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Preface

Wireless networks and services are vital elements of daily life around the world.
Presently, there are close to 4.8 billion mobile subscribers and more than 8 billion
mobile connections (including machine-to-machine) in the world, and the numbers
are increasing at a very rapid pace. The revenue generated worldwide in 2015 for
providing mobile services exceeded US$1 trillion. It is expected that by 2020, there
will be more than 50 billion mobile connections; hence, there is a need to provide the
required resources for this anticipated phenomenal growth. However, the resources
(e.g., frequency spectrum, energy) are limited, which calls for innovative approaches
to improving efficiencies, managing complexities, providing quality, and ensuring
availability and security. It is of the utmost importance to meet the requirements
of new services in a cost-effective and efficient manner; their proliferation depends
on it.

The conventional approach is to formulate resource allocation in wireless net-
works as optimization problems that aim to maximize the goodput (e.g., throughput)
of networks or users while minimizing their badput (e.g., energy consumption,
interference). Many existing resource allocation schemes assume exact parameter
values and side information to achieve their objectives. However, their performance
is sensitive to the accuracy and availability of parameter values and other ancillary
information.

Such assumptions in many instances are unrealistic due to the ever increasing
number of wireless devices in the neighborhood and their mobility, as well as the
nonlinear and time-varying nature of propagation of electromagnetic waves, and
in some cases result in significant and unacceptable degradation of the quality of
service experienced by users. To deal with the undesirable side effects of such
simplifying and unrealistic assumptions, there is a need to introduce robustness
into resource allocation schemes that would be efficient and fair, with acceptable
complexity, cost, and overhead.

The nominal (i.e., no uncertainty) optimization problems in many cases are
not easy to solve in a straightforward manner because they are nondeterministic
polynomial-time and nonconvex. Introducing robustness in such problems is nor-
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vi Preface

mally done by way of introducing additional constraints that at times are stochastic
and nonlinear, which aggravates the problem even further. It is in this light that
developing practical schemes for the robust allocation of resources in wireless
networks is a formidable challenge.

This book represents an attempt to present the state of the art in current research
on this topic and to show that, in general, many existing techniques and methods
in robust allocation will be usable in future wireless networks. Another objective of
this book is to demonstrate that there is an urgent need to devise alternative schemes
to improve performance and avoid some of the very serious obstacles and limitations
pointed out in the literature. The book contains five chapters, which are described
briefly in what follows.

In Chapter 1, we explain why robust optimization theory is important in wireless
networks and how, in general, it can be applied for allocating resources in such
networks. We begin the chapter by presenting fundamental notions of wireless
communications relevant to the book and describe different types of resource
allocation problems, namely, network-centric (cooperative) and user-centric (com-
petitive) approaches. The objective of the cooperative approach is to maximize
the total network utility, whereas in the competitive approach, the goal of each
user is to maximize its own utility. We also show how to map a nominal (i.e.,
nonrobust) optimization problem into its robust counterpart. Finally, we explain the
implementation issues pertaining to robust optimization problems.

In Chapter 2, we cover robust cooperative transmit power allocation in wireless
networks, where the uncertain parameters are channel gains between secondary
users and primary access points. The objective of secondary users is to use the
frequency spectrum that belongs to the primary network subject to keep their
interference to the primary network below a given threshold while maximizing
their own social utility. We present the system model and formulate the robust
resource allocation problem using the concept of uncertainty region within which all
instances of uncertain parameter values are assumed to be confined. We also show
that by properly defining the uncertainty region, the computational complexity of
solving robust problems can be reduced to the level of nonrobust problems, develop
algorithms for trading off between throughput reduction and robustness, and devise
schemes to reduce signaling in robust solutions for distributed approaches.

In Chapter 3, we study robust noncooperative resource allocation where each
user competes with other users over utilizing the resources to maximize its own
utility. In doing so, we present a game-theoretic formulation of the problem and
discuss its solution where greedy, noncooperative, and rational users utilize the
available but noisy and uncertain side information to achieve their objectives. To
tackle uncertainty and improve the utility of each user, we apply worst-case robust
optimization in noncooperative games and present their analysis for allocating
resources in wireless networks. Specifically, via variational inequalities, we present
a systematic approach to securing the conditions for the existence and uniqueness
of the games’ equilibria, derive the gap between the utility values of nonrobust and
robust games, and present distributed algorithms for solving such games.
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In Chapter 4, we present a taxonomy of relaxation methods for solving noncon-
vex and intractable robust optimization problems for allocating resources in wireless
networks and provide several examples of such problems in existing and future
wireless networks. We also show how such problems can be solved. In particular,
we present cases in which uncertainty in channel state information (CSI) is assumed
to be within a given region, when only statistics of uncertainty in CSI are available,
or when no CSI is available to users, and we discuss the relevance of each case in
future wireless networks.

In Chapter 5, we present a brief overview of important features of future wireless
networks that will affect resource allocation; then we identify important problems
in robust resource allocation in such networks that can be tackled using the material
in Chapters 1, 2, 3, and 4.

We would like to acknowledge the contributions of the coauthors of our joint
papers on the topics discussed in this book. Our gratitude goes to Professor Mihaela
van der Schaar, Professor Ekram Hossain, Professor Paeiz Azmi, Dr. Hamid Saeedi,
Dr. Mehdi Rasti, and Dr. Mohammad Reza Javan for their invaluable help.

We would also like to express our deepest appreciation to our families, for their
understanding, support, encouragement, and sacrifices while this book was being
written. To them we dedicate our book.

Tehran, Iran Saeedeh Parsaeefard
Ahmad Reza Sharafat

Nader Mokari
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Table 1 Notations and Symbols

Notation Description

R Set of real numbers

RC Set of nonnegative real numbers

RCC Set of positive real numbers

R
n Set of n-dimensional real vectors

R
m�n Set of real m � n matrices

C Set of n-dimensional complex vectors

C
n Set of complex numbers

H
n Set of n � n complex Hermitian matrices

S
n Set of n � n symmetric matrices

S
n
C

Set of symmetric positive semidefinite matrices

S
n
CC

Set of symmetric positive definite matrices

.�/T Matrix or vector transpose

.�/� Matrix or vector conjugate

� Element-wise greater than or equal to for vectors

� Element-wise greater than for vectors

� Element-wise less than or equal to for vectors

� Element-wise less than for vectors

.�/H Complex Hermitian conjugate

tr.A/ Trace of A
�min.A/ Minimum eigenvalue of A
�max.A/ Maximum eigenvalue of A
�C.A/ maxf�max.A/; 0g
vec.A/ Vector obtained by stacking the column vector of A
In n � n identity matrix

diagfa1; � � � ; ang n � n diagonal matrix whose ith diagonal entry is az

k � k2 and k � k1 Euclidean norm and vector 1-norm, respectively

k � kF Matrix Frobenius norm

Ef�g Statistical expectation function

Prfg Probability function

exp.�/ Exponential function

j � j2 Magnitude squared for scalars or

element-wise magnitude squared for vectors

r Vector differential operator

rank.�/ Matrix rank

R.�/ Range of matrix

x � CN.y;Z/ Circularly symmetric complex Gaussian random vector

with mean y and covariance matrix Z
RefAg and ImfAg Real and imaginary parts of complex matrix A
det.A/ Determinant of A
˝ Kronecker product

ˇ Element-wise or dot product
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Table 2 Abbreviations

Abbreviation Definition

A/D Analog to digital

AF Amplify and forward

AGMA Arithmetic-geometric mean approximation

AP Access point

BA Bernstein approximation

BS Base station

BT Bounding techniques

BTI Bernstein-type inequality

CCT Charnes-Cooper transformation

CDF Cumulative distribution function

CDI Channel distribution information

CDMA Code division multiple access

CGP Complementary geometric programming

CoMP Coordinated multipoint

CRAN Cloud radio access networks

CRN Cognitive radio network

CSI Channel state information

CSMA/CA Carrier sense multiple access with collision avoidance

C-RAN Cloud radio access network

CoMP Coordinated multipoint

CVaR Conditional value at risk

D/A Digital to analog

D2D Device to device

DCA Difference of two concave functions approximation

DCP Difference of two concave functions programming

DF Decode and forward

DI Determinant inequality

DL Downlink

DSLAM Digital subscriber line access multiplexer

EF Epigraph form

EPEC Equilibrium program with equilibrium constraints

FDMA Frequency division multiple access

FSO Free space optics

5G Fifth generation

GNE Generalized Nash equilibrium

GP Geometric programming

GVI Generalized variational inequality

HetNet Heterogeneous wireless networks

IoE Internet of everything
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IoT Internet of things

IT Interference threshold

KKT Karush–Kuhn–Tucker

LDI-CGQF Large deviation inequality for complex Gaussian
quadratic forms

LMIs Linear matrix inequalities

LMMSE Linear minimum mean square error

LR Lagrangian relaxation

LTE-A Long term evolution-advanced

M2M Machine-to-machine communications

MI Markov’s inequality

MINLP Mixed-integer nonlinear program

MIMO Multiple-input multiple-output

MISO Multiple-input single-output

MOP Multiobjective optimization problem

MPEC Mathematical programs with equilibrium constraints

MRC Maximal ratio combining

MTC Machine-type communications

NA Norm approximation

NCP Nonlinear complementarity problem

NE Nash equilibrium

NFV Network functions virtualization

NMIMO Network multiple input multiple output

NLFP Nonlinear fractional programming

NNE Nominal Nash equilibrium

NOMA Nonorthogonal multiple access

NSE Nominal Stackelberg equilibrium

NSG Nominal Stackelberg game

NUM Network utility maximization

OFDMA Orthogonal frequency division multiple access

PBS Primary base station

pdf Probability density function

PU Primary user

QCQP Quadratically constrained quadratic program

QoS Quality of service

QVI Quasi-variational inequality

RA Relaxation algorithms

RF Radio frequency

RNE Robust Nash equilibrium

RSE Robust Stackelberg equilibrium

RSG Robust Stackelberg game

(continued)



xiv Abbreviations

Table 2 (continued)

Abbreviation Definition

SBS Secondary base station

SC Schur complement

SCA Successive convex approximation

SCALE Successive convex approximation for low complexity

SDMA Space division multiple access

SCMA Sparse code multiple access

SDN Software defined networking

SDP Semidefinite programming

SDR Semidefinite relaxation

SI System information

SIMO Single-input multiple-output

SINR Signal-to-interference-plus-noise ratio

SISO Single-input single-output
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SP S-procedure
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Chapter 1
Introduction

This chapter introduces the main concepts behind the application of robust opti-
mization theory to the allocation of resources in wireless networks. We begin by
presenting important fundamental notions of wireless communications relevant to
this book and proceed to show how the problem of robust allocation of resources
in wireless environments can be methodically formulated. We also show how to
simplify such problems and discuss different approaches and techniques to obtain
their solutions.

1.1 Motivation

The growing proliferation of new and often high-speed services in wireless networks
with inadequate and costly frequency spectra and other limited network resources,
which require time-varying and at times unpredictable ancillary information, such
as users’ locations and movements, calls for innovative schemes to significantly
improve the efficiency of data transmission in such networks. In doing so, one needs
to consider new paradigms in designing the structure and topology of networks,
new techniques in establishing communication links, new approaches to enhancing
security, and new algorithms for allocating available resources in an efficient and
fair manner.

A cellular network typically comprises multiple cells, where each cell is served
by an access point (AP) or a base station (BS). Users do not expect their
communications to be hampered by their movements within a cell or from one
cell to another irrespective of their speed or other relevant circumstances. Cellular
networks have evolved over time, with each generation surpassing its predecessor
in terms of novel services, spectral efficiency, and data rates, for example. The fifth
generation, expected to become operational by 2018–2019, is an exception in the

© Springer International Publishing AG 2017
S. Parsaeefard et al., Robust Resource Allocation in Future Wireless Networks,
DOI 10.1007/978-3-319-50389-9_1
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2 1 Introduction

Fig. 1.1 Multi-tier and heterogeneous wireless paradigms and networks

sense that it represents a radically different concept, that is, it is not an evolution of
fourth-generation cellular networks [1–5].

In cellular networks, a point-to-point link that carries information from a terminal
to its AP is called an uplink (UL), and a point-to-point link from an AP to a terminal
is called a downlink (DL). A broadcast link differs from a point-to point link in the
sense that the former is used to simultaneously transmit information to all users.
A relay node extends the reach of a link via either decode-and-forward (DF) or
amplify-and-forward (AF) schemes. To overcome some of the existing limitations
in available resources, and to provide more advanced services, other communication
modalities, such as peer-to-peer transmissions that do not rely on APs or BSs,
machine-type-communications (MTC), also called machine-to-machine (M2M)
communications or Internet of things (IoT) or Internet of everything (IoE) for direct
communications among electronic devices without human involvement, and device-
to-device communications for cellular users that bypass APs or BSs after they are
paired, have also been developed. Figure 1.1 is a pictorial depiction of multi-tier and
heterogeneous wireless paradigms and networks.

In wireless networks, the frequency spectrum is an important, costly, and scarce
resource. Other limited resources are transmit power, time, space, and codes. To
increase efficiency via different multiple access techniques, such as time division
multiple access (TDMA), frequency division multiple access (FDMA), orthogonal
frequency division multiple access (OFDMA), space division multiple access
(SDMA), code division multiple access (CDMA), and non-orthogonal multiple
access (NOMA), have been developed.

It is of paramount importance to implement each generation of wireless networks
in an efficient, optimal, and cost-effective manner using minimal resources while



1.1 Motivation 3

maintaining the required quality of service (QoS). In the past two decades, an
enormous amount of research has focused on the development of optimal resource
allocation schemes in wireless networks [6–9]. The common thread in all exist-
ing optimal resource allocation schemes in wireless networks is formulating the
optimization problem in such a way as to improve the goodputs, for example, the
total throughput, revenue, and fairness, and to reduce the badputs, for example,
the transmit power, consumed energy, and cost, while maintaining the required QoS
subject to certain constraints emanating from regulations, hardware and software
limitations, and other pertinent restrictions [6].

In general, due to noise and interference in wireless channels, resource allocation
problems are nondeterministic polynomial-time (NP)–hard, and the computational
complexity of obtaining their solutions is high. To alleviate this, various tech-
niques, including convex optimization [10], geometric programming (GP) [11],
complementary GP (CGP) [12], difference of two convex functions (DC) approxi-
mation [13], arithmetic-geometric mean approximation [14], and successive convex
approximation (SCA) [15], have been developed.

To maintain the required QoS, many existing resource allocation schemes require
accurate and timely system information, which may not be available due to the
time-varying nature of the environment or because of imperfect measurements. This
problem is aggravated by changes in wave propagations, mobility of terminals,
or variations in the number of active terminals, for example, which can result
in significant deviations from optimality. Studying such impacts and developing
effective schemes to ameliorate the unavailability of perfect measurements or exact
system information in a timely manner are of practical and vital importance.

This book focuses on existing research that deals with such issues, and it
identifies possible future directions of research in this area. We will describe
how robust optimization theory can be utilized to develop resource allocation
algorithms that would be robust against imperfect measurements or variations in
system information. Although such schemes are beneficial in many aspects, they
nevertheless involve additional computational complexities and possible undesir-
able performance degradations. It is yet another objective of this book to present
practical ways and means of minimizing such unwanted side effects.

In general, by utilizing robust optimization theory, the nominal (i.e., not robust)
optimization problem is mapped into its robust counterpart with a new set of
parameters and constraints that depend on the nature of uncertainty in parameter
values. There are two major and distinct approaches to robust optimal resource
allocation in wireless networks [16–19]:

• Stochastic or Bayesian approach, where the statistics of errors are taken into
account in obtaining a robust solution that is stochastically guaranteed to be
robust against any occurrence of error

• Worst-case approach, where the error is assumed to be bounded in a specific
region, called the uncertainty region, and a robust solution is obtained assuming
the worst-case condition of error in that region

The appropriate approach for introducing robustness depends on the availability
of information on the error in parameter values and the degree of imperfectness
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of measurements [17, 18, 20]. However, as stated earlier, the worst-case robust
approach guarantees robustness in any given instance within the uncertainty region,
while the stochastic approach provides robustness in a statistical manner over a
period of time.

1.2 Formulating Resource Allocation Problems

A nominal (not robust) resource allocation problem can be formulated as [10, 21]

max
x

f0 .x; c0 /; (1.1)

subject to

�
fy.x; cy/ D 0; 8y 2 Y ;

fz.x; cz/ � 0; 8z 2 Z ;

where

• f0 .x; c0 / is the objective function, for example, throughput, energy efficiency, and
fairness criteria;

• x contains the optimization variables and resources, including, for example,
transmit power levels, subchannel assignments, user associations with different
base stations, and antenna selection;

• cw for w D f0; y; zg contains system information (SI), including all channel state
information, the number of active users, and user transmission constraints, for
example. SI may be complete, meaning that the exact values are readily available
or incomplete, that is, uncertain or inaccurate;

• Y D f1; : : : ;Yg is the set of variables pertaining to the equality constraints in
the optimization problem whose yth element is fy.x; cy/ D 0; and

• Z D f1; : : : ;Zg is the set of variables pertaining to the inequality constraints in
the optimization problem whose zth element is fz.x; cz/ � 0.

Figure 1.2 is a pictorial representation of the pertinent elements in a typical
resource allocation problem. The constraints in Eq. (1.1) can be categorized as
follows:

• transmitter constraints, including, for example, the maximum transmit power and
any other hardware or software limitations in the transmitter or in the receiver,
such as frequency band or access technology;

• regulatory constraints, including, for example, the maximum allowable transmit
power in any given frequency band, and the maximum allowable interference
induced by each user;

• QoS constraints, including, for example, the minimum required signal-to-
interference-plus-noise ratio (SINR) or throughput for each user or for all
users, the maximum tolerable delay in wireless virtual networks, the maximum
acceptable delay for each user, etc.
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Fig. 1.2 Four intertwined tuples of resource allocation in wireless networks

Optimization problem (1.1) can represent any of the following scenarios:

• Network-centric scenario, where the aim is to achieve the network’s objective,
for example, maximizing the aggregate of all users’ throughput. This scenario is
also called the cooperative utility maximization problem [1, 22–25];

• User-centric scenario, where the objective is to maximize each user’s utility. This
scenario is also called noncooperative utility maximization [26–28].

• Network-aided scenario, where additional mechanisms, for example, pricing or
intervention, are used for achieving objectives [29].

In the network-centric scenario, optimization is achieved via a central node, and
the allocation of resources is globally optimal at the cost of increased computational
complexity. In addition, it requires considerable message passing between each user
and the central node to provide the central node with the required SI [6, 30].

In the user-centric scenario, each user calculates the optimal values of its trans-
mission parameters by utilizing the locally available SI. In this way, calculations
are distributed to users, and message passing to a central node is not required.
Performance is measured at the equilibrium point where the optimization problems
of all users converge to a fixed operating point. However, a major drawback is that
the performance at equilibrium is suboptimal [11, 31, 32].

In the network-aided scenario, an effort is made to bridge the gap between the
network-centric and user-centric scenarios. In doing so, the network intervenes
to improve the performance of the user-centric scenario to the extent possible.
This can be done by the application of pricing [31, 33–35]. There exist a number
of cooperative game-theoretic approaches for introducing incentives to enhance
performance while keeping the optimization problem as simple as possible and
requiring minimal system information [7, 36–40].
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In solving optimization problem (1.1), the following three points need to be
carefully considered:

Theoretical Aspects and Computational Complexity: An important point in
obtaining the globally optimal solution to (1.1) is its computational complexity.
When (1.1) is convex, any local optima is also the global optima and is achievable
via efficient numerical algorithms and existing software [41]. In practice, however,
due to interference in wireless channels from multiple transmitters, (1.1) is not
convex and the computational complexity of obtaining its globally optimal solution
is high [22]. To alleviate this problem, different mathematical techniques and tools
have been developed, such as GP [42, 43], variational inequalities (VIs) [44, 45],
game theory [46, 47], SCA [15, 48], CGP [12, 49], relaxation algorithms (RAs) [25],
SCA for low complexity (SCALE) [14, 50], DC approximation [51], nonnegative
matrix theory [23–25], and the Lagrange dual function [22].

Distributed Algorithms: Distributed designs for resource allocation in multiuser
networks that are scalable and low cost (in terms of computational complexity and
the amount of required system message passing between transmitter–receiver pairs)
have been extensively studied during the past decade, for example, [32, 34]. In
addition, future wireless networks with a multilayer structure and the emerging
concept of self-organizing networks (SONs) are the two major business drivers
for distributed algorithms [32]. In distributed resource allocation schemes, each
user implements a decision-making algorithm to choose the values of its decision
parameters such as its transmit power and frequency band.

The following two approaches for distributed resource allocation have been
used:

• Decomposition Algorithms: The original problem is decomposed into a number
of solvable subproblems, each of which can be solved in a distributed manner
while a higher-level agent coordinates optimal solutions to subproblems via
a signaling scheme [52]. This approach has two variants: the primal decom-
position method and the dual decomposition method. The former is based on
decomposing the original primal optimization problem, whereas the latter is
based on decomposing the corresponding Lagrangian dual problem. In the primal
decomposition technique, also known as direct decomposition, a higher-level
agent directly determines the amount of available resources, for example, the
transmit power and the number of channels, for each subproblem. In contrast,
in the dual decomposition technique, for each constraint in the optimization
problem, a higher-level agent sets a corresponding price for utilizing the available
resources by each subproblem;

• Game Theory: In this approach, the resource allocation problem is locally
formulated for each user, where each player (transmitter–receiver pair) with local
observations determines its transmit parameters via liaising with other players.
The main issue is the network’s performance at the convergence point of the
game [9, 47, 53–55], where the concept of Nash equilibrium is widely used.
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Table 1.1 Comparison of cooperative and noncooperative power control schemes

Performance
Reference(s) Scenario Approach computational complexity

[22] Cooperative Lagrange dual function Near optimal
Low

[23] Cooperative Nonnegative Globally optimal
Matrix theory High

[24, 25] Cooperative Relaxation Locally optimal
Nonnegative matrix theory Low

[50, 51] Cooperative Convex approximation Locally optimal

Low

[26, 27, 56–58] Noncooperative Strategic game theory Inefficient

Low

[33, 59] Noncooperative Strategic game theory Pareto optimal
Low

To choose a suitable method for solving a given resource allocation problem,
the following attributes need to be considered: (1) the rate of convergence and its
robustness against variations in parameter values, (2) the performance gap between
the distributed and centralized schemes, (3) the amount of required message passing,
and (4) the associated computational cost. In general, via a centralized scheme, a
globally optimal solution can be obtained at the cost of significant message passing,
whereas game-theoretic distributed algorithms need less message passing at the
cost of deviating from the global optima. In the centralized scheme, it is assumed
that all players cooperate and are obedient, whereas in distributed algorithms,
players compete with each other (i.e., are noncooperating) and each player aims
to maximize its own utility. In Table 1.1, we compare the salient features of some
important existing works on resource allocation in wireless networks.

Availability of SI Existing schemes for optimal resource allocation require exact
SI, for example, channel gains. However, due to user mobility, the existence of noise,
interference, and other factors, as well as the time-varying and nonlinear nature of
electromagnetic propagation, in practice it is not feasible to obtain accurate SI. As a
result, the so-called optimal solution deviates from optimality, and some constraints
may not be satisfied. This would negatively impact users’ experienced QoS, as
well as the network’s performance and reliability. It is in this light that developing
cost-effective schemes for resource allocation that would be robust against inherent
uncertainties and inaccuracies in system information is of paramount importance.
Our focus is to study robust resource allocation schemes for large-scale multiuser
wireless networks with a view to identifying their pros and cons and demonstrating
the impact of uncertainty in parameter values on the performance of such networks.
In robust schemes, the performance is expected to be satisfactory to the extent
possible, even in the presence of uncertainties and variations in parameter values.
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1.3 Mathematical Background

We now present the mathematical preliminaries for robust resource allocation in
wireless networks. Generally, the following factors are considered in any robust
optimization problem:

• The uncertain parameter cw (actual) for w D f0; y; zg, which includes all SI is
modeled by

cw D Ncw C Ocw; 8w D f0; y; zg; (1.2)

where Ncw is the nominal (average, estimated, or mean) value and Ocw is the error;
• The nominal optimization problem, which is the optimization problem with no

uncertainty in SI, that is, cw D Ncw for w D f0; y; zg, and (1.1) is called the nominal
optimization problem;

• The robust counterpart problem, which is the modified version of the nominal
optimization problem, in which uncertainty in SI is considered.

In essence, the nominal optimization problem is mapped into a robust opti-
mization problem, and the way in which this mapping is formulated depends on
the available information on the error and prevailing assumptions on the wireless
network.

1.3.1 Stochastic Robust Optimization

In this approach, it is assumed that the probability density function of each uncertain
parameter is Gaussian with known parameter values. This assumption is used in the
stochastic formulation of the optimization problem. For example, the average-based
formulation of resource allocation problem is1

max
x

Ec0 fef0 .x; c0 /g; (1.3)

subject to

(
Ecy

fefy.x; cy/g D 0; 8y 2 Y ;

Ecz
fefz.x; cz/g � 0; 8z 2 Z ;

where Ec0 .x/ is the expected value of vector x;ef0 .x; c0/,efy.x; cy/ andefz.x; cz/ are the
robust counterparts of f0 .x; c0/, fy.x; cy/ and fz.x; cz/, respectively; and when Oc D 0,
we haveefy.x; cw/ D fy.x; Ncw/ D fy.x; cw/ for w 2 f0; y; zg. Note that we useefy.x; cw/

to highlight uncertainty in parameter values in the robust (counterpart) problems.

1The average-based formulation in (1.3) is not the only way to formulate the resource allocation
problem; and the outage probability formulation, that is, Prcy ffy.x; cy/ D 0g 	 1 
 ıy, or the
violation-based formulation, that is, Prcy ffy.x; cy/ ¤ 0g � ıy can also be considered.
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In this approach, the following factors should be considered:

• In practice, little may be known about the probability density function of error;
• The constraints of the resource allocation problem cannot be satisfied in all

instances, which may not be acceptable in some wireless networks.

When error statistics are available and the instantaneous performance is not a
major issue, the stochastic approach can be readily used [17, 60, 61]. In contrast,
when the instantaneous performance, for example, the instantaneous QoS of each
user, is of prime importance, allocating the resources based on (1.3) may not be
acceptable. In such cases, worst-case robust optimization techniques, as described
in what follows, are more appropriate [27, 62–67].

1.3.2 Worst-Case Robust Optimization

In worst-case robust optimization, it is assumed that the error at any instant is
confined to the uncertainty region denoted by Rcy for y D f0;m; ng, centered at
the nominal (estimated) Ncy, and bounded by the worst-case realization of error.2 The
robust counterpart of (1.1) is

max
x
ef0.x; c0/; 8c0 2 Rc0 ; (1.4)

subject to

( efy.x; cy/ D 0; 8cy 2 Rcy
8y 2 Y ;efz.x; cz/ � 0; 8cz 2 Rcz
8z 2 Z :

The solution to (1.4) maximizes the objective function, is optimal under any
instance of error in the uncertainty region, and satisfies all the constraints. Note that
obtaining the optimal solution to (1.4) entails knowledge of the uncertainty region
whose shape and size depend on the system model and the causes of uncertainty
(Section 8.5.5. in [17]; [62]).

For any uncertain parameter cw in (1.2), when the error has a known, for example
Gaussian, probability density function (pdf) D.Ocw/, the value of the uncertain
parameter for any realization of error is inside the uncertainty region with a
probability � . This statement is formulated byZ

kOcwk�"cw

D.Ocw/dcw � �; (1.5)

where kxk is the norm function and "cw is the bound on the uncertainty region, which
can be obtained from the probability of violation [17]. In general, the uncertainty
set is assumed to be a nonempty, compact, and convex set. For different types

2In wireless networks, estimated values can be calculated by the receiver using pilot signals
received from the corresponding transmitter.
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of uncertainty, each with a different pdf, the respective uncertainty set can be
obtained. It has been shown that for different pdfs, such as Gaussian or uniform,
the uncertainty set can be obtained in this manner [17, 62].

When the uncertain parameters in the constraints and the uncertainty region
can be formulated as specific and deterministic, the computational complexity of
obtaining the optimal solution to (1.4) can be reduced. One approach to doing so
is to use the concept of a protection function [68]. For instance, efy.x; cy/ can be
rewritten as

efy.x; .cy � Ncy C Ncy// D efy.x; .Ncy C Ocy//: (1.6)

When fy.x; .Ncy C Ocy// can be decomposed into two parts, we write

efy.x; .Ncy C Ocy// D fy.x; Ncy/ � �.x; Ocy/; (1.7)

where � denotes a mathematical operation such as product or sum, and �.x; Ocy/

is the protection function, which depends on the worst-case condition of error in
the uncertainty region. In what follows, we will show how to obtain the protection
function for any given uncertainty region.

1.3.2.1 General Norm

From (1.5), depending on the source of uncertainty, the uncertainty region can be
modeled by the type or the order of a norm function. For example, the spherical
uncertainty set that corresponds to uncertainties in Gaussian channels can be
modeled by 2-norm (or the ellipsoid model [17]). Also, the cubic uncertainty set
that corresponds to a quantization error can be modeled by kOcyk1. The general
norm covers all types of uncertainty in channel gains and system parameters in our
system model [17].

1.3.2.2 Polyhedron Model

In the polyhedron model, the absolute value of each parameter is bounded [65], and
the uncertainty region is

<cy D fcyjMy � cT
y � "cyg; (1.8)

where My is the weight matrix for cy, and "cy is an RK�1 vector that represents the
weighted maximum deviation of cy from Ncy. In Chapter 2, we will show that this
type of uncertainty region can reduce the computational complexity of obtaining
the optimal solution to (1.4).
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Maxi-min Formulation for Worst-Case Robust Optimization:

• The optimal solution to (1.4) satisfies all the constraints under any
condition of error within the uncertainty region. When the objective
function is an increasing function of the uncertain parameters, (1.4) can
be reformulated as

max
x

min
c02Rc0

ef0.x; c0/; (1.9)

subject to

�
fy.x; cy/ D 0; 8y 2 Y ;

fz.x; cz/ � 0; 8z 2 Z :

Note that in (1.9), uncertainty is solely in the objective function, not in
the constraints. This type of worst-case robust optimization formulation is
called the maxi-min formulation.

• A solution to (1.9) guarantees an acceptable instantaneous performance for
any error in the uncertainty region. A straightforward way to solve (1.9) is
first to obtain the solution to the inner minimization problem and then solve
the outer maximization problem. However, depending on the formulation
of the uncertainty region, a closed-form solution to the inner optimization
problem may not exist. In Chapters 2 and 4, we will show how to solve
the inner optimization problem for some formulations of the uncertainty
region.

1.3.3 Hybrid Approach: Bounded Uncertainty
and Probabilistic Constraints

The stochastic approach guarantees performance in a statistical manner, and the
worst-case approach guarantees performance for all instances of error within the
uncertainty region. In situations that uncertainty is bounded and constraints are
probabilistic, it is very desirable to devise a hybrid approach. Specifically, the
following assumptions are considered in devising this hybrid approach:

• A1: The values of uncertain parameters are bounded and random.
• A2: Violation of each optimization constraint below a given threshold is statis-

tically permissible, that is, Prffy.x; cy/ ¤ 0g � ıy, where ıy is the acceptable
probability of violating fy.x; cy/ D 0 for any y 2 Y , and the pdf of error is
D.Ocw/ for w D f0; y; zg.

Note that Assumption A1 stands in contrast to the corresponding assumption in the
stochastic approach, and Assumption A2 stands in contrast to the corresponding
assumption in the worst-case approach. In the sequel, we introduce two variants of
this hybrid approach.
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1.3.3.1 Chance-Constrained Approach

When Assumptions A1 and A2 hold, the robust counterpart of (1.1) is

max
x
ef0.x; c0/; 8c0 2 Rc0 ; (1.10)

subject to

�
Pr.efy.x; cy/ ¤ 0/ � ıy; 8cy 2 Rcy ; 8y 2 Y ;

Pr.efz.x; cz/ � 0/ � ız; 8cz 2 Rcz ; 8z 2 Z :

For an arbitrary Fcw , it is difficult to check whether or not the constraints of (1.10)
are satisfied. In addition, for small values of ıy and ız, the feasible set for (1.10)
may be nonconvex, meaning that it may need excessive calculations. To overcome
such difficulties, it has been shown [18] that when fy.x; cy/ or fz.x; cz/ is a linear
function, the chance-constrained probabilities can be replaced by their convex
approximations, leading to significantly fewer calculations.

In [18], it is shown that for independent and identically distributed (i.i.d.) values
of uncertain parameters, when constraints are affine functions, they can be replaced
by convex functions as their safe approximations. For example, when fz.x; cz/ D
x � cT

z , where x 2 C 1�K and cz 2 C 1�K , we can write

x � cT
z D

KX
kD1

xk Nck
z C

KX
kD1

�k
z xk Ock

z ; (1.11)

where �k
z D ck

z 
Nck
z

Ock
z

for each z 2 Z is in the range Œ�1; 1�. For uncorrelated ck
z , all

values of �k
z are independent of each other and belong to the pdf D.z/ [69]. Hence,

Prffz.x; cz � 0g � ız can be replaced by the Bernstein approximations of the chance
constraints [18], that is,

KX
kD1

xk Nck
z C

KX
kD1

�C
D.z/x

k Ock
z C

q
2 ln ı
1

z

vuut KX
kD1

'2D.z/.x
k Ogk

z/
2 � 0; 8z 2 Z ;

(1.12)
or

KX
kD1

xk Nck
z C

KX
kD1

�C
D.z/x

k Ock
z C 'D.z/

q
2K ln ı
1

z max8k2K xk Ock
z � 0; 8z 2 Z ;

(1.13)
where �1 � �C

D.z/ � C1 and 'D.z/ � 0, which depend on D.z/, are approximations
of chance constraints. For some D.z/, these parameters have fixed values, as shown
in Table 1.2 [18].
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Table 1.2 Values of �C

D.z/ and 'D.z/ for some D.z/ [18]

D.z/ �
C

D.z/ 'D.z/

supfD.z/g 2 Œ
1; 1� 1 0

supfD.z/g is unimodal and supfD.z/g 2 Œ
1; 1� 1/2 1p
12

supfD.z/g is unimodal and symmetric 0 1
p
3

Considering the preceding discussion, the protection functions for (1.12)
and (1.13) are as follows:

�.x; Ocz/ D
KX

kD1
�C
D.z/x

k Ock
z C

q
2 ln ı
1

z

vuut KX
kD1

'2D.z/.x
k Ogk

z/
2; 8z 2 Z ; (1.14)

and

�.x; Ocz/ D
KX

kD1
�C
D.z/x

k Ock
z C'D.z/C

q
2K ln ı
1

z max8k2K xk Ock
z ; 8z 2 Z : (1.15)

1.3.3.2 D-Norm Approach

The D-norm was introduced in [68] for trading off between robustness and
optimality by considering a protective function for constraints. To explain this
approach, we again focus on the case of linear constraints for fz.x; cz/ D x � cT

z ,
where x 2 C 1�K and cz 2 C 1�K . Here, it is assumed that the exact values of SI fall
ineck

z D fck
z 2 ŒNck

z � Ock
z ; Nck

z C Ock
z �g for all ck

z . Moreover, the pdf of each uncertain
parameter is symmetric but unknown, meaning that Fcz can be any symmetric
density function such as Gaussian or uniform.3 When the constraint involves a linear
function, we have

x � cT
z D

KX
kD1

xk Nck
z C�z.	z; x/;

where �z.	z; x/ is the protection function for the linear constraint, and 0 � 	z � K
is used to adjust the protection function [68]

�z.	z; x/ D max
Lz

X
k2Lz

Ock
zxk; (1.16)

3These assumptions are in line with other studies in the literature, which typically assume Gaussian
or uniform densities for the error in wireless channel gains [17].
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where Lz is any subset containing the values of ck
z , of size jLzj D 	z. The number of

ck
z in Lz (i.e., the value of 	z) determines the magnitude of the protection function.

For example, when 	z D 0, the protection function vanishes. In contrast, when
	z D K, all ck

z are taken into account, and the value of �z.	z; x/ is maximized.
By adjusting 	z, one can control the cost of robustness in terms of the difference
between the robust and nominal solutions.

Consequently, in the D-norm approach, when all constraints involve linear
functions, the robust counterpart of the nominal optimization problem is

max
x
ef0.x; c0/; 8c0 2 Rc0 ; (1.17)

subject to
KX

kD1
xk Nck

z C max
Lz

X
k2Lz

Ock
zxk � 0; 8z 2 Z :

Note that considering protection function (1.16) entails probabilistic compliance (or,
equivalently, probabilistic violation) of the inequality constraint due to the fact that
the protection function involves uncertain parameters.

To mathematically capture the preceding discussion, let us consider Ock
z D %k

z Nck
z ,

where %k
z 2 Œ�1; 1�, and the pdf of Ock

z is unknown but symmetric. The probability of
violating the inequality constraint in the D-norm approach is upper bounded [68] by

Prz.violating fz.cz; x/ in the D-norm approach/ �
�
1 � ˚.	z � 1p

K
/

�
; 8z 2 Z ;

(1.18)

where ˚ is the cumulative density function (cdf) of the standard normal (Gaussian)
distribution with zero mean and variance 
 . The upper bound on the violation
probability in (1.18) is based on the independent and symmetrically distributed
features of %k

z (Theorem 3 in [68]). By adjusting 	z, the probability of violating the
interference constraint can be kept below the acceptable threshold. The relationship
between the violation probability 	z and K for different values of ız via (1.18) is
illustrated in Fig. 1.3.

When A1 and A2 hold, there is a predefined threshold for permissible
violation of the constraints. To formulate the protection functions, different
approaches can be considered [18, 69]. Among them, the chance-constrained
and D-norm approaches are very appealing since they can be used to convert
constraints into affine and convex forms and require no detailed information
on the pdf of each uncertain parameter. In this way, the robust optimization
problem can be solved efficiently. The assumptions are realistic in wireless
networks [65, 70, 71], and the protection functions are not fixed as in the
worst-case approach, that is, they can be formulated based on the prevailing
conditions.
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Fig. 1.3 Relationship between 	z and K for different values of ız

1.4 Generic System Model

In general, we may have different categories of users, each with its own specific
priority, trustworthiness, and capabilities, as described in what follows:

• Legitimate4 users, which are authorized to use the spectrum for their trans-
missions and have distinct priorities and capabilities, divided into two different
types:

– Primary users (PUs), which have the priority in using the frequency spectrum
and expect a guaranteed QoS;

– Secondary/cognitive users (SUs), which can opportunistically access the
spectrum only when the QoS of PUs is preserved;

• External friendly nodes including

– Friendly relays, which increase the throughput of legitimate users;
– Friendly jammers, which prevent eavesdroppers from listening in on legiti-

mate users’ messages;

• Eavesdroppers that try to listen in on legitimate users’ messages;
• Malicious jammers, which disrupt the communications of targeted legitimate

users.

Consider a set of communication resources denoted by K D f1; : : : ;Kg divided
into K orthogonal dimensions, for example, frequency bands or channels, which are
shared between users. The set of users is N , whose size is jN j D N. This set
consists of all uniquely indexed transmitters and receivers.

4A “user” is a terminal, node, a base station, or an access point.
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The direct channel gain between transmitter n and its intended receiver m in
channel k is hk

nm. The interference channel gain from another transmitter n0 to the
same receiver m in channel k is hk

n0m. The transmit power of transmitter n in channel
k is pk

n, and its SINR in channel k at receiver m is

� k
nm D pk

nhk
nm

�2 CP
n0¤n; n02N pk

n0hk
n0m

; 8n 2 N ; (1.19)

where the denominator is the interference plus noise at receiver m, and �2 is the
noise power assumed to be equal in all receivers in all channels. For simplicity and
when there is no ambiguity, we may drop the receiver’s index in our notations.

For user n, its transmit power pk
n in channel k is the optimization variable of the

resource allocation problem, and its strategy is the set of its transmit power levels in
different channels, defined as

An D
(

pn D .p1n; : : : ; p
K
n /jpk

n 2 Œ.pk
n/
min; .pk

n/
max�; and

KX
kD1

pk
n � .pn/

max

)
;

(1.20)

where .pk
n/
min and .pk

n/
max are the minimum and maximum transmit power levels

of user n in channel k, respectively, and .pn/
max is the upper bound on the sum of

transmit power levels of user n in all channels. In practice, .pk
n/
min is much less than

.pk
n/
max and can even be negligible.

The goodput of user n, denoted by vn.pn;p
n/, is a function of its transmit power
and other users’ transmit power levels, where p
n is the transmit power levels of
other users. The transmit power levels for all users in all channels constitute the
optimization variable x in (1.1). When the goodput (utility) of user n, denoted by
vn, is the sum of its throughputs in all subchannels, we have

vn.pn;p
n/ D
X
k2K

log
�
1C � k

n

�
; 8n 2 N : (1.21)

In this case, the following three assumptions hold [72]:

• vn.pn;p
n/ is a strictly concave and differentiable function, and its gradient is
bounded;

• log
�
1C � k

n

�
is a decreasing and convex function of other users’ interference at

the receiver of user n in channel k;
• The second-order mixed partial derivatives of vn.pn;p
n/ with respect to the

additive impact of other terminals’ interference plus noise, denoted by k
n D

�2 CP
n0¤n; n02N pk

n0hk
n0 , that is, @2vk

n
@pk

n@
k
n

and @2vk
n

@k
n@pk

n
, exist and are continuous.

When the parameter values are uncertain, the utility of user n is un.pn;p
n; cn/,
where cn denotes uncertain parameters whose values are bounded to "cn within the
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uncertainty region Rcn . When the uncertainty region shrinks to zero, we have

un.pn;p
n; cn/j"cn D0 D un.pn;p
n; Ncn/ D vn.pn;p
n/; 8n 2 N :

We denote the optimal utility values of user n in the nominal and in the robust
resource allocation problems by v�

n and u�
n , respectively, and the optimal social

utility values for all users are

v� D
X

n2N
v�

n and u� D
X

n2N
u�

n :

Optimal solutions for the nominal and the robust power allocation problems for user
n are denoted by p�

n andep�
n , respectively.

Users can cooperate or compete with each other. In the case of cooperating users,
the resource allocation problem may be written from the network’s perspective to
maximize the sum of the total utility values of all users. In this case, the objective
function of the resource allocation problem is

f0 D
X

n2N
vn.pn;p
n/:

When each user’s objective is to maximize its own utility, users compete with
each other in utilizing the network’s resources. In this case, the objective (utility)
function of user n is fn D vn.pn;p
n/. This case is modeled by a noncooperative
strategic game, where each user n aims to maximize its own utility subject to its
strategy space (transmit power) via maxpn2An vn.pn/. The strategic (power control)
noncooperative game is denoted by G D fN ; .vn/n2N ;A g.

When the parameter values are uncertain, the objective function is

ef 0 D
X

n2N
un.pn;p
n; cn/;

where un.pn;p
n; cn/ is the utility function of user n, and the value of cn is uncertain
within the uncertainty region Rcnm whose bound is "cnm .

1.4.1 System Model for Wireless Networks with Homogeneous
Users

In a wireless cellular network with homogeneous users, all terminals have the same
priority and are equally capable of deriving the SI, but their minimum required QoS
may be different, that is, each terminal may require a different SINR. We assume that
the sum of transmit power levels of each terminal in all uplink channels is bounded
[26, 73]. A typical cellular network with homogeneous users is depicted in Fig. 1.4,
where all terminals are similar in type, and the SI, that is, cw for w D f0; y; zg,
includes uplink channel gains.
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Fig. 1.4 Typical wireless
network with homogeneous
users

Terminal n� Terminal nBase Station m

Interference Channel Direct Channel

1.4.2 System Model for Wireless Networks with Heterogeneous
Users

In a heterogeneous setup with multiple wireless networks, each network serves a
different set of users, where each set is characterized by its own priority for utilizing
the available resources, its own required QoS, and its capabilities in deriving system
information. In this book, we focus on the following heterogenous scenarios.

1.4.2.1 Underlay Cognitive Radio Network

In an underlay cognitive radio network (CRN), two types of users exist:

• Primary users (PUs) or high-priority users who are licensed to use the frequency
spectrum and expect to receive a guaranteed QoS. The set of PUs is Nq, and the
total number of PUs is Nq;

• Secondary users (SUs) who have the capability to extract network side informa-
tion, and their use of the frequency spectrum is subject to not violating the PUs’
QoS. The set of SUs is Ns, and the total number of SUs is Ns.

Consider the case where there is one base station in the secondary network
and the uplink channels are shared between the primary and secondary terminals
(underlay CRN). The secondary base station’s coverage area partially overlaps with
the coverage area of the primary base stations. To guarantee the primary network’s
QoS in the underlay CRN, the interference of secondary terminals in each primary
base station should be kept below a given threshold (interference threshold). The
interference channel gain between the secondary terminal n 2 Ns and the primary
base station q 2 Nq is gk

nq. The interference constraint for the primary base station
q in channel k 2 K is

X
n2Ns

pk
ngk

nq � ITk
q ;

where ITk
q is the interference threshold of primary base station q in channel k.

Figure 1.5 illustrates a typical underlay CRN.
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Interference ChannelDirect Channel

Secondary Terminal

Secondary Base Station

Primary Base Station

Fig. 1.5 Typical underlay CRN

In this setup, the throughputs of PUs or SUs can be considered the objective
function of the optimization problem. The constraints are the bound on the
terminals’ transmit power levels and the interference threshold, and the SI is the
channel gain between secondary terminal n and each base station.

1.4.2.2 Wireless Networks with Heterogeneous Users in Unlicensed Bands

In this case, all users have the same priority for using the unlicensed frequency
spectrum, but they may have different capabilities to extract SI. Each user belongs
to either of the following two groups:

• Leaders, which can extract side information, utility functions, and transmit power
limitations of other users. The set of leaders is NL, and the total number of leaders
is NL;

• Followers, which can measure interference caused by other users on their
respective receivers but cannot obtain side information pertaining to other users.
The set of followers is NF, and the total number of followers is NF.

In this setup, the set of users is N D NL [ NF, and the side information obtained
by user n is I n, which is empty for each follower (i.e., I n D ; if n 2 NF), or
contains the side information pertaining to other users for each leader n, that is,

I n D fAn; vn; .Hnm/8m;n2NF[NL ; g ; 8n 2 NL;

where Hnm , diagf.hk
nm/

K
kD1g denotes channel gains between the transmitter of user

n and the receiver of user m. The throughput of each group of users is obtained
via (1.21).

Again, in this setup the objective function of leaders and followers can be their
respective throughputs; and the constraints include the bound on the transmit power
levels of leaders and followers. The system information includes both direct channel
gains and interference channel gains.
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1.4.3 Physical Layer Security in Wireless Channels

Preserving the security of communications over wireless channels against eaves-
dropping is an important issue and has been addressed in layers above the physical
layer by way of message encryption [74], which involves the transmission and
management of secret keys [75, 76]. Because of this, it is generally assumed that
the computational resources of potential eavesdroppers is not sufficient to extract
secret keys. The challenges in wireless distribution and management of secret keys,
together with the fact that computing power is becoming increasingly accessible
at much lower cost, have led to a growing interest in providing secrecy and
confidentiality of communications in the physical layer.

The difference between the transmitter–receiver data rate (the desired rate) and
the transmitter–eavesdropper data rate (eavesdropping rate) is defined as the secrecy
rate, shown in Fig. 1.6. The secrecy rate is considered the utility of users, and its
maximization is the objective of the resource allocation problem [75, 77–81]. The
secrecy rate is negatively affected by interference at the intended receiver, that is,
when the transmitter–eavesdropper’s SINR is greater than the transmitter–receiver’s
SINR, the secrecy rate is zero [82]. When the transmitter has multiple antennas,
different beam-forming techniques in the direction of intended receiver combined
with transmitting noise in the direction of the eavesdropper are proposed in the
literature to reduce the possibility of eavesdropping [83].

For a legitimate transmitter with a single-element antenna in the presence of
multiple eavesdroppers, three cooperative approaches have been proposed in the
literature in which the external nodes help the legitimate transmitter to increase
its secrecy rate. These helpers can be multiple friendly relays or multiple friendly
jammers targeting the eavesdropper.

The cooperative approaches to increasing the secrecy rate can be categorized as
follows:

Fig. 1.6 Secrecy rate:
ŒDesired rate 

Eavesdropping rate�C

Legitimate
Transmitter

Legitimate
Receiver

Eavesdropper

Eavesdropping Rate

Desired Rate
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Fig. 1.7 Friendly relay approach

Friendly Relay Approach: One or more friendly relays help a legitimate trans-
mitter to increase its secrecy rate by increasing its desired rate [75, 84–86]. In
this approach, transmission is done in two consecutive hops. In the first hop, the
legitimate transmitter transmits its data, and in the second hop, the friendly relay
transmits the data received from the legitimate transmitter. To increase the secrecy
rate, the intended receiver applies maximal ratio combining (MRC) on the signals
received in the first and second hops. Friendly relays can adopt either an AF or
DF strategy. Such a scheme is depicted in Fig. 1.7. The transmission rate between a
legitimate transmitter n and a legitimate receiver m helped by a friendly relay n0 is

RL
nm D min

(
log

 
1C pk

nhk
nn0

�2

!
; log

 
1C pk

n0 hk
n0m

�2

!)
; (1.22)

where hk
nn0 and hk

n0m are the channel gains between transmitter n and friendly relay
n0 in channel k in the first hop, and the channel gain between friendly relay n0 and
receiver m in channel k in the second hop, respectively; and pk

n and pk
n0 are the

transmit power levels of transmitter n and friendly relay n0 in channel k, respectively.
Note that for simplicity in notation, we have assumed equal noise power at all
receivers, denoted by �2. When multiple eavesdroppers listen in on all transmissions
in the two hops, the highest eavesdropping rate among multiple eavesdroppers and
legitimate transmitter n is
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RE
n D max

(
log

�
1C pk

n maxefgk
neg

�2

�
; log

 
1C pk

n0 maxefgk
n0eg

�2

!)
; (1.23)

where gk
ne is the channel gain between transmitter n and eavesdropper e in channel

k in the first hop, and gk
n0e is the channel gain between friendly relay n0 and

eavesdropper e in channel k in the second hop. Consequently, the secrecy rate
between transmitter n and receiver m is

RSecrecy
nm D �

RL
nm � RE

n

�C
: (1.24)

The highest eavesdropping rate depends on the eavesdroppers’ capabilities, for
example, the ability to do MRC, and can be different from (1.23) [81].

Friendly Jammer Approach: One or more friendly jammers degrade eavesdrop-
pers’ listening channel by transmitting noise [87–89]. The transmission rate of
legitimate transmitter n to legitimate receiver m helped by friendly jammer n0 is

RL
nm D log

 
1C pk

nhk
nm

�2 C pk
n0hk

n0m

!
; (1.25)

where hk
n0m is the channel gain between friendly jammer n0 and legitimate receiver

m on channel k, and pk
n0 is the transmit power of friendly jammer n0 on channel k.

When multiple eavesdroppers listen in on the transmissions between transmitter n
and receiver m, the highest eavesdropping rate among multiple eavesdroppers is

RE
nm D max

(
log

 
1C max

e

(
pk

ngk
ne

�2 C pk
n0 gk

n0e

)!)
; (1.26)

where gk
ne is the channel gain between transmitter n and eavesdropper e in channel

k, and gk
n0e is the channel gain between friendly jammer n0 and eavesdropper e in

channel k. The secrecy rate can be derived via (1.24). This approach is depicted in
Fig. 1.8.

Joint Friendly Relay and Friendly Jammer Approach Both friendly relays and
friendly jammers help a legitimate transmitter to increase its secrecy rate [90]. The
transmission rate between transmitter n and receiver m via DF relay n0 and friendly
jammer n00 is

RL
nm D min

(
log

 
1C pk

nhk
nn0

�2 C pk
n00hk

n00n0

!
; log

 
1C pk

n0hk
n0m

�2 C pk
n00hk

n00m

!)
: (1.27)



1.4 Generic System Model 23

Fig. 1.8 Friendly jammer approach

When multiple eavesdroppers listen in on all transmissions in the two hops, the
highest eavesdropping rate among multiple eavesdroppers is

RE
n D max

(
log

 
1C max

e

(
pk

ngk
ne

�2 C pk
n00 gk

n00e

)!
; log

 
1C max

e

(
pk

ngk
n0e

�2 C pk
n00 gk

n00e

)!)
;

(1.28)

where gk
ne is the channel gain between transmitter n and eavesdropper e, gk

n0e is the
channel gain between friendly relay n0 and eavesdropper e, and gk

n00e is the channel
gain between friendly jammer n00 and eavesdropper e. The secrecy rate is obtained
via (1.24). This approach is shown in Fig. 1.9.

In Chapter 4, we will investigate the resource allocation problem for the afore-
mentioned approaches with a view to maximizing the secrecy rate or maintaining
the secrecy rate above a predefined threshold. For this type of problem, deriving the
exact values of side information, for example, the channel gains of an eavesdropper,
is not possible due to the fact that the eavesdroppers are passive (i.e., they do not
transmit anything), and hence it is essential to consider uncertainty in the estimated
values and propose robust schemes. We will do just this in Chapter 4.5

5The aforementioned approaches to increasing the secrecy rate between a legitimate transmitter and
a legitimate receiver in the presence of an eavesdropper have been extended to the case of multiple
antennas for all players, that is, eavesdroppers, legitimate users, friendly jammers, and relays, in
[91–95]. In addition, the application of other techniques, such as full duplex transmissions for
increasing the secrecy rate, is studied in [82, 96–100].
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Fig. 1.9 Joint friendly relay and jammer approach

Table 1.3 Robust optimization problems in this book

System

Objective Optimization information

Chapter function (f0) variable (x) Constraints (fz) and (fy) cw for w D f0; y; zg
Chapter 2 Throughput pn (1) Transmitter constraints CSI, e.g., hk

nm

(2) Regulatory constraints Noise and interference

(3) QoS constraints on secondary receivers

Chapter 3 Throughput pn (1) Transmitter constraints CSI, e.g., hk
nm

(2) Maximizing
followers’ utility

Chapter 4 Throughput pn (1) Transmitter constraints, CSI, e.g., gk
ne

Secrecy rate (2) Regulatory constraints

Power (3) QoS constraints, e.g.,
minimization minimum secrecy rate

Energy efficiency

Table 1.3 shows the coverage of various robust optimization problems and
techniques in different chapters of this book.
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1.5 Cost of Robustness

Applying robust resource allocation schemes in the presence of uncertainty in
parameter values in wireless networks entails some costs. In what follows, we
itemize the different costs of introducing robustness in wireless networks.

• Computational Complexity: Robust optimization in wireless networks entails
consideration of additional constraints and variables, which require more cal-
culations. Consideration of new variables that have couplings with the primal
optimization variables, for example, the transmit power, and beam-forming
parameters, means that conventional methods, such as relaxation techniques,
cannot be used directly to solve nonconvex robust optimization problems, and
additional calculations are required to derive robust optimal solutions. Whenever
possible, we will make an effort to see how the computational complexity of
robust schemes can be reduced. As we will show in Chapter 2, the ultimate
objective is to reduce the computational cost to that of the nominal optimization
problem. However, in some cases, the nominal optimization problem is inher-
ently also nonconvex and NP-hard. In such cases, in Chapter 3, we will show
how game theory can be used to reduce computational complexity. Moreover,
in Chapter 4, we will discuss other techniques, such as semi-definite relaxation
(SDR), nonlinear fractional programming (NLFP), DC approximation, and SCA
to relax the robust optimization problem, leading to fewer calculations for
obtaining the optimal solution.

• Reduced Performance: Robust optimization is inherently protective and conser-
vative [58]. This point is obvious from the definition of the protection function
given the constraints of the optimization problem, which shrinks the feasibility
region of the optimization problem [10, 70], leading to a reduced goodput
in wireless links. This is another cost of robustness, which we will discuss
extensively in Chapters 2 and 3 with a view to elaborating on schemes to
moderate this performance reduction by way of introducing tradeoffs between
performance and robustness.

• Distributed Algorithm: Distributed algorithms for optimal (or near optimal)
resource allocation in wireless networks are scalable, which is very desir-
able. However, in robust distributed schemes, there exist couplings between
optimization variables, which means that decomposition algorithms or game-
theoretic formulations cannot be directly applied. In devising robust distributed
algorithms, the following issues require careful attention:

– Additional Message Passing in Decomposition-Based Distributed Algorithms:
In robust optimization, when protection functions are introduced or when
the maxi-min approach is taken, there exist couplings between primal and
robust variables. Hence, in such cases, there is a need for additional message
passing to deal with such couplings [65]. This is another cost of utilizing
decomposition techniques for robust optimization. One way to reduce this cost
is infrequent message passing, which we will discuss in Chapter 2.
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Table 1.4 Costs of robustness and related chapters in this book

Cost Chapter 2 Chapter 3 Chapter 4

Computational complexity
p p p

Performance reduction
p p p

Additional message passing
p

– –

Complexity of equilibrium analysis –
p

–

– Complexity of Equilibrium Analysis for Game-Theoretic Distributed Algo-
rithms: Conventional tools for convergence analysis, such as fixed point theory
[101, 102], cannot be used for robust schemes because of the coupling between
variables. Hence, other tools, such as sensitivity analysis and VIs [44, 103],
should be used, which will incur additional costs for performance analysis.
We will discuss this issue in Chapter 4.

Table 1.4 shows different costs of robustness and the corresponding chapters in this
book that cover various techniques for reducing such costs.

1.6 Organization of This Book

In this book we present different robust resource allocation problems and seek their
respective solutions. We also cover the issues pertaining to the implementation of
robust schemes. The remainder of this book is organized as follows.

In Chapter 2, we present mathematical formulations of cooperative robust
resource allocation problems that contain uncertain parameters, obtain their respec-
tive solutions, and show how the cost of robustness can be reduced. In doing
so, we consider the case of transmit power control for single-channel cognitive
radio networks, where channel gains and interference levels are uncertain. We
also consider the case of transmit power control for multiple-channel cognitive radio
networks, where channel gains are uncertain. Furthermore, we will show how to
reduce the computational complexity of obtaining a robust solution. We will also
study the performance gap between the solutions of nominal and robust optimization
problems and discuss how to make tradeoffs between optimality and robustness for
reducing this gap. Moreover, we present the distributed approach to solving the
robust resource allocation problem via the dual decomposition technique. The need
for additional message passing is the cost of using this approach, which, as we
will show, can be alleviated by infrequent message passing while preserving the
robustness of the solution.

Chapter 3 covers game-theoretic robust distributed resource allocation schemes
for noncooperating users in wireless networks. Specifically, we formulate the power
allocation problem for homogeneous users via strategic game theory and compare
the equilibrium of nominal (nonrobust) and robust games. Since a closed-form
solution to the power allocation problem of each user cannot be obtained, the
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conventional approach, that is, the best response approach, cannot be applied to
investigate the uniqueness of the robust solution. We will show that robust-game
equilibrium points can be analyzed using VIs and sensitivity analysis. In addition,
we formulate the power allocation game for heterogeneous users (leaders and
followers) via the robust Stackelberg game.

In Chapter 4, we will deal with nonconvex nominal resource allocation problems
as well as nonconvex robust problems, where in both cases the solutions are
nontractable. The general approach to solving such problems is to relax some
constraint and convert nonconvex problems into convex or tractable formulations.
We begin by presenting a taxonomy of existing approaches to such a conversion and
demonstrate their applicability for the case of maximizing the secrecy rate.

In Chapter 5, we propose directions for future work and present a summary of
previous chapters.
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Chapter 2
Robust Cooperative Resource Allocation

This chapter covers cooperative resource allocation in wireless networks. We
discuss how this can be achieved by focusing on two specific cases. The first case
is robust transmit power allocation for secondary users (SUs) in cognitive radio
networks where a single uplink channel is shared between SUs and primary users
(PUs) and channel gains between SUs and primary base stations are uncertain. We
also consider robust transmit power allocation for device-to-device communication
between SUs where PUs’ multiple uplink channels are shared with SUs. In both
cases, we assume worst-case uncertainty in channel gains, and show that under some
conditions on the uncertainty region, the computational complexity of obtaining
robust solutions can be the same as that of obtaining nominal nonrobust solutions.
We also discuss algorithms to trade off between throughput reduction and robustness
and present a scheme to reduce signaling in robust solutions. Our approach is
applicable to other cases where the objective is the maximization of social utility,
where users are cooperative.

2.1 Introduction

Robust solutions are desirable in the sense that optimal performance can be
guaranteed even when exact parameter values are not available. However, robustness
is achieved by considering additional constraints involving uncertain parameters,
which complicates the problem. For practical reasons and so far, the preferred
approach in the literature for introducing robustness has been to assume the worst-
case bounded uncertainty in parameter values.

In general, there are two approaches to solving optimization problems: the
centralized approach and the distributed approach. In some instances, centralized
schemes are nonscalable and require measurements and parameter values pertaining
to all users, that is, they need extensive message passing. In contrast, distributed
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schemes are scalable and, to the extent possible, utilize locally available measure-
ments and information, that is, minimal message passing; but their performance
in general is below that of a centralized scheme. To improve the performance
of distributed schemes, decomposition algorithms have been developed, but they
require additional message passing (as compared with conventional distributed algo-
rithms) between distributed nodes to guarantee convergence. However, introducing
robustness in decomposition algorithms increases the amount of additional message
passing because of the coupling between optimization variables.

It is evident from the preceding statements that robust algorithms with less
computational complexity and reduced signaling that can also trade off between
performance and robustness are very desirable. Our objective in this chapter is to
present such algorithms. We begin by formulating robust problems in the same
manner that nominal (i.e., nonrobust) problems are formulated, but with additional
constraints to include robustness requirements by using protection functions. This
will enable us to simplify the robust problem for those cases where uncertainty is
confined to a specific region, where, for example, the general definition of norm
or the polyhedron model can be used. We also analyze the overhead of obtaining
robust solutions and devise appropriate schemes to reduce such overhead to the
extent possible.

We study the aforementioned issues by focusing on underlay cognitive radio
networks (CRNs), where the secondary users (SUs) keep their interference on the
primary users (PUs) below a given interference threshold (IT) [1–5]. In this way,
we consider two scenarios in CRNs: (1) a single-channel scenario in which the
SUs share one uplink channel with the PUs and (2) a multichannel scenario in
which the SU pairs utilize device-to-device (D2D) communication. In both cases,
the SUs cooperate with each other to maximize their total throughput, but the PUs
are not obliged to provide their measurements and system information (including
channel gains) to the SUs. Obtaining such information by the SUs is difficult and
may entail uncertainty, which in turn may either violate the PUs’ IT or result in
inadequate SU signal-to-interference-plus-noise ratios (SINRs) [6], both because
the SUs’ allocated transmit power levels are inaccurate (higher in the former, lower
in the latter), leading to undesirable fluctuations in the SUs’ social utility value.
Such concerns can be alleviated by applying robust schemes.

As indicated earlier, we formulate robust problems by considering additional
constraints to include robustness requirements by utilizing protection functions.
However, protection functions in many cases are nonlinear, which significantly
increases the computational complexity of obtaining robust solutions. We will show
that when uncertainty is confined to some specific uncertainty regions, nonlinear
protection functions can be replaced either by their safe linear approximations or by
a more tractable formulation. In this way, the complexity of solving the reformulated
robust problem is significantly reduced, and pseudo water-filling formulations can
be obtained in some cases.

We will also apply sensitivity analysis to show that throughput is reduced when
uncertainty is increased [7], and we will demonstrate how to trade off between
throughput and robustness via the D-norm approach and the chance constraint
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approach (introduced in Chapter 1, Section 1.3.3.1) [8, 9]. However, assuming less
uncertainty makes the robust solution less resilient and increases the probability of
violating the constraints, which may not be desirable for either SUs or PUs.

Moreover, we will show that in decomposition-based distributed robust algo-
rithms for single-channel CRNs, it is possible to achieve convergence by infrequent
message passing [8]. This is important because convergence of the conventional
decomposition-based distributed schemes for both nominal and robust problems
requires excessive message passing (which is not desirable).

We will conclude this chapter by providing a brief review of existing works
on robust cooperative optimization and show that, although the development of
schemes for reducing complexity, trading off between throughput and robustness,
and reducing the amount of message passing in distributed robust algorithms is
very desirable and beneficial, such schemes have not been extensively studied in
the literature.

2.2 Single-Channel Cellular Cognitive Radio Networks

Consider a cellular CRN with one uplink channel, where the coverage area of a
cognitive cell partially overlaps with the coverage areas of neighboring primary cells
sharing the same frequency band. We assume that each user communicates with its
own base station. The system model for this case is shown in Fig. 2.1. The set of
PUs’ base stations (PBSs) is Q D f1; : : : ;Qg, and the set of SUs serviced by the
secondary base station (SBS) is S D f1; : : : ; Sg. The channel gain between SU s
and its SBS is hs, and the interference channel gain between SU s and PBS q is
gsq. Cooperation between the SBS and PBSs is not assumed, but the SBS knows the
predefined IT of PBSs. The SINR of SU s at its SBS is

�s D pshs

fQ CP
m2S ; m¤s; pmhm C �2

8 s 2 S ; (2.1)

Secondary Terminal

Secondary Base Station

Primary Base Station

Interference ChannelDirect Channel

Fig. 2.1 Typical underlay CRN
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where ps 2 Œpmins ; pmaxs � is the transmit power of SU s, fQ is the aggregate
interference of PUs on the SBS,

P
m¤s; m2S pmhm is the interference caused by other

SUs on the SBS, and �2 is the noise power.
The resource allocation problem is

max
pmins �ps�pmaxs

X
s2S

vs.�s/; (2.2)

subject to

�
C1 W O�s � �s 8 s 2 S ;

C2 W �Ps2S gsqps
� � ITq 8 q 2 Q;

where C1 represents the minimum required SINRs of SUs, C2 is on the IT for
PU q, and vs.�s/ is the utility function of SU s. In general, (2.2) is nonconvex in
ps, but when two conditions are simultaneously satisfied—(a) vs.�s/ is concave,
strictly increasing, and twice continuously differentiable over .0;1/; and (b)
��sv

00
s .�s/=v

0
s.�s/ � 1; problem (2.2) can be transformed into a convex optimization

problem via geometric programming (GP) and logarithmic transformations [7, 10–
12]. A utility function that simultaneously satisfies both conditions (a) and (b) is

vs.�s/ D ws ln �s; (2.3)

where ws > 0 is a per-user coefficient [10]. Note that by properly choosing ws

for each s, the utility function (2.3) can lead to proportionate fairness among SUs
[10, 13, 14]. In [13, 15], it is shown that when the utility function (2.3) is applied,
GP can be used to transform (2.2) into

max
pmins �ps�pmaxs

X
s2S

vs.hsps%

1
s /; (2.4)

subject to

8̂<
:̂

C1 W %s O�s � hsps;

C2 W �Ps2S gsqpq � ITq
� 8q 2 Q;

C3 W
	

fQ CP
m2S ; m¤s; pmhm C �2



� %s;

where %s is an auxiliary variable corresponding to the interference plus noise for
SU s. One can use the logarithmic transformations ps D eys and %s D ezs to
convert (2.4) into a convex optimization problem [15, 16].

2.2.1 Robust Problem

In (2.4), the two parameters related to PBSs or PUs are gq D Œg1q; : : : ; gSq� and fQ,
the exact values of which are not easy to obtain by SUs because PBSs are not obliged
to provide any information to SUs. To formulate the robust counterpart of (2.4),
consider an uncertainty set for each uncertain parameter, containing the distances
between the actual (uncertain) and the nominal (exact) values, as follows:
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• The actual (uncertain) and the exact (nominal) channel gain vectors between
the SUs and PBS q are gq and gq, whose elements for SU s are gsq and gsq,
respectively. The uncertainty set for channel gains between SUs and PBS q is

Rgq D fgqjkgq � gqk � "gqg; 8q 2 Q; (2.5)

where "gq is the upper bound on the uncertainty set for the channel gains, and
kxk is the general norm.

• The actual (uncertain) and exact (nominal) interference levels caused by PUs on
the SBS are fQ and fQ. The uncertainty set for interference levels is

RfQ D ffQjkfQ � fQk � "fQg; (2.6)

where "fQ is the upper bound on the uncertainty set of PUs’ interference on
the SBS.

Both gsq and fQ are present in the linear constraints C2 and C3 in (2.4). To deal with
such uncertainties, we use the worst-case robust optimization for affine and convex
constraints [17, 18], where the solution to (2.4) is robust if for any realization of
gs 2 Rgq and fQ 2 RfQ the optimal solution satisfies C2 and C3. Consequently, the
robust counterpart of (2.4) is

max
pmins �ps�pmaxs

X
s2S

vs.hsps%

1
s /; (2.7)

subject to

8̂̂
<
ˆ̂:

C1 W %s O�s � hsps

C2 W �Ps2S gsqps
� � ITq 8 q 2 Q;

C3 W .fQ CP
m2S ; m¤s pmhm C �2/ � %s

C4 W gq 2 Rgq ; fQ 2 RfQ ; 8 q 2 Q:

In the nominal problem (2.4), uncertainty is not considered, that is, the actual
values are assumed to be exact, whereas in (2.7), the constraint C4 assumes the
worst-case uncertainty. In what follows, we state the conditions under which (2.7)
is convex.

Proposition 2.1. When Rgq and RfQ are compact and convex sets, (2.7) is
convex.

Proof. This is true because C2 and C3 are satisfied when
maxgq2Rgq

P
s2S gsqps � ITq and maxfQ2RfQ

.fQ CP
m2S ; m¤s pmhm C �2/

� %s. We rewrite these conditions as .
P

s2S gsqps C maxgq2Rgq

P
s2S .gsq �

gsq/ps/ � ITq and .fPCmaxfQ2RfQ
.fQ�fP/C

P
m2S ; m¤s pmhmC�2/ � %s,

respectively. Since the max function over a convex set is a convex function
(Section 3.2.4 in [19]), C2 and C3 [and, consequently, (2.7)] are convex.
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The two terms�q D maxgq2Rgq

P
s2S .gsq �gsq/ps and�fQ D maxfQ2RfQ

.fQ�
fQ/ are called the protection values against variations in channel gains and
interference levels, respectively [20]. Using the preceding terms, the robust problem
is written

max
pmins �ps�pmaxs

X
s2S

vs.hsps%

1
s /; (2.8)

subject to

8̂<
:̂

C1 W qs O�s � hsps;

C2 W �Ps2S gsqps C�q
� � ITq 8q 2 Q;

C3 W
	

fQ CP
8m2S ; m¤s pmhm C�fQ C �2



� %s:

Note that constraint C4 in (2.7) is omitted in (2.8) by applying the protection
values. However, since the protection values involve nonlinearity due to the use
of max, the computational complexity of solving (2.7) is high. In what follows,
we use the bounds on the uncertainty regions to avoid nonlinearity and reduce the
computational complexity.

Proposition 2.2. When the uncertainty set is stated in terms of the general
norm, the protection values are

�fQ D "fQkfQk� and �q D "gqkpk� ;

where p D Œp1; : : : ; pS�, and kxk� is the dual norm of kxk (Definition 1 in
[20]).

Proof. See Appendix 1.

Proposition 2.1 establishes the conditions for the convexity of the robust power
allocation problem. In Proposition 2.2, note that for a linear norm with order a � 2,
that is, kxka D a

pP jxja, the dual norm is a linear norm with order b D 1 C 1
a
1 .

In this way, the nonlinear function max in �q and �fQ in constraints C2 and C3
of (2.8) is avoided. Consequently, the robust power allocation problem is changed
to the standard form of convex optimization with deterministic constraints, which
can be solved very efficiently. For instance, with a D 2 (the ellipsoid norm), we have

�fQ D "fQkfQk2 and �q D "gqkpk2;
and (2.8) becomes

max
pmins �ps�pmaxs

X
s2S

vs.hsps%

1
s /; (2.9)
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subject to

8<
:

C1 W qs O�s � hsps;

C2 W .Ps2S gsqps C "gq

pP
s2S p2s / � ITq 8q 2 Q;

C3 W .fP CP
m2S ; m¤s pmhm C�fQ C �2/ � %s:

Note that, as with (2.4), there are only two optimization variables, ps and %s,
in (2.9). Using the logarithmic transformations ps D eys and %s D ezs , the convexity
of problem (2.9) is established (Appendix 2). In the sequel, we will solve the
robust problem (2.9) via its Lagrange function and show that the computational
complexities of solving the nominal problem and its robust counterpart are the same.

2.2.1.1 Iterative Algorithm for Solving Nominal and Robust Problems

Considering the convexity of the nominal problem (2.2) and its robust coun-
terpart (2.9), their respective optimal solutions p� D Œp�

1 ; : : : ; p
�
S � and ep� D

ŒQp�
1 ; : : : ; Qp�

S � can be obtained using analytical and numerical methods such as the
interior point method and the Lagrange function [19] and the available software such
as CVX [21], respectively. The computational complexity of solving the nominal
problem is the same as that of its robust counterpart, that is, obtaining the robust
solution does not entail additional calculations in this setup. As an example, in what
follows, we use the Lagrange function to solve (2.9):

L.�s; �s; �q; e
zs ; eys/

D �
X
s2S

vs .hse
ys
zs/C

X
s2S

�s

�
ezs O�s

hseys
� 1

�

C
X
q2Q

�q

 
gsqeys C "gq

pP
s2S e2ys

ITq
� 1

!

C
X
s2S

�s

0
@e
zs

0
@fP C

X
m2S ; m¤s

eym hm C�fQ C �2

1
A � 1

1
A ; (2.10)

where �s, �q, and �s are the Lagrange multipliers for C1, C2, and C3 in (2.9),
respectively. This Lagrange function can be solved by applying a gradient-based
algorithm to derive the primal and dual variables of the optimization problem. The
gradient-based updates of variables and multipliers are

ys.t C 1/ D �
ys.t/ � ˇys � @L=@ys

�ymaxs

ymins
; (2.11)

zs.t C 1/ D Œzs.t/ � ˇzs � @L=@zs�
C ; (2.12)

�s.t C 1/ D
�
�s.t/C ˇ�s �

�
ezs
ys O�s

hs
� 1

��C
; (2.13)
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�s.t C 1/ D
2
4�s.t/C ˇ�s �

0
@e
zs

0
@fQ C

X
m2S ; m¤s

eym hm C�fQ C �2

1
A � 1

1
A
3
5

C
;

(2.14)

�q.t C 1/ D
"
�q.t/C ˇ�q �

 
gsqeys.t/ C "gq

pP
s2S e2ys.t/

ITq
� 1

!#C
; (2.15)

where ˇys , ˇzs , ˇ�s , ˇ�s , and ˇ�q are small step sizes for the Lagrange multipliers,
and xC D maxf0; xg. The partial derivatives of the Lagrange dual function with
respect to ys and zs are

@L=@ys D �v0
s .hse

ys
zs/ hse
ys
zs � �s

ezs O�s

hseys

C
X
q2Q

�q

ITq

0
B@gsqeys C "gq

e2ysqP
s2S e2ys

1
CAC eys

X
m2S ; m¤s

�mhme
zm (2.16)

and

@L=@zs D v0
s .hse

ys
zs/ hse
ys
zs C �s

ezs O�s

hseys

��se

zs

0
@fP C

X
m2S ; m¤s

eym hm C�fQ C �2

1
A : (2.17)

Iterations in (2.11)–(2.17) lead toep�. The same approach can be used to obtain p�
by setting the protection function to zero. Note that the computational complexity
of solving the nominal problem is the same as that of solving its robust counterpart.

2.2.1.2 Reduced Throughput in Robust Solution

Tobtain the robust solution’s throughput, we compare the feasibility region of (2.9)
with that of the nominal problem. The uncertainties in C2 and C3 in (2.9) affect
the SUs’ transmit power levels in opposite directions. On the one hand, because
of uncertainty in gq, the SUs’ transmit power levels should be reduced to satisfy
the PUs’ IT. On the other hand, because of the uncertainty in fQ, the SUs’
transmit power levels should be increased to improve the SUs’ SINRs at the SBS,
which increases interference. In either case, the transmit power allocation problem
may become infeasible, meaning that a transmit power vector that simultaneously
satisfies the constraints in (2.9) may not exist. To obtain the feasibility conditions,
we use the notion of feasibility region, defined as follows:
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Definition 2.1. The feasibility region, feasibility set, search space, or solu-
tion space of an optimization problem is the set of all possible points (sets of
variables’ values) that can satisfy all constraints in the optimization problem,
including inequalities and equalities for integer and continuous variables. The
optimal solution corresponds to a subset within the feasibility region whose
performance is superior to those of other points in this region. The feasibility
region for problem (1.1) in Chapter 1, denoted by x, is obtained by solving
the following problem [19].

Find x (2.18)

subject to

�
fy.x; cy/ D 0; 8y 2 Y ;

fz.x; cz/ � 0; 8z 2 Z :

Note the following points concerning the feasibility region:

• Some constraints in resource allocation problems may not be satisfied for
some parameter values, meaning that the problem may be infeasible (the
feasibility set may be empty) [13, 22];

• When the feasibility region of the nominal problem contains the feasibility
region of its robust counterpart, the performance of the nominal problem
is higher than that of its robust counterpart [19, 23].

In what follows, we use the preceding points to compare the performance of the
nominal problem and its robust counterpart in terms of the total throughput of a
CRN. We begin by comparing the feasibility regions of (2.4) and (2.9). Consider
� D Œ

O�1n0
h1
; : : : ;

O�Sn0
hS
�T and n0 D fQ C �2; denote the S � Q matrix of channel gains

between SUs and PBSs by G, whose elements are ŒG�sq D gsq, and the vector of ITs
for PBSs by IT D ŒIT1; : : : ; ITQ�. The upper bounds on the SUs’ transmit power
levels are pmax D Œpmax1 ; : : : ; pmaxS �T, and the normalized gain matrix of SUs is F,
whose elements are

Fsm D
�
0 if s D m;
O�shm=hs if s ¤ m:

In what follows, Proposition 2.3 states the feasibility conditions of (2.4) and (2.9),
where �.F/ is the spectral radius of F:
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Proposition 2.3. Problem (2.4) is feasible [24] if and only if

(1) �.F/ < 1,
(2) b � pmax,
(3) bTG � IT,

where b D .I � F/
1� [8].
The robust problem (2.9) is feasible [7, 22] if and only if

(4) �.F/ < 1,
(5) b� � pmax,
(6) bT

�G C "kb�k2 � IT,

where b� D .I � F/
1.� C �/, � D Œ
O�1"fQ

h1
; : : : ;

O�S"fQ
hS
�T, G is the exact

channel gain matrix between SUs and PBSs, whose elements are ŒG�sq D gsq

and " D Œ"g1 ; : : : ; "gQ �.

Proof. See Appendix 3.

Conditions (1)–(3) and (4)–(6) in Proposition 2.3 correspond to the feasibility
regions of (2.4) and (2.9), respectively. Comparing conditions (2) and (4) reveals
that the feasibility region of (2.9) depends on its protection function, and from
condition (5) we see that increasing the value of "fQ tightens condition (5) as
compared to (2). Also, comparing conditions (3) and (6) reveals that increasing the
values of "gq and "fQ shrinks the feasibility region of Eq. (2.9) as compared to that
of Eq. (2.4). Consequently, the SUs’ total throughput for the robust solution is less
than that for the nominal solution [8].

To illustrate the relationship between the uncertainty and feasibility regions, let
us consider a simple example in which a CRN consists of one PBS and one SU, and
fP D 2�2. The impact of "g on the feasibility set of (2.9) is shown in Fig. 2.2. In
this setup, since we only have one SU and one PBS, for simplicity the indices are
omitted from O�s, ps, ITq, gsq, and other variables, as well as in Fig. 2.2. Now, without
considering C2 and when "fQ D 0, the SU reaches its O� for 0:5 � pmax. As can be
seen in Fig. 2.2, by increasing IT=g and "g, constraint C2 shrinks the feasibility set
of (2.9) until the transmit power that satisfies C2 and " falls bellow 0:5 � pmax,
meaning that for those values of IT=g and "g that correspond to the transmit power
levels below 0:5� pmax there is no transmit power for the SU to satisfy both C1 and
C2 in (2.9), that is, the robust power allocation problem is infeasible when the SU’s
transmit power is less than 0:5 � pmax.

Next, we study the feasibility region for the SU’s transmit power when two
parameters are uncertain. Let us start by assuming "fQ > 0 when C2 is not
considered. The required transmit power for reaching O� is

p D 0:5 �
�
1C 1

3
"fQ

�
pmax: (2.19)
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Fig. 2.2 Feasibility set of (2.9) versus "g and IT=g

When both C1 and C2 are considered, "fQ D 90%, IT=g D 9, and "g D 4%,
from (2.19), the SU should transmit at 0:65 � pmax to reach O� . However, from
Fig. 2.2, when IT=g D 9 and "g D 4%, the SU’s transmit power should be less than
0:6�pmax to satisfy the IT. Due to this contradiction, the problem is infeasible. From
the preceding considerations, when both "fQ and "g have nonzero values, they affect
the SU’s transmit power in opposite directions, which may lead to the infeasibility
of the robust problem, whereas the nominal problem is feasible.

Note also that increasing "g for any given value of IT=g causes (2.9) to be
infeasible, and the value of "g that makes the robust problem infeasible depends
on the value of IT=g. In a tight IT, for example, when IT=g < 2, the value of "g is
smaller compared to that for IT=g � 2.

Throughput reduction in the worst-case approach is reported in [8] for a CRN
with two partially overlapping cells, one for the PUs and one for the SUs, as
shown in Fig. 2.3a, b, where the index q is dropped for simplicity and "g and "f are

expressed in percentages as "g D kg
gk2
kgk2 and "fQ D "f D kfQ
fQk2

kfQk2 . The simulation
scenario for these two figures are as follows. The PBS is located at the center of a
circular cell with a radius of 2 km, and the SBS is located 0.5 km from the PBS and
has a 1 km radius. There are three active SUs at d D Œ150; 200; 350�m from the SBS
and D D Œ550; 300; 400�m from the PBS. The transmit power for each SU is within
Œ0:001; 1�W, O�s D 40 dBm, ws D 1 for all SUs, �2 D �110 dBm, and fQ D 2��2.
The channel gains are hs D k

d4s
and gsq D k

D4sq
with k D 0:09. Note that expanding

the uncertainty region (i.e., increasing "g and "f ) reduces the robust throughput.
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Fig. 2.3 Total throughput of SUs versus (a) "g and (b) "fQ D "f

As stated in Proposition 2.3 and shown in Fig. 2.2, satisfying the PUs’ IT while
considering uncertainties in gq shrinks the feasibility set of (2.8) compared to that
of (2.4) and forces the SUs to reduce their transmit power levels, which in turn
reduces the SUs’ social utility when Proposition 2.3 holds. This is not desirable
from the SUs’ point of view and calls for a trade-off between increasing the SUs’
total throughput and preserving the IT for all instances of channel uncertainties.
In practice, the uncertainty does not always correspond to its worst case, and
moderation of the worst-case approach is important and desirable to increase the
SUs’ throughput [17, 25]. This can be achieved via a probabilistic approach in which
the uncertainty set is chosen in such a way that the probability of violating the IT
is kept below a predefined level, and the SUs’ total throughput is kept close to the
optimal value of the nonrobust case.

Introducing robustness reduces the SUs’ total throughput, measured by

d� D kv� � v�
�k2; (2.20)

where v� and v�
� are the SUs’ optimal total throughput values for (2.4) and (2.8),

respectively. In the following lemma, we will show how d� can be obtained.
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Lemma 2.1. Let �� D f��
1 ; : : : ; �

�
Qg and �� D f��

1 ; : : : ; �
�
S g be the optimal

values of Lagrange multipliers for C2 and C3 in (2.4), respectively. For all
values of �q and �fQ in Proposition 2.2 we have [7, 26]

d� �
X
q2Q

��
q�q C

X
s2S

��
s �fQ : (2.21)

Proof. See Appendix 4.

By adjusting �q, one can control d�. To do so, we apply the D-norm approach
[25], where the uncertainty in each channel gain is jOgsqj � "sq with a symmetric
(e.g., uniform) distribution, that is,

gsq 2 Œgsq � Ogsq; gsq C Ogsq�; 8 s 2 S ; 8 q 2 Q: (2.22)

For a nonnegative integer 	q � jS j, the protection value [25] is

�q D max
eq2S ; jeqjD	q; jOgsqj�"sq

X
s2eq

Ogsqps; 8 q 2 Q; (2.23)

where eq is the subset of all SUs that affect the protection value in the D-norm
approach. The size of eq is 	q, and from (2.23) the value of 	q determines the total
number of uncertain parameters in the protection value. Note that the values of gsq

for all s and q are uncertain, but only those values that pertain to the set eq are
considered in the protection function of the D-norm approach. By adjusting 	q, a
trade-off is made between robustness and throughput. When 	q D 0, no protection
is considered, and increasing 	q means more protection, that is, increasing the
number of uncertain parameters results in a higher protection value. Now, the robust
counterpart of (2.4) is

max
pmins �ps�pmaxs

X
s2S

vs.hsps%

1
s /; (2.24)

subject to

8̂<
:̂

C1 W %s O�s � hsps;

C2 W �Ps2S gsqps C�q
� � ITq; 8 q 2 Q;

C3 W
	

fQ CP
m2S ; m¤s pmhm C�fQ C �2



� %s; 8 s 2 S ;

where�q D maxeq2S ; jeqjD	qj; Ogsqj�"sq

P
s2eq

Ogsqps. Since the protection value in the
D-norm approach is a special form of the norm function [20], the convexity of (2.24)
is preserved. Now the question is how to expand the feasibility region, which would
increase the SUs’ total throughput in the D-norm approach. To answer this question,
we state the feasibility conditions of (2.24) in the following proposition.
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Proposition 2.4. The robust problem (2.24) is feasible for "q D "sq;8 s 2 S
when

(1) �.F/ < 1,
(2) b� � pmax,
(3) bT

�G C " � max.kb�k1; kb�k1=	q/ � IT,

where b� D .I � F/
1.� C �/, � D Œ
O�1ı
h1
; : : : ;

O�Sı

hS
�T , " D Œ"1; : : : ; "Q�, and

kb�k1 D PS
sD1 k.b�/sk, in which .b�/s is the sth element of b�.

Proof. See Appendix 5.

From Proposition 2.4 we note that 	q adjusts the constraints that affect the
feasibility region. In what follows, we focus on the conditions that expand the
feasibility set in the D-norm approach, leading to a higher total throughput for the
SUs.

Lemma 2.2. When the uncertainty boundaries in the ellipsoid uncertainty
model and the D-norm uncertainty model are the same, the optimal total
throughput of (2.7) for the D-norm uncertainty model is higher than or equal
to the optimal total throughput for the ellipsoid uncertainty model if

	q �
p

jS j; 8q 2 Q; (2.25)

where jS j is the size of S .

Proof. See Appendix 6.

Reducing the protection value means that the PUs’ interference constraint may
not be satisfied for all instances of uncertainties. From C2 in (2.24), the probability
of violating the IT for a given protection value in the D-norm approach can be
derived via (1.18) in Chapter 1.

By fixing the probability of violating C2 to ıq, the lower bound of 	q can be
obtained from (1.18) in Chapter 1, as shown in Fig. 1.3 of Chapter 1. Note that
reducing ıq increases the value of 	q, and vice versa. From (1.18) in Chapter 1,
when the number of SUs increases, the SBS needs a higher value of 	q to keep
the violation probability acceptable. In addition, unlike (2.7), which satisfies the
PBSs’ interference constraint for all instances of uncertainties, by using the D-
norm in (2.24), the interference constraint is probabilistically satisfied. The SBS
can calculate the value of 	q via (1.18) in Chapter 1 for any value of the violation
probability for PBSs and use it to obtain the protection value. In practice, the value
of ıq can be set by the regulatory authority to trade off between the throughput of
SUs and the violation probability of PUs.
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2.2.1.3 Distributed Robust Solutions and Extra Message Passing

Using the Lagrange function (2.10) for solving (2.9) has three features that are very
useful for developing distributed algorithms:

• Each user’s utility function only depends on that user’s primal variables;
• Dual variables can be divided into local dual variables for each SU (i.e., �s and
�s) and global dual variables of all SUs (i.e., �q);

• Protection functions are simple and linear, and each user can calculate its own
protection value for the corresponding constraint by using a broadcasted scaler.

Based on the preceding points, we now present a distributed algorithm for solv-
ing (2.9) using the gradient-based updates of primal and dual variables (2.11)–
(2.17). We make the following assumptions:

• Each SU knows its normalized SINR at the SBS and receives its "gq and "fQ ;
• Each SU needs the two global scalar variables b1.t/ D P

s2S �shse
zs.t/ and
b2.t/ D pP

s2S e2ys.t/ to update its primal and dual local variables.

The global dual variable �q is updated at the SBS because we need to know all
values of the SUs’ transmit power levels, channel gains gsq, and ITq. The distributed
Algorithm 1 for power control based on the Lagrange dual decomposition is as
follows:

Distributed Algorithm 1
Initialization: At t D 0, initialize all primal values with small positive
random values and Lagrange multipliers with positive random values.
At SBS:
For t D 1; 2; : : :, the values of b1.t/, b2.t/, and �q.t/ are updated using the
SUs’ parameter values and broadcasted to all SUs.
At each SU s:
For t D 1; 2; : : ::

1. Each SU s receives b1.t/, b2.t/ and �q.t/ from the SBS.
2. Each SU s locally calculates its zs.t/ and ys.t/ using (2.11)–(2.12) and

updates its Lagrange multipliers using (2.13)–(2.14).
3. Each SU s transmits �s.t/hse
zs.t/ and ys.t/ to the SBS.

Since (2.9) is a convex problem, the distributed Algorithm 1 converges to the
optimal solution when the conditions in Proposition 2.3 hold and the step size
is sufficiently small (Theorem 3.5 in [16]) [10, 16, 23, 27]. The distribution of
calculations among SUs is a key advantage of distributed algorithms compared
to centralized schemes. However, the distributed Algorithm 1 requires message
passing in each iteration between the SUs and the SBS, as well as one additional
variable passing for (2.9), that is, b2, compared to (2.4). If message passing can
be done at a slower rate without affecting the convergence and optimality of the
allocated transmit power, the algorithm’s signaling overhead is reduced.
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2.2.1.4 Infrequent Message Passing

To reduce signaling in the robust distributed algorithm, we now present an algorithm
with infrequent message passing. Let D denote the time difference between
two successive message passings for b1.t/, b2.t/, and �q.t/. The algorithm with
infrequent message passing is as follows:

Distributed Algorithm 2
Initialization: At t D 0, initialize the primal values with small positive
random values and the Lagrange multipliers with positive random positive
values.
At SBS:

1. For � D 0; 1; : : : ; at t D �D C � for 0 � � < D, the value of �q.t/ in (2.15)
is updated using ys.�D/ and �s.�D/hse
zs.�D/ received from all users.

2. At t D D; 2D; : : ::

– The values of b1.t/ and b2.t/ are updated using �s.�D/e
zs.nD/ received
from all users;

– The values of ys.�D/ and �q.t/ for all s and q are broadcasted to SUs.

At each SU:

1. For � D 0; 1; : : : at t D �DC� for 0 � � < D, each SU s locally calculates
its zs.t/, ys.t/, and Lagrange multipliers using b1.�D/, b2.�D/, and �q.�D/;

2. At t D D; 2D; : : :, each SU s transmits �s.t/hse
zs.t/ and ys.t/ to its SBS.

Obviously, a higher value for D leads to less message passing but may cause
nonconvergence of the distributed algorithm. Hence, we need to find the maximum
value of D for which the distributed Algorithm 2 converges to the optimal solution
of (2.9).

Lemma 2.3. Let � denote the total number of dual and primal variables of
the Lagrange dual function (2.10), and let � denote the vector of all step
sizes of the gradient algorithm in (2.11)–(2.15). The distributed Algorithm 2
converges to the optimal value of (2.9) when

D �
�

1

k�k1
� 1

�
� 1

� � 1 ; (2.26)

where k�k1 is the maximum absolute value of the elements of � .

Proof. See Appendix 7.



2.3 Multi-channel Cognitive Radio Networks 49

The distributed Algorithms 1 and 2 can be slightly modified to solve (2.24) via
the D-norm approach in the following manner. In the modified Algorithm 1, instead
of b2, the vector b2 D Œeb1; : : : ;ebQ�, in whichebq is the protection value �q in (2.23),
is calculated by the SBS and broadcasted to all SUs. Since (2.24) is convex, the
modified Algorithm 1 converges to the optimal solution when the conditions in
Proposition 2.4 hold and the step size is sufficiently small. Algorithm 2 can also
be slightly modified to reduce the signaling by way of infrequent message passing
in the D-norm approach. The modified Algorithm 2 also converges to the optimal
solution when the conditions in Proposition 2.4 hold and the upper bound on D in
Lemma 2.3 is satisfied.

Convergence of � and the transmit power in the distributed Algorithms 1 and 2
are shown in Figs. 2.4(a) and 2.4(b), respectively, where both "fQ and "g are 10%
and IT D �2. Other simulation parameters are the same as those for Figs. 2.3(a)
and 2.3(b). Figure 2.4(a) shows that Algorithm 1 converges relatively fast, whereas
Fig. 2.4(b) shows that Algorithm 2 cannot converge to its optimal value with a large
step size, for example, 0:5, and a large delay, for example, D D 20. By reducing
the step size to 0:01 and delay to D D 5, Algorithm 2 converges but may take an
order of magnitude more iterations as compared to Algorithm 1, which is in line
with Lemma 2.3.

2.3 Multi-channel Cognitive Radio Networks

Now we consider a multi-channel CRN with D2D communications between the
secondary transmitters and receivers in the presence of PBSs, as shown in Fig. 2.5.
Each D2D secondary transmitter and its receiver are considered as one SU pair. The
set of all D2D SU pairs is S D f1; 2; : : : ; Sg, the set of PBSs is Q D f1; 2; : : : ;Qg,
and the set of uplink channels shared between SU pairs and PBSs is K D
f1; 2; : : : ;Kg. For simplicity, we limit our consideration to D2D communications
only and neglect cellular communications between SUs and the SBS.

We assume that the SBS solves the network utility maximization (NUM) problem
for SU pairs subject to the IT of PBSs and the power constraint of SUs. The NUM’s
objective function is the sum of utility values of all SU pairs. The utility of SU s is
its total throughput over all K channels, defined as

vs.�
k
s / D

KX
kD1

log.1C � k
s /; 8 s 2 S ; (2.27)

where � k
s is the SINR of SU s defined as

� k
s D pk

shk
ss

�2 C f k
Q CPS

mD1;m¤s pk
mhk

ms

; 8 s 2 S ; (2.28)
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where pk
s is the transmit power of SU s in channel k, hk

ms is the channel gain between
transmitter SU m to receiver SU s in channel k, and �2 C f k

Q is additive white
Gaussian noise (AWGN) power plus interference caused by PUs to SU s in channel
k. Now, the NUM is

max
Œp1;:::;pS�

SX
sD1

vs.�
k
s /; (2.29)

subject to

(
C1 W PK

kD1 pk
s � pmaxs ; 8 s 2 S ;

C2 W ps : : : gT
sq � ITsq; 8 s 2 S ; 8 q 2 Q;

where ps D Œp1s ; : : : p
K
s � and pmaxs are the transmit power vector of SU s over all

channels and the maximum transmit power of SU s, respectively. Also, gsq D
Œg1sq; : : : ; g

K
sq� is the channel gain vector between SU s and PU q over all channels,

and ITsq is the IT of SU s on PU q. Even without considering C2, (2.29) is nonconvex
and NP-hard [28]. In order to solve this class of problems, one may use their
Lagrange dual function [29]. The duality gap between the optimal solution and its
upper bound obtained by the Lagrange dual function approaches zero as the number
of channels tends to infinity [29]. Hence, the solution obtained by the Lagrange dual
function can be considered as close to the globally optimal solution for large values
of K.

When the constraint on the IT of PBSs is relaxed, the Lagrange dual function
of (2.29) is

D.p;!/ D max
Œp1;:::;pS �

min
!sq

8<
:

SX
sD1

KX
kD1

log.1C � k
s /


SX
sD1

QX
qD1

!sqps � gT
sq C

SX
sD1

QX
qD1

!sqITsq

9=
; ;

(2.30)

subject to C1 W
KX

kD1

pk
s � pmaxs ; 8s 2 S ;

where !sq � 0 is the Lagrange multiplier for constraint C2 for SU s and PBS q. To
solve the preceding problem, one can use the following iterative formula:

!rC1
sq D �

!r
sq C �.ps � gT

sq � ITsq/
�C
; 8 s 2 S ; 8 k 2 K ; (2.31)

where � is a small step size in the iterative formula, and r is the iteration number. By
solving the following subproblem, the optimal ps can be iteratively obtained [29]:

max
Œp1;:::;pS�

0
@ SX

sD1

KX
kD1

log.1C � k
s / �

SX
sD1

QX
qD1

!r
sqps � gT

sq

1
A ; (2.32)

subject to C1 W
KX

kD1
pk

s � pmaxs ; 8 s 2 S :
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2.3.1 Robust Problems

To introduce robust interference control in (2.29), we treat gsq as an uncertain
parameter that can be modeled by gsq D gsq C Ogsq, where gsq and Ogsq are the exact
value and the error in the parameter value, respectively. For each pair of SU s and
PBS q, the uncertain gain is gsq D .gsq C Ogsq/ 2 Rgsq , where Rgsq is the uncertainty
region for gsq. Now, the robust counterpart of (2.29) is

max
Œp1;:::;pS�

SX
sD1

vs.�
k
s /; (2.33)

subject to

8<
:

C1 W PK
kD1 pk

s � pmaxs ; 8 s 2 S ;

C2 W ps � gT
sq � ITsq; 8 s 2 S ; 8 q 2 Q;

C3 W gsq 2 Rgsq ; 8 s 2 S ; 8 q 2 Q:

In what follows, we will show how to solve (2.33) using the polyhedron model
and the general norm introduced in Chapter 1, Section 1.3.2.1. For the polyhedron
model, the uncertainty region for the pair SU s and PU q is

Rgsq D fgsqjMsq � gT
sq � "gsqg;

where Msq is the RK�K weight matrix for gsq, and "gsq is the RK�1 vector. Next,
we transform C2 in (2.33) into a linear constraint [18]. When C2 holds for a given
fixed value of Œp1; : : : ;pS� D Œ Qp1; : : : ; QpS�, the value of ITsq must be higher than the
optimal objective value of the following optimization problem for each SU [9, 18]:

max
gsq

Qps � gT
sq; (2.34)

subject to Msq � gT
sq � "gsq 8 s 2 S ; 8 q 2 Q:

Since (2.34) is feasible, its optimal objective value, denoted by��
sq, can be obtained

via its Lagrange dual function [18, 25],

min
ysq	0

"gsq � yT
sq;

subject to QpT
s � Msq � yT

sq; 8 s 2 S ; 8 q 2 Q; (2.35)

where ysq D Œy1sq; : : : ; y
K
sq� is the qth Lagrange multiplier for (2.34), and 0 is the

zero vector with the same size as ysq. A feasible solution to (2.35), denoted by y�
sq,

satisfies "gsq � y�T
sq � ITqs and also satisfies ��

sq � csq � y�T
sq � ITsq for all uncertainty

in gsq. In this case, we can replace C2 in (2.33) with the following constraints:

"gsq � yT
sq � ITsq; pT

s � Msq � yT
sq; ysq � 0; 8 q 2 Q; 8 s 2 S : (2.36)
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In this way, one new constraint and one new optimization variable are added for
each SU and PBS in each channel for solving (2.33), as compared to (2.29). An
iterative approach that uses the nominal problem’s dual function (2.30) can also be
applied to (2.33), except that (2.31) is replaced by

e!rC1
sq D �

!r
sq C �1."gsq � yT

sq � ITq/
�C
; 8 s 2 S ; 8 k 2 K ; (2.37)

and

b!rC1
sq D �b!r

sq C �2
�
pT

s � .Msq � yT
sq/
��C

; 8 s 2 S ; 8 k 2 K ; (2.38)

where �1 and �2 are small step sizes, r is the iteration number, and e!sq � 0 and
b!sq � 0 are the Lagrange multipliers for the linear constraints in (2.36).

When all primal and dual variables are iteratively updated to solve (2.29)
and (2.33), for each new constraint or each new variable added to (2.29) to introduce
robustness, there is one additional iterative formula. Additional calculations for each
new iterative formula are not significant due to the fact that it is a linear function.
Hence, we only consider the number of new iterative formulas to obtain the order
of additional calculations. The order of additional calculations for solving (2.33) as
compared to (2.29) is O.2�S�K�Q/. Hence, the order of additional calculations for
solving (2.33) as compared to (2.29) is linearly increased by increasing the number
of SUs for the polyhedron model, meaning that the problem is tractable.

For the general norm, consider the uncertainty region as

Rgsq D fgsq k Msq � .gsq � gsq/
T k� "gsqg;

where Msq is an invertible RK�K weight matrix of channel gains between the
transmitter of SU s and the receiver of PBS q, and "gsq is the bound on the
uncertainty region. Now, using the protection function, (2.33) is equivalent to

max
Œp1;:::;pS�

SX
sD1

vs.�
k
s /; (2.39)

subject to

8<
:

C1 W PK
kD1 pk

s � pmaxs ; 8 s 2 S ;

C2 W �ps � gT
sq C�sq.ps/

� � ITsq; 8 q 2 Q;

where�sq.ps/ D maxgsq2Rgsq
ps �.gsq�gsq/ is the protection function for the pair SU

s and PU q. Additional calculations in (2.33) or (2.39) compared to (2.29) are due
to uncertainty in C2 and C3 for each SU. When C2 and C3 in (2.33) can be replaced
by deterministic functions, or their corresponding protection function in (2.39) can
be replaced by a set of linear constraints, the problem becomes tractable [9].
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For the linear norm with order a, we have �sq.ps/ D "gsq

	PK
kD1.mk

sq � pT
s /

b

 1

b
,

where mk
sq is the kth row of M
1

sq , and b D 1C 1=.1� a/. In this case, since there is
no additional optimization variable or constraint, the optimal solution to (2.39) can
be obtained with no significant additional calculations as compared to (2.29).

Feasibility of Nominal Problem and Its Robust Counterpart: Note
that (2.29) and (2.33) [or (2.39)] are always feasible even for a large number
of SUs in a CRN. Let the set of transmit power levels of SU s in (2.29)
and (2.33) be

As D
(

psj
KX

kD1
pk

s � pmaxs ; ps � gT
sq � ITsq; 8 q 2 Q

)

and

eA s D
(

psj
KX

kD1
pk

s � pmaxs ;
�
ps � gT

sq C�sq.ps/
� � ITsq

)
;

respectively, where �sq.ps/ D maxgsq2Rgsq
ps � .gsq � gsq/ for all q 2 Q.

The sets As and eA s are nonempty due to the fact that at least one power
vector ps D 0 exists that satisfies the constraints on As and eA s. In addition,
the constraints on each SU only depend on that SU’s transmit power and
are decoupled from other SUs’ constraints. Consequently, the feasibility
set of (2.29) (i.e., A D SS

sD1As) and the feasibility set of (2.33) (i.e.,eA D SS
sD1 eA s) are nonempty, meaning that (2.29) and (2.33) [or its

equivalent (2.39)] are feasible [19]. Note also that the transmit power of SU
s can be zero (i.e., no transmission), depending on the size of the uncertainty
region, the values of ITsq, and the channel gains gsq. Uncertainty in gsq causes
the feasibility set of (2.33) to be smaller than that of (2.29). When quality of
service (QoS) is considered in the constraints of the optimization problem,
for example, C1 in (2.2), the feasibility region for the nominal problem
(and for its robust counterpart) depends on the channel gains between users,
system information, and each user’s transmit power limitation [22], as already
indicated in Proposition 3. In such a case, the problem may be infeasible,
as in Fig. 2.2, where the minimum required SINR for each SU may not be
attained. On the other hand, when QoS is not considered in the constraints,
the feasibility region can be obtained in a straightforward manner.
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Now, the question is whether the robust solution can be obtained in a manner
similar to how the nominal solution was obtained. To answer this question, we focus
on a single SU scenario and, for notational simplicity, drop the index s in variables.
The nominal problem (2.29) is transformed into

max
p

KX
kD1

log

�
1C pkhk

�2 C fQk

�
; (2.40)

subject to

(
C1 W PK

kD1 pk � pmax; pk � 0; 8 k 2 K ;

C2 W p � gT
q � ITq; 8 q 2 Q:

Since (2.40) is convex, its solution obtained via the Lagrange dual function [30] is

pk D
"

1

�CPQ
qD1 �qgk

q

� �2 C f k
Q

hk

#C
; (2.41)

where � and �q are nonnegative Lagrange multipliers associated with C1 and
C2 in (2.40), and xC D maxf0; xg. The optimal transmit power and Lagrange
multipliers should satisfy the following Karush–Kuhn–Tucker (KKT) conditions
[19]:

�

 
KX

kD1
pk � pmax

!
D 0; and �q.p � gT

q � ITq/ D 0; 8 q 2 Q: (2.42)

We now present a pseudo water-filling algorithm for the robust problem.
Consider the uncertainty region for the polyhedron model as

Rgq D fgqjMq � gT
q � "gqg; (2.43)

where Mq is the weight matrix for gq, and "gq D Œ"1gq
; : : : ; "K

gq
� is an RK�1 vector that

represents the weighted maximum deviation of gq from gq. In this case, the robust
counterpart of (2.40) is

max
p

KX
kD1

log

�
1C pkhk

�2 C f k
Q

�
; (2.44)

subject to

(
C1 W PK

kD1 pk � pmax; pk � 0; 8 k 2 K ;

C2 W max.gqjMq�gT
q �"gq /

�
p � .gT

q � gT
q /
� � ITq; 8 q 2 Q:

From (2.36), C2 can be replaced by

"gq � yT
q � ITq; pT � Mq � yT

q ; yq � 0; 8 q 2 Q:
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Now, when the uncertainty region is (2.43), problem (2.44) is equivalent to

max
p

KX
kD1

log

�
1C pkhk

�2 C f k
Q

�
; (2.45)

subject to

8̂̂
<̂
ˆ̂̂:

C1 W PK
kD1 pk � pmax;

C2 W PK
kD1 "k

gq
yk

q � ITq; 8 q 2 Q;

C3 W pk � PK
iD1ŒMT

q �
kiyi

q; yq � 0; 8 q 2 Q;

where ŒMT
q �

ki is the element of MT
q in its kth row and ith column. Since (2.45) is a

convex optimization problem with linear constraints, it can be solved with fewer
calculations than (2.44) with the same uncertainty region (2.43).

Proposition 2.5. When
PK

iD1 �i
qŒM

T
q �

ki D O�q"
k
gq

for all q and k, the optimal
solution to (2.45) is

Qp�k D
"

1

�CPQ
qD1 �k

q

� �2 C f k
Q

hk

#C
; (2.46)

where �, O�q, and �k
q are nonnegative Lagrange multipliers for C1, C2, and C3

in (2.45), respectively.

Proof. See Appendix 8.

From Proposition 2.5, the robust problem can be transformed into an optimiza-
tion problem with linear constraints whose solution is obtained by a pseudo water-
filling formula. In an orthogonal frequency division multiple access (OFDMA)
system, when the frequency and time interleaver with sufficient interleaving depth
is applied, fading can be considered uncorrelated across channels [31]. In this case,
we can assume that uncertainty in gq can be modeled by independent and identically
distributed (i.i.d.) random variables [31]. Consequently, Mq becomes diagonal, and
the power allocation problem (2.45) becomes

max
p

KX
kD1

log

�
1C pkhk

�2 C f k
Q

�
; (2.47)

subject to

8̂̂
<̂
ˆ̂̂:

C1 W PK
kD1 pk � pmax;

C2 W PK
kD1 "k

gq
yk

q � ITq; 8 q 2 Q;

C3 W pk � ŒMT
q �

kkyk
q; yq � 0; 8 q 2 Q:
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At the optimal point, from the KKT conditions we have ŒMT
q �

kkyk
q D pk, and the

allocated transmit power (2.46) is simplified to the following pseudo water-filling
formula:

Qp�k D

2
64 1

�CPQ
qD1

O�q"
k
gq

ŒMT
q �

kk

� �2 C f k
Q

hk

3
75

C

; (2.48)

where � and O�q are the Lagrange multipliers for C1 and C2 in (2.47), respectively.
The robust transmit power is obtained by (2.48) in a straightforward manner.

The robust counterpart of (2.40) can be written using the protection function.
When Rgq is a compact set, the robust counterpart of (2.40) is

max
p

KX
kD1

log

�
1C pkhk

�2 C f k
Q

�
; (2.49)

subject to

8<
:

C1 W PK
kD1 pk � pmax; pk � 0; 8k 2 K ;

C2 W �p � gT
q C�q.p/

� � ITq; 8q 2 Q;

where �q.p/ D maxgq2Rgq
p � .gq � gq/

T is the protection function in C2, whose
value (the protection value) depends on the uncertain parameters [18, 20]. For the
general norm, e.g., for the ellipsoid norm, the protection function can be replaced
by bounds on the uncertainty region and transmit power, which are more tractable.
In this way, uncertainty is removed from the optimization variables, resulting in less
complexity.

In light of the preceding discussion, we now study the throughput reduction
in the worst-case robust optimization approach. In doing so, we consider d� D
v� � v�

�, where v� and v�
� are the optimal throughput values for (2.40) and (2.49),

respectively. Note that the difference between (2.40) and (2.49) is in their protection
function in C2, which we use to derive the relationship between d� and the
protection function for sensitivity analysis. Similar to Lemma 2.1, one can show
that [9]

d� �
QX

qD1
��

q�q.p/: (2.50)

From (2.50), the value of d� depends on the size of the uncertainty region
and on the interference constraint in (2.40). The approximation (2.50) gives us a
quantitative measure of the impact of C2 and �q.p/ on the throughput in (2.49).
Let p� be the optimal transmit power in (2.40). When p� � gT

q < ITq for all q,
constraint C2 is not satisfied and the protection function does not affect the optimal
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solution to (2.49), and d� � 0. On the other hand, when p� � gT
q D ITq, the value of

��
q indicates the impact of the protection function on the optimal solution to (2.49).

To demonstrate the relationship between �, �, and d�, we simulate a CRN with
one PBS and one SU pair for D2D communication. In this case, for notational
simplicity, we drop indices s and q in the formulas. The number of channels used
by the SU is 64, �2 C f k

Q is �70 dB, and pmax is 10 dBm. The gain in each channel
k is hk D ˇ

D˛ and gk D ˇ

d˛ , where ˛ D 4, ˇ is a frequency-dependent coefficient,
and D and d are distances from the transmitting SU to its receiving SU and from the
transmitting SU to the receiving PBS, respectively. To consider both constraints C1
and C2, we take D D d D 500m. This is because when D � d, the value of gq is
very small, and C2 in (2.40) can be neglected. Also, when d � D, the value of gq

is very high and C1 in (2.40) can be ignored. In other words, when the values of D
and d are very disparate, only one of the two constraints in (2.40) is applicable, and
the problem is much simpler. When the values of D and d are close to one another,
both C1 and C2 in (2.40) should be satisfied, and we can study the impacts of other
parameters, for example, pmax and IT , on the allocated robust transmit power to the
SU. In simulations, the IT for the PBS’s receiver is proportional to its receiving
noise level, and the SU’s throughput is measured in bits per symbol per Hertz.

We now study the dependence of d� on IT and pmax in (2.40). To do so, and as
an example, we assume that the normalized error in channel gain is g
g

g D 0:5, that
is, the error in the channel gain is not more than 50 % of its exact value. In Fig. 2.6,
the average values of �� [i.e., the optimal Lagrange multiplier for C1 in (2.40)], the
average values of ��, and the average values of d� are shown. Note the following
three distinct regions for different values of IT=pmax in Fig. 2.6:

1. Region I: The value of IT is much higher than pmax, that is, pmax

IT � 1, which
means that in (2.40), C2 can be ignored, but C1 should be satisfied. In other
words, �� > 0 and �� D 0.

2. Region II: The interference constraint is moderate, that is, pmax

IT � 1, which means
that in (2.40), both C1 and C2 must be considered.
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3. Region III: The value of IT is much less than pmax, that is, pmax

IT 	 1, which
means that in (2.40), C2 should be satisfied but C1 can be ignored. In other words,
�� D 0 and �� > 0.

In Region I, where C2 is not relevant, we have �� D 0, meaning that d� D 0

and v� D v�
�. However, in Regions II and III, we have �� ¤ 0, and consequently

d� ¤ 0. Therefore, v�
� < v�. Implementing the foregoing considerations in an

underlay CRN has the following consequences. In Region I, uncertainty in g and
the corresponding trade-off do not affect the SU’s throughput. But in Regions II and
III, a trade-off algorithm is desirable to increase the SU’s throughput. The impact
of robustness on the SU’s throughput in Regions II and III depends on the values
of h and g, as well as on the values of the trade-off parameters. Note that for a
fixed pmax in Region III, increasing the ratio pmax

IT is equivalent to reducing IT , which
reduces the SU’s allocated transmit power. For very small values of the allocated
transmit power, the difference d� in the achieved throughput in the nominal and
robust approaches diminishes.

2.3.1.1 Social Utility of Robust Solutions Versus Uncertainty Levels

Now the question concerns the impact of uncertainty levels on the robust solution’s
social utility. In Fig. 2.7, the polyhedron approach is simulated for D2D commu-
nications in a multiple-SU single-PBS scenario with multiple OFDMA channels
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when interference between SUs is low and when it is high. Simulation parameters
are K D 64, Q D 1, S D 2, Dss 2 Œ450; 550� m (distance between the transmitting
and receiving SU s), and dsq 2 Œ450; 500� m (distance between the transmitting
SU s and receiving PBS q). In this setup, Dss � dsq, and hence both C1 and
C2 in (2.29) are applicable. The distance between the transmitting SU s and the
receiving SU m, denoted by Dsm, is Dsm 2 Œ800; 950� m for the low-interference
case and Dsm 2 Œ300; 250� m for the high-interference case. We assume Ogk

sq D �gk
sq

for all s 2 S and q 2 Q and k 2 K .
Note that in the low-interference case, increasing � results in monotonically

reducing the SUs’ total throughput (social utility). This is not the case for the high-
interference case, where introducing robustness may reduce each SU’s transmit
power, and, consequently, the interference of each SU on the other SU may be
reduced. Hence, it is possible that the throughput of each SU may increase with
increasing � due to the reduced interference between SUs. In other words, in a
high-interference scenario, it may be possible to increase the total throughput by
increasing uncertainty when the SUs reduce their transmit power levels to satisfy
the constraints.

2.3.2 Trade-Off Algorithms

In what follows, we discuss the trade-off algorithms for the D-norm and chance-
constrained approaches. We begin by considering a CRN with one SU and then
extend our formulations for multiple SUs.

2.3.2.1 Trade-Off in D-Norm Approach

The protection value for the D-Norm approach is

�q D max
Lq

X
k2Lq

Ogk
qpk; (2.51)

where Lq is any subset of channels of size 	q. The number of channels in Lq

determines the protection value, meaning that a smaller 	q results in a smaller d�.
For 	q D 0, the protection value vanishes, and d� D 0. In contrast, for 	q D K,
all channels are taken into account, and d� is maximized. By adjusting 	q, one can
control the cost of robustness from the SU’s point of view.

For the D-norm approach, as with the polyhedron uncertainty region, a linear
protection function can be obtained [9], resulting in fewer calculations. From
Proposition 2.1 in [25], for a given p D Qp, the protection function (2.51) for the
constraint on the interference on PBS q is
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max
0�lkq�1

KX
kD1

Ogk
qlkq Qpk (2.52)

subject to
KX

kD1
lkq � 	q;

where lkq is an auxiliary variable that indicates whether the corresponding error Ogk
q

is considered in the protection function of the D-norm approach, and Qpk is the kth
element of Qp. Note that lkq is by nature a binary variable, but to simplify the problem
we take it as a continuous variable, which will eventually be converted into a binary
variable. Let Q��

q be the optimal protection value of (2.52), which can be obtained
from its dual function [25]

min
zq;�q

 
	qzq C

KX
kD1

q

!
; (2.53)

subject to

(
Ogk

qxk
q � .zq C q/;

Qpk � xk
q 8 k 2 K ;

where zq, �q D Œ1q; : : : ; 
K
q �, and xk

q are positive variables. Since (2.52) is feasible
and bounded for all 0 � 	q � K, its dual, that is, (2.53), is also feasible and
bounded, and by strong duality, their optimal protection values coincide. Feasible
solutions to (2.53), denoted by z�

q and ��
q D Œ�1

q ; : : : ; 
�K
q �, satisfy .	qz�

q CPK
kD1 �k

q / � ITq � p:gT
q and also satisfy . Q��

q � 	qz�
q CPK

kD1 �k
q / � ITq � p:gT

q .
Therefore, C2 in (2.49) can be replaced by the following constraints:

 
p:gT

q C 	qzq C
KX

kD1
qk

q

!
� ITq; Ogk

qxk
q � �

zq C qk
q

�
; pk � xk

q; 8 k 2 K :

Consequently, the robust optimization problem is

max
p

KX
kD1

log

�
1C pkhk

�2 C f k
Q

�
; (2.54)

subject to

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
:̂

C1 W PK
kD1 pk � pmax;

C2 W
	PK

kD1 pkgk
q C zq	q CPK

kD1 q



� ITq;

C3 W Ogk
qxk

q � .zq C q/;

C4 W pk � xk
q;

C5 W 0 � xk
q; 0 � zq; 0 � k

q; 8 k 2 K ; 8 q 2 Q:
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Since all the constraints in (2.54) are affine functions, a pseudo water-filling
formulation can be developed for obtaining pk using their corresponding Lagrange
dual functions. When Ogk

q Q�k
q D wk

q, Q�q	q D PK
kD1 Q�k

q, and Q�k
q D Q�q, as shown in

[9, 19], the optimal solution to (2.54) is

Qp�k D
"

1

�CPQ
qD1. Q�qgk

q C wk
q/

� �2 C f k
Q

hk

#C
;

where �, Q�q, Q�k
q, and wk

q are the nonnegative Lagrange multipliers for C1, C2, C3,
and C4 in (2.54), respectively.

2.3.2.2 Trade-off in Chance-Constrained Approach

When A1 and A2 in Section 1.3.3.1, Chapter 1 hold, the robust counterpart of (2.40)
in the chance-constrained approach is

max
p

KX
kD1

log

�
1C pkhk

�2 C f k
Q

�
; (2.55)

subject to

8<
:

C1 W PK
kD1 pk � pmax; pk � 0; 8 k 2 K ;

C2 W Pr
�
p � gT

q � ITq
� � ıq; 8 q 2 Q;

C3 W gq 2 Rgq ; 8 q 2 Q:

Again, adjusting ıq in (2.55) results in a trade-off between robustness and optimality.
By reducing ıq, the system becomes more robust against uncertainty, and by
increasing ıq, the SU’s throughput is increased. In the chance-constrained approach
[17], C2 in (2.55) can be replaced by its convex safe approximation. To do so, we
rewrite the SU’s interference on PBS q as

p � gT
q D

KX
kD1

pkgk
q C

KX
kD1

�k
qpk Ogk

q;

where �k
q D gk

q
gk
q

Ogk
q

for each q 2 Q is known to be in the range Œ�1; 1�. For

uncorrelated fading channels [31], all the values of �k
q are independent of each

other and their probability distribution function (pdf)is D.q/ (Section 1.3.3.1 in
Chapter 1). Hence, C2 in (2.55) can be replaced by the Bernstein approximations
of chance constraints [17], that is,

0
B@

KX
kD1

pkgk
q C

KX
kD1

�C
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(2.56)
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or
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(2.57)

where �1 � �C
D.q/ � C1 and �2D.q/ � 0, which depend on D.q/, are used

for safe approximations of the chance constraints. For a specific D.q/, these
parameters have fixed values [17], as shown in Table 1.2 in Chapter 1. Note that
when p satisfies (2.56) and (2.57), it certainly satisfies C2 and C3 in (2.55). Hence,
from (2.56) we have

max
p

KX
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�
1C pkhk

�2 C f k
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�
; (2.58)
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Note that (2.58) can be rewritten as a conic quadratic programming problem, which
can be solved with few calculations.

We use (2.57) to rewrite (2.55) as

max
p

KX
kD1

log

�
1C pkhk

�2 C f k
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; (2.59)
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which is equivalent to
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subject to
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2K ln ı�1
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� ITq; 8 q 2 Q;

C3 W pk Ogk
q � uq; 8 q 2 Q; 8 k 2 K ;

where uq > 0 is an auxiliary variable representing the maximum error in the
estimated interference on PU q in all channels. Utilizing the Lagrange dual function,
the optimal solution to (2.60) is
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where �, �q, and �k
q are the nonnegative Lagrange multipliers for C1, C2, and C3,

respectively, which satisfy
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In (2.59), the protection function is
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k Ogk
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2K ln ı
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q max8 k2K pk Ogk
q: (2.62)

Sensitivity Analysis of d�: Protection functions in the D-norm and chance-
constrained approaches depend on 	q and ıq, respectively. In what follows,
we study the sensitivity of d� on 	q in the D-norm approach and on ıq

in the chance-constrained approach by differentiating d� with respect to 	q

and ıq.

• D-Norm Approach: Since �q D zq	q CPQ
qD1 qk

q, from (2.50) we have

d� �
QX

qD1
��

q

 
zq	q C

KX
kD1

qk
q

!
; (2.63)

which means that d� directly relates to 	q. Hence, for a given value of
ITq and in a given channel uncertainty region, increasing the value of 	q

proportionally reduces the SU’s throughput, and vice versa. This is shown
in Fig. 2.8 for a single SU and a single PBS, where Ogk D �gk and IT D
�3 dB. Note that increasing 	q and expanding the uncertainty region �

(continued)
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proportionally reduces the SU’s throughput, as expected from (2.50). The
simulation setup for Fig. 2.8 is the same as for Fig. 2.6.

• Chance-Constrained Approach: In this case, the protection function is

�q D
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k Ogk
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and we have
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Based on the preceding expressions, the sensitivity of d� to ıq is

Sıq.d�/ D @d�
@ıq

D 1

ıq

q
2 ln ı
1

q

: (2.66)

Figure 2.9 shows that for a given ITq and a channel uncertainty region,
when ıq < 0:2, d� is very sensitive to ıq. This is not the case for higher
values of ıq. The same is true of (2.59). The sensitivity of d� to ıq is shown
in Fig. 2.10, where for ı � 0:2, the SUs’ throughput does not increase very
much.
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Choosing a Trade-Off Approach: Now we consider the criteria for choosing
a trade-off approach for a given scenario. We begin by noting that the compu-
tational cost in both choices, namely, in the trade-off algorithm for the D-norm
approach and in the trade-off algorithms for the two safe approximations in
the chance-constrained approach, is moderate and not a determining factor.
However, the protection value plays a major role in the choice of trade-off
algorithm. An algorithm with less protection has a smaller d� and a higher
throughput. Less protection also means a higher probability of violating the
constraints. One can keep the violation probability below a given threshold
in the D-norm approach, as shown by (1.18) in Chapter 1, and in both safe
approximations in the chance-constrained approach. In practice, however, the
violation probability may be even less than the given threshold, as reported
in [9]. Hence, when high throughput is important, a trade-off algorithm with
less protection should be chosen, and when it is important to guarantee the
violation probability, a trade-off algorithm with higher protection should be
selected. In [9], it is shown that in a single-SU single-PBS CRN, the protection
value for (2.56) is higher than those for (2.51) and (2.57), which means (2.56)
is preferred by the PBS but is disadvantageous for the SU. The opposite is
true of (2.57), where the SU enjoys its highest throughput at the expense of
minimal protection for the PBS. While the throughput in the D-norm approach
is close to that of (2.57), the probability of violating the IT in the former
is considerably lower than that in the latter because the former has higher
protection. Hence, the trade-off algorithm in the D-norm approach can be a
better choice from the perspectives of both the SU and the PBS. In a similar
manner, one could argue which trade-off algorithm is a better choice for other
cases.
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Note that the linear constraint for the D-norm approach in (2.54) and for the
chance-constrained approach in (2.60) for the single-SU scenario can also be
applied for multiple SUs in (2.39). For instance, in the D-norm approach, (2.39)
is transformed into
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sq; 8 k 2 K ; 8 s 2 S ; 8 q 2 Q;

where 	sq is the D-norm parameter for protecting PBS q from SU s, and sq and
xk

sq are nonnegative parameters for converting the D-norm’s protection function into
linear constraints.
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Similarly, in the chance-constrained approach, (2.39) is transformed into

max
Œp1;:::;pS�

SX
sD1

KX
kD1

log

�
1C pk

shk
ss

�2 C f k
Q

�
; (2.68)

subject to

8̂<
:̂

C1 W PK
kD1 pk

s � pmaxs ;

C2 W
	PK

kD1 pk
s gk

sq CPK
kD1

	
�

C

D.sq/p
k
s Ogk

sq



C 'D.sq/

q
2K ln ı�1

sq usq



� ITsq; 8 q 2 Q;

C3 W pk
s Ogk

sq � usq; 8 s 2 S ; 8 q 2 Q; 8 k 2 K ;

where usq > 0 is an auxiliary variable representing the maximum error in the
estimated interference by SU s on PU q in all channels, ısq is the violation
probability for the IT of SU s on PBS q, and D.sq/ is the pdf for the uncertainty in
channel gain gsq between SU s and PBS q (defined in Table 1.2, Chapter 1).

The preceding discussion shows that, by using linear constraints instead of
protection functions, the order of additional calculations for introducing robustness
in the D-norm approach and in the chance-constrained approach is O.Q�.4�Q�KC
Q// and O.S � .Q C K � Q//, respectively, compared to (2.29) [9], meaning that the
computational complexity of obtaining the nominal and robust solutions are similar.
To obtain the order of computational complexity associated with solving (2.60)
or (2.67), all primal and dual variables are iteratively updated, much like the iterative
algorithm for solving (2.30). Therefore, for each new constraint or each new variable
in (2.60) or (2.67), there is one additional iterative formula compared to (2.29).

So far, we have shown that replacing nonlinear protection functions in the
constraints of robust problems with linear functions can reduce the computational
complexity associated with solving robust problems. We have also shown that
introducing robustness entails throughput reduction, and sensitivity analysis was
used to demonstrate that it is possible to trade off between throughput and
robustness.

2.4 Overview of Other Works on Robust Cooperative
Resource Allocation

In the preceding sections, we presented robust cooperative schemes for optimal
transmit power allocation in wireless networks and explained how to trade off
between total throughput and robustness. In what follows, we provide an overview
of other works on this topic, highlighted in Table 2.1, and show that while we
covered trade-off algorithms for complexity, throughput, and signaling, in general
they have not been extensively addressed in the literature.

In [32], the worst-case ergodic resource allocation in the uplink of an underlay
CRN is studied, where the objective is to maximize an SU’s total throughput
subject to PUs’ interference threshold. In this work, the uncertainty in channel
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Table 2.1 Overview of other existing works on robust cooperative resource allocation

Trade-off algorithms
References Complexity Throughput Signaling D-norm Chance-constrained

[32]
p p

– –
p

[33]
p p

– –
p

[34]
p p

– – –

[35]
p p p

–
p

[36]
p p

– –
p

[37]
p p

– – –

[38]
p p

– – –

gains between SU transmitters and SU receivers and in channel gains between
SU transmitters and PU receivers are considered. To reduce the computational
complexity, in [32] a middle way between the worst-case and Bayesian approaches
is applied for robustness–throughput trade-off via a chance constraint, and the
impact of the uncertainty region’s bound on SUs’ total throughput is investigated
via simulations only (no analytical study).

In [33, 34], physical layer security in the presence of eavesdroppers is studied,
where the impact of expanding the uncertainty region on the throughput is inves-
tigated, and reducing a problem’s computational complexity is discussed. In [33],
the robustness–throughput trade-off via a chance constraint is considered, but no
such trade-off algorithm is presented in [34]. In [35], to maximize power efficiency
while maintaining the required signal-to-interference ratio (SIR) for each user in
interference-limited wireless networks with uncertain parameters, the problem is
formulated via the chance-constrained approach. It is also shown that the proposed
approach maintains the convexity and tractability of the problem by solving it in
a distributed manner by the Lagrange dual decomposition method. An infrequent
message passing algorithm is also proposed to reduce the signaling in the proposed
robust scheme.

In [36], worst-case robust optimization is applied in relay-assisted two-hop D2D
communications in LTE-A cellular networks, where the objective is to maximize
the network’s throughput in shared channel environments. The constraints are the
bounded transmit power, the interference on relays and receiving users, and user
QoS requirements. Uncertainty in channel gains, stated by the linear norm, is
assumed to be within the uncertainty region. It is shown that the robust problem
is convex and a gradient-based dual decomposition algorithm can be applied to
allocate transmit power in a distributed manner. However, [36] is silent on additional
message passing in the robust distributed algorithm, but the chance-constrained
approach is applied to ameliorate the throughput reduction in the robust scheme
by trading off between throughput and robustness.

In [37], a robust resource allocation scheme is proposed for a cooperative CRN
in which a set of relays assist SUs, and strict SUs’ ITs on PUs are set. Assuming that
channel gains are uncertain, the robust resource allocation problem is formulated to
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maximize the SUs’ sum rate while satisfying the interference constraints on PUs
via both the probabilistic and worst-case approaches. It is shown that the original
robust optimization problem can be approximated and transformed into a convex
deterministic form, and a closed-form solution for the SUs’ transmit power levels is
derived.

In [38], optimal robust resource allocation in the downlink of renewable-powered
HetNets is studied, where channel gains are uncertain due to noise. In this work,
robust energy management and transmit beam-forming are proposed to minimize
worst-case energy transactions subject to a worst-case guarantee for each user’s
QoS. The authors use semi-definite programming (SDP) relaxation to transform
the problem into a convex approximation, which is solved by applying the gradient
method in a distributed manner. In this way, computational complexity is reduced,
but the paper is silent on additional message passing in the robust solution. In
addition, using simulations, it is shown that expanding the uncertainty region
increases the robust transmit power levels.

As can be seen in Table 2.1, while the impact of uncertainty in parameter values
on the total throughput or on transmit power levels has been extensively studied,
the performance gap between the robust and nominal solutions similar to (2.21)
in Lemma 2.1 in this chapter has not been considered in the literature. Note that
deriving a mathematical expression for the aforementioned performance gap enables
one to see how each constraint in the robust problem affects the performance of the
robust solution. Moreover, as shown in Table 2.1, although the D-norm approach is
easy to implement and has some interesting aspects, as mentioned in Section 3.2.2,
it has not been a very popular topic. Nevertheless, utilizing (1.18) in Chapter 1 for
the D-norm approach to make a connection between the violation probability and
the protection value seems to be an interesting topic.

2.5 Concluding Remarks

In this chapter, we showed how network-centric robust resource allocation problems
in wireless networks with cooperative users can be solved via the dual decom-
position approach; in addition, we discussed how the costs of robustness can be
mitigated. In what follows, we summarize our conclusions.

• Computational Complexity: We demonstrated how to simply robust problems
and reduce their computational complexity to the same order of the nominal
problem by utilizing protection functions; and showed that for the general norm
and for the polyhedron uncertainty region, the robust counterpart problem is
convex. We also obtained the optimal solution for some specific cases by way
of utilizing a pseudo water-filling formula, whose computational complexity is
not significant.
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• Throughput Reduction: We derived mathematical formulations for a given
amount of throughput reduction in robust solutions when the nominal problem
is convex. We utilized sensitivity analysis to demonstrate that when the uncer-
tainty region is shrank, the throughput gap between the nominal and robust
solutions can be reduced. Also, we showed the application of the D-norm and
chance-constrained approaches to trading off between robustness and throughput
reduction in different scenarios and compared them by way of sensitivity analysis
on the size of the protection function for each approach. We also explained the
criteria for choosing a trade-off approach for each specific scenario.

• Extra Message Passing: In solving cooperative distributed resource allocation
problems, the drawback of applying dual decomposition techniques is the need
for extra message passing. To reduce this additional signaling, we proposed a
distributed scheme with infrequent message passing and derived the conditions
for its convergence to the optimal solution of the original distributed algorithm.

Appendices

Appendix 1: Proof of Proposition 2.2

Recall that the dual norm of kxk is kxk� , maxksk�1 sTx. For the uncertainty set in

Rgsq , we use yq D gq
gq

"gq
to rewrite the uncertainty set as

Rgq D fyqjkyq � yqk � 1g 8 q 2 Q: (2.69)

We also rewrite the protection value as

max
gq2Rgq

X
s2S

�
.gsq � gsq/ps

� D "gq max
yq2Rgq

X
s2S

�
.ysq � ysq/ps

�
; (2.70)

which corresponds to the dual norm. The same is true of the uncertainty set
pertaining to PU interference on the SBS [20].

Appendix 2: Convexity of (9)

By logarithmic transformation of the optimization variable in (2.9), the upper and
lower bounds on the transmit power of each SU, as well as C1 and C3, are changed to

pmins e
ys � 1;

.pmaxs /
1eys � 1;

O�sh

1
s ezs
ys � 1;
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e
zs.fQ C
X
m¤s

eym hm C �2/ � 1:

The left-hand side of the preceding constraints are the affine nonnegative sum of
exponential variables and constitute convex functions ([10] and Section 3.2 in [19]).
Also, the interference constraint C2 in (2.9) is changed to

0
@X

s2S
gsqeys C "gq

sX
s2S

e2ys

1
A � ITq; 8 q 2 P:

The left-hand side of the preceding expression is the linear norm of the vector
of exponential variables with order 2, which is convex (Section 3.2.4 in [19]).
Note that (2.4) is a concave function under logarithmic transformation [10, 12].
Hence, (2.9) is convex.

Appendix 3: Proof of Proposition 2.3

Problem (2.9) is feasible when there is at least one transmit power vector that
simultaneously satisfies all constraints. The feasibility of problem (2.7) can be
written (Section 2.1.3 in [16]) as

min
1�&; pmins �ps�pmaxs

&; (2.71)

subject to

8̂̂
<̂
ˆ̂̂:

C1 W 1n.zs; ys/ D ezs
ys O�s
hs

� &;

C2 W 2n.zs; ys/ D 1
ITq
.
P

s2S gsqeys/ � & 8 q 2 Q;

C3 W 3n.zs; ys/ D e
zs.fQ CP
m¤s; m2S eym hm C �2/ � &;

C4 W gq 2 Rgq ; fQ 2 RfQ ;

where & is an auxiliary variable representing the upper bound on all constraints.
By solving (2.71) and obtaining .&�;p� D Œp�

1 ; : : : ; p
�
S �/, when &� D 1, the set

of posynomial constraints in C1, C2, and C3 are feasible, and the corresponding
transmit power vector of all SUs, that is, p� D Œp�

1 ; : : : ; p
�
S � is the feasibility

set of (2.7). Otherwise, the set of posynomial constraints and, consequently, (2.7)
are infeasible [16]. Based on the preceding expressions, to obtain the feasibility
conditions of (2.7), we set & D 1 and obtain p� D Œp�

1 ; : : : ; p
�
S �. In doing so, we

divide problem (2.71) into two subproblems, one for C1, C3, and fQ 2 RfQ , and the
other for C2 and gq 2 Rgq .
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Sub-problem 1. This problem is

min
1�&; pmins �ps�pmaxs

&; (2.72)

subject to

8̂<
:̂

C1 W ezs
ys O�s
hs

� &;

C3 W
	

e
zs.fQ CP
m2S ; m¤s eym hm C �2/



� &;

C4 W fQ 2 RfQ :

If we use�F instead of the uncertainty set in (2.7) and consider & D 1, this problem
becomes a standard transmit power allocation problem [22] with a protection value.
The solution to (2.72) satisfies

� C � � .I � F/p; (2.73)

where p is the transmit power vector of all SUs. This inequality is satisfied [22]
when

�.F/ < 1; (2.74)

where � is the spectral radius of F, minimized for b� D .�C�/.I�F/
1. Also, the
transmit power vector obtained in (2.73) should be below its upper bound for each
user, that is,

�
.� C �/.I � F/
1

� � pmax: (2.75)

Sub-problem 2. For C2, we obtain the feasibility condition by solving

min
1�&; pmins �ps�pmaxs

&; (2.76)

subject to

(
C2 W 1

ITq
.
P

s2S gsqeys/ � & 8q 2 Q;

C4 W gq 2 Rgq ;

which is equivalent to solving the following linear programming problem:
�

gqp C "gq max
krk�1

rp
�

� ITq; (2.77)

where r D .gq � gq/="gq . Note that the second term in (2.77) is the dual norm [19].
For (2.9), the dual norm of a linear norm with order 2 is a linear norm with order 2.
Hence,

�
gqp C "gqkpk2

� � ITq: (2.78)

When (2.74), (2.75), and (2.78) hold for b�, (2.9) is feasible. Thus, the feasibility
conditions for (2.9) are items (4)–(6) in Proposition 2.3.
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Appendix 4: Proof of Lemma 2.1

Note that (2.8) is a perturbed version of (2.4) with protection values in C2 and C3.
To obtain the relationship between d� and the protection value, we perform a local
sensitivity analysis of the optimization problem by perturbing its constraints [7, 19,
26]. Let

v�.a;b/ D inf

(
� max

pmins �ps�pmaxs

X
s2S

vs.hsps%

1
s /j ;

%s O�s � hsps;

 X
s2S

gsqps C�q

!
� ITq;

0
@fQ C

X
m2S ; m¤s

pshs C�fQ C �2

1
A � qs

9=
; ;

where a is a vector whose qth element is �q, and b is a vector whose elements are
all equal to�fQ . When�q and�fQ are small, v�.a;b/ is differentiable with respect
to the perturbation vectors a and b [26]. Using a Taylor series, we write

v�.a;b/ D v�.0; 0/

C
X
q2P

aq
@v�.0;b/
@aq

C
X
s2S

bs
@v�.a; 0/
@bs

C o; (2.79)

where v�.0; 0/ is the social utility for (2.4), and 0 is the all zero vector. Note that
v�.a;b/ and v�.0; 0/ are equal to v�

� and v�, respectively. Since (2.4) is convex,

from the sensitivity analysis in [26] we have @v�.0;b/
@aq

� ���
q and @v�.a;0/

@bs
� ���

s for
all q 2 Q and s 2 S . Hence,

v�
� � v� � �

X
q2Q

��
q�q �

X
s2S

��
s �fQ : (2.80)

Since ��
q and ��

s are nonnegative optimum Lagrange multipliers, the SUs’ social
utility is reduced compared to when the exact channel gains are known.

Appendix 5: Proof of Proposition 2.4

Problem (2.24) is feasible (Section 2.1.3 in [16]) when the following optimization
problem is feasible:

min
1�&; pmins �ps�pmaxs

&; (2.81)
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subject to
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<
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ITq
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where�q D maxeq2S ; jOgsqj�"sq; jeqjD	q

P
s2eq

Ogsqeys . As in Appendix 3, the feasibility
of this problem can be established by dividing it into two subproblems. The first
subproblem is similar to subproblem 1 in Appendix 3. Also, subproblem 2 in
Appendix 3 can be utilized for the D-norm approach, where (2.77) is changed to

gqp C "qkpk�
	q

� ITq; (2.82)

where kpk	q D maxeq2S ; jeqjD	q

P
k2eq

pk, and kpk�
	q

is the dual norm of kpk	q ,
defined [20] by

kpk�
	q

D max

�
kpk1;

kpk1
	q

�
: (2.83)

From the preceding expressions, when (2.74), (2.75), and (2.82) hold for b�, (2.24)
is feasible. Thus, the feasibility conditions for (2.24) are items (1)–(3) in Proposi-
tion 2.4.

Appendix 6: Proof of Lemma 2.2

Part 1: Since
	

minf1; 	qpjS j gkxk2



� max
	
kxk1; kxk1

	q



, the feasibility set

of (2.24) is greater than that of (2.9), provided that (2.25) holds. Therefore,
there is a transmit power vector for (2.24), denoted by pD-norm, that satisfies all
constraints in (2.9), and

pD-norm � pEllipsoid; (2.84)

where pEllipsoid is the allocated transmit power vector for (2.9) in the ellipsoid
uncertainty set, meaning that the ellipsoid’s feasibility set for (2.9), that is,
FEllipsoid, is a subset of the D-norm feasibility set for (2.23), that is, FD-norm.
Part 2: Let the optimal social utility of (2.24) subject to FD-norm be vD-norm and
the optimal social utility of (2.9) subject to FEllipsoid be vEllipsoid. We assume

9 p 2 FEllipsoid;

vEllipsoid.p/ > vD-norm.p
0/; 8 p0 2 FD-norm: (2.85)
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Since FEllipsoid 
 FD-norm, we have p 2 FD-norm, and from the assumption
in (2.85) and convexity of the robust transmit power allocation for the general
norm, the value of vEllipsoid.p/ is also the optimal solution to (2.24) subject to
FD-norm, that is, vEllipsoid.p/ D vD-norm.p/. However, from the assumption in (2.85)
we have vEllipsoid.p/ > vEllipsoid.p/. This contradiction implies that our assumption
was wrong, and thus vD-norm � vEllipsoid . The preceding point generally holds for
any form of convex optimization problems. For example, the social utility of (2.9)
is always equal to or less than that of (2.4) due to the fact that the feasible set
of (2.9) is smaller than that of (2.4).

Appendix 7: Proof of Lemma 2.3

Let !i be an iterative vector with ni steps that can be obtained from (2.11)–(2.15) as

!i D
�
Œys; zs; �s; �s� if i 2 S ;

�q if i 2 P:

Algorithm 1 can be decomposed into ˘ D P
i2SCQ˘i block components

!1,: : :,!SCQ. Note that in Algorithm 1, ˘i D 4 for i 2 S and ˘i D 1 for i 2 Q.
In addition, for the iterative primal and dual variables obtained from (2.11)–(2.15),
the following points hold:

• The Lagrange dual function �L.�s; �s; �q; ezs ; eys/ is positive.
• The Lagrange dual function is Lipschitz continuous. Since ps is upper bounded

for all users, all Lagrange multipliers are upper bounded as well, and the
Lagrange dual function is continuously differentiable.

• From (2.11)–(2.15), Algorithm 1 is a gradient projection algorithm [10]. Hence,
Lemma 5.1 in Section 7.5 of [23] holds for Algorithm 1, and Assumptions 5.1
and 5.2 in Section 7 of [23] also hold. In addition, Algorithm 2 is a partially asyn-
chronous implementation of Algorithm 1 with maximum delay D (Section 7.1 in
[23]). Hence, there is a step size ˇ0 such that when all step sizes are smaller than
ˇ0, Algorithm 2 converges to the optimal point of Algorithm 1. The value of ˇ0
depends on D and N (Propositions 5.1 and 5.3, Section 7 in [23]), that is,

ˇ0 � 1

1C D C N � D
: (2.86)

From the preceding expression, (2.26) can be obtained with some rearrangements.
Note that the preceding conditions are also valid for the D-norm approach. Hence,
the same constraint (2.26) can be applied for infrequent message passing in the D-
norm approach.
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Appendix 8: Proof of Proposition 2.5

The Lagrange dual function associated with (2.45) is

L.p; yq; �; O�q; �
k
q/ D

KX
kD1

log

�
1C pkhk

�2 C f k
Q

�
� �

 
KX

kD1
pk � pmax

!

�
QX

qD1
O�q

 
KX

kD1
"k

gq
yk

q � ITq

!
�

QX
qD1

KX
kD1

�k
q

 
pk �

KX
iD1
ŒMT

q �
kiyi

q

!
;

where �, O�q, and �k
q are the dual variables corresponding to C1, C2, and C3 in (2.45),

respectively. For the convex optimization problem considered here, the duality gap is
zero, and solving the dual problem is equivalent to solving the original problem [19].
The optimal transmit power vectors Qp� D ŒQp�1; : : : ; Qp�K � and yq can be obtained
from the saddle point of the following optimization problem:

max
p; yq

min
�; O�q; �k

q

L.p; yq; �; O�q; �
k
q/: (2.87)

For any given values of �, O�q, and �k
q, differentiating (2.87) with respect to pk and

yk
q and setting the derivatives to zero leads to the maximization of (2.87), that is,

@L

@pk
D 0 ) Qp�k D

"
1

�CP
q2Q �k

q

� �2 C f k
Q

hk

#C
;

@L

@yk
q

D 0 )
KX

iD1
�i

qŒM
T
q �

ki D O�q"
k
gq
:

Therefore, the optimal transmit power, that is, Qp�, is obtained by (2.46). Also, since
each optimal solution to a convex problem satisfies the KKT conditions [19], the
values of �, O�q, and Qp�k are related via ��.PK

kD1 Qp�k�pmax/ D 0, O�q�.PK
kD1 "k

gq
yk

q�
ITq/ D 0, and �k

q � .Qp�k �PK
iD1ŒMT

q �
kiyi

q/ D 0, respectively, 8q 2 Q; 8k 2 K .
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Chapter 3
Robust Noncooperative Resource Allocation

Game theory is a branch of applied mathematics that can describe and analyze
interactive decisions in resource allocation problems in wireless networks. Non-
cooperative game theory is suitable for solving and analyzing such problems when
each user in the network is a greedy (noncooperative) and rational player that aims
to maximize its own utility by utilizing the available side information. In practice,
however, side information and measurements are noisy and uncertain, which calls
for introducing in noncooperative games robustness against such uncertainties. In
this chapter, we explain how to use game theory to allocate resources in networks
and how to utilize worst-case optimization in robust games. Specifically, we analyze
such games, study the conditions for the existence and uniqueness of their equilibria,
derive the gap between the utility values of nominal (nonrobust) and robust games,
and present distributed algorithms for solving such games. We also evaluate a
robust game’s performance vis-a-vis that of a nominal (i.e., no uncertainty) game
and compare the conditions for the existence and uniqueness of a robust game’s
equilibrium with those of a nominal game’s equilibrium.

3.1 Introduction

There exist at least three main reasons for the extensive use of game theory in
resource allocation problems in networks: (1) the inherent competitive nature of
multi-user wireless networks in utilizing the available resources; (2) the ability of
users, enhanced by recent advances in hardware and signal processing techniques,
to make independent decisions based on their own measurements and other avail-
able information; and (3) the exponential growth in the number of users, which
contributes to the ever-increasing importance of scalability, decentralized decision
making, and self-organization in networks.

© Springer International Publishing AG 2017
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The objective is to develop a scheme for selfish and independent users to adjust
their network access by choosing their strategies in a distributed manner with
a view to maximizing each user’s goodput/utility, for example, its throughput,
subject to the prevailing constraints, for example, its maximum transmit power or
its induced interference, and taking into account other users’ actions (strategies)
[1]. In practice, users may be different (heterogeneous) in their measurement and
processing capabilities. When users’ strategies are independent of one another, the
strategic noncooperative game theory is a useful mathematical tool to analyze their
interactions.

The main task is to analyze equilibrium point(s) in game-theoretic resource
allocation and study performance. In doing so, the notion of Nash equilibrium (NE),
at which no user can attain a higher utility by unilaterally changing its strategy, is
frequently used [1, 2]. However, there is no guarantee that any game will have NE.
Hence, it is essential to derive the conditions for the existence and uniqueness of the
NE. There is also a need to develop efficient distributed algorithms for allocating
resources and to obtain the conditions for their convergence to NE [3–7]. Moreover,
it is important to compare the performance of a noncooperative distributed algorithm
with that of its corresponding cooperative centralized scheme.

During the past two decades, the aforementioned topics have been extensively
studied [8–17]. Our focus in this chapter is on uncertainty in user measurements and
side information and on robust noncooperative strategic game-theoretic schemes.
There are two different approaches to introducing robust games: the stochastic
(Bayesian) approach and the worst-case approach. Ours is the latter (worst-case),
where for all instances of error confined to the uncertainty region the solution
satisfies the pertinent constraints [5–7, 18–23]. We begin with the nominal (i.e.,
no uncertainty) noncooperative strategic game and study its NE. We then introduce
robustness in the game and investigate its robust NE (RNE).

In the worst-case robust game, analyzing the NE is not simple, that is, a
closed form for each user’s best response cannot be easily obtained. Hence,
the conventional approaches to analyzing the NE, for example, the fixed point
theory and contraction mapping [1, 2, 24], cannot be applied in a straightforward
manner [2]. Consequently, we present alternative approaches, namely, variational
inequalities (VI), sensitivity analysis, and reformulation of constraints pertaining to
the uncertainty region. We also present distributed algorithms and investigate the
impact of uncertainty on a system’s performance at the RNE and compare it with
the performance at the nominal NE. In doing so, we consider three practical cases:
wireless networks with homogeneous users, underlay cognitive radio networks
(CRNs), and wireless networks with heterogeneous users.

The organization of this chapter is as follows. We first provide a short overview
of noncooperative strategic game theory with a view to studying game equilibria.
Then we focus on three examples of utilizing worst-case robust games in wireless
networks by studying the existence and uniqueness of a robust game’s equilibrium
for each example and compare the social utility of robust and nominal games at their
respective equilibria. We continue by presenting distributed algorithms for solving
robust games, compare existing works on the application of noncooperative games
in wireless networks, and, finally, present a summary of the chapter.
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3.2 Overview of Nominal Noncooperative Strategic Games

In this section, we present an overview of the nominal noncooperative strategic
game, its equilibrium point, its performance, and a distributed algorithm for
reaching the equilibrium point. In doing so, we assume that the parameter values
are exact, that is, no uncertainty. We do not attempt to cover such topics in detail,
and the interested reader is referred to [1, 24–28] for a more in-depth treatment.

A nominal noncooperative strategic game is played between rational players that
act independently and are greedy, with no prior knowledge of the other players’
strategies.

Definition 3.1. A strategic noncooperative game is denoted by

G D fN ; .vn/n2N ;A g;

where N D f1; : : : ;Ng is the finite set of players, vn W Qn2N An ! R is the
utility of player n whose value depends on the strategy vector of all players,
A D Q

n2N An is the set of possible actions (strategies) of players, and An is
a nonempty set of actions (strategies) of player n. The strategy of each player
n 2 N is its transmit power vector pn 2 R

1�K in K channels that belongs
to An. We assume that the strategy of each player is independent of other
players’ strategies.

We denote the strategy space of other players except player n by p
n 2 A
n,
where A
n D Q

m2N ; m¤n Am is the strategy space of all players except player n.
We also denote the feasible strategies of all players by p D Œp1; : : : ;pN �.

Players in a noncooperative game are assumed to be rational, meaning that each
player n competes with other players by choosing a strategy profile pn 2 An that
maximizes its own utility function vn.pn;p
n/, given the actions of other players
p
n 2 A
n. The strategy of each player is obtained by solving the following set of
optimization problems:

max
pn2An

vn.pn;p
n/; 8n 2 N : (3.1)

The optimal solution for player n in (3.1) is denoted by p�
n when other players’

strategies p
n are fixed but arbitrary.

Definition 3.2. For the noncooperative game G D fN ; .vn/n2N ;A g, a
strategy profile p� D Œp�

1 ; : : : ;p
�
N � is a pure strategy at its Nash equilibrium

(NE) when

vn.p�
n ;p

�
n/ � vn.pn;p�
n/; 8pn 2 An; 8n 2 N :
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Note that the NE is a self-enforcing strategy profile in which no single player can
individually reach a higher utility value by choosing another strategy when all other
players stay with their chosen strategies. Hence, the NE characterizes the game,
and its analysis is important. The following questions need to be answered in the
analysis of NE:

(1) What are the conditions for the existence and uniqueness of NE?
(2) What is the performance penalty of utilizing a decentralized scheme as opposed

to the Pareto-optimal centralized scheme?
(3) How can the NE be reached in a distributed resource allocation scheme?
(4) What are the conditions for the convergence of distributed algorithms?

The NE is unique when the utility function of all users is strictly convex and
the feasibility region of each user’s optimization problem is also convex. However,
in some cases, it is not easy to establish convexity, and in general, due to mutual
interference between players, the existence and uniqueness of the NE are not
guaranteed in wireless networks. Hence, to answer the preceding questions, two
approaches to restating the NE are commonly used in the literature, the best response
and variational equalities, and the conditions for the existence and uniqueness of the
NE are obtained via such restatements. When the best response restatement or the
variational inequality reformulations are monotonic, the local and global stability,
as well as the existence and uniqueness, of the NE are established [2, 24].

Restatement of NE by Best Response [1]: The best response function is

Bn.p
n/ D ˚
pn 2 Anjvn.pn;p
n/ � vn.p0

n;p
n/; 8p0
n 2 An:


(3.2)

Note that Bn.p
n/ is a set of actions for player n that yields the highest
possible utility value for that player when other players choose p
n. If Bn.p
n/

is single-valued, that is, when it contains only one element for every action
p
n of other players, Bn.p
n/ is called the best response function. An action
profile p� is the NE of the game when for each player n 2 N we have

p�
n 2 Bn.p�
n/:

The multi-function mapping B.p/ is defined as B.p/ W A 3 p ! B1.p
1/ �
B2.p
2/� � � � � BN.p
N/. A strategy profile p� 2 A is a pure-strategy NE of
G when

p� 2 B.p�/:

If B.p/ is a single-valued function, denoted by B.p/, an action profile p� is
the NE of the game when [1, 2]

p� D B.p�/: (3.3)
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This restatement of the NE is useful for obtaining the conditions for the existence
and uniqueness of the NE, as well as for a convergence analysis of the distributed
algorithms.

Definition 3.3 (Variational Inequalities (VI)). Given the set A in the
n-dimensional Euclidean space R

n, and the mapping F , the VI problem,
denoted by VI.A ;F /, is to find a vector x� 2 A such that [24, 28]

.x � x�/F � 0; 8x 2 A : (3.4)

Restatement of NE by VI [2, 24, 28]: For G D fN ; .vn/8n2N ;A g, consider
the mapping vector F .p/ D .Fn .p//

N
nD1, where

Fn .p/ D �rpnvn .pn;p
n/ ; (3.5)

in which rpnvn .pn;p
n/ is the column gradient vector of vn .pn;p
n/ with
respect to pn. The NE of G can be obtained by solving VI.A ;F / (Proposi-
tion 1.4.2 in [24]) as .p � p�/F .p�/ � 0, for all p 2 A .

Note that the NE as defined in this chapter only pertains to the case of pure
strategy in noncooperative strategic games. Other definitions of NE pertaining to
other strategies, such as the mixed strategy, is not the focus in this chapter.

3.2.1 Existence and Uniqueness of NE

To obtain the conditions for the existence and uniqueness of the NE, the following
approaches have been proposed in the literature:

• Considering the NE as the solution of the optimization problem;
• Considering the NE as the fixed-point solution of the best response functions;
• Reformulating the NE as the solution of the VI problem;
• Using the specifics of the game to analyze its NE.

Each of the preceding approaches leads to a different set of conditions for the
existence and uniqueness of the NE. In general, a less restrictive set of conditions is
more desirable [2].

3.2.1.1 Existence of NE

When the NE is considered the fixed-point solution of the best response functions,
the following theorem establishes the sufficient conditions for the NE’s existence.
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Theorem 3.1 ([2, 24, 29]). The game G D fN ; .vn/n2N ;A g admits a pure
strategy at the NE when A is a finite set and

• Each An is a nonempty, compact, finite, and convex set; and
• Either vn.pn;p
n/ is continuous over A and is a quasi-concave function

of pn for any p
n 2 A
n, or vn.pn;p
n/ is continuous over A and the
optimization problem (3.1) admits a unique solution to any p
n 2 A
n.

When the NE can be considered the solution of the VI problem, the following
theorem can be used to prove the existence of the NE.

Theorem 3.2 (Proposition 1.4.2 in [24]). The NE of GDfN ; .vn/n2N ;A g
is the solution to VI.A ;F / when

• A is a closed convex set;
• F is continuous function.

In such cases, the set of solutions to VI.A ;F / is nonempty and compact,
and, consequently, G D fN ; .vn/n2N ;A g admits a pure-strategy NE.

In addition, the NE exists when G belongs to one of the following categories:

• Concave games [1, 2, 24]: When An is convex and compact, and vn.pn;p
n/ is
concave with respect to pn;

• Potential games [30, 31]: When for all n and m 2 N

@2.vn.pn;p
n/ � vm.pm;p
m//

@pn@pm
D 0; 8n ¤ mI

• Supermodular games [1, 32]: When for all n and m 2 N , An is a lattice and

@2.vn.pn;p
n/ � vm.pm;p
m//

@pn@pm
� 0; 8n ¤ mI

• Standard function [33]: When the best response strategy is a standard function of
a player’s action.1

1A function f .p/ is standard when f .p/ > 0 for all p, and f .p/ > f .p0/ for all p > p0, and
˛f .p/ > f .˛p/ for all ˛ > 1.
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3.2.1.2 Uniqueness of NE

When the NE is unique, players’ strategies can be adjusted to achieve optimal
performance at the game’s equilibrium point. In general, when the utility function of
each player is strictly convex and the feasibility region is also convex, the game’s NE
is unique. In some cases, it is not easy to establish convexity, and other approaches
need to be devised to investigate the NE’s uniqueness.

Theorem 3.3 (Theorem 11.3 in [2]). The NE in the best response approach
for G D fN ; .vn/n2N ;A g is unique when B.p�/ in (3.3) is a contraction
mapping in some vector norm k � k with ˛ 2 Œ0; 1/ for a closed set A , that is,

kB.p/ � B.p0/k � ˛kp � p0k; 8p 2 A ; 8p0 2 A : (3.6)

Alternatively, the fixed-point mapping of the best response, that is, T.p/ D p �
B.p/, can be used to obtain the conditions for the NE’s uniqueness. For instance,
the NE is unique when T.p/ is continuously differentiable and its Jacobian J.p/ is
either a P-matrix or an N-matrix, or J.p/C J.p/T is semidefinite, and between the
pair p ¤ p0, there is a point p00 such that J.p00/C J.p00/T is positive [2].

In what follows, Theorem 3.4 establishes the conditions for the NE’s uniqueness
in the VI approach when the continuous mapping F is monotone, strictly monotone,
�-monotone for � > 1, or strongly monotone.2

Theorem 3.4 ([24]). For a closed convex set A and a continuous map-
ping F :

• VI.A ;F / has at most one solution when F is strictly monotone on A ;
• VI.A ;F / has a unique solution when F is �-monotone on A for � > 1.

2A mapping F is said to be [24]:

• Monotone when .F .p/
 F .p0// .p 
 p0/ 	 0; 8p 2 A ; 8p0 2 A ;
• Strictly monotone when .F .p/
 F .p0// .p 
 p0/ > 0; p ¤ p0; 8p 2 A ; 8p0 2 A ;
• �-monotone for � > 1 when there exists a constant c > 0 such that .F .p/
 F .p0// .p 
 p0/ >

ckp 
 p0k� ; 8p 2 A ; 8p0 2 A ;
• Strongly monotone when there exists a constant c > 0 such that .F .p/
 F .p0// .p 
 p0/ >

ckp 
 p0k2; 8p 2 A ; 8p0 2 A .

Note that strong monotonicity implies �-monotonicity, �-monotonicity implies strict monotonicity,
and strict monotonicity implies monotonicity, but the converse is not true.
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Remark 3.1. The conditions for the strong monotonicity of F are also the
conditions for the NE’s uniqueness. To obtain the conditions for the strong
monotonicity of F , we write [2]

˛n.p/ , smallest eigenvalue of � r2
pn
vn.pn;p
n/;

ˇnm.p/ , k � rpnpmvn.pn;p
n/k2; 8n ¤ m;

where r2
pn
vn .pn;p
n/ and rpnpmvn .pn;p
n/ are the K � K Jacobian matrices

of Fn.p/ with respect to pn and pm, respectively, and k�rpnpmvn .pn;p
n/ k2
is the l2-norm of vn .pn;p
n/. Let

˛minn , inf
p2A ˛n.p/; (3.7)

ˇmaxnm , sup
p2A

ˇnm.p/; (3.8)

for all players, and as in Section 12 in [2], define the N � N matrix ‡ whose
elements are

Œ‡ �nm D
�
˛minn ; if m D n;
�ˇmaxnm ; if m ¤ n:

(3.9)

When ‡ is a P-matrix, the mapping F is strongly monotone, and hence the
nominal NE is unique (Theorem 12.5 in Section 12.4.1 in [2]). The matrix ‡

is a P-matrix if for any nonzero vector x we have

xn.‡ x/n > 0; (3.10)

where xn is the nth element of x [24].

From Theorem 3.2 and Remark 3.1 we can derive the conditions for the NE’s
uniqueness when there is no uncertainty in parameter values. Also, when the best
response is a standard function or when the game belongs to potential games, it can
be proved that the game has a unique NE.

3.2.1.3 Existence and Uniqueness of NE in Nominal Noncooperative
Power Control Games with Homogeneous Users

Consider a wireless network with homogeneous users in the unlicensed band, in
which K channels are shared between N noncooperative users where each user
consists of one pair of transmitter and receiver. The system model for this set is
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similar to the system model in Section 1.4 of Chapter 1. The power control problem
can be formulated by a strategic noncooperative game, G D fN ; .vn/n2N ;A g,
where vn is the utility of user n. Generally, the utility function of user n is

vn .pn;p
n/ D
KX

kD1
vk

n

�
pk

n;p
n
�
:

The interference on user n caused by other users is an additive function of the latter’s
transmit power levels, and the game is called an additively coupled game [34–36].
This type of games can model a number of practical problems such as the downlink
transmit power allocation in a digital subscriber line access multiplexer (DSLAM)
and routing delay minimization in Jackson networks [37].

The utility function of user n in this game is

vn .pn; fn.p
n; sn// D
KX

kD1
vk

n

�
pk

n; f
k
n .p
n; sn/

�
;

where fn .p
n; sn/ D Œf 1n .p
n; sn/ ; : : : ; f K
n .p
n; sn/� is the 1� K vector of noise plus

other users’ interference on user n, that is, f k
n .p
n; sn/ D P

m2N ; m¤n pk
mhk

mn C �2,
where �2 is the noise power assumed to be equal at all receivers in all channels.
Also, sn , Œhn1; : : : ;hn.n
1/;hn.nC1/; : : : ;hnN ; �

2
n� is the vector of side (system)

information (SI) for user n, where hnm is a 1 � K vector whose element hk
nm is the

channel gain between user m and user n, and � 2n is a 1 � K vector of noise power
over K channels of user n. In what follows, when there is no ambiguity, we drop the
arguments p
n and sn in fn.p
n; sn/ for convenience.

We consider the case in which the strategy of user n is its transmit power defined
by (1.20) in Chapter 1, its signal-to-interference-plus-noise ratio (SINR) is defined
by (1.19) in Chapter 1, and its utility vn is its throughput as defined by (1.21)
in Chapter 1. For this type of utility function in wireless networks, the following
assumptions are made:

A1: The utility of user n is a strictly concave and differentiable function of pn,
and its gradient is bounded;
A2: The utility of user n is a decreasing and convex function of f k

n .p
n; sn/;
A3: The second-order mixed partial derivatives of the utility function of user n,

that is, @2vn
k

@pn
k@f n

k
and @2vn

k
@f n

k @pn
k
, exist and are continuous.

When users are greedy and noncooperative, each user n aims to maximize its
own utility subject to its strategy space via maxpn2An vn.p/. The NE of this game is
denoted by the strategy profile p� D Œp�

1 ; : : : ;p
�
N �. It can be shown that the NE for G

exists since the conditions in Theorem 3.1 hold for the set A in (1.20) in Chapter 1,
that is, A is a nonempty, compact, finite, and convex set, and vn.p/ is continuous
and convex. The uniqueness condition for the NE of this game is studied extensively
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in [3, 4, 38–42]. In what follows, we compare the conditions for the NE’s uniqueness
in the best response and VI approaches.

• NE’s uniqueness in the best response approach: Theorem 2 in [3] proves that
the nominal power allocation game G D fN ; .vn/n2N ;A g has a unique NE
when

�.S.k// � 1; 8k 2 K ; (3.11)

where

ŒS.k/�mn D
(
0; if m D n;
hk

nmpmaxn
hk

nnpmaxm
; if m ¤ n:

(3.12)

Note that (3.11) holds when the best response of the game is obtained via the
water-filling algorithm. In [3], it is also shown that to satisfy (3.11) and guarantee
the NE’s uniqueness, the interference on each receiver should be below a specific
threshold.

• NE’s uniqueness in the VI approach: From Remark 3.1, the NE is unique in
the VI approach when ‡ in (3.9) is a P-matrix [2, 37, 43, 44] and (3.7) and (3.8)
are

˛minn D min
k2K

�
hk

nn

�2 CP
m2N .pk

m/
maxhk

mn

�2
;

ˇmaxnm D max
k2K

hk
nnhk

mn�
�2 CP

m2N .pk
m/

minhk
mn

�2 ;

where .pk
n/
min and .pk

n/
max are defined by (1.20) in Chapter 1. The matrix ‡

in (3.9) is a P-matrix when (3.10) holds. For this case, (3.10) can be rewritten as
[45]

min
k2K

hk
nnwk

n�
�2 CP

m2N .pk
m/

maxhk
mn

�2

>
X
m¤n

max
k2K

hk
mnwk

m�
�2 CP

m2N .pk
m/

minhk
mn

�2 ; 8n 2 N ; 8wk
n 2 An:

(3.13)

A physical interpretation of (3.13) as presented in [44] is as follows. We denote
the maximum interference on the receiver of user n in channel k by f maxn;k D�
�2 CP

m2N .pk
m/

maxhk
mn

�2
and the minimum interference on the receiver of user

n in channel k by f minn;k D �
�2 CP

m2N .pk
m/

minhk
mn

�2
. Now, the minimum SINR
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of user n over all channels is mink2K hk
nnwk

n
f maxn;k

, and the normalized interference of

user m on user n in channel k is hk
nmwk

m

Iminn;k
. From (3.13), when the minimum SINRs of

all users are greater than the sum of the maximum normalized interference levels,
the nominal NE is unique. Also, when interference is low and channel gains from
transmitters to their intended receivers are high, the nominal NE is unique.

By comparing the uniqueness conditions in (3.12) and (3.13), we note the
following points:

• The uniqueness conditions depend on channel realizations (e.g., the distance
between transmitters and receivers) [3]. In both approaches, the NE’s uniqueness
is guaranteed when the interference is sufficiently low;

• The two approaches have different conditions for the NE’s uniqueness.

The choose between the best response approach or the VI approach, the probability
of satisfying the conditions for each approach should be compared with the same
for the other approach. The approach for which the uniqueness condition is satisfied
for a wider range of channel realizations is preferred.

3.2.2 Social Utility (Sum Rate) at NE

When the game has a unique NE, its throughput at the equilibrium may not be
optimal, that is, there may be a gap between the throughput at the NE and the
optimal throughput. This gap is a measure of efficiency for the solution at the NE.
When the game has multiple equilibria, it may have a higher throughput at one of
the equilibrium points as compared to other equilibrium points. In what follows,
we focus on the aforementioned gap with a view to developing algorithms and
schemes for reducing this gap and improving the performance [3, 46–48]. We begin
by introducing the concepts of Pareto optimality and Pareto efficiency.

Definition 3.4 ([1, 2]). For the strategic game G D fN ; .vn/n2N ;A g and
two action profiles p 2 A and p0 2 A , p is said to be Pareto dominant on p0
when

vn.p/ � vn.p0/; 8n 2 N ;

and for at least one user m

vm.p/ > vm.p0/; 9m 2 N :

A strategic profile p is Pareto efficient (optimal) when there is no other
feasible strategy that Pareto dominates p.
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In general, obtaining a Pareto-efficient solution requires knowledge of the
complete system information pertaining to all users, which is not the case in the
game-theoretic approach of formulating resource allocation problems, where each
user obtains its own solution by utilizing the locally available information. To obtain
the globally optimal solution, we first obtain the maximum utility for all strategy
profiles by solving the following multi-objective optimization problem (MOP) [3]:

max8pn2An

fv1.p1;p
1/ � � � vN.pN ;p
N/g : (3.14)

Now, the Pareto-optimal solution is obtained by solving the following optimization
problem [49, 50]:

max8pn2An

X
n2N

&nvn.pn;p
n/; (3.15)

where &n is a positive weight for user n, which can be regarded as its priority. In
general, the NE is not Pareto efficient.

An interesting question is whether one can modify the utility function of
players with a view to matching the NE of the modified game with the Pareto-
optimal solution. To answer this question, let us consider a modified game G 00 D
fN ; .v00

n /n2N ;A g, in which the utility function of player n is

v00
n .pn;p
n/ D vn.pn;p
n/C 1

&n

X
m¤n

&mvm.pm;p
m/; 8n 2 N : (3.16)

It can be shown that for any given &n > 0 for all n 2 N , the solution set of G 00
is not empty and contains the Pareto-optimal solution to (3.15), which is globally
optimal. Note that the NE of G 00 is Pareto-optimal due to the fact that the utility
function of each player is modified to take into account the strategies of other
players. However, each player needs to know the utility values and strategies of other
players in each iteration, which means a significant increase in message passing
between players. Hence, although a Pareto-optimal solution is desirable and can be
obtained, the significant cost of additional signaling and coordination among players
is prohibitive and not desirable.

Another approach to improving performance and achieving Pareto optimality is
to introduce pricing to each player proportional to its use of resources. The pricing-
based utility function for player n is
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vpricing
n .pn;p
n/ D vn.pn;p
n/ � 
n.pn/; 8n 2 N ; (3.17)

where 
n.pn/ is a pricing function that depends only on pn for user n 2 N . Different
pricing functions can be considered for wireless networks [51], for example:

• A linear function of the transmit power, that is, 
n.pn/ D c
P

k2K pk
n for the

uplink or downlink [52–54];
• A linear function of interference, that is, 
n.pn/ D c

P
q2Q

P
k2K pk

ngnq caused
by secondary users (SUs) on primary users (PUs) [45, 55].

Note that pricing-based distributed schemes require neither a central coordinator
nor extra message passing between players. The latter is due to the fact that 
n.pn/

in (3.17) is only a function of pn for user n 2 N and does not depend on other
users’ parameters, for example, p
n. Although the solution may not be globally
optimal, via (3.16), the global optimum can be achieved by more message passing
to provide other users with information pertaining to the second term in (3.16). Note
also that the second term in the modified utility function v00

n .pn;p
n/ in (3.16) can
be considered the optimal pricing [3].

3.2.3 Distributed Algorithms

Distributed algorithms are needed to implement game-theoretic formulations of
resource allocation problems and attain the NE. When users are noncooperative
and there is no central entity to coordinate users, the general class of totally
asynchronous algorithms is of interest [2, 56], where there is no specific sequence
for updating user strategies. To mathematically describe this general framework, let
the iteration number t in the discrete set T D 0; 1; 2; : : : be the updating time for
the strategy pn.t/ of user n. In a totally asynchronous algorithm, each user n has its
own set Tn � T containing all instances of updating its transmit power (strategy).
In other words, at t 2 Tn, the transmit power of user n is updated by solving its own
optimization problem (3.1) or is kept unchanged. Let �m

n be the most recent time at
which the strategy profile of user m is observed by user n and 0 � �m

n � t. When
user n updates its strategy at t, it maximizes its utility via (3.1) by considering the
last updated strategy profile of other users at �m

n for all m 2 N and m ¤ n. We
denote this strategy by p�

n .�

n
n /, where �
n

n is the last instance at which the strategy
profiles of all users except user n were updated. The following three assumptions
hold in a totally asynchronous algorithm: (1) 0 � �m

n � t, (2) limt!1 �m
n D 1, and

(3) jTnj D 1 [2, 56].
A totally asynchronous algorithm is described in Table 3.1 that covers sequential

(Gauss–Seidel) and simultaneous (Jacobi) schemes for updating users’ strategies, as
explained further in the sequel.
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Table 3.1 Totally asynchronous distributed algorithm

Set any pn.t D 0/ 2 An for all n 2 N

Set t D 0

Repeat

For n D 1; 2; : : : ;N

Step 1: pn.t C 1/ D
(

p�
n .�

�n
n /; if t 2 Tn;

pn.t/; otherwise:

End if the condition for convergence is satisfied

otherwise t D t C 1

Table 3.2 Sequential distributed algorithm

Set any pn.t D 0/ 2 An for all n 2 N

Set t D 0

Repeat

For n D 1; 2; : : : ;N

Step 1: pn.t C 1/ D
(

p�
n .�

�n
n /; if .t C 1/mod N D n;

pn.t/; otherwise:

End if the condition for convergence is satisfied

otherwise t D t C 1

Table 3.3 Simultaneous distributed algorithm

Set pn.t D 0/ 2 An for all n 2 N

Set t D 0

Repeat

Step 1: pn.t C 1/ D p�
n .�

�n
n /; 8n 2 N

End if the condition for convergence is satisfied

otherwise t D t C 1 and go to Step 1

• Sequential Distributed Algorithm: A sequential iterative algorithm based on
the Gauss–Seidel scheme [4] is shown in Table 3.2, where each user sequentially
updates its strategy by utilizing the best response approach.

• Simultaneous Distributed Algorithm: A simultaneous distributed algorithm
based on the Jacobi scheme [56] is shown in Table 3.3, where in each iteration l,
all users simultaneously update their strategies, each by taking into account the
measured interference in the previous iteration [3].

The condition for the convergence of the distributed algorithms in Tables 3.1, 3.2,
and 3.3 is stated as follows in Theorem 3.5.

Theorem 3.5 ([2]). For a given game G D fN ; .vn/n2N ;A g, there exists,
a unique equilibrium point at which the totally asynchronous algorithm
converges when B.p�/ in (3.3) is a contraction with respect to the block-

(continued)
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Theorem 3.5 (continued)
maximum norm with modulus ˛ 2 Œ0; 1/, stated by

kB.p/ � B.p0/kblock � ˛kp � p0kblock; 8p 2 A ; 8p0 2 A ; (3.18)

where kB.p/kblock D maxn2N kBn.p/kn, k � kn is the vector’s norm, and A is
a closed set.

The algorithms in Tables 3.1, 3.2, and 3.3 can be extended to other cases in which
users update their transmit power levels using other approaches (i.e., not via (3.1)).
For instance, in memory-based updating, each user updates its transmit power by

pn.t C 1/ D ˛npn.t/C .1 � ˛n/p�
n .�


n
n /; 8n 2 N ; (3.19)

where ˛n 2 Œ0; 1/ for all n 2 N is the forgetting factor that smooths variations in
channel gains in (3.19). When the channel gains are relatively stable, we set ˛n � 1,
and when they are highly fluctuating, it is better to set ˛n � 1. Theorem 2 in [4]
shows that the value of ˛n affects the speed of the algorithm’s convergence. The
convergence of the memory-based distributed algorithm is guaranteed when its best
response function is a contraction mapping, as stated earlier in Theorem 3.5.

3.3 Worst-Case Robust Power Control in Noncooperative
Games

In this section, we consider uncertainty in users’ observations in robust games for
distributed power allocation in wireless networks and analyze their solutions.

3.3.1 Robust Power Control for Noncooperative
Homogeneous Users

We now present a general form of worst-case robust game for the nominal game
in Section 3.2.1.3 in this chapter, followed by an analysis of their respective
equilibria. We will also compare the throughput of the nominal solution with its
robust counterpart.

Homogeneous users are similar in their ability to measure the interference caused
by other users, which we assume to be uncertain. We formulate the robust power
control for each user via game theory. To obtain the sufficient condition for the
existence and uniqueness of the RNE, we apply VI [18–20, 24] and show that when
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uncertainty is bounded and convex, the RNE always exists. We also show that when
uncertainty is small, the RNE is a bounded perturbed version of the nominal NE and
derive the condition for the uniqueness of the RNE, which is similar to the condition
for the uniqueness of the nominal NE. When the nominal NE is unique, we show
that the social utility (the sum of utilities of all users) at the RNE is always less
than that at the nominal NE and derive the upper bound for the difference between
users’ transmit power at the RNE and at the nominal NE. When the nominal NE
is not unique, we show that the social utility at the RNE may be higher than that
at the nominal NE and derive a sufficient condition for this phenomenon. Finally,
we use the proximal response map associated with the worst-case utility function
to propose a distributed algorithm for reaching the RNE and derive the sufficient
condition for its convergence.

Consider the case where the transmitter n does not know the exact value of
interference caused by other transmitters on its receiver. The uncertain interference
fn is modeled by

fn D Nfn Cbfn; 8n 2 N ;

where fn D Œf
1

n; : : : ; f
K
n � andbfn D Œbf 1n; : : : ;bf K

n � are the nominal (exact) value and
the error in the measured interference on the intended receiver of transmitter n,
respectively. We assume that uncertainties are bounded to the uncertainty region

Rfn.p
n/ D ffnj kbfnk2 � "fng; 8n 2 N ;

where "fn � 0 is the bound onbfn, and k � k2 is the l2-norm [22, 57, 58].
We rewrite the optimization problem (1.9) in Chapter 1 for user n as [18]

eun D max
pn2An

min
fn2Rfn .p�n/

un.pn; fn/; (3.20)

whereeun is the expected utility of user n in the worst-case approach, and un.pn; fn/

is the utility function of user n defined as

un.pn; fn/ D
KX

kD1
uk

n.p
k
n; f

k
n /; 8n 2 N :

When the uncertainty region shrinks to zero (i.e., when there is no uncertainty), the
utility functions of the nominal and robust optimization problems are the same, and
we have [21, 22]

vn.pn; fn/ D un.pn; fn/j"fn D0; 8n 2 N : (3.21)
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The robust game is

eG D fN ; .un/n2N ; eA .p/g;

where eA .p/ D QN
nD1 eA n.p
n/, in which the strategy set for (3.20) is

eA n.p
n/ D An � Rfn.p
n/; 8n 2 N : (3.22)

Note that eA n.p
n/ highlights the fact that the strategy of each user in the robust
scheme depends on other users’ strategies, which is not the case in the nominal
(nonrobust) scheme. This implies that the robust game’s equilibrium and its analysis
are different from the nominal game’s NE and its analysis [2].

3.3.1.1 Existence and Uniqueness of RNE

In general, when the strategy of each user depends on the strategies of other users,
the generalized Nash equilibrium (GNE) as defined in what follows is used instead
of the NE [2].

Definition 3.5. When the strategy of each user depends on the strategies of
other users, the game denoted by G D fN ; .vn/n2N ;A .p/g is called a
generalized game, and the vector p� is the GNE point, at which we have

vn.p�/ � vn.pn;p�
n/; 8pn 2 A n.p/; 8n 2 N :

In [2], several important nominal (i.e., no uncertainty) generalized games are
introduced. In Section 12.2.1 of [2], different aspects of multifunction and set-
valued mapping that can be used to derive the conditions for the existence and
uniqueness of the GNE are discussed. It is shown that the continuity of A .p/ is
critical for the existence and uniqueness of the GNE for G . It is also shown that in
many practical cases, A .p/ is

A .p/ D ˚
pnj AnpT

n D bn.p
n/ and gn.pn;p
n/ � 0; 8n 2 N

; (3.23)

where An 2 R
ln�K is a given matrix, bn.p
n/ is a given vector function of the

strategy vectors p
n 2 R
ln , and gn.pn;p
n/ W R

N ! R
mn is a given vector

function that is convex with respect to pn. The continuity of A .p/ discussed in
Propositions 12.3 and 12.4 of [2] is used to establish the existence of the GNE
for G .
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In Appendix 1, we establish the connection between the GNE and VI and show
its application for the nominal resource allocation problem of CRNs under global
interference threshold constraints. In general, obtaining the GNE is not easy due to
the interdependence of users’ strategies. One approach to dealing with this difficulty
is to reformulate the generalized optimization problem via the quasi-variational
inequality (QVI) and derive the conditions for the existence and uniqueness of
its solution [24, 59]. The alternative is to avoid the GNE by reformulating the
optimization problem and analyze its RNE instead. In what follows, we show how
to do this.

The solution to (3.20) (its saddle point) for each user in the robust game eG is a
pair .ep0

n; f
0
n/ 2 eA n.p
n/ that satisfies [6, 37]

max
pn2An

un.pn; f0
n/ D un.ep0

n; f
0
n/ D min

fn2Rfn .p�n/
un.ep0

n; fn/: (3.24)

Definition 3.6. The RNE of the robust game eG corresponds to the strategy
profileep� D Œep�

1 ; : : : ;ep�
N � when for any other strategyepn we have [18–20]

min
fn.ep�

�n;sn/2Rfn .p�
�n/

un.ep�
n ; fn.ep�
n; sn// � (3.25)

min
fn.ep�

�n;sn/2Rfn .p�
�n/

un.epn; fn.ep�
n; sn//; 8 epn 2 An;

whereep�
n D Œep�
1 ; : : : ;ep�

n
1;ep�
nC1; : : : ;ep�

N �. At the RNE, the achieved utility
of user n iseu�

n , and the social utility iseu� D PN
nD1eu�

n .

At the RNE, each user reaches its maximum utility under the worst-case
uncertainty, and no user can reach a higher utility by unilaterally changing its
strategy. Note the difference with the nominal game, at whose NE each user aims to
maximize its utility by choosing a strategy from its strategy set without considering
uncertainty in fn. When "fn D 0, the RNE and the NE are identical.

In studying the existence of the RNE, we note the following points:

• By considering uncertainty, the strategy space of user n is eA n.p
n/ D An �
Rfn.p
n/, which is a set-valued mapping that depends on the actions of other
users;

• A closed-form solution for the best response map does not exist when uncertainty
is considered.

The preceding points show that the convexity of each user’s optimization problem
is not sufficient for the existence of RNE, and we need to consider other approaches
to derive the conditions for the RNE’s existence. In doing so, we will utilize
Proposition 12.4 in [2], and the utility function of user n proposed in [37] as
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�n.pn;p
n/ D min
fn2Rfn .p�n/

un.pn; fn/ D un.pn; f�
n /; (3.26)

and f�
n D fn � "fn#n, where f�

n D Œf 1�n ; : : : ; f K�
n �, #n D Œ#1n ; : : : ; #

K
n �, in which #k

n is

#k
n D

@uk
n.pn;f�n /
@ef k

nrPK
kD1.

@uk
n.pn;f�n /
@ef k

n
/2
: (3.27)

In [37], it is shown that �n.pn;p
n/ is a concave, continuous, and differentiable
function of pn for every p
n. For proof, see Appendix 2 in this chapter.

Note that the optimization problem for user n iseun D maxpn2An �n.pn;p
n/, and
the robust game is reformulated as eG D fN ; .�n/n2N ;A g, whose RNE can be

considered as the solution to the VI problem via the mapping eF .p/ D �eF n.p/
�N

nD1,
where eF n.p/ D � @�n.pn;p�n/

@pn
. From (3.27), eF .p/ is a set-valued mapping, and the

RNE can be obtained via generalized variational inequality (GVI) [20], that is,ep�
is the RNE when it is a solution to GVI.A ; eF /. Note that by rewriting the utility
function as �n.pn;p
n/, the strategy space of each user n is An. The following
theorem states the conditions for the existence of the solution to GVI.A ; eF /.

Theorem 3.6. For any set of parameter values, users’ actions, and the bound
on the uncertainty region, there always exists a RNE for eG .

Proof. From Assumptions A1–A3 in Section 3.2.1.3 in this chapter, it is easy
to show that all the assumptions in Lemma 3.1 and Theorem 3.2 in [20] hold,
and GVI.A ; eF / has a solution. Hence, eG has a RNE.

Since a closed-form solution to (3.20) cannot be obtained, the fixed-point
algorithm and the contraction mapping cannot be applied as in [3, 34] to derive
the sufficient conditions for the RNE’s uniqueness. However, from the definition
of the mapping eF n that is based on �n.pn;p
n/, it is obvious that there exists
a relationship between eF n and Fn. Now, the question is how to exploit this
relationship in analyzing the RNE when there is no closed-form expression for the
RNE. In [37], it is shown that when uncertainty is small, the RNE is the bounded
perturbed version of the NE of the nominal game, and the condition for the RNE’s
uniqueness can be derived without a closed-form solution to (3.20). This is stated in
the following lemma.
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Lemma 3.1. For small values of "fn compared to the nominal parameter
values for all n 2 N , the mapping eF .p/ is a bounded perturbed version
of the mapping F .p/, that is, there exists a 0 < } < 1 such that
keF n.p/ � Fn.p/k2 � }.

Proof. See Appendix 3.

From Lemma 3.1, when the mapping eF .p/ is a bounded perturbed version of
F .p/, the robust game eG D fN ; .�n/n2N ;A g can be reformulated, and the
following Theorem 3.7 establishes a sufficient condition for the RNE’s uniqueness.

Theorem 3.7. When ‡ in (3.9) is a P-matrix, for any small " D
Œ"f1 ; : : : ; "fN �, the robust game eG has a unique RNE.

Proof. From Lemma 3.1, the mapping eF .p/ in GVI.A ; eF / is set-valued and
a perturbed version of F .p/. The perturbation in F .p/, defined as

Q D kF .p/ � eF .p/k2 8p 2 A ;

is bounded because the users’ strategy space is bounded, and the uncertainty
region is bounded and convex. In other words,

eF .p/ � F .p/C q; (3.28)

where q D .qn/
N
nD1, qn D Œq1n; : : : ; q

K
n �

T, and each qk
n is bounded because

perturbation is assumed to be bounded. In the following lemma, we use
Eq. (3.28) to establish the conditions for RNE’s uniqueness.

Lemma 3.2. When the mapping F .p/ is strongly monotone and eF .p/ is a
bounded perturbed version of F .p/, eF .p/ is strongly monotone.

Proof. To establish the strong monotonicity of eF .p/, we need to show that
there exists a c > 0 such that

.p � p0/
�eF .p/ � eF .p0/

� � ckp � p0k2; 8p 2 A ; 8p0 2 A :

To do so, when eF .p/ is a bounded perturbed version of F .p/, we use (3.28)
and write

.p � p0/
�eF .p/ � eF .p0/

�
(3.29)

� .p � p0/
	
F .p/C q � F .p0/ � q



D .p � p0/

	
F .p/ � F .p0/



:

(continued)
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Lemma 3.2 (continued)
When F .p/ is strongly monotone, there exists a c1 > 0 such that

.p � p0/
	
F .p/ � F .p0/



� c1kp � p0k2: (3.30)

We use (3.30) to rewrite (3.29) as

.p � p0/
	eF .p/ � eF .p0
 � c1kp � p0k2;

which means eF .p/ is strongly monotone.

When (3.9) is a P-matrix, vn.pn;p
n/ is uniformly strongly convex as
per Section 12.4.1 in [2], and its gradient vector F .p/ in (3.5) is strongly
monotone [24]. Hence, from the preceding lemma, the mapping eF .p/ is
strongly monotone. In addition, eF .p/ is continuous since �n.pn;p
n/ is
continuous and convex. Thus, the assumptions of Theorem 4.3 in [20] hold,
and GVI.A ; eF / has a unique solution.

Since ‡ in (3.9) is a P-matrix, the mapping F .p/ is strongly monotone, which
is a sufficient condition for the uniqueness of the nominal NE as per Theorem 12.5
in Section 12.4.1 in [2]. When this condition holds and the mapping eF .p/ is a
bounded perturbed version of the mapping F .p/, as per Lemma 3.2, eF .p/ is also
strongly monotone, which is a sufficient condition for the RNE’s uniqueness as per
Theorem 4.3 in [20]. Note that one can derive other sufficient conditions for the
uniqueness of NE in the nominal game G by utilizing other approaches, but such
conditions may or may not establish the uniqueness or even existence of RNE in the
robust game eG . However, it is interesting to note that the condition for the RNE’s
uniqueness in the previously given Theorem 3.7 is the same as the condition for the
NE’s uniqueness.

Now we consider a special case in which the channel gain from user n to user m

on channel k is uncertain, modeled by hk
nm D h

k
nm Cbhk

nm, and the utility function for
user n on channel k is 
 -proportionally fair, stated by [60]

vk
n.p

k
n; f

k
n / D

8<
:

log.ck
n C pk

n
f k
n
/; if 
 D �1;

.ck
nC pk

n
f k
n
/
C1


C1 ; if � 1 < 
 < 0;
(3.31)

where 
 is the fairness factor. In this case, the robust game eG can be simplified to
the robust game introduced in [5], and the requirement for strong monotonicity is
relaxed to the positive definiteness of the affine mapping. The uncertainty region for
each user is
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Rk
n D

8̂<
:̂

vuuut
NX

mD1;m¤n

 bhk
mn

h
k
nn

!2
� �k

n

9>=
>; ; 8k 2 K ; (3.32)

where �k
n is the bound on the channel gains’ uncertainty for user n in channel k.

The NE of the nominal game G can also be obtained by solving the affine
variational inequality (AVI) problem, denoted by AVI.A ;M /, where M .p/ D
.Mn.p//NnD1, and

Mn.p/ D $n C
NX

mD1
MnmpT

m; (3.33)

in which $n D .$ k
n /

K
kD1, $ k

n D �k
n Cck

n

h
k
nn

, and Mmn D diag. h
k
mn

h
k
nn

/KkD1. The nominal NE

is unique when

max
n2N kpnk2 >

X
m¤n

Mmax
nm kpmk2; 8pn 2 An; 8n 2 N ; (3.34)

where Mmax
nm D maxk2K h

k
mn

h
k
nn

when m ¤ n, and Mmax
nm D 0 otherwise, in the N � N

matrix Mmax. From the preceding points, it is straightforward to derive the condition
for the uniqueness of nominal NE when the utility function is either the throughput
or (3.31). In such cases, the best response of the game is

pk
n D

2
4�1



n �$ k

n �
X
m¤n

h
k
mn

h
k
nn

pk
m

3
5
.pk

n/
max

.pk
n/
min

;

where the Lagrange multiplier �n for user n is chosen so as to satisfy

�n �
 

KX
kD1

pk
n � pmaxn

!
D 0; 8n 2 N : (3.35)

The game has a unique NE when M .p/ is strongly monotone. From Proposition 1
in [61], when (3.34) holds, M .p/ is strongly monotone, and hence, the nominal NE
is unique.

A robust game whose uncertainty region is (3.32) can be analyzed by its AVI
mapping as per the following theorem.
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Theorem 3.8. When the uncertainty region is (3.32), the RNE is the solution
of AVI.fM .p/;A /, where fM .p/ D .fM n.p//NnD1, and

fM n.p/ � Mn.p/C cM n.p/; 8n 2 N ; (3.36)

where cM n.p
n/ D �
�k

nkpk
nk�K

kD1 and pk
n D �
pk
1; : : : ; p

k
n
1; pk

nC1; : : : ; pk
N

�
.

The RNE of eG is unique for any small �k
n when (3.34) holds.

Proof. From Lemma 3.1, the mapping for the robust game eG is the perturbed
mapping of the nominal game. Since the mapping for the nominal game is
linear when the utility function is (3.31), the perturbed mapping is

fM k
n.p/ D $ k

n C
NX

mD1

hk
mn

hk
nn

pk
m; 8hk

mn 2 Rk
fn
; (3.37)

where fM k
n.p/ and $ k

n are the kth elements of fM n.p/ and $n, respectively.

Now, (3.37) can be rewritten as fM k
n.p/ D $ k

n CPN
mD1

�
h

k
mn

h
k
nn

C hk
mn
h

k
mn

h
k
nn

�
pk

m �

$ k
n CPN

mD1
h

k
mn

h
k
nn

pk
m C�k

nkpk
nk. Therefore, the mapping at the RNE is bounded

as per (3.36).
Next, we focus on the condition for the RNE’s uniqueness. Since pk

m is
bounded in Œ.pk

m/
min; .pk

m/
max�, and the uncertainty region is bounded and

small, the value of �k
nkpk
nk2 is bounded. Hence, for any bounded and small

uncertainty region in the robust game eG , its AVI is AVI D .A ;M C m/,
where m D .mn/

N
nD1 D .$n C cM n/

N
nD1, kmk2 < 1, and the RNE is the

perturbed solution to AVI D .A ;M /. From Theorem 4.3.2 in [24], when M
is semicopositive (matrix M is semicopositive if for any positive vector % we
have %i.M%/i > 0, where %i is the ith element of %), the AVI has a unique
solution for any small m. This condition holds when (3.34) holds. Therefore,
when (3.34) holds, the robust game eG has a unique solution for any small
uncertainty region.

Theorems 3.7 and 3.8 establish that the solution of a robust game with bounded
and small uncertainty can be obtained via VI mapping of the nominal game; and
there is no need to obtain a closed-form, best response solution for the robust game.
This is contingent upon strong monotonicity of the mappings F and eF . Note
that in this manner, the RNE is obtained from the nominal NE. Note also that by
rearranging the AVI that corresponds to the RNE for the utility function (3.31), the
best response of the robust game eG is
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epk
n D

2
4�1



n �$ k

n �
X
m¤n

h
k
mnpk

m

h
k
nn

� �k
nkpk
nk

3
5
.pk

n/
max

.pk
n/
min

; (3.38)

where �n is the Lagrange multiplier for user n, which is chosen so as to sat-
isfy (3.35).

The best response map for the closed-form solution in (3.38) can also be used
to derive the uniqueness condition similar to [5] for the power control game in
spectrum sharing environments. The conditions derived from the best response map
in [5] is equivalent to the condition derived by VI in Theorem 3.8.

3.3.1.2 Social Utility (Sum Rate)

Similar to the performance analysis in Chapter 2, we quantify the distance between
the social utility of the robust and nominal noncooperative games in this chapter. Let
eu� D P

n2N eu�
n and v� D P

n2N v�
n be the social utility of the robust and nominal

noncooperative game, whereeu�
n and v�

n are the utility of user n at the RNE and the
nominal NE, respectively. Also, let d� D eu� � v� be the difference between the
social utility of the robust and nominal games. In the following Theorem 3.9, we
derive the performance gap for the nominal and robust games.

Theorem 3.9. When Theorem 3.7 holds:

• The social utility at the RNE is always less than or equal to that at the
nominal NE, that is,eu� � v�;

• The difference between the social utilities at the RNE and at the nominal
NE is

kv� �eu�k2 � kW.p�/k2 � k"k2
csm.F /

; (3.39)

where W .p/ D .wk.p//KkD1, in which

wk
nm �

0
@ @vk

n.p
k
n;f

k
n /

@pk
n

; if m D n;
@vk

n.p
k
n;f

k
n /

@pk
m

xk
nm; if m ¤ n

1
A ; m; n 2 N ; (3.40)

and csm > 0 is the strong monotonicity constant for the mapping F , which
guarantees .p � p0/ .F .p/ � F .p0// � csmkp � p0k22 for all p, p0 2 A . In
such a case, F is a strongly monotone map [24];

(continued)
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Theorem 3.9 (continued)
• The distance between the strategy profiles at the RNE and at the nominal

NE is

kp� �ep�k2 � k"k2
csm.F /

: (3.41)

Proof. See Appendix 4.

Theorem 3.9 shows that the RNE can be obtained from the NE. It also shows
how uncertainty affects the robust game’s outcome.

It can be proved that the gap between the exact value of kv� �eu�k2 and its

approximation in (3.39) is always less than or equal to kJ.F /k2k"k22
2

, where J.F / is
the Jacobian matrix of F with respect to p [24]. When J.F / or " is small, (3.39) is
a tight approximation for the difference between the social utilities at the RNE and
at the nominal NE. In such cases, the game’s social utility at its equilibrium can be
approximated without calculating its robust solutions.

When ‡ in (3.9) is a P-matrix, p�
n is the attractor for GVI.A ; eF / (Theorem 5.4.4

in [24]), that is, lim"!0N kp��ep�k2 D 0, meaning that when uncertainty approaches
zero, the RNE converges to the nominal NE. We conclude that when ‡ in (3.9)
is a P-matrix and uncertainty is small, the RNE can be obtained as the perturbed
nominal NE from the estimated system parameters and the bound on uncertainty.
When Theorem 3.7 holds, (3.41) can be simplified to

kp� �ep�k2 � kEk2
�min.Mmax/

; (3.42)

where Enm D k�nk1, if m D n, and Enm D 0 otherwise, where �n D Œ�1n ; : : : ; �
K
n �,

and k � k1 is the maximum element of the vector; and �min.Mmax/ is the minimum
eigenvalue of matrix Mmax (Appendix 4).

To show the importance of introducing robustness in game-theoretic resource
allocation in wireless networks, the impact of uncertainty on the performance of
both G and eG in terms of utility variations at their equilibria is shown in Fig. 3.1. In
this simulation, N D 3, K D 16, and " D 10% at the RNE. Following convergence
to the RNE and to the nominal NE, the channel gains between users are varied up to
80 % of their nominal values, which causes variations in the utility of each user at the
nominal NE and at the RNE, as shown in Fig. 3.1. Note that variations in the social
utility at the nominal NE are considerable. However, in contrast, in the robust game,
the social utility at the RNE is stable. This simulation confirms that the social utility
at the nominal NE is very sensitive to variations in system parameters. In contrast,
the social utility at the RNE is stable, which shows the importance of introducing
robustness in distributed resource allocation problems.
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Fig. 3.1 Impact of channel variations in robust and nonrobust games

So far, we have obtained the condition for the RNE’s uniqueness from the
condition for the nominal NE’s uniqueness. Now we focus on the case where
the nominal game has multiple nominal NEs and obtain the distance between the
robust and nominal equilibria. In this case, the mapping F for the nominal game
is nonmonotone and nonsmooth [62–64], and in general, it is not easy to obtain the
relations between the RNE and the nominal NE.

We begin by comparing the case of multiple nominal NEs with that of a unique
nominal NE by way of an example in which N D 2, K D 2, .pk

n/
max D 1,

.pk
n/
min D 0:01, and �2 D 0:001 for all users in all channels. Assume h

k
nm > 0:5h

k
nn

for all users in all channels. Hence, ‡ in (3.9) is not a P-matrix, and the mapping
F is nonmonotone for both users, meaning that there exist multiple local RNEs,
corresponding to multiple nominal NEs. At one nominal NE, the convergence points
for users 1 and 2 are .p�1

1 D 0:534; p�2
1 D 0:463/ and .p�1

2 D 0:417; p�2
2 D 0:583/,

respectively, and v�
1 Cv�

2 D 3:0176. When "fn < 0:8 for all n, the RNE converges to
.ep�1
1 D 0:556;ep�2

1 D 0:444/ and .ep�1
2 D 0:325;ep�2

2 D 0:675/, andeu�
1 Ceu�

2 D 3:077.
This example shows that when there are multiple nominal NEs, the social utility

in the robust game is not a monotonically decreasing function of uncertainty, which
is in contrast to the case in which the nominal game has a unique NE. Also, the
social utility at the RNE may be higher than that at the nominal NE, which is in line
with simulation results in [5, 23]. However, due to the fact that uncertainty cannot
be assumed to be the same for all instances, the increase in the social utility at the
RNE cannot be counted on.

To further elaborate on Theorem 3.10, in Fig. 3.2 we compare the impact of
uncertainty when Theorem 3.7 holds with that of the case where it does not, in terms
of the ratio of social utilities at the RNE and at the nominal NE for different amounts
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Fig. 3.2 Ratio of social utilities at RNE and at nominal NE (�) versus " D "fn for unique nominal
NE and for multiple NEs

of uncertainty. Simulation parameters are the same as previously for Rayleigh
fading channels and errors are bounded and uniformly distributed, modeled by

" D "fn D hmn
hmn

hmn
for all n, where hmn D Œh1mn; : : : ; h

K
mn� and hmn D Œh

1

mn; : : : ; h
K
mn�,

respectively. To satisfy the condition for the uniqueness of the nominal NE [i.e.,

‡ in (3.9) being a P-matrix], we assume h
k
mn < 0:01h

k
nn, and for multiple nominal

NEs, h
k
mn > 0:5h

k
nn. Consider � D u�

v� , where u� is the social utility at the RNE
and v� is the social utility at the nominal NE. The value of � in Fig. 3.2 is obtained
by averaging over 100 channel realizations. When ‡ in (3.9) is a P-matrix (i.e.,
when the nominal NE and RNE are unique), the social utility of the robust game at
its RNE is decremented when the uncertainty region is expanded, as expected from
Theorem 3.10. However, for multiple nominal NEs, no uniformity in social utility
is observed.

The aforementioned simulations are similar to the numerical results in Sec-
tion 2.3.1.1 of Chapter 2, where it was shown when the nominal utility maximization
problem is not convex, and there is a chance that via the worst-case approach the
social utility of the robust problem may be higher than that of the nominal problem.
Remark 5 in [37] captures this point analytically and shows that when interference is
high, that is, when all interference channel gains are sufficiently greater than direct
channel gains, introducing robustness can increase the social utility of the robust
game as compared with that of the nominal game. This is because in such cases,
introducing robustness forces users to avoid high-interference channels and instead
transmit in low-interference channels, resulting in a higher throughput [5, 23, 37].
However, in general, when there are multiple nominal NEs, that is, when the
nominal problem is nonconvex and the amount of uncertainty varies, such increases
in the social utility cannot be assumed in all cases.
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3.3.1.3 Distributed Algorithms

Since the robust game in Section 3.3.1 involves set-valued mappings, the distributed
algorithm for the nominal game in Section 3.2.3 cannot be directly applied to
develop a distributed algorithm for the robust game. Hence, we resort to the
proximal point method to develop a distributed and efficient numerical scheme
for obtaining the robust solution to eG . The proximal point method is a projection
method for solving problems that involve set-valued mappings, where a sequence of
subproblems is iteratively solved as per Section 12 in [24] and Section 12.6.1 in [2].
The main advantages of utilizing the proximal point method for the robust game are
as follows:

• The optimization problem in the proximal point method can be decomposed and
solved in a distributed and efficient manner as per Section 12.6.1 in [2];

• Users’ utility functions in the game, that is, �n, do not need to be strictly
or strongly convex for the convergence of the distributed scheme as per Sec-
tion 12.2.4 in [2];

• In some cases, utilizing the proximal point method for a robust game can lead to
a closed-form solution.

Definition 3.7. Let pPRMn .b/ and bn be the solutions for user n in its cur-
rent and previous iterations, respectively. The proximal response map of
the game eG for any b D Œb1; : : : ;bN � 2 A , denoted by pPRM.b/ D� Mp1.b/; : : : ;pPRMN .b/

�
is the solution to the following optimization problem

(Section 12.6.1 in [2]):

pPRM.b/ D argmaxp2A

"
NX

nD1
�n.pn;b
n/ � 1

2
kp � bk22

#
: (3.43)

From Proposition 12.5 in Section 12.2.4 in [2], since �n is concave (Appendix 2),
the fixed point of pPRM.b/ is the RNE of the robust game eG . Now, (3.43) can be
decomposed into N subproblems (one for each user) as per Section 12.6.1 in [2]:

pPRMn .b/ D argmaxpn2An

�
�n.pn;b
n/ � 1

2
kpn � bnk22

�
; (3.44)

for all n 2 N . A distributed iterative algorithm is developed as follows. When
user n is informed about other users’ actions and estimates fk

n at its receiver, a
solution to (3.44) can be obtained. The distributed algorithm that is based on the
proximal point method is summarized in Table 3.4. In this algorithm, users update
their actions at discrete instances l in L D Œ1; : : : ;L�, where pn.l/ is the action
of user n at iteration l obtained from (3.44), and fn.l/ is the impact of other users
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Table 3.4 Proximal point distributed algorithm for robust game

Inputs for Each User
L D Œ1; : : : ;L�: Users’ iterations

"fn : Bound on the uncertainty region for user n

0 < � << 1: Termination criteria for all users

Initialization For l D 0

Set pPRMn .0/ 2 An and a random fn.0/ for all n 2 N

Iterative Algorithm
For l D 1; 2; : : :

Update pPRMn .l/ D argmaxpn2An
�n.pn;p�n.l 
 1//
 1

2
kpn 
 pPRMn .l 
 1/k22 for all users

Each user transmits the value of pPRMn .l/ to other users and measures the aggregate

impacts of other users [i.e., fn.l/]

If kpPRMn .l 
 1/
 pPRMn .l/k2 � �, end

Otherwise l D l C 1, continue

on user n at iteration l, which is observed at the receiver of user n and sent to the
respective transmitter.

Since the regularization term 1
2
kp�bk22 in (3.43) guarantees the strong concavity

of each user’s optimization problem, (3.44) is strongly concave [2]. Hence, each
pPRMn can be obtained via efficient convex optimization algorithms. When the
distributed algorithm in Table 3.4 converges, the regularization term kpn � bnk22
tends to zero.

In solving (3.44), one must obtain eF n.p/ D � @�n.pn;p�n/

@pn
[24]. When eF n.p/ is

an affine mapping, solving (3.44) is reduced to solving an AVI, which is straight-
forward. For example, when the utility function is as in (3.31), solving (3.44) via

the proximal point method at iteration l is similar to solving VI
	
A ;M .p.l � 1//




(Section 12.3 in [24]), where M n .p.l � 1// D 1
2

	
$n CPN

mD1 MnmpT
m.l � 1/



�

In and In D �
pk

n.l/ � pk
n.l � 1/�K

kD1. The solution to (3.44) via the proximal point
method is

pk
n.l/ D 1

2

2
4�1



n �$ k

n �
X
m¤n

h
k
mnpk

m.l � 1/
h

k
nn

� �k
nkpk
n.l � 1/k C pk

n.l � 1/
3
5
.pk

n/
max

.pk
n/
min

;

(3.45)

where �n satisfies (3.35). In (3.45), the computational complexity to derive the
robust solution is considerably reduced. However, to solve the water-filling-like
formulation in (3.45) with few calculations, each user n needs to know the previous
action of other users, that is, pk
n.l � 1/ for all k.

When eF n.p/ is not an affine mapping, from Lemma 1, �n.pn;p
n/ is concave.
Hence, the Lagrange function Ln.pn; �n/ D un.pn; fn � "fn#n/ � 1

2
kpn.l/ � pn
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.l � 1/k22 � �n.
PK

kD1 pk
n � pmaxn / is used to iteratively solve (3.44), where �n is

the Lagrange multiplier that satisfies (3.35) for user n.
In the following Theorem 3.10, the sufficient condition for the convergence of

the iterative algorithm is stated.

Theorem 3.10. As L ! 1, the distributed algorithm in Table 3.4 converges
to the unique RNE from any initial pn.0/, when 	 in (3.9) is a P-matrix, and
@3vk

n.p
k
n;f

k
n/

@2pk
n@f

k
n

D @3vk
n.p

k
n;f

k
n/

@pk
n@
2f

k
n

D 0.

Proof. See Appendix 5.

Note that Theorem 3.10 does not add any new constraint for the power control
game. This is because when 	 in (3.9) is a P-matrix, the condition of the preceding
Theorem holds for the power control game. In this case, interference in the system

is very low, and consequently, the SINR of each user is high, that is, h
k
nnpk

n

f
k
n

>> 1,

and the utility function of each user is vn.pn; fn/ � PK
kD1 log. h

k
nnpk

n

f
k
n

/, which satisfies

@3vk
n.p

k
n;f

k
n/

@2pk
n@f

k
n

D 0. From Theorem 3.10, the distributed algorithm converges to a unique

RNE when the uncertainty region is small, closed, and convex; and 	 in (3.9) is a
P-matrix.

3.3.1.4 Overview of Other Works on Robust Noncooperative Games
with Homogeneous Users

Robust power control in noncooperative strategic games was introduced in [7]
where the interference level is uncertain. Moreover, the computational complexity
of solving the robust optimization problem by each user was reduced, and the
equilibrium of the nominal game and its sensitivity on system parameters was
studied via the VI. However, the social utility of the robust game at its RNE was
not compared with that of the nominal game at its NE, and a distributed algorithm
for reaching the RNE was not developed in [7].

Another work related to robust noncooperative games with homogeneous users is
[5], in which the interference channel gains are uncertain. By assuming an ellipsoid
uncertainty region, [5] rewrites the best response map for each user in the robust
game by a water-filling-like closed-form solution and obtains the conditions for the
RNE’s existence and uniqueness via contraction mapping. In addition, the robust
game’s performance for the two-user scenario is studied for the high-interference
and low-interference cases. It is shown that for the high-interference case, the
sum rate (social utility) increases and the price of anarchy (PoA) decreases as the
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Table 3.5 Overview of existing works on robust noncooperative games with homoge-
neous users

Reference Equilibrium analysis Performance comparison Distributed algorithm

[5] Best response
p p

[7] VI – –

[37] VI
p p

uncertainty region for channel gains shrinks.3 In [5], PoA is defined as the ratio
of the maximum social utility at the nominal games’ NE over the minimum social
utility at any RNE. In [5], it is also shown that in the low-interference case, the
sum rate of users (social utility) decreases and the PoA increases by expanding the
uncertainty region for channel gains. In Table 3.5, we compare the scope of existing
works on robust noncooperative games with homogeneous users.

3.3.2 Robust Power Control in Noncooperative CRNs

Consider the power allocation problem for a CRN whose system model is the same
as in Section 1.4.2.1 of Chapter 1, where the set S consists of S pairs of SU
transmitters and receivers, and each pair unilaterally chooses its transmit power
levels over all K channels subject to keeping its interference on PU q below a
predefined threshold. Each SU aims to maximize its own throughput subject to
its maximum transmit power and the constraint on its interference on PUs. In the
underlay CRN, uncertainty is in the channel side-information (CSI) between the
SUs’ transmitter and the PUs’ receivers [43]. In this section, we analyze the RNE
when CSI is uncertain by reformulating the constraint on the interference threshold
(IT) via linear matrix inequalities (LMIs) [43]. We will also obtain the conditions for
the RNE’s existence and uniqueness by utilizing VI and explain how the protection
function can be used to reformulate the uncertainty region for CRNs.

Let us begin by focusing on the nominal game in this scenario. When CSI
measurements are exact, the interference constraint is

P interference
s D

( X
k2K

gk
sqpk

s � ITsq; gk
sqpk

s � ITk
sq; 8k 2 K ; q 2 Q

)
; 8s 2 S ;

(3.46)

where ITsq and ITk
sq are the maximum allowable interference over all channels and

per channel k, respectively. The nominal game is G CRN D fN ; .vn/n2N ;A CRNg,
where A CRN D Q

s2S A CRN
s and

3PoA is a concept in game-theoretic economics, which shows how the efficiency of a system
degrades due to the selfish behavior of agents.
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A CRN
s D As � P interference

s : (3.47)

Since A CRN
s for SU s is decoupled from those of other SUs, and A CRN

s is convex and
compact for all channel realizations, the conditions for the existence and uniqueness
of the nominal NE can be obtained, and distributed algorithms for reaching the
nominal NE can be developed.

To introduce robustness in this game, the uncertainty in CSIs between SU s and
PU q is modeled by

gsq D gsq C Ogsq;

where gsq D Œg1sq; : : : ; g
K
sq�, gsq D Œg1sq; : : : ; g

K
sq�, and Ogsq D ŒOg1sq; : : : ; OgK

sq� are
respectively the measured CSI, the exact CSI, and the error in CSI between SU
s and PU q over all channels. We begin by considering the elliptical uncertainty
region Rgsq defined via the weighted Euclidean norm as [43]

Rgsq D ˚
gsqjkOgsqkwsq � "gsq

 D
8<
:gsqj

sX
k2K

wk
sqjOgsqj2 � "gsq

9=
; ; 8s 2 S ; 8q 2 Q;

(3.48)

where wsq D Œw1sq; : : : ;w
K
sq� are positive weights and "gsq is the uncertainty region’s

bound for channel gains between SU s and PU q. The robust game is

eG CRN D ˚
N ; .vn/n2N ; eA CRN


;

in which

eA CRN D
Y
s2S

eA CRN
s D As �fP interference

s ;

where

fP interference
s D

( X
k2K

gk
sqpk

s � ITsq; 8gk
sq 2 Rgsq

gk
sqpk

s � ITk
sq; 8gk

sq 2 Rgsq 8k 2 K ; q 2 Q

)
; 8s 2 S : (3.49)

The utility functions in eG CRN and G CRN are similar, but their strategy spaces are
different because the constraints in the robust game include uncertain parameters.
The interference constraints are given in the form of the intersection of an infinite
number of convex sets, which means that the analysis of eG CRN is not trivial.



3.3 Worst-Case Robust Power Control in Noncooperative Games 113

3.3.2.1 Existence and Uniqueness of RNE

To simplify the analysis of RNE, in [43], fP interference
s is rewritten as a set of LMIs,

and the conditions for the RNE’s existence and uniqueness via VI are derived. Let

Œ� CRN�ss0 �
 
0; if s D s0

maxk2K
hk

s0s
hk

ss
innrk

s0s if s ¤ s0

!
; s; s0 2 S ; (3.50)

in which

innrk
s0s D �2 CP

s02S hs0s Opmaxs0

�2
; Opmaxs0 D minfpmaxs ; bITk

s ; IT
k
sg;

MITk
s D min

q2Q ITsq min
k2K

(
wk

sq

"gsq

;
1

Ogsq

)
; and IT

k
s D min

q2Q

(
ITk

sq�Ogk
sq C "gsq=

p
wsq
�2
)
:

By rewriting the uncertainty region, the RNE’s existence can be proved. Also,
when �.� CRN/ < 1, the game eG CRN has a unique equilibrium and the distributed
algorithm (both synchronous and sequential) converges to its unique equilibrium
(Theorems 1 and 2 in [43]). From � CRN, we note that increasing the uncertainty
in gsq increases the chance of having a unique NE because when the uncertainty
region for one PU channel is expanded, the worst-case robust transmit strategy of
one SU becomes more conservative, which causes less interference on other SUs.
When "gsq ! 0 for all s 2 S and q 2 Q, the conditions for the uniqueness and
convergence of eG CRN coincide with those of G CRN.

3.3.2.2 Social Utility (Sum Rate)

When uncertainty is in CSIs between SUs and PUs, and the RNE is unique,
expanding the uncertainty region forces SUs to reduce their transmit power levels,
which in turn reduces the SUs’ social utility (sum rate) compared to when CSIs are
exact. The higher social utility in the latter case comes at the cost of violating the
interference threshold of PUs.

3.3.2.3 Distributed Algorithms

To develop a distributed algorithm for the robust game in CRNs, [43] proposes
a totally asynchronous algorithm in Table 3.1 for two cases: (1) when SUs have
one single antenna for both transmit and receive and (2) when SUs are equipped
with multiple antennas. The optimization problem of each user does not have a
closed-form solution. However, [43] shows that by applying LMIs, the best response
map can be obtained for both the aforementioned cases. When the condition in
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Theorem 3.5 holds, the totally asynchronous algorithm in Table 3.1 for these two
cases converges. In [43], it is also observed that more uncertainty in CSIs increases
the chance of convergence of distributed algorithms to a unique RNE. The reason is
similar to that stated in Section 3.3.2.1 in this chapter.

3.3.2.4 Overview of Other Works on Robust Noncooperative CRNs

Due to the coupling between user strategies that emanates from the need to satisfy
interference thresholds, and, as shown in Appendix 1, the analysis of the nominal
game is not easy [2]. When robustness is introduced, the analysis of the RNE is
further aggravated. As a result, except for [43], to the best of our knowledge, there
is no other existing work on robust games for CRNs.

3.3.3 Robust Power Control for Noncooperative
Heterogeneous Users

We now focus on wireless networks in which there exist two types of users with
different capabilities to extract side information, where one type (called leaders)
can extract and process side information pertaining to other users, but the other
type (called followers) are limited to simple measurements and observations.
Interactions between these two types of users are modeled in a two-level Stackelberg
game [35, 65–67], where the leaders and the followers utilize their measurements,
observations, and processing capabilities to determine their respective optimal
constrained transmit power with a view to maximizing their own utility value
(e.g., throughput). In practice, users’ side information and measurements may
be uncertain, meaning that there is a need to utilize robust Stackelberg games
(RSGs). In this section, we study the performance of RSGs and analyze the robust
Stackelberg equilibrium (RSE) via sensitivity analysis.

Consider the system model introduced in Section 1.4.2 in Chapter 1, where
the set of leaders is NL D f0; 1; : : : ;NL � 1g, and the set of followers is
NF D f1; : : : ;NFg. In this setup, N D NL [ NF is the set of all users. The
leaders’ side information is as in Section 1.4.2.2 in Chapter 1. Stackelberg games
have been widely used to obtain optimal strategies for users by solving a bilevel
optimization problem [68–74]. Stackelberg games have also been used to model
spectrum sharing by PUs and SUs in licensed bands. For example, in [75–80], the
spectrum owner authorizes SUs to utilize its licensed band subject to a payoff by
each SU, determined in such a way as to maximize the spectrum owner’s profit
provided that the interference caused by SUs is below a given threshold. The
system model in this chapter is different from those of the aforementioned works,
as here we are concerned only with spectrum sharing in unlicensed bands. The use
of Stackelberg games to formalize interactions among heterogeneous users does
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not necessarily entail a prioritization of transceivers. Rather, the formalism in this
chapter takes into account the asymmetry of side information in heterogeneous users
as in [35, 65, 66].

The equilibrium in a nominal Stackelberg game, called the nominal Stackelberg
equilibrium (NSE), prescribes the optimal strategy set for the leaders when the
followers play at their NE and is derived via backward induction. For instance, for
the one-leader/one-follower Stackelberg game, where user 0 is the leader and user
1 is the follower, the leader knows that when it transmits with p0, the follower’s
transmit power (its best response) is p�

1 .p0/. Hence, the leader takes this into account
in choosing its strategy. The leader’s strategy at the nominal Stackelberg equilibrium
is p*NSE

0 when for any p0 2 A0 we have

v0
�
p*NSE
0 ; f0

�
p�
1 .p

*NSE
0 /; s0

�� � v0

	
p0; f0

�
p�
1 .p0/; s0

�

;

where v0 is the leader’s utility value, f0 is its interference on other users, and s0 is
its side information. The Stackelberg equilibrium for the leader is the solution to the
following bilevel optimization problem:

maxp02A0 v0 .p0; f0.p1; s0// ; (3.51)

subject to: maxp12A1 v1 .p1; f1.p0; s1// ;

where v1 is the follower’s utility value, f1 is its interference on other users, and
s1 is its side-information. For the one-leader/multifollower scenario, the preceding
backward procedure is applicable as well. Let p�
0.p0/ , Œp�

1 ; : : : ;p
�
NF
� be the

followers’ strategies at their nominal NE when the leader’s strategy is p0. The
strategy profile .p*NSE

0 ;p*NSE
0 .p*NSE
0 // is the equilibrium of the nominal Stackelberg

game when

v0
�
p*NSE
0 ; f0

�
p*NSE
0 .p*NSE

0 /; s0
�� � v0

	
p0; f

�
p�
0.p0/; s0

�

;

for any p0 2 A0, where p�NSE
0 .p0/ D Œp�NSE
1 ; : : : ;p�NSE

NF
�. At the NSE, the utility of

user n is !*NSE
n and the social utility of the game is !*NSE D P

n2N !*NSE
n . When

the followers’ game has multiple NEs, its analysis is very complicated [81, 82]. We
restrict our study to a Stackelberg game with a unique NE in the followers’ game.
The conditions for the NE’s uniqueness in this case were presented in Section 3.2.1.3
in this chapter.

3.3.3.1 Robust Stackelberg Games

To introduce robustness, uncertainty in the parameter values of both followers and
leaders is assumed. In the sequel, we consider the following two cases:
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• Case 1 The leader’s side information is accurate, and the followers’ observations
are noisy;

• Case 2 The leader’s side information is uncertain, and the followers’ observations
are noisy.

The uncertainty in the followers’ observations is modeled as in Section 3.1 in
this chapter. Hence, the conditions for the existence and uniqueness of RSE for
the followers’ game are the same as those derived therein. Let HnFnL denote the
uncertain channel gain between the transmitter of follower nF 2 NF and the receiver
of leader nL 2 NL, where the uncertainty region is

RHnFnL
D fHnFnL jkbHnFnLk D kHnFnL � HnFnLk2 � ınFnLg; (3.52)

and ınFnL is the bound on the uncertainty region RHnFnL
. When the followers’

receivers do not provide any feedback, obtaining the exact value of ınFnL is not
possible.

3.3.3.2 Single-Leader/Single-Follower Robust Stackelberg Games

At the RSE for Case 1 (RSE1), the follower’s optimization problem is

max
p12A1

minf1.p0;s1/2Rf1 .p0/ u1 .p1; f1.p0; s1// ; (3.53)

the leader’s side-information set is I RSE1
0 D fA1; v1;H10;H11;H01;Rf1 .p0/g, and

its bilevel optimization problem is

maxp02A0 v0 .p0; f0.p1s0// ; (3.54)

Subject to: maxp12A1 min
f1.p0;s1/2Rf1 .p0/

u1 .p1; f1.p0; s1// :

The best response of (3.53) to the leader’s action is denoted by p�
1 .p0/, and the

leader’s transmit power at RSE1, denoted by p*RSE1
0 , satisfies

v0.p*RSE1
0 ; f0.p�

1 .p
*RSE1
0 /; s0// � v0.p0; f0.p�

1 .p0/; s0//

for any p0 2 A0. In what follows, for notational convenience, we omit the arguments
p
n and sn in fn.p
n; sn/.

It can be shown that RSE1 exists since:

• (3.53) is concave with respect to p1.p0/ for any fixed p0 and is a decreasing
function of f1; and

• A1 and Rf1 .p0/ are convex, bounded, and disjoint.

Consequently, there always exists a solution to (3.53) [83], and optimization
problem (3.54) has a nonempty feasible set. Hence, RSE1 exists.
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To simplify the constraint in (3.54), we utilize (3.26) and (3.27) and
rewrite (3.54) as

max
p02A0

v0.p0; f0/ (3.55)

Subject to: max
p12A1

v1.p1; f�
1 /;

where f�
1 D f1 � "f1#1, in which f�

1 D Œf 1�1 ; : : : ; f K�
1 �, #1 D Œ#11 ; : : : ; #

K
1 �, where

#k
1 is

#k
1 D

@uk
1.p1;f

�
1 /

@f k
1rPK

kD1
� @uk

1.p1;f
�
1 /

@f k
1

�2 : (3.56)

Note that in (3.55), the uncertainty region is removed from the leader’s optimization
problem, and the leader’s and the follower’s strategies as well as their respective
utilities at RSE1 can be obtained and compared with those at NSE.

At RSE for Case 2 (RSE2), the leader’s uncertain side-information set is
I RSE2

0 D fA1; v1;H10;H11;H01;Rf1 .p0/g, in which H10 is the uncertain parameter
in (3.52). The leader’s bilevel worst-case optimization problem is

max
p02A0

min
H102RH10

v0.p0; f0/ ; (3.57)

subject to: max
p12A1

min
f12Rf1 .p0/

u1.p1; f1/:

Note that in (3.57), the leader assumes worst-case uncertainty in its side information
(i.e., H10), which reduces its transmit power, which in turn reduces its interference
on the follower. In other words, f1 is a decreasing function of ı10.

It can be shown that RSE2 always exists, because:

• RH10 , R1.p0/, A0, and A1 are compact and closed sets; and
• For any realization of H10 2 RH10 , the uncertainty region R1.p0/ is closed and

convex.

Hence, the follower has a feasible strategy; and from the preceding discussion, RSE2
always exists.

While the condition for the existence of RSE2 can be easily derived, solv-
ing (3.57) is significantly more complex than solving (3.54). This is because (3.57)
has two uncertain parameters, H10 and f1, and RSE2 is a function of both "f1 and
ı10, while RSE1 is a function of "f1 only. To compare RSE1 and RSE2, the value
of "f1 should be the same for both of these cases. Next, we study the relationship
between RSE1 and RSE2.

The performance at RSE1 and RSE2 are compared in Table 3.6 using Propo-
sitions 1 and 2 in [44]. Note that the leader’s utility at RSE1, that is, !*RSE1

0 , is
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Table 3.6 Social utility at RSE1 and RSE2 for single-leader/single-follower RSG

Fixed ı10 Fixed "f1

Follower’s strategy is a decreasing
function of "f1

Follower’s strategy is an increasing function of ı10

Leader’s strategy is an increasing
function of "f1

Leader’s strategy is a decreasing function of ı10

!*RSE1 > !*NSE !*RSE2 > !*NSE

when C1 W jD10j < jJp0 j and
C2 W jJp1 j < jD01j

when C3 W jD10j > jJp0 j and C4 W jJp1 j > jD01j

higher than that at NSE, that is, !*NSE1
0 , while the follower’s utility at RSE1, that

is, !*RSE1
1 , is less than that at NSE, that is, !*NSE

1 . When C1 and C2 hold, the
social utility at RSE1, that is, !*RSE1, is higher than that at NSE, that is, !*NSE.
In contrast, the leader’s utility at RSE2, that is, !*RSE2

0 , is less than that at NSE,
while the follower’s utility at RSE2, that is, !*RSE2

1 , is higher than that at NSE. In
this case, when C3 and C4 hold, the social utility at RSE2, that is, !*RSE2, is higher
than that at NSE. In Table 3.6, Jpn , rpnvn.pn; fn/ is the column gradient vector
of vn for user n and is called the direct rate of user n, where the kth element of this

vector is Jk
pn

D @vk
n.pk

n;f
k
n .p�n;sn//
@pk

n
. Also, Dnm , HmnJfn , where Jfn , rfnvn.pn; fn/,

Hmn , diagf.hk
mn/

K
kD1g, and Dnm is the rate of decrease in the utility of user n

caused by an increase in the strategy of user m. Hence, Dnm is the negative impact
of user m on user n for m ¤ n. When the utility of user n is its throughput, we have

Dk
nm D � h

k
nnh

k
mnpk

n

f
k
n.f

k
nCh

k
nnpk

n/
, where Dk

nm is the kth element of Dnm.

A higher social utility can be achieved at RSE1 when the increase in the leader’s
utility is more than the decrease in the follower’s utility, that is, when C1 and C2
hold; whereas a higher social utility can be achieved at RSE2 when the increase in
the follower’s utility is more than the decrease in the leader’s utility, that is, when
C3 and C4 hold. In Appendix 7, we prove that the foregoing statements are true.
Note that C1 is the dual of C3, and C2 is the dual of C4.

From Proposition 1 in [44], when uncertainty is small, the strategies of the leader
and the follower in Case 1 can be obtained from their respective strategies at the
NSE as

p*RSE1
0 D p*NSE

0 C "f1 �
	
.Jp0p0 /


1Jf0p0H10.Jp1p1 /

1Jf1p1#

T
1


T
; (3.58)

p*RSE1
1 D p*NSE

1 � "f1 � �.Jp1p1 /

1Jf1p1#

T
1

�T
; (3.59)

where Jfnpn , diagf. @2vn.pn;fn/

@f k
n @pk

n
/KkD1g, and Jpnpn , diagf. @2vn.pn;fn/

@2pk
n

/KkD1g.
To solve (3.57), the leader calculates the follower’s transmit power from (3.53)

via numerical methods in [83, 84] or via semidefinite programming (SDP)
reformulation in [83] for all p0 2 A0. The leader also calculates its minimum
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utility corresponding to p0, subject to H10 2 RH10 , and chooses its transmit power
p0 that maximizes its utility (its throughput) among all minimum utility values
obtained for all p0 2 A0.

Since C1, C2, C3, and C4 affect the performance of RSG at RSE1 and RSE2, it
is useful to give their physical interpretations in wireless networks. We consider the
following three scenarios, depending on the SINRs of the leader and the follower.

• Scenario 1. High SINR, that is, h
k
00p

k
0 	 h

k
10p

k
1 C �2 and h

k
11p

k
1 	 h

k
01p

k
0 C �2.

In this scenario, when both C1 and C2 hold, we have

h
k
10 > h

k
01: (3.60)

• Scenario 2. Low SINR, that is, h
k
00p

k
0 � h

k
10p

k
1 C �2 and h

k
11p

k
1 � h

k
01p

k
0 C �2. In

this scenario, when both C1 and C2 hold, we have

h
k
00 > h

k
01 and h

k
10 > h

k
11: (3.61)

• Scenario 3. Moderate SINR, that is, h
k
00p

k
0 � f

k
0 and h

k
11p

k
1 � f

k
1, when the

interference levels of the leader and the follower on each other are close, that is,
f

k
1 � f

k
0. In this scenario, when both C1 and C2 hold, we have

h
k
00h

k
10 > h

k
11h

k
01; 8k 2 K: (3.62)

One can use (3.60)–(3.62) to obtain the probability of each scenario from the
distribution of channel gains. As an example, from (3.60), when channels are
Rayleigh fading and channel gains are independent and identically distributed
random variables, the probability density function of channel gains is exponential,

that is, �.h
k
10/ D �1 exp�1h

k
10 and �.h

k
01/ D �2 exp�2h

k
01 . The probability of h

k
10 >

h
k
01 is

Z 1

0

Z h
k
10

0

�.h
k
10/�.h

k
01/dh

k
10dh

k
01 D

Z 1

0

�.h
k
10/dh

k
10.1 � exp�2h

k
10 / D �2

�1 C �2
:

One can also use (3.60)–(3.62) to predict how the social utility would change for
any given channel condition in Case 1.

When C3 and C4 in Table 3.6 hold, we have

Scenario 1: H) h
k
01 > h

k
10I (3.63)

Scenario 2: H) h
k
01 > h

k
00; and h

k
11 > h

k
10I (3.64)

Scenario 3: H) h
k
11h

k
01 > h

k
00h

k
10; 8k: (3.65)



120 3 Robust Noncooperative Resource Allocation

3.3.3.3 Multi-user Stackelberg Games

When the sets of leaders and followers each consist of more than one user, the
Stackelberg game is called a multi-user Stackelberg game. We first consider the one-
leader/multi-follower game, that is, when NL D 1 and NF > 1. When the followers’
observations are uncertain, modeled by (3.20), and the leader’s side information is
exact (Case 1), the robust game between the followers is as eG in Section 3.1, and the
results therein for the existence and uniqueness of the RNE, as well as the distributed
algorithm in Table 3.4, can be readily applied.

From Assumptions A1–A3 in Section 3.2.1.3 in this chapter and on A0, the RNE
of the followers’ game exists when uncertainty is small, meaning that a solution to
the leader’s optimization problem exists. Hence, RSE1 exists when uncertainty is
small.

Case 2 assumes that the information set of the leader is uncertain, for example,
when channel gains HnF0 between follower nF and leader 0 are modeled by

RHnF0
D fHnF0 j kbHnF0k2 D kHnF0 � HnF0k2 � ınF0g; (3.66)

where ınF0 is the bound on the uncertainty region for HnF0. From Assumptions A1–
A3 in Section 3.2.1.3 in this chapter, Statement 1 in [44], and (3.66), the RNE of
the followers’ game exists when uncertainty is small, meaning that a solution to the
leader’s optimization problem exists. Hence, RSE2 exists when the uncertainty in
channel gains is small.

We now study the utility values at RSE1 and RSE2 for the multiuser RSG. Let

C5 W Jp0 >
X

nF2NF

DnF0; C6 W JpnF
< D0nFC

X
mF¤nF;mF2NF

DmFnF ; 8nF 2 NF;

C7 W Jp0 <
X

nF2NF

DnF0; and C8 W JpnF
> D0nFC

X
mF¤nF;mF2NF

DmFnF ; 8nF 2 NF:

Table 3.7 compares the utility values at RSE1 and RSE2 with the utility value
at NSE, where " D Œ"f0 ; : : : ; "fNf

� and ı0 D Œı10; : : : ; ıNf 0�. Similar to the
single-leader/single-follower RSG, the uncertainty in the followers’ observations
increments the leader’s utility but reduces the followers’ utilities. As stated in
Table 3.7, when the leader’s direct rate is higher than the sum of its negative impacts
on all followers, that is, when C5 holds, and the sum of each follower’s negative
impacts on other followers and on the leader is greater than its direct rate, that is,
when C6 holds, the social utility at RSE1 is higher than that at the NSE, that is,
!*RSE1 > !*NSE. In addition, when the leader’s direct rate is less than the sum of its
negative impacts on the followers, that is, when C7 holds, and the sum of negative
impacts of each follower on other followers and on the leader is less than its direct
rate, that is, when C8 holds, the social utility at RSE2 is higher than that at the NSE,
that is, !*RSE2 > !*NSE. In Appendix 8, we prove that the preceding statements are
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Table 3.7 Social utility at RSE1 and RSE2 for single-leader/multifollower RSG

Case 1 (	 is a P-matrix) Case 2 (	 is a P-matrix)

Followers’ strategies decrease with " Followers’ strategies increase with ı0

Leader’s utility at RSE1 is > that at NSE Leader’s utility at RSE2 is < that at NSE

Followers’ social utility at RSE1 is < that
at NSE

Followers’ social utility at RSE2 is > that at NSE

!*RSE1 > !*NSE when both C5 and C6
hold

!*RSE2 > !*NSE when both C7 and C8 hold

true. The leader can obtain its optimal strategy via an exhaustive search [44]. Note
that C5 is the dual of C7, and C6 is the dual of C8.

In the multi-leader/multi-follower game, that is, when NL > 1 and NF > 1,
one can consider either competition or cooperation between the leaders [65]. For
instance, when cooperation is assumed, the nominal game is

maxpn2An

P
n2NL

vn.pn; fn/; (3.67)

subject to: max
pm2Am

vm.pm; fm/; 8m 2 NF:

Note that (3.67) is a bilevel and nonconvex optimization problem whose constraint
involves the followers’ game [85–88]. Hence, it belongs to the class of mathematical
programs with equilibrium constraints (MPEC). In general, it is not easy to
obtain a closed-form solution to (3.67). Instead, in [65, 67], numerical algorithms
for solving (3.67) are proposed. Our approach to solving (3.67) and its robust
counterpart is to randomly choose a leader tasked with obtaining the optimal
transmit power vectors of all leaders via an exhaustive search. We assume that all
leaders cooperate and provide their side information to the chosen leader, which
would use such side information in its exhaustive search for optimal transmit power
vectors for all the leaders. Next, all the leaders transmit at their optimal power levels,
and subsequently the followers play their strategic noncooperative game to obtain
their own transmit power vectors.

For the robust multi-leader/multi-follower game RSG1, the optimization problem
of each follower is similar to (3.53). In this case, when ‡ is a P-matrix, and the
uncertainty is small, the followers’ strategies at RSE1 are decreasing functions of
"fn (Lemma 3.4 in Appendix 8), which means that when the followers’ transmit
power levels are reduced, their interference on the leaders is reduced, resulting in
higher utilities for the leaders.

For the robust multileader/multifollower game RSG2, the leaders’ optimization
problem is

maxpn2An minHmn2RHmn

P
n2NL

vn.pn; fn/; (3.68)

subject to: max
pm2Am

min
fm2Rfm .p�m/

um.pm; fm/; 8m 2 NF;
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which is nonconvex and MPEC. Hence, analyzing RSE2 is nontrivial. To solve this
problem, the heuristic algorithm in [44] that converts the multileader/multifollower
game into a single-leader/multifollower game can be used.

3.3.3.4 Overview of Other Works on RSGs

Robust down-link power control in orthogonal frequency division multiple access
(OFDMA)-based networks with noncooperative macro base stations (BSs) and
underlay small cells is studied in [89]. To model interactions, the RSG is used
where the interference and CSI between macro BSs and small cells are uncertain,
and the objective of macro BSs and small cells is to maximize their own respective
throughput. The macro BSs and small cells are considered leaders and followers,
respectively. To protect the quality of service (QoS) of the macro BS users,
the interference of small cells with macro BS users is controlled via local and
global interference constraints. The interference of each small cell with each
macro BS is upper bounded, and the sum of interference levels caused by all
small cells on macro-cell users is also upper bounded. The local interference
constraint is reformulated so that the RSE can be analyzed. To apply the global
interference constraint, the RSE is formulated as a GNE, which involves extensive
calculations. By utilizing QVI [24], nonlinear complementarity problems (NCPs)
[24], and restating the equilibrium point as an equilibrium program with equilibrium
constraints (EPEC) [24], the RSE is studied in [89].

Other works on the RSE are [90, 91], but are not in the context of resource
allocation in wireless networks. In [90], a single-leader/single-follower Stackelberg
game is considered where the leader’s side information is uncertain. By minimizing
the second-order sensitivity function of the leader’s utility with respect to the
uncertain parameters, the worst-case utility for the leader is obtained. In [91], three
new algorithms based on mixed-integer linear programming are proposed, namely,
for cases in which the leader’s side information about the follower’s response
is uncertain due to the follower’s bounded rationality, for cases in which the
follower’s observations of the leader’s strategy are noisy, and for cases in which the
follower’s reward is uncertain. Table 3.8 summarizes the key differences between
other existing works on RSGs.

In this section, we analyzed the effect of uncertainty on the utilities of both lead-
ers and followers and considered various issues associated with implementing the
RSGs in wireless networks. We also presented the case of multiple leaders/multiple
followers in wireless networks.

3.4 Concluding Remarks

In this chapter, we studied the impact of uncertainty in users’ side information
on power control games in wireless networks with noncooperative users. We
began by assuming no uncertainty (the nominal game), discussed the existence
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Table 3.8 Comparative overview of existing works on robust HetNets

Reference Equilibrium analysis Performance comparison Distributed algorithm

[89] VI
p p

[90] Best response
p p

[91] VI – –

and uniqueness of its equilibrium, presented a distributed algorithm for obtaining
the game’s solution, and studied its convergence. We then reformulated the game
into a robust one via worst-case robust optimization and considered all of the
aforementioned topics for the robust game in wireless networks with homogeneous
users, in underlay CRNs, and in wireless networks with heterogeneous users. The
results may be summarized as follows:

• Robust Game-Theoretic Resource Allocation for Homogeneous Users: We
studied the RNE for a network with homogeneous users, where each user’s utility
depends on its action, which is additively coupled to other users’ actions. When
the impact of other users on each user is uncertain, we utilized the worst-case
robust optimization to maximize each user’s utility and analyzed the game. In
doing so, we showed that the theory of finite-dimensional VI could be used to
obtain the sufficient conditions for the existence and uniqueness of the RNE.
We also showed that when uncertainty is small, the condition for the RNE’s
uniqueness is similar to that of the nominal NE, and we presented a distributed
algorithm based on the proximal point method for reaching the RNE. Moreover,
we showed that when the RNE is unique, the robust game’s social utility is less
than that of the nominal game, but when there are multiple RNEs, the robust
game’s social utility at one RNE may be higher than that of the nominal game.
The distributed algorithm based on proximal response map was also presented
for this case.

• Robust Game-Theoretic Resource Allocation in Underlay CRNs: In this case,
channel gains between SUs and PUs are subject to uncertainty. Each SU aims
to maximize its own utility, for example, its throughput, subject to its transmit
power and interference constraints imposed by PUs. Even the nominal game
cannot be easily analyzed due to the fact that SUs must guarantee that their
interference with PUs is below a given threshold. This creates a coupling between
SU strategies, which makes it difficult to satisfy the conditions for the existence
and uniqueness of NE. However, we showed that it is possible to analyze such
games (nominal and robust) via nonlinear complementarity problems (NCP)
introduced in Appendix 1 in this chapter.

• Robust Game-Theoretic Resource Allocation for Heterogeneous Users: We
utilized Stackelberg games to model interactions between heterogeneous users
whose CSI is uncertain, and we analyzed its equilibria via sensitivity analysis
(which does not require excessive calculations). We showed that when followers’
observations are noisy and leaders’ information is exact, the followers’ utility is
reduced and the leaders’ utility is increased compared with those of the nominal
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game. The converse is true when followers’ observations are exact and leaders’
side information is uncertain. We also showed the impact of uncertainty in
parameter values on the sum rate of the robust game.

Appendices

Appendix 1: Complementarity Problems

When the set A is a cone (i.e., for x 2 A ! ˛x 2 A for all scalars ˛ � 0), the
VI admits an equivalent form known as the complementarity problem, denoted by
CP.A ;F /, which is to find a vector x such that (Definition 1.1.2 in [24])

A 3 x ? F .x/ 2 A �;

where the notation ? means perpendicular, and A � is the dual cone of A , defined
as A � D fd 2 R

njvTd � 0; 8v 2 A g. When A is the nonnegative orthant of Rn,
CP.Rn;F / is a nonlinear complementarity problem (NCP), denoted by NCP.F /.
Since the dual cone of the nonnegative orthant is a nonnegative orthant itself, the
task of NCP.F / is to find a vector x such that (Definition 1.1.5 in [24])

0 � x ? F .x/ � 0:

An important problem that can be solved by an NCP is a noncooperative game
between SUs with a global interference constraint [45], which for each SU s is

X
s2S

X
k2K

gk
sqpk

s � ITq; 8q 2 Q; or
X
s2S

gk
sqpk

s � ITk
q ; 8q 2 Q; 8k 2 K ;

where ITq and ITk
q are the interference thresholds of PU q over all channels and

in channel k, respectively. Now, NE can be obtained via VI when Karush–Kuhn–
Tucker (KKT) conditions hold for the feasibility of the SUs’ strategy [2, 24].

KKT Conditions in VI: Let A include a finite number of differentiable
inequalities and equalities, that is,

A D
n
x 2 R

nj h.x/ D 0; g.x/ � 0
o
; (3.69)

in which h.x/ W Rn ! R
l and g.x/ W Rn ! R

m are vector-valued continuously
differentiable functions. For this NCP, we have that (Proposition 1.3.4 in [24])

(continued)
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• The solution set of VI.K ;F / is denoted by SOL.A ;F /. For x 2
SOL.A ;F /, there exist vectors 
 2 R

l and � 2 R
m such that

F .x/C
X

j

�jrhj.x/C
X

i

�irgi.x/ D 0; (3.70)

h.x/ D 0; (3.71)

0 � 
 ? g.x/ � 0I (3.72)

• Conversely, when each function hj.x/ is affine, each function gi.x/ is
convex, and .x;�;
/ satisfies (3.71) and (3.72), we have x 2 SOL.A ;F /.

The existence and uniqueness of solutions obtained via A in (3.69) can be
investigated under different conditions pertaining to the VI. Corollary 2.2.5
in [24] establishes that the solution set of VI.A ;F / is nonempty, that is, a
solution for VI.A ;F / exists when

1. A is a nonempty, convex, and compact subset of a finite-dimensional
Euclidean space; and

2. F is a continuous mapping. The solution to VI.A ;F / is unique when
F is continuous and strongly monotone on the convex and closed set A
(Theorem 2.3.3(b) in [24]). Moreover, the strong monotonicity of F is
sufficient for the existence of a solution. Theorem 3.7 and the P-matrix
property of matrix ‡ in (3.9) can also be used to investigate the existence
and uniqueness of solutions, as per Section 12 in [2].

The preceding reformulation of games via the KKT conditions and NCP can also
be applied to games with pricing [2]. Consider the nominal game in the underlay
CRN in Section 1.4.2.1 of Chapter 1, and the case where PUs in Q impose pricing
on SUs in S through an exogenous price vector 
 D f�1; : : : ; �Qg as a way to
ensure that the SUs’ interference on PUs is below a predefined threshold. In this
case, the modified utility function of SU s is

vpricing
s D vs.ps;p
s/C

X
q2Q

�q.
X
k2K

pk
sgk

sq/; 8s 2 S ; (3.73)

and the optimization problem of SU s is changed to

max
ps2As.p/

vpricing
s ; 8s 2 S ; (3.74)
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where As.p/ is the strategy set of SU s, which is dependent on other SUs’ strategies
via �q as

0 � �q ?
X
S2S

X
k2K

pk
sgk

sq � 0; 8q 2 Q: (3.75)

The equilibrium point of this game is the NCP’s solution for both fixed and variable
prices in (3.75) [2, 45]. The conditions for the NE’s existence and uniqueness
in this type of game are presented in [2, 45, 92, 93]. Specifically, it is shown
in Section 12.3 in [2] that such games can be reformulated via NCP, and the
conditions for the NE’s existence (Theorem 12.2) and uniqueness (Proposition 12.9)
are derived. A distributed algorithm to obtain equilibrium is also developed in [2]
(Proposition 12.18).

Appendix 2: Proof of �n.pn; p�n/ Convexity

Since fn is a linear function of other users’ strategies and system parameters, and the
norm function is convex and bounded to "fn (Section 2.2.2 in [94]), as per Section 3.2
in [94], eA n.p
n/ is a convex, bounded, and closed set. To prove that (3.26) is
concave with respect to pn, we follow Section 3.1 in [94]. For pn D �p0

n C.1��/p00
n

when � 2 Œ0; 1�, we have

�n.pn;p
n/ D min
fn2Rfn .p�n/

un
�
�p0

n C .1 � �/p00
n ; fn

�

� min
fn2Rfn .p�n/

�un.p0
n; fn/C .1 � �/un.p00

n ; fn/

D ��n.p0
n;p

0
n/C .1 � �/�n.p00
n ;p

00
n/: (3.76)

Since (3.76) assumes the convexity of un.pn; fn/ with respect to pn, the function
�n.pn;p
n/ is concave in pn. The same is true of the convexity of �n.pn;p
n/ with
respect to fn. Since �n.pn;p
n/ is concave, the Lagrange dual function for (3.26) in
the uncertainty region is

L.pn; fn; �n/ D
KX

kD1
uk

n.p
k
n; f

k
n / � �n

 
"2fn

�
KX

kD1
.f k

n � f
k
n/
2

!
;

where �n is the nonnegative Lagrange multiplier that satisfies

��
n �

	
"2fn

�
KX

kD1
.f k�

n � f
k
n/
2



D 0; (3.77)
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where ��
n and f k�

n are the optimal solutions to (3.77). The solution to (3.77) for f k
n is

obtained from @L.pn;fn;�n/

@f k
n

D 0 [94, 95], which yields

@uk
n.p

k
n; f

k�
n /

@f k
n

D �2��
n � .f k�

n � f
k
n/; 8k 2 K ;

which can be rewritten as .f k�
n � f

k
n/ D 1


2��
n

� @uk
n.p

k
n;f

k�
n /

@f k
n

. Using this in (3.77), ��
n is

��
n D 1

2"fn

�
vuut NX

nD1

�
@uk

n.p
k
n; f

k�
n /

@f k
n

�2
:

Hence, the uncertain parameter is f�
n D fn � "fn#n, where f�

n D Œf 1�n ; : : : ; f K�
n �,

#n D Œ#1n ; : : : ; #
K
n �, and #k

n is (3.27). By replacing #k
n in un, we have �n.pn;p
n/ D

un.pn; fn/jf�n Dfn
"fn #n
. The difference between �n.pn;p
n/ and the utility function of

the nominal game vn.pn; fn/ is the extra term "fn#n. From Assumptions A1–A3 in
Section 3.2.1.3 in this chapter, "fn#n is continuous. Thus, �n.pn;p
n/ is continuous
in p D .pn;p
n/. Now, the derivative of �n with respect to pn is

rpn�n.pn;p�n/ D rpn un.pn; fn � "fn #n/C rfn un.pn; fn � "fn #n/ � 1K � rpn fn � 1T
K

D rpn un.pn; fn � "fn #n/ � "fn rfn un.pn; fn � "fn #n/ � 1K � rpn #n � 1T
K ; (3.78)

where 1K is a 1� K vector whose elements are equal to one. The last term in (3.78)

contains @2uk
n

@pk
n@f k

n
. From Assumption A3 in Section 3.2.1.3 in this chapter, �n.pn;p
n/

is differentiable with respect to pn, and

rp�n�n.pn;p
n/ D rfn un.pn; fn � "fn#n/ � 1K � rp�n fn � 1T
K ;

which is continuous from Assumptions A1–A3 in Section 3.2.1.3 in this chapter, the
definition of fn, and the definition of #n in (3.27) in this chapter.

Appendix 3: Proof of Lemma 3.1

For the robust game we have GVI.A ; eF /, and eF .p/ D .eF n.p//NnD1, where eF n.p/
for user n is obtained from (3.78). Variations in CSI between transmitters and
receivers and in users’ strategies cause variations in fn for user n. When these
variations are negligible, we have kbenk D "fn D 0. The Taylor series expansion
of eF n.p/ around "fn is eF n.p/ D �eF n.p/

�
"fn D0 C �P1

iD1 1iŠ ."fn/
i.r i

fn
eF n/

�
"fn D0.

From (3.78), the Taylor series expansion is
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eF n.p/ D �
h
rpn un.pn; fn � "fn #n/

i
."fn D0/

�"fn

h
r2

pnfn
un.pn; fn � "fn #n/ � .1T

K � "fn rfn #n � 1T
K/
i
."fn D0/

�"
2
n

2

h
r3

pnf2n
un.pn; fn � "fn #n/ � .1T

K � "fn rfn #n � 1T
K/ � .1T

K � "fn rfn #n � 1T
K/

Cr2
pnfn

un.pn; fn � "fn #n/ � ."fn r2
fnfn

#n � 1T
K/
i
."fn D0/

C o.�/: (3.79)

From (3.5), and since fn D fn for "fn D 0, we rewrite (3.79) as

eF n.p/ D Fn.p/ � "fn

�r2
pnfn
vn.pn; fn/ � 1T

K

� � "2n
2

h
r3

pnf2n
vn.pn; fn/ � 1T

K

i
C o.�/:

(3.80)

For 0 < "fn � 1, the value of o.�/ is small and can be ignored.4 From Assumption
A1 in Section 3.2.1.3 in this chapter, all derivatives of vn.pn; fn/ are bounded. Hence,
the last three terms on the right-hand side of (3.80) are bounded, and eF n.p/ is the
bounded perturbed version of Fn.p/. Note that (3.80) also shows that eF n.p/ is
continuous over p for small values of "fn .

Appendix 4: Proof of Theorem 3.9

• As was shown in Lemma 3.1, when uncertainty is small, the RNE is a perturbed
solution to VI.A ;F / and can be obtained from VI.A ;F C q/. Recall that
when (3.9) is a P-matrix, F .p/ is strongly monotone, and the utility is strongly
convex (see Proof of Theorem 3.7 and Lemma 3.2). Since A is convex in R

K , and
F .p/ W K ! R

K is a continuous mapping on A , the solution to VI.A ;F C q/
is always a compact and convex set (Corollary 2.6.4 in [24]). This solution set
contains p� andep�, and we have

.ep� � p�/F .p�/ � 0; and .p� �ep�/eF .ep�/ � 0:

From the preceding expressions we get

.ep� � p�/
	
F .p�/ � eF .ep�/



� 0: (3.81)

4In general, when higher-order terms in the Taylor series expansion are ignored, the comparison
results hold in the neighborhood of the equilibrium at which Taylor series expansion is applied. Our
approximation is for small values of "fn , meaning that the robust equilibrium, which is a bounded
perturbed version of the nominal equilibrium, is in fact in its neighborhood, and higher-order terms
in the Taylor series can be ignored as they are multiplied by a higher power of "fn .
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When the utility of user n at the RNE is greater than that at the nominal NE (i.e.,

when �n.ep�
n ;ep�
n/ > vn

	
p�

n ; fn.p�
n; sn/



), we have Fn.p�/ > eF n.ep�/. When

F .p�/ > eF .ep�/, we haveep� � p�, and when "n is small, eF .ep�/ � F .ep�/.
Hence, from (3.81) we have

.ep� � p�/
	
F .ep�/ � F .p�/



� 0: (3.82)

Note that (3.82) contradicts the strong monotonicity of F .p/, and this contra-
diction implies that each user’s utility at the RNE is less than that at the nominal
NE. Consequently, the social utility (the sum rate of all users) at the RNE is less
than that at the nominal NE.

• Since A is a closed convex set and eF .p/ is continuous and strongly monotone,
there is a unique solution to VI.A ; eF .p// [24], denoted by ep� D ˚�.q/, that
can be considered the worst-case robust solution to eG for kqk2 � k"k2. Now,
both p�

n andep�
n must satisfy

0 �
	
˚�.q/ � ˚�.0/


	
F
�
˚�.0/

�

(3.83)

and

0 �
	
˚�.0/ � ˚�.q/


	
F
�
˚�.q/

�C q


; (3.84)

where 0 D .0K/
N
1 , and 0K is the K � 1 all zero vector. From (3.83) and (3.84)

we get

	
˚�.0/�˚�.q/


	
F
�
˚�.0/

��F
�
˚�.q/

�
 �
	
˚�.0/�˚�.q/



q: (3.85)

Using the Schwartz inequality for the right-hand side, we have

k.˚�.0/ � ˚�.q//qk2 � k˚�.0/ � ˚�.q/k2kqk2:

Since˚�.q/ is the co-coercive function of q (Proposition 2.3.11 in [24]), the left-
hand side of (3.85) is always greater than csmk˚�.0/�˚�.q/k22. Therefore, (3.85)
can be rewritten as

csmk˚�.0/ � ˚�.q/k22 � k˚�.0/ � ˚�.q/k2kqk2;

which is simplified to

csmk˚�.0/ � ˚�.q/k2 � kqk2:
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Recall that˚�.0/ and˚�.q/ correspond to p�
n andep�

n , respectively, and the upper
bound on q is ". Hence, csmkp�

n �ep�
n k2 � k"k2, which is the same as (3.41).

• Proof of (3.39): Since eF .p/ is a bounded perturbed version of F .p/, the
difference between the utility values of user n at the RNE and at the nominal NE
can be approximated by the first term of the Taylor series expansion of uk

n.pn; fn/,

which is equal to "fn.
@uk

n.p
k
n;f

k
n /

@"fn
/"fn D0. By some mathematical manipulations,

we get

uk
n.p

k
n; f

k
n / � vk

n.p
k
n; f

k
n / � "fn

�
@vk

n.p
k
n; f

k
n /

@pk
n

� @pk
n

@"fn

C @vk
n.p

k
n; f

k
n /

@f k
n

� @f k
n

@"fn

�
;

for all n 2 N and k 2 K , which is

uk
n.p

k
n; f

k
n / � vk

n.p
k
n; f

k
n / � "fn

0
@@vk

n.p
k
n; f

k
n /

@pk
n

� @pk
n

@"fn

C @vk
n.p

k
n; f

k
n /

@f k
n

�
X
m¤n

hk
mn
@pk

m

@"fn

1
A :

(3.86)

When "fn is sufficiently small, @pk
n

@"fn
D lim"fn !0

Qp�k
n 
p�k

n
"fn

. Now, (3.86) for all
users is

kv.p�/ � u. Qp�/k2 � kw.p�/k2 � kp� �ep�k: (3.87)

By substituting (3.41) into (3.87), the approximation (3.39) is obtained. In (3.87),
we use the first term in the Taylor series for vn to approximate kv.p�/� u. Qp�/k2.
The remainder of these differences for user n is always less than or equal to
"2fn
2Š
@2vn
@2pn

[96]. For all users, this remainder is upper bounded to kJ.F /k2k"k22
2

.

Appendix 5: Proof of Theorem 3.10

To derive the convergence condition for the proximal response approach, one needs
to show that the solution to (3.43) is a contraction mapping. For any vector z 2 A
in (3.43), we have

	
z � pPRM.b/


heF �
pPRM.b/;b

�C �
pPRM.b/ � b

�T
i

� 0; (3.88)
	

z � pPRM.b0/

heF �

pPRM.b0/;b0�C �
pPRM.b0/ � b0�T

i
� 0: (3.89)
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When z D pPRM.b0/ in (3.88), and Mz D pPRM.b/ in (3.89), we have

0 �
	

pPRM.b0/ � pPRM.b/

heF �

pPRM.b/;b
�C �

pPRM.b/ � b
�T
i

C�pPRM.b/ � pPRM.b0/
�heF �

pPRM.b0/;b0�C �
pPRM.b0/ � b0�T

i

D �
pPRM.b0/ � pPRM.b/

�heF �
pPRM.b/;b

� � eF �
pPRM.b0/;b0�i

�kpPRM.b0/ � pPRM.b/k C
	

pPRM.b0/ � pPRM.b/


.b � b0/T: (3.90)

When @3vn
@pn@2fn

D @3vn
@2pn@fn

D 0, we have

eF n D �rpn un.pn; fn C "fn#n/ � "fnrfn un.pn; fn C "fn#n/ � 1K � rpn#n � 1T
k ;

rpn
eF n D �r2

pn;pn
un C "fn � r3

pnpnfn
un;

rpm
eF n D �r2

pnpm
un C "fn � r3

@pn@2fn
un � 1T

K � hmn:

Consequently, (3.90) can be rewritten as

�
pPRM.b0/ � pPRM.b/

�h X
n2N

�r2
pnpn

un

i	
pPRM.b0/ � pPRM.b/


T

C�pPRM.b/ � pPRM.b0/
�h X

m2N ;m¤n

�r2
pnpm

un

i
.b � b0/T

�kpPRM.b0/ � pPRM.b/k C �
p.b0/ � p.b/

��
b � b0�T � 0: (3.91)

For ęn.p/ , smallest eigenvalue of�r2
pn

un.pn; fn/, ěnm.p/ , k�rpnpm un.pn; fn/k;
8n ¤ m, and z , �

�
pPRM.b/;b

�C .1 � �/�pPRM.b0/;b0�, from (3.91), we have

�
1C ęn.z/

�kpPRM.b0/ � pPRM.b/k �
NX

nD1
ě

nm.zn/kb
n � b0
nk: (3.92)

On the other hand,

�r2
pnpn

un D �rpnpn un.pn; fn � "fn#n/C "fnrfn un.pn; fn � "fn#n/ � 1K � rpn#n:

Since the utility is convex with respect to pn, we have

�rpnpn un.pn; fn � "fn#n/ > 0 and kr2
pnpn

unk � kr2
pnpn

vnk:
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In addition, r2
pnpm

un D rpnpm un.pn; fn C "fn#n/ � "fnrfn un.pn; fn � "fn#n/ � 1K �
rpn#n, which leads to

kr2
pnpm

unk � kr2
pnpm

vnk:

From the preceding expression, (3.92) is transformed into

�
1C ˛n.z/

�kpPRM.b0/ � pPRM.b/k �
NX

nD1
ˇnm.zn/kb
n � b0
nk;

which means that when (3.9) is a P-matrix, (3.44) is a contraction mapping
(Proposition 12.17 in Section 12 in [2]). Therefore, the distributed algorithm in
Table 3.4 converges to a unique RNE.

Appendix 6: Proof of (3.42)

Recall that M is strongly monotone on A if there exists a csm such that for all
p D .pn/n2N and p0 D .p0

n/n2N we have

.p � p0/
	
M .p/ � M .p0/



� csm k p � p0 k :

For dk
n D

	
pk

n � .pk
n/

0



, we write

.pn � p0
n/
	
Mn.p/ � Mn.p0/




D .pn � p0
n/
	 NX

mD1

�
Mnm.pm/

T � Mnm.p0
m/

T
�


D
KX

kD1

	
pk

n � .pk
n/

0
	 NX
mD1

Mkk
nm.p

k
n � .pk

n/
0/



�
KX

kD1
.dk

n/
2 �

NX
mD1;m¤n

j
KX

kD1
dk

m

h
k
mn

h
k
mm

dk
nj

�
KX

kD1
.dk

n/
2 �

NX
mD1;m¤n

.

KX
kD1

dk
n/
2 max

k2K

h
k
mn

h
k
mm

	 KX
kD1
.dk

m/
2

2

� kdnk2
NX

mD1
ŒMmax�nmkdmk2; (3.93)
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where dn D Œd1n � � � dk
n�

T. Hence, .p � p0/
	
M .p/ � M .p0/



� dTMmaxd for all n 2

N and dT D ŒdT
1 ; : : : ;d

T
N �. Since dTMmaxd � �min.Mmax/kdk2, the matrix Mmax

is positive semidefinite. Consequently, csm.F / D �min.Mmax/, and from (3.41)
Eq. (3.42) is derived.

Appendix 7: Performance at RSE1 and RSE2
in Single-Leader/Single-Follower Scenario (Table 3.6)

Proof of Validity of Statement in Column 1, Row 2 in Table 3.6

At RSE1, we have rp*RSE1
1

u1.p*RSE1
1 ; f*RSE1

1 / � 0, where 0 is the all zero K�1 vector,
and

�
Jp1p1r"f1

p*RSE1
1 C Jf1p1r"f1

f*RSE1
1

�
"f1D0 D 0: (3.94)

From (3.56), the value of Œr"f1
f*RSE1
1 �"f1D0 in (3.94) is equal to �#T

1 . By rearrang-
ing (3.94), we get

r"f1
p*RSE1
1 D .Jp1p1 /


1Jf1p1#
T
1 : (3.95)

From Assumptions A1–A3 in Section 3.2.1.3 in this chapter, the right-hand side
of (3.95) is negative. Hence,

r"f1
p*RSE1
1 < 0;

meaning that the follower’s strategy is a decreasing function of "f1 .

Proof of Validity of Statement in Column 1, Row 3 in Table 3.6

At RSE1, we have

rp*RSE1
0

v0.p*RSE1
0 ; f*RSE1

0 / � 0;

h
Jp0p0r"f1

p*RSE1
0 C Jf0p0H10r"f1

p*RSE1
1

i
"f1D0 D 0; (3.96)
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which is equivalent to

r"f1
p*RSE1
0 D �.Jp0p0 /


1Jf0p0H10r"f1
p*RSE1
1 : (3.97)

From Assumptions A1–A3 in Section 3.2.1.3 in this chapter, the right-hand side
of (3.97) is positive. Hence,

r"f1
p*RSE1
0 > 0;

meaning that the leader’s strategy is an increasing function of "f1 .

Proof of Validity of Statement in Column 1, Row 4 in Table 3.6

The Taylor series expansion of the leader’s utility around the uncertain parameter is

v0.p*RSE1
0 ; f*RSE1

0 / D v0.p*NSE
0 ; f*NSE

0 /

C"f1

h
.H10Jf0 /

Tr"f1
p*RSE1
1 C .Jp0 /

Tr"f1
p*RSE1
0

i
"f1D0 C o:

(3.98)

In what follows, only the first term of the Taylor series expansion is consid-
ered, and higher terms for small values of "f1 are ignored. From Assumption
A2 in Section 3.2.1.3 in this chapter, and since r"f1

p*RSE1
1 < 0, the value of

.H10Jf0 /
Tr"f1

p*RSE1
1 in (3.98) is always positive. Also, .Jp0 /

Tr"f1
p*RSE1
0 in (3.98)

has positive elements only. Hence, the leader’s utility at RSE1 is always greater
than that at the NSE, and we have

!*RSE1
0 � !*NSE

0 � "f1

h
.Jp0 /

Tr"f1
p*RSE1
0 C .H10Jf0 /

Tr"f1
p*RSE1
1

i
: (3.99)

The Taylor series expansion of the follower’s utility around "f1 is

u1.p*RSE1
1 ; f*RSE1

1 / D v1.p*NSE
1 ; f*NSE

1 /

C"f1

h
.H01Jf1 /

Tr"f1
p*RSE1
0 C .J1p1 /

Tr"f1
p*RSE1
1

i
"f1D0 C o: (3.100)

Since Jf1 < 0 and r"f1
p*RSE1
0 > 0, the value of .H01Jf1 /

Tr"f1
p*RSE1
0 in (3.100)

is always negative. Also, since rp1v1.p1; f1/ > 0 and r"f1
p*RSE1
1 < 0, the value

of .J1p1 /
Tr"f1

p*RSE1
1 in (3.100) is negative. Hence, the follower’s utility at RSE1 is

always less than that at the NSE, and we have

!*RSE1
1 � !*NSE

1 � "f1 �
h
.H01Jf1 /

Tr"f1
p*RSE1
0 C .Jp1 /

Tr"f1
p*RSE1
1

i
: (3.101)
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The social utility at RSE1 is increased when

!*RSE1
0 � !*NSE

0 C !*RSE1
1 � !*NSE

1 > 0;

which is equivalent to the sum of (3.99) and (3.101). To satisfy this, note that since
r"f1

p*RSE1
1 < 0 and r"f1

p*RSE1
0 > 0, the sum of the terms multiplied by r"f1

p*RSE1
1

should be negative and the sum of the terms multiplied by r"f1
p*RSE1
0 should be

positive. Hence, we have jJp0 j � jH01jjJf1 j > 0 and jJp1 j � jH10jjJf0 j < 0, which are
the same as C1 and C2 in Table 3.6.

Proof of Validity of Statement in Column 2, Row 2 in Table 3.6

For RSE2, the proof is similar to that for the statement in Column 1, Row 2 in
Table 3.6, which was presented at the beginning of this appendix, except that (3.95)
is changed to

rı10p
*RSE2
1 D �.Jp1p1 /


1Jf1p1rı10 f
*RSE2
1 : (3.102)

From Statement 1 in [44], the value of rı10 f
*RSE2
1 is negative, and from Assumptions

A1–A3 in Section 3.2.1.3 in this chapter, the value of �.Jp1p1 /

1Jf1p1 is always

negative. Hence, rı10p
*RSE2
1 is always positive, meaning that the follower’s action is

an increasing function of ı10.

Proof of Validity of Statement in Column 2, Row 3 in Table 3.6

We have

rı10p
*RSE2
0 D �.Jp0p0 /


1Jf0p0H10rı10p
*RSE2
1 : (3.103)

From Assumptions A1–A3 in Section 3.2.1.3 in this chapter, and (3.102), we note
that rı10p

*RSE2
0 is negative.

Proof of Validity of Statement in Column 2, Row 4 in Table 3.6

We have

!*RSE2
1 � !*NSE

1 (3.104)

� ı10 � �.Jp1 /
T.Jp1p1 /


1Jf1p1rı10 f
*RSE2
1 � .Jf1 /

Trı10 f
*RSE2
1

�
:

From Assumptions A1–A3 in Section 3.2.1.3 in this chapter and Statement 1 in [44],
we note that the right-hand side of (3.104) is positive. Hence, the follower’s utility
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at RSE2 is higher than that at the NSE. For the leader, we have similar steps, except
that (3.104) is changed to

!*RSE2
0 � !*NSE

0 � ı10 �
h
�.Jp0 /

T.Jp0p0 /

1H10Jf0p0 C .Jf0 /

TH10

i
rı10p1;

(3.105)
which, from Assumptions A1–A3 in Section 3.2.1.3 in this chapter and Statement 1
in [44], is always negative. Hence, the leader’s utility at RSE2 is less than that at the
NSE. Now we derive the conditions under which the social utility is increased (i.e.,
when C3 and C4 hold). Since rı10p

*RSE2
0 < 0, the sum of the terms multiplied by

rı10p
*RSE2
0 should be negative. Hence, the sum of the second term on the right-hand

side of (3.104), which is

.Jf1 /
Trı10 f

*RSE2
1 D .Jf1 /

TH01rı10p
*RSE2
0 ;

and the first term on the right-hand side of (3.105), which is

�.Jp0 /
T.Jp0p0 /


1H01Jf0p0 D �.Jp0 /
Trı10p

*RSE2
0 ;

should be negative, that is, jJp0 j � jJf1 jjH10j < 0. Also, since rı10p
*RSE2
1 > 0, the

sum of the terms multiplied by rı10p
*RSE2
1 should be positive. Hence, the first term

on the right-hand side of (3.104) simplifies to ı10Jp1rı10p
*RSE2
1 and the second term

on the right-hand side of (3.105), that is, ı10.Jf0 /
TH10rı10p1, should be positive, that

is, jJp1 j � jJf0 jjH10j > 0. Note that these two conditions are equivalent to C3 and
C4.

Appendix 8: Performance at RSE1 and RSE2
in Single-Leader/Multi-Follower Scenario (Table 3.7)

Proof of Validity of Statement in Column 1, Row 2 in Table 3.7

Lemma 3.3. When ‡ is a P-matrix, and uncertainty is small, the followers’
strategies are decreasing functions of " D Œ"f1 ; : : : ; "fNF

�.

Proof. Let PNF , Œp1; : : : ;pNF �, and assume that PNF is an increasing
function of ", that is, P*RSE1

NF
� P*NSE

NF
. When ‡ is a P-matrix, J .PNF/ ,

.JpnF
.p//NF

nFD1 is strongly monotone (Theorem 12.5 in [2]), and

J .p*RSE1
NF

/ � J .p*NSE
NF

/: (3.106)

(continued)
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Lemma 3.3 (continued)
On the other hand, using (3.27), we have

@uk
nF
.pk

nF
; f k

nF
/

@pk
nF

D @vk
nF
.pk

nF
; f k�

nF
/

@pk
nF

C @vk
nF
.pk

n; f
k�
nF
/

@f k�
nF

� @f k�
nF

@pk
nF

;

@f k�
nF

@pk
nF

D @f k�
nF

@#k
nF

� @#k
nF

@pk
nF

D �"fnF
� @2vk

n.pnF ; f
�
nF
/

@pk
nF
@f k

nF

� 1rPK
kD1.

@uk
nF
.pnF ;f

�
nF
/

@f k
nF

/2
:

(3.107)
Note that

epk
nF

D �"fnF
�@v

k
nF
.pnF ; f

�
nF
/

@f k�
nF

�@
2vk

nF
.pnF ; f

�
nF
/

@pk
nF
@f k�

nF

� 1rPK
kD1.

@uk
nF
.pnF ;f

�
nF
/

@f k�
nF

/2

ˇ̌̌
ˇ̌
pnF DpNSE

nF

is negative from Assumptions A1–A3 in Section 3.2.1.3 in this chapter. We
rewrite (3.107) as

J .p*RSE1
NF

/ � J .p*NSE
NF

/ Dep < 0;

where ep D .epnF/
NF
nFD1, epT

nF
D Œep1nF

; : : : ;epK
nF
�, and 0 is the zero vector

with the same size as ep. Note that this contradicts (3.106) and implies that
our assumption was wrong. Hence, the followers’ strategies at RSE1 are
decreasing functions of "fnF

.

Proof of Validity of Statement in Column 1, Row 3 in Table 3.7

From the preceding Lemma 3.3, since the followers’ strategies are decreasing
functions of "fnF

, their interference f0 on the leader is reduced when "fnF
is increased,

which implies !*RSE1
0 � !*NSE

0 from Assumption A2 in Section 3.2.1.3 in this
chapter and the Taylor series expansion of !RSE1

0 around "fnF
, which is

!*RSE1
0 D !*NSE

0 C "fnF
�
2
4.r"fnF

p0/TJp0 C
NFX

nFD1
HnF0Jf0 .r"fnF

pnF/
T

3
5C o:

(3.108)
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Proof of Validity of Statement in Column 1, Row 4 in Table 3.7

The game between the followers in the multi-follower RSG in Section 3.3.3 is the
same as the robust game in Section 3.1. From Theorem 3.7 in this chapter, when 	 is
a P-matrix and uncertainty is small, the followers’ social utility at RSE1, denoted by
!*RSE1

nF
, is less than that at the NSE, denoted by !*NSE

nF
. The Taylor series expansion

of the utility of follower nF around "fnF
is

!*RSE1
nF

D !*NSE
nF

C "fnF
�
"
.JfnF

/THnF0r"fnF
p0

C.JfnF
/T

0
@ NFX

nFD1;mF¤nF

HmFnFr"fnF
pmF

1
AC .Jn

pn
/Tr"fnF

pnF

#
C o;

(3.109)

where r"fnF
p0 is a K � 1 vector whose kth element is

P
n2NF

@pk
0

@"fnF
.

Proof of Validity of Statement in Column 1, Row 5 in Table 3.7

When the sum of the second terms in (3.108) and (3.109) for all the followers
is positive, the social utility at RSE1 is higher than that at the NSE. Note that
the terms multiplied by r"fnF

p0 should be positive because r"fnF
p0 > 0. Also,

since r"fnF
pnF < 0, the terms multiplied by r"fnF

pnF should be negative. By some
rearrangements, it can easily be shown that the terms multiplied by r"fnF

p0 are
positive when C5 holds, and the terms multiplied by r"fnF

pnF are negative when C6
holds.

Proof of Validity of Statement in Column 2, Row 2 in Table 3.7

Lemma 3.4. When 	 is a P-matrix and uncertainty is small, the followers’
strategies are increasing functions of ı0 , Œı10; : : : ; ıNF0�.

Proof. The proof is similar to that of Lemma 3.3, except that here we assume
that the followers’ strategies are decreasing functions of ı0 and demonstrate
that this assumption contradicts Assumptions A1–A3 in Section 3.2.1.3 in this
chapter and Statement 1 in [44].
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Proof of Validity of Statement in Column 2, Row 3 in Table 3.7

For this case, we have

rınF0
p*RSE2
0 D �.Jp0p0 /


1Jf0p0HnF0rınF0
p*RSE2

nF
: (3.110)

From Assumptions A1–A3 in Section 3.2.1.3 in this chapter and Lemma 3.4, we
note that rınF0

p*RSE2
0 is negative, that is, the leader’s strategy is a decreasing function

of ınF0 for all nF 2 NF. From (3.110) and Lemma 3.4, the leader’s utility in RSE2
is less than that at NSE.

Proof of Validity of Statement in Column 2, Row 4 in Table 3.7

From (3.110) and Lemma 3.4, the followers’ social utility in RSE2 is greater than
that at NSE.

Proof of Validity of Statement in Column 2, Row 5 in Table 3.7

The Taylor series expansion of the utility of the leader, that is, !*RSE2
0 , around ınF0 is

!*RSE2
0 D !*NSE

0 C ınF0 �
2
4 X

nF2NF

.Jf0 /
THnF0rınF0

pnF C .Jp0 /
TrınF0

p0

3
5C o:

(3.111)
Also, the Taylor series expansion of !*RSE2

nF
around ınF0 is

!*RSE2
nF

D !*NSE
nF

C ınF0 �
"
.JfnF

/TH0nFrınF0
p0

C.JfnF
/T

0
@ X

mF¤nF;mF2NF

HmFnFrınF0
pmF

1
AC .JpnF

/TrınF0
pnF

#
C o:

(3.112)

When the sum of the second terms in (3.111) and (3.112) for all the followers is
positive, the social utility at RSE2 is higher than that at the NSE. Since rınF0

p0 < 0
and rınF0

pnF > 0, the terms multiplied by rı0p0 should be negative, and the terms
multiplied by rınF0

pnF should be positive. By some rearrangements, it can easily be
shown that the corresponding statement in Table 3.7 is valid when C7 and C8 in
Table 3.7 hold.
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Chapter 4
Nonconvex Robust Problems

This chapter gives an overview of relaxation methods for solving nonconvex
and intractable robust optimization problems for allocating resources in wireless
networks. We begin by presenting a taxonomy of relaxation methods that have been
widely used in this context and continue by giving several examples to demonstrate
how such methods are utilized in practice.

4.1 Introduction

The nominal optimization problems in Chapters 2 and 3 either are convex or can
be converted into convex problems. However, their robust counterparts may be
nonconvex and nondeterministic polynomial-time (NP)–hard due to uncertainty in
parameter values and new constraints. In Chapters 2 and 3 we showed that when
uncertainty is confined to a small region, robust problems may become tractable
and their computational complexity can be manageable. However, many emerging
resource allocation problems in future wireless networks are inherently nonconvex
and NP-hard, and their robust counterparts are significantly more complicated.
This means that there is a need to present efficient techniques for converting such
problems into more tractable formulations.

In this chapter, our focus is on relaxation methods that have been widely applied
for such reformulations. Relaxation methods provide approximations of the original
nonconvex and NP-hard optimization problem, where such approximations are
easier to solve. Specifically, such methods entail replacing certain constraints with
more conservative (i.e., safe1) ones with reduced complexity, where the solution to
the modified problem is near the solution to the original nonconvex and NP-hard
problem.

1In a safe approximation for a constraint, a feasible solution to the problem with approximated
constraints is also a feasible solution to the original problem.
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We begin this chapter by presenting a taxonomy of relaxation methods that
have been widely used for solving nonconvex and intractable robust optimization
problems for allocating resources in wireless networks and proceed to give several
examples demonstrating how such methods are utilized in practice. The examples
are so chosen to include hot topics in future wireless networks, namely, beam-
forming, cooperative relaying, cognitive radio networks (CRNs), and physical-layer
secure communications. The methods in this chapter may not lead to globally
optimal points but in general include very efficient and tractable algorithms for
reaching locally optimal or near globally optimal solutions.

Using relaxation methods, NP-hard problems can be efficiently solved in poly-
nomial time, and bounds on the optimal value can be obtained. Relaxation methods
can be categorized into the following two general classes:

• Direct relaxation, where each nonconvex objective or constraint is replaced by a
looser or equivalent tractable convex counterpart

• Lagrangian relaxation, in which the Lagrangian dual of a nonconvex problem is
solved to obtain a lower bound on the optimal solution of the nonconvex problem

4.2 Taxonomy of Relaxation Methods

Consider the following optimization problem whose constraints are in the form of
both equalities and inequalities [1]:

min
x

f0.x/; (4.1a)

subject to

(
fy.x/ D 0; 8y D 1; : : : ;Y;

fz.x/ � 0; 8z D 1; : : : ;Z:

(4.1b)

(4.1c)

The objective is to obtain the vector x that minimizes f0.x/ while satisfying (4.1b)
and (4.1c). In the preceding problem:2

• x 2 R
n is the optimization variable, for example, transmit power, channel

number, relay number, beamforming vector, or antenna number;
• f0 W Rn �! R is the objective function, for example, energy efficiency, fairness

criteria, signal-to-interference-plus-noise ratio (SINR) outage probability, rate
outage probability, transmit power, or interference power;

• fy.x/ D 0, y D 1; : : : ;Y are the equality constraints, for example, channel
allocation in orthogonal frequency division multiple access (OFDMA)–based
systems that guarantees each channel is exclusively allocated to at most one link
or a zero forcing constraint for nulling the interference at the receiver, where
fy W Rn �! R are the equality constraint functions; and fz.x/ � 0, z D 1; : : : ;Z

2In this chapter, a vector x is assumed to be in the column space and its transpose xT in the row
space.



4.2 Taxonomy of Relaxation Methods 147

are inequality constraints, for example, transmit power, rate or SINR outage
probability, or interference power, where fz W R

n �! R are the inequality
constraint functions.

The optimization problem is convex when all of the following conditions hold:

• Objective function (4.1a) and inequality constraint functions (4.1b) are convex.
• Equality constraint functions (4.1c) are affine.
• The set of points for which the objective and constraint functions are defined,

that is, the domain of the optimization problem is convex.

When problem (4.1) is nonconvex and intractable or involves a mix of integer and
continuous variables, the following relaxation methods may be deployed to convert
it into a tractable optimization problem.

1. Direct relaxation methods:

• Epigraph form (EF)
• Charnes–Cooper transformation (CCT)
• Schur complement (SC)
• S-procedure (SP)
• Bounding techniques (BTs):

– Norm bounding:

� Triangle inequality (TI)
� Cauchy–Schwarz inequality
� Norm approximation (NA)

– Probabilistic bounding:

� Markov’s inequality (MI)
� Bernstein approximation (BA)
� Vysochanskii–Petunin inequality (VPI)
� Conditional-value at risk (CVaR)
� Difference of two convex approximations (DCA)
� Large deviation inequality for complex Gaussian quadratic forms (LDI-

CGQF)
� Bernstein-type inequality for complex Gaussian quadratic forms (BTI-

CGQF)

– Trace bounding:

� Determinant inequality (DI)
� Von Neumann trace inequality (VNTI)
� Trace of two matrices inequality (TTMI)

– Taylor bounding (TB)

• Semidefinite relaxation (SDR)
• Nonlinear fractional programming (NLFP)
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• DC programming (DCP) and successive convex approximation (SCA)
• Sequential parametric convex approximation (SPCA)

2. Lagrangian relaxation (LR):

• Duality
• Time sharing

In the sequel, we briefly discuss these methods.

4.2.1 Direct Relaxation

4.2.1.1 Epigraph Form

In some cases, the intractability of optimization problem (4.1) comes from its
objective function, as in the following example:

min
x

max
kD1;:::;K gk.x/; (4.2a)

subject to

(
fy.x/ D 0; 8y D 1; : : : ;Y;

fz.x/ � 0; 8z D 1; : : : ;Z;

(4.2b)

(4.2c)

where gk W Rn �! R; 8k D 1; : : : ;K, is convex.
In this case, the optimization problem’s EF can be used to linearize the objective

function. When the objective function is linear, simple algorithms can be developed
to solve the reformulated optimization problem. The EF of problem (4.1) is [1]

min
x

t; (4.3a)

subject to

8̂̂
<
ˆ̂:

f0.x/ � t;

fy.x/ D 0; 8y D 1; : : : ;Y;

fz.x/ � 0; 8z D 1; : : : ;Z:

(4.3b)

(4.3c)

(4.3d)

Using the EF, problem (4.2) can be reformulated into a convex and tractable
problem as

min
x

t; (4.4a)

subject to

8̂̂
<
ˆ̂:

gk.x/ � t; 8k D 1; : : : ;K;

fy.x/ D 0; 8y D 1; : : : ;Y;

fz.x/ � 0; 8z D 1; : : : ;Z:

(4.4b)

(4.4c)

(4.4d)
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The EF can be used in many resource allocation problems in communication
systems, for example, (1) to guarantee fairness among users via the maxi-min
objective function or (2) to maximize the secrecy rate in a network with multiple
eavesdroppers.

4.2.1.2 Charnes–Cooper Transformation

When the nonconvex optimization problem is a fractional linear programming
problem, that is,

max
x�0

cT
1x C r1

cT
2x C r2

; (4.5a)

subject to

(
Ax  b;

Gx D h;

(4.5b)

(4.5c)

where A 2 R
m�n, G 2 R

u�n, b 2 R
m, h 2 R

u, x; ci 2 R
n, and ri 2 R;8i D 1; 2,

problem (4.5) can be converted into a linear programming optimization problem
using the CCT [2], in which

x D y
t
: (4.6)

When y � 0 and t > 0, problem (4.5) can be reformulated into the following linear
programming optimization problem:

max
y�0; t>0

cT
1y C r1t; (4.7a)

subject to

8̂̂
<
ˆ̂:

Ay � bt  0;

cT
2y C r2t D 1;

Gy � ht D 0:

(4.7b)

(4.7c)

(4.7d)

4.2.1.3 Schur Complement

When the objective function or the constraints in the optimization problem are
quadratic, one can utilize the SC to convert them into linear ones and use semi
definite programming (SDP) to solve the modified problem. For example, consider
the following nonconvex optimization problem

max
x�0

�zTB-1z C r; (4.8a)

subject to

(
B � 0;

x � 0;

(4.8b)

(4.8c)
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where r 2 R, x 2 R
n, yi 2 R

n, z D
mP

iD1
xiyi, B D

mP
iD1

xiFi, and Fi; 8i D 1; : : : ;m,

is an n � n symmetric and invertible matrix. Next, consider the matrix X 2 S
n

partitioned as

X D
�

A B
BT C

�
; (4.9)

where A 2 R
u�u, B 2 R

u�w, C 2 R
w�w, and n D u C w. The SCs in what follows

have been defined depending on whether A, C, and X are positive definite or positive
semidefinite.

Schur complement of A in X: Let S be the SC of A in X in (4.9), defined as

S D C � BTA
1B; (4.10)

and assume det.A/ ¤ 0. We have [1, 3]:

• X � 0 if and only if A � 0 and S � 0.
• If A � 0, then X � 0 if and only if S � 0.

Schur complement of C in X: Let D be the SC of C in X in (4.9),
defined as

D D A � BC
1BT; (4.11)

and assume det.C/ ¤ 0. We have [1, 3]:

• X � 0 if and only if C � 0 and A � BC
1BT � 0.
• If C � 0, then X � 0 if and only if A � BC
1BT � 0.

Generalized SC: When the generalized inverses of A and C are available
(any matrix Ag that satisfies AAgA D A is called a generalized inverse
of A), the following conditions, called the generalized SC, are sufficient and
necessary for X to be positive semidefinite: [4]

• X � 0 if and only if A � 0, C � BTAgB � 0 and .I � AAg/B D 0.
• X � 0 if and only if C � 0; A � BCgBT � 0 and .I � CCg/BT D 0.
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Using the preceding expressions and the EF in Section 4.2.1.1 in this chapter,
optimization problem (4.8) is reformulated as

max
x�0

t; (4.12a)

subject to

8̂̂
<
ˆ̂:

B � 0;

x � 0;

� zTB-1z C r � t:

(4.12b)

(4.12c)

(4.12d)

Using the SC, problem (4.12) is rewritten as the following SDP problem:

max
x�0

t; (4.13a)

subject to

8̂<
:̂

�
B z
zT r � t

�
� 0;

x � 0:

(4.13b)

(4.13c)

4.2.1.4 S-Procedure

When some constraints in the robust optimization of a quadratic programming
problem are semi-infinite and intractable, the SP can be used to replace such
constraints with linear matrix inequalities (LMIs) [1, 5–8]. This method can also be
used to verify the nonnegativity of a quadratic function under quadratic constraints.
When a constraint in an optimization problem has a single quadratic function, it is
referred to as an S-lemma, and when there are at least two quadratic inequalities in
the constraint set, the term S-procedure is used. Note that SP is the generalization of
S-lemma [9, 10]. As an example, consider the following quadratically constrained
quadratic program (QCQP) problem with a single constraint:

min
x

f2.x/; (4.14a)

subject to f1.x/ � 0; (4.14b)

where fi W Rn �! R; for i D 1; 2, are quadratic functions defined as

fi.x/ D xTAix C 2qT
i x C ci; for i D 1; 2: (4.15)
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Note that the preceding problem is convex when A1  0 and A2 � 0. When the
problem is nonconvex, we use Theorem 4.1 in what follows (also known as S-
lemma) to rewrite it as an SDP.

Theorem 4.1 (S-Lemma). Let A and B be symmetric n � n matrices, and
assume xTAx > 0. We have

xTAx � 0 H) xTBx � 0

if and only if

9� > 0; B � �A:

Theorem 4.2 below is another form of S-lemma when the quadratic function is
complex.

Theorem 4.2. Let fi.x/ D xHAix C 2RefqH
i xg C ci; for i D 1; 2, where

Ai 2 H
n, qi 2 C

n, ci 2 R, and there exists a point Ox such that f1.Ox/ < 0. We
have

f1.x/ � 0 H) f2.x/ � 0

if and only if

9� > 0; �

�
A1 q1
qH
1 c1

�
�
�

A2 q2
qH
2 c2

�
� 0:

When the optimization problem has at least two quadratic inequalities in its
constraint set, the following theorem can be used.

Theorem 4.3 (S-Procedure). In a linear vector space V for x, let fi.x/ D
xTAix C 2qT

i x C ci; 8i D 0; 1; : : : ;N, where fi W V H) R; 8i D 1; : : : ;N.
We have

C1 W 8x 2 V ; fi.x/ � 0; 8i D 1; : : : ;N H) f0.x/ � 0;

(continued)
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Theorem 4.3 (continued)

if and only if

C2 W 9�i > 0; 8i D 1; : : : ;N; f0.x/ �
NX

iD1
�ifi.x/ � 0; 8x 2 V :

The preceding condition can also be written in matrix form:

9�i > 0;

�
A0 q0
qH
0 c0

�
C

NX
iD1

�i

�
Ai qi

qH
i ci

�
� 0:

In brief, C1 holds if and only if C2 holds.

With the introduction of a new variable t, problem (4.14) can be rewritten as

max
x

t; (4.16a)

subject to f1.x/ � 0 H) f2.x/ � t: (4.16b)

Using S-lemma, the optimization problem (4.16) can be reformulated as

max
�; x

t; (4.17a)

subject to

(
f2.x/ � t � �f1.x/; 8x;

� � 0:

(4.17b)

(4.17c)

By using f1.x/ and f2.x/ in Theorem 4.3, problem (4.17) is rewritten as

max
�; x

t; (4.18a)

subject to

(
xTA2x C 2qT

2x C c2 � t � �
�
xTA1x C 2qT

1x C c1
�
; 8x;

� � 0:

(4.18b)

(4.18c)

The preceding problem can be written in matrix form,

max
�	0; x

t; (4.19a)

subject to yT

�
A2 � �A1

1
2
.q2 � �q1/

1
2
.qT
2 � �qT

1 / c2 � t � �c1

�
y � 0; 8x; (4.19b)
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where y D Œx 1�T. A symmetric n�n real-valued matrix B is positive semidefinite if
the scalar xTBx is nonnegative for every nonzero column vector x of n real numbers.
In other words, when B � 0, we have xTBx � 0. Using the preceding explanation,
problem (4.19) is equivalent to

max
�	0 t; (4.20a)

subject to

�
A2 � �A1

1
2
.q2 � �q1/

1
2
.qT
2 � �qT

1 / c2 � t � �c1

�
� 0: (4.20b)

4.2.1.5 Semidefinite Relaxation

In some cases, the robust resource allocation problem can be stated by a QCQP as

min
x

xTA0x C qT
0x C r0; (4.21a)

subject to xTAix C qT
i x C ri � 0; 8i D 1; : : : ;m; (4.21b)

where x 2 R
n, Ai 2 S

n, qi 2 R
n, and ri 2 R. Problem (4.21) is nonconvex when

at least one Ai is not positive semidefinite. A direct relaxation technique called
semidefinite programming relaxation (SDR) [1, 11, 12] is used to relax the NP-hard
problem (4.21) into a problem that can be solved in polynomial time.

SDP is an optimization problem where a linear function is minimized subject to
a constraint that involves an affine combination of symmetric matrices, stated by
[1, 13, 14]

min
x

cTx; (4.22a)

subject to

(
x1F1 C � � � C xnFn C G  0;

Ax D b;

(4.22b)

(4.22c)

where G;F1; : : : ;Fn 2 S
k, x; c 2 R

n, b 2 R
w, and A 2 R

w�n. Inequality
constraint (4.22b) is an LMI. An SDP can be solved by the efficient interior-point
method via some available tools such as CVX [15] and SeDuMi [16]. Prior to the
introduction of SDR, QCQPs were solved by exhaustive search, which has a non-
polynomial-time computational complexity.
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Procedure for Converting QCQP into SDP

Step 1: Use X D xxT to linearize problem (4.21). This implies that
rank (X) = 1 and xTAix D tr.xTAix/ D tr.AixxT/ D tr.AiX/. Now,
problem (4.21) can be rewritten as

min
x;X

tr.A0X/C qT
0x C r0; (4.23a)

subject to

(
tr.AiX/C qT

i x C ri � 0; 8i D 1; : : : ;m;

X D xxT:

(4.23b)

(4.23c)

Step 2: Constraint (4.23c) is nonconvex but can be relaxed by replacing it
with a looser positive semidefinite constraint X � xxT � 0. In this way, the
relaxed problem is the following SDP:

min
x;X

tr.A0X/C qT
0x C r0; (4.24a)

subject to

(
tr.AiX/C qT

i x C ri � 0; 8i D 1; : : : ;m;

X � xxT � 0:

(4.24b)

(4.24c)

Step 3: Use the SC [1, 3], explained in Section 4.2.1.3 in this chapter,
to convert (4.24c) into its convex approximation. Now, (4.24) can be
rewritten as

min
x;X

tr.A0X/C qT
0x C r0; (4.25a)

subject to

8̂̂
<
ˆ̂:

tr.AiX/C qT
i x C ri � 0; 8i D 1; : : : ;m;

�
X x
xT 1

�
� 0:

(4.25b)

(4.25c)

Problem (4.25) is the SDP relaxation of the original nonconvex prob-
lem (4.21). The optimal solution of the relaxed problem is the lower bound on
the optimal solution of the original nonconvex QCQP.

A simpler relaxed problem can be obtained when the objective function and the
constraints of the original problem (4.21) are homogeneous, that is, there are no
linear terms qT

i x. We use X D xxT to linearize the homogeneous QCQP
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min
x;X

tr.A0X/C r0; (4.26a)

subject to

(
tr.AiX/C ri � 0; 8i D 1; : : : ;m;

X D xxT:

(4.26b)

(4.26c)

Constraint (4.26c) implies X � 0 and rank (X) D 1. Hence, this constraint is
equivalent to X � 0 and rank (X) = 1. Now, problem (4.26) is rewritten

min
X

tr.A0X/C r0; (4.27a)

subject to

8̂̂
<
ˆ̂:

tr.AiX/C ri � 0; 8i D 1; : : : ;m;

X � 0;

rank.X/ D 1:

(4.27b)

(4.27c)

(4.27d)

Note that nonhomogeneous quadratic functions with linear terms as in (4.21)
can be “homogenized” by introducing an additional variable t and an additional
constraint t2 D 1. The nonhomogeneous QCQP (4.21) can be rewritten as the
following homogeneous QCQP:

min
x;t

1

2
ŒxT t�

�
2A0 q0
qT
0 0

�
Œx t�T C r0; (4.28a)

subject to

8̂<
:̂
1

2
ŒxT t�

�
2Ai qi

qT
i 0

�
Œx t�T C ri � 0; 8i D 1; : : : ;m;

t2 D 1:

(4.28b)

(4.28c)

Note that the rank constraint (4.27d) is the only nonconvex constraint in
problem (4.27), which can be relaxed. The approximate problem in SDP form is

min
X

tr.A0X/C r0; (4.29a)

subject to

(
tr.AiX/C ri � 0; 8i D 1; : : : ;m;

X � 0:

(4.29b)

(4.29c)

A positive semidefinite matrix X� is obtained using the SDR method, which
can be used to obtain a feasible and near-optimal solution for the nonconvex
QCQP. Note that the rank of the solution to problem (4.29), denoted by X�, is not
necessarily equal to 1, and the following Gaussian sampling method is generally
used to extract a feasible point. The interested reader is referred to [11, 12] for more
details.
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Gaussian Randomization Procedure:

Step 1: Choose a feasible solution X� for the relaxed homogeneous QCQP,
and the number of samples L.

Step 2: For l D 1; : : : ;L, generate zl � N.0I X�/ for the homogeneous QCQP.
Step 3: Determine l� in arg minlfzT

l A0zl C r0g for the homogeneous QCQP.
Step 4: Output x D zl� for the homogeneous QCQP.

The obtained solutions may not be feasible for the original optimization problem.
In such cases, they can be turned into feasible solutions by rescaling [11, 12]. For
example, in the homogeneous optimization problem when r0 is �1, the following
rescaling can be used:

al D zl

maxiD1;:::;m
q

zT
l Aizl

: (4.30)

The aforementioned procedure for converting real-valued QCQP into SDP form
are also applicable for both complex-valued QCQP and separable QCQP. Consider
the following complex-valued homogeneous QCQP:

min
x

xTA0x C r0; (4.31a)

subject to xTAix C ri � 0; 8i D 1; : : : ;m; (4.31b)

where x 2 C
n, Ai 2 H

n, and ri 2 C; 8i D 0; 1; : : : ;m. Similar to the real-valued
case, the corresponding relaxed problem is

min
X2Hn

tr.A0X/C r0; (4.32a)

subject to

(
tr.AiX/C ri � 0; 8i D 1; : : : ;m;

X � 0;

(4.32b)

(4.32c)

where X D xxH.
The separable homogeneous QCQP is

min
x1;:::;xk2Cn

kX
iD1

xT
i A0ixi C r0; (4.33a)

subject to
kX

lD1
xTAilx C ri � 0; 8i D 1; : : : ;m: (4.33b)
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Following the same line of argument as the real-valued case, the corresponding
complex-valued relaxed problem is

min
X1;:::;Xk2Hn

kX
iD1

tr.A0iXi/C r0; (4.34a)

subject to

8̂̂
<
ˆ̂:

kX
lD1

tr.AilXl/C ri � 0; 8i D 1; : : : ;m;

Xi � 0; 8i D 1; : : : ; k;

(4.34b)

(4.34c)

where Xi D xixH
i ; 8i D 1; : : : ; k.

The tightness of the SDR solution is an important issue and is evaluated by the
rank of the solution matrix. If the algorithm for solving the relaxed SDP form
satisfies the rank constraint, the solution of the relaxed problem is also optimal
for the original problem. In [17–19], the authors prove that the rank of the matrix
solution of an SDP with an n � n matrix variable and m linear constraints is
less than or equal to b

p
8mC1
1
2

c. For example, when m � 2, the rank of the
solution is 1, which implies that the relaxed SDP is equivalent to the original real-
valued homogeneous QCQP. Hence, for a real-valued homogeneous QCQP with two
constraints, the solution of the SDR is tight3 and equivalent. In addition, in [11], the
authors show that the rank of the solution of the complex-valued QCQP is less than
or equal to

p
m. For complex-valued separable QCQP, the condition on the rank is

kX
iD1

rank.X�
i /
2 � m; (4.35)

and for real-valued separable QCQP problems, the condition on the rank is

kX
iD1

rank.X�
i /
�
rank.X�

i /C 1
�

2
� m: (4.36)

To verify the tightness of solutions of the SDR for various QCQPs, direct
methods that rely on rank 1 decomposition methods are used [20, 21]. However,
such methods can be used when the number of constraints in the QCQP is not too
high [12]. For example, the solution to the SDR form is optimal for the complex-
valued homogeneous QCQP when the number of constraints is at most three, and
the solution is tight when the number of constraints does not exceed four [21].

3When the approximate function or problem is close to its original counterpart, it is called a tight
approximation.
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4.2.1.6 Bounding Techniques

In robust optimization problems, the existence of error terms (uncertainty) in the
objective function and in the constraints makes the problem intractable. A widely
used technique for approximating intractable nonconvex optimization problems is
to replace nonconvex functions with their tight and safe convex approximations.
Depending on the problem, the lower or upper bounds can be used in such
replacements, and the approach is called bounding technique (BT) [22–24]. When
the bounds in the BT are not tight enough, this relaxation approach is a conservative
one, that is, in utility maximization problems, the objective function will be
guaranteed to be no less than the worst-case optimum [5, 22, 23]. In the sequel,
we briefly review some of the more well-known BTs.

Norm Bounding In some intractable and NP-hard nonconvex optimization prob-
lems, the objective function or the constraints include norm functions, which makes
the problem difficult to solve. As an example, consider the following intractable
nonconvex optimization problem:

max
x

kxk2; (4.37a)

subject to

8̂̂
<
ˆ̂:

min
kyik<"1

jxH.ai C yi/j2 � c1; 8i D 1; : : : ;N;

max
kzkk<"2

jxH.bk C zk/j2 � c2; 8k D 1; : : : ;K;

(4.37b)

(4.37c)

where x; yi; ai, bk, and zk are the M � 1 complex vectors, and c1; c2; "1; "2 are

real nonnegative numbers. The Euclidean norm of x, denoted by kxk, is

s
MP

iD1
x2i .

Fortunately, efficient approximate solutions to such problems can be obtained via
the following three norm BTs.

(1) Triangle Inequality: When a nonconvex problem includes the norm of
the sum of two independent variables kx C yk, it can be replaced by kx k
Cky k, justified by the following inequality [called the triangle inequality
(TI)] [25]:

kx C yk � kx k Cky k : (4.38)

(2) Cauchy–Schwartz Inequality: When a nonconvex problem includes
kxˇyk, it can be replaced by kxkkyk, justified by the following inequality
[called the Cauchy–Schwarz inequality] [25]:

(continued)
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kx ˇ yk � kxkkyk: (4.39)

(3) Norm Approximation: When a nonconvex problem includes kxku, one
can use the following two lw-norm inequalities [26]:

• For 1 � w < 1 H) kxku � kxkw;
• For w D 1 H) kxku � p

Nkxk1 D maxifxig,

where x D Œx1; : : : ; xN �, u;w 2 RCC and u � w. The lw-norm of vector

x for w D 1, 1 < w < 1, and w D 1 are jxj, � NP
iD1

xw
i

� 1
w , and maxi xi,

respectively.

To simplify (4.37), constraints (4.37b) and (4.37c) are modified using the
aforementioned norm BTs. From the TI it follows that

jxH.bk C zk/j � jxHbkj C jxHzkj: (4.40)

Applying kzkk < "2 and Cauchy–Schwarz inequality, we get

jxHzkj � kxkkzkk � "2kxk: (4.41)

Substituting (4.40) and (4.41) into the left-hand side of (4.37c), we get

max
kzkk<"2

jxH.bk C zk/j2 � .jxHbkj C "2kxk/2: (4.42)

Now, expanding the right-hand side of (4.42) and applying Cauchy–Schwarz
inequality, we get

.jxHbkj C "2kxk/2 D jxHbkj2 C "22kxk2 C 2"2kxkjxHbkj; (4.43a)

� jxHbkj2 C "22kxk2 C 2"2kxk2kbkk; (4.43b)

D jxHbkj2 C "2."2 C 2kbkk/kxk2; (4.43c)

D xH OBkx; (4.43d)

where OBk D bkbH
k C "2

�
"2 C 2

q
bH

k bk

�
I.

Following the same line of argument as with constraint (4.37c), the left-hand side
of constraint (4.37b) is lower bounded,

min
kyik<"1

jxH.ai C yi/j2 � xH OAix; (4.44a)

where OAi D akaH
k C"1

�
"1�2

q
aH

k ak

�
I. Note that it is assumed that jxHaij � jxHyij.
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We use the preceding expressions to reformulate the original problem (4.37) as

max
x

kxk2; (4.45a)

subject to

8<
:

xH OAix � c1; 8i D 1; : : : ;N;

xH OBkx � c2; 8k D 1; : : : ;K:

(4.45b)

(4.45c)

Note that the matrices OBk are always positive definite, but the positive definiteness
of the matrices OAi depends on the value of "1. It can be easily seen that prob-
lem (4.45) is a nonconvex QCQP problem. In Section 4.2.1.5, we showed how to
obtain an approximate solution for this problem using SDR.

Probabilistic Bounding The main challenge in robust resource allocation with
outage-based quality-of-service (QoS) constraints is the lack of closed-form expres-
sions for the corresponding probability constraints. In general, such problems may
be intractable and nonconvex, and obtaining their optimal solutions may be difficult
[27–29]. In other words, solving the probabilistically robust optimization problems
consisting of outage constraints involving the data rate, SINR, and interference
power levels is not straightforward. To reduce the computational complexity of
solving such problems, probabilistic BTs can be utilized, where the original
intractable probabilistic constraints are replaced by their conservative and tractable
approximations that may be either deterministic or statistical.

As an example, consider the following intractable and NP-hard probabilistic
nonconvex optimization problem:

min
X1;:::;XK2HN

KX
iD1

tr.Xi/; (4.46a)

subject to

8̂̂
ˆ̂̂<
ˆ̂̂̂̂
:

Pr

�
aH

i Xiai

ri C
KP

kD1;k¤i
aH

i Xkai

� ci

�
� �i; 8i D 1; : : : ;K;

X1; : : : ;XK � 0;

(4.46b)

(4.46c)

where ai 2 CN is a random variable and ci 2 RC and �i 2 Œ0 1�. As can be seen,
the main challenge for solving this problem comes from the rate outage probability
constraints in (4.46b), which do not admit simple closed-form expressions.

(1) Markov’s Inequality: The probabilistic constraints or objective function that
make the optimization problem intractable can be transformed into a statisti-
cally averaged optimization problem using MI. Also, when the distribution of
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random variables in constraints or objective function are unknown and only the
first two moments are available, this BT can be used to solve such problems
[30, 31].

Markov’s Inequality: For a nonnegative random variable X W ˝ �! R,
where X.s/;8s 2 ˝, and for any positive real number a > 0, we have

PrfX � ag � EfXg
a

: (4.47)

As an example, consider the following nonconvex and intractable probabilistic
optimization problem:

min
X

tr.XXH/; (4.48a)

subject to sup
vec.Y/�A.0;˙/

PrfkA.B C Y/X � Dk2F � "g � �; (4.48b)

where A 2 C
L�M , B 2 C

M�N , and X 2 C
N�L are deterministic matrices and Y 2

C
M�N is a matrix of random variables with arbitrary distribution whose first two

moments are known, that is, vec.Y/ � A.0; ˙/, and " 2 RC and � 2 Œ0 1� are
deterministic variables. To eliminate the supremum and get a tractable upper bound
on constraint (4.48b), we use MI:

PrfkA.B C Y/X � Dk2F � "g � EfkA.B C Y/X � Dk2Fg
"

; (4.49)

where the right-hand side of (4.49) can be simplified to

EfkA.B C Y/X � Dk2Fg D EfkAYXk2Fg C kABX � Dk2F; (4.50a)

D Efk.XT ˝ A/vec.Y/k2g C kABX � Dk2F (4.50b)

D kvec..XT ˝ A/˙
1
2 /Tvec.ABX � D/Tk2: (4.50c)

Accordingly, optimization problem (4.48) is approximated by

min
X

tr.XXH/; (4.51a)

subject to kvec..XT ˝ A/˙
1
2 /Tvec.ABX � D/Tk2 � "�: (4.51b)



4.2 Taxonomy of Relaxation Methods 163

This problem is convex, and using the EF, explained in Section 4.2.1.1 in this
chapter, it can be converted to the following second-order cone programming
(SOCP) problem:

min
X

t (4.52a)

subject to

(
kvec..XT ˝ A/˙

1
2 /Tvec.ABX � D/Tk �

p
"�;

tr.X/ � t:

(4.52b)

(4.52c)

(2) Bernstein Approximation: Consider the following intractable and probabilis-
tic optimization problem:

min
x

g.x/; (4.53a)

subject to Pr

�
f0.x/C

NX
nD1

ynfn.x/ � 0

�
� 1 � �; (4.53b)

where x is a deterministic parameter vector and yn;8n D 1; : : : ;N is a random
variable with marginal distribution �n, g; fn W R

N �! R 8n D 0; 1; : : : ;N.
Assume

• fn.x/; 8n D 0; 1; : : : ;N; is an affine function in x;
• xn; 8n D 1; : : : ;N; is an independent random variable;
• �n; 8n D 1; : : : ;N; has a bounded support of Œ�1; 1�.

The feasible set of probabilistic constraint (4.53b) can be either convex or non-
convex, depending on the distribution of random variables. However, even if the
probabilistic constraint is convex, it may not be straightforward to write it in a
closed form, which makes the optimization problem computationally intractable
[32–34]. To overcome this difficulty, one can use a BA to replace the probabilistic
constraint by a tractable and convex approximation. In this way, the feasible set of
the approximate optimization problem is a subset of the original problem, and an
optimal solution to the approximate optimization problem is a feasible suboptimal
solution to the original optimization problem.

Using this BT, a conservative approximation of (4.53b) is

inf
�>0

�
f0.x/C �

NX
nD1

˝n
�
�
1fn.x/

�C � log

�
1

�

��
� 0; (4.54)

where ˝n.z/ , max�n log
�R

ewzd�n.w/
�
. In addition, to make (4.54) computation-

ally efficient, the following tractable upper bound for ˝n.z/ can be used:

˝n.z/ � max

�
�


n z; �C
n z

�
C �2n z2

2
; (4.55)
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where �

n , �C

n , with �1 � �

n � �C

n � C1 and �n � 0, are constants that depend
on their respective probability distributions. Some examples are given in Table 1.2
in Chapter 1, where the useful prior knowledge includes the support, unimodality
(with respect to the center of the support), and symmetry of the distribution, as well
as the range of the first- and second-order moments. Note that more prior knowledge
leads to a tighter approximation [34]. Using (4.55), the upper bound of (4.53b) is

f0.x/C
NX

nD1
max

˚
�


n fn.x/; �C
n fn.x/

C
s
2 log

1

�

vuut NX
nD1

�2n f 2n .x/ � 0: (4.56)

Since the last term in (4.56) involves the l2-norm of the vector, one can further
approximate it via an l1-norm approximation, explained in Section 4.2.1.6 in this
chapter as the norm BT, as

f0.x/C
NX

nD1
max

˚
�


n fn.x/; �C
n fn.x/

C
s
2N log

1

�
max

n
f�nfn.x/g � 0: (4.57)

Alternatively, one can use the l1-norm approximation to obtain another substitute:

f0.x/C
NX

nD1
max

˚
�


n fn.x/; �C
n fn.x/

C
s
2 log

1

�

NX
nD1

j�nfn.x/j � 0: (4.58)

Substituting (4.58) into (4.53b), a tractable approximation of (4.53) is

min
x

g.x/; (4.59a)

subject to f0.x/C
NX

nD1
max

˚
�


n fn.x/; �C
n fn.x/

C
s
2 log

1

�

NX
nD1

j�nfn.x/j � 0:

(4.59b)

This BT can also be used for those probabilistic optimization problems in which
the distribution of random variables is not fully known (complete information on
the distribution is not available) [32, 33].

(3) Conditional Value at Risk (CVaR): Consider the following intractable joint
chance constraint optimization problem:

min
x

h.x/; (4.60a)

subject to Pr
˚
f1.u; x/ � 0; : : : ; fM.u; x/ � 0

 � 1 � ˛; (4.60b)

where u is a random vector supported on a set( � R
d, x 2 R

n is a deterministic
vector, fi W Rn �( �! R; 8i D 1; : : : ;M, h W Rn �! R, and ˛ 2 .0; 1/. When
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M D 1, probabilistic constraint (4.60b) is called a single chance constraint
because only a single constraint needs to be satisfied with probability 1 � ˛.
In general, a joint chance constraint is more difficult than a single chance
constraint. For simplicity, the preceding problem can be written as

min
x

h.x/; (4.61a)

subject to w.x/ � ˛; (4.61b)

where

w.x/ D 1 � Pr
˚
f1.u; x/ � 0; : : : ; fM.u; x/ � 0


: (4.62)

Solving the preceding problem is not straightforward in either of the following
two cases. First, even if f1.u; x/; : : : ; fM.u; x/ are all convex functions of x, the
probabilistic constraint may not be convex. Hence, the optimization problem (4.60)
may be nonconvex, and consequently, finding a global optimal solution would
be very difficult. Second, obtaining the value of w.x/ is typically not easy, and
obtaining a closed form for w.x/ is generally very difficult. Instead, Monte Carlo
simulations are often performed to calculate w.x/ when its closed form is not
available. In doing so, w.x/ is approximated by a conservative function Qw.x/ �
w.x/; 8x 2 R

n. When Qw.x/ is close to w.x/, it is a good approximation to the
optimal solution of optimization problem (4.61), and the approximate function is
tight. Moreover, when Qw.x/ is convex, the following approximated optimization
problem may be easier to solve [33, 35]:

min
x

h.x/ (4.63a)

subject to Qw.x/ � ˛: (4.63b)

In [33], a convex conservative approximation called the CVaR is proposed.
Using g.u; x/ D maxff1.u; x/; : : : ; fM.u; x/g, the joint chance constraint (4.61b) is
converted into a single chance constraint as

w.x/ D 1 � Pr
˚

maxff1.u; x/; : : : ; fM.u; x/g � 0
 D Pr

˚
g.u; x/ > 0


: (4.64)

Probabilistic inequality (4.61b) can be written as

w.x/ D Pr
˚
g.u; x/ > 0

 D Ef1.0;C1/.g.u; x//g � ˛; (4.65)

where 1.A/.z/ is the indicator function of the set A, which is equal to 1 if z 2 A and
0 if z … A. The indicator function makes w.x/ nonconvex. A conservative convex
approximation of w.x/ � ˛ is

inf
t>0

˚
tEf�.t
1g.u; x// � t˛g � 0; (4.66)
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where � W R �! R is a nonnegative, nondecreasing, and convex function, lower
bounded by �.0/, and can be obtained by

�.z/ D Œ1C z�C; (4.67)

where Œa�C D maxfa; 0g. In other words, 1.0;C1/.z/ � �.z/ and Qw.x/ D
Ef�.t
1g.u; x//g.

Using (4.67) and after some mathematical manipulations, (4.66) is equivalently
rewritten as

inf
t2R
˚
EfŒg.u; x/C t�Cg � t˛g � 0: (4.68)

(4) DC Approximation: In the CVaR BT, the difference between the indicator
function and the CVaR approximation, that is, 1.A/.z/ � �.z/, grows unbound-
edly as z �! C1. Thus, �.z/ is not a good approximation for the indicator
function 1.A/.z/. A better approximation for joint chance constraint (4.61b),
called the difference of two convex (DC) functions, is proposed in [35], which is

�.z/ D Œ1C z�C � zC: (4.69)

Since Œ1Cz�C and zC are convex functions of z, �.z/ is a DC function of z. Moreover,
since 1.0;C1/.z/ � �.z/;8z 2 R, (4.69) is also a conservative approximation for
1.0;C1/.z/. In contrast to CVaR approximation that can find feasible but suboptimal
solutions, DC approximation is equivalent to the highly intractable probability
constraint (4.61b). Hence, the intractable and NP-hard optimization problem (4.61)
can be equivalently reformulated as a DC programming problem, which can be
efficiently solved by existing algorithms, such as an SCA method, that will be
explained subsequently in Section 4.2.1.8 of this chapter.

(5) Large Deviation Inequality for Complex Gaussian Quadratic Forms: Con-
sider the following intractable nonconvex optimization problem in which the
random variables are complex Gaussian in quadratic form:

min
X1;:::;XK2HN

C

KX
iD1

tr.Xi/; (4.70a)

subject to Pr
˚
eHQi.Xi/e C 2RefeHri.Xi/g C si.Xi/ < 0

 � �i;

8i D 1; : : : ;K; (4.70b)

where e � CN.0; I/ is a standard circularly symmetric complex Gaussian
random vector, .Xi; ri; si/ 2 H

NC�C
N �R is an arbitrary 3-tuple of deterministic

variables, and Qi.Xi/ D AiXiAi, ri.Xi/ D BiXici, si.Xi/ D dH
i Xidi, Ai;Bi 2

C
N�N , and ci;di 2 C

N ; 8i D 1; : : : ;K. The probabilistic constraint entails
a significant analytical and computational challenge. To tackle this challenge,
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the BT-large deviation inequality (BT-LDI) can be used to analytically obtain
a tractable upper bound on the probability of the complex Gaussian quadratic
form, which would lead to a convex, safe, and tractable approximation for the
original probabilistic constraint.

To find a computationally efficient convex function fi W H
n � C

N � R ! R

such that

Pr
˚
eHQi.Xi/e C 2RefeHri.Xi/g C si.Xi/ < 0

 � f .Qi; ri; si/; (4.71)

the LDI can be used [36, 37]. The following lemma derives a convex upper bound
for (4.70b) [38, 39].

Lemma 4.1. For any vi >
1p
2

and �i > 0, we have

Pr
˚
eHQi.Xi/e C 2RefeHri.Xi/g < tr.Qi.Xi// � �i



�
8<
:

exp
� � �2i

4T2i

�
; for 0 < �i � 2
 iviTi;

exp
� � 
 ivi�i

Ti
C .
 ivi/

2
�
; for �i > 2
 iviTi;

(4.72)

where 
 i D 1� 1

2v2i
, Ti D vikQi.Xi/kFC 1p

2
kri.Xi/k, �i D tr.Qi.Xi//Csi.Xi/,

and vi is the solution to the quadratic equation .1 � 1

2v2i
/vi D

q
ln. 1

�i
/ that

satisfies vi >
1p
2
.

The detailed proof of the preceding lemma can be found in [37] and references

therein. By this lemma, when 2
q

ln. 1
�i
/Ti � �i � 2
 iviTi or, equivalently, when

�i D 2
q

ln. 1
�i
/Ti, probabilistic constraint (4.70b) is satisfied. On the other hand,

when �i > 2
 iviTi D 2
q

ln. 1
�i
/Ti, from Lemma 4.1 we get

Pr
˚
eHXie C 2RefeHrig C si < 0

 � exp

�
� 
 ivi�i

Ti
C .
 ivi/

2

�
< exp

�
� .
 ivi/

2

�
;

(4.73)

which implies that probabilistic constraint (4.70b) is satisfied. Thus, we have

Pr
˚
eHQi.Xi/e C 2RefeHri.Xi/g C si.Xi/ < 0

 � exp

�
� .tr.Qi.Xi//C si.Xi//

2

4T2i

�
:

(4.74)
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From the preceding expression, a safe approximation for probabilistic con-
straint (4.70b) is

tr.Qi.Xi//C si.Xi/ � 2Ti

s
ln

�
1

�i

�
: (4.75)

Now, (4.75) can be stated as a second-order cone (SOC) constraint, and intractable
probabilistic constraint (4.70b) is reformulated as the following feasibility problem:

Find Qi.Xi/; ri.Xi/; si.Xi/; zi; yi; (4.76a)

subject to

8̂̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂:

tr.Qi.Xi//C si.Xi/ � 2.zi C yi/

s
ln

�
1

�i

�
;

vikQi.Xi/kF � yi;

1p
2

kri.Xi/k � zi:

(4.76b)

(4.76c)

(4.76d)

By applying the preceding concepts to the probabilistic optimization prob-
lem (4.70), the following conic program with LMI and SOC constraints is obtained:

min
Xi; zi; yi; 8iD1;:::;K

KX
iD1

tr.Xi/; (4.77a)

subject to

8̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂:

tr.Qi.Xi//C si.Xi/ 	 2.zi C yi/

s
ln

�
1

�i

�
; 8i D 1; : : : ;K;

vikvec.Qi.Xi//k � yi; 8i D 1; : : : ;K;

1p
2

kri.Xi/k � zi; 8i D 1; : : : ;K;

X1; : : : ;XK 2 H
N
C:

(4.77b)

(4.77c)

(4.77d)

(4.77e)

The preceding problem can be easily solved using existing convex optimization
software such as CVX or SeDuMi.

(6) Bernstein-type Inequality for Complex Gaussian Quadratic Forms: An
alternative way to obtain a safe approximation for (4.70b) is to use the BTI-
CGQF [37, 40, 41], as explained in what follows.
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Lemma 4.2. For any �i > 0, we have

Pr
˚
eHQi.Xi/e C 2RefeHri.Xi/g � � .�i/

 � 1 � e
�i ; (4.78)

where ‡ W RCC ! R is

‡ .�/ D tr.Qi.Xi// �p
2�

q
kQi.Xi/k2F C 2kri.Xi/k2 � ��C.Qi.Xi//:

(4.79)

Since ‡ is a monotonic and decreasing function, its inverse mapping can be well
defined, and the Bernstein-type inequality (4.78) is rewritten as

Pr
˚
eHQi.Xi/e C 2RefeHri.Xi/g C si.Xi/ > 0

 � 1 � e
��1.
si.Xi//: (4.80)

A safe approximation for (4.70b), that is, f .Qi; ri; si/ � �i, is

tr.Qi.Xi//�
s
2 ln

�
1

�i

�q
kQi.Xi/k2F C 2kri.Xi/k2Cln.�i/�

C.Qi.Xi//Csi.Xi/ � 0;

(4.81)

where �C.Qi.Xi// D maxf0; �max.�Qi.Xi//g and �max.�Qi.Xi// is the maximum
eigenvalue of �Qi.Xi/.

Using slack variables, (4.81) is reformulated as a feasibility problem consisting
of SOC and LMI constraints:

Find Qi.Xi/; ri.Xi/; si.Xi/; zi; yi; (4.82a)

subject to

8̂̂
ˆ̂̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
ˆ̂̂̂̂
:

tr.Qi.Xi// � zi

s
2 ln

�
1

�i

�
C yi ln.�i/C si.Xi/ � 0;

q
kQi.Xi/k2F C 2kri.Xi/k2 � zi;

yiI C Qi.Xi/ � 0;

yi � 0:

(4.82b)

(4.82c)

(4.82d)

(4.82e)

Application of the preceding problem to probabilistic optimization problem (4.70b)
makes it possible to convert the original optimization problem (4.70) into SDP
form as

min
Xi;zi;yi;8iD1;:::;K

KX
iD1

tr.Xi/; (4.83a)
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subject to

8̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂:

tr.Qi.Xi//
 zi

s
2 ln

�
1

�i

�
C yi ln.�i/C si.Xi/ 	 0; 8i D 1; : : : ;K;

q
kvec.Qi.Xi//k2 C 2kri.Xi/k2 � zi; 8i D 1; : : : ;K;

yiIN C Qi.Xi/ � 0; 8i D 1; : : : ;K;

yi 	 0; 8i D 1; : : : ;K;

X1; : : : ;XK 2 H
N
C
:

(4.83b)

(4.83c)

(4.83d)

(4.83e)

(4.83f)

The computational complexity of the BT-LDI is less than that of the BTI-CGQF,
but the latter demonstrates better performance.

(7) Vysochanskii–Petunin Inequality: When the objective function or constraints
are probabilistic with unimodal4 and non-Gaussian distributions, the optimiza-
tion problem is intractable. In such cases, the VPI can be used to transform
the problem into a statistically averaged optimization problem. As an example,
consider the following intractable chance constraint problem:

min
x

f2.x/; (4.84a)

subject to Pr
˚
yHA.x/y � �

 � �; (4.84b)

where x 2 C
N , A.x/ 2 H

N , � 2 RC, and � 2 Œ0 1� are deterministic variables,
and y 2 C

N is a random variable. It is assumed that yHA.x/y is a unimodal
random variable.

Vysochanskii–Petunin Inequality: Let x be a unimodal random variable and
a 2 RCC be a deterministic parameter. A tight upper bound on Pr

˚jxj � a


is [42–44]

Prfjxj � ag � max

�
4Efjxj2g
9a2

;
4Efjxj2g
3a2

� 1

3

�
: (4.85)

In [44], the authors generalized (4.85) to the rth moment as

Prfjxj � ag � max

�
rr
Efjxjrg

.r C 1/rar
;

sEfjxjrg
ar.s � 1/ � 1

s � 1
�
; (4.86)

where s is a fixed and deterministic variable that satisfies s > r C 1 and
s.s � r � 1/r D rr.

4Unimodality means there is only a single highest value in the distribution function. For example,
random variables with a normal distribution are unimodal.
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Since yHA.x/y is a unimodal random variable, using the VPI, an upper bound
on (4.84b) is

Pr
˚
yHA.x/y � �

 � Pr
˚jyHA.x/yj � �


(4.87a)

� max

�
rr
EfjyHA.x/yjrg
.r C 1/r�r

;
sEfjyHA.x/yjrg
�r.s � 1/ � 1

s � 1
�
: (4.87b)

Replacing the outage probability in (4.84b) with the upper bound in (4.87b), a
unified safe approximation for the probabilistic optimization problem (4.84) is

min
x

f2.x/; (4.88a)

subject to EfjyHA.x/yjrg � �.�; r/�r; (4.88b)

where

�.�; r/ D
�
.1C 1

r /
r; � 2 .0; b1�;

.s
1/�C1
s ; � 2 Œb1; 1/; (4.89)

and b1 D 1

s..1C 1
r /

r
1/C1 .

Trace Bounding When an optimization problem involves the trace of a matrix, the
following inequalities can be used to make the problem tractable.

(1) Determinant Inequality: When an optimization problem includes a nonconvex
determinant function det.I C A/, it can be replaced by 1 C tr.A/, justified by
the inequality [5]

det.I C A/ � 1C tr.A/; (4.90)

where A � 0.

Lemma 4.3. The equality in (4.90) holds if and only if the rank of A is 1.

Proof. Let �1 � �2 � � � � �r > 0 be the eigenvalues of A with rank r. We
have

det.ICA/ D
rY

iD1
.1C�i/ D 1C

rX
iD1

�iC
X
k¤i

�k�iC� � � � 1C
rX

iD1
�i D 1Ctr.A/;

(4.91)
where equality (4.91) holds if and only if r D 1.
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As an example, consider the following nonconvex optimization problem:

min
X�0

tr.X/; (4.92a)

subject to
det.I C AHXA/
1C bHXb

� �; (4.92b)

where X 2 H
N , A 2 C

N�N , b 2 C
N , and � 2 RCC. Since the nonconvexity

of the preceding optimization problem comes from the determinant function in
constraint (4.92b), the BT-DI is a good choice for transforming the problem into
a convex one. Accordingly, a relaxation of (4.92) is

min
X�0

tr.X/; (4.93a)

subject to
1C tr.AHXA/
1C bHXb

� �: (4.93b)

Optimization problem (4.93) is convex and can be formulated in SDP form:

min
X�0

tr.X/; (4.94a)

subject to 1C tr.AHXA/ � �.1C bHXb/: (4.94b)

The optimal solution of the preceding optimization problem can be obtained
efficiently using any existing solver such as CVX. Note that from Lemma 4.3, this
relaxation is tight when the rank of the optimal solution to problem (4.94) is 1.

(2) Trace of Two Matrices Inequality: When the optimization problem includes
a trace of two matrices, it can be replaced by a tractable bound, as defined in
what follows.

Lemma 4.4. When X and Y are n � n positive semidefinite Hermitian
matrices, we have [45, 46]

tr.XY/ �
nX

iD1
�i.X/�n
iC1.Y/; (4.95)

where �i.X/ and �i.Y/ are the ith eigenvalues of X and Y, respectively, in
decreasing order.

As an example, consider the following intractable and NP-hard problem:

min
x

max
zk ; 8kD1;:::;K xHAx; (4.96a)

subject to zk 2 fzH
k Bkzk � 1g; 8k D 1; : : : ;K; (4.96b)
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where x; zk 2 C
N ; Bk � 0; A D diagfa11; : : : ; aN;Ng; an;n D

KP
kD1

jynk C znkj2; and

yk D Œy1;k; : : : ; yN;k� 2 C
N . Using Cauchy–Schwarz inequality, an upper bound on

the objective function is

xHAx D xH QAx C
KX

kD1
kx ˇ zkk2 � xH QAx C

KX
kD1

kxk2kzkk2; (4.97)

where QA D diagfQa11; : : : ; QaN;Ng, and Qan;n D
KP

kD1
jynkj2. Now, from Lemma 4.4 and

since the rank of zkzH
k is 1, we have

zH
k Bkzk D tr.BkzkzH

k / � �min.Bk/�1.zkzH
k / D �min.Bk/kzkk2: (4.98)

From constraint (4.96b) and (4.98), we write

kzkk � 1p
�min.Bk/

: (4.99)

Using the preceding inequality, (4.97) is approximated by

xH QAx C
KX

kD1
kxk2kzkk2 � xH QAx C

KX
kD1

�2kkzkk2 D xH. QA C �I/x; (4.100)

where � D
KP

kD1
�2k and �k D 1p

�min.Bk/
.

From the preceding expression, the optimization problem (4.97) can be solved
by solving the following convex optimization problem:

min
x

xH. QA C �I/x: (4.101)

(3) Von Neumann Trace Inequality: For any two n�n complex matrices A and B
with singular values ˛1 � ˛2 � � � � � ˛n and ˇ1 � ˇ2 � � � � � ˇn, respectively,
we get [47]

jtr.AB/j �
nX

mD1
˛mˇm: (4.102)

The equality is achieved when A and B are simultaneously unitarily diagonalizable.

Taylor Bounding Any differentiable nonconvex and intractable function f .x/ W
R

N ! R can be approximated at Qx by a linear or quadratic function using the first-
or second-order terms in its Taylor series expansion, respectively. The first-order
(linear) approximation function is [48]

g1.x/ D f .Qx/C .x � Qx/Trf .Qx/; (4.103)

where rf .Qx/ is the first derivative of f .x/ at Qx.
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The second-order (quadratic) approximation is

g2.x/ D f .Qx/C .x � Qx/Trf .Qx/C 1

2
.x � Qx/Tr2f .Qx/.x � Qx/; (4.104)

where r2f .Qx/ is the second derivative of f .x/ at Qx. Note that these approximations
are tight if x is sufficiently close to Qx. In addition, the quadratic approximation
is tighter than the linear approximation when x is very close to Qx, but the linear
approximation is more tractable and simpler than the quadratic approximation.

4.2.1.7 Nonlinear Fractional Programming

Consider the following nonlinear fractional optimization problem [49]:

q� D max
x2X

f1.x/
f2.x/

; (4.105a)

subject to f3.x/ � 0; (4.105b)

where X � R
n is a nonempty convex compact set, fi W R

n �! R; i D 2; 3, are
real-valued, continuously differentiable, and convex functions, and f1 W Rn �! R is
a real-valued continuously differentiable and concave function.

Theorem 4.4. The maximum value of the objective function, denoted by q�,
is achieved if and only if maxx0 f1.x0/ � q�f2.x0/ D f1.x�/ � q�f2.x�/ D 0 for
f1.x/ � 0 and f2.x/ > 0, where x� is the global optimal solution.

From Theorem 4.4, for any optimization problem whose objective function is in
fractional form, there exists an equivalent objective function in subtractive form, for
example, f1.x/�qf2.x/. To solve problem (4.105), an iterative algorithm is used that
converges to the optimal solution with an acceptable convergence speed [50].

Iterative Algorithm for Solving (4.105):

Step 0: Choose a predetermined error tolerance � > 0 and the maximum
iteration number Lmax.

Step 1: Set q D 0 and iteration index l D 0.
Step 2: While (Convergence = false and l � Lmax)
Step 3: Solve the convex problem (4.106) for a given q.
Step 4: If f1.x0/ � qf2.x0/ < �, then

(continued)
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Step 4.1: Convergence =true
Step 4.2: return x� D x0 and q� D f1.x0/

f2.x0/

Step 5: else
Step 5.1: Set q D f1.x0/

f2.x0/
and l D l C 1.

Step 5.2: Convergence = false.
Step 6: end if
Step 7: end while
Step 8: return x� D x0 and q� D f1.x0/

f2.x0/
.

The preceding algorithm at each iteration solves the following convex problem:

max
x02X

f1.x0/ � qf2.x0/; (4.106a)

subject to f3.x0/ � 0: (4.106b)

4.2.1.8 Sequential Parametric Convex Approximation

The SPCA is a general iterative scheme for solving nonconvex optimization
problems, where in each iteration the nonconvex optimization problem is replaced
by its convex approximation. When this is done, the nonconvex constraints are
replaced by their safe approximations. As described in what follows, when certain
conditions are satisfied, a monotonic convergence to a Karush–Kuhn–Tucker (KKT)
point is achieved [51]. Consider the following generic optimization problem:

min
x2Rn

f0.x/; (4.107a)

subject to fz.x/ � 0; 8z D 1; : : : ;Z; (4.107b)

where f0 and fz;8z D 1; : : : ;Z; are all continuously differentiable functions over Rn.
Assume that the last Z � m (for m � Z) constraints fmC1; : : : ; fZ are convex over Rn.
In this case, the nonconvexity of the problem is due to the nonconvexity of the first
m constraints f1; : : : ; fm. When m D Z, all the constraints are nonconvex. For the
sake of simplicity, we only focus on (4.107) with inequality constraints since linear
equality constraints do not significantly change the analysis.

Assume that for every fz; 8z D 1; : : : ;m there exists a set Y � R
n (for some

positive integer n) and there is a convex upper estimate function Fz W Rn � Y ! R

such that

fz.x/ � Fz.x; yl
z/; 8x 2 R

n; 8yl
z 2 Y; (4.108)
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where, for a fixed yl
z; 8z D 1; : : : ;m; l D 1; 2; : : :, the function Fz.�; yl

z/ is convex
and continuously differentiable. The vector yl

z is the parameter vector and Y is
the admissible parameter set. The basic idea is that at each iteration, each fz.x/
is replaced by its upper convex approximation Fz.x; yl

z/; 8z D 1; : : : ;m for some
yl

z that satisfies inequality (4.108). Thus, in step l � 1, the following approximated
convex problem is solved:

min
x2Rn

f0.x/; (4.109a)

subject to

(
Fz.x; yl

z/ � 0; 8i D 1; : : : ;m;

fz.x/ � 0; 8i D m C 1; : : : ;Z:

(4.109b)

(4.109c)

The vector yl
z 2 Y is a fixed parameter vector that depends on the solution of the

relaxed convex problem in step l. The convex upper estimate functions should ensure
that for every z D 1; : : : ;m there is a continuous function �z W Rn ! R

n such that
for any given x 2 R

n, the vector yl
z WD �z.x/ 2 Y satisfies the following two

equalities:

fz.x/ DFz.x; yl
z/; (4.110a)

rfz.x/ DrxFz.x; yl
z/: (4.110b)

SPCA Method

Step 0: Initialization. Choose an arbitrary and feasible solution x0 for
problem (4.107), and set ylD1

z D �z.x0/.
For l D 1; : : : do
Step 1: Stop if either the KKT necessary optimality conditions are approxi-

mately satisfied or no improvement in the value of objective function f0.�/
is achieved.

Step 2: Obtain a solution xl by solving convex problem (4.109).
Step 3: Set ylC1

z D �z.xl/;8z D 1; : : : ;m and l D l C 1, and go to Step 1.

In [51], it is shown that the SPCA method produces a sequence of feasible solu-
tions for problem (4.107) whose objective function is monotonically nonincreasing
and that the SPCA method is a descent scheme. Furthermore, the general SPCA
method converges to a KKT point under certain conditions.

DC Programming and Sequence of Convex Approximation Consider the fol-
lowing nonlinear optimization problem [35]:

min
x2X f0.x/; (4.111a)

subject to f1.x/ � f2.x/ � 0; (4.111b)
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where X � R
n is a nonempty convex compact set, and fi W Rn �! R; i D 0; 1; 2,

are real-valued, continuously differentiable, and convex functions. Since f2.x/ is a
convex function, for any y 2 X we have

f2.x/ � f2.y/C 5f2.y/T.x � y/; (4.112)

which implies

f1.x/ � f2.x/ � f1.x/ � �
f2.y/C 5f2.y/T.x � y/

�
: (4.113)

Using (4.113), a convex conservative approximation of (4.111) is obtained as

min
x2X f0.x/ (4.114a)

subject to f1.x/�
�
f2.y/C 5f2.y/T.x � y/

� � 0: (4.114b)

The following algorithm can be used to solve (4.111).

SCA Method

Step 0: Initialization. Choose an arbitrary and feasible solution x0 to prob-
lem (4.111), and set y D x0 and l D 0.

Step 1: Stop if either the KKT necessary optimality conditions are approxi-
mately satisfied or no improvement in the objective value f0.�/ is achieved.

Step 2: Obtain a solution xl by solving the convex problem (4.114).
Step 3: Set l D l C 1, y D xl, and go to Step 1.

In [35], it is shown that the SCA method produces a sequence of feasible points
for problem (4.111) whose objective function is monotonically nonincreasing. It is
also shown that the SCA method is a descent scheme.

4.2.2 Lagrangian Relaxation

In the LR method, a lower bound on the optimal value of a nonconvex problem is
obtained by solving the Lagrangian dual of the nonconvex problem [1, 14, 52].

4.2.2.1 Duality

The Lagrangian function of optimization problem (4.1) is

L.x;w;u/ D f0.x/C
ZX

zD1
wzfz.x/C

YX
yD1

uyfy.x/; (4.115)
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where wz 2 RC is the Lagrange multiplier for inequality constraint (4.1b), and
uy 2 R is the Lagrange multiplier for equality constraint (4.1c). The vectors w
and u are also called the dual variables for problem (4.1). The dual function for
problem (4.1) is

g.w;u/ D inf
x

L.x;w;u/: (4.116)

The dual function gives the lower bound on the optimal value o� for prob-
lem (4.1). In other words, for any w � 0 and any u we have

g.w;u/ � o�: (4.117)

This property can be used to find the best lower bound by solving the following
optimization problem:

max
w; u

g.w;u/ (4.118a)

subject to w � 0: (4.118b)

This problem is the dual of problem (4.1). The solution to the dual problem
corresponds to the optimal values of dual variables .w�;u�/. The optimal solution
of the dual problem is denoted by d�, and from (4.117) we get

d� � o�; (4.119)

which holds even if the original optimization problem is nonconvex. This feature of
the LR method is also known as weak duality. When (4.119) holds with equality, that
is, when d� D o�, strong duality holds. The difference o� � d� is called the optimal
duality gap of the original problem because it is the gap between the optimal value
of the original optimization problem and the best lower bound obtained via the dual
function [1]. Note that this gap is always nonnegative and can be zero when strong
duality holds.

As an example, consider nonconvex problem (4.21) whose Lagrangian is

L.x;
/ D xTA0x C qT
0x C r0 C

mX
iD1

�i
�
xTAix C qT

i x C ri
�

(4.120a)

D xTAx C qx C r; (4.120b)

where A D A0 C
mP

iD1
�iAi, q D qT

0 C
mP

iD1
�iqT

i , and r D r0 C
mP

iD1
�iri. The dual

function of problem (4.21) is

g.
/ D inf
x

L.x;
/ (4.121a)

D
�

r � 1
4
qTAHq; if A � 0 and A 2 R.A/;

�1; otherwise.
(4.121b)
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The dual problem is

max



r � 1

4
qTAHq; (4.122a)

subject to

(
A � 0;


 � 0:

(4.122b)

(4.122c)

By introducing an auxiliary variable � to rewrite optimization problem (4.122) in
the EF, explained in Section 4.2.1.1 in this chapter, and utilizing the SC, explained
in Section 4.2.1.3 in this chapter, we get the following SDP:

max

;�

�; (4.123a)

subject to

8̂<
:̂

�
A 1

2
q

1
2
qT r � �

�
� 0;


 � 0:

(4.123b)

(4.123c)

Consequently, problem (4.123) can be solved using any existing solver, such as
CVX.

4.2.2.2 Time-Sharing Condition

To reach a zero duality gap, the time-sharing condition introduced in [52] should
be satisfied. If this condition holds, the duality gap of the optimization problem
is always zero, regardless of the convexity of the optimization problem. In [52],
it is shown that this condition holds for practical multiuser spectrum optimization
problems in multichannel systems as the number of channels goes to infinity.

Theorem 4.5 (Zero Duality Gap [52]). Consider the following nonconvex
optimization problem:

max
z

NX
nD1

fn.xn/; (4.124a)

subject to
NX

nD1
hn.xn/ � 
; (4.124b)

(continued)
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Theorem 4.5 (continued)
where xn 2 R

U, z D Œx1; : : : ; xN �, fn W RU ! R, and hn W RU ! R. When
optimization problem (4.124) is convex, that is, when fn.xn/;8n; is concave
and hn.xn/;8n; is convex, the duality gap is zero. When the preceding problem
is not convex, the dual method gives an upper bound and the duality gap is
not zero. Let x�

n and y�
n denote the optimal solutions to (4.124) when � D �x

and � D �y, respectively. When there is a feasible solution zn that satisfies
the following two conditions (called the time-sharing conditions),

•
PN

nD1 hn.zn/ � ��x C .1 � �/�y,
•
PN

nD1 fn.zn/ � �fn.x�
n /C .1 � �/fn.y�

n /,

the duality gap is zero, where 0 � � � 1.

The time-sharing condition implies that the maximum value of the optimization
problem is a concave function of 
 . When problem (4.124) is convex, the time-
sharing condition is always satisfied. However, the converse is not necessarily true.
The time-sharing conditions can be held even when problem (4.124) is not convex.

4.3 Application of Relaxation Methods for Robust Resource
Allocation

In this section, a number of applications for relaxation methods in robust opti-
mization problems in communication are reviewed. We will mainly focus on the
following three types of nonconvex problem: (1) partial CSI feedback with bounded
uncertainty, (2) partial CSI feedback with stochastic uncertainty (not bounded), and
(3) no CSI feedback. As was shown in [53], the solutions to many optimization
problems suffer from sensitivity to uncertainty in side information, and even minor
uncertainty can make the solutions suboptimal. In the literature, the relaxation
methods applied to partial CSI feedback with bounded uncertainty are as follows:

• Time sharing
• Lagrangian relaxation
• Semidefinite relaxation
• Charnes–Cooper transformation
• S-procedure
• Schur complement
• Triangle inequality
• Cauchy–Schwarz inequality
• Epigraph form
• Determinant inequality
• Norm approximation
• Nonlinear fractional programming
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The relaxation methods applied to partial CSI feedback with stochastic uncer-
tainty are as follows:

• Semidefinite relaxation
• Bernstein-type inequality for complex Gaussian quadratic forms
• Large deviation inequality for complex Gaussian quadratic forms
• S-procedure
• Schur complement
• Lagrangian relaxation
• Vysochanskii–Petunin inequality
• Norm approximation
• Cauchy–Schwarz inequality
• Markov’s inequality
• DC programming and sequence of convex approximation
• Epigraph form
• Conditional value at risk
• DC approximations
• Bernstein approximation

The relaxation methods applied for no CSI feedback are as follows:

• DC approximations
• Semidefinite relaxation
• DC programming and sequence of convex approximations
• Bernstein-type inequality for complex Gaussian quadratic forms

4.3.1 Partial CSI Feedback: Bounded Uncertainty

4.3.1.1 Robust Secure Transmission

As was mentioned in Chapter 1, physical-layer security is a challenging problem
involving uncertain parameters and belongs to the set of intractable nonconvex
optimization problems. In what follows, we will discuss several examples of such
problems and demonstrate how the relaxation methods presented in this chapter can
be applied to solve them.

Example 1. A multi-input/single-output (MISO) channel overheard by a set of
E D f1; : : : ;Eg multi-antenna eavesdroppers is considered in [5]. By assuming
uncertainty in CSI of legitimate users and eavesdroppers, we will study the
following two optimization problems:

Problem 1. Minimizing the transmit power of legitimate users subject to the
minimum required secrecy rate and

Problem 2. Maximizing the secrecy rate subject to the maximum transmit power
constraint via the worst case approach.
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Let h 2 C
Ut be the channel gain between the legitimate transmitter and its

receiver, where Ut is the number of antennas of the authorized transmitter, and Ge 2
C

Ut�Ue be the channel gain between the legitimate transmitter and eavesdropper e,
where Ue is the number of antennas of eavesdropper e. The uncertainty regions for
CSI values are

Rh D fh 2 C
Ut jk Ohk � �hg; (4.125)

RGe D fGe 2 C
Ut�Ue jk OGekF � �Geg; (4.126)

where Oh D h � h, OGe D Ge � Ge, and �h; �G1 ; : : : ; �GE are known constants. The
worst-case secrecy rate is

�.W/ D min
eD1;:::;E e.W/; (4.127)

where  k.W/ D minh2Rh;Ge2RGe
log.1C hHWh/ � log det.I C GH

e WGe/, and W
is the covariance matrix of the signal transmitted by the legitimate source x, which
is W D EfxxHg. Noise variance is assumed to be unity.

The robust optimization for the preceding problem 1 is

min
W�0

tr.W/ (4.128a)

subject to �.W/ � R; (4.128b)

where R is the minimum required secrecy rate for the authorized user. By some
mathematical manipulation of (4.128b), problem (4.128) is rewritten as

min
W�0

tr.W/; (4.129a)

subject to
maxGe2RGe

det.I C GH
e WGe/

minh2Rh 1C hHWh
� 2
R; 8e D 1; : : : ;E: (4.129b)

By applying the DI in the BT in Section 4.2.1.6 of this chapter, an approximation
to (4.129) is obtained as

min
W�0

tr.W/; (4.130a)

subject to
maxGe2RGe

1C tr.GH
e WGe/

minh2Rh 1C hHWh
� 2
R; 8e D 1; : : : ;E: (4.130b)

Problem (4.130) can be formulated as an SDP by decoupling the fractional
constraint into two linear constraints as

min
W�0;


tr.W/; (4.131a)
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subject to

8̂<
:̂

min
h2Rh

1C hHWh � 
;

max
Ge2Re

1C tr.GH
e WGe/ � 2
R
; 8e D 1; : : : ;E;

(4.131b)

(4.131c)

where 
 > 0 is the slack variable. With the transformation of (4.131b) and (4.131c)
into LMIs, the SP in Section 4.2.1.4 can be used. When this is done for (4.131b),
we let h D h C Oh and rewrite (4.131b) as

OhH Oh � �2h H) OhHW Oh C 2Refh
H

W Ohg C h
H

Wh C 1 � 
 � 0: (4.132)

By the use of the SP, (4.132) is transformed into an LMI as

Th.W; �h; 
/ D
"
�hIUt C W Wh

h
H

W ��h�
2
h � 
 C h

H
Wh C 1

#
� 0; (4.133)

where �h � 0. Similarly, (4.131c) is rewritten

OgH
e Oge � �2Ge

H) OgH
e W0

e Oge C 2RefgH
e W0

e Ogeg C gH
e W0

ege C 1 � 2
R
 � 0;

(4.134)

where W0
e D IUe ˝ W and ge D vec.Ge/. Using the SP, (4.134) is converted into an

LMI,

Te.W; �e; 
/ D
"
�eIUeUt � W0

e �W0
ege

�gH
e W0

e ��e�
2
Ge

C 
2
R � gH
e W0

ege � 1

#
� 0; (4.135)

where �e � 0; 8e D 1; : : : ;E.
Replacing (4.131b) and (4.131c) with (4.133) and (4.135), respectively, prob-

lem (4.131) is transformed into SDP form as

min
W�0; 
>0; �h	0; –e	0 tr.W/; (4.136a)

subject to

(
Th.W; �h; 
/ � 0;

Te.W; �e; 
/ � 0; 8e D 1; : : : ;E:

(4.136b)

(4.136c)

The preceding problem can be solved via any existing SDP solver.
From Lemma 4.3, the relaxed convex problem (4.136) is tight when the rank of

the optimal solution to problem (4.136) is 1.
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Proposition 4.1. When the worst-case secrecy rate is positive and prob-
lem (4.136) is feasible, the optimal solution to problem (4.136) must be of
rank 1 and unique.

Proof. The proof is based on an examination of the KKT conditions for
problem (4.136).

Using Proposition 4.1 and Lemma 4.3, we get the following corollary.

Corollary 4.1. If the worst-case secrecy rate is positive and problem (4.128)
is feasible, the optimal solutions to problems (4.136) and (4.128) are equiv-
alent to one another. In addition, the optimal solution to problem (4.128) is
unique and of rank 1 (Appendix 1).

Next, we consider Problem 2, which is

max
W�0

�.W/; (4.137a)

subject to tr.W/ � pmax; (4.137b)

where pmax is the maximum transmit power of the legitimate user. Problem 2 can
be rewritten as

�� D min
W�0

max
eD1;:::;E

maxGe2RGe
det.I C GH

e WGe/

minh2Rh 1C hHWh
; (4.138a)

subject to tr.W/ � pmax; (4.138b)

where 0 < �� � 1. Using the BT-DI in Section 4.2.1.6 of this chapter,
problem (4.138) is converted into

��
relax D min

W�0
max

eD1;:::;E
maxGe2Re 1C tr.GH

e WGe/

minh2Rh 1C hHWh
; (4.139a)

subject to tr.W/ � pmax: (4.139b)

Using the epigraph method and CCT in Sections 4.2.1.1 and 4.2.1.2 in this chapter,
respectively, the SDP transformation of (4.139) is

min
Z�0; �>0

�; (4.140a)
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subject to

8̂̂
ˆ̂̂<
ˆ̂̂̂̂
:

max
Ge2RGe

� C tr.GeGH
e Z/ � �; 8e D 1; : : : ;E;

tr.Z/ � �Pmax;

min
h2Rh

� C hhHZ D 1;

(4.140b)

(4.140c)

(4.140d)

where W D Z
�

. Using the SP, the semi-infinite constraints are transformed into LMI
constraints, and we write

min
Z�0; �>0; �h	0; 
�0

�; (4.141a)

subject to

8̂̂
<
ˆ̂:

Mb.Z; �h; �/ � 0;

Me.Z; �e; �; �/ � 0; 8e D 1; : : : ;E;

tr.Z/ � �pmax;

(4.141b)

(4.141c)

(4.141d)

where

Mb.Z; �h; �/ D
"
�hIUt C Z Zh

h
H

Z ��h�
2
h C � C h

H
Zh � 1

#
; (4.142)

Me.Z; �e; �; �/ D
"
�eIUeUt � Z0

e �Z0
ege

�gH
e Z0

e ��e�
2
Ge

� � � gH
k Z0

ege C �

#
; (4.143)

and Z0 D IUe

N
Z. Problem (4.141) can be solved using any existing problem

solver. Since the DI relaxation method is used, the tightness of the relaxed problem
can be proved when the solution of the relaxed problem is of rank 1 (Appendix 2).

Example 2 Another important nonconvex problem arises when friendly jammers
are introduced. In [6], the system includes a legitimate transmitter, a friendly
jammer, a legitimate receiver, and an eavesdropper. The legitimate transmitter and
the friendly jammer have Ut and Uj antennas, respectively. Let hnn and gne be the
1 � Ut channel vector gain between the legitimate transmitter and its receiver and
that between the legitimate transmitter and the eavesdropper, respectively. Also,
let gjn and gje be the 1 � Uj channel vector gain between the friendly jammer and
the legitimate receiver and that between the friendly jammer and the eavesdropper,
respectively. In this setup, noise at the legitimate receiver and the eavesdropper are
assumed to be zero-mean circular complex Gaussian variables with variance �2d and
�2e , respectively, where �2d D �2e D �2 for notational simplicity.

We assume that only the uncertain values of channel gains between the eaves-
dropper and other nodes are available. In particular, the legitimate transmitter has
an uncertain value of gne only, and the error is Ogne D gne � gne. In addition, the
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jammer has an uncertain value of gje only, and the error is Ogje D gje � gje. In the
worst-case robust optimization, the uncertainty regions are

Rgne D fOgne W kOgnek2 � "2gne
g;

Rgje D fOgje W kOgjek2 � "2gje
g;

where "2gse
and "2gje

are the bounds on the respective uncertainty regions.
In this setup, the worst-case secrecy rate is

Rs D log2

 
1C hnnQshH

nn

�2 C gjnQjgH
jn

!
� log2

�
1C (.Qs; Ogne/

�2 C(.Qj; Ogje/

�
; (4.144)

where(.Qs; Ogne/ D .gneCOgne/Qs.gneCOgne/
H,(.Qj; Ogje/ D .gjeCOgje/Qj.gjeCOgje/

H,
Qs is the covariance matrix of the signal transmitted by the legitimate transmitter xs,
given by Qs D EfxsxH

s g, and the power constraint is such that Qs 2 Qs D fQs W
Qs � 0; tr.Qs/ � pmaxs g, where pmaxs is the maximum allowable transmit power
by the legitimate transmitter. The covariance matrix of the signal transmitted by
jammer xj is Qj, given by Qj D EfxjxH

j g, and the power constraint is such that
Qj 2 Qj D fQj W Qj � 0; tr.Qj/ � pmaxj g, where pmaxj is the maximum transmit
power of the jammer.

The objective is to maximize the secrecy rate via the worst-case optimization
theory. The resource allocation problem is

max
Qs2Qs; Qj2Qj

min
Ogne2Rgne ; Ogje2Rgje

Rs; (4.145)

which is nonconvex. To develop a tractable algorithm for solving (4.145), a zero-
forcing (ZF) constraint on the jamming signal is considered,

gjnQjgH
jn D 0;

which converts the nonconvex problem into a convex one, for which the global
optimum is guaranteed. With the ZF constraint, maximization of Rs over Qj does
not depend on Qs, although the optimal Qj still depends on Qs. The optimization
process is decoupled into two convex problems, in which Qj is calculated first,
followed by Qs calculation.5 The following steps are taken for solving (4.145) with
ZF constraints:

5Quantifying the impact of the ZF constraint remains an open problem [6].
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• Step 1: The optimal Qj in (4.144) is obtained via

max
Qj2Qj

min
Ogje2Rgje

.gje C Ogje/Qj.gje C Ogje/
H; (4.146a)

subject to gjnQjgH
jn D 0; (4.146b)

where the maximin problem in (4.146a) can be transformed into

max
Qj2Qj

�; (4.147a)

subject to

8<
:

kOgjek2 � "2gje
;

.gje C Ogje/Qj.gje C Ogje/
H � �:

(4.147b)

(4.147c)

Constraints (4.147b) and (4.147c) can be stated by

OgjeQj OgH
je C 2RefgjeQj OgH

jeg C gjeQjg
H
je � � � 0; (4.148a)

8Ogje W �Ogje OgH
je C "2gje

� 0: (4.148b)

From the SP, (4.148) holds if and only if there exists a � � 0 such that

"
�INt C Qj Qj OgH

je

gjeQj ���2gje
� � C gjeQjgH

je

#
� 0: (4.149)

Using  D ���2gje
� � C gjeQjg

H
je, where  � 0, we transform problem (4.146)

into

max
Qj2Qj; �	0;  	0 ���2gje

�  C gjeQjg
H
je; (4.150a)

subject to

8̂̂
<̂
ˆ̂̂:

"
�INt C Qj Qjg

H
je

gjeQj  

#
� 0;

gjnQjgH
jn D 0:

(4.150b)

(4.150c)

Problem (4.150) is an SDP and its optimal solution Q�
j can be efficiently

obtained.
• Step 2: The optimal robust covariance Q�

j depends on the “hidden” worst-case
Og�

je, which can be explicitly stated by the following problem:

min
Ogje

.gje C Ogje/Q�
j .gje C egje/

H; (4.151a)

subject to kOgjek2 � "2gje
: (4.151b)
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Since this problem is convex, strong duality holds for (4.151) and for its dual.
Thus, via LR and SC, explained respectively in Sections 4.2.2 and 4.2.1.3 in this
chapter, the worst channel mismatch for problem (4.151) is Og�

je D �gjeQ�
j .�I C

Q�
j /, where � is the solution to the following SDP problem:

max
�	0 �; (4.152a)

subject to

"
�IUt C Q�

j Q�
j gH

je

gjeQ�
j ���2gje

� � C gjeQ�
j gH

je

#
� 0: (4.152b)

• Step 3: Using Q�
j and Og�

je, maximization of the secrecy rate over Qs for the worst
channel mismatch Ogne in the bounded set Rgne is equivalent to

max
Qs2Qs

min
Ogne2Rgne

�2 C hnnQshH
nn

�2 C .gne C Ogne/Qs.gne C Ogne/H C .gje C Og�
je/Q

�
j .gje C Og�

je/
H
:

(4.153)

This problem is nonconvex, and the difficulty of solving it results from the inner
minimization. To solve this problem, we use the SP to transform it into a solvable
quasi-convex optimization problem and get

min
�	0;  	0; Qs2Qs

�2 C ��2gje
C  C tr.QsgH

negne/C .gje C Og�
je/Q

�
j .gje C Og�

je/
H

�2 C tr.Qsh
H
nnhnn/

;

(4.154a)

subject to

�
�I � Qs �QsgH

ne

�gneQs  

�
� 0: (4.154b)

To transform this problem into an efficiently solvable SDP form, one can use
CCT by letting � D �0

�
,  D  0

�
, and Qs D Q0

s
�

for some � > 0 and rewrite
problem (4.154) as

min
�0	0;  0	0; Q0

s2Q0
s; �>0

t; (4.155a)

subject to

8̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂:

"
�0I 
 Q0

s 
Q0
sg

H
ne


gneQ0
s  0

#
� 0;

�2� C �.gje C Og�
je/Q

�
j .gje C Og�

je/
H C �0�2gje

C tr.Q0
sg

H
negne/C  0 � t;

�2� C tr.Q0
sh

H
nnhnn/ D 1;

(4.155b)

(4.155c)

(4.155d)

where Q0
s D fQ0

s W Q0
s � 0; tr.Q0

s/ � �pmaxs g.
• Step 4: Although Ogne does not explicitly appear in (4.155), the optimal robust

covariance Q�
s depends on the “hidden” worst-case Og�

ne, which is explicitly stated
in the following problem:
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max
Ogne

.gne C Ogne/Q�
s .gne C Ogne/

H; (4.156a)

subject to kOgnek2 � "2gne
: (4.156b)

Despite the fact that this problem is nonconvex, its optimal solution can be easily
obtained because it is a trust region subproblem [54], for which strong duality
holds. Thus, using LR and SC, the worst channel mismatch for problem (4.156) is

Og�
je D

(
gneQ�

s .�I � Q�
s /
�; gne ¤ 0;

"2gne
P.Q�

s /; otherwise,
(4.157a)

where P.�/ is the operator that returns the normalized eigenvector corresponding
to the largest eigenvalue, and � is obtained by solving the SDP

max
�	0 �; (4.158a)

subject to

"
�I � Q�

s Q�
s gH

ne

gneQ�
s ���2gne

� � � gneQ�
s gH

ne

#
� 0: (4.158b)

4.3.1.2 Numerical Example

Here, we present the numerical results on the worst-case secrecy rate of the proposed
system in [6] discussed in Section 4.3.1.1 in this chapter. The system model is shown
in Fig. 4.1. We assume the legitimate transmitter and the friendly jammer have four
transmit antennas, that is, Us D Uj D 4. The channel matrices are assumed to be
composed of independent, zero-mean Gaussian random variables with unit variance.
We perform Monte Carlo simulations consisting of 500 independent trials. The
normalized background noise power is considered to be the same at the legitimate
receiver and eavesdropper, and we assume �2d D �2e D 1 dB as in [6].

In Fig. 4.2, the worst-case secrecy rate is plotted as a function of the uncertainty
bounds, "2gne

and "2gje
for different values of the maximum allowable transmit power

of the legitimate transmitter and the friendly jammer pmaxs and pmaxj , respectively.
Note that increasing the transmit power increases the worst-case secrecy rate, and
increasing the uncertainty bounds calls for more transmit power for each transmitter
to reach the higher worst-case secrecy rate.

4.3.1.3 Overview of Other Works on Robust Secure Transmission

Two full duplex sources, each with multiple transmit antennas and a single receive
antenna in the presence of an eavesdropper with a single antenna are considered in
[55]. It is assumed that CSI values are uncertain and bounded to an elliptical region.
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Fig. 4.1 System model for partial CSI feedback with bounded uncertainty
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The objective of the robust secure beamforming is to maximize the worst-case sum
secrecy rate with the transmit power constraint. Since the objective function includes
both convex and concave terms, the convex terms are transformed into linear
functions, and the problem is decomposed into four optimization subproblems.
Subsequently, using relaxation methods, including SDR, SP, and LR, the locally
optimal solution is obtained.

In [48], the robust resource allocation for a multiple-input multiple-output
(MIMO) wiretap channel is investigated where a friendly jammer is deployed to
improve secure communication. A multi-antenna transmitter establishes a secure
link with its multi-antenna receiver in the presence of a multi-antenna eavesdropper,
where a multi-antenna cooperative jammer transmits a jamming signal to the
eavesdropper to disrupt its operation. The objective is to minimize the transmit
power levels of both the legitimate transmitter and the friendly jammer subject
to the constraint on the worst-case secrecy rate. The optimization problem is not
jointly convex with respect to the transmit covariance matrices of the legitimate
transmitter and the friendly jammer. To tackle this issue, the optimization problem
is divided into two subproblems. The objective of the first subproblem is to minimize
the transmit power of the legitimate transmitter subject to the constraint on the
approximate worst-case secrecy rate. In doing so, the transmit covariance matrix of
the legitimate transmitter is designed for a fixed transmit power covariance matrix
of the jammer. This robust power minimization problem is reformulated into an
SDP using the SP. The objective of the second subproblem is to minimize the
transmit power of the friendly jammer for a fixed transmit power covariance matrix
of the legitimate transmitter, subject to the constraint on the approximate worst-case
secrecy rate. This problem is also reformulated into an SDP using the SP and DI.
To make both subproblems tractable and convex, the constraint on the worst-case
secrecy rate is approximated by a convex constraint obtained from its Taylor series
expansion. The two subproblems are iteratively solved until an acceptable solution
is obtained.

A wireless broadcast system consisting of a legitimate transmitter, a legiti-
mate information-decoding receiver, an energy-harvesting receiver, and multiple
eavesdroppers is considered in [56]. The legitimate transmitter is equipped with
multiple antennas, and each of the other nodes is equipped with a single antenna.
All CSI values are assumed to be uncertain but bounded in the worst-case sense.
The objective is to maximize the worst-case secrecy rate under the transmit
power constraint and the worst-case energy-harvesting constraint. Using relaxation
methods, including the EF, the CCT, and SP, the nonconvex optimization problem
is transformed into a SDP, which can be solved via any existing solver.

The physical-layer secrecy of an amplify-and-forward (AF) relay network that
consists of a source, multiple trusted relays, a destination, and multiple eaves-
droppers equipped with multiple antennas is considered in [57]. It is assumed that
there is no direct link between the source and the destination, that is, first the source
broadcasts its data to the relays, and then all relays transmit the confidential message
to the destination using cooperative beamformaing while employing cooperative
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jamming to confuse the eavesdroppers. The objective is to maximize the worst-case
secrecy rate subject to the total transmit power constraint for all the relays and the
individual per-relay transmit power constraint. A joint cooperative beamforming and
cooperative jamming is designed, which is robust against CSI uncertainty between
the eavesdroppers and relays. Using relaxation methods, including SDR, SP, VNTI,
the EF, and SPCA, the nonconvex problem is transformed into a sequence of convex
approximation problems. The relaxation methods guarantee convergence to a KKT
solution for the original problem.

Robust ergodic resource allocation for an uplink-secure transmission in an
OFDMA-based and decode-and-forward (DF) relay-assisted CRN consisting of
multiple secondary users (SUs) and primary users (PUs) and a secondary base
station in the presence of multiple eavesdroppers is studied in [58]. It is assumed
that all CSI values are uncertain. To control the secondary network’s interference
on PUs, two methods are proposed: (1) hard protection, by which the worst-case
average interference of the secondary network is considered as a constraint, and (2)
soft protection, by which the outage probability of PUs due to interference from
the secondary network is treated as a constraint. The objective is to maximize the
worst-case ergodic sum secrecy rate of secondary users subject to their average
transmit power constraint, channel allocation limitation, relaying constraint and the
soft or hard protection constraint. The relaying constraint means that the worst-
case average secure data rate from the secondary base station to the relay station
should be equal to the worst-case average secure data rate from the relay station
to secondary users. The optimization problems are nonconvex and intractable. To
overcome this difficulty, the constraint that each channel is assigned to at most one
user is relaxed by using the time-sharing factor. In doing so, instead of a binary
decision variable, a continuous variable between 0 and 1 (time-sharing factor)
is considered, which indicates the portion of time that each channel is assigned
to each user. In addition, for the hard protection case, an upper bound for the
ellipsoid uncertainty is obtained. To develop more tractable formulas, NA is used.
For the soft protection case, three approaches are proposed: (1) BA, (2) MI, and
(3) SPCA. The approximate optimization problems are solved by the LR method.
Simulations indicate that the iterative method has the best performance, but with
higher complexity.

Table 4.1 summarizes the aforementioned existing works on nonconvex opti-
mization problems on secure transmissions.

4.3.1.4 Robust Transmission in Relay-Assisted and Beamforming Systems

Example 1 A secondary network and a primary network are considered in [23],
where the secondary base station with Ut antennas is communicating with N SUs
and also acts as a relay for primary transmitter–receiver pairs. The channel gain
vector between a primary transmitter and the secondary base station is g1 2 C

Ut ,
and the channel gain vector between the secondary base station and the primary
receiver is g2 2 C

Ut . It is assumed that only their respective estimates, denoted
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Table 4.1 Summary of existing works on robust secure transmission: worst-case optimization

Reference SP SDR EF BT-TB CCT BT-DI LR SPCA BT-VNTI BT-NA BT-BA BT-MI

[5]
p

–
p

–
p p p

– – – – –

[6]
p

–
p

–
p p p

– – – – –

[48]
p

– –
p

–
p

– – – – – –

[55]
p p p

– – –
p

– – –

[56]
p

–
p

–
p

– – – – – – –

[57]
p p p

– – – –
p p

– – –

[58] – – – – – –
p p

–
p p p

by g1 and g2, are available. The channel error vectors for g1 and g2 are Og1 and Og2,
respectively, and are assumed to be bounded, that is, kOg1k � �1 and kOg2k � �2.
Noise at the secondary user n, the secondary base station, and the primary receiver
are assumed to be zero-mean circular complex Gaussian variables with variances
�2cn, �2cb, and �2p , respectively.

For the AF relaying scenario, the beamforming weight vectors toward the
secondary and primary receivers are wc and wp, respectively. The data rate of SU n
under the worst-case condition of error is

Rn D min
kOg1k��1

log

�
1C jwH

c hnj2
�2cn C wH

p Bnwp

�
; 8n D 1; : : : ;N; (4.159)

where hn 2 C
Ut is the channel gain between SU n and its base station, and Bn D

..g1 C Og1/ˇ hn/..g1 C Og1/ˇ hn/
H C �2cbdiagfjhn1j2; : : : ; jhnUt j2g.

The worst-case data rate of the primary receiver for AF relaying by the secondary
base station is

Rp D min
kOg1k��1; kOg2k��2

1

2
log

�
1C jwH

p .g1 C Og1/ˇ .g2 C Og2/j2
�2p C wH

p Cwp C jwH
c .g2 C Og2/j2

�
; (4.160)

where C D �2cbdiagfjg21 C Og21j2; : : : ; jg2Ut
C Og2Ut j2g. The objective is to maximize

the minimum worst-case data rate of SUs subject to the PU’s worst-case data rate,
and the constraint on the total transmit power of secondary base station, which is
formulated as

max
wc; wp

min
nD1;:::;N Rn; (4.161a)

subject to

8̂<
:̂

Rp � Rmin;

min
kOg1k��1

wH
p Awp C kwck2 � pmax;

(4.161b)

(4.161c)
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where A D G1GH
1 C�2cbI and G1 D diagfg1C Og1g. The minimum required data rate

for the PU and its maximum transmit power are Rmin and pmax. Due to uncertainty
in the objective function and constraints, this problem is intractable. To obtain its
solution, the following steps are proposed in [23].

Step 1: To reduce the computational complexity, the TI and Cauchy–Schwarz
inequality are used. The worst-case data rate for SU n in (4.159) is approximated
by

QRn D log

�
1C jwH

c hnj2
�2cn C maxkOg1k��1 wH

p Bnwp

�
: (4.162)

By applying the TI, jwH
p .g1 C Og1/ˇ hn/j is upper bounded to

jwH
p .g1 C Og1/ˇ hn/j � jwH

p .g1 ˇ hn/j C jwH
p .Og1 ˇ hn/j: (4.163)

Since kOg1k � �1, by applying Cauchy–Schwarz inequality, the upper bound of
jwH

p .Og1 ˇ hn/j is

jwH
p .Og1 ˇ hn/j � kwH

p kkOg1 ˇ hnk � �1kwH
p kkhnk: (4.164)

Let

max
kOg1k��1

jwH
p .g1 C Og1/ˇ hn/j2 � jwH

p .g1 ˇ hn/j2 C 2jwH
p .Og1 ˇ hn/j�1kwpkkhnk

C �21kwH
p k2khnk2 D wH

p Fnwp; (4.165a)

where Fn D .g1 ˇ hn/.g1 ˇ hn/
H C �1

�
�1khnk2 C 2khnk.g1 ˇ hn/

�
I. Using (4.165),

we can simplify (4.162) to

ORn D log

�
1C jwH

c hnj2
�2cn C wH

p Hnwp

�
; 8n D 1; : : : ;N; (4.166)

where Hn D Fn C �2cbdiagfjhn1j2; : : : ; jhnUt j2g.

Step 2: Using Cauchy–Schwarz inequality and kOg1k � �1, the total transmit
power constraint is replaced by

wH
p Awp C kwck2 � wH

p
QAwp C kwck2 � pmax; (4.167)

where QA D diagfg11 C �1; : : : ; g1Ut
C �1g.

Step 3: The worst-case data rate of the PU can be relaxed as

QRp D 1

2
log

�
1C minkOg1k��1; kOg2k��2 jwH

p .g1 C Og1/ˇ .g2 C Og2/j2
�2p C maxkOg2k��2 wH

p Cwp C maxkOg2k��2; jwH
c .g2 C Og2/j2

�
:

(4.168)
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Similar to the relaxation of the SU’s worst-case data rate, the upper bound of
maxkOg2k��2; jwH

c

�
g2 C Og2

�j2 is

max
kOg2k��2;

jwH
c .g2C Og2/j2 � jwH

c g2j2C�2.2kg2kC�2/kwck2 D wH
c M1wc; (4.169)

where M1 D g2g
H
2 C �22.1C 2

q
g2g

H
2 /. Similarly, the numerator of (4.168) is lower

bounded to

min
kOg1k��1; kOg2k��2

jwH
p .g1 C Og1/ˇ .g2 C Og2/j2 � wH

p Lwp; (4.170)

where

L D �
�2kg1k � �1kg2k � .�2�1/2 � kg1 ˇ g2k.�2kg1k � �1kg2k � �1�2/

�
I

C .g1 ˇ g2/.g1 ˇ g2/
H: (4.171a)

In a similar manner, maxkOg2k��2; jwH
p .g2 C Og2/j2 is upper bounded to

max
kOg2k��2;

jwH
p .g2 C Og2/j2 � wH

p M2wp; (4.172)

where M2 D diagfg21C�2; : : : ; g2Ut
C�2g. Substituting (4.169), (4.170), and (4.172)

into (4.168), we rewrite the approximate PU’s worst-case data rate:

ORp D log

�
1C wH

p Lwp

�2p C wH
p M2wp C wH

c M1wc

�
: (4.173)

Step 4: From the preceding step, problem (4.161) is approximated by

max
wc;wp

min
nD1;:::;N

ORn; (4.174a)

subject to

8<
:

ORp � Rmin;

wH
p

QAwp C kwck2 � pmax;

(4.174b)

(4.174c)

which is still nonconvex. To transform problem (4.174) into a convex one, we
use the SDR and epigraph methods and get

max
X; Y

t; (4.175a)
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subject to

8̂̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂̂:

.2t � 1/.�2cn C tr.HnY// � tr.hnhH
n X/;

tr.X/C tr.M1Y/ � pmax;

.22Rmin � 1/.�2p C tr.M2Y/C tr.M1X// � tr.LY/

X � 0; rank.X/ D 1;

Y � 0; rank.Y/ D 1;

(4.175b)

(4.175c)

(4.175d)

(4.175e)

(4.175f)

where X D wcwH
c and Y D wpwH

p . Following the same approach as in
Section 4.2.1.5, problem (4.175) can be transformed into SDP form.

Example 2 A system consisting of a source, a destination, and Nr AF relays
is studied in [8]. It is assumed that there is no direct link between the source
and the destination, and relay nodes cooperate with each other to produce virtual
beamforming to the destination, where !r is the complex coefficient of the virtual
beamforming for relay r. The channel gain between the source and relay r is hr, and
the channel gain between relay r and the destination is h0

r. It is assumed that the exact
value of h is available to the source, but h0 is uncertain. In practice, h0 is estimated
by the relays and sent to the source. The uncertain parameter is modeled by

h0 D h
0 C Oh0; (4.176)

where h
0 D Œh

0
1; : : : ; h

0
Nr
�T is the estimated CSI and Oh0 D ŒOh0

1; : : : ;
Oh0

Nr
� is the error

vector. The CSI’s uncertainty set is

Rh0 D fOh0 2 C
Nr jk Oh0k2 � Nr�

2
h0g; (4.177)

where �h0 is a known constant. The worst-case SINR at the destination is

	 D jPNr
rD1 h0

rhrlrwrj2psPNr
rD1 jh0

rj2jlrj2jwrj2�2r C �20
; (4.178)

where ps is the transmit power of the source, �20 and �2r are the noise power at the
destination and at relay r, respectively, and lr is the scaling factor, obtained by

lr D .jhrj2ps C �2r /

1=2: (4.179)

The objective is to maximize the worst-case SINR at the receiver subject to the
individual relays’ power constraints, that is,

max
jwj2�pmax

min
Oh02Rh0

	; (4.180)
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where pmax D Œpmax1 ; : : : ; pmaxNr
� is the vector of maximum allowable transmit power

levels of relays. Using the epigraph method, problem (4.180) can be rewritten as

max
jwj2�pmax

t; (4.181a)

subject to min
Oh02Rh0

jPNr
rD1 h0

rhrlrwrj2psPM
rD1 jh0

rj2jlrj2jwrj2�2r C �20
� t: (4.181b)

Since (4.181) is quasi-convex, for some given t it can be solved by solving the
following problem:

min
jwj2�pmax

kwk2 (4.182a)

subject to min
Oh02Rh0

jPNr
rD1 h0

rhrlrwrj2psPNr
rD1 jh0

rj2jlrj2jwrj2�2r C �20
� t: (4.182b)

Let Qwr D wrhrlr and H D diagf 1

jh1j2l21
; : : : ; 1

jhNr j2l2Nr
g. Problem (4.182) is equivalent to

min
Qw2CNr

QwHH Qw; (4.183a)

subject to

8̂̂
<̂
ˆ̂̂:

min
Oh02Rh0

jPNr
rD1.h

0
r C Oh0

r/ Qwrj2psPNr
rD1

jh0

rCOh0
rj2

jhr j2 j Qwrj2�2r C �20

� t;

pmaxr jhrj2jlrj2 � j Qwrj2; 8r:

(4.183b)

(4.183c)

To obtain the optimal solution for (4.183), we use the SP and SDR methods. In
doing so, we rewrite constraint (4.183b) as

.h
0 C Oh0/HQ.h

0 C Oh0/ � 0; 8Oh0 2 Rh0 ; (4.184)

where

Q D psvvH � tdiag

� jv1j2�21
jh1j2 ; : : : ;

jvNr j2�2Nr

jhNr j2
�
; (4.185)

and v is the element-wise phase-shifted version of Qw such that Qwr D vr.h
0

r/
�

jh0

rj
,

Qh0 D jh0j is the real-valued estimated CSI, and Qh D
�

Oh0
1.h

0

1/
�

j.h0

1/
�j ; : : : ;

Oh0
Nr
.h

0

Nr /
�

j.h0

Nr /
�j

�T

is

an element-wise phase-shifted CSI uncertainty vector.
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Using the SP, we can express (4.184) equivalently by

�
. Qh0/TQ Qh0 � t�20 � s�2r �

2
h0 . Qh0/TQ

Q Qh0 Q C sI

�
� 0; 9s � 0; (4.186)

and using the SDR method, we can transform (4.183) into SDP form:

min
V�0;s

tr.VG/; (4.187a)

subject to

8̂̂
<
ˆ̂:

�
. Qh0/TQ Qh0 � t�20 � sNr�

2
h .

Qh0/TQ
Q Qh0 Q C sI

�
� 0;

pmaxr jhrj2jlrj2 � ŒV�r;r; 8r;

(4.187b)

(4.187c)

where V D vvH, and ŒV�r;r is the .r; r/th element of V.
Similarly, using the SP and SDR relaxation, the worst-case SINR maximization

problem (4.181) is converted to SDP form:

max
V�0;s

t; (4.188a)

subject to

8̂̂
<
ˆ̂:

�
. Qh2/TQ Qh0 � t�20 � sNr�

2
h0 . Qh0/TQ

Q Qh0 Q C sI

�
� 0;

pmaxr jhrj2jlrj2 � ŒV�r;r 8r:

(4.188b)

(4.188c)

The optimal solution to (4.188) can be efficiently obtained via the iterative algorithm
that utilizes bisection search. For more details, the interested reader is referred to
Section 2 in Chapter 4 in [1].

In [8], Theorem 1, it is shown that when Qh2 �
q

Nr�
2
h01, problem (4.187) always

has a rank 1 optimal solution. In this case, the optimal weight at the rth relay is

wr D vr.h
0
rhr/

�

lrjh0
rhrj

: (4.189)

4.3.1.5 Overview of Other Works on Robust Transmission
in Relay-Assisted and Beamforming Systems

A wireless network consisting of multiple sources and multiple destinations that
communicate via multiple relays is studied in [46]. The objective is to minimize
the total transmit power of relays subject to the SINR constraint at destinations,
where relaying coefficients are the optimization variables. It is assumed that all the
CSIs are imperfect, modeled by ellipsoid uncertainty. The optimization problem
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is nonconvex and intractable, and three relaxation methods, SDR, BTs, and SP, are
utilized to make the problem tractable and convex. The upper bound on the objective
function and the lower bounds on the achievable SINRs are derived, which are used
to relax the SINR constraint via the SP to transform the approximated optimization
problem into SDP form. Subsequently, randomization is utilized to obtain the “best”
rank 1 solution.

A wireless network with multiple single-antenna transmitters and receivers
supported by multiple MIMO relays is studied in [59]. In doing so, two optimization
problems are considered: (1) minimizing the total transmit power of the relays while
satisfying SINR requirements for all receivers and (2) maximizing the minimum of
SINRs in all receivers while satisfying the transmit power constraint of each relay.
It is assumed that the covariance matrices of the channels between MIMO relays
and receivers are uncertain, modeled by the worst-case method. It is shown that the
robust optimization problems are nonconvex but can be solved via the relaxation
methods, including the SDR, LR, EF, and Cauchy–Schwarz inequality.

Robust relay beamforming for two-way relay networks is studied in [60]. It is
assumed that two nodes communicate via multiple two-way relays, and the objective
is to maximize the minimum worst-case SINR of the two nodes subject to the
constraint on the total transmit power of relays. The problem is nonconvex and
intractable and is decomposed into a series of robust relay power minimization prob-
lems using the bisection search [1]. Subsequently, relaxation methods, including the
SP, EF, and SDR, are utilized to transform each power minimization problem into
SDP form. In this manner, a suboptimal solution to the original problem is efficiently
obtained.

Resource allocation under channel uncertainty for relay-aided device-to-device
(D2D) communication underlaying LTE-A cellular networks is studied in [61]. It is
assumed that there are multiple fixed relay nodes by which the traffic of D2D and
cellular users are transmitted. Relay selection is done at higher layers, and channels
are exclusively assigned to relays using a binary decision variable. The objective
is to maximize the minimum achievable rate over two hops for relay-assisted D2D
communication while maintaining the QoS (i.e., the minimum rate) requirement for
cellular and D2D users under the total transmit power constraint for relays and users,
satisfying the constraint on channel allocation, and also maintaining the interference
caused in each relay below a given threshold. The side information, including
channel gains, and interference levels are uncertain, modeled by the worst-case
method. The optimization problem is a mixed-integer nonlinear program (MINLP),
which is computationally intractable. A common approach to solving such problems
is to relax the constraint on the exclusivity of channels for each user by introducing
the time-sharing factor. In this way, the binary decision variable is replaced by a
continuous variable between 0 and 1, which denotes the portion of time that each
channel is assigned to each user. To obtain a more tractable formula, NA is applied.
The relaxed optimization problem satisfies the time-sharing constraint, and the
solution of the problem relaxed by the dual decomposition method is asymptotically
optimal.
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Table 4.2 Summary of existing works on robust relay-assisted and beamforming systems

Reference SP SDR EF LR BT-TI
BT-Cauchy–Schwarz
inequality BT-TTMI BT-NA

[8]
p p p

– – – – –

[23] –
p p

–
p p

– –

[46]
p p p

– – –
p

–

[59] –
p p p

–
p

– –

[60]
p p p

– – – – –

[61] – – –
p

– – –
p

In Table 4.2, the aforementioned existing works on robust transmission in relay-
assisted and beamforming systems are summarized. Interestingly, epigraph form
(EF) and SDR are the most widely used methods in the literature.

4.3.1.6 Robust Transmission in Cognitive Radio Networks

Example 1 The downlink transmission in CRNs where the secondary base station
is equipped with multiple antennas is studied in [7]. The objective is to maximize the
minimum SINR for SUs while the interference caused by the secondary base station
on PUs is kept below a given threshold. Uncertain parameters include channel gains
between the secondary base station and users (both primary and secondary). The
number of PUs is Q, and the number of SUs is N. The secondary base station has Ut

antennas, and each SU has only one antenna. The instantaneous SINR for SU n is

SINRn D wH
n .hnhH

n /wn

�20 C
NP

mD1; m¤n
wH

m.hnhH
n /wm

; (4.190)

where wn 2 C
1�Ut is the transmit beamforming vector of user n, and hn is the

channel between SU n and the secondary base station.
The constraint on interference for PU q is

NX
nD1

jgH
q wnj2 � ITq; 8q D 1; : : : ;Q; (4.191)

where gq is the channel gain between the secondary base station and PU q, and ITq

is the maximum allowable interference on PUs.
Assuming that the secondary base station has neither perfect CSI nor statistical

knowledge of the uncertainty, in the worst-case robust optimization, we have

hn D hn C Ohn; 8n; (4.192)

gq D gq C Ogq; 8q; (4.193)
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where hn and gq are the exact CSI by the secondary base station, and Ohn and Ogq are
the CSI errors that are bounded to ellipsoid regions, that is,

Rhn D fOhn W OhH
n Cn Ohn � 1g; 8n; (4.194)

Rgq D fOgq W OgH
q Dq Ogq � 1g; 8q; (4.195)

where Cn � 0 and Dq � 0 determine the quality of the CSI and are assumed to be
known. The CSI is perfect if Cn and Dq approach infinity and the CSI is the worst if
they are zero [7].

The objective is to maximize the minimum of the worst-case SINR for SUs
subject to constraints on the worst-case interference on PUs and the constraint on
the transmit power of the secondary base station. By utilizing the EF, the relaxed
worst-case optimization problem is

max
fwn;8ng

s; (4.196a)

subject to

8̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
:

NX
nD1

kwnk2 � pmax;

NX
nD1

jgH
q wnj2 � ITq; 8Ogq 2 Rgq ; q D 1; : : : ;Q;

wH
n .hnhH

n /wn

�20 C
NP

mD1;m¤n
wH

m.hnhH
n /wm

	 s; 8Ohn 2 Rhn ; n D 1; : : : ;N:

(4.196b)

(4.196c)

(4.196d)

For further simplification, let Wn D wnwH
n , T D

NP
nD1

Wn, and Qn D Wn �

s
NP

mD1;m¤n
Wm for all PUs and SUs. Problem (4.196) can be written

max
fWn;8ng

s; (4.197a)

subject to

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
:̂

tr.T/ � pmax;

tr.TgqgH
q / � ITq; 8Ogq 2 Rgq ; q D 1; : : : ;Q;

tr.QnhnhH
n / � s�20 ; 8Ohn 2 Rhn ; n D 1; : : : ;N;

rank.Wn/ D 1; 8n D 1; : : : ;N:

(4.197b)

(4.197c)

(4.197d)

(4.197e)
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Now, using the SP, we can express problem (4.197) equivalently as

max
fTn; un; 8ng; frq; 8qg

s (4.198a)

subject to

8̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂:

tr.T/ � pmax;
"


gH
q Tgq C ITq 
 rq 
gH

l T

TgH

q 
T C rqDq

#
� 0; 9rq 	 0; 8q;

"
h

H
n Qnhn 
 s�20 
 un h

H
n Qn

Qnh
H
n Qn C unCn

#
� 0; 9un 	 0; 8n;

rank.Wn/ D 1; 8n D 1; : : : ;N:

(4.198b)

(4.198c)

(4.198d)

(4.198e)

Due to constraint (4.198e), problem (4.198) is still nonconvex but can be trans-
formed into a quasi-convex problem by using SDR.

Example 2 In [62], a robust energy-efficient algorithm for an underlay CRN
consisting of multiple SUs and PUs in multiple bands with uncertainty in CSI
values is proposed. The worst-case optimization problem belongs to maxi-min
problems with infinite constraints, which are nontrivial to solve. This is because the
outer-maximization problem is nonconvex, and the inner-minimization problem is
concave, which is NP-hard in general. To solve this problem, the infinite constraint
is transformed into its equivalent convex constraint to handle uncertainty in channel
gains from the secondary base station to PUs, and a closed-formed solution for
the uncertainty in interference caused by the primary base station on SUs is
obtained. Subsequently, the outer-maximization problem is solved via the fractional
programming technique, and the inner-minimization problem is solved using the
Lagrange dual method, leading to a globally optimal solution.

In this setup, the downlink of the secondary network consisting of one secondary
base station and N SUs that coexist with Q PUs over K channels is studied. The
channel gain from the secondary base station to SU n on channel k is hk

n. SU n
occupies Kn channels, and hn D Œh1n; : : : ; h

Kn
n �

T is the channel gain vector between
the secondary base station and SU n. The power allocation vector for the secondary
base station is p D Œp1; : : : ; pK �

T, where the element pk is the transmit power of the
secondary base station on channel k. The SINR of SU n on sub-channel k is

� k
n D pkhk

n

Ik C �2
; 8n; (4.199)

where Ik is the aggregated interference caused by all primary base stations on
channel k, and �2 is the noise power at the SU’s receiver.

Let PC and � denote the constant circuit power consumption and the amplifier
coefficient for the cognitive (secondary) base station, respectively. The total power

dissipation by the cognitive base station is PC C�
KP

kD1
pk. The vector of channel gains
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between the cognitive base station and PU q is gq D Œg1q; : : : ; g
K
q �

T, where gk
q is the

channel gain between the cognitive base station and PU q on channel k. The channel
gain between the cognitive base station and SU n is modeled by hn D hnC Ohn, where
hn is the exact value and Ohn the error in the channel gain. The uncertainty region is
modeled by

Rhn D fhnjkWn.hn � hn/k � �hng; (4.200)

where Wn is an invertible R
Kn�Kn weighting matrix, and �hn is the bound on the

uncertainty region.
Similarly, the uncertainty region of gq is modeled by

Rgq D fgqjkMq.gq � gq/k � �gqg; (4.201)

where Mq is an invertible R
K�K weighting matrix, and �gq is the bound on the

uncertainty region. Also, gq is the exact value and Ogq is the error in the channel
gain. The interference from the primary base station on the SU in channel k is Ik,
and its uncertainty region is modeled by

RIk D fIkjkzk.Ik � Ik/k � �Ik g; (4.202)

where zk and �Ik are the weight factor and the bound on the uncertainty region,
respectively, Ik is the exact value, and OIk is the error in Ik.

Now, the robust energy-efficient SINR maximization problem is

max
p

min
hn;Ik

NP
nD1

KnP
kD1

log.1C � k
n /

PC C �
KP

kD1
pk

; (4.203a)

subject to

8̂̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂̂:

KX
kD1

pk � pmax;

pT � gq � ITq; 8gq 2 Rgq ; q D 1; : : : ;Q;

hn 2 Rhn ; 8n D 1; : : : ;N;

Ik 2 RIk ; 8k;

(4.203b)

(4.203c)

(4.203d)

(4.203e)

where ITq is the allowable interference threshold for PU q, and pmax is the maximum
transmit power of the secondary transmitter over all K channels.

Due to the existence of an infinite number of constraints in (4.203c) and (4.203d),
problem (4.203) is a semi-infinite programming problem, which is difficult to solve.
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To tackle this issue, the infinite constraints are replaced by their equivalent convex
constraints. To satisfy constraint (4.203b) 8gq 2 Rgq , it is rewritten as

max
gq2Rgq

pT � gq � ITq;

which can be stated by utilizing the protection function as

max
gq2Rgq

pT � gq D pT � gq C �gq max
gq2fgq j k 1

�gq
Mq.gq
gq/k2�1g

pT �
�
1

�gq

M
1
q Mq.gq � gq/

�

D pT � gq C �gqkM
1
q � pk�

2 ; (4.204a)

where k � k� is the dual norm of k � k. For more details, the interested reader is
referred to Section 1.3 in Chapter 1 in this book. From (4.204), constraint (4.203b)
is equivalent to

pT � gq C �gqkM
1
q � pk�

2 � ITq; (4.205)

which is a convex constraint since the dual norm is a convex function, as was
discussed in Chapter 1. Similarly to tackling the computational complexity of
considering Ik, we use the protection function to rewrite the inner-minimization
problem (4.203) as

I�
k D arg min

Ik2RIk

NX
nD1

KnX
kD1

log.1C � k
n / D arg min

Ik2RIk

hk
npk

Ik�2
D arg max

Ik2RIk

Ik D Ik C �Ik

zk
;

(4.206)

max
p

min
hn

NP
nD1

KnP
kD1

log
	
1C zkpkhk

n

zkIkCzk�2C�Ik




PC C �
KP

kD1
pk

; (4.207a)

subject to

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
:̂

pT � gq C �gqk2M
1
q � pk�

2 � ITq;

hn 2 Rhn ; 8n D 1; : : : ;N;

KX
kD1

pk � pmax:

(4.207b)

(4.207c)

(4.207d)

Note that the preceding optimization problem is still nonconvex. To address this
issue, [62] focuses on the important special case of Kn D 1, where a closed-
form solution for hn uncertainty is derived. Subsequently, problem (4.207) is
efficiently solved using the fractional programming method, which was explained
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in Section 4.2.1.7 in this chapter. In doing so, it is assumed that each SU occupies
only one channel for its own transmission, that is, we have at most N D K SUs.
Without loss of generality, it is also assumed that SU n occupies channel n. Now,
the inner-minimization problem in (4.207) is expressed as

min
hn

KP
kD1

log

�
1C zkpkhk

n

zkIkCzk�2C�Ik

�

PC C �
KP

kD1
pk

; (4.208a)

subject to hn 2 Rhn : (4.208b)

Since uncertainties in hn among all channels are independent, problem (4.208) can
be decomposed into multiple subproblems. The subproblem for SU n is

min
hn

log

�
1C zkpkhn

k

zkIkCzk�2C�Ik

�

PC C �
KP

kD1
pk

; (4.209a)

subject to hn 2 Rhn ; (4.209b)

where the uncertainty region for hn is Rhn D fhnjkwn.hn � hn/k2 � �hng; 8n. The
optimal solution h�

n to problem (4.208) is

h�
n D arg min

hn2Rhn

log

�
1C zkpkhk

n

zkIk C zk�2 C �Ik

�
D arg min

hn2Rhn

zkpkhk
n

zkIk C zk�2 C �Ik

D arg min
hn2Rhn

hn D hn � �hn

wn
:

Substituting h�
n into (4.207), we get

max
p

KP
kD1

log

�
1C zkpk.wkhk
�hk /

wk.zkIkCzk�2C�Ik /

�

PC C �
KP

kD1
pk

; (4.211a)

subject to

8̂̂
<̂
ˆ̂̂:

pT � Ogq C �gqkM
1
q � pk� � ITq;

KX
kD1

pk � Pmax:

(4.211b)

(4.211c)
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Since both constraints (4.211b) and (4.211c) are convex and the objective func-
tion has a fractional form, problem (4.211) is a fractional programming problem.
Therefore, using the nonlinear fractional programming relaxation method, which
was explained in Section 4.2.1.7 in this chapter, we can obtain the optimal solution.

The proposed approach for Kn D 1 can be extended to the general case where
each SU can occupy multiple channels, provided that uncertainties in hn for all Kn

channels are independent. In this case, the uncertainty region for each hk
n in hn is

Rhk
n

D fhn
njjwk

n.h
k
n � h

k
n/k2 � �hk

n
g; k D 1; : : : ;Kn; n D 1; : : : ;N. Similarly,

the approach to tackling uncertainties in gq;8q and Ik;8k in (4.204) and (4.206)
can be used to tackle uncertainties in gq;8q and Ik for the general case Kn > 1.
Optimization problem (4.207) in the general case is quite different from that in the
important special case of Kn D 1. This is because the variables p and hn in (4.207)
are coupled with each other in the general case, which makes problem (4.207)
nontrivial. To tackle this issue, an alternative iterative algorithm is proposed in
which the optimal value of p for a given feasible value of hn is derived, which is the
solution to the outer-maximization problem in (4.207). Subsequently, the optimal
value of hn is obtained for the optimal value of p in the outer-maximization problem
in the previous iteration, which is the solution to the inner-minimization problem
in (4.207). These steps are interchangeably repeated until either the difference of
the optimal energy efficiency values in the outer-maximization problem between
two subsequent iterations becomes less than a predefined threshold or the maximum
number of iterations is reached.

Example 3 The downlink of a CRN with K SUs and one secondary base station
coexisting with Q PUs is studied in [24], where the CSI values are uncertain,
modeled by the worst-case method. Both PUs and SUs are equipped with single
antennas, and the secondary base station has U transmit antennas. The channel gain
from the secondary base station to each SU n is modeled by a complex-valued vector
hn 2 C

U�1, which is uncertain, whose exact value is hn. The uncertainty region is
modeled by

Rhn D fhn j kank2 � �hng; n D 1; : : : ;N; (4.212)

where an D hn � hn, and �hn is a known constant.
The channel gain from the secondary base station to PU q is also a complex-

valued vector gq 2 C
U�1, assumed to be uncertain, whose exact value is gq. The

uncertainty region for gq is

Rgq D fgq j kbqk � �gqg; q D 1; : : : ;Q; (4.213)

where bq D gq � gq, and �gq is a known constant.
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The SINR for SU n is

SINRn D jwH
n hnj2

�2n C
NP

iD1; i¤n
jwH

i hnj2
; (4.214)

where �2 is the noise power and wn 2 C
U�1 the precoding weight vector for SU n.

It is assumed that the CRN is far from the primary transmitters, that is, interference
on SU n from the primary network is much less than the interference from other
SUs and is treated as noise.

The objective is to minimize the transmit power of the secondary base station
while simultaneously targeting a lower bound on the received SINR for the SUs
and imposing an upper limit on the interference level on PUs. Mathematically, this
problem is

min
wn;nD1;:::;N

NX
nD1

kwnk2; (4.215a)

subject to

8̂̂
<̂
ˆ̂̂:

SINRn 	 �n; 8hn 2 Rhn ; n D 1; : : : ;N;

NX
nD1

jwH
n gqj2 � ITq; 8gq 2 Rgq ; q D 1; : : : ;Q;

(4.215b)

(4.215c)

where �n is the minimum required SINR of SU n, and ITq is the maximum allowable
interference level on PU q by the secondary base station.

Due to the existence of an infinite number of constraints in (4.215b) and (4.215c),
the preceding problem is intractable. To deal with this issue,the worst-case approach
is adopted, where for the worst channel realizations, the minimum and maximum
values of the SINR and interference are considered. In this way, (4.215) is
reformulated as

min
wn; nD1;:::;N

NX
nD1

kwnk2; (4.216a)

subject to

8̂̂
ˆ̂<
ˆ̂̂̂:

min
hn2Rhn

SINRn � �n; 8n D 1; : : : ;N;

max
gq2Rgq

NX
nD1

jwH
n gqj2 � ITq; 8q D 1; : : : ;Q:

(4.216b)

(4.216c)

It is mathematically appealing to express jwH
n hnj2 in quadratic form as

jwH
n hnj2 D wH

n .hn C an/.hn C an/
Hwn D wH

n .Hn C An/wn; (4.217)
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where Hn D hnh
H
n and An D hnaH

n C anh
H
n C anaH

n . Using the TI and Cauchy–
Schwarz inequality, we obtain an upper bound on kAnk, denoted by �n:

kAnk � khnaH
n k C kanh

H
n k C kanaH

n k � khnkkaH
n k C kankkh

H
n k C kank2

(4.218a)

D �2hn
C 2�hnkhnk D �n: (4.218b)

The identity xAnxH D tr.AnxxH/ is used to simplify the quadratic expression to

jwH
n hnj2 D tr..Hn C An/Wn/; (4.219)

where Wn D wnwH
n . Using a similar formulation, jwH

n gqj2 is

jwH
n gqj2 D tr..Gq C Bq/Wn/; (4.220)

where Gq D gqgH
q , Bq is the norm-bounded uncertainty matrix Bq � �q, and �q D

�2gq
C 2�gqkgqk.
Using the preceding expressions, we rewrite problem (4.216) as

min
Wn; nD1;:::;N

NX
nD1

tr.Wn/; (4.221a)

subject to

8̂̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂:

min
kAnk��n

tr..Hn C An/Wn/

�2n C
NP

iD1; i¤n
tr..Hn C An/Wi/

	 �n; 8n D 1; : : : ;N;

max
kBqk��q

NX
nD1

tr..Gq C Bq/Wn/ � ITq; 8q D 1; : : : ;Q:

(4.221b)

(4.221c)

In [24], three approaches are proposed for solving this problem. In the first
approach, the loose upper and lower bounds on the terms appearing in the numerator
and denominator of the worst-case SINR are obtained, which leads to an SDP
optimization problem. In the second approach, the exact upper and lower bounds
on the aforementioned terms are obtained, leading to a non-SDP but convex
optimization problem, which can be efficiently solved. In the third approach, an
exact minimum of the SINR is obtained, leading to a convex optimization problem.
In what follows, the aforementioned three approaches are described.

Loosely Bounded Robust Solution To obtain an approximate solution to (4.221),
constraint (4.221b) is approximated as

min
kAnk��n

tr..Hn C An/Wn/� �n

NX
iD1;i¤n

max
kAnk��n

tr..Hn C An/Wi/ � �n�
2
n : (4.222)
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The minimization and maximization in (4.222) can be approximated as

tr..Hn � I�n/Wn/ � �n

NX
iD1;i¤n

tr..Hn C I�n/Wi/ � �n�
2
n : (4.223)

Similarly, constraint (4.221c) is approximated as

NX
nD1

tr..Gq C I�gq/Wn/ � ITq: (4.224)

Using the preceding expressions, we rewrite (4.221):

min
Wn; nD1;:::;N

NX
nD1

tr.Wn/; (4.225a)

subject to

8̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂:

tr..Hn 
 I�n/Wn/


 �n

NX
iD1;i¤n

tr..Hn C I�n/Wi/ 	 �n�
2
n ; 8n D 1; : : : ;N;

NX
nD1

tr..Gq C I�gq /Wn/ � ITq; 8q D 1; : : : ;Q;

Wn D WH
n ; 8n D 1; : : : ;N;

Wn � 0; 8n D 1; : : : ;N:

(4.225b)

(4.225c)

(4.225d)

(4.225e)

Using the SDR method, we can obtain a locally optimal solution for (4.225a).

Strictly Bounded Robust Solution To find tight approximations for con-
straints (4.221b) and (4.221c), LR is used in [24] to find the exact maximum
and exact minimum for each term. The maximum and minimum values of
tr..Hn C An/Wn/ with respect to An are

Amax
n D �n

WH
n

kWnk ; Amin
n D ��n

WH
n

kWnk : (4.226)

Using the preceding expressions, constraint (4.221b) is approximated by

tr

�
Hn

�
Wn � �n

NX
iD1;i¤n

Wi

��
� �n

�
kWnk C �n

NX
iD1;i¤n

kWik
�

� �n�
2
n : (4.227)
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Similarly, constraint (4.221c) is approximated by

NX
nD1

�
tr.GqWn/C �gqkWnk

�
� ITq: (4.228)

Finally, the main problem is approximated by

min
Wn; nD1;:::;N

NX
nD1

tr.Wn/; (4.229a)

subject to

8̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
:

tr

�
Hn

�
Wn 
 �n

NX
iD1;i¤n

Wi

��

 �n

�
kWnk

C �n

NX
iD1;i¤n

kWik
�

	 �n�
2
n ; 8n D 1; : : : ;N;

NX
nD1

�
tr.GqWn/C �gq kWnk

�
� ITq; 8q D 1; : : : ;Q;

Wn D WH
n ; 8n D 1; : : : ;N;

Wn � 0; 8n D 1; : : : ;N:

(4.229b)

(4.229c)

(4.229d)

(4.229e)

This problem is convex and can be solved using any standard numerical optimization
package such as CVX.

Exact Robust Method The aforementioned two approaches consider the problem
of minimizing the uncertain SINR using two conservative approaches, while
in this method, the worst-case channel realization is considered instead. Here,
constraint (4.221b) is written

min
kAnk��n

�
tr..Hn C An/Wn/ � �n

NX
iD1;i¤n

tr..Hn C An/Wi/

�
� �n�

2
n : (4.230)

Using LR, the solution to the preceding minimization problem is

Amin
n D ��n

�
Wn � �n

NP
iD1;i¤n

Wi

�H

kWn � �n

NP
iD1;i¤n

Wik
: (4.231)



4.3 Application of Relaxation Methods for Robust Resource Allocation 211

Finally, the main problem is reformulated as

min
Wn; nD1;:::;N

NX
nD1

tr.Wn/; (4.232a)

subject to

8̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
:

tr

�
Hn

�
Wn 
 �n

NX
iD1;i¤n

Wi

��

 �nkWn


 �n

NX
iD1;i¤n

Wik 	 �n�
2
n ; 8n D 1; : : : ;N;

NX
nD1

�
tr.GqWn/C �gq kWnk

�
� ITq; 8q D 1; : : : ;Q;

Wn D WH
n ; 8n D 1; : : : ;N;

Wn � 0; 8n D 1; : : : ;N:

(4.232b)

(4.232c)

(4.232d)

(4.232e)

Similar to (4.229), this problem is convex and can be solved using any existing
problem solvers such as CVX.

4.3.1.7 Overview of Other Works on Robust Transmission in Cognitive
Radio Networks

Robust ergodic resource allocation for the uplink in an OFDMA-based CRN
consisting of multiple SUs and PUs and a secondary base station is studied in [63],
where all CSI values are assumed to be uncertain. In doing so, two problems are
considered. In the first problem, the objective is to maximize the worst-case ergodic
sum rate of SUs subject to a constraint on their average transmit power, a constraint
on the worst-case average interference from SUs on PUs, and a constraint on
channel allocation. In the second problem, the average-based constraints in the first
problem are replaced by their corresponding outage probability constraints. The first
optimization problem is nonconvex and intractable. To reduce the computational
complexity and transform the problem into a tractable and convex one, the following
steps are taken. The constraint on channel exclusivity for each user is relaxed using
the time-sharing factor. In doing so, the binary decision variable is replaced by a
continuous variable between 0 and 1, which indicates the portion of time that each
channel is assigned to each user. Second, to relax the constraint on the worst-case
average interference, two approaches are proposed: (1) a method based on BA and
(2) a method utilizing an upper bound on the outage probability using the ellipsoid
uncertainty region. Since the Bernstein method gives a tight approximation, its
performance is better than the second approach. Third, to obtain more tractable
formulas for the two proposed approaches, NA is applied. Finally, the approximated
optimization problems are solved via LR. For the second problem, similar steps
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Table 4.3 Summary of existing works on robust transmission in cognitive radio networks

Reference SP SDR NLFP LR BT-TI

BT-Cauchy–
Schwarz
inequality EF BT-NA BT-BA SPCA BT-MI

[7]
p p

–
p

– –
p

– – – –

[24] –
p

–
p p p

– – – – –

[34] – – –
p

– – –
p p

– –

[62] – –
p p

– – – – – –

[63] – – –
p

– – –
p p p p

are proposed, except that in the second step the following three approaches are
proposed: (1) BT based on MI, (2) BT based on BAs, and (3) an iterative approach
based on SPCA. Similar to the first problem, the final approximated optimization
problems are solved via LR. Simulations show that the third approach has better
performance, but its computational complexity is higher.

In [34], robust resource allocation for the uplink of an OFDMA-based CRN
is investigated. The objective is to maximize the weighted sum rate subject to
constraints on channel assignment, the limit on the transmit power of SUs, and
the outage probability of PUs due to interference from SUs. It is assumed that CSI
values between the primary and secondary networks are uncertain and the respective
error is bounded. Since the problem is nonconvex and intractable, three relaxation
methods, NA, BA, and LR, are used to transform the problem into a convex and
tractable one.

Table 4.3 summarizes the aforementioned existing works on nonconvex opti-
mization problems on robust transmission in CRNs.

4.3.2 Partial CSI Feedback: Stochastic Uncertainty

We now present the application of relaxation methods for stochastic robust opti-
mization problems, where probabilistic constraints often have no closed-form
expressions and in general are not convex, which makes the outage-based con-
strained problem hard to solve.

4.3.2.1 Robust Transmission in Relay-Assisted and Beamforming Systems

Example 1 The stochastic robust downlink multiuser MIMO transceiver design
with arbitrary distribution of channel uncertainty is studied in [31], where it is
assumed that the distribution of interference plus noise is not known, and the error
in channel estimation via linear minimum mean square error (LMMSE) estimator
has an arbitrary distribution. Hence, the QoS requirements are considered for the
worst-case distribution of the error in channel estimation.
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The system consists of one base station equipped with N transmit antennas and

K users where user k is equipped with Mk antennas such that
KP

kD1
Mk D M. It is

assumed that Lk independent data streams are transmitted to user k, where
KP

kD1
Lk D L. To guarantee data recovery by users, it is necessary that Lk � Mk and
L � minfM;Ng. The Mk � 1 vector of interference plus noise for user k is nk. It
is assumed that the interference plus noise has an arbitrary distribution, where only
its first two moments are known, that is, nk v A.0;Rk/, where A is an arbitrary
distribution. The total MSE of user k’s signal is

MSEk D kFk.Hk C OHk/G � Dkk2F C tr.FkRkFH
k /; (4.233)

where Fk is an Lk � Mk equalizer matrix deployed at the receiver and Hk and OHk are
the Mk � N matrices of channel gain and error, respectively. The precoding N � L
matrix at the base station is G, and the matrix Dk D Œ0

Lk�
k�1P
kD1

Lk

ILk 0
Lk�

KP
kDkC1

Lk

� is

used to select the data stream for user k. Note that the MSE distribution depends on
the distribution of OHk. In addition, G and Fk are unknown and in general depend on
the statistics of OHk. Thus, the MSE distribution cannot be obtained or approximated
in advance. The optimization problem for transceiver design is formulated as

min
G; Fk ; 8k

tr.GGH/ (4.234a)

subject to sup
vec. OHk/�A.0;˙k/

PrfMSEk � "kg � �k; k D 1; : : : ;K; (4.234b)

where "k and �k are the maximum allowable MSE and the minimum predefined
outage probability at receiver k, respectively. Since the statistics of OHk is unknown,
the supremum of the outage probability in (4.234b) is used to meet the QoS
in the worst case, which makes problem (4.234) intractable and nonconvex. To
tackle this difficulty, two relaxation methods are considered, MI and the duality
method. Simulations show that the duality method has better performance, but the
Markov method has less computational complexity. In the sequel, these methods are
explained.

Markov Method When MI is used, an upper bound on the outage probability is

PrfMSEk � "kg � EfMSEkg
"k

; (4.235)

where EfMSEkg D kŒvec..GT ˝ Fk/˙
1
2

k /
Tvec.FkHkG � Dk/

Tvec.R
1
2

k FH
k /

T�k22 and
vec. OHk/ � A.0; ˙k/. Accordingly, problem (4.234) can be approximated as

min
G; Fk ; 8k

tr.GGH/; (4.236a)

subject to kŒvec..GT ˝ Fk/˙
1
2

k /
Tvec.FkHkG � Dk/

Tvec.R
1
2

k FH
k /

T�k22 � "k�k; 8k:
(4.236b)
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Although the preceding problem is tractable, it is still nonconvex. To find a near-
optimal solution, it is divided into two convex subproblems, and each subproblem
is iteratively solved until convergence. In the first subproblem, it is assumed that all
equalizer matrices are fixed, and in the second subproblem, for a given precoder
matrix, the equalizer matrices are obtained. In the first subproblem, for a given
equalizer matrix, by using the epigraph method, problem (4.236) can be written
as the following SOCP problem:

min
G

t; (4.237a)

subject to

8̂̂
ˆ̂<
ˆ̂̂̂:

tr.GGH/ � t;

kŒvec..GT ˝ Fk/˙
1
2

k /
Tvec.FkHkG � Dk/

T

vec.R
1
2

k FH
k /

T�k2 �
p
"k�k; 8k;

(4.237b)

(4.237c)

where t is the slack variable. In the second subproblem, it is enough to minimize
the left-hand side of (4.236b) with respect to the equalizer matrix, which is
formulated as

min
Fk

kGT ˝ Fk/˙
1
2

k /k2F C kFkHkG � Dkk2F C kR
1
2

k FH
k k2F: (4.238)

The first term of the preceding cost function is rewritten as

kGT ˝ Fk/˙
1
2

k /k2F D tr

� NX
iD1

NX
jD1

gij˙
ji
k FH

k Fk

�
; (4.239)

where gij is the .i; j/th element of the matrix G�GT, and ˙ ji
k is the .j; i/th Mk � Mk

subblock of matrix˙k. Substituting (4.239) into (4.237) and taking the derivative of
the cost function with respect to Fk, we obtain the optimal equalizer

Fk D .HkGDH
k /

H

0
@HkGGHH

H
k C Rk C

NX
iD1

NX
jD1

gij˙
ji
k

1
A


1

: (4.240)

Markov Method for Robust Transceiver Design

Step 0: Initialization: Choose a feasible solution [G.0/;F1.0/; : : : ;FK.0/] to
problem (4.236).

For l D 1; : : :

Step 1: Update G.l/ by solving the convex problem (4.237);
Step 2: Update Fk.l/; 8k by solving the convex problem (4.238);
Step 3: Stop if G.l � 1/HG.l � 1/� G.l/HG.l/ � �, where � is the threshold.
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Duality Method The MSE is a function of unknown Fk and G, and both depend on
OHk. Thus, the MSE is a sum of correlated elements. Although uncertainty in channel
estimation OHk is arbitrarily distributed, from the generalized weak-convergence
theorem [64], the MSE is in fact not arbitrarily distributed. Hence, the Markov
method is conservative and MI is not tight. To find a near-optimal solution, the
duality method is used, and the outage probability constraint is reformulated as

sup
f .xk/

Prf .xk/ � "kg; (4.241a)

subject to

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
:̂

Z
xk2CNMk

f .xk/dxk D 1;

Efxkg D 0;

EfxkxH
k g D ˙k;

(4.241b)

(4.241c)

(4.241d)

where  k.xk/ D MSEk, xk D vec. OHk/, and f .xk/ is the probability density function
(pdf) of xk. The Lagrangian function for this problem is

Lk.f .xk/; ˛k; �k; (k/ D Prf .xk/ � "kg C ˛k

�
1 �

Z
xk2CNMk

f .xk/dxk

�
� �H

k Efxkg

C tr.(k.˙k � EfxkxH
k g//; (4.242a)

where ˛k; �k; (k are Lagrangian multipliers and (k D (H
k . The Lagrangian dual

function is

gk.˛k; �k; (k/ D sup
f .xk/	0

Lk.f .xk/; ˛k; �k; (k/ (4.243a)

D
�
˛k C tr.(H

k ˙k/; if Ak � 0;8xk W  k.xk/ < "k and Ak > 1;8xk W  k.xk/ � "k

C1; otherwise,
(4.243b)

where Ak D ˛k C�H
k xk C tr.(H

k xkxH
k /. The corresponding dual problem of (4.241) is

min
˛k ;�k ;(k

˛k C tr.(H
k ˙k/; (4.244a)

subject to

8̂̂
<̂
ˆ̂̂:

˛k C �H
k xk C tr.(H

k xkxH
k / 	 0; 8xk W xk 2 C

NMk ;

˛k C �H
k xk C tr.(H

k xkxH
k / > 1; 8xk W  .xk/ 	 "k;

(k D (H
k :

(4.244b)

(4.244c)

(4.244d)
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The compact form of (4.244) is

min
Zk

tr.Zk Q̇k/; (4.245a)

subject to

8<
:

Zk � 0;

uH
k Zkuk 
 1 > 0; 8 OHk W kFk.Hk C OHk/G 
 Dkk2F C tr.FkRkFH

k / 	 "k;

(4.245b)

(4.245c)

where Zk D
�
(H

k
1
2
�k

1
2
�H

k ˛k

�
, Q̇k D

�
˙k 0
0 1

�
, and uk D ŒxT

k 1�T. Since in (4.245c)

there are infinitely many possible channel realizations, it is an infinite constraint.
Consequently, although problem (4.245) has no probabilistic constraints, it is still
an infinite constrained problem, which is difficult to solve and should be transformed
into a finite constrained problem. To do so, the Frobenius norm in (4.245c) is
replaced by the spectral norm,

kFk.Hk C OHk/G � Dkk2F D uH
k QH

k Qkuk; (4.246)

where Qk D Œ.GT ˝ Fk/vec.FkHkG � Dk/�. Using (4.246), the S-lemma, and SC,
we transform (4.245c) into LMI form:

9ˇk > 0 W
�
ˇkZk C diagf0; "k � tr.FkRkFH

k / � ˇkg QH
k

Qk ILLk

�
� 0: (4.247)

Using the preceding expressions, we convert stochastic problem (4.241) into the
following deterministic finite constrained problem:

min
ˇk ;QZk

tr. QZk Q̇k/

ˇk
; (4.248a)

subject to

8̂̂
<
ˆ̂:

QZk � 0; ˇk > 0;� QZk C diagf0; "k � tr.FkRkFH
k / � ˇkg QH

k

Qk ILLk

�
� 0;

(4.248b)

(4.248c)

where QZk D Zkˇk. Consequently, bilevel optimization problem (4.234) can be
equivalently replaced by the following single-level optimization problem:

min
G;Fk ;ˇk ;QZk ;8k

tr.GGH/; (4.249a)

subject to

8̂̂
ˆ̂<
ˆ̂̂̂:

QZk � 0; ˇk > 0;
tr.QZk Q̇k/

ˇk
� �k;8k;

�
ˇk QZk C diagf0; "k 
 tr.FkRkFH

k /
 ˇkg QH
k

Qk ILLk

�
� 0; 8k:

(4.249b)

(4.249c)
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As with the Markov method, problem (4.249) is solved by convergence-guaranteed
iterative algorithms applied to two convex subproblems. Note that the global
optimality of the two aforementioned approaches for multiuser MIMO is not
achievable, but the authors prove that for the special case of single-user MIMO,
the robust optimization problem is convex, and global optimality is attainable.

Example 2 In [29], a network with K source–destination pairs is considered that
communicates through a set of L distributed relays. It is assumed that each node has
a single antenna, and there is no direct link between each pair. It is also assumed that
the CSI values of the second hop are uncertain and the error in channel estimation is
a Gaussian random variable with known distribution. Robust beamforming vectors
are designed to minimize the average transmit power at relays subject to SINR
outage probability constraints. The SINR at destination k is

SINRk D

ˇ̌̌
ˇ

LP
lD1

hkiwigik

ˇ̌̌
ˇ
2

pk

�2 C
LP

lD1
jhkiwi� j2 C

KP
lD1;l¤k

ˇ̌̌
ˇ

LP
iD1

hkiwigil

ˇ̌̌
ˇ
2

pl

; (4.250)

where gik is the Rayleigh flat fading channel coefficient from source k to relay i, pk

is the transmit power of source k, hki is the Rayleigh flat fading channel coefficient
from relay i to destination k, wi is the beamforming weight for relay i, and �2 is the
noise power.

Channel gains for the second hop are assumed to be imperfect, modeled by hk D
hk C Ohk, where hk D Œhk1; : : : ; hkL�, hk is the exact value of hk, and Ohk � CN.0;Qk/,
where Qk is the variance of Ohk. The robust optimization problem is

min
w

LX
iD1

jwij2
 

KX
lD1

jgilj2pl C �2

!
(4.251a)

subject to Pr

�
SINRk � �k

�
� 1 � �k; k D 1; : : : ;K; (4.251b)

where �k is the acceptable SINR threshold, and �k is the maximum allowable
outage probability. Since the closed-form expression for the pdf and cumulative
distribution function (CDF) of SINRk in (4.250) are very difficult to obtain, the
closed-form expression for the nonoutage probability constraint (4.251b) cannot be
easily obtained. Therefore, problem (4.251) is intractable. To tackle this issue via
relaxation methods, two approaches are proposed. In the first approach, using the
Bernstein-type inequality, a lower bound on the nonoutage probability constraint is
obtained. Then, via the SDR method, the approximated problem is transformed into
SDP form. In the second method, instead of the Bernstein-type inequality, the SP is
used.
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Using the Bernstein-type inequality and SDR and introducing auxiliary variables
�k, xk, and yk, the relaxed problem for (4.251) is

min
W

tr

 
W
� KX

kD1
GkGH

k C �2I
�!

; (4.252a)

subject to

8̂̂
ˆ̂̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
ˆ̂̂̂̂
:̂

1 � e
�k � 1 � �k; 8k D 1; : : : ;K;

xk C �kyk � tr.Ak/C ck � �2; 8k D 1; : : : ;K;

p
2�k

q
kAkk2F C 2kzkk2 � xk; 8k D 1; : : : ;K;

ykI C Ak � 0; 8k D 1; : : : ;K;

rank.W/ D 1;

(4.252b)

(4.252c)

(4.252d)

(4.252e)

(4.252f)

where Gk D p
pkdiagfg1k; : : : ; gLkg, W D wwH, Ak D Q

1
2

k
QAkQ

1
2

k , zk D Q
1
2

k
QAkhk,

ck D h
H
k

QAkhk, QAk D vkvH
k

�k
� P

lD1;l¤k
vavH

a � �2diagfW11; : : : ;WLLg, and vk D Gkw.

In (4.252b), the smallest �k that minimizes the transmit power is �k D ln �k. Due to
rank constraint, problem (4.252) is still nonconvex. To cope with this issue, the rank
constraint is removed and problem (4.252) is transformed into SDP form. Then,
using randomization, the rank 1 solution is obtained.

In the second approach, using the SP, a closed-form lower bound on the
nonoutage probability is obtained. Subsequently, following rank relaxation, a
conservative reformulation of problem (4.251) is

min
W

tr

 
W
� KX

kD1
GkGH

k C �2I
�!

; (4.253a)

subject to

�
Ak C �kI zk

zH
k Qck

�
� 0; 8k D 1; : : : ;K; (4.253b)

where Qck D h
H
k

QAkhk � �k Qr2k � �2, Qrk D
q

CDF�1.1
�k/

2
in which CDF
1.x/ is the

inverse CDF of a chi-squared random variable, and �k is a nonnegative auxiliary
random variable. Simulation results show that the first method outperforms the
second one and yields tighter bounds.

4.3.2.2 Overview of Other Works on Robust Relay-Assisted
and Beamforming Systems

An outage-constrained robust transmit power optimization for multiuser MISO
downlink, where a multi-antenna base station communicates with multiple single-
antenna users, is studied in [37]. It is assumed that each user decodes its signal and
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other users’ signals are considered interference. In addition, CSI values are uncertain
and error is modeled by a Gaussian random variable. The objective is to minimize
the total transmit power of the base station subject to the constraint on each user’s
rate outage, where the covariance matrix of the transmitted signal by each user is
the optimization variable. The optimization problem is nonconvex and intractable,
and an effort is made to find a tight, convex, and efficiently computable upper
bound for the constraint on the rate outage. Using relaxation methods, including the
Bernstein-type inequality, SP, SDP, and LDI, three convex approaches are proposed.
The first approach is based on the worst-case robust method, the second approach
uses Bernstein-type inequality, and the third approach uses LDI. Simulations show
that the second method has superior performance, but its computational complexity
is high, and the third approach outperforms the first one.

Power allocation strategies for the downlink of a multi-antenna base station with
multiple single-antenna users is studied in [42], where the CSI error is assumed
to have a Gaussian distribution. The objective is to minimize the transmit power
subject to MSE outage probability and the constraint on the maximum transmit
power. Using the VPI, the stochastic uncertainty is eliminated in a conservative
manner, and the problem is converted into a deterministic one. The approximated
problem is solved using the theory of interference functions [65].

Table 4.4 summarizes the aforementioned works on robust transmission in relay-
assisted and beamforming systems.

4.3.2.3 Robust Transmission in Cognitive Radio Networks

Example 1 A two-tier heterogeneous network that includes a macro-cell and a
femto-cell is considered in [27]. The macro base station and the closed-access
femto base station are equipped with NM and NF antennas, respectively. The macro-
cell shares the downlink spectrum with the femto-cell and serves a single-antenna
macro-user with QoS guarantee. The femto-cell serves a single-antenna femto-user
with “best effort.” The femto-user’s SINR is

SINRF D jhH
FFwFj2

�2F C jhH
FMwMj2 ; (4.254)

Table 4.4 Summary of existing works on robust relay-assisted and beamformning
systems

Reference SP SDR BT-BTI LR BT-MI SC EF BT-LDI BT-VPI

[29]
p p p

– – – – – –

[31] – – –
p p p p

– –

[37]
p p p

– – – –
p

–

[42] – – – – – – – –
p
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where hFF 2 C
NF and hFM 2 C

NM are the channel gains between the femto base
station and the femto-user and the channel gain between the macro base station and
the femto-user, respectively, wF 2 C

NF and wM 2 C
NM are the beamforming vectors

for the femto-user and the macro-user, respectively, and �2F is the additive noise
power at the femto-user.

Depending on the availability of the CSI at the femto base station, two cases are
considered. In the first case, called “no CSI feedback,” it is assumed that the femto
base station only has the channels’ statistics. In the second case, it is assumed that
uncertain values of hFF and hFM, denoted by hFF and hFM, respectively, are available
to the femto base station. When partial CSI is available, the performance is better
than that of no CSI feedback. The stochastic robust problem is

min
wF

kwFk2; (4.255a)

subject to

8<
:

Pr
˚
SINRF � �F

 � 1 � �F;

Pr
˚jhH

MFwFj2 � "M
 � 1 � �M;

(4.255b)

(4.255c)

where �F is the minimum allowable SINR of the femto-user, "M is the maximum
tolerable interference caused by the femto base station on the macro-user, and
�F and �M are the maximum allowable outage probabilities for the SINR and the
interference, respectively.

Since there is no feedback from the macro-user to the femto base station, it is
assumed that only the statistics of the channel between the macro-user and the femto
base station, denoted by hMF 2 C

NF , are available to the femto-cell, and hFF and hFM

are modeled by

hFF D hFF C OhFF; and hFM D hFM C OhFM; (4.256)

where hFF 2 C
NF and hFM 2 C

NM are the exact vectors, and OhFF 2 C
NF and

OhFM 2 C
NM are the corresponding error vectors. Let OhFF � CN.0;Ce,FF/ and

OhFM � CN.0;Ce,FM/, where the channel error covariance matrices, denoted by Ce,FF

and Ce,FM, are positive definite. Now, problem (4.255) can be written as

min
wF

kwFk2; (4.257a)

subject to

8̂̂
ˆ̂<
ˆ̂̂̂:

Pr

� j.hFF C OhFF/
HwFj2

�2F C j.hFM C OhFM/HwMj2 � �F

�
� 1 � �F;

Pr

�
jhH

MFwFj2 � "M

�
� 1 � �M:

(4.257b)

(4.257c)
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This problem is difficult to solve. To tackle this issue, the SDR method is applied,
and the reformulated problem is conservatively approximated using a Bernstein-
type inequality. Define

OhFF D C
1
2

e,FFvFF; and OhFM D C
1
2

e,FMvFM; (4.258)

where vFF � CN.0; INF/ and vFM � CN.0; INM/, and let

h D ŒhFF hFM�
T; v D ŒvFF vFM�

T; and C
1
2 D diagfC

1
2

e,FF; C
1
2

e,FMg; (4.259)

where v � CN.0; INFCNFM/. By utilizing SDR, problem (4.257) is rewritten as

min
WF2HCC

tr.WF/; (4.260a)

subject to

8̂̂
<
ˆ̂:

Pr
˚
vHAv C 2RefvHBg � s

 � 1 � �F;

tr.Ch,MFWF/ � "M

ln 1
�M

;

(4.260b)

(4.260c)

where A D C
1
2 WC

1
2 , B D C

1
2 Wh, s D �2F �h

H
Wh, W D diagf 1

�F
WF; �wMwH

Mg,
and Ch,FF is the channel covariance matrix of hFF. A closed form for the pdf and CDF
of vHAv C 2RefvHBg is difficult to obtain, and the probability in (4.260b) does not
have a closed-form expression. Thus, problem (4.260) is still intractable. A tractable
approximation to problem (4.257), obtained using Bernstein-type inequality, is

min
WF2HNF

CC
; x2R

tr.WF/; (4.261a)

subject to

8̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂:

1

�F
tr

��
Ce,FF C hFFh

H
FF

�
WF

�
�

p
2ıx � �2F

C wH
M

�
.1C ı/Ce,FF C hFMh

H
FM

�
wM;

tr.Ch,MFWF/ � "M

ln 1
�M

;

1

�F
kDk � x;

(4.261b)

(4.261c)

(4.261d)

where ı D � ln �F, D D
�

vec

�
C

1
2

e,FFWFC
1
2

e,FF

� p
2vec

�
C

1
2

e,FFWFhFF

�
�FM

�T

,

and �FM D �F

q
kC

1
2

e,FMwMwH
MC

1
2

e,FMk2F C 2kC
1
2

e,FMwMwH
MhFMk2. Problem (4.261) is

convex and can be efficiently solved to obtain the globally optimal solution. In [27],
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a special case in which OhFF and hMF are independent and identically distributed
(i.i.d.) is investigated. It is shown that the optimal solution to (4.257) can be
obtained. The optimization problem for this case is

min
*F	0 *F; (4.262a)

subject to

8̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂:

1

2

C1Z
0

Q1

0
@

p
2khFFk
�e,FF

;

vuut�F
�
wH

MCH
e,FMwMxFM C 2�2F

�
*F�

2
e,FF

1
A

exp

�
� xFM C �FM

2

�
I0
	p

�FMxFM



dxFM � 1 � �F;

�2h,MF*F � "M

ln 1
�M

;

(4.262b)

(4.262c)

where *F D kwFk2 and �FM D 2jhH
FMwMj2

wH
MCe,FMwM

. In constraint (4.262b), Q1.x; y/ is the

first-order Marcum’s Q-function defined as [66]

Q1.x; y/ D
C1Z
y

u exp

�
�u2 C x2

2

�
I0.xu/dx; (4.263)

where I0.�/ is the zero-order modified Bessel function of the first kind. The optimal
solution can be obtained by the simple and computationally efficient bisection
method [1]. The no CSI case is discussed subsequently in Section 4.3.3 in this
chapter.

Table 4.5 summarizes the aforementioned work on robust transmission in CRNs.

4.3.3 No CSI Feeback

In this section, we discuss the application of relaxation methods for resource
allocation problems when there is no CSI feedback. The complexity of deploying
this scheme is less than other schemes with some loss in performance.

Table 4.5 Summary of existing work on robust transmission in cognitive radio
networks

Reference SP SDR BT-BTI LR BT-TI
BT-Cauchy–Schwarz
inequality EF

[27] –
p p

– – – –
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Example 1 A cooperative network with L radio access points and K mobile users is
considered in [28]. It is assumed that access point l has Nl antennas and each mobile
user has a single antenna. It is also assumed that only channel statistics in the form of
channel distribution information is available, that is, no CSI feedback. The objective
is to minimize the total downlink transmit power subject to the constraint on the
probability of nonoutage SINR. This is achieved via a general stochastic coordinated
beamforming framework. To solve the optimization problem, the stochastic DC
programming relaxation method is used, which makes the nonconvex optimization
problem tractable and guarantees optimality. The SINR for mobile user k is

	k D jhH
k vkj2P

i¤k
jhH

k vij2 C �2k
; (4.264)

where hk D ŒhT
k1; : : : ;h

T
kL� is the CSI vector for mobile user k, whose element

hkl 2 C
Nl is the CSI between radio access point l and mobile user k, and vk D

ŒvT
1k; : : : ; v

T
Lk� is a vector whose element vlk 2 C

Nl is the transmit beamforming
vector from radio access unit l to mobile user k. The additive Gaussian noise power
at mobile user k is �2k .

The robust optimization problem is

min
v2V

LX
lD1

KX
kD1

kvlkk2; (4.265a)

subject to Pr
˚
	k � �k; 8k D 1; : : : ;K

 � 1 � "; (4.265b)

where �k is the minimum required SINR, and " is the maximum allowable outage
probability. The convex feasible set of the beamforming vector is

V D
�

vlk 2 C
Nl W

KX
kD1

kvlkk2 � pmaxl ; 8l; k

�
; (4.266)

where pmaxl is the maximum transmit power for radio access point l. Because
of chance constraint (4.265b), problem (4.265) is intractable. To circumvent this
difficulty, constraint (4.265b) is relaxed by way of DC approximation, and DC
programming is used. Accordingly, problem (4.265) is rewritten as

min
v2V

LX
lD1

KX
kD1

kvlkk2; (4.267a)

subject to inf
�>0

1

�
Œu.v; �/ � u.v; 0/� � "; (4.267b)
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where u.v; �/ D E
˚

maxkD1;:::;KC1fsk.v;h; �/g

, sk.v;h; �/ D � C P

i¤k
vH

i hkhH
k vi C

�2k C P
i¤k

1
�i

vH
i hihH

i vi; 8k D 1; : : : ;K, and sKC1.v;h; �/ D
KP

iD1
1
�i

vH
i hihH

i vi. Note

that relaxation by DC approximation does not affect the optimality of the solution,
and the relaxed problem is equivalent to the original one.

Due to the existence of an infimum function in constraint (4.267b), it is difficult
to solve the foregoing problem directly. However, since 1

�
Œu.v; �/ � u.v; 0/� is

nondecreasing in � > 0, the following �-approximation problem can be solved
instead of problem (4.267):

min
v2V

LX
lD1

KX
kD1

kvlkk2; (4.268a)

subject to Œu.v; �/ � �"� � u.v; 0/ � 0; (4.268b)

where � > 0 is any fixed parameter small enough to approximate the original
problem. Although a very small � > 0 results in numerical stability and perfor-
mance improvement, it imposes more computational complexity. To get around this
difficulty, � is treated as an optimization variable, and (4.268a) is rewritten as

min
v2V ;�>0

LX
lD1

KX
kD1

kvlkk2; (4.269a)

subject to Œu.v; �/ � �"� � u.v; 0/ � 0: (4.269b)

To solve (4.269), an iterative SCA method is used, and a suboptimal solu-
tion is obtained using a Bernstein-type inequality, which provides a closed-form
approximation for the chance constraint. This method is applicable when the CSI
distribution is complex Gaussian, but it is not robust for other distributions.

Example 2 A no CSI scenario is also studied in [27], in addition to the partial
CSI scenario that was explained in Section 4.3.2.3. In the no CSI scenario, prob-
lem (4.255) is formulated as a convex optimization problem using SDR. In doing
so, a closed-form expression for probability functions in (4.255b) and (4.255c) is
obtained. Assume

hFF � CN.0;Ch,FF/; hFM � CN.0;Ch,FM/; and hMF � CN.0;Ch,MF/;

(4.270)

where channel covariance matrices Ch,FF, Ch,FM, and Ch,MF are positive definite.
Thus, the random variables jhH

FFwFj2, jhH
FMwFj2, and jhH

FMwMj2 are independently
and exponentially distributed with parameters 1

wH
F Ch,FFwF

, 1

wH
F Ch,MFwF

, and 1

wH
MCh,FMwM

,

respectively. Now problem (4.255) is rewritten as

min
wF2CNF

kwFk2; (4.271a)
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subject to

8̂̂
ˆ̂<
ˆ̂̂̂:

exp

� 
�F�
2
F

wH
F Ch,FFwF

�
wH

F Ch,FFwF

wH
F Ch,FFwF C �FwH

MCh,FMwM
	 1
 �F;

wH
F Ch,MFwF � "M

ln 1
�M

:

(4.271b)

(4.271c)

Due to the nonconvexity of constraint (4.271b), problem (4.271) remains
nonconvex. Using the SDR method, this problem is converted into a convex one.
In doing so, a positive semidefinite matrix WF D wFwH

F is defined, and the rank 1
constraint is relaxed. Consequently, problem (4.271) is relaxed to

min
WF2H

NF
CC

tr.WF/; (4.272a)

subject to

8̂̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂̂:

tr.Ch,FFWF/ exp

�
�F�

2
F

tr.Ch,FFWF/

�

C �Ftr.Ch,FMWM/ exp

�
�F�

2
F

tr.Ch,FFWF/

�
� tr.Ch,FFWF/

1 � �F
;

tr.Ch,MFWF/ � "M

ln 1
�M

:

(4.272b)

(4.272c)

The relaxed problem (4.272) is convex and can be efficiently solved using CVX
or SeDuMi. A special case in which hFF and hMF are i.i.d. variables is studied in [27],
where the channel covariance matrices are Ch,FF D �2h,FFINF and Ch,MF D �2h,MFINF .
Problem (4.271) is simplified to

min
*F	0 *F; (4.273a)

subject to

8̂̂
ˆ̂<
ˆ̂̂̂:

exp

���F�
2
F

�2h,FF*F

�
�2h,FF*F

�2h,FF*F C �FwH
MCh,MFwM

� 1 � �F;

�2h,MF*F � "M

ln 1
�M

;

(4.273b)

(4.273c)

where *F D kwFk2. The optimal solution to (4.273) can obtained using the simple
and computationally efficient bisection method [1].

Table 4.6 summarizes the aforementioned works on robust resource allocation
with no CSI.

Table 4.6 Summary of existing works on robust resource allocation: no CSI feedback

Reference BT-BTI DCA SCA LR SDR BT-Cauchy–Schwarz inequality EF

[27] – – – –
p

– –

[28]
p p p

– – – –
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Fig. 4.3 System model for partial CSI feedback with stochastic uncertainty and for no CSI
feedback

4.3.3.1 Numerical Example

Here we present the numerical results on the transmit power of the proposed system
in [27], discussed in Section 4.3.2.3 in this chapter, as an example of partial CSI
feedback with stochastic uncertainty and as an example of no CSI feedback. The
system model is shown in Fig. 4.3.

The macro base station and closed-access femto base station are equipped with
four transmit antennas, that is, NM D NF D 4. The maximum allowable outage
probability for the SINR and for the interference are 0.1, that is, �M D �F D 0:1.
The additive noise power at the femto-user is �2F D 0:01, and the maximum
tolerable interference caused by the femto base station on the macro-user is "M D
�3 dB. We uniformly generate the macro base station beamforming vector on the
unit-norm sphere kwMk D 1. In simulations, the SDR-based problems are solved
using CVX, and if the solutions are not of rank 1, the Gaussian randomization
method (explained in Section 4.2.1.5 in this chapter) is used. We perform Monte
Carlo simulations consisting of 500 channel realizations.

The transmit power is also investigated for the spatially correlated channels. Let
Ch,FF D �2h,FFCF, Ch,MF D �2h,MFCh, and Ch,FM D �2h,FMCh,
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Fig. 4.4 Average transmit power versus minimum required SINR of femto-user for the two cases,
that is, partial CSI feedback and no CSI feedback for & D 0:02; 0:8

ŒCh�m;n D & jm
nj; (4.274)

where �2h,FF D 1 and �2h,FM D �2h,MF D 0:01.
In Fig. 4.4, the average transmit power versus the minimum allowable SINR of

the femto-user for the two cases, that is, partial CSI feedback and no CSI feedback
for & D 0:02; 0:8, is shown. As can be seen, the difference in the transmit power of
the femto base station in the two cases for & D 0:02 is around 7 dB, showing that the
partial feedback CSI with stochastic uncertainty is significantly more power efficient
than the no CSI case. Moreover, we observe that the difference in the transmit power
is higher when channels are spatially more uncorrelated (i.e., smaller & ).

4.4 Concluding Remarks

In this chapter, we presented a taxonomy of relaxation methods for solving
nonconvex and intractable robust optimization problems that can be utilized for
allocating resources in many emerging wireless networks. Using these methods,
the intractable and NP-hard robust optimization problems can be approximately or
equivalently reformulated into tractable robust optimization problems that can be
easily solved. Utilizing the methods discussed in this chapter, although globally
optimal solutions may not be obtained, in general, locally optimal or near-optimal
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solutions can be obtained via efficient and tractable algorithms. In addition, we
presented and reviewed some recent and noteworthy cases in the literature on using
relaxation methods in robust optimization problems in communication systems. In
particular, we covered important topics in future wireless networks, namely, beam-
forming, cooperative relaying, CRNs, and physical-layer secure communications.
The examples were categorized into (1) partial CSI feedback with bounded uncer-
tainty, (2) partial CSI feedback with stochastic uncertainty, and (3) no CSI feedback.

Appendices

Appendix 1: Proof of Corollary 4.1

Let OW be the optimal solution to problem (4.136), which is unique and of rank 1 by
Proposition 4.1. By Lemma 4.3, OW is feasible for problem (4.128), which implies
that tr. OW/ � tr.W�/, where W� is the optimal solution to (4.128). Since we also
have [cf., (4.136)] tr. OW/ � tr.W�/, we conclude that tr. OW/ D tr.W�/, that is, OW is
the optimal solution to problem (4.128). From Lemma 4.3, W� is a feasible solution
to problem (4.136). Now, tr. OW/ D tr.W�/ further implies that W� is the optimal
solution to problem (4.136) as well. Hence, from Proposition 4.1, W� should be
unique and of rank 1.

Appendix 2: Tightness of Solution to Relaxed Problem

Consider the dual of (4.139) as

min
W�0

tr.W/ (4.275a)

subject to
maxGe2RGe

1C tr.GH
e WGe/

minh2Rh 1C hHWh
� ��

relax; 8e D 1; : : : ;E;

(4.275b)

where R D log. 1
��

relax
/. Since problem (4.275) is similar to problem (4.130), from

Proposition 4.1, the solution to (4.139) is of rank 1 and unique. If we prove that
the optimal solution to (4.275) is also the optimal solution to (4.139), we can infer
the tightness of the relaxed problem. From Corollary 4.1, the solution to the relaxed
problem is also the solution to the original problem. Hence, the optimal solution to
the nonconvex problem (4.137) can be obtained by solving the equivalent convex
SDP problem (4.140). For more details, the interested reader is referred to Section 4
in [5].
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Chapter 5
Conclusions and Future Research

In this final chapter, we discuss the potential applications of the material presented
in Chapters 1, 2, 3, and 4 to future generations of wireless networks, including
fifth generation and beyond. In doing so, our focus is not on open problems in
using optimization theory or in developing distributed algorithms for solving such
problems; these topics are discussed in [1–9]. Rather, we focus on new trends in
robust resource allocation in future wireless networks. We begin by presenting major
and important features in future generations of wireless networks that affect resource
allocation, then we identify important problems in robust resource allocation in such
networks that can be tackled using the material in Chapters 1, 2, 3, and 4.

5.1 Future Wireless Networks

Future wireless networks, including the forthcoming fifth generation, will be
increasingly characterized by the following features, as outlined in [10–16]:

• Exponential increase in the number of wireless devices, evolving into connected
everything, that is, massive connectivity requiring massive capacity

• Significantly smaller latency (<1 ms)
• Significantly higher data rates per user by way of

– Carrier aggregation/carrier bonding
– Cognitive small cells
– Device-to-device communication
– Multiple input multiple output (MIMO), including massive MIMO and

coordinated multipoint (CoMP)/network MIMO
– Millimeter-wave communication
– Hybrid links [radio frequency (RF)/free space optics (FSO)]
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• Massive densification of base stations requiring significantly reduced transmit
power levels

• Extensive use of relays and ad hoc networking in locations lacking backhaul
access

• Mobile base stations
• Cloud radio access network
• New multiple access techniques, such as

– Nonorthogonal multiple access (NOMA)
– Sparse code multiple access (SCMA)

• Energy harvesting as a means of significantly prolonging battery life
• Diverse new applications and services leading to smart societies

Some of these attributes already exist at different stages of implementation, whereas
others will be developed and deployed subsequently. In what follows, we provide
brief explanations of some important aspects of future wireless networks that will
affect resource allocation in such networks.

• Massive MIMO: Multiple-input multiple-output is a technique that is used to
exploit multipath propagation via multiple antennas to increase radio link capac-
ity, improve energy efficiency, and enhance link security. Exploiting multipath
propagation is particularly useful for reducing fast fading and for introduc-
ing semi-omnidirectional propagation for narrow-beamwidth millimeter waves.
Specifically, MIMO is a method for transmitting and receiving more than one
datum simultaneously in the same radio channel and is different from smart
antenna techniques that improve the performance of sending and receiving a
single datum by way of beamforming and diversity. Single-user MIMO has been
developed and implemented in some standards, such as 802.11n, and multiuser
MIMO (also known as network MIMO or CoMP) is the focus of current research.
In MIMO systems, increasing the number of antennas improves performance
but also increases complexity. When the number of antenna elements in MIMO
systems is very large, it is called massive MIMO. With this technique, it has
been shown that there is a wide gap in the performance of existing schemes
when exact channel state information (CSI) is assumed versus when the same
schemes are deployed with uncertain CSI [17]. This fact indicates that there is a
need to introduce robustness in massive MIMO systems. The problem is further
complicated in CoMP due to the fact that there is a need for coordination between
multiple and possibly heterogeneous access points, resulting in considerable
increase in the number of CSI values and their respective constraints, each with
its own uncertainties, in the resource allocation problem.

• Millimeter Waves: In future wireless networks, users can expect a substantial
increase in their link speeds, which will require proportional increases in the
frequency spectrum allocated to the service. However, the scarcity of available
spectrum in frequency bands below 4 GHz makes the use of higher bands
unavoidable. However, significant attenuation and narrow beamwidths of elec-
tromagnetic waves at higher frequency bands pose serious technical challenges
for their use. Moreover, CSI fluctuates significantly in higher frequency bands.
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Hence, in future wireless networks that use millimeter waves, there will be a need
to develop robust and efficient techniques for resource allocation with acceptable
computational complexity.

• Hybrid Links (RF/FSO): The need for higher data rates and massive capacity
in future wireless networks requires the use of new high-speed channels. In
situations where the available radio frequency spectrum is insufficient and
connections via fiber optic links is not possible due to physical limitations, FSO
is a viable candidate to enhance the available capacity. However, FSO is highly
fluctuating, depending on many atmospheric and weather conditions, and suffers
from unpredictable uncertainties.

• Multiple Access Techniques: Existing multiple access techniques, for example,
orthogonal frequency division multiple access (OFDMA) and single-carrier
frequency division multiple access (SC-FDMA), are relatively simple methods
because of their exclusive allocation of channels for intracell communication, but
their spectral efficiency is relatively low. To improve on the spectral efficiency of
intracell links in future wireless networks, other multiple access techniques that
are more complex, such as NOMA and SCMA are being considered, in which
resources are shared (i.e., not allocated exclusively) by users. In NOMA, for
example, one must use superposition coding on the transmitter side or successive
interference cancellation on the receiver side, which are additional blocks in
the system. This introduces new constraints to manage intracell interference and
complicates the resource allocation problem even further. Hence, there is a need
for sensitivity analysis of the respective problems with a view to studying the
impact of uncertainty and robustness.

• Multiple Radio Access: Future wireless networks will have to utilize all existing
and future spectrum allocations, which will include those for Wi-Fi, current
cellular bands, and higher-frequency spectrum. This means that end-user devices
will be expected to connect to different types of access points, each with its own
radio-access technology. This will introduce new complexities and constraints
requiring the development of novel robust schemes to deal with the attending
uncertainties.

• Air Interface: The air interface for existing high-speed links in LTE-based
networks consumes significant amounts of power. In future wireless networks,
which will be highly populated with new connected things, there will be a serious
need to reexamine current air interfaces and to devise new waveforms that will
be more energy efficient. If this is done, the impact of the new waveforms on
resource allocation schemes must be carefully examined.

• Battery Life: Finally, a very important requirement for future wireless networks
will be to devise novel techniques to extend battery life. This will be of the
utmost importance in the Internet of everything/Internet of things environments
as well as in new end-user devices equipped with larger screens. In order to
extend the battery life, a number of new concepts, such as energy harvesting,
have been proposed. However, such schemes suffer from undesirable fluctuations
and uncertainty in the power source that must be countered by devising new
robust schemes for efficient power control that ensure steady and reliable
communications.
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5.2 Future of Resource Allocation

As stated in Chapter 1, the objective of resource allocation in general and power
control in particular has been to improve goodputs, for example, the total through-
put, revenue, and fairness, and to reduce badputs, for example, the transmit power,
consumed energy, and cost, while maintaining the required quality of service (QoS)
subject to certain constraints emanating from regulations, hardware and software
limitations, and other pertinent restrictions [18]. Note, however, that in future
wireless networks, the transmit power levels are expected to be reduced thanks
to smaller cells, which will result in reduced interference. In addition, millimeter
waves, which have been considered in general to have highly directional, pencil-thin
beams that also prevent interference, will see more widespread use [19], with the
possibility of more frequency reuse. So the important question is whether the current
approaches and objectives for resource allocation in existing wireless networks as
stated earlier will continue to be relevant and justified in future wireless networks.
In what follows, we will present evidence and arguments demonstrating that
resource allocation and interference management will remain important subjects in
connection with wireless networks and that devising robust schemes will remain a
formidable challenge with greater uncertainty and more practical constraints.

In [20], based on empirical studies and measurements, evidence was presented
showing that in densely populated indoor and outdoor environments, there are
multipath components in millimeter waves. In general, multi-path components can
be used to improve the signal-to-noise ratio but at the same time reduces the benefit
of small beamwidths that otherwise could have been considered advantageous in
decreasing interference from other sources and users. Hence, one could argue that,
although millimeter waves in principle have narrow beams, the existence of multi-
path components brings about an omnidirectional channel model [21], resulting in
interference that needs to be managed and controlled.

One should also recognize that the use of millimeter waves in future wireless
networks will not mean that the existing frequency spectrum below 4 GHz will
be abandoned. On the contrary, the use of existing bands will be vital in pro-
viding coverage over longer distances and in reaching those users that are inside
buildings by base stations located outside. The deployment of carrier aggregation
in LTE-Advanced needs to be extended to include millimeter waves as well,
resulting in complications that will arise because of the differences in the nature
of propagation, absorption, and reflection of electromagnetic waves in different and
widely dispersed frequency bands.

Moreover, the highly dynamic and time-varying nature of millimeter-wave
propagation and channel models, together with the need to reduce the decision-
making and processing time, will require novel approaches to resource allocation
in future wireless networks that will be simple, efficient, and robust against fast
variations in channel state information or other parameter values with a view to
providing end users with consistency in their required quality of experience and
QoS. In addition, the use of new and advanced techniques in the physical layer,
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such as massive MIMO, NOMA, and SCMA, in such networks will introduce more
complexities in devices and nodes.

Future wireless networks will be increasingly software-based, that is, the use of
software-defined radio (SDR) [22], software-defined networks (SDN) [23–29], and
network function virtualization (NFV) [30–32] will be on the rise in implementing
and deploying such networks. The use of SDR requires a distributed approach
to resource allocation, whereas SDN entails centralized schemes. Irrespective of
whether SDR, SDN, or even a hybrid approach is used, the techniques in Chapters 1,
2, 3, and 4 will still be applicable, but with additional complexities and uncertainties.

Use of such concepts will introduce new sets of constraints in formulating
the resource allocation problem. As discussed earlier in Chapters 1, 2, 3, and 4,
resource allocation problems in general are nonconvex and NP-hard, and to achieve
the aforementioned objectives, a promising area of research seems to be in the
development of robust resource allocation schemes with partial CSI or no CSI
feedback. However, such schemes should be kept simple (i.e., low computational
complexity), with significant improvements made in their performance compared to
existing schemes, with acceptable overhead and message passing, and with relative
confidence in their convergence. That said, note that, as is the case with existing and
advanced wireless networks, practical realities may be different from requirements
[33]. To reduce the complexity of robust resource allocation problems in future
wireless networks, sensitivity analysis, as introduced in Chapters 2, and 3, should be
performed to examine the impact of different constraints on robust solutions. In this
way, only those constraints that have a major impact on the outcome can be retained
and considered in the problem.

5.3 Concluding Remarks

The past two decades have witnessed a surge in research on various aspects of
resource allocation problems, from theoretical issues, such as converting highly
nonconvex and NP-hard optimization problems into convex ones, to implementation
aspects, such as developing distributed algorithms. In the above mentioned research,
an important practical issue has been to consider uncertainty in parameter values in
resource allocation problems for wireless networks.

Traditionally, in applying robust optimization theory to resource allocation in
wireless networks, the impact of uncertain parameters on resource allocation prob-
lems has been captured using two approaches: the worst-case approach, in which
error is considered to be bounded and performance is guaranteed for the worst-
case condition; and the Bayesian approach, in which performance is guaranteed
stochastically without consideration of any bound on uncertainty. There is also a
middle way that entails combining the worst-case and Bayesian approaches while
overcoming their difficulties. Depending on the system model and information
regarding errors, each of these approaches can be applied to resource allocation
problems in wireless networks.
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Our aim in this book was to provide a systematic approach to robust optimization,
where different aspects of introducing robustness are considered and the associated
costs, including the computational complexity, performance reduction, additional
message passing, and equilibrium analysis, are mitigated. In each chapter we
presented the state of the art of knowledge and reviewed interesting, promising,
novel, and useful examples of recent works in the given context.

In Chapters 2 and 3, we focused on distributed robust resource allocation
problems using the decomposition approach and game theory, respectively. In
addition, in Chapter 2, we showed how the concept of protection functions could
be applied to convert a nonconvex problem into a tractable and convex problem.
In Chapter 3, we explained how to utilize some new mathematical concepts, such
as variational inequalities and sensitivity analysis, to study the equilibrium point in
distributed algorithms via game theory.

Chapter 4 dealt with nonconvex and NP-hard robust resource allocation prob-
lems. We presented a taxonomy of various existing approaches to tackling such
problems and discussed their respective applications to derive tractable formula-
tions. We also presented recent nonconventional approaches to robust optimization
where only partial CSI or no CSI feedback was available.

In Chapter 5, we presented arguments that in future wireless networks, resource
allocation problems will continue to dominate and that introducing robustness will
become increasingly desirable in significantly more crowded environments where
users are heterogeneous and applications and services are diverse. In addition, we
offered our views as to how this research area will take shape.
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