
PrimeTime®

Advanced Timing Analysis
User Guide
Version D-2010.06, June 2010

PrimeTime Advanced Timing Analysis User Guide, version D-2010.06 ii

Copyright Notice and Proprietary Information
Copyright © 2010 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary
information that is the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and
may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may
be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without
prior written permission of Synopsys, Inc., or as expressly provided by the license agreement.

Right to Copy Documentation
The license agreement with Synopsys permits licensee to make copies of the documentation for its internal use only.
Each copy shall include all copyrights, trademarks, service marks, and proprietary rights notices, if any. Licensee must
assign sequential numbers to all copies. These copies shall contain the following legend on the cover page:

“This document is duplicated with the permission of Synopsys, Inc., for the exclusive use of
__ and its employees. This is copy number __________.”

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks (®)
Synopsys, AMPS, Astro, Behavior Extracting Synthesis Technology, Cadabra, CATS, Certify, CHIPit, Design Compiler,
DesignWare, Formality, HAPS, HDL Analyst, HSIM, HSPICE, Identify, Leda, MAST, ModelTools, NanoSim, OpenVera,
PathMill, Physical Compiler, PrimeTime, SCOPE, Simply Better Results, SiVL, SNUG, SolvNet, Syndicated, Synplicity,
Synplify, Synplify Pro, Synthesis Constraints Optimization Environment, TetraMAX, the Synplicity logo, UMRBus, VCS,
Vera, and YIELDirector are registered trademarks of Synopsys, Inc.

Trademarks (™)
AFGen, Apollo, Astro-Rail, Astro-Xtalk, Aurora, AvanWaves, BEST, Columbia, Columbia-CE, Confirma, Cosmos,
CosmosLE, CosmosScope, CRITIC, CustomExplorer, CustomSim, DC Expert, DC Professional, DC Ultra, Design
Analyzer, Design Vision, DesignerHDL, DesignPower, DFTMAX, Direct Silicon Access, Discovery, Eclypse, Encore,
EPIC, Galaxy, Galaxy Custom Designer, HANEX, HapsTrak, HDL Compiler, Hercules, Hierarchical Optimization

Technology, High-performance ASIC Prototyping System, HSIM
plus

, i-Virtual Stepper, IICE, in-Sync, iN-Tandem, Jupiter,
Jupiter-DP, JupiterXT, JupiterXT-ASIC, Liberty, Libra-Passport, Library Compiler, Magellan, Mars, Mars-Rail, Mars-Xtalk,
Milkyway, ModelSource, Module Compiler, MultiPoint, Physical Analyst, Planet, Planet-PL, Polaris, Power Compiler,
Raphael, Saturn, Scirocco, Scirocco-i, Star-RCXT, Star-SimXT, StarRC, System Compiler, System Designer, Taurus,
TotalRecall, TSUPREM-4, VCS Express, VCSi, VHDL Compiler, VirSim, and VMC are trademarks of Synopsys, Inc.

Service Marks (SM)
MAP-in, SVP Café, and TAP-in are service marks of Synopsys, Inc.

SystemC is a trademark of the Open SystemC Initiative and is used under license.
ARM and AMBA are registered trademarks of ARM Limited.
Saber is a registered trademark of SabreMark Limited Partnership and is used under license.
All other product or company names may be trademarks of their respective owners.

Contents

What’s New in This Release . xiv

About This User Guide . xiv

Customer Support. xvi

1. Overview of Advanced Topics

Topics Covered in This Manual . 1-2

2. Tcl Advanced Features

Tcl Packages and Autoload . 2-2

Regular Expressions. 2-2

Using Regular Expressions With Implicit Collections . 2-3

Using Regular Expressions With Hierarchy . 2-3

Anchoring Regular Expressions . 2-4

Using Regular Expressions With Buses . 2-4

Extending Procedures . 2-5

Default Procedure Attributes . 2-5

Changing the Aspects of a Procedure . 2-6

Format for the -define_args Option . 2-6

Parsing Arguments Passed in to a Tcl Procedure . 2-8

TclPro Toolkit . 2-9

Installation Requirements . 2-10

Checking the Syntax and Semantics of Your Scripts . 2-10
Limitations Using the Synopsys Syntax Checker . 2-11
iii

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Running the Synopsys Syntax Checker . 2-11

Bytecode-Compiled Files. 2-13

Debugging Scripts . 2-14

Launching Prodebug From PrimeTime . 2-14

TclPro Limitations . 2-14

3. Using PrimeTime With Other Synopsys Tools

Using PrimeTime With Design Compiler . 3-2

Features Specific to PrimeTime. 3-2

Timing Analysis Differences. 3-2
Paths. 3-2
Transition Time . 3-3
current_design Command . 3-3

Command Scripts . 3-4
Sharing Design Compiler and PrimeTime Scripts 3-4
Synopsys Design Constraints Formatted Script Files. 3-5

Reading .db Files With Back-Annotated Data . 3-5

Path Groups in Design Compiler . 3-6

Manual Netlist Editing . 3-6

Automatic Uniquifying of Blocks. 3-8

Resolving Library Cells . 3-8

Estimating Delay Changes. 3-9

Customizing Estimation Columns . 3-12

Sizing Cells . 3-15

Inserting Buffers. 3-16

Swapping Cells . 3-17

Renaming Cells or Nets. 3-18

User Function Class Support. 3-19

Automated Netlist Editing . 3-19

Using the fix_eco_timing Command . 3-20
Recommended Automated Fixing Flow . 3-20

Using the fix_eco_drc Command. 3-21

Writing Change Files . 3-22

Choosing an Output Format . 3-22

Specifying Buffer Insertion Cells and Net Names . 3-23

Controlling Library Logical Names and Prepending File Names 3-23
Contents iv

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Reading Changes Into Layout . 3-24

Incremental Extraction With StarRC . 3-25

Applying Netlist Changes. 3-25

Reading ECO Parasitics . 3-26

Clearing Netlist Changes . 3-26

Incremental Extraction Flow Examples . 3-27

Writing Astro Change Files . 3-27

4. Context Characterization

Context Characterization Overview . 4-2

Setting Synthesis or Optimization Constraints. 4-2

Performing Subdesign Timing Analysis . 4-2

Deriving the Context of a Subdesign . 4-3

Clock Information. 4-4

Input and Output Delay Times . 4-4

Point-to-Point Timing Exceptions . 4-4

Constant Logic Values on Inputs . 4-5

Input Drive Strength and Port Capacitance . 4-5

Wire Load Models . 4-6

Design Rule Checks . 4-6

Annotated Delays and Parasitics . 4-6
Input Delay and Port Capacitance . 4-8

Writing Physical Information . 4-11

Reporting the Timing Context . 4-12

Generating Scripts for Characterized Contexts . 4-12

Removing Context Information . 4-13

Limitations of Context Characterization . 4-13

5. Advanced Analysis Techniques

Time Borrowing in Latch-Based Designs . 5-2

Borrowing Time From Logic Stages. 5-2
Latch Timing Reports . 5-3

Maximum Borrow Time Adjustments . 5-6

Time Borrowed and Time Given . 5-11

Limiting Time Borrowing . 5-13
Chapter 12: Contents
12-vContents v

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Path-Based Timing Analysis . 5-14

Setting Recalculation Limits. 5-18

Composite Current Source (CCS) Receiver Model for
Path-Based Analysis. 5-19

Fast Performance Analysis Mode . 5-19

Parallel Arc Path Tracing. 5-20

Support for Retain Arcs . 5-21

True and False Path Detection . 5-22

Reporting True or False Paths . 5-23

Reporting True Paths . 5-23

Justifying Paths . 5-24

Finding the Longest True Path . 5-25
Changing the Backtrack Limit . 5-26
Changing the Prove-False Backtrack Limit . 5-27
Using the True Delay Function . 5-27
Long Path Example . 5-28

Asynchronous Logic Analysis . 5-31

Combinational Feedback Loop Breaking . 5-31
Dynamic Loop Breaking . 5-32
Specifying Loop Break Points . 5-33

Unrelated Clocks . 5-33

Three-State Bus Analysis . 5-34

Limitations of the Checks. 5-35

Disabling the Checks . 5-35

Bus Contention . 5-35

Floating Buses . 5-36

Three-State Buffers . 5-36

Performing Transient Bus Contention Checks . 5-36

Performing Floating Bus Checks . 5-38

Fast Multidrive Delay Analysis . 5-39

Parallel Driver Reduction . 5-40

Invoking Parallel Driver Reduction . 5-42

Working With Reduced Drivers . 5-42

Data-to-Data Checking . 5-43
Contents vi

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Data Check Examples . 5-43

Data Checks and Clock Domains . 5-46

Library-Based Data Checks. 5-47

Data Propagation Through Generated Clocks. 5-47

Interdependent Setup and Hold Pessimism Reduction . 5-47

Use Model for SHPR . 5-48
Setup-Preferred Slack Improvement. 5-48
Hold-Preferred Slack Improvement. 5-48
Total Negative Slack Improvements . 5-49
SHPR Optimization Constraints . 5-49

SHPR Optimization Mechanism . 5-49

SHPR User Interface . 5-50

SHPR Examples . 5-51
Setup Preferred Slack Improvement Example . 5-51
Total Slack Improvement Example . 5-52

Liberty Format Extension. 5-52

6. Advanced On-Chip Variation

Introduction . 6-2

Advanced OCV Flow. 6-2

Graph-Based Advanced OCV Solution . 6-2

Path-Based Advanced OCV Solution . 6-3

Specifying the Scope of the Advanced OCV Analysis . 6-3

Importing Advanced OCV Information . 6-4

Specifying Derate Tables . 6-5

File Format for Advanced OCV . 6-5

Specifying Random Coefficients . 6-9

Guard-Banding in Advanced OCV. 6-9

Advanced OCV Reporting . 6-10

7. Ideal Network Support

Introduction to Ideal Networks . 7-2

Propagating Ideal Network Properties . 7-2

Using Ideal Networks . 7-2
Chapter 12: Contents
12-viiContents vii

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Using Ideal Latency . 7-4

Using Ideal Transition . 7-4

8. SDF Back-Annotation

Overview of SDF Back-Annotation . 8-2

Reading SDF Files . 8-2

Annotating Timing From a Subdesign Timing File . 8-3

Annotating Load Delay . 8-3

Annotating Timing Checks. 8-3

Reading the File. 8-4

Removing Annotated Timing Checks and Delays . 8-5

Managing Large Files . 8-5

Reporting Delay Back-Annotation Status . 8-6

Reporting Annotated or Nonannotated Delays . 8-6

Reporting Annotated or Nonannotated Timing Checks 8-7

Faster Timing Updates in SDF Flows . 8-8

Annotating Conditional Delays From SDF . 8-8

Writing an SDF File. 8-10

SDF Constructs . 8-11

SDF Delay Triplets . 8-11

SDF Conditions and Edge Identifiers. 8-12

Reducing SDF for Clock Mesh/Spine Networks . 8-12
PORT Construct . 8-13
Normalizing Multidriven Arcs for Simulation . 8-15

Writing VITAL Compliant SDF Files . 8-17

Removing Annotated Delays and Checks. 8-18

Removing Annotated Delays . 8-18

Removing Annotated Checks . 8-18

Setting Annotations From the Command Line . 8-19

Annotating Delays . 8-19

Annotating Timing Checks. 8-20
Annotating Transition Times . 8-21

Generating Timing Constraints for Place and Route . 8-21

Providing Constraint Coverage for the Entire Design . 8-23
Contents viii

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
9. Parasitic Back-Annotation

Parasitic Data . 9-2

Lumped Parasitics . 9-2

Setting Net Capacitance . 9-3

Setting Net Resistance . 9-3

Reduced and Detailed Parasitics . 9-4

Annotating Reduced Parasitics . 9-4

Annotating Detailed Parasitics . 9-5

Supported File Formats for Parasitic Annotation . 9-6

Characterization Trip Points . 9-6

Reading Parasitics Files . 9-10

Scaling Parasitic Values. 9-11

Net-Specific Parasitic Scaling . 9-12
Ground-Capacitance and Resistance Scaling . 9-12
Coupling-Capacitance Scaling . 9-12
Resetting Scale Parasitics . 9-13
Reporting Scale Parasitics . 9-13
Examples . 9-14

Incremental Timing Analysis . 9-19

Incomplete Annotated Parasitics . 9-20

Selecting a Wire Load Model for Incomplete Nets. 9-21
Completing Missing Segments on the Net . 9-22

Reporting Annotated Parasitics . 9-23

Removing Annotated Parasitics . 9-23

10. Delay Calculation With Detailed Parasitics

Overview of Delay Calculation . 10-2

Nonlinear Delay Models (NLDM) . 10-3

CCS Timing Models . 10-5

Support of CCS Receiver Model for Pin Capacitance Reporting. 10-7

Guidelines to Address the CCS Extrapolation Warning Message (RC-011) . . . 10-8
Guidelines for Characterizing Design Rule Constraints 10-8
Guidelines for Fixing RC-011 Warning Messages 10-9

Scaling With CCS Timing Libraries. 10-9
Chapter 12: Contents
12-ixContents ix

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Invoking Scaling. 10-9

Guidelines for Scaling . 10-10

Scaling Interpolation for Constraints . 10-11

Scaling of Design Rule Constraints . 10-12

Multirail Cell Scaling Support for Multirail Cells . 10-12

11. Low-Power Flow Support

Multivoltage Analysis . 11-2

UPF Commands . 11-3

Virtual Power Network . 11-7

Setting Voltage and Temperature . 11-8

Analysis With Multiple Voltages . 11-9

Multivoltage Reporting and Checking . 11-11

Collection (get_*) Commands . 11-11

Reporting Commands . 11-13

Using the check_timing Command . 11-17
Voltage Set on Each Supply Net Segment . 11-17
Supply Net Connected to Each PG Pin of Every Cell. 11-17
Compatible Driver-to-Load Signal Levels . 11-17
Impact of Correlated Supplies on Signal Level Checking 11-20

UPF Supply Sets . 11-21

Library PG Tcl File . 11-22

Default Power and Ground Pin Names . 11-23

Power Domain Mode of Release Z-2007.06 . 11-23

Multivoltage Method Prior to Release Z-2007.06 . 11-26

Setting Operating Conditions on Cells. 11-27

Setting Rail Voltages Directly on Cells. 11-27

12. Object Attributes

Using Attributes . 12-2

Defining User Attributes. 12-2

Importing User-Defined Attributes . 12-3

Saving Design Attributes. 12-5
Contents x

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Attribute Names and Usage . 12-5

Cell Object Class Attributes . 12-6

Clock Object Class Attributes . 12-14

Design Object Class Attributes . 12-20

Library Object Class Attributes . 12-30

Library Cell Object Class Attributes . 12-32

Library Pin Object Class Attributes . 12-35

Library Timing Arc Object Class Attributes . 12-40

Net Object Class Attributes . 12-42

Path Group Object Class Attributes . 12-51

Pin Object Class Attributes . 12-52

Port Object Class Attributes. 12-70

Timing Arc Object Class Attributes . 12-92

Timing Path Object Class Attributes . 12-95

Timing Point Object Class Attributes . 12-101

Using Paths to Generate Custom Reports . 12-102

Using Arcs to Generate Custom Reports . 12-104

Creating a Collection of Library Arcs . 12-105

Reporting Library Data and Driver Information . 12-106

Appendix A. Writing Mapped SDF Files

Specifying Timing Labels in the Library . A-2

Specifying the min_pulse_width Constraint . A-2

Accessing the min_pulse_width Constraint . A-3

Specifying the min_period Constraint on a Pin . A-3

Using SDF Mapping . A-3

SDF Mapping Notation . A-5

SDF Mapping Comments . A-5

SDF Mapping Variables . A-6

Supported SDF Mapping Functions . A-7

SDF Mapping File Syntax . A-9

SDF Mapping Assumptions . A-10

Bus Naming Conventions . A-10
Header Consistency Check for SDF Mapping Files A-10
Chapter 12: Contents
12-xiContents xi

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Labeling Bus Arcs. A-10

SDF Mapping Limitations. A-12

Mapped SDF File Examples . A-12
Library File for Cells EXMP and FF1 . A-12
Mapped SDF File . A-16
Three-State Buffers . A-17

Index
Contents xii

Preface

This preface includes the following sections:

• What’s New in This Release

• About This User Guide

• Customer Support
xiii

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
What’s New in This Release

Information about new features, enhancements, and changes, along with known problems
and limitations and resolved Synopsys Technical Action Requests (STARs), is available in
the PrimeTime Release Notes in SolvNet.

To see the PrimeTime Release Notes,

1. Go to the Download Center on SolvNet located at the following address:

https://solvnet.synopsys.com/DownloadCenter

If prompted, enter your user name and password. If you do not have a Synopsys user
name and password, follow the instructions to register with SolvNet.

2. Select PrimeTime Suite, then select a release in the list that appears at the bottom.

About This User Guide

The PrimeTime Advanced Timing Analysis User Guide describes advanced topics related to
performing static timing analysis using PrimeTime. It supplements the basic information
provided in the PrimeTime Fundamentals User Guide.

Audience

This user guide is for design engineers who use PrimeTime for static timing analysis.

Related Publications

For additional information about PrimeTime, see Documentation on the Web, which is
available through SolvNet at the following address:

https://solvnet.synopsys.com/DocsOnWeb

You might also want to refer to the documentation for the following related Synopsys
products:

• PrimeTime SI, PrimeTime PX, and PrimeTime VX

• Design Compiler

• Library Compiler

• Library NCX
Preface
What’s New in This Release xiv

https://solvnet.synopsys.com/DownloadCenter
https://solvnet.synopsys.com/DocsOnWeb

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Conventions

The following conventions are used in Synopsys documentation.

Convention Description

Courier Indicates command syntax.

Courier italic Indicates a user-defined value in Synopsys syntax,
such as object_name. (A user-defined value that is
not Synopsys syntax, such as a user-defined value
in a Verilog or VHDL statement, is indicated by
regular text font italic.)

Courier bold Indicates user input—text you type verbatim—in
Synopsys syntax and examples. (User input that is
not Synopsys syntax, such as a user name or
password you enter in a GUI, is indicated by regular
text font bold.)

[] Denotes optional parameters, such as
pin1 [pin2 ... pinN]

| Indicates a choice among alternatives, such as
low | medium | high
(This example indicates that you can enter one of
three possible values for an option:
low, medium, or high.)

_ Connects terms that are read as a single term by
the system, such as
set_annotated_delay

Control-c Indicates a keyboard combination, such as holding
down the Control key and pressing c.

\ Indicates a continuation of a command line.

/ Indicates levels of directory structure.

Edit > Copy Indicates a path to a menu command, such as
opening the Edit menu and choosing Copy.
Chapter 12: Preface
About This User Guide 12-xv
Preface
About This User Guide xv

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Customer Support

Customer support is available through SolvNet online customer support and through
contacting the Synopsys Technical Support Center.

Accessing SolvNet

SolvNet includes an electronic knowledge base of technical articles and answers to
frequently asked questions about Synopsys tools. SolvNet also gives you access to a wide
range of Synopsys online services including software downloads, documentation on the
Web, and “Enter a Call to the Support Center.”

To access SolvNet, go to the SolvNet Web page at the following address:

https://solvnet.synopsys.com

If prompted, enter your user name and password. If you do not have a Synopsys user name
and password, follow the instructions to register with SolvNet.

If you need help using SolvNet, click HELP in the top-right menu bar or in the footer.

Contacting the Synopsys Technical Support Center

If you have problems, questions, or suggestions, you can contact the Synopsys Technical
Support Center in the following ways:

• Open a call to your local support center from the Web by going to
https://solvnet.synopsys.com (Synopsys user name and password required), and then
clicking “Enter a Call to the Support Center.”

• Send an e-mail message to your local support center.

• E-mail support_center@synopsys.com from within North America.

• Find other local support center e-mail addresses at
http://www.synopsys.com/Support/GlobalSupportCenters/Pages

• Telephone your local support center.

• Call (800) 245-8005 from within the continental United States.

• Call (650) 584-4200 from Canada.

• Find other local support center telephone numbers at
http://www.synopsys.com/Support/GlobalSupportCenters/Pages
Preface
Customer Support xvi

https://solvnet.synopsys.com
https://solvnet.synopsys.com
https://solvnet.synopsys.com/Support/GlobalSupportCenters/Pages
https://solvnet.synopsys.com/Support/GlobalSupportCenters/Pages

1
Overview of Advanced Topics 1

Prior to consulting this user guide, you should familiarize yourself with the PrimeTime
Fundamentals User Guide, which covers basic topics, such as getting started, design data,
clocks, analysis conditions, and timing reports. This user guide covers more advanced
topics, such as tool command language (Tcl) features, using Design Compiler, context
characterization, back-annotation, and attributes.

This chapter describes the content in each of the other chapters of this manual:

• Topics Covered in This Manual
1-1

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Topics Covered in This Manual

This manual covers a variety of topics for advanced users of PrimeTime. You should
consider the PrimeTime Fundamentals User Guide a prerequisite for using this manual.

Chapter 2, “Tcl Advanced Features,” describes advanced features of the Tcl scripting
language not covered in the PrimeTime Fundamentals User Guide, including Tcl packages
and autoload, regular expressions (using -regexp to perform pattern matching), extending
procedures, and the TclPro Toolkit.

Chapter 3, “Using PrimeTime With Other Synopsys Tools,” explains how to use PrimeTime
effectively with Design Compiler. It explains the differences between PrimeTime and Design
Compiler with respect to command syntax and timing analysis behavior.

Chapter 4, “Context Characterization,” describes how to use the characterize_context
command in PrimeTime to capture the timing context of subdesigns in the chip-level timing
environment. This information can be used to set the timing constraints of a subdesign
during synthesis or logic optimization in Design Compiler, or to perform timing analysis
hierarchically in PrimeTime.

Chapter 5, “Advanced Analysis Techniques,” describes a variety of advanced analysis
topics, including true and false path detection, time borrowing, asynchronous logic analysis,
three-state bus analysis, parallel driver reduction, and data-to-data checking.

Chapter 6, “Advanced On-Chip Variation,” describes the advanced on-chip variation (OCV)
technology. It provides information about the graph-based and path-based solution. It
explains the flow and shows the reporting aspects for this technology.

Chapter 7, “Ideal Network Support,” describes the creation of ideal networks, on which no
design rule checking (DRC) constraints are run. This allows designers ignore networks
(large unoptimized networks with high fanout and capacitance) in prelayout and, instead,
focus on violations arising from other sources. The use of ideal networks reduces runtime
because PrimeTime uses 'ideal timing' rather than internally calculated timing.

Chapter 8, “SDF Back-Annotation,” explains how to back-annotate a design with delay
information contained in a Standard Delay Format (SDF) file, and how to write an SDF file
from the PrimeTime database. Back-annotating delay information from a layout tool
produces a more accurate timing analysis than estimating delays from wire load models.

Chapter 9, “Parasitic Back-Annotation,” explains how to back-annotate a design with
detailed parasitic information (parasitic capacitors and resistors) for more accurate timing
analysis. It explains the types of parasitic data accepted and the procedures for back-
annotating, reporting, and removing parasitic data. It also explains the PrimeTime algorithm
for automatically completing parasitic information that is incomplete.
Chapter 1: Overview of Advanced Topics
Topics Covered in This Manual 1-2

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Chapter 10, “Delay Calculation With Detailed Parasitics,” explains how PrimeTime
calculates delays in the presence of detailed parasitics. Note that you do not need this
information to use parasitic back-annotation. It is only provided in case you want to check the
accuracy of the delay calculations performed by PrimeTime.

Chapter 11, “Low-Power Flow Support,” describes how PrimeTime supports using IEEE

1801TM Unified Power Format (UPF) to specify low-power features of a design, such as
multiple power supplies and power gating. It explains how PrimeTime reads UPF scripts and
provides examples demonstrating the use of UPF commands and infrastructure.

Chapter 12, “Object Attributes,” describes the object attributes contained in the PrimeTime
design database (for example, the number_of_pins attribute attached to each cell) and how
to gather attribute information for generating a custom report.

Appendix A, “Writing Mapped SDF Files,” provides detailed information about controlling the
format of the SDF file produced by the write_sdf command. It is a supplement to Chapter
7, “SDF Back-Annotation.”
Chapter 1: Overview of Advanced Topics
Topics Covered in This Manual 1-3
Chapter 1: Overview of Advanced Topics
Topics Covered in This Manual 1-3

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Chapter 1: Overview of Advanced Topics
Topics Covered in This Manual 1-4

2
Tcl Advanced Features 2

The PrimeTime command interface is based on the Tcl command language. Basic
principles of Tcl usage are presented in the PrimeTime Fundamentals User Guide.

This chapter explains some advanced features of Tcl in the following sections:

• Tcl Packages and Autoload

• Regular Expressions

• Extending Procedures

• TclPro Toolkit
2-1

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Tcl Packages and Autoload

PrimeTime supports the standard Tcl package and autoload facilities. However, the load
command is not supported, so packages that require shared libraries cannot be used.
PrimeTime is shipped with the standard implementations of the packages that are part of the
Tcl distribution. For reference, you can find these packages below the root of the Synopsys
installation in the auxx/tcllib/lib/tcl8.4 directory.

You can add a new Tcl package to PrimeTime either by installing the package into the
Synopsys tree or by adding a new directory to the auto_path variable in the application
startup script (.synopsys_pt.setup).

PrimeTime provides two default locations for loading packages into the application:

• For application-specific Tcl packages, auxx/tcllib/primetime

• For packages that work with all Tcl-based Synopsys tools, auxx/tcllib/snps_tcl

For example, if you have a Tcl package called mycompanyPT that contains PrimeTime
reporting facilities used by mycompany, you would create a directory called mycompanyPT
under the auxx/tcllib/primetime directory and then put the pkgIndex.tcl file and Tcl source
files for my package into that directory. You can use the package in your PrimeTime scripts
by using the following command:

package require mycompanyPT

For detailed information about Tcl packages, see the package command man page, Tcl
reference books, or visit the following Web site:

http://tcl.activestate.com/doc/

Regular Expressions

Many commands that create explicit collections allow you to choose between simple
wildcard patterns (using the * and ? wildcard characters) and complete regular
expressions. Such commands provide the -regexp option, which you can use to tell the
collection engine to use the pattern matching you want. For example,

pt_shell> set gc [get_cells -regexp {i(1|2)_.*}]
Chapter 2: Tcl Advanced Features
Tcl Packages and Autoload 2-2

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Using -regexp causes PrimeTime to view the patterns argument as a regular expression.
In addition, the pattern matching operators in the filter expression (=~ and !~) also use
regular expressions. The following two commands, which illustrate basic regular
expressions, are equivalent:

pt_shell> get_cells blk* -filter "ref_name =~ AN*"

pt_shell> get_cells -regexp {blk.*} -filter "ref_name =~ AN.*"

To perform a case-insensitive search in PrimeTime, the -regexp and -nocase options
must be combined.

PrimeTime uses the same regular expression engine as Tcl. For details about supported
regular expression language and the regexp command, see the man page for regexp or
re_syntax, or consult books on the subject in the engineering section of your local
bookstore or library.

Using Regular Expressions With Implicit Collections
Commands that generate implicit collections do not directly support regular expressions.
However, because an element of an implicit collection can be an explicit collection, you can
use regular expressions indirectly. For example,

pt_shell> report_timing -from [list i1/* [get_pins -regexp $expr]]

Using Regular Expressions With Hierarchy
Mixing -regexp and -hierarchical options is different from mixing a wildcard pattern with
-hierarchical searches. Hierarchical searches with regular expressions are always
compared to the full name of the objects in question. The rules for hierarchical searches with
regular expressions are as follows:

• Using -regexp alone matches leaf names in the current instance. For example,

pt_shell> get_cells -regexp i1.*

• Using -regexp with -hierarchical matches full names, relative to the current instance,
for each object found at or below the current instance. This is independent of the
existence of hierarchy separators in the pattern. For example, to create a collection of i1/
i2/n1, i1/i21/n1, i1/i2/i3/n1, and so forth, use the following syntax:

pt_shell> get_cells -regexp i1/i2.*/n1
Chapter 2: Tcl Advanced Features
Regular Expressions 2-3
Chapter 2: Tcl Advanced Features
Regular Expressions 2-3

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
• Using -regexp does not provide a direct method to match leaf names at each level of the
hierarchy. However, you can emulate a method of matching leaf names by using filters.
For example, to use -regexp to do the same as the command get_cells n1 -
hierarchical, use the base_name attribute, which is the leaf name of the cell. For
example, enter

pt_shell> get_cells -regexp -hierarchical ".*" \
 -filter {base_name == n1}

Anchoring Regular Expressions
By default, PrimeTime automatically anchors regular expression patterns. For example, the
pattern blk.* is considered the same as ^blk.*$, which is usually the intended behavior.

If you want a less restricted matching style, like the Tcl regexp command, prefix and suffix
the pattern with .* to unanchor the pattern (that is, not do an exact match). For example, to
get any cells that contain U1:

pt_shell> get_cells -regexp {.*U1.*}

This matches U1, U11, U1A, U1_23, plus ZU1, ZZU1, hello_U1, and so forth.

Using Regular Expressions With Buses
When using a regular expression to match buses, you must be very careful because the bus
characters ([]) are part of the command language. In addition, the usage varies slightly
depending on whether the command argument is a string or a list.

For a command argument which is a string, the following example shows the correct form.
The expression argument to filter_collection is a string.

pt_shell> filter_collection -regexp [get_ports *] {full_name =~

a\[[0-1]\]}

This regular expression matches ports a[0] and a[1]. A single backslash (\) must precede
the real square brackets.

For a command argument which is a list, the syntax depends on how you specify the list.
Consider the following examples, which use the get_ports command. The “patterns”
argument to get_ports is a list.

pt_shell> get_ports -regexp [list {a\[[0-1]\]}]
pt_shell> get_ports -regexp {{a\[[0-1]\]}}
Chapter 2: Tcl Advanced Features
Regular Expressions 2-4

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
These two commands are essentially equivalent. Proper list forms require single backslash
quoting (\), just like string arguments. It is recommended that you use a properly formatted
list for a list argument, especially in this situation. However, when you pass a single string
into the “patterns” argument, double backslash quoting (\\) is required. For example,

pt_shell> get_ports -regexp {a\\[[0-1]\\]}

The double backslash is required because the promotion of the string to a list consumes one
of the backslashes.

Extending Procedures

Tcl enables you to write reusable procedures. Basic Tcl procedures have positional
arguments, allow default values for arguments, and allow a varying number of arguments.
PrimeTime provides a set of extensions, which allows you or a process developer to define
help text and semantic information for the arguments of a procedure. This is called defining
procedure attributes.

The procedure attributes that you can define include

• A one-line informational text string that is shown with simple help

• The command group in which the procedure exists

• Whether the procedure can be modified

• Whether the body of the procedure can be viewed

• Help text and semantic rules for each argument of the procedure

• Whether the procedure can be abbreviated

The define_proc_attributes command defines attributes for a procedure. Use this
command to modify the attributes of an existing procedure. After you have defined
procedure attributes, you can parse the procedure arguments to your procedure with the
parse_proc_arguments command.

Default Procedure Attributes
When you create a procedure by using the proc command,

• It is placed in the Procedures command group

• It has no help text for its arguments

• On invocation, you can abbreviate the procedure name, subject to the value of the
sh_command_abbrev_mode variable
Chapter 2: Tcl Advanced Features
Extending Procedures 2-5
Chapter 2: Tcl Advanced Features
Extending Procedures 2-5

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
• View the body of the procedure using info body

• Possible to modify the procedure and its attributes

Changing the Aspects of a Procedure
You can use the define_proc_attributes command to change the aspects of a
procedure listed previously.

The define_proc_attributes command enables you to:

• Define the help text and semantic rules for each argument.

• Make the help for a procedure look like the help for an application command.

Format for the -define_args Option
The value for the -define_args option is a list of lists. Each element has this format:

arg_name option_help value_help [data_type] [attributes]
arg_name

The name of the argument.

option_help

A short description of the argument.

value_help

Typically, the argument name for a positional argument or a one-word description for the
value of a command-line option. The value has no meaning for a Boolean option.

data_type

Optional; any of string (the default), list, boolean, int, float, or one_of_string.
Option validation can use the data type.

attributes

Optional; a list of attributes that can be any of the following.

Value Description

required The default. If you use required, you cannot use
optional.

optional If you use optional, you cannot use required.
Chapter 2: Tcl Advanced Features
Extending Procedures 2-6

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
There are two reasons for using the define_parse_attributes command: consistent
formatted help and syntax and semantic checking. To complete syntax and semantic
checking, you must use the parse_proc_arguments command. If you do not use
parse_proc_arguments, the procedure cannot respond to -help. However, you can
always use the help procedure_name -verbose command.

The following procedure adds two numbers and returns the sum. For demonstration
purposes, some unused arguments are defined.

pt_shell> proc plus {a b} { return [expr $a + $b]}
pt_shell> define_proc_attributes plus -info "Add two numbers" \
 -define_args { \
 {a "first addend" a string required} \
 {b "second addend" b string required} \
 {"-verbose" "issue a message" "" boolean optional}}
pt_shell> help -verbose plus
Usage: plus # Add two numbers
 [-verbose] (issue a message)
 a (first addend)
 b (second addend)
pt_shell> plus 5 6
11

value_help When argument help is shown for the procedure, this
attribute also shows the valid values for a one_of_string
argument. For data types other than one_of_string, this
is ignored.

values List of allowable values for a one_of_string argument.
This is required if the argument type is one_of_string. If
you use values with other data types, an error appears.

merge_duplicates When an option appears more than once in a command,
the values are concatenated into a list of values. The
parse_proc_arguments receives a single entry, which is a
list. When merge_duplicates is not specified, the right
most value for the option is used.

 script Identifies the argument as a Tcl script. This is used in the
TclPro flow, so that tools like snps_checker will recurse into
these arguments. For more information, see “TclPro
Toolkit” on page 2-9.

Value Description
Chapter 2: Tcl Advanced Features
Extending Procedures 2-7
Chapter 2: Tcl Advanced Features
Extending Procedures 2-7

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Parsing Arguments Passed in to a Tcl Procedure
The parse_proc_arguments command parses the arguments passed to a Tcl procedure
that was defined with the define_proc_attributes command. The
parse_proc_arguments command works only if you use one procedure argument: the Tcl
keyword args, meaning any number of arguments. Then, you pass the arguments to the
parse_proc_arguments, which does the semantic checking for you.

You can use the parse_proc_arguments command to parse arguments passed into a Tcl
procedure. The value passed into the Tcl procedure is automatically converted to a valid
one-of-string value option. It is no longer the original user-supplied string. Using the
parse_proc_arguments command within Tcl procedures enables support for argument
validation and support of the -help option. Typically, parse_proc_arguments is the first
command called within a procedure. You cannot use the parse_proc_arguments command
outside of a procedure. For syntax information, see the man page.

When a procedure that uses the parse_proc_arguments command is invoked with the -
help option, parse_proc_arguments prints help information (in the same style as using the
help -verbose command) and then causes the calling procedure to return. Similarly, if any
type of error exists with the arguments (missing required arguments, invalid value, and so
forth), the parse_proc_arguments command returns a Tcl error and the calling procedure
terminates and returns.

If you do not specify -help and the specified arguments are valid, the array variable
result_array contains each of the argument values that you entered, subscripted with the
argument name. The argument names are not the names of the arguments in the procedure
definition; the argument names are the names of the arguments as defined using the
define_proc_attributes command.

The following procedure shows how the parse_proc_arguments command typically is
used. The procedure argHandler accepts an optional argument of each type supported by
the define_proc_attributes command, then prints the options and values received.

proc argHandler {args} {
 parse_proc_arguments -args $args results
 foreach argname [array names results] {
 echo " $argname = $results($argname)"
 }
}

define_proc_attributes argHandler \
 -info "Arguments processor’ \
 -define_args {
 {{-Oos "oos help" AnOos one_of_string
 {required value_help {values {a b}}}}
 {-Int "int help" AnInt int optional}
 {-Float "float help" AFloat float optional}
Chapter 2: Tcl Advanced Features
Extending Procedures 2-8

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
 {-Bool "bool help" "" boolean optional}
 {-String "string help" AString string optional}
 {-List "list help" AList list optional}}
 {-IDup "int dup" AIDup int {optional merge_duplicates}}}

Invoking argHandler with -help generates the following output:

pt_shell> argHandler -help
Usage: argHandler # argument processor

-Oos AnOos (oos help: Values: a, b)
[-Int AnInt] (int help)
[-Float AFloat] (float help)
[-Bool] (bool help)
[-String AString] (string help)
[-List AList] (list help)
[-IDup AIDup] (Int dup)

Invoking argHandler with an invalid option generates the following output and causes a Tcl
error:

pt_shell> argHandler -Int z
Error: value 'z' for option '-Int' not of type 'integer'
(CMD-009)
Error: Required argument ‘-Oos’ was not found (CMD-007)

Invoking argHandler with valid arguments generates the following output:

pt_shell> argHandler -Int 6 -Oos a -IDup 2 -IDup 3
 -Int = 6
 -Oos = a
 -IDup = 2 3

Note:
Only the arguments entered are shown in the output of argHandler. To test to see if a
specific argument was entered, you would do the following in your procedure:

if {[info exists results(-Bool)]}{
 ...
}

TclPro Toolkit

TclPro is an open-source toolkit for Tcl programming. These are some of the tools that come
with TclPro:

• TclPro Checker (procheck)
Static script syntax checker
Chapter 2: Tcl Advanced Features
TclPro Toolkit 2-9
Chapter 2: Tcl Advanced Features
TclPro Toolkit 2-9

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
• TclPro Compiler (procomp)
Stand-alone bytecode compiler

• TclPro Debugger (prodebug)
Tcl debugger

The Synopsys Syntax Checker (snps_checker), based on TclPro Checker, is included with
the PrimeTime distribution. It is not necessary to download the TclPro tools to access syntax
checking.

This section discusses how you can leverage these tools in the Synopsys environment. For
more information about the TclPro tools, see the following Web address:

http://tcl.sourceforge.net

Installation Requirements
To use any TclPro tools other than the syntax checker, you must install TclPro on your
system. After you have installed TclPro on your system, you must define the environment
variable SNPS_TCLPRO_HOME, where the TclPro installation exists. For example, if you
installed TclPro version 1.5 at /u/tclpro1.5, you must set the SNPS_TCLPRO_HOME
variable to point at that directory. PrimeTime uses this variable as a base for launching some
of the TclPro tools. In addition, other Synopsys applications use this variable to link to the
TclPro tools.

Checking the Syntax and Semantics of Your Scripts
The Synopsys Syntax Checker, based on the TclPro Checker, helps you find syntax and
semantic errors in your Tcl scripts. Everything that you need for syntax and semantic
checking is shipped with PrimeTime. In this environment, the following items are checked:

• Unknown options

• Ambiguous option abbreviation

• Use of exclusive options

• Missing required options

• Validation of literal option values for numerical range (range, <=, >=)

• Validation of one-of-string (keyword) options

• Recursion into constructs that have script arguments, such as the redirect and
foreach_in_collection commands

• Warning of duplicate options overriding previous values
Chapter 2: Tcl Advanced Features
TclPro Toolkit 2-10

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Limitations Using the Synopsys Syntax Checker
The following limitations apply to the Synopsys Syntax Checker:

• Command abbreviation is not checked. Use of abbreviated commands will show up as
undefined procedures.

• Aliases created with the alias command are not expanded and will show up as
undefined procedures.

• A few checks done when the application is running might not be checked using the
snps_checker environment. For example, some cases where one option requires another
option are not checked.

• Script size is an issue with snps_checker and TclPro 1.3 and 1.5. Scripts up to a few
thousand lines can be reasonably checked, but beyond that, CPU time becomes a factor.
Do not try to check extremely large scripts using snps_checker.

• PrimeTime allows you to specify Verilog-style bus names on the command line without
rigid quoting, for instance, A[0]. This format with indices from 0 to 255 is checked.
Wildcards * and % are also checked. Other forms, including ranges as A[15:0] would
show as undefined procedures, unless represented as {A[15:0]}.

• User-defined procedures enhanced with the define_proc_attribute command are not
checked. Because such procedures are declared with the args argument, no semantic
errors are reported.

Running the Synopsys Syntax Checker
There are two ways to run snps_checker in the Synopsys environment. You can launch
snps_checker from PrimeTime, or you can run it stand-alone.

To run snps_checker stand-alone, use the wrapper scripts provided with the PrimeTime
installation. Running snps_checker directly will not work. For each platform there is a script
in the appropriate bin directory. For PrimeTime you can find the script in
sparcOS5/syn/bin/ptprocheck, linux/syn/bin/ptprocheck, and so on.

To launch snps_checker from PrimeTime, you need to load a package provided with the
installation, which is loaded as follows:

package require snpsTclPro

This makes the check_script command available. Pass the name of the script you want to
check to the check_script command.
Chapter 2: Tcl Advanced Features
TclPro Toolkit 2-11
Chapter 2: Tcl Advanced Features
TclPro Toolkit 2-11

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
The following example shows the script that is used in snps_checker:

create_clock [get_port CLK] -p
create_clock [get_ports CLK] -p -12.2

sort_collection
set paths [get_timing_paths -nworst 10 -delay_type mx_fall
-r]
my_report -from [sort_collection \
 [sort_collection $a b] {b c d} -x]
foreach_in_collection x $objects {
 query_objects $x
 report_timing -through $x -thr $y -from a -from b -to z >
r.out
}
all_fanout -from X -clock_tree
puts [pwd foo]

After running the script, the extensions shipped with your release are loaded. In the example
output it shows the Synopsys extensions being loaded. Each line in the output shows where
a syntax or semantic error was detected. The offending command is shown with a caret (^)
below the character that begins the offending token. The following example shows the output
from snps_checker:

% /synopsys/2001.08/sparcOS5/syn/bin/ptprocheck ex1.tcl
Synopsys Tcl Syntax Checker - Version 1.0

Loading snps_tcl.pcx...
Loading primetime.pcx...
scanning: /disk/scripts/ex1.tcl
checking: /disk/scripts/ex1.tcl
/disk/scripts/ex1.tcl:1 (warnUndefProc) undefined
procedure:
get_port
get_port CLK
^
/disk/scripts/ex1.tcl:1 (SnpsE-MisVal) Value not specified
for
'create_clock -period'
create_clock [get_port CLK] -p
 ^
/disk/scripts/ex1.tcl:2 (SnpsE-BadRange) Value -12.2 for
'create_clock -period' must be >= 0.000000
create_clock [get_ports CLK] -p -12.2
 ^
/disk/scripts/ex1.tcl:3 (SnpsE-MisReq) Missing required
positional options for sort_collection: collection criteria
sort_collection
^
/disk/scripts/ex1.tcl:4 (badKey) invalid keyword "mx_fall"
must
be: max min min_max max_rise max_fall min_rise min_fall
Chapter 2: Tcl Advanced Features
TclPro Toolkit 2-12

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
get_timing_paths -nworst 10 -delay_type mx_fall -r
 ^
/disk/scripts/ex1.tcl:4 (SnpsE-AmbOpt) Ambiguous option
'get_timing_paths -r'
get_timing_paths -nworst 10 -delay_type mx_fall -r
 ^
/disk/scripts/ex1.tcl:5 (warnUndefProc) undefined
procedure:
my_report
my_report -from [sort_collection \
^
/disk/scripts/ex1.tcl:5 (SnpsE-UnkOpt) Unknown option
'sort_collection -x'
sort_collection \
[sort_collection $a b] {b c d} -x
 ^
/disk/scripts/ex1.tcl:9 (SnpsW-DupOver) Duplicate option
'report_timing -from' overrides previous value
report_timing -through $x -thr $y -from a -from b -to z > r.out
 ^
/disk/scripts/ex1.tcl:11 (SnpsE-Excl) Can only specify one
of
these options for all_fanout: -from -clock_tree
all_fanout -from X -clock_tree
^
/disk/scripts/ex1.tcl:12 (numArgs) wrong # args
pwd foo
^

Bytecode-Compiled Files
Bytecode-compiled files are created using the TclPro Compiler, procomp. These files have
the following advantages over ASCII scripts:

• Efficient to load

• Secure because the contents are not readable

• Body of compiled Tcl procedures is hidden

PrimeTime can load bytecode-compiled scripts. To load a bytecode-compiled file, you
source it like you do other scripts. You do not need any files other than the application to load
bytecode-compiled files.
Chapter 2: Tcl Advanced Features
TclPro Toolkit 2-13
Chapter 2: Tcl Advanced Features
TclPro Toolkit 2-13

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Debugging Scripts
The TclPro debugger is the most complex tool in the package. The debugger is similar to
most source code debuggers. You can step over lines in the script, step into procedures, set
breakpoints, and so on. It is not stand-alone—it requires the application to be running while
you debug the script.

Launching Prodebug From PrimeTime
Running the TclPro debugger is dependent on the SNPS_TCLPRO_HOME environment
variable. Once this variable is set, you can debug scripts using the debug_script
command. For more information about the SNPS_TCLPRO_HOME variable, see “Installation
Requirements” on page 2-10.

To launch prodebug from PrimeTime, you need to load a package provided with the
installation. The package is as follows:

package require snpsTclPro

This makes the debug_script command available. Pass the name of the script you want to
debug to the debug_script command. This command launches prodebug, and connects
PrimeTime to it. The script is instrumented, and then you are ready for debugging. You can
make subsequent calls to instrument the script by sourcing the file with the source
command or with the debug_script command. For more information, see the TclPro
documentation shipped with the debugger or the debug_script man page.

TclPro Limitations
TclPro is not supported on RS/6000. However, bytecode-compiled files can be loaded into
this application on all platforms, including RS/6000; and snps_checker is supported on all
UNIX platforms.
Chapter 2: Tcl Advanced Features
TclPro Toolkit 2-14

3
Using PrimeTime With Other Synopsys Tools3

PrimeTime works well with other Synopsys tools. This chapter describes the differences
between various Synopsys tools, such as Design Compiler, and how to use PrimeTime with
them.

This chapter contains the following sections:

• Using PrimeTime With Design Compiler

• Manual Netlist Editing

• Automated Netlist Editing

• Writing Change Files

• Incremental Extraction With StarRC

• Writing Astro Change Files
3-1

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Using PrimeTime With Design Compiler

PrimeTime works very well with the Design Compiler synthesis tool, although there are
some differences in command syntax and behavior between the two tools. The following
sections describe how to make the two tools work together efficiently:

• Features Specific to PrimeTime

• Timing Analysis Differences

• Command Scripts

• Reading .db Files With Back-Annotated Data

• Path Groups in Design Compiler

Features Specific to PrimeTime
Some features of PrimeTime are not supported by Design Compiler, such as internal clocks,
certain features of extracted timing models, and mode analysis (timing models with
operating modes).

Design Compiler does not support the creation of clocks on internal pins of a leaf cell. You
must specify these clocks at input or output pins that are contained in the fanin or fanout of
the internal pin.

Design Compiler cannot analyze and optimize designs with timing models that use mode
analysis. You must manually disable the inactive timing arcs to analyze and optimize a
module in a particular operating mode.

Timing Analysis Differences
The differences in timing analysis behavior between PrimeTime and Design Compiler are
described in the following sections.

Paths
The following differences apply to paths.

Time Borrowing for Hold Checks

PrimeTime disables short-path borrowing by default. (Short-path borrowing is time
borrowing for hold checks at level-sensitive latches.) Design Compiler always allows
borrowing for short paths.
Chapter 3: Using PrimeTime With Other Synopsys Tools
Using PrimeTime With Design Compiler 3-2

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
To simulate the Design Compiler behavior in PrimeTime, set the
timing_allow_short_path_borrowing variable to true. For more information about path
borrowing, see the Synopsys Timing Constraints and Optimization User Guide.

Segmenting Paths: Load-Dependent Delays

In Design Compiler, if a timing report originates from a segmented path’s new startpoint,
Design Compiler transfers the load-dependent portion of the source gate’s delay to the
output net delay. This method can provide a better synthesis result, but it is not appropriate
for static timing analysis. PrimeTime does not add the load-dependent delay to the net.

Transition Time
The following differences apply to transition time.

Bidirectional Pins

PrimeTime maintains separate transition time information for the driver and load parts of
bidirectional inout pins.

Design Compiler keeps the maximum of driver and load transition times.

Clock Pins

PrimeTime propagates transition times to clock pins and uses this information for
computation of clock-to-Q delay and transition time, and calculation of setup and hold delay.

Design Compiler uses 0.0 for computation of clock-to-Q transition time and uses propagated
transition for calculation of clock-to-Q delay for setup and hold delay.

PrimeTime is more pessimistic than Design Compiler for setup. The best solution for pre-
layout is the set_clock_transition command, which specifies a fixed transition time on
clock pins. Both PrimeTime and Design Compiler use 0.0 as input transition time on D of
level-sensitive latches when calculating transition time for D-to-Q arcs.

current_design Command
Design Compiler requires that you change the current design used to specify information
locally, such as wire load models:

dc_shell> current_design BOTTOM
dc_shell> set_wire_load_model -name small
dc_shell> current_design MID
dc_shell> set_wire_load_model -name medium
dc_shell> current_design TOP
dc_shell> set_wire_load_model -name large
Chapter 3: Using PrimeTime With Other Synopsys Tools
Using PrimeTime With Design Compiler 3-3
Chapter 3: Using PrimeTime With Other Synopsys Tools
Using PrimeTime With Design Compiler 3-3

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
In PrimeTime, you achieve this by using the current_instance command or by specifying
hierarchical cell names. Do not use current_design for this purpose. For example,

pt_shell> current_design TOP
pt_shell> set_wire_load_model -name large
pt_shell> set_wire_load_model -name medium [get_cells U1]
pt_shell> set_wire_load_model -name small [get_cells U1/U2]

Command Scripts
You can use command scripts in PrimeTime. A command script is a sequence of pt_shell
commands in a text file. The file can be in ASCII, gzip, or bytecode format. The source
command executes scripts in PrimeTime.

Sharing Design Compiler and PrimeTime Scripts
You can share scripts when you use both Design Compiler and PrimeTime on the same
design. The easiest way to do so is to use Synopsys Design Constraints (SDC), as
described in “Synopsys Design Constraints Formatted Script Files” on page 3-5. Another
method is to keep scripts that contain shared commands separate from scripts that contain
tool-specific commands, as demonstrated in the following examples.

Note:
You cannot convert dc_shell Tcl scripts to pt_shell scripts, but you can source some
dc_shell Tcl scripts directly into pt_shell. An alternative method is to write shared
constraint files in Tcl using the SDC format. For more information, see “Synopsys Design
Constraints Formatted Script Files” on page 3-5.

Example

This dc_shell script includes another script called timing_assertions.scr:

current_design MID
set_wire_load_model -name medium
current_design TOP
set_wire_load_mode enclosed
set_wire_load_model -name large
set_max_area 3000
set_dont_touch u13
include timing_assertions.scr
compile

The following script is part of the timing_assertions.scr script, which contains commands
that both Design Compiler and PrimeTime understand:

set_operating_conditions WCCOM
create_clock -period 10 CLK
set_input_delay ...
set_output_delay ...
Chapter 3: Using PrimeTime With Other Synopsys Tools
Using PrimeTime With Design Compiler 3-4

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
To use the Design Compiler script in PrimeTime, use the timing assertions script and a script
that contains PrimeTime commands. Some PrimeTime commands are identical to Design
Compiler commands in syntax. However, as mentioned earlier, commands that are tool-
specific should be specified differently.

Example

In this example, the pt_shell script contains commands that are equivalent to the commands
in the dc_shell script shown earlier:

set_wire_load_mode enclosed
set_wire_load_model -name medium {u2 u4}
set_wire_load_model -name large
source timing_assertions.scr
set_max_area 3000
set_dont_touch u13

Synopsys Design Constraints Formatted Script Files
SDC formatted script files are Tcl scripts that use a subset of the commands supported by
PrimeTime and Design Compiler. There are limitations placed on some of the supported
commands. For example, not all options are supported in some cases. Although SDC is a
subset of Tcl, it is not a full-function scripting language. It is intended to support the
specification of timing constraints across various electronic design automation tools. It is not
intended for complex scripting.

Within SDC, there is only one design: the current design. You cannot change the current
design with SDC.

SDC files are read into PrimeTime with the read_sdc command, and they are written from
PrimeTime using the write_sdc command. For more information about these commands,
see the man pages.

Checking the Syntax of the SDC File

You can check the SDC file and verify that it is syntactically and semantically correct by
using the read_sdc -syntax_only command. This validates the script without having any
effect on the design. For more information about SDC, see the Using the Synopsys Design
Constraints Format Application Note. To locate this application note, see Documentation on
the Web, which is available through SolvNet at the following address:

https://solvnet.synopsys.com/DocsOnWeb

Reading .db Files With Back-Annotated Data
You can improve the performance of reading netlist .db format files with back-annotation
information into PrimeTime by using one of the following procedures.
Chapter 3: Using PrimeTime With Other Synopsys Tools
Using PrimeTime With Design Compiler 3-5
Chapter 3: Using PrimeTime With Other Synopsys Tools
Using PrimeTime With Design Compiler 3-5

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Procedure 1

1. In dc_shell, save the .db format file with no back-annotation information and write the
back-annotation information using the Standard Delay Format (SDF) file.

2. In pt_shell, read the .db format file, which is not back-annotated, and the generated SDF
file. This is faster than reading the back-annotated .db format file directly in PrimeTime.

Procedure 2

1. In dc_shell, save the timing assertions set on the design with the write_script
command. Make sure you remove commands that are not timing related.

2. In pt_shell, read the back-annotated .db format file, but use the -netlist_only option
of the PrimeTime read_db command to instruct PrimeTime to ignore the back-
annotation.

3. Apply the timing assertions to the design by sourcing the generated script. Make sure the
script is converted from a Design Compiler script to a PrimeTime script.

Path Groups in Design Compiler
In Design Compiler, you can use path groups to modify the cost function for optimization.
You can assign paths or endpoints to named groups. Each group has a weighting value that
you can specify, which contributes to the maximum delay cost for the design.

PrimeTime checks each timing path in the design for maximum delay violations: it compares
the actual path delay for rising and falling signals to a target path delay. The worst violation
for a group is the path with the largest negative slack.

You can specify path groups in PrimeTime. When you request a path-timing report,
PrimeTime lists a report for each path group. You can export this information to Design
Compiler by using the write_script or write_context commands or by budgeting the
design.

When you create an explicit path group, you can also assign a critical range for the path
group. The critical range defines a margin of delay for the path group during optimization in
Design Compiler. A nonzero value allows the optimization of near-critical paths if the worst
violation is not increased.

Manual Netlist Editing

PrimeTime provides commands for manually editing the netlist. Netlist editing is performed
to address timing issues without having to iterate through the implementation tool. You can
also use netlist editing to implement logical netlist changes to estimate their timing impact.
Chapter 3: Using PrimeTime With Other Synopsys Tools
Manual Netlist Editing 3-6

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
You might want to edit the netlist because of a timing violation caused by a large net
capacitance, which in turn is caused by a large net fanout. For addressing common timing
problems, you can increase the size of the driver cell using the size_cell command, or you
can insert a buffer in the net to increase its drive by using the insert_buffer command.
These capabilities are useful, especially late in a design cycle when the logic functionality is
frozen, and only small edits can be made.

For a list of editing commands, see Table 3-1.

To perform netlist editing, all you need is a linked design. You can edit any hierarchical cell
in the netlist.

Note:
You should not perform substantial edits to the design for the purposes of adding new
logic, removing out-of-date logic, or fixing widespread functional errors. Such significant
design changes should be performed in the implementation tool.

As netlist edits are performed, the changes are recorded in an internal change list. When the
editing of the netlist is complete, you can see the impact of the changes by using the
standard timing analysis and reports. If you want to preserve a record of the changes that
you have made, use the write_changes command to save the changes to a disk file. The
changes can be written as a sequence of PrimeTime netlist editing commands, a sequence
of IC Compiler netlist editing commands, or a text description of the changes.

Table 3-1 Netlist Editing Commands

Object Task Command

Buffer Inserting a buffer
Removing a buffer

insert_buffer
remove_buffer

Cell Changing the size (or drive strength) of a cell
Creating a cell
Renaming a cell
Removing a cell

size_cell
create_cell
rename_cell
remove_cell

Net Adding a new net to the design
Connecting nets to pins in the design
Disconnecting nets from pins in the design
Renaming a net
Removing a net

create_net
connect_net
disconnect_net
rename_net
remove_net
Chapter 3: Using PrimeTime With Other Synopsys Tools
Manual Netlist Editing 3-7
Chapter 3: Using PrimeTime With Other Synopsys Tools
Manual Netlist Editing 3-7

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Automatic Uniquifying of Blocks
By editing a hierarchical block that is one instance of multiple instances in a design, you
make that block unique. PrimeTime “uniquifies” that block for you automatically. For
example, if the edited block is an instance of BLOCK, PrimeTime renames it BLOCK_0 or
some similar name, avoiding any names already used in the design.

Making an instance of a design in PrimeTime unique is somewhat different in comparison to
other Synopsys tools because a new design is not created at the time the block becomes
unique. A placeholder for the design is created, similar to the placeholder that exists when a
design is removed from memory by using the link_design -remove_sub_designs
command.

You can list designs created by automatic uniquifying by using the list_designs -all
command. These designs become real only if and when you link the design again.

When a block is edited, it is uniquified, along with all blocks above it, up to the first singly-
instanced block. Messages are generated when uniquifying occurs. For example, if you use
the size_cell command to change the size of cell i1/low/n1, it causes the cells to be
uniquified:

pt_shell> size_cell i1/low/n1 class/NR4P
Uniquifying 'i1/low' (low) as 'low_0'.
Uniquifying 'i1' (inter) as 'inter_0'.
Sized 'i1/low/n1' with 'class/NR4P'
1

Blocks are also marked as having been edited when netlist editing is performed. As soon as
you edit a block, its parent and each level of the hierarchy up to the top-level has also been
edited. This information is available from a Boolean attribute, is_edited, that is available on
a design and on hierarchical cells. After you use the size_cell command, the is_edited
attribute is on i1/low block. For example,

pt_shell> get_attribute [get_cells i1/low] is_edited
true

Resolving Library Cells
Many of the netlist editing commands pass a library cell as an argument, which can be a
library cell object or the name of a library cell. You can obtain the former by using the
get_lib_cells command. The latter can be either

• The full name of the library cell, such as, class/AND2, in which case there is no ambiguity
about what to link the cell to, or
Chapter 3: Using PrimeTime With Other Synopsys Tools
Manual Netlist Editing 3-8

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
• The base name of the library cell, such as, AND2, in which case the library cell base
name must be resolved to a library.

The process of resolving library cell base names to libraries is described in this section.

Library cell resolution for netlist editing commands is used primarily for netlist editing in
distributed multi-scenario analysis, where you cannot use full names of library cells because
each scenario might have a different set of libraries. However, you can also use this feature
in nonmulti-scenario PrimeTime. For more information about distributed multi-scenario
analysis, see the PrimeTime Distributed Multi-Scenario Analysis User Guide.

You can resolve library cell base names from the cell’s current library or from a specific
library that you define using the -current_library or -library option, respectively.

You can use the -current_library option with the commands size_cell,
get_alternative_lib_cells, and report_alternative_lib_cells. This option
instructs PrimeTime to resolve the specified library cell base name from the existing cell’s
currently linked library only. This option prevents PrimeTime from searching any other
libraries.

The commands size_cell, insert_buffer, and create_cell offer the -libraries
option, with which you can specify a list of libraries to resolve a specified library cell name.
The libraries are searched in the order specified in the command. This option prevents
PrimeTime from searching any other libraries. The -libraries option is consistent with the
-libraries option of the get_alternative_lib_cells and
report_alternative_lib_cells commands.

In the absence of these options, PrimeTime resolves library cell base names from libraries
in the following order:

• Link library of the current cell for the size_cell, get_alternative_lib_cells, or
report_alternative_lib_cells command

• Libraries specified by the 22 variable

• Libraries specified by the link_path variable

You can use the -base_names option with the get_alternative_lib_cells command to
cause the command to return the alternative library cells as a list of library cell base names
(a string) rather than a collection.

Estimating Delay Changes
When performing ECO design modifications, fully understanding the consequences of the
timing changes is important before you modify your design. Making the change and
evaluating the resulting timing can cause you to incur the cost of an incremental timing
update.
Chapter 3: Using PrimeTime With Other Synopsys Tools
Manual Netlist Editing 3-9
Chapter 3: Using PrimeTime With Other Synopsys Tools
Manual Netlist Editing 3-9

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
To improve the efficiency of the ECO flow, you can use the estimate_eco command. This
command quickly computes and displays the ECO alternatives based on current timing
values of a particular stage. The estimate takes into account the incoming transition times,
output loading, fanout loading, detailed parasitics if present, and driver characteristics of the
candidate cells.

The results are expected to reasonably predict, but not necessarily match, the actual timing
resulting from subsequently performing that ECO command. Therefore, you should not rely
on the estimate_eco command to get an accurate timing report because the results are not
guaranteed. Rather, you should use the command to help choose the best design change
among multiple options by showing the relative timing impact of each option. In particular,
this command allows you to write efficient ECO scripts that can quickly choose optimal
ECOs without relying on an expensive change, update, check, or modify inner loop.

Two types of ECO fixing methods that are available with the estimate_eco command are
sizing and buffer insertion. Both of these methods change the netlist and, as a result,
change the delay values of the associated stages. For example, sizing a victim driver cell
changes its crosstalk delay because of the driver resistance change. Moreover, it changes
the previous stage delay and current stage delay due to input capacitance and driver
resistance changes as shown in Figure 3-1.

Figure 3-1 Timing Breakdowns
Chapter 3: Using PrimeTime With Other Synopsys Tools
Manual Netlist Editing 3-10

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
When using the estimate_eco command, you should use the following flow:

1. Show the available options.

In this stage, you evaluate possible ECO options. For example, you might want to size up
a driver cell, buf3, in a path that has a setup timing violation. To find out the effects of
substituting different drivers, you would use the following command that would generate
the sample output, which also follows:

pt_shell> estimate_eco –type size_cell -max -rise

delay type : max_rise
lib cell area stg_delay arrival slack trans

mylib90/CKNXD12 19.05 0.0462 0.0462 0.1474 0.012
mylib90/INVD24 21.17 0.0265 0.0265 0.1671 0.030
mylib90/INVD20 18.35 0.0291 0.0291 0.1645 0.022
mylib90/CKNXD8 14.11 0.0610 0.0610 0.1326 0.105
mylib90/INVD3 3.53 0.1295 0.1295 0.0212 0.199
*mylib90/INVD2 2.82 0.1936 0.1936 -0.0013 0.292
mylib90/CKNXD1 2.82 0.4271 0.4271 -0.3214 0.326

Note:
This report shows all possible alternative library cells and associated timings with the
asterisk (*) identifying the current cell. The rise or fall timing represents the worst
timing through the cell output pins in the corresponding direction. The stg_delay
column shows the delay of the inserted buffer or resized cell and the driven net. The
arrival and slack columns represent the arrival time and slack at the load pins of the
newly inserted buffer or resized cell. For more information about customizing the
report output, see “Customizing Estimation Columns” on page 3-12.

2. Estimate the stage delay improvements.

After deciding on the approaches for fixing the timing violation, you analyze the delay
changes at the stage in which the netlist change is to occur. For example, you might want
to insert a buffer to the input pin, buf6/I, and estimate how much the stage delay would
change. The command syntax and sample output is as follows:

pt_shell> estimate_eco -type insert_buffer –inverter_pair \
 -max -rise -verbose \
 -lib_cell INVD

cell name : buf3
current lib cell: mylib90/INVD2
buffer lib cell : mylib90/INVD2

max_rise current estimate
--
input net delay 0.102954 0.052354
stage delay 0.000240 0.000120
 cell delay 0.371027 0.175534
Chapter 3: Using PrimeTime With Other Synopsys Tools
Manual Netlist Editing 3-11
Chapter 3: Using PrimeTime With Other Synopsys Tools
Manual Netlist Editing 3-11

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
 output net delay 0.206952 0.110121
 buffer delay 0.023532 0.013895
 delta delay 0.140543 0.051518
arrival time 0.371027 0.175534
slack 0.304100 0.499593
transition
 cell input 0.202001 0.101001
 cell output 0.252001 0.151001
 load input 0.261001 0.161001

3. Commit changes and verify.

If you are sure about the fix, you can run size_cell, insert_buffer, or both and then
run the update_timing command to see real changes. Since the estimate_eco
command shows only estimated delays, based on current-stage information, the real
delay values after the change can be different due to the interaction between previous,
next, and coupled stages.

Note:
The timing update in this process cannot always guarantee real silicon delays because
PrimeTime does not have place and route information.

For more information about the estimate_eco command, including recommended methods
for using the timing estimation data in scripts, see the man page. For more information about
customizing the report output, see “Customizing Estimation Columns”.

Customizing Estimation Columns
You can customize the format of the default compact output of the estimate_eco command.
You can use the eco_estimation_output_columns variable to specify the desired output
columns for the estimate_eco command. The following column keywords are available:

• area - Shows the area of the alternative library cell.

• stage_delay - Provides stage delay of the alternative library cell.

• arrival - Provides arrival time at the most slack-critical load pin of the stage.

• slack - Shows slack through the cell.

• transition - Displays transition time at the most slack-critical load pin of the stage.

• min_transition - Provides the minimum transition DRC slack of pins surrounding the
stage.

• max_transition - Provides the maximum transition DRC slack of pins surrounding the
stage.

• min_capacitance - Shows the minimum capacitance DRC slack of pins surrounding the
stage.
Chapter 3: Using PrimeTime With Other Synopsys Tools
Manual Netlist Editing 3-12

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
• max_capacitance - Displays the maximum capacitance DRC slack of pins surrounding
the stage.

• max_fanout - Provides the worst maximum fanout DRC for any pin in the estimated stage.

The default columns are area, stage_delay, arrival, and slack. By setting the desired
columns with the eco_estimation_output_columns variable, you can specify the format
once without requiring additional options for each use of the command.

If you specify the size_cell estimation type in the estimate_eco command, the design
rule checking estimations include

• All pins of the cell being resized

• Previous driver pin

• Slack-critical load pin

For example, Figure 3-2 shows the input and output pins with the estimate_eco -type
size_cell U3 command.

Figure 3-2 estimate_eco -type size_cell Example

If you specify the insert_buffer estimation type in the estimate_eco command, the
design rule checking estimations include

• All pins of the buffer being inserted

• All pins of the driver cell

• Slack-critical load pin

For example, Figure 3-3 shows the input and output pins with the estimate_eco -type
insert_buffer U5/Z command.
Chapter 3: Using PrimeTime With Other Synopsys Tools
Manual Netlist Editing 3-13
Chapter 3: Using PrimeTime With Other Synopsys Tools
Manual Netlist Editing 3-13

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Figure 3-3 estimate_eco -type insert_buffer Example

The eco_estimation_output_columns variable also controls which sections appear in the
verbose section. The following is an example of the output when you use the -verbose
option of the estimate_eco command with the max_transition value included in the
column list:

pt_shell> estimate_eco U2319 -lib_cell OR2X1 -v -sig 4

 cell name : U2319
 current lib cell: OR2X2

 new lib cell: OR2X1
 max_rise current estimate
 --
 transition
 cell input 0.0941 0.0877
 cell output 0.0800 0.1154
 load input 0.0800 0.1154
 max transition slack
 input net driver 4.4059 4.4123
 cell input 4.4059 4.4123
 cell output 4.4200 4.3846
 load input 4.4200 4.3846

 new lib cell: OR2X1
 max_fall current estimate
 --
 transition
 cell input 0.1217 0.1170
 cell output 0.0821 0.1081
 load input 0.0821 0.1081
 max transition slack
 input net driver 4.3783 4.3830
 cell input 4.3783 4.3830
 cell output 4.4179 4.3919
 load input 4.4179 4.3919
Chapter 3: Using PrimeTime With Other Synopsys Tools
Manual Netlist Editing 3-14

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Sizing Cells
You can replace the library cell referenced by a leaf cell in the netlist with a new cell by using
the size_cell command. The result is a cell with new characteristics with respect to delay
calculation, which results in different timing.

When you use the size_cell command and the targeted cell is not functionally equivalent,
an error message appears. For example,

pt_shell> size_cell o_reg1 class/NR4P
Error: Could not size 'o_reg1' ('class/FD2') with 'class/
NR4P':
Cells not functionally equivalent. (NED-005)
Error: No changes made. (NED-040)
0

You can use the get_alternative_lib_cells command to find a compatible library cell.

pt_shell> get_alternative_lib_cells o_reg1
{"class/FD2P"}

For example, to size the cell o_reg1 class/FD2P, enter

pt_shell> size_cell o_reg1 class/FD2P
Sized 'o_reg1' with 'class/FD2P'
1

A library might contain several alternative library cells. For example,
get_alternative_lib_cells might return this:

pt_shell> get_alternative_lib_cells o_reg1
{"class/FD2P1", "class/FD2P2", "class/FD2P3"}

Which cell to use for replacement might not be obvious. You can use the
report_alternative_lib_cells command to obtain the slack at the outputs of the leaf
cell. For example, you can use the report_alternative_lib_cells command for a
report, such as this:

pt_shell> report_alternative_lib_cells o_reg1

**
Report : alternative_lib_cells o_reg1 -delay_type max
Design : counter/0 (unknown)
Version: 2000.11
Date : Wed Nov 15 17:53:16 2000
**
Alternative Slack
Library Cells

Chapter 3: Using PrimeTime With Other Synopsys Tools
Manual Netlist Editing 3-15
Chapter 3: Using PrimeTime With Other Synopsys Tools
Manual Netlist Editing 3-15

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
class/FD2P3 1.88(r)
class/FD2 * -1.02(r)
class/FD2P1 -2.88(r)
class/FD2P2 -2.98(r)

The report indicates that the cell class/FD2P3 would yield a design that will produce positive
slack at the output of the leaf cell. In this case, you would use the class/FD2P3 to size the
leaf cell. To verify the state of the design, you can use the report_timing command.

Inserting Buffers
You can use the insert_buffer command to add a buffer at one or more pins in the netlist.
To remove a buffer from the netlist, you can use the remove_buffer command. For more
information, see the insert_buffer and remove_buffer man pages.

Note:
If you insert a buffer when parasitics are present, the parasitics may not be preserved.
See the insert_buffer man page for more information.

In the circuit shown in Figure 3-4, pin u2/Z drives net ICLK, and ICLK has three loads: u3/A,
u4/A, and u5/A.

Figure 3-4 Inserting Buffer

To buffer u3/A and u4/A, enter,

pt_shell> insert_buffer {u3/A u4/A} class/B1I

The insert_buffer command creates a new cell, u1, and a new net, net1. The input of the
new buffer is always the existing net, in this case, ICLK. The output of the new buffer is
always the new net, in this case, net1. The new circuit is shown in Figure 3-5 on page 3-17.

u5

u4

A

A

A

ICLKZ
u2

u3
Chapter 3: Using PrimeTime With Other Synopsys Tools
Manual Netlist Editing 3-16

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Figure 3-5 New Circuit

To change the prefix used to name the newly inserted buffers, you can use the
eco_instance_name_prefix variable. By default it is set to “U.”

Swapping Cells
The swap_cell command replaces the cells in the cell list with the design or library cell you
specify in the new_design option.

Before the swap, the swap_cell command also checks whether the pinout of the cell you
are swapping out and the pinout of the design or library cell you are swapping in are the
same. For every pin of the cell you are swapping out, there must be a pin with the same
name in the cell you are swapping in.

The swap_cell command always relinks the part of the design that has been replaced. Do
not use the link_design command after you have used a swap_cell command; doing so
often undoes the work of the swap_cell command. The PrimeTime data model is instance
based. When you use the swap_cell command, an instance is modified. For example, U2/
U0 is an instance of design X, and you swap U2/U0 for a different design. PrimeTime did not
modify the design X; it modified the instance U2/U0. Therefore, an initial link reverts to the
old design.

PrimeTime does not save information about cells that were swapped; that information is
maintained only until the next link. However, the change list for the design records the fact
that the swap occurred, and you can export this information using the write_changes
command.

By default, the swap_cell command restores the constraints that were on the design before
the swap occurred. If you are doing multiple swaps, saving the constraints using the
write_script command is far more efficient and then you should use the swap_cell
command with the -dont_preserve_constraints option.

u5

u4

A

A

AICLKZ
u2

u3

u1
ZA

net1
Chapter 3: Using PrimeTime With Other Synopsys Tools
Manual Netlist Editing 3-17
Chapter 3: Using PrimeTime With Other Synopsys Tools
Manual Netlist Editing 3-17

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
When you have completed the swaps, restore the constraints by sourcing your script that
you had written with the write_script command. If you are swapping one library cell for
another, consider using the size_cell command, which is much more efficient.

For example, to replace cells u1, u2, and u3 in TOP with the A design (in A.db), enter

pt_shell> read_db A.db
pt_shell> current_design TOP
pt_shell> swap_cell {u1 u2 u3} A.db:A

To replace cells u1, u2, and u3 in TOP with an LC3 lib_cell in the misc_cmos library, enter

pt_shell> swap_cell {u1 u2 u3} [get_lib_cell \
 misc_cmos/LC3]

Note:
The swap_cell command is intended to swap complex cells or hierarchical cells. When
cells are swapped, a full timing update is incurred. You should not use the swap_cell
command for simple cell resizing.

Renaming Cells or Nets
The rename_cell and rename_net commands allow you to change the name of a cell or
net. When renaming a cell or a net using hierarchical names, make certain that the old and
new names are at the same level of hierarchy. You can refer to a cell or net by its full
hierarchical name as long as it is below the current instance.

To successfully rename a cell or net, you must meet the following conditions:

• PrimeTime must be able to find the cell or net.

• No more than one cell or net matches the cell or net pattern that you specify.

• No leaf cell or net is found to match the new name that you specify.

• A new name must be at the same hierarchical level as the cell or net that you are
renaming.

The following example successfully renames cellA to cellB in the current instance, middle.

pt_shell> rename_cell cellA cellB
Information: Renamed cell ‘cellA’ to ‘cellB’ in design
‘middle’.
(NED-008)
1

Chapter 3: Using PrimeTime With Other Synopsys Tools
Manual Netlist Editing 3-18

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
The following example renames a net at a level below the current instance. In this example,
u1 and u1/low are instances of designs that have multiple instances; therefore, they are
uniquified as part of the editing process.

pt_shell> rename_net [get_net u1/low/w1] u1/low/netA
Uniquifying ‘u1/low’ (low) as ‘low_0’.
Uniquifying ‘u1’ (inter) as ‘inter_0’.
Information: Renamed net ‘w1’ to ‘netA’ in ‘middle/u1/low’.
(NED-009)
1

PrimeTime saves the name changes using the rename_cell and rename_net commands
for output with the write_changes command. For additional information, see the man page
for the rename_cell or rename_net command.

User Function Class Support
For some complex library cells, the user_function_class attribute is required to describe
the functional behavior of the cell instead of the function_id attribute. With support for the
user_function_class library cell attribute, what-if analysis cell resizing is now possible for
these complex cells.

Although PrimeTime scales cells with the same function_id attribute, you are also able to
define their own function class. For example,

data buffers
clock buffers
delay buffers (used to fix hold times)

The foundry could provide these function classes to ensure that the proper cells are chosen
for upsizing. You can set the user_function_class attribute using the
set_user_attribute command, in Design Compiler, or in the source .lib file. For more
information about setting this attribute, see the Design Compiler documentation.

Automated Netlist Editing

In design flows, sign-off static timing analysis is performed after the physical design
implementation. Timing violations are common during the initial phases of static timing
analysis before physical implementation is finalized. At this stage, timing violations can be
too numerous to be practical for the manual netlist editing flow. To maintain flow efficiency,
PrimeTime also provides automated netlist editing capabilities to perform design changes
that seek to improve the design's timing slack. “Using the fix_eco_timing Command” on
page 3-20 provides information about commands that you can use during the manual netlist
editing flow.
Chapter 3: Using PrimeTime With Other Synopsys Tools
Automated Netlist Editing 3-19
Chapter 3: Using PrimeTime With Other Synopsys Tools
Automated Netlist Editing 3-19

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Using the fix_eco_timing Command
The fix_eco_timing command is provided to help improve the ECO turnaround time early
in the design flow when the required fixes are numerous. Based on the timing characteristics
of the design, the fix_eco_timing command generates a list of netlist changes that can be
exported to an implementation tool, such as IC Compiler. This capability allows you to
evaluate possible fixes quickly within PrimeTime and reduce more costly iterations in the
physical implementation flow.

You can use the fix_eco_timing command fixing capabilities for both setup and hold
fixing. In addition, hold fixing supports using path-based analysis timing through the -
pba_mode option.

The design should be fully placed and routed, including generating clock trees, before fixing
is performed. If these conditions are not met, design changes might be made that prove to
be unnecessary once these steps are performed.

Recommended Automated Fixing Flow
The fix_eco_timing command seeks to fix timing violations without introducing other new
timing or design rule checking (DRC) violations. When the analysis contains crosstalk
information, coupling information is also used during the fixing process.

Setup fixing works through cell resizing, primarily upsizing. It seeks to avoid introducing
DRC violations, but is permitted to introduce hold violations if needed. This behavior is
chosen because setup violations are more difficult to fix than hold violations.

Hold fixing works through buffer insertion. A list of one or more permissible buffer types is
provided to the fix_eco_timing command for the hold-fixing process. Hold fixing seeks to
avoid introducing both DRC violations and setup timing violations.

The following list shows the recommended usage flow when using the fix_eco_timing
command:

1. Use the fix_eco_timing command to fix setup violations in the design. In setup fixing,
cells are resized to meet timing requirements for violating endpoints. The following
command performs setup fixing for all path groups and violating endpoints:

fix_eco_timing -type setup

To specify the maximum area ratio increase when a cell is resized, you can set the
eco_alternative_area_ratio_threshold variable only during setup fixing. The
default value of this variable is 0, which places area restrictions on cell resizing. A value
of 1.2 indicates that the resized cell could be no more than 20 percent larger than the
current cell. You can also exclude certain library cells from consideration during cell
resizing by marking library cells with the pt_dont_use user-defined attribute.
Chapter 3: Using PrimeTime With Other Synopsys Tools
Automated Netlist Editing 3-20

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
You can use the following Tcl procedure to apply the user-defined attribute:

define_user_attribute -quiet -type boolean -class lib_cell pt_dont_use
proc set_pt_dont_use_lib_cell { lib_cell } {
 set_user_attribute -quiet -class lib_cell \
 [get_lib_cell -quiet $lib_cell]
 pt_dont_use true
}

2. Use the fix_eco_timing command to fix hold violations in the design. For example, to
enable hold fixing for all clock groups and ensure that paths below a hold slack threshold
of +0.001 ns are fixed until they meet the slack threshold, use the following command:

fix_eco_timing -type hold -slack_lesser_than 0.001 \
-buffer_list {BUF1 BUF2 BUF3 BUF4}

The fix_eco_timing command fixes hold violations by inserting a delay at pins that
have hold slack less than the specified slack threshold value. Buffers are inserted to
introduce delay while making sure that additional setup violations are not incurred.

Using the fix_eco_drc Command
The fix_eco_drc command automatically generates size_cell and insert_buffer
commands to fix or reduce maximum transition, maximum capacitance, and maximum
fanout design rule violations, while minimizing the impacts on timing and area. Although
design rule checking fixing takes priority over timing, the fixes are chosen to minimize the
impact on timing. The behavior of this command is similar to that of the fix_eco_timing
command except that it fixes design rule violations instead of timing violations.

To fix only maximum transition design rule violations using only cell sizing and to generate a
verbose fixing report, use the following command:

pt_shell> fix_eco_drc -type max_transition -method {size_cell} -verbose

To fix only maximum transition design rule violations using only buffer insertion with buffers
BUFX1, BUFX2, and BUFX3 and to generate a verbose fixing report, use the following
command:

pt_shell> fix_eco_drc -type max_transition -method {insert_buffer} \
 -buffer_list {BUFX1 BUFX2 BUFX3} -verbose
Chapter 3: Using PrimeTime With Other Synopsys Tools
Automated Netlist Editing 3-21
Chapter 3: Using PrimeTime With Other Synopsys Tools
Automated Netlist Editing 3-21

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
The fixing report shows the number of remaining DRC violations not fixed and, of these, the
number that cannot be fixed and the number that might be fixed by running the fix_eco_drc
command again. For example,

Remaining Violations:
 Violation Type Count
 --
 Total remaining violations 2
 Unfixable violations 1

After the design has been fixed, use the write_changes command to write the size_cell
and insert_buffer commands used in the fixing process into a script file. The file can then
be used in a physical implementation tool such as IC Compiler to implement the changes.

For more information about using the fix_eco_drc command, see the man page for the
command.

Writing Change Files

After the desired netlist edits have been performed, whether through manual editing,
automated editing, or a combination of the two, you can use the write_changes command
to generate an ECO change file. The write_changes command can write the design
changes in multiple output formats, and there are options available to control how the design
change information is written. The following sections provide more information.

• Choosing an Output Format

• Specifying Buffer Insertion Cells and Net Names

• Controlling Library Logical Names and Prepending File Names

• Reading Changes Into Layout

Choosing an Output Format
The write_changes command provides a -format option that allows changes to be written
out in multiple formats. These formats are:

• ptsh - Changes are written as Tcl script that can be sourced in PrimeTime.

• icctcl - Changes are written as Tcl script that can be sourced in IC Compiler or Design
Compiler.

• text - Changes are written as human-readable text that can be parsed by external scripts
for conversion into third-party formats.
Chapter 3: Using PrimeTime With Other Synopsys Tools
Writing Change Files 3-22

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
• dctcl - Changes are written in the same format at the icctcl format. This format is
deprecated in favor of other formats listed in this section.

Specifying Buffer Insertion Cells and Net Names
The insert_buffer command adds a buffer at one or more specified pins or ports. This
command allows you the option of providing the names for new nets and cells added during
buffer insertion. Multiple methods are available to control the new cell and net names. You
can choose one of the following methods:

• Specify no naming information, and choose to use the default naming rules.

• Use the eco_instance_name_prefix and eco_instance_name_prefix variables to
change the default naming rules.

• Explicitly specify the -new_cell_names and -new_net_names options of each manually-
executed insert_buffer command.

To ensure that the buffer insertions of PrimeTime are reproduced correctly, the output from
the write_changes command in the icctcl and ptsh formats always specifies the new cell
and net names for any insert_buffer operations, even if you did not explicitly specify
them. This ensures a robust interface between PrimeTime and IC Compiler and also
maintains a consistent netlist between the netlist in static timing analysis and the netlist in
the implementation tools.

Controlling Library Logical Names and Prepending File Names
When the create_cell, size_cell, and insert_buffer operations are written to the
change file, the commands must reference library cells. You can control the formatting of
these library cell references by using the variables described below. You should set these
variables before netlist changes, as they control how PrimeTime records the changes in
memory. Because the variables control how the changes are stored in the change list, they
affect all of the write_changes output formats.

When the eco_write_changes_prepend_libname_to_libcell variable is true (the
default), the logical library name is included in the library cell definitions. When this variable
is set to false, the file contains only the reference cell name without the logical library
name. You should set this variable to false if the logical library names used in the
implementation tool differ from those that are used in the PrimeTime analysis.
Chapter 3: Using PrimeTime With Other Synopsys Tools
Writing Change Files 3-23
Chapter 3: Using PrimeTime With Other Synopsys Tools
Writing Change Files 3-23

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Example 3-1 and Example 3-3 compare the output Tcl file for both settings:

Example 3-1 Change File, Prepending of Logical Library Name Set to true
insert_buffer -new_cell_names ECO_1 -new_net_names net_1[get_pins {I7/A}] lib1/buf4l

Example 3-2 Change File, Prepending of Logical Library Name Set to false
insert_buffer -new_cell_names ECO_1 -new_net_names net_1[get_pins {I7/A}] buf4l

When the library name is prepended by having the
eco_write_changes_prepend_libname_to_libcell variable set to true (the default), an
additional control becomes available. In addition, if you want to prepend the exact library file
names to the logical names in the change list, you can also set the
eco_write_changes_prepend_libfile_to_libcell variable to true. By default this
variable is set to false.

Example 3-3 shows the write_changes icctcl output with libfile prepending capabilities
enabled:

Example 3-3 Change File, Prepending of Library File Name Set to false
insert_buffer -new_cell_names ECO_1 -new_net_names net_[get_pins {I7/A}] \
 lib.db:lib1/buf4l

This feature is typically used only when multiple libraries with the same logical file name are
present in the tool reading the change file, and differentiate between these libraries is
important. In most cases, the default value of false is suitable.

Reading Changes Into Layout
After the change file is written, the changes can be read into the layout tool. For the
postroute flow using IC Compiler, you can push the design changes into the routed layout
database by performing the following tasks:

1. Generate the list of changes for IC Compilerby executing the following command:

write_changes -format icctcl

2. In IC Compiler, source the change list ECO file.

3. Execute the legalize_placement and route_zrt_eco IC Compiler commands.

4. Run StarRC extraction.

5. After implementation, run PrimeTime to validate the QoR.

6. Repeat additional ECO fixing iterations through PrimeTime and layout, as necessary.
Chapter 3: Using PrimeTime With Other Synopsys Tools
Writing Change Files 3-24

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Incremental Extraction With StarRC

After the changes have been written from PrimeTime, two flows through layout are available.
Most commonly, a new full-design netlist is generated from layout,and a new full-design
parasitics file is generated that matches the new netlist. These new netlist and parasitics
files are read into a new PrimeTime analysis session.

An incremental extraction flow with StarRC is also available. This flow can improve
productivity in large designs by retaining the netlist edits already performed in PrimeTime,
and reading in only the parasitics that have changed due to buffer insertions, cell insertions,
cell legalization, or net rerouting. This results in a reduced SPEF or SBPF file. You can then
read the ECO file into the previous PrimeTime or PrimeTime SI analysis by using the
read_parasitics -eco command.

The following sections explain the steps in the incremental extraction flow in more detail:

• Applying Netlist Changes

• Reading ECO Parasitics

• Clearing Netlist Changes

• Incremental Extraction Flow Examples

Applying Netlist Changes
To enable PrimeTime to read incremental parasitics information from StarRC, you must
issue the following command before the design is initially read in:

set_program_options -enable_eco

This places PrimeTime into a special ECO mode where it retains additional information that
allows it to stitch a new incremental parasitics file onto the existing parasitics. At this point,
any needed netlist editing operations can be performed.

After the desired netlist edits have been completed, you can use the write_changes
command to write a change file for IC Compiler. After the changes have been applied to the
design in IC Compiler, incremental extraction in StarRC is performed. For the incremental
flow to work, you must not apply any other structural netlist changes, such as cell creation
or removal or net connectivity, in IC Compiler, except for those changes written out by
PrimeTime. Cell movement and net rerouting are acceptable, as these changes are brought
back through incremental extraction.
Chapter 3: Using PrimeTime With Other Synopsys Tools
Incremental Extraction With StarRC 3-25
Chapter 3: Using PrimeTime With Other Synopsys Tools
Incremental Extraction With StarRC 3-25

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Reading ECO Parasitics
The read_parasitics -eco option allows you to read in an incremental parasitics file from
StarRC. For more information about the read_parasitics command, see the man page.

Using the -eco option can shorten the overall ECO cycle time. All the other options, such
as -path or -increment, should be exactly the same as before.

If the number of changes is small, reading in the partial parasitics file triggers only an
incremental timing update. This results in faster turnaround times when you are checking the
feasibility of various ECO changes. After performing initial analysis in PrimeTime, you can
either leave your pt_shell running or save a session and restore it later to consume ECO
parasitics.

In ECO mode, PrimeTime remembers the original parasitics files that were read in. When
incremental parasitics are read in, PrimeTime attempts to determine which original
parasitics file corresponds to the incremental parasitics file. This association is needed so
that coupling between the incrementally extracted nets and the original nets can be properly
restored. Normally, PrimeTime is able to determine the location of the original parasitics file.
If this is not possible, you can use the read_parasitics -original_file_name option to
specify the original parasitics file to which the ECO file corresponds.

Note:
You cannot use the parasitics files written by PrimeTime for incremental extraction flows
if the source of the parasitics comes from multiple files. For example, if your design is
annotated with multiple parasitics files and you use the write_parasitics command to
convert the in-memory parasitcs to a single parasitics file, you cannot use the resulting
single parasitics file for ECO flows.

Clearing Netlist Changes
After the incremental parasitics have been read into PrimeTime, the internal change list
should be erased for the next round of editing. This ensures that the next write_changes
command only writes the new changes going forward, rather than including the previous
changes that have already been incorporated into the layout.

The write_changes -reset option clears any netlist change lists. When you use this
option, PrimeTime no longer retains any history of previous netlist editing commands. This
only clears the list of changes remembered by the write_changes command. It does not
actually undo any of the design changes that have been made.
Chapter 3: Using PrimeTime With Other Synopsys Tools
Incremental Extraction With StarRC 3-26

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Incremental Extraction Flow Examples
This section shows an example of a typical incremental extraction ECO flow. The first
section shows the initial analysis performed in ECO mode. In this example, the
fix_eco_timing command is used to fix some timing violations:

set_program_mode -enable_eco
read_verilog ...
read_sdc ...
read_parasitics my_spef.spef -keep_capacitive_coupling
update_timing
set eco_instance_name_prefix {UECO}
fix_eco_timing -type setup
fix_eco_timing -type hold
update_timing
report_timing
write_changes -format icctcl -output eco.tcl
save_session my_session

At this point, the netlist edits have already been performed in the current PrimeTime
session. You can now save this PrimeTime session to a disk using the save_session
command.

Next, you can take the change file into IC Compiler and update the layout. You then perform
incremental extraction in StarRC. After you are finished with those tools, you return to
PrimeTime. You can restore the session if the original analysis is not still running. You then
use the following commands to apply the incremental parasitics back into the PrimeTime
analysis:

pt_shell> restore_session my_session
pt_shell> read_parasitics -eco incr.spef -keep_capacitive_coupling
pt_shell> write_changes -reset
pt_shell> update_timing
pt_shell> report_timing

Writing Astro Change Files

When performing what-if analysis in PrimeTime and PrimeTime SI to investigate possible
fixes for timing or system integrity problems, you can write out the netlist changes directly in
native Astro formats. The write_astro_changes command writes out the structural netlist
ECO operations and coupling separation directives. This is a more direct approach than the
Verilog netlist method because it does not require importing a complete Verilog description
into the design. Use the write_astro_changes command to generate an ECO change file.
Chapter 3: Using PrimeTime With Other Synopsys Tools
Writing Astro Change Files 3-27
Chapter 3: Using PrimeTime With Other Synopsys Tools
Writing Astro Change Files 3-27

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Use the write_astro_changes command to write changes:

write_astro_changes # Write design changes for Astro
-format type (Astro format to write: Values:

 heco, scheme)
[-dont_merge_changes] (Don't merge together structural

changes)
file_name (Output file for design changes)

If the heco format is specified, structural changes are written in the Astro hierarchical ECO
format. IC Compiler can also read in hierarchical ECO files written by PrimeTime. Structural
netlist changes are any what-if operations that modify the netlist structure, such as
insert_buffer or size_cell. Once written, they can be applied to a cell in Astro with the
following command, followed by ECO place and route operations:

auHECOByFile "lib" "cell" "heco_file.txt"

Note:
In IC Compiler, the hierarchical ECO flow will become obsolete and is being replaced with
the Tcl flow. In PrimeTime, you can use the write_changes command to generate an
ECO output that is compatible for IC Compiler. For more information, see
“Recommended Automated Fixing Flow” on page 3-20.

If the scheme format is specified, the coupling separation in the current PrimeTime SI
analysis is written as scheme commands for Astro. These coupling separations are applied
in a PrimeTime SI analysis using the set_coupling_separation and
remove_coupling_separation commands.

Once written out as a scheme file, you can load these separation directives to apply them to
the currently active cell in Astro, followed by a “Detail Route Search & Repair” operation:

load "separations.scm"

Using Astro W-2004.12-SP1 or later for this flow is recommended. For more information
about the write_astro_changes command, see the man page.
Chapter 3: Using PrimeTime With Other Synopsys Tools
Writing Astro Change Files 3-28

4
Context Characterization 4

Context characterization is the process of deriving the timing context of a subdesign from its
environment in the parent design. The resulting information can be used for hierarchical
timing analysis in PrimeTime or for synthesis or logic optimization in Design Compiler.

This chapter is described in the following sections:

• Context Characterization Overview

• Deriving the Context of a Subdesign
4-1

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Context Characterization Overview

Context characterization captures the timing context of instances of subdesigns in the chip-
level timing environment. The timing context of an instance includes clock information, input
arrival times, output delay times, timing exceptions, design rules, propagated constants, wire
load models, input drives, and capacitive loads.

You can use context characterization for the following purposes:

• To set the timing constraints of a subdesign during synthesis or logic optimization in
Design Compiler.

• To perform timing analysis hierarchically in PrimeTime while observing chip-level timing
constraints.

Setting Synthesis or Optimization Constraints
The context characterization steps for setting synthesis or optimization constraints in Design
Compiler are as follows:

1. Read the top design into PrimeTime.

2. Identify the subdesigns that require timing optimization.

3. Characterize the timing context for each subdesign.

4. Generate a Design Compiler script containing the context information.

5. Read the subdesign into Design Compiler.

6. In Design Compiler, read the script generated in step 4.

7. Perform module-level optimization of the subdesigns.

Performing Subdesign Timing Analysis
The context characterization steps for performing subdesign timing analysis in PrimeTime
are as follows:

1. Read the design into PrimeTime.

2. Identify the subdesigns for timing analysis.

3. Characterize the timing context for each subdesign.

4. Generate a PrimeTime script containing the timing assertions.
Chapter 4: Context Characterization
Context Characterization Overview 4-2

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
5. Read a subdesign into PrimeTime.

6. Read the script generated in step 4.

7. Analyze the timing of the subdesign.

Deriving the Context of a Subdesign

The characterize_context command derives the timing and environment context from
instances of subdesigns in the timing environment. The context of an instance is defined as

• Waveforms of the clocks affecting the instance

• Input arrival times

• Output required times

• Timing exceptions

• Design rules

• Logic constants

• Case analysis

• Wire load models

• Input drives

• Capacitive loads

Use the characterize_context command with the write_physical_annotations and
write_context commands to export timing and physical information for a block from the
chip-level environment.

The characterize_context command does not capture delays and parasitics annotated
on the internal nets of the instance being characterized. To capture this information, use the
write_physical_annotations command without the -boundary_nets option. If you omit
the options, PrimeTime characterizes all the information. For more information, see the
characterize_context man page.

Example 1

To generate the timing-related context information for instance I1 and I2, enter

pt_shell> characterize_context -timing {I1 I2}
Chapter 4: Context Characterization
Deriving the Context of a Subdesign 4-3
Chapter 4: Context Characterization
Deriving the Context of a Subdesign 4-3

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Example 2

To generate the design rule and the logic constant information from the context of instance
I2, enter

pt_shell> characterize_context -design_rules I2 -constant_inputs

Clock Information
PrimeTime records all clock signals that affect the instance being characterized. Clock
information includes signals that feed an input pin of the instance and signals that have
sources within the instance. PrimeTime derives information about all clocks driving registers
or ports that launch data signals to or receive data signals from the instance.

PrimeTime characterizes the clock waveform, clock signal latency, and the clock uncertainty
information for each clock being characterized. PrimeTime does not characterize
propagated skew information for clocks feeding input pins of the instance being
characterized.

The write_context command writes characterized clock information as a series of
create_clock, set_clock_latency, and set_clock_uncertainty commands.

Input and Output Delay Times
PrimeTime characterizes arrival times of data signals at input pins of the instance being
characterized and their launching clocks. PrimeTime derives required times of data signals
at output pins and their related clocks.

The write_context command writes input arrival times as set_input_delay commands
and writes output required times as set_output_delay commands.

Point-to-Point Timing Exceptions
PrimeTime derives point-to-point timing exceptions that affect the instance being
characterized. The derived exceptions include

• False paths

• Multicycle paths

• max_delay and min_delay exceptions between clocked startpoints and endpoints

The characterize_context command calculates arrival and required times along with port
capacitances so that the characterized design has the same timing as the chip-level design.
Chapter 4: Context Characterization
Deriving the Context of a Subdesign 4-4

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
PrimeTime writes point-to-point exceptions as a series of set_false_path,
set_multicycle_path, set_max_delay, and set_min_delay commands, depending on
their type.

Constant Logic Values on Inputs
The characterize_context command derives constant logic values that are propagated
to input pins of the instance being characterized.

PrimeTime derives logic constant values as logic constants and case analysis values as
case analysis. For more information about case analysis, see the chapter on that topic in the
PrimeTime Fundamentals User Guide.

Input Drive Strength and Port Capacitance
PrimeTime derives the following input drive strength and port capacitance information:

Driver information

The drivers of input pins of the instance being characterized are characterized. If the
input pin is driven by a port that has a linear drive specified, this drive is also
characterized. Drive information is written as set_drive and set_driving_cell
commands.

Port capacitance information

Both the pin capacitance and the wire capacitance on input and output pins are
characterized. Pin capacitance is written as a set_load command. Wire capacitance is
characterized as a fanout number that derives the number of external loads at the port.
This number is used together with the wire load model to estimate the boundary net
capacitance. If the wire load mode is enclosed or segmented, each pin of the instance
being characterized has a wire load model specified for it, depending on the enclosing
hierarchy of the boundary net to which it is connected.

The fanout number is saved as a set_port_fanout_number command for PrimeTime
and as a set_load -fanout_number command for Design Compiler. The wire load
model is saved as a set_wire_load_model command for PrimeTime and Design
Compiler. In addition to the fanout number, PrimeTime sets a fixed wire capacitance on
the port in certain situations to ensure that the pin-to-pin wire capacitance of the
boundary net after characterization is the same as that in the top-level design before
characterization. This fixed value is written as a set_load command.
Chapter 4: Context Characterization
Deriving the Context of a Subdesign 4-5
Chapter 4: Context Characterization
Deriving the Context of a Subdesign 4-5

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Wire Load Models
The characterize_context command derives the wire load mode and model for
characterized instances. PrimeTime always inherits the top-level wire load mode from
subdesigns. The wire load model for subdesigns is determined as follows:

• If the top-level mode is “top,” the subdesigns inherit the top-level wire load model.

• If the top-level mode is “enclosed” or “segmented,” the subdesigns inherit the wire load
model from the enclosing hierarchy of the net or net segment.

Design Rule Checks
The characterize_context command derives design rule checks such as
max_capacitance, min_capacitance, max_fanout, min_fanout, max_transition, and
min_transition from their context. It also derives fanout_load for output pins of the
instance being characterized. Each design rule check is saved by means of the
corresponding command; for example, max_fanout is saved as a set_max_fanout
command.

Annotated Delays and Parasitics
The characterize_context command does not capture delays and parasitics annotated
on the internal nets of the instance being characterized. Use the
write_physical_annotations command to capture this information.

Example 1

Figure 4-1 shows a simple combinational subdesign called block. Script 1 manually sets the
port interface attributes and Script 2 starts characterization.

Figure 4-1 Simple Combinational Design

n1 n2 n3 n4
A BD

U2

C

top

U3U1

block
Chapter 4: Context Characterization
Deriving the Context of a Subdesign 4-6

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Setup Script
current_design top
create_clock -name clk -period 10
set_input_delay 1.0 -clock clk A
set_output_delay 2.0 -clock clk B

Script 1
current_instance block
create_clock -name clk -period 10
set_driving_cell -lib_cell INV {C}
derive driving cell information
set_input_delay 3.3 C -clock clk
arrival time of net n2 is 3.3
set_load 1.3 D
load of U3 is 1.3
set_output_delay 3.5 D -clock clk
current_instance top

Script 2
current_design top
characterize_context U2
write_context -out U2.ptsh U2

Example 2

Figure 4-2 shows a subdesign block in the sequential design called top. Script 1 sets port
interface attributes manually and Script 2 invokes characterization.

Figure 4-2 Combinational Subdesign Block in Sequential Design

block

top
ff1

u1

u2
u4

in1

clock

ff2

in1

out1
clock1

clock2

1ns

out

u3

2 ns
Chapter 4: Context Characterization
Deriving the Context of a Subdesign 4-7
Chapter 4: Context Characterization
Deriving the Context of a Subdesign 4-7

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Script 1
current_design top
create_clock -period 10 -waveform {0 5} clock

current_instance block
create_clock -name clock -period 10 -waveform {0 5} clock1
create_clock -name clock_bar -period 10 -waveform {5 10}
clock2
delay from ff1/CP to u5/in1 is 1.8
set_input_delay -clock clock 1.8 in1
delay of u4 plus ff2 setup time is 1.2
set_output_delay -clock clock 1.2 out1
set_driving_cell -lib_cell INV -input_transition_rise 1 in1
\
-input_transition_fall 2 in1
set_driving_cell -lib_cell CKINV clock1
set_driving_cell -lib_cell CKBUF clock2
outside load on out1 net
set_load 0.85 out1
current_instance top

Script 2
current_instance top
create_clock -period 10 -waveform {0 5} clock
characterize_context u5
write_context -out u5.ptsh u5

Input Delay and Port Capacitance
The characterize_context command calculates arrival and required times along with port
capacitance so that the characterized design has the same timing as the chip-level design.

The design in Figure 4-3 is the basis for the load and arrival time calculations using the
characterize_context command shown in the following sections.

Figure 4-3 Example Hierarchical Design

A

B

IN1

IN2
OUT

(net NET)

TOP

X

Y

Chapter 4: Context Characterization
Deriving the Context of a Subdesign 4-8

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Calculating Loads
Figure 4-4 shows how PrimeTime annotates the loads of ports and nets in the example in
Figure 4-3 and provides some values for wire loads and input pin capacitance.

Figure 4-4 Design With Annotated Ports and Nets

In Figure 4-4, a through f represent wire segments used in the calculations. The example
assumes a segmented wire load model that takes the interconnection net loads on the
blocks into account and uses a linear function for the wire loads.

For the outside load for pin P in hierarchical block B, the calculation is

outside load =
 sum of the loads of all pins on the net loading P
 which are not in B
 + sum of the loads of all segments of net
 driving or loading P which are not in B

Each segment’s load is

segment load =
 number of fanouts * wire load

Example

The outside load on input IN1 to block A is calculated by using 0 driving pins, a fanout count
of 1 for segment a, and the TOP wire load of 5 loads per fanout:

load pins on driving net + load of segment a
 = 0 + (1 * 5)
 = 5

 A

 B

IN1

IN2
OUT

Wire load at TOP level = Wire load for blocks A and B =
2 units load/fanout5 units load/fanout

1

1

1

Load values on
all input pins = 1 unit load

a b

d
c

e

f

pin P

X

Y

Chapter 4: Context Characterization
Deriving the Context of a Subdesign 4-9
Chapter 4: Context Characterization
Deriving the Context of a Subdesign 4-9

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
For the outside load on the output of block A, the calculation is

load pins on net
 + load of segment c
 + load of segment d
 = 1 (for load pin P)
 + (1 * 5)
 + (1 * 2)
 = 1 + 5 + 2
 = 8

For each segment in the calculation, the local wire load model is used to calculate the load.
The calculation for block A’s output pin uses the TOP wire load of 5 loads per fanout for
segment c and block B’s wire load of 2 loads per fanout for segment d.

For the outside load on the output of block B, the calculation is

load pins on net + load of segment e
 = 0 + (1 * 5)
 = 5

For the outside load on the input pin X of block B, the calculation is

load pins on net
 + load of segment b
 + load of segment c
 = 0 + (1 * 2) + (1 * 5)
 = 7

For the outside load on the input pin Y, the calculation is

pin loads on driving net + load of segment f
 = 0 + 1 * 5
 = 5

Figure 4-5 shows the same example with the outside loads annotated after characterization.

Figure 4-5 Design With Outside Loads After Characterization

 A

 B

IN1

IN2
OUT

7

5

X

Y
5

5 8

Wire load at top level =
5 units cap/load

1

1

1

Load values on
all input pins = 1 unit load

Block B’s input ports

a b
c

d
e

Chapter 4: Context Characterization
Deriving the Context of a Subdesign 4-10

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Calculating Input Delays
Because characterization provides accurate details of the outside loads, the input delays or
path delays of input signals reflect only the delay through the last gate driving the port. They
do not include the connect or transition delays.

For example, the characterized arrival times on the input pins of block B are calculated from
the delay to the pin that drives the port being characterized, without the transition or connect
delays. This section describes the timing calculations for characterizing block B.

Figure 4-6 shows the example design annotated with default drive strengths and intrinsic
delays of block A and signal IN1.

Figure 4-6 Design Annotated for Timing Calculations

For input pin X, the delay calculation is

drive strength at IN1 * (wire load + pin load)
 + intrinsic delay of A’s cell
 = 3 * (5 + 2 + 1)
 + 1
 = 25

Writing Physical Information
The write_physical_annotations command writes physical information for a hierarchical
block in a design. The exported information includes annotated net and cell delays using
SDF. PrimeTime can also export annotated parasitics as a series of pt_shell and dc_shell
(dctcl mode) commands. For more information, see the write_physical_annotations
man page.

Drive Strength Pin load = 1 unit load

IN1

IN2
OUT

3
1

1

Load
Intrinsic delay

5 8

 A

 B

NET2

X

Y

Chapter 4: Context Characterization
Deriving the Context of a Subdesign 4-11
Chapter 4: Context Characterization
Deriving the Context of a Subdesign 4-11

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Example 1

To write the annotated delays on nets for the hierarchical cell U1, enter

pt_shell> write_physical_annotations -sdf U1.sdf \
 -nets_only U1

To use the -append option to augment the script that PrimeTime generates by the
write_context command with commands to import the generated delay and parasitics
files, enter

pt_shell> characterize_context U2

pt_shell> write_context -format dtcl -out U2.dtcl U2

pt_shell> write_physical_annotations -sdf U2.sdf \
 -parasitics U2.rc -format dcsh -append U2.dcsh U2

Reporting the Timing Context
The report_context command reports the timing context derived by the
characterize_context command. If you do not specify an option, all context information
is reported.

For more information, see the report_context man page.

Example 1

To report the timing-related context information for instance I1 and I2, use this command.
The report shows clocks and their waveforms, point-to-point timing exceptions, input
external delay, and output external delays.

pt_shell> report_context -timing {I1 I2}

Example 2

To report the environment and design rule context information for I2, use this command. The
report shows design rule checks, wire load models, driving cell information about input pins,
and capacitive load on input and output pins of I2.

pt_shell> report_context -env -design_rules I2

Generating Scripts for Characterized Contexts
The write_context command generates the timing of characterized contexts as a Design
Compiler script or a PrimeTime script. Use this command to export context information to
other tools. Use write_context with the write_physical_annotations and
Chapter 4: Context Characterization
Deriving the Context of a Subdesign 4-12

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
characterize_context commands to export timing and physical information for a block
from the chip-level environment. If you do not specify any options, PrimeTime writes all
context information. For more information, see the write_context man page.

Example 1

To write the timing-related context information for instance I1 and I2 as a dc_shell script to
standard output, enter

pt_shell> write_context -timing -format dcsh {I1 I2}

Example 2

To write the environment and constant input context information for I2 as a PrimeTime shell
script into a file called des1.ptsh file, enter

pt_shell> write_context -environment \
 -constant_inputs -output des1.ptsh I2

Removing Context Information
If you no longer need to report or write the context of an instance, you can delete the context
information using the remove_context command. For the specified list of instances, the
remove_context command deletes the timing context derived by the
characterize_context command. If you do not specify an option, PrimeTime deletes all
context information.

For more information, see the remove_context man page.

Example 1

To delete the timing-related context information for instances I1 and I2, enter

pt_shell> remove_context -timing {I1 I2}

Example 2

To delete the environment and design rule context information for instance I2, enter

pt_shell> remove_context -environment -design_rules I2

Limitations of Context Characterization
The following limitations apply to the characterize_context command:
Chapter 4: Context Characterization
Deriving the Context of a Subdesign 4-13
Chapter 4: Context Characterization
Deriving the Context of a Subdesign 4-13

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Timing exceptions

To accurately constrain certain cases of timing exceptions involving registers, the
characterize_context command can create virtual clocks and set input and output
delays relative to that virtual clock instead of to the source register’s clock. You might see
these additional virtual clocks in the resulting constraint files.

The characterize_context command ignores

• Combinational timing exceptions starting outside the cell being characterized

• Timing exceptions specified with the -through option

The characterize_context command does not derive all combinational timing
exceptions affecting paths in the instance being characterized. Combinational timing
exceptions are exceptions defined between unclocked points in the design using the
set_max_delay and set_min_delay commands.

Attributes in a design

The characterize_context command ignores clock latency or uncertainty and
max_time_borrow attributes placed on a hierarchical boundary (generally not an issue
because these attributes are usually placed on clocks and cells). The
characterize_context command does not preserve path_group information when
deriving output constraints for subdesigns; PrimeTime supports the default clock-based
path groups.

Generated clock information

Generated clocks are expanded from the master clock and are characterized as separate
clocks. They are saved by means of the create_clock command.

Modes

The characterize_context command does not characterize the mode information in
the top design.

Back-annotation information

The characterize_context command does not derive back-annotation information,
such as back-annotated delays and wire capacitance set on nets contained in the
instance being characterized. Use the write_physical_annotations command in
PrimeTime to do this.

Timing budgets

The characterize_context command generates subdesign constraints on the basis of
absolute path delays in the current design. Timing budgets are not usually needed when
the outputs of modules are registered.

The characterize_context command generates constraints consistent with optimal
timing budgets, if the design is already fully optimized and all paths have zero slack. The
best design methodology in many cases is to use the characterize_context command
to derive noncritical constraints and use timing budgets to constrain critical paths. Timing
Chapter 4: Context Characterization
Deriving the Context of a Subdesign 4-14

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
budgets give you more direct, repeatable control of optimization than characterized
constraints. Timing budgets can also reduce the number of characterize_context and
compile iterations necessary to converge on a coherent design hierarchy.

Example

This example illustrates a case where timing budgets produce better results than the
characterize_context command.

Figure 4-7 shows a design targeted to run at 50 MHz. The path delay through the circuit is
13 ns (including propagation delay through the first flip-flop and the setup time requirement
of the second flip-flop). This design meets the timing requirement, but it is faster than
necessary.

Figure 4-7 50-MHz Design

You can improve the circuit area by recompiling this design.

• In PrimeTime, use these commands:

pt_shell> create_clock CLK -period 20 -waveform {0 10}
pt_shell> characterize_context {A B}
pt_shell> write_context -out A.dcsh -format dcsh A
pt_shell> write_context -out B.dcsh -format dcsh B

• In Design Compiler, use these commands:

dc_shell> current_design A
dc_shell> include A.dcsh
dc_shell> compile
dc_shell> current_design B
dc_shell> include B.dcsh
dc_shell> compile
dc_shell> current_design TOP
dc_shell> report_timing

OUT

TOP

U1
U2

IN

CLK

S

A

B

prop
2 ns

4 ns 6 ns
setup
1 ns
Chapter 4: Context Characterization
Deriving the Context of a Subdesign 4-15
Chapter 4: Context Characterization
Deriving the Context of a Subdesign 4-15

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
PrimeTime generates these constraints for design A:

create_clock CLK -period 20 -waveform {0 10}
set_output_delay 7 -clock CLK S

PrimeTime generates these constraints for design B:

create_clock CLK -period 20 -waveform {0 10}
set_input_delay 6 -clock CLK S

When design A is compiled, Design Compiler can relax the path delay to 13 ns without
violating the generated constraint. Similarly, when design B is compiled, Design Compiler
can relax the path delay to 14 ns without violating the generated constraint. The resulting
design, shown in Figure 4-8, does not run at the required speed.

Figure 4-8 Design Resulting From Generated Constraint

If you repeat the characterize_context and compile commands on the design,
characterize_context generates different constraints.

PrimeTime generates these constraints for design A:

create_clock CLK -period 20 -waveform {0 10}
set_output_delay 14 -clock CLK S

PrimeTime generates these constraints for design B:

create_clock CLK -period 20 -waveform {0 10}
set_input_delay 13 -clock CLK S

This resulting design might have the same constraints as the original design. It runs at
speed, but it is unnecessarily large. When two blocks are characterized at the same time,
then compiled in parallel, each block is overconstrained by the entire amount of negative

OUT

TOP

U1
U2

IN

CLK

S

A

B

prop
2 ns

11 ns 13 ns
setup
1 ns
Chapter 4: Context Characterization
Deriving the Context of a Subdesign 4-16

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
slack on critical paths between the block and underconstrained by the entire amount of
positive slack on noncritical paths between the blocks. To solve this problem, you can use
the characterize_context command to compile the blocks repeatedly.

• In PrimeTime, use these commands:

pt_shell> create_clock CLK -period 20 -waveform {0 10}
pt_shell> characterize_context A -format dcsh -out A.dcsh

Use the following commands for design B:

current_design TOP
read_ddc A.ddc
link TOP
characterize_context B -format dcsh -out B.dcsh

• In Design Compiler, use these commands:

dc_shell> current_design A
dc_shell> include A.dcsh
dc_shell> compile

Use the following commands for design B:

current_design B
include B.dcsh
compile
current_design TOP
report_timing

Although this approach produces a smaller design that runs at speed, it might not produce
the smallest design that runs at speed. In the preceding command sequence, the available
slack is consumed by design A during the first compile. Figure 4-9 shows the resulting
design.

Figure 4-9 Design Resulting From Compiling Blocks Repeatedly

OUT

TOP

U1
U2

IN

CLK

S

A

B

prop
2 ns

11 ns 6 ns
setup
1 ns
Chapter 4: Context Characterization
Deriving the Context of a Subdesign 4-17
Chapter 4: Context Characterization
Deriving the Context of a Subdesign 4-17

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
To realize the optimal design, you must set time budgets without using the
characterize_context command. Instead, in Design Compiler, use these commands:

current_design A
create_clock CLK -period 20 -waveform {0 10}
set_output_delay 9 -clock CLK S
compile
current_design B
create_clock CLK -period 20 -waveform {0 10}
set_input_delay 11 -clock CLK S
compile
current_design TOP
report_timing
Chapter 4: Context Characterization
Deriving the Context of a Subdesign 4-18

5
Advanced Analysis Techniques 5

There are several advanced timing analysis techniques that you can use in PrimeTime. This
chapter explains the analysis techniques, commands, and options.

This chapter contains the following sections:

• Time Borrowing in Latch-Based Designs

• Path-Based Timing Analysis

• Fast Performance Analysis Mode

• Parallel Arc Path Tracing

• Support for Retain Arcs

• True and False Path Detection

• Asynchronous Logic Analysis

• Three-State Bus Analysis

• Fast Multidrive Delay Analysis

• Parallel Driver Reduction

• Data-to-Data Checking

• Interdependent Setup and Hold Pessimism Reduction
5-1

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Time Borrowing in Latch-Based Designs

Transparent latches present unusual challenges for static timing analysis tools. A technique
known as time borrowing (also known as “cycle stealing”) gives latch-based designs a
distinct advantage over flip-flop based designs because a level-sensitive latch is transparent
for the duration of an active clock pulse. This technique can relax the normal edge-to-edge
timing requirements of synchronous designs. However, it is harder to control the timing of
latch-based designs because of the multi-phase clocks used and the lack of “hard” clock
edges at which events must occur.

Borrowing Time From Logic Stages
In a design using level-sensitive latches, a path can borrow time from the next logic stage by
taking advantage of the fact that latches are transparent while the gate input is asserted.
Figure 5-1 shows latch-based stages using a simple two-phase clocking scheme.

Figure 5-1 Latch-Based Timing Paths

Borrow time =
8.92 – 5.0 = 3.92

P2

U1 U2 U3
Phi1

Phi2

D Q

G

D Q

G

D Q

GP1 P2

Borrowing path

0 15105

Phi1

Phi2

8.92 0.77

P1

8.92
9.69

Time given to
startpoint = 3.92

U2 opening edge

U2 closing edge
Chapter 5: Advanced Analysis Techniques
Time Borrowing in Latch-Based Designs 5-2

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
A design using level-sensitive latches allows a combinational logic path with a delay longer
than the available cycle time as long as it is compensated by shorter path delays in
subsequent latch-to-latch stages. For the two-phase design, the available time for latch-to-
latch paths is half the clock cycle.

In Figure 5-1 on page 5-2, U1, U2, and U3 are positive-level-sensitive latches (active when
G = 1), and P1 and P2 are combinational logic paths. For now, assume a library setup time
of zero for the latches and zero delay from D to Q in transparent mode. For positive-level-
sensitive latches, PrimeTime uses the rising (opening) edge as the reference edge.

The figure shows path delays of P1 = 8.92 and P2 = 0.77. There might appear to be a
violation at U2 because the data arrives at U2 after the rising edge of phi2. However,
because the U2 latch is transparent for 5 ns and P2 is less than that amount, path P1 can
borrow the slack time (3.92 ns) from the path between U2 and U3. Therefore, the sum of P1
and P2 is 9.69, which is less than the required time of 10.00 at U3.

Latch Timing Reports
If the data signal arrives before the opening edge at the endpoint latch, PrimeTime models
this behavior just as it would for a flip-flop. The opening edge of the clock (rising edge in this
example) captures the data at the endpoint. The same clock edge launches the data at the
startpoint of the next path.

On the other hand, if the data signal arrives while the latch is transparent (after the opening
edge but before the closing edge at the endpoint latch), PrimeTime models the behavior at
the next stage as a launch from the data pin of the latch, rather than from the clock pin. In
this case, there is no timing violation and the slack is considered zero. The amount of time
borrowed by the stage ending at the latch becomes the departure time for the next stage,
subject to certain adjustments described in the next section, “Maximum Borrow Time
Adjustments” on page 5-6. A data signal arriving after the closing edge at the endpoint latch
is a timing violation.

Figure 5-2 on page 5-4 shows how PrimeTime would calculate and report slack for a range
of combinational delays through P1, which would result in different arrival times at U1 (refer
to the schematic in Figure 5-1). Figure 5-2 on page 5-4 does not consider the effects of latch
setup time, latency, uncertainly, and clock reconvergence pessimism removal.
Chapter 5: Advanced Analysis Techniques
Time Borrowing in Latch-Based Designs 5-3
Chapter 5: Advanced Analysis Techniques
Time Borrowing in Latch-Based Designs 5-3

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Figure 5-2 Latch-Based Timing Path Slack Calculation

Example

The following example shows how the report_timing command reports a timing path
ending at a transparent latch with time borrowing. The “time borrowed from endpoint” and
“time given to startpoint” statements in this report correlate with Figure 5-1 on page 5-2.

**
Report : timing

-path short
-delay max
-max_paths 1

Design : time_borrow
**
Wire Loading Model Mode: enclosed

Startpoint: U1 (positive level-sensitive latch clocked by
Phi1)
Endpoint: U2 (positive level-sensitive latch clocked by Phi2)
Path Group: Phi2

Borrow time

0 15105

Phi1

Phi2

P1

U2 opening edge

U2 closing edge

0

Slack

Arrival time at U2
endpoint

Arrival before
opening edge:
positive slack

Arrival during
transparency:
zero slack

Arrival after
closing edge:
negative slack

Maximum borrow time
Chapter 5: Advanced Analysis Techniques
Time Borrowing in Latch-Based Designs 5-4

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Path Type: max

Point Incr Path
--
-
clock Phi1 (rise edge) 0.00 0.00
clock network delay (ideal) 0.00 0.00
U1/G (LATCH) 0.00 0.00 r
U1/Q (LATCH) 0.57 0.57 r
...
U2/D (LATCH) 8.35 8.92 r
data arrival time 8.92

clock Phi2 (rise edge) 5.00 5.00
clock network delay (ideal) 0.00 5.00
U2/G (LATCH) 0.00 5.00 r
time borrowed from endpoint 3.92 8.92
data required time 8.92
--
-
data required time 8.92
data arrival time -8.92
--
-
slack (MET) 0.00

Time Borrowing Information

Phi2 nominal pulse width 5.00
library setup time -0.46

max time borrow 4.54
actual time borrow 3.92

Startpoint: U2 (positive level-sensitive latch clocked by
Phi2)
Endpoint: U3 (positive level-sensitive latch clocked by Phi1)
Path Group: Phi1
Path Type: max

Point Incr Path
--
-
clock Phi2 (rise edge) 5.00 5.00
clock network delay (ideal) 0.00 5.00
time given to startpoint 3.92 8.92
U2/D (LATCH) 0.00 8.92 r
U2/Q (LATCH) 0.53 9.45 r
...
Chapter 5: Advanced Analysis Techniques
Time Borrowing in Latch-Based Designs 5-5
Chapter 5: Advanced Analysis Techniques
Time Borrowing in Latch-Based Designs 5-5

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
U3/D (LATCH) 0.24 9.69 f
data arrival time 9.69

clock Phi1 (rise edge) 10.00 10.00
clock network delay (ideal) 0.00 10.00
U3/G (LATCH) 0.00 10.00 r
time borrowed from endpoint 0.00 10.00
data required time 10.00
--
-
data required time 10.00
data arrival time -9.69
--
-
slack (MET) 0.31

Time Borrowing Information

Phi1 nominal pulse width 5.00
library setup time -0.49

max time borrow 4.51
actual time borrow 0.00

For the U2 to U3 path, time must be added to compensate for the time borrowed, so
PrimeTime adds 3.92 ns to the launch time of U2. This is reported in the second path’s
timing report. Because the P2 path has enough slack, neither path is in violation.

Maximum Borrow Time Adjustments
The maximum amount of time that can be borrowed at an endpoint latch is based on the
clock pulse width (the time from the opening edge to the closing edge of the gate signal) as
defined by the create_clock command, minus the library setup time of the latch. See
Figure 5-3 on page 5-7.
Chapter 5: Advanced Analysis Techniques
Time Borrowing in Latch-Based Designs 5-6

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Figure 5-3 Maximum Borrow Time Reduced by Setup Requirement

For better accuracy, PrimeTime adjusts this amount further for the effects of clock latency,
clock uncertainty, and clock reconvergence pessimism removal.

Clock latency can be defined with the set_clock_latency command or calculated by
PrimeTime from propagated delays in the clock tree (enabled by set_propagated_clock).
Latency values can be different for the rising and falling edges of the clock pulse, which can
affect the pulse width and thus the maximum borrow time. See Figure 5-4 on page 5-8.

U1 U2 U3
phi1

phi2

D Q

G

D Q

G

D Q

G

Time-borrowing path Delayed-launch path

0 105

phi1

phi2

U2 opening edge

U2 closing edge
Maximum borrow time

Library setup
time for U2 = 0.4
Chapter 5: Advanced Analysis Techniques
Time Borrowing in Latch-Based Designs 5-7
Chapter 5: Advanced Analysis Techniques
Time Borrowing in Latch-Based Designs 5-7

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Figure 5-4 Maximum Borrow Time Adjustment for Latency

Clock uncertainty can be defined with the set_clock_uncertainty command. For a setup
check, PrimeTime considers the earliest possible arrival of capture clock edges. Differences
in uncertainty between rising and falling edges can affect the clock pulse width and
maximum borrow time. See Figure 5-5 on page 5-9.

U1 U3
phi1

phi2

D Q

G

D Q

G

D Q

G

Time-borrowing path Delayed-launch path

0 105

phi1

phi2
U2 opening
edge

U2 closing
edge

Maximum borrow time

2.3 1.3

rise latency = 2.3
fall latency = 1.3
max borrow time adjustment = –1.0

U2
Chapter 5: Advanced Analysis Techniques
Time Borrowing in Latch-Based Designs 5-8

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Figure 5-5 Maximum Borrow Time Adjustment for Uncertainty

Clock reconvergence pessimism removal (CRPR) is an analysis technique that corrects any
inaccuracy resulting from a common segment in the launch and capture clock paths, as
explained in the “Min-Max Analysis” chapter in the PrimeTime Fundamentals User Guide.
You enable this feature by setting the timing_remove_clock_reconvergece_pessimism
variable to true.

Application of CRPR shifts the clock edge times, like clock uncertainty. However, applying
clock uncertainty makes the analysis more pessimistic, whereas applying CRPR makes the
analysis less pessimistic, so the direction of the edge shift is in the positive direction rather
than the negative direction. Differences in CRPR between rising and falling edges can affect
the clock pulse width and maximum borrow time. See Figure 5-6 on page 5-10.

1.8

U1 U3
phi1

phi2

D Q

G

D Q

G

D Q

G

Time-borrowing path Delayed-launch path

0 105

phi1

phi2

U2 opening
edge

U2 closing
edge2.1

rise uncertainty = 2.1
fall uncertainty = 1.8
max borrow time adjustment = +0.3

U2

Maximum borrow time
Chapter 5: Advanced Analysis Techniques
Time Borrowing in Latch-Based Designs 5-9
Chapter 5: Advanced Analysis Techniques
Time Borrowing in Latch-Based Designs 5-9

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Figure 5-6 Maximum Borrow Time Adjustment for CRPR

To calculate the maximum allowable borrow time, PrimeTime starts with the clock pulse
width and then adjusts it for the applicable effects of clock latency, clock uncertainty, clock
reconvergence pessimism removal, and library setup time of the endpoint latch. The
report_timing command reports the clock pulse width and the adjustments as follows:

Time Borrowing Information

CLK nominal pulse width 5.00
clock latency difference -1.00
clock uncertainty difference 0.30
CRPR difference -0.10
library setup time -0.40

max time borrow 3.80

...

0.2

U1 U3
phi1

phi2

D Q

G

D Q

G

D Q

G

Time-borrowing path Delayed-launch path

0 105

phi1

phi2

Maximum borrow time

0

crpr rise = 0.3
crpr fall = 0.2
max borrow time adjustment = –0.1

U2

Common
segment in
clock path
not shown

U2 opening
edge

U2 closing
edge
Chapter 5: Advanced Analysis Techniques
Time Borrowing in Latch-Based Designs 5-10

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Time Borrowed and Time Given
PrimeTime calculates the amount of time borrowed in relation to the arrival time of the
opening clock edge at the latch. PrimeTime first adjusts the arrival time of the opening edge
to account for path-specific effects of both uncertainty and CRPR (if applicable). Then it
compares the adjusted value to the signal arrival time at the data pin to determine the
amount of time borrowed at the path endpoint, if any.

If uncertainty and CRPR exist for the opening edge of the latch, the time borrowed will be
different from the amount of time given to the startpoint of the next stage. To determine the
time given to the startpoint, PrimeTime subtracts the uncertainty and CRPR adjustments.
This subtraction is necessary in transparent mode to make the launch at the next stage
occur precisely when the signal arrives at the data pin, as illustrated in Figure 5-7.

Note, however, that when the timing_early_launch_at_borrowing_latches variable is
disabled, the data arrival and launch times are not identical, owing to the deliberate
application of a late clock latency to launch the next stage. This mode is recommended
when CRPR is enabled. Note that the CRPR adjustment to the time given to the startpoint
of the next stage is not applied in this mode. For more information, see the man page for this
variable.

Figure 5-7 Borrow Time and Time Given to Startpoint in Transparent Mode

phi1

phi2

time given to startpoint

actual time borrow

Nominal opening edge
(starting time for next stage)

Adjustment for clock
uncertainty and CRPR (to
determine borrow time)

data arrival time at endpoint = data
departure time for next stage
Chapter 5: Advanced Analysis Techniques
Time Borrowing in Latch-Based Designs 5-11
Chapter 5: Advanced Analysis Techniques
Time Borrowing in Latch-Based Designs 5-11

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
The report_timing command reports the amount of time borrowing and uncertainty/
CRPR adjustments as follows:

Time Borrowing Information

CLK nominal pulse width 5.00
clock latency difference -1.00
clock uncertainty difference 0.30
CRPR difference -0.10
library setup time -0.40

max time borrow 3.80

actual time borrow 3.40
open edge uncertainty -2.10
open edge CRPR 0.30

time given to startpoint 1.60

In most cases, data arrival before the opening clock edge results in no borrowing, whereas
data arrival after the opening clock edge results in borrowing. When borrowing occurs, the
arrival time minus the clock edge time is reported as “time borrowed from endpoint” from the
perspective of the path segment ending at the latch. This same amount of time is reported
as “time given to startpoint” from the perspective of the path segment starting from the latch.

However, in certain cases, data arrival just before the clock edge can result in borrowing.
This happens when the D-to-Q delay of the latch is more than its clock-to-Q delay, and the
arrival time is very close to the clock edge, as shown in Figure 5-8 on page 5-13. Under
these circumstances, the data departure time for the next path is determined by the data
arrival time and the D-to-Q delay, rather than the clock-to-Q delay of the no-borrowing case.
Chapter 5: Advanced Analysis Techniques
Time Borrowing in Latch-Based Designs 5-12

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Figure 5-8 Negative Borrow Time

PrimeTime accounts for this condition by allowing time borrowing. The arrival time minus the
clock edge time is a negative number, so the amount of borrowing is negative. The borrowed
amount is reported as “time given to endpoint” from the perspective of the path segment
ending at the latch, and “time borrowed from startpoint” from the perspective of the path
segment starting from the latch. This amount of time cannot exceed the difference between
the D-to-Q delay and clock-to-Q delay of the latch.

Limiting Time Borrowing
The set_max_time_borrow command limits time borrowing to a specified amount for all
latch endpoints within a specified scope of the design. You can use this command to set a
more restrictive constraint on borrowing. At the specified latch endpoints, PrimeTime limits
borrowing to the specified amount or to the default value determined by the adjusted pulse
width, whichever is smaller.

If the default_max_time_borrow constraint is zero, no time borrowing is allowed and
PrimeTime analyzes the latch like a flip-flop.

If the default_max_time_borrow constraint is negative, the data signal must be stable
before the open edge of the clock. You can use this feature to ensure that the enable input
arrives before the clock (on a gated-clock latch, for example). For more information, see the
set_max_time_borrow man page.

phi1

phi2

Negative
borrow time

1.1

Data arrival time at endpoint

0 105

D Q

G 0.8

Data departure time at startpoint
determined by arrival time and D-to-Q delay
Chapter 5: Advanced Analysis Techniques
Time Borrowing in Latch-Based Designs 5-13
Chapter 5: Advanced Analysis Techniques
Time Borrowing in Latch-Based Designs 5-13

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
To show the max_time_borrow attributes in the design, use the report_exceptions
command. To remove the maximum time borrow limit set on specified objects using
set_max_time_borrow, use the remove_max_time_borrow command.

These commands set maximum time borrowing of 2.5 on all latches clocked by clk:

pt_shell> create_clock -period 10 -waveform {0 5} clk

pt_shell> set_max_time_borrow 2.5 find(clock,clk)

pt_shell> report_timing -to latch1/D

The user_max_time_borrow constraint (from the set_max_time_borrow command)
effectively reduces the pulse available for time borrowing from 5.0 to 2.5:

Time Borrowing Information

user max_time_borrow 2.50

max time borrow 2.50
actual time borrow 0.00

The time borrowed from an endpoint is usually the same as the time given to the next
startpoint when the endpoint and startpoint are both the D pin of the same latch. There can
be a small difference due to uncertainty and CRPR adjustment of the opening edge of the
latch. Sometimes, if the borrowing at D is small, the most critical path from the latch still
comes from G; however, if you do the explicit report from D, then the time given is the same
as the time borrowed.

Path-Based Timing Analysis

Static timing analysis tools are designed to be pessimistic in certain respects to ensure
detection of all timing violations. For example, by default, PrimeTime considers both the
worst arrival time and worst slew among all signals feeding into a path, even if the signal with
the worst arrival time is different from the one with the worst slew.

You can control the behavior of PrimeTime with respect to worst slew with the
timing_slew_propagation_mode variable. You can set this variable to worst_slew (the
default), which gives a possibly pessimistic but safe analysis; or worst_arrival, which
gives a more accurate but possibly optimistic analysis.

Although the worst arrival mode reduces the pessimism for the critical path, non-critical
paths may have optimism for highly slew-sensitive paths. For more information, see the man
page for this variable or the description in the PrimeTime Fundamentals User Guide.
Chapter 5: Advanced Analysis Techniques
Path-Based Timing Analysis 5-14

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
A better method to reduce the pessimism for critical paths is to analyze those paths in
isolation from other paths. This method is called path-based timing analysis. When
recalculating a timing path, PrimeTime propagates the edge along each path of interest,
ignoring slews from side arcs along the path, and it performs delay calculation to compute
the path-specific slack. Thus, path-based analysis recalculates the timing in a timing path
without considering outside paths that might otherwise affect the arrival times and slew
values used in the calculation. The command annotates the path collection with new timing
information such as arrival times, slews, and slack.

Timing path effects, such as clock reconvergence pessimism removal and crosstalk effects
(delta delays), are also recomputed specifically to that path. Path-based analysis is useful
when there are only a few violations remaining in the analysis, and you want to find out
whether these violations are caused by pessimistic analysis of arrival and slew times.

One important property of path-based analysis is that the slack ordering of paths can
change due to the path recalculation. In other words, the most critical path before
recalculation may not be the most critical path after recalculation. Because of this property,
multiple paths to an endpoint may need to be recalculated to determine the true post-
recalculation critical path. It cannot be emphasized enough that recalculating the single
worst failing path to an endpoint does not provide the worst recalculated slack to that
endpoint.

There are two ways to recalculate a specific path or set of paths. One way is by using the -
pba_mode path option of the report_timing or get_timing_paths command. No path
search is performed to determine whether those paths are truly the worst recalculated paths.
Here is an example of the path-specific recalculation approach:

pt_shell> report_timing -pba_mode path

In this example, the single worst path in each path group is obtained from the design, then
recalculated, then reported. No searching is performed for other paths that might have
worse slack after recalculation. It is possible that there are subcritical paths that would have
worse slack after recalculation than the reported paths. This method is useful for quickly
gaining an idea of how much improvement is provided by path-based analysis without the
runtime of a full path search. The slack results either match those from a full path search or
are slightly optimistic.

The second way is to perform an exhaustive path search for the worst recalculated timing.
You do this by using the -pba_mode exhaustive option of the report_timing command.
PrimeTime performs an exhaustive recalculated path search, recalculating as many paths
as necessary to ensure that the paths returned are the worst recalculated paths that meet
the specified options.
Chapter 5: Advanced Analysis Techniques
Path-Based Timing Analysis 5-15
Chapter 5: Advanced Analysis Techniques
Path-Based Timing Analysis 5-15

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
To ensure optimal path search runtime, the following usage is recommended:

• Use the -pba_mode exhaustive option with the -slack_lesser_than option to keep
the search bounded.

• Perform an exhaustive path search only when -pba_mode path shows that the slacks are
reasonably close to the desired threshold.

• Ensure that the reporting is as specific as possible. If reports are desired only for specific
path groups or startpoints and endpoints, specify the required reporting options.

• Enable worst parallel-arc reporting by setting the
timing_report_use_worst_parallel_cell_arc variable to true. For more
information about this variable, see the man page.

To see the critical path in each path group while applying exhaustive path-based
recalculation, use the following syntax:

pt_shell> report_timing –pba_mode exhaustive -slack_lesser_than 0

In the example above, if no paths are reported with negative slack, the design has no timing
violations.

Path-based recalculation can also be combined with other timing path selection options,
such as –from/–through/–to or –max_paths/–nworst. For -pba_mode path, the -
slack_lesser_than option applies to the original slack used to obtain the paths. The
reported recalculated slack might be improved.

When using -max_paths or -nworst with -pba_mode exhaustive, the path limits represent
the desired path counts at the completion of the search. Additional paths are searched
during the path search process to ensure a complete result. For example, to report the worst
path to each violating endpoint with recalculation taken into account, use the following
syntax:

pt_shell> report_timing –pba_mode exhaustive -nworst 1 \
 –slack_lesser 0 –max_paths 1000

Multiple paths to each failing endpoint are searched to find the worst recalculated failing
path.

The report_timing -pba_mode exhaustive option does not support other options, such
as -true, -justify, -start_end_pair, and some other postprocessing options, such as
the -slack_greater_than option.
Chapter 5: Advanced Analysis Techniques
Path-Based Timing Analysis 5-16

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
You can also use the get_timing_paths -pba_mode path command to recalculate a
collection of timing paths. When passed a collection of timing paths with this option, the
collection is recalculated and returned. For example,

pt_shell> set paths [get_timing_paths -max_paths 10]
pt_shell> set recalc_paths [get_timing_paths -pba_mode path $paths]

After a set of timing paths have been recalculated, you can use the report_timing
command to report the recalculated timing values of the path collection. For example,

pt_shell> report_timing $recalc_paths

The recalculated values are accessible only by the report_timing and get_attribute
commands, not by other commands, such as the report_constraint command. However,
you can use the report_attribute command to report the newly calculated attribute
values directly inside the path collection.

The timing_path objects have an is_recalculated Boolean attribute that indicates
whether the timing path has been recalculated. The report_timing command indicates
whether a timing path is recalculated or not by having the text, (recalculated), appear in the
Path Type header field for the path. For example,

**
Report : timing
 -path full
 -delay max
 -max_paths 1000
Design : led
Version: D-2010.06
Date : Tue Jul 6 12:28:38 2010
**
 Startpoint: c (input port)
 Endpoint: z2 (output port)
 Path Group: default
 Path Type: max (recalculated)

The path-based analysis feature allows control of whether or not clock paths and latch-
based borrowing paths are recalculated. The pba_recalculate_full_path variable
controls whether the clock path should be recalculated. When the variable is set to its default
of false, clock paths and borrowing paths are never recalculated. Only the data portion of
the path is recalculated. When the variable is set to true, the clock path and borrowing
paths are always recalculated.

The -path full_clock_expanded option of the report_timing command indicates only
that the clock path should be included in the timing report. This option does not control
whether the clock path is recalculated or not. If the pba_recalculate_full_path variable
is set to true and the -path full_clock_expanded option is not specified, the clock path
is obtained and recalculated; however, the expanded clock path is not shown in the report.
Chapter 5: Advanced Analysis Techniques
Path-Based Timing Analysis 5-17
Chapter 5: Advanced Analysis Techniques
Path-Based Timing Analysis 5-17

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
The -path full_clock_expanded option of the get_timing_paths command indicates
that the clock path should be obtained and stored along with the timing path collection
objects. If the pba_recalculate_full_path variable is set to true and recalculated timing
paths are obtained directly with the get_timing_paths -pba_mode option, the clock path is
recalculated and used to compute the path timing; however, the full clock path is not stored
in the timing path collection objects. If a timing_path object previously obtained without the
-path full_clock_expanded option is being recalculated and clock path recalculation is
enabled with the pba_recalculate_full_path variable set to true, an error message is
issued indicating that the clock path is needed for correct and consistent results. For more
information about this capability, see the pba_recalculate_full_path variable man page.

Note:
When the pba_recalculate_full_path variable is set to true, path-based analysis
recalculates the borrowing at transparent latches only if the -trace_latch_borrow
option has been specified. Otherwise, the existing borrowing at the original path’s
startpoint is used.

The timing_report_recalculation_status variable facilitates debugging and eases the
runtime concern. It works for both the get_timing_path -pba_mode exhaustive and
report_timing -pba_mode exhaustive commands. For more information about this
variable, see the man page.

The amount of time needed for the integrated path search depends on a few factors:

• Amount of slack improvement provided by recalculation

• Number of paths involved in the search (-slack_lesser than, -from/-through/-to)

• Number of paths to be returned to the user (-max_paths and -nworst)

In particular, large -nworst values can significantly increase the runtime of the search. The
pba_exhaustive_endpoint_path_limit variable helps to prevent excessive runtime by
terminating the exhaustive path searching for an endpoint once a specific limit on the per-
endpoint number of paths to recalculate has been reached.

When you perform a timing update on the original design (for example, with an
update_timing command), any timing path collections created by the get_timing_paths
command are automatically deleted.

Setting Recalculation Limits
You can control the behavior of the recalculation limits in path-based analysis. Path-specific
recalculation with the -pba_mode path option has a limit of 2000000 paths per recalculation
command. Exhaustive recalculation with the -pba_mode exhaustive option has a paths-
per-endpoint limit controlled by the pba_exhaustive_endpoint_path_limit variable,
which defaults to 25000.
Chapter 5: Advanced Analysis Techniques
Path-Based Timing Analysis 5-18

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
When either limit is reached, the limiting behavior is controlled by the
pba_path_recalculation_limit_compatibility variable. When set to its default value
of true, no further paths are obtained or recalculated when the limit is reached. For path-
specific recalculation, the remaining paths beyond the limit are discarded. For exhaustive
recalculation, the limited endpoint is not included in the search; however, any paths that are
already found for that endpoint remain in the search.

When the pba_path_recalculation_limit_compatibility variable is set to false,
graph-based analysis paths are used to fill in the recalculation results past the limit. For
path-specific recalculation, the remaining paths beyond the limit retain their original non-
recalculated graph-based timing. For exhaustive recalculation, any additional paths
obtained for the limited endpoint retains their original nonrecalculated graph-based timing.
In both cases, recalculated paths can be readily identified in the resulting timing reports with
the recalculation flag in the path headers.

Composite Current Source (CCS) Receiver Model for Path-Based
Analysis
For path-based analysis, PrimeTime uses the actual receiver models in the path being
analyzed. For the cells that are side loads, the worst-case receiver models are used. During
path-based analysis, receiver models are derived using the effective capacitance (Ceff) on
the output of the load cell. You save this capacitance for path-based analysis by setting the
rc_cache_min_max_rise_fall_ceff variable to true (the default is false).

Note:
The rc_cache_min_max_rise_fall_ceff variable is automatically set to true if you
have enabled crosstalk analysis or if you have invoked the GUI prior to the
update_timing command.

Fast Performance Analysis Mode

The fast performance analysis mode in PrimeTime provides increased performance when
accuracy is less critical. This mode provides a single setting that configures PrimeTime and
PrimeTime SI for higher performance for the many early analysis runs while maintaining
reasonable accuracy. When accuracy is critical, such as during late stage timing and ECO
closure runs, you should ensure that this mode is disabled. By default, fast analysis mode is
turned off. You should enable fast analysis mode at the beginning of your script by using the
following command:

set_program_options -enable_fast_analysis
Chapter 5: Advanced Analysis Techniques
Fast Performance Analysis Mode 5-19
Chapter 5: Advanced Analysis Techniques
Fast Performance Analysis Mode 5-19

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Note:
You should turn on fast analysis mode before loading designs and libraries because
enabling fast analysis might cause changes when loading them.

When you choose fast analysis mode, it gets higher priority over any other options or
variables to provide higher performance. For example, it focuses default reporting on only
violating paths. A read-only sh_fast_analysis_mode_enabled variable monitors whether
fast analysis mode is enabled. The report_design command shows whether the fast
analysis mode is enabled or disabled.

For more information about these command options, the variable, and an example report,
see the specific man pages.

Parallel Arc Path Tracing

To ensure that the report_timing command uses only the worst arc in each sense set of
parallel arcs for path tracing, set the timing_report_use_worst_parallel_cell_
arc variable to true. The variable is set to false by default. Figure 5-9 shows the result if
you enable this variable by setting it to true.

set timing_report_use_worst_parallel_cell_arc true

Figure 5-9 Worst Arc Used for Path Tracing

Only paths with the worst arc behaviors through the logic with a given rise and fall edge
sequence are returned. The worst arc is the fastest arc for minimum delay tracing and it is
the slowest arc for maximum delay tracing. Subcritical timing paths through other
combinations of timing arcs with the same edge direction sequence are not returned.
However, since timing arcs with different senses are still considered unique, different paths
with unique rise and fall edge sequences through non-unate gates are still returned.

This might cut down substantially on the number of paths returned by large -nworst values,
improving analysis efficiency. If the -nworst limit is not being reached, such as when
reporting paths to a single endpoint, a lesser number of timing paths are returned. If -nworst
has reached its limit, such as when reporting across an entire path group, the paths that are
returned up to the limit might have a more varied topological exploration of the logic. This
can help improve the efficiency of reporting scripts, bottleneck analysis, ECO scripts that are
driven by timing_path collections.
Chapter 5: Advanced Analysis Techniques
Parallel Arc Path Tracing 5-20

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
This feature impacts both the report_timing and get_timing_paths commands when
you specify an -nworst value greater than 1. Only parallel arcs of the same sense are
affected. If there are different sense arcs in parallel, such as positive_unate and
negative_unate across an XOR gate, they are still considered unique. This feature affects
path tracing behavior at reporting time only. It does not affect the behavior of the
update_timing command. You can change the value of the variable at any time without
incurring a timing update penalty.

Support for Retain Arcs

PrimeTime can load retain arcs for timing models from library files, annotate the retain arcs
from SDF input files, and report on these arcs. Retain arcs are similar to hold-check arcs and
are typically used for modeling random access memory (RAM). They are defined between a
clock pin and the data output of a RAM, and they are always defined in parallel with the
parent arc, which is the ordinary or default delay arc between the same two pins. A retain arc
does not generate an actual timing check during timing analysis, but is treated as another
delay arc that is connected in parallel with its parent arc.

Clock-to-output retain arcs guarantee that the RAM output does not change for a specific
interval of time after the clock edge. When the retain arc delay is less than its parent arc, the
retain arc appears in a timing report for only the minimum delay paths. When the retain arc
delay is longer than its parent arc, the retain arc can also appear in the maximum delay path
report with no error messages or warnings.

To report all of the timing arcs for cells in a technology library, including retain arcs, use the
-timing_arcs option with the report_lib command. Use the check_timing -retain
command to check if the retain arc has a delay greater than its parent arc.

The read_sdf command supports retain arcs, but the default behavior of the write_sdf
command does not support those arcs. To write out retain arcs, use SDF version 3.0 format,
not the default version 2.1 format, by specifying the following syntax:

pt_shell> write_sdf -version 3.0 file

To map retaining information for arcs, use these functions:

• min_rise_retain_delay

• min_fall_retain_delay

• max_rise_retain_delay

• max_fall_retain_delay
Chapter 5: Advanced Analysis Techniques
Support for Retain Arcs 5-21
Chapter 5: Advanced Analysis Techniques
Support for Retain Arcs 5-21

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
True and False Path Detection

An advanced feature of PrimeTime is the ability to determine whether a specified path is a
true path or false path. PrimeTime can also find the most critical true path in the design.

PrimeTime categorizes false paths into two main types: functional and delay-dependent.

Figure 5-10 shows an example of a functional false path that results from resource sharing.
When mux1 is selected, the path through AND gate c_d is blocked.

Figure 5-10 Functional False Path Due to Resource Sharing

Figure 5-11 shows an example of a delay-dependent false path in carry-lookahead logic.
The highlighted path (from a to g) is false for a rising transition at input a. The shorter direct
path (from a, through f, to g) determines the longest true path.

Figure 5-11 Delay-Dependent False Path in Carry-Lookahead Logic

False path detection works in combination with case analysis. If you specify some pins in
your design to be at a constant logic value, the false path detection features take these
propagated logic constant values into account. See “Justifying Paths” on page 5-24.

Adder

a + b

c + d

 a

 c

 b

 d

sel

mux1

mux2

u1

c_d

a_b

a

b

z

c d e

f

g

Rising transition
Chapter 5: Advanced Analysis Techniques
True and False Path Detection 5-22

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Reporting True or False Paths
When reporting a timing path, the report_timing -justify option uses a justification
process to check whether the reported path is a true path or a false path. True path
justification takes into account the logic function of the design and tries to find a set of input
vectors that can sensitize the reported path.

If PrimeTime cannot find an input vector, it considers the path a false path. If it finds an input
vector, it considers the path a true path and shows the input vector at the end of the report.

The report_timing -false option is similar to the report_timing -justify option
except that it only reports false paths. Although this is a convenient way to identify the false
paths in the design, do not use this command to create a set of set_false_path
commands; if the delays change in the design, the false paths might become true paths.

Reporting True Paths
The true path reporting feature is an advanced algorithm that detects the most critical true
path. Use the -justify or -true options to the report_timing command to incorporate
functional information into the critical path computation. With -true, the report_timing
command is less pessimistic.

-justify

Provides a quick means to determine whether any path shown is true.

-true

Runs a search algorithm to find the most critical true path.

A path is true if PrimeTime can find an input vector that sensitizes the path. Sensitization is
determined using floating mode delay, in which all nodes are assumed to be in the X-state
(unknown) before the application of an input vector.

The sensitization criteria for each gate on the path are as follows:

• The online signal is a controlling value, and there are no side inputs with controlling
values that arrived earlier (all side inputs must be noncontrolling or later arriving).

• The online signal is a noncontrolling value. All other side inputs are noncontrolling, and
no side input arrives later than the online signal.

For these criteria, PrimeTime defines arrival time as the time when a simulated value arrives
to replace the X-state, not the structurally longest arrival time that PrimeTime typically
computes.
Chapter 5: Advanced Analysis Techniques
True and False Path Detection 5-23
Chapter 5: Advanced Analysis Techniques
True and False Path Detection 5-23

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Justifying Paths
If you suspect that the paths that PrimeTime is reporting are false, use the report_timing
-justify command to generate a timing report. For most designs, the structurally longest
path is a true path, so the -justify option finds an input vector that sensitizes the path. You
can proceed with confidence knowing that PrimeTime is reporting the true delay (and that
timing optimization will be performed on the critical path).

The -justify option runs fast because it focuses on the single reported path (there is no
searching and very little backtracking required). If PrimeTime finds an input vector, it
displays it along with the path. If the path is false, PrimeTime reports it as such. You can see
more false paths by combining the -justify option with the -nworst option. If the -
justify option reports that the structurally longest path is false, use the -true option to
find the longest true path.

The report_timing command with the -justify option generates a report similar to this
one.

pt_shell> report_timing -justify

**
Report : timing
 -justify
Design : FP_SHR
**
Operating Conditions:
Wire Loading Model Mode: top

A False path:

 Startpoint: a (input port)
 Endpoint: c_d (output port)
 Path Group: default
 Path Type: max

 Point Incr Path
--
 input external delay 10.00 10.00 r
 a (in) 0.00 10.00 r
 m1/Z (MUX21H) 1.00 11.00 r
 u1/S (FA1) 1.00 12.00 r
 c_d/Z (AN2) 1.00 13.00 r
 c_d (out) 0.00 13.00 r
 data arrival time 13.00

max_delay 15.00 15.00
 output external delay -10.00 5.00
Chapter 5: Advanced Analysis Techniques
True and False Path Detection 5-24

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
 data required time 5.00
--
 data required time 5.00
 data arrival time -13.00
--
 slack (VIOLATED) -8.00

True-delay Input Vector

 (False Path)

 True-delay conclusions:
--
 1. No input-vector could be found to justify reported path.
The
search completed, so reported path is false.
--

Note:
In this example, the path reported starts with the rising transition at input a (see
Figure 5-11 on page 5-22 for more information).

Finding the Longest True Path
The -true option of the report_timing command runs a search algorithm to find the
longest true path. For many designs, this algorithm runs very fast. However, some designs
require a large amount of backtracking and the algorithm can take a long time to complete.
PrimeTime provides a backtracking feature to control runtime.

In most cases, PrimeTime can find the longest true path fairly quickly using a low backtrack
limit. Some designs require a high backtrack limit to find the real longest true path, but these
designs are rare. The default backtrack limit is 1,000, which is a good compromise between
runtime and accuracy.

The report_timing command with the -true option generates this report. In this example,
particularly notice the lines that are in boldface.

pt_shell> report_timing -true

**
Report : timing
 -true
Design : FP_SHR
**

Operating Conditions:
Wire Loading Model Mode: top

 A True path:
Chapter 5: Advanced Analysis Techniques
True and False Path Detection 5-25
Chapter 5: Advanced Analysis Techniques
True and False Path Detection 5-25

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
 Startpoint: a (input port)
 Endpoint: a_b (output port)
 Path Group: default
 Path Type: max
Point Incr Path
--
 input external del 10.00 10.00
 a (in) 0.00 10.00 r
 m1/Z (MUX21H) 1.00 11.00 r
 u1/S (FA1) 1.00 12.00 f
 a_b/Z (AN2) 1.00 13.00 f
 a_b (out) 0.00 13.00 f
 data arrival time 13.00

 max_delay 15.00 15.00
 output external delay 0.00 15.00
 data required time 15.00
--
 data required time 15.00
 data arrival time -13.00
--
 slack (MET) 2.00

 True-delay Input Vector

 b (in) r
 cond (in) f
 a (in) r

 True-delay conclusions:
--
 1. A path of length 13.00 (slack 2.00) was proven true.
The search completed, so there are no true paths that
have worse slack.
--

Changing the Backtrack Limit
To change the backtrack limit, use the true_delay_prove_true_backtrack_limit
variable.

When the search algorithm reaches this backtrack limit, it stops searching for true paths and
saves the longest true path found. This path is proved true, but because the search reached
the backtrack limit, longer true paths might exist but are not found. The proved true path
provides a lower bound on the delay of the design. The algorithm then goes to a second
phase in which it tries to prove paths false, starting with the structurally longest path and
working downward. This second phase provides a tighter upper bound on the true delay of
the design.
Chapter 5: Advanced Analysis Techniques
True and False Path Detection 5-26

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Generally, the prove-false phase reaches the backtrack limit. When both phases are
complete, the true delay is between the lower (prove-true) value and the upper (prove-false)
value.

Changing the Prove-False Backtrack Limit
To change the prove-false backtrack limit, use the
true_delay_prove_false_backtrack_limit variable.

For almost all real designs, the search algorithm completes the search with the default
settings and finds the longest true path. However, some designs are more difficult because
they have millions of false paths close to the delay value of the longest true path. For these
designs, whether you are proving true (going up from 0.0) or proving false (going down from
the structurally longest path), the algorithm eventually gets stuck because of all the false
paths. At this point, the algorithm has useful information (a lower and upper bound on the
true delay of the design). If you want the exact answer, set the backtrack limit very high so
that the search algorithm continues processing until it completes the search.

When PrimeTime reaches the backtrack limit, the report_timing command prints
conclusions at the end of the report that explain the results, as shown in the following
example.

True-delay conclusions:
 --
 1. A path of length 42.00 (slack -42.00) was proven true.
 The search completed, so there are no true paths that
 have worse slack.
 --
True-delay conclusions:
--
 1. A path of length 23.00 (slack -23.00) was proven true.

However, The search reached the backtrack limit of 1000,
so there may be other true paths that have worse slack
but were not found. You may want to increase the prove-
true limit by increasing
true_delay_prove_true_backtrack_limit.

 2. All paths of length 36.60 or longer were proven false.
To get a tighter bound you can increase the prove-false
limit by increasing
true_delay_prove_false_backtrack_limit.

--

Using the True Delay Function
The -true_threshold option of the report_timing command provides faster yes or no
answers than the -true option. For example, if you want to know whether a path of length
18.0 or greater exists, define a true threshold of 18.0. Defining a true threshold accelerates
the algorithm in two ways:
Chapter 5: Advanced Analysis Techniques
True and False Path Detection 5-27
Chapter 5: Advanced Analysis Techniques
True and False Path Detection 5-27

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
• It does not consider any paths shorter than the defined value.

• If it finds a path of this length or greater, it stops searching immediately.

The true delay algorithm works by trying to find an input vector that sensitizes the current
path. The input vector applies rising or falling values at time zero to a design previously
initialized to all X-state values. The time at which the last output transitions from X becomes
the delay of the design for that vector. PrimeTime propagates the rising and falling values
through the design using timed simulation and the floating delay sensitization criteria.

Long Path Example
In a carry-bypass adder, the long path of the carry chain is made into a false path through
the addition of logic to provide a shorter path to the output (in the paths where the carry
would propagate down the entire chain).

Examples
For a carry-bypass adder design, the report_timing command reports the carry chain as
the longest path. In this example, particularly notice the lines that are boldface. To avoid
getting this type of report, you can declare the long path to be a false path.

pt_shell> report_timing

**
Report : timing
Design : false12cbp2
**

 Startpoint: s (input port)
 Endpoint: x[11] (output port)
 Path Group: default
 Path Type: max

 Point Incr Path
 --
 input external d 0.00 0.00 r
 s (in) 0.00 0.00 r
 U27/z1937 (*GEN*22 1.00 1.00 f
 U257/z2167 (*GEN*21 1.00 2.00 f
 U233/z2143 (*GEN*20 1.00 3.00 f
 U234/z2144 (*GEN*205) 1.00 4.00 r
 U239/z2149 (*GEN*185) 1.00 5.00 r
 U108/z2018 (*GEN*48) 1.00 6.00 r

 U199/z2109 (*GEN*270) 1.00 37.00 r
 U200/z2110 (*GEN*46) 1.00 38.00 r
 U167/z2077 (*GEN*129) 1.00 39.00 r
 U1/z1911 (*GEN*283) 1.00 40.00 r
 x[11] (out) 0.00 40.00 r
 data arrival time 40.00
Chapter 5: Advanced Analysis Techniques
True and False Path Detection 5-28

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
 max_delay 0.00 0.00
 output external delay 0.00 0.00
 data required time 0.00
 --
 data required time 0.00
 data arrival time -40.00
 --
 slack (VIOLATED) -40.00

pt_shell> true_delay_prove_true_backtrack_limit = 1000000
1000000

pt_shell> report_timing -true

**
Report : timing

 -true
Design : false12cbp2
**

 A True path:

 Startpoint: s (input port)
Endpoint: y[11] (output port)

 Path Group: default
 Path Type: max

 Incr Path

 input external d 0.00 0.00 f
 s (in) 0.00 0.00 f
 U27/z1937 (*GEN*22 1.00 1.00 r
 U248/z2158 (*GEN*6 1.00 2.00 f
 U231/z2141 (*GEN*2 1.00 3.00 r
 U232/z2142 (*GEN*21 1.00 4.00 f
 U240/z2150 (*GEN*99) 1.00 5.00 r
 U108/z2018 (*GEN*48) 1.00 6.00 f

 U198/z2108 (*GEN*272) 1.00 20.00 f
 U199/z2109 (*GEN*270) 1.00 21.00 r
 U200/z2110 (*GEN*46) 1.00 22.00 f
 U167/z2077 (*GEN*129) 1.00 23.00 r
 U13/z1923 (*GEN*82) 1.00 24.00 f
 y[11] (out) 0.00 24.00 f
 data arrival time 24.00

 max_delay 0.00 0.00
 output external delay 0.00 0.00
 data required time 0.00

 data required time 0.00
 data arrival time -24.00
Chapter 5: Advanced Analysis Techniques
True and False Path Detection 5-29
Chapter 5: Advanced Analysis Techniques
True and False Path Detection 5-29

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06

 slack (VIOLATED) -24.00
 True-delay Input Vector

 c[11] (in) r
 a[11] (in) r
 d[11] (in) f
 b[11] (in) f
 c[10] (in) r
 a[10] (in) r
 d[10] (in) f
 b[10] (in) f
 d[9] (in) r
 b[9] (in) r
 c[9] (in) f
 a[9] (in) f
 d[8] (in) r
 b[8] (in) r
 c[6] (in) f
 a[6] (in) f
 c[5] (in) r
 a[5] (in) r
 c[4] (in) r
 a[4] (in) r
 d[4] (in) f
 b[4] (in) f
 c[3] (in) r
 a[3] (in) r
 d[3] (in) f
 b[3] (in) f
 c[2] (in) r
 a[2] (in) r
 d[2] (in) f
 c[0] (in) r
 a[0] (in) r
 d[0] (in) r
 b[0] (in) r
 c[1] (in) f
 a[1] (in) f
 d[1] (in) r
 b[1] (in) f
 s (in) f
 ...

 True-delay conclusions:

 1. A path of length 24.00 (slack -24.00) was proven true.

The search completed, so there are no true paths that
have worse slack.

 --
Chapter 5: Advanced Analysis Techniques
True and False Path Detection 5-30

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Asynchronous Logic Analysis

To simplify the timing verification designs with asynchronous logic, isolate the asynchronous
logic into separate blocks, then disable the timing of these blocks.

PrimeTime does not support self-timed asynchronous logic where no global clock is used.
You can isolate this type of logic in a level of hierarchy and then use full-timing gate-level
simulation to verify valid timing and functional capability.

PrimeTime can analyze designs:

• With no combinational feedback loops; loops containing flip-flops or latches are adequate
(combinational feedback loops are automatically broken)

• Without unclocked memory elements, such as RS latches

• With a single clock or multiple clocks fanning in to each register clock pin

• With known and fixed phase relationship between the clocks at the start and end
registers of every path (Interacting clocks must have a single base period over which all
clock waveforms repeat—see Figure 5-12.)

Figure 5-12 Base Period of Clocks

Combinational Feedback Loop Breaking
A combinational feedback loop is a path that can be traced though combinational logic back
to its starting point. Figure 5-13 shows an example. To analyze such a path, PrimeTime
must break the loop (stop tracing the path) at some point within the loop. You can check a
design for the presence of combinational feedback loops with the command check_timing
-include loops .

10 20 30 40 50 60 70

Base period
Least common multiple of periods

Phi1

Phi2

Phi3

Phi5

Phi6

Phi4
Chapter 5: Advanced Analysis Techniques
Asynchronous Logic Analysis 5-31
Chapter 5: Advanced Analysis Techniques
Asynchronous Logic Analysis 5-31

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Figure 5-13 Combinational Feedback Loop

By default, PrimeTime identifies each feedback loop and disables one of the timing arcs of
the loop, such as the timing arc from one input to one output of a NAND gate in the loop. In
some cases, this approach can result in some real paths not being reported because the
paths are broken by the disabled arcs.

Dynamic Loop Breaking
An optional technique called dynamic loop breaking guarantees that all valid paths of the
design will be reported. To enable dynamic loop breaking, set the
timing_dynamic_loop_breaking variable to true. By default, the variable is set to false
and PrimeTime does static loop breaking.

If the scope of the design that must be updated is large or if the loops are complex, using
dynamic loop breaking might significantly increase the runtime or memory usage for a timing
update.

Figure 5-14 shows an example where dynamic loop breaking helps to ensure that all paths
get reported. In this example, no timing arc of the combinational loop can be broken without
a valid path of the design also being broken. Arcs #1 and #4 cannot be broken because
breaking them would break the valid path ff1 – u2 – u1 – ff3. Arcs #2 and #3 cannot be
broken because breaking them would break the valid path ff2 – u1 – u2 – ff4.
Chapter 5: Advanced Analysis Techniques
Asynchronous Logic Analysis 5-32

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Figure 5-14 Dynamic Loop Breaking

Specifying Loop Break Points
You can have multiple places in a feedback loop that are broken. If you want a feedback loop
to be broken at a different timing arc from the one selected by default, use the
set_disable_timing command to explicitly break the loop at the desired point.

Design Compiler also uses loop breaking to analyze timing. The points at which Design
Compiler and PrimeTime break a loop can be different, possibly leading to different timing
results. If you want to ensure consistent loop breaking between the two tools, set the
timing_keep_loop_breaking_disabled_arcs variable to true in PrimeTime. In that
case, PrimeTime inherits the loop-breaking choices from the .ddc or .db file generated by
Design Compiler. By default, this variable is set to false. After changing this variable
setting, a timing update is necessary to see the change.

The report generated by report_disable_timing distinguishes between arcs disabled by
PrimeTime and those disabled by inheritance from the .ddc or .db file. For more information,
see the man page for the command.

Unrelated Clocks
Sometimes a design has paths between unrelated clocks. Unrelated clocks have different
frequencies that do not have a reasonable base period. PrimeTime attempts to find a base
period and phase relationship anyway, which typically is not useful (see Figure 5-15).

1

2
3

4

ff1

ff2
u1

u2

ff3

ff4
Chapter 5: Advanced Analysis Techniques
Asynchronous Logic Analysis 5-33
Chapter 5: Advanced Analysis Techniques
Asynchronous Logic Analysis 5-33

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Figure 5-15 Unrelated Clock Waveforms

The clocks shown in Figure 5-15 do not expand to a reasonable base period, and the
resulting setup requirement is quite restrictive. In this case, you might want to verify the
timing with dynamic simulation rather than use PrimeTime.

Example

To exclude asynchronous paths from static timing analysis to improve runtimes and avoid
false violations, enter

pt_shell> set_false_path -from [get_clocks clk40] \
 -to [get_clocks clk41]

In some cases, you might know the required minimum and maximum path delays for the
combinational logic between two registers of unrelated clocks. In these cases, specify the
path delay constraint using the set_max_delay and set_min_delay commands for that
path.

Three-State Bus Analysis

By default, PrimeTime checks for setup and hold violations in three-state bus designs. It
checks the worst delay path to ensure that the latched signals are stable and are not
unknown (X) values. This ensures proper timing checks for transient bus contention and
transient floating bus conditions.

PrimeTime considers that a disabling transition on a three-state cell can cause either a 1 or
0 delay on the output. By default, PrimeTime considers three_state_disable and
three_state_enable arcs (as defined in the library) during path tracing. Although this is
different from propagating an X value, the effect for static timing is the same as for
propagating an X value.

CLK1

CLK2

41 ns

40 ns

period = 40 ns

period = 41 ns
Chapter 5: Advanced Analysis Techniques
Three-State Bus Analysis 5-34

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Limitations of the Checks
The three-state bus checks have these limitations:

• PrimeTime checks the potential for setup or hold errors due to bus contention or float
conditions. PrimeTime does not check logical and power violations for bus contention or
float conditions.

• The analysis is pessimistic; some reported violations might never happen because of
state dependencies.

• In some simulators, Z does not propagate to X until after the charge decay time.
PrimeTime does not model this effect; it uses the gate delay equations to propagate Z
and X. This might be pessimistic compared to some simulators.

Disabling the Checks
If you know that bus contention or floating buses do not occur in your design, you can disable
these checks by setting these variables to true:

timing_disable_bus_contention_check

When you set this variable to true, propagation of maximum delay along
three_state_disable timing arcs and minimum delay along three_state_enable arcs is
disabled. These checks are valid only during transient bus contention. The default is
false.

timing_disable_floating_bus_check

When you set this variable to true, propagation of minimum delay along
three_state_disable timing arcs and maximum delay along three_state_enable arcs is
disabled. These checks are valid only during floating bus conditions. The default is
false.

Bus Contention
Some designs rely on a bus configuration in which many three-state drivers control the bus.
In most designs, no two drivers with different logical outputs can be simultaneously enabled
at the steady state (when the enable pins of the three-state drivers assume their steady-
state values for any clock cycle). When multiple drivers drive the same bus, it is called bus
contention.

Although you can design a circuit so that no steady-state bus contention occurs, a design
might contain transient bus contention conditions. Transient bus contention conditions occur
during the transition of the bus control from one driver to another. During this short transient
period, the logical value for the bus is unknown (X value) if the drivers contending for control
Chapter 5: Advanced Analysis Techniques
Three-State Bus Analysis 5-35
Chapter 5: Advanced Analysis Techniques
Three-State Bus Analysis 5-35

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
of the bus are imposing conflicting logical values. For static timing analysis, setup checks
ensure that this X value, assumed during transient bus contention, is not latched. The setup
check is measured from the time the bus becomes stable.

Floating Buses
A floating bus condition can arise for three-state bus configuration designs. A floating bus
condition occurs when no driver is enabled. In this case, the bus immediately gets an
unknown (X) value. For static timing analysis, hold checks ensure that this X value, assumed
when the bus switches to the floating mode, is not latched. The hold checks are measured
to the time the bus becomes floating.

Three-State Buffers
Two timing arc types are used to describe timing behavior of three-state buffers. These
timing arc types are defined in the library.

three_state_disable timing arc

Specifies the time the three-state pin takes to go from a high or low state to the high-
impedance state.

three_state_enable timing arc

Specifies the time a three-state pin takes to go from the high-impedance state to a high
state or low state.

Performing Transient Bus Contention Checks
Figure 5-16 shows a circuit used to describe how PrimeTime performs transient bus
contention checks and floating bus checks.

Figure 5-16 Circuit Example

U1

U2

FF4
I1

EN1
EN2

I2

bus1

D

CP

0

1

Chapter 5: Advanced Analysis Techniques
Three-State Bus Analysis 5-36

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Figure 5-17 shows how PrimeTime performs transient bus contention checks.

Figure 5-17 Transient Bus Contention Check

In Figure , if EN1 turns off after EN2 turns on, there is a potential bus contention for some
time. The signal arriving at FF4/D is X state until the contention is over and the new bus
value propagates along the path. If I1=0 and I2=1, the waveforms for the circuit in
Figure 5-16 are as shown in Figure .

The setup violation for FF4/CP is seen only if the three_state_disable arc delay is
considered. A transition to the Z state must be propagated as a possible transition to logic 0
or logic 1 to find all possible cases. A similar situation occurs for the hold check. The hold
violation is seen only if the three_state_enable arc delay is considered.

This bus contention region is bounded by the minimum three_state_enable arc delay of any
bus driver from one side and by the maximum three_state_disable arc delay from the other
side. If you know that such bus contention regions can never occur, you can disable
checking for both setup and hold violations that occur due to this bus contention region.

You can disable the checks by setting the timing_disable_bus_contention_check
variable to true, causing PrimeTime to ignore the three_state_enable arc delay for hold
violation checking and the three_state_disable arc delay for setup violation checking.

Even when you set this variable to true, PrimeTime considers the three_state_enable arc
delay for setup violation checking and the three_state_disable arc delay for hold violation
checking. This occurs during a floating bus region, which is described in the next section.

EN1

EN2

FF4/D

FF4/CP

three_state_disable

three_state_enable

Required
hold time

Hold
violation

Required
setup time

Setup
violation

Bus contention

arc delay

arc delay
Chapter 5: Advanced Analysis Techniques
Three-State Bus Analysis 5-37
Chapter 5: Advanced Analysis Techniques
Three-State Bus Analysis 5-37

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Performing Floating Bus Checks
A floating bus occurs when the bus is at a valid logic value and then begins to float. Timing
analysis ensures that the float does not propagate an X to the register data pin until after the
hold check. PrimeTime assumes the same setup and hold relationships as for any other
data signals.

Figure 5-18 shows another situation that can arise that yields a transient floating bus
condition.

Figure 5-18 Floating Bus Contention Check

In Figure 5-18, the hold violation for FF4/CP is seen only if the three_state_disable arc delay
is considered. A transition to the Z state must be propagated as a possible transition to logic
0 or logic 1 to find all possible cases. A similar situation happens for the setup check. The
setup violation is seen only if the three_state_enable arc delay is considered.

Because the three_state_enable arc delays are considered, by default PrimeTime
checks for all setup and hold violations that occur due to the floating bus region. The floating
bus region is bounded by the minimum three_state_disable arc delay of any bus driver
from one side and by the maximum three_state_enable arc delay from the other side.
PrimeTime ignores charge decay here (it assumes that the logical value for the bus
immediately becomes unknown—(X)—when the bus is floating).

If you know that such floating bus regions can never occur, you can disable checking for both
setup and hold violations that occur due to this bus contention region. To disable the checks,
set the timing_disable_floating_bus_check variable to true. In this case, PrimeTime
ignores the three_state_disable arc delay for hold violations checking and the
three_state_enable arc delay for setup violations checking. Even when you set this variable

EN1

EN2

bus1

FF4/CP

three_state_disable
three_state_enable

Required
hold time

Hold
violation

Required
setup time

Setup
violation

Floating bus

arc delay

arc delay
Chapter 5: Advanced Analysis Techniques
Three-State Bus Analysis 5-38

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
to true, the three_state_enable arc delay is considered for setup violation checking and
the three_state_disable arc delay is considered for hold violation checking. This occurs
during a bus contention region, which was described in the previous section.

Fast Multidrive Delay Analysis

In large designs with annotated parasitics, the runtime for performing RC delay calculation
can be large for massively multidriven networks. The primary bottleneck in this process is
the runtime required to compute the trip times for measuring delays and slews at the load
pins.

For massively multidriven networks with homogeneous drivers (drivers with similar input
skews, slews, and operating conditions), a calculation mode is available that significantly
reduces the runtime. This mode shorts all of the driver nodes together with a network of
resistors and uses a single driver model at the first driver node for all waveform calculations.
The drive strength of the single driver is scaled up to be equivalent to the whole set of
original drivers. The delay calculation results for the single driver are copied to all of the
other drivers, including delay, slew, driver model parameters, and effective capacitance.

Usage of the fast multidrive analysis mode is based on the rc_driver_count_
threshold_for_fast_multidrive_analysis variable. This variable is an integer that
specifies the maximum number of network drivers that are handled without invoking the fast
multidrive analysis mode. The fast mode is invoked when the number of drivers exceeds the
variable setting. By default, the variable is set to 9. Setting the variable to 0 disables the
mode entirely (the same as setting it to an extremely large number).

When PrimeTime uses the fast multidrive analysis mode, it generates an RC-010 warning
message that reports the number of drivers, the number of loads, the input slew and input
skew spreads, and the matching or mismatching of driver library timing arcs and driver
operating conditions. This information can help determine the accuracy of the analysis.

The accuracy of this mode is best when the driver library arcs are the same and operate
under the same context (operating conditions, input slew, input skew, and so on), and
operate with the same network impedance. These conditions are often typical of mesh
networks. Any differences in operating conditions and input slews can cause small
differences in output delay and output slew. For accuracy, the differences in input skews
should be small compared to the delays through the network. For maximum accuracy, you
can either disable the fast multidrive analysis mode or annotate delays and slews onto the
network.

Note:
For more information, see“Parallel Driver Reduction” on page 5-40 and “Reducing SDF
for Clock Mesh/Spine Networks” in Chapter 8.
Chapter 5: Advanced Analysis Techniques
Fast Multidrive Delay Analysis 5-39
Chapter 5: Advanced Analysis Techniques
Fast Multidrive Delay Analysis 5-39

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Parallel Driver Reduction

Because clock signals must typically drive a large number of loads, clocks are often buffered
to provide the drive strength necessary to reduce clock skew to an acceptable level. A large
clock network might use a large number of drivers operating in parallel. These drivers can
be organized in a “mesh” or “spine” pattern to distribute the signal throughout the chip.

If a design has 1,000 drivers in parallel driving 1,000 loads, PrimeTime must keep track of
one million different timing arcs between the drivers and loads. Timing analysis of such a
network can consume a large amount of CPU and memory resources.

For better performance, PrimeTime can reduce the number of timing arcs that must be
analyzed. The reduction process is illustrated in Figure 5-19. When the reduction feature is
enabled, PrimeTime selects one driver in a parallel network and analyzes the timing arcs
through that driver only.

Note:
For related information, see “Fast Multidrive Delay Analysis” on page 5-39 and “Reducing
SDF for Clock Mesh/Spine Networks” in Chapter 8.
Chapter 5: Advanced Analysis Techniques
Parallel Driver Reduction 5-40

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Figure 5-19 Parallel Driver Reduction

pt_shell> set timing_reduce_multi_drive_net_arcs true
pt_shell> set timing_reduce_multi_drive_net_arcs_threshold 1000
pt_shell> link_design

D Q

D Q

D Q

CLK

D Q

D Q

D Q

CLK
Chapter 5: Advanced Analysis Techniques
Parallel Driver Reduction 5-41
Chapter 5: Advanced Analysis Techniques
Parallel Driver Reduction 5-41

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Invoking Parallel Driver Reduction
Parallel driver reduction is controlled by the following variables:

• timing_reduce_multi_drive_net_arcs

• timing_reduce_multi_drive_net_arcs_threshold

The first of these two variables can be set to true or false to enable or disable parallel
driver reduction. By default, it is set to false and no reduction is done. When you set the
variables to true during design linking, PrimeTime checks for the presence of nets with
multiple drivers. If it finds a net with driver-load combinations exceeding the threshold
specified by the threshold variable, it reduces the number of timing arcs associated with the
drivers of that net.

The threshold variable specifies the minimum number of timing arcs that must be present to
trigger a reduction. By default, it is set to 10,000, which means that PrimeTime reduces the
timing arcs of a net if the number of drivers multiplied by the number of loads on the net is
more than 10,000. In typical designs, this large number only occurs in clock networks.

PrimeTime performs driver reduction for a net when all of the following conditions are true:

• Number of driver-load combinations is more than the variable-specified threshold (10,000
by default)

• Driver cells are nonsequential library cells (not flip-flops or latches and not hierarchical)

• All drivers of the net are instances of the same library cell

• All the drivers are connected to the same input and output nets

To expand a reduced network to its original form or to perform driver reduction with a
different threshold, you must relink the design.

Working With Reduced Drivers
After layout is complete and detailed parasitic information becomes available, it is not
possible to annotate this information on a reduced network. To get accurate results, you can
use an external simulator such as SPICE to get detailed delay information for the network.
Then you can annotate the clock latency values and transition times on the individual clock
pins of the sequential cells, while still allowing PrimeTime to treat the reduced network as
ideal, with zero delay. This technique provides reasonably accurate results, while being very
efficient because the clock network timing only needs to be analyzed once, even for multiple
PrimeTime analysis runs.
Chapter 5: Advanced Analysis Techniques
Parallel Driver Reduction 5-42

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
If you back-annotate the design with the read_sdf command, any annotations on the
reduced timing arcs are ignored. PrimeTime issues a PTE-048 message when this
happens. You can suppress these messages with the following command:

pt_shell> suppress_message PTE-048

If you write out SDF with the write_sdf command, no interconnect delays are generated for
the reduced network.

Reducing parallel drivers only affects the timing arcs analyzed by PrimeTime, not the netlist.
Therefore, it does not affect the output of the write_changes command. For information
about RC delay calculation with massively multidriven networks, see “Fast Multidrive Delay
Analysis” on page 5-39.

Data-to-Data Checking

PrimeTime can perform setup and hold checking between two data signals, neither of which
is defined to be a clock, at any two pins in the design. This feature can be useful for checking
the following types of timing constraints:

• Constraints on handshaking interface logic

• Constraints on asynchronous or self-timed circuit interfaces

• Constraints on signals with unusual clock waveforms that cannot be easily specified with
the create_clock command

• Constraints on skew between bus lines

• Recovery and removal constraints between asynchronous preset and clear input pins

A timing constraint between two data (nonclock) signals is called a nonsequential constraint.
You can define such checks in PrimeTime by using the set_data_check command, or you
can define them for a library cell by setting nonsequential constraints for the cell in Library
Compiler. You should use data checks only in situations such as those described above.
Data checks should not be considered a replacement for standard sequential checking.

Data Check Examples
Figure 5-20 shows a simple example of a cell that has a nonsequential constraint. The cell
has two data inputs, D1 and D2. The rising edge of D2 is the active edge that might be used
to latch data at D1. Pin D1 is called the constrained pin and Pin D2 is called the related pin.
In a sequential setup or hold check, pin D2 would be considered the clock pin. However, for
any of a number of reasons, it might be desirable to consider the signal at D2 a data signal,
and not define it to be a clock.
Chapter 5: Advanced Analysis Techniques
Data-to-Data Checking 5-43
Chapter 5: Advanced Analysis Techniques
Data-to-Data Checking 5-43

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Figure 5-20 Simple Data Check Example

In this example, the signal at D1 must be stable for a certain setup time before the active
edge. It must also be stable for a certain hold time after the active edge. If these
nonsequential constraints are not already defined for the library cell, you can define them in
PrimeTime. To do so, use commands similar to the following:

pt_shell> set_data_check -rise_from D2 -to D1 -setup 3.5
pt_shell> set_data_check -rise_from D2 -to D1 -hold 6.0

The “from” pin is the related pin and the “to” pin is the constrained pin. If the data checks
apply to both rising and falling edges on the related pin, use -from instead of -rise_from
or -fall_from , as shown in the following example:

pt_shell> set_data_check -from D2 -to D1 -setup 3.5
pt_shell> set_data_check -from D2 -to D1 -hold 6.0

The resulting timing checks are illustrated in Figure 5-21.

Setup
Hold

D2

D1

D1

D2

Constrained pin

Related pin
Chapter 5: Advanced Analysis Techniques
Data-to-Data Checking 5-44

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Figure 5-21 Data Checks on Rising and Falling Edges

You can define a no-change data check by specifying only a setup check from the rising
edge and a hold check from the falling edge:

pt_shell> set_data_check -rise_from D2 -to D1 -setup 3.5
pt_shell> set_data_check -fall_from D2 -to D1 -hold 3.0

PrimeTime interprets this as a no-change check on a positive-going pulse. The resulting
timing check is illustrated in Figure 5-22.

Figure 5-22 No-Change Data Check

D2

D1

D1

D2

Constrained pin

Related pin

Setup Hold

Setup Hold

D2

D1

D1

D2

Constrained pin

Related pin
Chapter 5: Advanced Analysis Techniques
Data-to-Data Checking 5-45
Chapter 5: Advanced Analysis Techniques
Data-to-Data Checking 5-45

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Data checks are nonsequential, so they do not break timing paths. For example, in
Figure 5-23, the data check between D1 and D2 does not interrupt the timing paths shown
by the dashed-line arrows. If you were to define the signal at D2 to be a clock, the check
would be sequential and the paths would be terminated at D1.

Figure 5-23 Timing Paths Not Broken by Data Checks

You can specify a data check pin as a path endpoint for the report_timing command. In
that case, PrimeTime reports the data checks that apply to the pin. For example, for the
circuit shown in Figure 5-23, report_timing -to dchk/D1 generates a data check report,
whereas report_timing -through dchk/D1 generates a timing report on standard paths
that pass through the specified pin.

To remove data checks set with the set_data_check command, use the
remove_data_check command. For more information about either command, see the
specific man page.

Data Checks and Clock Domains
In a data check, signals arriving at a constrained pin or related pin can come from different
clock domains. PrimeTime checks the signal paths separately and puts them into different
clock groups, just like standard sequential checks.

If the related pin has signals from multiple clock domains, you might want to specify which
clock domain to analyze at that pin for the data check. To specify a clock domain to analyze,
either use the -clock clock_name option of the set_data_check command, or disable all
clocks other than the clock of interest.

D2

D1

Data

D Q
Combinational
Logic

D Q

check

D Q

dchk

ff1

ff2

ff3
Chapter 5: Advanced Analysis Techniques
Data-to-Data Checking 5-46

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Library-Based Data Checks
PrimeTime performs data checking for any cell that has nonsequential timing constraints
defined in the library cell, as long as the signal at the related pin is not defined to be a clock
in PrimeTime. If the signal is defined to be a clock, PrimeTime converts the nonsequential
checks to sequential checks and does not block this clock signal from further propagation. If
a combinational arc from the related pin exists (such as with an integrated clock gating cell),
the clock is free to continue propagation down this arc.

In Library Compiler, you define nonsequential constraints on a cell by specifying a related
pin and by assigning the following timing_type attributes to the constrained pin:

non_seq_setup_rising
non_seq_setup_falling
non_seq_hold_rising
non_seq_hold_falling

For more information about defining nonsequential constraints in Library Compiler, see the
Library Compiler user guides.

Defining nonsequential constraints in the library cell results in a more accurate analysis than
using the set_data_check command because the setup and hold times can be made
sensitive to slew of the constrained pin and the related pin. The set_data_check
command is not sensitive to slew.

To specify which clock domain to use at the related pin for data checks defined in library
cells, you can use the set_data_check ... -clock clock_name command. The
remove_data_check command does not remove data checks defined in library cells.

Data Propagation Through Generated Clocks
To support the use of multiple levels of undefined generated clocks, use the
timing_propagate_through_unclocked_registers variable. When this variable is set to
true, PrimeTime propagates data through a flip-flop or level-sensitive latch when there is no
defined clock driving the clock pin. When the variable is false (the default), the lack of a
defined clock prevents data propagation through a flip-flop or latch.

Interdependent Setup and Hold Pessimism Reduction

Setup and hold pessimism reduction (SHPR) allows you to reduce pessimism in slack
computation in path-based analysis. This is done by using the information in a library that
supports interdependent setup and hold characterization data.
Chapter 5: Advanced Analysis Techniques
Interdependent Setup and Hold Pessimism Reduction 5-47
Chapter 5: Advanced Analysis Techniques
Interdependent Setup and Hold Pessimism Reduction 5-47

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
In a traditional library, the setup and hold constraint arcs for a sequential cell have a single
fixed behavior. Setup might be characterized conservatively to allow hold constraint arcs to
be characterized aggressively or vice versa. In some libraries, both the setup and hold
constraints might be characterized conservatively (large setup/hold requirements) to avoid
any possibility of failure during operation. In other libraries, both constraints might be
characterized aggressively (small setup/hold requirements) to achieve maximum
performance. If both setup and hold are characterized aggressively, failures can result
unless care is taken to avoid data pulse widths that are too narrow to be reliably captured by
the clock edge.

In reality, the magnitude of the setup and hold constraint requirements depend on each
other. In a library with SHPR data, PrimeTime is able to understand this interdependence
between setup and hold and trade off the setup and hold checks against each other to adapt
to the needs of each sequential cell to the upstream logic during path-based analysis. By
using the SHPR data, PrimeTime is able to use aggressive setup/hold constraints while still
ensuring the minimum data pulse width requirements for reliable capture are met.

Use Model for SHPR
PrimeTime supports three modes for SHPR as explained in the sections below. Some user-
controlled constraints of SHPR optimization are also available.

• Setup-Preferred Slack Improvement

• Hold-Preferred Slack Improvement

• Total Negative Slack Improvements

Setup-Preferred Slack Improvement
For some designs that prefer fast clock frequency (and assuming the hold time violation is
easy to fix), the setup-preferred slack improvement mode can be desirable. This mode
optimizes only total negative setup slacks of max_rise and max_fall paths ending at a
specific flip-flop, with the trade off of corresponding hold slacks.

Hold-Preferred Slack Improvement
For some designs in which the setup time violation can be easily fixed by lowering clock
frequency, hold time violation fixing becomes the primary consideration. The hold-preferred
slack improvement mode is designed for such a case. This mode optimizes only total
negative hold slacks of min_rise and min_fall paths ending at a specific flip-flop, with the
trade off of corresponding setup slacks.
Chapter 5: Advanced Analysis Techniques
Interdependent Setup and Hold Pessimism Reduction 5-48

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Total Negative Slack Improvements
The total negative slack mode minimizes the sum of negative slacks of all four types of
timing paths ending at a particular flip-flop. By default, this mode allows trade off between
the positive slack of one type of timing path and the negative slack of another type of timing
path, without incurring new timing violations. This mode gives the same priorities on both
negative setup slack and negative hold slack. This is the default mode of SHPR.

SHPR Optimization Constraints
For the three modes just described, user controls are provided to influence the slack trade-
off. This is known as the SHPR optimization constraint, which defines the limit of trade off of
the positive setup or hold slack. When one type of slack is sacrificed to improve the other
type of slack, you can specify the slack limit for the sacrificial slack trade off.

SHPR Optimization Mechanism
In SHPR, a sequential capturing endpoint can be traded off in only two independent
scenarios:

• setup_rise against hold_fall

• setup_fall against hold_rise

Figure 5-24 depicts these two scenarios.

Figure 5-24 Two Setup and Hold Trade off Scenarios

Figure 5-25 shows a typical interdependent setup and hold value curve. On the curve, any
points beyond point A or B have a positive slope. Points A and B are called the turning
points.
Chapter 5: Advanced Analysis Techniques
Interdependent Setup and Hold Pessimism Reduction 5-49
Chapter 5: Advanced Analysis Techniques
Interdependent Setup and Hold Pessimism Reduction 5-49

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Figure 5-25 Interdependent Setup and Hold Value Curve

To be conservative, PrimeTime does not allow any extrapolation beyond the boundary points
of the characterized SHPR curve.

SHPR User Interface
To set the optimization constraints for SHPR, use the set_setup_hold_pessimism_
reduction command. The valid modes are total, setup, and hold. You can use the different
modes to control how setup slack is traded off for hold slack or vice versa.

In setup mode (also known as setup-preferred mode), the goal is to prefer positive setup
slack at the expense of hold slack. In hold mode (also known as hold-preferred mode), the
goal is to prefer positive hold slack at the expense of setup slack. In total mode (the default),
the goal is to trade off setup and hold slack in a way that minimizes the sum of the negative
rise/fall and setup/hold slack. This mode results in the smallest overall set of setup and hold
timing violations.

It might not be desirable to introduce a large violation in the sacrificial slack type to gain only
a small improvement in the preferred slack type. You can use the -setup_cutoff and -
hold_cutoff options of the set_setup_hold_pessimism_reduction command to keep
the trade off reasonable. In setup-preferred mode, hold violations are made no worse than
the -hold_cutoff value to improve setup. In hold-preferred mode, setup violations are
made no worse than the -setup_cutoff value to improve hold. The default value for both
cutoff options is negative infinity, which allows any amount of slack worsening in the
sacrificial slack to improve the preferred slack.

In both setup and hold mode, the preferred slack type is improved only as far as it takes to
reach zero slack and no further.
Chapter 5: Advanced Analysis Techniques
Interdependent Setup and Hold Pessimism Reduction 5-50

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
To disable SHPR, use the remove_setup_hold_pessimism_reduction command, which
has the following options:

• -setup_cutoff: reset cutoff setup slack

• -hold_cutoff: reset cutoff hold slack

If you do not add an option, the SHPR feature is completely disabled.

SHPR Examples
The following sections outline some examples of SHPR.

Setup Preferred Slack Improvement Example
In the following example, the mode is setup preferred slack improvement and the cutoff hold
slack is -100 ps.

pt_shell>set_setup_hold_pessimism_reduction -mode setup \
 -hold_cutoff -100

The targeted setup time that results in zero slack in the max timing path is determined as St
in Figure 5-26 below.

Figure 5-26 Successful Setup Slack Improvement

Using St as the input, you can get the corresponding hold time Ht , by using the
interdependent setup and hold value curve. If Ht does not reach the hold_cutoff value, St
and Ht are the optimized values of setup and hold time, as shown in Figure 5-26.

Instead, if Ht is beyond the hold_cutoff value, as shown below in Figure 5-27, the
corresponding setup and hold times of the cutoff point are considered as the optimized
setup and hold values.
Chapter 5: Advanced Analysis Techniques
Interdependent Setup and Hold Pessimism Reduction 5-51
Chapter 5: Advanced Analysis Techniques
Interdependent Setup and Hold Pessimism Reduction 5-51

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Figure 5-27 Setup Slack Improvement Stops in Cutoff Hold Slack

Total Slack Improvement Example
The total mode is a special case. It does not find the minimal negative slack of min and max
timing paths along the whole interdependent setup and hold curve. Instead, one of the
following two cases with the minimal total negative slack of min and max timing paths is
chosen:

• Case 1: [setup-preferred slack improvement mode, hold_cutoff]

• Case 2: [hold-preferred slack improvement mode, setup_cutoff]

Liberty Format Extension
The Liberty format and Library Compiler support interdependent setup and hold tables,
starting in the Y-2006.06 release. The interdependence_id tag is used to identify the
interdependent setup and hold tables. Figure 5-28 shows the library format needed to
support SHPR.
Chapter 5: Advanced Analysis Techniques
Interdependent Setup and Hold Pessimism Reduction 5-52

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Figure 5-28 Example of Library Format Needed to Support SHPR

For more information, see the Library Compiler Technology and Symbol Libraries Reference
Manual.
Chapter 5: Advanced Analysis Techniques
Interdependent Setup and Hold Pessimism Reduction 5-53
Chapter 5: Advanced Analysis Techniques
Interdependent Setup and Hold Pessimism Reduction 5-53

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Chapter 5: Advanced Analysis Techniques
Interdependent Setup and Hold Pessimism Reduction 5-54

6
Advanced On-Chip Variation 6

Advanced on-chip variation (OCV) is a technology that recognizes the need for closer
integration between design methodology and fabrication process variation. This technology
reduces unnecessary pessimism by analyzing the physical location and logic depth of paths
in a design. This chapter explains the graph-based and path-based advanced OCV
solutions and provides you with flow and reporting information.

This chapter contains the following sections:

• Introduction

• Advanced OCV Flow

• Specifying the Scope of the Advanced OCV Analysis

• Importing Advanced OCV Information

• Advanced OCV Reporting
6-1

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Introduction

Advanced OCV is an optional accuracy improvement that determines derating factors based
on metrics of path logic depth and the physical distance traversed by a particular path. A
longer path that has more gates tends to have less total variation because the random
variations from gate-to-gate tend to cancel each other out. A path that spans a larger
physical distance across the chip tends to have larger systematic variations. Advanced OCV
is less pessimistic than a traditional OCV analysis, which relies on constant derate factors
that do not take path-specific metrics into account.

The advanced OCV analysis determines path-depth and location-based bounding box
metrics to calculate a context-specific advanced OCV derate factor to apply to a path,
replacing the use of a constant derate factor.

The advanced OCV solution works with all other PrimeTime features and affects all
reporting commands. This solution works in both the Standard Delay Format (SDF)-based
and the delay calculation based flows. It is compatible with distributed multi-scenario
analysis and multicore analysis.

Advanced OCV Flow

The advanced OCV solution in PrimeTime is integrated into the graph-based and path-
based analysis capabilities, which enables a successive refinement strategy of analysis that
is already used today with traditional static timing analysis in PrimeTime. In advanced OCV
flows, sign-off is performed using graph-based advanced OCV, with path-based advanced
OCV as an optional capability to refine the analysis of critical paths. Graph-based and path-
based analysis with advanced OCV is analogous to graph-based and path-based analysis
in the traditional static timing analysis context.

Graph-Based Advanced OCV Solution
Graph-based advanced OCV analysis is a fast, design-wide analysis performed during the
update_timing command. It allows designers to exploit reduced derating pessimism
across the entire design to reduce silicon area and improve design performance. You set the
timing_aocvm_enable_analysis variable to true to enable the graph-based advanced
OCV analysis.

By construction, graph-based analysis always provides a conservative analysis compared to
path-based analysis to prevent an optimistic calculation. With graph-based advanced OCV
analysis, PrimeTime computes conservative values of depth and distance metrics. To
perform graph-based advanced OCV analysis, conservative values of path-depth and
location-based bounding box are chosen to bound the worst-case path through a cell. For
Chapter 6: Advanced On-Chip Variation
Introduction 6-2

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
example, in graph-based advanced OCV analysis, the depth count for a cell does not exceed
that of the path of minimum depth that traverses that cell. Otherwise, the analysis might be
optimistic for the minimum-depth path.

Graph-based advanced OCV is a prerequisite for further margin reduction using path-based
advanced OCV analysis on selected critical paths. For most designs, graph-based
advanced OCV is sufficient for sign-off.

Path-Based Advanced OCV Solution
The advanced OCV metrics computation is different for graph-based and path-based
advanced OCV. In graph-based advanced OCV, the depth and distance metrics are
calculated for all paths through each timing arc. In path-based mode, the advanced OCV
metrics are calculated precisely for each timing path.

To further reduce pessimism and improve accuracy of advanced OCV results, use the
report_timing command with the -pba_mode option to analyze paths in isolation from
other paths. For example,

pt_shell> report_timing -pba_mode path

The PrimeTime path-based analysis engine performs both advanced OCV path-based
analysis and regular path-based analysis by default. For the advanced OCV flow, it is
strongly recommended that you set the pba_aocvm_only_mode variable to true so that only
advanced OCV path-based analysis is applied. For more information about path-based
analysis, see “Path-Based Timing Analysis” on page 5-14.

Although it is strongly advised that advanced OCV path-based analysis usage should
always follow an advanced OCV graph-based analysis, advanced OCV path-based analysis
within a traditional OCV flow is also permitted. When you have not enabled advanced OCV
graph-based analysis, the derate factors computed by PrimeTime during advanced OCV
path-based analysis are bounded by constant derates specified using the
set_timing_derate command. The specification of these constant timing derate factors is
required for this flow and it is your responsibility to ensure they are conservative.

Specifying the Scope of the Advanced OCV Analysis

The advanced OCV feature is enabled by setting the timing_aocvm_enable_analysis
variable to true. You can then configure an advanced OCV analysis using the
timing_aocvm_analysis_mode variable. You can include the following analysis modes in
this variable:
Chapter 6: Advanced On-Chip Variation
Specifying the Scope of the Advanced OCV Analysis 6-3
Chapter 6: Advanced On-Chip Variation
Specifying the Scope of the Advanced OCV Analysis 6-3

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
clock_network_only

When you specify this option, the derivation and application of advanced OCV derates is
restricted to arcs that are in the clock network. Clock network advanced OCV depth and
distance metrics are calculated, considering only clock network topology. If constant
derates have been annotated for data network objects, the data network receives
constant on-chip variation derating. Otherwise, the data network is not derated.

combined_launch_capture_depth

Separate launch and capture depths are calculated in advanced OCV by default. By
specifying this option, launch and capture paths are considered together and a combined
depth is calculated for the entire path.

separate_data_and_clock_metrics

When you specify this option, the depths of data and clock paths are computed
separately. The respective computed depths are used to separately determine the
applicable derate values for clock paths and data paths. This option cannot be used along
with the combined_launch_capture_depth option.

single_path_metrics

When you specify this option, single path metrics are calculated for all path objects. This
behavior is backwardly compatible with the Tcl-based location aware on-chip variation
(LOCV) solution.

For more information about the analysis modes, see the timing_aocvm_analysis_mode
and timing_aocvm_analysis_mode variables man page.

Importing Advanced OCV Information

PrimeTime allows you to specify advanced OCV information using derate tables, which are
required for an advanced OCV analysis. Guard-band timing derates allow you to optionally
model nonprocess related effects in an advanced OCV flow. Importing advanced OCV
information is described in more detail in the following sections:

• Specifying Derate Tables

• File Format for Advanced OCV

• Specifying Random Coefficients

• Guard-Banding in Advanced OCV
Chapter 6: Advanced On-Chip Variation
Importing Advanced OCV Information 6-4

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Specifying Derate Tables
You can use the read_aocvm command to read advanced OCV derate tables from a disk file.
Derate tables are annotated onto one or more design objects and are applied directly to
timing arc delays. The allowed design object classes are hierarchical cells, library cells, and
designs. For more information about the read_aocvm command, see the man page.

You can use the write_binary_aocvm command to create binary encoded advanced OCV
files from ASCII-advanced OCV files. This command is used to protect sensitive process-
related information. The read_aocvm command can read binary and compressed binary
advanced OCV files that were created using the write_binary_aocvm command. No
additional arguments are required to read binary or compressed binary advanced OCV files.

You can use the report_aocvm command to report advanced OCV derate table data. An
advanced OCV derate table imported from a binary or compressed binary file is not visible
in the report_aocvm output.

File Format for Advanced OCV
The advanced OCV file format allows you to specify multiple advanced OCV derate tables.
It supports the following table types:

• One-dimensional tables in either depth or distance

• Two-dimensional tables in both depth and distance

The file format is defined so that you can associate an advanced OCV table with a group of
objects. The objects are selected internally within PrimeTime based using the following
definitions:

• object_type design | lib_cell | cell

• object_spec [patterns]

In the object_spec definition, the patterns field is optional. It specifies the object name and
an expression that you want to evaluate based on the attributes of the object.

You can use regular expression matching for the patterns field of the object_spec
definition. It is the same as the regexp Tcl command that you can use for design object
gathering commands, such as the get_cells, get_lib_cells, and get_designs
commands, in PrimeTime.

You can use any of the options of the related object-gathering command in the patterns field.
For example, if the object_type is lib_cell, you can use any of the arguments of the
related get_lib_cells command in the patterns field. For more information about these
commands, see the specific man pages.
Chapter 6: Advanced On-Chip Variation
Importing Advanced OCV Information 6-5
Chapter 6: Advanced On-Chip Variation
Importing Advanced OCV Information 6-5

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
PrimeTime can annotate cell and net tables on the design using the object_type design. It
can also annotate cell tables on library cells using the lib_cell object class and annotate
cell and net tables on hierarchical cells using the cell object class.

Note:
All field descriptions are required, unless otherwise stated. To add a comment in any
location within the file, use double forward slashes (//).

Table 6-1 shows the syntax definition for the advanced OCV file format.

Table 6-1 Advanced OCV File Format Syntax

Field specifier Definition Field description

version VERSION Advanced OCV version number.

object_type OBJECT_TYPE design | lib_cell | cell

rf_type RF_TYPE rise | fall | rise fall

delay_type DELAY_TYPE cell | net | cell net

derate_type DERATE_TYPE early | late

path_type PATH_TYPE clock | data | clock data

object_spec [patterns] string

voltage voltage_value float
This is an optional field of data type float
and the units are in Volts.

depth [DEPTH] A set of M floats, where M can be zero.

distance [DISTANCE] A set of N floats, where N can be zero.
Note:
You should use nanometers (nm) for the
distance field coordinates in the
advanced OCV tables.
Chapter 6: Advanced On-Chip Variation
Importing Advanced OCV Information 6-6

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
When different object_type entries with the same rf_type and derate_type apply to the
same cell or net object, the precedence rules that are used are consistent with the
set_timing_derate command.

Cell arc derating uses the following precedence, from highest to lowest:

1. lib_cell

2. cell

3. design

Net arc derating uses the following precedence, from highest to lowest:

1. net

2. design

Note:
When multiple table entries with the same object_type, rf_type, and derate_type
specifications apply to the same cell or net object, the last table entry takes precedence.

If you specify the voltage field, but an associate float value is missing or if you do not
specify the voltage field at all, the derate table applies to all voltages. For a multirail cell, it is
expected that you specify the derates with either an empty or no voltage field, where these
derates are the most conservative ones across all possible input-output voltage
combinations of the multirail cell.

table [TABLE] A set of N x M floats. There are also the
following special cases:
• If N==0, the table is of size M.

• If M==0, the table is of size N.

• If M==0 and N==0, the table is of size
1.

Linear interpolation is used to determine
points that have not been defined in the
table. PrimeTime does not extrapolate
beyond the lowest or highest values
specified in the table.

Table 6-1 Advanced OCV File Format Syntax (Continued)

Field specifier Definition Field description
Chapter 6: Advanced On-Chip Variation
Importing Advanced OCV Information 6-7
Chapter 6: Advanced On-Chip Variation
Importing Advanced OCV Information 6-7

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
The following example of an advanced OCV file sets an early advanced OCV table for the
whole design, which applies to all cell and nets:

version: 1.0
object_type: design
rf_type: rise fall
delay_type: cell net
derate_type: early
object_spec: top
depth: 0 1 2 3
distance: 100 200
table: 0.87 0.93 0.95 0.96 \
 0.83 0.85 0.87 0.90

The following example of an advanced OCV file sets an early advanced OCV table for the
whole design, which applies to all cells with the voltage of 1.2 volts:

version: 1.0
object_type: design
rf_type: rise fall
delay_type: cell
derate_type: early
object_spec: top
voltage: 1.2
depth: 0 1 2 3
distance: 100 200
table: 0.88 0.94 0.96 0.97 \
 0.84 0.86 0.88 0.91

The following example of an advanced OCV file sets an early advanced OCV table for the
whole design, which applies to all nets:

version 1.0
object_type: design
rf_type: rise fall
delay_type: net
derate_type: early
object_spec: top
depth: 0 1 2 3
distance: 100 200
table: 0.88 0.94 0.96 0.97 \
 0.84 0.86 0.88 0.91

The following example of an advanced OCV file includes the optional path_type statement.
PrimeTime applies the table data to only the specified path types. To enable separate
derating for clock paths and data paths, the timing_aocvm_analysis_mode variable must
Chapter 6: Advanced On-Chip Variation
Importing Advanced OCV Information 6-8

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
be set to the separate_data_and_clock_metrics mode. If the path_type statement is
omitted, the table applies to both clock paths and data paths. If this statement is used, the
version number specified by the version statement must be set to 2.0. For example,

version: 2.0
object_type: lib_cell
object_spec: LIB/BUF1X
rf_type: rise fall
delay_type: cell
derate_type: late
path_type: data
depth: 1 2 3 4 5
distance: 500 1000 1500 2000
table: \
1.123 1.090 1.075 1.067 1.062 \
1.124 1.091 1.076 1.068 1.063 \
1.125 1.092 1.077 1.070 1.065 \
1.126 1.094 1.079 1.072 1.067

Specifying Random Coefficients
Random coefficients can be used to calculate cell path depths. A complex cell can consist
internally of a larger number of transistors, so it might be necessary to associate that cell
with a logic depth count that is larger than 1 (the default logic depth count for a cell arc). For
instance, a buffer is often implemented as two inverters in series. In that case, the buffer cell
could be assigned a random derate coefficient of 2.0 to set the logic depth count.

You can use the set_aocvm_coefficient command to set random advanced OCV
coefficients on cells, library cells, and library timing arcs. Random advanced OCV
coefficients are not required for an advanced OCV analysis.

pt_shell> set_aocvm_coefficient 2.0 [get_lib_cells lib1/BUF2]

Guard-Banding in Advanced OCV
Guard-band timing derate allows you to model non-process related effects in an advanced
OCV flow. The -aocvm_guardband option is available in the set_timing_derate,
report_timing_derate, and reset_timing_derate commands.

You can use the set_timing_derate command to specify a guard-band derate factor. The
-aocvm_guardband option is applicable only in an advanced OCV context. The derate factor
that is applied to an arc is a product of the guard-band derate and the advanced OCV derate.
The guard-band derate has no impact outside the context of advanced OCV.
Chapter 6: Advanced On-Chip Variation
Importing Advanced OCV Information 6-9
Chapter 6: Advanced On-Chip Variation
Importing Advanced OCV Information 6-9

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
To report only guard-band derate factors, specify the -aocvm_guardband option of the
report_timing_derate command. If you do not specify either the -variation or -
aocvm_guardband option, only the deterministic derate factors are reported. These two
options are mutually exclusive.

To reset guard-band derate factors, you can use the -aocvm_guardband option of the
reset_timing_derate command.

For more information about these commands, see the man page.

Advanced OCV Reporting

Internally calculated advanced OCV derates are shown in the derate column of the
report_timing command if you have specified the -derate option.

You can use the report_aocvm command to display advanced OCV derate table data. You
can show design objects annotated with early, late, rise, fall, cell, or net derate tables. You
can also use this command to determine cells and nets that have been annotated or not
annotated with advanced OCV information.

In a graph-based advanced OCV analysis, you can specify a timing arc in the object_list
of the report_aocvm command. The graph-based depth and distance metrics and
advanced OCV derate factors on timing arc objects are displayed.

pt_shell> report_aocvm [get_timing_arcs -of_objects [get_cells U1]]

If you specify a timing path in the object_list, path metrics (distance, launch depth, and
capture depth) for that path are displayed.

pt_shell> report_aocvm [get_timing_paths -path_type full_clock_expanded \
 pba_mode path]

 For more information about the report_aocvm command, see the man page.
Chapter 6: Advanced On-Chip Variation
Advanced OCV Reporting 6-10

7
Ideal Network Support 7

PrimeTime allows for the creation of ideal networks, on which no design rule checking
(DRC) constraints run. It is desirable that designers are able to ignore networks (large
unoptimized networks with high fanout and capacitance) in pre-layout and focus instead on
violations arising from other sources. Using ideal networks reduces runtime because
PrimeTime uses “ideal timing” rather than internally calculated timing. In this way, ideal
networks are similar to ideal clock networks, but they can also be applied to data networks.

The setting of an ideal network is described in the following sections:

• Introduction to Ideal Networks

• Propagating Ideal Network Properties

• Using Ideal Networks

• Using Ideal Latency

• Using Ideal Transition
7-1

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Introduction to Ideal Networks

PrimeTime provides the ability to indicate ideal networks - sets of connected ports, pins,
nets, and cells - and have them exempt from timing updates and DRC constraint fixing. That
is, ideal networks ignore max_capacitance, max_fanout, and max_transition design rule
checks. When you specify the source of the ideal network, the pins, ports, nets, and cells
contained therein are treated as ideal objects. You or ideal propagation must mark ideal
objects.

Propagating Ideal Network Properties

When you specify the source objects (ports, leaf-level pins) of an ideal network, the nets,
cells, and pins in the transitive fanout of the source objects can be treated as ideal.

Propagation of the ideal network property is governed by the following rules:

• Pin is marked as ideal if it is one of the following:

• Pin is specified in the object list of the set_ideal_network command

• Driver pin and its cell are ideal

• Load pin attached to an ideal net

• Net is marked as ideal if all its driving pins are ideal.

• Combinational cell is marked as ideal if either all input pins are ideal or it is attached to a
constant net and all other input pins are ideal.

Note:
Ideal network propagation can traverse combinational cells, but it stops at sequential
cells.

PrimeTime propagates the ideal network during a timing update and propagates again from
ideal source objects as necessary to account for changes in the design, for example, ECOs.

Using Ideal Networks

Using the set_ideal_network command, specify which networks you want set as ideal.
Indicate the sources of the ideal network with the object_list argument. For example, the
following command sets the ideal network property on the input port P1, which is
propagated along the nets, cells, and pins in the transitive fanout of P1:

pt_shell> set_ideal_network P1
Chapter 7: Ideal Network Support
Introduction to Ideal Networks 7-2

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
You can use the -no_propagate option to limit the propagation of the ideal network to only
the nets and pins that are electrically connected to the ideal network source. If, for example,
you enter

pt_shell> set_ideal_network -no propagate net1

only the net, net1, its driver pins, and its load pins are marked as ideal. No further
propagation is performed.

If you do not use the -no_propagate option with this command, PrimeTime sets the ideal
property on the specified list of pins, ports, or nets and propagates this property according
to the propagation rules defined in the previous section.

You can remove the ideal network you set by using the remove_ideal_network command.
To generate a report querying the port, pins, nets, or cells in the design to check whether or
not they are ideal, use the report_ideal_network command. The following report shows
the port, pin, nets, and cells identified as being part of an ideal network:

pt_shell> report_ideal_network -timing -load_pin -net -cell

**
Report : ideal_network
 -timing
 -load_pin
 -net
 -cell
Design : middle
Version: Y-2006.06-DEV
Date : Tue Feb 21 03:30:19 2006
**

Source ports Latency Transition
and pins Rise Fall Rise Fall

min max min max min max min max
--
middle/p_in -- -- -- -- -- -- -- --

Internal pins Latency Transition
with ideal timingRise Fall Rise Fall

 min max min max min max min max
--
n3_i/B 5.62 5.62 -- -- -- -- -- --
n0_i/Z 1.34 -- 1.34 -- -- -- -- --

Boundary pins Latency Transition
Rise Fall Rise Fall

 min max min max min max min max
--
middle/p_out -- -- -- -- -- -- -- --
Nets
Chapter 7: Ideal Network Support
Using Ideal Networks 7-3
Chapter 7: Ideal Network Support
Using Ideal Networks 7-3

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
--
p_in
p_out
n2
n1
n0

Cells
--
n3_i
n2_i
n1_i
n0_i

1

Using Ideal Latency

By default, the delay of an ideal network is zero. You can specify ideal latency on pins and
ports in an ideal network by using the set_ideal_latency command. Ideal latency is
accumulated along a path in the same way as a delay value.

Note that ideal latency takes effect only if the object is ideal. If it is not in an ideal network,
PrimeTime issues a warning to that effect in the report_ideal_network command.

Remove latency from a pin or port by using the remove_ideal_latency command.

Using Ideal Transition

The transition time of an ideal network is zero by default. You can, however, specify an ideal
transition time value with the set_ideal_transition command.

If you set an ideal transition value on an object, the value is propagated from that object
along the ideal network either to the network boundary pins or until another ideal transition
value is encountered.

Ideal transitions you have annotated on pins or ports take effect only if the object is ideal. If
the object is not ideal, PrimeTime issues a warning in the report_ideal_network
command informing you of this. Use the remove_ideal_transition command to remove
the transition time you set on a port or pin.
Chapter 7: Ideal Network Support
Using Ideal Latency 7-4

8
SDF Back-Annotation 8

You can back-annotate a design with detailed delay information from a Standard Delay
Format (SDF) file for more accurate timing analysis.

SDF back-annotation is described in the following sections:

• Overview of SDF Back-Annotation

• Reading SDF Files

• Reporting Delay Back-Annotation Status

• Annotating Conditional Delays From SDF

• Writing an SDF File

• Removing Annotated Delays and Checks

• Setting Annotations From the Command Line
8-1

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Overview of SDF Back-Annotation

For initial static timing analysis, PrimeTime estimates net delays based on a wire load
model. Actual delays depend on the physical placement and routing of the cells and nets in
the design.

A floor planner or router can provide more detailed and accurate delay information, which
you can provide to PrimeTime for a more accurate analysis. This process is called delay
back-annotation. Back-annotated information often is provided in an SDF file.

You can read SDF back-annotated delay information in these ways:

• Read the delays and timing checks from an SDF file.

• Annotate delays, timing checks, and transition times from the command line without using
the SDF format.

PrimeTime supports SDF v1.0 through 2.1 and a subset of v3.0 features. In general, it
supports all SDF constructs except for the following:

• PATHPULSE, GLOBALPATHPULSE

• NETDELAY, CORRELATION

• PATHCONSTRAINT, SUM, DIFF, SKEWCONSTRAINTS

It also supports the following subset of SDF v3.0 constructs:

• RETAIN

• RECREM

• REMOVAL

• CONDELSE

If you do not have an SDF file, you can specify delays in an analyzer script file containing
capacitance and resistance parasitics annotation commands. For more information, see
Chapter 9, “Parasitic Back-Annotation.”

Reading SDF Files

The read_sdf command reads instance-specific pin-to-pin leaf cell and net timing
information from an SDF version 1.0, 1.1, 2.0, 2.1, or 3.0 file, and uses the information to
annotate the current design.
Chapter 8: SDF Back-Annotation
Overview of SDF Back-Annotation 8-2

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Instance names in the design must match instance names in the timing file. For example, if
the timing file was created from a design using VHDL naming conventions, the design you
specify must use VHDL naming conventions.

Annotating Timing From a Subdesign Timing File
When you specify the -path option, the read_sdf command annotates the current design
with information from a timing file created from a subdesign of the current design. When you
specify a subdesign, you cannot use the net delays to the ports of the subdesign to annotate
the current design.

Annotating Load Delay
The load delay, also known as extra source gate delay, is the portion of the cell delay caused
by the capacitive load of the driven net. Some delay calculators consider the load delay part
of the net delay; other delay calculators consider the load delay part of the cell delay. By
default, the read_sdf command assumes the load delay is included in the cell delay in the
timing file being read. If your timing file includes the load delay in the net delay instead of in
the cell delay, use the -load_delay option with the read_sdf command.

Annotating Timing Checks
When the timing file contains the following checks, they are used to annotate the current
design.

For check SDF construct is

setup and hold SETUP, HOLD, and SETUPHOLD

recovery RECOVERY

removal REMOVAL

minimum pulse width WIDTH

minimum period PERIOD

maximum skew SKEW

no change NOCHANGE
Chapter 8: SDF Back-Annotation
Reading SDF Files 8-3
Chapter 8: SDF Back-Annotation
Reading SDF Files 8-3

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Reading the File
The read_sdf command reads an SDF file. After reading an SDF file, PrimeTime reports
the following:

• Number of errors found while reading the SDF file (for example, pins not found in the
design)

• Number of annotated delays and timing checks

• Unsupported SDF constructs found in the SDF file, with the number of occurrences of
each SDF construct

• Process, temperature, and voltage values found in the SDF file

• Annotated delays and timing checks of the design (with the report_annotated_delay
and report_annotated_check commands)

For more information, see the read_sdf man page.

Example 1

This command reads from disk the SDF format file adder.sdf, which contains load delays
included in the cell delays and uses its information to annotate the timing on the current
design.

pt_shell> read_sdf -load_delay cell adder.sdf

Example 2

These commands read the timing information of instance u1 of design MULT16 from the disk
file mult16_u1.sdf, and annotates the timing on the design MY_DESIGN. The load delay is
included in the net delays.

pt_shell> current_design MY_DESIGN
pt_shell> read_sdf -load_delay net -path u1 mult16_u1.sdf

Example 3

This command reads timing information and annotates the current design with the worst
timing when the timing file has different timing conditions for the same pin pair. The load
delay is assumed to be included in the cell delay.

pt_shell> read_sdf -cond_use_max boo.sdf
Chapter 8: SDF Back-Annotation
Reading SDF Files 8-4

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Example 4

This command reads minimum and maximum timing information and annotates the current
design with delays corresponding to minimum and maximum operating conditions. When
reporting minimum delay, PrimeTime uses delays annotated for the minimum condition.
When reporting maximum delays, PrimeTime uses delays annotated for the maximum
condition.

pt_shell> read_sdf -analysis_type bc_wc boo.sdf

Example 5

This command reads minimum and maximum timing information from two separate SDF
files and annotates the current design with delays corresponding to minimum and maximum
operating conditions. When reporting minimum delays, PrimeTime uses delays annotated
for the minimum condition. When reporting maximum delays, PrimeTime uses delays
annotated for the maximum condition.

pt_shell> read_sdf -analysis_type bc_wc \
 -min_file boo_bc.sdf -max_file boo_wc.sdf

Removing Annotated Timing Checks and Delays
To remove timing checks annotated with the read_sdf command, use the reset_design
or remove_annotated_check command. To remove delays read and annotated with the
read_sdf command, use the reset_design or remove_annotated_delay command.

Managing Large Files
You can compress large files such as SDC, SDF, and script files to a UNIX gzip file when you
use the following write commands with the -compress option:

• write_sdc

• write_sdf

• write_sdf_constraints

• write_script

• write_ilm_script

Note:
If you intend to use the write_sdf_constraints command as part of your flow, it is
recommended that you set the timing_save_pin_arrival_and_slack variable to true
before your first timing update. For more information, see “Generating Timing Constraints
for Place and Route” on page 8-21 or the man page.
Chapter 8: SDF Back-Annotation
Reading SDF Files 8-5
Chapter 8: SDF Back-Annotation
Reading SDF Files 8-5

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
An example of writing an SDF file to a gzip file is as follows:

pt_shell> write_sdf -compress gzip 1.sdf.gz

The following commands read gzip compressed files:

• read_verilog

• read_parasitics

• read_sdf

• read_sdc

Each command recognizes gzip compressed files automatically. For example, to read a gzip
file, enter

pt_shell> read_sdf 1.sdf.gz

Reporting Delay Back-Annotation Status

Because SDF files are usually large (about 100 MB or larger) and contain many delays, it is
a good idea to verify that all nets are back-annotated with delays (and timing checks, where
applicable).

Reporting Annotated or Nonannotated Delays
You can check and identify nets that have not been back-annotated with delays in SDF.
PrimeTime checks and reports on cell delays and net delays independently. When reporting
net delays, PrimeTime considers three types of nets:

• Nets connected to primary input ports

• Nets connected to primary output ports

• Internal nets that are not connected to primary ports

This distinction is important because according to the SDF standard, only internal nets are
annotated in SDF.

The report_annotated_delay command reports the number of annotated and
nonannotated delay arcs. For more information, see the report_annotated_delay man
page.

To produce a report of annotated delays, enter

pt_shell> report_annotated_delay
Chapter 8: SDF Back-Annotation
Reporting Delay Back-Annotation Status 8-6

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
PrimeTime displays a report similar to the following:

 | | | NOT |
Delay type | Total | Annotated | Annotated |
-----------------------------+-----------+-----------+-----------+--
cell arcs | 16 | 14 | 2 |
cell arcs (unconnected) | 5 | 5 | 0 |
internal net arcs | 3 | 3 | 0 |
net arcs from primary inputs | 11 | 11 | 0 |
net arcs to primary outputs | 4 | 4 | 0 |
-----------------------------+-----------+-----------+-----------+----
 | 39 | 37 | 2 |

Reporting Annotated or Nonannotated Timing Checks
You can create a report showing the number of annotated timing checks of all cell timing
arcs within your design. For more information, see the report_annotated_check man
page.

To produce an annotated timing check report, enter

pt_shell> report_annotated_check

PrimeTime displays a report similar to the following:

report: annotated_check
Design: my_design

 |NOT |
 |Total |Annotated |Annotated |
-------------------------------+----------+----------+----------|
cell setup arcs | 2368 | 2368 | 0 |
cell hold arcs | 2368 | 2368 | 0 |
cell recovery arcs | 676 | 676 | 0 |
cell removal arcs | 0 | 0 | 0 |
cell min pulse width arc | 135 | 135 | 0 |
cell min period arcs | 822 | 822 | 0 |
cell max skew arcs | 716 | 716 | 0 |
cell nochange arcs | 0 | 0 | 0 |
-------------------------------+----------+----------+----------|
 | 7085 | 7085 | 0 |
Chapter 8: SDF Back-Annotation
Reporting Delay Back-Annotation Status 8-7
Chapter 8: SDF Back-Annotation
Reporting Delay Back-Annotation Status 8-7

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Faster Timing Updates in SDF Flows
For each point in a path, PrimeTime calculates slew from the input slew and capacitance
and propagates the calculated slew forward from that point in the path. The
timing_use_zero_slew_for_annotated_arcs variable enables you to use zero slew for
arcs annotated with SDF delays, thereby reducing runtime when analyzing designs with all
or almost all arcs annotated with SDF.

By default, this variable is set to auto. In a design that uses SDF-annotated delays on all
arcs or almost all arcs, such as 95% or more, you can forego the higher accuracy of slew
calculation in favor of faster runtime with the auto setting. In this case, for each arc that is
fully annotated by either the read_sdf or set_annotated_delay command, PrimeTime
skips the delay and slew calculation and sets a slew of zero on the load pin of the annotated
arc. As a result, timing updates can be completed in significantly less time.

For any arcs that are not annotated, PrimeTime estimates the delay and output slew using
the best available input slew. For a block of arcs that are not annotated, PrimeTime
propagates the slew throughout the block using the worst_slew mode if the
timing_slew_propagation_mode variable is set to worst_slew.

When you use this feature, it is recommended that you disable prelayout slew scaling by
setting the timing_prelayout_scaling variable to false.

Annotating Conditional Delays From SDF

Delays and timing checks specified in an SDF file can be conditional. The SDF condition is
usually an expression based on the value of some inputs of the annotated cell. The way
PrimeTime annotates these conditional delays depends on whether the Synopsys library
specifies conditional delays.

• If the Synopsys library contains conditional arcs, all conditional delays specified in SDF
file are annotated. The condition string specified in the Synopsys library with the
sdf_cond construct must exactly match the condition string in the SDF file.

• If the Synopsys library does not contain conditional arcs (there is no sdf_cond construct
in the Synopsys library), the maximum or minimum delays of all conditional delays from
SDF are annotated. To specify whether to annotate the minimum or maximum delays,
use the -cond_use_max or -cond_use_min option of the read_sdf command.

If your library contains state-dependent delays, using a Synopsys library containing
conditional arcs enables more accurate annotation from the SDF.
Chapter 8: SDF Back-Annotation
Annotating Conditional Delays From SDF 8-8

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
PrimeTime uses the condition specified in the SDF only to annotate the delays and timing
checks to the appropriate timing arc specified in the Synopsys library. If you have conditional
timing arcs in your SDF, and your library is defined correctly to support conditional arcs, you
can use case analysis (or constant propagation) to enable the desired conditional arc
values. Consider the example 2-input XOR gate in Figure 8-1.

Figure 8-1 Example of State-Dependent Timing Arcs

The SDF for the delay from A to Z looks like this:

(INSTANCE U1)
(DELAY
(ABSOLUTE

(COND B (IOPATH A Z (0.21) (0.54)))
(COND ~B (IOPATH A Z (0.27) (0.34)))

)
)

If the Synopsys library contains no conditions, the annotation from SDF uses the worst-case
delay for all timing arcs from A to Z. Mapping from the library the timing arc that corresponds
to a given condition is not possible. In this case, the annotated delays are as shown in
Figure 8-2.

Figure 8-2 Annotated Delays When the Synopsys Library Contains No Conditions

If the Synopsys library contains conditions, the annotation can identify which timing arc
corresponds to the SDF condition. In this case, the annotated delays are as shown in
Figure 8-3.

A

B

Z

Noninverting timing arc
(condition: B = 0)

Inverting timing arc
(condition: B =1)

A

B

Z

Noninverting timing arc
(condition: B = 0)

Inverting timing arc
(condition: B = 1)

r:0.27/ f:0.54

r:0.27/ f:0.54
Chapter 8: SDF Back-Annotation
Annotating Conditional Delays From SDF 8-9
Chapter 8: SDF Back-Annotation
Annotating Conditional Delays From SDF 8-9

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Figure 8-3 Annotated Delays When the Synopsys Library Contains Conditions

Note:
An IOPATH statement in the SDF file annotates all arcs between two pins. However, even
if an IOPATH statement follows a COND IOPATH statement, the COND IOPATH statement
takes precendence over the IOPATH statement.

The IOPATH delay for the A to Z arc varies depending on whether the B input is a 1 or 0. To
select the B = 0 delays, set a case analysis on the B input pin. For example, enter

pt_shell> set_case_analysis 0 [get_pins U1/B]

Note:
It is possible for a constant to propagate to a pin that selects a conditional arc. This can
occur through normal logic constant propagation from a tie-high or tie-low condition, or
through a set_case_analysis that was set on another pin that propagates a constant to
the pin.

Writing an SDF File

You might want to write out the back-annotated delay information to use for gate-level
simulation or another purpose. You can use the write_sdf command to write the delay
information in SDF version 1.0, 2.1, or 3.0 format. The default output format is version 2.1.
For example, to write an SDF file, enter

pt_shell> write_sdf -version 2.1 -input_port_nets mydesign.sdf

Note:
If you use a utility other than the write_sdf command to write out the SDF file, you
should ensure that the annotations are explicitly specified where the SDF version
permits.

For more information about the write_sdf command, see the man page. For information
about specifying the format of the written SDF, see Appendix A, “Writing Mapped SDF Files.”

Non-Inverting Timing Arc
 = 0)

Inverting Timing Arc
 =1)

A

B

Z

Noninverting timing arc
(condition: B = 0)

Inverting timing arc
(condition: B =1)

r:0.27/ f:0.34

r:0.21/ f:0.54
Chapter 8: SDF Back-Annotation
Writing an SDF File 8-10

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
The SDF written by PrimeTime has the style described in the following sections:

• SDF Constructs

• SDF Delay Triplets

• SDF Conditions and Edge Identifiers

• Reducing SDF for Clock Mesh/Spine Networks

• Writing VITAL Compliant SDF Files

SDF Constructs
The SDF written by PrimeTime uses the following SDF constructs:

• DELAYFILE, SDFVERSION, DESIGN, DATE, VENDOR, PROGRAM, VERSION, DIVIDER, VOLTAGE,
PROCESS, TEMPERATURE, TIMESCALE

• CELL, CELLTYPE, INSTANCE

• ABSOLUTE, COND, CONDELSE, COSETUP, DELAY, HOLD, INTERCONNECT, IOPATH, NOCHANGE,
PERIOD, RECOVERY, RECREM, RETAIN, SETUP, SETUPHOLD, SKEW, TIMINGCHECK, WIDTH

Note:
The following constructs are supported in SDF version 3.0 only: CONDELSE, RETAIN,
RECREM, REMOVAL.

• Posedge and negedge identifiers

The SDF written by the write_sdf command does not use the following SDF constructs:
INCREMENT, CORRELATION, PATHPULSE, GLOBALPATHPULSE, PORT, DEVICE, SUM, DIFF,
SKEWCONSTRAINT, PATHCONSTRAINT. However, the write_sdf_constraints command
supports the PATHCONSTRAINT construct.

SDF Delay Triplets
The SDF delay triplet values depend on whether your design uses a single operating
condition or minimum and maximum operating conditions. For a single operating condition,
the SDF delay triplet has three identical values, for example: (1.0:1.0:1.0).

For minimum and maximum operating conditions, the SDF triplet contains only two delays
for the minimum operating condition and the maximum operating condition, respectively:
(1.0::2.0). The typical delay of the SDF triplet is not used. The SDF delays written by
PrimeTime specify the following transitions: 0 to 1, 1 to 0, 0 to Z, Z to 1, 1 to Z, and Z to 0.
Chapter 8: SDF Back-Annotation
Writing an SDF File 8-11
Chapter 8: SDF Back-Annotation
Writing an SDF File 8-11

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
SDF Conditions and Edge Identifiers
PrimeTime takes advantage of the edge identifiers as well as conditions if edge identifiers
are specified in the library with sdf_cond. PrimeTime uses edge identifiers for timing
checks and cell delays.

PrimeTime writes an edge identifier (POSEDGE or NEGEDGE) for a combinational cell delay arc
when the positive edge delay differs from the negative edge delay, and the input net
transition differs between rise and fall on the input pin of the delay arc. As a result, two timing
arc IOPATH delays can be generated for a given timing arc. For example,

(CELL
 (CELLTYPE "XOR")
 (INSTANCE U1)
 (DELAY
 (ABSOLUTE
 (IOPATH (posedge A) Z (0.936:0.936:0.936)
(1.125:1.125:1.125))
 (IOPATH (negedge A) Z (1.936:1.936:1.936)
(2.125:2.125:2.125))
 (IOPATH (posedge B) Z (0.936:0.936:0.936)
(1.125:1.125:1.125))
 (IOPATH (negedge B) Z (1.936:1.936:1.936)
(2.125:2.125:2.125))
)
)
)

This is common for library cells such as multiplexers and exclusive-OR cells. Other SDF
writers might only generate one set of delay triplets for the positive and negative edges.
PrimeTime writes both for the highest accuracy. However, some logic simulators do not
support edge identifiers on combinational and sequential timing arcs and expect to see only
one timing arc. To write an SDF that is compatible with these simulators, use the -no_edge
option with the write_sdf command. For example,

pt_shell> write_sdf -no_edge mydesign.sdf

With the -no_edge option, PrimeTime generates only one timing arc, with the worst-case
delay triplets for the positive and negative transitions. Note that the simulation timing delays
might be pessimistic as a result of using the -no_edge option.

Reducing SDF for Clock Mesh/Spine Networks
A design with a large clock mesh or spine network can produce an unreasonably large SDF
file because of the extremely large number of nets in the clock network. In these cases, you
can choose to have PrimeTime reduce the SDF file by combining SDF values that differ by
a negligible amount, and using the SDF 3.0 PORT construct to represent the combined nets.
Chapter 8: SDF Back-Annotation
Writing an SDF File 8-12

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Note:
For related information, see “Parallel Driver Reduction” on page 5-40 and “Fast Multidrive
Delay Analysis” on page 5-39.

The SDF reduction features operate under the control of four variables:

• sdf_enable_port_construct – Boolean variable, when set to true, enables the PORT
construct to be used for writing SDF. The default setting is false.

• sdf_enable_port_construct_threshold – Floating-point value that specifies the
absolute delay difference, in picoseconds, below which the PORT construct is used. The
default setting is 1 ps.

• sdf_align_multi_drive_cell_arcs – Boolean variable, when set to true, causes
PrimeTime to unify the small differences in driver cell outputs to networks that constitute
a mesh or spine, which can cause simulation failure. The default setting is false.

• sdf_align_multi_drive_cell_arcs_threshold – Floating-point value that specifies
the absolute delay difference, in picoseconds, below which multidrive arcs are aligned.
The default setting is 1 ps.

PORT Construct
The sdf_enable_port_construct variable determines whether the PORT statement is
used to replace multiple INTERCONNECT statements. The PORT statement will be used in
all parallel nets (within specified threshold) in the design except those parallel nets which are
driven by tristate buffers. If the PORT statement is used, the sdf_enable_port_
construct_threshold variable determines the maximum allowable absolute difference in
delay arc values for interconnections to be combined. For example, consider the clock
network shown in Figure 8-4 on page 8-14.
Chapter 8: SDF Back-Annotation
Writing an SDF File 8-13
Chapter 8: SDF Back-Annotation
Writing an SDF File 8-13

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Figure 8-4 Parallel Buffers Driving Parallel Buffers

If using the PORT construct is disabled (the default), the write_sdf command writes out
this clock network using SDF syntax similar to the following:

(INSTANCE top)
(DELAY
 (ABSOLUTE
 (INTERCONNECT A/y W/a (0.01 ::0.03))
 (INTERCONNECT A/y X/a (0.02 ::0.04))
 (INTERCONNECT A/y Y/a (0.01 ::0.04))
 (INTERCONNECT A/y Z/a (0.02 ::0.03))
 (INTERCONNECT B/y W/a (0.01 ::0.03))
 (INTERCONNECT B/y X/a (0.03 ::0.05))
 ...
 (INTERCONNECT D/y Y/a (0.02 ::0.05))
 (INTERCONNECT D/y Z/a (0.01 ::0.03))
)
)

There are 16 interconnection combinations listed.

If the PORT construct is enabled and if the variation in delay values is within the specified
threshold, the write_sdf command reduces the SDF as follows:

(INSTANCE top)
(DELAY
 (ABSOLUTE
 (PORT W/a (0.02 ::0.04))
 (PORT X/a (0.03 ::0.05))
 (PORT Y/a (0.02 ::0.06))
 (PORT Z/a (0.03 ::0.07))
)
)

A

B

C

D

a y

a y

a y

a y

W

X

Y

Z

a y

a y

a y

a y
Chapter 8: SDF Back-Annotation
Writing an SDF File 8-14

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Four PORT statements replace 16 INTERCONNECT statements.

Normalizing Multidriven Arcs for Simulation
When the sdf_align_multi_drive_cell_arcs and sdf_enable_port_construct
variables are enabled, PrimeTime aligns similar delay values of cell timing arcs where
multiple drivers drive a common net.

Note:
If the common net is driven by tristate buffers, PrimeTime will not align cell delays.

The sdf_align_multi_drive_cell_arcs_threshold variable then determines the
maximum allowable absolute difference in delay arc values for normalizing to occur.
Normalizing means using a single worst-case delay arc value to represent multiple drivers.
This can prevent errors from occurring when the SDF file is used for circuit simulation. For
example, consider the cell delays in the parallel driver network shown in Figure 8-5.

Figure 8-5 Cell Delays in a Parallel Driver Network

PrimeTime aligns the cell arcs if the sdf_align_multi_drive_cell_arcs variable is set to
true, the delay are values are within the sdf_align_multi_drive_cell_arcs_threshold
variable setting, the cells in the clock network are combinational (not sequential), and each
cell has one input and one output.

The normalizing process adjusts both the net delays and cell delays in the clock network as
needed to ensure that the complete path delays are the same. Net delays are adjusted only
if the sdf_enable_port_construct variable is set to true and the delays are within the
threshold variable setting, in which case the PORT statement is used to represent the net
arcs connected to the load pin “ck” in the example. In the case of the nets connecting B0 to
cells B1 through B3, no changes are made to the delay values because each of the three
cells has only one fanin net.

B1

B2

B3

B0
D Q

cell delay
min= 1.1
max=1.4

cell delay
min= 1.0
max=1.3

cell delay
min= 1.2
max=1.5

ck

delay Dmax
Chapter 8: SDF Back-Annotation
Writing an SDF File 8-15
Chapter 8: SDF Back-Annotation
Writing an SDF File 8-15

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
In the case of the cell delays, the worst delay from B0 to the output pin of cells B1 through
B3 is calculated to be Dmax. The cell arcs of B1 through B3 are adjusted to make the delay
of each path from B0 to the output pins of the cells to be equal to Dmax. In this example, the
cells are given the same delays because the net arcs from B0 to the cells B1 through B3 all
have the same delays. Taking the worst delay means using the minimum of min delays and
maximum of max delays, the most pessimistic values. In the case of cells with multiple arcs,
the worst cell arc will be used to represent the cell delay.

The sdf_align_multi_drive_cell_arcs variable should be set to true only to generate
SDF for simulation. Avoid reading the generated SDF back into PrimeTime for timing
analysis, as the data is pessimistic.

If multidrive normalizing is disabled, the write_sdf command writes the following
description of the example network.

Net delays:

(INTERCONNECT B1/z FF1/ck (0.01 ::0.04))
(INTERCONNECT B2/z FF1/ck (0.03 ::0.05))
(INTERCONNECT B3/z FF1/ck (0.02 ::0.04))

Cell delays:

(CELLTYPE "buf")
(INSTANCE B1)
(DELAY
 (ABSOLUTE
 (DEVICE (1::8) (4::7))
)
)
(CELLTYPE "buf")
(INSTANCE B2)
(DELAY
 (ABSOLUTE
 (DEVICE (2::9) (3::11))
)
)
(CELLTYPE "buf")
(INSTANCE B3)
(DELAY
 (ABSOLUTE
 (DEVICE (1::5) (5::8))
)
)

If multidrive normalizing is enabled, and if the delay differences are under the specified
threshold, the write_sdf command writes the following description of the example network.
Chapter 8: SDF Back-Annotation
Writing an SDF File 8-16

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Net delays:

(PORT FF1/ck (0.03 ::0.05))

Cell delays:

(CELLTYPE "buf")
(INSTANCE B1)
(DELAY
 (ABSOLUTE
 (DEVICE (2::9) (5::11))
)
)
(CELLTYPE "buf")
(INSTANCE B2)
(DELAY
 (ABSOLUTE
 (DEVICE (2::9) (5::11))
)
)
(CELLTYPE "buf")
(INSTANCE B3)
(DELAY
 (ABSOLUTE
 (DEVICE (2::9) (5::11))
)

Writing VITAL Compliant SDF Files
If you want to write out SDF that is VITAL compliant, use the following command:

pt_shell> write_sdf -no_edge_merging -exclude {“no_condelse”} \
 file.sdf

If the simulator you plan to use cannot handle negative delays, you can use the -
no_negative_values option with the timing_checks, cell_delays, or net_delays
values. You should use the -no_negative_values timing_checks option when you want
to zero out all negative timing check values, such as setup, hold, recovery or removal SDF
statements. Use the -no_negative_values cell_delays option when you want to zero
out all negative cell delay values, such as IOPATH and port SDF statements. Use the -
no_negative_values net_delays option when you want to zero out all negative net
delays, such as interconnect SDF statements. For example, if you want to zero out timing
checks and net delays, use the following syntax:

pt_shell> write_sdf -no_edge_merging -no_negative_values \
 {timing_checks net_delays} -exclude {“no_condelse”} file.sdf
Chapter 8: SDF Back-Annotation
Writing an SDF File 8-17
Chapter 8: SDF Back-Annotation
Writing an SDF File 8-17

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Removing Annotated Delays and Checks

You can remove annotated delays and timing checks using these commands:

• remove_annotated_delay

• remove_annotated_check

Removing Annotated Delays
The remove_annotated_delay command removes annotated cell and net delays from the
current design. Delays are annotated either from an SDF file by using the read_sdf or
set_annotated_delay commands.

Examples

To remove all annotated net and cell delays from the current design, enter

pt_shell> remove_annotated_delay -all
1

To remove annotated delays from some cells, enter

pt_shell> remove_annotated_delay [get_cells u1*]
1

The following command removes annotated delays between pins. When there are no
annotated delays between the specified pins, a warning message appears.

pt_shell> remove_annotated_delay -from ffb/Q
1
pt_shell> remove_annotated_delay -from ffb/Q -to u1/A
Warning: No annotated delays from 'ffb/Q' to 'u1/A'
0

For more information, see the remove_annotated_delay man page.

Removing Annotated Checks
The remove_annotated_check command removes annotated timing checks from cells in
the current design. Timing checks are annotated either from an SDF file by using the
read_sdf command, or the set_annotated_check command. Timing check types include
setup, hold, recovery, removal, and no-change.
Chapter 8: SDF Back-Annotation
Removing Annotated Delays and Checks 8-18

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Examples

To remove all annotated cell timing checks from the current design, enter

pt_shell> remove_annotated_check -all

To remove only setup checks from all cells in the current design, enter

pt_shell> remove_annotated_check -setup [get_cells *]
1

The following command removes checks between pins. The error condition is shown when
the pins are not on the same cell, and when there are no annotated checks, a warning
message appears.

pt_shell> remove_annotated_check -from ffb/CP -to ffa/D
Error: Cannot remove annotated check from 'ffb/CP' to 'ffa/
D':
pins are on different cells (PTE-032)
0
pt_shell> remove_annotated_check -from ffa/CP -to ffa/D \
 -setup -hold
1
pt_shell> remove_annotated_check -from ffa/CP -to ffa/D
Warning: No annotated timing checks were removed. (PTE-031)
0

For more information, see the remove_annotated_check man page.

Setting Annotations From the Command Line

You can annotate delays, timing checks, and transition times from the command line to make
a limited number of changes for debugging. To manually set annotations, use these
commands:

• set_annotated_delay

• set_annotated_check

• set_annotated_transition

Annotating Delays
The set_annotated_delay command sets cell or net delays from the command line. To list
annotated delay values, use the report_annotated_delay command. To set a cell delay,
you specify the delay from a cell input to an output of the same cell. To set a net delay, you
specify the delay from a cell output to a cell input.
Chapter 8: SDF Back-Annotation
Setting Annotations From the Command Line 8-19
Chapter 8: SDF Back-Annotation
Setting Annotations From the Command Line 8-19

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
To remove the annotated cell or net delay values from a design, use the
remove_annotated_delay or reset_design command.

Example 1

This example annotates a cell delay of 20 units between input pin A of cell instance U1/U2/
U3 and output pin Z of the same cell instance. The delay value of 20 includes the load delay.

pt_shell> set_annotated_delay -cell -load_delay cell 20 \
 -from U1/U2/U3/A -to U1/U2/U3/Z

 Example 2

This example annotates a rise net delay of 1.4 units between output pin U1/Z and input pin
U2/A. The delay value for this net does not include load delay.

pt_shell> set_annotated_delay -net -rise 1.4 -load_delay \
 cell -from U1/Z -to U2/A

Example 3

This example annotates a rise net delay of 12.3 units between the same output pins. In this
case the net delay value does include load delay.

pt_shell> set_annotated_delay -net -rise 12.3 -load_delay \
 net -from U1/Z -to U2/A

Example 4

This example annotates a fall cell delay of 21.2 units on the enable arc of the tristate cell
instance U8.

pt_shell> set_annotated_delay -cell -fall -of_objects \
 [get_timing_arcs -from U8/EN -to U8/Z -filter

sense==enable_low] 21.2

Annotating Timing Checks
The set_annotated_check command sets the setup, hold, recovery, removal, or no-
change timing check value between two pins.

To list annotated timing check values, use the report_annotated_check command. To
remove annotated timing check values from a design, use the remove_annotated_check or
reset_design command. To see the effect of set_annotated_check for a specific
instance, use the report_timing command.
Chapter 8: SDF Back-Annotation
Setting Annotations From the Command Line 8-20

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Example

This example annotates a setup time of 2.1 units between clock pin CP of cell instance u1/
ff12 and data pin D of the same cell instance.

pt_shell> set_annotated_check -setup 2.1 -from u1/ff12/CP \
 -to u1/ff12/D

Annotating Transition Times
The set_annotated_transition command sets the transition time on any pin of a design.
Transition time (also known as slew) is the amount of time it takes for a signal to change from
low to high or from high to low.

Example

This example annotates a rising transition time of 0.5 units and a falling transition time of 0.7
units on input pin A of cell instance U1/U2/U3.

pt_shell> set_annotated_transition -rise 0.5 [get_pins U1/U2/U3/A
pt_shell> set_annotated_transition -fall 0.7 [get_pins U1/U2/U3/A

Generating Timing Constraints for Place and Route
You can use the write_sdf_constraints command to write path timing constraints in
SDF versions 1.0 and 2.1 formats to a constraints file. Use the constraint file to constrain
layout tools to meet critical timing goals.

To write constraints for the current design, arrival totals and slacks must be available
throughout the design, not just at endpoints. The optimal flow (in terms of CPU usage) to use
this command within PrimeTime is as follows:

1. Set the timing_save_pin_arrival_and_slack variable to true to store slacks at all
pins in the design.

2. Update timing by using the update_timing command.

Note:
If you intend to use write_sdf_constraints command as part of your flow, it is
recommended that you set the timing_save_pin_arrival_and_slack variable to
true before your first timing update.

3. Use the write_sdf_constraints to write constraints for the current design.

When you use the write_sdf_constraints command, keep the following limitations in
mind:

• PrimeTime does not generate capacitance constraint files.
Chapter 8: SDF Back-Annotation
Setting Annotations From the Command Line 8-21
Chapter 8: SDF Back-Annotation
Setting Annotations From the Command Line 8-21

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
• PrimeTime does not support some Design Compiler write_constraints command
options, including -cover_nets and -load_delay net | cell.

For more information, see the write_sdf_constraints man page.

The following example shows a timing constraint file in SDF v2.1 format.

(DELAYFILE
(SDFVERSION "OVI 2.1")
(DESIGN "counter")
(DATE "Thur Nov 30 16:09:53 2000")
(VENDOR "lsi_10k")
(PROGRAM "Synopsys PrimeTime")
(VERSION "2000.11")
(DIVIDER /)
(VOLTAGE 5.00:5.00:5.00)
(PROCESS "NOMINAL")
(TEMPERATURE 25.00:25.00:25.00)
(TIMESCALE 1ns)
(CELL
 (CELLTYPE "counter")
 (INSTANCE)
 (TIMINGCHECK

(PATHCONSTRAINT ffb/CP ffb/QN w/B w/Z q/A q/Z j/C j/Z
ffd/D
(9.100:9.100:9.100) (9.100:9.100:9.100))

(PATHCONSTRAINT ffb/CP ffb/QN v/A v/Z r/A r/Z g/C g/Z
ffc/D
(9.100:9.100:9.100) (9.100:9.100:9.100))

(PATHCONSTRAINT ffa/CP ffa/QN u/A u/Z s/A s/Z d/C d/Z
ffb/D
(9.100:9.100:9.100) (9.100:9.100:9.100))

(PATHCONSTRAINT ffa/CP ffa/QN t/B t/Z a/C a/Z ffa/D
(9.150:9.150:9.150) (9.150:9.150:9.150))

)
)

)

The following example shows the syntax to write a timing constraint file in SDF v2.1 format
for the most critical path in each path group in the current design:

pt_shell> write_sdf_constraints cstr.sdf

The following example shows the syntax to write a timing constraint file in SDF v1.0 format
for the 10 most critical paths in each path group in the current design (named counter):

pt_shell> write_sdf_constraints -max_paths 10 \
 -version 1.0 counter_cstr.sdf
Chapter 8: SDF Back-Annotation
Setting Annotations From the Command Line 8-22

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Providing Constraint Coverage for the Entire Design
To constrain a design fully for placement, every net or every net arc (connection between two
cells) generally requires a constraint. You can ensure that a design is fully constrained by
forcing the write_sdf_constraints command to generate constraints for all paths in the
design. Generation of the resulting constraint file requires a large amount of CPU time and
disk space.

Some place and route tools require only the worst path through any point (other data is not
used). In these cases, generating the worst path through every driver-load pin pair in the
design is sufficient to provide full constraint coverage. In that case, the total number of paths
for the design is less than or equal to the total number of leaf cell input pins plus the number
of primary outputs (often, points are covered by multiple paths).

The write_sdf_constraints command’s -cover_design option generates just enough
unique paths to provide constraint coverage for the entire design. The overall runtime with
the -cover_design option is greater, but memory and disk space requirements are
significantly less.

Note:
The -cover_design option ensures that a constraint is placed on every driver-load pin
pair in the design, but does not fully constrain the design. The coverage is minimal; it
contains less information than a constraint file with all paths enumerated. Theoretically, a
place and route tool can meet all the given constraints and still have timing violations.

The -cover_design option is most useful for large designs in which generating data for all
paths is not reasonable, or when the targeted place and route tool uses only the worst path
through any point. A point can be a net or an edge, where an edge is any connection
between two leaf-level cells.

For large designs in which generating data for all paths is not reasonable, using the -
cover_design option might be the only way to ensure that every net is constrained at least
once. When the targeted place and route tool uses only the worst path through any point,
constraints other than the worst are ignored by the place and route tool.

To write a timing constraint file in SDF v2.1 format with just enough paths to cover the worst
path through every driver-load pin pair, enter

pt_shell> write_sdf_constraints -cover_design \
 counter_cstr.sdf
Chapter 8: SDF Back-Annotation
Setting Annotations From the Command Line 8-23
Chapter 8: SDF Back-Annotation
Setting Annotations From the Command Line 8-23

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Chapter 8: SDF Back-Annotation
Setting Annotations From the Command Line 8-24

9
Parasitic Back-Annotation 9

You can back-annotate a design with detailed parasitic information (resistance and
capacitance) for more accurate timing analysis.

 Parasitic back-annotation is described in the following sections:

• Parasitic Data

• Lumped Parasitics

• Reduced and Detailed Parasitics

• Reading Parasitics Files

• Incomplete Annotated Parasitics

• Reporting Annotated Parasitics

• Removing Annotated Parasitics
9-1

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Parasitic Data

PrimeTime allows parasitic back-annotation of detailed circuit delay information in the form
of lumped capacitance, lumped resistance, reduced pi model, or detailed RC network. The
reduced pi model and detailed RC network are more accurate than lumped capacitance and
lumped resistance, but using them requires setting environment variables and uses more
CPU time and memory.

Note:
To reduce CPU time usage to a minimum, use an SDF file rather than parasitic data to
back-annotate the design. In that case, PrimeTime does not have to calculate the delays.
For more information, see Chapter 8, “SDF Back-Annotation.”

In case of conflict between different types of parasitic data, PrimeTime uses the data on
each net in the following order:

1. Lumped resistance and capacitance values annotated with the set_resistance and
set_load commands, if any.

2. Detailed parasitics annotated with the read_parasitics command, if any.

3. Wire load models obtained from the technology library or specified with the
set_wire_load_model command.

Setting lumped resistance or capacitance with the set_resistance or set_load
command temporarily overrides the wire load model or detailed parasitics for a net.
Removing lumped resistance or capacitance from a net with the remove_resistance or
remove_capacitance command causes the net to revert back to its previous form of
parasitic data.

You can set lumped resistance and capacitance separately. For example, you can read in
detailed parasitics for a net, and then override just the capacitance for that net with the
set_load command. In that case, PrimeTime still uses the detailed parasitic information to
calculate the net resistance.

Lumped Parasitics

You can annotate resistance and capacitance (RC) on nets, as shown in Figure 9-1. Even if
you annotated all the delays of the design with SDF, you might want to annotate parasitics
to perform certain design rule checks, such as maximum transition or maximum
capacitance.
Chapter 9: Parasitic Back-Annotation
Parasitic Data 9-2

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Figure 9-1 Lumped RC

Setting Net Capacitance
The set_load command sets the net capacitance values on ports and nets within the
design. If the current design is hierarchical, you must link it with the link command.

By default, the total capacitance on a net is the sum of all of pin, port, and wire capacitance
values associated with the net. A capacitance value you specify overrides the internally
estimated net capacitance.

You can use the set_load command for nets at lower levels of the design hierarchy.
Specify these nets as BLOCK1/BLOCK2/NET_NAME.

If you use the -wire_load option, the capacitance value is set as a wire capacitance on
the specified port and the value is counted as part of the total wire capacitance (not as part
of the pin or port capacitance).

To view capacitance values on ports, use report_port. To view capacitance values on
nets, use the report_net command. For more information, see the set_load man page.

Setting Net Resistance
The set_resistance command sets net resistance values in the design. The specified
resistance value overrides the internally estimated net resistance value.

You can also use the set_resistance command for nets at lower levels of the design
hierarchy. You can specify these nets as BLOCK1/BLOCK2/NET_NAME.

To view resistance values, use the report_net command. To remove resistance values
annotated on specified nets, use the remove_resistance command. To remove resistance
annotated on the entire design, use the reset_design command.

C

R

Chapter 9: Parasitic Back-Annotation
Lumped Parasitics 9-3
Chapter 9: Parasitic Back-Annotation
Lumped Parasitics 9-3

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Reduced and Detailed Parasitics

PrimeTime provides features that enable you to annotate reduced parasitics and detailed
parasitics.

Annotating Reduced Parasitics
Reduced resistance and capacitance represents the RC within a design from a driver
standpoint: two capacitors and one resistor, as shown in Figure 9-2. The net delays are
typically annotated with an Elmore delay, which is the most commonly used representation.
For this model the following rules apply:

• RC is represented in terms of a pi model (two C and one R).

• Net delay from the driver to the net fanout provided is an Elmore delay.

• The RC pi model is used to compute the slew at the driver pin.

• Slew degradation (transition time) from the driver pin to each net load pin is computed if
the Elmore delay is significant (more than 20 percent of driver transition time). The slew
degradation is based on a published paper by E. G. Friedman and J. H. Mulligan, Jr.,
titled “Ramp Input Response of RC Tree Network,” in Analog Integrated Circuits and
Signal Processing, Volume 14, No. 1/2, pp. 53-58, September 1997.

The model in Figure 9-2 calculates the cell delay and the driver output slew more accurately
than the lumped RC model. Reduced RC is annotated with RSPF or SPEF.

Figure 9-2 Reduced RC

Cnear

R

Cfar

Elmore
delay1

Elmore
delay2
Chapter 9: Parasitic Back-Annotation
Reduced and Detailed Parasitics 9-4

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Annotating Detailed Parasitics
You can annotate detailed parasitics into PrimeTime and annotate each physical segment of
the routed netlist in the form of resistance and capacitance (see Figure 9-3). Annotating
detailed parasitics is very accurate but more time-consuming than annotating lumped
parasitics. Because of the potential complexity of the RC network, PrimeTime takes longer
to calculate the pin-to-pin delays in the netlist.

This RC network is used to compute effective capacitance (Ceffective), slew, and delays at
each subnode of the net. PrimeTime can read detailed RC in DSPF and SPEF formats.

Figure 9-3 Detailed RC

You can use this model for netlists that have critical timing delays, such as clock trees. This
model can produce more accurate results, especially in deep submicron designs where net
delays are more significant compared to cell delays. The detailed RC network supports
meshes, as shown in Figure 9-4.

Figure 9-4 Meshed RC

C1

R1

C2

R2

R3

R4

R6

R5

C4

C6

C3

C5

C7

C2

R2

C3

R3

R5

R4

R7

R6

C5

C8

C6

C7

C4

R9

R8

C9
Chapter 9: Parasitic Back-Annotation
Reduced and Detailed Parasitics 9-5
Chapter 9: Parasitic Back-Annotation
Reduced and Detailed Parasitics 9-5

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Supported File Formats for Parasitic Annotation
PrimeTime supports these formats for parasitic annotation:

• Cadence Design Systems Reduced Standard Parasitic Format (RSPF) and Detailed
Standard Parasitic Format (DSPF)

• Open Verilog International (OVI) SPEF

Limitations

The following limitations apply to RSPF and DSPF constructs:

• SPICE inductors (Lxxx) and lines (Txxx) are allowed in the DSPF file, but they are
ignored.

• Physical coordinates of pins and instances are ignored.

• The BUSBIT construct is not supported.

• Instances listed in the RSPF and DSPF files in the SPICE section are ignored. They are
not checked to determine whether they match the current design loaded in PrimeTime.

• Resistors cannot be connected to ground. PrimeTime ignores such resistors and displays
a warning about them.

• Capacitors must be connected to ground. PrimeTime ignores node-to-node coupling
capacitors and displays a warning about them.

The following limitations apply to SPEF constructs:

• Inductors are ignored.

• Poles and residue descriptions on reduced nets are not supported.

• Resistors cannot be connected to ground. PrimeTime ignores resistors connected to
ground and displays a warning.

• Cross-coupling capacitors are split to ground unless you are using PrimeTime SI and
crosstalk analysis is enabled.

Characterization Trip Points
The characterization trip points of a design (waveform measurement thresholds) affect the
calculation of delays and transition times by PrimeTime. PrimeTime establishes the trip
points as follows:

1. If pin-level thresholds are defined, the application tools use those. Pin-level thresholds
override library-level thresholds with the same name.
Chapter 9: Parasitic Back-Annotation
Reduced and Detailed Parasitics 9-6

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
2. If pin-level thresholds are not defined, but library-level thresholds are, the application
tools use the library-level thresholds.

3. If neither pin-level nor library-level thresholds are defined, and the PrimeTime
environment variables are not set, the application tools use the thresholds defined in the
main library (the first library in the link path).

4. If neither pin-level nor library-level thresholds are defined, the thresholds are determined
by PrimeTime environment variables.

5. If none of the above are defined, the application tools use default trip points at 20 percent
and 80 percent of the rail voltage for transition time calculations and 50 percent of the rail
voltage for delay calculations.

6. If the trip points defined by any of these methods are not valid (for instance, 0 percent and
100 percent), the trip points will be set to 5 percent and 95 percent of the rail voltage for
transition time calculations and 50 percent of the rail voltage for delay calculations.

Note:
In earlier releases of PrimeTime, the trip points were obtained in a different manner. To
revert to this earlier behavior, set the lib_thresholds_per_lib variable to false. For
more information, see the man page for the variable.

Figure 9-5 and Figure 9-6 show some signal waveforms, the trip points used to calculate
transition times (slews) and delays, and the variables that can be used to define the trip
points. The default trip point values define slew as the time that a signal takes to change
from 20 to 80 percent or from 80 to 20 percent of the rail voltage, and they define cell delay
as the amount of time from the input signal reaching 50 percent of the rail voltage to the
output signal reaching 50 percent of the rail voltage.
Chapter 9: Parasitic Back-Annotation
Reduced and Detailed Parasitics 9-7
Chapter 9: Parasitic Back-Annotation
Reduced and Detailed Parasitics 9-7

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Figure 9-5 Slew Transition Points

Figure 9-6 Input/Output Transition Points

Rising transition time (slew)

rc_slew_upper_threshold_pct_rise

rc_slew_lower_threshold_pct_rise

(default: 80%)

(default: 20%)

Falling transition time (slew)

rc_slew_upper_threshold_pct_fall

rc_slew_lower_threshold_pct_fall

(Default: 80%)

(Default: 20%)

rc_input_threshold_pct_rise

Delay

rc_output_threshold_pct_rise
(default: 50%)

(default: 50%)

rc_input_threshold_pct_fall

Delay

rc_output_threshold_pct_fall
(default: 50%)

(default: 50%)
Chapter 9: Parasitic Back-Annotation
Reduced and Detailed Parasitics 9-8

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
The following table lists the variables that can be used to specify the trip points in the
absence of trip point definitions in the technology libraries.

To get the current value of a variable, use the printvar command.

To check the threshold levels defined in a library, use the report_lib command. To check
the threshold settings used for a particular delay calculation arc, use the command
report_delay_calculation -thresholds.

Example

In the absence of trip point definitions in the libraries used in the design, the following
commands specify a set of threshold levels that PrimeTime will use to calculate delays and
slews:

pt_shell> set rc_slew_derate_from_library 0.4
pt_shell> set rc_slew_lower_threshold_pct_fall 30
pt_shell> set rc_slew_lower_threshold_pct_rise 30
pt_shell> set rc_slew_upper_threshold_pct_fall 70
pt_shell> set rc_slew_upper_threshold_pct_rise 70
pt_shell> set rc_input_threshold_pct_rise 50
pt_shell> set rc_input_threshold_pct_fall 50

The four “slew threshold” variables specify that slews were characterized by measuring the
transition times from 30 to 70 percent and from 70 to 30 percent of the rail voltage. The “slew
derate” variable, which is set to 0.4, specifies that the transition times were extrapolated to
the rail voltages (0 to 100 percent of the supply voltage); the range of 30 to 70 percent is a

Variable Default

rc_slew_lower_threshold_pct_rise 20

rc_slew_lower_threshold_pct_fall 20

rc_slew_upper_threshold_pct_rise 80

rc_slew_upper_threshold_pct_fall 80

rc_slew_derate_from_library 1

rc_input_threshold_pct_fall 50

rc_input_threshold_pct_rise 50

rc_output_threshold_pct_fall 50

rc_output_threshold_pct_rise 50
Chapter 9: Parasitic Back-Annotation
Reduced and Detailed Parasitics 9-9
Chapter 9: Parasitic Back-Annotation
Reduced and Detailed Parasitics 9-9

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
span of 40 percent of the supply voltage. The two “input threshold” and two “output
threshold” variables specify that delays were calculated from trip points at 50 percent of the
rail voltage.

Reading Parasitics Files

The read_parasitics command reads a parasitic data file in RSPF, DSPF, SPEF
(version IEEE 1481-1999), or SBPF format and annotates the current design with the
parasitic information. An RSPF, DSPF, or SPEF file can be ASCII text or it can be
compressed with gzip. Specifying the format in the command is optional because the reader
can automatically determine the file type.

Net and instance pin names in the design must match the names in the parasitics file. For
example, if you create the parasitics file from a design using VHDL naming conventions, the
design name must use VHDL naming conventions.

When reading parasitics files, PrimeTime assumes by default that capacitance values
specified in the SPEF files do not include the pin capacitance. The pin capacitance values
used by PrimeTime are the values specified in the Synopsys design libraries; any pin
capacitance values specified in SPEF are ignored.

The reduced and detailed RC networks specified in SPEF files are used to compute effective
capacitance dynamically during delay calculation. Note that the capacitance value reported
by most report commands (such as report_timing and report_net) is the lumped
capacitance, also known as Ctotal. Ctotal is the sum of all capacitance values of a net as
specified in the SPEF, to which pin capacitance is also added.

Parasitic data files are often very large and time-consuming for PrimeTime to read. To
minimize the read time, make sure that the data file is on a local disk that can be accessed
directly (not across a network). Having enough memory (to avoid using disk swap space) is
also helpful. Compressing an SPEF file using gzip can improve overall processing time
because the file is so much smaller. The most efficient format is SBPF (Synopsys Binary
Parasitic Format); consider using it if your tools support it. For example, to read parasitics for
the current design from a file called sub_design1.rspf using the RSPF file format, enter

pt_shell> read_parasitics -format rspf sub_design1.rspf

To optimize performance, it is recommended that you create a single parasitics file in the
SBPF format. You can use the following syntax:

pt_shell> write_parastics -format SBPF file_name
Chapter 9: Parasitic Back-Annotation
Reading Parasitics Files 9-10

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
You can read multiple parasitics files. For example, you might have separate parasitics files
for your subblocks and a separate file for your top-level interconnect. Parasitics for chip-level
timing are often read incrementally. Hierarchical parasitics for each instance are read
separately and stitched with top-level parasitics. The recommended flow for reading multiple
hierarchical incremental parasitics files is as follows:

read_parasitics A.sbpf -incremental –path [all_instances -hier BLKA]/
read_parasitics B.sbpf -incremental
read_parasitics C.sbpf -incremental
read_parasitics D.sbpf -incremental
read_parasitics chip_file_name –increment
report_annotated_parasitics -check

The -incremental option enables the read_parasitics command to perform additional
processing that allows PrimeTime to stitch together the parasitics. By default, the command
does a check for incomplete annotated nets on the nets it annotates. It then executes the
report_annotated parasitics -check command. You can use the -path option to take
a list of instances so that multiple instantiations of the same block level design can all be
annotated together. This can significantly reduce both the runtime and memory required for
reading parasitics in PrimeTime. By executing the commands in the recommended flow
above and explicitly using the report_annotated_parasitics -check command, all of
the parasitics files are read in, then the entire design is checked to confirm and report the
successful annotation of all nets. The report contains all of the nets in the design, not just
the nets that are annotated for the last command.

Some messages issued during read_parasitics, report_annotated_parasitics –
check, read_sdf, and an implicit or explicit update_timing command have a default limit
each time the command is invoked. A summary of the messages affected and other useful
information is stored in the log file and also printed at the end of the PrimeTime session. The
sh_message_limit variable controls the default message limit and the
sh_limited_messages variable controls the messages affected by this feature. For more
information about the commands and variables, see the specific man page.

Scaling Parasitic Values
You can scale parasitic values that have been read into the design. There are three separate
scaling factors for resistors, ground capacitors, and (for PrimeTime SI users) coupling
capacitors. To scale the parasitics, you use the scale_parasitics command.

Each factor is multiplied against all back-annotated values of the specified type throughout
the design. A factor greater than 1.0 increases the parasitic component values, whereas a
factor less than 1.0 decreases the parasitic component values. Factors must be greater than
or equal to 0.0.
Chapter 9: Parasitic Back-Annotation
Reading Parasitics Files 9-11
Chapter 9: Parasitic Back-Annotation
Reading Parasitics Files 9-11

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
The scale_parasitics command operates immediately to modify the parasitics in
memory. If you use the scale_parasitics command more than once in a session, the
factor is applied to the scaled values, not the original values read from the parasitic data file.
If you write the design parasitics with the write_parasitics command, the scaled values
(not original values) are written.

Net-Specific Parasitic Scaling
By using the scale_parasitics command with a list of nets, you can apply different scaling
factors to individual nets instead of using a global scaling factor. You can scale resistance,
ground capacitance, and coupling capacitance values.

The report_scale_parasitics command allows you to see a report of the scale
parasitics. The reset_scale_parasitics command allows you to reset the parasitics to
the global value. You can inspect the changes to the scaled parasitics using the
report_annotated_parasitics -list_annotated command.

Note:
Net-specific parasitic scaling does not incur a full timing update, only an incremental
update.

Ground-Capacitance and Resistance Scaling
You can scale all ground capacitances on a net by a given scaling factor. A scaling factor is
a positive floating point number greater than zero. For example,

pt_shell> scale_parasitics [get_net n1] -ground 1.3

You can scale all resistances of a net by another scaling factor:

pt_shell> scale_parasitics [get_net n1] -resistance 1.22

If you scale the net multiple times or you scale globally, followed by net-specific scaling, the
last command issued takes effect with respect to the original (not the previous value). For
example, if the following sequence is executed, the ground capacitance of net n1 is scaled
by 1.2, not 1.3 multiplied by 1.2:

pt_shell> scale_parasitics -ground 1.3 ## scale all nets
pt_shell> scale_parasitics [get_net n1] -ground 1.2 ## scale n1

Coupling-Capacitance Scaling
You can scale all the coupling capacitances of a net by a scaling factor.

pt_shell> scale_parasitics -coupling 1.3 [get_net n1]
Chapter 9: Parasitic Back-Annotation
Reading Parasitics Files 9-12

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
If you scale the two coupled nets by different factors, then the later command takes effect.
For example,

pt_shell> scale_parasitics -coupling 1.3 [get_net n1]
pt_shell> scale_parasitics -coupling 1.2 [get_net n2]

The net effect is that the all the coupling of net n1 is scaled by 1.3 except the coupling to n2,
and all the coupling of net n2 is scaled by 1.2 including the coupling to n1.

Resetting Scale Parasitics
You can use the reset_scale_parasitics command to reset the scaled nets to their
original values. You can only issue this command on nets that have been previously scaled.

pt_shell> reset_scale_parasitics [get_nets n1]

The reset_scale_parasitics command returns the values to the original values, not
necessarily the previous values. For example,

pt_shell> scale_parasitics -ground 1.3 ## scale all nets
pt_shell> scale_parasitics [get_net n1] -ground 1.2 ## scale n1
pt_shell> reset_scale_parasitics [get_net n1] ## Unscale n1

The net effect is that there is no scaling on net n1.

You can also use the reset_scale_parasitics command to regain original coupling
values:

pt_shell> scale_parasitics -coupling 1.3 [get_net n1]
pt_shell> scale_parasitics -coupling 1.2 [get_net n2]
pt_shell> reset_scale_parasitics [get_net n1]

The net effect of this sequence of commands is that the coupling of n1 is unchanged, and all
coupling of n2 except the coupling between n1 and n2 is scaled by 1.2.

Reporting Scale Parasitics
You can use the report_scale_parasitics command to look at the current scale factors
of all scaled nets or a list of scaled nets:

pt_shell> report_scale_parasitics [get_nets n1]

Net name Ground cap factor Resistance factor Coupling factor
n1 -- 1.2 0.98

This means that net n1 is not scaled for ground capacitance: its resistance is scaled by a
factor of 1.2, and its coupling capacitance is scaled by a factor of 0.98.
Chapter 9: Parasitic Back-Annotation
Reading Parasitics Files 9-13
Chapter 9: Parasitic Back-Annotation
Reading Parasitics Files 9-13

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Note:
Be aware of the following possible scenario:

pt_shell> scale_parasitics -coupling 1.3 [get_net n1]
pt_shell> scale_parasitics -coupling 1.2 [get_net n2]
pt_shell> report_scale_parasitics [get_net n1]

This will show a coupling scale factor of 1.3 even though the coupling between net n1 and
net n2 is scaled by a different factor, 1.2.

Examples
The following three examples illustrate net-specific parasitic scaling usage:

• Single net scaling

• Physical block (net) scaling

• Scaling due to net separation

Single Net Scaling

This example illustrates scaling the resistance and ground capacitance of a selected net.
The output of the report_annotated_parasitics command without any scaling is as
follows:

**
Report : annotated_parasitics

-internal_nets
-boundary_nets
-list_annotated
-max_nets 10

Design : Chip
Version: X-2005.06-Beta1-DEV
Date : Tue Mar 29 15:47:40 2005
**
1. ADDR[1] (driver: port ADDR[1])

 C in pF Node Pin/Port

 0.00842337 1 ADDR[1] (driver) [+pin_cap=0pF]
 0.0170247 2 --
 0.00531228 3 --
 0.00702817 4 --
 0.00487712 5 --
 0.00397756 6 --
 0.00590386 7 --
 0.0122464 8 --
 0.00170559 9 --
 0.00611351 10 --
 0.00304156 11 --
 0.00395301 12 --
Chapter 9: Parasitic Back-Annotation
Reading Parasitics Files 9-14

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
 0.00607125 13 --
 0.00227354 14 --
 0.0119327 15 --
 0.00564987 16 --
 0.00749174 17 --
 0.00585252 18 --
 0.0083778 19 --
 0.0020378 20 --
 0.00111427 21 U527/A1 (load) [+pin_cap=0.00103pF]
 0.00159791 22 U459/B1 (load) [+pin_cap=0.00112pF]
 1e-06 23 U2053/A1 (load) [+pin_cap=0.00075pF]
 1e-06 24 U483/A1 (load) [+pin_cap=0.00107pF]
 1e-06 25 U534/A1 (load) [+pin_cap=0.00191pF]
 1e-06 26 U503/A1 (load) [+pin_cap=0.00189pF]

 0.13201 Total

 CC in pF Local Node Other Node

 0.00197175 13 n4250:13
 0.00139652 17 n4250:6
 0.00218098 3 n2124:2
 0.00141374 1 ADDR[1] (driver) REG_DATA[22]:2
 0.000183647 16 n8376:2
 0.000175112 6 n13565:2
 0.000433937 6 n13599:4
 0.000633856 8 n4750ASTipoNet3769:1
 0.000346092 8 n1946:1
 0.00274598 3 n3117:1
 0.00033236 17 n7632:1
 0.00067407 12 n11321:1
 0.000256377 2 BW0_30_:2
 0.000994872 3 n225:2
 0.000264488 15 n1785:2
 0.00157215 9 n5870ASThfnNet347:5
 0.00130062 2 REG_DATA[26]:2
 0.00170201 4 n2248ASThfnNet432:10
 0.00157756 14 n2248ASThfnNet432:13

 0.0201561 Total

 R in Kohm Left node Right Node

 0.198293 1 ADDR[1] (driver) 2
 0.0190159 2 8
 0.00350119 3 11
 0.027464 3 5
 0.00235238 4 14
 0.00688478 4 11
 0.00561526 5 20
 0.000852706 6 16
 0.0239033 6 21 U527/A1 (load)
 0.0380269 6 22 U459/B1 (load)
Chapter 9: Parasitic Back-Annotation
Reading Parasitics Files 9-15
Chapter 9: Parasitic Back-Annotation
Reading Parasitics Files 9-15

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
 0.0397274 6 12
 0.0257463 7 9
 0.0313717 7 12
 0.00521104 8 19
 0.00360633 9 10
 0.0152421 10 13
 0.0923591 12 21 U527/A1 (load)
 0.146931 12 22 U459/B1 (load)
 0.00413988 13 17
 0.00264083 14 17
 0.0060443 15 18
 0.00321024 15 19
 0.0329064 16 23 U2053/A1 (load)
 0.0285095 16 24 U483/A1 (load)
 0.0187162 16 25 U534/A1 (load)
 0.0200831 16 26 U503/A1 (load)
 0.00884356 18 20
0.0230755 26 U503/A1 (load) 25 U534/A1 (load)

 0.0667172 21 U527/A1 (load) 22 U459/B1 (load)
 0.00850544 23 U2053/A1 (load) 24 U483/A1 (load)

 0.909497 Total

| | | | RC |Coupled| Not |
Net Type | Total| Lumped| RC pi |network|network|Annotated|
-------------------+------+-------+-------+-------+-------+---------+
Internal nets | 0 | 0 | 0 | 0 | 0 | 0 |

-Driverless nets | | 0 | 0 | 0 | 0 | 0 |
-------------------+------+-------+-------+-------+-------+---------+
Boundary/port nets | 1 | 0 | 0 | 0 | 1 | 0 |
- Driverless nets | | 0 | 0 | 0 | 0 | 0 |

-------------------+------+-------+-------+-------+-------+--------+
| 1 | 0 | 0 | 0 | 1 | 0 |

After the parasitics are scaled for resistance and ground capacitance, the output of the
report_annotated_parasitics command would be as follows:

1
**
Report : annotated_parasitics

-internal_nets
-boundary_nets
-list_annotated
-max_nets 10

Design : Chip
Version: X-2005.06-Beta1-DEV
Date : Tue Mar 29 15:48:57 2005
**

1. ADDR[1] (driver: port ADDR[1])
 C in pF Node Pin/Port

Chapter 9: Parasitic Back-Annotation
Reading Parasitics Files 9-16

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
 0.0168467 1 ADDR[1] (driver) [+pin_cap=0pF]
 0.0340494 2 --
 0.0106246 3 --
 0.0140563 4 --
 0.00975424 5 --
 0.00795512 6 --
 0.0118077 7 --
 0.0244928 8 --
 0.00341118 9 --
 0.012227 10 --
 0.00608312 11 --
 0.00790602 12 --
 0.0121425 13 --
 0.00454708 14 --
 0.0238654 15 --
 0.0112997 16 --
 0.0149835 17 --
 0.011705 18 --
 0.0167556 19 --
 0.0040756 20 --
 0.00222854 21 U527/A1 (load) [+pin_cap=0.00103pF]
 0.00319582 22 U459/B1 (load) [+pin_cap=0.00112pF]
 2e-06 23 U2053/A1 (load) [+pin_cap=0.00075pF]
 2e-06 24 U483/A1 (load) [+pin_cap=0.00107pF]
 2e-06 25 U534/A1 (load) [+pin_cap=0.00191pF]
 2e-06 26 U503/A1 (load) [+pin_cap=0.00189pF]

 0.264021 Total

 CC in pF Local Node Other Node

 0.00197175 13 n4250:13
 0.00139652 17 n4250:6
 0.00218098 3 n2124:2
 0.00141374 1 ADDR[1] (driver) REG_DATA[22]:2
 0.000183647 16 n8376:2
 0.000175112 6 n13565:2
 0.000433937 6 n13599:4
 0.000633856 8 n4750ASTipoNet3769:1
 0.000346092 8 n1946:1
 0.00274598 3 n3117:1
 0.00033236 17 n7632:1
 0.00067407 12 n11321:1
 0.000256377 2 BW0_30_:2
 0.000994872 3 n225:2
 0.000264488 15 n1785:2
 0.00157215 9 n5870ASThfnNet347:5
 0.00130062 2 REG_DATA[26]:2
 0.00170201 4 n2248ASThfnNet432:10
 0.00157756 14 n2248ASThfnNet432:13

 0.0201561 Total
Chapter 9: Parasitic Back-Annotation
Reading Parasitics Files 9-17
Chapter 9: Parasitic Back-Annotation
Reading Parasitics Files 9-17

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
 R in Kohm Left node Right Node

 0.396586 1 ADDR[1] (driver) 2
 0.0380318 2 8
 0.00700238 3 11
 0.054928 3 5
 0.00470476 4 14
 0.0137696 4 11
 0.0112305 5 20
 0.00170541 6 16
 0.0478066 6 21 U527/A1 (load)
 0.0760538 6 22 U459/B1 (load)
 0.0794548 6 12
 0.0514926 7 9
 0.0627434 7 12
 0.0104221 8 19
 0.00721266 9 10
 0.0304842 10 13
 0.184718 12 21 U527/A1 (load)
 0.293862 12 22 U459/B1 (load)
 0.00827976 13 17
 0.00528166 14 17
 0.0120886 15 18
 0.00642048 15 19
 0.0658128 16 23 U2053/A1 (load)
 0.057019 16 24 U483/A1 (load)
 0.0374324 16 25 U534/A1 (load)
 0.0401662 16 26 U503/A1 (load)
 0.0176871 18 20
 0.046151 26 U503/A1 (load) 25 U534/A1 (load)
 0.133434 21 U527/A1 (load) 22 U459/B1 (load)
 0.0170109 23 U2053/A1(load) 24 U483/A1 (load)

 1.81899 Total

| | | | RC |Coupled| Not |
Net Type | Total| Lumped| RC pi |network|network|Annotated|
-------------------+------+-------+-------+-------+-------+---------+
Internal nets | 0 | 0 | 0 | 0 | 0 | 0 |

-Driverless nets | | 0 | 0 | 0 | 0 | 0 |
-------------------+------+-------+-------+-------+-------+---------+
Boundary/port nets | 1 | 0 | 0 | 0 | 1 | 0 |
- Driverless nets | | 0 | 0 | 0 | 0 | 0 |

-------------------+------+-------+-------+-------+-------+---------+
| 1 | 0 | 0 | 0 | 1 | 0 |

Note that only the resistance and the ground capacitance have been scaled by 2. All delay
calculation and PrimeTime SI analysis would be updated by the new values of these
parasitics.

Physical Block (Net) Scaling
Chapter 9: Parasitic Back-Annotation
Reading Parasitics Files 9-18

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
This example illustrates how you can scale each net in a physical block in your design.
Foundries can provide different scaling values for different conditions of a block (process,
temperature, or voltage), and the use of parasitics scaling can reflect this variation.

To use this methodology, link the top level of the design (Chip, in this example). You can then
switch to the physical block of interest by using the following:

current_instance A

set gnets [get_net *] # This will produce a collection of
 # nets for block A.

scale_parasitics -ground 1.1 -resis 1.1 -coupling 1.1 $gnets

current_instance Chip

...

Proceed with the analysis

Each net in block A, will be scaled as specified by the scale_parasitics command. Keep
in mind that nets that cross hierarchies will also be scaled. You can inspect the changes to
the parasitics using the report_annotated_parasitics -list_annotated command:

Scaling Due to Net Separation

PrimeTime now has the capability to scale the coupling capacitance due to net separation.
By spacing nets, you can reduce the coupling capacitance between the nets. This can be
reflected using the scale_parasitics command. For example,

pt_shell> scale_parasitics -coupling 0.75 [get_net Net1]

Each of the coupling capacitances for Net1 will be scaled. Therefore, in this case both
capacitors, from Net1 to Net2, and from Net2 to Net1, will be scaled.

Incremental Timing Analysis
PrimeTime can perform an incremental update on a design that is already analyzed when
only a small number of nets are affected. The maximum number of nets that can be affected
without requiring a full timing update depends upon the total design size. For example, if you
have a full-chip annotated file and an engineering change order (ECO) annotated file, and
you want to analyze the impact of your ECO, you can run an analysis with the
report_timing command on a full-chip annotated file, and then repeat the analysis with
just the ECO changes applied. See Figure 9-7.
Chapter 9: Parasitic Back-Annotation
Reading Parasitics Files 9-19
Chapter 9: Parasitic Back-Annotation
Reading Parasitics Files 9-19

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Figure 9-7 Incremental Update Before and After Engineering Change

To set the annotation on most—or all—nets, enter

pt_shell> read_parasitics full_chip.dspf
pt_shell> report_timing

To override the annotations on a small number of nets, enter

pt_shell> read_parasitics eco.dspf
pt_shell> report_timing

Incomplete Annotated Parasitics

PrimeTime can complete parasitics on nets that have incomplete parasitics. The following
conditions apply to RC network completion:

• The nets that have an RC network must be back-annotated from DSPF or SPEF files.

• PrimeTime cannot complete effective capacitance calculation for a net that has
incomplete parasitics. Instead, PrimeTime reverts to using wire load models for delay
calculation on these nets.

• Partial parasitics can be completed on a net only if all the missing segments are between
two pins (either boundary pins or leaf pins). As shown in Figure 9-8, the missing segment
is completed with a fanout of two.

a b

c d

Design before ECO

a b

c d

Design after ECO
Chapter 9: Parasitic Back-Annotation
Incomplete Annotated Parasitics 9-20

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Figure 9-8 Missing Segment Completed Using the Fanout of Two

The shaded area shown in Figure 9-8 is completed when you use the
complete_net_parasitics command or the -complete_with option of the
read_parasitics command.

Selecting a Wire Load Model for Incomplete Nets
Once the missing segments are identified, PrimeTime selects the wire load model to
complete the missing parts of the net as follows:

• The wire load mode is taken from the top-level hierarchy. If the wire load mode does not
exist, the default from the main library is taken.

• If the wire load mode is ‘enclosed,’ the wire load for the missing segment is the hierarchy
that encloses the missing segment.

• If the wire load mode is ‘top,’ the wire load for the top level of hierarchy is used.

• If the wire load model does not exist on the enclosing hierarchy, the wire load model of
the parent hierarchy is taken. If the parent hierarchy does not exist, the wire load model
of the parent of the parent is used, this process continues until the top-level hierarchy is
reached.

• The default wire load model from the main library is used if the wire load model cannot be
obtained from the previous steps.

• Zero resistance and capacitance are used if no wire load model could be obtained using
the -complete_with wlm option.

R0 0Ω=
hier 2

U2

U3

RES

A

AA

R1

C1hier 1

A

U4

R0

R0

CAP

R2

C2
Chapter 9: Parasitic Back-Annotation
Incomplete Annotated Parasitics 9-21
Chapter 9: Parasitic Back-Annotation
Incomplete Annotated Parasitics 9-21

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Completing Missing Segments on the Net
PrimeTime completes multiple pin to pin segments with a single RC pair based on the value
of the option -complete_with, which can be zero or wlm (wire load model).

Here is a command sequence that completes the missing segments:

pt_shell> read_ddc design.ddc
pt_shell> read_parasitics incomplete_parasitics.spef
pt_shell> complete_net_parasitics -complete_with wlm

As shown in Figure 9-9, if the -complete_with wlm option is used, the resistance (RES)
and capacitance (CAP) values are estimated based on the wire load model. If -
complete_with zero is used, the values assigned to RES and CAP are zero. In both cases,
the resistance that connects the net to the loads is 0 ohms.

Figure 9-9 Multidrive Segments

You can see how networks get completed by comparing the attribute rc_network defined
for the incomplete nets before and after completion.

After the segment is completed, it cannot be undone. For this reason, if you are using
multiple read_parasitics commands with the -increment option, be sure to use the -
complete_with option only with the very last read_parasitics command. Otherwise,
PrimeTime will complete the network before you have finished reading in all of the parasitic
data files. To cancel the effects of all read_parasititics and
complete_net_parasitics commands, use the remove_annotated_parasitics
command.

Do not use the complete_net_parasitics command when you have parasitics with errors.
However, you can manually fix the DSPF or SPEF files and reread them. Use the
complete_net_parasitics command only when the following assumption holds true: The

R0 0Ω=

hier 2

U2RES1
A

RES2

CAP2

hier 1

U3

R0

R0

CAP1

A2

A1

R0

R0
Chapter 9: Parasitic Back-Annotation
Incomplete Annotated Parasitics 9-22

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
relevant portion of a net’s delay is already annotated with detailed parasitics, and you want
PrimeTime to complete the remaining, less significant portion of the net with zero or wire
load model based resistance and capacitance.

Reporting Annotated Parasitics

Parasitic data files can be large (100 MB or larger) and can contain many parasitics. You can
use the report_annotated_parasitics command after reading an SPEF, RSPF, or
DSPF file to verify that PrimeTime back-annotated all cell drivers in the design. For more
information, see the report_annotated_parasitics man page.

To create a report for annotated parasitic data files, enter

pt_shell> report_annotated_parasitics -check

The -check option causes PrimeTime to verify that all RC networks are complete.
PrimeTime displays a report similar to this:

**
Report : annotated_parasitics
 -check
Design : top_rc1
Version: 2000.11
Date : Thur Nov 16 14:22:37 2000
**
 | | | RC | Not |
 Pin type | Total | RC pi | network |Annotated|
------------------+---------+---------+---------+---------
+
internal net drive| 23649 | 0 | 23649 | 0 |
------------------+---------+---------+---------+---------
+
design input port | 34 | 0 | 34 | 0 |
------------------+---------+---------+--------+----------
+

 | 23683 | 0 | 23683 | 0 |

Removing Annotated Parasitics

The remove_annotated_parasitics command removes annotated parasitics from nets.
You can remove annotated parasitics from all nets or just a specified set of nets. The
reset_design command also removes all parasitics read and annotated using the
read_parasitics command.
Chapter 9: Parasitic Back-Annotation
Reporting Annotated Parasitics 9-23
Chapter 9: Parasitic Back-Annotation
Reporting Annotated Parasitics 9-23

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Chapter 9: Parasitic Back-Annotation
Removing Annotated Parasitics 9-24

10
Delay Calculation With Detailed Parasitics 10

This chapter describes how PrimeTime calculates delays in the presence of detailed
parasitics and the types of models used to calculate these delays.

This chapter contains the following sections:

• Overview of Delay Calculation

• Nonlinear Delay Models (NLDM)

• CCS Timing Models

• Scaling With CCS Timing Libraries
10-1

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Overview of Delay Calculation

To perform static timing analysis, PrimeTime must accurately calculate the delay and slew
(transition time) at each stage of each timing path. A stage consists of a driving cell, the
annotated RC network at the output of the cell, and the capacitive load of the network load
pins. The goal is to compute the response at the driver output and at the network load pins,
given the input slew or waveform at the driver input, using the least amount of runtime
necessary to get accurate results.

To perform stage delay calculation accurately and efficiently, PrimeTime uses models to
represent the driver, RC network, and capacitive loads on the net. See Figure 10-1. An ideal
model would produce exactly the same delays and slews as a SPICE simulation at the
output of the driver and at the input of each receiver.

Figure 10-1 Models Used to Calculate Stage Delays and Slews

The driver model is intended to reproduce the response of the driving cell’s underlying
transistor circuitry when connected to an arbitrary RC network, given a specific input slew.

Driver

Parasitic
RC network

Receivers

SIN

Response to input waveforms calculated here

Reduced-order
network model

Driver
model

Receiver
model

Receiver
model

SIN

Receiver
model
Chapter 10: Delay Calculation With Detailed Parasitics
Overview of Delay Calculation 10-2

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
The reduced-order network model is a simplified representation of the full annotated
network that has nearly the same response characteristics as the original network.
PrimeTime uses the Arnoldi reduction method to create this model.

The receiver model is intended to represent the complex input capacitance characteristics
of a cell input pin, including the effects of rise/fall direction, the slew at the pin, the receiver
output load, the state of the cell, and the voltage and temperature conditions.

PrimeTime supports two types of driver models for RC delay calculation, known as basic
and advanced. When the rc_driver_model_mode and rc_receiver_model_mode
variables are set to basic, RC delay calculation uses only the driver and receiver models
derived from the more basic nonlinear delay model (NLDM) present in the cell libraries.
When the variables are set to advanced, RC delay calculation uses the newer, more
advanced Composite Current Source (CCS) timing model driver and receiver models, if data
for those models are present in the cell libraries; otherwise, the basic models are used. The
default setting for both variables is advanced.

The advanced CCS timing model has many advantages, one of which is the solution to the
problem described by the RC-009 warning message. This warning occurs when the drive
resistance of the driver model is much less than the network impedance to ground. The CCS
timing model is also better at handling the Miller Effect, dynamic IR drop, and multivoltage
analysis.

Nonlinear Delay Models (NLDM)

The NLDM is the earlier, established method of representing the driver and receiver of a
path stage. The driver model uses a linear voltage ramp in series with a resistor (a Thevenin
model), as shown in Figure 10-2 on page 10-4. The resistor helps smooth out the voltage
ramp so that the resulting driver waveform is similar to the curvature of the actual driver
driving the RC network.
Chapter 10: Delay Calculation With Detailed Parasitics
Nonlinear Delay Models (NLDM) 10-3
Chapter 10: Delay Calculation With Detailed Parasitics
Nonlinear Delay Models (NLDM) 10-3

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Figure 10-2 NLDM Driver and Receiver Models

The driver model has three model parameters: the drive resistance Rd, the ramp start time
tz, and the ramp duration delta t. PrimeTime chooses parameter values to match the output
waveforms as closely as possible. It builds a different simplified driver model for each gate
timing arc (for example, from U1/A to U1/Z) and for each sense (for example, rising edge).

When the drive resistor is much less than the impedance of the network to ground, the
smoothing effect is reduced, potentially reducing the accuracy of RC delay calculation.
When this condition occurs, PrimeTime adjusts the drive resistance to improve accuracy
and issues an RC-009 warning. For more information, see the man page on the RC-009
warning.

The NLDM receiver model is a capacitor that represents the load capacitance of the receiver
input. A different capacitance value may apply to different conditions such as rising/falling
transitions or min/max timing analysis. A single capacitance value, however, applies to a
given timing check, which does not support accurate modeling of the Miller Effect.

Note:
The Miller Effect is the effective change in capacitance between transistor terminals that
occurs with a change in voltage across those terminals.

Receiver
models

Reduced-order
network model

Driver
model

+

–

Rd

v(t)

C

C

C

Chapter 10: Delay Calculation With Detailed Parasitics
Nonlinear Delay Models (NLDM) 10-4

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
CCS Timing Models

With the advent of smaller nanometer technologies, the CCS timing approach of modeling
cell behavior has been developed to address the effects of deep submicron processes. The
driver model uses a time-varying current source, as shown in Figure 10-3. The advantage of
this driver model is its ability to handle high-impedance nets and other non-monotonic
behavior accurately.

Figure 10-3 CCS Timing Driver and Receiver Models

The CCS timing receiver model uses two different capacitor values rather than a single
lumped capacitance. The first capacitance is used as the load up to the input delay
threshold. When the input waveform reaches this threshold, the load is dynamically adjusted
to the second capacitance value. This model provides a much better approximation of
loading effects in the presence of the Miller Effect.

In some cases, different input signals can affect the input capacitance of the receiver.
Conditional pin-based models are used in the library to describe the pin capacitance for
different input signals. If there are conditional pin-based receiver models in the library,
PrimeTime considers all receiver models and chooses the worst among the enabled pin-
based and arc-based receiver models for the analysis.

In PrimeTime, the CCS timing analysis requires detailed parasitics. It uses library
information in the following order for delay calculation with detailed parasitics:

1. CCS timing driver and receiver models, if both are available.

Receiver
models

Reduced-order
network model

Driver
model

i(t)

C1, C2

C1, C2

C1, C2

t

v

C1 C2
Chapter 10: Delay Calculation With Detailed Parasitics
CCS Timing Models 10-5
Chapter 10: Delay Calculation With Detailed Parasitics
CCS Timing Models 10-5

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
2. CCS timing driver model, if available, and lumped pin capacitance for the receiving cells.

3. NLDM delay and transition tables and pin capacitance for the receiving cells. (You can
use a CCS timing receiver model only with a CCS timing driver model.)

After a timing update, to determine whether CCS timing data was used for delay calculation,
you can use the report_delay_calculation command. In the command, specify the cell
or net by using the -from and -to options, or specify a timing arc using the -of_objects
option. The following examples show CCS timing driver and receiver model data used for a
cell and net delay calculation.

pt_shell> report_delay_calculation -from cell1/A -to cell1/Z
.........
arc sense: positive_unate
arc type: cell

Calculation Rise Rise Fall Fall Slew Rail
Thresholds: Delay Slew Delay Slew Derate Voltage Temp.

 from-pin 50 30->70 50 70->30 0.400 1.100 125.0
 to-pin 50 30->70 50 70->30 0.400 1.100 125.0

RC network on pin 'cell1/Z' :
--
Number of elements = 8 Capacitances + 7 Resistances
Total capacitance = 0.03062 pF
Total capacitance = 0.03062 (in library unit)
Total resistance = 0.017983 Kohm

Advanced driver-modeling used for rise and fall.

 Rise Fall
--
Input transition time = 0.100000 0.100000 (in library unit)
Effective capacitance = 0.002625 0.002800 (in pF)
Effective capacitance = 0.002625 0.002800 (in library unit)
Output transition time = 0.060388 0.047040 (in library unit)
Cell delay = 0.050937 0.045125 (in library unit)

pt_shell> report_delay_calculation -from [get_pins cell/Z] \
 -to [get_pins receiver/A]
 ...
 From pin: cell/Z
 To pin: receiver/A
 Main Library Units: 1ns 1pF 1kOhm
 arc sense: unate
 arc type: net
 Calculation Rise Rise Fall Fall Slew Rail
 Thresholds: Delay Slew Delay Slew Derate Voltage Temp

 from-pin 50 30->70 50 70->30 1.000 0.900 125.0
 to-pin 50 30->70 50 70->30 1.000 0.900 125.0

 RC network on pin 'cell/Z' :
 --
 Number of elements = 8 Capacitances + 7 Resistances
Chapter 10: Delay Calculation With Detailed Parasitics
CCS Timing Models 10-6

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
 Total capacitance = 0.003062 pF
 Total capacitance = 0.003062 (in library unit)
 Total resistance = 0.017983 Kohm
 Advanced receiver-modeling used for rise and fall.

 Advanced Receiver Model
 Rise Fall
 --
 Receiver model capacitance 1 = 0.001966 0.001888 (in library unit)
 Receiver model capacitance 2 = 0.002328 0.002160 (in library unit)

 Rise Fall

 Net delay = 0.000024 0.000064 (in library unit)
 Transition time = 0.059192 0.037599 (in library unit)
 From_pin transition time = 0.059078 0.037666 (in library unit)
 To_pin transition time = 0.059192 0.037599 (in library unit)
 Net slew degradation = 0.000114 -0.000067 (in library unit)

Support of CCS Receiver Model for Pin Capacitance Reporting
Timing modeling with CCS consists of a driver model and a receiver model. As the input
capacitance of a cell varies during the input signal transition, the CCS receiver model uses
two capacitances, C1 and C2, to model this variation and guarantee accuracy. C1 and C2
correspond to the input capacitances before and after the delay trip point respectively.
Typically, the values of C1 and C2 are functions of input slew and output load. Therefore, it
is possible that the value of C1 and C2 are larger than the library pin capacitance that is
derived from CCS receiver models.

When you set the report_capacitance_use_ccs_receiver_model variable to true, DRC
for maximum capacitance uses the CCS receiver model, and all possible load extrapolations
reported by RC-011 are reported using the report_constraint command. PrimeTime
includes calculated C1 and C2 capacitance in the capacitance reporting. To ensure
consistent results, several reporting commands include C1 and C2 capacitance data. The
actual capacitance reported when using the report_constraint -max_capacitance
command is controlled by the report_capacitance_use_ccs_receiver_model variable.
The actual capacitance is defined as the sum of wire capacitance and library pin
capacitance. When the report_capacitance_use_ccs_receiver_model variable is set to
true, the actual capacitance is defined as the sum of wire capacitance and maximum (C1,
C2) capacitance. The report_capacitance_use_ccs_receiver_model variable is set to
false by default.

The following commands report the CCS pin capacitance based on actual C1 and C2
information when the report_capacitance_use_ccs_receiver_model variable is set to
true:

• report_constraint -min_capacitance and -max_capacitance

• report_timing -capacitance
Chapter 10: Delay Calculation With Detailed Parasitics
CCS Timing Models 10-7
Chapter 10: Delay Calculation With Detailed Parasitics
CCS Timing Models 10-7

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
• report_attribute

The following attributes are included in this report:

• total_ccs_capacitance_max_fall

• total_ccs_capacitance_max_rise

• total_ccs_capacitance_min_fall

• total_ccs_capacitance_min_rise

• report_net

• report_delay_calculation

Note:
There might be inconsistencies with reporting capacitance in PrimeTime, IC Compiler,
and Design Compiler. In PrimeTime PX, there might be a mismatch of capacitance
values between the reports displayed when using the report_delay_calculation and
report_power_calculation commands.

Guidelines to Address the CCS Extrapolation Warning Message
(RC-011)
Extrapolation warning messages (RC-011) occur when RC delay-calculation is attempted
using a slew or load that is much larger than the maximum library slew or load indices of a
cell or pin. Large extrapolations can cause inaccurate results.

The following sections describe the recommendations to address the driver extrapolation
and receiver load extrapolations:

• Guidelines for Characterizing Design Rule Constraints

• Guidelines for Fixing RC-011 Warning Messages

Guidelines for Characterizing Design Rule Constraints
The max_transition pin attributes are normally present on the input and output pins of
library cells. For input pins, the max_transition attribute value should not exceed the
maximum slew index in the NLDM and CCS driver and CCS receiver_capacitance2 tables.
The lowest value of the maximum slew index between the NLDM and CCS tables should be
used as a reference. The tables used as reference are for the rising and falling timing arcs
from the relevant input pin for which the max_transition attribute is being characterized.
You should take both the arc-based and pin-based tables into account.
Chapter 10: Delay Calculation With Detailed Parasitics
CCS Timing Models 10-8

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
The max_capacitance pin attributes are normally present on the output pins of library cells.
For output pins, the max_capacitance attribute value should not exceed the maximum load
index in the NLDM and CCS driver as well as CCS receiver_capacitance1 and
receiver_capacitance2 tables. You should use the lowest value of the maximum load index
between the NLDM and CCS tables as a reference. The tables used as reference are for the
rising and falling timing arcs to the relevant output pin for which the max_capacitance
attribute is being characterized. You should take both the arc-based and pin-based tables
into account.

Guidelines for Fixing RC-011 Warning Messages
If the libraries used in the design follow the guidelines outlined in the Guidelines to Address
the CCS Extrapolation Warning Message (RC-011) section, all RC-011 messages are
addressed by fixing the max_transition and max_capacitance violations reported by the
report_constraint command. To ensure all the max_capacitance violations in RC-011
are reported by the report_constraint command, you must set the
report_capacitance_use_ccs_receiver_model variable to true. The default is false. If
the libraries are not compliant with these guidelines, you should consider RC-011 warning
messages to be important. You need to address the design rule constraints in the design to
fix these warnings.

Scaling With CCS Timing Libraries

PrimeTime supports voltage and temperature scaling by interpolating between data in
separate libraries that have been characterized at different nominal voltage and temperature
values. The delay (CCS timing driver model and receiver model) and timing constraints are
scaled. In addition, scaling occurs if there is a mixture of CCS and NLDM data. Scaling
between the libraries is done during runtime of the tool.

Invoking Scaling
You can invoke voltage and temperature scaling by using the define_scaling_lib_group
command. This command specifies the scaling relationships between libraries that have
been characterized at different voltages and temperatures and invokes both delay and
constraint scaling. You can define scaling relationships between multiple libraries as shown
in the following example:

pt_shell> define_scaling_lib_group \
 {lib_0.9V_0C.db lib_1.1V_0C.db lib_1.3V_0C.db}

This command should be issued after the design has been read in. If the design is not
already linked, the define_scaling_lib_group command automatically links the design
and creates scaling relationships between the libraries in each group. If the design is already
Chapter 10: Delay Calculation With Detailed Parasitics
Scaling With CCS Timing Libraries 10-9
Chapter 10: Delay Calculation With Detailed Parasitics
Scaling With CCS Timing Libraries 10-9

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
linked, this command creates scaling relationships without an additional link. There is no
restriction on the number of libraries you can specify in the command, and you can define
multiple scaling groups to cover different portions of your design. Each library, however, can
be part of only one scaling group.

Guidelines for Scaling
When using the define_scaling_lib_group command:

1. Read in the design netlist before defining scaling relationships.

2. Only one library in the group should be in the link path. The remaining libraries are read
in automatically during creation of the scaling group. Each library can be part of only one
scaling group.

3. While creating scaling relationships, PrimeTime reports the following information:

Completing scaling library groups ...
Loading db file ‘./lib/lib_0.9V_0C.db’
Loading db file ‘./lib/lib_1.3V_0C.db’
... the scaling library groups are complete.

During this process, PrimeTime does consistency checking between the libraries. The
cell names, pin names, and timing arcs need to be identical between libraries, and the
output capacitance table indices must be the same for each timing arc.

All libraries in the scaling group must be consistent in terms of the existence of the
receiver model. For example, for a specific library pin, either all libraries have a CCS
receiver model or all the libraries do not have any CCS receiver model.

4. You can set the supply voltages and temperature of each cell using the
create_operating_conditions and set_operating_conditions commands. If you
are using IEEE 1801 Unified Power Format (UPF) as part of a low-power design, you
should use the set_voltage and set_temperature commands. Ensure that each
specified voltage and temperature value is within the range of the applicable scaling
library group.

5. If a library is removed from memory with the remove_lib command, the affected library
group is removed without warning.

The report_delay_calculation command provides additional information when scaling
is used for the delay calculation. It reports which transitions (rise and/or fall) used scaling
and which libraries were used for delay calculation.

pt_shell> report_delay_calculation -from [get_pins cell/A] \
 -to [get_pins cell/Z]

...
Chapter 10: Delay Calculation With Detailed Parasitics
Scaling With CCS Timing Libraries 10-10

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
arc sense: negative_unate
arc type: cell

 RC network on pin 'cell/Z' :
 --
 Number of elements = 4 Capacitances + 3 Resistances
 Total capacitance = 0.015272 pF
 Total capacitance = 15.271626 (in library unit)
 Total resistance = 0.027793 Kohm

 Advanced driver-modeling used for rise and fall.
 Scaling library arc group used for rise and fall.
 Scaling libraries used for driver model :
 /remote/testcase/lib/ccs_lib_1.05.db:ccs_1.05
 /remote/testcase/lib/ccs_lib_0.85.db:ccs_0.85

 Rise Fall
--
 Input transition time = 0.600000 0.600000 (in library unit)
 Effective capacitance = 0.015272 0.015272 (in pF)
 Effective capacitance = 15.271626 15.271626 (in library
unit)
 Output transition time = 0.091507 0.088209 (in library
unit)
 Cell delay = 0.031275 0.112788 (in library unit)

The report_lib_groups command can be used to find all libraries with scaling
relationships in the design. For example,

pt_shell> report_lib_groups -scaling -show {voltage temperature}

...

 Group Library Temperature Voltage

 Group 1
 lib_0.85 125.00 0.85
 lib_1.05 125.00 1.05

Scaling Interpolation for Constraints
For setup, hold, recovery, removal, minimum pulse width, and minimum period constraints,
PrimeTime uses a nonlinear interpolation method for voltage variation. Figure 10-4 shows a
comparison of SPICE data, linear interpolation, and nonlinear interpolation for a D flip-flop
setup constraint in the voltage range between 0.8 and 1.2 volts. The nonlinear interpolation
method used by PrimeTime produces more accurate results than linear interpolation.
Chapter 10: Delay Calculation With Detailed Parasitics
Scaling With CCS Timing Libraries 10-11
Chapter 10: Delay Calculation With Detailed Parasitics
Scaling With CCS Timing Libraries 10-11

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Figure 10-4 Nonlinear Interpolation of Timing Constraint

Scaling of Design Rule Constraints
If scaling has occurred, the report_constraint command can interpolate the design rule
constraint values between the scaling libraries that were used for calculation on the
corresponding pin. Design rule constraint support for composite current source (CCS)
scaling now eliminates any possibility of missed design rule constraint violations.

Multirail Cell Scaling Support for Multirail Cells
PrimeTime provides full scaling support of multirail cells, such as level shifters. Level shifter
cells operate across voltage differences, connecting driver and load pins of cells belonging
to different power domains and placed in different voltage areas. Level shifter cells are
frequently used in low-power design. They are used to connect the different voltage power
domains by stepping the voltage up or down, as needed. To analyze the dependencies on
multiple variables, including multiple rail voltages and temperature, accurate multirail cell
scaling is needed.

The data for multirail cell scaling support includes Composite Current Source (CCS) timing
data, noise analysis, power, analysis, nonlinear delay model (NLDM), setup and hold
constraint data, and design rule checking (DRC). To use this feature, scaling library groups
Chapter 10: Delay Calculation With Detailed Parasitics
Scaling With CCS Timing Libraries 10-12

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
of power and ground (PG) pin-based CCS libraries are needed. Only scaling library groups
of PG pin-based CCS libraries with multirail cells are supported with this feature; all other
scaling library groups are supported using single-rail scaling.

Multirail scaling is enabled by default for timing, noise, and power analysis. PrimeTime
automatically detects a multirail scenario and applies multirail scaling when there are
enough libraries in the scaling library group to support it. If there are not enough libraries in
the scaling library group, PrimeTime performs single-rail scaling and issues an SLG-211
warning message.

To set up multirail scaling, you should use the following flow:

1. Use the define_scaling_lib_group command to set up scaling library groups to
support voltage and temperature scaling.

Ensure that there is at least one scaling library group for each scaling scenario. Treat
scaling with different dimensions as different scaling scenarios. For example, you should
have at least one scaling library group for regular one-rail cells and another for two-rail
level shifters that require scaling in more dimensions. For example,

pt_shell> define_scaling_lib_group {std_lib_0.9V.db std_lib 1.1V.db}
pt_shell> define_scaling_lib_group {LS_lib_0.9V_0.9V.db \
 LS_lib_0.9V_1.1V.db \
 LS_lib_1.1V_0.9V.db \
 LS_lib_1.1V_1.1V.db }

Note:
If the libraries used in the define_scaling_lib_group command have no CCS data
or are not PG pin-based libraries, the SLG-211 warning message is issued and
multirail scaling is unsupported. If multirail scaling fails, the timing analysis falls back
to single-rail scaling.

2. Put cells that require scaling in different dimensions into different libraries and those
libraries must be put into different scaling library groups. For example, two-rail level shifter
cells require at least eight libraries to perform voltage and temperature scaling if you are
using the on-the-grid formation. All other one-rail cells that do not need to consider
underdrive and overdrive can be put in one library, and only four libraries are needed to
perform simultaneous voltage and temperature scaling of these one-rail cells. If this
condition is not met, error message SLG-202 is issued.

3. You can use the report_lib_groups command to generate a report that displays the
library groups. This report has been enhanced to display all of the voltage rail information
in the library scaling groups if multirail scaling is supported for that library group. For
example,

pt_shell> report_lib_groups -scaling -show {voltage temp process}

Report : lib_groups
 -scaling
Chapter 10: Delay Calculation With Detailed Parasitics
Scaling With CCS Timing Libraries 10-13
Chapter 10: Delay Calculation With Detailed Parasitics
Scaling With CCS Timing Libraries 10-13

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
 -show
Design : cpu
Version: D-2009.12
Date : Mon Dec 21 10:37:05 2009
**

Group Library Temperature Voltage Process
--
Group 1
 tcbn65lpwc_ccs 125.00 1.08 1.00
 tcbn65lpwc0d72_ccs 125.00 0.86 1.00
Group 2
 tcbn65lplvtwc0d720d72_ccs 125.00 { V:0.86 VL:0.86 } 1.00
 tcbn65lplvtwc0d720d9_ccs 125.00 { V:1.08 VL:0.86 } 1.00
 tcbn65lplvtwc0d90d72_ccs 125.00 { VL:0.86 V:1.08 } 1.00
 tcbn65lplvtwc0d90d9_ccs 125.00 { V:1.08 VL:1.08 } 1.00
Group 3
 tcbn65lplvtwc_ccs 125.00 1.08 1.00
 tcbn65lplvtwc0d72_ccs 125.00 0.86 1.00

To use the multirail scaling feature on multirail cells, you must ensure that the libraries meet
the following requirements:

• Library operation conditions in a scaling group should be in on-the-grid, 2n+1, or n+1 type
of library group formations, which are currently acceptable by the multirail scaling feature.
On-the-grid library formation means the operation conditions of the libraries have to be
on the grid in the Cartesian coordinate system. This requires at least 2^n libraries for n
dimensional scaling. In the above example, the second scaling library for two-rail level
shifters is using on-the-grid library formation. The 2n+1 type of library formation has a
nominal library in the middle. In addition, there is one plus side library and one minus side
library in each dimension. Therefore, the set of libraries have a total of 2n+1 libraries. The
n+1 type of library formation is similar to the 2n+1 type, but it only has the plus or minus
side. If the library operating condition distribution is improper, the SLG-209 error
message is issued and scaling is not performed.

• Cells that require scaling in different dimensions are put into different libraries. For
example, two-rail level shifter cells require at least eight libraries to perform voltage and
temperature scaling, if you are using the on-the-grid formation. All other one-rail cells that
do not need to consider underdrive and overdrive can be put in one library, and only four
libraries are needed to perform simultaneous voltage and temperature scaling of these
one-rail cells. If this condition is not met, error message SLG-202 is issued.

• PrimeTime and PrimeTime PX provides the capability to convert and update library
power and ground (PG) pins and non-PG pin libraries through the UPF library PG pin
conversion.

• Libraries can contain timing, noise, and power information. Multirail scaling is applied to
each of these data types of multirail cells.
Chapter 10: Delay Calculation With Detailed Parasitics
Scaling With CCS Timing Libraries 10-14

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
• Expanded CCS libraries, CCS libraries using the base curve technology format, and
NLDM-only libraries are supported.

The multirail scaling feature cannot be used if you use the set_rail_voltage command in
the design because that command cannot be used to set multirail voltages on PG pin
libraries. Instead, you should use the set_voltage command with the multirail voltage
feature.

Note:
Multirail scaling is not supported in PrimeTime VX. It is automatically disabled if you read
in variation libraries. If you have already defined scaling groups for these multirail cells,
variation libraries for multirail cells are not read into the design.

Multirail cell scaling enables you to avoid using the set link_path_per_instance
command. This feature is capable of not only scaling all rails but also figuring out which
libraries match exactly. PrimeTime automatically selects the correct library in the scaling
library group if the operating condition of a design cell or pin instance exactly matches the
operating condition of a library in the scaling library group. When the operating conditions of
one of the libraries in the scaling library group exactly matches the operating conditions of a
cell/pin instances, multirail scaling automatically picks up this library and uses it in
calculations.
Chapter 10: Delay Calculation With Detailed Parasitics
Scaling With CCS Timing Libraries 10-15
Chapter 10: Delay Calculation With Detailed Parasitics
Scaling With CCS Timing Libraries 10-15

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Chapter 10: Delay Calculation With Detailed Parasitics
Scaling With CCS Timing Libraries 10-16

11
Low-Power Flow Support 11

PrimeTime supports the use of the IEEE 1801 Unified Power Format (UPF) Standard for
specifying the low-power features of the design. PrimeTime correctly analyzes the timing of
the design in the presence of multivoltage supplies and voltage values set on specific supply
nets with the set_voltage command.

The low-power flow support is described in the following sections:

• Multivoltage Analysis

• UPF Commands

• Virtual Power Network

• Setting Voltage and Temperature

• Analysis With Multiple Voltages

• Multivoltage Reporting and Checking

• UPF Supply Sets

• Library PG Tcl File

• Power Domain Mode of Release Z-2007.06

• Multivoltage Method Prior to Release Z-2007.06
11-1

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Multivoltage Analysis

PrimeTime supports timing analysis with different power supply voltages on different cells in
the design. PrimeTime calculates delays and slews, PrimeTime SI calculates crosstalk
delay and noise effects, and PrimeTime PX calculates power consumption based on the
actual supply voltage on each supply pin of each cell.

To perform a multivoltage analysis, you must provide information about the voltage on each
power supply pin of each cell in the design. There are three different ways to provide this
information:

• Specify the power intent of the design using UPF commands and related PrimeTime
commands, including create_power_domain, create_supply_net,
create_supply_set, create_supply_port, connect_supply_net, and set_voltage.
This method was introduced in the A-2007.12 release and is the preferred method.

• Use commands in the “power domain mode” of the Z-2007.06 release. The commands in
this mode are create_power_net_info, create_power_domain,
connect_power_domain, connect_power_net_info, set_operating_conditions
-object_list, and set_voltage. To use the power domain mode from the Z-2007.06
release, you must set the power_domains_compatibilty variable to true, which
disables the other two methods. For more information, see “Power Domain Mode of
Release Z-2007.06” on page 11-23.

Note:
In the power domain mode, the create_power_domain command has a different
effect from the command of the same name executed in the default UPF mode.

• Set the supply voltages on specific blocks in the design by using either the
set_operating_conditions -object_list or set_rail_voltage command or both
commands. Using the set_rail_voltage command requires a PrimeTime SI license.
This method was available prior to the Z-2007.06 release and is still supported. For more
information about using this method, see “Multivoltage Method Prior to Release Z-
2007.06” on page 11-26.

The three methods are mutually exclusive. By default, if you use any UPF commands, UPF
is the voltage specification method for the PrimeTime session. If you do not use any UPF
commands in the session, you can use the method available prior to the Z-2007.06 release
by using either the set_operating_conditions -object_list or set_rail_voltage
command or both commands.

Most of this chapter applies to the recommended UPF flow. For information that is specific
to the two older flows, see the applicable sections at the end of this chapter, “Power Domain
Mode of Release Z-2007.06” on page 11-23 and “Multivoltage Method Prior to Release Z-
2007.06” on page 11-26.
Chapter 11: Low-Power Flow Support
Multivoltage Analysis 11-2

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Unless you are using the older method of specifying all supply voltages using
set_operating_conditions or set_voltage, the library must contain power and ground
(PG) pin information for each cell in the design. The Liberty syntax for specifying PG pin
information in the library uses the voltage_map and pg_pin statements. The voltage_map
statement defines the power supplies and default voltage values, whereas the pg_pin
statements specify the power supply associated with each pin of each cell, as well as some
of the power-related pin parameters. For more information about library requirements for
multivoltage analysis, see the chapter called “Advanced Low Power Modeling” in the Library
Compiler Modeling Timing, Signal Integrity, and Power in Technology Libraries User Guide,
which is available in the Library Compiler collection on SolvNet.

PrimeTime supports partial and no PG pin cells in the Liberty PG pin library. Partial PG pin
cells are cells that are missing power pins, ground pins, or both power and ground pins. For
cells that have no signal pins, PrimeTime removes these cells from the design at link time.
No timing or power information is reported for these types of cells.

PrimeTime and PrimeTime PX provide the capability to automatically convert and update
the library power and ground (PG) pins. With this feature, the tool creates PG pins at
automatically through library conversion, and the library update specifications are provided
in a PG Tcl file. For more information about the PG Tcl file, see “Library PG Tcl File” on
page 11-22,

The second essential requirement for multivoltage analysis is Liberty library data that
accurately describes timing behavior at specific voltages. PrimeTime supports voltage
scaling by interpolating between data in separate libraries that have been characterized at
different supply voltages. You invoke voltage and temperature scaling by using the
define_scaling_lib_group command. Note that the behavior of PrimeTime is different
from that of Design Compiler, which links the design at precise corner voltages. For more
information, see the man page for the define_scaling_lib_group command or “Scaling
With CCS Timing Libraries” on page 10-9.

UPF Commands

Multiple power supplies at different voltages can supply power to different domains
occupying different areas of the chip. Some power domains can be selectively shut off to
conserve power during periods of inactivity. Level shifter cells convert signals leaving one
domain and entering another, while isolation cells supply constant signal levels at the
outputs of domains that are shut down. Power-down domains can contain retention registers
that can retain logic values during the power-down period. Power-switch cells, operating
under the control of a power-controller block, switch the power on and off to specific
domains. You can specify all of these low-power aspects of a design in the UPF language.
Chapter 11: Low-Power Flow Support
UPF Commands 11-3
Chapter 11: Low-Power Flow Support
UPF Commands 11-3

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
A standard PrimeTime license includes UPF support. No additional license is required
specifically for UPF; however, power analysis requires a PrimeTime PX license and IR drop
annotation requires a PrimeTime SI license.

For background information about the Synopsys low-power flow and using UPF commands
in the flow, see the Synopsys Low-Power Flow User Guide, which is available in the
PrimeTime Suite collection on SolvNet. The same user guide is also available in other
product documentation collections because you can use the UPF syntax with a wide range
of products, including Design Compiler, IC Compiler, Formality, MVSIM-VCS, MVRC, and
PrimeRail.

PrimeTime uses UPF-specified power intent and the set_voltage command to determine
the voltage on each power supply pin of each cell. Based on the UPF-specified power intent
and set_voltage information, PrimeTime builds a virtual model of the power network and
propagates the voltage values from UPF supply nets to the PG pins of leaf instances. Since
PrimeTime does not directly read power state table, the set_voltage command should be
consistent with a specific state in UPF power state table (PST) that you intent to verify.

You can enter the UPF commands at the shell prompt. You can also source these
commands in a command file or with the source or load_upf command. Any loaded UPF
information is removed upon relinking a design, just like timing assertions loaded from a
Synopsys Design Constraints (SDC) file.

The following is a typical sequence of commands used in a PrimeTime timing analysis with
UPF-specified power intent. The UPF-related power commands are highlighted in bold.

Read libraries, designs
 ...
read_lib l1.db
read_verilog d1.v
 ...

Read UPF file
(containing commands like the ones shown below)

 create_power_domain ...
 create_supply_set ...
 create_supply_net ...
 create_supply_port ...
 create_power_switch ...
 connect_supply_net ...
 set_scope block1
 load_upf block1_upf.tcl

Read SDC and other timing assertions
source d1.tcl

Define scaling library groups for voltage and temperature scaling
define_scaling_lib_group library_list
Chapter 11: Low-Power Flow Support
UPF Commands 11-4

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Read SDC and other timing assertions
 ...
set_voltage -object_list supply_net_name
set_voltage -cell ... -pg_pin_name ... value
(sets voltage on supply nets or IR drop on cell power pins;
PrimeTime SI license required for -cell and -pg_pin_name options)
set_temperature -object_list cell_list value

Perform timing, signal integrity analysis
report_timing

PrimeTime reads and uses the UPF information, but it does not modify the power domain
description in any structural or functional way. Therefore, it does not write out any UPF
commands with the write_script command and there is no save_upf command.

PrimeTime supports a subset of the commands and command options in the UPF 1.0
standard (available from http://www.accellera.org). The unsupported commands are either
unrelated to the functions of PrimeTime (for example, synthesis and physical
implementation) or represent capabilities that have not been implemented.

The supported power supply commands can be divided into the following categories:

• Power domain commands:

connect_supply_net
create_power_domain
create_power_switch
create_supply_net
create_supply_port
create_supply_set
set_domain_supply_net

• Isolation and retention commands:

set_isolation
set_isolation_control

set_retention
set_retention_control

• Flow commands:

load_upf
set_scope
set_design_top
upf_version

• Related non-UPF commands:

check_timing -include signal_level
check_timing -include supply_net_voltage
check_timing -include unconnected_pg_pins
Chapter 11: Low-Power Flow Support
UPF Commands 11-5
Chapter 11: Low-Power Flow Support
UPF Commands 11-5

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
get_power_domains
get_power_switches
get_supply_nets
get_supply_ports
get_supply_sets
report_power_domain
report_power_network
report_power_pin_info
report_power_switch
report_supply_net
report_supply_set
set_level_shifter_strategy
set_level_shifter_threshold
set_related_supply_net
set_temperature
set_voltage

Some UPF commands are essential for synthesis and other implementation tools, but they
supply information that is either not used during PrimeTime analysis or is available from
other sources. PrimeTime accepts these commands as valid UPF syntax, but otherwise
ignores them. It does not provide man pages for these commands. The following UPF
commands are ignored by PrimeTime:

add_port_state
add_pst_state
create_pst
map_isolation_cell
map_level_shifter_cell
map_power_switch
map_retention_cell
name_format
set_level_shifter
set_power_switch

The following commands are rejected by PrimeTime as unknown syntax. They are either not
supported by the Synopsys UPF command subset in all Synopsys tools or they exist only in
the RTL UPF.

add_domain_elements
bind_checker
create_hdl2upf_vct
create_upf2hdlvct
merge_power_domains
save_upf
set_pin_related_supply

The following sections describe the supported UPF commands and their usage in
PrimeTime. For background information or more information about using each command
throughout the synthesis, implementation, and verification flow, see the UPF 1.0
Chapter 11: Low-Power Flow Support
UPF Commands 11-6

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
specification, available as a free download from Accellera at http://www.accellera.org. For
more information about the Synopsys low-power flow and Synopsys usage of UPF
commands, including usage in PrimeTime, see the Synopsys Low-Power Flow User Guide.

Virtual Power Network

In the PrimeTime multivoltage analysis flow, you typically read in the design netlist, source
a UPF command script that defines the power supply intent, and then source an SDC script
that specifies the timing constraints for analysis. From the design netlist and UPF
commands, PrimeTime builds a virtual power network that supplies power to all the PG pins
of all the leaf-level cells in the design netlist.

PrimeTime builds the power supply network based on UPF commands, including
create_power_domain, create_supply_net, create_supply_set,
create_supply_port, set_domain_supply_net, and connect_supply_net. It
determines which cells belong to which power domains and traces the supply connections
through the supply nets and supply ports down to the leaf level.

The set_retention and set_retention_control UPF commands determine the supply
connections to the retention registers. Similarly, the set_isolation and
set_isolation_control UPF commands determine the connections of the backup supply
nets of the isolation cells.

The set_level_shifter UPF command is not supported in PrimeTime; therefore, the
connect_supply_net command must explicitly specify the power supply connections of the
PG pins of level shifters. Design Compiler automatically generates these
connect_supply_net commands when it inserts level shifters and writes them out with the
save_upf command, so you do not need to create these commands yourself when you read
the UPF produced by Design Compiler. To specify the behavior of signal level mismatch
checking by check_timing -include signal_level, use the
set_level_shifter_strategy and set_level_shifter_threshold non-UPF
commands. These commands do not affect PG connectivity.

The set_related_supply_net non-UPF command associates a supply net to one or more
ports of the design. You use the object_lists option of the command to specify the list of
ports associated with supply nets. In the absence of this command, PrimeTime assumes
that ports are supplied by the voltage of the design operating condition.
Chapter 11: Low-Power Flow Support
Virtual Power Network 11-7
Chapter 11: Low-Power Flow Support
Virtual Power Network 11-7

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Setting Voltage and Temperature

To determine the supply voltage on each PG pin of each cell in the design, PrimeTime uses
the following sources of information, in order of increasing priority:

• default supply voltage in library cell definition (voltage_map in Liberty syntax)

• set_operating_conditions applied at the design level

• set_voltage on a supply net

• set_voltage on a PG pin (PrimeTime SI license required)

By default, PrimeTime uses the supply voltages in the library cell definitions, as specified by
the voltage_map statement in Liberty syntax for the library cell. For more information, see
the Library Compiler Modeling Timing, Signal Integrity, and Power in Technology Libraries
User Guide, available in the Library Compiler collection on SolvNet.

You can override the library-specified voltages by using the set_operating_conditions
command to set the operating conditions at the design level (in other words, without using
the -object_list option of the command). For example,

pt_shell> set_operating_conditions WCIND

The supply voltages associated with the named operating condition are specified in the
library definition for the operating condition or by the create_operating_condition
command.

You can override both the library-specified and operating-condition voltage settings with the
set_voltage command for specific supply nets or specific PG pins in the design.

The command specifies one or more supply nets (-object_list supply_nets) or PG pins
(-cell cell -pg_ping pg_pin) in the design and applies a specified voltage to the listed
objects. You can specify either a single voltage (max_voltage) or both the minimum-delay
and maximum-delay voltages (-min min_voltage and max_votltage) used for analysis.
Note that the -min min_voltage option specifies the voltage used for minimum-delay
analysis, which is typically the larger voltage value. A PrimeTime SI license is required to
use the -cell and -pg_pin_name options. For example, to set a voltage of 1.20 on the
supply net VDD1, you would use the following command:

pt_shell> set_voltage 1.20 -object_list VDD1

To set a maximum-delay voltage of 0.91 and a minimum-delay voltage of 1.18 on the PWR
pin of cell XA91, you would use the following command (PrimeTime SI license required):

pt_shell> set_voltage 0.91 -min 1.18 -cell XA91 -pg_pin_name PWR
Chapter 11: Low-Power Flow Support
Setting Voltage and Temperature 11-8

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
A PAD pin is defined by having its is_pad attribute set to true in the Liberty description of
the pin. PrimeTime detects ports connected to PAD cells and determines the port voltage in
the following order of increasing priority:

1. The nominal voltage of the main library

2. The nominal voltage of the driving library cell

3. The design operating condition

4. The voltage of the connected pin of the PAD cell

5. The explicit port voltage, set with the set_related_supply_net command in UPF mode
or the set_operating_conditions -object_list port command in non-UPF mode

Since the operating condition defines only the single voltage value, you should exercise
caution when setting operating conditions on designs containing multirail cells, such as level
shifters and power management cells. PrimeTime applies the operating condition voltage
value only to the first library power rail. For example, the first nonground voltage_map line
in the .lib file). Thus, the order of the voltage_map entries in the .lib file is important in this
partial multivoltage flow.

The correct way to completely avoid this issue on multirail cells is to use a proper
multivoltage flow, such as UPF, that defines all design rails using the set_voltage
command. To verify voltage values of all rails of a multirail cell, use the
report_power_pin_info command.

You can use the report_power_pin_info and report_timing -voltage commands to
display the voltage of PG and signal pins respectively. For more information, see “Reporting
Commands” on page 11-13 or the man page.

You can similarly specify the operating temperature for specific cells by using the
set_temperature command, overriding the design operating condition settings. You can
use this command to model the effects of on-chip temperature variation. For example, you
can use the following syntax to set the temperature to 130 degrees Celsius on cell XA91:

pt_shell> set_temperature 130 -object_list [get_cells XA91]

Analysis With Multiple Voltages

You can provide a set of libraries characterized at a range of supply voltage and temperature
values, and then scale the cell data between these libraries. This is the preferred way to
provide multivoltage library data. The define_scaling_lib_group command specifies the
list of CCS libraries that have been characterized at different voltages and temperatures,
and also invokes delay and constraint scaling between those libraries. PrimeTime
interpolates between the specified libraries to determine the cell behavior at the exact
Chapter 11: Low-Power Flow Support
Analysis With Multiple Voltages 11-9
Chapter 11: Low-Power Flow Support
Analysis With Multiple Voltages 11-9

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
voltage and temperature conditions that have been set on each cell. For more information,
see the man page for the define_scaling_lib_group command or “Scaling With CCS
Timing Libraries” on page 10-9.

Another way to provide multivoltage library data is to use the link_path_per_instance
variable to direct PrimeTime to use different libraries for different cell instances. This
variable, when set prior to linking the current design, overrides the default link_path setting
for selected leaf cell or hierarchical cell instances. The format is a list of lists. Each sublist
consists of a pair of elements: a set of instances and a link_path specification to be used
for those instances. For example,

set link_path {* lib1.db}
set link_path_per_instance [list
 [list {ucore} {* lib2.db}]
 [list {ucore/usubblk} {* lib3.db}]]

The listed instances can be hierarchical blocks that represent individual voltage domains.
The corresponding libraries might be characterized at different supply voltages or under
varying conditions such as body bias. If a given block matches multiple entries in the per-
instance list, the more specific entry overrides the more general entry. In the example above:

• lib3.db is used to link blocks “ucore/usubblk” and below.

• lib2.db is used to link “ucore” and below (except within “ucore/subblk”).

• lib1.db is used for the remainder of the design (everything except within “ucore”).

Using either type of library data method, PrimeTime uses the scaled or library-specified
supply voltage information to accurately determine the delays and slews of signals.

For post-layout analysis using detailed annotated parasitics, PrimeTime determines the
delays and slews using analog waveforms. For pre-layout analysis (in the absence of
detailed annotated parasitics), PrimeTime performs geometric-like scaling of the transition
times and net delays, taking into account the respective voltage swings of the driver and
load, and the logic thresholds. In either case, PrimeTime reports transition times in terms of
local-library thresholds and local voltages.

The use of local trip points and voltages can cause an apparent improvement in transition
time along nets in a path. For example, a driver cell might have a transition time of 1.0 ns
measured between 20 percent and 80 percent of VDD, while the load on the same net has
a transition time of 0.67 ns measured between 30 percent and 70 percent of VDD:

1.0 * (70–30)/(80–20) = .67

To disable prelayout scaling, set the timing_prelayout_scaling variable to false.
Chapter 11: Low-Power Flow Support
Analysis With Multiple Voltages 11-10

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Multivoltage Reporting and Checking

Several commands are available for reporting the power supply network and checking the
network for errors or unusual conditions, including get_* commands, report_* commands,
and check_timing.

Collection (get_*) Commands
The get_* commands each create a collection of objects for reporting purposes. You can
create a collection of existing power domains, power, switches, supply nets, or supply ports
with the following commands.

get_power_domains
get_power_switches
get_supply_nets
get_supply_ports
get_supply_sets

The get_power_domains command returns a collection of power domains previously
created with the create_power_domain command. You can pass the collection to another
command for further processing, for example, to extract the name, scope, and elements
attributes associated the domains. The create_power_domain command options allow you
to limit the collection to the power domains meeting specified criteria. For example, the
-of_objects option causes the collection to include only the power domains to which the
specified objects belong. The patterns option limits the collection to power domains whose
names match the specified pattern. The get_power_switches, get_supply_nets, and
get_supply_ports commands operate in a similar manner and have similar command
options.
Chapter 11: Low-Power Flow Support
Multivoltage Reporting and Checking 11-11
Chapter 11: Low-Power Flow Support
Multivoltage Reporting and Checking 11-11

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Table 11-1 lists the attributes of UPF power domain, supply net, supply port, and power
switch objects.

Table 11-1 UPF Collection Objects

Command and Object
Class

Attribute Attribute Type Comment

get_power_domains
upf_power_domain

name string name as entered

full_name string hierarchical name

elements collection

scope string

supplies string list of function
keyword and supply
set name

get_supply_nets
upf_supply_net

name string name as entered

full_name string hierarchical name

domains collection

resolve string one_hot, etc.

voltage_min float minimum-delay
voltage

voltage_max float maximum-delay
voltage

static_prob float probability of logic 1
(for power analysis)

get_supply_ports
upf_supply_port

name string name as entered

full_name string hierarchical name

domain collection

direction string in, out

scope string
Chapter 11: Low-Power Flow Support
Multivoltage Reporting and Checking 11-12

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Reporting Commands
These are the reporting commands associated with the power supply network:

report_power_domain
report_power_network
report_power_pin_info
report_power_switch
report_supply_net
report_supply_set
report_timing -voltage

get_supply_sets
upf_supply_set

name string name as entered

full_name string hierarchical name

get_power_switches
upf_power_switch

name string name as entered

full_name string hierarchical name

domain collection

output_supply_port
_name

string name as entered

output_supply_net collection supply net

input_supply_port_
name

string name as entered

input_supply_net supply net

control_port_name list of strings names as entered

control_net collection

on_state list of strings format: state_name
input_supply_port
boolean_function

Table 11-1 UPF Collection Objects (Continued)

Command and Object
Class

Attribute Attribute Type Comment
Chapter 11: Low-Power Flow Support
Multivoltage Reporting and Checking 11-13
Chapter 11: Low-Power Flow Support
Multivoltage Reporting and Checking 11-13

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
The report_power_domain command reports the power domains previously defined with
create_power_domain commands. The reports includes the names of the PG nets of each
domain. For example,

pt_shell> report_power_domain [get_power_domains B]
...
 Power Domain : B
 Scope : H1
 Elements : PD1_INST H2 H3

 Connections : -- Power -- -- Ground --
 Primary H1/H7/VDD H1/H7/VSS
--

The report_power_network command generates a report on all connectivity of the entire
power network, through ports and switches. You can restrict the report to one or more
specified nets. For example,

pt_shell> report_power_network -nets H1/VDD
 ...

Supply Net: H1/VDD

 Connections:
 Name Object type Domain
 --
 VDD Supply_port D1
 H1/VDD Supply_port D2
 U1/VDD PG_power_pin D1
 SW1/IN Switch_input D1

The report_power_pin_info command reports the PG connectivity of leaf-level cells or
library cells used in the design. For example,

pt_shell> report_power_pin_info [get_cells -hierarchical]
...

Note: Power connections marked by (*) are exceptional

Cell Power Pin Type Voltage Power Net Connected
 Name Max Min
--
PD0_INST/I0 PWR primary_power 0.9300 1.2700 int_VDD_5
PD0_INST/I0 GND primary_ground 0.0000 0.0000 A_VSS
PD0_INST/I1 PWR primary_power 0.9300 1.2700 int_VDD_5
PD0_INST/I1 GND primary_ground 0.0000 0.0000 A_VSS
I0 PWR primary_power 1.0000 1.0000 int_VDD_4 (*)
I0 GND primary_ground 0.0000 0.0000 int_VSS_4 (*)
I1 PWR primary_power 1.1500 1.1500 T_VDD
I1 GND primary_ground 0.0000 0.0000 T_VSS
PD1_INST/I0 PWR primary_power 1.0000 1.0000 int_VDD_4
PD1_INST/I0 GND primary_ground 0.0000 0.0000 int_VSS_4
PD1_INST/I1 PWR primary_power 1.0000 1.0000 int_VDD_4
Chapter 11: Low-Power Flow Support
Multivoltage Reporting and Checking 11-14

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
PD1_INST/I1 GND primary_ground 0.0000 0.0000 int_VSS_4

pt_shell> report_power_pin_info [get_lib_cells -of [get_cells -hier]]
...

Cell Power Pin Name Type Voltage

INVX2 PWR primary_power 1.0000
INVX2 GND primary_ground 0.0000
BUFX2 PWR primary_power 1.0000
BUFX2 GND primary_ground 0.0000
AND2X1 PWR primary_power 1.0000
AND2X1 GND primary_ground 0.0000
OR2X1 PWR primary_power 1.0000
OR2X1 GND primary_ground 0.0000

The report_power_switch command reports the power switches in the design previously
created with the create_power_switch command. Here is an example of a power switch
report:

pt_shell> report_power_switch
 ...

 Total of 3 power switches defined for design 'top'.

 Power Switch : sw1
--
 Power Domain : PD_SODIUM
 Output Supply Port : vout VN3
 Input Supply Port : vin1 VN1
 Control Port: ctrl_small ON1
 Control Port: ctrl_large ON2
 Control Port: ss SUPPLY_SELECT
 On State : full_s1 vin1 { ctrl_small & ctrl_large & ss }
--
 ...

The report_supply_net command reports the supply net information for a power domain
or specified object in a power domain. For example,

pt_shell> report_supply_net
...

 Total of 14 power nets defined.

 Power Net 'VDD_Backup' (power)
 --
 Backup Power Hookups: A
 --

 Power Net 'VSS_Backup' (ground)
 --
 Backup Ground Hookups: A
Chapter 11: Low-Power Flow Support
Multivoltage Reporting and Checking 11-15
Chapter 11: Low-Power Flow Support
Multivoltage Reporting and Checking 11-15

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
 --

 Power Net 'T_VDD' (power,switchable)
 --
 Voltage states: {1.2}
 Voltage ranges: {1.1 1.3}
 Max-delay voltage: 1.15
 Min-delay voltage: 1.15
 Primary Power Hookups: T
 --

 Power Net 'A_VDD' (power)
 --
 Max-delay voltage: 1.15
 Min-delay voltage: 1.15
 Primary Power Hookups: A
 --

The report_supply_set command reports detailed information about the supply sets
defined in the design. For example,

pt_shell> report_supply_set
...

 Total of 1 supply net defined for design “mydesign”.

 --
 Supply Set : primary_sset
 Scope : top
 Function : power, supply net association: VDD
 Funciton : ground, supply net association: VSS
 --

The report_timing -voltage command allows you to determine the voltage of signal pins
on timing paths. Similarly, you can use the voltage attribute on the timing_point objects
in custom reports with the get_timing_paths command. The following example shows the
report_timing -voltage command:

report_timing -voltage
 ...
 Point Incr Path Voltage
 --
 clock HVCLK_SYNC_D (rise edge) 0.00 0.00
 clock network delay (propagated) 0.00 0.00
 input external delay 5.00 5.00 f
 in0[0] (in) 0.00 5.00 f 1.00
 ALU1/in0[0] (alu_ao_3) 0.00 5.00 f
 ALU1/t0_reg_0_/D (SDFQM1RA) 0.00 5.00 f 1.03
 data arrival time 5.00
Chapter 11: Low-Power Flow Support
Multivoltage Reporting and Checking 11-16

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Using the check_timing Command
You can use the check_timing command to check the validity of the power supply
connections in the design, including the following types of checks:

• Voltage set on each supply net segment (supply_net_voltage)

• Supply net connected to each PG pin of every cell (unconnected_pg_pins)

• Compatible signal levels between driver and load pins (signal_level)

Voltage Set on Each Supply Net Segment
Every supply net segment must have a voltage set on it with the set_voltage command. To
verify that this is the case, include a supply net voltage check in the check_timing
command, as in the following example:

pt_shell> check_timing -include supply_net_voltage -verbose
Information: Checking 'no_clock'.
Information: Checking 'no_input_delay'.
 ...
Information: Checking 'supply_net_voltage'.
Warning: There are '2' supply nets without set_voltage. (UPF-029)
 VG
 VS1
Information: Checking 'pulse_clock_non_pulse_clock_merge'.

Supply Net Connected to Each PG Pin of Every Cell
Each PG pin of every cell should be connected to a UPF supply net. To verify that this is the
case, include an unconnected PG pin check in the check_timing command, as in the
following example:

pt_shell> check_timing -include unconnected_pg_pins
 ...

Each UPF supply net connection can be either explicit (as specified by the
connect_supply_net command) or implicit (due to the assignment of the cell to a power
domain, isolation strategy, retention strategy, and so on).

Compatible Driver-to-Load Signal Levels
To have PrimeTime check for mismatching voltage levels between cells that use different
supply voltages, use the following check_timing command:

pt_shell> check_timing -include signal_level
Chapter 11: Low-Power Flow Support
Multivoltage Reporting and Checking 11-17
Chapter 11: Low-Power Flow Support
Multivoltage Reporting and Checking 11-17

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
This type of timing check traverses all nets and determines whether the output voltage level
of each driver is sufficient to drive the load pins on the net. PrimeTime reports any driver-
load pairs that fail the voltage level check. It assumes that there is no voltage degradation
along the net. You can fix a violation by changing the supply voltages or by inserting a level
shifter between the driver and load.

PrimeTime performs signal level checking by comparing the input and output voltage levels
defined in the library for the pins of leaf-level cells. The checked signal levels are based on
either the gate noise immunity (or signal level range) margins defined by the Liberty syntax
input_voltage and output_voltage or a comparison of driver/load supply voltages. You
can control driver and load supply voltage mismatch reporting by using the
set_level_shifter_strategy and set_level_shifter_threshold commands.

The set_level_shifter_strategy command specifies the type of strategy used for
reporting voltage mismatches: all, low_to_high, or high_to_low. The low_to_high
strategy reports the voltage level mismatches when a source at a lower voltage drives a sink
at a higher voltage. The high_to_low strategy reports the voltage level mismatches when a
source at a higher voltage drives a sink at a lower voltage. The all strategy (the default)
reports both types of mismatches.

The set_level_shifter_threshold command specifies the absolute and relative
mismatch amounts that trigger an error condition. If there is a voltage difference between
driver and load, the difference must be less than both the absolute and relative thresholds to
be considered acceptable. For example, the following command sets the voltage difference
threshold to 0.1 volt and the percentage threshold to 5 percent:

pt_shell> set_level_shifter_threshold -voltage 0.1 -percent 5

A voltage difference that is more than 0.1 volt or more than five percent of the driver voltage
is reported as a mismatch. The default thresholds are both zero, so if you set one threshold
to a nonzero value, you should set the other to a nonzero value as well. To disable either
absolute or percentage threshold checking, set its threshold to a large value.

The percentage difference is determined as follows:

abs(driver(VDD)–load(VDD))/driver(VDD)*100

PrimeTime reports either of the following conditions as an “incompatible voltage” error:

• Driver VOmax > Load VImax

• Driver VOmin < Load VImin

PrimeTime reports either of the following conditions as a “mismatching driver-load voltage”
warning:

• Driver VOH < Load VIH
Chapter 11: Low-Power Flow Support
Multivoltage Reporting and Checking 11-18

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
• Driver VOL > Load VIL

Here is an example of a voltage mismatch report:

pt_shell> check_timing -verbose -include signal_level
 ...
Error: There are 2 voltage mismatches
 MIN-MAX - driver vomax > load vimax:

Driver Voltage Load Voltage Margin

u2/Z 2.50 u3/A 0.90 -1.60
u3/Z 2.10 u5/A 1.47 -0.63

Warning: There is 1 voltage mismatch
 MIN-MAX - driver vol > load vil:

Driver Voltage Load Voltage Margin

u2/Z 0.30 u3/A 0.20 -0.10

The technology library defines the input and output voltages in terms of the supply voltage
in Liberty syntax. PrimeTime correctly calculates the voltages for comparison. For example,
a library might define the input and output voltage levels as follows:

• VIL = 0.3 * VDD, VIH = 0.7 * VDD

• VOL = 0.4, VOH = 2.4

• VImin = –0.5, VImax = VDD + 0.5

• VOmin = –0.3, VOmax = VDD + 0.3

PrimeTime calculates the input and output voltages, taking into account the supply voltages
that apply to each cell.

For proper transition time scaling for cells with multiple power rails, PrimeTime requires that
you define the input_signal_level and output_signal_level attributes on multirail
cells. For check_timing -include signal_level, PrimeTime uses the definitions of the
input_voltage and output_voltage attributes on all pins.

Even without input_voltage or output_voltage specified, PrimeTime still attempts to
report the 100 worst mismatches based on rail voltages not being exactly equal. For
example,

pt_shell> check_timing -include signal_level -verbose
 ...
Warning: There are 2 voltage mismatches
 MAX-MAX - driver rail != load rail:
 The 100 worst voltage mismatches:
Chapter 11: Low-Power Flow Support
Multivoltage Reporting and Checking 11-19
Chapter 11: Low-Power Flow Support
Multivoltage Reporting and Checking 11-19

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Driver Voltage Load Voltage Margin

u1/Y 4.75 u3/A 3.00 -1.75
u3/Y 3.00 ff2/CLK 4.75 -1.75

Warning: There are 2 voltage mismatches
 MIN-MIN - driver rail != load rail:
 The 100 worst voltage mismatches:

Driver Voltage Load Voltage Margin

u1/Y 5.25 u3/A n 3.00 -2.25
u3/Y 3.00 ff2/CLK 5.25 -2.25
...

The following table summarizes the effects of the threshold and strategy settings.

Impact of Correlated Supplies on Signal Level Checking
The signal level check correctly considers the case where minimum and maximum voltages
are set on the power nets that supply both of the cells being compared. For example,
suppose that you set the voltage for supply VDD as follows:
Chapter 11: Low-Power Flow Support
Multivoltage Reporting and Checking 11-20

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
pt_shell> set_voltage 0.8 -min 1.2 VDD # corner voltages

This command sets the supply voltage to 0.8 for maximum-delay analysis and 1.2 Volts for
minimum-delay analysis. Suppose that the same VDD supply applies to both the driver and
receiver cells of a net, as shown in Figure 11-1.

Figure 11-1 Signal Level Checking With Supply Correlation

PrimeTime considers the fact that the supply voltages of the driver and receiver are
correlated. When the supply voltage is low for U1, it is also low for U2, so there is no
mismatch. The same is true for the case where the supply voltage is high.

UPF Supply Sets

A supply set is a higher-level abstraction of the supply net enabling you to defer specifying
supply nets and supply ports to later in the design stage. A supply set relates multiple supply
nets as a complete power source for one or more design elements. Each supply net in a
supply set provides a function that can be used just as any other supply net in the UPF
design, with no domain restrictions. When a supply set is updated with actual supply nets,
the supply nets must also be domain independent. A domain independent supply net is a
supply net created using the create_supply_net command, but without specifying the
-domain option. After creation, the supply net is available to be used in any power domain
at the current scope and below.

The supply set is domain independent, and it supports the power and ground supply net
functions to be used in the design. You can define a supply set that specifies the power
network in the current logic hierarchy by using the create_supply_set UPF command.
This command creates a supply set in the current scope. A supply set eliminates the
requirement of a supply net and supply ports in the design in the front-end tool. However,
before physical synthesis occurs, actual supply nets must be associated with the supply
sets.

set_voltage 0.8 -min 1.2 VDD

UPF VDD net

0.8 -------- 0.8
1.2 -------- 1.2

U1 U2
Chapter 11: Low-Power Flow Support
UPF Supply Sets 11-21
Chapter 11: Low-Power Flow Support
UPF Supply Sets 11-21

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
The supply net can be referenced by either the actual supply net or the supply net handle,
such as supply_set_name.power and supply_set_name.ground. If you use the -update
option of the create_supply_set command, PrimeTime associates an actual supply net to
the power and ground functional capabilities of an existing supply set. Just like the supply
set, the actual supply net must be domain independent. The actual supply net can be
referenced through the supply set or by the actual net. The following UPF commands
support supply net handles:

connect_supply_net
create_power_switch
set_domain_supply_net
set_isolation
set_retention
set_related_supply_net
set_voltage

You can associate supply sets with the corresponding supply set handles of a power domain
by using the create_power_domain command. You can also associate supply sets with
isolation or retention supply nets, such as power or ground nets, of a specific isolation
strategy using the set_isolation command or a specific retention strategy by using the
set_retention command. For more information, see the create_power_domain,
set_isolation, and set_retention man pages.

Library PG Tcl File

PG library conversion and update information is specified in a PG Tcl file. You can generate
this file with Design Compiler or IC Compiler. Otherwise, you can manually create the file.
You can set the library_pg_file_pattern variable to specify the location of the PG Tcl
file for library PG conversion and update feature. By setting the variable to a valid file name
pattern, the tool locates the associated PG Tcl file for the technology libraries that are
provided.

You can read the technology library files into PrimeTime using the read_lib command or
into PrimeTime PX using the external reader (ptxr). You can also use the updated database
written out by Library Compiler. At the time the libraries are loaded, the tool performs
automatic library PG updates on the in-memory databases.

By default, the library_pg_file_pattern variable is set to "" (empty string) so that there
is no PG Tcl side file. You can set this variable to use one Tcl file for all databases, one per
group of databases, or one per database. You set the variable before loading the library by
specifying the following name pattern, where string is either the path to the database
directory or the leaf file name for the database:

pt_shell> set library_pg_file_pattern string
Chapter 11: Low-Power Flow Support
Library PG Tcl File 11-22

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
To specify one Tcl file for all databases, you would use a command similar to the following
example:

pt_shell> set library_pg_file_pattern "libpg_sidefile.pg"

To specify one Tcl file per database at the same location as the original database files, you
would use a command similar to the following example:

pt_shell> set library_pg_file_pattern "__DIR__/__FILE__.pg"

Default Power and Ground Pin Names
You can use a non-PG library with UPF-specified power intent. When you load a non-PG
library into memory without specifying a PG Tcl side file, PrimeTime can create one default
power pin and one default ground pin for each cell.

You specify the names assigned to the power and ground pins by setting the
lp_default_power_pin_name and lp_default_ground_pin_name variables. These
variables are initially set to an empty string, so you must set them explicitly to the desired
power and ground pin names before you load the non-PG library. For example,

pt_shell> set lp_default_power_pin_name "VDD"
pt_shell> set lp_default_ground_pin_name "VSS"

The specified names are used for naming the newly created power and ground pins of the
library cells stored in memory and for creating the voltage map defined at the library level.
Only library cells from non-PG libraries are affected by these variable settings, and only
when there is no PG Tcl side file specified by the library_pg_file_pattern variable.

When library loading occurs within PrimeTime, you receive messages about the PG pins
being added to the library. If your flow requires multiple loads of the library, you might see
these messages more than once.

For more information about the default PG pin naming variables, see their man pages.

Power Domain Mode of Release Z-2007.06

If you want to use the power domain flow based on setting object-specific voltages and
operating conditions, set the power_domains_compatibility variable to true. This
causes PrimeTime to enter the “power domain mode,” which enables the Z-2007.06
multivoltage syntax, disables the UPF syntax, and removes any UPF-specified power supply
data in the design. Due to differences in command syntax and data infrastructure, the
Z-2007.06 power domain capabilities are not compatible with the UPF features.
Chapter 11: Low-Power Flow Support
Power Domain Mode of Release Z-2007.06 11-23
Chapter 11: Low-Power Flow Support
Power Domain Mode of Release Z-2007.06 11-23

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
When PrimeTime is in the power domain mode, you can view the list of power domain
commands with the following command:

pt_shell> help "power domains"
Power Domains:
 connect_power_domain # Connect power domain
 connect_power_net_info # Connect power net to cell power pin
 create_power_domain # Create power domain object
 create_power_net_info # Create power net info object
 get_power_domains # Create a collection of power domains
 report_power_domain # Report power domain
 report_power_net_info # Report all power net objects
 report_power_pin_info # Report power pin info
 set_voltage # Set voltage

There is some overlap in command syntax between the power domain mode and the UPF
mode. The interpretation of a command such as create_power_domain depends on the
operating mode.

Physical tools such as IC Compiler and Design Compiler create power distribution networks
based on user-specified connectivity in Tcl syntax. PrimeTime SI can use the same set of
commands to build a virtual model of the power distribution network. The power domain
model, together with the set_voltage command, allows PrimeTime SI to determine the
voltage at the power pins of each leaf-level instance. These are the power domain
commands:

• The create_power_net_info command specifies the name of a power supply net or
ground net in the design. If it is a power supply, the command also specifies the voltage
and whether the power can be switched off.

• The create_power_domain command specifies the name of a power domain and lists
the hierarchical cells associated with the domain. If no list is provided, the power domain
applies to the top level; there can be no more than one such top-level domain. The
command also specifies whether the domain can be powered down and if so, the control
net.

• The connect_power_domain command creates logical power connections for a specified
power domain. It specifies the primary, backup, and internal PG nets for a specified power
domain. All cells in the power domain inherit the specified power connections.

The backup PG nets are for always-on logic, retention registers, isolation cells, and
enable level shifter cells. The internal PG nets are for the switching cells inside the power
domain.

• The connect_power_net_info command makes power net connections for a specific
power pin of a leaf cell. The pin-level connections override the domain-level connections
made with the connect_power_domain command.
Chapter 11: Low-Power Flow Support
Power Domain Mode of Release Z-2007.06 11-24

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
• The set_voltage command defines the operating voltage on the power nets defined by
the create_power_nets_info command. You can specify a single voltage or a minimum
and a maximum voltage for the power net. If you do not use this command, the available
operating condition settings are used.

If you link the design again, the power domain information is discarded.

A sequence of commands similar to the following can be used to perform timing analysis of
a multivoltage design:

Enable power domains (non-UPF) mode
set power_domains_compatibility TRUE
Read libraries, designs
...
read_lib l1.db
read_verilog d1.v
...

Read libraries, design, SDC, and
update design and setup link to HSPICE

create_power_net_info –power power_net_name

create_power_domain domain_name –object_list object_list

connect_power_domain –primary_power_net power_net \
 -backup_power_net power_net

connect_power_net_info object_list \
 –power_pin_name pin_name –power_net_name net_name

Read SDC and other timing assertions
source d1.tcl

Read SDC and other timing assertions
set_voltage on power nets or IR drop on power pins

Perform timing, signal integrity analysis
report_timing

The following commands report information about the power rails.

• The report_power_domain command reports the power domains in the design and their
connections. If you specify a list of objects, only the power domains of those objects are
reported.

• The report_power_net_info command reports the names of the power nets and their
associated power domain hookups.
Chapter 11: Low-Power Flow Support
Power Domain Mode of Release Z-2007.06 11-25
Chapter 11: Low-Power Flow Support
Power Domain Mode of Release Z-2007.06 11-25

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
• The report_power_pin_info command reports power pin information for library cells or
for leaf-level cells in the current design. Specify a list of library cells to find out the names,
types, and voltage specifications of the power pins in the library cells. Specify a list of
leaf-level cells in the design to find out the power net connections to the power pins of
those cells.

Multivoltage Method Prior to Release Z-2007.06

To perform multivoltage analysis, you can specify multiple voltages by applying different
operating conditions to different cells with the set_operating_conditions -object_list
command, by directly annotating voltage drop information with the set_voltage
command, or by linking blocks to different libraries. (Using the set_voltage command
requires a PrimeTime SI license.) Any subsequent timing analysis takes into account the
supply voltages specified for the design. The report_cell command reports the instance-
specific operating conditions and supply voltage information.

These commands were available prior to the Z-2007.06 release and are still supported.
However, if you use any UPF commands in a session, the pre-Z-2007.06 multivoltage
specification method is disabled, and only UPF commands can be used for specifying power
supply information. In that case, you can no longer use set_operating_conditions
-object_list or set_voltage, and any multivoltage information previously set with those
commands is discarded.

In the pre-Z-2007.06 multivoltage flow, there are two ways to set supply voltages on a linked
design:

• Create different operating conditions having different rail voltages, either by defining them
in the technology library or by using the create_operating_conditions command.
Then apply different operating conditions to different hierarchical blocks or leaf-level cells
in the design with the set_operating_conditions -object_list command. This
method is appropriate for specifying voltage islands on the chip.

• Use the set_voltage command to set rail voltages directly on hierarchical blocks or
leaf-level cells, overriding any applicable operating condition voltages. This method is
appropriate for back-annotating voltage drop information from a power rail analysis tool.

You can combine these two methods in the same design. To do so, first apply the operating
conditions to define the voltage islands, then apply the voltage drop information. Rail
voltages set with the set_voltage command override those set with operating conditions
on a cell-by-cell basis. However, they do not override operating conditions set at lower levels
of hierarchy.
Chapter 11: Low-Power Flow Support
Multivoltage Method Prior to Release Z-2007.06 11-26

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
If you do not set conditions with set_operating_conditions, PrimeTime SI uses the
default operating conditions of the individual libraries that the cells came from. To have the
cells use the operating conditions from the main library instead (the first library defined in the
link path), set the default_oc_per_lib variable to false.

To specify different NLDM library cells for different instances in the design, set the
link_path_per_instance variable to a list, with each list element consisting of a list of
instances and the corresponding link paths that override the default link path for each of
those instances. For an example, see “Analysis With Multiple Voltages” on page 11-9.

Setting Operating Conditions on Cells
By default, the set_operating_conditions command sets the operating conditions for
the whole current design. To override global operating conditions and set the conditions for
a hierarchical block or cell instance, use the -object_list option and list the applicable
cells. For example,

pt_shell> set_operating_condtions WCCOM5.0
pt_shell> set_operating_condtions \
 -object_list ALU/A4 WCCOM3.5

The first command specifies the set of operating conditions for the whole chip. The second
command overrides the whole-chip settings for the cell ALU/A4.

You can also set operating conditions on ports. The specified operating conditions apply to
the driving cells for the ports (as specified by the set_driving_cell command).

With different operating conditions applied to different levels of the cell hierarchy, the lowest-
level setting for a cell has priority over higher-level settings. To get a report on the applicable
minimum and maximum operating condition settings for a cell, use the report_cell
command.

Setting Rail Voltages Directly on Cells
To set the rail voltage on a hierarchical block or leaf-level cell (irrespective of operating
conditions), use the set_rail_voltage command. Using this command requires a
PrimeTime SI license. The command is used in a manner similar to the
set_operating_conditions -object_list command. For example,

pt_shell> set_rail_voltage -max -rail_value 1.2 [get_cells {ALU/a5}]

pt_shell> set_rail_voltage -min -rail_value 1.4 [get_cells {ALU/a5}]
Chapter 11: Low-Power Flow Support
Multivoltage Method Prior to Release Z-2007.06 11-27
Chapter 11: Low-Power Flow Support
Multivoltage Method Prior to Release Z-2007.06 11-27

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Chapter 11: Low-Power Flow Support
Multivoltage Method Prior to Release Z-2007.06 11-28

12
Object Attributes 12

An attribute is a string or value associated with an object in the design that carries some
information about that object. For example, the number_of_pins attribute attached to a cell
indicates the number of pins in the cell. You can write programs in Tcl to get attribute
information from the design database and generate custom reports on the design.

The following sections describe attributes and how to use them:

• Using Attributes

• Saving Design Attributes

• Attribute Names and Usage

• Using Paths to Generate Custom Reports

• Using Arcs to Generate Custom Reports
12-1

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Using Attributes

PrimeTime provides a set of commands for setting, reporting, listing, and creating attributes,
as summarized in Table 12-1.

The get_attribute, report_attribute, set_user_attribute, and
remove_user_attribute commands accept an object specification, which can be a
collection or a list of collections. The object specification for the get_attribute command
is limited to one collection containing one object.

Defining User Attributes
The define_user_attribute command defines a new attribute. PrimeTime has a set of
attributes that it considers application attributes. You can view these attributes by using
list_attributes -application. You must define any other attribute before you can use
it in PrimeTime. One such use is importing an attribute from the .ddc or .db file.

You can apply attributes to most object classes in PrimeTime. These can mark interesting
cells or nets, store values you have computed, and so on. PrimeTime cannot use these
attributes, but you can use them in scripts, procedures, and so on. You can list the attributes
you define using the list_attributes command. When you define an attribute, decide on
the appropriate data type. For more information, see the define_user_attribute man
page.

Table 12-1 Attribute Commands

Attributes Description

list_attributes Shows the attributes defined for each object class or a
specified object class; optionally shows application
attributes.

get_attribute Retrieves the value of any attribute from a single object.

report_attribute Displays the value of all attributes on one or more objects;
optionally shows application attributes.

define_user_attribute Creates a new attribute for one or more classes.

set_user_attribute Sets a user-defined attribute on one or more objects.

remove_user_attribute Removes a user-defined attribute from one or more
objects.
Chapter 12: Object Attributes
Using Attributes 12-2

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Use the following commands to define attributes of various types. You can specify more than
one class. Enter

pt_shell> define_user_attribute attr_s -class {cell net} -type string
pt_shell> define_user_attribute attr_i -class cell -type int

The following command sequence defines attribute attr_irl as >= 0 and <= 100, attribute
attr_ir2 as >= 0 with no maximum, and attribute attr_ir3 as <= 100 with no minimum.

pt_shell> define_user_attribute attr_ir1 -class cell -type int \
 -range_min 0 -range_max 100
pt_shell> define_user_attribute attr_ir2 -class cell -type int -range_min
0
pt_shell> define_user_attribute attr_ir3 -class cell -type int -range_max

100

The following command defines attribute attr_oo for cells. The attribute is a string, but you
can set it only to A, B, C, or D. Enter

pt_shell> define_user_attribute attr_oo \
 -class cell -type string -one_of {A B C D}

Importing User-Defined Attributes
To load user-defined attributes (attributes that are not PrimeTime application attributes) from
a .ddc or .db file into PrimeTime, you must define the attributes in PrimeTime before you
read any designs.

Assume you created a Boolean attribute in Design Compiler called MarkedPin and placed
this attribute on several pins. In PrimeTime, before you read any designs you must define the
MarkedPin attribute. For example, enter

pt_shell> define_user_attribute -class pin -type Boolean -import

MarkedPin

After you define the attribute in this way, PrimeTime extracts it from the .ddc or .db file as it
would extract any other attribute. For example, enter

pt_shell> list_attributes -class pin

**
Report : List of Attribute Definitions
Design :
Version: 2000.11
Date : Tues Nov 12 13:25:04 2000
**
Chapter 12: Object Attributes
Using Attributes 12-3
Chapter 12: Object Attributes
Using Attributes 12-3

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Properties:
 A - Application-defined
 U - User-defined
 I - Importable from db (for user-defined)

Attribute Name Object Type Properties Constraints
--
MarkedPin pin Boolean U,I

Attributes appear on design objects only after the design is linked.

User-defined attributes can be imported from both top-level designs and lower-level designs.
To import user-defined attributes at the top level, there are no special considerations. You
can use the define_user_attribute -import command; however, note that a top-level
design attribute is attached to a design, but an inherited (lower-level) design attribute is
attached to an instance of that design, which is a cell. Therefore, to import and inherit a
lower-level design attribute, the attribute must be defined for both designs and cells. The -
import option is only needed at the design level.

Similarly, a top-level port attribute is attached to a port, but an inherited port attribute is
attached to an instance of that port, which is a pin. Therefore, to import and inherit a port
attribute, the attribute must be defined for both ports and pins. The -import option is only
needed at the port level.

To import and inherit a design attribute, the attribute must be defined for both designs and
cells, although it only needs to be imported for the design. To import and inherit a port
attribute, the attribute must be defined for both ports and pins, although it only needs to be
imported for the port. A required attribute is defined automatically if necessary to import a
related attribute. After the design is linked, you can see that user-defined attributes have
been applied. For example,

pt_shell> report_attribute [get_pins */CP]

**
Report : Attribute
Design : M
Version: 2000.11
Date : Tues Nov 14 13:33:25 2000
**

Design Object Type Attribute Name Value

M o_reg1/CP Boolean MarkedPin true
M o_reg2/CP Boolean MarkedPin true
M o_reg3/CP Boolean MarkedPin true
M o_reg4/CP Boolean MarkedPin true
Chapter 12: Object Attributes
Using Attributes 12-4

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
You can create a collection of all pins with this attribute. Enter

pt_shell> set ipins [get_pins * -hier -filter \
 "MarkedPin == true"]

Saving Design Attributes

By default, PrimeTime saves nothing when it exits. To save design attributes you applied
during a session, use the write_script command.

The write_script command writes the following information:

• Clock-related information: Clock creation, generated clock creation, clock latency, clock
uncertainty, and interclock uncertainty

• Timing-related information: Disable timing, maximum time borrow

• Point-to-point exceptions: false path, minimum delay, maximum delay, multicycle path,
group path, input delay, output delay, annotated delay, and annotated checks

• Net attributes: Capacitance and resistance

• Port attributes: Fanout, capacitance, and resistance

• Design environment: Wire load model, operating condition, drive, driving cell, and input
transition

• Design rules: minimum capacitance, maximum capacitance, minimum transition,
maximum transition, minimum fanout, and maximum fanout

You can save the design attributes in Synopsys pt_shell, dc_shell, or dctcl script formats,
then use the script to re-create the attributes on the design. For more information, see the
write_script man page.

Attribute Names and Usage

The PrimeTime get_attribute command supports the attributes listed in the tables in this
appendix. PrimeTime attributes are read-only (you cannot set them) unless otherwise
specified. For information about attributes used in PrimeTime SI, see the PrimeTime SI User
Guide. Find the attributes by class in these tables:

• cell object class, Table 12-2

• clock object class, Table 12-3

• design object class, Table 12-4
Chapter 12: Object Attributes
Saving Design Attributes 12-5
Chapter 12: Object Attributes
Saving Design Attributes 12-5

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
• lib object class, Table 12-5

• lib_cell object class, Table 12-6

• lib_pin object class, Table 12-7

• lib_timing_arc object class, Table 12-8

• net object class, Table 12-9

• path_group object class, Table 12-10

• pin object class, Table 12-11

• port object class, Table 12-12

• timing_arc object class, Table 12-13

• timing_path object class, Table 12-14

• timing_point object class, Table 12-15

Cell Object Class Attributes
Table 12-2 lists the cell object class attributes.

Table 12-2 Attributes of the cell Object Class

Attribute name Type Description

area float The area of a cell. If the cell is
hierarchical, this includes net
area.

base_name string The leaf name of a cell. For
example, the base_name of cell
U1/U2/U3 is U3.

bottleneck_cost float The bottleneck cost computed by
the report_bottleneck
command requires running this
command before querying the
attribute.

disable_timing Boolean This attribute is true if the timing
for the cell has been marked as
disabled in
set_disable_timing. You
can set and unset the
disable_timing attribute.
Chapter 12: Object Attributes
Attribute Names and Usage 12-6

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
dont_touch Boolean Identifies cells to be excluded
from optimization in Design
Compiler. Values are undefined
by default. Cells with the
dont_touch attribute set to
true are not modified or
replaced during compilation in
Design Compiler. Set with the
set_dont_touch command
and used by
characterize_context and
create_timing_context. For
more information, see the
set_dont_touch Design
Compiler man page.

dynamic_power double Shows the dynamic power of a
cell in watts. It is the sum of the
internal power and switching
power.

early_cell_check_derate_factor
early_clk_cell_derate_factor
early_clk_net_delta_derate_factor
early_clk_net_derate_factor
early_data_cell_derate_factor
early_data_net_delta_derate_factor
early_data_net_derate_factor
early_fall_cell_check_derate_factor
early_fall_clk_cell_derate_factor
early_fall_clk_net_delta_derate_factor
early_fall_clk_net_derate_factor
early_fall_data_cell_derate_factor
early_fall_data_net_delta_derate_factor
early_fall_data_net_derate_factor
early_rise_cell_check_derate_factor
early_rise_clk_cell_derate_factor
early_rise_clk_net_delta_derate_factor
early_rise_clk_net_derate_factor
early_rise_data_cell_derate_factor
early_rise_data_net_delta_derate_factor
early_rise_data_net_derate_factor

float Early timing derate factors,
specified using the
set_timing_derate
command, that apply to the cell.
The net derates listed here are
only defined for hierarchical cells.

escaped_full_name string Contains the name of the cell.
Any literal hierarchy characters
are escaped with a backslash.

Table 12-2 Attributes of the cell Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-7
Chapter 12: Object Attributes
Attribute Names and Usage 12-7

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
full_name string The complete name of a cell. For
example, the full name cell U3
within cell U2 within cell U1 is U1/
U2/U3. The full_name attribute
is not affected by
current_instance.

gate_leakage_power double The gate leakage power of a cell
in watts. Gate leakage power is
the leakage power from the
source to the gate or the gate to
the drain.

glitch_power double The glitch power of a cell in watts.
Glitch power is considered part of
the dynamic power.

has_multi_ground_rails Boolean The attribute is true if a cell has
multiple ground rails.

has_multi_power_rails Boolean The attribute is true if a cell has
multiple power rails.

has_rail_specific_power_tables Boolean The attribute is true if a cell has
power tables attached to rails.

internal_power double The internal power of a cell in
watts. Internal power is any
dynamic power dissipated within
the boundary of a cell.

internal_power_derate_factor float Power derate factors, specified
using the set_power_derate
command, that apply to the cell.

intrinsic_leakage_power double The intrinsic leakage power of a
cell in watts. Most intrinsic
leakage power results from
source-to-drain subthreshold
leakage.

is_black_box Boolean This attribute is true if the cell’s
reference is not linked to a library
cell or design. This attribute is
read-only; you cannot change
the setting.

Table 12-2 Attributes of the cell Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-8

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
is_clock_gating_check Boolean The attribute is true if a cell is a
clock-gating check cell.

is_clock_network_cell Boolean The attribute is true if the cell is
in the clock network of any clock
in the design.

is_combinational Boolean A cell is combinational if it is
nonsequential or non-three-state
and all of its outputs compute a
combinational logic function. The
report_lib command reports
such a cell as not being a black
box.

is_edited Boolean This attribute is true if the
hierarchical cell has been
uniquified as a result of a netlist
editing (ECO) change. It is only
defined for hierarchical cells.

is_fall_edge_triggered Boolean This attribute is true if a cell is
used in the design as a falling-
edge-triggered flip-flop.

is_hierarchical Boolean This attribute is true for any pins
of a hierarchical cell. It is false
for pins of library cells, also
known as leaf cells.

is_ideal Boolean This attribute is true if the cell
has been marked ideal using the
set_ideal_network
command.

is_integrated_clock_gating_cell Boolean This attribute is true if a cell is
defined in the library as an
integrated clock-gating cell.

is_interface_logic_model Boolean This attribute is true if a cell is
an interface logic model (ILM) of
a design. You can set this
attribute.

Table 12-2 Attributes of the cell Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-9
Chapter 12: Object Attributes
Attribute Names and Usage 12-9

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
is_memory_cell Boolean This attribute is inherited from the
reference library cell. It is used by
PrimeTime PX to identify
memory cells when reporting
power or activity annotation for
different cell types, such as
sequential, combinational, and
memories cell types.

is_mux Boolean This attribute is true if a cell is a
multiplexer.

is_negative_level_sensitive Boolean This attribute is true if a cell is
used in the design as a negative
level-sensitive latch.

is_pad_cell Boolean This attribute is true if the cell is
a pad cell.

is_positive_level_sensitive Boolean This attribute is true if a cell is
used in the design as a positive
level-sensitive latch.

is_power_standby_cell Boolean This attribute is true if a cell is a
power standby cell.

is_rise_edge_triggered Boolean This attribute is true if a cell is
used in the design as a rising-
edge-triggered flip-flop.

is_sequential Boolean A cell is sequential if it is not
combinational.

is_three_state Boolean This attribute is true if a cell is a
three-state device.

Table 12-2 Attributes of the cell Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-10

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
late_cell_check_derate_factor
late_clk_cell_derate_factor
late_clk_net_delta_derate_factor
late_clk_net_derate_factor
late_data_cell_derate_factor
late_data_net_delta_derate_factor
late_data_net_derate_factor
late_fall_cell_check_derate_factor
late_fall_clk_cell_derate_factor
late_fall_clk_net_delta_derate_factor
late_fall_clk_net_derate_factor
late_fall_data_cell_derate_factor
late_fall_data_net_delta_derate_factor
late_fall_data_net_derate_factor
late_rise_cell_check_derate_factor
late_rise_clk_cell_derate_factor
late_rise_clk_net_delta_derate_factor
late_rise_clk_net_derate_factor
late_rise_data_cell_derate_factor
late_rise_data_net_delta_derate_factor
late_rise_data_net_derate_factor

float Late timing derate factors,
specified using the
set_timing_derate
command, that apply to the cell.
The net derates listed here are
only defined for hierarchical cells.

leakage_power double The leakage power of a cell in
watts. It is the power that a cell
dissipates when it is not
switching. Leakage power is the
sum of the intrinsic leakage and
gate leakage.

leakage_power_derate_factor float Power derate factors, specified
using the set_power_derate
command, that apply to the cell.

number_of_pins integer Number of pins on the cell. The
number of pins can be different
before and after linking. For
example, if some pins were
unconnected in a Verilog
instance, after linking to the
lower-level design, additional
pins can be created on the cell.

object_class string The class of the object. This is a
constant equal to cell.

Table 12-2 Attributes of the cell Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-11
Chapter 12: Object Attributes
Attribute Names and Usage 12-11

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
peak_power double The peak power of a cell in watts
This is the largest power value for
that cell in the simulation
waveform.

peak_power_end_time double The end time of the time interval
in which peak power is measured
for that cell. The unit of
measurement is nanoseconds.

peak_power_start_time double The start time of the time interval
in which peak power is measured
for that cell. The unit of
measurement is nanoseconds.

power_states double The number of power state
changes for the cell. This is the
sum of the number of transitions
on all input and output pins of the
cell.

ref_name string The name of the design or library
cell of which the cell is (or will be)
an instantiation. Also known as
the reference name. The linker
looks for a design or library cell
by this name to resolve the
reference.

switching_power double The switching power of a cell in
watts. It is the power dissipated
by the charging and discharging
of the load capacitance at the
output of the cell.

switching_power_derate_factor float Power derate factors, specified
using the set_power_derate
command, that apply to the cell.

temperature_max float Maximum temperature specified
for the cell through the operating
condition specification or
application of the
set_temperature command.

Table 12-2 Attributes of the cell Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-12

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
temperature_min float Minimum temperature specified
for the cell through the operating
condition specification or
application of the
set_temperature command.

timing_model_type string Returns the timing model type of
a cell. Valid values:
• ITS (interface timing

specification)

• QTM (quick timing model)

• extracted

• none (normal library model)

You can set the
timing_model_type attribute.

total_power double The total power of a cell in watts.
It is the sum of dynamic power
and leakage power.

upf_isolation_strategy string Strategy name (created by the
set_isolation command)
that was used to derive rail
supply and ground nets of the
cell.

upf_retention_strategy string Strategy name (created by the
set_retention command)
that was used to derive backup
rail supply and ground nets.

wire_load_model_max string The name of the wire load model
effective on a hierarchical cell for
the maximum operating
condition. You can set the
wire_load_model_max
attribute.

Table 12-2 Attributes of the cell Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-13
Chapter 12: Object Attributes
Attribute Names and Usage 12-13

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Clock Object Class Attributes
Table 12-3 lists the clock object class attributes.

wire_load_model_min string The name of the wire load model
effective on a hierarchical cell for
the minimum operating condition
(valid in bc_wc or
on_chip_variation analysis
types).

You can set the
wire_load_model_min
attribute.

wire_load_selection_group_max string The name of the wire load
selection group on a hierarchical
cell for the maximum operating
condition. You can set the
wire_load_selection_grou
p_
max attribute.

wire_load_selection_group_min string The name of the wire load
selection group on a hierarchical
cell for the minimum operating
condition (valid in bc_wc or
on_chip_variation analysis
types). You can set the
wire_load_selection_
group_min attribute.

Table 12-3 Attributes of the clock Object Class

Attribute name Type Description

clock_latency_fall_max float The maximum fall latency (insertion
delay) for a clock. Set with the
set_clock_latency command.

clock_latency_fall_min float The minimum fall latency (insertion
delay) for a clock. Set with the
set_clock_latency command.

Table 12-2 Attributes of the cell Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-14

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
clock_latency_rise_max float The maximum rise latency (insertion
delay) for a clock. Set with the
set_clock_latency command.

clock_latency_rise_min float The minimum rise latency (insertion
delay) for a clock. Set with the
set_clock_latency command.

clock_network_pins collections The collection of pin and port objects
that make up the propagation path of
this clock.

clock_source_latency_early_fall_max float The maximum early falling source
latency. Set with the
set_clock_latency command.

clock_source_latency_early_fall_min float The minimum early falling source
latency. Set with the
set_clock_latency command.

clock_source_latency_early_rise_max float The maximum early rising source
latency. Set with the
set_clock_latency command.

clock_source_latency_early_rise_min float The minimum early rising source
latency. Set with the
set_clock_latency command.

clock_source_latency_late_fall_max float The maximum late falling source
latency. Set with the
set_clock_latency command.

clock_source_latency_late_fall_min float The minimum late falling source
latency. Set with the
set_clock_latency command.

clock_source_latency_late_rise_max float The maximum late rising source
latency. Set with the
set_clock_latency command.

clock_source_latency_late_rise_min float The minimum late rising source
latency. Set with the
set_clock_latency command.

Table 12-3 Attributes of the clock Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-15
Chapter 12: Object Attributes
Attribute Names and Usage 12-15

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
full_name string The name of the clock. This is set
with the create_clock command.
It is either the name given with the -
name option, or the name of the first
object to which the clock is attached.
Once set, this attribute is read-only.

generated_clocks clock This attribute is defined for any clock
that is the parent of one or more
generated clocks and returns those
generated clock objects as a
collection.

hold_uncertainty float A floating-point value that specifies
the clock uncertainty (skew) of a
clock used for hold (and other
minimum delay) timing checks. Set
with the
set_clock_uncertainty
command.

is_active Boolean This attribute is true if the clock is
active (the default state). Clocks can
be made active or inactive with
set_active_clocks.

is_generated Boolean This attribute is true if the clock is a
generated clock. Set with the
create_generated_clock
command.

master_clock collection This attribute is defined for
generated clock objects and returns
the master clock object for that
generated clock.

master_pin collection This attribute is defined for
generated clocks and returns the
master source pin or port object
used to determine the identity and
polarity of the master clock. This
corresponds to the pin or port
provided with the -source option of
the create_generated_clock
command.

Table 12-3 Attributes of the clock Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-16

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
max_capacitance_clock_path_fall float A floating-point number that
establishes an upper limit for the
falling maximum capacitance for all
pins in this clock path. Set with the
set_max_capacitance
command.

max_capacitance_clock_path_rise float A floating-point number that
establishes an upper limit for the
rising maximum capacitance for all
pins in this clock path. Set with the
set_max_capacitance
command.

max_capacitance_data_path_fall float A floating-point number that
establishes an upper limit for the
falling maximum capacitance for all
pins in the data path launched by this
clock. Set with the
set_max_capacitance
command.

max_capacitance_data_path_rise float A floating-point number that
establishes an upper limit for the
rising maximum capacitance for all
pins in the data path launched by this
clock. Set with the
set_max_capacitance
command.

max_fall_delay float A floating-point value that specifies
the maximum falling delay on ports,
clocks, pins, cells, or on paths
between such objects. Set with the
set_max_delay command.

max_rise_delay float A floating-point value that specifies
the maximum rising delay on ports,
clocks, pins, cells, or on paths
between such objects. Set with the
set_max_delay command.

Table 12-3 Attributes of the clock Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-17
Chapter 12: Object Attributes
Attribute Names and Usage 12-17

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
max_time_borrow float A floating-point number that
establishes an upper limit for time
borrowing; that is, it prevents the use
of the entire pulse width for level-
sensitive latches. Units are those
used in the technology library. Set
with the set_max_time_borrow
command.

max_transition_clock_path_fall float A floating-point number that
establishes an upper limit for the
falling maximum transition for all pins
in this clock path. Set with the
set_max_transition command.

max_transition_clock_path_rise float A floating-point number that
establishes an upper limit for the
rising maximum transition for all pins
in this clock path. Set with the
set_max_transition command.

max_transition_data_path_fall float A floating-point number that
establishes an upper limit for the
falling maximum transition for all pins
in the data path launched by this
clock. Set with the
set_max_transition command.

max_transition_data_path_rise float A floating-point number that
establishes an upper limit for the
rising maximum transition for all pins
in the data path launched by this
clock. Set with the
set_max_transition command.

min_fall_delay float A floating-point value that specifies
the minimum falling delay on ports,
clocks, pins, cells, or on paths
between such objects. Set with
set_min_delay.

min_rise_delay float A floating-point value that specifies
the minimum rising delay on ports,
clocks, pins, cells, or on paths
between such objects. Set with the
set_min_delay command.

Table 12-3 Attributes of the clock Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-18

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
object_class string The class of the object. This is a
constant, equal to “clock”. You
cannot set the object _class
attribute.

period float The clock period (or cycle time) is the
shortest time during which the clock
waveform repeats. For a simple
waveform with one rising and one
falling edge, the period is the
difference between successive rising
edges. Set with the create_clock
-period command.

propagated_clock Boolean Specifies that clock latency
(insertion delay) be determined by
propagating delays from the clock
source to destination register clock
pins. If this attribute is not present,
ideal clocking is assumed. Set with
the set_propagated_clock
command.

setup_uncertainty float A floating-point value that specifies
the clock uncertainty (skew) of a
clock used for setup (and other
maximum delay) timing checks. Set
with the
set_clock_uncertainty
command.

sources collection This is a collection of the source pins
or ports of the clock. The sources are
defined with the create_clock
command.

waveform string This is a string representation of
the clock waveform. For example, a
clock rising at 2.5 and falling at 5.0
has a waveform attribute value of
{2.5 5}.The waveform is defined with
the create_clock command.

Table 12-3 Attributes of the clock Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-19
Chapter 12: Object Attributes
Attribute Names and Usage 12-19

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Design Object Class Attributes
Table 12-4 lists the design object class attributes.

Table 12-4 Attributes of the design Object Class

Attribute name Type Description

analysis_type string The analysis type: single, bc_wc, or
on_chip_variation.

area float The total area of the design. This is
the sum of the areas of all leaf cells
and nets.

capacitance_unit_in_farad float Specifies the unit of capacitance in
the main library in farads. This
attribute is read-only; you cannot
change the setting.

current_unit_in_amp float Specifies the unit of capacitance in
the main library in amps. This
attribute is read-only; you cannot
change the setting.

designWare Boolean This attribute specifies if a cell came
from a DesignWare design.

dont_touch Boolean Identifies designs to be excluded
from optimization in Design
Compiler. Values are undefined by
default. Designs with the
dont_touch attribute set to true
are not modified or replaced during
compile in Design Compiler. Set with
the set_dont_touch command
and used by the
characterize_context and
create_timing_context
commands.

dynamic_power double The dynamic power of the design in
watts. It is the sum of the dynamic
power of all the cells of the design.
Chapter 12: Object Attributes
Attribute Names and Usage 12-20

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
early_cell_check_derate_factor
early_clk_cell_derate_factor
early_clk_net_delta_derate_factor
early_clk_net_derate_factor
early_data_cell_derate_factor
early_data_net_delta_derate_factor
early_data_net_derate_factor
early_fall_cell_check_derate_factor
early_fall_clk_cell_derate_factor
early_fall_clk_net_delta_derate_factor
early_fall_clk_net_derate_factor
early_fall_data_cell_derate_factor
early_fall_data_net_delta_derate_factor
early_fall_data_net_derate_factor
early_rise_cell_check_derate_factor
early_rise_clk_cell_derate_factor
early_rise_clk_net_delta_derate_factor
early_rise_clk_net_derate_factor
early_rise_data_cell_derate_factor
early_rise_data_net_delta_derate_factor
early_rise_data_net_derate_factor

float Early timing derate factors, specified
using the set_timing_derate
command, that apply to the design.

extended_name string The complete, unambiguous name
of a design. The extended_name of
the design is the
source_file_name attribute
followed by a colon (:) followed by
the full_name attribute. For
example, the extended_name of
design TOP read in from /u/user/
simple.db is
/u/user/simple.db:TOP.

full_name string The name of a design. For example,
the full_name of design TOP read
in from /u/user/simple.db is TOP.
This name can be ambiguous
because several designs of the
same name can be read in from
different files.

gate_leakage_power double Gate leakage power of the design in
watts. It is the sum of the gate
leakage of all the cells of the design

Table 12-4 Attributes of the design Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-21
Chapter 12: Object Attributes
Attribute Names and Usage 12-21

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
glitch_power double Glitch power of the design in watts. It
is the sum of the glitch power of all
the cells of the design.

internal_power double Internal power of the design in watts.
It is the sum of the internal power of
all the cells of the design.

internal_power_derate_factor float Power derate factors, specified using
the set_power_derate command,
that apply to the design.

intrinsic_leakage_power double Intrinsic leakage power of the design
in watts. It is the sum of the intrinsic
leakage of all the cells of the design.

is_current Boolean This attribute is true for the current
design. This attribute changes for all
designs when you use the
current_design command.

is_edited Boolean This attributed is true if the design
has been uniquified as a result of a
netlist editing (ECO) change.

late_cell_check_derate_factor
late_clk_cell_derate_factor
late_clk_net_delta_derate_factor
late_clk_net_derate_factor
late_data_cell_derate_factor
late_data_cell_derate_factor
late_data_net_delta_derate_factor
late_data_net_derate_factor
late_fall_cell_check_derate_factor
late_fall_clk_cell_derate_factor
late_fall_clk_net_delta_derate_factor
late_fall_clk_net_derate_factor
late_fall_data_cell_derate_factor
late_fall_data_net_delta_derate_factor
late_fall_data_net_derate_factor
late_rise_cell_check_derate_factor
late_rise_clk_cell_derate_factor
late_rise_clk_net_delta_derate_factor
late_rise_clk_net_derate_factor
late_rise_data_cell_derate_factor
late_rise_data_net_delta_derate_factor
late_rise_data_net_derate_factor

float Late timing derate factors, specified
using the set_timing_derate
command, that apply to the design.

Table 12-4 Attributes of the design Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-22

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
leakage_power double Leakage power of the design in
watts. It is the sum of the leakage
power of all the cells of the design.

leakage_power_derate_factor float Power derate factors, specified using
the set_power_derate command,
that apply to the design.

max_area float A floating-point number that
represents the target area of the
design. The units must be consistent
with the units used from the
technology library during
optimization. The max_area value
is set in Design Compiler using the
set_max_area command.

max_capacitance float A floating-point number that sets the
default maximum capacitance
design rule limit for the design. The
units must be consistent with those
of the technology library used during
optimization. Set with the
set_max_capacitance
command.

max_fanout float A floating-point number that
specifies the default maximum
fanout design rule limit for the
design. The units must be consistent
with those of the technology library
used during optimization. Set with
the set_max_fanout command.

max_transition float A floating-point number that
specifies the default maximum
transition design rule limit for the
design. The units must be consistent
with those of the technology library
used during optimization. Set with
the set_max_transition
command.

Table 12-4 Attributes of the design Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-23
Chapter 12: Object Attributes
Attribute Names and Usage 12-23

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
min_capacitance float A floating-point number that sets the
default minimum capacitance design
rule limit for the design. The units
must be consistent with those of the
technology library used during
optimization. Set with the
set_min_capacitance
command.

min_fanout float A floating-point number that
specifies the default minimum fanout
design rule limit for the design. The
units must be consistent with those
of the technology library used during
optimization. Set with the
set_min_fanout command.

min_transition float A floating-point number that
specifies the default minimum
transition design rule limit for the
design. The units must be consistent
with those of the technology library
used during optimization. Set with
the set_min_transition
command.

object_class string The class of the object. This is a
constant equal to design.

operating_condition_max string The name of the maximum or single
operating condition for the design.
Set with the
set_operating_conditions
command.

operating_condition_min string The name of the minimum operating
condition for the design. This
attribute is not valid in single
operating condition analysis.

peak_power double Peak power of the design in watts.
The peak power of the design is not
the sum of the peak power of the
cells of the design.

Table 12-4 Attributes of the design Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-24

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
peak_power_end_time double The end time of the time interval in
which peak power is measured for
the design. The unit is nanoseconds
(ns).

peak_power_start_time double Start time of the time interval in
which peak power is measured for
the design. The unit is nanoseconds
(ns).

power_simulation_time float Total simulation time in averaged
mode. The unit is nanoseconds (ns).

power_states double The sum of the power_states of
all the cells of the design

process_max float The process value of the maximum
or single operating condition for the
design. The operating condition is
defined in a library or by the
create_operating_condition
s command. You associate
operating conditions with a design
using the
set_operating_conditions
command.

process_min float The process value of the minimum
operating condition for the design.
The operating condition is defined in
a library or by the
create_operating_condition
s command. Operating conditions
are associated with a design using
the set_operating_conditions
command.

Table 12-4 Attributes of the design Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-25
Chapter 12: Object Attributes
Attribute Names and Usage 12-25

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
rc_input_threshold_pct_rise
rc_input_threshold_pct_fall
rc_output_threshold_pct_rise
rc_output_threshold_pct_fall
rc_slew_derate_from_library
rc_slew_lower_threshold_pct_fall
rc_slew_lower_threshold_pct_rise
rc_slew_upper_threshold_pct_fall
rc_slew_upper_threshold_pct_rise

float The characterization trip points
(waveform measurement
thresholds) and slew derating factor
that PrimeTime uses to calculate
delays and transition times. These
attributes from a design object return
the values obtained from the main
library (the first library in the link
path). For more information, see
“Characterization Trip Points” on
page 9-6.

resistance_unit_in_ohm float Specifies the unit of resistance in the
main library in farads. This attribute
is read-only; you cannot change the
setting.

source_file_name string The name of the file from which the
design was read. For example, the
source_file_name of design TOP
read in from /u/user/simple.db is /u/
user/simple.db.

switching_power double Switching power of the design in
watts. It is the sum of the switching
power of all the cells of the design.

switching_power_derate_factor float Power derate factors, specified using
the set_power_derate command,
that apply to the design.

temperature_max float The temperature value of the
maximum or single operating
condition for the design. The
operating condition is defined in a
library or by the
create_operating_condition
s command. You associate
operating conditions with a design
using the
set_operating_conditions
command. This attribute represents
the ambient temperature value for
the operating condition.

Table 12-4 Attributes of the design Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-26

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
temperature_min float The temperature value of the
minimum operating condition for the
design. The operating condition is
defined in a library or by the
create_operating_condition
s command. You associate
operating conditions with a design
using the
set_operating_conditions
command. This attribute represents
the ambient temperature value for
the operating condition.

time_unit_in_second float Specifies the unit of time in the main
library in farads. This attribute is
read-only; you cannot change the
setting.

total_power double Total power of the design in watts. It
is the sum of the total power of all the
cells of the design.

tree_type_max string The tree_type value of the
maximum or single operating
condition for the design. The
operating condition is defined in a
library or by the
create_operating_condition
s command. You associate
operating conditions with a design
using the
set_operating_conditions
command. The tree_type value is
used in prelayout interconnect delay
estimation, and can have a value of
best_case, balanced_case,
balanced_resistance (cmos2 only),
or worst_case.

Table 12-4 Attributes of the design Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-27
Chapter 12: Object Attributes
Attribute Names and Usage 12-27

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
tree_type_min string The tree_type value of the minimum
operating condition for the design.
The operating condition is defined in
a library or by the
create_operating_
conditions command. You
associate operating conditions with
a design using the
set_operating_conditions
command. The tree_type value is
used in prelayout interconnect delay
estimation, and can have a value of
best_case, balanced_case,
balanced_resistance (cmos2 only),
or worst_case.

voltage_max float The voltage value of the maximum or
single operating condition for the
design. The operating condition is
defined in a library or by the
create_operating_condition
s command. You associate
operating conditions with a design
using the
set_operating_conditions
command. This attribute represents
the supply voltage value for the
operating condition.

voltage_min float The voltage value of the minimum
operating condition for the design.
The operating condition is defined in
a library or by the
create_operating_condition
s command. You associate
operating conditions with a design
using the
set_operating_conditions
command. This attribute represents
the supply voltage value for the
operating condition

voltage_unit_in_volt float Specifies the unit of voltage in the
main library in farads. This attribute
is read-only; you cannot change the
setting.

Table 12-4 Attributes of the design Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-28

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
wire_load_min_block_size float Specifies the smallest hierarchical
cell that has automatic wire load
selection by area applied. If an
automatic wire load selection group
is specified as the default in the main
library, or through the
set_wire_load_selection_gr
oup command, it is applied to all
hierarchical cells larger than the
specified minimum block size.

wire_load_mode string Determines which wire load model to
use to compute wire capacitance,
resistance, and area for nets in a
hierarchical design that has different
wire load models at different
hierarchical levels. Allowed values
are top, which tells PrimeTime to use
the wire load model at the top
hierarchical level; enclosed, which
tells PrimeTime to use the wire load
model on the smallest design that
encloses a net completely; and
segmented, which indicates to break
the net into segments, one within
each hierarchical level. In the
segmented mode, each net segment
is estimated using the wire load
model on the design that encloses
that segment. The segmented mode
is not supported for wire load models
on clusters. If no value is specified
for this attribute, PrimeTime
searches for a default in the first
library in the link path. If no default is
found, top is the default. Set with
set_wire_load_mode.

wire_load_model_max string The name of the design’s wire load
model for maximum conditions. Set
with set_wire_load_model.

wire_load_model_min string The name of the design’s wire load
model for minimum conditions. This
attribute is not valid for single
operating condition analysis. Set
with set_wire_load_model.

Table 12-4 Attributes of the design Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-29
Chapter 12: Object Attributes
Attribute Names and Usage 12-29

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Library Object Class Attributes
Table 12-5 lists the library object class attributes.

wire_load_selection_group_max string The name of the design’s wire load
selection group for maximum
conditions. Set with
set_wire_load_selection_gr
oup.

wire_load_selection_group_min string The name of the design’s wire load
selection group for minimum
conditions. Set with
set_wire_load_selection_gr
oup.

Table 12-5 Attributes of the lib Object Class

Attribute name Type Description

capacitance_unit_in_farad float Specifies the unit of capacitance in the
main library in farads. This attribute is
read-only; you cannot change the
setting.

current_unit_in_amp string Specifies the unit of capacitance in the
main library in amps. This attribute is
read-only; you cannot change the
setting.

default_connection_class string Specifies the default connection class
string for the connection class attribute of
a pin or port.

default_max_capacitance float The library default maximum
capacitance design rule limit.

default_max_fanout float The library default maximum fanout
design rule limit.

default_max_transition float The library default maximum transition
design rule limit.

Table 12-4 Attributes of the design Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-30

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
default_min_capacitance float The library default minimum capacitance
design rule limit.

default_min_fanout float The library default minimum fanout
design rule limit.

default_min_transition float The library default minimum transition
design rule limit.

extended_name string The complete, unambiguous name of a
library. The extended_name of the library
is the source_file_name attribute
followed by a colon (:) followed by the
full_name attribute. For example, the
extended_name of library tech1 read in
from /u/user/lib1.db is /u/user/
lib1.db:tech1.

full_name string The name of a library. For example, the
full_name of library tech1 read in from
/u/user/lib1.db is tech1. This name can
be ambiguous because several libraries
of the same name can be read in from
different files.

has_sensitization_data Boolean The library has the sensitization data.

lib_scaling_group collection The collection of libraries in the scaling
library group to which the library
belongs, which is set with the
define_scaling_lib_group
command.

min_extended_name string Returns the full name
(filename:lib_name) of the minimum
library of the given library. This attribute
is read-only; you cannot change the
setting.

min_source_file_name string Returns the full name of the minimum
library of the given library. This attribute
is read-only; you cannot change the
setting.

object_class string The class of the object. This is a
constant equal to lib.

Table 12-5 Attributes of the lib Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-31
Chapter 12: Object Attributes
Attribute Names and Usage 12-31

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Library Cell Object Class Attributes
Table 12-6 lists the library cell object class attributes.

resistance_unit_in_ohm float Specifies the unit of resistance in the
main library in farads. This attribute is
read-only; you cannot change the
setting.

source_file_name string The name of the file from which the
library was read. For example, the
source_file_name of library tech1 read in
from /u/user/lib1.db is /u/user/lib1.db.

time_unit_in_second float Specifies the unit of time in the main
library in farads. This attribute is read-
only; you cannot change the setting.

voltage_unit_in_volt float Specifies the unit of voltage in the main
library in farads. This attribute is read-
only; you cannot change the setting.

Table 12-6 Attributes of the lib_cell Object Class

Attribute name Type Description

always_on Boolean This attribute is true if the library cell is an
always-on cell.

area float A floating-point value representing the area
of a library cell.

base_name string The name of a library cell. For example, the
base_name of library cell tech1/AN2 is
AN2.

disable_timing Boolean This attribute is true if the timing for the
library cell has been specified to be
disabled using the set_disable_timing
command.

Table 12-5 Attributes of the lib Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-32

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
dont_touch Boolean Identifies library cells to be excluded from
optimization. Values are undefined by
default. Library cells with the dont_touch
attribute set to true are not modified or
replaced during compile. Set with the
set_dont_touch command.

dont_use Boolean If this attribute exists on a library cell, it is
excluded from the target library during
optimization. Its setting is obtained from
synthesis or place and route.

full_name string The fully qualified name of a library cell.
This is the name of the library followed by
the library cell name. For example, the
full_name of library cell AN2 in library
tech1 is tech1/AN2.

function_id string The name of the function that is created by
Library Compiler.

has_multi_ground_rails Boolean This attribute is true if a library cell has
multiple ground rails.

has_multi_power_rails Boolean This attribute is true if a library cell has
multiple power rails.

has_rail_specific_power_tables Boolean This attribute is true if a library cell has
multiple tables attached to rails.

is_black_box Boolean This attribute is true if the library cell is not
sequential.

is_combinational Boolean This attribute is true if the library cell is not
sequential.

is_fall_edge_triggered Boolean This attribute is true if library cell is used in
the design as a falling-edge-triggered flip-
flop.

is_integrated_clock_gating_cell Boolean This attribute is true if the cell’s reference
is not linked to a library cell or design. This
attribute is read-only; you cannot change
the setting.

Table 12-6 Attributes of the lib_cell Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-33
Chapter 12: Object Attributes
Attribute Names and Usage 12-33

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
is_isolation Boolean This attribute is true if a library cell is an
isolation cell.

is_level_shifter Boolean This attribute is true if the library cell is a
level shifter cell.

is_mux Boolean This attribute is true if a library cell is a
multiplexer.

is_negative_level_sensitive Boolean This attribute is true if the library cell is
used in the design as a negative level-
sensitive latch.

is_pad_cell Boolean This attribute is true if the library cell is a
pad cell.

is_pll_cell Boolean This attribute is true if the library cell is
used in the design as a phase locked loop
(PLL) cell.

is_positive_level_sensitive Boolean This attribute is true if the library cell is
used in the design as a positive level-
sensitive latch.

is_retention Boolean This attribute is true if the library cell is a
retention cell.

is_rise_edge_triggered Boolean This attribute is true if the library cell is
used in the design as a rising-edge-
triggered flip-flop.

is_sequential Boolean This attribute is true if the library cell is
sequential.

is_three_state Boolean This attribute is true if a library cell is a
three-state device.

mog_func_id string The name of the cell's function that is
created by Library Compiler for multiple
output gate (MOG) cells.

number_of_pins integer Number of pins on the library cell.

object_class string The class of the object. This is a constant,
equal to lib_cell.

Table 12-6 Attributes of the lib_cell Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-34

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Library Pin Object Class Attributes
Table 12-7 lists the library pin object class attributes.

timing_model_type string Returns the timing model type of a library
cell. The values are
• ITS (interface timing specification)

• QTM (quick timing model)

• extracted

• none (normal library model)

user_function_class string This attribute is used to size complex cells
that would otherwise not be sizable due to
limitations of library tools in generating the
function_id attribute for those complex
cells.

Table 12-7 Attributes of the lib_pin Object Class

Attribute name Type Description

base_name string The leaf name of the library cell pin. For
example, the base_name of tech1/AN2/Z is
Z.

clock Boolean A Boolean value that is set to true when a
clock attribute is attached to a lib_pin in the
library definition.

connection_class string Specifies the connection class string for a
pin.

direction string The direction of a pin. Value can be in, out,
inout, or internal.

disable_timing Boolean This attribute is true if the library pin has
been specified to be disabled using the
set_disable_timing command.

drive_resistance_fall float A floating-point value representing the
linear drive resistance for falling delays of a
library pin.

Table 12-6 Attributes of the lib_cell Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-35
Chapter 12: Object Attributes
Attribute Names and Usage 12-35

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
drive_resistance_rise float A floating-point value representing the
linear drive resistance for rising delays of a
library pin.

driver_waveform_fall
driver_waveform_rise

string This attribute indicates the type of driver
waveform for the library pin, either ramp or
standard.

fanout_load float A floating-point value representing the
fanout load value of a library pin. This value
is used in computing max_fanout design
rule cost.

full_name string The fully qualified name of a library cell pin.
This is the name of the library followed by
the library cell name followed by a pin
name. For example, the full_name of pin Z
on library cell AN2 in library tech1 is tech1/
AN2/Z.

has_ccs_noise_above_high
has_ccs_noise_above_low
has_ccs_noise_below_high
has_ccs_noise_below_low

Boolean This attribute indicates whether CCS noise
information is present for a pin in a library.

has_ccs_receiver_fall Boolean This attribute indicates whether CCS
information is present for a pin in a library,
for receiver fall analysis.

has_ccs_receiver_rise Boolean This attribute indicates whether CCS
information is present for a pin in a library,
for receiver rise analysis.

is_async_pin Boolean This attribute is true if a library pin is an
asynchronous preset/clear pin.

is_clear_pin Boolean This attribute is true if a library pin is an
asynchronous clear pin.

is_clock_pin Boolean This attribute is true if at least one
instance of that clock pin exists in the
design that has the is_clock_pin attribute
equal to true.

Table 12-7 Attributes of the lib_pin Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-36

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
is_data_pin Boolean This attribute is true if at least one
instance of that data pin exists in the design
that has the is_data_pin attribute equal to
true.

is_fall_edge_triggered_clock_pin Boolean This attribute is true if the library pin is
used in the design as a falling-edge-
triggered flip-flop clock pin.

is_fall_edge_triggered_data_pin Boolean This attribute is true if the library pin is
used in the design as a falling-edge-
triggered flip-flop data pin.

is_mux_select_pin Boolean This attribute is true if a library pin is a
select pin of a multiplexer device.

is_negative_level_sensitive_clock
_pin

Boolean This attribute is true if the library pin is
used in the design as a negative edge-
triggered flip-flop clock pin.

is_negative_level_sensitive_data_
pin

Boolean This attribute is true if the library pin is
used in the design as a negative edge-
triggered flip-flop data pin.

is_pad Boolean This attribute is true if the library pin is a
pad. See the Library Compiler
documentation.

is_pll_feedback_pin Boolean This attribute is true if the library pin is a
feedback pin of a phase locked loop (PLL)
cell.

is_pll_output_pin Boolean This attribute is true if the library pin is an
output pin of a phase locked loop (PLL) cell.

is_pll_reference_pin Boolean This attribute is true if the library pin is a
reference pin of a phase locked loop (PLL)
cell.

is_positive_level_sensitive_clock
_pin

Boolean This attribute is true if the library pin is
used in the design as a positive edge-
triggered flip-flop clock pin.

is_positive_level_sensitive_data_
pin

Boolean This attribute is true if the library pin is
used in the design as a positive edge-
triggered flip-flop data pin.

Table 12-7 Attributes of the lib_pin Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-37
Chapter 12: Object Attributes
Attribute Names and Usage 12-37

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
is_preset_pin Boolean This attribute is true if a library pin is an
asynchronous preset pin.

is_rise_edge_triggered_clock_pin Boolean This attribute is true if the library pin is
used in the design as a rising-edge-
triggered flip-flop clock pin.

is_rise_edge_triggered_data_pin Boolean This attribute is true if the library pin is
used in the design as a rising-edge-
triggered flip-flop data pin.

is_three_state Boolean This attribute is true if the library pin is a
three-state driver.

is_three_state_enable_pin Boolean This attribute is true if a library pin is an
enable pin of a three-state device.

is_three_state_output_pin Boolean This attribute is true if a library pin could
output a three-state signal.

is_unbuffered Boolean This attributed is true if the library pin is
unbuffered. See the Library Compiler
documentation.

load_of_pin_capacitance float The capacitance as specified by the Liberty
file by the capacitance attribute in the pin
object class.

max_capacitance float A floating-point value representing the
maximum capacitance design rule limit for
a library pin.

max_fanout float A floating-point value representing the
maximum fanout design rule limit for a
library pin.

max_transition float A floating-point value representing the
maximum transition time design rule limit
for a library pin.

min_capacitance float A floating-point value representing the
minimum capacitance design rule limit for a
library pin.

Table 12-7 Attributes of the lib_pin Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-38

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
min_fanout float A floating-point value representing the
minimum fanout design rule limit for a
library pin.

min_transition float A floating-point value representing the
minimum transition time design rule limit for
a library pin.

object_class string The class of the object. This is a constant,
equal to lib_pin.

pin_capacitance float A floating-point value representing the
capacitance of a library pin.

pin_capacitance_max_fall float Returns the maximum fall capacitance of
the library pin. This attribute is read-only;
you cannot change the setting.

pin_capacitance_max_rise float Returns the maximum rise capacitance of
the library pin. This attribute is read-only;
you cannot change the setting.

pin_capacitance_min_fall float Returns the minimum fall capacitance of
the library pin. This attribute is read-only;
you cannot change the setting.

pin_capacitance_min_rise float Returns the minimum rise capacitance of
the library pin. This attribute is read-only;
you cannot change the setting.

pin_direction string Specifies the direction of a pin. Allowed
values are in, out, inout, or unknown. This
attribute is read-only; you cannot change
the settings.

rc_input_threshold_pct_rise
rc_input_threshold_pct_fall
rc_output_threshold_pct_rise
rc_output_threshold_pct_fall
rc_slew_derate_from_library
rc_slew_lower_threshold_pct_fall
rc_slew_lower_threshold_pct_rise
rc_slew_upper_threshold_pct_fall
rc_slew_upper_threshold_pct_rise

float The characterization trip points (waveform
measurement thresholds) and slew
derating factor that PrimeTime uses to
calculate delays and transition times. These
attributes from a library pin return the
values obtained from the library to which
the pin belongs. For more information, see
“Characterization Trip Points” on page 9-6.

Table 12-7 Attributes of the lib_pin Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-39
Chapter 12: Object Attributes
Attribute Names and Usage 12-39

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Library Timing Arc Object Class Attributes
Table 12-8 lists the library timing arc object class attributes.

si_has_immunity_above_high
si_has_immunity_above_low
si_has_immunity_below_high
si_has_immunity_below_low

Boolean This attribute indicates whether NLDM
noise immunity information is present for a
pin in a library.

Table 12-8 Attributes of the lib_timing_arc Object Class

Attribute name Type Description

from_lib_pin collection A collection containing the from library
pin of the library timing arc.

has_ccs_driver_fall Boolean This attribute indicates whether the
library timing arc has CCS Timing driver
information, either true or false, for
fall analysis.

has_ccs_driver_rise Boolean This attribute indicates whether the
library timing arc has CCS Timing driver
information, either true or false, for
rise analysis.

has_ccs_noise_above_low
has_ccs_noise_below_high
has_ccs_noise_below_low
has_ccs_noise_above_high

Boolean These attributes indicate whether CCS
Noise information is present in the
timing arc object in a library.

has_ccs_receiver_fall Boolean This attribute indicates whether CCS
receiver information is present in the
timing arc object in a library, for fall
analysis.

has_ccs_receiver_rise Boolean This attribute indicates whether CCS
receiver information is present in the
timing arc object in a library, for rise
analysis.

is_disabled Boolean Returns true if the library timing arc is
disabled.

Table 12-7 Attributes of the lib_pin Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-40

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
is_user_disabled Boolean Returns true if the library timing arc is
disabled by using the
set_disable_timing command,

mode string Returns the mode string of the library
timing arc.

object_class string The class of the object. This is a
constant equal to library_arc.

sdf_cond string A string representing the SDF condition
of the library timing arc.

sense string A string representing the sense of the
library timing arc.

si_has_immunity_above_low
si_has_immunity_below_high
si_has_immunity_below_low
si_has_immunity_above_high

Boolean These attributes indicate whether noise
immunity information is present in the
timing arc object in a library.

si_has_iv_above_low
si_has_iv_below_high
si_has_iv_below_low
si_has_iv_above_high

Boolean These attributes indicate whether the
library timing arc contains output
steady-state information in the form of I/
V relationships (polynomials or tables).

si_has_propagation_above_low
si_has_propagation_below_high
si_has_propagation_below_low
si_has_propagation_above_high

Boolean These attributes indicate whether the
library timing arc contains information
on how bumps present at the arc input
are propagated across the arc to the
output.

si_has_resistance_above_low
si_has_resistance_below_high
si_has_resistance_below_low
si_has_resistance_above_high

Boolean These attributes indicate whether the
library timing arc contains output
steady-state information in the form of
simple steady drive resistance.

to_lib_pin collection A collection containing the to library pin
of the library timing arc.

when string A string representing the when string
of the library timing arc.

Table 12-8 Attributes of the lib_timing_arc Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-41
Chapter 12: Object Attributes
Attribute Names and Usage 12-41

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Net Object Class Attributes
Table 12-9 lists the net object class attributes.

Table 12-9 Attributes of the net Object Class

Attribute name Type Description

activity_source string The source of switching activity
information for the net. It is one of
of the following: file,
set_switching_activity,
set_case_analysis,
propagated, implied, default, or
UNINITIALIZED.

aggressors string This attribute shows the
aggressor nets that impact the
victim net.

area float The estimated area of a net. The
net area is calculated using a
wire load model.

ba_capacitance_max float A floating-point value
representing the back-annotated
capacitance on a net for
maximum conditions. Set with
the set_load or
read_parasitics command.

ba_capacitance_min float A floating-point value
representing the back-annotated
capacitance on a net for
minimum conditions. Set with the
set_load or
read_parasitics command.

ba_resistance_max float A floating-point value
representing the back-annotated
resistance on a net for maximum
conditions. Set with the
set_resistance or
read_parasitics command.
Chapter 12: Object Attributes
Attribute Names and Usage 12-42

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
ba_resistance_min float A floating-point value
representing the back-annotated
resistance of a net for minimum
conditions. Set with the
set_resistance or
read_parasitics command.

base_name string The leaf name of a net. For
example, the base name of net
i1/i1z1 is i1z1. You cannot set this
attribute.

coupling_capacitors string This attribute lists the cross-
coupling capacitance values in
pF. With this attribute the nets are
explicitly identified. For example,
{u1a/A (n1) u2b/Z (n2)
0.40
 not_filtered}
{n1:3 (n1) n2:5 (n2) 0.03

filtered_by_accum_noise_
peak}
{in_port (n1) n3:7 (n3)
0.01

filtered_by_accum_noise_
peak}

dont_touch Boolean Identifies nets to be excluded
from optimization in Design
Compiler. Values are undefined
by default. Nets with the
dont_touch attribute set to
true are not modified or
replaced during compile with
Design Compiler. Set with the
set_dont_touch command.

early_fall_clk_net_delta_derate_factor
early_fall_clk_net_derate_factor
early_fall_data_net_delta_derate_factor
early_fall_data_net_derate_factor
early_rise_clk_net_delta_derate_factor
early_rise_clk_net_derate_factor
early_rise_data_net_delta_derate_factor
early_rise_data_net_derate_factor

float Early timing derate factors,
specified using the
set_timing_derate
command, that apply to the net.

Table 12-9 Attributes of the net Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-43
Chapter 12: Object Attributes
Attribute Names and Usage 12-43

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
effective_aggressors string This attribute lists the effective
aggressors for the net. Effective
aggressors are aggressors that
are analyzed. For example,
get_attribute -class net
n5 \
 effective_aggressors
n7
(For more information, see the
si_xtalk_bumps attribute.)

effective_coupling_capacitors string This attribute lists the effective
cross-coupling capacitance
values in pF. Only the capacitors
that are not excluded are shown.

escaped_full_name string Contains the name of the cell.
Any literal hierarchy characters
are escaped with a backslash.

full_name string The complete name of a net. For
example, the full_name of net
i1z1 within cell i1 is i1/i1z1. The
full_name attribute is not
affected by current instance. The
full_name attribute is read-
only; you cannot change the
setting.

glitch_count float The number of glitch transitions
on the net during the duration of
power_simulation_time.

glitch_rate double The rate at which glitch
transitions occur on the net. It is
equal to glitch_count/
power_simulation_time

has_detailed_parasitics Boolean This attribute is true if any part
of the net has annotated detailed
parasitics (even if only one
segment of a net at different
levels of hierarchy).

Table 12-9 Attributes of the net Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-44

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
has_valid_parasitics Boolean This attribute is true if the net
has an annotated pi model, or if
all segments of the net are
annotated with properly
connected detailed parasitics
that form a valid representation of
physical interconnection between
drivers and loads.

is_ideal Boolean This attribute is true if the net
has been marked ideal using the
set_ideal_network
command.

is_power_control_signal_net Boolean This attribute is true if the signal
net is used to control any power
rail or PrimeTime PX rail
mapping modes.

late_fall_clk_net_delta_derate_factor
late_fall_clk_net_derate_factor
late_fall_data_net_delta_derate_factor
late_fall_data_net_derate_factor
late_rise_clk_net_delta_derate_factor
late_rise_clk_net_derate_factor
late_rise_data_net_delta_derate_factor
late_rise_data_net_derate_factor

float Late timing derate factors,
specified using the
set_timing_derate
command, that apply to the net.

net_resistance_max float A floating-point value
representing the resistance of a
net for maximum conditions. May
be computed from wire load
models or set using
set_resistance or
read_parasitics.

net_resistance_min float A floating-point value
representing the resistance of a
net for minimum conditions. May
be computed from wire load
models or set using
set_resistance or
read_parasitics.

Table 12-9 Attributes of the net Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-45
Chapter 12: Object Attributes
Attribute Names and Usage 12-45

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
number_of_aggressors integer This attribute shows the number
of aggressor nets to a victim net.
For example,
get_attribute -class
net n5 \
 number_of_aggressors
1
Note that any coupled net is an
aggressor net.

number_of_coupling_capacitors integer This attribute shows the number
of coupling capacitors.

number_of_effective_aggressors integer This attribute shows the number
of effective aggressor nets to a
victim net. Only the effective
aggressors are used for analysis.
For example,
get_attribute -class net
n5 \

number_of_effective_aggr
essors 1

number_of_effective_coupling_
capacitors

integer This attribute lists the number of
effective coupling capacitors on a
net. Only the effective coupling
capacitors are used for the
analysis.

object_class string The class of the object. This is a
constant, equal to net.

pin_capacitance_max float A floating-point value
representing the sum of all pin
capacitances of a net for
maximum conditions. You cannot
set this attribute.

pin_capacitance_max_fall float Returns the maximum fall
capacitance of all pins and ports
for the net. This attribute is read-
only; you cannot change the
setting.

Table 12-9 Attributes of the net Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-46

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
pin_capacitance_max_rise float Returns the maximum rise
capacitance of all pins and ports
for the net. This attribute is read-
only; you cannot change the
setting.

pin_capacitance_min float A floating-point value
representing the sum of all pin
capacitances of a net for
minimum conditions. You cannot
set this attribute.

pin_capacitance_min_fall float Returns the minimum fall
capacitance of all pins and ports
for the net. This attribute is read-
only; you cannot change the
setting.

pin_capacitance_min_rise float Returns the minimum rise
capacitance of all pins and ports
for the net. This attribute is read-
only; you cannot change the
setting.

power_base_clock string The name of the base clock
associated with this net. If the net
belongs to multiple clock
domains, the power_base_clock
attribute is set to the fastest of the
clocks

rc_annotated_segment Boolean This attribute is true if the
specific net segment has
annotated parasitics. For two
segments at different levels of
hierarchy (for example, n1 and
h1/n1), the attribute values can
differ.

rc_network string A string describing the parasitic
data that has been back-
annotated on the net, including
resistor values (in KOhms) and
capacitor values (in pF).

Table 12-9 Attributes of the net Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-47
Chapter 12: Object Attributes
Attribute Names and Usage 12-47

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
rc_network_with_sensitivity string Specifies the full RC network of a
net with sensitivity values
included. This attribute is read-
only; you cannot change the
setting.

si_double_switching_slack float This net has double-switching
slack on the victim net.

si_has_double_switching Boolean This net has double-switching
violation. Double-switching
analysis needs to be enabled.

si_is_selected Boolean This attribute exists on each
coupled net. It indicates whether
the net was reselected at least
once (true) or was never
reselected (false) for crosstalk
analysis in the most recent timing
update. Reselection can occur
only in the second and
subsequent iterations of
crosstalk analysis.

si_xtalk_bumps string This attribute lists each
aggressor net and the voltage
bumps that rising and falling
aggressor transitions induce on
the victim net (worst of rising
minimum or maximum bumps
and worst of falling minimum or
maximum bumps, each
expressed as a decimal fraction
of the rail-to-rail voltage), or gives
the reason that an aggressor net
has no effect on the victim net.

si_xtalk_bumps_max_fall
si_xtalk_bumps_max_rise
si_xtalk_bumps_min_fall
si_xtalk_bumps_min_rise

string Each of these attributes lists
each aggressor net and the
voltage it induces on the victim
net (expressed as a decimal
fraction of the rail-to-rail voltage)
for a given delay change type and
transition type: maximum fall,
maximum rise, minimum fall, or
minimum rise.

Table 12-9 Attributes of the net Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-48

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
si_xtalk_composite_aggr_min_rise
si_xtalk_composite_aggr_min_fall
si_xtalk_composite_aggr_max_rise
si_xtalk_composite_aggr_max_fall

collection Each of these attributes list a
collection of aggressors in a
potential composite aggressor
group for a given delay change
type and transition type:
maximum fall, maximum rise,
minimum fall, or minimum rise.

si_xtalk_used_ccs_min_rise
si_xtalk_used_ccs_min_fall
si_xtalk_used_ccs_max_rise
si_xtalk_used_ccs_max_fall

Boolean Each attribute set to true means
that the net was analyzed for
crosstalk delay using CCS timing
models for that type of timing
constraint and transition.

static_probability float The static probability of a net,
which is the probability that the
net has the logic value 1.

switching_power double The switching power of a net in
watts, which is the power
dissipated by the charging and
discharging of the capacitance of
the net.

toggle_count float The number of transitions of the
net during the duration of the
power_simulation_time
attribute.

toggle_rate double The rate at which transitions
occur on the net. It is equal to
toggle_count/
power_simulation_time

total_capacitance_max float A floating-point value
representing the sum of all pin
capacitances and the wire
capacitance of a net for
maximum conditions. This
attribute is read-only; you cannot
change the setting.

Table 12-9 Attributes of the net Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-49
Chapter 12: Object Attributes
Attribute Names and Usage 12-49

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
total_capacitance_min float A floating-point value
representing the sum of all pin
capacitances and the wire
capacitance of a net for minimum
conditions. This attribute is read-
only; you cannot change the
setting.

total_ccs_capacitance_max_fall
total_ccs_capacitance_max_rise
total_ccs_capacitance_min_fall
total_ccs_capacitance_min_rise

float This attribute lists the total
capacitance of wire capacitance
and CCS receiver capacitances.
For example,
total_ccs_capacitance_max_r
ise is the sum of wire
capacitance and maximum of
rise_c1/rise_c2.

total_coupling_capacitance float This attribute lists the total cross-
coupling capacitance a victim net
has in pF.

total_effective_coupling_
capacitance

float This attribute lists the total
effective cross capacitance a
victim net has in pF. Only
effective values are used during
the analysis.

user_global_coupling_separated Boolean If true, this net has been
globally separated with the
set_coupling_separation
command.

user_pairwise_coupling_separated collection The collection of nets that have
been pairwise-separated with the
set_coupling_separation
command.

wire_capacitance_max float A floating-point value
representing the wire
capacitance of a net for
maximum conditions. The value
can be computed from wire load
models or set using set_load
or read_parasitics.

Table 12-9 Attributes of the net Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-50

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Path Group Object Class Attributes
Table 12-10 lists the path group object class attributes.

wire_capacitance_min float A floating-point value
representing the wire
capacitance of a net for minimum
conditions. The value can be
computed from wire load models
or set using set_load or
read_parasitics.

Table 12-10 Attributes of the path_group Object Class

Attribute name Type Description

full_name string The name of the path group. Path groups
are created by group_path or implicitly
using create_clock. This attribute is
read-only; you cannot change the
setting.

object_class string The class of the object. This is a
constant, equal to path_group. This
attribute is read-only; you cannot change
the setting.

weight float A floating-point value representing the
cost function weight assigned to this path
group. The weight of a group specifies
how much the group influences the total
maximum delay cost and can be used to
guide optimization. You can specify the
weight with group_path.

Table 12-9 Attributes of the net Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-51
Chapter 12: Object Attributes
Attribute Names and Usage 12-51

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Pin Object Class Attributes
Table 12-11 lists the pin object class attributes.

Table 12-11 Attributes of the pin Object Class

Attribute name Type Description

actual_fall_transition_max float A floating-point value
representing the largest falling
transition time for a pin.

actual_fall_transition_min float A floating-point value
representing the smallest falling
transition time for a pin.

actual_min_clock_pulse_width_high string Returns a string containing a per-
clock actual minimum pulse width
value at a pin (high pulse).

actual_min_clock_pulse_width_low string Returns a string containing a per-
clock actual minimum pulse width
value at a pin (low pulse).

actual_rise_transition_max float A floating-point value
representing the largest rising
transition time for a pin.

actual_rise_transition_min float A floating-point value
representing the smallest rising
transition time for a pin.

annotated_fall_transition_delta_max float This attribute shows the
additional transition time added to
the maximum falling transition
time on a pin. The additional
transition time is set by either the
set_annotated_transition
-delta_only command or by
PrimeTime SI during the
crosstalk analysis.
Chapter 12: Object Attributes
Attribute Names and Usage 12-52

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
annotated_fall_transition_delta_min float This attribute shows the
additional transition time added to
the minimum falling transition
time on a pin. The additional
transition time is set by either the
set_annotated_transition
-delta_only command or by
PrimeTime SI during the
crosstalk analysis.

annotated_rise_transition_delta_max float This attribute shows the
additional transition time added to
the maximum rising transition
time on a pin. The additional
transition time is set by either the
set_annotated_transition
-delta_only command or by
PrimeTime SI during the
crosstalk analysis.

annotated_rise_transition_delta_min float This attribute shows the
additional transition time added to
the minimum rising transition time
on a pin. The additional transition
time is set by either the
set_annotated_transition
-delta_only command or by
PrimeTime SI during the
crosstalk analysis.

arrival_window string The minimum and maximum
arrivals for rise and fall
transitions. To get the
arrival_window attribute on
pins that are not endpoints, set
the
timing_save_pin_arrival_
and_slack variable to true.

cached_c1_max_fall float A floating-point value
representing the C1 CCS receiver
model for a maximum fall
transition.

Table 12-11 Attributes of the pin Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-53
Chapter 12: Object Attributes
Attribute Names and Usage 12-53

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
cached_c1_max_rise float A floating-point value
representing the C1 CCS receiver
model for a maximum rise
transition.

cached_c1_min_fall float A floating-point value
representing the C1 CCS receiver
model for a minimum fall
transition.

cached_c1_min_rise float A floating-point value
representing the C1 CCS receiver
model for a minimum rise
transition.

cached_c2_max_fall float A floating-point value
representing the C2 CCS receiver
model for a maximum fall
transition.

cached_c2_max_rise float A floating-point value
representing the C2 CCS receiver
model for a maximum rise
transition.

cached_c2_min_fall float A floating-point value
representing the C2 CCS receiver
model for a minimum fall
transition.

cached_c2_min_rise float A floating-point value
representing the C2 CCS receiver
model for a minimum rise
transition.

cached_ceff_max_fall
cached_ceff_max_rise
cached_ceff_min_fall
cached_ceff_min_rise

float Worst effective capacitance of a
net with detailed parasitics stored
during the delay calculation that
is connected to this output pin.
This requires the
rc_cache_min_max_rise_fall_
ceff variable to be set to true
before the timing update.

Table 12-11 Attributes of the pin Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-54

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
case_value string The user-specified logic value of
a pin or port propagated from a
case analysis or logic constant in
the design.

ceff_params_max string Returns an access to the
parameters internally computed
by PrimeTime to compute the
effective capacitance of a driver
pin of a cell, respectively for
maximum operating conditions.
The returned parameters are rd,
t0, delta_t, and Ceff; they
represent how a driver is modeled
for computing the effective
capacitance.

ceff_params_min string Returns an access to the
parameters internally computed
by PrimeTime to compute the
effective capacitance of a driver
pin of a cell, respectively for
minimum operating conditions.
The returned parameters are rd,
t0, delta_t, and Ceff; they
represent how a driver is modeled
for computing the effective
capacitance.

clock_latency_fall_max float The user-specified maximum fall
latency (insertion delay) of a pin
in the clock network. Set with the
set_clock_latency command.

clock_latency_fall_min float The user-specified minimum fall
latency (insertion delay) of a pin
in the clock network. Set with the
set_clock_latency command.

clock_latency_rise_max float The user-specified maximum rise
latency (insertion delay) of a pin
in the clock network. Set with
set_clock_latency.

Table 12-11 Attributes of the pin Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-55
Chapter 12: Object Attributes
Attribute Names and Usage 12-55

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
clock_latency_rise_min float The user-specified minimum rise
latency (insertion delay) of a pin
in the clock network. Set with the
set_clock_latency command.

clock_source_latency_early_fall_max float The maximum early falling source
latency. Set with the
set_clock_latency command.

clock_source_latency_early_fall_min float The minimum early falling source
latency. Set with the
set_clock_latency command.

clock_source_latency_early_rise_max float The maximum early rising source
latency. Set with the
set_clock_latency command.

clock_source_latency_early_rise_min float The minimum early rising source
latency. Set with the
set_clock_latency command.

clock_source_latency_late_fall_max float The maximum late falling source
latency. Set with the
set_clock_latency command.

clock_source_latency_late_fall_min float The minimum late falling source
latency. Set with
set_clock_latency.

clock_source_latency_late_rise_max float The maximum late rising source
latency. Set with the
set_clock_latency command.

clock_source_latency_late_rise_min float The minimum late rising source
latency. Set with the
set_clock_latency command.

clocks collection The collection of clock objects
which propagate through this pin.
It is undefined if no clocks are
present.

constant_value string The logic value of a pin tied to
logic constant zero or one in the
netlist.

Table 12-11 Attributes of the pin Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-56

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
constraining_max_transition float Returns the most constraining
user-defined maximum transition
value at a pin.

direction string The direction of a pin. Value can
be in, out, inout, or internal. The
pin_direction attribute is a
synonym for direction. Directions
can change as a result of linking a
design, as references are
resolved.

disable_timing Boolean Disables timing arcs. This has the
same effect on timing as not
having the arc in the library. Set
with the set_disable_timing
command.

driver_model_scaling_libs_max collection The collection of library objects
used for driver model scaling,
where applicable, for libs
maximum analysis.

driver_model_scaling_libs_min collection The collection of library objects
used for driver model scaling,
where applicable, for libs
minimum analysis.

driver_model_type_max_fall string The driver model type, either
“basic” (NLDM) or “advanced”
(CCS Timing), for maximum fall
analysis.

driver_model_type_max_rise string The driver model type, either
“basic” (NLDM) or “advanced”
(CCS Timing), for maximum rise
analysis.

driver_model_type_min_fall string The driver model type, either
“basic” (NLDM) or “advanced”
(CCS Timing), for minimum fall
analysis.

Table 12-11 Attributes of the pin Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-57
Chapter 12: Object Attributes
Attribute Names and Usage 12-57

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
driver_model_type_min_rise string The driver model type, either
“basic” (NLDM) or “advanced”
(CCS Timing), for minimum rise
analysis.

effective_capacitance_max float The effective capacitance for
maximum operating conditions.
Valid only for driver pins attached
to annotated RC networks.

effective_capacitance_min float The effective capacitance for
minimum operating conditions.
Valid only for driver pins attached
to annotated RC networks

escaped_full_name string Contains the name of the cell.
Any literal hierarchy characters
are escaped with a backslash.

fanout_load float A floating-point value
representing the fanout load
value of a pin. This value is used
in computing max_fanout design
rule cost.

full_name string The complete name of a pin to
the top of the hierarchy. For
example, the full name of pin Z on
cell U2 within cell U1 is U1/U2/Z.
The setting of the current
instance has no effect on the full
name of a pin. See also the
lib_pin_name attribute.

glitch_rate double The rate at which the glitch
transitions ocur on the pin within
a specific time period.

hold_uncertainty float A floating-point value that
specifies the clock uncertainty
(skew) of a clock used for hold
(and other minimum delay) timing
checks. Set with the
set_clock_uncertainty
command.

Table 12-11 Attributes of the pin Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-58

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
ideal_latency_max_fall
ideal_latency_max_rise
ideal_latency_min_fall
ideal_latency_min_rise

float Ideal delay value annotated on a
pin in an ideal network, using the
set_ideal_latency command.

ideal_transition_max_fall
ideal_transition_max_rise
ideal_transition_min_fall
ideal_transition_min_rise

float Ideal transition time annotated on
a pin in an ideal network, using
the set_ideal_transition
command.

is_async_pin Boolean This attribute is true if a pin is an
asynchronous preset/clear pin.

is_clear_pin Boolean This attribute is true if a pin is an
asynchronous clear pin.

is_clock_gating_pin Boolean This attribute is true if a pin is a
pin of a clock-gating cell.

is_clock_pin Boolean For instance pin objects, this
attribute is true if the pin is a
valid and active clock pin in the
design that is reached by a clock
signal and where that sequential
cell is not disabled by disabled
timing arcs or case analysis.

is_clock_used_as_clock
is_clock_used_as_data

Boolean When both are true, the clock
through the specified pin acts as
both clock and data. When
is_clock_used_as_clock is
true and
is_clock_used_as_data is
false, the clock through the
specified pin acts only as a clock
and never as data. When
is_clock_used_as_data is true
and is_clock_used_as_clock is
false, the clock through the
specified pin acts only as data
and never as clock.

Table 12-11 Attributes of the pin Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-59
Chapter 12: Object Attributes
Attribute Names and Usage 12-59

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
is_data_pin Boolean This attribute is true if a pin is a
data pin of a sequential cell.

For instance pin objects, this
attribute is true if the pin is a
valid and active data pin in the
design that is reached by a clock
signal and where that sequential
cell is not disabled by disabled
timing arcs or case analysis.

is_driver_scaled_max_fall Boolean Specifies whether the pin uses
scaling between libraries for the
driver model, either true or
false, for maximum fall analysis

is_driver_scaled_max_rise Boolean Specifies whether the pin uses
scaling between libraries for the
driver model, either true or
false, for maximum rise
analysis.

is_driver_scaled_min_fall Boolean Specifies whether the pin uses
scaling between libraries for the
driver model, either true or
false, for minimum fall analysis.

is_driver_scaled_min_rise Boolean Specifies whether the pin uses
scaling between libraries for the
driver model, either true or
false, for minimum rise analysis.

is_fall_edge_triggered_clock_pin Boolean This attribute is true if a pin is
used in the design as a falling-
edge-triggered flip-flop clock pin.

is_fall_edge_triggered_data_pin Boolean This attribute is true if a pin is
used in the design as a falling-
edge-triggered flip-flop data pin.

is_hierarchical Boolean This attribute is true for any pins
that are instantiations of another
design, and false for pins that
are instantiations of a library pin
(also known as leaf pins).

Table 12-11 Attributes of the pin Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-60

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
is_ideal Boolean This attribute is true if the pin
has been marked ideal using the
set_ideal_network command.

is_interface_logic_pin Boolean This attribute is true if the pin is
in the interface logic model (ILM)
of the design. This attribute is
read-only; you cannot change the
setting.

is_mux_select_pin Boolean This attribute is true if a pin is the
select pin of a multiplexer device.

is_negative_level_sensitive_clock_pin Boolean This attribute is true if a pin is
used in the design as a negative
edge-triggered flip-flop clock pin.

is_negative_level_sensitive_data_pin Boolean This attribute is true if a pin is
used in the design as a negative
edge-triggered flip-flop data pin.

is_port Boolean This attribute is true for a pin or a
port. Pins of ports are accessible
only from a timing_point object.

is_positive_level_sensitive_clock_pin Boolean This attribute is true if a pin is
used in the design as a positive
edge-triggered flip-flop clock pin.

is_positive_level_sensitive_data_pin Boolean This attribute is true if a pin is
used in the design as a positive
edge-triggered flip-flop data pin.

is_preset_pin Boolean This attribute is true if a pin is an
asynchronous preset pin.

is_receiver_scaled_max_fall Boolean Specifies whether the pin uses
scaling between libraries for the
receiver model, either true or
false, for maximum fall analysis.

is_receiver_scaled_max_rise Boolean Specifies whether the pin uses
scaling between libraries for the
receiver model, either true or
false, for maximum rise
analysis.

Table 12-11 Attributes of the pin Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-61
Chapter 12: Object Attributes
Attribute Names and Usage 12-61

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
is_receiver_scaled_min_fall Boolean Specifies whether the pin uses
scaling between libraries for the
receiver model, either true or
false, for minimum fall analysis.

is_receiver_scaled_min_rise Boolean Specifies whether the pin uses
scaling between libraries for the
receiver model, either true or
false, for minimum rise analysis.

is_rise_edge_triggered_clock_pin Boolean This attribute is true if a pin is
used in the design as a rising-
edge-triggered flip-flop clock pin.

is_rise_edge_triggered_data_pin Boolean This attribute is true if a pin is
used in the design as a rising-
edge-triggered flip-flop data pin.

is_three_state Boolean This attribute is true if a pin is a
three-state driver.

is_three_state_enable_pin Boolean This attribute is true if a pin is an
enable pin of a three-state device.

is_three_state_output_pin Boolean This attribute is true if a pin could
output a three-state signal.

lib_pin_name string The leaf pin name. For example,
the lib_pin_name of pin U2/U1/Z
is Z. This attribute is read-only.

max_capacitance float A floating-point value
representing the maximum
capacitance design rule limit for a
pin.

max_fall_arrival float A floating-point value that
specifies the arrival time for the
longest path with a falling
transition on a pin. In best-case,
worst-case mode, this value is for
the worst-case operating
condition.

Table 12-11 Attributes of the pin Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-62

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
max_fall_delay float A floating-point value that
specifies the maximum falling
delay on ports, clocks, pins, cells,
or on paths between such
objects. Set with the
set_max_delay command.

max_fall_slack float A floating-point value
representing the worst slack at a
pin for falling maximum path
delays. This attribute is valid for
path endpoints (register data pins
and primary outputs) after timing
has been updated.

max_fanout float A floating-point value
representing the maximum fanout
design rule limit for a pin.

max_rise_arrival float A floating-point value that
specifies the arrival time for the
longest path with a rising
transition on a pin. In best-case,
worst-case mode, this value is for
the worst-case operating
condition.

max_rise_delay float A floating-point value that
specifies the maximum rising
delay on ports, clocks, pins, cells,
or on paths between such
objects. Set with the
set_max_delay command.

max_rise_slack float A floating-point value
representing the worst slack at a
pin for rising maximum path
delays. This attribute is valid for
path endpoints (register data pins
and primary outputs) after timing
has been updated.

Table 12-11 Attributes of the pin Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-63
Chapter 12: Object Attributes
Attribute Names and Usage 12-63

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
max_time_borrow float A floating-point number that
establishes an upper limit for time
borrowing; that is, it prevents the
use of the entire pulse width for
level-sensitive latches. Units are
those used in the technology
library. Set with the
set_max_time_borrow
command.

max_transition float A floating-point value
representing the maximum
transition time design rule limit for
a pin.

min_capacitance float A floating-point value
representing the minimum
capacitance design rule limit for a
pin.

min_fall_arrival float A floating-point value that
specifies the arrival time for the
shortest path with a falling
transition on a pin. In best-case
worst-case mode, this value is for
the best-case mode.

min_fall_delay float A floating-point value that
specifies the minimum falling
delay on clocks, pins, cells, or on
paths between such objects. Set
with the set_min_delay
command.

min_fall_slack float A floating-point value
representing the worst slack at a
pin for falling minimum path
delays. This attribute is valid for
path endpoints (register data pins
and primary outputs) after timing
is updated.

min_fanout float A floating-point value
representing the minimum fanout
design rule limit for a pin.

Table 12-11 Attributes of the pin Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-64

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
min_rise_arrival float A floating-point value that
specifies the worst hold slack of
all paths passing through a pin
with a rising transition at a pin. In
best-case, worst-case operating
conditions, this value is for the
best-case condition. If all such
paths are unconstrained, the
value is infinity.

min_rise_delay float A floating-point value that
specifies the minimum rising
delay on ports, clocks, pins, cells,
or on paths between such
objects. Set with the
set_min_delay command.

min_rise_slack float A floating-point value
representing the worst slack at a
pin for rising minimum path
delays. This attribute is valid for
path endpoints (register data pins
and primary outputs) after timing
has been updated.

min_transition float A floating-point value
representing the minimum
transition time design rule limit for
a pin.

object_class string The class of the object. This is a
constant, equal to pin.

pin_capacitance_max float A floating-point value
representing the capacitance of a
pin for maximum conditions.

pin_capacitance_max_fall float Returns the maximum fall
capacitance of the pin. This
attribute is read-only; you cannot
change the setting.

pin_capacitance_max_rise float Returns the maximum rise
capacitance of the pin. This
attribute is read-only; you cannot
change the setting.

Table 12-11 Attributes of the pin Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-65
Chapter 12: Object Attributes
Attribute Names and Usage 12-65

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
pin_capacitance_min float A floating-point value
representing the capacitance of a
pin for minimum conditions.

pin_capacitance_min_fall float Returns the minimum fall
capacitance of the pin. This
attribute is read-only; you cannot
change the setting.

pin_capacitance_min_rise float Returns the minimum rise
capacitance of the pin. This
attribute is read-only; you cannot
change the setting.

pin_direction string The direction of a pin. Value can
be in, out, inout, or internal. This
attribute exists for backward
compatibility with dc_shell. See
the direction attribute.

power_base_clock string The name of the base clock
associated with this pin. If the pin
belongs to multiple clock
domains, the power_base_clock
attribute is set to the fastest of the
clocks.

power_rail_voltage_min
power_rail_voltage_max
power_rail_bidir_input_min
power_rail_bidir_input_max

float Specifies the minimum or
maximum power rail voltage set
on the pin. In the case of a
bidirectional pin, the output
voltage is returned by default. To
access the input voltage of a
bidirectional pin, use the
_bidir_input_ attributes.

propagated_clock Boolean Specifies that the clock edge
times be delayed by propagating
the values through the clock
network. If this attribute is not
present, ideal clocking is
assumed. Set with
set_propagated_clock.

Table 12-11 Attributes of the pin Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-66

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
rc_input_threshold_pct_fall_max
rc_input_threshold_pct_rise_max
rc_output_threshold_pct_fall_max
rc_output_threshold_pct_rise_max
rc_slew_derate_from_library_max
rc_slew_lower_threshold_pct_rise_max
rc_slew_upper_threshold_pct_rise_max
rc_slew_lower_threshold_pct_fall_max
rc_slew_upper_threshold_pct_fall_max

float The characterization trip points
(waveform measurement
thresholds) and slew derating
factor that PrimeTime uses to
calculate delays and transition
times. These attributes on an
instance pin return the library
threshold values obtained from
the maximum library in a min-max
analysis. For more information,
see “Characterization Trip Points”
on page 9-6.

rc_input_threshold_pct_rise_min
rc_input_threshold_pct_fall_min
rc_output_threshold_pct_rise_min
rc_output_threshold_pct_fall_min
rc_slew_derate_from_library_min
rc_slew_lower_threshold_pct_rise_min
rc_slew_upper_threshold_pct_rise_min
rc_slew_lower_threshold_pct_fall_min
rc_slew_upper_threshold_pct_fall_min

float The characterization trip points
(waveform measurement
thresholds) and slew derating
factor that PrimeTime uses to
calculate delays and transition
times. These attributes on an
instance pin return the library
threshold values obtained from
the minimum library in a min-max
analysis. For more information,
see “Characterization Trip Points”
on page 9-6.

receiver_model_scaling_libs_max collection The collection of library objects
used for receiver model scaling,
where applicable, for libs
maximum analysis.

receiver_model_scaling_libs_min collection The collection of library objects
used for receiver model scaling,
where applicable, for libs
minimum analysis.

receiver_model_type_max_fall string The receiver model type, either
“basic” (NLDM) or “advanced”
(CCS Timing), for type maximum
fall analysis.

receiver_model_type_max_rise string The receiver model type, either
“basic” (NLDM) or “advanced”
(CCS Timing), for type maximum
rise analysis.

Table 12-11 Attributes of the pin Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-67
Chapter 12: Object Attributes
Attribute Names and Usage 12-67

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
receiver_model_type_min_fall string The receiver model type, either
“basic” (NLDM) or “advanced”
(CCS Timing), for type minimum
fall analysis.

receiver_model_type_min_rise string The receiver model type, either
“basic” (NLDM) or “advanced”
(CCS Timing), for type minimum
rise analysis.

setup_uncertainty float A floating-point value that
specifies the clock uncertainty
(skew) of a clock used for setup
(and other maximum delay)
timing checks. Set with
set_clock_uncertainty.

si_noise_active_aggressors_above_high
si_noise_active_aggressors_above_low
si_noise_active_aggressors_below_high
si_noise_active_aggressors_below_low

collection Collection of a subset of effective
aggressors that contributed to the
worst case alignment to have
largest impact on noise bump
height.

si_noise_bumps_above_high
si_noise_bumps_below_high
si_noise_bumps_above_low
si_noise_bumps_below_low

string This attribute returns a string that
lists the aggressor nets for the
input pin and their corresponding
coupled bump heights and
widths, considering noise bumps
in the above-high, below-high,
above-low, or below-low region.
The format of the string is:

{{aggr1_name height width}
{aggr2_name height width}
 ... }

Height is in volts and width is in
library time units.

si_noise_height_factor_above_high
si_noise_height_factor_above_low
si_noise_height_factor_below_high
si_noise_height_factor_below_low

float This attribute returns the noise
height derating factor for the
specified pins, in the above-high,
below-high, above-low, or below-
low region.

Table 12-11 Attributes of the pin Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-68

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
si_noise_height_offset_above_high
si_noise_height_offset_above_low
si_noise_height_offset_below_high
si_noise_height_offset_below_low

float This attribute returns the noise
height derating factor for the
specified pins, in the above-high,
below-high, above-low, or below-
low region.

si_noise_lib_pin_name string Name of the library pin of
equivalent library cell specified for
noise analysis.

si_noise_prop_bumps_above_high
si_noise_prop_bumps_below_high
si_noise_prop_bumps_above_low
si_noise_prop_bumps_below_low

string This attribute returns a string that
shows the bump height and width
at the input pin caused by noise
propagation, in the above-high,
below-high, above-low, or below-
low region. The format of the
string is:

{height width}
Height is in volts and width is in
library time units.

si_noise_slack_above_high
si_noise_slack_below_high
si_noise_slack_above_low
si_noise_slack_below_low

float This attribute returns the amount
of noise slack for the pin in the
above-high, below-high, above-
low, or below-low region.

si_noise_total_bump_above_high
si_noise_total_bump_above_low
si_noise_total_bump_below_high
si_noise_total_bump_below_low

string This attribute returns a string that
shows the total bump height and
width at the input pin caused by
crosstalk and noise propagation,
in the above-high, below-high,
above-low, or below-low region.
The format of the string is:

{height width}
Height is in volts and width is in
library time units.

si_noise_width_factor_above_high
si_noise_width_factor_above_low
si_noise_width_factor_below_high
si_noise_width_factor_below_low

float This attribute returns the noise
width derating factor for the
specified pins, in the above-high,
below-high, above-low, or below-
low region.

si_noise_worst_prop_arc_above_high
si_noise_worst_prop_arc_above_low
si_noise_worst_prop_arc_below_high
si_noise_worst_prop_arc_below_low

collection The cell arc that corresponds to
the worst noise propagation to an
output pin of a cell.

Table 12-11 Attributes of the pin Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-69
Chapter 12: Object Attributes
Attribute Names and Usage 12-69

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Port Object Class Attributes
Table 12-12 lists the port object class attributes.

static_probability float The static probability of a pin. It is
the probability that the pin has the
logic value 1.

temperature_max
temperature_min

float Maximum or minimum
temperature specified for the cell
through the operating condition
specification or application of the
set_temperature command.

toggle_rate double The rate at which transitions
occur on the pin within a time
period.

user_case_value string The user-specified logic value of
a pin or port.

Table 12-12 Attributes of the port Object Class

Attribute name Type Description

actual_min_clock_pulse_width_high string Returns a string containing a per-
clock actual minimum pulse width
value at a port (high pulse).

actual_min_clock_pulse_width_low string Returns a string containing a per-
clock actual minimum pulse width
value at a port (low pulse).

actual_fall_transition_max float A floating-point value representing
the largest falling transition time for
a port. You cannot set this attribute.

actual_fall_transition_min float A floating-point value representing
the smallest falling transition time
for a port. You cannot set
this attribute.

Table 12-11 Attributes of the pin Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-70

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
actual_rise_transition_max float A floating-point value representing
the largest rising transition time for
a port. You cannot set this attribute.

actual_rise_transition_min float A floating-point value representing
the smallest rising transition time
for a port. You cannot set
this attribute.

annotated_fall_transition_delta_max float This attribute shows the additional
transition time added to the
maximum falling transition time on
a port. The additional transition
time is set by either the
set_annotated_transition
-delta_only command or by
PrimeTime SI during the crosstalk
analysis.

annotated_fall_transition_delta_min float This attribute shows the additional
transition time added to the
minimum falling transition time on a
port. The additional transition time
is set by either the
set_annotated_transition
-delta_only command or by
PrimeTime SI during the crosstalk
analysis.

annotated_rise_transition_delta_max float This attribute shows the additional
transition time added to the
maximum rising transition time on a
port. The additional transition time
is set by either the
set_annotated_transition
-delta_only command or by
PrimeTime SI during the crosstalk
analysis.

Table 12-12 Attributes of the port Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-71
Chapter 12: Object Attributes
Attribute Names and Usage 12-71

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
annotated_rise_transition_delta_min float This attribute shows the additional
transition time added to the
minimum rising transition time on a
port. The additional transition time
is set by either the
set_annotated_transition
-delta_only command or by
PrimeTime SI during the crosstalk
analysis.

arrival_window string The minimum and maximum
arrivals for rising and falling
transitions.

cached_c1_max_fall
cached_c1_max_rise
cached_c1_min_fall
cached_c1_min_rise

float The value of C1 (first capacitance
of CCS receiver model) stored
during the delay calculation.

cached_c2_max_fall
cached_c2_max_rise
cached_c2_min_fall
cached_c2_min_rise

float The value of C2 (first capacitance
of CCS receiver model) stored
during the delay calculation.

cached_ceff_max_fall
cached_ceff_max_rise
cached_ceff_min_fall
cached_ceff_min_rise

float Worst effective capacitance of a net
with detailed parasitics stored
during the delay calculation that is
connected to this input port. This
requires the rc_cache_min_max_
rise_fall_ceff variable to be set
to true before the timing update.

case_value string The user-specified logic value of a
pin or port propagated from a case
analysis or logic constant in the
design.

ceff_params_max string The parameters used to find the
maximum effective capacitance for
each timing arc feeding a driver pin
attached to an annotated RC
network. The parameters specify a
linear driver model (rd = drive
resistance, t0 = start of voltage
ramp, delta_t = duration of voltage
ramp, ceff = effective capacitance).

Table 12-12 Attributes of the port Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-72

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
ceff_params_min string The parameters used to find the
minimum effective capacitance for
each timing arc feeding a driver pin
attached to an annotated RC
network. The parameters specify a
linear driver model (rd = drive
resistance, t0 = start of voltage
ramp, delta_t = duration of voltage
ramp, ceff = effective capacitance).

clock_latency_fall_max float The user-specified maximum fall
latency (insertion delay) for clock
networks through a port. Set with
the set_clock_latency
command.

clock_latency_fall_min float The user-specified minimum fall
latency (insertion delay) for clock
networks through a port. Set with
the set_clock_latency
command.

clock_latency_rise_max float The user-specified maximum rise
latency (insertion delay) for clock
networks through a port. Set with
the set_clock_latency
command.

clock_latency_rise_min float The user-specified minimum rise
latency (insertion delay) for clock
networks through a port. Set with
the set_clock_latency
command.

clock_source_latency_early_fall_max float The maximum early falling source
latency. Set with the
set_clock_latency command.

clock_source_latency_early_fall_min float The minimum early falling source
latency. Set with the
set_clock_latency command.

clock_source_latency_early_rise_max float The maximum early rising source
latency. Set with the
set_clock_latency command.

Table 12-12 Attributes of the port Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-73
Chapter 12: Object Attributes
Attribute Names and Usage 12-73

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
clock_source_latency_early_rise_min float The minimum early rising source
latency. Set with the
set_clock_latency command.

clock_source_latency_late_fall_max float The maximum late falling source
latency. Set with the
set_clock_latency command.

clock_source_latency_late_fall_min float The minimum late falling source
latency. Set with the
set_clock_latency command.

clock_source_latency_late_rise_max float The maximum late rising source
latency. Set with the
set_clock_latency command.

clock_source_latency_late_rise_min float The minimum late rising source
latency. Set with the
set_clock_latency command.

clocks collection The collection of clock objects
which propagate through this port.
It is undefined if no clocks are
present.

connection_class string Specifies the connection class
string for a port.

constant_value string The logic value of a port tied to
logic constant zero or one in the
netlist.

constraining_max_transition float Returns the most constraining
user-defined maximum transition
value at a port.

direction string The direction of a port. Value can
be in, out, inout, or internal. The
port_direction attribute is a
synonym for direction. You cannot
set this attribute.

disable_timing Boolean This attribute is true if the timing
for the port has been marked as
disabled with the
set_disable_timing command.

Table 12-12 Attributes of the port Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-74

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
drive_resistance_fall_max float A floating-point value representing
the linear drive resistance for falling
delays and maximum conditions,
associated with an input or inout
port. Set with the set_drive
command.

drive_resistance_fall_min float A floating-point value representing
the linear drive resistance for falling
delays and minimum conditions,
associated with an input or inout
port. Set with the set_drive
command.

drive_resistance_rise_max float A floating-point value representing
the linear drive resistance for rising
delays and maximum conditions,
associated with an input or inout
port. Set with the set_drive
command.

drive_resistance_rise_min float A floating-point value representing
the linear drive resistance for rising
delays and minimum conditions,
associated with an input or inout
port. Set with the set_drive
command.

driver_model_scaling_libs_max collection The collection of library objects
used for driver model scaling,
where applicable, for libs maximum
analysis.

driver_model_scaling_libs_min collection The collection of library objects
used for driver model scaling,
where applicable, for libs minimum
analysis.

driver_model_type_max_fall string The driver model type, either
“basic” (NLDM) or “advanced”
(CCS Timing), for maximum fall
analysis.

Table 12-12 Attributes of the port Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-75
Chapter 12: Object Attributes
Attribute Names and Usage 12-75

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
driver_model_type_max_rise string The driver model type, either
“basic” (NLDM) or “advanced”
(CCS Timing), for maximum rise
analysis.

driver_model_type_min_fall string The driver model type, either
“basic” (NLDM) or “advanced”
(CCS Timing), for minimum fall
analysis.

driver_model_type_min_rise string The driver model type, either
“basic” (NLDM) or “advanced”
(CCS Timing), for minimum rise
analysis.

driving_cell_dont_scale Boolean When true, indicates not to scale
the transition time on the port using
the driving cell. Otherwise the
transition time is scaled by
operating condition factors. Set
with the set_driving_cell
command.

driving_cell_fall_max string A string that names a library cell
from which to copy maximum fall
drive capability to be used in fall
transition calculation for the port.
Set with the set_driving_cell
command.

driving_cell_fall_min string A string that names a library cell
from which to copy the minimum
fall drive capability to be used in fall
transition calculation for the port.
Set with the set_driving_cell
command.

driving_cell_from_pin_fall_max string A string that names the
driving_cell_fall_max input pin
to be used to find timing arc
maximum fall drive capability. Set
with the set_driving_cell
command.

Table 12-12 Attributes of the port Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-76

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
driving_cell_from_pin_fall_min string A string that names the
driving_cell_fall_min input pin
to be used to find timing arc
minimum fall drive capability. Set
with the set_driving_cell
command.

driving_cell_from_pin_rise_max string A string that names the
driving_cell_rise_max input pin
to be used to find timing arc rise
drive capability. Set with the
set_driving_cell command.

driving_cell_from_pin_rise_min string A string that names the
driving_cell_rise_min input pin
to be used to find timing arc rise
drive capability. Set with the
set_driving_cell command.

driving_cell_library_fall_max string A string that names the library in
which to find the
driving_cell_fall_max. Set with
the set_driving_cell command.

driving_cell_library_fall_min string A string that names the library in
which to find the
driving_cell_fall_min. Set with
the set_driving_cell command.

driving_cell_library_rise_max string A string that names the library in
which to find the
driving_cell_rise_max. Set with
the set_driving_cell command.

driving_cell_library_rise_min string A string that names the library in
which to find the
driving_cell_rise_min. Set with the
set_driving_cell command.

Table 12-12 Attributes of the port Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-77
Chapter 12: Object Attributes
Attribute Names and Usage 12-77

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
driving_cell_max_fall_itrans_fall float The value of the maximum input
transition for the driving cell that
was associated with a port by the
set_driving_cell command.
This attribute represents the falling
transition at the from_pin of the
driving cell that is used to compute
the falling transition value at a pin
that drives the port.

driving_cell_max_fall_itrans_rise float The value of the maximum input
transition for the driving cell that
was associated with a port by the
set_driving_cell command.
This attribute represents the falling
transition value at the from_pin of
the driving cell that is used to
compute the rising transition value
at the pin that drives the port.

driving_cell_max_rise_itrans_fall float The value of the maximum input
transition for the driving cell that
was associated with a port by the
set_driving_cell command.
This attribute represents the rising
transition value at the from_pin of
the driving cell that is used to
compute falling transition value at
the pin that drives the port.

driving_cell_max_rise_itrans_rise float The value of the maximum input
transition for the driving cell that
was associated with a port by the
set_driving_cell command.
This attribute represents the rising
transition value at the from_pin of
the driving cell that is used to
compute the rising transition value
at the pin that drives the port.

Table 12-12 Attributes of the port Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-78

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
driving_cell_min_fall_itrans_fall float The value of the minimum input
transition for the driving cell that
was associated with a port by the
set_driving_cell command.
This attribute represents the
minimum falling transition value at
the from_pin of the driving cell that
is used to compute the falling
transition value at the pin that
drives the port.

driving_cell_min_fall_itrans_rise float The value of the minimum input
transition for the driving cell that
was associated with a port by the
set_driving_cell command.
This attribute represents the
minimum falling transition value at
the from_pin of the driving cell that
is used to compute the rising
transition value at the pin that
drives the port.

driving_cell_min_rise_itrans_fall float The value of the minimum input
transition for the driving cell that
was associated with a port by the
set_driving_cell command.
This attribute represents the
minimum rise transition value at the
from_pin of the driving cell that is
used to compute the falling
transition value at the pin that
drives the port.

driving_cell_min_rise_itrans_rise float The value of the minimum input
transition for the driving cell that
was associated with a port by the
set_driving_cell command.
This attribute represents the
minimum rise transition value at the
from_pin of the driving cell that is
used to compute the rising
transition value at the pin that
drives the port.

Table 12-12 Attributes of the port Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-79
Chapter 12: Object Attributes
Attribute Names and Usage 12-79

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
driving_cell_multiply_by float A floating-point value that multiplies
the transition time of the port
marked with this attribute. Set with
the set_driving_cell command.

driving_cell_no_design_rule Boolean This attribute is true if driving cell
information has been set on a port
with set_driving_cell -
no_design_rule. If true, the
driving cell’s design rule limits
(max_capacitance and so forth)
are not used for the port.

driving_cell_pin_fall_max string A string that names the
driving_cell_fall_max output
pin to be used to find timing arc fall
drive capability. Set with the
set_driving_cell command.

driving_cell_pin_fall_min string A string that names the
driving_cell_fall_min output pin to
be used to find timing arc fall drive
capability. Set with the
set_driving_cell command.

driving_cell_pin_rise_max string A string that names the
driving_cell_rise_max output
pin to be used to find timing arc rise
drive capability. Set with the
set_driving_cell command.

driving_cell_pin_rise_min string A string that names the
driving_cell_rise_min output
pin to be used to find timing arc rise
drive capability. Set with the
set_driving_cell command.

driving_cell_rise_max string A string that names a library cell
from which to copy maximum rise
drive capability to be used in rise
transition calculation for the port.
Set with the set_driving_cell
command.

Table 12-12 Attributes of the port Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-80

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
driving_cell_rise_min string A string that names a library cell
from which to copy the minimum
rise drive capability to be used in
rise transition calculation for the
port. Set with the
set_driving_cell command.

effective_capacitance_max float The effective capacitance for
maximum operating conditions.
Valid only for driver pins attached to
annotated RC networks.

effective_capacitance_min float The effective capacitance for
minimum operating conditions.
Valid only for driver pins attached to
annotated RC networks.

escaped_full_name string Contains the name of the cell. Any
literal hierarchy characters are
escaped with a backslash.

fanout_load float Specifies the fanout load on output
ports. Set with the
set_fanout_load command.

full_name string The name of a port. You cannot set
this attribute.

hold_uncertainty float A floating-point value that specifies
the clock uncertainty (skew) of a
clock used for hold (and other
minimum delay) timing checks. Set
with the set_clock_uncertainty
command.

ideal_latency_max_fall
ideal_latency_max_rise
ideal_latency_min_fall
ideal_latency_min_rise

float Ideal delay value annotated on a
port in an ideal network, using the
set_ideal_latency command.

ideal_transition_max_fall
ideal_transition_max_rise
ideal_transition_min_fall
ideal_transition_min_rise

float Ideal transition time annotated on a
port in an ideal network, using the
set_ideal_transition
command.

Table 12-12 Attributes of the port Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-81
Chapter 12: Object Attributes
Attribute Names and Usage 12-81

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
input_transition_fall_max float A floating-point value representing
the fixed transition time for falling
delays, maximum conditions
associated with an input or inout
port. Set with the
set_input_transition
command.

input_transition_fall_min float A floating-point value representing
the fixed transition time for falling
delays and minimum conditions
associated with an input or inout
port. Set with the
set_input_transition
command.

input_transition_rise_max float A floating-point value representing
the fixed transition time for rising
delays and maximum conditions
associated with an input or inout
port. Set with the
set_input_transition
command.

input_transition_rise_min float A floating-point value representing
the fixed transition time for rising
delays and minimum conditions
associated with an input or inout
port. Set with the
set_input_transition
command.

is_clock_used_as_clock
is_clock_used_as_data

Boolean When both true, the clock through
the specified pin acts as both clock
and data. When
is_clock_used_as_clock is true
and is_clock_used_as_data is
false, the clock through the
specified pin acts only as a clock
and never as data. When
is_clock_used_as_data is true
and is_clock_used_as_clock is
false, the clock through the
specified pin acts only as data and
never as clock.

Table 12-12 Attributes of the port Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-82

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
is_driver_scaled_max_fall Boolean Specifies whether the port uses
scaling between libraries for the
driver model, either true or false,
for maximum fall analysis.

is_driver_scaled_max_rise Boolean Specifies whether the port uses
scaling between libraries for the
driver model, either true or false,
for maximum rise analysis.

is_driver_scaled_min_fall Boolean Specifies whether the port uses
scaling between libraries for the
driver model, either true or false
for minimum fall analysis.

is_driver_scaled_min_rise Boolean Specifies whether the port uses
scaling between libraries for the
driver model, either true or false,
for minimum rise analysis.

is_ideal Boolean This attribute is true if the port has
been marked ideal using the
set_ideal_network command.

is_receiver_scaled_max_fall Boolean Specifies whether the port uses
scaling between libraries for the
receiver model, either ttrue or
false, for maximum fall analysis.

is_receiver_scaled_max_rise Boolean Specifies whether the port uses
scaling between libraries for the
receiver model, either true or
false, for maximum rise analysis.

is_receiver_scaled_min_fall Boolean Specifies whether the port uses
scaling between libraries for the
receiver model, either true or
false for minimum fall analysis.

is_receiver_scaled_min_rise Boolean Specifies whether the port uses
scaling between libraries for the
receiver model, either true or
false, for minimum rise analysis.

Table 12-12 Attributes of the port Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-83
Chapter 12: Object Attributes
Attribute Names and Usage 12-83

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
max_capacitance float A floating-point number that sets
the maximum capacitance value for
input, output, or bidirectional ports,
and designs. The units must be
consistent with those of the
technology library used during
optimization. Set with the
set_max_capacitance command.

max_fall_delay float A floating-point value that specifies
the maximum falling delay on ports,
clocks, pins, cells, or on paths
between such objects. Set with the
set_max_delay command.

max_fall_slack float A floating-point value representing
the worst slack at a port for falling
maximum path delays. This
attribute is valid for path endpoints
(register data pins and primary
outputs) after timing has been
updated. You cannot set this
attribute.

max_fanout float Specifies the maximum fanout load
for the net connected to this port.
PrimeTime ensures that the fanout
load on this port is less than the
specified value. Set with the
set_max_fanout command

max_rise_delay float A floating-point value that specifies
the maximum rising delay on ports,
clocks, pins, cells, or on paths
between such objects. Set with
the set_max_delay command.

max_rise_slack float A floating-point value representing
the worst slack at a port for rising
maximum path delays. This
attribute is valid for path endpoints
(register data pins and primary
outputs) after timing is updated.
You cannot set this attribute.

Table 12-12 Attributes of the port Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-84

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
max_transition float Specifies the maximum transition
time for the net connected to this
port. The compile command
ensures that value. Set with the
set_max_transition command.

min_capacitance float A floating-point number that sets
the minimum capacitance value for
input and bidirectional ports. The
units must be consistent with those
of the technology library used. Set
with the set_min_capacitance
command.

min_fall_delay float A floating-point value that specifies
the minimum falling delay on ports,
clocks, pins, cells, or on paths
between such objects. Set with the
set_min_delay command.

min_fall_slack float A floating-point value representing
the worst slack at a port for falling
minimum path delays. This
attribute is valid for path endpoints
(register data pins and primary
outputs) after timing is updated.
You cannot set this attribute.

min_fanout float A floating-point value representing
the minimum fanout design rule
limit for a port. Set with the
set_min_fanout command.

min_rise_delay float A floating-point value that specifies
the minimum rising delay on ports,
clocks, pins, cells, or on paths
between such objects. Set with the
set_min_delay command.

min_rise_slack float A floating-point value representing
the worst slack at a port for rising
minimum path delays. This
attribute is valid for path endpoints
(register data pins and primary
outputs) after timing is updated.
You cannot set this attribute.

Table 12-12 Attributes of the port Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-85
Chapter 12: Object Attributes
Attribute Names and Usage 12-85

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
min_transition float A floating-point value representing
the minimum transition time design
rule limit for a port. Set with the
set_min_transition command.

object_class string The class of the object. This is a
constant, equal to port. You cannot
set this attribute.

pin_capacitance_max float A floating-point value representing
the pin capacitance of a port for
maximum conditions (wire
capacitance is not included). Set
with the set_load command.

pin_capacitance_max_fall float Returns the maximum fall
capacitance of the port. This
attribute is read-only; you cannot
change the setting.

pin_capacitance_max_rise float Returns the maximum rise
capacitance of the port. This
attribute is read-only; you cannot
change the setting.

pin_capacitance_min float A floating-point value representing
the pin capacitance of a port for
minimum conditions (wire
capacitance is not included). Set
with the set_load command.

pin_capacitance_min_fall float Returns the minimum fall
capacitance of the port. This
attribute is read-only; you cannot
change the setting.

pin_capacitance_min_rise float Returns the minimum rise
capacitance of the port. This
attribute is read-only; you cannot
change the setting.

Table 12-12 Attributes of the port Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-86

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
port_direction string The direction of a port. Value can
be in, out, or inout. This attribute
exists for backward compatibility
with dc_shell. See the direction
attribute. You cannot set this
attribute.

power_base_clock string The name of the base clock
associated with this port. If the port
belongs to multiple clock domains,
the power_base_clock attribute is
set to the fastest of the clocks.

power_rail_voltage_max float Voltage value on port or pin object
for maximum condition

power_rail_voltage_min float Voltage value on port or pin object
for minimum condition

propagated_clock Boolean Specifies that the clock edge times
be delayed by propagating the
values through the clock network.
Affects all sequential cells in the
transitive fanout of this port. If this
attribute is not present, PrimeTime
assumes ideal clocking. Set with
set_propagated_clock
command.

receiver_model_scaling_ libs_max collection The collection of library objects
used for receiver model scaling,
where applicable, for libs maximum
analysis.

receiver_model_scaling_libs_min collection The collection of library objects
used for receiver model scaling,
where applicable, for libs minimum
analysis.

receiver_model_type_max_fall string The receiver model type, either
“basic” (NLDM) or “advanced”
(CCS Timing), for type maximum
fall analysis.

Table 12-12 Attributes of the port Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-87
Chapter 12: Object Attributes
Attribute Names and Usage 12-87

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
receiver_model_type_max_rise string The receiver model type, either
“basic” (NLDM) or “advanced”
(CCS Timing), for type maximum
rise analysis.

receiver_model_type_min_fall string The receiver model type, either
“basic” (NLDM) or “advanced”
(CCS Timing), for type minimum fall
analysis.

receiver_model_type_min_rise string The receiver model type, either
“basic” (NLDM) or “advanced”
(CCS Timing), for type minimum
rise analysis.

setup_uncertainty float A floating-point value that specifies
the clock uncertainty (skew) of a
clock used for setup (and other
maximum delay) timing checks. Set
with the set_clock_uncertainty
command.

si_noise_active_aggressors_above_high
si_noise_active_aggressors_above_low
si_noise_active_aggressors_below_high
si_noise_active_aggressors_below_low

collection This attribute returns a collection of
active aggressor nets for the input
port, considering crosstalk noise
bumps in the above-high, below-
high, above-low, or below-low
region. An active aggressor is an
aggressor that contributes to the
worst-case noise bump on the
victim net.

si_noise_bumps_above_high
si_noise_bumps_above_low
si_noise_bumps_below_high
si_noise_bumps_below_low

string This attribute returns a string that
lists the aggressor nets for the input
port and their corresponding
coupled bump heights and widths,
considering noise bumps in the
above-high, below-high, above-low,
or below-low region. The format of
the string is:

{{aggr1_name height width}
{aggr2_name height width}
 ... }

Height is in volts and width is in
library time units.

Table 12-12 Attributes of the port Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-88

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
si_noise_height_factor_above_high
si_noise_height_factor_above_low
si_noise_height_factor_below_high
si_noise_height_factor_below_low

float This attribute returns the noise
height derating factor for the
specified ports, in the above-high,
below-high, above-low, or below-
low region.

si_noise_height_offset_above_high
si_noise_height_offset_above_low
si_noise_height_offset_below_high
si_noise_height_offset_below_low

float This attribute returns the noise
height offset derating factor for the
specified ports, in the above-high,
below-high, above-low, or below-
low region.

si_noise_prop_bumps_above_high
si_noise_prop_bumps_above_low
si_noise_prop_bumps_below_high
si_noise_prop_bumps_below_low

string This attribute returns a string that
shows the bump height and width
at the input port caused by noise
propagation, in the above-high,
below-high, above-low, or below-
low region. The format of the string
is:

{height width}
Height is in volts and width is in
library time units.

si_noise_slack_above_high
si_noise_slack_above_low
si_noise_slack_below_high
si_noise_slack_below_low

float This attribute returns the amount of
noise slack for the port in the
above-high, below-high, above-low,
or below-low region.

si_noise_total_bump_above_high
si_noise_total_bump_above_low
si_noise_total_bump_below_high
si_noise_total_bump_below_low

string This attribute returns a string that
shows the total bump height and
width at the input port caused by
crosstalk and noise propagation, in
the above-high, below-high, above-
low, or below-low region. The
format of the string is:

{height width}
Height is in volts and width is in
library time units.

si_noise_width_factor_above_high
si_noise_width_factor_above_low
si_noise_width_factor_below_high
si_noise_width_factor_below_low

float This attribute returns the noise
width derating factor for the
specified ports, in the above-high,
below-high, above-low, or below-
low region.

Table 12-12 Attributes of the port Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-89
Chapter 12: Object Attributes
Attribute Names and Usage 12-89

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
si_noise_worst_prop_arc_above_high
si_noise_worst_prop_arc_above_low
si_noise_worst_prop_arc_below_high
si_noise_worst_prop_arc_below_low

collection The cell arc that corresponds to the
worst noise propagation to an input
port with a driving cell.

temperature_max float Maximum temperature specified for
the cell through the operating
condition specification or
application of the
set_temperature command.

temperature_min float Minimum temperature specified for
the cell through the operating
condition specification or
application of the
set_temperature command.

user_case_value string The user-specified logic value of a
pin or port.

wire_capacitance_max
wire_capacitance_min

float A floating-point value representing
the wire capacitance of a port for
maximum/minimum conditions (pin
capacitance is not included). Set
with the set_load command.

wire_capacitance_max_fall float Returns the maximum fall wire
capacitance of the net. This
attribute is read-only; you cannot
change the setting.

wire_capacitance_max_rise float Returns the maximum rise wire
capacitance of the net. This
attribute is read-only; you cannot
change the setting.

wire_capacitance_min_fall float Returns the minimum fall wire
capacitance of the net. This
attribute is read-only; you cannot
change the setting.

wire_capacitance_min_rise float Returns the minimum rise wire
capacitance of the net. This
attribute is read-only; you cannot
change the setting.

Table 12-12 Attributes of the port Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-90

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
wire_load_model_max string The name of a wire load model (for
maximum conditions) that can be
used for prelayout wire load
estimation of the net connected to
a port. Set with the
set_wire_load_model command.

wire_load_model_min string The name of a wire load model (for
minimum conditions) that can be
used for prelayout wire load
estimation of the net connected to
a port. Set with the
set_wire_load_model command.

Table 12-12 Attributes of the port Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-91
Chapter 12: Object Attributes
Attribute Names and Usage 12-91

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Timing Arc Object Class Attributes
Table 12-13 lists the timing arc object class attributes.

Table 12-13 Attributes of the timing_arc Object Class

Attribute name Type Description

annotated_delay_delta_max_fall float Specifies a delay that is added to the
maximum falling delay of a timing arc.
The additional delay is set by either the
set_annotated_delay -delta_only
command or by PrimeTime SI during the
crosstalk analysis.

annotated_delay_delta_max_rise float Specifies a delay that is added to the
maximum rising delay of a timing arc.
The additional delay is set by either the
set_annotated_delay -delta_only
command or by PrimeTime SI during the
crosstalk analysis.

annotated_delay_delta_min_fall float Specifies a delay that is added to the
minimum falling delay of a timing arc.
The additional delay is set by either the
set_annotated_delay -delta_only
command or by PrimeTime SI during the
crosstalk analysis.

annotated_delay_delta_min_rise float Specifies a delay that is added to the
minimum rising delay of a timing arc. The
additional delay is set by either the
set_annotated_delay -delta_only
command or by PrimeTime SI during the
crosstalk analysis.

delay_max_fall float A floating-point value representing the
maximum falling delay of the timing arc.

delay_max_rise float A floating-point value representing the
maximum rising delay of the timing arc.

delay_min_fall float A floating-point value representing the
minimum falling delay of the timing arc.

delay_min_rise float A floating-point value representing the
minimum rising delay of the timing arc.
Chapter 12: Object Attributes
Attribute Names and Usage 12-92

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
from_pin collection A collection containing the from pin of
the timing arc.

is_annotated_fall_max Boolean Returns true if the maximum falling
delay of the timing arc is back-
annotated.

is_annotated_fall_min Boolean Returns true if the minimum falling
delay of the timing arc is back-
annotated.

is_annotated_rise_max Boolean Returns true if the maximum rising
delay of the timing arc is back-
annotated.

is_annotated_rise_min Boolean Returns true if the minimum rising delay
of the timing arc is back-annotated.

is_cellarc Boolean Returns true if the timing arc is a cell
arc, and false for net arcs.

is_constraint_scaled_max_fall Boolean Specifies whether the constraint timing
arcs uses scaling between libraries for
the driver model, either true or false,
for maximum fall analysis.

is_constraint_scaled_max_rise Boolean Specifies whether the constraint timing
arcs uses scaling between libraries for
the driver model, either true or false,
for maximum rise analysis.

is_constraint_scaled_min_fall Boolean Specifies whether the constraint timing
arcs uses scaling between libraries for
the driver model, either true or false,
for minimum fall analysis.

is_constraint_scaled_min_rise Boolean Specifies whether the constraint timing
arcs uses scaling between libraries for
the driver model, either true or false,
for minimum rise analysis.

Table 12-13 Attributes of the timing_arc Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-93
Chapter 12: Object Attributes
Attribute Names and Usage 12-93

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
is_db_inherited_disabled Boolean When this attribute is true, it indicates
that an arc is a database-inherited
disabled arc. Such an arc has been
disabled for loop breaking by upstream
tools, and PrimeTime also disables
these arcs to be compliant with these
tools. Set the
timing_keep_loop_breaking_
disabled_arcs variable to true to
enable inheriting of .db disabled timing
arcs.

is_disabled Boolean Returns true if the timing arc is
disabled.

is_user_disabled Boolean Returns true if the timing arc is disabled
by using the set_disable_timing
command.

mode string Returns the mode string of the timing
arc.

object_class string The class of the object. This is a
constant equal to “timing_arc.”

sdf_cond string Returns the SDF condition of the timing
arc.

sdf_cond_end string Returns the SDF condition at the
endpoint of the timing arc. Variable
sdf_enable_cond_start_end must be
true.

sdf_cond_start string Returns the SDF condition at the
startpoint of the timing arc. Variable
sdf_enable_cond_start_end must be
true.

sense string Returns the sense of the timing arc.

to_pin collection A collection containing the to-pin of the
timing arc.

when string Returns the when string of the timing
arc.

Table 12-13 Attributes of the timing_arc Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-94

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Timing Path Object Class Attributes
Table 12-14 lists the timing path object class attributes.

Table 12-14 Attributes of the timing_path Object Class

Attribute name Type Description

arrival float The arrival time at the endpoint of the
timing_path.

capture_clock_paths collection Returns timing path collections for
the capture clock. The path
corresponds to the output you see
from report_timing -path
full_clock_expanded.

If the capturing registers are clocks
by a regular clock, it returns only one
path in the collection. If it’s a
generated clock, the first path in the
collection is the master clock path,
followed by each dependent
generated clock until it reaches the
register’s clock pin.

clock_uncertainty float The clock uncertainty of the
timing_path. The uncertainty can be
defined with the
set_clock_uncertainty command.

common_path_pessimism float The value of the clock reconvergence
common path pessimism. This
attribute is defined only if you are
using on-chip variation analysis and
have specified the -
report_clock_reconvergence_
pessimism option to
get_timing_paths.

crpr_common_point collection Returns the clock pin corresponding
to the common pin used for CRP
calculation for the path.

If the launch/capture clock is ideal,
the clock source will be returned as
the common point. If the launch clock
is different than the capture clock, the
attribute will not exist on the path.
Chapter 12: Object Attributes
Attribute Names and Usage 12-95
Chapter 12: Object Attributes
Attribute Names and Usage 12-95

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
depth_cell_capture
depth_cell_launch
depth_net_capture
depth_net_launch

float Advanced on-chip variation (OCV)
calculated depth for a path.

distance_cell
distance_net

float Advanced on-chip variation (OCV)
calculated distance for a path.

dominant_exception string Exists only if the path has at least one
timing exception. If so, it specifies the
type of the dominant exception for the
path, if any. The valuse are
false_path, multicycle_path, and
min_max_delay. See the -
exceptions option of the
report_timing command.

endpoint string The timing endpoint name of the
timing_path, for example, U1/U5/
par_reg/D.

endpoint_clock string The clock name of the clock at the
path endpoint.

endpoint_clock_close_edge_type string The type of clock edge (rise or fall)
that closes (latches) the data.

endpoint_clock_close_edge_value float The value of the closing edge of the
endpoint clock.

endpoint_clock_is_inverted Boolean Returns true if the endpoint clock
has been inverted.

endpoint_clock_is_propagated Boolean Returns true if the endpoint clock is
a propagated clock, false if it is an
ideal clock. You can set a clock as
propagated using the
set_propagated_clock command.

endpoint_clock_latency float The latency of the endpoint clock. If
the clock is propagated, it is the
computed latency (or delay) from the
clock source to the endpoint. You can
set clock latency using the
set_clock_latency command.

Table 12-14 Attributes of the timing_path Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-96

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
endpoint_clock_open_edge_type string The type of clock edge (rise or fall)
that opens the endpoint latch. If the
endpoint is edge-triggered, the open
and close edges are the same.

endpoint_clock_open_edge_value float The value of the opening edge of the
endpoint clock.

endpoint_clock_pin string The complete path name of the
endpoint clock pin, for example, U23/
U_reg/out_reg[2]/CP.

endpoint_hold_time_value float The value of the register hold time at
the timing endpoint. For example, for
a flip-flop this would be the library
hold time for the flip-flop cell.

endpoint_is_level_sensitive Boolean Returns true if the endpoint is a
level-sensitive device, for example, a
latch. Returns false if the endpoint
is edge-triggered.

endpoint_output_delay_value float The value of the output delay of the
timing endpoint. You can set the
output delay value with
set_output_delay.

endpoint_recovery_time_value float The value of the recovery time at the
timing endpoint. Recovery and
removal times are often defined for
the asynchronous set and clear pins
of registers.

endpoint_removal_time_value float The value of the removal time at the
timing endpoint. Recovery and
removal times are often defined for
the asynchronous set/clear pins of
registers.

endpoint_setup_time_value float The value of the setup time at the
timing endpoint. Recovery and
removal times are often defined for
the asynchronous set and clear pins
of registers.

Table 12-14 Attributes of the timing_path Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-97
Chapter 12: Object Attributes
Attribute Names and Usage 12-97

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
endpoint_unconstrained_reason string Exists only if the path endpoint is
unconstrained. If so, it specifies the
reason why the endpoint is
unconstrained. Possible reasons
include no_capture_clock,
dangling_end_point, and
fanin_of_disabled.

is_recalculated Boolean Returns true if the timing information
for the path comes from path-based
(recalculated) timing analysis.

launch_clock_paths collection Returns timing path collections for
the launch clock. The path
corresponds to the output you see
from report_timing -path
full_clock_expanded.

If the launching registers are clocks
by a regular clock, it returns only one
path in the collection. If it’s a
generated clock, the first path in the
collection is the master clock path,
followed by each dependent
generated clock until it reaches the
register’s clock pin.

object_class string The class of the object. This is a
constant, equal to timing_path. You
cannot set this attribute.

path_group collection The path group of the timing path.

path_type string The type of timing path (maximum or
minimum). A path for a setup check is
path_type of maximum.

points collection Returns a collection of the timing
points that comprise a timing path.
For example, the timing points listed
in the left-hand column of a
report_timing command
correspond to this collection. A single
timing path can consist of many
timing points. You can iterate through
each timing point using
foreach_in_collection.

Table 12-14 Attributes of the timing_path Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-98

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
required float The required time value for the timing
path. Corresponds to the data
required time of a timing report.

slack float The slack of the timing path. Negative
values represent violated paths.
Corresponds to the slack of a timing
report.

startpoint collection The startpoint of the timing path.
Corresponds to the startpoint in the
header of a timing report.

startpoint_clock collection The startpoint clock name of the
timing path.

startpoint_clock_is_inverted Boolean Returns true if the startpoint clock is
inverted.

startpoint_clock_is_propagated Boolean Returns true if the startpoint clock is
a propagated clock, false if it is an
ideal clock. You can set a clock as
propagated using the
set_propagated_clock command.

startpoint_clock_latency float The latency of the startpoint clock. If
the clock is propagated, it is the
computed latency (or delay) from the
clock source to the endpoint. You can
set clock latency using the
set_clock_latency command.

startpoint_clock_open_edge_type string The type of clock edge (rise or fall)
that launches the data.

startpoint_clock_open_edge_value float The value of the opening edge of the
startpoint clock.

startpoint_input_delay_value float The value of the startpoint input
delay.

startpoint_is_level_sensitive Boolean Returns true if the startpoint is a
level-sensitive device, such as a
latch. Returns false if the startpoint
is edge-triggered.

Table 12-14 Attributes of the timing_path Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-99
Chapter 12: Object Attributes
Attribute Names and Usage 12-99

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
startpoint_unconstrained_reason string Exists only if the path startpoint is
unconstrained. If so, it specifies the
reason why the startpoint is
unconstrained. Possible reasons
include no_launch_clock,
dangling_start_point, and
fanout_of_disabled.

time_borrowed_from_endpoint float Returns the amount of time borrowed
from the timing endpoint. Time
borrowing occurs in paths involving
level-sensitive devices.

time_lent_to_startpoint float Returns the amount of time lent to the
timing startpoint. Time borrowing
occurs in paths involving level-
sensitive devices.

transparent_latch_paths collection For paths with a transparent latch D-
pin startpoint, if the startpoint is
borrowing, the attribute returns the
chain of "upstream" borrowing paths
that lead up to the borrowing
startpoint. To use the attribute, you
must gather the path using the -
trace_latch_borrow option.

variation_arrival collection Arrival time variation of the path.

variation_common_path_pessimism collection The variation of the clock
reconvergence common path
pessimism.

variation_endpoint_clock_latency collection Capture-clock arrival time variation.

variation_endpoint_hold_time_value collection The variation of the register hold time
at the timing endpoint.

variation_endpoint_recovery_time_
value

collection The variation of the recovery time at
the timing endpoint.

variation_endpoint_removal_time_
value

collection The variation of the removal time at
the timing endpoint.

variation_endpoint_setup_time_value collection The variation of the register setup
time at the timing endpoint.

Table 12-14 Attributes of the timing_path Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-100

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Timing Point Object Class Attributes
Table 12-15 lists the point object class attributes.

variation_required collection Required time variation of the path.

variation_slack collection Slack variation of the path.

variation_startpoint_clock_latency collection Launch clock arrival time variation.

Table 12-15 Attributes of the timing_point Object Class

Attribute name Type Description

annotated_delay_delta float Delta delay in the timing point.

annotated_delta_transition float Delta transition in the timing point.

arrival string The arrival time at the timing point, but
not accounting for the following.
- Clock latency to the startpoint clock
- Time lent to the startpoint (due to latch
borrowing)
- Input delay
- startpoint_clock_open_edge_value
These must be added to the arrival
attribute value to arrive at the total arrival
time based on the desired startpoint.

object string The object at this point in the timing path.

object_class string The class of the object. This is a
constant, equal to the timing_point
object. You cannot set this attribute.

rise_fall string Returns rise if the timing point is a rising-
edge delay. Returns fall if the timing point
is a falling-edge delay.

si_xtalk_bumps string The crosstalk bump at the timing point.

slack string The slack value at the timing point.

Table 12-14 Attributes of the timing_path Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Attribute Names and Usage 12-101
Chapter 12: Object Attributes
Attribute Names and Usage 12-101

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Using Paths to Generate Custom Reports

You can use the get_timing_paths command to create a collection of paths for custom
reporting and other processing. You can assign these timing paths to a variable or pass
them into another command. For a list of supported timing path object class attributes, see
Table 12-14 on page 12-95.

Each use of the get_timing_paths command has its own context. You cannot compare,
add, or remove objects taken from different contexts. For example,

pt_shell> set paths1 [get_timing_paths -nworst 10]
...
pt_shell> set paths2 [get_timing_paths -nworst 100]
...

Even though the variables paths1 and paths2 contain some of the same objects, the
collections cannot be compared because they come from different contexts. To do such
comparisons, create one large collection containing all the objects of interest, and then
perform filtering or other manipulation on that collection.

Use the foreach_in_collection command to iterate among the paths in the collection.
The collection commands index_collection, copy_collection, add_to_collection,
and remove_from_collection are not applicable to timing path collections. You can use
the get_attribute command to obtain information about the paths.

One attribute of a timing path is the points collection. A point corresponds to a pin or port
along the path. Iterate through these points using the foreach_in_collection command
and get the attributes on them using the get_attribute command. For more information,
see the man pages for the foreach_in_collection and get_timing_paths commands.

transition string The transition value at the timing point.

variation_arrival collection Arrival time variation of the timing point.

variation_transition collection Slack time variation of the timing point.

variation_transition collection Transition time variation of the timing
point.

voltage float The voltage level of the pin.

Table 12-15 Attributes of the timing_point Object Class (Continued)

Attribute name Type Description
Chapter 12: Object Attributes
Using Paths to Generate Custom Reports 12-102

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Example

You can find some detailed examples of custom timing reports in install_directory/auxx/pt/
examples/tcl (where install_directory is the installation directory for PrimeTime).

The following procedure prints out the startpoint name, endpoint name, and the slack of the
worst path in each path group:

proc custom_report_worst_path_per_group {} {
 echo [format "%-20s %-20s %7s" "From" "To" "Slack"]
 echo "--"
 foreach_in_collection path [get_timing_paths] {
 set slack [get_attribute $path slack]
 set startpoint [get_attribute $path startpoint]
 set endpoint [get_attribute $path endpoint]
 echo [format "%-20s %-20s %s" [get_attribute $startpoint
full_name] \
 [get_attribute $endpoint full_name] $slack]
 }
}

pt_shell> custom_report_worst_path_per_group

From To Slack
--
ffa/CP QA 0.1977
ffb/CP ffd/D 3.8834

This example shows worst negative slack, total negative slack, and total positive slack for the
current design:

proc report_design_slack_information {} {
 set design_tns 0
 set design_wns 100000
 set design_tps 0
 foreach_in_collection group [get_path_groups *] {
 set group_tns 0
 set group_wns 100000
 set group_tps 0
 foreach_in_collection path [get_timing_paths -nworst 10000 \
 -group $group] {
 set slack [get_attribute $path slack]
 if {$slack < $group_wns} {
 set group_wns $slack
 if {$slack < $design_wns} {
 set design_wns $slack
 }
 }
 if {$slack < 0.0} {
 set group_tns [expr $group_tns + $slack]
 } else {
Chapter 12: Object Attributes
Using Paths to Generate Custom Reports 12-103
Chapter 12: Object Attributes
Using Paths to Generate Custom Reports 12-103

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
 set group_tps [expr $group_tps + $slack]
 }
}
 set design_tns [expr $design_tns + $group_tns]
 set design_tps [expr $design_tps + $group_tps]
 set group_name [get_attribute $group full_name]
 echo [format "Group '%s' Worst Negative Slack : %g" $group_name
$group_wns]
 echo [format "Group '%s' Total Negative Slack : %g" $group_name
$group_tns]
 echo [format "Group '%s' Total Positive Slack : %g" $group_name
$group_tps]
 echo ""
 }
 echo “--”
 echo [format "Design Worst Negative Slack : %g" $design_wns]
 echo [format "Design Total Negative Slack : %g" $design_tns]
 echo [format "Design Total Positive Slack : %g" $design_tps]
}

pt_shell> report_design_slack_information

Group 'CLK’ Worst Negative Slack : -3.1166
Group 'CLK’ Total Negative Slack : -232.986
Group 'CLK’ Total Positive Slack : 4.5656

Group 'vclk' Worst Negative Slack : -4.0213
Group 'vclk' Total Negative Slack : -46.1982
Group 'vclk' Total Positive Slack : 0

--
Design Worst Negative Slack : -4.0213
Design Total Negative Slack : -279.184
Design Total Positive Slack : 4.5656

Using Arcs to Generate Custom Reports

To create a collection of timing arcs for custom reporting and other processing, use the
get_timing_arcs command. You can assign these timing arcs to a variable and get the
desired attributes for further processing. For a list of supported timing arc object class
attributes, see Table 12-13 on page 12-92.

Use the foreach_in_collection command to iterate among the arcs in the collection.
You can use the get_attribute command to obtain information about the arcs. However,
you cannot copy, sort, or index the collection of arcs. You can also use the -filter option
of get_timing_arcs to obtain just the arcs that satisfy specified conditions, but you cannot
use the filter_collection command to filter an already generated collection of arcs.
Chapter 12: Object Attributes
Using Arcs to Generate Custom Reports 12-104

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
One attribute of a timing arc is from_pin, which is the pin or port from which the timing arc
begins. In the same way, to_pin is the pin or port at which the timing arc ends. For more
information about the from_pin and to_pin attributes, use the get_attribute command.

Example

To list the maximum rise delay value of all the timing arcs of the cell U1 that have the
positive_unate arc, enter

pt_shell> set arcs [get_timing_arcs -of_objects U1 -filter \
 "sense == positive_unate"]
_sel3
pt_shell> foreach_in_collection arc $arcs {
 echo [get_attribute $arc delay_max_rise]
 }
0.846862
0.846862

Creating a Collection of Library Arcs
To create a collection of library arcs for custom reporting and other processing, use the
get_lib_timing_arcs command. You can assign these library arcs to a variable and get
the desired attributes for further processing.

Use the foreach_in_collection command to iterate among the library arcs in the
collection. You can use the get_attribute command to obtain information about the arcs.
However, you cannot copy, sort, or index a collection of library arcs. You can also use the -
filter option of get_lib_timing_arcs to obtain just the library arcs that satisfy specified
conditions, but you cannot use the filter_collection command to filter a collection of
library arcs. For a list of supported library timing arc object class attributes, see Table 12-8
on page 12-40.

One attribute of a library timing arc is from_lib_pin, which is the library pin from which the
timing arc begins. In the same way, to_lib_pin is the library pin at which the timing arc
ends. To obtain information about the from_lib_pin and to_lib_pin attributes, use the
get_attribute command. For more information, see the man page for the
foreach_in_collection command.

Example

To list the senses of timing arcs starting from the clock pin of a flip-flop library cell, enter

pt_shell> set larcs [get_lib_timing_arcs -from class/FD1/CP]
_sel5
pt_shell> foreach_in_collection larc $larcs \ {
 { echo [get_attribute $larc sense] }
hold_clk_rise
setup_clk_rise
Chapter 12: Object Attributes
Using Arcs to Generate Custom Reports 12-105
Chapter 12: Object Attributes
Using Arcs to Generate Custom Reports 12-105

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
rising_edge
rising_edge

Reporting Library Data and Driver Information
To report library data and the resulting driver model parameters for a specified library arc
and conditions, you can use the report_driver_model command. The reported
information is useful for validating library data and driver models used in delay calculation
with annotated parasitics. For more information, see the report_driver_model man page.
Chapter 12: Object Attributes
Using Arcs to Generate Custom Reports 12-106

A
Writing Mapped SDF Files A

The Standard Delay Format (SDF) mapping feature of PrimeTime lets you specify the output
format of the SDF file. You start by creating an SDF map file, which specifies the syntax and
timing arcs written to the SDF file for cells in the library. For example, if you want to change
the SDF output for a flip-flop in the library, you define a map for that cell. You apply the
mapping by using the -map option of the write_sdf command.

The SDF mapping feature is described in the following sections:

• Specifying Timing Labels in the Library

• Specifying the min_pulse_width Constraint

• Using SDF Mapping

• Supported SDF Mapping Functions

• SDF Mapping Assumptions

• Labeling Bus Arcs
A-1

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Specifying Timing Labels in the Library

To reference delays of timing arcs in the SDF mapping mechanism, you need to specify a
label to the timing arcs in the library. The timing_label attribute is written in the timing
group of the library file to label a timing arc. This will serve to label arcs for supplying values
for the following SDF constructs: IOPATH, SETUP, HOLD, SETUPHOLD, RECOVERY, REMOVAL,
RECREM, NOCHANGE, and WIDTH.

The following example shows how to label a timing arc A_Z.

cell(IV_I) {
 area : 1;
 pin(A) {
 direction : input;
 capacitance : 1;
 }
 pin(Z) {
 direction : output;
 function : "A’";
 timing() {
 related_pin : "A";

timing_label : "A_Z";
 rise_propagation(onebyone) {
 values("0.380000");
 }
 rise_transition(tran) {
 values("0.03, 0.04, 0.05");
 }
 fall_propagation(prop) {
 values("0.15, 0.17, 0.20");
 }
 fall_transition(tran) {
 values("0.02, 0.04, 0.06");
 }
 }
 }

Specifying the min_pulse_width Constraint

You can specify the minimum pulse width arcs in two ways in the library: by attaching
attributes to the pins or by having a min_pulse_width group section inside the pin section.
When specifying the min_pulse_width pin constraint, use one of the following styles when
writing the library file.

Style 1

Specify a min_pulse_width group within the pin group (in the library file).
Chapter A: Writing Mapped SDF Files
Specifying Timing Labels in the Library A-2

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
• You should place the timing_label_mpw_high attribute in the min_pulse_width group
to refer to the constraint_high attribute.

• You should place the timing_label_mpw_low attribute in the min_pulse_width group
to refer to the constraint_low attribute.

Style 2

Specify the constraints in the library by using the min_pulse_width_high and
min_pulse_width_low attributes in the pin group.

• You should place the timing_label_mpw_high attribute in the pin group to refer to the
min_pulse_width_high attribute.

• You should place the timing_label_mpw_low attribute in the pin group to refer to the
min_pulse_with_low attribute.

Accessing the min_pulse_width Constraint
To access the min_pulse_width values, use these functions:

• min_rise_delay(label_high)
Returns the value of the min_pulse_width_high attribute.

• max_rise_delay(label_high) Same as min_rise_delay(label_high).

• min_fall_delay (label_low)
Returns the value of the min_pulse_width_low attribute.

• max_fall_delay(label_low) Same as min_fall_delay(label_low).

For information about functions that support SDF mapping, see Table A-2 on page A-7.

Specifying the min_period Constraint on a Pin
Specify the min_period constraint on a pin as an attribute in the pin section. Use the
min_period(pin_name) function to take the pin name as argument and to return the value
of the min_period constraint.

Using SDF Mapping

To specify the SDF mapping file when writing out SDF for a design, use the write_sdf
command with the -map option. To specify how bus bit names are written in the mapped SDF
output, you can use the -context option. For example,
Chapter A: Writing Mapped SDF Files
Using SDF Mapping A-3
Chapter A: Writing Mapped SDF Files
Using SDF Mapping A-3

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
• -context verilog
The bus bit names are printed using the %s[%d] format.

• -context vhdl
The bus bit names are printed using the %s(%d) format.

Note:
Only names that are specified using the bus() function are affected. For more
information, see Table A-2 on page A-7.

To write SDF with the -context and -map option, enter

pt_shell> write_sdf -context verilog -map example.map example.sdf

Output
File: exmaple.sdf
(DELAYFILE
 (SDFVERSION "OVI V2.1")
 (DESIGN "ADDER")
 (DATE "Tue Feb3 09:33:06 1999")
 (VENDOR "nyaa")
 (PROGRAM " ")
 (VERSION "3.24")
 (DIVIDER /)
 (VOLTAGE 0:0:0)
 (PROCESS "")
 (TEMPERATURE 0:0:0)
 (TIMESCALE 1 ns)
(CELL
(CELLTYPE "ADDER")
(INSTANCE)
(DELAY
(ABSOLUTE
(INTERCONNECT ...)

)
)

)
(CELL
 (CELLTYPE "EXMP")
 (INSTANCE U15)
 (DELAY
 (ABSOLUTE
 (IOPATH A Z (1.8::4.3) (1.8::4.0))
 (IOPATH IN[0] Z (3.0::1.2) (3.0::1.0))
)
)

)
(CELL
 (CELLTYPE "FD02"
 (INSTANCE B1/U12/DFF)
 (DELAY
Chapter A: Writing Mapped SDF Files
Using SDF Mapping A-4

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
 (ABSOLUTE
 (IOPATH (posedge CP) Q(1.2::1.2) (1.5::1.5))
 (IOPATH (posedge CP) QN(1.2::1.2) (1.5::1.5))
 (IOPATH (negedge CD) Q (::) (2.1::2.4))
 (IOPATH (negedge CD) QN (2.1::2.4) (::))
)
 (TIMINGCHECK
 (SETUP D (posedge CP)) (2.1::2.5))
 (HOLD D (posedge CP)) (1.1::1.4))
 (WIDTH (negedge CP) (5.0))
 (RECOVERY (posedge CD) (posedge CP)) (2.5))
 (PERIOD (posedge CP) (5.0))
)

)
)
)

Note:
When SDF for cells are not present in the SDF mapping file, they are written with the
default write_sdf format.

SDF Mapping Notation
The notation used in presenting the syntax of the SDF mapping language follows. In the
following list, item is a symbol for a syntax construct item.

• item? – Item is optional in the definition (it can appear once or not at all).

• item* – Item can appear zero or any number of times.

• item+ – Item can appear one or more times (but cannot be omitted).

• KEYWORD – Keywords are shown in uppercase bold for easy identification but are case-
insensitive.

• VARIABLE – Is a symbol for a variable. Variable symbols are shown in uppercase for easy
identification, but are case-insensitive. Some variables are defined as one of a number of
discrete choices; other variables represent user data such as names and numbers.

SDF Mapping Comments
Comment lines in the SDF mapping language are in this format:

[white_space]* [#] [any char except new-line char]*

If the line has a pound sign (#) as the first non-whitespace character, it is treated as a
comment line and is ignored.
Chapter A: Writing Mapped SDF Files
Using SDF Mapping A-5
Chapter A: Writing Mapped SDF Files
Using SDF Mapping A-5

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Note:
Quoted strings can contain new-line characters in them, and can span multiple lines.
Comments cannot be embedded inside a quoted string. For definitions of SDF mapping
functions, see Table A-2 on page A-7.

SDF Mapping Variables
Table A-1 lists the variables used in the SDF mapping language.

Table A-1 SDF Mapping Variables

Variable Description

SDFMAP_QSTRING A string of any legal SDF characters and spaces, including
tabs and new-line characters, optionally enclosed by double
quotation marks.

SDFMAP_NUMBER A nonnegative (zero or positive) real number, for example,
0, 1, 3.4, .7, 0.5, 2.4e-2, 3.4e2

SDFMAP_RNUMBER A positive, zero, or negative real number, for example, 0, 1,
0.0, –3.4, .7, –0.3, 2.4e-2, 3.4e4

SDFMAP_DNUMBER A nonnegative integer number, for example, +12, 23, 0

SDFMAP_TSVALUE A real number followed by a unit.

SDFMAP_IDENTIFIER The name of an object. It is case sensitive. The following
characters are allowed: alphanumeric characters, the
underscore character (_), and the escape character (\). If
you want to use a nonalphanumeric character as a part of
an identifier, you must prefix it with the escape character.
White spaces are not allowed with the hierarchy divider
character (/).

SDFMAP_MAP A positive integer value preceded with the dollar sign ($), for
example, $10, $3, $98. Used to specify a placeholder for a
value in the mapping file.

SDFMAP_FUNCTION A string that denotes the function name. Supported
functions are given in Table A-2.
Chapter A: Writing Mapped SDF Files
Using SDF Mapping A-6

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Supported SDF Mapping Functions

Table A-2 lists the functions supported when writing mapped SDF files.

Table A-2 SDF Mapping Functions

Function Usage Return
value

Comment

in in(float) float Natural logarithm.

exp exp(float) float Exponentiation.

sqrt sqrt(float) float Square root.

max max(float, float) float Two-argument maximum
function.

min min(float,float) float Two-argument minimum
function.

bus bus(string) string Returns a transformed string
by replacing the bus delimiter
characters in the string with
the appropriate bus delimiter
characters as specified in the
write_sdf command.

The -context verilog
option causes the string to be
transformed to the %s[%d]
format.

The -context vhdl option
causes the string to be
transformed to the %s(%d)
format.

pin pin(string) string Returns the string argument
passed to it.

max_fall_delay max_fall_delay(label) float Maximum fall delay value
associated with that timing
label.

max_fall_delay_bus max_fall_delay_bus
(label, from_pin, to_pin)

float Maximum fall delay value to be
used when the timing label is
associated with a bus arc.
Chapter A: Writing Mapped SDF Files
Supported SDF Mapping Functions A-7
Chapter A: Writing Mapped SDF Files
Supported SDF Mapping Functions A-7

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
max_fall_retain_
delay

max_fall_retain_delay
(label, from_pin,
to_pin)

float Maximum fall delay value to be
used when the timing label is
associated with a retain arc.

max_rise_delay max_rise_delay(label) float Maximum rise delay value
associated with that timing
label.

max_rise_delay_bus max_rise_delay_bus
(label, from_pin, to_pin)

float Maximum rise delay value is
used when the timing label is
associated with a bus arc.

max_rise_retain_
delay

max_rise_retain_delay
(label, from_pin,
to_pin)

float Maximum rise delay value to
be used when the timing label
is associated with a retain arc.

min_fall_delay min_fall_delay(label) float Minimum fall delay value
associated with that timing
label.

min_fall_delay_bus min_fall_delay_bus
(label, from_pin, to_pin)

float Minimum fall delay function to
be used when the timing label
is associated with a bus arc.

min_fall_retain_
delay

min_fall_retain_delay
(label, from_pin,
to_pin)

float Minimum fall delay value to be
used when the timing label is
associated with a retain arc.

min_period min_period(pin) float Returns the minimum period
value associated with the pin
name “pin” of the current cell.

min_rise_delay min_rise_delay(label) float Minimum rise delay value
associated with that timing
label.

min_rise_delay_bus min_rise_delay_bus
(label, from_pin, to_pin)

float Minimum rise delay value to
be used when the timing label
is associated with a bus arc.

min_rise_retain_
delay

min_rise_retain_delay
(label, from_pin,
to_pin)

float Minimum rise delay value to
be used when the timing label
is associated with a retain arc.

Table A-2 SDF Mapping Functions (Continued)

Function Usage Return
value

Comment
Chapter A: Writing Mapped SDF Files
Supported SDF Mapping Functions A-8

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
SDF Mapping File Syntax
The following example gives the complete syntax of a mapped SDF file.

mapping_file ::= map_header cell_map+

map_header ::= sdf_version sdf_map_name?
hierarchy_divider?

bus_delimiter?

sdf_map_name ::= $SDF_MAP_NAME
SDFMAP_QSTRING
sdf_version ::= $SDF_VERSION SDFMAP_QSTRING
hierarchy_divider ::= $SDF_HIERARCHY_DIVIDER SDFMAP_HCHAR
bus_delimiter ::= $SDF_BUSBIT SDFMAP_QSTRING

cell_map ::= $SDF_CELL cell_name format_string
var_map

$SDF_CELL_END
cell_name ::= SDFMAP_QSTRING
format_string ::= SDFMAP_QSTRING

var_map ::= var_map_line+
var_map_line: := SDFMAP_MAP expression

expression ::= expression binary_operator expression
||= unary_operator expression
||= expression ? expression : expression
||= (expression)
||= function_call
||= SDFMAP_NUMBER

function_call ::= SDFMAP_FUNCTION (func_args?)
func_args ::= func_arg

||= func_args , func_args
func_arg ::= SDFMAP_IDENTIFIER

||= expression

binary_operator ::= +
||= -
||= *
||= /
||= &
||= |
||= >
||= <
||= =

binary_operator ::= !
||= -
Chapter A: Writing Mapped SDF Files
Supported SDF Mapping Functions A-9
Chapter A: Writing Mapped SDF Files
Supported SDF Mapping Functions A-9

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
SDF Mapping Assumptions

The SDF mapping file reader assumes that the SDF format string read from the SDF
mapping file has valid SDF syntax. For instance, it assumes that when the proper
substitutions are made for the placeholders, the resulting SDF is syntactically (and also
semantically) correct. The SDF map parser does not attempt to parse the format string to
check for possible user errors. It performs the placeholder substitutions and prints the
resulting string to the SDF output file.

To check the validity of the generated mapped SDF file, you can read the mapped file by
using the read_sdf command. For example,

pt_shell> read_sdf -syntax_only mapped.sdf

Bus Naming Conventions
When you specify mapping names with the bus(string) function, the SDF writer replaces
the bus bit delimiting characters (specified by the construct $SDF_BUSBIT QSTRING) by
using the appropriate delimiting characters.

For example, suppose the following lines are in the mapping file:

$SDF_BUSBIT "<>"
....
$23 bus(output_bus<5>)

When you specify the write_sdf command with the -context verilog option, the SDF
writer prints the name as output_bus[5]. For more information, see “Using SDF Mapping”
on page A-3. If more than one set of matching bus delimiters is found in a name, the SDF
writer replaces only the matching set of delimiters at the end of the name string. If you do not
specify bus delimiters, the names are printed unchanged.

Header Consistency Check for SDF Mapping Files
Each SDF mapping file defines SDF version and SDF bus delimiter characters in its header.
When PrimeTime reads multiple SDF mapping files during one write_sdf command, it
assumes all the headers have the same SDF version and bus delimiter characters.

Labeling Bus Arcs

A pin in the library file can be a bus. In the following example, the timing group on the pin
defines multiple arcs.
Chapter A: Writing Mapped SDF Files
SDF Mapping Assumptions A-10

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Example 1
bus(A) {
 bus_type : bus_11;
 direction : input ;
timing() {
 related_pin : "CK" ;
 timing_type : setup_rising ;
 timing_label : "tas";
 intrinsic_rise : 1.12000 ;
 intrinsic_fall : 1.12000 ;

In this example (assuming A is an 11-bit bus), 11 setup arcs are defined between bus A and
CK. When you label such an arc, since only one timing label is present, PrimeTime attaches
the same label (tas) to all arcs defined by the statement. When you access individual bit
arcs, you should use the bus versions of the max/min rise/fall delay functions. For example,
to refer to the arc corresponding to A[5], which is from CK to A[5], use the mapping functions
shown in the following examples.

Example 2
max_rise_delay_bus(tas, CK, A[5]) #To get the max rise delay
min_rise_delay_bus(tas, CK, A[5]) #To get the min rise delay
max_fall_delay_bus(tas, CK, A[5]) #To get the max fall delay
min_fall_delay_bus(tas, CK, A[5]) #To get the min fall delay

Example 3
bus (In) {
 bus_type : "bus8";
 direction : input;
 capacitance : 1.46;
 fanout_load : 1.46;
}
bus(Q){
 bus_type : "bus8";
 direction : output;
 timing () {
 timing_label : “In_to_Q”
 timing_sense : non_unate;
 intrinsic_rise : 2.251622;
 rise_resistance : 0.020878;
 intrinsic_fall : 2.571993;
 fall_resistance : 0.017073;
 related_pin : "In";
 }
}

To refer to the arc from In[6] to Q[6] and print the following SDF line:

(IOPATH In[6] Q[6] (1.8::4.3) (1.8::4.0))

The SDF mapping file format string should look like:
Chapter A: Writing Mapped SDF Files
Labeling Bus Arcs A-11
Chapter A: Writing Mapped SDF Files
Labeling Bus Arcs A-11

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
(IOPATH $1 $2 ($3::$4) ($5::$6))

The resulting SDF function mapping is as follows:

$1 bus(I1[6])
$2 bus(Q[6])
$3 min_rise_delay_bus(In_to_Q, In[6], Q[6])
$4 max_rise_delay_bus(In_to_Q, In[6], Q[6])
$5 min_fall_delay_bus(In_to_Q, In[6], Q[6])
$6 max_fall_delay_bus(In_to_Q, In[6], Q[6])

Note:
Avoid using a bus arc in nonbus max/min rise/fall delay functions.

SDF Mapping Limitations
The SDF mapping file syntax has the following limitations:

• You cannot use wildcard characters.

• You cannot specify instance-specific mapping format. An SDF mapping format must be
specified for a library cell. The format is applied when writing SDF for every cell that is an
instance of that library cell.

• If the SDF mapping file does not provide a format for every cell present in the library,
PrimeTime prints these cells using the default format of the write_sdf command.

Mapped SDF File Examples
The following examples are different types of mapped SDF files.

Library File for Cells EXMP and FF1
A complete SDF mapping example for cells EXMP and FF1 is shown in this section. The
min_pulse_width arcs are labeled by using Style 2.

The following is an example of a library file, example.lib.

library(example) {define("timing_label_mpw_low", "pin",
"string");
define("timing_label", "timing", "string");
define("timing_label_mpw_low", "pin", "string");

/* If using style #1 to specify min_pulse_width info
*/

/* define(“timing_label_mpw_low”, “min_pulse_width”,
“string”);
Chapter A: Writing Mapped SDF Files
Labeling Bus Arcs A-12

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
*/
/* define(“timing_label_mpw_high”, “min_pulse_width”,
“string”);*/

type(two_bit) {
 base_type : array;
 data_type : bit;
 bit_width : 2;
 bit_from : 1;
 bit_to : 0;
 downto : true;
 }
cell (EXMP) {
 version : 1.00;
 area : 1.000000;
 cell_footprint : "EXMP";
 bus(IN) {
 bus_type : two_bit;
 direction : input;
 pin(IN[1:0]) {
 capacitance : 1;
 }
 }

 pin (A) {
 direction : input;
 capacitance : 0.49;
 fanout_load : 0.49;
 max_transition : 4.500000;
 }
 pin (B) {
 direction : input;
 capacitance : 0.51;
 fanout_load : 0.51;
 max_transition : 4.500000;
 }
 pin(Y){
 direction : output;
 capacitance : 0.00;
 function : "(A & B & IN[0] & IN[1])";
 timing () {
 related_pin : “A”;
 timing_label : “A_Z”;
 rise_transition (transitionDelay){ ...}
 fall_transition (transitionDelay){...}
 rise_propagation (propDelay){...}
 fall_propagation (propDelay){...}
 }
 timing () {
 related_pin : “B”;
 timing_label : “B_Z”;
 rise_transition (transitionDelay){...}
 fall_transition (transitionDelay){...}
Chapter A: Writing Mapped SDF Files
Labeling Bus Arcs A-13
Chapter A: Writing Mapped SDF Files
Labeling Bus Arcs A-13

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
 rise_propagation (propDelay){...}
 fall_propagation (propDelay) { ...}
 }
 timing () {
 related_pin : “IN[0]”;
 timing_label : “IN[0]_Z”;
 rise_transition (transitionDelay){...}
 fall_transition (transitionDelay)...}{
 rise_propagation (propDelay){...}
 fall_propagation (propDelay){...}
 }
 timing () {
 related_pin : “IN[1]”;
 timing_label : “IN[1]_Z”;
 rise_transition (transitionDelay){...}
 fall_transition (transitionDelay){...}
 rise_propagation (propDelay){...}
 fall_propagation (propDelay){...}
 }
 ...
 }

cell(FD2) {
 area : 9;
 pin(D) {
 direction : input;
 capacitance : 1;
 timing() {
 timing_label : “setup_D”;
 timing_type : setup_rising;
 intrinsic_rise : 0.85;
 intrinsic_fall : 0.85;
 related_pin : "CP";
 }
 timing() {
 timing_label : “hold_D”;
 timing_type : hold_rising;
 intrinsic_rise : 0.4;
 intrinsic_fall : 0.4;
 related_pin : "CP";
 }
 }
 pin(CP) {
 direction : input;
 capacitance : 1;
 min_period : 5.0
 min_pulse_width_high: 1.5
 min_pulse_width_low: 1.5
 timing_label_mpw_low: “min_pulse_low_CP”
 timing_label_mpw_high: “min_pulse_high_CP”

 }
 pin(CD) {
Chapter A: Writing Mapped SDF Files
Labeling Bus Arcs A-14

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
 direction : input;
 capacitance : 2;
 timing() {
 timing_label : “recovery_rise_CD”;
 timing_type : recovery_rising;
 intrinsic_rise : 0.5;
 related_pin : "CP";
 }
 }
....
pin(Q) {
 direction : output;
 function : "IQ";
 internal_node : "Q";
 timing() {
 timing_label : “CP_Q”;
 timing_type : rising_edge;
 intrinsic_rise : 1.19;
 intrinsic_fall : 1.37;
 rise_resistance : 0.1458;
 fall_resistance : 0.0523;
 related_pin : "CP";
 }
 timing() {
 timing_label : “clear_Q”;
 timing_type : clear;
 timing_sense : positive_unate;
 intrinsic_fall : 0.77; /* CP -> Q intrinsic - 0.6 ns */
 fall_resistance : 0.0523;
 related_pin : "CD";
 }
 }
 pin(QN) {
 direction : output;
 function : "IQN";
 internal_node : "QN";
 timing() {
 timing_label : “CP_QN”;
 timing_type : rising_edge;
 intrinsic_rise : 1.47;
 intrinsic_fall : 1.67;
 rise_resistance : 0.1523;
 fall_resistance : 0.0523;
 related_pin : "CP";
 }
 timing() {
 timing_label : “preset_QN”;
 timing_type : preset;
 timing_sense : negative_unate;
 intrinsic_rise : 0.87; /* CP -> QN intrinsic - 0.6 ns */
 rise_resistance : 0.1523;
 related_pin : "CD";
 }
Chapter A: Writing Mapped SDF Files
Labeling Bus Arcs A-15
Chapter A: Writing Mapped SDF Files
Labeling Bus Arcs A-15

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
 }
 }
}

Note:
The min_pulse_width_low/high constraints have been defined as attributes inside the
pin group. The timing label attributes timing_label_mpw_low and
timing_label_mpw_high are used to refer to these constraints.

Mapped SDF File
The following is an example of a mapped SDF file, example.map.

This is a comment
$SDF_VERSION “OVI 2.1”
$SDF_BUSBIT “[]”
$SDF_CELL EXMP
“(DELAY
 (ABSOLUTE
 (IOPATH $1 $2 ($3::$4) ($5::$6))

(IOPATH $7 $2 ($8::$9) ($10::$11))
)
)”
$3 min_rise_delay(A_Z)
$4 max_rise_delay(A_Z)
$5 min_fall_delay(A_Z)
$6 max_fall_delay(A_Z)
$1 pin(A)
$2 pin(Z)
$7 bus(IN[0])
$8 min_rise_delay(IN[0]_Z)
$9 max_rise_delay(IN[0]_Z)
$10 min_fall_delay(IN[0]_Z)
$11 max_fall_delay(IN[0]_Z)
$SDF_CELL_END

$SDF_CELL DFF
“(DELAY
 (ABSOLUTE
 (IOPATH (posedge $1) $2 ($3::$4) ($5::$6))
 (IOPATH (posedge $7) $8 ($9::$10) ($11::$12))
 (IOPATH (negedge $13) $2 (::) ($16::$17))
 (IOPATH (negedge $13) $8($18::$19) (::))
)
)
(TIMINGCHECK
 (SETUP $20(posedge $1)) ($30::$31))
 (HOLD $20 (posedge $1)) ($32::$33))
 (WIDTH (negedge $1) ($34))
 (RECOVERY (posedge $13) (posedge $1)) ($36))
 (PERIOD (posedge $1) ($37))
)”
Chapter A: Writing Mapped SDF Files
Labeling Bus Arcs A-16

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
$1 pin(CP)
$2 pin(Q)
$3 min_rise_delay(CP_Q)
$4 max_rise_delay(CP_Q)
$5 min_fall_delay(CP_Q)
$6 max_fall_delay(CP_Q)
$7 pin(CP)
$8 pin(QN)
$9 min_rise_delay(CP_QN)
$10 max_rise_delay(CP_QN)
$11 min_fall_delay(CP_QN)
$12 max_fall_delay(CP_QN)
$13 pin(CD)
$16 min_fall_delay(clear_Q)
$17 max_fall_delay(clear_Q)
$18 min_rise_delay(preset_QN)
$19 max_rise_delay(preset_QN)
$20 pin(D)
$30 min_rise_delay(setup_D)
$31 max_rise_delay(setup_D)
$32 min_rise_delay(hold_D)
$33 max_rise_delay(hold_D)
$34 min_fall_delay(min_pulse_low_CP)
$36 max_rise_delay(recovery_rise_CD)
$37 min_period(CP)

Three-State Buffers
This section gives an example of the following files for a three-state noninverting buffer.

• Library file

• Mapped SDF file

Library File
The following is a detailed example of a library file for a three-state noninverting buffer.

/
*---
Internal Tristate Non-Inverting Buffer, Positive Enable, 1x
Drive
---*
/
define("timing_label", "timing", "string");
define(“timing_label_mpw_low”, “pin”, “string”);
define(“timing_label_mpw_low”, “pin”, “string”);

cell(BTS) {
 area : 63 ;
 pin(Z) {
 direction : output ;
Chapter A: Writing Mapped SDF Files
Labeling Bus Arcs A-17
Chapter A: Writing Mapped SDF Files
Labeling Bus Arcs A-17

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
 function : "A";
 max_capacitance : 0.14000 ;
 capacitance : 0.00420 ;
 three_state : "E’";
 timing() {
 related_pin : "A" ;
 timing_sense : positive_unate ;
 timing_label : "A_Z";
 cell_rise(table_1) {
 values (...) ;
 }
 rise_transition(table_1) {
 values (...) ;
 }
 cell_fall(table_1) {
 values (...) ;
 }
 fall_transition(table_1) {
 values (...) ;
 }
 intrinsic_rise : 0.31166 ;
 intrinsic_fall : 0.40353 ;
 }
 timing() {
 related_pin : "E" ;
 timing_label : "E_Z_3s_enable";
 cell_rise(table_1) {
 values (...) ;
 }
 rise_transition(table_1) {
 values (...) ;
 }
 cell_fall(table_1) {
 values (...) ;
 }
 fall_transition(table_1) {
 values (...) ;
 }
 intrinsic_rise : 0.22159 ;
 intrinsic_fall : 0.27933 ;
 }
 timing() {
 related_pin : "E" ;
timing_type : three_state_disable ;
 timing_label : "E_Z_3s_disable";
 cell_rise(table_10) {
 values (...) ;
 }
 rise_transition(table_10) {
 values (...) ;
 }
 cell_fall(table_10) {
 values (...) ;
Chapter A: Writing Mapped SDF Files
Labeling Bus Arcs A-18

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
 }
 fall_transition(table_10) {
 values (...) ;
 }
 intrinsic_rise : 0.30693 ;
 intrinsic_fall : 0.19860 ;
 }
 }
 pin(A) {
 direction : input ;
 capacitance : 0.00423 ;
 }
 pin(E) {
 direction : input ;
 capacitance : 0.01035 ;
 }
}

Mapped SDF File
The following is an example of a mapped SDF file.

$SDF_VERSION “OVI 2.1”
$SDF_BUSBIT “[]”
$SDF_CELL BTS
 "(DELAY

(ABSOLUTE
(IOPATH $1 $3 ($4::$5) ($6::$7))
(IOPATH $2 $3 ($8::$9) ($10::$11) ($12::$13) ($8::$9)

($14::$15) ($10::$11))
)"
####
 $1 pin(A)
 $2 pin(E)
 $3 pin(Z)
####
 $4 min_rise_delay(A_Z)
 $5 max_rise_delay(A_Z)
 $6 min_fall_delay(A_Z)
 $7 max_fall_delay(A_Z)
#####
 $8 min_rise_delay(E_Z_3s_enable)
 $9 max_rise_delay(E_Z_3s_enable)
 $10 min_fall_delay(E_Z_3s_enable)
 $11 max_fall_delay(E_Z_3s_enable)
 $12 min_rise_delay(E_Z_3s_disable)
 $13 max_rise_delay(E_Z_3s_disable)
 $14 min_fall_delay(E_Z_3s_disable)
 $15 max_fall_delay(E_Z_3s_disable)
####
Chapter A: Writing Mapped SDF Files
Labeling Bus Arcs A-19
Chapter A: Writing Mapped SDF Files
Labeling Bus Arcs A-19

PrimeTime Advanced Timing Analysis User Guide D-2010.06PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
Chapter A: Writing Mapped SDF Files
Labeling Bus Arcs A-20

Index

A
advanced OCV

configuring analysis 6-3
file format 6-5, 6-6
flow 6-2
graph-based solution 6-2
importing information 6-4
overview 6-2
path-based solution 6-3

advanced on-chip variation (see advanced
OCV)

analysis moce
monitoring 5-20

analysis mode
enabling 5-19
fast performance 5-19

annotated checks, removing 8-18
annotated delay

removing 8-18
set 8-19

annotating transition times 8-21
annotations, setting from the command line

8-19
arrival window,endpoints 12-53
Astro

change files 3-28
ECO format, direct output 3-27
hierarchical ECO format 3-28

asynchronous logic
analysis 5-31
self-timed 5-31

attributes 4-14, 12-5
cell object class, listed 12-6
clock object class, listed 12-14
defining (define_user_attribute) 12-2
design object class, listed 12-20
importing from .ddc or .db files 12-3
lib object class, listed 12-30
lib_cell object class, listed 12-32
lib_pin class, listed 12-35
net object class, listed 12-42
path_group object class, listed 12-51
pin object class, listed 12-52
save 12-5
timing path object class, listed 12-95

B
back-annotation 4-14, 8-2

files 8-2
files, improving reading performance 3-5
incomplete 9-20

backtrack limit
change 5-26
default 5-25
prove-false, change 5-27
IN-1
IN-1

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
bidirectional inout pins 3-3
block, write physical information for

hierarchical 4-11
borrowing time (latches) 5-2
buffers, parallel buffer reduction 5-40
bus contention 5-35

steady-state 5-35
transient 5-35

buses
three-state 5-36

C
calculating

cell path depths 6-9
capacitance

in SPEF 9-10
lumped 9-10

carry-bypass adder 5-28
CCS receiver model

for path-based analysis 5-19
path-based analysis 5-19

CCS timing libraries
invoking scaling 10-9
scaling 10-9

CCS timing model
advantages 10-3
overview 10-5

cell object class attributes list 12-6
characterization trip points 9-6
characterize

derive annotated delays and parasitics on
internal nets 4-6

derive clock information 4-4
derive constant logic values on inputs 4-5
derive design rule checks 4-6
derive input and output delay 4-4
derive input drive strength and port

capacitance 4-5
derive point-to-point timing exceptions 4-4
derive wire load models 4-6

characterize_context command 4-4, 4-5, 4-8,
4-13

check_timing command 11-17
clearing netlist changes 3-26
clock

generated 4-14
pins 3-3
unrelated 5-33

clock buffers, parallel 5-40
clock mesh/spine networks 8-12
clock object class attributes list 12-14
clock reconvergence pessimism, time

borrowing 5-9
clock uncertainty

defining 5-8
commands

characterize_context 4-5, 4-8, 4-13
check_timing 11-17
complete_net_parasitics 9-22
connect_power_domain 11-24
create_power_domain 11-24
create_power_net_info 11-24
create_supply_set 11-21
current_design, differences between

PrimeTime and Design Compiler 3-3
debug_script 2-14
define_proc_attributes 2-5
define_scaling_lib_group 10-10, 10-13, 11-9
define_user_attribute 12-2
estimate_eco 3-10
fix_eco_timing 3-20
get_* 11-11
get_attribute 12-2
get_lib_timing_arcs 12-105
get_power_domains 11-11
get_power_switches 11-11
get_supply_nets 11-11
get_supply_ports 11-11
get_supply_sets 11-11
get_timing_arcs 12-104
get_timing_paths 5-14, 5-15, 5-20, 12-102
IN-2
Index IN-2

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
insert_buffer 3-7, 3-16, 3-23
link_design 3-8
list_attributes 12-2
load_upf 11-4
parse_proc_arguments 2-8
read_aocvm 6-5
read_lib 11-22
read_parasitics 3-26, 9-10
read_sdc 3-5
read_sdf 8-2
regexp 2-2
remove resistance 9-3
remove_annotated_check 8-18
remove_annotated_delay 8-18
remove_annotated_parasitics 9-23
remove_context 4-13
remove_coupling_separation 3-28
remove_ideal_latency 7-4
remove_ideal_network 7-3
remove_ideal_transition 7-4
remove_max_time_borrow 5-14
remove_user_attribute 12-2
rename_cell 3-18
rename_net 3-18
report constraint 10-12
report_annotated_delay 8-6
report_annotated_parasitics 9-23
report_aocvm 6-5, 6-10
report_attribute 5-17
report_attributes 12-2
report_delay_calculation 10-6
report_driver_model 12-106
report_lib 5-21
report_lib_groups 10-13
report_power_domain 11-14
report_power_network 11-14
report_power_pin_info 11-14
report_power_switch 11-15
report_supply_net 11-15
report_supply_set 11-16
report_timing 5-14, 5-15, 5-17, 5-20, 6-3,

6-10

reporting power supply 11-13
save_upf 11-5
scale_parasitics 9-11
set_annotated_check 8-20
set_annotated_delay 8-19
set_annotated_transition 8-21
set_aocvm_coefficient 6-9
set_clock_uncertainty 5-8
set_coupling_separation 3-28
set_data_check 5-43
set_drive 4-5
set_driving_cell 4-5
set_ideal_latency 7-4
set_ideal_network 7-2
set_ideal_transition 7-4
set_isolation 11-7
set_level_shifter 11-7
set_level_shifter_stragegy 11-18
set_load 4-5
set_max_time_borrow 5-13
set_operating_conditions 11-8
set_port_fanout_number 4-5
set_program_options 5-19
set_related_supply_net 11-7
set_resistance 9-3
set_retention 11-7
set_retention_control 11-7
set_temperature 11-9
set_timing_derate 6-3, 6-9
set_user_attribute 12-2
set_voltage 11-8, 11-27
set_wire_load_model 4-5
size_cell 3-7, 3-15
source 11-4
swap_cell 3-17
write 8-5
write_astro_changes 3-28
write_binary_aocvm 6-5
write_changes 3-7, 3-22, 3-26
write_context 4-3, 4-12
write_physical_annotations 4-3, 4-11
write_script 8-5, 11-5, 12-5
IN-3
Index IN-3

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
write_sdc 3-5
write_sdf 8-10, A-3
write_sdf_constraints 8-21, 8-23

complete_net_parasitics command 9-22
COND keyword, example of use with IOPATH

delays 8-9
conditional timing arcs 8-9
configuring advanced OCV analysis 6-3
connect_power_domain command 11-24
constrained pin (for data check) 5-43
constraint file, write SDF format 8-21
constraint,scaling interpolation 10-11
context characterization

limitations 4-13
perform subdesign timing analysis 4-2
set synthesis or optimization constraints 4-2

context information
delete 4-13
export 4-12

converting
PG pins 11-3

create_power_domain command 11-24
create_power_net_info command 11-24
create_supply_set command 11-21
critical paths

viewing 5-16
CRPR and time borrowing 5-9
current_design command 3-3
cycle stealing (time borrowing) 5-2

D
data checks 5-43

clock domains 5-46
library-based 5-47
nochange check 5-45

debug_script command 2-14
define_proc_attributes command 2-5
define_scaling_lib_group command 10-10,

10-13, 11-9

define_user_attribute command 12-2
defining

clock uncertainty 5-8
delay

extra source 8-3
state-dependent example 8-9

delay back-annotation 8-2
delay calculation

fast multidrive delay analysis 5-39
overview 10-2

delay changes
estimating 3-9

derate tables
file format 6-5
reading 6-5
specifying 6-5

Design Compiler
characterize context as Design Compiler

script 4-12
differences between pt_shell and dc_shell

3-2
design object class attributes list 12-20
design rule checks, derive 4-6
design rule constraints, scaling 10-12
design, constrain fully 8-23
Detailed Standard Parasitic Format (DSPF)

9-6
driver model parameters 12-106
driver reduction

conditions 5-42
DSPF, read 9-10
dynamic loop breaking 5-32

E
ECO

modifying designs 3-9
parasitics 3-26

ECO flow 3-19
examples 3-27
IN-4
Index IN-4

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
eco_write_changes_prepend_libname_to_libc
ell variable 3-23

editing netlists 3-6
effective capacitance 9-5
Elmore delay 9-4
estimate_eco command 3-10
extra source delay 8-3

F
false paths 5-22
fast analysis mode 5-19
fast multidrive delay analysis 5-39
feedback loop breaking 5-31
file compression 8-5
file format for advanced OCV 6-5
files

back-annotation 8-2
back-annotation, improving reading

performance 3-5
bytecode-compiled 2-13
parasitics (RSPF, DSPF, SPEF) 9-6
PG Tcl 11-22
read RSPF, DSPF, SPEF 9-10
SDF, command to write 8-10
Standard Delay Format (SDF) 8-2
write SDF format constraint 8-21

fix_eco_timing command 3-20
floating bus 5-36, 5-38
flows

advanced OCV 6-2
ECO 3-19
SDF, faster timing updates 8-8

G
generated clocks 4-14
generating

PG Tcl file 11-22
get_* commands 11-11

get_attribute command 12-2, 12-5
get_lib_timing_arcs command 12-105
get_power_domains command 11-11
get_power_switches command 11-11
get_supply_nets command 11-11
get_supply_ports command 11-11
get_supply_sets command 11-11
get_timing_arcs command 12-104
get_timing_paths command 5-14, 5-15, 5-20,

12-102
graph-based advanced OCV 6-10
graph-based advanced OCV solution 6-2
grouping paths for synthesis 3-6

H
hierarchical ECO format 3-28
high performance

analysis mode 5-19

I
IC Compiler

ECO flow examples 3-27
ideal latency

removing 7-4
using 7-4

ideal network
introduction 7-2
propagating properties 7-2
removing 7-3
using 7-2

ideal transition
removing 7-4
using 7-4

incremental timing 9-19
inherited loop breaking 5-33
inout pins (bidirectional) 3-3
input delay and port capacitance, calculate 4-8
insert_buffer command 3-7, 3-16, 3-23
IN-5
Index IN-5

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
IOPATH keyword, example 8-9

L
latch, time borrowing 5-2
latch-based designs 5-2
level shifters

multirail cell support 10-12
lib object class attributes list 12-30
lib_cell object class attributes list 12-32
lib_pin class attributes list 12-35
lib_thresholds_per_lib variable 9-7
library

data 12-106
Library Compiler

multiple voltages 11-19
library_pg_file_pattern variable 11-22
limitations, context characterization 4-13
link_design command 3-8
link_path_per_instance variable 11-10
list_attributes command 12-2
load_upf command 11-4
loop breaking 5-31

dynamic 5-32
inherited from .ddc or .db 5-33

lp_default_ground_pin_name variable 11-23
lp_default_power_pin_name variable 11-23
lumped 9-10

M
messages

default limit 9-11
Miller Effect 10-4
modes 4-14
modifying

ECO designs 3-9
multidrive analysis mode 5-39
multidrive delay analysis 5-39

multirail cells
support 10-12

multivoltage analysis 11-2

N
net object class attributes list 12-42
net resistance

override internally estimated value 9-3
set 9-3

netlist
editing 3-6
saving changes 3-7

nets
internal, derive annotated delays and

parasitics 4-6
NLDM

overview 10-3
nonsequential setup/hold checking 5-43
normalizing multidriven arcs for simulation

8-15

O
output format 3-22
overview

advanced OCV 6-2
advanced topics 1-1
manual 1-2

P
parallel arc paths 5-20
parallel clock buffers 5-40
parallel driver reduction 5-42
parasitic values, scaling 9-11
parasitics

annotate detailed 9-5
annotate lumped 9-2
annotate reduced 9-4
data files 9-23
IN-6
Index IN-6

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
environment variables for reduced and
detailed 9-6

export annotated 4-11
incomplete 9-20
limitations to RSPF and DSPF formats 9-6
read file and annotate 9-10
remove annotated 9-23
report (verify) annotated 9-23
scaling values 9-11
supported file formats 9-6

parse_proc_arguments command 2-8
path

detected, justify 5-24
true, detect most critical 5-23, 5-25

path groups 3-6
worst violation in 3-6

path type
recalculated 5-17

path_group object class attributes list 12-51
path-based advanced OCV solution 6-3
path-based analysis 5-15
path-based analysis, integrated with

report_timing command 5-18
path-based timing analysis 5-14
pba_exhaustive_endpoint_path_limit variable

5-18
pba_recalculate_full_path variable 5-17
performing submodule timing 4-2
PG pins

automaticallyl converting 11-3
specifying information 11-3

PG Tcl file 11-22
pi model (RC) 9-4
pin

clock 3-3
object class attributes list 12-52

point-to-point exceptions 4-14
PORT construct 8-13
power and ground pins

specifying names 11-23

power domains 11-24
power supply network

reporting commands 11-13
power_domains_compatibility variable 11-23
PrimeTime and StarRC 3-19
procedure

changing aspects 2-6
defining attributes 2-5
modifying existing 2-5

R
random coefficients 6-9
RC 9-2, 9-4

detailed 9-5
meshed 9-5
pi model 9-4
reduced 9-4
threshold variables 9-9

rc_driver_count_threshold_for_fast_multidrive
_analysis variable 5-39

rc_input_threshold_pct_fall variable 9-9
rc_input_threshold_pct_rise variable 9-9
rc_output_threshold_pct_fall variable 9-9
rc_output_threshold_pct_rise variable 9-9
rc_slew_* variables 9-9
rc_slew_derate_from_library variable 9-9
rc_slew_lower_threshold_pct_fall variable 9-9
rc_slew_lower_threshold_pct_rise variable 9-9
rc_slew_upper_threshold_pct_fall variable 9-9
rc_slew_upper_threshold_pct_rise variable

9-9
read_aocvm command 6-5
read_lib command 11-22
read_parasitics command 3-26, 9-10
read_sdf command 8-2
reading

back-annotated delays 8-2
SDF file 8-2

recalulating
IN-7
Index IN-7

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
path-based 5-16
Reduced Standard Parasitic Format

(RSPF) supported file formats 9-6
reading files 9-10

reducing parallel clock buffers 5-40
reducing pessimism

for critical paths 5-15
reducing SDF for clock mesh/spine networks

8-12
regexp command 2-2
regular expressions

anchor 2-4
buses 2-4

regular expresssions 2-2
related pin (for data check) 5-43
remove_annotated_check command 8-18
remove_annotated_delay command 8-18
remove_annotated_parasitics command 9-23
remove_context command 4-13
remove_coupling_separation command 3-28
remove_ideal_latency command 7-4
remove_ideal_network command 7-3
remove_ideal_transition command 7-4
remove_max_time_borrow command 5-14
remove_resistance command 9-3
remove_user_attribute command 12-2
removing annotated checks 8-18
removing annotated delays 8-18
removing annotated delays and checks 8-18
rename_cell command 3-18
rename_net command 3-18
report_annotated_delay command 8-6
report_annotated_parasitics command 9-23
report_aocvm command 6-5, 6-10
report_attribute command 5-17, 12-2
report_constraint command 10-12
report_delay_calculation command 10-6
report_driver_model command 12-106
report_lib command 5-21

report_lib_groups command 10-13
report_power_domain command 11-14
report_power_network command 11-14
report_power_pin_info command 11-14
report_power_switch command 11-15
report_supply_net command 11-15
report_supply_set command 11-16
report_timing command 5-14, 5-15, 5-17,

5-20, 6-3, 6-10
reporting commands

power supply network 11-13
reporting delay back-annotation 8-6
reporting net delays 8-6
reports, generate custom 12-102
resistance and capacitance (RC) 9-4
retain arcs 5-21

clock-to-output 5-21
RSPF

reading files 9-10
supported file formats 9-6

runtime
cause of long 8-23
improve 5-34

S
save_upf command 11-5
saving changes

netlist 3-7
scale_parasitics command 9-11
scaling

design rule constraints 10-12
guidelines 10-10
invoking for voltage and temperature 10-9

scaling interpolation for constraints 10-11
scaling parasitic values 9-11
scaling support

multirail cells 10-12
SDC (Synopsys Design Constraints) 3-5
SDF 4-11, 8-6, 9-2
IN-8
Index IN-8

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
(Standard Delay Format) 3-6
output versions 8-10
reducing for clock mesh/spine networks 8-12
supported constructs 8-11

SDF mapping
timing arcs A-2
using A-3

sdf_align_multi_drive_cell_arcs variable 8-13
sdf_align_multi_drive_cell_arcs_threshold

variable 8-13
sdf_enable_port_construct variable 8-13
sdf_enable_port_construct_threshold variable

8-13
searching

parallel arc paths 5-20
self-timed asynchronous logic 5-31
set_annotated_check command 8-20
set_annotated_delay command 8-19
set_annotated_transition command 8-21
set_aocvm_coefficient command 6-9
set_clock_transition command 3-3
set_clock_uncertainty command 5-8
set_coupling_separation command 3-28
set_data_check command 5-43

commands
set_data_check 5-46

set_drive command 4-5
set_driving_cell command 4-5
set_ideal_latency command 7-4
set_ideal_network command 7-2
set_ideal_transition command 7-4
set_isolation command 11-7
set_level_shifter command 11-7
set_level_shifter_stragegy command 11-18
set_load command 4-5
set_max_time_borrow command 5-13
set_operating_conditions command 11-8
set_port_fanout_number command 4-5
set_program_options command 5-19

set_related_supply_net command 11-7
set_resistance command 9-3
set_retention command 11-7
set_retention_control command 11-7
set_temperature command 11-9
set_timing_derate command 6-3, 6-9
set_user_attribute command 12-2
set_voltage command 11-8, 11-27
set_wire_load_model command 4-5
setting

annotations from the command line 8-19
optimization constraints 4-2
synthesis constraints 4-2

setup/hold pessmism reduction
hold-preferred improvement mode 5-48
optimization constraint 5-49
optimization mechanism 5-49
setup-preferred improvement mode 5-48
total negative slack improvement mode 5-49
use model 5-48
user interface 5-50

sh_limited_messages variable 9-11
sh_message_limit variable 9-11
sharing scripts 3-4
short path borrowing 3-2
SHPR

(see setup/hold pessimism reduction)
size_cell command 3-7, 3-15
slack 4-14, 4-17, 5-27
SNPS_TCLPRO_HOME variable 2-14
source command 11-4
Standard Delay Format (SDF) 3-6, 8-2
Standard Parasitic Exchange Format (SPEF)

9-6
StarRC 3-19
state dependent delays example 8-9
steady-state bus contention 5-35
stealing cycles (time borrowing) 5-2
subdesign

derive the context 4-3
IN-9
Index IN-9

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
export timing and physical information 4-3
supply nets 11-21
supply sets 11-21
supply voltage

determining 11-8
swap_cell command 3-17
Synopsys Design Constraints (SDC) 3-5

T
Tcl

advanced features 2-1
autoload 2-2
packages 2-2
parsing arguments 2-8
TclPro 2-9

TclPro
bytecode-compiled files 2-13
limitations 2-14
procheck 2-9
procomp 2-9, 2-13
prodbug 2-14
prodebug 2-9

temperature, invoking scaling 10-9
three_state_disable arc 5-37
three_state_disable timing arcs 5-36
three_state_enable timing arcs 5-36
three-state bus 5-36
time borrowed from endpoint or startpoint 5-11
time borrowing (latches) 5-2

limiting 5-13
maximum limit 5-14
negative 5-12
short path 3-2
time borrowed from endpoint 5-11
time given to startpoint 5-11

time given to startpoint or endpoint 5-11
timing arcs

reducing number 5-40
three_state_disable 5-36

three_state_enable 5-36
timing checks, setting 8-20
timing exceptions 4-14
timing path object class attributes list 12-95
timing_aocvm_analysis_mode variable 6-3,

6-8
timing_aocvm_enable_analysis variable 6-2,

6-3
timing_disable_bus_contention_check

variable 5-35, 5-37
timing_disable_floating_bus_check variable

5-35, 5-38
timing_dynamic_loop_breaking variable 5-32
timing_early_launch_at_borrowing_latches

disabled 5-11
varaiable 5-11

timing_keep_loop_breaking_disabled_arcs
variable 5-33

timing_prelayout_scaling variable 11-10
timing_propagate_through_unclocked_registe

rs variable 5-47
timing_reduce_multi_drive_net_arcs_threshol

d variable 5-42
timing_reduce_multi_driven_net_arcs variable

5-42
timing_remove_clock_reconvergece_pessimis

m variable 5-9
timing_report_recalculation_status variable

5-18
timing_report_use_worst_parallel_cell_arc

variable 5-20
timing_save_pin_arrival_and_slack variable

12-53
timing_slew_propagation_mode variable 5-14
tracing

parallel arc paths 5-20
transient bus contention 5-35
transparent latch, time borrowing 5-2
trip points 9-6
true path reporting 5-23

accelerate 5-27
IN-10
Index IN-10

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
define a threshold 5-27
true_delay_prove_false_backtrack_limit

variable 5-27
true_delay_prove_true_backtrack_limit

variable 5-26

U
unateness

see the Design Compiler Reference Manual
undefined generated clocks

supporting multiple levels 5-47
uniquification of modified blocks 3-8
UNIX gzip 8-5
unrelated clocks 5-33
updating

PG pins 11-3
UPF commands

using in PrimeTime 11-6

V
variable

timing_disable_floating_bus_check 5-38
variables

eco_write_changes_prepend_libname_to_li
bcell 3-23

for reduced and detailed parasitics 9-6
lib_thresholds_per_lib 9-7
library_pg_file_pattern 11-22
link_path_per_instance 11-10
lp_default_ground_pin_name 11-23
lp_default_power_pin_name 11-23
pba_exhaustive_endpoint_path_limit 5-18
pba_recalculate_full_path 5-17
power_domains_compatibility 11-23
RC threshold 9-9
rc_driver_count_threshold_for_fast_multidri

ve_analysis 5-39
rc_input_threshold_pct_rise 9-9
rc_output_threshold_pct_fall 9-9
rc_output_threshold_pct_rise 9-9

rc_slew_ 9-9
rc_slew_derate_from_library 9-9
rc_slew_lower_threshold_pct_fall 9-9
rc_slew_lower_threshold_pct_rise 9-9
rc_slew_upper_threshold_pct_rise 9-9
sdf_align_multi_drive_cell_arcs 8-13
sdf_align_multi_drive_cell_arcs_threshold

8-13
sdf_enable_port_construct 8-13
sdf_enable_port_construct_threshold 8-13
sh_limited_messages 9-11
sh_message_limit 9-11
SNPS_TCLPRO_HOME 2-14
timing_allow_short_path_borrowing 3-3
timing_aocvm_analysis_mode 6-3, 6-8
timing_aocvm_enable_analysis 6-2, 6-3
timing_disable_bus_contention_check 5-35,

5-37
timing_disable_floating_bus_check 5-35
timing_dynamic_loop_breaking 5-32
timing_early_launch_at_borrowing_latches

5-11
timing_keep_loop_breaking_disabled_arcs

5-33
timing_prelayout_scaling 11-10
timing_propagate_through_unclocked_regis

ters 5-47
timing_reduce_multi_drive_net_arcs_thresh

old 5-42
timing_reduce_multi_driven_net_arcs 5-42
timing_remove_clock_reconvergece_pessim

ism 5-9
timing_report_recalculation_status 5-18
timing_report_use_worst_parallel_cell_arc

5-20
timing_save_pin_arrival_and_slack 12-53
timing_slew_propagation_mode 5-14
true_delay_backtrack_limit 5-26
true_delay_prove_false_backtrack_limit

5-27
viewing

critical paths 5-16
virtual power network 11-7
IN-11
Index IN-11

PrimeTime Advanced Timing Analysis User Guide Version D-2010.06
voltage
invoking scaling 10-9

W
wire load model, derive 4-6
write command 8-5
write_astro_changes command 3-28
write_binary_aocvm command 6-5

write_changes command 3-7, 3-22, 3-26
write_context command 4-3, 4-12
write_physical_annotations command 4-3,

4-11
write_script command 8-5, 11-5, 12-5
write_sdf command 8-10, A-3
write_sdf_constraints command 8-21, 8-23
writing Astro change files 3-28
IN-12
Index IN-12

	Preface
	Overview of Advanced Topics
	Topics Covered in This Manual

	Tcl Advanced Features
	Tcl Packages and Autoload
	Regular Expressions
	Using Regular Expressions With Implicit Collections
	Using Regular Expressions With Hierarchy
	Anchoring Regular Expressions
	Using Regular Expressions With Buses

	Extending Procedures
	Default Procedure Attributes
	Changing the Aspects of a Procedure
	Format for the -define_args Option
	Parsing Arguments Passed in to a Tcl Procedure

	TclPro Toolkit
	Installation Requirements
	Checking the Syntax and Semantics of Your Scripts
	Limitations Using the Synopsys Syntax Checker
	Running the Synopsys Syntax Checker

	Bytecode-Compiled Files
	Debugging Scripts
	Launching Prodebug From PrimeTime
	TclPro Limitations

	Using PrimeTime With Other Synopsys Tools
	Using PrimeTime With Design Compiler
	Features Specific to PrimeTime
	Timing Analysis Differences
	Paths
	Transition Time
	current_design Command

	Command Scripts
	Sharing Design Compiler and PrimeTime Scripts
	Synopsys Design Constraints Formatted Script Files

	Reading .db Files With Back-Annotated Data
	Path Groups in Design Compiler

	Manual Netlist Editing
	Automatic Uniquifying of Blocks
	Resolving Library Cells
	Estimating Delay Changes
	Customizing Estimation Columns
	Sizing Cells
	Inserting Buffers
	Swapping Cells
	Renaming Cells or Nets
	User Function Class Support

	Automated Netlist Editing
	Using the fix_eco_timing Command
	Recommended Automated Fixing Flow

	Using the fix_eco_drc Command

	Writing Change Files
	Choosing an Output Format
	Specifying Buffer Insertion Cells and Net Names
	Controlling Library Logical Names and Prepending File Names
	Reading Changes Into Layout

	Incremental Extraction With StarRC
	Applying Netlist Changes
	Reading ECO Parasitics
	Clearing Netlist Changes
	Incremental Extraction Flow Examples

	Writing Astro Change Files

	Context Characterization
	Context Characterization Overview
	Setting Synthesis or Optimization Constraints
	Performing Subdesign Timing Analysis

	Deriving the Context of a Subdesign
	Clock Information
	Input and Output Delay Times
	Point-to-Point Timing Exceptions
	Constant Logic Values on Inputs
	Input Drive Strength and Port Capacitance
	Wire Load Models
	Design Rule Checks
	Annotated Delays and Parasitics
	Input Delay and Port Capacitance

	Writing Physical Information
	Reporting the Timing Context
	Generating Scripts for Characterized Contexts
	Removing Context Information
	Limitations of Context Characterization

	Advanced Analysis Techniques
	Time Borrowing in Latch-Based Designs
	Borrowing Time From Logic Stages
	Latch Timing Reports

	Maximum Borrow Time Adjustments
	Time Borrowed and Time Given
	Limiting Time Borrowing

	Path-Based Timing Analysis
	Setting Recalculation Limits
	Composite Current Source (CCS) Receiver Model for Path-Based Analysis

	Fast Performance Analysis Mode
	Parallel Arc Path Tracing
	Support for Retain Arcs
	True and False Path Detection
	Reporting True or False Paths
	Reporting True Paths
	Justifying Paths
	Finding the Longest True Path
	Changing the Backtrack Limit
	Changing the Prove-False Backtrack Limit
	Using the True Delay Function
	Long Path Example

	Asynchronous Logic Analysis
	Combinational Feedback Loop Breaking
	Dynamic Loop Breaking
	Specifying Loop Break Points

	Unrelated Clocks

	Three-State Bus Analysis
	Limitations of the Checks
	Disabling the Checks
	Bus Contention
	Floating Buses
	Three-State Buffers
	Performing Transient Bus Contention Checks
	Performing Floating Bus Checks

	Fast Multidrive Delay Analysis
	Parallel Driver Reduction
	Invoking Parallel Driver Reduction
	Working With Reduced Drivers

	Data-to-Data Checking
	Data Check Examples
	Data Checks and Clock Domains
	Library-Based Data Checks
	Data Propagation Through Generated Clocks

	Interdependent Setup and Hold Pessimism Reduction
	Use Model for SHPR
	Setup-Preferred Slack Improvement
	Hold-Preferred Slack Improvement
	Total Negative Slack Improvements
	SHPR Optimization Constraints

	SHPR Optimization Mechanism
	SHPR User Interface
	SHPR Examples
	Setup Preferred Slack Improvement Example
	Total Slack Improvement Example

	Liberty Format Extension

	Advanced On-Chip Variation
	Introduction
	Advanced OCV Flow
	Graph-Based Advanced OCV Solution
	Path-Based Advanced OCV Solution

	Specifying the Scope of the Advanced OCV Analysis
	Importing Advanced OCV Information
	Specifying Derate Tables
	File Format for Advanced OCV
	Specifying Random Coefficients
	Guard-Banding in Advanced OCV

	Advanced OCV Reporting

	Ideal Network Support
	Introduction to Ideal Networks
	Propagating Ideal Network Properties
	Using Ideal Networks
	Using Ideal Latency
	Using Ideal Transition

	SDF Back-Annotation
	Overview of SDF Back-Annotation
	Reading SDF Files
	Annotating Timing From a Subdesign Timing File
	Annotating Load Delay
	Annotating Timing Checks
	Reading the File
	Removing Annotated Timing Checks and Delays
	Managing Large Files

	Reporting Delay Back-Annotation Status
	Reporting Annotated or Nonannotated Delays
	Reporting Annotated or Nonannotated Timing Checks
	Faster Timing Updates in SDF Flows

	Annotating Conditional Delays From SDF
	Writing an SDF File
	SDF Constructs
	SDF Delay Triplets
	SDF Conditions and Edge Identifiers
	Reducing SDF for Clock Mesh/Spine Networks
	PORT Construct
	Normalizing Multidriven Arcs for Simulation

	Writing VITAL Compliant SDF Files

	Removing Annotated Delays and Checks
	Removing Annotated Delays
	Removing Annotated Checks

	Setting Annotations From the Command Line
	Annotating Delays
	Annotating Timing Checks
	Annotating Transition Times

	Generating Timing Constraints for Place and Route
	Providing Constraint Coverage for the Entire Design

	Parasitic Back-Annotation
	Parasitic Data
	Lumped Parasitics
	Setting Net Capacitance
	Setting Net Resistance

	Reduced and Detailed Parasitics
	Annotating Reduced Parasitics
	Annotating Detailed Parasitics
	Supported File Formats for Parasitic Annotation
	Characterization Trip Points

	Reading Parasitics Files
	Scaling Parasitic Values
	Net-Specific Parasitic Scaling
	Ground-Capacitance and Resistance Scaling
	Coupling-Capacitance Scaling
	Resetting Scale Parasitics
	Reporting Scale Parasitics
	Examples

	Incremental Timing Analysis

	Incomplete Annotated Parasitics
	Selecting a Wire Load Model for Incomplete Nets
	Completing Missing Segments on the Net

	Reporting Annotated Parasitics
	Removing Annotated Parasitics

	Delay Calculation With Detailed Parasitics
	Overview of Delay Calculation
	Nonlinear Delay Models (NLDM)
	CCS Timing Models
	Support of CCS Receiver Model for Pin Capacitance Reporting
	Guidelines to Address the CCS Extrapolation Warning Message (RC-011)
	Guidelines for Characterizing Design Rule Constraints
	Guidelines for Fixing RC-011 Warning Messages

	Scaling With CCS Timing Libraries
	Invoking Scaling
	Guidelines for Scaling
	Scaling Interpolation for Constraints
	Scaling of Design Rule Constraints
	Multirail Cell Scaling Support for Multirail Cells

	Low-Power Flow Support
	Multivoltage Analysis
	UPF Commands
	Virtual Power Network
	Setting Voltage and Temperature
	Analysis With Multiple Voltages
	Multivoltage Reporting and Checking
	Collection (get_*) Commands
	Reporting Commands
	Using the check_timing Command
	Voltage Set on Each Supply Net Segment
	Supply Net Connected to Each PG Pin of Every Cell
	Compatible Driver-to-Load Signal Levels
	Impact of Correlated Supplies on Signal Level Checking

	UPF Supply Sets
	Library PG Tcl File
	Default Power and Ground Pin Names

	Power Domain Mode of Release Z-2007.06
	Multivoltage Method Prior to Release Z-2007.06
	Setting Operating Conditions on Cells
	Setting Rail Voltages Directly on Cells

	Object Attributes
	Using Attributes
	Defining User Attributes
	Importing User-Defined Attributes

	Saving Design Attributes
	Attribute Names and Usage
	Cell Object Class Attributes
	Clock Object Class Attributes
	Design Object Class Attributes
	Library Object Class Attributes
	Library Cell Object Class Attributes
	Library Pin Object Class Attributes
	Library Timing Arc Object Class Attributes
	Net Object Class Attributes
	Path Group Object Class Attributes
	Pin Object Class Attributes
	Port Object Class Attributes
	Timing Arc Object Class Attributes
	Timing Path Object Class Attributes
	Timing Point Object Class Attributes

	Using Paths to Generate Custom Reports
	Using Arcs to Generate Custom Reports
	Creating a Collection of Library Arcs
	Reporting Library Data and Driver Information

	Writing Mapped SDF Files
	Specifying Timing Labels in the Library
	Specifying the min_pulse_width Constraint
	Accessing the min_pulse_width Constraint
	Specifying the min_period Constraint on a Pin

	Using SDF Mapping
	SDF Mapping Notation
	SDF Mapping Comments
	SDF Mapping Variables

	Supported SDF Mapping Functions
	SDF Mapping File Syntax

	SDF Mapping Assumptions
	Bus Naming Conventions
	Header Consistency Check for SDF Mapping Files

	Labeling Bus Arcs
	SDF Mapping Limitations
	Mapped SDF File Examples
	Library File for Cells EXMP and FF1
	Mapped SDF File
	Three-State Buffers

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

