A 2.9-to-4.0GHz Fractional-N Digital PLL with Bang-Bang Phase Detector and 560fsrms Integrated Jitter at 4.5mW Power

Davide Tasca, Marco Zanuso, Giovanni Marzin, <u>Salvatore Levantino</u>, Carlo Samori, Andrea L. Lacaita

Politecnico di Milano, Italy

- Wideband radios with **higher SNR** (e.g. WiMax)
- Lower absolute jitter of LO
- Both fractional spurs and phase noise contribute to jitter
- Target is efficiency (low jitter at low power)

- Low spur and low noise require TDC with high resolution and linearity
- High-performance TDCs burn large power

Can we use a single-bit TDC?

Integer-N PLL with 1b-TDC

The time average of e[k] accurately and linearly measures ∆t

Is Fractional-N PLL with 1b-TDC feasible?

 Divider dithering would produce ∆t much larger than thermal component

Introduction of Fine Fractional-N Divider

How can we achieve 10b equivalent resolution in a fractional-N divider?

Proposed Architecture

Proposed Architecture (cont'd)

Range Adaptation of Controllable Delay

Correct Interpolation of Phase Ramp

Proposed Architecture with Gain Estimation

Controllable Delay Implementation

Segmented Implementation

Dual-Modulus N/(N+0.5) Divider

Phase Mismatch Impairments

- Unwanted frequency modulation
- E.g. 10% mismatch produces –20dBc spur

Background Mismatch Correction

Same correction for capacitor mismatches

Circuit details

Circuit Design: Feedback Path

- Differential logic for better supply rejection
- Smaller area/higher power consumption

Circuit Design: Forward Path

- Proportional/Integral filter with 1st-order $\Delta\Sigma$
- 5b-DAC (with 1st-order RC filter) driving a VCO

Implemented Synthesizer

Die Photograph

- 65nm CMOS
- Active area:
 0.22mm²
- Chip area: 1.0mm²
- Power: 4.5mW
- Supply voltage:
 1.2V

Measured Jitter with Out-of-Band Spurs

Mismatch Correction

- Worst-case fractional spurs are in band
- Phase mismatch correction provides 22-dB spur reduction

Measured Jitter with In-Band Spur at 100kHz

Measured Convergence of LMS Coefficients

IEEE International Solid-State Circuits Conference

- 1.25 Mb/s bit rate (BT = 0.5) with 300kHz PLL BW
- Demonstrates direct digital PM with bang-bang PLL

Performance Summary

	Borremans ISSCC '10	Ravi VLSI '10	Hsu ISSCC '08	Temporiti JSSC 9/04	This work
Architecture	Digital	Digital	Digital	Analog	Digital
Reference (MHz)	N/A	40	50	35	40
Output (GHz)	5-12	9.2-12	3.67	2.1	2.9-4.0
Tuning Range	82.3%	26.4%	N/A	N/A	31.9%
RMS Jitter (fs) min-max	560* - N/A	597* - N/A	300* - N/A	426* - 426	400* - 560
Bandwidth (kHz)	500	500	500	700	312
Out-of-band Fract. (dBc)	-48 (2MHz)	N/A	-53 (1MHz)	N/A	-53 (1MHz)
In-band Fract. (dBc)	N/A	N/A	-42	-60	-42
Ref. Spur (dBc)	-56	N/A	-65	N/A	-72
Power Diss. (mW)	30	50	47	28	4.5
Area occup. (mm ²)	0.28	1.2	0.9	N/A	0.22
Process (nm)	40	90	130	180	65

*Jitter measured when fractional spurs fall out of band

Conclusions

- Low-power low-noise digital ΔΣ fractional-N frequency synthesizer is achieved with
 - elimination of power-hungry multi-bit TDC
 - introduction of a 10b segmented fractional-N divider
 - use of digital adaptation of delay range and digital correction of mismatches in background
- First demonstration of high-performance bangbang fractional-N PLL with digital modulation capability

<-39dBc integrated noise at 4.5mW power