi cation planning was 
limited. If the design specifi cation listed 100 features, all you had to do was write 
100 tests. Coverage was implicit in the tests — the “register move” test moved all 
combinations of registers back and forth. Measuring progress was easy: if you had 
completed 50 tests, you were halfway done. This chapter uses “explicit” and 
“implicit” to describe how coverage is specifi ed. Explicit coverage is described 
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directly in the test environment using SystemVerilog features. Implicit coverage is 
implied by a test — when the “register move” directed test passes, you have hopefully 
covered all register transactions. 

 With CRT, you are freed from hand crafting every line of input stimulus, but now 
you need to write code that tracks the effectiveness of the test with respect to the veri-
fi cation plan. You are still more productive, as you are working at a higher level of 
abstraction. You have moved from tweaking individual bits to describing the interest-
ing design states. Reaching for 100% functional coverage forces you to think more 
about what you want to observe and how you can direct the design into those states. 

   9.1 Gathering Coverage Data 

 You can run the same random testbench over and over, simply by changing the 
random seed to generate new stimulus. Each individual simulation generates a data-
base of functional coverage information, the trail of footprints from the random 
walk. You can then merge all this information together to measure your overall 
progress using functional coverage as shown in Figure  9.2  . 

 You then analyze the coverage data to decide how to modify your tests. If the 
coverage levels are steadily growing, you may just need to run existing tests with 
new random seeds, or even just run longer tests. If the coverage growth has started 
to slow, you can add additional constraints to generate more “interesting” stimuli. 
When you reach a plateau, some parts of the design are not being exercised, so you 
need to create more tests. Lastly, when your functional coverage values near 100%, 
check the bug rate. If bugs are still being found, you may not be measuring true 
coverage for some areas of your design. Don’t be in too big of a rush to reach 100% 
coverage, which just shows that you looked for bugs in all the usual places. While 
you are trying to verify your design, take many random walks through the stimulus 
space; this can create many unanticipated combinations, as shown in van der Schoot 
(2007). 

  Fig. 9.1    Coverage convergence       
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 Each simulation vendor has its own format for storing coverage data and as well 
as its own analysis tools. You need to perform the following actions with those tools.

    • Run a test with multiple seeds.  For a given set of constraints and coverage 
groups, compile the testbench and design into a single executable. Now you need 
to run this constraint set over and over with different random seeds. You can use 
the Unix system clock as a seed, but be careful, as your batch system may start 
multiple jobs simultaneously. These jobs may run on different servers or may 
start on a single server with multiple processors. So combine all these values to 
make a truly unique seeds. The seed must be saved with the simulation and cov-
erage results for repeatability.  
   • Check for pass/fail.  Functional coverage information is only valid for a success-
ful simulation. When a simulation fails because there is a design bug, the cover-
age information must be discarded. The coverage data measures how many items 
in the verifi cation plan are complete, and this plan is based on the design specifi -
cation. If the design does not match the specifi cation, the coverage values are 
useless. Some verifi cation teams periodically measure all functional coverage 
from scratch so that it refl ects the current state of the design.  
   • Analyze coverage across multiple runs.  You need to measure how successful 
each constraint set is, over time. If you are not yet getting 100% coverage for the 
areas that are targeted by the constraints, but the amount is still growing, run more 
seeds. If the coverage level has plateaued, with no recent progress, it is time to 
modify the constraints. Only if you think that reaching the last few test cases for 
one particular section may take too long for constrained-random simulation should 
you consider writing a directed test. Even then, continue to use random stimulus 
for the other sections of the design, in case this “background noise” fi nds a bug.      

  Fig. 9.2    Coverage fl ow       
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    9.2   Coverage Types 

 Coverage is a generic term for measuring progress to complete design verifi cation. 
Your simulations slowly paint the canvas of the design, as you try to cover all of the 
legal combinations. The coverage tools gather information during a simulation and 
then post-process it to produce a coverage report. You can use this report to look for 
coverage holes and then modify existing tests or create new ones to fi ll the holes. 
This iterative process continues until you are satisfi ed with the coverage level. 

    9.2.1   Code Coverage 

 The easiest way to measure verifi cation progress is with code coverage. Here you 
are measuring how many lines of code have been executed (line coverage), which 
paths through the code and expressions have been executed (path coverage), 
which single-bit variables have had the values 0 or 1 (toggle coverage), and which 
states and transitions in a state machine have been visited (FSM coverage). You 
don’t have to write any extra HDL code. The tool instruments your design automati-
cally by analyzing the source code and adding hidden code to gather statistics. You 
then run all your tests, and the code coverage tool creates a database. 

 Most simulators include a code coverage tool. A post-processing tool converts 
the database into a readable form. The end result is a measure of how much your 
tests exercise the design code. Note that you are primarily concerned with analyzing 
the design code, not the testbench. Untested design code could conceal a hardware 
bug, or may be just redundant code. 

 Code coverage measures how thoroughly your tests exercised the “implementation” 
of the design specifi cation, but not the verifi cation plan. Just because your tests have 
reached 100% code coverage, your job is not done. What if you made a mistake that 
your test didn’t catch? Worse yet, what if your implementation is missing a feature? 
The module in Sample  9.1  is for a D-fl ip fl op. Can you see the mistake?  

  Sample 9.1    Incomplete D-fl ip fl op model missing a path       

 The reset logic was accidently left out. A code coverage tool would report that 
every line had been exercised, yet the model was not implemented correctly. Go 
back to the functional specifi cation that describes reset behavior and make sure your 
verifi cation plan includes a requirement to verify this. Then gather functional cover-
age information on the design during reset.  
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    9.2.2   Functional Coverage 

 The goal of verifi cation is to ensure that a design behaves correctly in its real envi-
ronment, be that an MP3 player, network router, or cell phone. The design specifi ca-
tion details how the device should operate, whereas the verifi cation plan lists how 
that functionality is to be stimulated, verifi ed, and measured. When you gather mea-
surements on what functions were covered, you are performing “design” coverage. 
For example, the verifi cation plan for a D-fl ip fl op would mention not only its data 
storage but also how it resets to a known state. Until your test checks both these 
design features, you will not have 100% functional coverage. 

 Functional coverage is tied to the design intent and is sometimes called “specifi -
cation coverage,” while code coverage measures how well you have tested the RTL 
code and is known as, “implementation coverage.” These are two very different 
metrics. Consider what happens if a block of code is missing from the design. Code 
coverage cannot catch this mistake and could report that you have executed 100% 
of the lines, but functional coverage will show that the functionality does not exist.  

    9.2.3   Bug Rate 

 An indirect way to measure coverage is to look at the rate at which fresh bugs are found, 
show in the graph in Fig.  9.3 . You should keep track of how many bugs you found each 
week, over the life of a project. At the start, you may fi nd many bugs through inspection 
as you create the testbench. As you read the design spec, you may fi nd inconsistencies, 
which hopefully are fi xed before the RTL is written. Once the testbench is up and run-
ning, a torrent of bugs is found as you check each module in the system. The bug rate 
drops, hopefully to zero, as the design nears tape-out. However, you are not yet done. 
Every time the rate sags, it is time to fi nd different ways to create corner cases.  
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  Fig. 9.3    Bug rate during a project       

 The bug rate can vary per week based on many factors such as project phases, 
recent design changes, blocks being integrated, personnel changes, and even vaca-
tion schedules. Unexpected changes in the rate could signal a potential problem. 
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As shown in Fig.  9.3 , it is not uncommon to keep fi nding bugs even after tape-out, 
and even after the design ships to customers.  

    9.2.4   Assertion Coverage 

 Assertions are pieces of declarative code that check the relationships between design 
signals, either once or over a period of time. These can be simulated along with the 
design and testbench, or proven by formal tools. Sometimes you can write the 
equivalent check using SystemVerilog procedural code, but many assertions are 
more easily expressed using SystemVerilog Assertions (SVA). 

 Assertions can have local variables and perform simple data checking. If you need 
to check a more complex protocol, such as determining whether a packet success-
fully went through a router, procedural code is often better suited for the job. There 
is a large overlap between sequences that are coded procedurally or using SVA. See 
Vijayaraghavan and Ramanadhan (2005), Cohen et al. (2005), and   Chapters 3     and   7     
in the VMM book, Bergeron et al. (2006) for more information on SVA. 

 The most familiar assertions look for errors such as two signals that should be 
mutually exclusive or a request that was never followed by a grant. These error 
checks should stop the simulation as soon as they detect a problem. Assertions can 
also check arbitration algorithms, FIFOs, and other hardware. These are coded with 
the  assert property  statement. 

 Some assertions might look for interesting signal values or design states, such as a 
successful bus transaction. These are coded with the  cover property  statement. 
You can measure how often these assertions are triggered during a test by using asser-
tion coverage. A cover property observes sequences of signals, whereas a cover group 
(described below) samples data values and transactions during the simulation. These 
two constructs overlap in that a cover group can trigger when a sequence completes. 
Additionally, a sequence can collect information that can be used by a cover group.   

    9.3   Functional Coverage Strategies 

 Before you write the fi rst line of test code, you need to anticipate what are the key 
design features, corner cases, and possible failure modes. This is how you write 
your verifi cation plan. Don’t think in terms of data values only; instead, think about 
what information is encoded in the design. The plan should spell out the signifi cant 
design states. 

    9.3.1   Gather Information, not Data 

 A classic example is a FIFO. How can you be sure you have thoroughly tested a 
1K FIFO memory? You could measure the values in the read and write indices, 
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but there are over a million possible combinations. Even if you were able to simulate 
that many cycles, you would not want to read the coverage report. 

 At a more abstract level, a FIFO can hold from 0 to N–1 possible values. So what 
if you just compare the read and write indices to measure how full or empty the 
FIFO is? You would still have 1K coverage values. If your testbench pushed 100 
entries into the FIFO, then pushed in 100 more, do you really need to know if the 
FIFO ever had 150 values? Not as long as you can successfully read out all values. 

 The corner cases for a FIFO are Full and Empty. If you can make the FIFO go from 
Empty (the state after reset) through Full and back down to Empty, you have covered 
all the levels in between. Other interesting states involve the indices as they pass 
between all 1’s and all 0’s. A coverage report for these cases is easy to understand. 

 You may have noticed that the interesting states are independent of the FIFO 
size. Once again, look at the information, not the data values. 

 Design signals with a large range (more than a few dozen possible values) should 
be broken down into smaller ranges, plus corner cases. For example, your DUT may 
have a 32-bit address bus, but you certainly don’t need to collect 4 billion samples. 
Check for natural divisions such as memory and IO space. For a counter, pick a few 
interesting values, and always try to rollover counter values from all 1’s back to 0.  

    9.3.2   Only Measure What you are Going to Use 

 Gathering functional coverage data can be expensive, so only measure what you will 
analyze and use to improve your tests. Your simulations may run slower as the simu-
lator monitors signals for functional coverage, but this approach has lower overhead 
than gathering waveform traces and measuring code coverage. Once a simulation 
completes, the database is saved to disk. With multiple testcases and multiple seeds, 
you can fi ll disk drives with functional coverage data and reports. But if you never 
look at the fi nal coverage reports, don’t perform the initial measurements. 

 There are several ways to control cover data: at compilation, instantiation, or 
triggering. You could use switches provided by the simulation vendor, conditional 
compilation, or suppression of the gathering of coverage data. The last of these is 
less desirable because the post-processing report is fi lled with sections with 0% 
coverage, making it harder to fi nd the few enabled ones.  

    9.3.3   Measuring Completeness 

 Like your kids in the backseat on a family vacation, your manager constantly asks 
you, “Are we there yet?” How can you tell if you have fully tested a design? You 
need to look at all coverage measurements and consider the bug rate to see if you 
have reached your destination. 

 At the start of a project, both code and functional coverage are low. As you 
develop tests, run them over and over with different random seeds until you no lon-
ger see increasing values of functional coverage. Create additional constraints and 
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 What if the functional coverage is high but the code coverage is low as shown in 
the upper left of Figure  9.4 ? Your tests are not exercising the full design, perhaps 
from an inadequate verifi cation plan. It may be time to go back to the hardware 
specifi cations and update your verifi cation plan. Then you need to add more func-
tional coverage points to locate untested functionality. 

 A more diffi cult situation is high code coverage but low functional coverage. 
Even though your testbench is giving the design a good workout, you are unable to 
put it in all the interesting states. First, see if the design implements all the specifi ed 
functionality. If it is there, but your tests can’t reach it, you might need a formal veri-
fi cation tool that can extract the design’s states and create appropriate stimulus. 

 The goal is both high code and functional coverage. However, don’t plan your 
vacation yet. What is the trend of the bug rate? Are signifi cant bugs still popping up? 

 Worse yet, are they being found deliberately, or did your testbench happen to 
stumble across a particular combination of states that no one had anticipated? On 
the other hand, a low bug rate may mean that your existing strategies have run out 
of steam, and you should look into different approaches. Try different approaches 
such as new combinations of design blocks and error generators.   

    9.4   Simple Functional Coverage Example 

 To measure functional coverage, you begin with the verifi cation plan and write an 
executable version of it for simulation. In your System Verilog testbench, sample 
the values of variables and expressions. These sample locations are known as cover 
points. Multiple cover points that are sampled at the same time (such as when a 
transaction completes) are placed together in a cover group. 

 Sample  9.2  has a transaction that comes in eight fl avors. The testbench generates 
the  dst  variable randomly, and the verifi cation plan requires that every value be tried.  
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  Fig. 9.4    Coverage comparison       

tests to explore new areas. Save test/seed combinations that give high coverage, so 
that you can use them in regression testing.  
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 Sample  9.2  creates a random transaction and drives it out to an interface. The 
testbench samples the value of the  dst  fi eld using the  CovDst2  cover group. Eight 
possible values, 32 random transactions — did your testbench generate them all? 
Samples  9.3  and  9.4  have part of a coverage report from VCS. Because of random-
ization, every simulator will give different results.  

 As you can see, the testbench generated  dst  values of 1, 2, 3, 4, 5, 6, and 7, but 
never generated a 0. The  at least  column specifi es how many hits are needed 
before a bin is considered covered. See Section  9.10.3  for the  at_least  option. 

     To improve your functional coverage, the easiest strategies are to run 
more simulation cycles, or to try new random seeds. For Sample 
 9.2 , the very next random transaction (#33) has a dst value of 0, giv-
ing 100% coverage. Or, if you started simulation with a different 
seed, you may reach 100% in fewer transactions, for this trivial 
case. On a real design, you may see a plateau in coverage, with most 

coverage points getting hit more and more, but a few stubborn points that are never 
hit, no matter how long you run, regardless of seed values. In this case, you probably 
have to try a new strategy, as the testbench is not creating the proper stimulus. The 
most important part of any coverage report are the points with 0 hits.  

  Sample 9.2    Functional coverage of a simple object        
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  Sample 9.4    Coverage report for a simple object, 100% coverage       

  Sample 9.3    Coverage report for a simple object        
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 This book gives a rough explanation of how coverage is calculated. The LRM 
has a very detailed explanation of coverage computation across four pages, with 
more details across an entire chapter. Consult it for the most accurate details.  

    9.5   Anatomy of a Cover Group 

 A cover group is similar to a class — you defi ne it once and then instantiate it one 
or more times. It contains cover points, options, formal arguments, and an optional 
trigger. A cover group encompasses one or more data points, all of which are sam-
pled at the same time. 

 You should create very clear cover group names that explicitly indicate what you 
are measuring and, if possible, reference to the verifi cation plan. The name  Parity_
Errors_In_Hexaword_Cache_Fills  may seem verbose, but when you are try-
ing to read a coverage report that has dozens of cover groups, you will appreciate 
the extra detail. You can also use the comment option for additional descriptive 
information, as shown in Section  9.9.2 . 

 A cover group can be defi ned in a class or at the program or module level. It can 
sample any visible variable such as program/module variables, signals from an 
interface, or any signal in the design (using a hierarchical reference). A cover group 
inside a class can sample variables in that class, as well as data values from embed-
ded objects. 

     Don’t defi ne the cover group in a data class, such as a transaction, 
as doing so can cause additional overhead when gathering cover-
age data. Imagine you are trying to track how many beers were 
consumed by patrons in a pub. Would you try to follow every bottle 
as it fl owed from the loading dock, over the bar, and into each per-

son? No, instead you could just have each patron check off the type and number of 
beers consumed, as shown in van der Schoot (2006). 

 In SystemVerilog, you should defi ne cover groups at the appropriate level of abstrac-
tion. This level can be at the boundary between your testbench and the design, in the 
transactors that read and write data, in the environment confi guration class, or wher-
ever is needed. The sampling of any transaction must wait until it is actually received 
by the DUT. If you inject an error in the middle of a transaction, causing it to be 
aborted in transmission, you need to change how you treat it for functional cover-
age. You need to use a different cover point that has been created just for error 
handling. 

 A class can contain multiple cover groups. This approach allows you to have 
separate groups that can be enabled and disabled as needed. Additionally, each 
group may have a separate trigger, allowing you to gather data from many 
sources. 
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     A cover group must be instantiated for it to collect data. If you 
forget, no error message about null handles is printed at run 
time, but the coverage report will not contain any mention of the 
cover group. This rule applies for cover groups defi ned either 
inside or outside of classes. 

    9.5.1   Defi ning a Cover Group in a Class 

 A cover group can be defi ned in a program, module, or class. In all cases, you must 
explicitly instantiate it to start sampling. If the cover group is defi ned in a class, it is 
known as an embedded covergroup. In this case, you do not make a separate name 
when you construct it; just use the original cover group name. You must construct 
an embedded covergroup in the class’s constructor, as opposed to a non-embedded 
cover group that can be constructed at any time. 

 Sample  9.5  is very similar to the fi rst example of this chapter except that it 
embeds a cover group in a transactor class, and thus does not need a separate instance 
name.    

  Sample 9.5    Functional coverage inside a class        
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    9.6   Triggering a Cover Group 

 The two major parts of functional coverage are the sampled data values and the time 
when they are sampled. When new values are ready (such as when a transaction has 
completed), your testbench triggers the cover group. This can be done directly 
with the  sample  function, as shown in Sample  9.5 , or by using a coverage event 
in the  covergroup  defi nition. The coverage event can use a  @  to block on signals 
or events. 

 Use  sample  if you want to explicitly trigger coverage from procedural code, if 
there is no existing signal or event that tells when to sample, or if there are multiple 
instances of a cover group that trigger separately. 

 Use the coverage event in the  covergroup  declaration if you want to tap into 
existing events or signals to trigger coverage. 

    9.6.1   Sampling Using a Callback 

 One of the better ways to integrate functional coverage into your testbench is to use 
callbacks, as originally shown in Section 8.7. This technique allows you to build a 
fl exible testbench without restricting when coverage is collected. You can decide 
for every point in the verifi cation plan where and when values are sampled. And if 
you need an extra “hook” in the environment for a callback, you can always add 
one in an unobtrusive manner, as a callback only “fi res” during simulations when 
the test registers a callback object. You can create many separate callbacks for each 
cover group, with little overhead. As explained in Section 8.7.4, callbacks are 
superior to using a mailbox to connect the testbench to the coverage objects. You 
might need multiple mailboxes to collect transactions from different points in your 
testbench. A mailbox requires a transactor to receive transactions, and multiple 
mailboxes cause you to juggle multiple threads. Instead of an active transactor, use 
a passive callback. 

 Sample 8.26 – 8.28 shows a driver class that has two callback points, before and 
after the transaction is transmitted. Sample 8.26  shows the base callback class, and 
Sample 8.28 has a test with an extended callback class that sends data to a score-
board. Make your own extension,  Driver_cbs_coverage , of the base callback 
class,  Driver_cbs , to call the sample task for your cover group in  post_tx . Push 
an instance of the coverage callback class into the driver’s callback queue, and your 
coverage code triggers the cover group at the right time. Samples  9.6  and  9.7  defi ne 
and use the callback  Driver_cbs_coverage .   
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  Sample 9.6    Test using functional coverage callback       

  Sample 9.7    Callback for functional coverage       

 The UVM recommends gathering coverage by monitoring the DUT and sending 
transactions to a coverage component through an analysis port, similar to a mailbox.  

    9.6.2   Cover Group with a User Defi ned Sample Argument List 

 In Sample  9.5 , the cover group samples a variable in transaction object that is 
defi ned inside the class. If your cover group is defi ned outside of a class, you can 
pass variables through the  sample  method by defi ning your own argument list. 
Now you can sample variables from anywhere in the testbench. 

 In Sample  9.8 , the cover group is expanded to also cover the low data bit. The last 
statement of the  run  method passes the destination address and also the confi gura-
tion variable for high speed mode.   

 

 



3379.6 Triggering a Cover Group

    9.6.3   Cover Group with an Event Trigger 

 In Sample  9.9 , the cover group  CovDst9  is sampled when the testbench triggers the 
 trans_ready event .  

  Sample 9.8    Defi ning an argument list to the sample method       

  Sample 9.9    Cover group with a trigger       

 The advantage of using an event over calling the  sample  method directly is that 
you may be able to use an existing event such as one triggered by an assertion, as 
shown in Sample  9.11 .  

    9.6.4   Triggering on a System Verilog Assertion 

 If you already have an SVA that looks for useful events like a complete transaction, 
you can add an event trigger to wake up the cover group as shown in  9.10 .     
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    9.7   Data Sampling 

 How is coverage information gathered? When you specify a variable or expression 
in a cover point, SystemVerilog creates a number of “bins” to record how many 
times each value has been seen. These bins are the basic units of measurement for 
functional coverage. If you sample a one-bit variable, a maximum of two bins are 
created. You can imagine that System Verilog drops a token in one or the other bin 
every time the cover group is triggered. At the end of each simulation, a database is 
created with all bins that have a token in them. You then run an analysis tool that 
reads all databases and generates a report with the coverage for each part of the 
design and for the total coverage. 

    9.7.1   Individual Bins and Total Coverage 

 To calculate the coverage for a point, you fi rst have to determine the total number of 
possible values, also known as the domain. There may be one value per bin or multiple 

  Sample 9.10    Module with SystemVerilog Assertion       

  Sample 9.11    Triggering a cover group with an SVA       
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values. Coverage is the number of sampled values divided by the number of bins in 
the domain. 

 A cover point that is a 3-bit variable has the domain 0:7 and is normally divided 
into eight bins. If, during simulation, values belonging to seven bins are sampled, 
the report will show 7/8 or 87.5% coverage for this point. All these points are com-
bined to show the coverage for the entire group, and then all the groups are com-
bined to give a coverage percentage for all the simulation databases. 

 This is the status for a single simulation. You need to track coverage over time. 
Look for trends so you can see where to run more simulations or add new con-
straints or tests. Now you can better predict when verifi cation of the design will be 
completed.  

    9.7.2   Creating Bins Automatically 

 As you saw in the report in Sample  9.3 , System Verilog automatically creates bins for 
cover points. It looks at the domain of the sampled expression to determine the range 
of possible values. For an expression that is N bits wide, there are 2 N  possible values. 
For the 3-bit variable  dst , there are 8 possible values. The range of an enumerated 
type is shown in Section  9.6.8 . The domain for enumerated data types is the number 
of named values. You can also explicitly defi ne bins as shown in Section  9.6.5 .  

    9.7.3   Limiting the Number of Automatic Bins Created 

 The cover group option  auto_bin_max  specifi es the maximum number of bins to 
automatically create, with a default of 64 bins. If the domain of values in the cover 
point variable or expression is greater than this option, System Verilog divides the 
range into  auto_bin_max  bins. For example, a 16-bit variable has 65,536 possible 
values, so each of the 64 bins covers 1024 values. 

 In reality, you may fi nd this approach impractical, as it is very diffi cult to fi nd the 
needle of missing coverage in a haystack of auto-generated bins. Lower this limit to 
8 or 16, or better yet, explicitly defi ne the bins as shown in Section  9.6.5 . 

 Sample  9.12   takes the chapter’s fi rst example and adds a cover point option that 
sets  auto_bin_max  to two bins. The sampled variable is still  dst , which is three 
bits wide, for a domain of eight possible values. The fi rst bin holds the lower half of 
the range, 0–3, and the other hold the upper values, 4–7.  

  Sample 9.12    Using auto_bin_max set to 2        
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 The coverage report from VCS shows the two bins. This simulation achieved 
100% coverage because the eight  dst  values were mapped to two bins. Since both 
bins have sampled values, your coverage is 100% as shown in Sample  9.13 .  

  Sample 9.13    Report with auto_bin_max set to 2       

 Sample  9.12  used  auto_bin_max  as an option for the cover point only. You can 
also use it as an option for the entire group as shown in Sample  9.14 .   

  Sample 9.14    Using auto_bin_max for all cover points       

    9.7.4   Sampling Expressions 

 You can sample expressions, but always check the coverage report to be sure you 
are getting the values you expect. You may have to adjust the width of the computed 
expression, as shown in Section 2.16. For example, sampling a 3-bit header length 
(0:7) plus a 4-bit payload length (0:15) creates only 2 4  or 16 bins, which may not be 
enough if your transactions can actually be from 0 to 22 bytes long.  

  Sample 9.15    Using an expression in a cover point       
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 Sample  9.15  has a cover group that samples the total packet length. The cover 
point has a label to make it easier to read the coverage report. Also, the expression 
has an additional dummy constant so that the transaction length is computed with 
5-bit precision, for a maximum of 32 auto-generated bins. 

 A long run with random packets showed that the  len16  had 100% coverage, but 
this is across only 16 bins. (The cover point only has 16 bins as the sum of a 3-bit 
and 4-bit value is only 4-bits in Verilog.) The cover point  len32  had 72% coverage 
across 32 bins. (The addition of a 5-bit value to the expression for  bin32  results in 
a 5-bit result.) Neither of these cover points are correct, as the maximum length has 
a domain of 0:22 (0+0:7+15). The auto-generated bins just don’t work, as the maxi-
mum length is not a power of 2. You need a way to precisely defi ne bins.  

    9.7.5   User-Defi ned Bins Find a Bug 

 Automatically generated bins are okay for anonymous data values, such as counter 
values, addresses, or values that are a power of 2. For other values, you should 
explicitly name the bins to improve accuracy and ease coverage report analysis. 
System Verilog automatically creates bin names for enumerated types, but for other 
variables you need to give names to the interesting states. The easiest way to specify 
bins is with the [] syntax, as shown in Sample  9.16 .  

  Sample 9.16    Defi ning bins for transaction length       

 After sampling many random transactions, the group has 95.83% coverage. 
A quick look at the report in Sample  9.17  shows the problem — the length of 23 (17 
hex) was never seen. The longest header is 7, and the longest payload is 15, for a 
total of 22, not 23! If you change to the bins declaration to use 0:22, the coverage 
jumps to 100%. The user-defi ned bins found a bug in the test.   
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    9.7.6   Naming the Cover Point Bins 

 Sample  9.18  samples a 4-bit variable,  kind , that has 16 possible values. The fi rst 
bin is called  zero  and counts the number of times that  kind  is 0 when sampled. The 
next four values, 1–3 and 5, are all grouped into a single bin,  lo . The upper eight 
values, 8–15, are kept in separate bins,  hi_8, hi_9, hi_a, hi_b, hi_c, hi_d, 
hi_e , and  hi_f . Note how  $  in the  hi  bin expression is used as a shorthand nota-
tion for the largest value for the sampled variable. Lastly,  misc  holds all values that 
were not previously chosen: 4, 6, and 7.  

  Sample 9.17    Coverage report for transaction length        
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 Note that the additional information about the  coverpoint  is grouped using 
curly braces: {}. This is because the bin specifi cation is declarative code, not pro-
cedural code that would be grouped with  begin…end . Lastly, the fi nal curly brace 
is NOT followed by a semicolon, just as an  end  never is. 

 Now you can easily see in Sample  9.19  which bins have no hits —  hi_8  in this case.  

  Sample 9.18    Specifying bin names       

  Sample 9.19    Report showing bin names       

 When you defi ne the bins, you are restricting the values used for coverage to 
those that are interesting to you. SystemVerilog no longer automatically creates 
bins, and it ignores values that do not fall into a predefi ned bin. More importantly, 
only the bins you create are used to calculate functional coverage. You get 100% 
coverage only as long as you get a hit in every specifi ed bin. 

     Values that do not fall into any specifi ed bin are ignored. This rule 
is useful if the sampled value, such as transaction length, is not a 
power of 2. If you are specifying bins, you can use the  default  bin 
specifi er to catch values that you may have forgotten. However, the 
LRM says that  default  bins are not used in coverage calculation. 

 In Sample  9.18 , the range for  hi  uses a dollar sign ($) on the right side to specify 
the upper value. This is a very useful shortcut - now you can let the compiler calculate 
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the limits for a range. You can use the dollar sign on the left side of a range to 
specify the lower limit. In Sample  9.20 , the  $  in the range for bin  neg  represents the 
negative number furthest from zero: 32¢h8000_0000, or -2,147,483,648, whereas 
the $ in bin  pos  represents the largest signed positive value, 32’h7FFF_FFFF, or 
2,147,483,647.   

  Sample 9.20    Specifying ranges with $       

    9.7.7   Conditional Coverage 

 You can use the  iff  keyword to add a condition to a cover point. The most common 
reason for doing so is to turn off coverage during reset so that stray triggers are 
ignored. Sample  9.21  gathers only values of  dst  when  rst  is 0, where  rst  is 
active-high.  

  Sample 9.21    Conditional coverage — disable during reset       

 Alternately, you can use the  start  and  stop  functions to control individual 
instances of cover groups as shown in Sample  9.22 .   

  Sample 9.22    Using stop and start functions       
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    9.7.8   Creating Bins for Enumerated Types 

 For enumerated types, SystemVerilog creates a bin for each value as you can see in 
Sample  9.23 .  

  Sample 9.23    Functional coverage for an enumerated type       

 Here is part of the coverage report from VCS, Sample  9.24  showing the bins for 
the enumerated types.  

  Sample 9.24    Coverage report with enumerated types       

 If you want to group multiple values into a single bin, you have to defi ne your 
own bins. Any bins outside the enumerated values are ignored unless you defi ne a 
bin with the  default  specifi er. When you gather coverage on enumerated types, 
 auto_bin_max  does not apply.  

    9.7.9   Transition Coverage 

 You can specify state transitions for a cover point. In this way, you can tell not only 
what interesting values were seen but also the sequences. For example, you can 
check if  dst  ever went from 0 to 1, 2, or 3 as shown in Sample  9.25 .  

  Sample 9.25    Specifying transitions for a cover point       

 You can quickly specify multiple transitions using ranges. The expression  (1, 2 
=> 3, 4)  creates the four transitions  (1=>3), (1=>4), (2=>3) , and  (2=>4) . 

 You can specify transitions of any length. Note that you have to sample once for 
each state in the transition. So  (0 => 1 => 2)  is different from  (0 => 1 => 1 => 2)  
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or  (0 => 1 => 1 => 1 => 2) . If you need to repeat values, as in the last 
sequence, you can use the shorthand form: (0 => 1[*3] => 2) . To repeat the 
value 1 for 3, 4, or 5 times, use  1[*3:5] .  

    9.7.10   Wildcard States and Transitions 

 You use the  wildcard  keyword to create multiple states and transitions. Any X, Z, 
or ? in the expression is treated as a wildcard for 0 or 1. Sample  9.26  creates a cover 
point with a bin for even values and one for odd.   

  Sample 9.26    Wildcard bins for a cover point       

    9.7.11   Ignoring Values 

 With some cover points, you never get all possible values. For instance, a 3-bit vari-
able may be used to store just six values, 0–5. If you use automatic bin creation, you 
never get beyond 75% coverage. There are two ways to solve this problem. You can 
explicitly defi ne the bins that you want to cover as shown in Section  9.6.5 .  
Alternatively, you can let SystemVerilog automatically create bins, and then use 
 ignore_bins  to tell which values to exclude from functional coverage calculation like 
in Sample  9.27 .  

  Sample 9.27    Cover point with ignore_bins       

 The original range of  low_ports_0_5 , a three-bit variable is 0:7. The  ignore_
bins  excludes the last two bins, which reduces the range to 0:5. So total coverage 
for this group is the number of bins with samples, divided by the total number of 
bins, which is 5 in this case.  
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 If you defi ne bins either explicitly or by using the  auto_bin_max  option, and 
then ignore them, the ignored bins do not contribute to the calculation of coverage. 
In Sample  9.28 , four bins are initially created using the  auto_bin_max  option: 0:1, 
2:3, 4:5, and 6:7. However, then the uppermost bin is eliminated by  ignore_bins , 
so in the end only three bins are created. This cover point can have coverage of 0%, 
33%, 66%, or 100%.  

    9.7.12   Illegal Bins 

 Some sampled values not only should be ignored, but also should cause an error if 
they are seen. This is best done in the testbench’s monitor code, but can also be done 
by labeling a bin with  illegal_bins  as shown in Sample  9.29 . Use this   to catch 
states that were missed by the test’s error checking. This also double-checks the 
accuracy of your bin creation: if an illegal value is found by the cover group, it is a 
problem either with the testbench or with your bin defi nitions.   

  Sample 9.28    Cover point with auto bin max and ignore bins       

  Sample 9.29    Cover point with illegal_bins       

    9.7.13   State Machine Coverage 

 You should have noticed that if a cover group is used on a state machine, you can 
use bins to list the specifi c states, and transitions for the arcs. However, this does not 
mean you should use SystemVerilog’s functional coverage to measure state machine 
coverage. You would have to extract the states and arcs manually. Even if you did 
this correctly the fi rst time, you might miss future changes to the design code. 
Instead, use a code coverage tool that extracts the state register, states, and arcs 
automatically, saving you from possible mistakes. 

 However, an automatic tool extracts the information exactly as coded, mistakes 
and all. You may want to monitor small, critical state machines manually using 
functional coverage.   
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    9.8   Cross Coverage 

 A cover point records the observed values of a single variable or expression. You 
may want to know not only what bus transactions occurred but also what errors hap-
pened during those transactions, and their source and destination. For this you need 
cross coverage that measures what values were seen for two or more cover points at 
the same time. Note that when you measure cross coverage of a variable with N 
values, and of another with M values, SystemVerilog needs N ́  M cross bins to store 
all the combinations. 

    9.8.1   Basic Cross Coverage Example 

 Previous examples have measured coverage of the transaction kind, and destination 
port number, but what about the two combined? Did you try every kind of transac-
tion into every port? The  cross  construct in SystemVerilog records the combined 
values of two or more cover points in a group. The  cross  statement takes only 
cover points or a simple variable name. If you want to use expressions, hierarchical 
names or variables in an object such as  handle.variable , you must fi rst specify 
the expression in a  coverpoint  with a label and then use the label in the  cross  
statement. 

 Sample  9.30  creates cover points for  tr.kind  and  tr.dst . Then the two points 
are crossed to show all combinations. SystemVerilog creates a total of 128 (8 ´ 16) 
bins. Be careful: even a simple cross can result in a very large number of bins.  

  Sample 9.30    Basic cross coverage       

 A random testbench created 56 transactions and produced the coverage report in 
Sample  9.31 . Note that even though all possible  kind  and  dst  values were gener-
ated, only 1/3 of the cross combinations were seen. This is a very typical result. 
Also note that the total coverage for the group is the cross coverage plus the cover-
age for  kind  and  dst .   
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    9.8.2   Labeling Cross Coverage Bins 

 If you want more readable cross coverage bin names, you can label the individual cover 
point bins as demonstrated in Sample  9.32 , and SystemVerilog will use these names 
when creating the cross bins.  

  Sample 9.31    Coverage summary report for basic cross coverage        
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 If you defi ne bins that contain multiple values, the coverage statistics change. In the 
report below, the number of bins has dropped from 128 to 80. This is because  kind  
has 10 bins:  zero, lo, hi_8, hi_9, 9hi_a, hi_b, hi_c, hi_d, hi_e , and  hi_f.  
Remember that the  misc  bin, which defi ned its values with  default , does not add 
to the coverage total. The percentage of coverage jumped from 87.5% to 90.91% 
as shown in Sample  9.33  because any single value in the  lo  bin, such as 2, allows 
that bin to be marked as covered, even if the other values, 1 or 3, are not seen.   

  Sample 9.33    Cross coverage report with labeled bins       

  Sample 9.32    Specifying cross coverage bin names        
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    9.8.3   Excluding Cross Coverage Bins 

 To reduce the number of bins, use  ignore_bins . With cross coverage, you specify 
the cover point with  binsof  and the set of values with  intersect  so that a single 
 ignore_bins  construct can sweep out many individual bins.  

  Sample 9.34    Excluding bins from cross coverage       

 The fi rst  ignore_bins  in Sample  9.34  just excludes bins where  dst  is 7 and any 
value of  kind . Since  kind  is a 4-bit value, this statement excludes 12 bins, as  misc’s  
values of 4–7 don’t count because of the  default . The second  ignore_bins  is more 
selective, ignoring bins where  dst  is 0 and  kind  is 9, 10, or 11, for a total of 3 bins. 

 The  ignore_bins  can use the bins defi ned in the individual cover points. The 
 ignore_bins lo  uses bin names to exclude  kind.lo  that is 1, 2, or 3. The bins 
must be names defi ned at compile time, such as  zero  and  lo . The bins  hi_8, hi_9, 
hi_a,… hi_f , and any automatically generated bins do not have names that can be 
used at compile time in other statements such as  ignore_bins ; these names are 
created at run time or during the report generation. 

 Note that  binsof  uses parentheses  ()  while  intersect  specifi es a range and 
therefore uses curly braces {}.  

    9.8.4   Excluding Cover Points from the Total Coverage Metric 

 The total coverage for a group is based on all simple cover points and cross coverage. 
If you are only sampling a variable or expression in a  coverpoint  to be used in a 
 cross  statement, you should set its weight to 0 so that it does not contribute to the 
total coverage.  
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 There are two types of options: those that are specifi c to an instance of a cover-
group and those that specify an option for the covergroup type as a whole. The 
instance specifi c options are like local variables and are specifi ed with the  option  
keyword, as in  option.auto_bin_max=2  from Sample  9.12 . The alternatives are 
specifi ed with the  type_option  keyword and are tied to the cover group, like static 
variables in a class. In Sample  9.35 ,  type_option.weight  applies to all instances 
of this group. The LRM has a detailed explanation of the difference, and this book 
shows the most common options and their usage.  

    9.8.5   Merging Data from Multiple Domains 

 One problem with cross coverage is that you may need to sample values from dif-
ferent timing domains. You might want to know if your processor ever received an 
interrupt in the middle of a cache fi ll. The interrupt hardware is separate from and 
may use different clocks than the cache hardware, making it diffi cult to know when 
to trigger the cover group. On the other hand, you want to make sure you have tested 
this case, as a previous design had a bug of this very sort. 

 The solution is to create a timing domain separate from the cache or interrupt 
hardware. Make copies of the signals into temporary variables and then sample 
them in a new coverage group that measures the cross coverage.  

    9.8.6   Cross Coverage Alternatives 

 As your cross coverage defi nition becomes more elaborate, you may spend consid-
erable time specifying which bins should be used and which should be ignored. You 
may have two random bits,  a  and  b  with three interesting states,  {a==0, b==0}, 
{a==1, b==0} , and  {b==1} . 

  Sample 9.35    Specifying cross coverage weight        
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 Sample  9.36  shows how you can name bins in the cover points and then gather 
cross coverage using those bins.  

  Sample 9.36    Cross coverage with bin names       

 Sample  9.37  gathers the same cross coverage, but now uses  binsof  to specify 
the cross coverage values.  

  Sample 9.37    Cross coverage with binsof       

 Alternatively, you can make a cover point that samples a concatenation of values. 
Then you only have to defi ne bins using the less complex cover point syntax.  
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 Use the style in Sample  9.36  if you already have bins defi ned for the individual 
cover points and want to use them to build the cross coverage bins. Use Sample  9.37  
if you need to build cross coverage bins but have no pre-defi ned cover point bins. 
Use Sample  9.38  if you want the tersest format.   

    9.9   Generic Cover Groups 

 As you start writing cover groups, you will fi nd that some are very similar to one 
another. SystemVerilog allows you to create a generic cover group so that you can 
specify a few unique details when you instantiate it. 

    9.9.1   Pass Cover Group Arguments by Value 

 Sample  9.39  shows a cover group that uses an argument to split the range into two 
halves. Just pass the midpoint value to the cover groups’  new  function.   

  Sample 9.38    Mimicking cross coverage with concatenation       

  Sample 9.39    Covergroup with simple argument       
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     Like a task or function, the arguments to a cover group have a 
sticky direction. In Sample  9.40 , if you forgot the  input  direc-
tion, the  mid  argument will have the direction  ref . The example 
would not compile because you cannot pass a constant (4 or 2) 
into a  ref  argument.   

    9.10   Coverage Options 

 You can specify additional information in the cover group using options. There are 
two fl avors of options: instance options that apply to a specifi c cover group instance 
and type options that apply to all instances of the cover group, and are analogous to 
static data members of classes. Options can be placed in the cover group so that they 
apply to all cover points in the group, or they can be put inside a single cover point 
for fi ner control. You have already seen the  auto_bin_max  and  weight  options. 
Here are several more. 

    9.10.1   Per-Instance Coverage 

 If your testbench instantiates a coverage group multiple times, by default System-
Verilog groups together all the coverage data from all the instances. However, if you 

    9.9.2   Pass Cover Group Arguments by Reference 

 You can specify a variable to be sampled with pass-by-reference. Here you want the 
cover group to sample the value during the entire simulation, not just to use the 
value when the constructor is called.  

  Sample 9.40    Pass-by-reference        
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have several generators, each creating very different streams of transactions, you 
will need to see separate reports. For example, one generator may be creating long 
transactions while another makes short ones. The cover group in Sample  9.41  can 
be instantiated in each separate generator. It keeps track of coverage for each 
instance, and has a unique comment string with the hierarchical path to the cover 
group instance.  

  Sample 9.42    Specifying comments for a cover group       

  Sample 9.43    Specifying comments for a cover group instance       

  Sample 9.41    Specifying per-instance coverage       

 The per-instance option can only be given in the cover group, not in the cover 
point or cross point.  

    9.10.2   Cover Group Comment 

 You can add a comment into coverage reports to make them easier to analyze. 
A comment could be as simple as the section number from the verifi cation plan to 
tags used by a report parser to automatically extract relevant information from the 
sea of data. If you have a cover group that is only instantiated once, use the  type_
option  as shown in Sample  9.42 .  

 However, if you have multiple instances, you can give each a separate comment, 
as long as you also use the per-instance option as shown in Sample  9.43 .   
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    9.10.3   Coverage Threshold 

 You may not have suffi cient visibility into the design to gather robust coverage 
information. Suppose you are verifying that a DMA state machine can handle bus 
errors. You don’t have access to its current state, but you know the range of cycles 
that are needed for a transfer. So if you repeatedly cause errors during that range, 
you have probably covered all the states. So you could set  option.at_least  to 8 
or more to specify that after 8 hits on a bin, you are confi dent that you have exer-
cised that combination. 

 If you defi ne  option.at_least  at the cover group level, it applies to all cover 
points. If you defi ne it inside a point, it only applies to that single point. 

 However, as Sample  9.2  showed, even after 32 attempts, the random  kind  vari-
able still did not hit all possible values. So only use  at_least  if there is no direct 
way to measure coverage, like when the testbench can not probe the DUT details.  

    9.10.4   Printing the Empty Bins 

 By default, the coverage report shows only the bins with samples. Your job is to verify 
all that is listed in the verifi cation plan, so you are actually more interested in the bins 
without samples. Use the option  cross_num_print_missing  to tell the simulation 
and report tools to show you all bins, especially the ones with no hits. Set it to a 
large value, as shown in Sample  9.44 , but no larger than you are willing to read.   

  Sample 9.44    Report all bins including empty ones       

    9.10.5   Coverage Goal 

 The goal for a cover group or point is the level at which the group or point is 
considered fully covered. The default is 100% coverage. If you set this level below 
100% like in Sample  9.45 , you are requesting less than complete coverage, which is 
probably not desirable. This option affects only the coverage report.    
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    9.11   Analyzing Coverage Data 

 In general, assume you need more seeds and fewer constraints. After all, it is easier 
to run more tests than to construct new constraints. If you are not careful, new con-
straints can easily restrict the search space. 

 If your cover point has only zero or one sample, your constraints are probably 
not targeting these areas at all. You need to add constraints that “pull” the solver 
into new areas. In Sample  9.16 , the transaction length had an uneven distribution. 
Sample  9.46  shows the full class. This situation is similar to the distribution seen 
when you roll two dice and look at the total value.  

  Sample 9.45    Specifying the coverage goal       

  Sample 9.46    Original class for packet length       

 The problem with this class is that  len  is not evenly weighted. Look in the cov-
erage report and note how the low and high values are rarely hit. Figure  9.5  is a 
graph of the values from the report.  
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  Fig. 9.5    Uneven probability for packet length       
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 If you want to make the total length be evenly distributed, use a  solve…before  
constraint as shown in Sample  9.47  and plotted in Fig.  9.6 .   

  Sample 9.47    solve…before constraint for packet length       

0

20

40

60

80

100

120

0 5 10 15 20 25

C
ou

nt

Packet length

  Fig. 9.6    Even probability for packet length with solve…before       

 The normal alternative to  solve…before  is the  dist  constraint. However, this 
does not work, as  len  is also being constrained by the sum of the two lengths.  

    9.12   Measuring Coverage Statistics During Simulation 

 You can query the level of functional coverage on the fl y during simulation. This 
allows you to check whether you have reached your coverage goals, and possibly to 
control a random test. 

 At the global level, you can get the total coverage of all cover groups with 
 $get_coverage , which returns a real number between 0. and 100. This system 
task looks across all cover groups. 

 You can narrow down your measurements with the  get_coverage()  and  get_
inst_coverage()  methods. The fi rst function works with both cover group names 
and instances to give coverage across all instances of a cover group, for example 
 CoverGroup::get_coverage()  or  cgInst.get_coverage() . The second 
function returns coverage for a specifi c cover group instance, for example  cgInst.
get_inst_coverage() . You need to specify  option.per_instance=1  if you 
want to gather per-instance coverage. 
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 The most practical use for these functions is to monitor coverage over a long test. 
If the coverage level does not advance after a given number of transactions or cycles, 
the test should stop. Hopefully, another seed or test will increase the coverage. 

 While it would be nice to have a test that can perform some sophisticated actions 
based on functional coverage results, it is very hard to write this sort of test. Each 
test + random seed pair may uncover new functionality, but it may take many runs 
to reach a goal. If a test fi nds that it has not reached 100% coverage, what should it 
do? Run for more cycles? How many more? Should it change the stimulus being 
generated? How can you correlate a change in the input with the level of functional 
coverage? The one reliable thing to change is the random seed, which you should 
only do once per simulation. Otherwise, how can you reproduce a design bug if the 
stimulus depends on multiple random seeds? 

 You can query the functional coverage statistics if you want to create your own 
coverage database. Verifi cation teams have built their own SQL databases that are 
fed functional coverage data from simulation. This setup allows them greater con-
trol over the data, but requires a lot of work outside of creating tests. 

 Some formal verifi cation tools can extract the state of a design and then create 
input stimulus to reach all possible states. Don’t try to duplicate this in your 
testbench!  

    9.13   Conclusion 

 When you switch from writing directed tests, hand-crafting every bit of stimulus, to 
constrained-random testing, you might worry that the tests are no longer under your 
command. By measuring coverage, especially functional coverage, you regain con-
trol by knowing what features have been tested. 

 Using functional coverage requires a detailed verifi cation plan and much time 
creating the cover groups, analyzing the results, and modifying tests to create the 
proper stimulus. This may seem like a lot of work, but is less effort than would be 
required to write the equivalent directed tests. Additionally, the time spent in gather-
ing coverage helps you better track your progress in verifying your design.  

    9.14   Exercises 

     1.    For the class below, write a covergroup to collect coverage on the test plan 
requirement, “All ALU opcodes must be tested.” Assume the opcodes are valid 
on the positive edge of signal  clk .  
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    2.    Expand the solution to Exercise 1 to cover the test plan requirement, “Operand1 
shall take on the values maximum negative (−128), zero, and maximum positive 
(127).” Defi ne a coverage bin for each of these values as well as a default bin. 
Label the coverpoint  operand1_cp .  

    3.    Expand the solution to Exercise 2 to cover the following test plan requirements:

   a.    “The opcode shall take on the values ADD or SUB” (hint: this is 1 coverage 
bin).  

   b.    “The opcode shall take on the values ADD followed by SUB” (hint: this is a 
second coverage bin). 

   Label the coverpoint  opcode_cp .      

    4.    Expand the solution to Exercise 3 to cover the test plan requirement, “Opcode 
must not equal DIV” (hint: report an error using  illegal_bins ).  

    5.    Expand the solution to Exercise 4 to collect coverage on the test plan requirement, 
“The opcode shall take on the values ADD or SUB when operand1 is maximum 
negative or maximum positive value.” Weight the cross coverage by 5.  

    6.    Assuming that your covergroup is called  Covcode  and the instantiation name of 
the covergroup is  ck , expand Exercise 4 to:

   a.    Display the coverage of coverpoint  operand1_cp  referenced by the instan-
tiation name.  

   b.    Display the coverage of coverpoint  opcode_cp  referenced by the covergroup 
name.                   
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 In Chapter   4     you learned how to connect the design and testbench with interfaces. 
These physical interfaces represent real signals, similar to the wires that connected 
ports in Verilog-1995. A testbench uses these interfaces by statically connecting to 
them through ports. However, for many designs, the testbench needs to connect 
dynamically to the design. 

 For example, in a network switch, a single driver class may connect to many 
interfaces, one for each input channel of the DUT. You wouldn’t want to write a 
unique driver for each channel — instead you want to write a generic driver, instan-
tiate it N times, and have it connect to each of the N physical interfaces. You can do 
this in SystemVerilog by using a virtual interface, which is merely a handle or 
pointer to a physical interface. A better name for a virtual interface would be a “ref 
interface.” 

 You may need to write a testbench that attaches to several different confi gura-
tions of your design. In another example, a chip may have multiple confi gurations. 
In one, the pins might drive a USB bus, whereas in another the same pins may drive 
an I2C serial bus. Once again, you can use a virtual interface so you can decide at 
run time which drivers to run in your testbench. 

 A SystemVerilog interface is more than just signals — you can put executable 
code inside. This might include routines to read and write to the interface, initial and 
always blocks that run code inside the interface, and assertions to constantly check 
the status of the signals. However, do not put testbench code in an interface. Program 
blocks have been created expressly for building a testbench, including scheduling 
their execution in the Reactive region, as described in the SystemVerilog LRM. 

    Chapter 10   
 Advanced Interfaces                  
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    10.1   Virtual Interfaces with the ATM Router 

 The most common use for a virtual interface is to allow objects in a testbench to 
refer to items in a replicated interface using a generic handle rather than the actual 
name. Virtual interfaces are the only mechanism that can bridge the dynamic world 
of objects with the static world of modules and interfaces. 

    10.1.1   The Testbench with Just Physical Interfaces 

   Chapter 4     showed how to build an interface to connect a 4x4 ATM router to a test-
bench. Sample  10.1  and  10.2  show the ATM interfaces for the receive and transmit 
directions.   

  Sample 10.1    Rx interface with clocking block       

  Sample 10.2    Tx interface with clocking block       
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 These interfaces can be used in a program block shown in Sample  10.3 . This 
procedural code is hard coded with interface names such as  Rx0  and  Tx0 . Note that 
in these examples, the top module does not pass a clock to the testbench; instead the 
tests synchronize with clocking blocks in the interfaces, thus allowing you to work 
at a higher level of abstraction.  

  Sample 10.3    Testbench using physical interfaces       

 Figure  10.1  shows the testbench communicating with the design through virtual 
interfaces.  
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 The top level module must connect an array of interfaces to work with the 
testbench in Sample  10.6 . The module in Sample  10.4  instantiates an array of inter-
faces, and passes this array to the testbench. Since the DUT was written with four 
RX and four TX interfaces, you need to pass the individual interface array elements 
into the DUT instance.   

  Sample 10.4    Top level module with array of interfaces       
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  Fig. 10.1    Router and testbench with interfaces       

    10.1.2   Testbench with Virtual Interfaces 

 A good OOP technique is to create a class that uses a handle to reference an object, 
rather than a hard-coded object name. In this case, you can make a single Driver 
class and a single Monitor class, have them operate on a handle to the data, and then 
pass in the handle at run time. 
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 The program block in Sample  10.5  is still passed the  4 Rx  and  4 Tx  interfaces 
as ports, as in Sample  10.3 , but it creates an array of virtual interfaces,  vRx  and  vTx . 
These can now be passed into the constructors for the drivers and monitors.  

  Sample 10.6    Testbench using virtual interfaces       

  Sample 10.5    Testbench using virtual interfaces       

 You can also skip the virtual interface array variables, and make an array in the 
port list. These interfaces are passed to the constructors as shown in Sample  10.6 .  

 The task  monitor::receive_cell  in Sample  10.7  is similar to the task 
 receive_cell0  in Sample  10.3 , except it uses the virtual interface name  Tx  
instead of the physical interface  Tx0 .  

 

 



368 10 Advanced Interfaces

  Sample 10.7    Monitor class using virtual interfaces          
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     A common mistake when creating a testbench is to leave off the 
modport name from a virtual interface declaration. The program in 
Sample  10.5  declares  Tx_if.TB Tx0  in the port list, so it can only 
assign  Tx0  to a virtual interface declared with the  TB  modport. See 
the declaration of the virtual interface  Tx  in Sample  10.7 .  

    10.1.3   Connecting the Testbench to an Interface in Port List 

 This book shows tests that connect to the DUT with interfaces in the port list. This 
style is comfortable to Verilog users who have always connected modules using 
signals in ports. Sample  10.8  is the top level module, also known as a test harness, 
which connects the DUT and test using an interface in the port list.  

  Sample 10.8    Test harness using an interface in the port list       

 Sample  10.9  shows the program block with an interface in the port list.  
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 What happens if you add a new interface to your design? The test harness in 
Sample  10.10  declares the new bus and puts it in the port lists.  

  Sample 10.11    Test with two interfaces in the port list       

  Sample 10.9    Test with an interface in the port list       

  Sample 10.10    Top module with a second interface in the test’s port list       

 Now you have to change the test in Sample  10.9  to include another interface in 
the port list, giving the test in Sample  10.11 .  

 Adding a new interface to your design means you need to edit all existing tests 
so they can plug into the test harness. How can you avoid this extra work? Avoid 
port connections!  

    10.1.4   Connecting the Test to an Interface with an XMR 

 Your test needs to connect to the physical interface in the harness, so use a cross 
module reference (XMR) and a virtual interface in the program block as shown in 
Sample  10.12 . You must use a virtual interface so you can assign it the physical 
interface in the top level module.  

  Sample 10.12    Test with virtual interface and XMR       

 The program connects to the test harness shown in Sample  10.13 .  
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 This approach is recommended by methodologies such as the VMM to make 
your test code more reusable. If you add a new interface to your design, as shown in 
Sample  10.14 , the test harness changes, but existing tests don’t have to change.  

  Sample 10.13    Test harness without interfaces in the port list       

  Sample 10.14    Test harness with a second interface       

 The harness in Sample  10.14  works with the test in Sample  10.12  that does not 
know about the new interface, as well as the test in Sample  10.15  that does.  

  Sample 10.15    Test with two virtual interfaces and XMRs       

     Some methodologies have a rule that makes the connection between 
tests and harnesses slightly more complicated than with traditional 
ports, but means you won’t have to modify existing tests, even if 
the design changes. The examples in this book use the simple style 
of interfaces in the port lists, but you should decide if test reuse is 
important enough to change your coding style.   
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    10.2   Connecting to Multiple Design Confi gurations 

 A common challenge to verifying a design is that it may have several confi gura-
tions. You could make a separate testbench for each confi guration, but this could 
lead to a combinatorial explosion as you explore every alternative. Instead, you can 
use virtual interfaces to dynamically connect to the optional interfaces. 

    10.2.1   A Mesh Design 

 Sample  10.16  is built of a simple replicated component, an 8-bit counter. This 
resembles a DUT that has a device such as a network chip or processor that is 
instantiated repeatedly in a mesh confi guration. The key idea is that the top-level 
module creates an array of interfaces and counters. Now the testbench can connect 
its array of virtual interfaces to the physical ones. 

 Sample  10.16  shows the code for the counter’s interface,  X_if . If the code 
printed the signal values with a $monitor, they would display when any signal 
changed. Instead, the  always  block waits until the clocking block changes, then 
prints the values of the signals at the end of the time slot with  $strobe . The result 
is you are now working at a higher level of abstraction, seeing the values cycle by 
cycle instead of the individual events.  

  Sample 10.16    Interface for 8-bit counter       

 The simple counter is shown in Sample  10.17 .  
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 The top-level module in Sample  10.18  uses a generate statement to instantiate 
 NUM_XI  interfaces and counters, but only one testbench.  

  Sample 10.17    Counter model using X_if interface       

  Sample 10.18    Top-level module with an array of virtual interfaces       

 In Sample  10.19 , the key line in the testbench is where the local virtual inter-
face array,  vxi , is assigned to point to the array of physical interfaces in the top 
module,  top.xi . (Note that this example takes some shortcuts compared to the 

 

 



374 10 Advanced Interfaces

recommendations in Chapter   8    . To simplify Sample  10.18 , the environment class 
has been merged with the test, whereas the generator, agent, and driver layers have 
been compressed into the driver.) 

 The testbench assumes there is at least one counter and thus at least one X inter-
face. If your design could have zero counters, you would have to use a dynamic array 
to hold the virtual interfaces, as a fi xed-size array cannot have a size of zero. The 
actual number of interfaces is passed as a parameter from the top-level module.  

  Sample 10.19    Counter testbench using virtual interfaces       

 Of course in this simple example, you could just pass the interface directly into 
the  Driver’s  constructor, rather than make a separate variable. 

 In Sample  10.20 , the  Driver  class uses a single virtual interface to drive and 
sample signals from the counter.   
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    10.2.2   Using  Typedefs  with Virtual Interfaces 

 You can reduce the amount of typing, and ensure you always use the correct mod-
port by replacing “ virtual X_if.TB ” with a  typedef , as shown in Sample  10.21  
through  10.23 , of the interface, testbench, and driver.     

  Sample 10.20    Driver class using virtual interfaces       

  Sample 10.21    Interface with a typedef       
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    10.2.3   Passing Virtual Interface Array Using a Port 

 The previous examples passed the array of virtual interfaces using a cross module 
reference (XMR). An alternative is to pass the array in a port. Since the array in the 
top module is static and so only needs to be referenced once, the XMR style makes 
more sense than using a port that normally is used to pass changing values. 

 Sample  10.24  uses a global parameter to defi ne the number of X interfaces. Here 
is a snippet of the top module.  

  Sample 10.22    Testbench using a typedef for virtual interfaces       

  Sample 10.23    Driver using a typedef for virtual interfaces       

  Sample 10.24    Testbench using an array of virtual interfaces       
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 The testbench that uses the virtual interfaces is shown in Sample  10.25 . It creates 
an array of virtual interfaces so that it can pass them into the constructor for the 
driver class, or just pass the interface directly from the port.    

  Sample 10.25    Testbench passing virtual interfaces with a port       

    10.3   Parameterized Interfaces and Virtual Interfaces 

 The example in Section  10.2  shows an 8-bit counter and matching busses. What if 
you want to vary the counter’s width? Verilog-1995 allows you to parameterize 
modules, and System Verilog extends this concept with parameterized interfaces 
and virtual interfaces. 

 First, update the counter, originally shown in Sample  10.17  with parameters. 
This only requires changing the fi rst few lines. Sample  10.26  now passes the num-
ber of interfaces in as a parameter too.  
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  Sample 10.27    Parameterized interface for 8-bit counter       

  Sample 10.28    Parameterized top-level module with an array of virtual interfaces       

  Sample 10.26    Parameterized counter model using X_if interface       

 Next, Sample  10.27  adds the bit width parameter to the interface in Sample  10.16 .  

 Sample  10.28  shows the parameter being passed into the testbench.  

 Lastly are the testbench module and  Driver  class are shown in Samples  10.29  
and  10.30 . These have virtual interfaces that must be parameterized. The syntax for 
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this is a little tricky, especially when you have a modport. First, the testbench, 
updated from Sample  10.19 . Notice how the parameter goes between the type name 
and the modport.    

  Sample 10.30    Driver class using virtual interfaces       

  Sample 10.29    Parameterized counter testbench using virtual interfaces       

    10.4   Procedural Code in an Interface 

 Just as a class contains both variables and routines, an interface can contain code 
such as routines, assertions, and  initial  and  always  blocks. Recall that an inter-
face includes the signals and functionality of the communication between two 
blocks. So the interface block for a bus can contain the signals and also routines to 
perform commands such as a read or write. The inner workings of these routines are 
hidden from the external blocks, allowing you to defer the actual implementation. 
Access to these routines is controlled using the  modport  statement, just as with 
signals. A task or function is imported into a  modport  so that it is then visible to 
any block that uses the  modport . 

 These routines can be used by both the design and the testbench. This approach 
ensures that both are using the same protocol, eliminating a common source of test-
bench bugs. However, not all synthesis tools can handle routines in an interface. 

 A problem with sharing code between the design and testbench is that the inde-
pendence between the design and verifi cation teams is lost. If only one person 
implements the interface protocol for both parts, who checks it? 

 You can verify a protocol with assertions in an interface. An assertion can check 
for illegal combinations, such as protocol violations and unknown values. These can 
display state information and stop simulation immediately so that you can easily 
debug the problem. An assertion can also fi re when good transactions occur. 
Functional coverage code uses this type of assertion to trigger the gathering of cov-
erage information. 
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    10.4.1   Interface with Parallel Protocol 

 When creating your system, you may not know whether to choose a parallel or 
serial protocol. The interface in Sample  10.31  has two tasks,  initiatorSend  
and  targetRcv , that send a transaction between two blocks using the interface 
signals. It sends the address and data in parallel across two 8-bit buses.   

  Sample 10.31    Interface with tasks for parallel protocol       

    10.4.2   Interface with Serial Protocol 

 The interface in Sample  10.32  implements a serial interface for sending and receiv-
ing the address and data values. It has the same interface and routine names as 
Sample  10.31 , so you can swap between the two without having to change any 
design or testbench code.   
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    10.4.3   Limitations of Interface Code 

 Tasks in interfaces are fi ne for RTL, where the functionality is strictly defi ned. 
However, these tasks are a poor choice for any type of verifi cation IP. Interfaces and 
their code cannot be extended, overloaded, or dynamically instantiated based on 
confi guration. An interface cannot have private data. Any code for verifi cation needs 

  Sample 10.32    Interface with tasks for serial protocol        
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maximum fl exibility and confi gurability, and so should go in classes that run in a 
program block.   

    10.5   Conclusion 

 The interface construct in SystemVerilog provides a powerful technique to group 
together the connectivity, timing, and functionality for the communication between 
blocks. In this chapter you saw how you can create a single testbench that connects 
to many different design confi gurations containing multiple interfaces. Your signal 
layer code can connect to a variable number of physical interfaces at run time with 
virtual interfaces. Additionally, an interface can have routines that drive the signals 
and assertions to check the protocol, but put the test in a program block, not an 
interface. 

 In many ways, an interface can resemble a class with pointers, encapsulation, 
and abstraction. This lets you create an interface to model your system at a higher 
level than Verilog’s traditional ports and wires. Just remember to keep the testbench 
in the program block.  

    10.6   Exercises 

    1.    Complete the following code, as indicated by the comments.        



38310.6 Exercises

   2.    Using the solution to Exercise 1, complete the following code as indicated by the 
comments.        

   3.    Modify the following program declaration to use cross module references (XMR). 
Assume the top module that contains the interface is named  top .       

 Modify the following instantiation of program  test  to use cross module 
 references (XMR).        

   4.    Expand the solution to Exercise 3 to create  NUM_RISC_BUS  environments and 
create  NUM_RISC_BUS  interfaces.

      5.    Expand the solution to Exercise 3 to use a  typedef  for the virtual interface.  



384 10 Advanced Interfaces

   6.    Modify the following interface to use a parameter,  ADDRESS_WIDTH . By default 
the addressing space supports 256 words.               
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 This chapter applies the many concepts you have learned about SystemVerilog 
 features to verify a design. The testbench creates constrained random stimulus, and 
gathers functional coverage. It is structured according to the guidelines from Chapter 8 
so you can inject new behavior without modifying the lower-level blocks. 

 The design is an ATM switch that was shown in Sutherland [2006], who based 
his SystemVerilog description on an example from Janick Bergeron’s Verifi cation 
Guild. Sutherland took the original Verilog design and used SystemVerilog design 
features to create a switch that can be confi gured from 4×4 to 16×16. The testbench 
in the original example creates ATM cells using  $urandom , overwrites certain fi elds 
with ID values, sends them through the device, then checks that the same values 
were received. 

 The entire example, with the testbench and ATM switch, is available for 
download at  http://chris.spear.net/systemverilog . This chapter shows 
just the testbench code. 

    11.1   Design Blocks 

 The overall connection between the design and testbench, shown in Fig.  11.1  , 
 follows the pattern shown in   Chapter 4    .  

    Chapter 11   
 A Complete SystemVerilog Testbench                  
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 The top level of the design is called  squat , as shown in Fig.  11.2  . The module 
has 1..N Utopia Rx interfaces that are sending UNI formatted cells. Inside the 
DUT, cells are stored, converted to NNI format, and forwarded to the Tx interfaces. 
The forwarding is done according to a lookup table that is addressed with the VPI fi eld 
of the incoming cell. The table is programmed through the management interface.  

 The top level module in Sample  11.1   defi nes arrays of interfaces for the Rx and 
Tx ports.  

  Fig. 11.1     The testbench — design environment       
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  Fig. 11.2     Block diagram for the squat design       
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 The testbench program in Sample  11.2   passes the interfaces and signals through 
the port list. See Section 10.1.4 for a discussion on ports vs. cross module refer-
ences. The actual testbench code is in the  Environment  class. The program steps 
through the phases of the environment. In order to work at a higher level of abstrac-
tion, the testbench only uses clocking blocks in the interfaces to synchronize with 
the DUT, not low level clocks.  

  Sample 11.1     Top level module        
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 The testbench loads control information into the ATM switch through the 
Management interface, also known as the CPU interface, shown in Sample  11.3  . 
In this chapter’s examples, the interface is only used to load the lookup table that 
maps VPI to forwarding masks.  

  Sample 11.2     Testbench program       

  Sample 11.3     CPU Management Interface       

 Sample  11.4   shows the Utopia interface, which is used by the testbench to 
communicate with the squat design by transmitting and receiving ATM cells. 
The interface has clocking blocks for the transmit and receive paths, and modports 
for the design and testbench connections to the interface.   
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  Sample 11.4     Utopia interface        
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    11.2   Testbench Blocks 

 The environment class, as shown in Section 8.2.1 , is the scaffolding that supports 
the testbench structure. Inside this class lies the blocks of your layered testbench, 
such as generators, drivers, monitors, and scoreboard. The environment also con-
trols the sequencing of the four testbench steps: generate a random confi guration, 
build the testbench environment, run the test and wait for it to complete, and a wrap-
up phase to shut down the system and generate reports. Sample  11.5   shows the ATM 
environment class. It uses the virtual interface vCPU_T defi ned in Sample  11.3  .  

  Sample 11.5     Environment class header       

 With the  $test$plusargs()  system task, the  Environment  class constructor 
in Sample  11.6   looks for the VCS switch  +ntb_random_seed , which sets the 
random seed for the simulation. The system task  $value$plusargs()  extracts 
the value from the switch. Your simulator may have a different way to set the seed. 
It is important to print the seed in the log fi le so that if the test fails, you can run it 
again with the same value.  
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  Sample 11.6     Environment class methods           
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 The method  Environment::build  in Sample  11.6   connects the scoreboard to 
the driver and monitor with the callback class, which is shown in Sample  11.7  , 
 Scb_Driver_cbs . This class sends the expected values to the scoreboard. The 
base driver callback class,  Driver_cbs , is shown in Sample  11.20 .  
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 The callback class in Sample  11.8  ,  Scb_Monitor_cbs , connects the monitor 
with the scoreboard. The base monitor callback class,  Monitor_cbs , is shown in 
Sample  11.21 .  

  Sample 11.7     Callback class connects driver and scoreboard       

  Sample 11.8     Callback class connects monitor and scoreboard       

 The environment connects the monitor to the coverage class with the fi nal 
callback class,  Cov_Monitor_cbs , shown in Sample  11.9  .  
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 The random confi guration class header is shown in Sample  11.10 . It starts with 
 nCells , a random value for the total number of cells that fl ow through the system. 
The constraint  c_nCells_valid  ensures that the number of cells is valid by being 
greater than zero, whereas  c_nCells_reasonable  limits the test to a reasonable 
size, 1000 cells. You can disable or override this if you want longer tests. 

 Next is a dynamic bit array,  in_use_Rx , to specify which Rx channels into the 
switch are active. This is used in Sample  11.6   in the  run  method so that only active 
channels run. 

 The array  cells_per_chan  is used to randomly divide the total number of cells 
across the active channels. The constraint  zero_unused_channels  sets the num-
ber of cells to zero for inactive channels. To help the solver, the active channel mask 
is solved before dividing up the cells between channels. Otherwise, a channel would 
be inactive only if the number of cells assigned to it was zero, which is very 
unlikely.  

  Sample 11.9     Callback class connects the monitor and coverage        
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 The cell rewriting and forwarding confi guration type is shown in Sample  11.11 .  

  Sample 11.10    Environment confi guration class       

  Sample 11.11    Cell confi guration type       

 The methods for the confi guration class are shown in Sample  11.12   
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 The ATM switch accepts UNI formatted cells and sends out NNI formatted cells. 
These cells are sent through both an OOP testbench and a structural design, so they 
are defi ned using  typedef . The major difference between the two formats is that 
the UNI’s GFC and VPI fi eld are merged into the NNI’s VPI. The defi nitions in 
Sample  11.13  through  11.15  are from Sutherland [2006].   

  Sample 11.12    Confi guration class methods       

  Sample 11.13    UNI cell format       

  Sample 11.14    NNI cell format       
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 The UNI and NNI cells are merged with a byte memory to form a universal type, 
shown in Sample  11.15 .  

  Sample 11.15    ATMCellType       

 The testbench generates constrained random ATM cells, shown in Sample  11.16,   
that are extended from the BaseTr class, defi ned in Sample 8.24.  

  Sample 11.16    UNI_cell defi nition       
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  Sample 11.17    UNI_cell methods           

 Sample  11.17  shows the methods for the UNI cell. 
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      The  NNI_cell  class is almost identical to  UNI_cell , except that it does not 
have a GFC fi eld, or a method to convert to a  UNI_cell . 

 Sample  11.18  shows the UNI cells random atomic generator, as originally shown 
in Section 8.2. The generator randomizes the blueprint instance of the UNI cell, and 
then sends out a copy of the cell to the driver.  
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 Sample  11.19  shows the Driver class that sends UNI cells into the ATM switch. 
This class uses the driver callbacks in Sample  11.20 . Note that there is a circular 
relationship here. The  Driver  class has a queue of  Driver_cbs  objects, and the 
 pre_tx()  and  post_tx()  methods in  Driver_cbs  are passed  Driver  objects. 
When you compile the two classes, you may need either  typedef class Driver ; 
before the  Driver_cbs  class defi nition, or  typedef class Driver_cbs ; before 
the  Driver  class defi nition.  

  Sample 11.19    driver class           

  Sample 11.18    UNI_generator class        
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 Sample  11.20  shows the driver callback class which has simple callbacks that are 
called before & after a cell is transmitted. This class has empty tasks, which are used 
by default. A test case can extend this class to inject new behavior in the driver 
without having to change any code in the driver  
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 The  Monitor  class in Sample  11.21   has a very simple callback, with just one 
task that is called after a cell is received.  

  Sample 11.21    Monitor callback class       

  Sample 11.20    Driver callback class       

  Sample 11.22    The Monitor class               

 Sample  11.22  shows the  Monitor  class. Like the  Driver  class, this uses a 
 typedef  to break the circular compile dependency with  Monitor_cbs .  
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 The scoreboard in Sample  11.23   gets expected cells from the driver through the 
function  save_expected , and the cells actually received by the monitor with the 
function  check_actual . The function  save_expected()  is called from the call-
back  Scb_Driver_cbs::post_tx() , shown in Sample  11.7  . The function 
 check_actual ()  is called from  Scb_Monitor_cbs::post_rx()  in Sample  11.8  .  
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  Sample 11.23    The Scoreboard class       
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 Sample  11.24  shows the class used to gather functional coverage. Since the cov-
erage only looks at data in a single class, the cover group is defi ned and instantiated 
inside the  Coverage  class. The data values are read by the class’s  sample() method, 
then the cover group’s  sample()  method is called to record the values.  

  Sample 11.24    Functional coverage class        
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 Sample  11.25  shows the  CPU_driver  class that contains the methods to drive 
the CPU interface.   

  Sample 11.25    The CPU_driver class          
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    11.3   Alternate Tests 

 The simplest test program is shown in Sample  11.2   and runs with very few con-
straints. During verifi cation, you will be creating many tests, depending on the 
major functionality to be tested. Each test can then be run with different seeds. 

    11.3.1   Your First Test - Just One Cell 

 The fi rst test you run should probably have just one cell, such as the test in Sample 
 11.26 . You can add a new constraint to the  Confi g  class by extending it, and then 
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injecting a new object into the environment before randomization. Once this test 
works, you can try two cells, then rewrite the constraint on the number of cells to 
run longer sequences.   

  Sample 11.26    Test with one cell       

    11.3.2   Randomly Drop Cells 

 The next test you may run creates errors by occasionally dropping cells, as shown 
in Sample  11.27 . You need to make a callback for the driver that sets the drop bit. 
Then, in the test, inject this new functionality after the driver class has been con-
structed during the build phase.    
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    11.4   Conclusion 

 This chapter shows how you can build a layered testbench, following the guidelines 
in this book. You can then create new tests by just modifying a single fi le and inject-
ing new behavior, utilizing the hooks such as callbacks and multiple environment 
phases. 

 The testbench was able to get to 100% functional coverage of the ATM switch, 
at least for the basic cover group. You can use this example to explore more about 
SystemVerilog testbenches.  

  Sample 11.27    Test that drops cells using driver callback        
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    11.5   Exercises 

     1.    In Sample  11.2  , why is  clk  not passed into the port list of program  test ?  

    2.    In Sample  11.6  , could  numRx  be substituted for  Rx.size()  ? Why or why not?  

    3.    For the following code snippet from Sample  11.6  , explain what is being created 
for each statement.        

    4.    In Sample  11.9  , what coverage object does the handle  cov  point to?  

    5.    In Sample  11.17 , the function  UNI_cell::copy  assumes that the handle to the 
object  UNI_cell  points to an object of class  UNI_cell  as depicted in the following 
drawing. Draw what object the handle dst points to for the following function calls.

 
UNI_cellhandle

   

   a.     copy()  ;  

   b.     copy(handle) ;      

    6.    In Sample  11.18 , why are the  $cast ()  required?  

    7.    In Sample  11.19  and  11.20 , why are the  typedef  declaration needed?  

    8.    In Sample  11.19 , why is  peek()  used fi rst and then later a  get()  ?  

    9.    In Sample  11.23 , is the error message “ …cell not found… ” in the function 
 check_actual  printed every time it are called? Why or why not?  

    10.    Why do classes  Environment, Scoreboard , and  CPU_driver  all defi ne a 
handle to class  Confi g ? Are 3 objects of class  Confi g  created?           
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 In Verilog, you can communicate with C routines using the Programming Language 
Interface. With the three generations of the PLI: TF (Task / Function), ACC (Access), 
and VPI (Verifi cation Procedural Interface), you can create delay calculators, con-
nect and synchronize multiple simulators, and add debug tools such as waveform 
displays. However the PLI’s greatest strength is also its greatest weakness. If you 
just want to connect a simple C routine using the PLI, you need to write dozens 
of lines of code, and understand many different concepts such as synchronizing 
with multiple simulation phases, call frames, and instance pointers. Additionally, 
the PLI adds overhead to your simulation as it copies data between the Verilog and 
C domains, in order to protect Verilog data structures from corruption. 

 SystemVerilog introduces the Direct Programming Interface (DPI), an easier 
way to interface with C, C++, or any other foreign language. Once you declare or 
“import” the C routine with the  import  statement, you can call it as if it were 
any SystemVerilog routine. Additionally, your C code can call SystemVerilog 
 routines. With the DPI you can connect C code that reads stimulus, contains a 
ref erence model, or just extends SystemVerilog with new functionality. Currently 
SystemVerilog only supports an interface to the C language. C++ code has to be 
wrapped to look like C. 

 If you have a SystemC model that does not consume time, and that you want 
to connect to SystemVerilog, you can use the DPI. SystemC models with time-
consuming methods are best connected with the utilities built into your favorite 
simulator. 

 The fi rst half of this chapter is data-centric and shows how you can pass different 
data types between SystemVerilog and C. The second half is control centric, show-
ing how you can pass control back and forth between SystemVerilog and C. While 
the actual C code is trivial, with the factorial function, the Fibonacci series, and 
counters, they are easy to understand so you can quickly substitute your own code. 

    Chapter 12   
 Interfacing with C/C++                  
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    12.1   Passing Simple Values 

 The fi rst few examples in this chapter show you how to pass integral values between 
SystemVerilog and C, and the mechanics of how to declare routines and their argu-
ments on both sides. Later sections show how to pass arrays and structures. 

    12.1.1   Passing Integer and Real Values 

 The most basic data type that you can pass between SystemVerilog and C is an  int , 
the 2-state, 32-bit type. Sample  12.1  shows the SystemVerilog code that calls a C 
factorial routine, shown in Sample  12.2 .  

  Sample 12.1    SystemVerilog code calling C factorial routine       

  Sample 12.2    C factorial function       

 The  import  statement declares that a SystemVerilog routine  factorial  is 
implemented in a foreign language such as C. The modifi er " DPI-C " specifi es that 
this is a Direct Programing Interface routine, and the rest of the statement describes 
the routine arguments. 

 Sample  12.1  passes 32-bit signed values using the SystemVerilog  int  data type 
that maps directly to the C  int  type. The SystemVerilog int is always 32 bits, 
whereas the width of an int in C is operating system dependent. The C function in 
Sample  12.2  takes an integer as an input and so the DPI passes the argument by 
value.   

    12.1.2   The Import Declaration 

 The  import  declaration defi nes the prototype of the C task or function, but using 
SystemVerilog types. A C function with a return value is mapped to a SystemVerilog 
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function. A void C function can be mapped to a SystemVerilog task or void function. 
If the name of the imported C function confl icts with a SystemVerilog name, you can 
import the function with a new name. In Sample  12.3 , the C function  expect  is 
mapped to the SystemVerilog name  fexpect , as the name  expect  is a reserved 
keyword in SystemVerilog. The name  expect  becomes a global symbol, used to link 
with the C code, whereas  fexpect  is a local SystemVerilog symbol. In the second 
half of the example, the C function  stat  is given a new name in SystemVerilog, 
 fi le_exists . SystemVerilog does not support overloading a routine, for example by 
importing  expect  once with a  real  argument and once with an  int .  

  Sample 12.3    Changing the name of an imported function       

 You can import routines anywhere in your SystemVerilog code where you can 
declare a routine including inside programs, modules, interfaces, packages, and  $unit , 
the compilation-unit space. The imported routine will be local to the declaration 
space in which it is declared. If you need to call an imported routine in several loca-
tions in your code, put the  import  statement in a package which you import where 
it is needed. Any changes to the  import  statements are localized to the package.  

    12.1.3   Argument Directions 

 Imported C routines can have zero or more arguments. By default the argument 
direction is  input  (data goes from SystemVerilog to C), but can also be  output  
and  inout . The direction  ref  is not supported. A function can return a simple value 
such as an integer or real number, or have no return value if you make it  void . 
Sample  12.4  shows how to specify argument directions.  
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   Table 12.1    Data types mapping between SystemVerilog and C   

  SystemVerilog    C (input )   C (output ) 

 byte  char  char* 
 shortint  short int  short int* 
 int  int  int* 
 longint  long long int  long int* 
 shortreal  fl oat  fl oat* 
 real  double  double* 
 string  const char*  char** 
 string [N]  const char**  char** 
 bit  svBit or unsigned char  svBit* or unsigned char* 
 logic, reg  svLogic or unsigned char  svLogic* or unsigned char* 
 bit[N:0]  const svBitVecVal*  svBitVecVal* 
 reg[N:0] logic[N:0]  const svLogicVecVal*  svLogicVecVal* 
 unsized array[]  const svOpenArrayHandle  svOpenArrayHandle 
 chandle  const void*  void* 

  Sample 12.4    Argument directions       

 You can reduce the chances of bugs in your C code by declaring any input argu-
ments as  const  as shown in Sample  12.5  so the C compiler will give an error for 
any write to an input.   

  Sample 12.5    C factorial routine with const argument       

    12.1.4   Argument Types 

 Each variable that is passed through the DPI has two matching defi nitions: one for 
the SystemVerilog side, and one for the C side. It is your responsibility to use com-
patible types. The SystemVerilog simulator cannot compare the types as it is unable 
to read the C code. (The VCS compiler produces  vc_hdrs.h  and Questa creates 
 incl.h  with the C header for any routine that you have imported. You can use this 
fi le as a guide to matching the types.) 

 Table  12.1  shows the data type mapping between SystemVerilog and the inputs 
and outputs of C routines. The C structures are defi ned in the include fi le  svdpi.h . 
Arrays mapping is discussed in Section  12.4  and  12.5 , and structures are discussed 
in Section  12.6 .  
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     Note that some mappings are not exact. For example, a  bit  in 
SystemVerilog maps to  svBit  in C, which ultimately maps to 
 unsigned char  in the  svdpi.h  include fi le. As a result, you 
could write illegal values into the upper bits. 

 The LRM limits imported function results “small values”, which include:  void, byte, 
shortint,   int,   longint,   real,   shortreal,   chandle , and  string , plus single 
bit values of type  bit  and  logic . A function cannot return a vector such as  bit
 [6:0]  as this would require returning a pointer to a  svBitVecVal  structure.  

    12.1.5   Importing a Math Library Routine 

 Sample  12.6  shows how you can call many functions in the C math library directly, 
without a C wrapper, thereby reducing the amount of code that you need to write. 
The Verilog  real  type maps to a C  double .    

  Sample 12.6    Importing a C math function       

    12.2   Connecting to a Simple C Routine 

 Your C code might contain a simulation model, such as a processor, that is instan-
tiated side by side with Verilog models. Or your code could be a reference model 
that is compared to a Verilog model at the transaction or cycle level. Many exam-
ples in this chapter show an 7-bit counter written in C or C++. Though very simple, 
the counter has the same parts as a complex model, with inputs, outputs, storage 
of internal values between calls, and the need to support multiple instances. The 
counter is 7 bits to show what happens when a hardware type does not match a 
C type. 
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    12.2.1   A Counter with Static Storage 

 Sample  12.7  is the C code for an 7-bit counter. The count is stored in a static variable, 
as you might do if you wrote the model before thinking about simulation.  

  Sample 12.7    Counter routine using a static variable       

 The  reset  and  load  signals are 2-state single bit signals, and so they are passed 
as  svBit  which reduces to  unsigned char . Your code could declare the value 
either way, but play it safe by using the SystemVerilog DPI types. The input  i  is 
2-state, and 7 bits wide, and is passed as  svBitVecVal . Notice that it is passed as 
a  const  pointer, which means the underlying value can change, but you cannot 
change the value of the pointer, such as making it point to another value. Likewise, 
the  reset  and  load  inputs are also marked as  const . In this example, the 7-bit 
counter value is stored in a  char , so you have to mask off the upper bit. 

 The fi le  svdpi.h  contains the defi nitions for SystemVerilog DPI structures and 
methods. The C code examples in the rest of this chapter leave off the  #include  
statements, unless they are important to the discussion. 
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    12.2.2   The Chandle Data Type 

 The  chandle  data type allows you to store a C or C++ pointer in your SystemVerilog 
code. A  chandle  variable is wide enough to hold a pointer on the machine where 
the code was compiled, i.e. 32- or 64-bits. The counter in Sample  12.7  works well 
as long as it is the only one in the design. You could wrap the  counter7  calls from 
Sample  12.8  in a module, and instantiate multiple copies in a design. However, 
since the counter value is stored in a C static, every instance shares a single value. 
If you need more than one instance of a module that calls C code, the C code needs 
to store its variables somewhere other than in static variables. A better way is to 
allocate storage, and pass a handle to it, along with the input and output signal 
values. Sample  12.9  shows a counter that stores the 7-bit count in the structure  c7 . 
This is overkill for a simple counter, but if you are creating a model for a larger 
device, you can build from this example.  

  Sample 12.8    Testbench for an 7-bit counter with static storage       

 Sample  12.8  shows a SystemVerilog program that imports and calls the C function 
for the 7-bit counter.   
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 The routine  counter7_new  constructs the counter instance. This returns a 
 chandle  that must be passed into future calls to  counter7 . The counter value is 
stored in a struct of type  c7 . The function  counter7_new  calls  malloc  to allocate 
the struct, and casts the result into a local pointer  c . 

 The C code uses the PLI task  io_printf  to display debug messages. The 
routine is helpful when you are debugging C and SystemVerilog code side-by-side 
as it writes to the same outputs, including log files, as  $display , including 
the simulator’s log fi le. The routine is defi ned in  veriuser.h . 

 The testbench for this counter in Sample  12.10  differs from the static one in 
several ways. First, the counter must be constructed before it can be used. Next, the 
counter is called on a clock edge, rather than calling it in-line with the stimulus. For 
simplicity, the counter is invoked when the clock goes high, and stimulus is applied 
when the clock goes low, to avoid any race conditions.   

  Sample 12.9    Counter routine using instance storage        
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    12.2.3   Representation of Packed Values 

 The string " DPI-C " 1  specifi es that you are using the canonical representation of 
packed values. This representation stores a SystemVerilog variable as a C array of 
one or more elements. A 2-state variable is stored using the type  svBitVecVal . 
A 2-state array is stored with multiple elements of this type. 

  Sample 12.10    Testbench for an 7-bit counter with per-instance storage       

   1     Early versions of the LRM used “DPI” but this is now obsolete and should not be used.  
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 For performance reasons. the SystemVerilog simulator may not mask the 
upper bits after calling a DPI routine, and so the SystemVerilog variable could be 
corrupted. Make sure your C code treats these values properly. 

 If you need to convert between bits and words, use the macro  SV_PACKED_
DATA_NELEMS . For example, to convert 40 bits to two 32-bit words (as seen in 
Fig.  12.1 ),  use SV_PACKED_DATA_NELEMS(40) .   

    12.2.4   4-State Values 

 Each 4-state bit in SystemVerilog is stored in the simulator using two bits known as 
 aval  and  bval , as shown in Table  12.2   

39:32Unused
31:0

  Fig. 12.1    Storage of a 40-bit 2-state variable       

   Table 12.2    4-state bit encoding   

  4-state value    bval    aval  

 0  0  0 
 1  0  1 
 Z  1  0 
 X  1  1 

 A single bit 4-state variable, such as  logic f , is stored in an unsigned byte, with 
the  aval  bit stored in the least signifi cant bit, and the  bval  in the next higher bit. 
So the value  1'b0  is seen as 0x0 in C,  1'b1  is 0x1,  1'bz  is 0x2, and  1'bx  is 0x3. 

 A 4-state vector such as  logic [31:0] lword  is stored using pairs of 32 bits, 
 svLogicVecVal , which contains the  aval  and  bval  bits as shown in Figure  12.2 . 
The 32-bit variable  lword  is stored in a single  svLogicVecVal . Variables wider 
than 32-bits are stored in multiple  svLogicVecVal  elements, with the fi rst ele-
ment contains the 32 least signifi cant bits, the next element contains the next 32 
bits, up to the most signifi cant bits. A 40-bit  logic  variable is stored as one 
 svLogicVecVal  for the least signifi cant 32 bits, and a second for the upper 8 bits 
(Fig.  12.2 ). The unused 24-bits in this upper value are undetermined, and you are 
responsible for masking or extending the sign bit, as needed. The  svLogicVecVal  
type is equivalent to  s_vpi_vecval , which is used to represent 4-state types such 
as  logic  in the VPI.  

 



42512.2 Connecting to a Simple C Routine

     Beware of arguments declared without bit subscripts or those 
declared with a single bit. An argument declared as  input 
logic  a is stored in an  unsigned char . The argument  input 
logic [0:0] b  is  svLogicVecVal , even though it contains 
only a single bit. 

 Sample  12.11  shows the import statements for a 4-state counter. The only difference 
from Sample  12.10  is that the  bit  types are now  logic .  

bval 39:32Unused

bval 31:0
aval 31:0

aval 39:32Unused

  Fig. 12.2    Storage of a 40-bit 4-state variable       

  Sample 12.11    Testbench for counter that checks for Z or X values       

 The counter previously shown in Sample  12.9  assumes all the inputs are 2-state. 
Sample  12.12  extends this code to check for Z and X values on  reset, load , and  i . 
The actual count is still kept as a 2-state value.  
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 If you want to force the simulation to terminate cleanly because of a condi-
tion found in an imported routine, you can call the VPI routine  vpi_
control(vpiFinish,  0) . This routine and constant are defi ned in the include fi le 
 vpi_user.h . The value  vpiFinish  tells the simulator to execute a  $fi nish  after 
your imported routine returns.  

    12.2.5   Converting from 2-State to 4-State 

 If you have a DPI application that works with 2-state types and you want to convert 
it to work with 4-state types, follow the following guidelines. 

 On the SystemVerilog side, change the import declaration from using 2-state 
types such as  bit  and  int  to 4-state types such as  logic  and  integer . Make sure 
you are using 4-state variables in the function call. 

 On the C side, switch the argument declarations from  svBitVecVal  to  svLog-
icVecVal . Any reference to the arguments will have to use the . aval  suffi x to 

  Sample 12.12    Counter routine that checks for Z and X values        
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correctly access the data. When you read from a 4-state variable, check the  bval  
bits to see if there are any Z or X values. When you write to a 4-state variable, clear 
the  bval  bits unless you need to write Z or X values.   

    12.3   Connecting to C++ 

 You can use the DPI to connect routines written in C or C++ to SystemVerilog. 
There are several ways your C++ code can communicate using the DPI, depending 
on your model’s level of abstraction. 

    12.3.1   The Counter in C++ 

 Sample  12.13  shows a C++ class for the 7-bit counter, with 2-state inputs. It con-
nects to the SystemVerilog testbench in Sample  12.10  and the C++ wrapper code in 
Sample  12.14 .   

  Sample 12.13    Counter class        
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    12.3.2   Static Methods 

 The DPI can only call a C or C++ function that is known at link time. As a result, 
your SystemVerilog code cannot call a C++ routine in an object as the object does 
not exist when the linker runs. 

 So what if you need to call a method in a C++ class? The solution, as shown in 
Sample  12.14 , is to create a function with a fi xed address, that then can communi-
cate with the C++ dynamic objects and methods. The fi rst routine,  counter7_new , 
constructs an object for the counter and returns a handle to the object. The second 
static routine,  counter7 , calls the C++ method that performs the counter logic, 
using the object handle.  

  Sample 12.14    Static methods and linkage       

 The  extern “C”  code tells the C++ compiler that the external information 
sent to the linker should use C calling conventions and not perform name mangling. 
You can put this before each routine that is called by SystemVerilog, or put  extern 
"C" { ... }  around a set of methods. 

 From the testbench point of view, the C++ counter looks the same as the counter 
that stored the value in per-instance storage, shown in Sample  12.9 , so you can use 
the same testbench, Sample  12.10 , for both.  

    12.3.3   Communicating with a Transaction Level C++ Model 

 The previous C / C++ code examples were low-level models that communicated with 
the SystemVerilog at the signal level. This is not effi cient; for example the counter is 
called every clock cycle, even if the data or control inputs have not changed. When 
you create models for complex devices such as processors and networking devices, 
communicate with them at the transaction level for faster simulations. 
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 The C++ counter model in Sample  12.15  has a transaction-level interface, 
communicating with methods instead of signals and a clock.  

  Sample 12.15    C++ counter communicating with methods       

 The dynamic C++ methods such as  reset, load , and  count  are wrapped in 
static methods that use the object handle, passed from SystemVerilog, as shown in 
Sample  12.16 .  
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 The OOP interface for the transaction level counter is carried up to the testbench. 
Sample  12.17  has the SystemVerilog import statements and a class to wrap the C++ 
object. This allows you to hide the C++ handle inside the class. 

 Note that the  counter7_get()  function returns an  int  (32-bit, signed) rather 
than  bit [6:0] , as the latter would require returning a pointer to a  svBitVecVal , as 
shown in Table  12.1 . An imported function can not return a pointer. It can only return 
a value of type  void, byte, shortint, int, longint, real, shortreal, 
chandle , and  string , plus single bit values of type  bit  and  logic .    

  Sample 12.16    Static wrapper for C++ transaction level counter        
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  Sample 12.17    Testbench for C++ model using methods          
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    12.4   Simple Array Sharing 

 So far you have seen examples of passing scalar and vectors between SystemVerilog 
and C. A typical C model might read an array of values, perform some computation, 
and return another array with the results. 

    12.4.1   Single Dimension Arrays - 2-State 

 Sample  12.18  shows a routine that computes the fi rst 20 values in the Fibonacci 
series. It is called by the SystemVerilog code in Sample  12.19 .  

  Sample 12.18    C routine to compute Fibonacci series       

 Note that in C, you could have alternatively declared the argument as a pointer, 
* data  or an array,  data[20] . In this example, they are interchangeable.  
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 Notice that the array of Fibonacci values is allocated and stored in SystemVerilog, 
even though it is calculated in C. There is no way to allocate an array in C and refer-
ence it in SystemVerilog.  

    12.4.2   Single Dimension Arrays - 4-State 

 Sample  12.20  shows the Fibonacci C routine for a 4-state array with the testbench 
in Sample  12.21 .   

  Sample 12.19    Testbench for Fibonacci routine       

  Sample 12.20    C routine to compute Fibonacci series with 4-state array       

  Sample 12.21    Testbench for Fibonacci routine with 4-state array       

 Section  12.2.5  describes how to convert a 2-state application to 4-state.   
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    12.5   Open arrays 

 When sharing arrays between SystemVerilog and C, you have two options. For the 
fastest simulations, you can reverse-engineer the layout of the elements in System-
Verilog, and write your C code to use this mapping. This approach is fragile, 
meaning that you will have to rewrite and debug your C code if any of the array 
sizes change. A more robust approach is to use “open arrays”, and their associated 
SystemVerilog routines to manipulate them. These allow you to write generic C 
routines that can operate on any size array. 

    12.5.1   Basic Open Array 

 Sample  12.22  and  12.23  show how to pass a simple array between SystemVerilog 
and C with open arrays. Use the empty square brackets  []  in the SystemVerilog 
 import  statement to specify that you are passing an open array.  

  Sample 12.22    Testbench code calling a C routine with an open array       

 Your C code references the open array with a handle of type  svOpenArray-
Handle . This points to a structure with information about the array such as the 
declared word range. You can locate the actual array elements with calls such as 
 svGetArrayPtr . Note that  svSize()  is an open array query method, as described 
in the next section.   

  Sample 12.23    C code using a basic open array       
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    12.5.2   Open Array Methods 

 There are many DPI methods to access their contents and ranges, as defi ned in 
 svdpi.h . These only work with open array handles declared as  svOpenArray-
Handle , not with pointers such as  svBitVecVal  or  svLogicVecVal . The 
methods in Table  12.3  give you information about the size of an open array.  

   Table 12.4    Open array locator functions   

  Function    Returns pointer to : 

  void *svGetArrayPtr(h)   storage for the entire array 
  void *svGetArrElemPtr(h, i1, ...)   an element in the array 
  void *svGetArrElemPtr1(h, i1)   an element in a 1-D array 
  void *svGetArrElemPtr2(h, i1, i2)   an element in a 2-D array 
  void *svGetArrElemPtr3(h, i1, i2, i3)   an element in a 3-D array 

   Table 12.3    Open array query functions   

  function    Description  

  int svLeft(h, d)   Left bound for dimension d 
  int svRight(h, d)   Right bound for dimension d 
  int svLow(h, d)   Low bound for dimension d 
  int svHigh(h, d)   High bound for dimension d 
  int svIncrement(h, d)   If left >= right, 1, else −1 
  int svSize(h, d)   Number of elements in dimension d: svHigh−svLow+1 
  int svDimensions(h)   Number of dimensions in open array 
  int svSizeOfArray(h)   Total size of array in bytes 

 In Table  12.3 , the variable  h  is a  svOpenArrayHandle  and  d  is an  int . The 
dimensions are numbered starting with  d=1 . 

 The functions in Table  12.4  return the locations of the C storage for the entire 
array or a single element.   

    12.5.3   Passing Unsized Open Arrays 

 Sample  12.24  calls C code with a 2-dimensional array. The C code uses the  svLow  
and  svHigh  methods to fi nd the array ranges, which, in this example, don’t follow 
the usual 0..size-1.  
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 This calls the C code in Sample  12.25  that reads the array using the open array 
methods. The routine  svLow(handle, dimension)  returns the lowest index 
number for the specifi ed dimension. So  svLow(h,1)  returns 1 for the array declared 
with the range [6:1]. Likewise,  svHigh(h, 1)  returns 6. You should use  svLow  
and  svHigh  with C  for  loops. 

 The methods  svLeft  and  svRight  return the left and right index from the array 
declaration, 6 and 1 respectively for the range [6:1]. At the center of Sample  12.25 , the 
call  svGetArrElemPtr2  returns a pointer to an element in a two dimensional array.   

  Sample 12.24    Testbench calling C code with multi-dimensional open array       

  Sample 12.25    C code with multi-dimensional open array       

    12.5.4   Packed Open Arrays in DPI 

 An open array in the DPI is treated as having a single packed dimension and one or 
more unpacked dimensions. You can pass an array with multiple packed dimen-
sions, as long as they pack into an element that is the same size as a single element 
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 Notice that the C code in Sample  12.27  prints a 64-bit value using % llx , and 
casts the result from  svGetArrayElemPtr1  to  long long int .   

    12.6   Sharing Composite Types 

 By this point you may wonder how to pass objects between SystemVerilog and C. 
The layout of class properties does not match between the two languages, so you 
cannot share objects directly. Instead, you must create similar structures on each 

  Sample 12.27    C code using packed open arrays       

  Sample 12.26    Testbench for packed open arrays       

of the formal argument. For example, if you have the formal argument  bit[63:0] 
b64[]  in the  import  statement, you could pass in the actual argument  bit [1:0]
[0:3][6:−1] bpack [9:1] . Sample  12.26  shows the SystemVerilog code with 
packed open arrays.   
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side, plus pack and unpack methods to convert between the two formats. Once you 
have all this in place, you can share composite types. 

    12.6.1   Passing Structures Between SystemVerilog and C 

 The following example shares a simple structure for a pixel made of three bytes 
packed into a word. Sample  12.28  shows the C structure. Notice that C treats a  char  
as signed variable, which can give you unexpected results, so the structure marks 
the char as unsigned. The bytes are in reverse order from the SystemVerilog because 
this code was written for a Intel x86 processor that is little-endian, which means that 
the least signifi cant byte is stored at a lower address than the most signifi cant. A Sun 
SPARC is big endian, so the bytes are stored in the same order as in SystemVerilog: 
 r, g, b .  

  Sample 12.28    C code to share a structure       

 The SystemVerilog testbench in Sample  12.29  has a packed struct that holds a 
single pixel, and class to encapsulate the pixel operations. The  RGB_T  struct is 
packed so SystemVerilog will store the bytes in consecutive locations. Without the 
 packed  modifi er, each 8-bit value would be stored in a separate word.   
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    12.6.2   Passing Strings Between SystemVerilog and C 

 Using the DPI, you can pass strings from C back to SystemVerilog. You might need 
to pass a string for the symbolic value of a structure, or get a string representing the 
internal state of your C code for debug. 

 The easiest way to pass a string from C to SystemVerilog is for your C function 
to return a pointer to a static string as shown in Sample  12.30 . The string must be 

  Sample 12.29    Testbench for sharing structure        
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declared as  static  in C, and not as a local string. Non-static variables are stored 
on the stack and are reclaimed when the function returns.  

  Sample 12.30    Returning a string from C       

 A danger with static storage is that multiple concurrent calls could end up 
sharing storage. For example, a SystemVerilog  $display  statement that is printing 
several pixels might call the above  print  routine multiple times. Depending on 
how the SystemVerilog compiler orders these calls, later calls to  print()  could 
overwrite results from earlier calls, unless the SystemVerilog compiler makes a 
copy of the string. Note that a call to an imported routine can never be interrupted 
by the SystemVerilog scheduler. Sample  12.31  stores the strings in a heap to support 
concurrent calls.    

  Sample 12.31    Returning a string from a heap in C       

    12.7   Pure and Context Imported Methods 

 Imported methods are classifi ed as  pure, context , or generic. A  pure  function 
calculates its output strictly based on its inputs, with no outside interactions. 
Specifi cally, a  pure  function does not access any global or static variables, perform 
any fi le operations, or interact with anything outside the function such as the operating 
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system, processes, shared memory, sockets, etc. The SystemVerilog compiler may 
optimize away calls to a  pure  function if the result is not needed, or replace the call 
with the results from a previous call with the same arguments. The  factorial  
function in Sample  12.5 , and the  sin  function in  12.6  are both  pure  functions as 
their result is only based on their inputs. Sample  12.32  shows how to import a pure 
function.  

  Sample 12.32    Importing a pure function       

  Sample 12.33    Imported context tasks       

 An imported routine may need to know the context of where it is called so it can 
call a PLI TF, ACC, or VPI methods, or a SystemVerilog task that has been exported. 
Use the  context  attribute for these methods as shown in Sample  12.33 .  

 An imported routine may use global storage, so it is not  pure , but might not have 
any PLI references, so it does not need the overhead of a  context  routine. 
Sutherland (2004) uses the term “generic” for these methods as the SystemVerilog 
LRM does not have a specifi c name. By default, an imported routine is generic, as 
are many of the examples in this chapter. 

 There is overhead invoking a  context  imported routine as the simulator needs 
to record the calling context, so only declare a routine as  context  if needed. On the 
other hand, if a generic imported routine calls an exported task or a PLI routine that 
accesses SystemVerilog data objects, the simulator could crash. 

 A context-aware PLI routine is one that needs to know where it was called from 
so that it can access information relative to that location.  

    12.8   Communicating from C to SystemVerilog 

 The examples so far have shown you how to call C code from your SystemVerilog 
models. The DPI also allows you to call SystemVerilog routines from C code. The 
SystemVerilog routine can be a simple task to record the result from an operation 
in C, or a time-consuming task representing part of a hardware model. 

    12.8.1   A simple Exported Function 

 Sample  12.34  shows a module that imports a context function, and exports a System-
Verilog function.  
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     The  export  declaration in Sample  12.34  looks naked because 
the LRM forbids putting a return value declaration or any argu-
ments. You can’t even give the usual empty parentheses. This 
information in the  export  declaration would duplicate the 

information in the function declaration at the end of the module and could thus 
become out of sync if you ever changed the function. 

 Sample  12.35  shows the C code that calls the exported function.  

  Sample 12.34    Exporting a SystemVerilog function       

  Sample 12.36    Output from simple export       

  Sample 12.35    Calling an exported SystemVerilog function from C       

 This example prints the line from the C code, followed by the  $display  output 
from the SystemVerilog, as shown in Sample  12.36 .   

    12.8.2   C function Calling SystemVerilog Function 

 While the majority of your testbench should be in SystemVerilog, you may have 
legacy testbenches in C or other languages, or applications that you want to reuse. 
This section creates a SystemVerilog memory model that is stimulated by C code 
that reads transactions from an external fi le. 

 The fi rst version of the memory model, shown in Sample  12.38  and  12.37 , 
is coded with just functions, so everything runs in zero time. The C code in 
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Sample  12.37  opens the fi le, reads a command, and calls the exported function. 
Error checking has been removed for compactness.  

  Sample 12.37    C code to read simple command fi le and call exported function       

 The SystemVerilog code calls the C task  read_fi le  which opens a fi le. The only 
command in the fi le sets the memory size, so the C code calls an exported 
function.  

  Sample 12.38    SystemVerilog module for simple memory model       
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 Notice that in Sample  12.38 , the  export  statement does not have any arguments 
as this information is already in the function declaration. 

 The command fi le is trivial, with one command to construct a memory with 100 
elements as shown in Sample  12.39  .  

  Sample 12.39    Command fi le for simple memory model       

    12.8.3   C Task Calling SystemVerilog Task 

 A real memory model has operations such as read and write that consume time, and 
thus must be modeled with tasks. 

 Sample  12.40  shows the SystemVerilog code for the second version of the memory 
model. It has several improvements compared to Sample  12.38 . There are two new 
tasks,  mem_read  and  mem_write , which respectively take 20ns and 10ns to com-
plete. The imported routine  read_fi le  is now a SystemVerilog task as it is calling 
other tasks that consume time. The  import  statement now specifi es that  read_fi le  is 
a context task, as the simulator needs to create a separate stack when it is called.  

  Sample 12.40    SystemVerilog module for memory model with exported tasks       
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 The C code in Sample  12.41  primarily expands the case statement that 
decodes commands and calls the exported tasks, which are declared as  extern 
int  according to the LRM. 2   

  Sample 12.41    C code to read command fi le and call exported function       

 The command fi le in Sample  12.42  has new commands that write two locations, 
and then reads back one of them, and includes the expected value.   

   2     VCS declared exported tasks as void functions in C.  
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    12.8.4   Calling Methods in Objects 

 You can export SystemVerilog methods, except for those defi ned inside a class. This 
restriction is similar to the restriction of importing static C methods, as shown in 
Section  12.3.2  as objects do not exist when SystemVerilog elaborates your code. 
The solution is to pass a reference to the object between the SystemVerilog and C 
code. However, unlike a C pointer, a SystemVerilog handle cannot be passed through 
the DPI. You can instead have an array of handles, and pass the array index between 
the two languages. 

 The following examples build on the previous versions of the memory. The 
SystemVerilog code in Sample  12.44  has a class that encapsulates the memory. Now 
you can have multiple memories, each in a separate object. The command fi le in 
Sample  12.43  creates two memories, M0, and M1. Then it performs several writes 
to initialized locations in both memories, and lastly tries to read back the values. 
Notice that location 12 is used for both memories.  

  Sample 12.42    Command fi le for simple memory model       

  Sample 12.43    Command fi le for exported methods with OOP memories       

 The SystemVerilog code in Sample  12.44  constructs a new object for every  M  
command in the fi le. The exported function  mem_build  calls the  Memory  construc-
tor. It then stores the handle to the  Memory  object in a SystemVerilog queue, and 
returns the queue index,  idx , to the C code as shown in Sample  12.45 . The handles 
are stored in a queue so you can dynamically add new memories. The exported tasks 
 mem_read  and  mem_write  now have an additional argument, the index of the 
memory handle in the queue.    
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  Sample 12.44    SystemVerilog module with memory model class        



448 12 Interfacing with C/C++

  Sample 12.45    C code to call exported tasks with OOP memory        
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    12.8.5   The Meaning of Context 

 The context of an imported routine is the location where it was defi ned, such as 
 $unit , module, program, or package scope, just like a normal SystemVerilog 
routine. If you import a routine in two different scopes, the corresponding C code 
executes in the context of where the  import  statement occurred. This is similar to 
defi ning a SystemVerilog  run()  task in each of two separate modules. Each task 
accesses variables in its own module, with no ambiguity. 

 Sample  12.46  shows that if you add a second module to Sample  12.34  that 
imports the same C code and exports its own function, the C routine will call different 
SystemVerilog methods, depending on the context of the import and export 
statements.  

  Sample 12.46    Second module for simple export example       

  Sample 12.47    Output from simple example with two modules       

 The output in Sample  12.47  shows that one C routine calls two separate 
SystemVerilog methods, depending on where the C routine was called.   
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    12.8.6   Setting the Scope for an Imported Routine 

 Just as your SystemVerilog code can call a routine in the local scope, an imported C 
routine can call a routine outside its default context. Use the routine  svGetScope  to 
get a handle to the current scope, and then use that handle in a call to  svGetScope  
to make the C code think it is inside another context. Sample  12.48  shows the C code 
for two methods. The fi rst,  save_my_scope( ) , saves the scope of where it was 
called from the SystemVerilog side. The second routine,  c_display() , sets its 
scope to the saved one, prints a message, then calls your function,  sv_display() .  

  Sample 12.48    C code getting and setting context       

 The C code calls  svGetNameFromScope()  that returns a string of the current 
scope. The scope is printed twice, once with the scope where the C code was fi rst 
called from, and again with the scope that was previously saved. The routine 
 svGetScopeFromName()  takes a string with a SystemVerilog scope and returns a 
pointer to a  svScope  handle that can be used with  svSetScope() . 

 In the SystemVerilog code in Sample  12.49 , the fi rst module,  block , calls a C 
routine that saves the context. When the module  top  calls  c_display() , the 
routine sets scope back to  block , and so it calls the  sv_display()  routine in 
the  block  module, not the  top  module.  
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 This produces the output shown in Sample  12.50 .  

  Sample 12.49    Modules calling methods that get and set context       

  Sample 12.50    Output from svSetScope code       

 You could use this concept of scope to allow a C model to know where it was 
instantiated from, and differentiate each instance. For example, a memory model 
may be instantiated several times, and needs to allocate unique storage for every 
instance.   
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    12.9   Connecting Other Languages 

 This chapter has shown the DPI working with C and C++. With a little work, you 
can connect other languages. The easiest way is to call the Verilog  $system()  task. 
If you need the return value from the command, use the Unix  system()  function 
and the  WEXITSTATUS  macro. The SystemVerilog code in Sample  12.51  calls a 
C wrapper for  system() .  

  Sample 12.51    SystemVerilog code calling C wrapper for Perl       

 Sample  12.52  is the C wrapper that calls system ()  and translates the return value.  

  Sample 12.52    C wrapper for Perl script       

 Sample  12.53  is a Perl script that prints a message and returns a value.  

  Sample 12.53    Perl script called from C and SystemVerilog       

 Now you can run the Unix command in Sample  12.54  to run the simulation and 
call the  hello.pl  script.   
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    12.10   Conclusion 

 The Direct Programing Interface allows you to call C routines as if they are just 
another SystemVerilog routine, passing SystemVerilog types directly into C. This 
has less overhead than the PLI, which builds argument lists, and always has to keep 
track of the calling context, not to mention the complexity of having up to four 
C routines for every system task. 

 Additionally, with the DPI, your C code can call SystemVerilog routines, allowing 
external applications to control simulation. With the PLI you would need trigger 
variables and more argument lists, and you have to worry about subtle bugs from 
multiple calls to time-consuming tasks. 

 The most difficult part of the DPI is mapping SystemVerilog types to C, 
especially if you have structures and classes that are shared between the two 
languages. If you can master this problem, you can connect almost any application 
to SystemVerilog.  

    12.11   Exercises 

     1.    Create a C function,  shift_c , that has two input arguments: a 32-bit unsigned 
input value  i  and an integer for the shift amount  n . The input  i  is shifted  n  
places. When  n  is positive, values are shifted left, when  n  is negative, shifted 
right, and when  n  is 0, no shift is performed. The function returns the shifted 
value. Create a SystemVerilog module that calls the C function and tests each 
feature. Provide the output.  

    2.    Expand Exercise 1 to add a third argument to  shift_c , a load fl ag  ld . When  ld  
is true,  i  is shifted by  n  places and then loaded into an internal 32-bit register. 
When  ld  is false, the register is shifted  n  places. The function returns the value 
of the register after these operations. Create a SystemVerilog module that calls 
the C function and tests each feature. Provide the output.  

    3.    Expand Exercise 2 to create multiple instances of the  shift_c  function. Each 
instance in C needs a unique identifi er, so use the address where the internal 
register is stored. Print this address along with the arguments when the function 
 shift_c  is called. Instantiate the function twice, and call each instance twice. 
Provide the output.  

  Sample 12.54    VCS command line to run Perl script        
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    4.    Expand the C code from Exercise 3 to display the total number of times the 
 shift_c  function has been called, even if the function is instantiated more 
than once.  

    5.    Expand Exercise 4 to provide the ability to initialize the stored value at 
instantiation.  

    6.    Expand Exercise 5 to encapsulate the  shift_c  function in a class.  

    7.    For the code in Sample  12.24  and  12.25 , what is returned by the following open 
array methods?        

    8.    Modify Exercise 1 so that instead of shifting the value in C, the function calls 
an exported SystemVerilog void function named  shift_sv  that does the 
shifting.  

    9.    Expand Exercise 8 to call the SystemVerilog function  shift_sv  for two differ-
ent SystemVerilog objects as demonstrated in Section  12.8.4  of the text. Assume 
the SystemVerilog function  shift_build  has been exported to the C code.  

    10.    Expand Exercise 8 to:

   a.     Create a SystemVerilog class  Shift  containing the function  shift_sv  that 
stores the result in a class-level variable, and a  shift_print  function that 
displays the stored result.  

   b.    Defi ne and export SystemVerilog function  shift_build .  
   c.     Support the creation of multiple  Shift  objects with the handles to these 

objects stored in a queue.  
   d.     Create a testbench that constructs multiple  Shift  objects. Demonstrate that 

each object holds a separate result after performing calculations.              
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