
How To Successfully Use Gated Clocking
in an

ASIC Design

Darren Jones

MIPS Technologies, Inc.

dj@mips.com

ABSTRACT

Gated clocking is a true silver bullet for hardware designers. Using this technique, engineers can
improve all three major performance metrics of a circuit: speed, area, and power. Unfortunately,
EDA tools have traditionally lacked support for gated clocks. These limitations have relegated
clock gating to the full-custom design community. However, new features in synthesis and static
timing analysis tools have brought gated clocking to mainstream ASIC designers.

This paper discusses the pitfalls that still exist to using gated clocks in an ASIC design.
Furthermore, it suggests methodologies and workarounds that can be used to avoid these
problems so that gated clocking can be used successfully. The paper explains how gated clocking
impacts the following areas: logic synthesis, static timing analysis (STA), automatic test-pattern
generation (ATPG), clock tree synthesis, and standard-cell library design.

SNUG Boston 2002 2 Successful Gated Clocking

1.0 Description of Problem
ASIC designers primarily use positive edge-triggered D flip flops to generate registers and/or
storage elements. These flip flops are clocked every cycle; if they need to hold their previous
value, a recirculating MUX circuit is typically used. Figure 1 shows this circuit.

Figure 1. Recirculating MUX Schematic

While this circuit is conceptually simple, it can be improved upon in several ways. Figure 2 shows
a functionally equivalent circuit using a gated clock. This circuit is higher performance because it
removes the MUX from the timing-critical data input to the flops. Removing these MUXes also
saves area. Finally, this circuit is lower power since the flops are not clocked in cycles they do not
need to be clocked.

NOTE: There are many possible ways of implementing gated clocking. However, most can be
generalized to the circuit in Figure 2.

Figure 2. Gated Clocking Schematic

The remainder of this paper uses this circuit as a basis for discussion, so a detailed explanation of
the logic is needed. In this circuit, the positive pulse of the clock signal is either enabled or
disabled by the gate signal. Thus, in any cycle when GATE is deasserted low, GCLK will remain
low and no positive edge will be propagated to the downstream flip flops. The transparent-low

CLK

GATE

D Q Q[MSB:LSB]

D[MSB:LSB]

0

1

D Q

GN

CLK

GCLK

GATE
GATE_PH2

D Q Q[MSB:LSB]D[MSB:LSB]

CLKlatch

CLKnand

SNUG Boston 2002 3 Successful Gated Clocking

latch is used to hold the gate stable over the positive pulse of CLK in order to prevent clock
glitching. In order to be glitch free, there is a setup and a hold requirement at the NAND gate.

Figure 3. Clock Glitch Setup Check

Figure 3 shows the waveform for analyzing setup time checks. In this case, GATE changes late in
the cycle. The setup requirement occurs at the positive edge of the clock at the NAND gate,
CLKnand. The setup check analysis must use the following timing:

• The clock path starts at CLK and ends at the NAND gate. The timing must be for delays of the
positive edge of the clock.

• The data path starts before GATE, which is itself generated from flip-flops and logic clocked by
the positive edge of CLK, goes through the latch (D->Q), and ends at the NAND gate. The timing
must be for either positive edge or negative edge of GATE, whichever is longer.

Note that in this analysis, the latch is open and therefore, can be thought of as simply a delay
element in the path. Ideally, this path would not be analyzed as a latch path.

Figure 4. Clock Glitch Hold Check

Figure 4 shows the waveform for analyzing hold time checks. In this case, GATE changes early in
the cycle, during the positive pulse of the clock. Since GATE_PH2 must be stable over the entire

CLK

GATE

GATE_PH2

GCLK

CLKlatch

CLKnand

SETUP CHECK

CLK

GATE

GATE_PH2

GCLK

CLKlatch

CLKnand

HOLD CHECK

SNUG Boston 2002 4 Successful Gated Clocking

positive pulse of the clock, it must have net positive hold time against CLKnand. There is a race
here because GATE_PH2 is also launched from the negative edge of the clock, which opens the
latch. The hold check analysis must therefore use the following timing:

• The clock timing path starts at CLK and ends at the NAND gate. The timing must be for delays
of the negative edge of the clock.

• The data timing path starts at CLK, goes through the latch (GN->Q), and ends at the NAND
gate. The timing must be for the negative edge of the clock to the latch and then for either positive
edge or negative edge of GATE_PH2, whichever is shorter.

It is advantageous if CLKlatch is a little later than CLKnand since this would give additional hold
time margin without impacting the setup check.

2.0 Gated Clocks and Synthesis
Synopsis synthesis tools do have clock glitch checks built in. But, they sometimes do not do the
correct analysis. However, the optimization algorithm is robust enough to overcome this problem
and still achieve optimal results. This section explains how all this works.

2.1 Enabling Clock Glitch Checking
First of all, you must enable clock glitch checks since they are disabled by default. To enable
clock glitch checks, issue the following command (TCL):

set_clock_gating_check -setup $setup_val -hold $hold_val

Where:
$setup_val is the amount of setup needed at the NAND gate on the data input to allow the

output to be glitch free.
$hold_val is the amount of hold time needed at the NAND gate to allow the output to be

glitch free.

NOTE: The above values should be proven using SPICE simulations.

2.2 Setup Time Checks
Synopsys tools (Design Compiler, Physical Compiler, and Primetime) recognize the latch in the
gating circuit and assume this is a latch path. The latch analysis algorithm divides the setup
analysis into two parts, which I call frontside and backside paths:

Frontside Path. This is the path in front of the latch. It includes all of the gating logic and ends at
the D input of the latch. It is a normal logic path included in the CLK path group.

Backside Path. This is the path in back of the latch. It starts at the latch output and ends at the
NAND gate. This path is a clock gating check path.

Synopsys’ latch analysis algorithm will first analyze the frontside path. It will borrow time across
the latch so that the frontside path can meet timing. Then, it analyzes the backside path given the

SNUG Boston 2002 5 Successful Gated Clocking

amount of borrowing it did on the frontside. What this tends to do is leave violations on the
backside path, even though the frontside path appears to be meeting timing.

While this algorithm does work well for generic latch-based designs, it is exactly the opposite of
what is needed for the clock gating circuit. Since the backside path is actually a clock glitch
check, it should take priority over the frontside path, which is a normal logic path. The analysis
should first time the backside path, then set the borrowed time to the maximum available time
such that there are no clock glitches. Then, the frontside path will correctly reflect the slack on the
entire path. This is exactly what you want, since the synthesis tool cannot synthesize any logic in
the backside path anyway.

In spite of the above analysis problems, the synthesis tools will try to improve the frontside path,
even if it appears to meet timing. Thanks to the latch optimization algorithm, the tool recognizes
that a failure in the backside path can be improved by optimizing the frontside path. However,
even this feature may not be enough to get correct results. In the cases where there is a failure on
both the frontside and backside paths, the total path failure (the sum of frontside failure and
backside failure), will be split into two parts. This will mask what may be one of the most critical
paths in the design and the tool may not select these paths for optimization since separately, they
do not appear to be the most critical paths.

You could use set_critical_range if your worst violation is small. However, this solution can
significantly increase synthesis runtimes. The recommended solution is to use
set_max_time_borrow to limit the amount of borrowing so that the backside path just meets
timing and all of the violation is seen on the frontside path. The exact command to use is given in
the next section.

2.3 Impact of Ideal Clocks
As the reader may recall, when an ideal clock is used, all clock endpoints are assumed to have
perfect skew, but the clock uncertainty is subtracted to account for skew. With the gated clock
circuit, you can see in Figure 2 that the clock to the latch and the NAND gate will be early when
compared to the clock of the flip-flops. Thus, paths ending at these latches will have a reduced
cycle time and require tighter timing than normal paths do.

The above problem does not impact the clock glitch hold check, since this path is a 0-cycle path.
However, it does impact the setup time optimization since by default, the tool will optimize for a
full cycle, not a reduced cycle.

The recommended workaround for this problem again uses set_max_time_borrow to limit the
amount of time that can be shifted to the frontside path to account for this reduced cycle time.
Combining this solution with the previous solution for the split paths gives the following
command:

set_max_time_borrow [expr $phase - $unc - $clkbufdelay - $dqdelay] \
[get_clock $clk]

Where:

SNUG Boston 2002 6 Successful Gated Clocking

$phase is the phase time of the negative phase of the clock.
$unc is the clock uncertainty at the latches
$clkbufdelay is the propagation delay for the posedge of the clock through clock buffering

that is downstream from the gating element, (including delay through the gating element)
$dqdelay is the propagation delay through the latch.

The phase time available for borrowing is reduced by three factors. First, clock uncertainty: there
is still uncertainty about when the clock will arrive at the NAND gate, although this uncertainty
may be less than the full-chip uncertainty. Second, the clock buffer delay: this factor is applied
due to the early clock effect described in this section. Third, the latch D->Q propagation delay:
this factor must be included because the delay through the latch itself is included in the backside
path and is not available for borrowing into the frontside path.

The above command forces synthesis to see the backside path just meet timing. At the same time,
it forces the frontside path to use all the available time in the reduced cycle.

2.4 Setup Time Check Reporting
One further ramification of the splitting of the gating path into frontside and backside paths is that
the setup time check appears at first glance to be incorrect. The following shows a report from
DesignCompiler for a sample backside setup clock gating check.

Startpoint: U_gate_ph2 (negative level-sensitive latch clocked by clk)
Endpoint: U_gclk_n (gating element for clock clk)
Path Group: clk
Path Type: max

Point Incr Path

clock clk (fall edge) 50.00 50.00
clock network delay (propagated) 12.00 62.00
time given to startpoint 21.00 83.00
U_gate_ph2/D (LATCHN) 0.00 83.00 r
U_gate_ph2/Q (LATCHN) 20.00 * 103.00 r
U_gclk_n/A (NAND2) 0.00 * 103.00 r
data arrival time 103.00

clock clk (rise edge) 100.00 100.00
clock network delay (propagated) 10.00 110.00
clock uncertainty -0.20 109.80
U_gclk_n/B (NAND2) 0.00 109.80 r
clock gating setup time 0.00 109.80
data required time 109.80

data required time 109.80
data arrival time -103.00

slack (MET) 6.80

This report shows the data path beginning at the falling edge of the latch clock. As was described
earlier, the correct setup analysis must start from the positive edge of the clock and propagate

SNUG Boston 2002 7 Successful Gated Clocking

through the gating logic and then through the latch is if it were transparent. In fact, this is what the
tool is doing. The following listing shows the report for the associated frontside latch setup path.

Startpoint: U_internal_sig1(rising edge-triggered flip-flop clocked by clk)
Endpoint: U_gate_ph2 (negative level-sensitive latch clocked by clk)
Path Group: clk
Path Type: max

Point Incr Path

clock clk (rise edge) 0.00 0.00
clock network delay (propagated) 10.00 10.00
U_internal_sig1/CLK (DFF) 0.00 10.00 r
U_internal_sig1/Q (DFF) 3.00 * 13.00 f
U_internal_sig3/Y (INV) 70.00 * 83.00 r
U_gate_ph2/D (LATCHN) 0.00 * 83.00 r
data arrival time 83.00

clock clk (fall edge) 50.00 50.00
clock network delay (propagated) 12.00 62.00
U_gate_ph2/GN (LATCHN) 0.00 62.00 f
time borrowed from endpoint 21.00 83.00
data required time 83.00

data required time 83.00
data arrival time -83.00

slack (MET) 0.00

As can be seen, this path does in fact start from the positive edge of the clock and arrives at the
input to the latch at time T=83. The backside analysis reproduces this path timing and shows time
T=83 at the latch input. It then propagates timing through the open latch correctly to the NAND
gate. The tool does a good job of obfuscating the true analysis, but it does in fact time the correct
path.

3.0 Gated Clocks and Primetime STA
Primetime uses similar algorithms to its synthesis brethren for analyzing clock glitches. Again,
these checks have to be enabled, since they are disabled by default:

set_clock_gating_check -setup $setup_val -hold $hold_val

More importantly, the problems addressed during synthesis must also be addressed during STA:

• STA does not have the analysis problem associated with ideal clocks as long as STA is run
with detailed actual clock network delays.

• STA does incorrectly divide the clock gate path into two separate paths, thus obscuring
potential critical paths.

• STA has a similar reporting deficiency for clock_glitch setup checks. However, as was true for

SNUG Boston 2002 8 Successful Gated Clocking

synthesis, STA does time the correct paths.

The problem in the second bullet must be addressed differently for STA than it was for synthesis.
In synthesis, we used estimated for clock timing. With STA, we have actual net delays, and so we
can correct the borrowing for each latch individually to be 100% accurate. However, the spirit of
the workaround is the same: use set_max_time_borrow to allow just enough time on the
backside path for glitch-free operation while forcing all available slack to the frontside path. Here
is the TCL code to use: (line numbering added for clarity)

1: set timing_include_available_borrow_in_slack true
2: set paths [get_timing_paths -group **clock_gating_default** \

-max_paths 10000]
3: foreach_in_collection path $paths {
4: set slack [get_attribute $path slack]
5: set tb [get_attribute $path time_lent_to_startpoint]
6: set stpt [get_attribute $path startpoint]
7: set_max_time_borrow [expr $tb + $slack] $stpt
8: }

As the reader may recall, by default, Primetime will only borrow enough time to exactly meet
timing. Thus, while a latch path may have lots of slack on the backside, the frontside is normally
reported as having 0 slack. From the timing reports, this makes it difficult to see if the path
actually has 0 slack, or if it has positive slack that is just not being reported. The command on
line1 allows Primetime to report positive slack for those paths that could borrow more time. This
is done because we are going to push slack to the frontside and we want it to report positive slack
instead of 0 slack.

After line2, $paths will contain a collection of all the clock gating paths. We will
set_max_time_borrow on each of these paths individually.

We want to push all slack from the backside clock_gating check to the frontside logic path. The
commands inside the loop get the backside slack and the time that was borrowed in order to get
this result. Then, it adjusts the maximum borrow time of the frontside path according to the slack.
Thus, if the clock_gating check was failing, this will reduce the available borrow time so that it
will pass. If the backside path was passing, it makes all of this slack available to the frontside
path. Accurate failures will now be lumped onto the frontside path.

4.0 Gated clocks and ATPG
ATPG is almost always one of the biggest concerns for ASIC designers when using gated clocks.
In reality, it is not a difficult problem to solve. It breaks down into two parts- enabling scan
testing, and optimizing ATPG results.

4.1 Enabling Scan Testing
The most important thing is to be able to run scan tests. For this, the scan chain must be clocked
when it is being shifted (when scan_enable is asserted). The easiest way to assure this is to
disable all gating elements when scan_enable is asserted. This amounts to an OR gate on the
GATE input, basically forcing GATE on when scan_enable is asserted.

SNUG Boston 2002 9 Successful Gated Clocking

This OR gate can be placed in front of the latch or behind the latch. If it is in front, then it looks
just like any other logic in front of the latch. If it is behind the latch, then there is one benefit and
one penalty. The benefit is that it adds extra hold time margin for the clock glitch hold check. It
does this by delaying the data signal, which helps the clock win the race.

The penalty for putting the OR gate behind the latch is that the scan_enable signal must then be
stable over phase1 of the clock, since it does not go through the latch. In practice this is not
difficult to guarantee. This should not impact performance, since scan is only run at relatively
slow speed.

NOTE: The OR gate itself does impact the setup path, but this is unavoidable. The choice of its
location in front of or behind the latch has no effect on the setup path, since during setup analysis
the latch is open and the OR gate will be in the path no matter which location is chosen.

4.2 Optimizing ATPG Results
Once you have forced clocks to run during scan shifting, the degree of coverage achieved is
largely dependent on your ATPG tool. Popular ATPG tools can handle gated clock circuits. This
means that they can properly model an unclocked flop and generate patterns which can detect
faults in the gating logic.

Using gated clocks does introduce one ATPG untestable fault: stuck-at-0 on the latch enable
input, GN. Since the latch is included purely for timing reasons, if it is stuck open, then the circuit
may still functionally pass, depending on timing. This is inherently untestable by scan test
patterns. However, since the latch is needed to guarantee hold time, it is a zero-cycle path which
may fail when the gate signal changes values early in a cycle. This makes faults of this nature
more likely to be detectable during slower-speed operation. Timing analysis can be run to prove
which faults will be detected and which will not affect proper operation of the circuit.

Even if your scan tool does not support gated clocking, there is a workaround. You can replace all
registers that use gated clocking with the recirculating MUX circuit just for ATPG. This
workaround relies on the fact that the circuit shown in Figure 1 is functionally equivalent to the
gated clocking circuit. Patterns which run on the recirculating MUX will also run on the gated
clock circuit. This solution is not as accurate as using a more advanced ATPG tool which directly
supports gated clocking, but it will generate legal patterns with decent coverage, if not perfect
coverage.

5.0 Gated Clocks & CTS tools
For some reason, most mainstream clock tree synthesis tools are relatively primitive and have
trouble achieving good skew even with vanilla non-gated clock trees. As one might imagine, there
will also be limitations when using a gated clock tree. Nonetheless, this section describes several
guidelines to follow. If your CTS tool can support all of these guidelines, you are home free. If it
cannot follow any of them, give up and do not use gated clocks. For most design teams, their CTS
tool will be somewhere in between these two extremes. Success has been achieved using popular
CTS tools and a little intelligent scripting.

SNUG Boston 2002 10 Successful Gated Clocking

Do Not Skew-match the Latch or NAND gate clock endpoints with the Flops. Most CTS
tools will automatically assume all clock endpoints should be skew-matched against all others.
This is not true for the clock gating circuit. The latch clock and the NAND gate clock will
necessarily be earlier than the flip-flop clocks and should not be skew-matched together.

Do Skew-match Latch and NAND gate clock endpoints against each other. The previous rule
is not meant to allow poor skew on the gating element clocks. You must still achieve good skew
on these endpoints, when taken as their own group.

Do Skew-match the gated flops with un-gated flops. Most designs using gated clocks will have
some logic which is not gated. Make sure that the CTS tool skew matches all of the flops: gated
and non-gated.

Place the Latch and the NAND gate close together. These two cells need to have the same
clock and have well-controlled delays on the nets between them. Placing them close together
helps to achieve these goals.

Route the Latch and the NAND gate on the same clock Subnet. There needs to be very tightly
controlled skew between these two cells. Achieving this is most easily accomplished by
connecting these two cells to the same physical wire.

Make the Clock Gating circuit the leaf level Clock Driver. As stated previously, the latch
clock is earlier than the clock to the flip-flops. How early it is may directly impact the maximum
frequency of the design. Thus, the clock gating circuit wants to be at the leaf level of the clock
tree. In other words, there should be an absolute minimum of clock buffering after the NAND
gate. This rule implies that the entire clock gating circuit should be duplicated, not just the
downstream buffers.

6.0 Gated Clocks & Cell Libraries
Now that you have read and understood the previous pitfalls, workarounds, and suggestions, there
is one final suggestion which can solve many of the above problems all at the same time. If your
standard cell library has a few strategic cells designed for clock gating, many of the previously
documented problems go away. The cells required can be divided into two groups- the front-end
gating cell and the backend clock driver.

The front-end gating cell is comprised of the latch and the NAND gate. In addition, to help ATPG,
we include an OR gate for enabling scan shifting. Figure 5 below shows the schematic for this, the
GCK cell:

SNUG Boston 2002 11 Successful Gated Clocking

Figure 5. GCK Cell

This cell must be designed such that it never generates clock glitches. It would have the following
timing arcs:

• Setup and hold time requirements at the GATE input relative to the positive edge of CLK.

• Setup time requirement at the SCAN_ENABLE input relative to the positive edge of CLK.

• Hold time requirement at the SCAN_ENABLE input relative to the negative edge of CLK.

• Delay from positive edge of CLK to the negative edge of GCLK_N.

• Delay from negative edge of CLK to the positive edge of GCLK_N.

The backend cell is a plain inverter used to invert GCLK_N to GCLK and drive downstream flip-
flops. This cell should have a large variety of drive strengths, since the drive strength selections
will largely determine how well skew can be matched. Furthermore, all of the backend cells
should be the same size and have the same IO pin locations. This effectively means that all cells
will be the size of the largest cell. The advantage of this is that it makes for easy swapping of these
cells for improving clock skew. Since there are relatively few of these cells in the design, their
size has little effect on overall chip size.

By having these two types of cells, you will see the following benefits:

• Clock gating checks are not necessary in synthesis and STA, since the clock is guaranteed to be
glitch free.

• The frontside path is seen as a regular cycle path by synthesis and STA due to the posedge
requirements on the gate signal.

• The ideal clock problem in synthesis can be addressed through a semi-customizeable synthesis
model for the front-end gating cell. You can artificially increase the setup time requirement by the
amount of clock insertion delay, thus squeezing the frontside path into a reduced cycle.

• Scan testing is enabled because the gating cell is always enabled when SCAN_ENABLE is
asserted.

D Q

GN

CLK

GATE

SCAN_ENABLE

GCLK_N

SNUG Boston 2002 12 Successful Gated Clocking

As you can see, these simple cells greatly simplify many of the problems inherent to clock gating.

7.0 Conclusions and Recommendations
Ten years ago, virtually no mainstream ASIC design tools supported gated clocking. Now,
Synopsys and other EDA companies have begun to address this design style. This paper showed
how to successfully navigate various stages of chip design to successfully integrate gated clocks
with your design.

While most tools do not by default do the correct thing, they can be directed to the correct
operation by a few intelligent scripts. Furthermore, a few strategic standard cells can also go a
long way toward alleviating the remaining tool limitations. Even though manual work is still
required, the benefits of gated clocking to performance, area, and power are well worth the effort
needed to implement them successfully.

8.0 Acknowledgments
It was Soumya Banerjee who suggested that my work on clock gating might be useful to SNUG
members.

Copyright(r) 2002, MIPS Technologies, Inc. All rights reserved.

