
Virtuoso® Spectre® Circuit Simulator and
Accelerated Parallel Simulator User Guide

Product Version 10.1.1
June 2011

© 2003–2011 Cadence Design Systems, Inc. All rights reserved.

Printed in the United States of America.

Cadence Design Systems, Inc. (Cadence), 2655 Seely Ave., San Jose, CA 95134, USA.

MMSIM contains technology licensed from, and copyrighted by: C. L. Lawson, R. J. Hanson, D. Kincaid,
and F. T. Krogh © 1979, J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson © 1988, J. J.
Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling © 1990; University of Tennessee, Knoxville, TN and
Oak Ridge National Laboratory, Oak Ridge, TN © 1992-1996; Brian Paul © 1999-2003; M. G. Johnson,
Brisbane, Queensland, Australia © 1994; Kenneth S. Kundert and the University of California, 1111 Franklin
St., Oakland, CA 94607-5200 © 1985-1988; Hewlett-Packard Company, 3000 Hanover Street, Palo Alto,
CA 94304-1185 USA © 1994, Silicon Graphics Computer Systems, Inc., 1140 E. Arques Ave., Sunnyvale,
CA 94085 © 1996-1997, Moscow Center for SPARC Technology, Moscow, Russia © 1997; Regents of the
University of California, 1111 Franklin St., Oakland, CA 94607-5200 © 1990-1994, Sun Microsystems, Inc.,
4150 Network Circle Santa Clara, CA 95054 USA © 1994-2000, Scriptics Corporation, and other parties ©
1998-1999; Aladdin Enterprises, 35 Efal St., Kiryat Arye, Petach Tikva, Israel 49511 © 1999 and Jean-loup
Gailly and Mark Adler © 1995-2005; RSA Security, Inc., 174 Middlesex Turnpike Bedford, MA 01730 ©
2005.

All rights reserved. Associated third party license terms may be found at <install_dir>/doc/OpenSource/*

Open SystemC, Open SystemC Initiative, OSCI, SystemC, and SystemC Initiative are trademarks or
registered trademarks of Open SystemC Initiative, Inc. in the United States and other countries and are
used with permission.

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. contained in this document
are attributed to Cadence with the appropriate symbol. For queries regarding Cadence’s trademarks,
contact the corporate legal department at the address shown above or call 800.862.4522. All other
trademarks are the property of their respective holders.

Restricted Permission: This publication is protected by copyright law and international treaties and
contains trade secrets and proprietary information owned by Cadence. Unauthorized reproduction or
distribution of this publication, or any portion of it, may result in civil and criminal penalties. Except as
specified in this permission statement, this publication may not be copied, reproduced, modified, published,
uploaded, posted, transmitted, or distributed in any way, without prior written permission from Cadence.
Unless otherwise agreed to by Cadence in writing, this statement grants Cadence customers permission to
print one (1) hard copy of this publication subject to the following conditions:

1. The publication may be used only in accordance with a written agreement between Cadence and its
customer.

2. The publication may not be modified in any way.
3. Any authorized copy of the publication or portion thereof must include all original copyright,

trademark, and other proprietary notices and this permission statement.
4. The information contained in this document cannot be used in the development of like products or

software, whether for internal or external use, and shall not be used for the benefit of any other party,
whether or not for consideration.

Patents: Cadence product Virtuoso® Spectre® Circuit Simulator, described in this document is protected
by U.S. Patents 5,610,847; 5,790,436; 5,812,431; 5,859,785; 5,949,992; 5,987,238; 6,088,523; 6,101,323;
6,151,698; 6,181,754; 6,260,176; 6,278,964; 6,349,272; 6,374,390; 6,493,849; 6,504,885; 6,618,837;
6,636,839; 6,778,025; 6,832,358; 6,851,097; 7,035,782; 7,085,700

Disclaimer: Information in this publication is subject to change without notice and does not represent a
commitment on the part of Cadence. Except as may be explicitly set forth in such agreement, Cadence does
not make, and expressly disclaims, any representations or warranties as to the completeness, accuracy or
usefulness of the information contained in this document. Cadence does not warrant that use of such
information will not infringe any third party rights, nor does Cadence assume any liability for damages or

costs of any kind that may result from use of such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
FAR52.227-14 and DFAR252.227-7013 et seq. or its successor

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide

Contents
Preface . 17

Licensing . 19
License Checkout Order . 20
Lock Feature Licenses . 21
Using License Queuing . 21
Suspending and Resuming Licenses . 21

Related Documents for Spectre . 22
Third Party Tools . 23
Typographic and Syntax Conventions . 23
References . 24

1
Introducing the Virtuoso Spectre Circuit Simulator 25

Improvements over SPICE . 26
Improved Capacity . 26
Improved Accuracy . 26
Improved Speed . 27
Improved Reliability . 28
Improved Models . 29
Spectre Usability Features and Customer Service . 29

Analog HDL . 29
RF Capabilities . 30

Periodic Analysis . 30
Quasi-Periodic Analysis . 31
Envelope Analysis . 32
Harmonic Balance Steady State Analysis (HB) . 32

High Performance Simulation . 32
Starting turbo or APS Simulations . 33
Specifying Multi-Threading Options . 34
Using the cktpreset=sampled option . 35
Parasitic Reduction . 36
June 2011 5 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Additional Notes . 36
APS Distributed Mode . 37

Environments . 38

2
Getting Started with the Virtuoso Spectre Circuit Simulator 41

Using the Example and Displaying Results . 42
Sample Schematic . 42
Sample Netlist . 44

Elements of a Spectre Netlist . 44
Instructions for a Spectre Simulation Run . 48

Following Simulation Progress . 48
Screen Printout . 48

Viewing Your Output . 50
Starting WaveScan . 50
Plotting Signals . 51
Changing the Trace Color . 54
Learning More about ViVA . 55

3
SPICE Compatibility . 57

Support for SPICE Netlists . 58

4
Spectre Netlists . 59

Netlist Statements . 60
Netlist Conventions . 60
Basic Syntax Rules . 61
Spectre Language Modes . 61
Creating Component and Node Names . 62
Escaping Special Characters in Names . 64
Duplicate Specification of Parameters . 65

Instance Statements . 65
Formatting the Instance Statement . 65
June 2011 6 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Examples of Instance Statements . 66
Basic Instance Statement Rules . 67
Identical Components or Subcircuits in Parallel . 67

Analysis Statements . 68
Basic Formatting of Analysis Statements . 69
Examples of Analysis Statements . 70
Basic Analysis Rules . 70

Control Statements . 71
Formatting the Control Statement . 71
Examples of Control Statements . 72

Model Statements . 73
Formatting the model Statement . 73
Creating a Model Alias . 74
Creating an alias for a Subcircuit . 74
Examples of model Statements . 74
Using analogmodel for Model Passing (analogmodel) . 75
Basic model Statement Rules . 77

Input Data from Multiple Files . 78
Syntax for Including Files . 78
Formatting the include Statement . 79
Rules for Using the include Statement . 79
Example of include Statement Use . 80
Reading Piecewise Linear (PWL) Vector Values from a File 81
Using Library Statements . 81

Multidisciplinary Modeling . 82
Setting Tolerances with the quantity Statement . 82

Inherited Connections . 84

5
Parameter Specification and Modeling Features 87

Instance (Component or Analysis) Parameters . 88
Types of Parameter Values . 88
Parameter Dimension . 88
Parameter Ranges . 89
Help on Parameters . 90
June 2011 7 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Scaling Numerical Literals . 91
Parameters Statement . 92

Circuit and Subcircuit Parameters . 93
Parameter Declaration . 93
Parameter Inheritance . 93
Parameter Referencing . 94
Altering/Sweeping Parameters . 94

Expressions . 94
Behavioral Expressions . 98
Built-in Constants . 104
User-Defined Functions . 105
Predefined Netlist Parameters . 106

Subcircuits . 106
Formatting Subcircuit Definitions . 107
A Subcircuit Definition Example . 108
Subcircuit Example . 108
Rules to Remember . 109
Calling Subcircuits . 110
Modifying Subcircuit Parameter Values . 111
Checking for Invalid Parameter Values . 111

Inline Subcircuits . 112
Modeling Parasitics . 113
Parameterized Models . 116
Inline Subcircuits Containing Only Inline model Statements 117
Process Modeling Using Inline Subcircuits . 118

Binning . 120
Auto Model Selection . 122
Conditional Instances . 123

Scaling Physical Dimensions of Components and Device Model Technology 133
Multi-Technology Simulation . 135

6
Modeling for Signal Integrity. 137

N-Port Modeling . 138
N-Port Example . 138
June 2011 8 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Creating an S-Parameter File Automatically . 139
Creating an S, Y, or Z-Parameter File Manually . 139
Reading the S, Y or Z-Parameter File . 140
Improving the Modeling Capability of the N-Port . 146
S-Parameter File Format Translator . 147
Standard Scattering Parameter Modeling and Mixed-Mode Scattering Parameter
Modeling . 148

Transmission Line Modeling . 154
Constant RLGC Matrices . 155
Frequency-Dependent RLGC Data . 156
2-D Field Solver Geometry and Material Information . 157
S-Parameter Data . 160
TLINE Parameters . 160

Input/Output Buffer Modeling Using IBIS . 161
IBIS Translator Model . 161
Example of an IBIS Component Subcircuit . 162

7
Analyses . 165

Types of Analyses . 166
Analysis Parameters . 168
Probes in Analyses . 169
Multiple Analyses . 170
Multiple Analyses in a Subcircuit . 172

Example . 172
DC Analysis . 173

Selecting a Continuation Method . 175
AC Analysis . 175
Transient Analysis . 176

Sweeping Parameters During Transient Analysis . 176
Balancing Accuracy and Speed . 178
The errpreset Parameter . 179
Setting the Integration Method . 181
Improving Transient Analysis Convergence . 182
Controlling the Amount of Output Data . 182
June 2011 9 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Calculating Transient Noise . 185
Performing Small-Signal Analyses during a Transient Analysis 187

Pole Zero Analysis . 188
Syntax . 188
Example 1 . 189
Example 2 . 189
Example 3 . 189
Example 4 . 189
Output Log File . 189

Other Analyses (sens, fourier, dcmatch, and stb) . 190
Sensitivity Analysis . 190
Fourier Analysis . 194
DC Match Analysis . 195
Stability Analysis . 201

Advanced Analyses (sweep and montecarlo) . 205
Sweep Analysis . 205
Monte Carlo Analysis . 210

Spectre Reliability Analysis . 221
Reliability Simulation Block . 221
Reliability Control Statements Reference . 224
accuracy (*relxpert: accuracy) . 225
age (*relxpert: age) . 226
agelevel_only (*relxpert: agelevel_only) . 227
degsort (*relxpert: degsort) . 228
deltad (*relxpert: deltad) . 229
idmethod (*relxpert: idmethod) . 230
igatemethod (*relxpert: igatemethod) . 231
isubmethod (*relxpert: isubmethod) . 232
maskdev (*relxpert: maskdev) . 233
minage (*relxpert: minage) . 234
opmethod (*relxpert: opmethod) . 235
relx_tran (*relxpert: relx_tran) . 236
report_model_param (*relxpert: report_model_param) . 237
uri_lib (*relxpert: uri_lib) . 238
User-Defined Reliability Models . 239
June 2011 10 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
8
Control Statements . 241

The alter and altergroup Statements . 242
Changing Parameter Values for Components . 242
Changing Parameter Values for Models . 243
Further Examples of Changing Component Parameter Values 243
Changing Parameter Values for Circuits . 244

The assert Statement . 245
Examples of assert Statement . 251

The check Statement . 253
The checklimit Statement . 254

Format of Violations in the .violations File . 257
Examples of checklimit Statement . 259

The ic and nodeset Statements . 260
Setting Initial Conditions for All Transient Analyses . 260
Supplying Solution Estimates to Increase Speed . 262
Specifying State Information for Individual Analyses . 262

The info Statement . 265
Specifying the Parameters You Want to Save . 266
Specifying the Output Destination . 267
Examples of the info Statement . 267
Printing the Node Capacitance Table . 268

The options Statement . 272
options Statement Format . 272
options Statement Example . 273
Setting Tolerances . 273
Additional options Statement Settings You Might Need to Adjust 274
Simulation Config file Support . 274

The paramset Statement . 275
The save Statement . 275

Saving Signals for Individual Nodes and Components . 275
Saving Groups of Signals . 281
Using Wildcards in the Save Statement . 284

The print Statement . 287
Examples . 288
June 2011 11 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
The set Statement . 289
The shell Statement . 289
The statistics Statement . 290

9
Specifying Output Options. 291

Signals as Output . 292
Saving all AHDL Variables . 292

Listing Parameter Values as Output . 292
Specifying the Parameters You Want to Save . 293
Specifying the Output Destination . 294
Examples of the info Statement . 294

Preparing Output for Viewing . 294
Output Formats Supported by the Spectre Simulator . 294
Defining Output File Formats . 296

Accessing Output Files . 296
How the Spectre Simulator Creates Names for Output Directories and Files 297
Filenames for SPICE Input Files . 299
Specifying Your Own Names for Directories . 299

10
Running a Simulation . 301

Running Spectre in 64-Bit . 302
Starting Simulations . 303

Specifying Simulation Options . 303
Using License Queuing . 304
Suspending and Resuming Licenses . 304
Determining Whether a Simulation Was Successful . 305

Checking Simulation Status . 305
Interrupting a Simulation . 306
Recovering from Transient Analysis Terminations . 306

Creating Saved State Files . 306
Creating checkpoint Files . 308
Creating Recovery Files from the Command Line . 309
Setting Recovery File Specifications for a Single Analysis . 309
June 2011 12 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Restarting a Transient Analysis . 309
Output Directory after Recovery . 310

Controlling Command Line Defaults . 310
Examining the Spectre Simulator Defaults . 310
Setting Your Own Defaults . 310
References for Additional Information about Specific Defaults 312
Overriding Defaults . 312

11
Encryption . 313

Encrypting a Netlist . 314
What You can Encrypt . 315

Encrypted Information During Simulation . 320
Protected Device . 320
Protected Node . 321
Protected Global and Netlist Parameters . 321
Protected Subcircuit Parameters . 321
Protected Model Parameters . 321
Multiple Name Spaces . 322

12
Time-Saving Techniques. 323

Specifying Efficient Starting Points . 324
Reducing the Number of Simulation Runs . 324
Adjusting Speed and Accuracy . 324
Saving Time by Starting Analyses from Previous Solutions . 324
Saving Time by Specifying State Information . 325

Setting Initial Conditions for All Transient Analyses . 325
Supplying Solution Estimates to Increase Speed . 327
Specifying State Information for Individual Analyses . 327

Saving Time by Modifying Parameters during a Simulation . 330
Changing Circuit or Component Parameter Values . 331
Modifying Initial Settings of the State of the Simulator . 332

Saving Time by Selecting a Continuation Method . 333
June 2011 13 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
13
Managing Files . 335

About Virtuoso Spectre Filename Specification . 336
Creating Filenames That Help You Manage Data . 336

Creating Filenames by Modifying Input Filenames . 336
Description of Spectre Predefined Percent Codes . 337
Customizing Percent Codes . 338
Creating Filenames from Parts of Input Filenames . 340

14
Identifying Problems and Troubleshooting. 343

Error Conditions . 344
Invalid Parameter Values That Terminate the Program . 344
Singular Matrices . 344
Internal Error Messages . 346
Time Is Not Strictly Increasing . 346

Spectre Warning Messages . 346
P-N Junction Warning Messages . 347
Tolerances Might Be Set Too Tight . 348
Parameter Is Unusually Large or Small . 348
gmin Is Large Enough to Noticeably Affect the DC Solution 349
Minimum Timestep Used . 349
Syntax Errors . 350
Topology Messages . 350
Model Parameter Values Clamped . 351
Invalid Parameter Warnings . 351
Redefine Primitives Messages . 351
Initial Condition Messages . 351
Output Messages . 352
Log File Messages . 352

Customizing Error and Warning Messages . 352
Selecting Limits for Parameter Value Warning Messages . 353
Selecting Limits for Operating Region Warnings . 360
Range Checking on Subcircuit Parameters . 361
June 2011 14 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Formatting the paramtest Component . 361
Controlling Program-Generated Messages . 363

Specifying Log File Options . 363
Correcting Convergence Problems . 364

Correcting DC Convergence Problems . 364
Correcting Transient Analysis Convergence Problems . 367

Correcting Accuracy Problems . 367
Suggestions for Improving DC Analysis Accuracy . 367
Suggestions for Improving Transient Analysis Accuracy . 368

A
Example Circuits . 369

Notes on the BSIM3v3 Model . 370
Spectre Syntax . 370
SPICE BSIM 3v3 Model . 370
Spectre BSIM 3v3 Model . 371
Ring Oscillator Spectre Deck for Inverter Ring with No Fanouts (inverter_ring.sp) 371
Ring Oscillator Spectre Deck for Two-Input NAND Ring with No Fanouts (nand2_ring.sp) .
373
Ring Oscillator Spectre Deck for Three-Input NAND Ring with No Fanouts (nand3_ring.sp)
374
Ring Oscillator Spectre Deck for Two-Input NOR Ring with No Fanouts (nor2_ring.sp) 376
Ring Oscillator Spectre Deck for Three-Input NOR Ring with No Fanouts (nor3_ring.sp) . .
377
Opamp Circuit (opamp.cir) . 379
Opamp Circuit 2 (opamp1.cir) . 379
Original Open-Loop Opamp (openloop.sp) . 379
Modified Open-Loop Opamp (openloop1.sp) . 380
Example Model Directory (q35d4h5.modsp) . 380

B
Using Compiled-Model Interface. 381

Installing Compiled-Model Interface (CMI) . 381
Configuration File . 381
Configuration File Format . 382
June 2011 15 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Precedence for the CMI Configuration File . 383
Configuration File Example . 384
CMI Versioning . 385

C
Netlist Compiled Functions (NCF) . 387

Loading a Plug-in . 387
Using a NCF in a Spectre Netlist . 387
Creating a Plug-in . 388
Installing a NCF . 389
Modifing the Default Behavior of a NCF . 390

ncfSetNumArgs(ncfHandle_t, int, int) . 390
ncfSetDLLFunctionV1(ncfHandle_t, ncfFunctionV1Ptr_t) 390

Attaching Arbitrary Data to a NCF . 391

Index. 393
June 2011 16 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Preface

Virtuoso® Spectre® circuit simulator is a SPICE accurate simulator that simulates complex
analog and custom digital circuits, such as ADCs, DACs and PLLs. The simulator uses highly
optimized algorithms that offer increased simulation speed and improved convergence
characteristics over traditional SPICE simulators.

Besides the comprehensive set of basic analyses, the Spectre circuit simulator provides RF
simulation capabilities with Spectre RF to verify RF and communication circuits, such as
mixers, oscillators, sample holds and switched-capacitor filters. Additional details on RF
simulation are covered in the Spectre RF User Guide.

In addition, for complex and/or large post layout analog circuits a high performance SPICE
simulation option is available through the Virtuoso APS product. For more details on the
capabilities of Virtuoso APS, see Chapter 1, “Introducing the Virtuoso Spectre Circuit
Simulator” of this user guide.

This user guide assumes that you are familiar with:

■ The development, design, and simulation of integrated circuits.

■ SPICE simulation.

■ The Virtuoso® Analog Design Environment (ADE).

The Virtuoso® Spectre® Circuit simulator and the high performance option, Virtuoso® APS is
offered in a tiered product configuration L, XL and GXL. In addition these simulators are
accessible using MMSIM product tokens. The table below shows the features offered in each
tier. For additional details on licensing, pricing and packaging please contact your account
manager.
June 2011 17 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Table -1 Virtuoso® Spectre® Circuit Simulator

Note: For details on the RF analysis capabilities and product tiering, please refer to the
VirtuosoSpectre Circuit Simulator and Accelerated Parallel Simulator RF Analysis
user guide.

Features L XL GXL

DC, small-signal analyses and transient X X X

Monte Carlo, DC mismatch, Parametric sweep X X X

Transient noise analysis X X X

Reliability analysis X X X

Encryption X X X

Built-in Measurement Description Language (MDL) X X X

MMSIM Toolbox for MATLAB® from The MathWorks X X X

RF Shooting Newton X X

RF Harmonic Balance X X

Turbo performance technology X X

Cadence Proprietary Agemos Model X X

Cosimulation with Simulink® from The MathWorks X X

RF Turbo performance technology X

Parasitic Reduction X
June 2011 18 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Table -2 Virtuoso® Accelerated Parallel Simulator (APS)

Note: *Requires a quantity of 2 APS L tier to run multi-core Spectre simulation beyond 16
cores. Please contact your account representative for more details.

Licensing

To run the features in L, XL, and GXL tiers of Spectre and APS you must have access to a
corresponding feature license outlined below in Table -3 of the License Checkout Order
section. The order in which these licenses are used is determined either by a default checkout
order described on page 20, or by a user customized order that can be defined using the
+lorder option.

The +lorder option lets you specify a custom license checkout order for simulation. Spectre
checks for a license in the specified order+lorder licenseList

Features Single
Core L XL

All analyses and features in Spectre L X X X

Cosimulation with Simulink® from The MathWorks X X X

Parasitic Reduction X X

Cadence Proprietary Agemos Model X X

Multi-core and distributed Spectre simulation, up to 4 cores X X

Multi-core and distributed Spectre simulation, up to 16 cores X

Multi-core and distributed Spectre simulation, up to 64 cores X*

RF Shooting Newton, up to 16 cores X

RF Harmonic Balance, up to 16 cores X

licenseList A list of licenses. Used when defining the order.

For example,

+lorder Virtuoso_Multi_mode_Simulation:Virtuoso_Spectre

specifies that the token license is checked before the
Virtuoso_Spectre license.
June 2011 19 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Note: For additional details on pricing and additional packaging information, please contact
your account manager.

License Checkout Order

All available license features within MMSIM are shown below. You can use the mnemonic
license names for convenience as listed below. For example, +lorder MMSIM:SPE can be
recognized.

Table -3 Mnemonic License Names and Corresponding License Feature

The default license checkout order for features in the Spectre L tier is:

Virtuoso_Spectre_L:32500:Virtuoso_Multi_mode_Simulation (1):
Virtuoso_Spectre_XL:Virtuoso_Spectre_GXL

The default license checkout order for features in the Spectre XL tier is:

Virtuoso_Spectre_XL:Virtuoso_Spectre_L & Virtuoso_SpectreRF:Virtuoso_Spectre_L &
Virtuoso_Multi_mode_Simulation (1):Virtuoso_Multi_mode_Simulation (1) &
Virtuoso_Spectre_RF:Virtuoso_Multi_mode_Simulation (2):
Virtuoso_Spectre_GXL

The default license checkout order for features in Spectre GXL tiers

Virtuoso_Spectre_GXL:Virtuoso_Spectre_XL & Virtuoso_Multi_mode_Simulation (2) &
Virtuoso_Spectre_GXL_MMSIM_Lk (4):Virtuoso_Spectre_L & Virtuoso_Spectre_RF &
Virtuoso_Multi_mode_Simulation (2) & Virtuoso_Spectre_GXL_MMSIM_Lk
(4):Virtuoso_Spectre_L & Virtuoso_Multi_mode_Simulation (3) &
Virtuoso_Spectre_GXL_MMSIM_Lk (4):Virtuoso_Multi_mode_Simulation (4) &
Virtuoso_Spectre_GXL_MMSIM_Lk (4)

MMSIM Virtuoso_Multi_mode_Simulation

SPE Virtuoso_Spectre

SPERF Virtuoso_Spectre_RF

SPEXL Virtuoso_Spectre_XL

SPEGXL Virtuoso_Spectre_GXL

APS_SC Virtuoso_Acceler_Parallel_sc

APSL Virtuoso_Acceler_Parallel_L

APSXL Virtuoso_Acceler_Parallel_XL
June 2011 20 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Lock Feature Licenses

For MMSIM 7.0 release and beyond, an equal number of lock feature licenses listed below
are required to accompany an equal number of Virtuoso_Multi_mode_Simulation license
feature, to give access to features and technologies in Spectre GXL and APS L and XL:

■ Virtuoso_Spectre_GXL_MMSIM_Lk required to access features and technologies in
Spectre GXL.

■ Virtuoso_APS_MMSIM_Lk required to access features and technologies in APS L and
APS XL.

Using License Queuing

You can turn on license queuing by using the lqtimeout command line option:

spectre +lqtimeout time_in_seconds

If a license is not available when you begin a simulation job, the Spectre circuit simulator waits
in queue for a license for the specified time. If you specify the value 0 for this option, the
Spectre circuit simulator waits indefinitely for a license. The lqtimeout option has no default
value for the standalone Spectre circuit simulator. If you invoke Spectre through the Analog
Design Environment, the default value for lqtimeout is 900 seconds. You can use the
lqsleep option to specify the interval (in seconds) at which the Spectre circuit simulator
should check for license availability. The default value for lqsleep is 30 seconds.

spectre +lqsleep interval

For more information on any of the above options, see spectre -h.

Suspending and Resuming Licenses

You can direct Spectre to release licenses when suspending a simulation job. This feature is
aimed for users of simulation farms, where the licenses in use by a group of lower priority jobs
may be needed for a group of higher priority jobs.

To enable this feature, simply start Spectre with the +lsuspend command line option. In the
Solaris environment, press ctrl+z to suspend the Spectre license. All licenses are checked
in. To resume simulation, press fg. These keystrokes may not work if you have changed the
default key bindings.

For information on tracking token licensing, see the Virtuoso® Software Licensing and
Configuration Guide.
June 2011 21 Product Version 10.1.1

http://www.adobe.com

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
In Virtuoso® Analog Design Environment, the lqtimeout and lqsleep options are
controlled by the following options:

spectre.envOpts lsuspend boolean t

spectre.envOpts licQueueTimeOut string "900"

spectre.envOpts licQueueSleep string "30"

Related Documents for Spectre

This user guide contains information about the functionality. The following documents provide
more information about Spectre RF and related products.

■ The Spectre circuit simulator is often run within the analog circuit design environment,
under the Cadence design framework II. To see how the Spectre circuit simulator is run
under the analog circuit design environment, read the Virtuoso Analog Design
Environment User Guide.

■ To learn more about specific parameters of components and analyses, consult the
Spectre online help (spectre -h).

■ To learn more about the equations used in the Spectre circuit simulator, consult the
Virtuoso Simulator Components and Device Models Manual.

■ The Spectre circuit simulator also includes a waveform display tool, Virtuoso
Visualization and Analysis tool, to use to display simulation results. For more information
about the tool, see the Virtuoso Visualization and Analysis User Guide.

■ For more information about using the Spectre circuit simulator with Verilog-A, see the
Verilog-A Language Reference manual.

■ For more information about RF theory, see Virtuoso Spectre Circuit Simulator RF
Analysis Theory.

■ For more information about how you work with the design framework II interface, see
Cadence Design Framework II Help.

■ For more information about specific applications of Spectre analyses, see The
Designer’s Guide to SPICE & Spectre1.

1. Kundert, Kenneth S. The Designer’s Guide to SPICE & Spectre. Boston: Kluwer Academic Publishers, 1995.
June 2011 22 Product Version 10.1.1

../spectremod/spectremodTOC.html#firstpage

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Third Party Tools

To view any .swf multimedia files, you need:

■ Flash-enabled web browser, for example, Internet Explorer 5.0 or later, Netscape 6.0 or
later, or Mozilla Firefox 1.6 or later. Alternatively, you can download Flash Player (version
6.0 or later) directly from the Adobe website.

■ Speakers and a sound card installed on your computer for videos with audio.

Typographic and Syntax Conventions

This list describes the syntax conventions used for the Spectre circuit simulator.

literal Nonitalic words indicate keywords that you must enter literally.
These keywords represent command (function, routine) or option
names, filenames and paths, and any other sort of type-in
commands.

argument Words in italics indicate user-defined arguments for which you
must substitute a name or a value. (The characters before the
underscore (_) in the word indicate the data types that this
argument can take. Names are case sensitive.

| Vertical bars (OR-bars) separate possible choices for a single
argument. They take precedence over any other character.

[] Brackets denote optional arguments. When used with OR-bars,
they enclose a list of choices. You can choose one argument
from the list.

{ } Braces are used with OR-bars and enclose a list of choices. You
must choose one argument from the list.

... Three dots (...) indicate that you can repeat the previous
argument. If you use them with brackets, you can specify zero or
more arguments. If they are used without brackets, you must
specify at least one argument, but you can specify more.

Important

The language requires many characters not included in the preceding list. You must
enter required characters exactly as shown.
June 2011 23 Product Version 10.1.1

http://www.adobe.com

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
References

Text within brackets ([]) is a reference. See Appendix A, “References,” of the Virtuoso
Spectre Circuit Simulator Reference manual for more detailed information.
June 2011 24 Product Version 10.1.1

../spectreref/appA.html#firstpage

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
1
Introducing the Virtuoso Spectre Circuit
Simulator

The Virtuoso® Spectre® circuit simulator is a modern circuit simulator that uses direct
methods to simulate analog and digital circuits at the differential equation level. The basic
capabilities of the Spectre circuit simulator are similar in function and application to SPICE,
but the Spectre circuit simulator is not descended from SPICE. The Spectre and SPICE
simulators use the same basic algorithms—such as implicit integration methods, Newton-
Raphson, and direct matrix solution—but every algorithm is newly implemented. Spectre
algorithms, the best currently available, give you an improved simulator that is faster, more
accurate, more reliable, and more flexible than previous SPICE-like simulators.

This chapter discusses the following:

■ Improvements over SPICE on page 26

■ Analog HDL on page 29

■ RF Capabilities on page 30

■ High Performance Simulation on page 32

■ Environments on page 38
June 2011 25 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Improvements over SPICE

The Spectre circuit simulator has many improvements over SPICE.

Improved Capacity

The Spectre circuit simulator can simulate larger circuits than other simulators because its
convergence algorithms are effective with large circuits, because it is fast, and because it is
frugal with memory and uses dynamic memory allocation. For large circuits, the Spectre
circuit simulator typically uses less than half as much memory as SPICE.

Improved Accuracy

Improved component models and core simulator algorithms make the Spectre circuit
simulator more accurate than other simulators. These features improve Spectre accuracy:

■ Advanced metal oxide semiconductor (MOS) and bipolar models

❑ The Spectre BSIM3v3 is a physics-based metal-oxide semiconductor field effect
transistor (MOSFET) model for simulating analog circuits.

❑ The Spectre models include the MOS0 model, which is even simpler and faster than
MOS1 for simulating noncritical MOS transistors in logic circuits and behavioral
models, MOS 9, EKV, BTA-HVMOS, BTA-SOI, VBIC95, TOM2, HBT, and many
more.

■ Charge-conserving models

The capacitance-based nonlinear MOS capacitor models used in many SPICE
derivatives can create or destroy small amounts of charge on every time step. The
Spectre circuit simulator avoids this problem because all Spectre models are charge-
conserving.

■ Improved Fourier analyzer

The Spectre circuit simulator includes a two-channel Fourier analyzer that is similar in
application to the SPICE.FOURIER statement but is more accurate. The Spectre
simulator’s Fourier analyzer has greater resolution for measuring small distortion
products on a large sinusoidal signal. Resolution is normally greater than 120 dB.
Furthermore, the Spectre simulator’s Fourier analyzer is not subject to aliasing, a
common error in Fourier analysis. As a result, the Spectre simulator can accurately
compute the Fourier coefficients of highly discontinuous waveforms.

■ Better control of numerical error
June 2011 26 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Many algorithms in the Spectre circuit simulator are superior to their SPICE counterparts
in avoiding known sources of numerical error. The Spectre circuit simulator improves the
control of local truncation error in the transient analysis by controlling error in the voltage
rather than the charge.

In addition, the Spectre circuit simulator directly checks Kirchhoff’s Current Law (also
known as Kirchhoff’s Flow Law) at each time step, improves the charge-conservation
accuracy of the Spectre circuit simulator, and eliminates the possibility of false
convergence.

■ Superior time-step control algorithm

The Spectre circuit simulator provides an adaptive time-step control algorithm that
reliably follows rapid changes in the solution waveforms. It does so without limiting
assumptions about the type of circuit or the magnitude of the signals.

■ More accurate simulation techniques

Techniques that reduce reliability or accuracy, such as device bypass, simplified models,
or relaxation methods, are not used in the Spectre circuit simulator.

■ User control of accuracy tolerances

For some simulations, you might want to sacrifice some degree of accuracy to improve
the simulation speed. For other simulations, you might accept a slower simulation to
achieve greater accuracy. With the Spectre circuit simulator, you can make such
adjustments easily by setting a single parameter.

Improved Speed

The Spectre circuit simulator is designed to improve simulation speed. The Spectre circuit
simulator improves speed by increasing the efficiency of the simulator rather than by
sacrificing accuracy.

■ Faster simulation of small circuits

The average Spectre simulation time for small circuits is typically two to three times faster
than SPICE. The Spectre circuit simulator can be over 10 times faster than SPICE when
SPICE is hampered by discontinuity in the models or problems in the code. Occasionally,
the Spectre circuit simulator is slower when it finds ringing or oscillation that goes
unnoticed by SPICE. This can be improved by setting the macromodels option to yes.

■ Faster simulation for large circuits
June 2011 27 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
The Spectre circuit simulator is generally two to five times faster than SPICE with large
circuits because it has fewer convergence difficulties and because it rapidly factors and
solves large sparse matrices.

Improved Reliability

The Spectre circuit simulator offers you the following improvements in reliability:

■ Improved convergence

Spectre proprietary algorithms ensure convergence of the Newton-Raphson algorithm in
the DC analysis. The Spectre circuit simulator virtually eliminates the convergence
problems that earlier simulators had with transient simulation.

■ Helpful error and warning messages

The Spectre circuit simulator detects and notifies you of many conditions that are likely
to be errors. For example, the Spectre circuit simulator warns of models used in
forbidden operating regions, of incorrectly wired circuits, and of erroneous component
parameter values. By identifying such common errors, the Spectre circuit simulator saves
you the time required to find these errors with other simulators.

The Spectre circuit simulator lets you define soft parameter limits and sends you
warnings if parameters exceed these limits.

■ Thorough testing

Automated tests, which include over 10,000 test circuits, are constantly run on all
hardware platforms to ensure that the Spectre circuit simulator is consistently reliable
and accurate.

■ Benchmark suite

There is an independent collection of SPICE netlists that are difficult to simulate. You can
obtain these circuits from the Microelectronics Center of North Carolina (MCNC) if you
have File Transfer Protocol (FTP) access on the Internet. You can also get information
about the performance of several simulators with these circuits.

The Spectre circuit simulator has successfully simulated all of these circuits. Sometimes
the netlists required minor syntax corrections, such as inserting balancing parentheses,
but circuits were never altered, and options were never changed to affect convergence.
June 2011 28 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Improved Models

The Spectre circuit simulator has MOSFET Level 0–3, BSIM1, BSIM2, BSIM3, BSIM3v3,
BSIM4, BSIMSOI, PSP, HiSIM2, LDMOS, EKV, MOS9, JFET, TOM2, GaAs MESFET, BJT,
VBIC, HBT, diode, and many other models. It also includes the temperature effects, noise,
and MOSFET intrinsic capacitance models.

The Spectre Compiled Model Interface (CMI) option lets you integrate new devices into the
Spectre simulator using a very powerful, efficient, and flexible C language interface. This CMI
option, the same one used by Spectre developers, lets you install proprietary models.

Spectre Usability Features and Customer Service

The following features and services help you use the Spectre circuit simulator easily and
efficiently:

■ You can use Spectre soft limits to catch errors created by typing mistakes.

■ Spectre diagnosis mode, available as an options statement parameter, gives you
information to help diagnose convergence problems.

■ You can run the Spectre circuit simulator standalone or run it under the Virtuoso® analog
design environment. To see how the Spectre circuit simulator is run under the analog
circuit design environment, read the Virtuoso Analog Design Environment User
Guide. You can also run the Spectre circuit simulator in the Composer-to-Spectre direct
simulation environment. The environment provides a graphical user interface for running
the simulation.

■ The Spectre circuit simulator gives you an online help system. With this system, you can
find information about any parameter associated with any Spectre component or
analysis. You can also find articles on other topics that are important to using the Spectre
circuit simulator effectively.

■ If you experience a stubborn convergence or accuracy problem, you can send the circuit
to Customer Support to get help with the simulation. For current phone numbers and e-
mail addresses, see the following web site:
http://support.cadence.com/wps/mypoc/cos?uri=deeplinkmin:COSHome

Analog HDL

The Spectre circuit simulator works with Verilog®-A, an analog high-level description
languages (AHDL). The Verilog-A language is an open standard and is part of the Spectre
June 2011 29 Product Version 10.1.1

http://support.cadence.com/wps/mypoc/cos?uri=deeplinkmin:COSHome

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Verilog-A option. The Verilog-A language is upward compatible with Verilog-AMS, a powerful
and industry-standard mixed-signal language.

The Verilog-A language uses functional description text files (modules) to model the behavior
of electrical circuits and other systems. It allows you to create your own models by simply
writing down the equations. The AHDL lets you describe models in a simple and natural
manner. This is a higher level modeling language than previous modeling languages, and you
can use it without being concerned about the complexities of the simulator or the simulator
algorithms. In addition, you can combine AHDL components with Spectre built-in primitives.

The Verilog-A language lets designers of analog systems and integrated circuits create and
use modules that encapsulate high-level behavioral descriptions of systems and
components. The behavior of each module is described mathematically in terms of its
terminals and external parameters applied to the module. Designers can use these
behavioral descriptions in many disciplines (electrical, mechanical, optical, and so on).

The Verilog-A language borrows many constructs from Verilog and the C programming
language. These features are combined with a minimum number of special constructs for
behavioral simulation. These high-level constructs make it easier for designers to use a high-
level description language for the first time.

RF Capabilities

The Virtuoso® Spectre® circuit simulator RF analysis (Spectre RF) analyses add capabilities
to the Virtuoso Spectre circuit simulator, such as direct, efficient computation of steady-state
solutions and simulation of circuits that translate frequency. You use the Spectre RF analyses
in combination with the Fourier analysis capability of the Spectre circuit simulator and with the
Verilog•-A behavioral modeling language.

Periodic Analysis

■ Periodic Steady-State Analysis, PSS (Large-Signal)

■ Periodic AC Analysis, PAC (Small-Signal)

■ Periodic S-Parameter Analysis, PSP (Small-Signal)

■ Periodic Transfer Function Analysis, PXF (Small-Signal)

■ Periodic Noise Analysis, Pnoise (Small-Signal)

■ Periodic Stability Analysis, Pstab (Small-Signal)
June 2011 30 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Periodic Steady-State (PSS) analysis is a large-signal analysis that directly computes the
periodic steady-state response of a circuit. With PSS, simulation times are independent of the
time constants of the circuit, so PSS can quickly compute the steady-state response of
circuits with long time constants, such as high-Q filters and oscillators. You can also sweep
frequency or other variables using PSS.

After completing a PSS analysis, the Spectre RF simulator can model frequency conversion
effects by performing one or more of the periodic small-signal analyses, Periodic AC analysis
(PAC), Periodic S-Parameter analysis (PSP), Periodic Transfer Function analysis (PXF),
Periodic Noise analysis (Pnoise) and Periodic Stability Analysis (Pstab). The periodic small-
signal analyses are similar to the Spectre L AC, SP, XF, Noise analyses and STB, but you can
apply the periodic small-signal analyses to periodically driven circuits that exhibit frequency
conversion. Examples of important frequency conversion effects include conversion gain in
mixers, noise in oscillators, and filtering using switched-capacitors.

Therefore, with periodic small-signal analyses you apply a small signal at a frequency that
may be noncommensurate (not harmonically related) to the small signal fundamental. This
small signal is assumed to be small enough so that it is not distorted by the circuit.

Quasi-Periodic Analysis

■ Quasi-Periodic Steady-State Analysis, QPSS (Large-Signal)

■ Quasi-Periodic AC Analysis, QPAC (Small-Signal)

■ Quasi-Periodic S-Parameter Analysis, QPSP (Small-Signal)

■ Quasi-Periodic Transfer Function Analysis, QPXF (Small-Signal)

■ Quasi-Periodic Noise Analysis, QPnoise (Small-Signal)

Quasi-Periodic Steady-State (QPSS) analysis, a large-signal analysis, is used for circuits with
multiple large tones. With QPSS, you can model periodic distortion and include harmonic
effects. (Periodic small-signal analyses assume the small signal you specify generates no
harmonics). QPSS computes both a large signal, the periodic steady-state response of the
circuit, and also the distortion effects of a specified number of moderate signals, including the
distortion effects of the number of harmonics that you choose.

With QPSS, you can apply one or more additional signals at frequencies not harmonically
related to the large signal, and these signals can be large enough to create distortion. In the
past, this analysis was called Pdisto analysis.

Quasi-Periodic Noise (QPnoise) analysis is similar to a transient noise analysis, except that
it includes frequency conversion and inter-modulation effects. QPnoise analysis is useful for
predicting the noise behavior of mixers, switched-capacitor filters and other periodically or
June 2011 31 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
quasi-periodically driven circuits. QPnoise analysis linearizes the circuit about the
quasiperiodic operating point computed in the prerequisite QPSS analysis. It is the
quasiperiodically time-varying nature of the linearized circuit that accounts for the frequency
conversion and inter-modulation.

Envelope Analysis

Envelope analysis computes the envelope response of a circuit. The simulator automatically
determines the clock period by looking through all the sources with the specified name.
Envelope-following analysis is most efficient for circuits where the modulation bandwidth is
orders of magnitude lower than the clock frequency. This is typically the case, for example, in
circuits where the clock is the only fast varying signal and other input signals have a spectrum
whose frequency range is orders of magnitude lower than the clock frequency. For another
example, the down conversion of two closely placed frequencies can also generate a slow-
varying modulation envelope. The analysis generates two types of output files, a voltage
versus time (td) file, and an amplitude/phase versus time (fd) file for each specified harmonic
of the clock fundamental.

Harmonic Balance Steady State Analysis (HB)

This analysis uses harmonic balance (in the frequency domain) to compute the response of
circuits that have either one fundamental frequency (periodic steady-state, PSS) or that have
multiple fundamental frequencies (Quasi-Periodic Steady State, QPSS). The simulation time
required for an HB analysis is independent of the time-constants of the circuit. This analysis
also determines the circuit’s periodic or quasi-periodic operating point, which can then be
used during a periodic or quasi-periodic time-varying small-signal analysis, such as HBAC or
HBnoise.

Usually, harmonic balance (HB) analysis is a very efficient way to simulate weakly nonlinear
circuits. Also, HB analysis works better than shooting analysis (in the time domain) for
frequency dependent components, such as delay, transmission line, and S-parameter data.

High Performance Simulation

In addition to the baseline simulation functionalities, Spectre supports two sets of
performance technologies-the turbo simulation technologies, and the accelerated parallel
simulation technologies (APS). Both technologies provide significant performance gain over
the baseline Spectre simulation with minimum or no accuracy degradation.

The turbo technology was developed and released before the APS technology, it represents
an earlier generation of performance technologies. The turbo technologies mainly target at
June 2011 32 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
speeding up the device evaluation part of computation that often dominates the simulation
time of pre-layout designs. The APS technologies naturally include all turbo technologies, it
contains newer and better performance technologies to further speed up device evaluation,
and particularly speeding up the matrix solving part of computation that often dominates large
and post-layout circuit simulation.

Both turbo and APS technologies support multi-threading on multi-core computer platforms.
it is expected that Spectre with APS technologies always outperform the turbo technologies,
using either single-core or multiple cores. Thus for the best simulation performance, APS
technologies are always recommended.

Starting turbo or APS Simulations

To start a turbo or APS simulation, you simply do

% spectre +turbo commandline_options ...

or

% spectre +aps commandline_options ...

You can specify an errpreset value to the +turbo or the +aps command line parameter that
will overwrite the errpreset value in all transient analyses in the netlist. When a value for the
turbo or aps parameter is not specified, the errpreset value on the analysis statement is used.

For more information on the errpreset parameter, see The errpreset Parameter on page 179.

To run Spectre baseline:
spectre [+errpreset=liberal | moderate | conservative …] input.scs

To run Spectre with Turbo technologies:
spectre +turbo[=liberal | moderate | conservative …] input.scs

or

spectre +turbo[+errpreset=liberal | moderate | conservative …] input.scs

To run Spectre with APS:
% spectre +aps[=liberal|moderate|conservative] netlist

or

% spectre +aps [+errpreset=liberal|moderate|conservative] netlist
June 2011 33 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Example
spectre +aps=liberal adc.scs

Spectre with APS technologies is launched on the design of adc.scs using the liberal setting.

Specifying Multi-Threading Options

Spectre baseline, turbo technologies, and APS technologies all support multi-threaded
computation on multi-core computer platforms. APS has the best multi-threading scaling
compared to Spectre baseline and turbo technologies.

The default settings for Multithreading for Spectre, turbo technologies and APS technologies
are given below:

To turn off multi-threading, use the following commands:

% spectre -mt ...

% spectre +turbo -mt ...

% spectre +aps -mt ...

To turn on multi-threading during baseline Spectre simulation, use the following command:

% spectre +mt ...

Note: There is no need to specify +mt for turbo or APS simulation, as multi-threading is
default on.

To manually specify the number of threads to be used, instead of the default maximum
threads, use the following command:

% spectre +mt=4 ...

% spectre +turbo +mt=4 ...

% spectre +aps +mt=4 ...

When running multiple multi-threading simulation sessions on a single machine, it is
recommended that you fix the simulation session to particular cores. Otherwise different
sessions can race against each other to get the available cores, resulting in non-optimum

Simulator Default
Multithreading

Default number of threads
when Multithreading is on

Maximum number of
threads allowed

Spectre Off 4 4

Turbo On 4 8

APS On 8 16
June 2011 34 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
simulation performance. For example, when running two 4-thread simulation sessions on an
8-core machine, you can start the simulation sessions as:

% spectre +aps -processor 0-3 +mt=4 ...

and

% spectre +aps -processor 4-7 +mt=4 ...

We support LSF in command line with the following statement:

% spectre +mt=lsf ...

In ADE mode, with IC 5.10.41.500.6.144, IC 6.1.4.500.7 or newer, you need to set lsf
parameter in the Number of threads field, as shown below:

Using the cktpreset=sampled option

The cktpreset option, with a possible value of sampled (cktpreset=sampled) enables
Spectre, the turbo technologies, or the APS technologies to take less time steps during
conservative mode (errpreset=conservative) simulation, while improving simulation
resolution at each time step.
June 2011 35 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
The feature can be used to speed up any conservative mode simulation. However, it produces
very accurate and consistent simulation with sampled circuits, such as data converter, and
hence is recommended for sampled circuit simulation.

The option can be turned on from the command line as given below:

spectre +cktpreset=sampled ...

or using the options statement:

opt1 options cktpreset=sampled ...

Parasitic Reduction

For post-layout designs with RC parasitics, parasitic reduction is available to further speed up
circuit simulation, in addition to the simulation performance obtained from turbo or APS
technologies.

To turn on parasitic reduction technology, use the following command line option:

% spectre +parasitics ...

% spectre +turbo +parasitics ...

% spectre +aps +parasitics ...

An important input to the parasitic reduction technology is the relevant frequency of interest.
The parasitic reduction algorithm tries to preserve circuit accuracy up to this frequency. The
default frequency of interest is 1GHz, it can be manually set using the following command

% spectre +parasitics=value ...

% spectre +turbo +parasitics=value ...

% spectre +aps +parasitics=value ...

A value of 10 means 10 GHz. A value of rf is an alias of 30 GHz. The value should be greater
than or equal to 1.

The preserve_inst option can be used to preserve instances from any component reduction
and parasitic reduction, as shown in example given below:

simulationOptions options preserve_inst=[inst1, inst2, ...]

where inst1 and inst2 can be the instances of any device or sub-circuit, they will not be
reduced by turbo, APS, or parasitic reduction technology.

Additional Notes

1. To benefit from multi-threading technology, a circuit should have at least 250 devices.

2. When a circuit is too small, the multi-threading option will be turned off automatically.
June 2011 36 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
3. The presence of asserts, for device checking, can significantly slow down simulation and
skew a performance evaluation, as most other circuit simulation vendors do not support
this feature. If device checking is not important in your simulation session, you can turn it
off using the -docl or -dochecklimit command line parameter

% spectre +parasitics=value ...

% spectre +turbo +parasitics=value ...

% spectre +aps +parasitics=value ...

When using turbo or APS technologies, the Verilog-A and bsource modules are compiled
by default. Hence, setting the value setenv CDS_ADHLCMI_ENABLE NO has no effect.
Also, the command line arguments -ahdlcom and -bsrccom do not produce any result.

4. When using turbo or APS technologies, in order to output higher accurate terminal
current of device, user can add useprobe=yes in the option setting. No need to add for
subcircuit terminal.

Both examples below can generate accurate terminal currents:

option1 useprobe=yes

save M1:g

option2 useprobe=no

save sub1:1

However, please avoid to use useprobe=yes and save currents=all at the same time.
Because it will cause too many iprobes being inserted for all device terminals and degrade
the performance.

APS Distributed Mode

APS distributed mode is designed to further speed-up the long run times for Transient
analysis, by using more computer cores across multiple computers, using single or multiple
cores on each computer. It has the equivalent convergence and accuracy as APS. The netlist
syntax, device models, analysis setups, and output formats are fully compatible with APS and
Spectre. In the current release, only DC and transient analyses are supported, all other
analyses and features will be made available in subsequent releases.

Two methods of job distribution are now supported; using LSF and rsh or ssh. The
command-line options +aps and +dp are required to invoke the distributed mode. If any of
these options is missing, simulation will not run with distributed mode.

To distribute a job using rsh onto two hosts, hostA and hostB (with each host using four
cores), the following command can be used.

% spectre +aps +dp +hosts "hostA:4 hostB:4" /hm/test/input.scs
June 2011 37 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
By default, rsh is used to start jobs on the specified hosts when LSF is not being used.

% spectre +aps +dp=rsh +hosts "hostA:4 hostB:4" /hm/test/input.scs

If you need to use ssh instead of rsh, the ssh argument must be given to the +dp option,
but the +hosts argument can remain unchanged.

% spectre +aps +dp=ssh +hosts "hostA:4 hostB:4" /hm/test/input.scs

In the LSF use-model, it is assumed that APS is started using the LSF job submission
command, or a user-specific wrapper. APS automatically detects this and queries LSF for a
list of hosts allocated to the job by LSF, and the number of cores allocated on each host. Add
+dp option to ensure that distributed mode is started.

The following is an example of a LSF bsub command used to run APS in distributed mode.

% bsub –n 8 –q rnd –P myProject –R "OSREL==EE40" "spectre +aps +dp /hm/test/
input.scs =log /hm/test/input.log"

Notes on APS distributed mode

1. Since the span[host=1] option is not provided on the resource string -R option to
bsub, LSF is not required to get all 8 cores on the same machine.

Use the following bsub to request two machines, 4 cores on each to run to job in
distributed mode.

% bsub –n 8 –q rnd –P myProject –R "OSREL==EE40 && CPUS>=4) span[ptile=4]"
"spectre +aps +dp /hm/test/input.scs =log /hm/test/input.log"

2. It is recommended to use identical machine configuration for all the hosts, and an equal
number of cores on each host for performance testing, especially for same 32 or 64 bits
system.

3. To run APS distributed mode, devices with up to 50k are recommendated with at least
two hosts.

4. When running with ssh, it is recommended to use password-less mode by ssh-keygen
to generate private and public key. Copy the public key to remote hosts before starting the
simulation.

Environments

The Spectre circuit simulator is fully integrated into the Cadence design framework II for the
Cadence analog design environment and also into the Cadence analog workbench design
system. You can also use the Spectre circuit simulator by itself with several different output
format options.
June 2011 38 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Assura interactive verification, Dracula® distributed multi-CPU option, and Assura
hierarchical physical verification produce a netlist that can be read into the Spectre circuit
simulator. However, only interactive verification when used with the analog design
environment automatically attaches the stimulus file. All other situations require a stimulus file
as well as device models.
June 2011 39 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
June 2011 40 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
2
Getting Started with the Virtuoso Spectre
Circuit Simulator

This chapter discusses the following topics:

■ Using the Example and Displaying Results on page 42

■ Sample Schematic on page 42

■ Sample Netlist on page 44

■ Instructions for a Spectre Simulation Run on page 48

■ Viewing Your Output on page 50
June 2011 41 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Using the Example and Displaying Results

In this chapter, you examine a schematic and its Virtuoso® Spectre® circuit simulator netlist
to get an overview of Spectre syntax. You also follow a sample circuit simulation. The best
way to use this chapter depends on your past experience with simulators.

Carefully examine the schematic (“Sample Schematic” on page 36) and netlist (“Sample
Netlist” on page 38) and compare Spectre netlist syntax with that of SPICE-like simulators
you have used. If you have prepared netlists for SPICE-like simulators before, you can skim
“Elements of a Spectre Netlist” on page 38. With this method, you can learn a fair amount
about the Spectre simulator in a short time.

Approach this chapter as an overview. You will probably have unanswered questions about
some topics when you finish the chapter. Each topic is covered in greater depth in subsequent
chapters. Do not worry about learning all the details now.

To give you a complete overview of a Spectre simulation, the example in this chapter includes
the display of simulation results with WaveScan, a waveform display tool that is included with
the Spectre simulator. If you use another display tool, the procedures you follow to display
results are different. This user guide does not teach you how to display waveforms with
different tools. If you need more information about how to display Spectre results, consult the
documentation for your display tool.

The example used in this chapter is a small circuit, an oscillator; you run a transient analysis
on the oscillator and then view the results. The following sections contain the schematic and
netlist for the oscillator. If you have used SPICE-like simulators before, looking at the
schematic and netlist can help you compare Spectre syntax with those of other simulators. If
you are new to simulation, looking at the schematic and netlist can prepare you to understand
the later chapters of this book.

You can also get more information about command options, components, analyses, controls,
and other selected topics by using the spectre -h command to access the Spectre online
help.

Sample Schematic

A schematic is a drawing of an electronic circuit, showing the components graphically and
how they are connected together. The following schematic has several annotations:

■ Names of components

Each component is labeled with the name that appears in the instance statement for that
component. The names for components are in italics (for example, Q2).
June 2011 42 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
■ Names of nodes

Each node in the circuit is labeled with its unique name or number. This name can be
either a name you create or a number. Names of nodes are in boldface type (for example,
b1). Ground is node 0.

■ Sample instance statements

The schematic is annotated with instance statements for some of the components.
Arrows connect the components in the schematic with their corresponding instance
statements.

Bold Type = Names of nodes. All connections to ground have the same node name.
Italic Type = Names of components (also appear in the instance statement for each

component).
= Link between components and instance statements.

∼

∼

cc cc

Vcc

C3
Iee

Q1 Q2

C4 R2

L1

∼
C1

out

b2
e

b1
cc

Vcc Vcc

R1

•

C2

•

•
•

Q1 (cc b1 e) npn

C3 (b1 0) capacitor c=3nF

R1 (b1 0) resistor r=10k
June 2011 43 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Sample Netlist

A netlist is an ASCII file that lists the components in a circuit, the nodes that the components
are connected to, and parameter values. You create the netlist in a text editor such as vi or
emacs or from one of the environments that support the Spectre simulator. The Spectre
simulator uses a netlist to simulate a circuit.

Elements of a Spectre Netlist

This section briefly explains the components, models, analyses, and control statements in a
Spectre netlist. All topics discussed here (such as model statements or the simulator
lang command) are presented in greater depth in later chapters. If you want more complete
reference information about a topic, consult these discussions.

// BJT ECP Oscillator Comment (indicated by //)

Indicates the file contains a Spectre netlist
(see the next section). Place below first line.

Iee (e 0) isource dc=1mA
Vcc (cc 0) vsource dc=5

Q1 (cc b1 e) npn

Q2 (out b2 e) npn

L1 (cc out) inductor l=1uH

C1 (cc out) capacitor c=1pf

C2 (out b1) capacitor c=272.7pF

C3 (b1 0) capacitor c=3nF

C4 (b2 0) capacitor c=3nF

R1 (b1 0) resistor r=10k

R2 (b2 0) resistor r=10k

Instance statements

ic cc=5 Control statement (sets initial conditions)

model npn bjt type=npn bf=80 rb=100 vaf=50 \

cjs=2pf tf=0.3ns tr=6ns cje=3pf cjc=2pf Model statement

OscResp tran stop=80us maxstep=10ns Analysis statement

simulator lang=spectre
June 2011 44 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Title Line

The first line is taken to be the title. It is used verbatim when labeling output. Any statement
you place in the first line is ignored as a comment. For more information about comment lines,
see “Basic Syntax Rules” on page 61.

Simulation Language

The second line of the sample netlist indicates that the netlist is in the Spectre Netlist
Language, instead of SPICE. For more information about the simulator lang command,
see “Spectre Language Modes” on page 61.

Instance Statements

The next section in the sample netlist consists of instance statements. To specify a single
component in a Spectre netlist, you place all the necessary information for the component in
a netlist statement. Netlist statements that specify single components are called instance
statements. (The instance statement also has other uses that are described in Chapter 4,
“Spectre Netlists”.

To specify single components within a circuit, you must provide the following information:

■ A unique component name for the component

■ The names of nodes to which the component is connected

■ The master name of the component (identifies the type of component)

■ The parameter values associated with the component

A typical Spectre instance statement looks like this:

Note: You can use balanced parentheses to distinguish the various parts of the instance
statement, although they are optional:

R1 (1 2) resistor r=1
Q1 (c b e s) npn area=10

R16 (4 0) resistor r=100

Master name

Parameter valueComponent name

Node names
June 2011 45 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Gm (1 2)(3 4) vccs gm=.01
R7 (x y) rmod (r=1k w=2u)

Component Names

Unlike SPICE, the first character of the component name has no special meaning. You can
use any character to start the component name. For example:

Load (out o) resistor r=50
Balun (in o pout nout) transformer

Note: You can find the exact format for any component in the parameter listings for that
component in the Spectre online help.

Master Names

The type of a component depends on the name of the master, not on the first letter of the
component name (as in SPICE); this feature gives you more flexibility in naming components.
The master can be a built-in primitive, a model, a subcircuit, or an AHDL component.

Parameter Values

Real numbers can be specified using scientific notation or common engineering scale factors.
For example, you can specify a 1 pF capacitor value either as c=1pf or c=1e-12. Depending
on whether you are using the Spectre Netlist Language or SPICE, you might need to use
different scale factors for parameter values. Only ANSI standard scale factors are used in
Spectre netlists.

Control Statements

The next section of the sample netlist contains a control statement, which sets initial
conditions.

Model Statements

Some components allow you to specify parameters common to many instances using the
model statement. The only parameters you need to specify in the instance statement are
those that are generally unique for a given instance of a component.

You need to provide the following for a model statement:

■ The keyword model at the beginning of the statement
June 2011 46 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
■ A unique name for the model (reference by master names in instance statements)

■ The master name of the model (identifies the type of model)

■ The parameter values associated with the model

The following example is a model statement for a bjt. The model name is npn¸ and the
component type name is bjt. The backslash (\) tells you that the statement continues on the
next line. The backslash must be the last character in the line because it escapes the carriage
return.

model npn bjt type=npn bf=80 rb=100 vaf=50 \
 cjs=2pf tf=0.3ns tr=6ns cje=3pf cjc=2pf

When you create an instance statement that refers to a model statement for its parameter
values, you must specify the model name as the master name. For example, an instance
statement that receives its parameter values from the previous model statement might look
like this:

Q1 (vcc b1 e vcc) npn

Check documentation for components to determine which parameters are expected to be
provided on the instance statement and which are expected on the model statement.

Analysis Statements

The last section of the sample netlist has the analysis statement. An analysis statement has
the same syntax as an instance statement, except that the analysis type name replaces the
master name. To specify an analysis, you must include the following information in a netlist
statement:

■ A unique name for the analysis statement

■ Possibly a set of node names

■ The name of the type of analysis you want

■ Any additional parameter values associated with the analysis

To find the analysis type name and the parameters you can specify for an analysis, consult
the parameter listing for that analysis in the Spectre online help (spectre -h).

The following analysis statement specifies a transient analysis. The analysis name is
stepResponse, and the analysis type name is tran.

stepResponse tran stop=100ns
June 2011 47 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Instructions for a Spectre Simulation Run

When you complete a netlist, you can run the simulation with the spectre command.

➤ To run a simulation for the sample circuit, type the following at the command line:

spectre osc.scs

Note: osc.scs is the file that contains the netlist.

Following Simulation Progress

As the simulation runs, the Spectre simulator sends messages to your screen that show the
progress of the simulation and provide statistical information. In the simulation of osc.scs,
the Spectre simulator prints some warnings and notifications. The Spectre simulator tells you
about conditions that might reduce simulation accuracy. When you see a Spectre warning or
notification, you must decide whether the information is significant for your particular
simulation.

Screen Printout

The printout for the osc.scs simulation looks like this:

Simulating `myuserguide.sp' on spiceneh8c-2 at 11:24:05 AM, Wed May 11, 2011
(process id: 19576).

Environment variable:

 SPECTRE_DEFAULTS==log %C:r.out -f sst2

Command line:

 \

 /grid/cic/mmsimcm_v1/latest_build/tools.lnx86/spectre/bin/32bit/spectre \

 myuserguide.sp +l myuserguide.log

Loading /grid/cic/mmsimcm_v1/latest_build/tools.lnx86/cmi/lib/5.0/
libinfineon_sh.so ...

Loading /grid/cic/mmsimcm_v1/latest_build/tools.lnx86/cmi/lib/5.0/
libphilips_sh.so ...

Loading /grid/cic/mmsimcm_v1/latest_build/tools.lnx86/cmi/lib/5.0/libsparam_sh.so
...

Loading /grid/cic/mmsimcm_v1/latest_build/tools.lnx86/cmi/lib/5.0/
libstmodels_sh.so ...

Time for NDB Parsing: CPU = 66.989 ms, elapsed = 206.596 ms.

Time accumulated: CPU = 66.989 ms, elapsed = 206.596 ms.

Peak resident memory used = 23.7 Mbytes.
June 2011 48 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Time for Elaboration: CPU = 23.996 ms, elapsed = 52.902 ms.

Time accumulated: CPU = 90.985 ms, elapsed = 259.659 ms.

Peak resident memory used = 27.1 Mbytes.

Time for EDB Visiting: CPU = 0 s, elapsed = 133.991 us.

Time accumulated: CPU = 90.985 ms, elapsed = 259.945 ms.

Peak resident memory used = 27.2 Mbytes.

Circuit inventory:

 nodes 2

 isource 1

 resistor 2

Time for parsing: CPU = 3 ms, elapsed = 104.132 ms.

Time accumulated: CPU = 93.985 ms, elapsed = 364.199 ms.

Peak resident memory used = 27.7 Mbytes.

Transient Analysis `tran2': time = (0 s -> 10 ns)

Important parameter values:

 start = 0 s

 outputstart = 0 s

 stop = 10 ns

 step = 10 ps

 maxstep = 200 ps

 ic = all

 skipdc = no

 reltol = 1e-03

 abstol(V) = 1 uV

 abstol(I) = 1 pA

 temp = 27 C

 tnom = 27 C

 tempeffects = all

 errpreset = moderate

 method = traponly

 lteratio = 3.5

 relref = sigglobal

 cmin = 0 F

 gmin = 1 pS
June 2011 49 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
......9......8......7......6......5......4......3......2......1......0

Number of accepted tran steps = 54

Initial condition solution time: CPU = 0 s, elapsed = 186.92 us.

Intrinsic tran analysis time: CPU = 3.999 ms, elapsed = 3.73197 ms.

Total time required for tran analysis ̀ tran2': CPU = 5.998 ms, elapsed = 114.853 ms.

Time accumulated: CPU = 99.983 ms, elapsed = 600.964 ms.

Peak resident memory used = 32.1 Mbytes.

Aggregate audit (11:24:06 AM, Wed May 11, 2011):

Time used: CPU = 107 ms, elapsed = 680 ms, util. = 15.7%.

Time spent in licensing: elapsed = 118 ms, percentage of total = 17.3%.

Peak memory used = 32.1 Mbytes.

Simulation started at: 11:24:05 AM, Wed May 11, 2011, ended at: 11:24:06 AM, Wed
May 11, 2011, with elapsed time (wall clock): 680 ms.

spectre completes with 0 errors, 0 warning, and 0 notices.

Viewing Your Output

The waveform display tool for this simulation example is Virtuoso Visualization & Analysis
(ViVA). ViVA is not shipped with MMSIM6.1. To access ViVA, install Virtuoso® Schematic
Editor (Product number 34500) and Virtuoso® Analog Design Environment (Product number
34510) from the DFII CD.

In this section you will learn the following:

■ How to start ViVA

■ How to plot signals

■ How to change the color of a trace

Starting WaveScan

➤ Type the following at the command line:

viva &

Note: To start WaveScan for the simulation example, type the following at the command
line (from the directory where the Spectre simulator was run):

Narration of transient
analysis progress
June 2011 50 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
wavescan -dataDir osc.raw

The Results Browser window appears with the oscResp-tran data directory displayed
in the right panel.

Plotting Signals

1. In the Results Browser window, double-click on oscResp-tran.
June 2011 51 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
The data directory moves to the left panel and the associated signals are displayed in the
right panel.
June 2011 52 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
2. Right-click on the signal you want to plot (for example, out) and choose New Win from
the pop-up menu. The Graph Display window appears.

3. Choose Zoom – X-Zoom.

The cursor is displayed on the Graph Display window.

4. Left-click at around 70us and, drag, and release the mouse button at around 80us.
June 2011 53 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
The graph is zoomed such that 70us and 80us are the end points of the X-axis.

5. Click Zoom – Fit to return the graph to the unzoomed state.

Changing the Trace Color

To change the color of the trace,

1. Double-click on the trace.
June 2011 54 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
The Trace Attributes dialog box appears.

2. In the Foreground field, select the color for the trace.

3. Click OK.

Learning More about ViVA

The WaveScan display tool gives you a number of additional options for displaying your data.
To learn more about using ViVA, see the Virtuoso Visualization and Analysis Tool User
Guide.
June 2011 55 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
June 2011 56 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
3
SPICE Compatibility

The Virtuoso® Spectre® circuit simulator parser and elaborator now offers greatly increased
capacity. Circuits that previously failed due to insufficient memory are now easily read in by
the Spectre circuit simulator. The Spectre circuit simulator also provides SPICE netlist
compatibility, eliminating the need for the Spice Pre-Parser (SPP) in your flow.

For migration issues , see Virtuoso Spectre Circuit Simulator Migration Guide.

You can add the +spice option to the spectre command line option:

spectre +spice options inputfile

The +spice option

■ sets tnom and temp to 25C

■ sets parameter inheritance to global rather than the Spectre default of local. This means
that global parameter definitions override local ones.

■ sets flags on files that do not have an .scs extension or those that have sections with
simulator lang=spice to be HSPICE compatible. This maps models in the SPICE
sections to their Spectre equivalents, but does not modify Spectre files or sections.

■ enforces .IC statements and initial conditions on elements for DC and OP analyses. By
default, Spectre only forces initial conditions if the DC analysis force option is set.
June 2011 57 Product Version 10.1.1

../migration/migrationTOC.html#firstpage

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Support for SPICE Netlists

The Spectre circuit simulator can read syntax that is consistent with other commercial SPICE
simulators. These features include, but are not limited to.

■ Hierarchical identifiers

These are used to allow a parasitic device to connect to an internal node of the subcircuit.

■ Miscellaneous SPICE syntax

Identifiers (instances, nodes, parameters, etc.) can include characters such as #, @ and
|.

■ Multiple namespaces

The same identifier can be used for different types of objects. In the following example,

.param res=1k
res res 0 res
.model res r r=res

res is an instance, node, model, and parameter.

■ Global nodes

You can now have multiple global statements in a design.

■ Mixed Spectre and SPICE syntax

You can include both Spectre and SPICE languages in a design, as long as you insert
simulator lang switches.

■ Behavioral primitives

The Spectre circuit simulator supports the SPICE feature that allows a source, resistor,
capacitor and/or inductance value to be expressed as a behavioral expression.

■ Library files and sections

The Spectre circuit simulator supports the .lib card for model inclusion.

■ Model binning

With the new parser, the Spectre circuit simulator supports the syntax of popular SPICE
models, including the syntax that allows you to bin models according to geometry size.
June 2011 58 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
4
Spectre Netlists

This chapter discusses the following topics:

■ Instance Statements on page 65

■ Analysis Statements on page 68

■ Control Statements on page 71

■ Model Statements on page 73

■ Input Data from Multiple Files on page 78

■ Multidisciplinary Modeling on page 82

■ Inherited Connections on page 84
June 2011 59 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Netlist Statements

A Virtuoso® Spectre® circuit simulator netlist describes the structure of circuits and
subcircuits by listing components, the nodes that the components are connected to, the
parameter values that are used to customize the components, and the analyses that you want
to run on the circuit. You can use Verilog®-A to describe the behavior of new components that
you can use in a netlist like built-in components. You can also define new components as a
collection of existing components by using subcircuits.

A netlist consists of four types of statements:

■ Instance Statements on page 57

■ Analysis Statements on page 60

■ Control Statements on page 63

■ Model Statements on page 65

Before you can create statements for a Spectre netlist, you must learn some basic syntax
rules of the Spectre Netlist Language.

Netlist Conventions

These are the netlist conventions followed by the Spectre simulator.

Associated Reference Direction

The reference direction for the voltage is positive when the voltage of the + terminal is higher
than the voltage of the – terminal. A positive current arrives through the + terminal and leaves
through the – terminal.

Current

Voltage

+

-

June 2011 60 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Ground

Ground is a common reference point in an electrical circuit. The value of ground is zero.

Node

A node is an infinitesimal connection point. The voltage everywhere on a node is the same.
According to Kirchhoff’s Current Law (also known as Kirchhoff’s Flow Law), the algebraic sum
of all the flows out of a node at any instant is zero.

Basic Syntax Rules

The following syntax rules apply to all statements in the Spectre Netlist Language:

■ Field separators are blanks, tabs, punctuation characters, or continuation characters.

■ Punctuation characters such as equal signs (=), parentheses (()), and colons (:) are
significant to the Spectre simulator.

■ You can extend a statement onto the next line by ending the current line with a backslash
(\). You can use a plus sign (+) to indicate line continuation at the beginning of the next
line. The preferred style is the \ at the end of the line.

■ You can indicate a comment line by placing a double slash (//) at the beginning of the
comment. The comment ends at the end of that line. You can also use an asterisk (*) to
indicate a comment line. The preferred style is using //.

■ You can indicate a comment for the remainder of a line by placing a space and double
slash (//) anywhere in the line.

Spectre Language Modes

The Spectre netlist supports two language modes:

■ Spectre mode (mostly discussed here)

■ SPICE mode

You can specify the language mode for subsequent statements by specifying simulator
lang=mode, where mode is spectre or spice.

Spectre mode input is fully case sensitive. In contrast, except for letters in quoted strings,
SPICE mode converts input characters to lowercase.
June 2011 61 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Creating Component and Node Names

When you create node and component names in the Spectre simulator, follow these rules.

■ Do not use the name of an analysis (such as tran) or built-in primitive (such as
resistor).

■ Except for node names, names must begin with a letter or underscore. Node names can
also be integers.

■ If the node name is an integer, leading zeros are significant in the Spectre language
mode.

■ Names can contain any number of letters, digits, or underscores.

■ Names cannot contain nonalphanumeric characters, blanks, tabs, punctuation
characters, or continuation characters (\ , +, -, //, *) unless they are escaped with a
backslash (\). The exception is bang (!), for example, vdd!.

■ The following reserved words (case specified) should not be used as node names, net
names, instance names, model names, or parameter names.

M_1_PI M_2_PI M_2_SQRTPI M_DEGPERRAD

M_E M_LN10 M_LN2 M_LOG10E

M_LOG2E M_PI M_PI_2 M_PI_4

M_SQRT1_2 M_SQRT2 M_TWO_PI P_C

P_CELSIUS0 P_EPS0P_H P_K P_Q

P_U0 abs acos acosh

altergroup asin asinh atan

atan2 atanh ceil correlate

cos cosh else end

ends exp export floor

for function global hypot

ic if inline int

library local log log10

march max min model

nodeset parameters paramset plot
June 2011 62 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Multiple Namespace

From release 5.0.32 onwards, you need not have unique names for device instances, models,
nets, subcircuit parameters, enumerated named values for parameters, and netlist
parameters that are expressions. Consider the following example:

simulator lang=spectre

parameters c1=1p c2=2p c10=c1+c2

parameters res=10k

res c10 0 resistor r=res

c10 c10 0 capacitor c=c10

run dc

spectre2 options currents=all

res is used as a parameter and instance name. c10 is used as a node, instance, and
parameter name. The Spectre circuit simulator can now read this netlist.

The Spectre circuit simulator can resolve ambiguous statements as shown in the example
below:

parameters xyz=1

xyz 1 0 vsource dc=xyz

h1 3 0 ccvs probe=xyz rm=xyz

The Spectre circuit simulator assigns the instance xyz to probe and the parameter xyz to
rm.

In the example below,

vcc vcc 0 vsource dc=1

save vcc

the Spectre circuit simulator saves the node vcc rather than the instance vcc. If you want to
save the instance vcc, you must assign a different name to it.

pow print protect pwr

real return save sens

sin sinh sqrt statistics

subckt tan tanh to

truncate vary
June 2011 63 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Local NameSpace for subckt/model/verlogA

The Spectre circuit simulator supports local namespace for subckt/model/verilogA. The name
is valid at the hierarchical level where it is defined and all levels below it. For subckt and model
names, the namespace can be defined in the same netlist or in the included file. For verilogA,
the namespace can only be invoked by the ahdl_include statement.

Example of model name:

simulator lang=spectre
vvdd vdd 0 vsource type=dc dc=1
I1 vdd 0 cap1
I2 vdd 0 cap2
I3 vdd 0 cap3

subckt cap1 a b
m1 b a b b nch w=10u l=5u
mmodel nch bsim3v3 type=n mobmod=1 capmod=2 version=3.1 tox=9e-5 cdsc=1e-3 ends

subckt cap2 a b
m1 b a b b nch w=10u l=5u
model nch bsim3v3 type=n mobmod=1 capmod=2 version=3.2 tox=6.5e-5 cdsc=3e-3 ends

subckt cap3 a b
m1 b a b b nch w=10u l=5u
model nch bsim4 type=n mobmod=0 capmod=2 version=4.21 toxe=3e-9 cdsc=2.58e-4 ends

In the above example, the model name nch cannot be accessed from the top level.

Escaping Special Characters in Names

If you have old netlists that contain names that do not follow Spectre syntax rules, you might
still be able to run these netlists with the Spectre simulator. The Spectre Netlist Language
permits the following exceptions to its normal syntax rules to accommodate old netlists. Use
these features only when necessary.

If you place a backslash (\) before any printable ASCII character, including spaces and tabs,
you can include the character in a name.

You can create a name from the following elements in the order given:

A string of digits, followed by

❑ Letters, underscores, or backslash-escaped characters, followed by

❑ A digit, followed by

❑ Underscores, digits, or backslash-escaped characters

This accommodates model or subcircuit libraries that use names like \2N2222.
June 2011 64 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Duplicate Specification of Parameters

If a parameter is specified more than once in the netlist, the Spectre cicruit simulator uses the
last specified value.

Instance Statements

In this section, you will learn to place individual components into your netlist and to assign
parameter values for them.

Formatting the Instance Statement

To specify components, you use the instance statement. You format the instance statement
as follows:

name [(]node1 ... nodeN[)] master [[param1=value1] ...[paramN=valueN]]

When you specify components with the instance statement, the fields have the following
values:

name The name you give to the statement. (Unlike SPICE instance
names, the first character in Spectre instance names is not
significant.)

[(]node1...nodeN[)] The names you give to the nodes that connect to the
component. You have the option of putting the node names in
parentheses to improve the clarity of the netlist. (See the
examples later in this chapter.) You can use the hierarchical
operator . to represent nodes inside a subcircuit hierarchy in
your netlist. The Spectre circuit simulator supports forward
referencing (retaining information about a node that is not
defined yet, and mapping it when the node is defined) and
relative path referencing (accessing a node with reference to
the current scope). Look for examples in the section below. The
simulator does not support hierarchical terminals in netlists.
June 2011 65 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
For subcircuits and ahdl modules, the available instance parameters are defined in the
definition of the subcircuit or AHDL module. In addition, all subcircuits have an implicit
instance parameter m for defining multiplicity. For more details about m, see “Identical
Components or Subcircuits in Parallel” on page 67.

Examples of Instance Statements

In this example, a capacitor named c1 connects to nodes 2 and 3 in the netlist. Its
capacitance is 10E-12 Farads.

C1 (2 3) capacitor c=10E-12F

The following example specifies a component whose parameters are defined in a model
statement. In this statement, npn is the name of the model defined in a model statement that
contains the model parameter definitions; Q1 is the name of the component; and o1, i1, and
b2 are the connecting nodes of the component.

Q1 (o1 i1 b2) npn

Note: The model statement is described in Model Statements on page 73. You can specify
additional parameters for an individual component in an instance statement that refers to a
model statement. You can find a list of available instance parameters and a list of available

master This is the name of one of the following:
A built-in primitive (such as resistor)
A model
A subcircuit
An AHDL module (Verilog-A language)

Note: The instance statement is used to call subcircuits and
refer to AHDL modules as well as to specify individual
components. For more information about subcircuit calls, see
“Subcircuits” on page 106. For more information about Verilog-
A, see the Verilog-A Language Reference manual.

parameter1=value1..
.parameterN=valueN

This is an optional field you can repeat any number of times in
an instance statement. You use it to specify parameter values
for a component. Each parameter specification is an instance
parameter, followed by an equal sign, followed by your value for
the parameter. You can find a list of the available instance
parameters for each component in the Spectre online help
(spectre -h). As with node names, you can place optional
parentheses around parameter specifications to improve the
clarity of the netlist. For example, (c=10E-12).
June 2011 66 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
model parameters for a component in the Spectre online help for that component (spectre
-h).

Example of Forward Referencing in Hierarchical Nodes
simulator lang=spectre

...

c1 xa.mid 0 capacitor c=0.2p

...

xa 1 2 buffer

Example of Relative Path Referencing in Hierarchical Nodes
simulator lang=spectre

...

subckt wrapper a b
x1 a b res_in_series
rh x1.int1 x1.int2 resistor r=1

ends

x2 1 0 wrapper

Basic Instance Statement Rules

When you prepare netlists for the Spectre simulator, remember these basic rules:

■ You must give each instance statement a unique name.

■ If the master is a model, you need to specify the model.

Identical Components or Subcircuits in Parallel

If your circuit contains identical devices (or subcircuits) in parallel, you can specify this
condition easily with the multiplication factor (m).

Specifying Identical Components in Parallel

If you specify an m value in an instance statement, it is as if m identical components are in
parallel. For example, capacitances are multiplied by m, and resistances are divided by m.
Remember the following rules when you use the multiplication factor:

■ You can use m only as an instance parameter (not as a model parameter).
June 2011 67 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
■ The m value need not be an integer. The m value can be any positive real number.

■ The multiplication factor does not affect short-channel or narrow-gate effects in
MOSFETs.

■ If you use the m factor with components that naturally compute branch currents, such as
voltage sources and current probes, the computed current is divided by m. Terminal
currents are unaffected.

■ You can set the built-in m factor property on a subcircuit to a parameter and then alter it.

Example of Using m to Specify Parallel Components

In the following example, a single instance statement specifies four 4000-Ohm resistors in
parallel.

Ro (d c) resistor r=4k m=4

The preceding statement is equivalent to

Ro (d c) resistor r=1k

Specifying Subcircuits in Parallel

If you place a multiplication factor parameter in a subcircuit call, you model m copies of the
subcircuit in parallel. For example, suppose you define the following subcircuit:

subckt LoadOutput a b
r1 (a b) resistor r=50k
c1 (a b) capacitor c=2pF

ends LoadOutput

If you place the following subcircuit call in your netlist, the Spectre simulator models five
LoadOutput cells in parallel:

x1 (out 0) LoadOutput m=5

Analysis Statements

In this section, you will learn to place analyses into your netlist and to assign parameter
values for them. For more information on analyses, see and the Spectre online help
(spectre -h).
June 2011 68 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Basic Formatting of Analysis Statements

You format analysis statements in the same way you format component instance statements
except that you usually do not put a list of nodes in analysis statements. You specify most
analysis statements as follows:

Name [(]node1 ... nodeN[)] Analysis Type parameter=value

where

Note: The noise, xf, pnoise, and pxf analyses let you specify nodes, p and n, which
identify the output of the circuit. When you use this option, you should use the full analysis
syntax as follows:

Name> [p n] Analysis Type parameter=value

If you do not specify the p and n terminals, you must specify the output with a probe
component.

Name The name you give to the analysis.

[(]node1 ... nodeN[)] Names you give to the nodes that connect to the analysis.
You have the option of putting the node names in
parentheses to improve the clarity of the netlist. (See the
examples later in this chapter.) For most analyses, you do
not need to specify any nodes. You can use the
hierarchical operator . to represent nodes inside a
subcircuit hierarchy in your netlist. The Spectre circuit
simulator supports forward referencing (retaining
information about a node that is not defined yet, and
mapping it when the node is defined) and relative path
referencing (accessing a node with reference to the
current scope). Look for examples in the section below.
The simulator does not support hierarchical terminals in
netlists.

Analysis Type Spectre name of the type of analysis you want, such as
ac, tran, or xf. You can find this name by referring to the
topics list in the Spectre online help (spectre -h).

parameter=value List of parameter values you specify for the analysis. You
can specify values for any number of parameters. You can
find parameter listings for an analysis by referring to the
Spectre online help (spectre -h).
June 2011 69 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Examples of Analysis Statements

The following examples illustrate analysis statement syntax.

XferVsTemp xf start=0 stop=50 step=1 probe=Rload param=temp freq=1kHz

This statement specifies a transfer function analysis (xf) with the user-supplied name
XferVsTemp. With all transfer functions computed to a probe component named Rload, it
sweeps temperature from 0 to 50 degrees in 1-degree steps at frequency 1 kHz. (For long
statements, you must place a backslash (\) at the end of the first line to let the statement
continue on the second line.)

Sparams sp stop=0.3MHz lin=100 ports=[Pin Pout]

This statement requests an S-parameter analysis (sp) with the user-supplied name
Sparams. A linear sweep starts at zero (the default) and continues to .3 MHz in 100 linear
steps. The ports parameter defines the ports of the circuit; ports are numbered in the order
given.

The following example statement demonstrates the proper format to specify optional output
nodes (p n):

FindNoise (out gnd) noise start=1 stop=1MHz

Basic Analysis Rules

When you prepare netlists for the Spectre simulator, remember these basic analysis rules:

■ The Spectre simulator has no default analysis. If you do not put any analysis statements
into a netlist, the Spectre simulator issues a warning and exits.

■ For most analyses, if you specify an analysis that has a prerequisite analysis, the Spectre
simulator performs the prerequisite analysis automatically. For example, if you specify an
AC analysis, the Spectre simulator automatically performs the prerequisite DC analysis.
However, if you want to run a pac, pxf, or pnoise analysis, you must specify the
prerequisite pss analysis.

■ You specify analyses in the order you want the Spectre simulator to perform them.

■ You can perform more than one of the same type of analysis in a single Spectre run.
Consequently, you can perform several analyses of the same type and vary parameter
values with each analysis.

■ You must give each analysis or control statement a unique name. The Spectre simulator
requires these unique names to identify output data and error messages.
June 2011 70 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Control Statements

The Spectre simulator lets you place a sequence of control statements in the netlist. You can
use the same control statement more than once. Spectre control statements are discussed
throughout this manual. The following are control statements:

■ alter

■ altergroup

■ assert

■ check

■ checklimit

■ ic

■ info

■ nodeset

■ options

■ paramset

■ save

■ set

■ shell

■ statistics

Formatting the Control Statement

Control statements often have the same format as analysis statements. Like analysis
statements, many control statements must have unique names. These unique names let the
Spectre simulator identify the control statement if there are error messages or other output
associated with the control statement. You specify most control statements as follows:

Name Control Statement Type parameter=value

where

Name Unique name you give to the control statement.
June 2011 71 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Examples of Control Statements

SetTemp alter param=temp value=27

The preceding example of an alter statement sets the temperature for the simulation to
27°C. The name for the alter statement is SetTemp, and the name of the control statement
type is alter.

You cannot alter a device from one primitive type to another. For example,

inst1 (1 2) capacitor c=1pF
alterfail altergroup{

inst1 (1 2) resistor r=1k
}

is illegal.

Another example of a control statement is the altergroup statement, which allows you to
change the values of any modifiable device or netlist parameters for any analyses that follow.
Within an alter group, you can specify parameter, instance, or model statements; the
corresponding netlist parameters, instances, and models are updated when the
altergroup statement is executed. These statements must be bound within braces. The
opening brace is required at the end of the line defining the alter group. Alter groups cannot
be nested or be instantiated inside subcircuits. Also, no topology changes are allowed to be
specified in an alter group.

The following is the syntax of the altergroup statement:

Name altergroup ... {

netlist parameter statements ...

and/or

device instance statements ...

and/or

model statements ...

and/or

Control Statement
Type

Spectre name of the type of control statement you want, such
as alter. You can find this name by referring to the topics list
in the Spectre online help (spectre -h).

parameter=value List of parameter values you specify for the control statement.
You can specify values for any number of parameters. You can
find parameter listings for a control statement by referring to the
Spectre online help (spectre -h).
June 2011 72 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
parameter statements ...
}

The following is an example of the altergroup statement:

v1 1 0 vsource dc=1
R1 1 0 Resistor R=1k
dc1 dc // this analysis uses a 1k resistance value
a1 altergroup {

R1 1 0 Resistor R=5k
}
dc2 dc // this analysis uses a 5k value

Model Statements

model statements are designed to allow certain parameters, which are expected to be
shared over many instances, to be given once. However, for any given component, it is
predetermined which parameters can be given on model statements for that component.

This section gives a brief overview of the Spectre model statement. For a more detailed
discussion on modeling issues (including parameterized models. expressions, subcircuits,
and model binning), see Chapter 5, “Parameter Specification and Modeling Features”.

Formatting the model Statement

You format the model statement as follows:

model name master [param1=value1 ... [param2=value2]]

The fields have the following values:

model The keyword model (.model is used for SPICE mode).

name The name you give to the model.

master The master name of the component, such as resistor, bjt, or
tline. This field can also contain the name of an AHDL
module.

parameter1=value1 ...<parameterN=valueN>
This is an optional field you can repeat any number of times in a
model statement. Each parameter specification is a model
parameter, followed by an equal sign, followed by the value of the
parameter. You can find a list of the available model parameters
for each component in the parameter listings of Spectre online
help (spectre -h).
June 2011 73 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Creating a Model Alias

You can create an alias for a model as follows:

model alias_model original_model

alias_model Alias for the model.

original_model Model defined in the current scope.

For example,

model res resistor r=1K
model alias_res res
r1 (a b) alias_res

Creating an alias for a Subcircuit

You can also create an alias for a subcircuit (subckt) as follows:

model alias_subckt original_subckt

alias_subckt Alias for the subcircuit.

original_subckt Subcircuit defined in the current scope.

For example,

subckt sub a b
r1 (a b) r = 10k
ends
model alias_sub sub
x1 1 0 alias_sub

Examples of model Statements

The following examples give parameters for a tline model named tuner and a bjt model
named NPNbjt.

model tuner tline f=1MHz alphac=9.102m dcr=105m

model NPNbjt bjt type=npn bf=100 js=0.1fA

Note: The backslash (\) is used as a continuation character in this lengthy model statement.

model NPNbjt2 bjt \
type=npn is=3.38e-17 bf=205 nf=0.978 vaf=22 \
ikf=2.05e-2 ise=0 ne=1.5 br=62 nr=1 var=2.2 isc=0 \
nc=1.5 rb=115 re=1 rc=30.5 cje=1.08e-13 vje=0.995 \
mje=0.46 tf=1e-11 xtf=1 itf=1.5e-2 cjc=2.2e-13 \
June 2011 74 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
vjc=0.42 mjc=0.22 xcjc=0.1 tr=4e-10 cjs=1.29e-13 \
vjs=0.65 mjs=0.31 xtb=1.5 eg=1.232 xti=2.148 fc=0.875

The following example creates two instances of a bjt transistor model:

a1 (C B1 E S) NPNbjt
a2 (C B2 E S) NPNbjt2

Using analogmodel for Model Passing (analogmodel)

analogmodel is a reserved word in Spectre that allows you to bind an instance to different
masters based on the value of a special instance parameter called modelname. An instance
of analogmodel must have a parameter named modelname whose string value will be the
name of the master this instance will be bound to. The value of modelname can be passed
into subcircuits.

The analogmodel keyword is used by the Cadence Analog Design Environment to enable
model name passing through the schematic hierarchy.

Sample Instance Statement:

name [(]node1 ... nodeN[)] analogmodel modelname=mastername [[param1=value1]
...[paramN=valueN]]

name

 Name of the statement or instance label.

[(]node1...nodeN[)]

 Names of the nodes that connect to the component.

analogmodel

 Special device name to indicate that this instance will have its master

 name specified by the value of the modelname parameter on the instance.

modelname

 Parameter to specify the master of this instance indicated by mastername.

 The mastername must either be a valid string identifier or a netlist

 parameter that must resolve to a valid master name - a primitive, a model

 a subckt, or an AHDL module.
June 2011 75 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
param1

 Parameter values for the component. Depending on the master type, these

 can either be device parameters or netlist parameters. This is an optional

 field.

Example:

 //example spectre netlist to illustrate modelname parameter

 simulator lang=spectre

 parameters b="bottom"

 include "VerilogAStuff.va"

 topInst1 (out in) top

 topInst2 (out in) analogmodel modelname="VAMaster" //VAMaster is defined in
"VerilogAStuff.va"

 topInst3 (out in) analogmodel modelname="resistor" //topInst3 binds to a primitive

 topInst4 (out 0) analogmodel modelname="myOwnRes" //topInst4 binds to modelcard
"myOwnRes" defined below

 v1 in 0 vsource dc=1

 model myOwnRes resistor r=100

 subckt top out in

 parameters a="mid"

 x1 (out in) analogmodel modelname=a //topInst1.x1 binds to "mid"

 ends top

 subckt mid out in

 parameters c="low"

 x1 (out in) analogmodel modelname=b //topInst1.x1.x1 binds to "bottom"

 x2 (out in) analogmodel modelname=c //topInst1.x1.x1.x2 binds to "low"
June 2011 76 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
 ends mid

 subckt low out in

 x1 (out in) analogmodel modelname="bottom" //topInst1.x1.x1.x2.x1 binds to "bottom"

 ends low

 subckt bottom out in

 x1 (out in) analogmodel modelname="resistor" //x1 binds to primitive "resistor"

 ends bottom

 dc1 dc

 //"VerilogAStuff.va"

 include "constants.h"

 include "discipline.h"

 module VAMaster(n1, n2);

 inout n1, n2;

 electrical n1, n2;

 parameter r=1k;

 analog begin

 I(n1, n2) <+ V(n1, n2)/r;

 end

 endmodule

Basic model Statement Rules

When you use the model statement,

■ You can have several model statements for a particular component type, but each
instance statement can refer to only one model statement.
June 2011 77 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
■ Occasionally, a component allows a parameter to be specified as either an instance
parameter or as a model parameter. If you specify it as a model parameter, it acts as a
default for instances. If you specify it as an instance parameter, it overrides the model
parameter.

■ Values for model parameters can be expressions of netlist parameters.

Input Data from Multiple Files

If you want to use data from multiple files, use the include statement to insert new files.
When the Spectre simulator reads the include statement in the netlist, it finds the new file,
reads it, and then resumes reading the netlist file.

If you have older netlist files you want to incorporate into your new, larger netlist, the
include statement is particularly helpful. Instead of creating a completely new netlist, you
can use the include statement to insert your old files into the netlist at the location you
want.

Note: The Spectre simulator always assumes that the file being included is in SPICE
language mode unless the extension of the filename is .scs.

Syntax for Including Files

Including Verilog-A Modules

To include Verilog-A modules in your netlist, use the ahdl_include statement. The
Spectre circuit simulator compiles the complete module during the initial simulation. The
module is re-compiled during subsequent simulations only if it is modified. This may result in
a performance improvement. If you are making frequent changes to the Verilog-A in your
design, you can turn the one-step compilation off by using the following command:

setenv CDS_AHDLCMI_ENABLE NO

Including Digital Vector Files

You can add a digital vector text file to a Spectre netlist using the following statement

vec_include filename

For a SPICE netlist, use the following statement

.vec filename
June 2011 78 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Including Verilog Value Change Dump Files

You can add a Verilog Value Change Dump (VCD) or an Extended VCD (EVCD) file to a
Spectre netlist using the following statements respectively

vcd_include vcd_filename vcd_signal_info

evcd_include evcd_filename evcd_signal_info

For a SPICE netlist, use the following statements

.vcd_include vcd_filename vcd_signal_info

.evcd_include evcd_filename evcd_signal_info

Formatting the include Statement

You can use any of two formatting options for the include statement. When you want to use
C preprocessor (CPP) macro-processing capabilities within your inserted file, use the second
format (#include). These are the two format options:

include "filename"

#include "filename"

The first option (include) is performed by the Spectre simulator itself. The second option
(#include) is performed by the CPP. You must use the #include option when you have
macro substitution in the inserted file.

Note: CPP is not supported in Spectre Direct.

Rules for Using the include Statement

Remember the following rules and guidelines when using the include statement:

■ You must use the #include format if you want the CPP to process the inserted file.
Also, you must specify that the CPP be run using the -E command line option when you
start the Spectre simulator.

■ Regardless of which include format you use, you can use the -I command line option,
followed by a path, to have the Spectre simulator look for the inserted files in a specified
directory, in addition to the current directory, just as you would for the CPP #include.

■ If filename is not an absolute path specification, it is considered relative to the
directory of the including file that the Spectre simulator is reading, not from the directory
in which the Spectre simulator was called.

■ You must surround the filename in quotation marks.
June 2011 79 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
■ You can place a space and then a backslash-escaped newline (\) between include
and filename for line continuation.

■ You can place other include statements in the inserted file.

■ With any of the include formats, you can set the language mode for the inserted file by
placing a simulator lang command at the beginning of the file. The Spectre
simulator assumes that the file to be included is in the SPICE language unless one of the
following conditions occurs:

❑ The file to be included has a simulator lang=spectre line at the beginning of
the file. (The first line is not a comment title line, even in SPICE mode.)

❑ The file to be included has a .scs file extension.

■ With the include format, if you change the language mode in an inserted file, the
language mode returns to that of the original file at the end of the inserted file.

■ You cannot start a statement in an original file and end it in an inserted file or vice versa.

■ You can use include "~/filename", and the Spectre simulator looks for
filename in your home directory. This does not work for #include.

■ You can use environment variables in your include statements. For example,

include "$MYMODELS/filename"

The Spectre simulator looks for filename in the directory specified by $MYMODELS.
This works for include, but not for #include.

There are two major differences between using #include and include:

■ You can specify #include to run CPP and use macros and #-defined constants.

■ #include does not expand special characters or environment variables in the filename.

Example of include Statement Use

In the following include statement example, the Spectre simulator reads initial program
options and then inserts two files, cmos.mod and opamp.ckt. After reading these files, it
returns to the original file and reads further data about power supplies.

// example of using include statement
global gnd vdd vss
simulator lang=spectre
parameters VDD=5
include "cmos.mod"
include "opamp.ckt"
June 2011 80 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
// power supplies
Vdd vdd gnd vsource dc=VDD
Vss vss gnd vsource dc=-VDD

Reading Piecewise Linear (PWL) Vector Values from a File

You could type the following component description into a netlist:

v4 in 0 vsource type=pwl wave=[0 0 1n 0 2n 5 10n 5 11n 0 12n 0]

You could also enter the vector values from a file, in which case the component description
might look like this:

v4 in 0 vsource type=pwl file="test.in"

You can use the -I command line option, followed by a path, to have the Spectre simulator
look for the inserted files in a specified directory if they cannot be found in the current
directory.

If you place PWL vector values in an input file that is read by the component, do not specify
scale factors in your parameter values.

If you use an input file, the values in the file must look like this—without scale factors:

0 0
1e-9 0
2e-9 5
10e-9 5
11e-9 0
12e-9 0

Using Library Statements

Another way to insert new files is to use the library statements. There are two statements:
one to refer to a library and one that defines the library. A library is a way to group statements
into multiple sections and selectively include them in the netlist by using the name of the
section.

As for the include statement, the default language of the library file is SPICE unless the
extension of the file is .scs; then the default language is the Spectre Netlist Language.

Library Reference

This statement refers to a library section. This statement can be nested. To see more
information on including files, see spectre -h include. The name of the section has to
match the name of the section defined in the library. The following is the syntax for library
reference:
June 2011 81 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
include "file" section=Name

where file is the name of the library file to be included. The library reference statement
looks like an include statement, except for the specification of the library section. When the
file is being inserted, only the named section is actually included.

Library Definition

The library definition has to be in a separate file. The library has to have a name. Each section
in the library has to be named because this name is used by the library reference statement
to identify the section to include. The statements within each section can be any valid
statement. This is important to remember when using libraries in conjunction with alter groups
because the altergroup statement is restrictive in what can be specified.

The optional names are allowed at the end of the section and library. These names must
match the names of the section or library.

The following is the syntax for library definition:

library libraryName
section sectionName

statements
endsection [sectionName]
section anotherName

statements
endsection [anotherName]

library [libraryName]

One common use of library references is within altergroup statements. For example:

a1 altergroup {
//change models to "FAST" process corner
include "MOSLIB" section=FAST

}

Multidisciplinary Modeling

Multidisciplinary modeling involves setting tolerances and using predefined quantities.

Setting Tolerances with the quantity Statement

Quantities are used to hold convergence-related information about particular types of signals,
such as their units, absolute tolerances, and maximum allowed change per Newton iteration.
With the quantity statement, you can create quantities and change the values of their
parameters. You set these tolerances with the abstol and maxdelta parameters,
respectively. You can set the huge parameter, which is an estimate of the probable maximum
June 2011 82 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
value of any signal for that quantity. You can also set the blowup parameter to define an
upward bound for signals of that quantity. If a signal exceeds the blowup parameter value,
the analysis stops with an error message.

Generally, a reasonable value for the absolute tolerance of a quantity is 106 times smaller
than its greatest anticipated value. A reasonable definition for the huge value of a quantity is
10 to 103 times its greatest expected value. A reasonable definition of the blowup value for
a quantity is 106 to 109 times its greatest expected value.

Predefined Quantities

The Spectre Netlist Language has seven predefined quantities that are relevant for circuit
simulation, and you can set tolerance values for any of them. These seven predefined
quantities are

■ Electrical current in Amperes (named I)

(Default absolute tolerance = 1 pA)

■ Magnetomotive force in Amperes (named MMF)

(Default absolute tolerance = 1 pA-turn)

■ Electrical potential in Volts (named V)

(Default absolute tolerance = 1 μV; Default maximum allowable change per iteration =
300mV)

■ Magnetic flux in Webers (named Wb)

(Default absolute tolerance = 1 nWb)

■ Temperature in Celsius (named Temp)

(Default absolute tolerance = 100 μC)

■ Power in Watts (named Pwr)

(Default absolute tolerance = 1 nW)

■ Unitless (named U)

(Default absolute tolerance = 1 x 10-6)

For more information, see spectre -h quantity.
June 2011 83 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
quantity Statement Example

The electrical potential quantity has a normal default setting of 1 μV for absolute tolerance
(abstol) and 300 mV for maximum change per Newton iteration (maxdelta). You can
change abstol to 5 μV, reset maxdelta to 600 mV, define the estimate of the maximum
voltage to be 1000 V, and set the maximum permitted voltage to be 109 with the following
statement:

VoltQuant quantity name="V" abstol=5uV maxdelta=600mV
huge=1000V blowup=1e9

VoltQuant is a unique name you give to the quantity statement.

The keyword quantity is the primitive name for the statement.

The name parameter identifies the quantity you are changing. (V is the name for electrical
potential.)

abstol, maxdelta, huge, and blowup are the parameters you are resetting.

Note: The quantity statement has other uses besides setting tolerances. You can use the
quantity statement to create new quantities or to redefine properties of an existing quantity,
and you can use the node statement to set the quantities for a particular node. For more
information about the quantity statement, see the Spectre online help (spectre -h
quantity). For more information on the node statement, see spectre -h node. The
following is an example of a node statement:

setToMagnetic t1 t2 node value="Wb" flow="MMF" strength=insist

Inherited Connections

Inherited connections is an extension to the connectivity model that allows you to create
global signals and override their names for selected branches of the design hierarchy. The
flexibility of inherited connections allows you to use

■ Multiple power supplies in a design

■ Overridable substrate connections

■ Parameterized power and ground symbols

You can use an inherited connection so that you ca n override the default connection made
by a signal or terminal. This method can save you valuable time. You do not have to re-create
an entire subbranch of your design just to change one global signal.
June 2011 84 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
For more detailed information on how to use inherited connections and net expressions with
various Cadence® tools in the design flow, see the Inherited Connections Flow Guide.
June 2011 85 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
June 2011 86 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
5
Parameter Specification and Modeling
Features

You can use the Virtuoso® Spectre® circuit simulator models and AHDL modules in Spectre
netlists. This chapter describes the powerful modeling capabilities of Spectre, including

■ Instance (Component or Analysis) Parameters on page 88

■ Parameters Statement on page 92

■ Expressions on page 94

■ Subcircuits on page 106

■ Inline Subcircuits on page 112

■ Binning on page 120

■ Scaling Physical Dimensions of Components and Device Model Technology on
page 133

■ Multi-Technology Simulation on page 135
June 2011 87 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Instance (Component or Analysis) Parameters

In this section, you will learn about the types of component or analysis parameter values the
Spectre circuit simulator accepts and how to specify them.

Types of Parameter Values

Spectre component or analysis parameters can take the following types of values:

■ Real or integer expression, consisting of

❑ Literals

❑ Arithmetic or Boolean operators

❑ Predefined circuit or subcircuit parameters

❑ Built-in constants (fixed values) or mathematical functions (software routines that
calculate equations)

❑ Real or integer constants

■ The name of a component instance or model

■ The name of a component parameter

■ A character string (must be surrounded by quotation marks)

■ A name from a predefined set of names available to specify the parameter value
(enumerated types)

Parameter Dimension

Component or analysis parameters can be either scalar or vector.

If a component or analysis parameter value is a group of numbers or names, you specify the
group as a vector of values by enclosing the list of items in square brackets ([])—for
example, coeffs=[0 0.1 0.2 0.5] to specify the parameter values 0, 0.1, 0.2, and
0.5. You can specify a group of number pairs (such as time-voltage pairs to specify a
waveform) as a vector of the individual numbers.

Remember these guidelines when you specify vectors of value:

■ You can mix numbers and netlist or subcircuit parameter names in the same vector
(coeff=[0 coeff1 coeff2 0.5]).
June 2011 88 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
■ You cannot leave a list of items empty.

■ You can use expressions (such as formulas) to specify numbers within a vector. When
you use a vector of expressions, each expression must be surrounded by parentheses
(coeff=[0 (A*B) C 0.5]).

■ You can use subcircuit parameters within vectors.

Parameter Ranges

Parameter ranges have hard limits and soft limits. Hard limits are enforced by the Spectre
simulator; if you violate them, the Spectre simulator issues an error and terminates. You
specify soft limits; if you violate them, the Spectre simulator issues a warning and continues.
Soft limits are used to define reasonable ranges for parameter values and can help find
“unreasonable” values that are likely errors. You can change soft limits, which are defined in
one or more files. Use the +param command line option to use the suggested parameter
range limits.

You can specify limits for any scalar parameter that takes either a real number, an integer, or
an enumeration. To specify the limits of a parameter that takes enumerations, use the indices
or index values associated with the enumerations. For example, consider the region
parameter of the bjt. There are four possible regions (see spectre -h bjt):

■ off

■ fwd

■ rev

■ sat

Each enumeration is assigned a number starting at 0 and counting up. Thus,

■ off=0

■ fwd=1

■ rev=2

■ sat=3

The specification bjt 3 <= region <= 1 indicates that a warning is printed if
region=rev because the conditions 3 <= region and region <= 1 exclude only
region=2 and region 2 is rev.

For more information on parameter range checking,see Checking for Invalid Parameter
Values on page 111.
June 2011 89 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Help on Parameters

There are four main ways to get online help about Spectre component or analysis
parameters.

spectre -help

When you type spectre -help name, where name is the name of a component or
analysis, you get the following information:

■ Parameter names

Related parameters are grouped together.

■ Parameter defaults

■ Units

■ Parameter description

For analyses and controls, parameters are listed in the “Parameters” section. At the end of
the longer parameter listings is the parameter index. This index lists the parameters
alphabetically and gives the number that corresponds to where the parameter is in the
numbered list.

For components, parameters are divided into up to four sections: “Instance Parameters,”
“Model Parameters,” “Output Parameters,” and “Operating Point Parameters.” At the end of
longer parameter listings is the parameter index. This index indicates where to find a
parameter’s description with a letter and a number. The letter refers to the section (for
example, I refers to the instance parameters section, M refers to the model parameters
section, O refers to the output parameters section, and OP refers to the operating-point
parameters section), and the number refers to where the parameter is in the numbered list.

spectre -helpsort

When you type spectre -helpsort name, where name is the name of a component or
analysis, you get the same information as you do with spectre -h name, but the
parameters are sorted alphabetically instead of divided into related groups.
June 2011 90 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
spectre -helpfull

When you type spectre -helpfull name, where name is the name of a component or
analysis, you get related parameters grouped as you do with spectre -h name, and you
get the following additional information:

■ Parameter type

■ Parameter dimension—scalar or vector

■ Parameter range

spectre -helpsortfull

When you type spectre -helpsortfull name, where name is the name of a component
or analysis, you get the same information as you do with spectre -helpfull name, but
the parameters are sorted alphabetically instead of divided into related groups.

Scaling Numerical Literals

If a parameter value is an integer or a floating-point number, you can scale it in the following
ways:

■ Follow the number with an e or an E and an integer exponent (for example, 2.65e3,
5.32e-4, 1E-14, 3.04E6)

■ Use scale factors (for example 5u, 3.26k, 4.2m)

Important

You cannot use both scale factors and exponents in the same parameter value. For
example, the Spectre simulator ignores the p in a value such as 1.234E-3p.

Caution

The Spectre simulator also accepts additional data files, such as the
waveform and noise files accepted by the independent sources or the S-
parameter file accepted by the N-port. Generally, these files do not accept
numbers with scale factors.
June 2011 91 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
The Spectre mode (simulator lang=spectre) accepts only the following ANSI standard
(SI) scale factors:

Note: SI scale factors are case sensitive.

The Spectre simulator allows you to specify units, but only if you specify a scale factor. If
specified, units are ignored. Thus,

c=1pf // units = "f"

l=1uH // units = "H"

are accepted, but

r=50Ohms

is rejected because units are provided without a scale factor. For the last example, use

r=50_Ohms

SPICE mode (simulator lang=spice) accepts only the following SPICE scale factors:

Note: SPICE scale factors are not case sensitive. Any other scale factor is ignored (treated
as 1.0).

Caution

If you are not clear about the scaling rules for each simulation mode, you
can cause errors in your simulation. For example, 1.0M is interpreted as
10-3 in the SPICE mode but as 106 in the Spectre mode.

Parameters Statement

In this section, you will learn about the circuit and subcircuit parameters (collectively known
as netlist parameters) as defined by the parameters statement.

T=10
12

G=10
9

M=10
6

K=10
3

k=10
3

_=1 %=10
-2

c=10
-2

m=10
-3

u=10
-6

n=10
-9

p=10
-12

f=10
-15

a=10
-18

t=10
12

g=10
9

meg=10
6

k=10
3

p=10
-12

m=10
-3

mil=25.4 x 10
-6

u=10
-6

n=10
-9

f=10
-15
June 2011 92 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Circuit and Subcircuit Parameters

The Spectre Netlist Language allows real-valued parameters to be defined and referenced in
the netlist, both at the top-level scope and within subcircuit declarations (run spectre -h
subckt for more details on parameters within subcircuits).

The format for defining parameters is as follows:

parameters param=value param=value ...

Once defined, you can use parameters freely in expressions. The following are examples:

simulator lang=spectre
parameters p1=1 p2=2 // declare some parameters

r1 1 0 resistor r=p1 // use a parameter, value=1
r2 1 0 resistor r=p1+p2 // use parameters in an expression, value=3

x1 s1 p4=8 // subckt "s1" is defined below, pass in value 8 for "p4"

subckt s1
 parameters p1=4 p3=5 p4=6 // note: no "p2" here, p1 "redefined"
 r1 1 0 resistor r=p1 // local definition used: value=4
 r2 1 0 resistor r=p2 // inherit from parent(top-level) value=2
 r3 1 0 resistor r=p3 // use local definition, value=5
 r4 1 0 resistor r=p4 // use passed-in value, value=8
 r5 1 0 resistor r=p1+p2/p3 //use local+inherited/local=(4+2/5)=4.4
ends

time_sweep tran start=0 stop=(p1+p2)*50e-6 // use 5*50e-6 = 150 us
dc_sweep dc param=p1 values=[0.5 1 +p2 (sqrt(p2*p2))] // sweep p1

Parameter Declaration

Parameters can be declared anywhere in the top-level circuit description or on the first line of
a subcircuit definition. Parameters must be declared before they are used (referenced).
Multiple parameters can be declared on a single line. When parameters are declared in the
top-level, their values are also specified. When parameters are declared within subcircuits,
their default values are specified. The value or default value for a parameter can be a
constant, expression, a reference to a previously defined parameter, or any combination of
these.

You can declare parameters between subcircuit definitions if the subcircuits do not refer to
parameters in the parent scope defined after the subcircuit definition. If you want to use
altergroups, you must declare all parameters before the subcircuit definitions.

Parameter Inheritance

Subcircuit definitions inherit parameters from their parent (enclosing subcircuit definition, or
top-level definition). This inheritance continues across all levels of nesting of subcircuit
June 2011 93 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
definitions; that is, if a subcircuit s1 is defined, which itself contains a nested subcircuit
definition s2, then any parameters accessible within the scope of s1 are also accessible from
within s2. Also, any parameters declared within the top-level circuit description are also
accessible within both s1 and s2. However, any subcircuit definition can redefine a parameter
that it inherited. In this case, if no value is specified for the redefined parameter when the
subcircuit is instantiated, then the redefined parameter uses the locally defined default value,
rather than inheriting the actual parameter value from the parent. See how the r2 resistor is
used in the examples in Circuit and Subcircuit Parameters on page 93.

Parameter Referencing

Spectre netlist parameters can be referenced anywhere that a numeric value is normally
specified on the right-hand side of an = sign or within a vector, where the vector itself is on
the right-hand side of an = sign. This includes referencing of parameters in expressions (run
spectre -h expressions for more details on netlist expression handling), as indicated in
the preceding examples. You can use expressions containing parameter references when
specifying component or analysis parameter values (for example specifying the resistance of
a resistor or the stop time of a transient analysis, as outlined in the preceding example), when
specifying model parameter values in model statements (for example specifying bf=p1*0.8
for a bipolar model parameter, bf), or when specifying initial conditions and nodesets for
individual circuit nodes.

Altering/Sweeping Parameters

Just as certain Spectre analyses (such as sweep, alter, ac, dc, noise, sp, and xf) can
sweep component instance or model parameters, they can also sweep netlist parameters.
Run spectre -h analysis to see the particular details for any of these analyses, where
analysis is the analysis of interest.

Expressions

An expression is a construct that combines operands with operators to produce a result that
is a function of the values of the operands and the semantic meaning of the operators. Any
legal operand is also an expression in itself. Legal operands include numeric constants and
references to top-level netlist parameters or subcircuit parameters. Calls to algebraic and
trigonometric functions are also supported. The complete lists of operators, algebraic, and
trigonometric functions are given after some examples.

The following are examples:

simulator lang=spectre
parameters p1=1 p2=2 // declare some top-level parameters
June 2011 94 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
r1 (1 0) resistor r=p1 // the simplest type of expression
r2 (1 0) resistor r=p1+p2 // a binary (+) expression
r3 (1 0) resistor r=5+6/2 // expression of constants, = 8

x1 s1 p4=8 // instantiate a subcircuit, defined in the following lines

subckt s1
parameters p1=4 p3=5 p4=p1+p3 // subcircuit parameters

r1 (1 0) resistor r=p1 // another simple expression
r2 (1 0) resistor r=p2*p2 // a binary multiply expression
r3 (1 0) resistor r=(p1+p2)/p3 // a more complex expression
r4 (1 0) resistor r=sqrt(p1+p2) // an algebraic function call
r5 (1 0) resistor r=3+atan(p1/p2) //a trigonometric function call
r6 (1 0) RESMOD r=(p1 ? p4+1 : p3) // the ternary operator

ends

// a model statement, containing expressions
model RESMOD resistor tc1=p1+p2 tc2=sqrt(p1*p2)

// some expressions used with analysis parameters
time_sweep tran start=0 stop=(p1+p2)*50e-6 // use 5*50e-6 = 150 us

// a vector of expressions (see notes on vectors below)
dc_sweep dc param=p1 values=[0.5 1 +p2 (sqrt(p2*p2))] // sweep p1

Where Expressions Can Be Used

The Spectre Netlist Language allows expressions to be used where numeric values are
expected on the right-hand side of an = sign or within a vector, where the vector itself is on
the right-hand side of an = sign. Expressions can be used when specifying component or
analysis instance parameter values (for example, specifying the resistance of a resistor or the
stop time of a transient analysis, as outlined in the preceding example), when specifying
model parameter values in model statements (for example, specifying bf=p1*0.8 for a
bipolar model parameter, bf), or when specifying initial conditions and nodesets for individual
circuit nodes.

Operators

The operators in the following table are supported, listed in order of decreasing precedence.
Parentheses can be used to change the order of evaluation. For a binary expression like a+b,
a is the first operand and b is the second operand. All operators are left associative, with the
exceptions of the “to the power of” operator (**) and the ternary operator (? :), which are
right associative. For logical operands, any nonzero value is considered true. The relational
and equality operators return a value of 1 to indicate true or 0 to indicate false. There is no
short-circuiting of logical expressions involving && and ||.

Operator Symbol(s) Value

Unary +, Unary – +, – Value of the operand, negative of the
operand.
June 2011 95 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Algebraic and Trigonometric Functions

The trigonometric and hyperbolic functions expect their operands to be specified in radians.
The atan2() and hypot() functions are useful for converting from Cartesian to polar form.

To the power of ** First operand to be raised to the power of
the second operand.

Multiply, Divide *, / Product, quotient of the operands.

Binary Plus/Minus +, – Sum, difference of the operands.

Shift <<, >> First operand shifted left by the number of
bits specified by the second operand; first
operand shifted right by the number of bits
specified by the second operand.

Relational <, <=, >, >= Less than, less than or equal, greater than,
greater than or equal, respectively.

Equality ==, != True if the operands are equal; true if the
operands are not equal.

Bitwise AND & Bitwise AND (of integer operands).

Bitwise Exclusive
NOR

~^ (or ^~) Bitwise exclusive NOR (of integer
operands).

Bitwise OR | Bitwise OR (of integer operands).

Logical AND && True only if both operands true.

Logical OR || True if either operand is true.

Conditional selection (cond) ? x : y Returns x if cond is true, y if not; where x
and y are expressions.

Function Description Domain

log(x) Natural logarithm x > 0

log10(x) Decimal logarithm x > 0

exp(x) Exponential x < 80

sqrt(x) Square root x > 0

Operator Symbol(s) Value
June 2011 96 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
min(x,y) Minimum value All x, all y

max(x,y) Maximum value All x, all y

abs(x) Absolute value All x

pow(x,y) x to the power of y All x, all y

sin(x) Sine All x

cos(x) Cosine All x

tan(x) Tangent All x, except x = n*(/2), where n is odd

asin(x) Arc-sine -1 <= x <= 1

acos(x) Arc-cosine -1 <= x <= 1

atan(x) Arc-tangent All x

atan2(x,y) Arc-tangent of x/y All x, all y

hypot(x,y) sqrt(x*x + y*y) All x, all y

sinh(x) Hyperbolic sine All x

cosh(x) Hyperbolic cosine All x

tanh(x) Hyperbolic tangent All x

asinh(x) Arc-hyperbolic sine All x

acosh(x) Arc-hyperbolic cosine x >= 1

atanh(x) Arc-hyperbolic tangent -1 <= x <= 1

int(x) Integer part of x
(number before the
decimal)

ceil(x) Smallest integer
greater than or equal to
x

All x

floor(x) Largest integer less
than or equal to x

All x

fmod(x,y) Floating-point
remainder of x/y

y ≠ 0

Function Description Domain

π

June 2011 97 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Using Expressions in Vectors

Expressions can be used as vector elements, as in the following example:

dc_sweep dc param=p1 values=[0.5 1 +p2 (sqrt(p2*p2))] // sweep p1

Note: When expressions are used within vectors, anything other than constants, parameters,
or unary expressions (unary +, unary -) must be surrounded by parentheses. Vector elements
should be space separated. The preceding dc_sweep example shows a vector of four
elements: 0.5, 1, +p2, and sqrt(p2*p2). Note that the square root expression is
surrounded by parentheses.

Behavioral Expressions

Behavioral source enables you to model a resistor, inductor, capacitor, voltage or current
source as a behavioral component. Using bsource, you can express the value of a resistance,
capacitance, voltage or current as a combination of device operating points, node voltages,
branch currents, and built in Virtuoso® Spectre® circuit simulator expressions. bsource
simulation performance has now been improved by compiling the bsource devices. This is
explained in more detail in the bsource compilation section below.

The syntax for bsource is:

name (node1 node2) bsource behav_param param_list

where behav_param can be

c=simple_expr Capacitance between the nodes.

g=simple_expr Conductance between the nodes.

i=generic_expr Current through bsource.

l=simple_expr Inductance between the nodes.

phi=simple_expr Flux in the bsource device.

q=simple_expr Charge in bsource.

r=simple_expr Resistance between the nodes.

v=generic_expr Voltage across bsource.
June 2011 98 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
param_list is param_name=value

param_name can be

simple_expr A Spectre expression containing:

■ netlist parameters

■ current simulation time, $time

■ node voltages, v(a,b) where a and b are nodes or
in the netlist or v(a) which is the voltage between
node a and ground.

■ branch currents, i(“inst_id:index“), where
inst_id is an instance name given in the netlist and
index is the port index. The default value for index is
0.

For more information, type spectre -h expressions in
a terminal window.

generic_expr A simple expression that may contain idt () or ddt()
as well.

Multiplicity factor

m The value of m defaults to 1.

Temperature Parameters

tc1 Linear temperature co-efficient. Valid for all behavioural
elements.
Default value is 0 1/C.

tc2 Quadratic temperature co-efficient. Valid for all behavioural
elements.
Default value is 0 C^-2

tnom Parameters measurement temperature. Valid for all
behavioural elements.
Default value is 0.0.

trise Temperature rise for ambient. Valid for all behavioural
elements.
Default value is 0.0
June 2011 99 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
where

All the parameters in the param_name table are instance parameters. white_noise and
flicker_noise may be assigned behavioural expressions; the other parameters must be
assigned constant or parametric expressions.

Clipping Parameters

max_val Maximum value of bsource expression. Valid for all behavioural
elements, but generally used with i and v elements for clipping
the current or voltage between the specified values.

min_val Minimum value of bsource expression. Valid for all behavioural
elements, but generally used with i and v elements for clipping
the current or voltage between the specified values.

Noise Parameters

af Flicker noise exponent. Valid for r and g elements.
Default value is 2.

fexp Flicker noise frequency exponent. Valid for r, g, v, and i
elements.
Default value is 1.

isnoisy Specifies whether to generate noise. Valid for r, g, i, and v
elements.
Valid values are yes and no.
Default value is yes.

kf Flicker noise co-efficient. Valid for r and g elements.

white_noise White noise expression. Valid for v and i elements.

flicker_noise Flicker noise expression. Valid for v and i elements.

Element is a bsource with

r resistance specified.

g conductance specified.

v voltage specified.

i current specified.
June 2011 100 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
A bsource can also be declared as an instance of a model of a resistor, inductor, or capacitor.
However, the behavioral expression can only be present on the instance of the model and not
on the model itself.

Example:

simulator lang=spectre
vsrc s 0 vsource type=sine ampl=500.0 freq=100k
// declare a model of a resistor
model model_res resistor tc1=0.01 tc2=0.003
// declare an instance of the above model with a behavioral expression assigned to
//the r parameter
res1 s 0 model_res r=100*(1+(1/2)*v(s,0)+(1/3)*pow(v(s,0),2)) tc1=0.01
tran1 tran stop=50u

Altergroup is not supported for models that have behavioral instances.

Parameters Supported

A model that is to be instantiated as a behavioral resistor, capacitor or inductor, can only have
those parameters that are already supported for these behavioral primitives. The list of
supported parameters is given below. Some of these parameters may only be allowed on
instances. For those parameters that are valid on both the instance and model levels, the
instance parameter is given priority if it is specified on both the model and the instance of the
model.

Resistor

bsource supports isnoisy, m, r, tc1, tc2, trisekf, af, fexp, ldexp, wdexp, l,
w, mr, tc1c, tc2c.

The resistor type bsource model has two capacitors between each ports with ground. The
parameter tc1c is the first-order temperature parameter of that capacitor, and tc2c is the
second-order temperature parameter.

The final capactior value is C = C0*(1+tc1c*T+tc2c*T*T), where T is the temperature,
C0 is capacitor when T is 0.

Capacitor

bsource supports c, m, tc1, tc2, ic, and trise.
June 2011 101 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Inductor

bsource supports l, m, tc1, tc2, and trise.

Examples of bsource

Nonlinear Resistor/Capacitor/Inductor Instance
res (n1 n2) bsource r=100*(1+(1/2)*v(n1,n2))

cond (n1 n2) bsource g=0.01*(1+(1/2)*v(n1,n2))

cap (n1 n2) bsource c=1.0e-6*(1+(1/2)*v(n1,n2))

ind (n1 n2) bsource l=0.1*(1+(1/2)*v(n1,n2))

Charge Model for Capacitor
cap (n1 n2) bsource q=1.0e-6*v(n1,n2)

Magnetic Flux Model for Inductor
ind (n1 n2) bsource phi=0.1*i(n1,n2)

Voltage and Current (Sinewave) Source
vsrc (n1 n2) bsource v=10.0*sin(2*pi*freq*$time)

isrc (n1 n2) bsource i=1.0e-3*sin(2*pi*freq*$time)

Current Controlled Current Sources
vsrc (n1 n2) vsource v=10

cccs1 (n3 n4) bsource i=gain*i("vsrc:0")

Current Controlled Voltage Sources
vsrc (n1 n2) vsource v=10

ccvs1 (n3 n4) bsource v=100*i("vsrc:0")

Voltage Controlled Voltage Source
vsrc (n1 n2) resistor r=100k

vcvs1 (n3 n4) bsource v=gain*v(n1,n2)
June 2011 102 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Voltage Controlled Current Source
vsrc (n1 n2) resistor r=100k

vcvs1 (n3 n4) bsource i=v(n1,n2)/2000.0

Giving Maximum and Minimum Range for an Expression
res (n1 n2) bsource r=100*(1+(1/2)*v(n1,n2)) max_val=105 min_val=95

Giving Temperature Co-efficient for Resistor
res (n1 n2) bsource r=100 tc1=0.01 tc2=0.003 trise=10 tnom=30

Giving Flicker Noise Co-efficient for Resistor
res (n1 n2) bsource r=100 kf=1 af=1 fexp=1

Doing Altergroup with Bsource
vsrc1 (n1 n2) bsource v=10*sin(2*pi*freq1*$time)
vsrc2 (n3 n4) bsource v=10*cos(2*pi*freq2*$time)
cccs1 (n5 n6) bsource i=gain*i("vsrc1:0")
res (n5 n6) bsource r=100*(1+(1/2)*v(n5,n6))

tran1 tran stop=1u

altAnal altergroup {
cccs1 (n5 n6) bsource i=gain*i("vsrc2:0")
res (n5 n6) bsource r=100*(1+(1/3)*pow(v(n5,n6),2))
}

tran2 tran stop=1u

bsource Compilation

The performance of bsource devices has been improved by performing a one time
compilation step. The performance improvement obtained is proportional to the complexity of
the bsource expression. Following the initial compilation, recompilation will only be performed
if the bsource expression is changed.

Bsource compilation is enabled by default. If you are making frequent changes to bsource
expressions used in your design, the overhead of the compilation step may become an issue.
To turn off compilation set the CDS_AHDLCMI_ENABLE shell environment variable to NO
e.g:

setenv CDS_AHDLCMI_ENABLE NO

To re-enable bsource compilation set the CDS_AHDLCMI_ENABLE to YES e.g:

setenv CDS_AHDLCMI_ENABLE YES
June 2011 103 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
or undefine the CDS_AHDLCMI_ENABLE environment variable e.g:

unsetenv CDS_AHDLCMI_ENABLE

Built-in Constants

You can use built-in constants to specify parameter values.

The Spectre Netlist Language contains the built-in mathematical and physical constants
listed in the following table. Mathematical constants start with M_, and physical constants start
with P_.

Constant Name Value Description

M_E 2.7182818284590452354 e or escp(1)

M_LOG2E 1.4426950408889634074 log2(e)

M_LOG10E 0.43429448190325182765 log10(e)

M_LN2 0.69314718055994530942 ln(2)

M_LN10 2.30258509299404568402 ln(10)

M_PI 3.14159265358979323846 ??????π

M_TWO_PI 6.28318530717958647652 2π

M_PI_2 1.57079632679489661923 π/2

M_PI_4 0.78539816339744830962 π/4

M_1_PI 0.31830988618379067154 1/π

M_2_PI 0.63661977236758134308 2/π

M_2_SQRTPI 1.12837916709551257390 2/π

M_SQRT2 1.41421356237309504880

M_SQRT1_2 0.70710678118654752440

M_DEGPERRAD 57.2957795130823208772 Number of degrees per
radian (equal to 180/π)

P_Q 1.6021918x10-19 Charge of electron in
coulombs

P_C 2.997924562x108 Speed of light in vacuum in
meters/second

2

1 2⁄
June 2011 104 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
User-Defined Functions

The user-defined function capability allows you to build upon the provided set of built-in
mathematical and trigonometric functions. You can write your own functions and call these
functions from within any expression. The Spectre function syntax resembles that of C.

Defining the Function

The following is a simple example of defining a function with arguments of type real and
results of type real:

real myfunc(real a, real b) {
return a+b*2+sqrt(a*sin(b));

}

When you define a function, follow these rules:

■ Functions can be declared only at the top level and cannot be declared within subcircuits.

■ Arguments to user-defined functions can only be real values, and the functions can only
return real values. You must use the keyword real for data typing.

■ The Spectre function syntax does not allow references to netlist parameters within the
body of the function, unless the netlist parameter is passed in as a function argument.

■ The function must contain a single return statement.

Note: If you create a user-defined function with the same name as a built-in function, the
Spectre simulator issues a warning and runs the user-defined function.

P_K 1.3806226x10-23 Boltzman’s constant in
joules/Kelvin

P_H 6.6260755x10-34 Planck’s constant in joules
times seconds

P_EPS0 8.85418792394420013968x10-12 Permittivity of vacuum in
farads/meter

P_U0 x(4.0x10-7) Permeability of vacuum in
henrys/meter

P_CELSIUS0 273.15 Zero Celsius in Kelvin

Constant Name Value Description

π

June 2011 105 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Calling the Function

Functions can be called from anywhere that an expression can currently be used in the
Spectre simulator. Functions can call other functions; however, the function must be declared
before it can be called. The following example defines the function myfunc and then calls it:

real myfunc(real a, real b) {
return a+b*2+sqrt(a*sin(b));

}

real yourfunc(real a, real b) {
return a+b*myfunc(a,b);// call "myfunc"

}

The next example shows how a user-defined function can be called from an expression in the
Spectre netlist:

r1 (1 0) resistor r=myfunc(2.0, 4.5)

Predefined Netlist Parameters

There are two predefined netlist parameters:

■ temp is the circuit temperature (in degrees Celsius) and can be used in expressions.

■ tnom is the measurement (nominal) temperature (in degrees Celsius) and can be used
in expressions.

For example:

r1 1 0 res r=(temp-tnom)*15+10k

o1 options TEMP=55

For behavioral expressions, the values of temp and tnom are specified by the Spectre circuit
simulator rather than being passed by the netlist.

Note: If you change temp or tnom using a set statement, alter statement, or simulator
options card, all expressions with temp or tnom are reevaluated. Hence, you can use the
temp parameter for temperature-dependent modeling (this does not include self-heating,
however).

Subcircuits

The Spectre simulator helps you simplify netlists by letting you define subcircuits that you can
place any number of times in the circuit. You can nest subcircuits, and a subcircuit definition
can contain both instances and definitions of other subcircuits. The main applications of
June 2011 106 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
subcircuits are to describe the circuit hierarchy and to perform parameterized modeling. In
this section, you learn to define subcircuits and to call them into the main circuit.

Formatting Subcircuit Definitions

You format subcircuit definitions as follows:

subckt SubcircuitName [(] node1 ... nodeN [)]

[parameters name1=value1 ... [nameN=valueN]]
.
.
.

instance, model, ic, or nodeset statements—or
further subcircuit definitions

.

.

.

ends [SubcircuitName]

subckt The keyword subckt (.subckt is used in SPICE mode).

SubcircuitName The unique name you give to the subcircuit.

(node1…nodeN) The external or connecting nodes of the subcircuit to the main
circuit.

parameters name1=value1…nameN=
This is an optional parameter specification field. You can specify
default values for subcircuit calls that refer to this subcircuit. The
field contains the keyword parameters followed by the names
and values of the parameters you want to specify.

component instance statement
The instance statements of your subcircuit, other subcircuit
definitions, component statements, analysis statements, or
model statements.

ends SubcircuitName
The keyword ends (or .ends in SPICE mode), optionally
followed by the subcircuit name.
June 2011 107 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
A Subcircuit Definition Example

The following subcircuit named twisted models a twisted pair. It has four terminals—p1,
n1, p2, and n2. The parameter specification field for the subcircuit sets subcircuit call default
values for parameters zodd, zeven, veven, vodd, and len. Remember that the specified
parameters are defaults for subcircuit calls, not for the instance statements in the subcircuit.
For example, if the subcircuit call leaves the zodd parameter unspecified, the value of zodd
in odd is 50. If, however, the subcircuit call sets zodd to 100, the value of zodd in odd is
100.

subckt twisted (p1 n1 p2 n2)
 parameters zodd=50 zeven=50 veven=1 vodd=1 len=0
 odd (p1 n1 p2 n2) tline z0=zodd vel=vodd len=len
 tf1a (p1 0 e1 c1) transformer t1=2 t2=1
 tf1b (n1 0 c1 0) transformer t1=2 t2=1
 even (e1 0 e2 0) tline z0=zeven vel=veven len=len
 tf2a (p2 0 e2 c2) transformer t1=2 t2=1
 tf2b (n2 0 c2 0) transformer t1=2 t2=1
ends twisted

Indenting the contents of a subcircuit definition is not required. However, it is recommended
to make the subcircuit definition more easily identifiable.

Subcircuit Example
GaAs Traveling Wave Amplifier
// GaAs Traveling-wave distributed amplifier (2-26.5GHz)
// Designed by Jerry Orr, MWTD Hewlett-Packard Co.
// 1986 MTT symposium; unpublished material.

global gnd vdd
simulator lang=spectre

// Models
model nGaAs gaas type=n vto=-2 beta=0.012 cgs=.148p cgd=.016p fc=0.5

subckt cell (o g1 g2)
TL (o gnd d gnd) tline len=355u vel=0.36
Gt (d g2 s) nGaAs
Ctgd (d s) capacitor c=0.033p
Cgg (g2 gnd) capacitor c=3p
Gb (s g1 gnd) nGaAs
Cbgd (s gnd) capacitor c=0.033p
Ro (d c) resistor r=4k
Co (c gnd) capacitor c=0.165p

ends cell

subckt stage (i0 o8)
// Devices
Q1 (o1 i1 b2) cell
Q2 (o2 i2 b2) cell
Q3 (o3 i3 b2) cell
Q4 (o4 i4 b2) cell
Q5 (o5 i5 b2) cell
Q6 (o6 i6 b2) cell
Q7 (o7 i7 b2) cell
June 2011 108 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
// Transmission lines
TLi1 (i0 gnd i1 gnd) tline len=185u z0=96 vel=0.36
TLi2 (i1 gnd i2 gnd) tline len=675u z0=96 vel=0.36
TLi3 (i2 gnd i3 gnd) tline len=675u z0=96 vel=0.36
TLi4 (i3 gnd i4 gnd) tline len=675u z0=96 vel=0.36
TLi5 (i4 gnd i5 gnd) tline len=675u z0=96 vel=0.36
TLi6 (i5 gnd i6 gnd) tline len=675u z0=96 vel=0.36
TLi7 (i6 gnd i7 gnd) tline len=675u z0=96 vel=0.36
TLi8 (i7 gnd i8 gnd) tline len=340u z0=96 vel=0.36
TLo1 (o0 gnd o1 gnd) tline len=360u z0=96 vel=0.36
TLo2 (o1 gnd o2 gnd) tline len=750u z0=96 vel=0.36
TLo3 (o2 gnd o3 gnd) tline len=750u z0=96 vel=0.36
TLo4 (o3 gnd o4 gnd) tline len=750u z0=96 vel=0.36
TLo5 (o4 gnd o5 gnd) tline len=750u z0=96 vel=0.36
TLo6 (o5 gnd o6 gnd) tline len=750u z0=96 vel=0.36
TLo7 (o6 gnd o7 gnd) tline len=750u z0=96 vel=0.36
TLo8 (o7 gnd o8 gnd) tline len=220u z0=96 vel=0.36

// Bias network
// drain bias
Ldd (vdd o0) inductor l=1u
R1 (o0 b1) resistor r=50
C1 (b1 gnd) capacitor c=9p
// gate 2 bias
R2 (b1 b2) resistor r=775
R3 (b2 gnd) resistor r=465
C2 (b2 gnd) capacitor c=21p
// gate 1 bias
R4 (i8 b3) resistor r=50
R5 (b3 gnd) resistor r=500
C3 (b3 gnd) capacitor c=12p

ends stage

// Two stage amplifier
P1 (in gnd) port r=50 num=1 mag=0
Cin (in in1) capacitor c=1n
X1 (in1 out1) stage
Cmid (out1 in2) capacitor c=1n
X2 (in2 out2) stage
Cout (out2 out) capacitor c=1n
P2 (out gn) port r=50 num=2

// Power Supply
Vpos vdd gnd vsource dc=5

// Analyses
OpPoint dc
Sparams sp start=100M stop=100G dec=100

Rules to Remember

When you use subcircuits,

■ You must place the same number of nodes in the same order in subcircuit definitions and
their respective subcircuit calls.
June 2011 109 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
■ Models and subcircuits defined within a subcircuit definition are accessible only from
within that subcircuit. You cannot use the model names in a subcircuit definition in
statements from outside the subcircuit. You can, however, use both the model name and
the subcircuit definitions in new subcircuits within the original subcircuit. Local models or
subcircuits hide nodes or subcircuits with the same names defined outside the subcircuit.

■ When you use model statements within subcircuit definitions, where model parameters
are expressions of subcircuit parameters definitions, a new model is created for every
instance of the subcircuit. These different models are “expanded models,” which are
derived from the original model statement. Each of the new models has a unique name,
and component instances created from the original model statement are instances of
the new model created for the subcircuit. The full name of each new model is the
flattened name of the subcircuit, followed by a dot (.), followed by the name of the model
as given in the model statement. If you request the output of model data, you can see
these expanded models in the output.

■ Subcircuit parameter names are local only. You cannot access the value of a subcircuit
parameter outside of the scope of the subcircuit in which it was declared.

■ Parameter names must be lowercase if you want to instantiate components from SPICE
mode.

Calling Subcircuits

To call a subcircuit, place an instance statement in your netlist. The nodes for this instance
statement are the connections to the subcircuit, and the master field in the subcircuit call
contains the name of the subcircuit. You can enter parameters in a subcircuit call to override
the parameters in the subcircuit definition for that subcircuit call.

The following example shows a subcircuit call and its corresponding subcircuit definition.
cell is the name of the subcircuit being called; Q1 is the unique name of the subcircuit call;
and o1, i1, and b2 are the connecting nodes to the subcircuit from the subcircuit call. When
you call the subcircuit, the Spectre simulator substitutes these connecting node names in the
subcircuit call for the connecting nodes in the subcircuit definition: o1 is substituted for o, i1
is substituted for g1, and b2 is substituted for g2. The length of transmission line TL is
changed to 500 μm for this subcircuit call from its 355 μm default value in the subcircuit
definition.

parameters length=355um

Q1 (o1 i1 b2) cell length=500um

subckt cell (o g1 g2)

Subcircuit call

Substitutions
June 2011 110 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
TL o gnd d gnd tline len=length vel=0.36
Gt d g2 s nGaAs
Ctgd d s capacitor c=0.033p
Cgg g2 gnd capacitor c=3p
Gb s g1 gnd nGaAs
Cbgd s gnd capacitor c=0.033p
Ro d c resistor r=10k
Co c gnd capacitor c=0.165p

ends cell

Modifying Subcircuit Parameter Values

The following example is a passive Bessel three-pole bandpass filter with default parameter
values for bandwidth, termination resistance, and center frequency. The bw, r0, and fc
parameters are given default values in the subcircuit, but you can change these values when
you call the subcircuit. Changing the value of bw, r0, and fc in a subcircuit call changes the
values of many parameters in instance statements that refer to these three parameters.

// define passive 3-pole bandpass filter

subckt filter (n1 n2)
parameters bw=1 r0=1 fc=1
C1 (n1 0) capacitor c=0.3374 / (6.2832 * bw * r0)
L1 (n1 0) inductor l=(r0 * bw) / (0.3374 * 6.2832 * fc * fc)
C2 (n1 n12) capacitor c=bw / (0.9705 * 6.2832 * fc * fc * r0)

L2 (n12 n2) inductor l=(r0 * 0.9705) / (6.2832 * bw)
C3 (n2 0) capacitor c=2.2034 / (6.2832 * bw * r0)
L3 (n2 0) inductor l=(r0 * bw)/(2.2034 * 6.2832 * fc * fc)

ends filter

You can use such parameterized subcircuits when the Spectre simulator is reading either
Spectre or SPICE syntax. Unlike subcircuit calls in SPICE, the names of Spectre subcircuit
calls do not have to start with an x. This is useful if you want to replace individual components
in an existing netlist with subcircuits for more detailed modeling.

Checking for Invalid Parameter Values

When you define subcircuits such as the one in Modifying Subcircuit Parameter Values on
page 111, you might want to put error checking on the subcircuit parameter values. Such
error checking prevents you from entering invalid parameter values for a given subcircuit call.

Parameter
values changed
from defaults
for these
subcircuit
calls

// instantiate 50 Ohm filter with 10.4MHz
// center frequency and 1MHz bandwidth
F1 (in out) filter bw=1MHz fc=10.4MHz r0=50
// instantiate 1 Ohm filter with 10Hz
// center frequency and 1Hz bandwidth
F2 (n1 n2) filter fc=10
June 2011 111 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
The Spectre paramtest component lets you test parameter values and generate
necessary error, warning, and informational messages. For example, in the example of the
bandpass filter in Modifying Subcircuit Parameter Values on page 111, the center frequency
needs to be greater than half the bandwidth.

Here is a version of the previous three-pole filter that issues an error message if the center
frequency is less than or equal to half the bandwidth:

* define passive 3-pole bandpass filter
subckt filter (n1 n2)

parameters bw=1 r0=1 fc=1

message="center frequency must be greater than half the
bandwidth"

C1 n1 0 capacitor c=0.3374 / (6.2832 * bw * r0)
L1 n1 0 inductor l=(r0 * bw) / (0.3374 * 6.2832 * fc * fc)
C2 n1 n12 capacitor c=bw / (0.9705 * 6.2832 * fc * fc * r0)
L2 n12 n2 inductor l=(r0 * 0.9705) / (6.2832 * bw)
C3 n2 0 capacitor c=2.2034 / (6.2832 * bw * r0)
L3 n2 0 inductor l=(r0 * bw) / (2.2034 * 6.2832 * fc * fc)

ends filter

The paramtest component checkFreqs has no terminals and no effect on the simulation
results. It monitors its parameters and issues a message if a given condition is satisfied by
evaluating to a nonzero number. In this case, errorif specifies that the Spectre simulator
issues an error message and stops the simulation. If you specify printif, the Spectre
simulator prints an informational message and continues the simulation. If you specify
warnif, the Spectre simulator prints a warning and continues.

For more information about specific parameters available with the paramtest component,
see the parameter listings in the Spectre online help (spectre -h).

Inline Subcircuits

An inline subcircuit is a special case where one of the instantiated devices or models within
the subcircuit does not get its full hierarchical name but inherits the subcircuit call name. The
inline subcircuit is called in the same manner as a regular subcircuit. You format inline
subcircuit definitions as follows:

inline subckt SubcircuitName [(] node1 ... nodeN [)]

Depending on the use model, the body of the inline subcircuit typically contains one of the
following:

■ Multiple device instances, one of which is the inline component

paramtest
componentcheckFreqs paramtest errorif=((bw/2-fc)>=0)\
June 2011 112 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
■ Multiple device instances (one of which is the inline component) and one or more
parameterized models

■ A single inline device instance and a parameterized model to which the device
instance refers

■ Only a single parameterized model

The inline component is denoted by giving it the same name as the inline subcircuit itself.
When the subcircuit is flattened, as shown in the following section, the inline component
does not acquire a hierarchical name such as X1.M1 but rather acquires the name of the
subcircuit call itself, X1. Any noninline components in the subcircuit acquire the regular
hierarchical name, just as if the concept of inline subcircuits never existed.

Typically, a modeling engineer writes inline subcircuit definitions for a circuit design engineer
to use.

Modeling Parasitics

You can model parasitics by adding parasitics components to a base component using inline
subcircuits. The body of the inline subcircuit contains one inline component, the base
component, and several regular components, which are taken to represent parasitics.

The following example of an inline subcircuit contains a MOSFET instance and two parasitic
capacitances:

inline subckt s1 (a b) // "s1" is name of subcircuit
parameters l=1u w=2u
s1 (a b 0 0) mos_mod l=l w=w// "s1" is "inline" component
cap1 (a 0) capacitor c=1n
cap2 (b 0) capacitor c=1n

ends s1

The following circuit creates a simple MOS device instance M1 and calls the inline
subcircuit s1 twice (M2 and M3):

M1 (2 1 0 0) mos_mod
M2(5 6) s1 l=6u w=7u
M3(6 7) s1

This circuit flattens to the following equivalent circuit:

M1 (2 1 0 0) mos_mod
M2 (5 6 0 0) mos_mod l=6u w=7u// the "inline" component

// inherits call name
M2.cap1 (5 0) capacitor c=1n// a regular hierarchical name
M2.cap2 (6 0) capacitor c=1n

M3 (6 7 0 0) mos_mod l=1u w=2u// the "inline" component
// inherits call name

M3.cap1 (6 0) capacitor c=1n
M3.cap2 (7 0) capacitor c=1n
June 2011 113 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
The final flattened names of each of the three MOSFET instances are M1, M2 and M3. (If s1
was a regular subcircuit, the final flattened names would be M1, M2.s1, and M3.s1.)
However, the parasitic capacitors have full hierarchical names.

You can create an instance of the inline subcircuit cell in the same way as creating an instance
of the specially tagged inline device. You can use save statements to probe this instance in
the same way as a regular device, without having to

■ Realize that the instance is actually embedded in a subcircuit

■ Know that there are possible additional parasitic devices present

■ Figure out the hierarchical name of the device of interest

A modeling engineer can create several of these inline subcircuits and place them in a library
for the design engineer to use. The library then includes a symbol cell view for each inline
subcircuit. The design engineer then places a symbol cell view on a design, which behaves
just as if a primitive were being used. The design engineer can then probe the device for
terminal currents and operating-point information.

Probing the Device

The Spectre simulator allows the following list of items to be saved or probed for primitive
devices, including devices modeled as the inline components of inline subcircuits:

■ All terminal currents

save m1:currents

■ Specific (index) terminal current

save m1:1 //#1=drain

■ Specific (named) terminal current

save m1:s //"s"=source

■ Save all operating-point information

save m1:oppoint

■ Save specific operating-point information

save m1:vbe

■ Save all currents and operating-point information

save m1

Note: If the device is embedded in a regular subcircuit, you have to know that the device is
a subcircuit and find out the appropriate hierarchical name of the device in order to save or
June 2011 114 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
probe the device. However, with inline components, you can use the subcircuit call name, just
as if the device were not in a subcircuit.

Operating-point information for the inline component is reported with respect to the terminals
of the inline component itself and not with respect to the enclosing subcircuit terminals. This
results in the following cautions.

Caution: Parasitic Elements in Series with Device Terminals

If the parasitic elements are in series with the device terminals, the reported operating-point
currents are correct, but reported operating-point voltages might be incorrect. For example,
consider the case of an inline MOSFET device with parasitic source and drain resistances:

inline subckt mos_r (d g s b)
parameters p1=1u p2=2u
mos_r (dp g sp b) mos_mod l=p1 w=p2// "inline" component
rd (d dp) resistor r=10 // series drain resistance
rs (s sp) resistor r=10 // series source resistance

ends mos_r

If an instance M1 is created of this mos_r inline subcircuit and the operating point of M1 is
probed, the drain-to-source current ids is reported correctly. However, the reported vds is
not the same as V(d) – V(s), the two wires that connect the subcircuit drain and source
terminals. Instead, vds is V(dp) – V(sp), which are nodes internal to the inline subcircuit.

Caution: Parasitic Elements in Parallel with Device Terminals

If the parasitic elements are in parallel with the device terminals, the reported voltages are
correct, but the reported currents might be incorrect. For example, consider the following case
of a MOSFET with source-to-bulk and drain-to-bulk diodes:

inline subckt mos_d (d g s b)
parameters p1=1u p2=2u
mos_d (d g s b) mos_mod l=p1 w=p2 // "inline" component
d1(d b) diode1 r=10 // drain-bulk diode
d2(s b) diode1 r=10 // source-bulk diode

ends mos_d

Here, the operating-point vds for the inline component is reported correctly because there
are no extra nodes introduced by the inline subcircuit model. However, the reported ids for
the inline device is not the same as the current flowing into terminal d because some of the
current flows into the transistor and some through diode d1.
June 2011 115 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Parameterized Models

Inline subcircuits can be used in the same way as regular subcircuits to implement
parameterized models. When an inline subcircuit contains both a parameterized model and
an inline device referencing that model, you can create instances of the device, and each
instance automatically gets an appropriately scaled model assigned to it.

For example, the instance parameters of an inline subcircuit can represent emitter width and
length of a BJT device. Within that subcircuit, a model statement can be created that is
parameterized for emitter width and length and scales accordingly. When you instantiate the
subcircuit, you supply the values for the emitter width and length, and the device is
instantiated with an appropriate geometrically scaled model. Again, the inline device does not
get a hierarchical name and can be probed in the same manner as if it were a simple device
and not actually embedded in a subcircuit.

In the following example, a parameterized model is declared within an inline subcircuit for a
bipolar transistor. The model parameters are the emitter width, emitter length, emitter area,
and the temperature delta (trise) of the device above nominal. Ninety-nine instances of a
4x4 transistor are then placed, and one instance of a transistor with area=50 is placed. Each
transistor gets an appropriately scaled model.

* declare a subcircuit, which instantiates a transistor with
* a parameterized model. The parameters are emitter width
* and length.

inline subckt bjtmod (c b e s)
parameters le=1u we=2u area=le*we trise=0
model mod1 bjt type=npn bf=100+(le+we)/2*(area/1e-12) \

 is=1e-12*(le/we)*(area/1e-12)
bjtmod (c b e s) mod1 trise=trise//"inline" component

ends bjtmod

* some instances of this subck
q1 (2 3 1 0) bjtmod le=4u we=4u / trise defaults to zero
q2 (2 3 2 0) bjtmod le=4u we=4u trise=2
q3 (2 3 3 0) bjtmod le=4u we=4u
.
.
q99 (2 3 99 0) bjtmod le=4u we=4u
q100 (2 3 100 0) bjtmod le=1u area=50e-12

Since each device instance now gets its own unique model, this approach lends itself to
statistical modeling of on-chip mismatch distributions, in which each device is taken to be
slightly different than all the others on the same chip. The value of bf is the same for the first
99 transistors.
June 2011 116 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Inline Subcircuits Containing Only Inline model Statements

You can create an inline subcircuit that contains only a single model statement (and nothing
else), where the model name is identical to the subcircuit name. This syntax is used to
generate a parameterized model statement for a given set of parameters, where the model is
then exported and can be referenced from one level outside the subcircuit. Instantiating the
inline subcircuit in this case merely creates a model statement with the same name as the
subcircuit call. The Spectre simulator knows that because the subcircuit definition contains
only a model statement and no other instances, the definition is to be used to generate
named models that can be accessed one level outside of the subcircuit. Regular device
instances one level outside of the subcircuit can then refer to the generated model.

Because these are now instances of a model rather than of a subcircuit, you can specify
device instance parameters with enumerated types such as region=fwd.

This technique is shown in the following example:

* declare an inline subcircuit that "exports" a parameterized model
inline subckt bjtmod

parameters le=1u we=2u area=le*we
model bjtmod bjt type=npn bf=100+(le+we)/2*(area/1e-12) \

 is=1e-12*(le/we)*(area/1e-12)
ends bjtmod

* now create two "instances" of the inline subcircuit, that is,
* create two actual models, called mod1, mod2

mod1 bjtmod le=4u we=4u
mod2 bjtmod le=1u area=50e-12

* 99 instances of mod1 (all share mod1)
* and 1 instance of mod2.
q1 (2 3 1 0) mod1 region=fwd
q2 (2 3 2 0) mod1 trise=2
.
.
q99 (2 3 99 0) mod1
q100 (2 3 100 0) mod2

Because the syntax of creating an instance of a model is the same as the syntax of creating
an instance of a subcircuit in the Spectre netlist, you can easily replace model instances with
more detailed subcircuit instances. To do this, replace the model statement itself with a
subcircuit definition of the same name.

When you do this in the Spectre Netlist Language, you do not have to change the instance
statements. In SPICE, inline subcircuits start with x, so you need to rename all instance
statements to start with x if you replaced a model with a subcircuit.
June 2011 117 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Process Modeling Using Inline Subcircuits

Another modeling technique is to specify geometrical parameters, such as widths and
lengths, to a device such as a bipolar transistor and then to create a parameterized model
based on that geometry. In addition, the geometry can be modified according to certain
process equations, allowing you to model nonideal etching effects, for example.

You use inline subcircuits and some include files for process and geometric modeling, as
in the following example files. The ProcessSimple.h file defines the process parameters
and the bipolar and resistor devices:

// File: ProcessSimple.h

simulator lang=spectre

// define process parameters, including mismatch effects

parameters RSHSP=200 RSHPI=5k // sheet resistance, pinched sheet res
+ SPDW=0 SNDW=0 // etching variation from ideal
+ XISN=1 XBFN=1 XRSP=1 // device "mismatch" (mm)
parameters
+ XISNafac=100m XISNbfac=1m // IS scaling factors for mm eqns
+ XBFNafac=100m XBFNbfac=1m // BF " " " " "
+ XRSPafac=100m XRSPbfac=1m // RS " " " " "
+ RSHSPnom=200 RSHPInom=5k // sheet resistance nom. values
+ FRSHPI=RSHPI/RSHPInom // ratio of PI sheet res to nom

// define "simple" bipolar and resistor devices

// a "base" TNSA subckt, that is, a simple "TNSA" bipolar transistor
// subcircuit, with model statement
inline subckt TNSA_B (C B E S)

parameters MULT=1 IS=1e-15 BF=100
model modX bjt type=npn is=IS bf=BF // a model statement
TNSA_B (C B E S) modX m=MULT // "inline" device instance

ends TNSA_B

// a "base" resistor
// a simple "RPLR" resistor subcircuit
inline subckt RPLR_B (A B)

parameters R MULT=1
RPLR_B (A B) resistor r=R m=MULT // "inline" device

ends RPLR_B

// define process/geometry dependent bipolar and resistor devices

// a "geometrical/process" TNSA subcircuit
// a BJT subcircuit, with process and geometry effects modeled
// bipolar model parameters IS and BF are functions of effective
// emitter area/perimeter taking process factors (for example,
// nonideal etching) into account
inline subckt TNSA_PR (C B E S)

parameters WE LE MULT=1 dIS=0 dBF=0
+ WEA=WE+SNDW // effective or "Actual" emitter width
+ LEA=LE+SNDW // effective or "Actual" emitter length
+ AE=WEA*LEA // effective emitter area
+ IS=1e-18*FRSHPI*AE*(1+(XISNafac/sqrt(AE)+XISNbfac)
June 2011 118 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
+ *(dIS/2+XISN-1)/sqrt(MULT))
+ BF=100*FRSHPI*(1+(XBFNafac/sqrt(AE)+XBFNbfac)
+ *(dBF/2+XBFN-1)/sqrt(MULT))

TNSA_PR (C B E S) TNSA_B IS=IS BF=BF MULT=MULT // "inline"
ends TNSA_PR

// a "geometrical/process" RPLR resistor subcircuit
// resistance is function of effective device geometry, taking
// process factors (for example, nonideal etching) into account
inline subckt RPLR_PR (A B)

parameters Rnom WB MULT=1 dR=0
+ LB=Rnom*WB/RSHSPnom
+ AB=LB*(WB+SPDW)

RPLR_PR (A B) RPLR_B R=RSHSP*LB/(WB+SPDW)*
+ (1+(XRSPafac/sqrt(AB)+XRSPbfac)*(dR/2+XRSP-1)/sqrt(MULT))

ends RPLR_PR

The following file, Plain.h, provides the designer with a plain device interface without
geometrical or process modeling:

// File: Plain.h

simulator lang=spectre

// plain TNSA, no geometrical or process modeling
inline subckt TNSA (C B E S)

parameters MULT=1 IS=1e-15 BF=100
TNSA (C B E S) TNSA_B IS=IS BF=BF MULT=MULT // call TNSA_B

ends TNSA

// plain RPLR no geometrical or process modeling
inline subckt RPLR (A B)

parameters R=1 MULT=1
RPLR (A B) RPLR_B R=R MULT=MULT

ends RPLR

The following file, Process.h, provides the designer with the geometrical device interface:

// File: Process.h

simulator lang=spectre

// call to the geometrical TNSA model
inline subckt TNSA (C B E S)

parameters WE=1u LE=1u MULT=1 dIS=0 dBF=0
TNSA (C B E S) TNSA_PR WE=WE LE=LE \

 MULT=MULT dIS=dIS dBF=dBF // call TNSA_PR
ends TNSA

// call to the geometrical RPLR model
inline subckt RPLR (A B)

parameters Rnom=1 WB=10u MULT=1 dR=0
RPLR (A B) RPLR_PR Rnom=Rnom WB=WB \

 MULT=MULT dR=dR // call RPLR_PR
ends RPLR
June 2011 119 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
The following example is a differential amplifier netlist showing how a design can combine
process modeling with process and geometry effects:

// a differential amplifier, biased with a 1mA current source
simulator lang=spectre

include "ProcessSimple.h"
include "Process.h"

E1 (1 0) vsource dc=12

// pullup resistors, 4k ohms nominal
R1 (1 2) RPLR Rnom=4k WB=5 // 5 units wide, model will calc length
R2 (1 3) RPLR Rnom=4k WB=10 // 10 units wide, model will calc length

// the input pair
TNSA1 (2 4 5 0) TNSA WE=10 LE=10
TNSA2 (3 4 5 0) TNSA WE=10 LE=10

// no differential input voltage, both inputs tied to same source
E4 (4 0) vsource dc=5

// current source biasing
J5 (5 0) isource dc=1m

dcop dc

Binning

Binning is the process of partitioning a device with different sizes into different models. Before
BSIM 3v3, it was very difficult to fit all the devices with a single model statement over very
wide ranges of device sizes. To improve fitting accuracy, you might characterize devices into
several models with each model valid only for a limited range of device sizes.

For example, suppose you have a device with a length (L) from 0.25 μm to 100 μm and a
width (W) from 0.25 μm to 100 μm. You might want to divide your device as follows (not drawn
to scale).
June 2011 120 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
In this example, nine models are used. These devices are divided into bins. For devices
whose length lies between 1 μm and 10 μm and width lies between 10 μm and 100 μm, Mod6
is used. The model name within a group can be of type string as well as a number.

The process of generating these models is called binning. The binning process is usually
identical for all simulators because the equations for binning are always the same:

 P = P0 + Pl/Leff + Pw/Weff + Pp/(Leff*Weff)

There are two ways to do binning with the Spectre simulator:

■ Auto model selection

For more information on auto model selection, see the following section.

■ Conditional instances

For more information on using conditional instances, see Conditional Instances on
page 123. For more information on using inline subcircuits for model selection, see
Scaling Physical Dimensions of Components and Device Model Technology on
page 133.

W

Mod1 Mod2

10 μm

Mod3

100 μm10 μm1 μm.25 μm

L

Mod9Mod8Mod7

Mod4

1 μm

Mod5 Mod6

.25 μm

100 μm
June 2011 121 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Auto Model Selection

Automatic model selection is a simulator feature that automatically assigns the correct
models to devices based on their device sizes without using conditional instantiation.

Binning is usually used together with automatic model selection. Model selection is now
automatic for MOSFETs, BSIM1, BSIM2, and BSIM3. Help on any one of these devices (for
example, spectre -h mos1) gives you more details.

For the auto model selector program to find a specific model, the models to be searched need
to be grouped together within braces. Such a group is called a model group. An opening brace
is required at the end of the line defining each model group. Every model in the group is given
a name followed by a colon and the list of parameters. Also, you need to specify the device
length and width using the four geometric parameters lmax, lmin, wmax, and wmin. The
selection criteria to choose a model is as follows:

lmin <= inst_length < lmax and wmin <= inst_width < wmax

For example:

model ModelName ModelType {
1: lmin=2 lmax=4 wmin=1 wmax=2 vto=0.8
2: lmin=1 lmax=2 wmin=2 wmax=4 vto=0.7
3: lmin=2 lmax=4 wmin=4 wmax=6 vto=0.6

}

Then for a given instance

M1 1 2 3 4 ModelName w=3 l=1.5

the program searches all the models in the model group with the name ModelName and then
picks the first model whose geometric range satisfies the selection criteria. In the preceding
example, the auto model selector program chooses ModelName.2.

The following example shows multiple lines for each model statement within a group:

model pch mos2 {
1:type=p vto=-0.65 gamma=0.47 lambda=0.09 \

ld=0.45E-6 kp=0.33E-4 tox=0.21E-7 is=0.0 \
lmin=0.5u lmax=1.5u wmin=1u wmax=3u \
tnom=25 xl=3e-08 af=0.8824

2:type=p vto=-0.69 gamma=0.44 lambda=0.09 \
ld=0.45E-6 kp=0.33E-4 tox=0.21E-7 is=0.0 \
lmin=1.5u lmax=2.5u wmin=3u wmax=5u

3:type=p vto=-0.73 gamma=0.37 lambda=0.09 \
ld=0.45E-6 kp=0.33E-4 tox=0.21E-7 is=0.0
lmin=2.5u lmax=3.5u wmin=1u wmax=3u

4:type=p vto=-0.77 gamma=0.34 lambda=0.09 \
ld=0.45E-6 kp=0.33E-4 tox=0.21E-7 is=0.0 \
lmin=3.5u lmax=4u wmin=3u wmax=5u

Then for the given instances,
June 2011 122 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
m0 (nd ng ns nb) pch m=1.0 w=4u l=2u
m1 (pd pg ps pb) pch m=1.0 w=4u l=4u

the auto model selector selects pch.2 for m0 and pch.4 for m1.

Conditional Instances

You can specify different conditions that determine which components the Spectre simulator
instantiates for a given simulation. The determining conditions are computed from the values
of parameters. You specify these conditions with the structural if statement. This statement
lets you put if-else statements in the netlist.

You can also use conditional instantiation with inline subcircuits. For more information on
using inline subcircuits, see Scaling Physical Dimensions of Components and Device Model
Technology on page 133.

Formatting the if Statement

You format the structural if statement as follows:

if condition statement1 [else statement2]

condition The condition fields are Boolean-valued expressions where
any nonzero value is taken as “true.”

statement The <statement1> and <statement2> fields contain one
or more instance statements or if statements. The else part of
the statement is optional.

An if Statement Example

The following example illustrates the use of the if statement. There are additional if
statements in the statement1 and statement2 fields.

if (rseries == 0) {
c1 (a b) capacitor c=c
if (gparallel != 0) gp1 a b resistor r=1/gparallel

} else {
r2 (a x) resistor r=rseries
c2 (x b) capacitor c=c
if (gparallel != 0) gp2 x b resistor r=1/gparallel

}

In this example, the Spectre simulator puts different instance statements into the simulation
depending on the values of two parameters, rseries and gparallel.
June 2011 123 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
■ If both rseries and gparallel are zero, the Spectre simulator includes the instance
statement for capacitor c1.If rseries is zero and gparallel is nonzero, the Spectre
simulator includes the instance statements for capacitor c1 and resistor gp1.

■ If rseries is nonzero and gparallel is zero, the Spectre simulator includes the
instance statements for resistor r2 and capacitor c2.

■ If neither rseries nor gparallel is zero, the Spectre simulator includes the instance
statements for resistor r2, capacitor c2, and resistor gp2.

Rules to Remember

When you use the if statement,

■ If the statement1 or statement2 fields contain multiple statements, place these
fields within braces ({}).

■ End the statement1 and statement2 fields with newlines.

■ Use a continuation character if you want to place a newline between the if and
condition statements.

■ When the statement1 or statement2 field is a single instance or if statement, an
else statement is associated with the closest previous if statement.

Binning by Conditional Instantiation

You can use conditional instantiation to select an appropriate model based on certain ranges
of specified parameters (model binning). This technique lets you decide and implement which
parameters to bin on and is valid for any device that supports a model.

The Spectre Netlist Language has conditional instantiation. For example:

subckt s1 (d g s b)
parameters l=1u w=1u
if (l < 0.5u) {

m1 (d g s b) shortmod l=l w=w // short-channel model
} else {

m2 (d g s b) longmod l=l w=w // long-channel model
}
model shortmod vto=0.6 gamma=2 ..etc
model longmod vto=0.8 gamma=66 ..etc

ends s1

Based on the value of parameter l, one of the following is chosen:

■ A short-channel model

■ A long-channel model
June 2011 124 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Previously, the transistor instances had to have unique names (such as m1 and m2 in the
preceding example), even though only one of them could actually be chosen. Now, you can
use the same name for both instances, provided certain conditions are met. The following
example shows a powerful modeling approach that combines model binning (based on area)
with inline subcircuits for a bipolar device:

// general purpose binning and inline models

simulator lang=spectre
parameters VDD=5

vcc (2 0) vsource dc=VDD
vin (1 0) vsource dc=VDD

q1 (1 2 0 0) npn_mod area=350e-12 // gets 20x20 scaled model
q2 (1 3 0 0) npn_mod area=25e-12 // gets 10x10 scaled model
q3 (1 3 0 0) npn_mod area=1000e-12 // gets default model

inline subckt npn_mod (c b e s) //generalized binning, based on area
parameters area=5e-12
if (area < 100e-12) {

npn_mod (c b e s) npn10x10 // 10u * 10u, inline device
} else if (area < 400e-12) {

npn_mod (c b e s) npn20x20 // 20u * 20u, inline device
} else {

npn_mod (c b e s) npn_default // 5u * 5u, inline device
}
model npn_default bjt is=3.2e-16 va=59.8
model npn10x10 bjt is=3.5e-16 va=61.5
model npn20x20 bjt is=3.77e-16 va=60.5

ends npn_mod

The transistors end up having the name that they were called with (q1, q2, and q3), but each
has the correct model chosen for its respective area. Model binning can be now achieved
based on any parameter and for any device, such as resistor or bjt.

Changing the Condition Value In Conditional Instantiation

Changing the value of a parameter that results in a change of boolean if condition value is
allowed only if there is no actual topology change and the following conditions are met:

■ The number of instances in the if and else blocks are the same.

■ The names of the instances in the if and else blocks are the same.

■ Corresponding instances (with the same name) in the if and else blocks are instances
of the same model or sub-circuit, or instances of two different models of the same
primitive type.

For example, you can do the following:
June 2011 125 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
model mos1 bsim3v3 <model-params-1>
model mos2 bsim3v3 <model-params-2>
model mos3 bsim3v3 <model-params-3>

if (p<=1)
m1 1 1 0 0 mos1

else if (p<=2)
m1 1 1 0 0 mos2

else
m1 1 1 0 0 mos3

sweep1 sweep param=p values=[1 2 3]

The following example does not satisfy the second condition above, so the Spectre simulator
errors out even though there is no actual topology change:

parameters p=1

if (p<=1)
r1 1 0 resistor r=1K

else
r2 1 0 resistor r=10K

al1 alter param=p value=2

Rules for General-Purpose Model Binning

The following set of rules exists for general-purpose model binning. Allowing multiple
“instances” or “references” to the same-named device is possible only under the following
conditions:

■ The reference to the same-named device is possible only in a structural if statement
that has both an if part and an else part.

■ The conditions of the if statements must evaluate to a single device instance with a
unique name in that scope.

Multiple references to the same-named device are only possible if there can only ever be one
single instance of this device after all expressions have been evaluated, and each instance
must be connected to the same nodes and represent the same device.

Examples of Conditional Instances

The following two examples show how to use conditional instances.

Fully Differential CMOS Operational Amplifier

This netlist describes and analyzes a CMOS operational amplifier and demonstrates several
sophisticated uses of Spectre features. The example includes top-level netlist parameters,
June 2011 126 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
model library/section statements, multiple analyses, and configuring a test circuit with the
alter statement.

The first file in the example is the main file for the circuit. This file contains the test circuit and
the analyses needed to measure the important characteristics of the amplifier.

The main file is followed by files that describe the amplifier and the various models that can
be selected. These additional files are placed in the netlist with include statements.

Voltage-controlled voltage sources transform single-ended signals to differential- and
common-mode signals and vice versa. This approach does not generate or dissipate any
power. The power dissipation reported by the Spectre simulator is that of the differential
amplifier.

// Fully Differential Operational Amplifier Test Circuit
#define PROCESS_CORNER TYPICAL

simulator lang=spectre
global gnd vdd vss

parameters VDD=5.0_V GAIN=0.5

include "cmos.mod" section=typical
include "opamp.ckt"

// power supplies
Vdd (vdd gnd) vsource dc=VDD
Vss (vss gnd) vsource dc=-VDD
// compute differential input
Vcm (cmin gnd) vsource type=dc dc=0 val0=0 val1=2 width=1u \
 delay=10ns
Vdif (in gnd) vsource type=dc dc=0 val0=0 val1=2 width=1u \
 delay=10ns
Ridif (in gnd) resistor
Eicmp (pin cmin in gnd) vcvs gain=GAIN
Eicmn (nin cmin in gnd) vcvs gain=-GAIN
// feedback amplifier
A1 (pout nout pvg nvg) opamp
Cf1 (pout t1) capacitor c=8p
Cf2 (nout t2) capacitor c=8p
Vt1 (t1 nvg) vsource mag=0
Vt2 (t2 pvg) vsource mag=0
Cl1 (pout gnd) capacitor c=8p
Cl2 (out gnd) capacitor c=8p
Ci1 (pin pvg) capacitor c=2p
Ci2 (nin nvg) capacitor c=2p
// compute differential output
Edif (out gnd pout nout) vcvs gain=1
Rodif (out gnd) resistor
Ecmp (cmout mid pout gnd) vcvs gain=GAIN
Ecmn (mid gnd nout gnd) vcvs gain=GAIN
Rocm (cmout gnd) resistor
//
// Perform measurements
//
spectre options save=lvlpub nestlvl=1
printParams info what=output where=logfile
// operating point
opPoint dc readns="%C:r.dc" write="%C:r.dc"
June 2011 127 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
printOpPoint info what=oppoint where=logfile
// differential-mode characteristics
 // closed-loop gain, Av = Vdif:p
 // power supply rejection ratio, Vdd PSR = Vdd:p, Vss PSR = Vss:p
 dmXferFunctions xf start=1k stop=1G dec=10 probe=Rodif
dmNoise noise start=1k stop=1G dec=10 \
 oprobe=Edif oportv=1 iprobe=Vdif iportv=1
// step response
dmEnablePulse alter dev=Vdif param=type value=pulse annotate=no
dmStepResponse tran stop=2us errpreset=conservative
dmDisablePulse alter dev=Vdif param=type value=dc annotate=no
// loop gain, Tv = -t1/nvg
// open-loop gain, av = out/(pvg-nvg)
dmEnableTest1 alter dev=Vt1 param=mag value=1 annotate=no
dmEnableTest2 alter dev=Vt2 param=mag value=-1 annotate=no
dmLoopGain ac start=1k stop=1G dec=10
dmDisableTest1 alter dev=Vt1 param=mag value=0 annotate=no
dmDisableTest2 alter dev=Vt2 param=mag value=0 annotate=no
// common-mode characteristics
 // closed-loop gain, Av = Vcm:p
 // power supply rejection ratio, Vdd PSR = Vdd:p, Vss PSR =Vss:p
 cmXferFunctions xf start=1k stop=1G dec=10 probe=Rocm
 cmNoise noise start=1k stop=1G dec=10 \
 oprobe=Rocm oportv=1 iprobe=Vcm iportv=1
// step response
cmEnablePulse alter dev=Vcm param=type value=pulse annotate=no
cmStepResponse tran stop=2us errpreset=conservative
cmDisablePulse alter dev=Vcm param=type value=dc annotate=no
// loop gain, Tv = -t1/nvg
// open-loop gain, av = 2*cmout/(pvg+nvg)
cmEnableTest1 alter dev=Vt1 param=mag value=1 annotate=no
cmEnableTest2 alter dev=Vt2 param=mag value=1 annotate=no
cmLoopGain ac start=1k stop=1G dec=10
cmDisableTest1 alter dev=Vt1 param=mag value=0 annotate=no
cmDisableTest2 alter dev=Vt2 param=mag value=0 annotate=no

The following file, opamp.ckt, contains the differential amplifier.

// opamp.ckt: Fully Differential CMOS Operational Amplifier
//
// This circuit requires the use of the cmos process models
simulator lang=spectre
// Folded-Cascode Operational Amplifier
subckt opamp (pout nout pin nin)
 // input differential pair
 M1 (4 pin 1 1) nmos w=402.4u l=7.6u
 M2 (5 nin 1 1) nmos w=402.4u l=7.6u
 M18 (1 12 vss vss) nmos w=242.4u l=7.6u
// upper half of folded cascode
 M3 (4 11 vdd vdd) pmos w=402.4u l=7.6u
 M4 (5 11 vdd vdd) pmos w=402.4u l=7.6u
 M5 (nout 16 4 vdd) pmos w=122.4u l=7.6u
 M6 (pout 16 5 vdd) pmos w=122.4u l=7.6u
// lower half of folded cascode
 M7 (nout 13 8 vss) nmos w=72.4u l=7.6u
 M8 (pout 13 9 vss) nmos w=72.4u l=7.6u
 M9 (8 12 vss vss) nmos w=122.4u l=7.6u
 M10 (9 12 vss vss) nmos w=122.4u l=7.6u
// common-mode feedback amplifier
 M11 (10 nout vss vss) nmos w=12.4u l=62.6u
 M12 (10 pout vss vss) nmos w=12.4u l=62.6u
 M13a (11 gnd vss vss) nmos w=12.4u l=62.6u
June 2011 128 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
 M13b (11 gnd vss vss) nmos w=12.4u l=62.6u
 M14 (10 10 vdd vdd) pmos w=52.4u l=7.6u
 M15 (11 10 vdd vdd) pmos w=52.4u l=7.6u
 Cc1 (nout 11) capacitor c=1p
 Cc2 (pout 11) capacitor c=1p
// bias network
 M16 (12 12 vss vss) nmos w=22.4u l=11.6u
 M17 (21 12 vss vss) nmos w=22.4u l=11.6u
 M19 (13 13 14 vss) nmos w=22.4u l=21.6u
 M20 (13 21 16 vdd) pmos w=52.4u l=7.6u
 M21 (21 16 17 vdd) pmos w=26.4u l=11.6u
 M22 (16 16 17 vdd) pmos w=26.4u l=11.6u
 D1 (15 vss) dnp area=400n
 D2 (14 15) dnp area=400n
 D3 (18 17) dnp area=400n
 D4 (vdd 18) dnp area=400n
 Ib (gnd 12) isource dc=10u
ends opamp

The following file, cmos.mod, contains the models and uses the library and section
statements to bin models into various process “corners.” See Process File on page 130 for a
more sophisticated example, which also includes automatic model selection.

// cmos.mod: Spectre MOSFET model parameters --- CMOS process
//
// Empirical parameters, best, typical, and worst cases.
//
//
simulator lang=spectre
library cmos_mod

 section fast // MOSFETS and DIODES for process corner "FAST"
 model nmos mos3 type=n vto=1.04 gamma=1.34 phi=.55 nsub=1e15 \
 cgso=290p cgdo=290p cgbo=250p cj=360u tox=700e-10 \
 pb=0.914 js=1e-4 xj=1.2u ld=1.2u wd=0.9u uo=793 bvj=14
 model pmos mos3 type=p vto=-0.79 gamma=0.2 phi=.71 nsub=1.7e16\
 cgso=140p cgdo=140p cgbo=250p cj=80u tox=700e-10 \
 pb=0.605 js=1e-4 xj=0.8u ld=0.9u wd=0.9u uo=245 bvj=14
 model dnp diode is=3.1e-10 n=1.12 cjo=3.1e-8 pb=.914 m=.5 bvj=45 \
 imax=1000
 model dpn diode is=1.3e-10 n=1.05 cjo=9.8e-9 pb=.605 m=.5 bvj=45 \
 imax=1000
 endsection fast

 section typical // MOSFETS and DIODES for process corner "TYPICAL"
 model nmos mos3 type=n vto=1.26 gamma=1.62 phi=.58 nsub=1e15 \
 cgso=370p cgdo=370p cgbo=250p cj=400u tox=750e-10 \
 pb=0.914 js=1e-4 xj=1u ld=0.8u wd=1.2u uo=717 bvj=14
 model pmos mos3 type=p vto=-1.11 gamma=0.39 phi=.72 nsub=1.7e16 \
 cgso=220p cgdo=220p cgbo=250p cj=100u tox=750e-10 \
 pb=0.605 js=1e-4 xj=0.65u ld=0.5u wd=1.2u uo=206 bvj=14
 model dnp diode is=3.1e-10 n=1.12 cjo=3.1e-8 pb=.914 m=.5 bvj=45 \
 imax=1000
 model dpn diode is=1.3e-10 n=1.05 cjo=9.8e-9 pb=.605 m=.5 bvj=45 \
 imax=1000
 endsection typical

 section slow // MOSFETS and DIODES for process corner "SLOW"
 model nmos mos3 type=n vto=1.48 gamma=1.90 phi=.59 nsub=1e15 \
 cgso=440p cgdo=440p cgbo=250p cj=440u tox=800e-10 \
 pb=0.914 js=1e-4 xj=0.8u ld=0.38u wd=1.5u uo=641 bvj=14
June 2011 129 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
 model pmos mos3 type=p vto=-1.42 gamma=0.58 phi=.73 nsub=1.7e16 \
 cgso=300p cgdo=300p cgbo=250p cj=120u tox=800e-10 \
 pb=0.605 js=1e-4 xj=0.5u ld=0.1u wd=1.5u uo=167 bvj=14
 model dnp diode is=3.1e-10 n=1.12 cjo=3.1e-8 pb=.914 m=.5 bvj=45 \
 imax=1000
 model dpn diode is=1.3e-10 n=1.05 cjo=9.8e-9 pb=.605 m=.5 bvj=45 \
 imax=1000
 endsection slow

endlibrary

Process File

This example of automatic model selection with the conditional if statement is more
sophisticated than the previous example (in section Fully Differential CMOS Operational
Amplifier on page 126). With this example, you ask for an nmos transistor, and the Spectre
simulator automatically selects the appropriate model according to the process corner, the
circuit temperature, and the device width and length. The selection is done by the
parameterized inline subcircuit and the conditional if statement.

The paramtest statements create warnings if the model selection parameters are out of
range. Models are assigned to instances depending on the initial values of their parameters
when the circuit is input. Note that the instances are not reassigned to new models if the
selection parameters later change. However, the models are updated if the circuit
temperature is changed. Notice that even though nmos is defined as a subcircuit, it is called
as if it is a MOSFET primitive.

The MOSFET model parameters are deleted to keep this example to a reasonable length,
and ordinarily both the N- and P-channel models are in the same file. If you added the model
parameters and a pmos model, this file could replace cmos.mod in the previous example.

// N-CHANNEL MOS --- 1u NMOS PROCESS
//
//
// The following group of models represent N-channel MOSFETs over
// the following ranges:
// 1u <= l <= oo
// 1u <= w <= oo
// 0 <= T <= 55
// process corners = {FAST, TYPICAL, SLOW}
// Warnings are issued if these limits are violated.
//
// This model takes 4 parameters, l, w, ls, and ld. The defaults for
// each of these parameters is 1um.
//
// +-----------+
// +--------+ +--------+ ---
// | | | | ^
// | | | | |
// |<- ls ->|<--- l --->|<- ld ->| w
// | | | | |
// | | | | v
June 2011 130 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
// +--------+ +--------+ ---
// +-----------+

// Source Gate Drain
//
simulator lang=spectre
//
// Complain if global constants are out-of-range.

//
TooCold paramtest warnif=(temp < 0) \
 message="The nmos model is not accurate below 0 C."
TooHot paramtest warnif=(temp > 55) \
 message="The nmos model is not accurate above 55 C."
//
// Define inline subcircuit that implements automatic model selection
// this uses user-supplied parameters l and w which represent device
// geometry, and the built-in parameter temp, to perform model binning
// based on both geometry and temperature.
//
inline subckt nmos (d g s b)
 parameters l=1um w=1um ls=1um ld=1um
//
// Complain if subcircuit parameters are out-of-range.
//
TooShort paramtest warnif=(l < 1um) \
 message="Channel length for nmos must be greater than 1u."
TooThin paramtest warnif=(w < 1um) \
 message="Channel width for nmos must be greater than 1u."
TooNarrow paramtest warnif=(ls < 1um) warnif=(ld < 1um) \
 message="Stripe width for nmos must be greater than 1u."

//
// Model selection

include "models.scs" // include all model definitions
include "select_model.scs " section=typical // include code to auto
// choose models

ends nmos
//
// Set the temperature
//
nmosSetTempTo27C alter param=temp value=27

The following file, models.scs, contains the models, which depend on circuit temperature
(temp). Each model parameter can take on one of two values, depending on the value of
parameter temp.

//
// Fast models.
//
model fast_1x1 mos3 type=n vto=(temp >= 27_C) ? 0.8 : 0.77 // ...etc
model fast_1x3 mos3 type=n vto=(temp >= 27_C) ? 0.9 : 0.78 // ...etc
model fast_3x1 mos3 type=n vto=(temp >= 27_C) ? 0.95 : 0.79 // ...etc
model fast_3x3 mos3 type=n vto=(temp >= 27_C) ? 0.98 : 0.81 // ...etc
//
// Typical models.
//
model typ_1x1 mos3 type=n vto=(temp >= 27_C) ? 0.90 : 0.75 // ...etc
model typ_1x3 mos3 type=n vto=(temp >= 27_C) ? 0.91 : 0.73 // ...etc
model typ_3x1 mos3 type=n vto=(temp >= 27_C) ? 0.97 : 0.77 // ...etc
June 2011 131 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
model typ_3x3 mos3 type=n vto=(temp >= 27_C) ? 0.99 : 0.84 // ...etc
//
// Slow models.

//
model slow_1x1 mos3 type=n vto=(temp >= 27_C) ? 0.92 : 0.76 // ...etc
model slow_1x3 mos3 type=n vto=(temp >= 27_C) ? 0.93 : 0.74 // ...etc
model slow_3x1 mos3 type=n vto=(temp >= 27_C) ? 0.98 : 0.78 // ...etc
model slow_3x3 mos3 type=n vto=(temp >= 27_C) ? 0.98 : 0.89 // ...etc

The following file, select_models.scs, uses the structural if statement to select models
based on parameters l and w. Note that for MOS devices, this could also be achieved by
using auto model selection (see spectre -h mos3), but this example illustrates model
binning and model selection based on the structural if statement, which can be used to bin
based on any combination of parameters, (not necessarily predefined device geometry
models) and for any device type (that is, not limited to MOS devices only).

library select_models

section fast // select models for fast device, based on subckt
//parameters l,w
 if (l <= 3um) {
 if (w <= 3um) {
 nmos (d g s b) fast_1x1 l=l w=w ls=ls ld=ld
 } else {
 nmos (d g s b) fast_1x3 l=l w=w ls=ls ld=ld
 }
 } else {
 if (w <= 3um) {
 nmos (d g s b) fast_3x1 l=l w=w ls=ls ld=ld
 } else {
 nmos (d g s b) fast_3x3 l=l w=w ls=ls ld=ld
 }
 }
endsection fast

section typical
 if (l <= 3um) {
 if (w <= 3um) {
 nmos (d g s b) typ_1x1 l=l w=w ls=ls ld=ld
 } else {
 nmos (d g s b) typ_1x3 l=l w=w ls=ls ld=ld
 }
 } else {
 if (w <= 3um) {
 nmos (d g s b) typ_3x1 l=l w=w ls=ls ld=ld
 } else {
 nmos (d g s b) typ_3x3 l=l w=w ls=ls ld=ld
 }
 }
endsection typical

section slow
 if (l <= 3um) {
 if (w <= 3um) {
 nmos (d g s b) slow_1x1 l=l w=w ls=ls ld=ld
 } else {
 nmos (d g s b) slow_1x3 l=l w=w ls=ls ld=ld
 }
 } else {
 if (w <= 3um) {
June 2011 132 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
 nmos (d g s b) slow_3x1 l=l w=w ls=ls ld=ld
 } else {
 nmos (d g s b) slow_3x3 l=l w=w ls=ls ld=ld
 }
 }
endsection slow

endlibrary

Scaling Physical Dimensions of Components and Device
Model Technology

Selected components allow their physical dimensions to be scaled with global scale factors.
When you want to scale the physical dimensions of these instances and models, you use the
scale and scalem parameters in the options statement. Use scale for instances and
scalem for models. The default value for both scale and scalem is 1.0. (For more
information about the options statement, seeoptions Statement Format on page 272 and
the documentation for the options statement in Spectre online help spectre
-h options.)

You can scale the following devices with scale and scalem:

■ Capacitors—length (l) or width (w)

■ Diodes—length (l) or width (w)

■ Resistors—length (l) or width (w)

■ Physical resistors (phy_res)—length (l) or width (w)

■ MOSFET—length or width

Finding Default Measurement Units

The effects of scale and scalem depend on the default measurement units of the
components you scale. To find the default measurement units for a component parameter,
look up that parameter in the parameter listings of your Spectre online help (spectre -h).
The default for measurement units is in parentheses. For example, the (m) in this entry from
the mos8 parameter descriptions in the Spectre online help (spectre -h) tells you that the
default measurement unit for channel width is meters.

w (m) Channel width
June 2011 133 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Effects of scale and scalem with Different Default Units

scale and scalem affect only parameters whose default measurement units are in meters.
For example, vmax is affected because its units are m/sec, but ucrit is not affected
because its units are V/cm. Similarly, nsub is not affected because its units are 1/cm3. You
can check the effects of scale and scalem by adding an info statement with
what=output and look for the effective length (leff) or width (weff) of a device. For more
information about the info statement, see The info Statement on page 265.

The following table shows you the effects of scale and scalem with different units:

Scaling Device Model Technology

The scalefactor parameter in the options statement enables device model providers to
scale device technology indepedent of the design dimension scaling done by circuit
designers. The resulting device instance scaling is defined by scale * scalefactor. If the
foundary uses a technology scale factor of 0.9 (scalefactor=0.9), and the circuit designer
uses a design scale factor of 1e-6 (scale=1e-6), then the compounded scaling of the device
instance dimension is 0.9e-6. Unlike the scale parameter, the scalefactor parameter
cannot be used as a netlist parameter and cannot be altered or used in sweep statements.

scale or scalem Units Scaling action

scale meters (m) Multiplied by scale

scalem meters (m) Multiplied by scalem

scale metersn (mn)
(With n a real number)

Multiplied by scalen

scalem metersn (mn)
(With n a real number)

Multiplied by scalemn

scale 1/ meters (1/m) Divided by scale

scalem 1/ meters (1/m) Divided by scalem

scale 1/metersn (1/mn)
(With n a real number)

Divided by scalen

scalem 1/metersn (1/mn)
 (With n a real number)

Divided by scalen
June 2011 134 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
String Parameters

You can use quoted character strings as parameter values. String values you might use as
Spectre parameter values include filenames and labels. When you use a string as a
parameter, enclose the string in quotation marks. In the following example, the value for the
parameter named file is the character string Spara.data.

model sp_data nport file="Spara.data"

Multi-Technology Simulation

The Spectre circuit simulator supports a multi-technology simulation (MTS) mode that
enables the simulation of a system consisting of blocks designed with different processes.
Under this mode, models and modelgroups referenced using include or ahdl_include
statements in a subcircuit are locally scoped to that subcircuit only. In addition, process
options parameters (tnom, scale, and scalem), when specified in a subcircuit, are locally
scoped to that subcircuit only.

To turn the MTS mode on, use the +mts command line option.

Here is an example of a system consisting of blocks designed with different processes:

subckt chip1 (in out)
ahdl_include “a.va”
include “pmos_mode.scs”
scopedoption1 options tnom=27 scale=0.1
subckt inv (in out)
mp (out in vdd vdd) pmos w=1u l=3u
mn (out in 0 0) nmos w=1u l=3u
ends inv
subckt buffer (in out)
x1 (in mid) inv
x2 (mid out) inv
ends buffer
xa (in out) buffer
model nmos bsim3v3 type=n

ends chip1

subckt chip2 (in out)
ahdl_include “b.va”
scopedoption2 options tnom=25 scale=0.2
subckt inv (in out)
mp (out in vdd vdd) pmos w=1u l=3u
mn (out in 0 0) nmos w=1u l=3u
ends inv
subckt buffer (in out)
x1 (in mid) inv
x2 (mid out) inv
ends buffer
xa (in out) buffer
model pmos bsim3v3 type=p
model nmos bsim3v3 type=n

ends chip2
June 2011 135 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
June 2011 136 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
6
Modeling for Signal Integrity

The performance of an IC design is no longer limited to how many million transistors a vendor
fits on a single chip. With tighter packaging space, and increasing clock frequencies,
packaging issues and system-level performance issues (such as crosstalk and transmission
lines) are becoming increasingly significant.

At the same time, with the popularity of multi-chip packages, and increased I/O counts,
package design itself is becoming more like chip design.

This chapter describes the modeling capability the Spectre circuit simulator provides to
assess signal integrity for your design, and describes

■ N-Port Modeling on page 138

■ Transmission Line Modeling on page 154

■ Input/Output Buffer Modeling Using IBIS on page 161
June 2011 137 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
N-Port Modeling

When you model N-ports, you must first create a file listing the S, Y, or Z-parameters. Then
you complete the modeling by using this file as input for an nport statement. You can create
the S, Y, or Z-parameter file listing in two different ways.

■ You can run an sp analysis and create a listing of S-parameter estimates automatically.

■ If you already know the S-parameter values, you can create an S-parameter listing
manually with a text editor such as vi.

The S, Y, or Z-parameter data file describes the characteristics of a linear N-port over a list of
frequencies. The format of the data file used by the Spectre simulator is flexible and self
documenting. The Spectre simulator native format describes N-ports with an arbitrary
number of ports, specifies the reference resistance of each port, mentions the frequency with
no hidden scale factors, and allows the S-parameters to be given in several formats. The
Spectre circuit simulator can also read the Touchstone and CITIfile format.

You can set the matrixform parameter to specify a state-space model in your netlist. A state
space model is a set of state space equations in matrix form describing a linear system. Use
the porttypes parameter to specify the port types and the portquantities parameter to
specify whether the port is current or voltage. For more information on state-space model
parameters, see spectre -h nport.

N-Port Example

This example demonstrates the use of the nport statement.

// Two port test circuit
global gnd
simulator lang=spectre
// Models
model sp_data nport file="Spara.data"
// Components

Port1 (i1 gnd) port num=1

TL1 (i1 gnd o1 gnd) tline z0=25 f=1M

Port2 (o1 gnd) port num=2

Port3 (i2 gnd) port r=50 num=3

X1 (o2 gnd o2 gnd) sp_data

Port4 (o2 gnd) port r=50 num=4
June 2011 138 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
// Analyses
Op_Point dc
Sparams sp stop=0.3MHz lin=100 ports=[Port1 Port3]

Creating an S-Parameter File Automatically

To create an S-parameter file automatically, run an sp analysis that sweeps frequency and
set the output file parameter to file="filename". The parameter filename is the
name you select for the S-parameter file. For more information about specifying an sp
analyses, see Chapter 7, “Analyses” and the parameter listings for the sp analysis in the
Spectre online help (spectre -h sp).

Creating an S, Y, or Z-Parameter File Manually

To create an S, Y, or Z-parameter file manually in a text editor, observe the following
guidelines and rules:

■ The Spectre simulator accepts the following formats for S, Y, or Z-parameters: real-
imag, mag-deg, mag-rad, db-deg, and db-rad. The formats do not have to be the same
for each parameter. For clarity, use a comma to separate the two parts of an S, Y, or Z-
parameter.

■ Begin each file with a semicolon. Semicolons indicate comment lines.

■ Use spaces, commas, and newlines as delimiters.

■ You can enter the parameters in any order.

■ You can specify any number of frequency points. The frequency points do not have to be
equally spaced, but the frequency index must be in ascending or descending order.

■ You must place the frequency specification before the S-parameters, and you must
separate the frequency specification from the S-parameters with a colon.

■ There is no limit to the number of ports. If either port number is greater than nine, place
a colon between the two port numbers when you specify the S, Y, or Z-parameter format
(S13:15).

Note: The S, Y, or Z-parameters can be given in any order and in any supported format, but
the order and format used must be consistent through out the file and must match the order
and format specified in the format line.
June 2011 139 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Reading the S, Y or Z-Parameter File

After you create the S, Y, or Z-parameter file, you must place instructions in the netlist for the
Spectre simulator to read it. You can give these instructions with an nport model statement
or directly on the instance line. The following example shows how to enter an S-parameter file
into a netlist. This model statement reads S-parameters from the file Spara.data.

model Sdata nport file="Spara.data" datafmt=spectre|touchstone|citiformat

If the S-parameter file is not in the same directory as the Spectre simulator, you can use a
path to the S-parameter file as a value for the nport statement file parameter, or you can
specify a search path using the -I command line argument.

The Spectre circuit simulator reads the S, Y, or Z-parameter data file in the Spectre, CITIfile,
or Touchstone format. If you do not specify the input file format, the Spectre circuit simulator
detects it automatically by reading the first line in the input file as follows:

; as Spectre

! as Touchstone

CITI as CITIfile.

The Spectre circuit simulator supports

■ two-port noise data and noise correlation matrix data in Spectre format

■ two-port noise data in Touchstone format

Spectre Format

An S, Y, or Z-parameter file in the Spectre format must have a header. The header

■ must have a comment beginning with a semicolon as the first line

■ must define the reference resistance of ports and the S, Y, or Z-parameter formats

■ can include any number of comment and blank lines.

When reading the file, the simulator ignores all the lines beginning with semicolons, spaces,
commas, and newlines in the header. The simulator reads the numbers immediately after =
on the lines after the reference resistance line as impedance data of the ports. The
format section is treated as the format definition of S-parameter data entries.

You can enter the S, Y, or Z-parameters in any order, but the frequency must be first and is
separated from the parameters with a colon. Each parameter can be expressed as
June 2011 140 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
(real,imag), (mag,deg), (mag,rad), (db,deg), or (db,rad). You can use commas
to separate the two parts of a parameter.

Any number of frequency points can be presented. They do not need to be equally spaced,
but the frequency index must be monotonic, and the frequency data must be given explicitly,
with no hidden scale factors. There is no limit to the number of ports. S-parameters use the
syntax S13:15 when either port number is greater than 9.

Adding Noise Parameters

An S-parameter file in Spectre format can contain external two-port noise data as well as
noise correlation matrix data. The syntax for two-port noise data is:

noiseformat freq: Fmin (mag|db) Gamma(real,imag|mag,deg|db,deg) Rn

followed by two-port noise parameters.

The syntax for general n-port noise data is:

noiseformat freq: CY1:1 CY2:2 CY1:2 CY2:2

followed by the noise coefficient matrix.

Example

A Spectre S-parameter file for three ports looks as follows:

; S-parameter data file 'port2.data'.
; Generated by spectre from circuit file 'gendata' during analysis swp.
; 12:13:06 PM, Fri May 8, 1998
reference resistance
 port3=137 ; is port p3
 port2=137 ; is port p2
 port1=137 ; is port p1

format freq: s33(real,imag) s23(real,imag)
 s13(real,imag) s32(real,imag)
 s22(real,imag) s12(real,imag)
 s31(real,imag) s21(real,imag)
 s11(real,imag)

0.00000000e+00: 0.333333, 0 -0.666667, 0
 0.666667, 0 -0.666667, 0
 0.333333, 0 0.666667, 0
 0.666667, 0 0.666667, 0
 0.333333, 0
2.50000000e+07: 0.549736,-0.0181715 -0.446126, 0.0466097
 0.450264, 0.0181715 -0.446126, 0.0466097
 0.546593,-0.0556029 0.446126,-0.0466097
 0.450264, 0.0181715 -0.446126, 0.0466097
 0.549736,-0.0181715
5.00000000e+07: 0.546094,-0.0359074 -0.437504, 0.0922889
June 2011 141 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
 0.453906, 0.0359074 -0.437504, 0.0922889
 0.533673, -0.10951 0.437504, 0.0922889
 0.453906, 0.0359074 0.437504, 0.0922889
 0.546094,-0.0359074

The following is an example of two-port noise data.

The following is an example of a noise co-relation matrix:

Touchstone Format

A Touchstone file contains

■ A header consisting of a comment line starting with an exclamation mark.

■ An option line.

■ Data lines.

The syntax for the option line is:

[frequency units] [parameters] [format] R [n]

noiseformat freq: Fmin(mag) Gamma(real,imag) Rn

1.00000000e+09: 340.85 0.348552 .63566e-16 4.88929

2.00000000e+09: 340.85 0.348552 3.63566e-16 4.88929

3.00000000e+09: 340.85 0.348552 3.63566e-16 4.88929

4.00000000e+09: 340.85 0.348552 3.63566e-16 4.88929

5.00000000e+09: 340.85 0.348552 3.63566e-16 4.88929

noiseformat freq: CY1:1 CY2:1 CY1:2 CY2:2

1.00000000e+09: 0.344025 0.00632498 0.00632498 0.0259336

2.00000000e+09: 0.344025 0.00632498 0.00632498 0.0259336

3.00000000e+09: 0.344025 0.00632498 0.00632498 0.0259336

4.00000000e+09: 0.344025 0.00632498 0.00632498 0.0259336

5.00000000e+09: 0.344025 0.00632498 0.00632498 0.0259336
June 2011 142 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
where

The syntax for data lines in MA is as follows.

One port:

Two ports:

Three ports

Delimiter.

frequency units The frequency unit.
Valid values: GHz, MHz, KHz, Hz
Default value: GHz

parameter Parameter type.
Valid values: S, Y, Z
Default value: S

format Format of the complex number
Valid values: DB (for db and angle), MA (for magnitude and
angle), RI (for real and imaginary)
Default value: MA

R Reference resistance.

n Number of ohms (the real impedance to which the parameters
are normalized).
Default value: 50.0

Freq Mag Ang

f |S11| ∠S11

Freq Mag Ang Mag Ang Mag Ang Mag Ang

f |x11| ∠x11 |x21| ∠x11 |x12| ∠x12 |x22| ∠x22

Freq Mag Ang Mag Ang Mag Ang

f |S11| ∠S11 |S12| ∠S12 |S13| ∠S13
June 2011 143 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Four ports

and so on, where the complex number format is specified as MA on the # line. The frequency
entry must be first and can include a scale factor. The data entries need to be separated with
at least a space. The data entries at the first frequency point specify the number of ports.

Adding Noise Parameters

You can add two-port noise parameters to a Touchstone data file after the S, Y, or Z-
parameters. Each line of the two-port noise data has the following five entries

x1 x2 x3 x4 x5

where

The frequencies for noise parameters and network parameters need not match. The only
requirement is that the lowest noise-parameter frequency be less than or equal to the highest
network-parameter frequency. This allows the simulator to determine where the network
parameters end and noise parameters begin.

|S21| ∠S21 |S22| ∠S22 |S23| ∠S23

|S31| ∠S31 |S32| ∠S32 |S33| ∠S33

Freq Mag Ang Mag Ang Mag Ang Mag Ang

f |S11| ∠S11 |S12| ∠S12 |S13| ∠S13 |S14| ∠S14

|S21| ∠S21 |S22| ∠S22 |S23| ∠S23 |S24| ∠S24

|S31| ∠S31 |S32| ∠S32 |S33| ∠S33 |S34| ∠S34

|S41| ∠S41 |S42| ∠S42 |S43| ∠S43 |S44| ∠S44

x1 Frequency in units

x2 Minimum noise figure in DB.

x3, x4 Source reflection coefficient to realize minimum noise figure in
units specified in the option line (MA, DB, or R).

x5 Normalized effective noise resistance.

Freq Mag Ang Mag Ang Mag Ang
June 2011 144 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
The source reflection coefficient has the same format as specified for the network
parameters.

Example

The following is three-port noise data in Touchstone format with three frequency points.

! POWER DIVIDER, 3-PORT
GHZ S MA R 50.0

CITIfile Format

CITIfile stands for Common Instrumentation Transfer and Interchange file format. A typical
CITIfile package consists of a

■ header containing keywords and setup information

■ data section containing one or more data arrays

A data array is numeric data arranged with one data element per line. A data array starts after
the BEGIN keyword, and the END keyword follows the last data element in an array.

Example

The following example shows the basic structure of a CITIfile package.

CITIFILE A.01.00
NAME Momentum.SP
CONSTANT NBR_OF_PORTS 2
CONSTANT NORMALIZATION 1

VAR freq MAG 12

5.00000 0.24254 136.711 0.68599 -43.3139 0.6859 -43.3139

0.68599 -43.3139 0.08081 66.1846 0.28009 -59.1165

0.68599 -43.3139 0.28009 -59.1165 0.08081 66.1846

6.00000 0.20347 127.652 0.69232 -52.3816 0.69232 -52.3816

0.69232 -52.3816 0.05057 52.0604 0.22159 -65.1817

0.69232 -52.3816 0.22159 -65.1817 0.69817 -61.6117

7.00000 0.15848 118.436 0.69817 -61.6117 0.69817 -61.6117

0.69817 -61.6117 0.02804 38.6500 0.16581 -71.2358

-0.69817 -61.6117 0.16581 -71.2358 0.02804 38.6500
June 2011 145 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
DATA S[1,1] RI
DATA S[1,2] RI
...

VAR_LIST_BEGIN
1000000000
2000000000
...
VAR_LIST_END

BEGIN
0.017216494, 0
0.040005801, 0.116494405
...
END

BEGIN
0.9827835, 0
0.944136351, -0.176952631
...
END

In the above example, the VAR_LIST_BEGIN section contains the frequency data points. Each
data array block (marked by BEGIN and END keywords) corresponds to an S-parameter and
contains the value of that parameter for each frequency point. The first block corresponds to
S[1,1], the second block corresponds to S[1,2] and so on.

You can use the SEG_LIST keyword to specify a frequency range. For example,

SEG_LIST_BEGIN
SEG 1000000000 4000000000 10
SEG_LIST_END

specifies that the frequency range is from 1000000000 to 4000000000 with intervals of 10.

Improving the Modeling Capability of the N-Port

You can set the value of the parameter dcextrap to unwrap or constant depending on
your data file.

If your data file is not sampled adequately at low frequency (the lowest frequency point does
not represent DC reasonably well) or if the data file has a long delay, you can set dcextrap
to unwrap. When a dc point is not provided in the data file, the magnitude is determined
based on the regression of some low-frequency data. The phase is determined by extracting
the delay and setting the phase to the real axis. If the dc point is provided, the magnitude is
interpolated while the phase is determined as mentioned above.

The default value is constant. In this case, if a dc point is provided in the data file,
interpolation is performed for both the magnitude and phase. If a dc point is not provided in
the data file, the low-frequency magnitude is held constant to the lowest data provided. The
low-frequency phase is determined using a simple algorithm which sets it to closest point on
the real axis from the lowest-frequency data point.
June 2011 146 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
S-Parameter File Format Translator

The S-parameter data file format translator (sptr) is a separate program from the Spectre
simulator. Since the Spectre circuit simulator now reads the Touchstone and CITIfile formats
directly, you need to use the translator only if you have it built into your design flow.

Note: The translator does not support the MHARM, HPMNS, or Linear Neutral Model (LNM)
formats any more.

Command Arguments

The following is a synopsis of the command line and arguments used to run the translator.

sptr [-i inputFormat] [-o outputFormat] [-f FreqScale] [-V |-version]
[-format paramFormat] [inputFile] [outputFile]

Option Description

-i inputFormat Input file format.
Valid values: spectre, touchstone, citifile
Default value: spectre

-o outputFormat Output file format.
Valid values: spectre and touchstone
Default value: spectre

-f FreqScale If frequency scale is not explicitly given in the input file, then,
TrueFreq = GivenFreq * freqscale
Default value: 1.0 for Spectre and CITIfile formats.
1.0e09 for touchstone format.

-V | -version Prints the version information.

-format
paramFormat

Parameter data format of the output file.
Valid values: RI, MA, and DB
Default value: RI

inputFile Input file name.

outputtFile Output file name.
June 2011 147 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Standard Scattering Parameter Modeling and Mixed-Mode Scattering
Parameter Modeling

Standard S-parameters and mixed-mode S-parameters are defined in the following sections.

Standard S-parameters

A two-port network N can be characterized by standard S-parameters S11, S12, S21, and
S22 as shown below:

or

where the incident waves a1, a2, and the reflected waves b1, b2 are:

Vin1

Z01 Z02

I2

V1
+

-

+

-

Port 2
Port 1

Vin2

Z01 V2N

l1

b1 S11a1 S12a2+=

b2 S21a1 S22a2+=

b1
b2

S11 S12
S21 S22

a1
a2

=

a1
V1 Z01I1+

2 ReZ01
----------------------------= a2

V2 Z02I2+

2 ReZ02
----------------------------=
June 2011 148 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide

The values of S11, S21, S22, and S12 can be obtained by the sp analysis.

Mixed-Mode S-Parameters

A 4-port network can be characterized by mixed-mode S-parameters.

where

are differential incident wave and differential reflected wave between port pair (p1,p2), and

 is the differential impedance

 is the differential voltage,

 is the differential current,

b1
V1 Z∗01I1–

2 ReZ01
-------------------------------= b2

V2 Z∗02I2–

2 ReZ02
-------------------------------=

N

Z01

Z01

Vin1

Vin2

Z02

Z02

Vin3

Vin4

i1

i2

i3

i4

n1

n2

n3

n4

n1c n3c

Port p1

Port p2

Port p3

Port p4

ad1
1

2 Re Zd1()
---------------------------------- vd1 id1Zd1+()=

bd1
1

2 Re Zd1()
---------------------------------- vd1 id1Zd1∗–()=

Zd1 Z01 Z01+ 2Z01= =

vd1 v1 v2–=

id1
1
2
--- i1 i2–()=
June 2011 149 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
 is the port 1 voltage, and

 is the port 2 voltage.

Also,

and

are common-mode incident wave and reflected wave between port pair (p1, p2), and

 is the common-mode impedance,

 is the common-mode voltage,

 is the common-mode current

with similar definitions of for port pair (p3,p4).

The mixed-mode S-parameters sdd11, sdd12, ..., scc21, scc22 are defined as

The values of the mixed-mode s-parameters sdd11, sdd12, ..., scc21, scc22 can be obtained
by sp analysis directly if mode=mm is used in the sp analysis. The mixed-mode s-parameters
are also denoted here by sub-matrices Sdd, Sdc, Scd, and Scc: Sdd as the differential-mode
s-parameters, Sdc the common-to-differential mode s-parameters, Scd the differential-to-
common mode s-parameters, and Scc the common-mode s-parameters.

v1 vn1 vn1c–=

v2 vn2 vn1c–=

ac1
1

2 Re Zc1()
---------------------------------- vc1 ic1Zc1+()=

bc1
1

2 Re Zc1()
---------------------------------- vc1 ic1Zc1∗–()=

Zc1 Z01Z01() Z01 Z01+()⁄ 0.5Z01= =

vc1 v1 v2+() 2⁄=

ic1 i1 i2+=

ad2 bd2 ac2 bc2, , ,

bd1
bd2
bc1
bc2

sdd11 sdd12 sdc11 sdc12
sdd21 sdd22 sdc21 sdc22
scd11 scd12 scc11 scc12
scd21 scd22 scc21 scc22

ad1
ad2
ac1
ac2

Smm

ad1
ad2
ac1
ac2

Sdd Sdc
Scd Scc

ad1
ad2
ac1
ac2

= = =
June 2011 150 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Conversion of Standard S-Parameters to Mixed Mode S-Parameters

Since the port-pairs (p1,p2) and (p3,p4) have the same
impedance , the mixed-mode waves become

or

The conversion formula is

It can be shown there is a linear relationship between the standard s-parameters S11, S12,
..., S44 (i.e. Sstd) to the mixed-mode s-parameters Sdd11, Sdd12, ..., Scc22 (i.e. Smm).

Z1 Z2 Z01 Z3, Z4 Z02= = = =

ad1
1
2

------- a1 a2–() ac1, 1
2

------- a1 a2+()= = bd1
1
2

------- b1 b2–() bc1, 1
2

------- b1 b2+()= =

ad2
1
2

------- a3 a4–() ac2, 1
2

------- a3 a4+()= = bd2
1
2

------- b3 b4–() bc2, 1
2

------- b3 b4+()= =

ad1
ad2
ac1
ac2

1
2

1 1– 0 0
0 0 1 1–

1 1 0 0
0 0 1 1

a1
a2
a3
a4

M

a1
a2
a3
a4

= =

bd1
bd2
bc1
bc2

1
2

1 1– 0 0
0 0 1 1–

1 1 0 0
0 0 1 1

b1
b2
b3
b4

M

b1
b2
b3
b4

= =

Smm MSstdM
1–

=

sdd11
1
2
--- s11 s12–() 1

2
--- s21 s22–()– sdd12, 1

2
--- s13 s14–() 1

2
--- s23 s24–()–= =

sdd21
1
2
--- s31 s32–() 1

2
--- s41 s42–()– sdd22, 1

2
--- s33 s34–() 1

2
--- s43 s44–()–= =

sdc11
1
2
--- s11 s12+() 1

2
--- s21 s22+()– sdc12, 1

2
--- s13 s14+() 1

2
--- s23 s24+()–= =

sdc21
1
2
--- s31 s32+() 1

2
--- s41 s42+()– sdc22, 1

2
--- s33 s34+() 1

2
--- s43 s44+()–= =
June 2011 151 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide

Combined Standard S-Parameters with Mixed-Mode S-Parameters

It is possible for a corner case that wave vectors be represented by mixing differential,
common-mode, and regular waves. Then there are terms of

that relates mixed-mode to single-end conversions. For example, if there is an additional 5th
port, and the sp analysis has mode=m12m34s5, then the wave vectors become

 and

The mixed-mode s-parameters are related to standard s-parameters as

scd11
1
2
--- s11 s12–() 1

2
--- s21 s22–()+ scd12, 1

2
--- s13 s14–() 1

2
--- s23 s24–()+= =

scd21
1
2
--- s31 s32–() 1

2
--- s41 s42–()+ scd22, 1

2
--- s33 s34–() 1

2
--- s43 s44–()+= =

scc11
1
2
--- s11 s12+() 1

2
--- s21 s22+()+ scc12, 1

2
--- s13 s14+() 1

2
--- s23 s24+()+= =

scc21
1
2
--- s31 s32+() 1

2
--- s41 s42+()+ scc22, 1

2
--- s33 s34+() 1

2
--- s43 s44+()+= =

Sds Scs Ssd Ssc, , ,

amixed ad1 ad2 ac1 ac2 as5
T

=

bmixed bd1 bd2 bc1 bc2 bs5
T

=

June 2011 152 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide

Examples

Spectre Mixed-Mode S-Parameter Format Examples
; S-parameter data file test.sparam.
; Tue Nov 8 11:38:04 2005
; Number of ports is 4
; mode = mm

reference resistance

 port4 = 50.000000

 port3 = 50.000000

 port2 = 50.000000

 port1 = 50.000000

format freq: sdd1:1(real,imag) sdd1:2(real,imag)

 sdc1:1(real,imag) sdc1:2(real,imag)

 sdd2:1(real,imag) sdd2:2(real,imag)

 sdc2:1(real,imag) sdc2:2(real,imag)

 scd1:1(real,imag) scd1:2(real,imag)

 scc1:1(real,imag) scc1:2(real,imag)

 scd2:1(real,imag) scd2:2(real,imag)

 scc2:1(real,imag) scc2:2(real,imag)

5.00000000e+08: -0.985696, 1.20713e-16 0.00520889,

0

...

Smms

Smm
Sds

Scs

Ssd Ssc Sss

Smm

1
2

------- s15 s25–()

1
2

------- s35 s45–()

1
2

------- s15 s25+()

1
2

------- s35 s45+()

s51 s52– s53 s54– s51 s52+ s53 s54+ s55

= =
June 2011 153 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Touchstone Mixed-Mode S-Parameter Format Example
! Libra (TM) Ver. 3.500.103.3
! Tue Nov 8 11:39:42 2005
! Number of ports is 4
! mode = mm

Hz S RI R 50.000000

! S11 = SDD11 S12 = SDD12 S13 = SDC11 S14 = SDC12

! S21 = SDD21 S22 = SDD22 S23 = SDC21 S24 = SDC22

! S31 = SCD11 S32 = SCD12 S33 = SCC11 S34 = SCC12

! S41 = SCD21 S42 = SCD22 S43 = SCC21 S44 = SCC22

! SCATTERING PARAMETERS :

5.00000000e+08 -0.985696 1.20713e-16 0.00520889 0 ...

Transmission Line Modeling

Multi-conductor transmission line models (MTLINE) are widely used in Cadence® Virtuoso®
multi-mode simulations. MTLINE is based on Quasi-TEM approximation and the
telegrapher’s equation, according to which

■ An MTLINE can be uniquely characterized by RLGC matrices.

■ Once the RLGC matrices have been determined, the behavior of the MTLINE can be
predicted in any external environment.

MTLINE can be used to assess the signal integrity of a design in a wide range of interconnect
modeling applications.

An MTLINE can have as many conductors as described in the input, with a minimum of two
conductors where one conductor is used as a reference to define terminal voltages. The
reference conductor can be ground. The order of conductors is the same as the order of the
data in the input. It is assumed that all the conductors are of the same length and uniform
along the length.

MTLINE accepts the following inputs (described below):

■ Per-unit-length constant RLGC matrices

■ Per-unit-length frequency dependent RLGC data

■ 2-D field solver geometry and material information

■ S-parameter data

■ Single-conductor TLINE parameters
June 2011 154 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
You can specify all MTLINE parameters (other than the conductor length) through an instance
line or model line. When a parameter is specified both on the instance and model line, the
value on the instance line takes precedence.

Constant RLGC Matrices

For narrow band applications, you can assume that transmission line characteristics are
constant over the frequency you are interested in. The input to MTLINE is per-unit-length
resistance (R), inductance (L), conductance (G), and capacitance (C) matrices, and is usually
generated by a field solver. MTLINE accepts both full matrix descriptions, and lower-half
matrix descriptions because these matrices are generally symmetric.

The following example describes the resistance matrix of a four conductor line system:

The following model descriptions are equivalent:

model line mtline
+ r=[50 10 1
+ 10 50 10
+ 1 10 50]
+…

model line mtline
+ r=[50
+ 10 50
+ 1 10 50]
+…

In the past, the only information available to describe a transmission line system was constant
RLGC matrices based on narrow band assumption. Some approximation is now used to
make the model better cover frequency dependent effects such as skin effect and dielectric
loss effect in wide band applications.

The following equation can be used to model skin effect with constant RLGC matrices:

The following equation can be used to model dielectric loss effect with constant RLGC
matrices

R
50 10 1
10 50 10
1 10 50

= Ohm/meter

R f() r f 1 j+()× rskin×+=

G f() g f gdloss×+=
June 2011 155 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
where f stands for frequency.

Frequency-Dependent RLGC Data

Frequency dependent RLGC data is described in a data file through the parameter file. The
frequency axis can be scaled with the scale parameter. The frequencies in the data file are
then multiplied by scale before the simulator uses them. The default scale factor is unity.

The data file has a format section and a data section. Both full matrix and lower half matrix
descriptions are accepted. Lines starting with ; are interpreted as comment lines.

An example data file is shown below:

; Comments: rl.dat

FORMAT FREQ: R1:1 R2:1 R2:2

L1:1 L2:1 L2:2

0.001e+9: 4.444 0.000383 4.444
4.565 0.3545 4.565

0.010e+9: 4.447 0.003834 4.447
4.565 0.3545 4.565

0.100e+9 4.476 0.03834 4.476
4.565 0.3545 4.565

1.000e+9 4.762 0.3834 4.762
3.103 0.2357 3.103

10.00e+9 13.96 1.082 13.96
2.718 0.2058 2.718

100.0e+9 56.88 3.294 56.88
2.531 0.1866 2.531

; end of file rl.dat

You can mix constant RLGC parameters with frequency-dependent RLGC data. When a
particular parameter (R, L, G, or C) is provided in both constant matrices and frequency-
dependent data file, the value in the constant matrix is given priority. If only one frequency
point is provided in the file parameter, it is assumed that the RLGC data is constant over
the frequency of interest.

For best results, you should provide enough data points to cover low-frequency
characteristics as well as the changing nature in the high-frequency range. A rule of thumb is
that the lowest frequency point should be down to 1kHz, and there should be at least 5 points
per decade, particularly in the high-frequency range where RLGC data tends to change
rapidly.
June 2011 156 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
2-D Field Solver Geometry and Material Information

MTLINE supports a built-in 2-D field solver which has the same modeling engine as the
standalone Line Model Generator (LMG) utility. The output of the 2-D field solver is RLGC
data, which can be stored for re-use through the file parameter. This makes the actual
RLGC model generation a one-time cost, given the field solver input remains unchanged.

Line Configuration

MTLINE supports four interconnect line configurations: microstrip line, strip line, coplanar
waveguide, and substrate lossy line. You can specify the line configuration through the
linetype parameter. The default is substrate lossy line.

Model Type

You can specify the model type through the modeltype parameter. For each line
configuration, you can choose between three model types:

■ For the narrow band model, the RLGC data is calculated at frequency fmax and
assumed to be constant over the frequency of interest.

■ In the wideband model, true frequency dependent RLGC data is calculated over the
frequency of interest. This is the default value.

■ In the lossless model, the internal inductance of the conductor is disregarded by setting
the frequency value high: 50 GHz for cases without substrate loss and 15 GHz for cases
with substrate loss.The value of fmax is ignored.

For most applications, you should choose the wideband model as it provides the best model
accuracy.

Ground Plane

You can specify the ground planes through the numgnd parameter.

For microstrip line, the number of ground planes is 1 placed at the bottom of the 2-D
interconnect cross section.

For strip line, the number of ground planes is 2 placed at both the bottom and top of the 2-D
interconnect cross section.

For coplanar waveguide and substrate lossy line, the number of ground planes can be 1 or 2,
placed at the bottom and top of the 2-D interconnect cross section. For coplanar waveguide,
June 2011 157 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
you can also specify 0 ground planes because two ground strips are added automatically to
the cross section. You can specify the width, height, thickness, and spacing of these ground
strips like you specify the signal line. For more information on signal lines, see “Signal Line”
on page 158.

You can specify the thickness of the ground plane(s) with the gndthickness parameter and
the ground plane conductivity with the gndsigma parameter.

Dielectric Layer

You can specify the dielectric layer through the numlayer parameter. Dielectric layers are
stacked above the lower ground plane (when numgnd=1), or between the ground planes
(when numgnd=2). There can be more than one dielectric layer.

You can specify the thickness of the dielectric layer through the layerthickness
parameter, and the relative dielectric constant of the dielectric layer through the er
parameter. Both layerthickness and er are of vector type to handle different layer
geometries and layer properties.

When the number of elements in the vector is less than the number of layers, the value of the
last element in the vector is applied to all of the remaining layers.

If a dielectric layer is lossy, either the loss tangent parameter (tan = sigma/(w*ep0)) or the
loss sigma parameter (sigma = tan*w*ep0) can be used. This is decided through the
dlosstype parameter and the actual loss value(s) is provided through the dloss vector
parameter.

Signal Line

You can specify signal line conductivity through the linesigma parameter. There can be
more than one signal line. The geometry of the signal line(s) is decided through the
linewidth, linethickness, lineheight, and linespace parameters The parameter
lineheight is the distance between the signal line and ground plane at the bottom of the
2-D interconnect cross section. The parameter linespace is the distance between the
signal lines – it can be negative in order to describe overlapping signal lines.

Intermediate RLGC File

The 2-D field solver output can be stored in the file parameter to be used in subsequent
simulations. This makes RLGC model generation a one-time effort.

If the file parameter is given, MTLINE first checks for the file:
June 2011 158 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
■ if the file exists, MTLINE checks if the RLGC data stored in the file matches the
MTLINE 2-D field solver input. If it matches, the data is re-used. If it does not match, a
new set of RLGC data is generated and the file is over-written.

■ If the file does not exist, an RLGC model is generated by the field solver and the output
is stored in file.

If the file parameter is not given, RLGC data is stored in the file %C.rlgc after the
simulation.

The following diagram displays a cross-section of the 2-D solver:

The following shows an example model card:

Mxyz in1 out1 in2 out2 in3 out3 in4 out4
+ gnd gnd my_model len=100mm

model my_model mtline
+ file="sim_results.dat" fmax=10e9

+ linetype = sublossline
+ modeltype = wideband
+ numgnd = 2
+ numlayer = 3

+ er = [12.9 4.5 1]
+ layerthickness = [200e-6 300e-6 300e-6]
+ dlosstype = tangent
+ dloss = [0.0016 0.008 0]
June 2011 159 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
+ linewidth = [100e-6 100e-6 100e-6 300e-6]
+ linethickness = [20e-6]
+ lineheight = [200e-6 200e-6 200e-6 500e-6]
+ linespace=[100e-6 100e-6 -400e-6]
+ linesigma = 5.76e7

+ gndthickness = [20e-6 20e-6]
+ gndsigma = 5.76e7

S-Parameter Data

MTLINE also accepts an S-parameter data file to describe a transmission line system. Even
though both MTLINE and NPORT accept S-parameter data, simulation accuracy can be
different. A transmission line system with long delay often requires certain numerical
manipulation to achieve better simulation accuracy, which you can achieve only by using
MTLINE.

You can specify an S-parameter data file describing a transmission line system using the
file parameter. MTLINE converts the frequency dependent S-parameter to frequency
dependent RLGC data and stores the results in the file %C.rlgc for reuse in subsequent
simulations.

If the file parameter corresponds to S-parameter data, MTLINE first checks the existence
of the file %C.rlgc to determine if the S-to-RLGC extraction has been performed in a
previous simulation.

The S-parameter data file formats supported are Touchstone, Spectre and Citi.

The physical length of the line must also be specified using the len parameter.

The ordering of the S-parameter input file should be in the format of input ports followed by
the output ports of the transmission line system, or Pin1, Pin2, Pin3, …, Pout1, Pout2,
Pout3, ….

TLINE Parameters

MTLINE has a more accurate and robust modeling algorithm than TLINE. However, to ease
customer migration, MTLINE supports the old single-conductor TLINE parameters.

Due to a name conflict, the TLINE parameter r has been renamed as seriesr in MTLINE,
and the TLINE parameter g has been renamed as shuntg in MTLINE.

In addition, the terminal maps between TLINE and MTLINE are different. The following TLINE
syntax
June 2011 160 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Name (t1 b1 t2 b2) tline <parameter=value> ...

should be mapped to the following MTLINE syntax

Name (t1 t2 b1 b2) mtline <parameter=value> ...

For a detailed explanation of TLINE parameters, see spectre -h tline.

Input/Output Buffer Modeling Using IBIS

You can use IBIS to model integrated circuit drivers, receivers, and packaging, as well as
whole circuit boards, containing multiple IBIS components. Parameters of IBIS model can be
either obtained by transistor–level circuit simulation, or directly measured by the actual
integrated circuit. Modeling with IBIS:

■ is faster than the corresponding transistor level simulation since it is based on behavioral
data, and ignores detailed circuit topology.

■ does not reveal any sensitive information about the design technology or underlying
fabrication process so the vendor’s intellectual property is protected.

The IBIS buffer primitive is used to model IBIS drivers and receivers of various types. The rest
of the IBIS file content, including series models, package parasitics, external package and
board descriptions is modeled by subcircuits, which include resistors, inductors, capacitors,
controlled sources, and transmission lines. Differential buffers are modeled by a pair of IBIS
buffer primitives. Multi-stage buffers and other advanced buffer types are modeled by multiple
IBIS buffer primitives, one for each buffer stage, added model, or submodel.

The IBIS buffer primitive can be used with or without a model card. Using a model card
enables model sharing, which is an important feature in IBIS since a lot of pins share the
same model characteristics. Using IBIS buffer primitive without a model card allows you to
avoid translation of IBIS file into Spectre format, since all the required model information is
obtained directly from the specified model section of the IBIS file.

IBIS Translator Model

The IBIS2SUBCKT utility translates IBIS data files into a Spectre netlist format. Input files
must comply with IBIS standard, and have the extension .ibs, .pkg, or .ebd. The output
file contains subcircuit definitions for all components described in the input files, as well as all
necessary model cards.
June 2011 161 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Syntax

ibis2subckt -in IBIS files -out subckt file -corner {typ|min|max} -swsel int
-mdsel int

where

-in Specifies the list of input files.

-out Specifies the name of the output file.

-corner Specifies the IBIS model corner for which the model is created.
Default value: typ

-swsel Defines the position of series switches.
Default value: 1

-mdsel Specifies the actual models from the IBIS model selector lists
Default value:1

Example of an IBIS Component Subcircuit

In Figure 1, component pin terminals are shown on the left hand side of the subcircuit symbol.
They are connected to the die pad terminals of the buffers through the package circuits. In
this case, the simplest package model is shown consisting of lumped R, L, and C elements.
IBIS specification allows for more advanced package models, with multiple stubs of lumped
or distributed RLC, or coupling RLC matrices, similar to Spectre mtline primitive. Signal
terminals of the buffers are connected to the signal terminals of the component subcircuit,
shown on the right hand side. These terminals represent digital signals internal to the
component. The number of signals depend on the buffer type. Output buffer has only one
signal called out. Depending on the state of this signal (0, or 1V) the buffer drives its die pad
terminal to low or high voltage. Input buffer has an in signal. The state of this signal changes
when the die pad voltage crosses the threshold. The I/O buffer contains both driver and
receiver, and therefore has three signal terminals: in signal is the output of the receiver; out
is input for the driver; enable can be used to disable the driver by turning it into high
impedance state. The terminator buffer has no signals and serves as an RC load for
corresponding pin. IBIS standard also allows series or series_switch connectors between die
pads. They are modeled by a subcircuit containing RLC or VCCS elements.
June 2011 162 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Figure 6-1 IBIS Component Circuit

Figure 2 shows an example of an IBIS board subcircuit. Board pins are connected to the
component pins through the pin path circuits. Each pin paths consist of a number of stubs
connected in series or through the forks. A stub is either transmission line or lumped RLC.
Components, which are instantiated on the board, are listed in the reference designation map
section of the IBIS board file. Signal terminals of the board subcircuit are directly connected
to the component signals.

Input

Output

I/O

 Terminator

Package

IBIS component subcircuit

S
er

ie
s_

sw
itc

h

Pins Signals

Buffers

Die pads

out

in

in

out

enable
June 2011 163 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Figure 6-2 IBIS Board Subcircuit

IBIS board subcircuit

ComponentsPin paths

Board pins SignalsComponent
pins
June 2011 164 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
7
Analyses

This chapter discusses the following topics:

■ Types of Analyses on page 166

■ Analysis Parameters on page 168

■ Probes in Analyses on page 169

■ Multiple Analyses on page 170

■ Multiple Analyses in a Subcircuit on page 172

■ DC Analysis on page 173

■ AC Analysis on page 175

■ Transient Analysis on page 176

■ Pole Zero Analysis on page 188

■ Other Analyses (sens, fourier, dcmatch, and stb) on page 190

■ Advanced Analyses (sweep and montecarlo) on page 205

■ Spectre Reliability Analysis on page 221
June 2011 165 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Types of Analyses

This section gives a brief description of the Virtuoso® Spectre® circuit simulator analyses you
can specify. Spectre analyses frequently let you sweep parameters, estimate or specify the
DC solution, specify options that promote convergence, and select annotation options. You
can specify sequences of analyses, any number in any order. For a more detailed description
of each analysis and its parameters, consult the Spectre online help (spectre -h).

■ DC analysis (dc)—Finds the DC operating point or DC transfer curves of the circuit.

■ AC/small signal analyses

❑ AC analysis (ac)—Linearizes the circuit about the DC operating point and computes
the steady-state response of the circuit to a given small-signal sinusoidal stimulus.
This analysis is useful for obtaining small-signal transfer functions.

❑ Noise analysis (noise)—Linearizes the circuit about the DC operating point and
computes the total-noise spectral density at the output. The output can be either a
voltage or a current. If you specify an input probe, the Spectre simulator computes
the transfer function and the equivalent input-referred noise for a noise-free network.

❑ Transfer function analysis (xf)—Linearizes the circuit about the DC operating point
and performs a small-signal analysis. It calculates the transfer function from every
source in the circuit to a specified output. The output can be either a voltage or a
current.

❑ S-parameter analysis (sp)—Linearizes the circuit about the DC operating point and
computes S-parameters of the circuit taken as an N-port. You define the ports of the
circuit with port statements. You must place at least one port statement in the
circuit. The Spectre simulator turns on each port sequentially and performs a linear
small-signal analysis. The Spectre simulator converts the response of the circuit at
each port into S-parameters.

■ Transient analyses

❑ Transient analysis (tran)—Computes the transient response of the circuit over a
specified time interval. You can specify initial conditions for this analysis. If you do
not specify initial conditions, the analysis starts from the DC steady-state solution.
You can influence the speed of the simulation by setting parameters that control
accuracy requirements and the number of data points saved. For more information
about the transient analysis, see.

❑ Time-domain reflectometer analysis (tdr)—Linearizes the circuit about the DC
operating point and computes the reflection and transmission coefficients versus
time. This is the time-domain equivalent of the S-parameter analysis.
June 2011 166 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
■ Pole Zero analysis (pz)— Linearizes the circuit about the DC operating point and
computes the poles and zeros of the linearized network.

■ RF analyses

❑ Envelope Analysis (envlp) — Computes the envelope response of a circuit. The
simulator automatically determines the clock period by looking through all the
sources with the specified name. Envelope-following analysis is most efficient for
circuits where the modulation bandwidth is orders of magnitude lower than the clock
frequency. This is typically the case, for example, in circuits where the clock is the
only fast varying signal and other input signals have a spectrum whose frequency
range is orders of magnitude lower than the clock frequency. For another example,
the down conversion of two closely placed frequencies can also generate a slow-
varying modulation envelope. The analysis generates two types of output files, a
voltage versus time (td) file, and an amplitude/phase versus time (fd) file for each of
specified harmonic of the clock fundamental.

❑ Harmonic Balance Steady State Analysis (HB) — Uses harmonic balance (in the
frequency domain) to compute the response of circuits that have either one
fundamental frequency (periodic steady-state, PSS) or that have multiple
fundamental frequencies (Quasi-Periodic Steady State, QPSS). The simulation time
required for an HB analysis is independent of the time-constants of the circuit. This
analysis also determines the circuit’s periodic or quasi-periodic operating point,
which can then be used during a periodic or quasi-periodic time-varying small-signal
analysis, such as HBAC or HBnoise.

❑ Periodic Analyses — Spectre RF adds periodic large (PSS) and small-signal
analyses (PAC, PSP, PXF, Pnoise, and Pstb) to Spectre simulation.

❑ Quasi-Periodic Analyses — Spectre RF adds quasi-periodic large (QPSS) and
small-signal analyses (QPAC, QPSP, QPXF, and QPnoise) to Spectre L simulation.
For more information about the quasi-periodic analyses.

■ Other analyses

❑ Sensitivity analysis (sens)—Determines the sensitivity of output variables to input
design parameters. The results are expressed as a ratio of the change in an output
analysis variable to the change in an input design parameter. The output for the
sens command is sent to the rawfile or to an ASCII file. For more information about
sensitivity analysis, see “Sensitivity Analysis” on page 183.

❑ Fourier analysis (fourier)—Measures the Fourier coefficients of two different
signals at a specified fundamental frequency without loading the circuit. The
algorithm used is based on the Fourier integral rather than the discrete Fourier
transform and therefore is not subject to aliasing. Even on broad-band signals, it
computes a small number of Fourier coefficients accurately and efficiently.
June 2011 167 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Therefore, this Fourier analysis is suitable on clocked sinusoids generated by sigma-
delta converters, pulse-width modulators, digital-to-analog converters, sample-and-
holds, and switched-capacitor filters as well as on the traditional low-distortion
sinusoids produced by amplifiers or filters.

❑ DC Match Analysis (dcmatch)—Computes the statistical deviation in the DC
operating point of the circuit caused by device mismatch. For more information
about the dcmatch analysis, see DC Match Analysis on page 195

❑ Stability Analysis (stb)—Linearizes the circuit about the DC operating point and
computes loop gain, gain margin, and phase margin for a specific feedback loop or
an active device. The stability of the circuit can be determined from the loop gain
waveform. The probe parameter must be specified to perform stability analysis.

■ Advanced analyses

❑ Sweep analysis (sweep)—Sweeps a parameter executing a list of analyses (or
multiple analyses) for each value of the parameter. The sweeps can be linear or
logarithmic. Swept parameters return to their original values after the analysis.
Sweep statements can be nested. For more information about the sweep analysis,
see “Sweep Analysis” on page 195.

❑ Monte Carlo analysis (montecarlo)—Varies netlist parameters according to
specified distributions and correlations, runs nested child analyses, and extracts
specified circuit-performance measurements. You can apply both process and
device-to-device mismatch variations and tag device instances as correlated or
“matched pairs.” Use the Cadence analog circuit design environment Calculator
expressions to measure the circuit performance. You can use the analog design
environment graphics tools to plot scalar performance data, such as slew rates and
bandwidths, as a histogram or scattergram. You can also display waveform data as
cloud (family) plots. For more information about the Monte Carlo analysis, see
“Monte Carlo Analysis” on page 200. For more information about using the Monte
Carlo analysis with the analog design environment, see the Advanced Analysis
Tools User Guide.

■ Hot-electron degradation analysis—Lets you control the age of the circuit when
simulating hot-electron degradation. For more information about the hot-electron
degradation analysis, see “Special Analysis (Hot-Electron Degradation)” on page 213.

Analysis Parameters

You specify parameter values for analysis and control statements just as you specify those
for component and model statements, but many analysis parameters have no assigned
default values. You must assign values to these parameters if you want to use them. To assign
June 2011 168 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
values to these parameters, simply follow the parameter keyword with an equal sign (=) and
your selected value. For example, to set the points per decade (dec) value to 10, you enter
dec=10.

Note: Some parameters require text strings, usually filenames, as values. You must enclose
these text strings in quotation marks to use them as parameter values.

When analysis parameters do have default values, these values are given in the parameter
listings for that analysis in the Spectre online help (spectre -h).

A listing like the following tells you that the default value for parameter lin is 50 steps:

lin=50 Emission coefficient parameters

Probes in Analyses

Some Spectre analyses require that you set probes. Remember the following guidelines
when you set probes:

■ You can name any component instance as a probe.

■ If the probe component measures a branch current, you can use it as either a current
probe or a voltage probe. Component instances that do not calculate branch currents can
be used only as voltage probes.

■ If the probe component has more than two terminals, you specify which pair of terminals
to use as the probe by specifying a port of the probe. In the following instance statement,
port 1 is nodes 5 and 8, and port 2 is nodes 2 and 4.

bjt1 5 8 2 4 bmod1

■ If the probe component measures more than one branch current, you specify which
branch current to use as the probe by specifying a port. In the following instance
statement, current port 1 is the branch from node 4 to node 5, and port 2 is the branch
from node 8 to node 9.

tline2 4 5 8 9 tline

■ Every component has a default probe type and port number.

In the following example, the netlist contains a resistor named Rocm and a voltage source
named Vcm. These components are used as probes for the noise analysis statement. The
parameters oprobe and iprobe specify the probe components, and the parameters
oportv and iportv specify the port numbers.

cmNoise noise start=1k stop=1G dec=10 oprobe=Rocm oportv=1 iprobe=Vcm iportv=1
June 2011 169 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Multiple Analyses

This netlist demonstrates the Spectre simulator’s ability to run many analyses in the order you
prefer. In this example, the Spectre simulator completely characterizes an operational
amplifier in one run. In analysis OpPoint, the program computes the DC solution and saves
it to a state file whose name is derived from the name of the netlist file. On subsequent runs,
the Spectre simulator reads the state information contained in this state file and speeds
analysis by using this state information as an initial estimate of the solution.

Analysis Drift computes DC solutions as a function of temperature. The Spectre simulator
computes the solution at the initial temperature and saves this solution to a state file to use
as an estimate in the next analysis and in subsequent simulations.

Analysis XferVsTemp computes the small-signal characteristics of the amplifier versus
temperature. Analysis XferVsTemp starts up quickly because it begins with the initial
temperature of the DC solution that was placed in a state file by the previous analysis.

Analysis LoopGain computes the loop gain of an amplifier in closed-loop configuration.
Analysis LoopGain starts quickly because it begins with the initial temperature of the DC
solution that was placed in a state file during analysis OpPoint.

Analysis XferVsFreq computes several small-signal quantities of interest such as closed-
loop gain, the rejection ratio of the positive and negative power supply, and output resistance.
The analysis again starts quickly because the operating point remains from the previous
analysis.

Analysis StepResponse computes the step response that permits the measurement of the
slew-rate and settling times. The alter statement please4 then changes the input stimulus
from a pulse to a sine wave. Finally, the Spectre simulator computes the response to a sine
wave in order to calculate distortion.

// ua741 operational amplifier

global gnd vcc vee
simulator lang=spectre

Spectre options audit=detailed limit=delta maxdeltav=0.3 \
save=lvlpub nestlvl=1

// ua741 operational amplifier
model NPNdiode diode is=.1f imax=5m
model NPNbjt bjt type=npn bf=80 vaf=50 imax=5m \

cje=3p cjc=2p cjs=2p tf=.3n tr=6n rb=100
model PNPbjt bjt type=pnp bf=10 vaf=50 imax=5m \

cje=6p cjc=4p tf=1n tr=20n rb=20

subckt ua741 (pIn nIn out)
// Transistors

Q1 1 pIn 3 vee NPNbjt
Q2 1 nIn 2 vee NPNbjt
Q3 5 16 3 vcc PNPbjt
Q4 4 16 2 vcc PNPbjt
June 2011 170 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Q5 5 8 7 vee NPNbjt
Q6 4 8 6 vee NPNbjt
Q7 vcc 5 8 vee NPNbjt
Q9 16 1 vcc vcc PNPbjt
Q14 vcc 13 15 vee NPNbjt
Q16 vcc 4 9 vee NPNbjt
Q17 11 9 10 vee NPNbjt
Q18 13 12 17 vee NPNbjt
Q20 vee 17 14 vcc PNPbjt
Q23 vee 11 17 vcc PNPbjt

// Diodes
Q8 vcc 1 NPNdiode
Q19 13 12 NPNdiode

// Resistors
R1 7 vee resistor r=1k
R2 6 vee resistor r=1k
R3 8 vee resistor r=50k
R4 9 vee resistor r=50k
R5 10 vee resistor r=100
R6 12 17 resistor r=40k
R8 15 out resistor r=27
R9 14 out resistor r=22

// Capacitors
C1 4 11 capacitor c=30p

// Current Sources
I1 16 vee isource dc=19u
I2 vcc 11 isource dc=550u
I3 vcc 13 isource dc=180u

ends ua741

// Sources
Vpos vcc gnd vsource dc=15
Vneg vee gnd vsource dc=-15
Vin pin gnd vsource type=pulse dc=0 \

val0=0 val1=10 width=100u period=200u rise=2u\
fall=2u td1=0 tau1=20u td2=100u tau2=100u \
freq=10k ampl=10 delay=5u \
file="sine10" scale=10.0 stretch=200.0e-6

Vfb nin out vsource

// Op Amps
OA1 pin nin out ua741

// Resistors
Rload out gnd resistor r=10k

// Analyses

// DC operating point
 please1 alter param=temp value=25 annotate=no
 OpPoint dc print=yes readns="%C:r.dc25"
 write="%C:r.dc25"

// Temperature Dependence
Drift dc start=0 stop=50.0 step=1 param=temp \

readns="%C:r.dc0" write="%C:r.dc0"
XferVsTemp xf start=0 stop=50 step=1 probe=Rload \

param=temp freq=1kHz readns="%C:r.dc0"

// Gain
please2 alter dev=Vfb param=mag value=1 annotate=no
June 2011 171 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
LoopGain ac start=1 stop=10M dec=10 readns="%C:r.dc25"
please3 alter dev=Vfb param=mag value=0 annotate=no

// XF
XferVsFreq xf start=1_Hz stop=10M dec=10 probe=Rload

// Transient
StepResponse tran stop=250u
please4 alter dev=Vin param=type value=sine
SineResponse tran stop=150u

Multiple Analyses in a Subcircuit

You might want to run complex sets of analyses many times during a simulation. To simplify
this process, you can group the set of analyses into a subcircuit. Because subcircuit
definitions can contain analyses and control statements, you can put the analyses inside a
single subcircuit and perform the multiple analyses with one call to the subcircuit. The Spectre
simulator performs the analyses in the order you specify them in the subcircuit definition.
Generally, you do not mix components and analyses in the same subcircuit definition. For
more information about formats for subcircuit definitions and subcircuit calls, see Chapter 7,
“Analyses.”

Example

The following example illustrates how to create and call subcircuits that contain analyses.

Creating Analysis Subcircuits
subckt sweepVcc()

parameters start=0 stop=10 Ib=0 omega=1G steps=100
setIbb alter dev=Ibb param=dc value=Ib
SwpVccDC dc start=start stop=stop dev=Vcc lin=steps/2SwpVccAC ac dev=Vcc

start=start stop=stop lin=steps \freq=omega/6.283185
ends sweepVcc

This example defines a subcircuit called sweepVcc that contains the following:

■ A list of parameters with default values for start, stop, Ib, omega, and steps

This list of defaults is optional.

These defaults are for the subcircuit call. For example, if you call sweepVcc and do not
specify values for the start and stop parameters in the subcircuit call, the sweeps for
analyses SwpVccDC and SwpVccAC start at 0 and end at 10, the values specified as
defaults. If, however, you specify start=1 and stop=5 as parameter values in the
subcircuit call, the start and stop parameters in SwpVccDC and SwpVccAC take the
values 1 and 5, respectively.
June 2011 172 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
■ A control statement, setIbb, which alters the dc parameter of the component named
Ibb to the numerical value of Ib

■ Two analysis statements, SwpVccDC and SwpVccAC, which run a DC analysis followed
by an AC analysis

Calling Analysis Subcircuits

Each subcircuit call for sweepVcc in the netlist causes all the analyses in the sweepVcc to
be performed. Each of the following statements is a subcircuit call to subcircuit sweepVcc:

Ibb1uA sweepVcc stop=2 Ib=1u
Ibb3uA sweepVcc stop=2 Ib=3u
Ibb10uA sweepVcc stop=2 Ib=10u
Ibb30uA sweepVcc stop=2 Ib=30u
Ibb100uA sweepVcc stop=2 Ib=100u

Note the following important syntax features:

■ Each subcircuit call has a unique name.

■ Each subcircuit call overrides the default values for the stop and Ib parameters.

■ The start, steps, and omega parameters are not defined in the subcircuit calls. They
take the default values assigned in the subcircuit.

DC Analysis

The DC analysis finds the DC operating point or DC transfer curves of the circuit. To generate
transfer curves, specify a parameter and a sweep range. The swept parameter can be circuit
temperature, a device instance parameter, a device model parameter, a netlist parameter, or
a subcircuit parameter for a particular subcircuit instance. You can sweep the circuit
temperature by giving the parameter name as param=temp with no dev, mod, or sub
parameter. You can sweep a top-level netlist parameter by giving the parameter name with no
dev, mod, or sub parameter. You can sweep a subcircuit parameter for a particular subcircuit
instance by specifying the subcircuit instance name with the sub parameter and the
subcircuit parameter name with the param parameter. After the analysis has completed, the
modified parameter returns to its original value.

The syntax is as follows:

Name dc parameter=value ...

You can specify sweep limits by giving the end points or by providing the center value and the
span of the sweep. Steps can be linear or logarithmic, and you can specify the number of
steps or the size of each step. You can give a step size parameter (step, lin, log, dec)
June 2011 173 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
and determine whether the sweep is linear or logarithmic. If you do not give a step size
parameter, the sweep is linear when the ratio of stop to start values is less than 10, and
logarithmic when this ratio is 10 or greater. If you specify the oppoint parameter, Spectre
computes and outputs the linearized model for each nonlinear component.

Nodesets help find the DC or initial transient solution. You can supply them in the circuit
description file with nodeset statements, or in a separate file using the readns parameter.
When nodesets are given, Spectre computes an initial guess of the solution by performing a
DC analysis while forcing the specified values onto nodes by using a voltage source in series
with a resistor whose resistance is rforce. Spectre then removes these voltage sources
and resistors and computes the true solution from this initial guess.

Nodesets have two important uses. First, if a circuit has two or more solutions, nodesets can
bias the simulator towards computing the desired one. Second, they are a convergence aid.
By estimating the solution of the largest possible number of nodes, you might be able to
eliminate a convergence problem or dramatically speed convergence.

When you simulate the same circuit many times, we suggest that you use both the write
and readns parameters and give the same filename to both parameters. The DC analysis
then converges quickly even if the circuit has changed somewhat since the last simulation,
and the nodeset file is automatically updated.

You may specify values to force for the DC analysis by setting the parameter force. The
values used to force signals are specified by using the force file, the ic statement, or the
ic parameter on the capacitors and inductors. The force parameter controls the interaction
of various methods of setting the force values. The effects of individual settings are

force=none Any initial condition specifiers are ignored.

force=node The ic statements are used, and the ic parameter on the
capacitors and inductors are ignored.

force=dev The ic parameters on the capacitors and inductors are used,
and the ic statements are ignored.

force=all Both the ic statements and the ic parameters are used, with
the ic parameters overriding the ic statements.

If you specify a force file with the readforce parameter, force values read from the file
are used, and any ic statements are ignored.

Once you specify the force conditions, the Spectre simulator computes the DC analysis with
the specified nodes forced to the given value by using a voltage source in series with a
resistor whose resistance is rforce (see options).
June 2011 174 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Selecting a Continuation Method

The Spectre simulator normally starts with an initial estimate and then tries to find the solution
for a circuit using the Newton-Raphson method. If this attempt fails, the Spectre simulator
automatically tries several continuation methods to find a solution and tells you which method
was successful. Continuation methods modify the circuit so that the solution is easy to
compute and then gradually change the circuit back to its original form. Continuation methods
are robust, but they are slower than the Newton-Raphson method.

If you need to modify and resimulate a circuit that was solved with a continuation method, you
probably want to save simulation time by directly selecting the continuation method you know
was previously successful.

You can select the continuation method with the homotopy parameter of the set or options
statements. In addition to the default setting, all, five settings are possible for this parameter
– gmin stepping (gmin), source stepping (source), the pseudotransient method (ptran),
and the damped pseudotransient method (dptran). You can also prevent the use of
continuation methods by setting the homotopy parameter to none.

From the MMSIM6.2.1 release onwards, you can specify more than one homotopy method
and the Spectre circuit simulator tries them in the order in which they are specified.

The syntax is:

dcName dc parameters homotopy=[(none|gmin|source|dptran|ptran|arclength|all)+]

optName options parameters
homotopy==[(none|gmin|source|dptran|ptran|arclength|all)+]

In the following example, the Spectre circuit simulator tries the gmin stepping solution to help
dc converge. If it fails to converge, then Spectre tries the source steppting solution.

dc1 dc homotopy=[gmin source]

AC Analysis

The AC analysis linearizes the circuit about the DC operating point and computes the
response to all specified small sinusoidal stimulus. For more information on specifying small
sinusoidal stimulus, see Chapter 3, Analysis Statements, in the Virtuoso Spectre Circuit
Simulator Reference.

The Spectre simulator can perform the analysis while sweeping a parameter. The parameter
can be frequency, temperature, component instance parameter, component model
parameter, or netlist parameter. If changing a parameter affects the DC operating point, the
operating point is recomputed on each step. You can sweep the circuit temperature by giving
the parameter name as temp with no dev or mod parameter. You can sweep a netlist
June 2011 175 Product Version 10.1.1

../spectreref/chap3.html#firstpage

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
parameter by giving the parameter name with no dev or mod parameter. After the analysis
has completed, the modified parameter returns to its original value.

The syntax is as follows:

Name ac parameter=value ...

You can specify sweep limits by giving the end points or by providing the center value and the
span of the sweep. Steps can be linear or logarithmic, and you can specify the number of
steps or the size of each step. You can give a step size parameter (step, lin, log, dec)
to determine whether the sweep is linear or logarithmic. If you do not give a step size
parameter, the sweep is linear when the ratio of stop to start values is less than 10, and
logarithmic when this ratio is 10 or greater. All frequencies are in Hertz.

The small-signal analysis begins by linearizing the circuit about an operating point. By default,
this analysis computes the operating point if it is not known or recomputes it if any significant
component or circuit parameter has changed. However, if a previous analysis computed an
operating point, you can set prevoppoint=yes to avoid recomputing it. For example, if
you use this option when the previous analysis was a transient analysis, the operating point
is the state of the circuit on the final time point.

Transient Analysis

The transient analysis computes the transient response of a circuit over the specified interval.

You can adjust transient analysis parameters in several ways to meet the needs of your
simulation. Setting parameters that control the error tolerances, the integration method, and
the amount of data saved lets you choose between maximum speed and greatest accuracy
in a simulation.

This section also tells you about parameters you can set that improve transient analysis
convergence.

Sweeping Parameters During Transient Analysis

You can modify temperature, tolerance, and design parameter settings at device, subcircuit,
or model level during a transient analysis. The syntax is:

Name tran param=param_name, { param_vec=[t1 val1 t2 val2...] | param_file=file },
[dev=d1 | mod=m1 | sub=s1], param_step=time

where

Name Name of the transient analysis.
June 2011 176 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
param=param_name Dynamic parameter name. The parameter name can be a design
parameter, temp, reltol, residualtol, vabstol,
iabstol, or isnoisy.

param_vec=[t1 val1 t2 val2...]
Time points and values of the parameter.

param_file=file File name if the param_vec is defined in a separate file.

dev=d1 | mod=m1 | sub=s1

Defines local scope for design parameters. Can be a device
model instance (dev), device model name (mod), or subcircuit
instance name (sub). Does not apply to temp, reltol,
residualtol, vabstol, iabstol, or isnoisy.

param_step=time Specifies whether the time_value pair given by the param_vec
parameter is to be updated in one step, or as a series of steps.
See Examples 1 and 2 below.
Default value: 0

Example 1
dotran tran stop=100ns \

 param=temp, param_vec=[0ns 20 50ns 25 100ns 75] param_step=0

This statement begins the simulation at a temperature of 20C, increases the temperature to
25C at 50ns, and increases the temperature to 75C at 100ns.

Example 2
dotran tran stop=100ns \

 param=temp, param_vec=[0ns 20 50ns 25 100ns 75] param_step=10n

This statement increases the temperature by 1C every 10ns from 0ns to 50ns, and by 10C
every 10ns from 50ns to 100ns.

Example 3
dotran tran stop=100ns \

 param=reltol, param_vec=[0ns 1.0e-3 100ns 1.0e-2] param_step=0]

In this example, the relative convergence tolerance reltol is 1e-3 at the beginning of the
simulation, and is changed to 1e-2 at 100ns.
June 2011 177 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Example 4
dotran tran stop=2u \

noisefmax=10G noiseseed=1 param=isnoisy param_vec=[0ns 0 500ns 1]

This statement turns transient noise off from time 0 to 500ns and turns it back on at 500ns.

Example 5
pset1 paramset {

time reltol temp p1 m1:l
0n 1e-3 27 1 1u
10n 1e-3 50 2 1u
20n 1e-4 50 2 2u
30n 1e-5 75 3 2u

}

dotran tran paramset=pset1 stop=100n param_step=0

This paramset statement changes multiple parameters during the transient simulation. The
values of the reltol, temp, p1, and m1:l parameters change at the timepoints specified in the
paramset table.

Example 6
tran2 tran stop=100n param=reltol param_file=reltol.txt

reltol.txt:
; vector definition for reltol
tscale 1.0e-9
timevalue
10 1e-4
50 1e-3

This statement changes the reltol value to 1e-4 at 10ns, and changes the reltol value to 1e-3
at 50ns.

Balancing Accuracy and Speed

The following list displays the Spectre circuit simulator parameters that trade accuracy for
speed. See spectre -h options for more information on any of these parameters.

■ Tolerance control parameters – reltol, vabstol, and iabstol

■ Transient control parameters – errpreset, relref, lteratio, method, and
maxstep

■ Parasitic node reduction parameter – maxrsd
June 2011 178 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
The errpreset Parameter

errpreset is a transient analysis parameter that works in a way similar to speed except that it
has fewer settings and controls fewer parameters. You can set errpreset to three different
values:

■ liberal

■ moderate

■ conservative

At liberal, the simulation is fast but less accurate. The liberal setting is suitable for
digital circuits or analog circuits that have only short time constants. At moderate, the default
setting, simulation accuracy approximates a SPICE2 style simulator. At conservative, the
simulation is the most accurate but also slowest. The conservative setting is appropriate
for sensitive analog circuits. If you still require more accuracy than that provided by
conservative, tighten error tolerance by setting reltol to a smaller value.

Description of errpreset Parameter Settings

The effect of errpreset on other parameters is shown in the following table. In this table, T
= stop − start.

The description in the previous table has the following exceptions:

■ The errpreset parameter sets the value of reltol as described in the table, except
that the value of reltol cannot be larger than 0.01.

■ Except for reltol and maxstep, errpreset does not change the value of any
parameters you have specified.

■ With maxstep, the specified value in the preceding table is an upper bound. You can
always specify a smaller maxstep value.

If you need to check the errpreset settings for a simulation, you can find these values in
the log file.

errpreset reltol relref method maxstep lteratio

liberal ×10.0 sigglobal trapgear2 Interval/50 3.5

moderate ×1.0 sigglobal traponly Interval/50 3.5

conservative ×0.1 alllocal gear2only Interval/100 10.0
June 2011 179 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Uses for errpreset

You adjust errpreset to the speed and accuracy requirements of a particular simulation.
For example, you might set errpreset to liberal for your first simulation to see if the
circuit works. After debugging the circuit, you might switch to moderate to get more accurate
results. If the application requires high accuracy, or if you want to verify that the moderate
solution is reasonable, you set errpreset to conservative.

You might also have different errpreset settings for different types of circuits. For logic gate
circuits, the liberal setting is probably sufficient. A moderate setting might be better for
analog circuits. Circuits that are sensitive to errors or circuits that require exceptional
accuracy might require a conservative setting.

Tolerance Control Parameters

You can control the accuracy of the solution to the discretized equation by setting the reltol
and xabstol (where x is the access quantity, such as v or i) parameters in an options or
set statement. These parameters determine how well the circuit conserves charge and how
accurately the Spectre simulator computes circuit dynamics and steady-state or equilibrium
points.

You can set the integration error or the errors in the computation of the circuit dynamics (such
as time constants), relative to reltol and abstol by setting the lteratio parameter.

ToleranceNR = abstol + reltol*Ref

ToleranceLTE = ToleranceNR *lteratio

The Ref value is determined by your setting for relref, the relative error parameter, as
explained in “Adjusting Relative Error Parameters” on page 173.

In the previous equations, ToleranceNR is a convergence criterion that bounds the amount by
which Kirchhoff’s Current Law is not satisfied as well as the allowable difference in computed
values in the last two Newton-Raphson (NR) iterations of the simulation. ToleranceLTE is the
allowable difference at any time step between the computed solution and a predicted solution
derived from a polynomial extrapolation of the solutions from the previous few time steps. If
this difference is greater than ToleranceLTE, the Spectre simulator shortens the time step until
the difference is acceptable.

From the previous equations, you can see that tightening reltol to create more strict
convergence criteria also diminishes the allowable local truncation error (ToleranceLTE). You
might not want the truncation error tolerance tightened because this adjustment can increase
simulation time. You can prevent the decrease in the time step by increasing the lteratio
parameter to compensate for the tightening of reltol.
June 2011 180 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Adjusting Relative Error Parameters

You determine the treatment of the relative error with the relref parameter. The relref
parameter determines which values the Spectre simulator uses to compute whether the
relative error tolerance (reltol) requirements are satisfied.

You can set relref to the following options:

■ The relref=pointlocal setting compares the relative errors in quantities at each
node relative to the current value of that node.

■ The relref=alllocal setting compares the relative errors in quantities at each node
to the largest value of that node for all past time points.

■ The relref=sigglobal or relref=allglobal settings compare relative errors in
each of the circuit signals to the maximum of all the signals in the circuit.

■ In addition, the relref=allglobal setting compares equation residues (the amount
by which Kirchhoff’s Current Law [also known as Kirchhoff’s Flow Law] is not satisfied)
for each node to the maximum current floating onto the node at any time in that node’s
past history.

Setting the Integration Method

The method parameter specifies the integration method. You can set the method parameter
to adjust the speed and accuracy of the simulation. The Spectre simulator uses three different
integration methods: the backward-Euler method, the trapezoidal rule, and the second-order
Gear method. The method parameter has six possible settings that permit different
combinations of these three methods to be used.The following table shows the possible
settings and what integration methods are allowed with each:

Backward-Euler Trapezoidal Rule Second-Order Gear

euler •
traponly •
trap • •
gear2only •
gear2 • •
trapgear2 • • •
June 2011 181 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
The trapezoidal rule is usually the best setting if you want high accuracy. This method can
exhibit point-to-point ringing, but you can control this by tightening the error tolerances. The
trapezoidal method is usually not a good choice to run with loose error tolerances because it
is sensitive to errors from previous time steps. If you need to use very loose tolerances to get
a quick answer, it is better to use second-order Gear.

While second-order Gear is more accurate than backward-Euler, both methods can
overestimate a system’s stability. This effect is less with second-order Gear. You can also
reduce this effect if you request high accuracy.

Artificial numerical damping can reduce accuracy when you simulate
low-loss (high-Q) resonators such as oscillators and filters. Second-order Gear shows this
damping, and backward-Euler exhibits heavy damping.

Improving Transient Analysis Convergence

If the circuit you simulate can have infinitely fast transitions (for example, a circuit that contains
nodes with no capacitance), the Spectre simulator might have convergence problems. To
avoid these problems, set cmin, which is the minimum capacitance to ground at each node,
to a physically reasonable nonzero value.

You also might want to adjust the time-step parameters, step and maxstep. step is a
suggested time step you can enter. Its default value is .001*(stop - start). maxstep is the
largest time step permitted.

Controlling the Amount of Output Data

The Spectre simulator normally saves all computed data in the transient analysis. Sometimes
you might not need this much data, and you might want to save only selected results. At other
times, you might need to decrease the time interval between data points to get a more precise
measurement of the activity of the circuit. You can control the number of output data points
the Spectre simulator saves for the transient analysis in these ways:

■ With strobing, which lets you select the time interval between the data points the Spectre
simulator saves. The simulator forces a time step on each point it saves, so the data is
computed, not interpolated.

■ With skipping time points, which lets you select how many data points the Spectre
simulator saves

■ With data compression, which eliminates repetitive recording of signal values that are
unchanged
June 2011 182 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
■ With the outputstart parameter, which lets you specify the time when the Spectre
simulator starts saving data points

■ With the infotime parameter, which lets you specify specific times to save operating-
point data instead of for all time points

Telling the Spectre Simulator to Change the Time Interval between Data Points
(Strobing)

Strobing changes the interval between data points. You use strobing to eliminate some
unwanted high-frequency signal from the output, just as a strobe light appears to freeze
rapidly rotating machinery. With strobing, you can demodulate AM signals or hide the effect
of the clock in clocked waveforms. You can also dramatically improve the accuracy of external
Fast Fourier Transform (FFT) routines. To perform strobing, you set the following parameters
in the transient analysis:

■ The strobeperiod parameter, which sets the time interval between the data points
that the Spectre simulator saves

■ The skipstart parameter (optional), which tells the Spectre simulator when to start
strobing

This parameter is also used to skip data points.

■ The skipstop parameter (optional), which tells the Spectre simulator when to stop
strobing

This parameter is also used to skip data points.

■ The strobedelay parameter (optional), which lets you set a delay between the
skipstart time and the first strobe point

Telling the Spectre Simulator How Many Data Points to Save

By telling the Spectre simulator to save only every Nth data point, you can reduce the size of
the results database generated by the Spectre simulator. You tell the Spectre simulator to
save every Nth data point with the following parameters:

■ With the skipcount parameter, which you set to N to make the Spectre simulator save
every Nth data point

■ The skipstart parameter, which tells the Spectre simulator when to start skipping
parameters

This parameter is also used in strobing.
June 2011 183 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
■ The skipstop parameter, which tells the Spectre simulator when to stop skipping
parameters

This parameter is also used in strobing.

Examples of Strobing and Skipping

In the following example, the Spectre simulator starts skipping data points at Time=10
seconds and continues to skip points until Time=35 seconds. During this 25-second period,
the Spectre simulator saves only every third data point.

ExSkipSt tran skipstart=10 skipstop=35 skipcount=3

In this example, the Spectre simulator starts strobing at Time=5 seconds and continues until
Time=20 seconds. During this 15-second period, the Spectre simulator saves data points
every 10 seconds.

ExStrobe tran skipstart=5 skipstop=20 strobeperiod=.10

This example is identical to the previous one except that it sets a delay of 2 seconds between
the skipstart time and the first strobe point.

ExStrobe2 tran skipstart=5 skipstop=20 strobeperiod=.10 strobedelay=2

Data Compression

Some circuits, such as mixed analog and digital designs and circuits with switching power
supplies, have substantial amounts of signal latency. If unchanged signal values for these
circuits are repetitively written for each time point to a transient analysis output file, this output
file can become very large. You can reduce the size of output files for such transient analyses
with the Spectre simulator’s data compression feature. With data compression, the Spectre
simulator writes output data for a signal only when the value of that signal changes.

Using data compression is not always appropriate. The Spectre simulator writes fewer signal
values when you turn on data compression, but it must write more data for every signal value
it records. For circuits with small amounts of signal latency, data compression might actually
increase the size of the output file.

You turn on data compression by adding the parameter compression=yes to the transient
analysis command line in a Spectre netlist.

DoTran_z12 tran start=0 stop=.003 step=0.00015 maxstep=6e-06 compression=yes

You cannot apply data compression to operating-point parameters, including terminal
currents that are calculated internally rather than with current probes. If you want data
compression for terminal currents, you must specify that these currents be calculated with
June 2011 184 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
current probes. You can specify that all currents be calculated with current probes by placing
useprobes=yes in an options statement.

Important

Adding probes to circuits that are sensitive to numerical noise might affect the
solution. In such cases, an accurate solution might be obtained by reducing
reltol.

Telling Spectre to Save Operating-Point Data at Specific Times

In addition to saving operating-point data in a dc analysis, Spectre allows this data to be
saved during a transient analysis. This data is saved as a waveform and can be plotted along
with node voltages and other output data. See Chapter 9, “Specifying Output Options,” to
learn how to select and save this data. Often, all that is needed is the operating data at
specific times, which can be achieved by linking an info analysis with the tran analysis.

To control the amount of data produced for operating-point parameters, use the following two
transient analysis parameters to specify at which time points you would like to save operating
point output for all devices:

infotimes=vector of numbers

infoname=analysis name

where analysis name points to an info analysis.

For example:

mytran tran stop=30n infotimes=[10n 25n] infoname=opinfo

opinfo info what=oppoint where=rawfile

The opinfo statement is called at 10 and 25 nanoseconds. The data for all devices is
reported at these specified time points.

Calculating Transient Noise

Transient noise provides the benefit of examining the effects of large signal noise on many
types of systems. It gives you the opportunity to examine the impact of noise in the time
domain on various circuit types without requiring access to the SpectreRF analyses. This
capability is an extension to the current transient analysis, and is accompanied by
enhancements to several calculator functions, allowing you to calculate multiple occurrences
of measurements such as risetime and overshoot. Spectre provides both a single run and
multiple run method of simulating transient noise. The single run method, which involves a
single transient run over several cycles of operation, is best suited for applications where
June 2011 185 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
undesirable start-up behavior is present. The multiple run method, which involves a statistical
sweep of several iterations over a single period, is recommended for users who are able to
take advantage of distributed processing.

Set the following parameters to calculate noise during a transient analysis.

noisefmax=0 (Hz) Bandwidth of pseudorandom noise sources. A valid (nonzero)
value turns on the noise sources during transient analysis. The
maximal time step of the transient analysis is limited to 1/
noisefmax.

noiseon=[...] The list of instances to be considered as noisy during transient
noise analysis.

noiseoff=[...] The list of instances to be considered as not noisy during
transient noise analysis.

noisescale=1 Noise scale factor applied to all generated noise. It can be used
to artificially inflate the small noise to make it visible over
transient analysis numerical noise floor, but it should be small
enough to maintain the nonlinear operation of the circuit.

noiseseed Seed for the random number generator. Specifying the same
seed allows you to reproduce a previous experiment.

noisefmin (Hz) If specified, the power spectral density of noise sources depend
on frequency in the interval from noisefmin to noisefmax.
Below noisefmin, noise power density is constant. The default
value is noisefmax, so that only white noise is included and
noise sources are evaluated at noisefmax for all models. 1/
noisefmin cannot exceed the requested time duration of
transient analysis.

noisetmin (s) Minimum time interval between noise source updates. Default is
1/noisefmax. Smaller values will produce smoother noise
signals at the expense of reducing time integration step.

noiseupdate=fmax | step
Specifies whether noise is to be injected at a constant time step
(fmax) or the Spectre solver time step is to be used (step)
Injecting noise at a constant time step is suitable when the value
of noisefmax is larger that the bandwidth of all signals in the
circuit, and simulation time step is effectively controlled by noise.
Only one noise frequency is updated at each time step. If the
June 2011 186 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
bandwidth of some of the signals exceeds noisefmax, which
forces the simulator to take steps smaller than noisetmin, then
noise should also be injected at each time step between the
regular noise updates. In this case, all noise frequencies are
updated at each time step.

Example
tr1 tran stop=4u noisefmax=5G noisefmin=1Meg noiseseed=1 noisescale=10 \
param=isnoisy param_vec=[0 1 10ns 0 50ns 1]

tr1 tran stop=4u noisefmax=5G noiseupdate=step noiseseed=1 noisescale=10

Performing Small-Signal Analyses during a Transient Analysis

You can perform an AC and/or noise analysis at specific times during a transient analysis. The
Spectre circuit simulator stops the transient analysis at the specified times, saves operating
point information, and performs the AC and/or noise analysis. Currently, spectre supports
only a single info analysis call from a transient analysis.

This type of simulation is useful when you want to run an AC analysis after getting past
specific start-up behavior, or when there is more than one point along the transient run that
can be thought of as steady-state.

The syntax for performing a small-signal analysis during transient analysis is:

Name tran stop=stop actimes=time acnames=name

where

Name The name of the transient analysis

stop The time at which the transient analysis is to be put on hold.

actimes The time points at which the analyses specified by acnames are
performed.

acnames The names of the analyses to be performed at each time point in
the actimes array. Allowed child analyses are: info, ac, noise, xf,
sp.
June 2011 187 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Pole Zero Analysis

The pole zero analysis linearizes the circuit about the DC operating point and computes the
poles and zeros of the linearized network. The analysis generates a finite number of poles
and zeroes, each being a complex number. If you sweep a parameter, the parameter values
corresponding to the current iteration are printed.

The pole zero analysis dense method works best on small to medium sized circuits (circuits
with less than a thousand equations). You can use the arnoldi method (iterative sparse solver)
on large circuits for better performance.

If you run a pole zero analysis on a frequency dependent component (element whose AC
equivalent varies with frequency, such as transmission line or BJT with excess phases), the
Spectre circuit simulator approximates the component as AC equivalent conductance and
evaluates conductance at 1Hz.

You can set up and run a pole zero analysis through the Analog Design Environment. For
more information, see the Analog Design Environment User Guide.

Syntax

analysisName [(pnode nnode)] pz [method=arnoldi numpoles=0 numzeros=0 sigmar=0.1
sigmai=0.0 ...]

where

analysisName Name of analysis.

pnode nnode Nodes in the circuit whose difference is the output of the transfer
function for which zeroes are to be calculated.

method=arnoldi Specifies that the method to be used for calculating poles and
zeroes is arnoldi. Default value is qz (dense method).

numpoles=0 Limits the maximum number of poles in the arnoldi method to the
specified value. Default value is 0, which indicates that the limit
is the circuit size.

numzeros=0 Limits the maximum number of zeroes in the arnoldi method to
the specified value . Default value is 0, which indicates that the
limit is the circuit size.
June 2011 188 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
sigmar=0.1 Specifies the root finding control parameter for the arnoldi
method. If the interesting poles or zeros are around the value z,
z=x+jy, setting sigmar to x and sigmai to y helps Spectre find
the solution more accurately. Default value is 0.1.

sigmai=0.0 Specifies the root finding control parameter for the arnoldi
method. If the interesting poles or zeros are around the value z,
z=x+jy, setting sigmar to x and sigmai to y helps Spectre find
the solution more accurately. Default value is 0.

If you do not specify the input source, the Spectre circuit simulator performs only the pole
analysis. For a detailed description of the parameters, see spectre -h pz.

Example 1
myPZ1 pz

Performs pole analysis.

Example 2
myPZ2 pz method=arnoldi

Performs pole analysis with the arnoldi method.

Example 3
mypz2 (n1 n2) pz iprobe=VIN

Performs pole zero analysis for a circuit whose input is VIN and output is the voltage
difference between nodes n1 and n2.

Example 4
mypz3 (n1 n2) pz iprobe=I1 param=temp start=25 stop=100 step=25

Performs pole zero analysis for a circuit whose input is I1 and output is the voltage difference
between nodes n1 and n2.

Output Log File

The output log file contains the following information:
June 2011 189 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
■ Complex numbers for poles

■ Complex numbers for zeroes

■ Gain for zeroes

■ Quality factor Q, which can be defined as:

where sign is 1 if real<0 and sign is -1 if real>0. When real is 0, Qfactor is not
defined.

If the output of the pole zero analysis contains positive real part poles indicating an unstable
circuit, the label **RHP is appended to those poles. An example is shown below:

PZ Analysis ‘mypz’

 Poles (Hertz)

 Real Imaginary Qfactor

 1 4.5694e+10 0 **RHP -0.5

 2 4.2613e+10 0 **RHP -0.5

 3 1.4969e+10 0 **RHP -0.5

 4 1.4925e+10 0 **RHP -0.5

 5 1.0167e+10 0 **RHP -0.5

 6 1.0165e+10 0 **RHP -0.5

 7 7.3469e+09 0 **RHP -0.5

 8 7.3469e+09 0 **RHP -0.5

 9 -1.0061e+09 0 0.5

 10 -1.0061e+09 0 0.5

 11 -1.0235e+09 0 0.5

Other Analyses (sens, fourier, dcmatch, and stb)

There are four analyses in this category: sens, fourier, dcmatch, and stb.

Sensitivity Analysis

You can supplement the analysis information you automatically receive with the AC and DC
analyses by placing sens statements in the netlist. Output for the sens command is sent to

Qfactor sign()0.5 im
re
------⎝ ⎠

⎛ ⎞ 2
1+⎝ ⎠

⎛ ⎞
0.5

=

June 2011 190 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
the rawfile or to an ASCII file that you can specify with the +sensdata <filename> option
of the spectre command.

■ If you set senstype=partial, Spectre calculates partial sensitivity. This determines
the sensitivity of output variables to input design parameters. Results are expressed as
a ratio of the change in an output analysis variable to the change in an input design
parameter. For example, if V is the output value, and P is the input design parameter,
sensitivity is computed as follows:

■ If you set senstype=normalized, Spectre calculates normalized sensitivity, which
removes the dependence of results on the magnitude of the output variable and input
design parameters. Normalized sensitivity is computed as follows:

When both P and V are zero, partial sensitivity is used.

Formatting the sens Command

You format the sens command as follows

sens [(output_variables_list)] [to
(design_parameters_list)] [for (analyses_list)]

where

output_variables_list = ovar1 ovar2 ...

design_parameters_list = dpar1 dpar2 ...

analyses_list = ana1 ana2 ...

The ovari are the output variables whose sensitivities are calculated. These are normally
node names, deviceInstance:parameter or modelName:parameter specifications.
Examples are 5, n1, and Qout:betadc.

The dparj are the design parameters to which the output variables are sensitive. You can
specify them in a format similar to ovari. However, they must be input parameters that you

SV P,
dV
dP
-------=

SV P,
PdV
VdP
------------=

SV P, PdV
dP
-------= if V=0

SV P,
1
V
----dV

dP
-------= if P=0
June 2011 191 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
can specify (for example, R1:r). If you do not specify a to clause, sensitivities of output
variables are calculated with respect to all available instance and model parameters.

Note: The method for specifying design parameters and output variables is described in
more detail in the documentation for the save statement in Chapter 9, “Specifying Output
Options.”

The following table shows you the types of design and output parameters that are normally
used for both AC and DC analyses:

You can also specify device instances or models as design parameters without further
specifying parameters, but this approach might result in a number of error messages. The
Spectre simulator attempts sensitivity analysis for every device parameter and sends an error
message for each parameter that cannot be varied. The Spectre simulator does, however,
perform the requested sensitivity analysis for appropriate parameters.

The anak are the analyses for which sensitivities are calculated. These can be analysis
instance names (for example, opBegin and ac2) or analysis type names (for example, DC
and AC).

Examples of the sens Command

The following examples illustrate sens command format:

sens (q1:betadc 2 Out) to (vcc:dc nbjt1:rb) for (analDC)

This command computes DC sensitivities of the betadc operating-point parameter of
transistor q1 and of nodes 2 and Out to the dc voltage level of voltage source vcc and to the
model parameter rb of nbjt1. The values are computed for DC analysis analDC. The
results are stored in the files analDC.vcc:dc and analDC.nbjt1:rb.

sens (1 n2 7) to (q1:area nbjt1:rb) for (analAC)

This command computes AC sensitivities of nodes 1, n2, and 7 to the area parameter of
transistor q1 and to the model parameter rb of nbjt1. The values are computed for each

AC Analysis DC Analysis

Design
parameters

Instance parameters

Model parameters

Instance parameters

Model parameters

Output
parameters

Node voltages

Branch currents

Node voltages

Branch currents

Instance operating-point parameters
June 2011 192 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
frequency of the AC analysis analAC. The results are stored in the files analAC.q1:area
and analAC.nbjt1:rb.

sens (vbb:p q1:int_c q1:gm 7) to (q1:area nbjt1:rb) for (analDC1)

This command computes DC sensitivities of the branch current vbb:p, the operating-point
parameter gm of transistor q1, the internal collector voltage q1:int_c, and the node 7
voltage to the instance parameter q1:area and the model parameter nbjt:1:rb. The
values are computed for analysis analDC1.

sens (1 n2 7) for (analAC)

This command computes the AC sensitivities of nodes 1, n2, and 7 to all available device and
model parameters.

Note: This can result in a lot of information.

Sensitivity analysis for binned model in subckt

To support sensitivity analysis for binned model defined in subckt, use the option
sensbinparam.

sensbinparam=no: default; feature disabled.

sensbinparam=uncorrelated: uncorrelated method.

sensbinparam=correlated: fully-correlated method.

Example:

model nch bsim3v3

{

1: type=n vth0=0.59 lmin=3.5e-7 lmax=8.0e-7 wmin=4.0e-7 wmax=8.0e-7
xl=8.66e-8

xw=-2.1e-8

2: type=n vth0=0.51 +lmin=8.0e-7 lmax=1.2e-6 wmin=4.0e-7 wmax=8.0e-7
xl=8.66e-8

xw=-2.1e-8

}

both bins are used by different instances in the netlist. Inside spectre, the model bin name will
be nch_1 and nch_2.

Assuming you want the sensitivity of out (output signal) vs vth0 in the model group, the two
methods produce results in the following manner:
June 2011 193 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Uncorrelated

Considering nch_1 and nch_2 are two totally independent uncorrelated models, Spectre
treats nch_1 and nch_2 as two separated models.

Spectre perturbes nch_1:vth0, nch_2:vth0 parameter values separately.

The sensitivity report will have

out vs nch_1:vth0

out vs nch_2:vth0

Correlated

Considering nch_1 and nch_2 are 100% correlated, Spectre perturbes nch_1:vth0 and
nch_2:vth0 simultaneously, the sensitivity report will just have one out vs nch:vth0.

Fourier Analysis

The ratiometric Fourier analyzer measures the Fourier coefficients of two different signals at
a specified fundamental frequency without loading the circuit. The algorithm used is based
on the Fourier integral rather than the discrete Fourier transform and therefore is not subject
to aliasing. Even on broad-band signals, it computes a small number of Fourier coefficients
accurately and efficiently. Therefore, this Fourier analyzer is suitable on clocked sinusoids
generated by sigma-delta converters, pulse-width modulators, digital-to-analog converters,
sample-and-holds, and switched-capacitor filters as well as on the traditional low-distortion
sinusoids produced by amplifiers or filters.

The analyzer is active only during a transient analysis. For each signal, the analyzer prints
the magnitude and phase of the harmonics along with the total harmonic distortion at the end
of the transient analysis. The total harmonic distortion is found by summing the power in all
of the computed harmonics except DC and the fundamental. Consequently, the distortion is
not accurate if you request an insufficient number of harmonics The Fourier analyzer also
prints the ratio of the spectrum of the first signal to the fundamental of the second, so you can
use the analyzer to compute large signal gains and immittances directly.

If you are concerned about accuracy, perform an additional Fourier transform on a pure
sinusoid generated by an independent source. Because both transforms use the same time
points, the relative errors measured with the known pure sinusoid are representative of the
errors in the other transforms. In practice, this second Fourier transform is performed on the
reference signal. To increase the accuracy of the Fourier transform, use the points
June 2011 194 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
parameter to increase the number of points. Tightening reltol and setting
errpreset=conservative are two other measures to consider.

The accuracy of the magnitude and phase for each harmonic is independent of the number
of harmonics computed. Thus, increasing the number of harmonics (while keeping points
constant) does not change the magnitude and phase of the low order harmonics, but it does
improve the accuracy of the total harmonic distortion computation. However, if you do not
specify points, you can increase accuracy by requesting more harmonics, which creates
more points.

The large number of points required for accurate results is not a result of aliasing. Many points
are needed because a quadratic polynomial interpolates the waveform between the time
points. If you use too few time points, the polynomials deviate slightly from the true waveform
between time points and all of the computed Fourier coefficients are slightly in error. The
algorithm that computes the Fourier integral does accept unevenly spaced time points, but
because it uses quadratic interpolation, it is usually more accurate using time steps that are
small and nearly evenly spaced.

This device is not supported within altergroup.

Instance Definition
Name [p] [n] [pr] [nr] ModelName parameter=value ...

Name [p] [n] [pr] [nr] fourier parameter=value ...

The signal between terminals p and n is the test or numerator signal. The signal between
terminals pr and nr is the reference or denominator signal. Fourier analysis is performed on
terminal currents by specifying the term or refterm parameters. If both term and p or n
are specified, then the terminal current becomes the numerator and the node voltages
become the denominator. By mixing voltages and currents, it is possible to compute large
signal immittances.

Model Definition
model modelName fourier parameter=value ...

DC Match Analysis

The DCMATCH analysis performs DC device mis-matching analysis for a given output. It
computes the deviation in the DC operating point of the circuit caused by mismatch in the
devices. Users need to specify mismatch parameters in their model cards for each device
contributing to the deviation. The analysis uses the device mismatch models to construct
equivalent mismatch current sources to all the devices that have mismatch modeled. These
June 2011 195 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
current sources will have zero mean and some variance. The variance of the current sources
are computed according to mismatch models. It then computes the 3-sigma variance of dc
voltages or curents at user specified outputs due to the mismatch current sources. The
simulation results displays the devices rank ordered by their contributions to the outputs.

In addition, for mosfet devices, it displays threshold voltage mismatch, current factor
mismatch, gate voltage mismatch, and drain current mismatch. For bipolar devices, it displays
base-emitter junction voltage mismatch. For resistors, it displays resistor mismatches.

The analysis replaces multiple simulation runs by circuit designers for accuracy vs. size
analysis. It automatically identifies the set of critical matched components during circuit
design. For example, when there are matched pairs in the circuit, the contribution of two
matched transistors will be equal in magnitude and opposite in sign. Typical usage are to
simulate the output offset voltage of operational amplifiers, estimate the variation in bandgap
voltages, and predict the accuracy of current steering DACS.

The DCMATCH analysis is available for BSIM3v3, BSIM4, BSIMSOI, EKV, PSP102, PSP103,
BJT, VBIC, BHT, RESISTOR, PHY_RES, R3 and resistor-type bsource.

Model Definition

name [pnode nnode] dcmatch parameter=value ...

Examples of the dcmatch command

The following example investigates the 3-sigma dc variation at the output of the current
flowing through the device vd, which is a voltage source in the circuit netlist. dcmm1 is the
name of the analysis, dcmatch is a keyword indicating the dc mismatch analysis, and the
parameter settings oprobe=vd and porti=1 specify that the output current is measured at
the first port of vd. Device mismatch contributions less than 1e-3% of the maximum
contribution of all mismatch devices to the output are not reported, as specified by the
parameter mth. The mismatch (that is the equivalent mismatch current sources in parallel to
all the devices that use model n1) is modeled by the model parameters mvtwl, mvtwl2,
mvt0, mbewl, and mbe0.

dcmm1 dcmatch mth=1e-3 oprobe=vd porti=1

model n1 bsim3v3 type=n ...

+ mvtwl=6.15e-9 mvtwl2=2.5e-12 mvt0=0.0 mbewl=16.5e-9 mbe0=0.0

The output of the analysis is displayed on the scree/logfile:

DC Device Matching Analysis ‘mismatch1’ at vd

Local Variation = 3-sigma random device variation

sigmaOut sigmaVth sigmaBeta sigmaVg sigmaIds

-13.8 uA 2.21 mV 357 m% 2.26 mV 1.71 % mp6
June 2011 196 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
-6.99 uA 1.63 mV 269 m% 1.68 mV 1.08 % m01

-2.71 uA 1.11 mV 187 m% 1.16 mV 648 m% m02

-999 nA 769 uV 131 m% 807 uV 428 m% m04x4_4

-999 nA 769 uV 131 m% 807 uV 428 m% m04x4_3

-999 nA 769 uV 131 m% 807 uV 428 m% m04x4_2

-999 nA 769 uV 131 m% 807 uV 428 m% m04x4_1

-999 nA 769 uV 131 m% 807 uV 428 m% m04

-718 nA 1.09 mV 185 m% 1.15 mV 599 m% m40x04

-520 nA 1.55 mV 263 m% 1.63 mV 835 m% m20x04

-378 nA 2.21 mV 376 m% 2.34 mV 1.16 % m10x04

-363 nA 539 uV 92 m% 567 uV 293 m% m08

-131 nA 379 uV 64.9 m% 400 uV 203 m% m16

-46.7 nA 267 uV 45.9 m% 283 uV 142 m% m32

vd =-3.477 mA +/- 15.91 uA (3-sigma variation)

This says that the 3-sigma variation at i(vd) due to the mismatch models is -3.477 mA ±15.91
μA. The -3.477 mA is the dc operating value of i(vdd), and 15.91 μA is the 3-sigma variation
due to the device mismatches. The device mp6 contributes the most to the output variation
at -13.8 μA followed by m01 which contributes -6.99 μA. The equivalent 3-sigma Vth variation
of mp6 is 2.21 mV. The relative 3-sigma beta (current factor) variation of mp6 is 0.357%. The
equivalent 3-sigma gate voltage variation is 2.26 mV. The relative 3-sigma Ids variation of
mp6 is 1.71%.

The output can also be written in psf, and you can view the table using Analog Design
Environment.

The following statement investigates the 3-sigma dc variation on output v(n1,n2). The result
of the analysis is printed in a psf file and the cpu statistics of the analysis are generated.

dcmm2 n1 n2 dcmatch mth=1e-3 where=rawfile

In the following example, the output is the voltage drop across the 1st port of r3.

dcmm3 dcmatch mth=1e-3 oprobe=r3 portv=1

For the following statement, the output of the analysis is printed to a file
circuitName.info.what.

dcmm4 n3 0 dcmatch mth=1e-3 where=file file="%C:r.info.what"

You can use sweep parameters on the dcmatch analysis to perform sweeps of temperature,
parameters, model/instance/subcircuit parameters etc.

In the following example, the device parameter w of the device x1.mp2 is swept from 15μm to
20μm at each increment of 1μm.

dcmm6 n3 0 dcmatch mth=0.01 dev=x1.mp2 param=w
June 2011 197 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
+ start=15e-6 stop=20e-6 step=1e-6 where=rawfile

In the following example, a set of analyses is performed on output v(n3,0) by sweeping the
device parameter w of the device mp6 from 80μm to 90μm at each increment of 2μm.

sweep1 sweep dev=mp6 param=w start=80e-6 stop=90e-6 step=2e-6 {

dcmm5 n3 0 dcmatch mth=1e-3 where=rawfile

}

In the following example, temperature is swept from 25°C to 100°C at increment of 25°C.

dcmm7 n3 0 dcmatch mth=0.01 param=temp

+ start=25 stop=100 step=25

For more information on the dcmatch parameters, see the Spectre Circuit Simulator
Reference.

If you run the dcmatch analysis in Analog Design Environment, you can access the output
through the Results menu and create a table of mismatch contributors.

DC Match Theory

Statistical variation of drain current in a MOSFET is modeled by

where

Ids is the total drain to source,

Idso is the nominal current, and

ΔIds is the variation in drain to source current due to local device variation.

If Vout is the output signal of interest, then the variance of Vout due to the ith MOSFET
is approximated by

The term

lds ldso Δlds+=

σ2
Vout()i ΔIdsi∂

∂ Vout⎝ ⎠
⎛ ⎞ 2

Idso

σ2 ΔIdsi()=

ΔIdsi∂
∂ Vout
June 2011 198 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
in the equation above is the sensitivity of the output to the drain to source current and can be
efficiently obtained by the dcmatch analysis.

Mismatch Models

The term

is the variance of the mismatch current in MOSFET transistors. The mismatch in the current
is assumed to be due to a mismatch in the threshold voltage () and the mismatch in the
width to length ratio (). When version=0/2, it is approximated as:

where

Note that is computed at the DC bias solution from the device model equations, the
values a, b, c, d and e are the mismatch parameters while and are device parameters.

There are several parameters that affect the mismatch model.

■ mismatchmod specifies the equations to be used for the mismatch model

■ mismatchdist is the mismatch distance

■ mismatchvec1 specifies the mismatch Vth width and length parameters

■ mismatchvec2 specifies the mismatch Beta width and length parameters

■ mismatchvec3 specifies the mismatch Vth distance parameter

σ2 ΔIdsi()

Vth
β

σ2 ΔIds()
Ids0()2

gmo

2

Ids0()2
-------------------σ2 ΔVth() σ

2 Δβ()

βo
2

-------------------+=

gmo
Ids∂
Vth∂

Idso

=

σ2 ΔVth() mvtwl
2

WL
------------------- mvtwl22

WL2
----------------------- mvt02

+ +=

σ2 Δβ()
β0()2

------------------- mbewl
2

WL
--------------------- mbe02

+=

gmo
W L
June 2011 199 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
■ mismatchvec4 is the mismatch Beta distance parameter

When mismatchmod=0, the default mismatch equations are used.

When mismatchmod=1, the unified mismatch equations are used.

mismatchvec1= [A1, B1, C1, A2, B2, C2, A3]

mismatchvec2 =[X1, Y1, Z1, X2, Y2, Z2, X3]

When mismatchmod=2, the Pelgrow’s Law mismatch equations are used.

mismatchvec1= [A, B]

mismatchvec2= [X, Y]

When mismatchmod=3, the universal mismatch equations are used.

mismatchvec1= [N, A1, B1, C1, …, An, Bn, Cn]

σ2 ΔVth() mvtwl
2

WL
------------------- mvtwl22

WL2
----------------------- mvt02

+ +=

σ2 Δβ()
β0()2

------------------- mbewl
2

WL
--------------------- mbe02

+=

σ2 ΔVth()
A1

W
B1L

C1

A2

W
B2L

C2
--------------------- A3+ +=

σ2 Δβ()
β0()2

X1

W
Y1L

Z1

X2

W
Y2L

Z2
-------------------- X3+ +=

σ ΔVth() A

WL
------------- B+=

σ Δβ()
β0()

---------------- X

WL
------------- Y+=

σ2 ΔVth()
Ai

W
BiL

Ci

i 0=

n

∑ EjD
Fj

j 0=

r

∑+=

σ2 Δβ()

β0()

Xi

W
YiL

Zi

i 0=

m

∑ GjD
Hj

j 0=

s

∑+=
June 2011 200 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
mismatchvec2= [M, X1, Y1, Z1, …, Xm, Ym, Zm]

mismatchvec3= [R, E1, F1, …, Er, Fr]

mismatchvec4= [S, G1, H1, …, Gs, Hs]

The bipolar and the resistor are computed for each device provided that the
device size, bias point, and mismatch parameters are known.

where gm0 is , Ic0 is the nominal collector current, and ΔVbe =(mvt0)2.

Modified MOSFET Mismatch Models

When version=1/3, the following DC mismatch model is used for BSIM models:

where vth0 and u0 are BSIM model parameters.

Stability Analysis

The loop-based and device-based algorithms are available in the Spectre circuit simulator for
small-signal stability analysis. Both are based on the calculation of Bode’s return ratio. The
analysis output are loop gain waveform, gain margin, and phase margin.

Model Definition
name stb parameter=value ...

Examples of the stb command
stbloop stb start=1.0 stop=1e12 dec=10 probe=Iprobe

stbdev stb start=1.0 stop=1e12 dec=10 probe=mos1

σ2 ΔIci() σ2 ΔIri()

σ2 ΔIr()
Ir0

2
------------------- mr mrl

Lmrlp
--------------- mrw

Wmrwp
-------------------- mrlw1

LW()mrlw1p
--------------------------------- mrlw2

LW()mrlw2p
---------------------------------+ + + +=

σ2 ΔIc()
Ic0()2

gm0()2

Ic0()2

·

mvt0()2⋅=

VBE∂
∂ Ic

σ2 ΔIds()
Ids0()2

Vth0∂

∂ Ids⎝ ⎠
⎛ ⎞ 2

Ids0()2
---------------------------------σ2 ΔVth() u0

Ids0
-----------⎝ ⎠

⎛ ⎞ 2

u0∂
∂ Ids⎝ ⎠

⎛ ⎞ 2σ2 Δu0()

u02
----------------------+=
June 2011 201 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
The analysis parameters are similar to the small-signal ac analysis except for the probe
parameter, which must be specified to perform stability analysis. When the probe parameter
points to a current probe or voltage source instance, the loop based algorithm will be invoked;
when it points to a supported active device instance, the device based algorithm will be
invoked.

The gain margin and phase margin are automatically determined from the loop gain
waveform by detecting zero-crossing in the gain plot and phase plot. If margins cannot be
determined for a particular stability analysis, a log file displays the corresponding reason.

Loop-Based Algorithm

The loop-based algorithm is based on considering the feedback loop as a lumped model with
normal and reverse loop transmission. It calculates the true loop gain, which consists of
normal loop gain and reverse loop gain. Stability analysis approaches for low-frequency
applications assume that signal flows unilaterally through the feedback loop, and they use the
normal loop gain to assess the stability of the design. However, the true loop gain provides
more accurate stability information for applications involving significant reverse transmission.

You can place a probe component (current probe or zero-DC-valued voltage source) on the
feedback loop to identify the loop of interest. The probe component does not change any of
the circuit characteristics, and there is no special requirement on the polarity configuration of
the probe component.

The loop-based algorithm provides accurate stability information for single-loop circuits and
multi-loop circuits in which a probe component can be placed on a critical wire to break all
loops. For a multi-loop circuit in which such a wire may not be available, the loop based
algorithm can be performed only on individual feedback loops to ensure they are stable.
Although the stability of all feedback loops is only a necessary condition for the whole circuit
to be stable, the multi-loop circuit tends to be stable if all individual loops are associated with
reasonable stability margins.

Stability Analysis of Differential Circuit with Loop-based Algorithm

For the multi-loop circuits, such as differential feedback circuit, a differential stability probe
should be inserted to performance the stability analysis by breaking all the feedback loops.

In ADE schematic, user can select the differential probe named as diffstbprobe in analogLib,
see Figure 7-1.
June 2011 202 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Figure 7-1 Differential stb probe in analogLib

With that component of diffstbprobe, there are four nodes defined as
Istbprobe (IN1 IN2 OUT1 OUT2) diffstbprobe

Figure 7-2 shows how to connect the probe to the differential circuit.

Figure 7-2 Differential feedback circuit
June 2011 203 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Example of differential mode:
stbloop stb start=1 stop=10G probe= Istbprobe.IPRB_DM

The analysis parameter of probe has to specify as IPRB_DM of a probe instance for
differential circuit.

Device Based Algorithm

The device-based algorithm produces accurate stability information for circuits in which a
critical active device can be identified such that nulling the dominant gain source of this device
renders the whole network to be passive. Examples are multistage amplifier, single-transistor
circuit, and S-parameter characterized microwave component.

This algorithm is often applied to assess the stability of circuit design in which local feedback
loops cannot be neglected; the loop-based algorithm cannot be performed for these
applications because the local feedback loops are inside the devices and are not accessible
from the schematic level or netlist level to insert the probe component.

The supported active device and its dominant gain source are summarized in the table below.

Component Dominant Controlled Source Description

b3soipd gm Common-source transconductance

bjt gm Common-emitter transconductance

bsim1,2,3,3v3 gm Common-source transconductance

btasoi gm Common-source transconductance

cccs gain Current gain

ccvs rm Transresistance

ekv gm Common-source transconductance

gaas gm Common-source transconductance

hbt dice_dvbe Intrinsic dIce/dVbe

hvmos gm Common-source transconductance

jfet gm Common-source transconductance

mos0,1,2,3 gm Common-source transconductance

tom2 gm Common-source transconductance

vbic dic_dvbe Intrinsic dIc/dVbe

vccs gm Transconductance
June 2011 204 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
In general, the stability information produced by the device-based algorithm can be used to
assess the stability of that particular device. Most often, a feedback network consists of a
global feedback loop and numerous nested local loops around individual transistors. The
loop-based algorithm can determine the stability of the whole network as long as all nested
loops are stable, while the device-based algorithm can be used to ensure all local loops are
stable.

For more information on the stability analysis parameters, see the Spectre Circuit
Simulator Reference.

Advanced Analyses (sweep and montecarlo)

There are two advanced analyses: sweep and montecarlo.

Sweep Analysis

The sweep analysis sweeps a parameter processing a list of analyses (or multiple analyses)
for each value of the parameter.

The sweeps can be linear or logarithmic. Swept parameters return to their original values after
the analysis. However, certain other analyses also allow you to sweep a parameter while
performing that analysis. For more details, check spectre -h for each of the following
analyses. The following table shows you which parameters you can sweep with different
analyses.

vcvs gain Voltage gain

Time TEMP FREQ
A component
instance
parameter

A component
model
parameter

A netlist
parameter

DC analysis (dc) • • • •
AC analysis (ac) • • • • •
Noise analysis
(noise)

• • • • •

S-parameter
analysis (sp)

• • • • •

Component Dominant Controlled Source Description
June 2011 205 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Note: To generate transfer curves with the DC analysis, specify a parameter and a sweep
range. If you specify the oppoint parameter for a DC analysis, the Spectre simulator
computes the linearized model for each nonlinear component. If you specify both a DC sweep
and an operating point, the operating point information is generated for the last point in the
sweep.

Transfer function
analysis (xf)

• • • • •

Transient analysis
(tran)

•

Time-domain
reflectometer
analysis (tdr)

•

Periodic steady
state analysis (pss)

•

Periodic AC
analysis (pac)

•

Periodic transfer
function analysis
(pxf)

•

Periodic noise
analysis (pnoise)

•

Envelope-following
analysis (envlp)

•

Sweep analysis
(sweep)

• • • •

DC Match Analysis
(dcmatch)

• • • •

Stability Analysis
(stb)

• • • • •

Time TEMP FREQ
A component
instance
parameter

A component
model
parameter

A netlist
parameter
June 2011 206 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Setting Up Parameter Sweeps

To specify a parameter sweep, you must identify the component or circuit parameter you want
to sweep and the sweep limits in an analysis statement. A parameter you sweep can be circuit
temperature, a device instance parameter, a device model parameter, a netlist parameter, or
a subcircuit parameter for a particular subcircuit instance.

Within the sweep analysis only, you specify child analyses statements. These statements
must be bound with braces. The opening brace is required at the end of the line defining the
sweep.

Specifying the Parameter You Want to Sweep

You specify the components and parameters you want to sweep with the following
parameters:

For all analyses that support sweeping, to sweep the circuit temperature, use param=temp
with no dev, mod, or sub parameter. You can sweep a top-level netlist parameter by giving
the parameter name with no dev, mod, or sub parameter. You can sweep a subcircuit
parameter for a particular subcircuit instance by specifying the subcircuit instance name with
the sub parameter and the subcircuit parameter name with the param parameter. You can
do the same thing for a particular device instance by using dev for the device instance name
or for a particular model by using mod for the device model name.

Note: If frequency is a sweep option for an analysis, the Spectre simulator sweeps frequency
if you leave dev, mod, and param unspecified. That is, frequency is the default swept
parameter for that analysis.

Parameter Description

dev The name of an instance whose parameter value you want to sweep

sub The name of the subcircuit instance whose parameter value you want to
sweep

mod The name of a model whose parameter value you want to sweep

param The name of the component parameter you want to sweep

freq For analyses that normally sweep frequency (small-signal analyses such as
ac), if you sweep some parameter other than frequency, you must still
specify a fixed frequency value for that analysis using the freq parameter

paramset For the sweep analysis only; allows sweeping of multiple parameters
defined by the paramset statement
June 2011 207 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Specifying Parameter Sets You Want to Sweep

For the sweep analysis only, the paramset statement allows you to specify a list of
parameters and their values. This can be referred by a sweep analysis to sweep the set of
parameters over the values specified. For each iteration of the sweep, the netlist parameters
are set to the values specified by a row. The values have to be numbers, and the parameters’
names have to be defined in the input file (netlist) before they are used. The paramset
statement is allowed only in the top level of the input file.

The following is the syntax for the paramset statement:

Name paramset {
list of netlist parameters
list of values foreach netlist parameter
list of values foreach netlist parameter ...

}

Here is an example of the paramset statement:

parameters p1=1 p2=2 p3=3
data paramset {

p1 p2 p3
5 5 5
4 3 2

}

Combining the paramset statement with the sweep analysis allows you to sweep multiple
parameters simultaneously, for example, power supply voltage and temperature.

Setting Sweep Limits

For all analyses that support sweeping, you specify the sweep limits with the parameters in
the following table:

Parameter Value Comments

start
stop

Start of sweep value (Default=0)
End of sweep value

start and stop are used
together to specify sweep limits.

center
span

Center value of sweep
Span of sweep (Default=0)

center and span are used
together to specify sweep limits.

step
lin

Step size for linear sweeps
Number of steps for linear sweeps
(Default is 50)

step and lin are used to specify
linear sweeps.
June 2011 208 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
If you do not specify the step size, the sweep is linear when the ratio of the stop to the start
values is less than 10 and logarithmic when this ratio is 10 or greater. If you specify sweep
limits and a values array, the points for both are merged and sorted.

Examples of Parameter Sweep Requests

This sweep statement uses braces to bound the child analyses statements.

swp sweep param=temp values=[-50 0 50 100 125] {
oppoint dc oppoint=logfile

}

This statement specifies a linear sweep of frequencies from 0 to 0.3 MHz with 100 steps.

Sparams sp stop=0.3MHz lin=100

The previous statement could be written like this and achieve the same result.

Sparams sp center=0.15MHz span=0.3MHz lin=100

This statement specifies a logarithmic sweep of frequencies from 1 kHz through 1 GHz with
10 steps per decade.

cmLoopGain ac start=1k stop=1G dec=10

This statement is identical to the previous one except that the number of steps is set to 55.

cmLoopGain ac start=1k stop=1G log=55

This statement specifies a linear sweep of temperatures from 0 to 50 degrees in 1-degree
steps. The frequency for the analysis is 1 kHz.

XferVsTemp xf start=0 stop=50 step=1 probe=Rload param=temp freq=1kHz

This statement uses a vector to specify sweep values for device Vcc. The values specified for
the sweep are 0, 2, 6, 7, 8 and 10.

SwpVccDC dc dev=Vcc values=[0 2 6 7 8 10]

dec

log

Number of points per decade for
log sweeps
Number of steps for logarithmic
sweeps (default is 50)

dec and log are used to specify
logarithmic sweeps.

values Array of sweep values values specifies each sweep
value with a vector of values.

Parameter Value Comments
June 2011 209 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Monte Carlo Analysis

The montecarlo analysis is a swept analysis with associated child analyses similar to the
sweep analysis (see spectre -h sweep). The Monte Carlo analysis refers to “statistics
blocks” where statistical distributions and correlations of netlist parameters are specified.
(Detailed information on statistics blocks is given in “Specifying Parameter Distributions Using
Statistics Blocks” on page 208.) For each iteration of the Monte Carlo analysis, new
pseudorandom values are generated for the specified netlist parameters (according to their
specified distributions) and the list of child analyses are then executed.

The Cadence design environment Monte Carlo option allows for scalar measurements to be
linked with the Monte Carlo analysis. Calculator expressions are specified that can be used
to measure circuit output or performance values (such as the slew rate of an operational
amplifier). During a Monte Carlo analysis, these measurement statement results vary as the
netlist parameters vary for each Monte Carlo iteration and are stored in a scalar data file for
postprocessing. By varying netlist parameters and evaluating these measurement
statements, the Monte Carlo analysis becomes a tool that allows you to examine and predict
circuit performance variations that affect yield.

The statistics blocks allow you to specify batch-to-batch (process) and per- instance
(mismatch) variations for netlist parameters. These statistically varying netlist parameters can
be referenced by models or instances in the main netlist and can represent IC manufacturing
process variation or component variations for board-level designs. The following description
gives a simplified example of the Monte Carlo analysis flow:

perform nominal run if requested
if any errors in nominal run then stop

for each Monte Carlo iteration {
if process variations specified then

apply “process” variation to parameters
if mismatch variations specified then

for each subcircuit instance {
apply “mismatch” variation to parameters

}
for each child analysis {
run child analysis

evaluate any export statements and
store results in a scalar data file

}
}

The following is the syntax for the Monte Carlo analysis:

Name montecarlo parameter=value ... {
analysis statements ...
export statements ...

}

The Monte Carlo analysis

■ Refers to the statistics block(s) for how and which netlist parameters to vary
June 2011 210 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
■ Generates statistical variation (random numbers according to the specified distributions)

■ Runs the specified child analyses (similar to the Spectre nested sweep analysis), where
the child analyses are either

❑ Multiple data-producing child analyses (such as DC or AC analyses)

❑ A single sweep child analysis, which itself has child analyses

■ Calculates the export quantities

Each Monte Carlo run processes export statements that implicitly refer to the result of
the child analyses. These statements calculate scalar circuit output values for
performance characteristics, such as slew rate.

■ Organizes the export data appropriately

Scalar data, such as bandwidth or slew rate, is calculated from an export statement
and saved to an ASCII file, which can be used later for plotting a histogram or
scattergram.

■ After the Monte Carlo analysis is complete, all parameters are returned to their original
values.

Monte Carlo Analysis Parameters

You use the following parameters for Monte Carlo analysis.

Analysis Parameters

Parameter Description

numruns=100 Number of Monte Carlo iterations to perform (not including
nominal).

firstrun=1 Starting iteration number.

variations=process Level of statistical variation to apply. Possible values are
process, mismatch or all

sampling=standard Method of statistical sampling to apply. Possible values are
standard, lhs or elhs.

numbins=0 Number of bins for lhs (latin-hypercube) method. The number
is checked against numruns + firstrun - 1, and Max(numbins,
numruns + firstrun -1) is used for the lhs.
June 2011 211 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Saving Process Parameters

seed Optional starting seed for random number generator.

scalarfile Output file that will contain output scalar data.

paramfile Output file that will contain output scalar data labels.

dut=[...] If set, then the specified subcircuit instance will have process
and mismatch variations applied, the unspecified instance will
only have process variations applied. All subcircuits
instantiated under this instance will also have process and
mismatch enabled. By default, mismatch is applied to all
subcircuit instances in the design and process is applied
globally. This parameter allows the testbench to change and
not affect the variations seen by the actual design.

ignore=[...] If set, no variation will be applied to specified subcircuit
instance(s) All subcircuits instantiated under this instance will
also have no variation enabled. By default, mismatch is
applied to all subcircuit instances in the design and process is
applied globally.

Parameter Description

saveprocessparams Whether or not to save scalar data for statistically varying
process parameters which are subject to process variation.
Possible values are no or yes.

processscalarfile Output file that will contain process parameter scalar data.

processparamfile Output file that will contain process parameter scalar data
labels.

saveprocessvec=[...] Array of statistically varying process parameters (which are
subject to process variation) to save as scalar data in
`processscalarfile'.

savemismatchparams=n
o

Whether or not to save scalar data for statistically varying
mismatch parameters which are subject to mismatch
variation. Possible values are no or yes. Possible values are
no or yes.

mismatchscalarfile Output file that will contain mismatch parameter scalar data.

Parameter Description
June 2011 212 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Flags

Annotation Parameters

mismatchparamfile Output file that will contain mismatch parameter scalar data
labels.

Parameter Description

donominal=yes Whether or not to perform nominal run. Possible values are no
or yes.

addnominalresults=no Whether or not to add nominal run results to MC run results.
Possible values are no or yes.

paramdumpmode=no Whether or not to full dump process/mismatch parameters
information. Possible values are no or yes.

dumpseed=no Whether or not to dump seed parameters information.
Possible values are no or yes.

nullmfactorcorrelation=no Whether or not to set 0% correlation mismatch devices with
m-factor. Possible values are no or yes.

appendsd=no Whether or not to append scalar data. Possible values are no
or yes.

savefamilyplots=no Whether or not to save data for family plots. If yes, this could
require a lot of disk space. Possible values are no or yes.

savedatainseparatedir=no Whether or not to save data for an each plot in a separate
directory. If yes, this could require a lot of disk space. Possible
values are no or yes.

Parameter Description

annotate=sweep Degree of annotation. Possible values are no, title, sweep, or
status.

title Analysis title.

Parameter Description
June 2011 213 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Specifying the First Iteration Number

The advantages of using the firstrun parameter to specify the first iteration number are
as follows:

■ You can reproduce a particular run from a previous experiment when you know the
starting seed and run number but not the corresponding seed.

■ If you are a standalone Spectre user, you can run a Monte Carlo analysis of 100 runs,
analyze the results, decide they are acceptable, and then decide to do a second analysis
of 100 runs to give a total of 200 runs. By specifying the firstrun=101 for the second
analysis, the Spectre simulator retains the data for the first 100 runs and runs only the
second 100 runs. This gives the same results and random sequence as if you ran just a
single Monte Carlo analysis of 200 runs.

Sample Monte Carlo Analyses

For a Monte Carlo analysis, the Spectre simulator performs a nominal run first, if requested,
calculating the specified outputs. If there is any error in the nominal run or in evaluating the
export statements after the nominal run, the Monte Carlo analysis stops.

If the nominal run is successful, then, depending on how the variations parameter is set,
the Spectre simulator applies process variations to the specified parameters and mismatch
variations (if specified) to those parameters for each subcircuit instance. If the export
statements are specified, the corresponding performance measurements are saved as a new
file or appended to an existing file.

The following Monte Carlo analysis statement specifies (using the default) that a nominal
analysis is performed first. The sweep analysis (and all child analyses) are performed, and
export statements are evaluated. If the nominal analysis fails, the Spectre simulator gives
an error message and will not perform the Monte Carlo analysis. If the nominal analysis
succeeds, the Spectre simulator immediately starts the Monte Carlo analysis. The
variations parameter specifies that only process variations (variations=process) are
applied; this is useful for looking at absolute performance spreads. There is a single child
sweep analysis (sw1) so that for each Monte Carlo run, the Spectre simulator sweeps the
temperature, performs the dc and transient analyses, and calculates the slew rate. The output
of the slew rate calculation is saved in the scalar data file.

mc1 montecarlo variations=process seed=1234 numruns=200 {
sw1 sweep param=temp values=[-50 27 100] {

dcop1 dc // a "child" analysis
tran1 tran start=0 stop=1u// another "child" analysis
// export calculations are sent to the scalardata file
export slewrate=oceanEval("slewRate(v(\"vout\"),10n,t,30n,t,10,90)"

}
}

June 2011 214 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
The following Monte Carlo analysis statement applies only mismatch variations, which are
useful for detecting spreads in differential circuit applications. It does not perform a nominal
run.

Note: No temperature sweep is performed.

mc2 montecarlo donominal=no variations=mismatch seed=1234 numruns=200 {
dcop2 dc
tran2 tran start=0 stop=1u
export slewrate=oceanEval("slewRate(v(\"vout\"),10n,t,30n,t,10,90)"

}

The following Monte Carlo analysis statement applies both process and mismatch variations:

mc3 montecarlo saveprocessparams=yes variations=all numruns=200 {
dcop3 dc
tran3 tran start=0 stop=1u
export slewrate=oceanEval("slewRate(v(\"vout\"),10n,t,30n,t,10,90)"

}

Specifying Parameter Distributions Using Statistics Blocks

The statistics blocks are used to specify the input statistical variations for a Monte Carlo
analysis. A statistics block can contain one or more process blocks (which represent batch-
to-batch type variations) and/or one or more mismatch blocks (which represent on-chip or
device mismatch variations), in which the distributions for parameters are specified. Statistics
blocks can also contain one or more correlation statements to specify the correlations
between specified process parameters and/or to specify correlated device instances (such as
matched pairs). Statistics blocks can also contain a truncate statement that can be used
for generating truncated distributions.

The statistics block contains the distributions for parameters:

■ Distributions specified in the process block are sampled once per Monte Carlo run, are
applied at global scope, and are used typically to represent batch-to-batch (process)
variations.

■ Distributions specified in the mismatch block are applied on a per-subcircuit instance
basis, are sampled once per subcircuit instance, and are used typically to represent
device-to-device (on chip) mismatch for devices on the same chip.

When the same parameter is subject to both process and mismatch variations, the sampled
process value becomes the mean for the mismatch random number generator for that
particular parameter.

Note: Statistics blocks can be specified using combinations of the Spectre keywords
statistics, process, mismatch, vary, truncate, and correlate. Braces ({}) are
used to delimit blocks.
June 2011 215 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
The following example shows some sample statistics blocks, which are discussed after the
example along with syntax requirements.

// define some netlist parameters to represent process parameters
// such as sheet resistance and mismatch factors
parameters rshsp=200 rshpi=5k rshpi_std=0.4K xisn=1 xisp=1 xxx=20000 uuu=200

// define statistical variations, to be used
// with a MonteCarlo analysis.
statistics {
 process { // process: generate random number once per MC run
 vary rshsp dist=gauss std=12 percent=yes
 vary rshpi dist=gauss std=rshpi_std // rshpi_std is a parameter
 vary xxx dist=lnorm std=12
 vary uuu dist=unif N=10 percent=yes
 ...
 }
 mismatch { // mismatch: generate a random number per instance
 vary rshsp dist=gauss std=2
 vary xisn dist=gauss std=0.5
 vary xisp dist=gauss std=0.5
 }
 // some process parameters are correlated
 correlate param=[rshsp rshpi] cc=0.6
 // specify a global distribution truncation factor
 truncate tr=6.0 // +/- 6 sigma
}

// a separate statistics block to specify correlated (i.e. matched)
//components

// where m1 and m2 are subckt instances.
statistics {
 correlate dev=[m1 m2] param=[xisn xisp] cc=0.8
}

Note: You can specify the same parameter (for example, rshsp) for both process and
mismatch variations.

In the process block, the process parameter rshsp is varied with a Gaussian distribution,
where the standard deviation is 12 percent of the nominal value (percent=yes). When
percent is set to yes, the value for the standard deviation (std) is a percentage of the
nominal value. When percent is set to no, the specified standard deviation is an absolute
number. This means that parameter rshsp should be varied with a normal distribution, where
the standard deviation is 12 percent of the nominal value of rshsp. The nominal or mean
value for such a distribution is the current value of the parameter just before the Monte Carlo
analysis starts. If the nominal value of the parameter rshsp was 200, the preceding example
specifies a process distribution for this parameter with a Gaussian distribution with a mean
value of 200 and a standard deviation of 24 (12 percent of 200). The parameter rshpi (sheet
resistance) varies about its nominal value with a standard deviation of 0.4 K-ohms/square.

In the mismatch block, the parameter rshsp is then subject to further statistical variation on
a per-subcircuit instance basis for on-chip variation. Here, it varies a little for each subcircuit
instance, this time with a standard deviation of 2. For the first Monte Carlo run, if there are
multiple instances of a subcircuit that references parameter rshsp, then (assuming
June 2011 216 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
variations=all) it might get a process random value of 210, and then the different
instances might get random values of 209.4, 211.2, 210.6, and so on. The parameter xisn
also varies on a per-instance basis, with a standard deviation of 0.5. In addition, the
parameters rshsp and rshpi are correlated with a correlation coefficient (cc) of 0.6.

Specifying Distributions

Parameter variations are specified using the following syntax:

vary PAR_NAME dist=type {std=<value> | N=<value>} {percent=yes|no}

Three types of parameter distributions are available: Gaussian, log normal, and uniform,
corresponding to thetype keywords gauss, lnorm, and unif, respectively. For both the
gauss and the lnorm distributions, you specify a standard deviation using the std keyword.

The following distributions (and associated parameters) are supported:

■ Gaussian

This distribution is specified using dist=gauss. For the Gaussian distribution, the mean
value is taken as the current value of the parameter being varied, giving a distribution
denoted by Normal(mean,std). Using the example in “Specifying Parameter Distributions
Using Statistics Blocks,” parameter rshpi is varied with a distribution of
Normal(5k,0.4k). The nominal value for the Gaussian distribution is the value of the
parameter before the Monte Carlo analysis is run. The standard deviation can be
specified using the std parameter. If you do not specify the percent parameter, the
standard deviation you specify is taken as an absolute value. If you specify
percent=yes, the standard deviation is calculated from the value of the std parameter
multiplied by the nominal value and divided by 100; that is, the value of the std
parameter specifies the standard deviation as that percentage of the nominal value.

■ Log normal

This distribution is specified using dist=lnorm. The log normal distribution is denoted
by

log(x) = Normal(log(mean), std)

where x is the parameter being specified as having a log normal distribution.

Note: log() is the natural logarithm function. For parameter xxx in the example in
“Specifying Parameter Distributions Using Statistics Blocks,” the process variation is
according to

log(xxx) = Normal(log(20000), 12)

The nominal value for the log normal distribution is the natural log of the value of the
parameter before the Monte Carlo analysis is run. If you specify a normal distribution for
June 2011 217 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
a parameter P1 whose value is 5000 and you specify a standard deviation of 100, the
actual distribution is produced such that

■ Uniform

This distribution is specified using dist=unif. The uniform distribution for parameter x
is generated according to

x = unif(mean-N, mean+N)

such that the mean value is the nominal value of the parameter x, and the parameter is
varied about the mean with a range of + N. The standard deviation is not specified for the
uniform distribution, but its value can be calculated from the formula std=N/sqrt(3). The
nominal value for the uniform distribution is the value of the parameter before the Monte
Carlo analysis is run. The uniform interval is specified using the parameter N. For
example, specifying dist=unif N=5 for a parameter whose value is 200 results is a
uniform distribution in the range 200+N, that is, from 195 to 205. You can also specify
percent=yes, in which case, the range is 200+N%, that is, from 190 to 210.

Derived parameters that have their default values specified as expressions of other
parameters cannot have distributions specified for them. Only parameters that have numeric
values specified in their declaration can be subjected to statistical variation.

Parameters that are specified as correlated must have had an appropriate variation specified
for them in the statistics block.

For example, if you have the parameters

XISN=XIS+XIB

you cannot specify distribution for XISN or a correlation of this parameter with another.

The percent flag indicates whether the standard deviation std or uniform range N are
specified in absolute terms (percent=no) or as a percentage of the mean value
(percent=yes). For parameter uuu in the example in “Specifying Parameter Distributions
Using Statistics Blocks,” the mean value is 200, and the variation is 200 +10%*(200), that is,
200 + 20. For parameter rshsp, the process variation is given by Normal(200, 12%*(200)),
that is, Normal(200, 24). Cadence recommends that you do not use the percent=yes with
the log normal distribution.

Truncation Factor

The default truncation factor for Gaussian distributions (and for the Gaussian distribution
underlying the log normal distribution) is 4.0 sigma. Randomly generated values that are

P()log N 5000()100log()=
June 2011 218 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
outside the range of mean + 4.0 sigma are automatically rejected and regenerated until they
fall inside the range. You can change the truncation factor using the truncate statement.
The following is the syntax:

truncate tr=value

Note: The value of the truncation factor can be a constant or an expression.

Note: Parameter correlations can be affected by using small truncation factors.

Multiple Statistics Blocks

You can use multiple statistics blocks, which accumulate or overlay each other. Typically,
process variations, mismatch variations, and correlations between process parameters are
specified in a single statistics block. This statistics block can be included in a “process”
include file, such as the ones shown in the example in “Process Modeling Using Inline
Subcircuits” on page 110. A second statistics block can be specified in the main netlist where
actual device instance correlations are specified as matched pairs.

The following statistics block can be used to specify the correlations between matched pairs
of devices and probably is placed or included into the main netlist by the designer. These
statistics are used in addition to those specified in the statistics block in the preceding section
so that the statistics blocks “overlay” or “accumulate.”

// define correlations for "matched" devices q1 and q2

statistics {

correlate dev=[q1 q2] param=[XISN...] cc=0.75

}

Note: You can use a single statistics block containing both sets of statements; however, it is
often more convenient to keep the topology-specific information separate from the process-
specific information.

Correlation Statements

There are two types of correlation statements that you can use:

■ Process parameter correlation statements

The following is the syntax of the process parameter correlation statement:

correlate param=[list of parameters] cc=value

This allows you to specify a correlation coefficient between multiple process parameters.
You can specify multiple process parameter correlation statements in a statistics block to
build a matrix of process parameter correlations. During a Monte Carlo analysis, process
June 2011 219 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
parameter values are randomly generated according to the specified distributions and
correlations.

■ Instance or mismatch correlation statements (matched devices)

The following is the syntax of the instance or mismatch correlation statement:

correlate dev=[list of subckt instances] {param=[list of parameters]}
cc=value

where the device or subcircuit instances to be matched are listed in list of subckt
instances, and list of parameters specifies exactly which parameters with
mismatch variations are to be correlated. Use the instance mismatch correlation
statement to specify correlations for particular subcircuit instances. If a subcircuit
contains a device, you can effectively use the instance correlation statements to specify
that certain devices are correlated (matched) and give the correlation coefficient. You
can optionally specify exactly which parameters are to be correlated by giving a list of
parameters (each of which must have had distributions specified for it in a mismatch
block) or by specifying no parameter list, in which case all parameters with mismatch
statistics specified are correlated with the given correlation coefficient. The correlation
coefficients are specified in the <value> field and must be between + 1.0.

Note: Correlation coefficients can be constants or expressions, as can std and N when
specifying distributions.

Characterization and Modeling

The following statistics blocks can be used with the example in “Process Modeling Using
Inline Subcircuits” on page 110 if they are included in the main netlist, anywhere below the
main parameters statement. These statistics blocks are meant to be used in conjunction
with the modeling and characterization equations in the inline subcircuit example, for a Monte
Carlo analysis only.

statistics {
 process {
 vary RSHSP dist=gauss std=5
 vary RSHPI dist=lnorm std=0.15
 vary SPDW dist=gauss std=0.25
 vary SNDW dist=gauss std=0.25
 }
 correlate param=[RSHSP RSHPI] cc=0.6
 mismatch {
 vary XISN dist=gauss std=1
 vary XBFN dist=gauss std=1
 vary XRSP dist=gauss std=1
 }
}

statistics {
 correlate dev=[R1 R2] cc=0.75
 correlate dev=[TNSA1 TNSA2] cc=0.75
}

June 2011 220 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Spectre Reliability Analysis

Spectre reliability analysis for HCI, NBTI and/or PBTI is a two-phase simulation flow. The first
phase, fresh and stress simulation, calculates the device age or degradation. The second
phase, post-stress or aging simulation, simulates the degradation effect on the circuit
performance based on the device degradation information obtained during the first phase of
stress simulation.

The following figure shows the reliability simulation flow in Spectre:

Reliability Simulation Block

Reliability simulation in Spectre is specified by using a reliability block, which is similar to the
block statement that is used for Monte Carlo simulation.

A reliability block contains the following control statements:

■ Reliability Control Statements

■ Stress Statements
June 2011 221 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
■ Aging/Post-Stress Statements

■ Additional Notes

The following example shows how these statements should be specified within a reliability
block:

reliability_run_name reliability {

reliability control statements

stress statements

aging/post-stress statements

}

Note: Any fresh simulation settings are provided before the reliability block statements. The
reliability block then provides the stress and post-stress simulation.

Reliability Control Statements

The reliability control statements control the reliability simulation. The RelXpert control
statement syntax is also supported in the reliability block.

Note: For detailed information on these statements, see the Reliability Control Statements
Reference section.

Stress Statements

The stress statements specify or change the stress conditions, and run the stress simulation.
Stress statements can be categorized as stress testbench/vectors and simulation
statements. Stress testbench statements specify the stress conditions during the stress
simulation phase. This is done through alter statements. Stress testbench statements are
optional. Stress simulation is performed through another transient statement. A transient
statement is required for running stress simulation.

Aging/Post-Stress Statements

The aging statements specify or change the post-stress or end-of-life simulation conditions,
and run the aging simulation. Similar to stress statements, the end-of-life conditions are
specified through alter statements and run with another transient simulation.

Note: The aging transient conditions can be different from the stress transient conditions.
June 2011 222 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Additional Notes

■ The reliability feature only supports bsim4, bsim3v3, psp, bsimsoi and URI models.

■ The two parameters age and deltad must be specified in the reliability block.

Example of Reliability Block Setup

Example 1:
rel reliablity {

age time = [10y]

deltad value = 0.1

tran_stress tran start = 0.0n step = 1n stop = 10n

change1 alter param = temp value = 25

tran_aged tran start = 0.0n step = 1n stop = 10n

}

The above example runs the stress simulation at the same fresh condition. Then, the aged
simulation is run with temp=25C.

Example 2:
rel1 reliability {

/* control statements */

age time = [100h] /* or *relxpert: .age 100h */

agemethod type=agemos

deltad value=0.1

/* stress testbench */

Change0 alter param=temp value=125

Change1 alter dev=VDD1 value=1.5 /* change VDD condition to 1.5V during stress
*/

/* stress simulation */

tran_stress tran start=0 stop=1us

/* aging testbench */

Change2 alter dev=VDD1 value=1.2 /* change VDD condition in EOL simulation */

change3 alter param=temp value=25 /* change temp value in EOL simulation */

/* aging simulation */

tran_age tran start=0.5u stop=1us

}

June 2011 223 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
In the above example, reliability simulation is carried with stressing devices for 100h with
VDD at 1.5V and temp at 125C. After stress, end of life simulation (aging) is done with VDD
at 1.2V and temperature at 25C.

Reliability Control Statements Reference

■ accuracy (*relxpert: accuracy) on page 225

■ age (*relxpert: age) on page 226

■ agelevel_only (*relxpert: agelevel_only) on page 227

■ degsort (*relxpert: degsort) on page 228

■ deltad (*relxpert: deltad) on page 229

■ idmethod (*relxpert: idmethod) on page 230

■ igatemethod (*relxpert: igatemethod) on page 231

■ isubmethod (*relxpert: isubmethod) on page 232

■ maskdev (*relxpert: maskdev) on page 233

■ minage (*relxpert: minage) on page 234

■ opmethod (*relxpert: opmethod) on page 235

■ relx_tran (*relxpert: relx_tran) on page 236

■ report_model_param (*relxpert: report_model_param) on page 237

■ uri_lib (*relxpert: uri_lib) on page 238

■ User-Defined Reliability Models on page 239
June 2011 224 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
accuracy (*relxpert: accuracy)

accuracy level={1 | 2}

Description

Specifies methods used in the reliability simulation when performing integration and substrate
current calculation.

Arguments

Example
accuracy level = 2

*relxpert: accuracy 2

Specifies that trapezoidal integration will be used and lsub will be calculated when Vgs < Vth.

level={1 | 2} Specifies trapezoidal integration when performing integrations
and calculates Isub for Vgs < Vth. When level is set to 1, the
software uses backward Euler integration and sets Isub=0
when Vgs < Vth. When level is set to 2, the software uses
trapezoidal integration and calculates Isub when Vgs < Vth.
Setting accuracy to 2 is more accurate, but increases
simulation time when compared to when accuracy is set to 1.

Default: 1
June 2011 225 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
age (*relxpert: age)

age time = [value]

Description

Specifies the time at which the transistor degradation and degraded SPICE model
parameters are calculated.

Arguments

Example
age time = [10y]

*relxpert: age 10y

Specifies the age time as 10 years.

value The duration in the future at which the transistor degradation and
degraded SPICE model parameters are to be calculated. Attach
the suffix y (year), h (hour) or m (minute).

There should be no space between the number and suffix. For
example, 10m, 1e-5sec.

Note: Currently, specifying multiple time values is not
supported.
June 2011 226 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
agelevel_only (*relxpert: agelevel_only)

agelevel_only value=[level_value model_name, level_value model_name, ...]

Description

Specifies the age level for performing reliability analysis on the specified model(s). You can
specify different age levels for different set of models.

Note: This option also supports the URI defined agelevel statement.

If model_name is not specified, the simulation is performed on all of the devices at the
specified age level.

Arguments

Example
agelevel_only value=[101 pmos1 pmos2, 112 pmos1 pmos2]

Runs reliability analysis on pmos1 and pmos2 models with age levels 101 and 112.

level_value Sets the level for reliability analysis, which is essentially the age
level number of the reliability analysis is to be performed.

The following levels can be used to specify Cadence internal
ageMOS models:

■ 1: Specifies HCI reliability analysis.

■ 2: Specifies NBTI reliability analysis.

■ 3: Specifies PBTI reliability analysis.

model_name Lists the models at one age level to perform reliability analysis.
June 2011 227 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
degsort (*relxpert: degsort)

degsort {threshold = value | number = value }

Description

Prints MOS transistors based on the threshold and number settings. The results are sorted
in the descending order of degradation.

Note: The threshold and number arguments are mutually exclusive. Therefore, only one
of them can be specified with degsort to print the sorted device degradation results.

Arguments

Example
degsort threshold = 0.1

*relxpert: degsort -threshold 0.1

Prints all MOS transistors that have degradation value greater than 0.1.

threshold=value Pints the transistors having degradation values greater than
threshold value. value can be in decimal notation (xx.xx) or in
engineering notation (x.xxe+xx).

number=value Prints only the first value transistors having the highest
degradations. For example, if number=100, the software will
print the first 100 transistors with highest degradations.
June 2011 228 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
deltad (*relxpert: deltad)

deltad value = deltad_value model_name

Description

Requests the calculation of lifetime for each transistor under the circuit operating conditions.
You can use multiple deltad statements for different types of transistors.

Arguments

Example

deltad value=0.1 pmos

Specifies that the lifetime calculation will be done under the circuit operating conditions for
pmos transistors.

value=deltad_value

The degradation value can be transconductance ,
linear or saturation drain current degradation ,
threshold voltage shift , or any other degradation monitor,
depending on the definitions of the lifetime parameters H and m.
deltad_value can be in decimal notation (xx.xx) or in
engineering notation (x.xxe+xx).

model_name Name of a specific model whose lifetime is calculated. The
model name must be the same as specified in the .model card.

Important

Currently, specifying the model name is not supported.
June 2011 229 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
idmethod (*relxpert: idmethod)

idmethod type = { ids | idrain }

Description

Specifies how the simulator obtains the drain current (Id) to perform reliability calculations.
The following types of drain currents, which are available from SPICE, are supported by
reliability analysis:

■ Dynamic drain current (also called AC drain current) - this is the current that flows in to
the drain node.

■ Static drain current (also called channel drain current, DC drain current, or Ids).

Arguments

Example
idmethod type=idrain (new format)

*relxpert: idmethod idrain

Specifies the reliability simulator to print dynamic drain current.

type=ids Instructs the reliability simulator to use Ids static current
(Default).

type=idrain Instructs the reliability simulator to use dynamic drain current.
June 2011 230 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
igatemethod (*relxpert: igatemethod)

igatemethod type={calc | spice}

Description

Specifies the method used for obtaining the gate terminal current of a MOSFET.

During MOSFET HCI simulation, the gate terminal current is required for calculating the
degradation value. The simulator can either calculate this value using internal Igate model, or
obtain it from the built-in SPICE model such as BSIM4 or PSP Igate model.

If this command is not used, the simulator calculates the gate terminal current using internal
Igate model.

Arguments

Example
igatemethod type=spice

*relxpert: igatemethod spice

Specifies that the gate terminal current value should be from built-in SPICE model.

calc Calculates the gate terminal current using the internal Igate
model (Default).

spice Obtains the gate terminal current value using built-in SPICE
model.
June 2011 231 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
isubmethod (*relxpert: isubmethod)

isubmethod type={ calc | spice }

Description

Specifies the method used for obtaining substrate terminal current of a MOSFET.

During MOSFET HCI simulation, the substrate terminal current is required for calculating the
degradation value. The simulator can either calculate this value using internal Isub model, or
obtain it from the built-in SPICE model such as BSIM4 or PSP Isub model.

If this command is not used, the simulator calculates the substrate terminal current using
internal Isub model.

Arguments

Example
isubmethod type=spice

*relxpert: isubmethod spice

Specifes that the substrate terminal current value should be obtained from the built-in SPICE
model.

calc Calculates the substrate terminal current using the internal Isub
model (Default).

spice Obtains the substrate terminal current value using built-in
SPICE model
June 2011 232 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
maskdev (*relxpert: maskdev)

maskdev type={include | exclude} { sub = [sub1 sub2 sub3 …] mod = [mod1 mod2 mod3
…] dev = [inst1 inst2 inst3 …] }

Description

Includes or excludes:

■ models which belong to the subcircuit listed in the subckt list

■ devices which belong to the model listed in the model list

■ devices which are listed in the instance list

Arguments

Example
maskdev type=include sub=[inv] mod=[nmos pmos] dev=[I1 I2 I3 I4]

*relxpert: maskdev include subckt = [inv] model=[nmos pmos] instance=[I1 I2 I3 I4]

Includes the models that belong to the inv subcircuit and the pmos and nmos models. In
addition, it includes the l1, l2, l3, and l4 devices.

type=include Performs reliability simulation on the specified devices, or the
models that belong to the listed subcircuit, or devices that belong
to the listed model only.

type=exclude Excludes the listed devices, or the models that belong to the
listed subcircuit, or the devices that belong to the specified
model during reliability simulation.

sub Specifies the subcircuit(s) for which the related models should
be included or excluded while performing reliability analysis.

mod Specifies the models for which the related devices should be
included or excluded while performing reliability analysis.

dev Specifies the instances to be included or excluded during
reliability analysis.
June 2011 233 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
minage (*relxpert: minage)

minage value = minage_value

Description

Sets the smallest Age value for which degraded SPICE model parameters are calculated.
This statement speeds up aging calculation by using fresh SPICE model parameters if the
transistor Age value is smaller than the specified minage_value.

Arguments

Example
minage value = 0.001

*relxpert: minage 0.001

Specifies that the smallest Age value, 0.001, for which degraded SPICE model parameters
are calculated.

value=minage_value Specifies the smallest Age value for which degraded SPICE
model parameters are calculated. minage_value can be in
decimal notation (xx.xx) or in engineering notation (x.xxe+xx).
June 2011 234 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
opmethod (*relxpert: opmethod)

opmethod type = { calc | spice }

Description

Specifies whether the Igate or Isub value should be obtained from the SPICE models (for
example, BSIM3 or BSIM4) or the internal Igate or Isub equation should be used.

Arguments

Example
opmethod type=spice

*relxpert: opmethod spice

Specifies that the gate and substrate terminal current value should be obtained from the
SPICE model.

calc Calculates the gate and substrate terminal current using the
Cadence Igate and Isub model equations (Default).

spice Obtains the gate and substrate terminal current value from the
SPICE model.
June 2011 235 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
relx_tran (*relxpert: relx_tran)

relx_tran start=start_time stop=stop_time

Description

Specifies the start and stop time for reliability simulation during transient simulation.

Arguments

Example
relx_tran start = 1n stop = 10n

*relxpert: relx_tran 1n 10n

Specifies that the start time for reliability simulation during transient simulation is 1n and the
stop time for reliability simulation during transient simulation is 10n.

start=start_time Specifies the start time of reliability analysis during transient
simulation.

stop=stop_time Specifies the stop time of reliability analysis during transient
simulation.

Default: If stop_time is not specified, the software stops in
.tran statement.
June 2011 236 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
report_model_param (*relxpert: report_model_param)

report_model_param value = {yes | no}

Description

Determines whether to print the fresh and aged parameters in the.bm# file. When set to yes,
the fresh and aged parameters are printed to the .bm# file.

Arguments

Example
report_model_param value = yes

*relxpert: report_model_param yes

Prints the fresh and aged parameters in the .bm# file.

value=yes Prints the fresh and aged parameters in the .bm# files.

value=no Skips printing of the fresh and aged parameters in the .bm#
files.
June 2011 237 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
uri_lib (*relxpert: uri_lib)

uri_lib file = { "uri_lib_name" } uri_mode= [agemos | appendage]
debug = [0 | 1]

Description

Loads the Unified Reliability interface (URI) shared library.

Note: For more information on the URI functions, see the Unified Reliability Interface
Functions section in the Virtuoso® Unified Reliability Interface Reference.

Arguments

Example
uri_lib file = "./libURI.so" uri_mode = agemos debug =1

*relxpert: uri_lib "./libURI.so" uri_mode =agemos debug=1

Specifies the libURI.so URI library and the agemos URI mode. In addition, requests the
debug information to be generated.

file=uri_lib_name

Specifies the shared library name.

uri_mode Specifies which method should be used to perform aging
simulation. Currently, only the agemos mode is supported.

Note: appendage mode is not supported in the MMSIM10.1
release.

debug Specifies whether to print the debug information. The default
value is 0.
June 2011 238 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
User-Defined Reliability Models

Cadence provides a unified reliability interface (URI) to allow you to implement customized
models for running reliability simulation. Contact Cadence support or refer to URI document
for more information.

Important

Only BSIM4 ageMOS and user-defined URI models are supported.
June 2011 239 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
June 2011 240 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
8
Control Statements

The Virtuoso® Spectre® circuit simulator lets you place a sequence of control statements in
the netlist. You can use the same control statement more than once. Different Spectre control
statements are discussed throughout this manual. The following are control statements:

■ The alter and altergroup Statements on page 242

■ The assert Statement on page 245

■ The check Statement on page 253

■ The checklimit Statement on page 254

■ The ic and nodeset Statements on page 260

■ The info Statement on page 265

■ The options Statement on page 272

■ The paramset Statement on page 275

■ The save Statement on page 275

■ The print Statement on page 287

■ The set Statement on page 289

■ The shell Statement on page 289

■ The statistics Statement on page 290
June 2011 241 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
The alter and altergroup Statements

You modify individual parameters for devices, models, circuit, and subcircuit parameters
during a simulation with the alter statement. The modifications apply to all analyses that
follow the alter statement in your netlist until you request another parameter modification.
You also use the alter statement to change the following options statement temperature
parameters and scaling factors:

■ temp

■ tnom

■ scale

■ scalem

You can use the altergroup statement to respecify device, model, and circuit parameter
statements that you want to change for subsequent analyses. You can also change
subcircuits if you do not change the topology.

Changing Parameter Values for Components

To change a parameter value for a component device or model, you specify the device or
model name, the parameter name, and the new parameter value in the alter statement. You
can modify only one parameter with each alter statement, but you can put any number of
alter statements in a netlist. The following example demonstrates alter statement syntax:

SetMag alter dev=Vt1 param=mag value=1

■ SetMag is the unique netlist name for this alter statement. (Like many Spectre
statements, each alter statement must have a unique name.)

■ The keyword alter is the primitive name for the alter statement.

■ dev=Vt1 identifies Vt1 as the netlist name for the component statement you want to
modify. You identify an instance statement with dev and a model statement with mod.
When you use the alter statement to modify a circuit parameter, you leave both dev
and mod unspecified.

■ param=mag identifies mag as the parameter you are modifying. If you omit this
parameter, the Spectre simulator uses the first parameter listed for each component in
the Spectre online help as the default.

■ value=1 identifies 1 as the new value for the mag parameter. If you leave value
unspecified, it is set to the default for the parameter.
June 2011 242 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Changing Parameter Values for Models

To change a parameter value for model files with the altergroup statement, you list the
device, model, and circuit parameter statements as you would in the main netlist. Within an
alter group, each model is first defaulted and then the model parameters are updated. You
cannot nest alter groups. You cannot change from a model to a model group and vice versa.
The following example demonstrates altergroup statement syntax:

ag1 altergroup {
parameters p1=1
model myres resistor r1=1e3 af=p1
model mybsim bsim3v3 lmax=p1 lmin=3.5e-7

}

The following example shows the full replacement of models using the altergroup
statement:

ff_25 altergroup {
include "./models/corner_ff"

}

For each model or device being altered, the parameters are first defaulted and then set to the
new values. The parameter dependencies are updated and maintained.

You can include files into the alter group and can use the simulator lang=spice
command to switch language mode. For more details on the include command, see the
Spectre online help (spectre -h include). A model defined in the netlist has to have the
same model name and primitive type (such as bsim2, bsim3, or bjt) in the alter group. For
model groups, you can change the number of models in the group. You cannot change from
a model to a model group and vice versa. For details on model groups, see the Spectre online
help (spectre -h bsim3v3).

Further Examples of Changing Component Parameter Values

This example changes the is parameter of a model named SH3 to the value
1e-15:

modify2 alter mod=SH3 param=is value=1e-15

The following examples show how to use the param default in an alter statement. The first
parameter listed for resistors in the Spectre online help is the default. For resistors, this is the
resistance parameter r.

Consequently, if R1 is a resistor, the following two alter statements are equivalent:

change1 alter dev=R1 param=r value=50

change1 alter dev=R1 value=50
June 2011 243 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Changing Parameter Values for Circuits

When you change a circuit parameter, you use the same syntax as when you change a device
or model parameter except that you do not enter a dev or a mod parameter.

This example changes the ambient temperature to 0°C:

change2 alter param=temp value=0

The following table describes the circuit parameters you can change with the alter
statement:

Note: If you change temp or tnom using an alter statement, all expressions with temp or
tnom are reevaluated.

Parameter Description

temp Ambient temperature

tnom Default measurement temperature for component parameters

scalem Component model scaling factor

scale Component instance scaling factor
June 2011 244 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
The assert Statement

With the assert statement, you can set custom characterization checks to specify the safe
operating conditions for your circuit. The Spectre circuit simulator then issues messages
telling you when parameters move outside the safe operating area and, conversely, when the
parameters return to the safe area, peak value and duration of violations. When a variable
changes from an above-max value directly to a below-min value in one simulation step (that
is, no stay within bounds), the Spectre simulator uses a middle bound solution (min+max)/
2 to report the peak value and the duration of violations.

The four types of checks that are supported in the device checking flow are described below.

Assert statements, which you specify in the netlist, are supported for transient, AC, DC and
DC sweep analyses.

You can set checks for any of the following:

■ Top-level netlist parameter

■ Model parameter

■ Instance parameter

Check Description

Initial setup check Includes checks on constant parameters only, such as constant
global, model or instance parameters that are independent of the
operating points.

This check is done only once before any analysis (including
checklimit) is run. This check is also repeated once if any
constant parameter is altered.

Note: The initial setup check cannot be disabled and the error
level cannot be changed by the checklimit statement.

Operating point check Includes checks on MDL expressions and instance operating
point parameters.

This check is done for each analysis.

Time domain check Check done during transient analysis.

Frequency domain
check

Check done during AC analysis.
June 2011 245 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
■ Operating point parameter

■ Expressions

The syntax for defining a check is

Name assert [sub=subcircuit_master] [subs=subcircuit_masters]
{ primitive=primitive | mod=model | dev=instance }
{ param=param | modelparam=mod_param | expr="[var_list;] mdl_expr" }
[min=value] [max=value]
[duration=independentvar_limit]
[message=”message”]
[level= none | notice | warning | error | fatal]
[info= yes | no]
[values=[enum_list]]
[boolean=true | false]
[anal_types=[analysis_list]]

where

Name Name of the check statement. The name must not start with
a number or contain invalid characters like space, dot,
comma, slash, etc.

sub=subcircuit_master Subcircuit over which the check is to be applied.
An assert on a subcircuit type applies the check
hierarchically to the lowest leaf-level instances. For example,
If you define an assert statement with sub and mod, all
device instances of the specified model type over all
instances of the specified subcircuit type are checked. If the
subcircuit type or master instantiates another subcircuit, the
devices and models in that instance will be checked as well.
Wildcards are supported. Double quotation marks are
required with wildcards. For example, sub="n*".

Note: The assert statement will be ignored if an invalid
subcircuit name is specified.

subs=subcircuit_masters The subcircuits over which the check is to be applied.

Wildcards are supported. For example,
subs=[nmos? pmos*]

Note: Enclose the subcircuit names within square brackets
as shown in the above example.
June 2011 246 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
primitive=primitive Primitive whose model or instance parameter is to be
checked. For a complete list of primitives, see spectre -h
components.

mod=model Model type whose model or instance parameter is to be
checked. If the parameter to be checked is an instance
parameter (specified using the param parameter), all
instances of the specified model are checked. If the
parameter to be checked is a model parameter (specified
using the modelparam parameter), only the specified model
is checked.

dev=instance Device or subcircuit instance whose instance parameter is to
be checked. A name is first looked up as a subcircuit
instance and then as a device instance. If an inline subcircuit
and inline device inherits the same hierarchical name, the
assert is applied to the subcircuit instance. If, however, the
parameter specified is a device instance parameter, the
assert is applied to the device instance.

param=param Device instance parameter, netlist parameter, operating point
parameter, subcircuit parameter, node voltage or device
terminal current to be checked. It is checked within the scope
of the specified sub, subs, dev, mod or primitive.

modelparam=mod_param Model parameter to be checked.

expr="[var_list;]
mdl_expr"

MDL expression to be checked.

The var_list is optional and allows the Spectre simulator
to return the value of specified variables. For example,
expr="v_ds=v(d,s); len=l; v(d,s)<3 || l>0.4u"

An MDL expression can contain instance parameters,
operating point parameters, netlist parameters, subcircuit
parameters, node voltages, device terminal currents, or
boolean expressions. The expression is checked within the
scope of the specified sub, subs, primitive, mod or dev.

The Spectre circuit simulator displays an error message
when a boolean expression is true (by default) or when a
non-boolean expression crosses the maximum or minimum
value. You do not need to specify the max or min for a
boolean expression.

min=value Lower limit of the parameter to be checked.
Default value: - ∞
June 2011 247 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
max=value Upper limit of the parameter to be checked.
Default value: +∞

Note the following:

■ The expression of constants is allowed to be used in min
and max parameters. However, MDL expressions with
variables, such as V() and I() are not allowed. (See
Example 4 on page 252)

■ The min and max parameters are ignored for boolean
expression checks.

duration=independentva
r_limit

Time period over which the check has to be violated before a
warning is displayed. Applicable to transient analyses only.

message=”message” Message to be printed if the check fails.

level= none | notice |
warning | error | fatal

Severity level of the message if the check fails.
If the severity level is notice or warning, simulation
continues after the message is displayed.
If the severity level is error, the Spectre circuit simulator
aborts the analysis when the first error-level violation occurs.
If the severity level is fatal, the Spectre circuit simulator
aborts the simulation when the first fatal-level violation
occurs.
Default value: warning

info= yes | no When yes, the parameter value is printed and the min, max,
and duration parameters are ignored.
Default: no

values=[enum_list] List of values of enumeration type parameters. By default,
violations are reported when an enumeration parameter has
a value inside enum_list and getting outside of
enum_list. If the boolean=false parameter is set,
violations are reported when an enumeration parameter has
a value outside enum_list.

Example: param=region values=[triode sat]

Note the following:

■ Without specifying values, an enumeration type
parameter check will be ignored.

■ There is no need to specify the min or max parameter for
enumeration type parameter checks.
June 2011 248 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
The following table displays some ways to use the assert parameters.

boolean= true | false This is used to choose report style for boolean violations.
When set to true (default), the violation is printed when the
expression changes from false to true. When set to
false, the violation is printed when the expression changes
from true to false.

anal_types=[analysis
_list]

The list of analysis types over which the check is to be
applied. By default, the check is applied for all the analyses
specified in the netlist. Possible values are ac, dc, tran and
noise.

Example: anal_types=[dc tran]

Note: The anal_types parameter will be ignored if an
invalid analysis type is specified.

Assert parameters Description Applies to

1 dev=device or subckt
instance
param=paramname

paramname can be an:
- Instance parameter
- Operating point
parameter
- Netlist parameter
- Node voltage or device
terminal current

For subcircuit instances,
paramname can be a
subcircuit parameter.

The specified instance.

2 mod=model
param=paramname

paramname can be an:
- Instance parameter
- Operating point
parameter

All instances of the
specified model.

3 mod=model
modelparam=paramname

paramname must be a
model parameter.

The specified model.

4 primitive=primitive
param=paramname

paramname can be an:
- Instance parameter.
- Operating point
parameter

All instances of the
specified primitive type.
June 2011 249 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
5 primitive=primitive
modelparam=paramname

paramname must be a
model parameter.

All models of the specified
primitive type.

6 sub=subcircuit_master
dev=X1
param=paramname

Device X1 over all
instances of the specified
subcircuit.
Same as row 1.

7 sub=subcircuit_master
mod=model
param=paramname

All instances of the
specified model over all
instances of the specified
subcircuit.
Same as row 2.

8 sub=subcircuit_master
mod=model
modelparam=paramname

The specified model over
all instances of the
specified subcircuit.
Same as row 3.

9 sub=subcircuit_master
primitive=primitive
param=paramname

All instances of the
specified primitive over all
instances of the specified
subcircuit
Same as row 4.

10 sub=subcircuit_master
primitive=primitive
modelparam=paramname

All models of the specified
primitive type over all
instances of the specified
subcircuit.
Same as row 5.

11 sub=subcircuit_master
param=paramname

paramname is a
subcircuit parameter.

All instances of the
subcircuit.

12 expr=mdl_expr Valid conditional
expression or
combination of operating
points.

Expression-specific
instances, node voltages
etc.

13 expr="mdl_expr"
min=value
max=value

The expression is
evaluated and compared
against the min and max
values.

Expression-specific
instances, node voltages
etc.

Assert parameters Description Applies to
June 2011 250 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
If you define an assert statement within a subcircuit block without the sub parameter, the
check is applied to that block only. If you use the sub parameter, the specified subcircuit
master must be defined within the block.

You can enable or disable checks or groups of checks by the checklimit statement. You
can control the display of assert messages by the global option devcheck_stat (default
value is yes). This option is useful for turning off the display of statistics messages while
keeping the checks on.

Violations are reported at the following three stages:

■ At initial setup stage.

■ On the occurrence of a violation when the assert is evaluated.

■ At the end of an analysis.

All assert statement violations are written to the Spectre log file by default irrespective of
the maxwarnstologfile and maxnotestologfile parameter settings. You can use
the checklimitfile option to write the violations to a dedicated file. A message during
simulation indicates where the violations are being written. For more information, see
spectre -h options.

Examples of assert Statement

Example 1
vtho_check assert primitive=bsim3 modelparam=vtho min=-0.2 max=0.2

message=”vtho exceeds bound” level=warning

Checks for model parameter vtho over all device instances of the primitive type BSIM3 and
prints a warning vtho exceeds bound if the value of vtho is less than -0.2 and higher
than 0.2.

Example 2
m1vgs_check assert sub=inv dev=m1 param=vgs min=0.0 max=2.5

message=”vgs exceeds bound” level=notice

Checks for operating point vgs in the device m1 over all instances of the subcircuit type inv
in the netlist and prints a notice vgs exceeds bound if the value of vgs is less than 0 and
higher than 2.5.
June 2011 251 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Example 3

Netlist:

subckt mysubckt a b c
parameters adNum=0.0
.......//contents of the subcircuit
ends mysubckt

Check defined for the above netlist:

adNum_check assert dev=X1 param=adNum min=0.0 max=5.0
message=”Drain parasitic resistor is too high” level=warning

Checks the parameter adNum in the subcircuit instance X1 and prints a warning Drain
parasitic resistor is too high if the value of adNum is higher than 5.0.

Example 4
Parameters p1=0.8
...

M1_powercheck assert expr="(max(m1:ids*m1:vds))" max=(p1*0.5e-3)"
message=”power of M1 exceeds expected load power”

Checks that (max(m1:ids*m1:vds)) is less than (p1*0.5e-3). If not, it prints the
warning power of M1 exceeds expected load power.

Example 5
MAX_powercheck assert expr="max(m1:pwr) < max(abs(vin:dc*I(r1)))"

message="power of M1 exceeds expected load power" boolean=false

Checks that maximum power max (m1:pwr) is less than max (abs(vin:dc*I(r1))). If
not, it prints the warning power of M1 exceeds expected load power.

Example 6
voltage_check assert subs=[inv? dff*] dev=m1 expr="V(d,s)" min=0.0 max=2.5

Checks for voltage across terminals d and s of device m1 in all instances of subcircuits: whose
names match dff* or inv? and prints a warning when the value of V(d,s) is less than 0 or
higher than 2.5.

Example 7
Op_check assert mod=nch dev=m1 expr="vds" min=0.0 max=2.5 anal_types=[dc]
June 2011 252 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Checks for the operating point drain-source voltage in all instances of the model nch for DC
and DC sweep analyses only, and prints a warning when the value of vds is less than 0 or
higher than 2.5.

Example 8
boolean_check assert dev=I0 expr="Id=I(d); len=l; (I(d) >=2m) || (l > 1u)"
anal_types=[dc tran]

Checks for the boolean expressions I(d) >=2m or length > 1u in the instance I0 for DC,
DC sweep and transient analyses only, prints a warning when the boolean expression is true,
and returns the value of Id and len.

Example 9
cap_voltage_check assert primitive=capacitor expr="V(1)-V(2)" max=1

Checks for the voltage difference across the terminals of all capacitors and prints a notice if
the value of V(1)-V(2) is higher than 1.

Example 10
current_check assert expr="I(I2:1)" max=1m message="test current!"

Checks for the current flowing through terminal I2:1 and prints a notice test current! if
the value is larger than 1mA.

Example 11
Parameters bvca=9.1
...

Not_chk assert sub=in1 expr=" !(V(d,s) > (bvca-0.5))" level=notice message =
"Testing Not!"

Checks the voltage across terminals d and s in the instances of subcircuit in1, and prints a
notice Testing Not! when V(d,s) is not greater than (bvca-0.5).

The check Statement

You can perform a check analysis by adding the check statement after the analysis statement
in your netlist. The check analysis checks the values of the component parameters to be sure
that the values of component parameters are reasonable. You can perform checks on input,
output, or operating-point parameters. The Spectre simulator checks parameter values
against parameter soft limits. For information on the default soft limits, see Customizing Error
and Warning Messages on page 332.
June 2011 253 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
To use the check analysis, you must also enter the +param command line argument with the
spectre command to specify a file that contains the soft limits.

The following example illustrates the syntax of the check statement. It tells the Spectre
simulator to check the parameter values for instance statements.

ParamChk check what=inst

■ ParamChk is your unique name for this check statement.

■ The keyword check is the component keyword for the statement.

■ The what parameter tells the Spectre simulator which parameters to check.

The what parameter of the check statement gives you the following options:

The checklimit Statement

You can enable or disable an assert or a group of asserts with the checklimit statement.
You can define one or more checklimit statements in the netlist, each enabling or disabling
individual asserts. The statement is applied to subsequent transient, DC, and DC sweep
analyses until the next checklimit statement appears.

If there is no checklimit statement before all the analyses, a default checklimit
statement enabling all asserts is added. In other words, by default, all asserts are enabled.
The first checklimit statement that specifically enables asserts also disables the
remaining asserts. The checklimit statements are cumulative in effect except when the
checkallasserts parameter is specified. The subsequent checklimit statements
disable the asserts specified in the disable parameter and then enable the asserts

Option Action

none Disables parameter checking

models Checks input parameters for all models only

inst Checks input parameters for all instances only

input Checks input parameters for all models and all instances

output Checks output parameters for all models and all instances

all Checks input and output parameters for all models and all instances

oppoint Checks operating-point parameters for all models and all instances
June 2011 254 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
specified in the enable parameter based on the first checklimit statement. Note that you
cannot disable the check on constant parameters that Spectre runs during initial setup.

When multiple checklimit statements refer to the same assert, the last checklimit
statement overrides the previous statements.

The syntax for a checklimit statement is

Name checklimit [enable=["check1" "check2" ... "checkn"]]
[disable=["check1" "check2" ... "checkn"]]
[start=value][stop=value]
[check_windows=[start1 stop1 start2 stop2 ...]]
[boundary_type= time | sweep]
[severity= none | notice | warning | error | fatal]
[checkallasserts= yes | no]

where

Name Name of the checklimit statement.

enable=["check1" "check2" ... "checkn"]]

Specifies the checks to be enabled. By default, all the
checks are enabled.

disable=["check1" "check2" ... "checkn"]]

Specifies the checks to be disabled. By default, none of the
checks are disabled.

start=value The beginning point at which the specified check is to be
enabled or disabled.

stop=value The end point at which the specified check is to be enabled
or disabled.

check_windows=[start1 stop1 start2 stop2 ...]

Time or sweep windows within which the assert is to be
enabled or disabled. The boundary_type parameter
determines whether the start and stop values apply to
time or sweep.

Note: Ensure that the array has an even number of values.

boundary_type= time | sweep
June 2011 255 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
For information on defining checks, see “The assert Statement” on page 225.

You can use the checklimitdest option to specify the destination where violations will be
written to in the raw directory.

checklimitdest=file | psf | both

The values for the checklimitdest option are described below:

Determines whether the start and stop values for the
check_windows parameter applies to time (used for
transient analyses) or sweep (used for DC sweep and AC
analyses).
Default: time

severity=none | notice | warning | error | fatal]

Severity level of the message if the check fails. This
overrides the severity levels specified for individual assert
checks. If you set the severity to none, the severity level
depends on the assert settings.
Default: none

Note: The specified severity level cannot change the
violation level for the checks done during the intial setup
stage because no checklimit analysis is done during the
initial setup stage.

checkallasserts=yes | no Enables or disables all the assert checks in the netlist. This
parameter is ignored if both the enable and disable
parameters are specified.

Value Description

file Writes the violations information to a file. You can use the
checklimitfile option to specify the dedicated file name. If
the checklimitfile option is not specified, by default, the
violations are written to the Spectre log file.

The default value for the checklimitdest option is file.
June 2011 256 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Format of Violations in the .violations File

The following example of a violation written in the.violations file describes how you can
find the instance name for which the violation is reported, the violation start value, margin
value, violation start point, violation end point and violation status. Click on the links next to
each line in the example for more information:

"check1.M1.violation2" "violation" (<-- Violation name

3.99200 <-- Violation value

0.992000 <-- Margin

5.00000e-09 <-- Violation start point

6.71708e-07 <-- Violation end point

) PROP(

"assert" "check11"

"instance" "M1" <-- Instance name

"model" "n"

"severity" "warning"

"status" "failed" <-- Violation status

The description of the violation is given below:

psf Writes the detailed violations information for each analysis type
into a .violations file in the raw directory.

For example, the violations information for a transient analysis run
is written to a tranViolations.violations file in the raw
directory, DC analysis runs to a
dcOpViolations.violations file, DC sweep analysis runs to
a dcViolations.violations file, AC analysis run to a
acViolations.violations file, and so on. For more
information about the format of violations in the .violations
file, see Format of Violations in the .violations File on page 257.

Note: By default, the .violations file is created in the PSF
binary format. Use the rawfmt=psfascii option to create the
file in ASCII format.

both Writes the violations information to both the file and the
.violations files in the raw directory.

Value Description
June 2011 257 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Violation Name

The unique name for the violation.

The violation name is written in the following format:

<assertName>.<instName>.violation<localNumber>

For example, in the violation name check1.M1.violation2,

■ check1 is assert name defined in the netlist.

■ M1 is the instance that violates the check.

■ violation2 is the second violation reported for check1 on instance M1.

Violation Start Value

The start value of a violation.

Margin

The difference between the violation start value and the min or max parameter values.

Note: The margin value for a violation reported for a boolean expression assert will be NaN
because the min and max parameters are ignored for boolean expression asserts.

Violation Start Point

The abscissa of violation start value.

Violation End Point

The abscissa of violation end value.

Instance Name

The name of the instance that violates the check.
June 2011 258 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Violation Status

Violations with the failed status are written to the .violations file. A violation has a
failed status if it violates the current analysis or is not processsed because the level
parameter in the assert statement or the severity parameter in the checklimit
statement has the value error or fatal.

Examples of checklimit Statement

This section displays the cumulative effect of the checklimit statements. By default, all asserts
are enabled.

//assert1, assert2, assert3, assert4, and
//Mychecklimit1 appear in include file “model1”
//assert5, assert6, and assert7, and Mychecklimit2
//appear in include file "model2"
//Mychecklimit3 and Mychecklimit4 appear in the netlist containing
//include files "model1" and "model2"

Mychecklimit1 checklimit disable=["assert2" "assert5"]

disables assert2 and assert5 and keeps assert1, assert3, assert4, assert6, and
assert7 enabled. This condition remains in effect until the next checklimit statement is
encountered.

Mychecklimit2 checklimit enable=["assert2" "assert6"] disable=["assert7"]
start=1ns stop=5ns severity=warning

specifically enables assert2 and assert6 thereby disabling all the other asserts. assert2
and assert6 are run within 1ns and 5ns, and a warning is displayed if the asserts are
violated.

Mychecklimit3 checklimit disable =["assert2"] start=5ns stop=10ns severity=none
dcOp dc

Now assert6 is checked within 5ns and 10ns. The severity level is disabled in this
checklimit statement, so assert6 determines the severity level if this check is violated.
The simulator runs the DC analysis and checks only assert6. Since this is a DC analysis,
the start and stop parameters are ignored.

Mychecklimit4 checklimit checkallasserts=yes disable =["assert1"]
start=1ns stop=10ns
tran1 tran stop=10ns

enables all asserts except assert1 and checks them within 1ns and 10ns.

Mychecklimit5 checklimit checkallasserts=no enable=["assert7"] check_windows=[1
3 5 7 9 10] boundary_type=sweep
dcswp dc param=vdc start=1 stop=10 step=1

checks assert7 when the netlist parameter vdc is varied from 1 to 3, 5 to 7, 9 to 10 for the
DC sweep analysis.
June 2011 259 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Mychecklimit6 checklimit checkallasserts=no enable=["assert3" "assert4"]
check_windows=[1n 3n 5n 7n 9n 10n] boundary_type=time
tran1 tran stop=10ns

checks assert3 and assert4 from 1ns to 3ns, 5ns to 7ns, 9ns to 10ns for the transient
analysis with stop time at 10ns.

The ic and nodeset Statements

The Spectre simulator lets you provide state information to the DC and transient analyses.
You can specify two kinds of state information:

■ Initial conditions

The ic statement lets you specify values for the starting point of a transient analysis. The
values you can specify are voltages on nodes and capacitors, and currents on inductors.

■ Nodesets

Nodesets are estimates of the solution you provide for the DC or transient analyses.
Unlike initial conditions, their values have no effect on the final results. Nodesets usually
act only as aids in speeding convergence, but if a circuit has more than one solution, as
with a latch, nodesets can bias the solution to the one closest to the nodeset values.

Setting Initial Conditions for All Transient Analyses

You can specify initial conditions that apply to all transient analyses in a simulation or to a
single transient analysis. The ic statement and the ic parameter described in this section
set initial conditions for all transient analyses in the netlist. In general, you use the ic
parameter of individual components to specify initial conditions for those components, and
you use the ic statement to specify initial conditions for nodes. You can specify initial
conditions for inductors with either method. Specifying cmin for a transient analysis does not
satisfy the condition that a node has a capacitive path to ground.

Note: Do not confuse the ic parameter for individual components with the ic parameter of
the transient analysis. The latter lets you select from among different initial conditions
specifications for a given transient analysis.

Specifying Initial Conditions for Components

You can specify initial conditions in the instance statements of capacitors, inductors, and
windings for magnetic cores. The ic parameter specifies initial voltage values for capacitors
June 2011 260 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
and current values for inductors and windings. In the following example, the initial condition
voltage on capacitor Cap13 is set to two volts:

Cap13 11 9 capacitor c=10n ic=2

Specifying Initial Conditions for Nodes

You use the ic statement to specify initial conditions for nodes or initial currents for inductors.
The nodes can be inside a subcircuit or internal nodes to a component.

The following is the format for the ic statement:

ic signalName=value …

The format for specifying signals with the ic statement is similar to that used by the save
statement. This method is described in detail in “Saving Main Circuit Signals” on page 255.
Consult this discussion if you need further clarification about the following example.

ic Voff=0 X3.7=2.5 M1:int_d=3.5 L1:1=1u

This example sets the following initial conditions:

■ The voltage of node Voff is set to 0.

■ Node 7 of subcircuit X3 is set to 2.5 V.

■ The internal drain node of component M1 is set to 3.5 V. (See the following table for more
information about specifying internal nodes.)

■ The current for inductor L1 is set to 1μ.

Specifying initial node voltages requires some additional discussion. The following table tells
you the internal voltages you can specify with different components.

Component Internal Node Specifications

BJT int_c, int_b, int_e

BSIM int_d, int_s

MOSFET int_d, int_s

GaAs MESFET int_d, int_s, int_g

JFET int_d, int_s, int_g, int_b

Winding for Magnetic Core int_Rw

Magnetic Core with Hysteresis flux
June 2011 261 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Supplying Solution Estimates to Increase Speed

You use the nodeset statement to supply estimates of solutions that aid convergence or bias
the simulation towards a given solution. You can use nodesets for all DC and initial transient
analysis solutions in the netlist. The nodeset statement has the following format:

nodeset signalName=value ...

Values you can supply with the nodeset statement include voltages on topological nodes,
including internal nodes, and currents through voltage sources, inductors, switches,
transformers, N-ports, and transmission lines.

The format for specifying signals with the nodeset statement is similar to that used by the
save statement. This method is described in detail in “Saving Main Circuit Signals” on
page 255. Consult this discussion if you need further clarification about the following
example.

nodeset Voff=0 X3.7=2.5 M1:int_d=3.5 L1:1=1u

This example sets the following solution estimates:

■ The voltage of node Voff is set to 0.

■ Node 7 of subcircuit X3 is set to 2.5 V.

■ The internal drain node of component M1 is set to 3.5 V. (See the table in the ic
statements section of this chapter for more information about specifying internal nodes.)

■ The current for inductor L1 is set to 1μ.

Specifying State Information for Individual Analyses

You can specify state information for individual analyses in two ways:

■ You can use the ic parameter of the transient analysis to choose which previous
specifications are used.

■ You can create a state file that is read by an individual analysis.
June 2011 262 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Choosing Which Initial Conditions Specifications Are Used for a Transient Analysis

The ic parameter in the transient analysis lets you select among several options for which
initial conditions to use. You can choose the following settings:

Specifying State Information with State Files

You can also specify initial conditions and estimate solutions by creating a state file that is
read by the appropriate analysis. You can create a state file in two ways:

■ You can instruct the Spectre simulator to create a state file in a previous analysis for
future use.

■ You can create a state file manually in a text editor.

Telling the Spectre Simulator to Create a State File

You can instruct the Spectre simulator to create a state file from either the initial point or the
final point in an analysis. To write a state file from the initial point in an analysis, use the write
parameter. To write a state file from the final point, use the writefinal parameter. Each of
the following two examples writes a state file named ua741.dc. The first example writes the
state file from the initial point in the DC sweep, and the second example writes the state file
from the final point in the DC sweep.

Drift dc param=temp start=0 stop=50.0 step=1 readns="ua741.dc" write="ua741.dc"

Drift dc param=temp start=0 stop=50.0 step=1 readns="ua741.dc"
writefinal="ua741.dc"

Parameter Setting Action Taken

dc Initial conditions specifiers are ignored, and the existing DC
solution is used.

node The ic statements are used, and the ic parameter settings on the
capacitors and inductors are ignored.

dev The ic parameter settings on the capacitors and inductors are
used, and the ic statements are ignored.

all Both the ic statements and the ic parameters are used. If
specifications conflict, ic parameters override ic statements.
June 2011 263 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide

readns="u
Creating a State File Manually

The syntax for creating a state file in a text editor is simple. Each line contains a signal name
and a signal value. Anything after a pound sign (#) is ignored as a comment. The following is
an example of a simple state file:

State file generated by Spectre from circuit file 'wilson'
during 'stepresponse' at 5:39:38 PM, jan 21, 1992.

1 .588793510612534
2 1.17406247989272
3 14.9900516233357
pwr 15
vcc:p -9.9483766642647e-06

Reading State Files

To read a state file as an initial condition, use the read transient analysis parameter. To read
a state file as a nodeset, use the readns parameter. This example reads the file intCond
as initial conditions:

DoTran_z12 tran start=0 stop=0.003 \
step=0.00015 maxstep=6e-06 read="intCond"

This second example reads the file soluEst as a nodeset.

DoTran_z12 tran start=0 stop=0.003 \
step=0.00015 maxstep=6e-06 readns="soluEst"

Special Uses for State Files

State files can be useful for the following reasons:

■ You can save state files and use them in later simulations. For example, you can save the
solution at the final point of a transient analysis and then continue the analysis in a later
simulation by using the state file as the starting point for another transient analysis.

■ You can use state files to create automatic updates of initial conditions and nodesets.

The following example demonstrates the usefulness of state files:

altTemp alter param=temp value=0
Drift dc param=temp start=0 stop=50.0 step=1 readns="ua741.dc0" write="ua741.dc0"
XferVsTemp xf param=temp start=0 stop=50 step=1 \ probe=Rload freq=1kHz

a741.dc0"

The first analysis computes the DC solution at T=0C, saves it to a file called ua741.dc0, and
then sweeps the temperature to T=50C. The transfer function analysis (xf) resets the
temperature to zero. Because of the temperature change, the DC solution must be
recomputed. Without the use of state files, this computation might slow the simulation
because the only available estimate of the DC solution would be that computed at T=50C, the
June 2011 264 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
final point in the DC sweep. However, by using a state file to preserve the initial DC solution
at T=0C, you can enable the Spectre simulator to compute the new DC solution quickly. The
computation is fast because the Spectre simulator can use the DC solution computed at
T=0C to estimate the new solution. You can also make future simulations of this circuit start
quickly by using the state file to estimate the DC solution. Even if you have altered a circuit,
it is usually faster to start the DC analysis from a previous solution than to start from the
beginning.

The info Statement

You can generate lists of component parameter values with the info statement. With this
statement, you can access the values of input, output, and operating-point parameters and
print the node capacitance table. These parameter types are defined as follows:

■ Input parameters

Input parameters are those you specify in the netlist, such as the given length of a
MOSFET or the saturation current of a bipolar resistor.

■ Output parameters

Output parameters are those the simulator computes, such as temperature-dependent
parameters and the effective length of a MOSFET after scaling.

■ Operating-point parameters

Operating-point parameters are those that depend on the operating point.

■ Node Capacitance Table

The node capacitance table displays the capacitance between the nodes of a circuit.

You can also list the minimum and maximum values for the input, output, and operating-point
parameters, along with the names of the components that have those values.

Parameter Setting Action Taken

what=oppoint Prints the oppoint parameters. Other possible values are
none, inst, models, input, output, nodes, all,
terminals, captab, parameters, primitives,
subckts, assert, and allparameters.

where=logfile Prints the parameters to the logfile. Other possible values
are nowhere, screen, file, and rawfile.
June 2011 265 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Specifying the Parameters You Want to Save

You specify parameters you want to save with the info statement what parameter. You can
give this parameter the following settings:

file="%C:r.info.what" File name when where=file.

save=all Saves all signals to output. Other possible values are lvl,
allpub, lvlpub, selected, and none.

nestlvl Specifies levels of subcircuits to report. The default value
is infinity.

extremes=yes Prints minimum and maximum values. Other possible
values are no and only.

title=test Prints test as the title of the analysis in the output file.

Setting Action

none Lists no parameters

inst Lists input parameters for instances of all components

models Lists input parameters for models of all components

input Lists input parameters for instances and models of all components

output Lists effective and temperature-dependent parameter values

nodes The output is a terminal-to-node map

all Lists input and output parameter values

oppoint Lists operating-point parameters

terminals The output is a node-to-terminal map

captab Prints node-to-node capacitance

parameters Lists top level circuit parameters and their values.

primitives Lists model parameters, oppoint parameters, output parameters,
instance parameters, region parameters, and terminal names of a
primitive. No parameter values are printed.

subckts Lists subcircuit parameters and terminal names.

Parameter Setting Action Taken
June 2011 266 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
The info statement gives you some additional options. You can use the save parameter of
the info statement to specify groups of signals whose values you want to list. For more
information about save parameter options, consult “Saving Groups of Signals” on page 261.
Finally, you can generate a summary of maximum and minimum parameter values with the
extremes option.

Specifying the Output Destination

You can choose among several output destination options for the parameters you list with the
info statement. With the info statement where parameter, you can

■ Display the parameters on a screen

■ Send the parameters to a log file, to the raw file, or to a file you create

When the info statement is called from a transient analysis or used inside of a sweep, the
name of the info analysis is prepended by the parent analysis. If the file option is used to
save the results, use the %A percent code (described in “Description of Spectre Predefined
Percent Codes” on page 317) in the filename to prevent the file from being overwritten.

For example, the following info statement

tempSweep sweep param=temp start=27 stop=127 step=10 {dc1 dc dcInfo info
what=oppoint where=file file="infodata.%A"}

produces

infodata.tempSweep-000_dcInfo

infodata.tempSweep-001_dcInfo

infodata.tempSweep-002_dcInfo

infodata.tempSweep-003_dcInfo

and so on...

Examples of the info Statement

You format the info statement as follows:

StatementName info parameter=value

allparameters Lists top level circuit and subcircuit parameters and their values.

Setting Action
June 2011 267 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
The following example tells the Spectre simulator to send the maximum and minimum input
parameters for all models to a log file:

Inparams info what=models where=logfile extremes=only

For a complete description of the parameters available with the info statement, consult the
lists of analysis and control statement parameters in the Spectre online help (spectre -h).

Printing the Node Capacitance Table

The Spectre simulator allows you to print node capacitance to an output file. This can help
you in identifying possible causes of circuit performance problems due to capacitive loading.

The capacitance between nodes x and y is defined as

where qx is the sum of all charges in the terminal connected to node x, and vy is the voltage
at node y.

The total capacitance at node x is defined as

where charge qx and voltage vX are at the same node x.

Use the captab analysis to display the capacitance between the nodes in your circuit. This
is an option in the info statement. Here is an example of the info settings you would set to
perform a captab analysis:

Parameter Setting Action Taken

what=captab Performs captab analysis. The default value is
oppoint.

where=logfile Prints the parameters to a logfile. Other possible values
are nowhere, screen, and file. The value rawfile is
not supported for node capacitance.

title=captab Prints captab as the title of the analysis in the output
file.

Cxy
qx∂

vy∂
---------–=

Cxx

qx∂

vx∂
---------=
June 2011 268 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
For a complete list of captab parameters and values, consult the Spectre online help
(spectre -h).

Use the infotimes option of the transient analysis when you bind the captab analysis to
a transient analysis. This runs the captab analysis at specified time intervals. The syntax for
the infotimes option is

infotimes=[x1, x2...]

where x1 and x2 are time points for which the info analysis should be performed. The
following is an example of binding a captab analysis to a transient analysis.

tran1 tran stop=1μ infotimes=[0.1μ 0.5μ]infoname=capInfo
capInfo info what=captab where=file file='capNodes'detail=nodetonode

Output Table

The output for the captab analysis is printed in the following format:

■ The first column displays the names of the two nodes (From_node:To_Node).

■ The second column displays the fixed (linear) capacitance between the two nodes.

■ The third column is the variable (non-linear) capacitance between the two nodes.

■ The last column displays the total capacitance between the nodes.

threshold=0 Specifies the threshold capacitance value. The nodes for
which the total node capacitance is below the threshold
value will not be printed in the output table.

detail=node Displays the total node capacitances. Other possible
values are nodetoground and nodetonode.

sort=value Sorts the captab output according to value. The other
possible value is name.

Parameter Setting Action Taken
June 2011 269 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Table 8-1 Displays the output for the circuit below when detail=nodetonode:

In this circuit, the total capacitance at node 2 (n2:n2 in the table) is

C1+C2+C3=5p

The total capacitance between node 2 and node 1 (n2:n1) is

C2(Linear)+C3(Non-Linear)=3p

Table 8-2 Node Capacitance Table Sorted by Value

n2:n2 Fixed=2p Variable=3p Sum=5p

n2:n1 Fixed=2p Variable=1p Sum=3p

n1:n1 Fixed=3.5p Variable=1p Sum=4.5p

n1:0 Fixed=1p Variable=0 Sum=1p

n1:n2 Fixed=2p Variable=1p Sum=3p

n1:n3 Fixed=0.5p Variable=0 Sum=0.5p

n3:n3 Fixed=1.5p Variable=0 Sum=1.5p

n3:0 Fixed=1p Variable=0 Sum=1p

n2

C2=2p

n1

1p

n3

1p

0.5p

C1=2p

C3=1p
June 2011 270 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
The total node capacitance at nodes 1, 2, and 3 is represented by the rows n1:n1, n2:n2,
and n3:n3 respectively.

There is no entry for n3:n2, which means there is no capacitance between these two nodes.

Table 7-1 is sorted by value. The rows are first grouped according to node names – the rows
with the same From_Node are kept in a group. The row depicting the total capacitance at
each node is always displayed first in the group, and the row displaying the node-to-ground
capacitance is second. The remaining rows within each group are sorted in descending order
of the Sum value.

Note: If the threshold is set to 2p (thresh=2p), the row n1:n3 will not be printed because
the capacitance between the nodes is less than the threshold. The row n1:0 will be printed
since the node-to-ground capacitance is always printed. The group n3:n3, n3:0, and n3:n1
will not be printed because the total node capacitance at node 3 (n3:n3) is less than the
threshold.

If you sort the table by name (sort=name), it would look as follows:

Table 8-3 Node Capacitance Table Sorted by Name

n3:n1 Fixed=0.5p Variable=0 Sum=0.5p

n1:n1 Fixed=3.5p Variable=1p Sum=4.5p

n1:0 Fixed=1p Variable=0 Sum=1p

n1:n2 Fixed=2p Variable=1p Sum=3p

n1:n3 Fixed=0.5p Variable=0 Sum=0.5p

n2:n2 Fixed=2p Variable=3p Sum=5p

n2:0 Fixed=0 Variable=2p Sum=2p

n2:n1 Fixed=2p Variable=1p Sum=3p

n3:n3 Fixed=1.5p Variable=0 Sum=1.5p

n3:n0 Fixed=1p Variable=0 Sum=1p

n3:n1 Fixed=0.5p Variable=0 Sum=0.5p
June 2011 271 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
In this case, the From_Node:To_Node column is sorted alpha-numerically. However, the row
depicting the total capacitance at each node is always displayed first in the group, and the row
displaying the node-to-ground capacitance is second.

The options Statement

To enter initial parameters for your simulation that you do not specify in your environment
variables or on your command line, you use the options statement. You can control
parameters in a number of areas with the options statement:

■ Parameters that specify tolerances for accuracy

■ Parameters that control temperature

■ Parameters that select output data

■ Parameters that help solve convergence difficulties

■ Parameters that control error handling and annotation

■ Parameters that control method of threshold voltage (vth) computation for MOS device.
For BSIM3v3, BSIM4, PSP102 and PSP103, Spectre supports vth from model equation
(std) or constant current vth (vthcc). For otherwise, Spectre only supports 'std'
computation.

■ Parameters that specify the process options including tnom, scale, and scalem. When
these process parameters are specified in a subcircuit in the MTS mode, they are locally
scoped to that subcircuit only.

For a complete list of the parameters you can set with the options statement, consult the
Spectre online help (spectre -h).

options Statement Format

The options statement format is

Name options parameter=value ...

where

Name The unique name you give to the options statement. The
Spectre simulator uses this name to identify this statement in
error or annotation messages
June 2011 272 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
options Statement Example
Examp options rawfmt=psfbin audit=brief temp=30 \

save=lvlpub nestlvl=3 rawfile=%C:r.raw useprobes=no

The example sets the rawfmt, audit, temp, save, nestlvl, rawfile, and
useprobes parameters for an options statement named Examp. The backslash (\) at the
end of the first line is a line continuation character. Nonnumerical parameter values are
chosen from the possible values listed in the Spectre online help (spectre -h).

Setting Tolerances

You need to set tolerances if the Spectre simulator’s default settings do not suit your needs.
This section tells you how to make the needed adjustments. If you need to examine default
tolerances for any Spectre parameters, you can find them in the Spectre online help
(spectre -h).

Setting Tolerances with the options Statement

The following options statement parameters control error tolerances:

reltol One of the Spectre simulator’s convergence criteria is that the
difference between solutions in the last two iterations for a given
time must be sufficiently small. With reltol, you set the
maximum relative tolerance for values computed in the last two
iterations. The default for reltol is 0.001.

iabstol and vabstol
These parameters set absolute, as opposed to relative,
tolerances for differences in the computed values of voltages and
currents in the last two iterations. These parameter values are
added to the tolerances specified by reltol. They let the
Spectre simulator converge when the differences accepted by
reltol approach zero. You can also set these values with the
quantity statement.

options Primitive name for this control statement.

Parameter=value Value you choose for the parameter. You can enter any number
of parameter specifications with a single options statement.
June 2011 273 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Additional options Statement Settings You Might Need to Adjust

This section provides some explanation of commonly used options statement parameters.
It is not a complete listing of options statement parameters. For a complete list, consult the
Spectre online help (spectre -h).

Simulation Config file Support

Spectre supports simulation configuration file (like Ultrasim) that can be loaded to set the
default options for the simulator.

This file can be located at three levels and will be searched in the following order:

1. Working directory of the netlist file.

2. Home directory ($HOME).

3. Spectre installation directory (spectre_root).

Spectre processes only the first spectre.cfg it reads. i.e. the spectre.cfg in the netlist
file directory overwrites that in $HOME and the installation directory. Spectre also supports a
new command line option to allow changing the config file temporarily for one run.

Use model

$ spectre -config <config_file_path> netlist

tempeffects This parameter defines how temperature affects the built-in primitive
components. It takes the following three values:

vt–Only the thermal voltage is allowed to vary with
temperature.

 tc–The component temperature coefficient parameters (parameters
that start with tc, such as tc1, and tc2) are active as well as the
thermal voltage. You use this setting when you want to disable the
temperature effects for nonlinear devices.

 all–All built-in temperature models are enabled.

compatible This parameter changes some of the device models to be more
consistent with the models in other simulators. See the options
statement parameter listings in the Spectre online help (spectre -h)
for more information.

Vt
kT
q

-------=
June 2011 274 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
The paramset Statement

For the sweep analysis only, the paramset statement allows you to specify a list of
parameters and their values. This can be referred by a sweep analysis to sweep the set of
parameters over the values specified. For each iteration of the sweep, the netlist parameters
are set to the values specified by a row. The values have to be numbers, and the parameters’
names have to be defined in the input file (netlist) before they are used. The paramset
statement is allowed only in the top level of the input file.

The syntax is

Name paramset {
list of netlist parameters
list of values foreach netlist parameter
list of values foreach netlist parameter ...

}

Here is an example of the paramset statement:

parameters p1=1 p2=2 p3=3
data paramset {

p1 p2 p3
5 5 5
4 3 2

}

Combining the paramset statement with the sweep analysis allows you to sweep multiple
parameters simultaneously; for example, power supply voltage and temperature.

The save Statement

You can save signals for individual nodes and components or save groups of signals.

Saving Signals for Individual Nodes and Components

You can include signals for individual nodes and components in the save list by placing save
statements (not to be confused with the save parameter) in your netlist. When you specify
signals in a save statement, the Spectre simulator sends these signals to the output raw file,
as long as the nestlvl setting does not filter them. In this section, you will learn the
following:

■ How to save voltages for individual nodes

■ How to save all signals for an individual component

■ How to save selected signals for an individual component
June 2011 275 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
The syntax for the save statement varies slightly, depending on whether the requested data
is from the main circuit or a subcircuit.

Saving Main Circuit Signals

The save statement general syntax has the following arguments. You can specify more than
one argument with a single save statement, and you can mix the types of arguments in a
single statement.

save signalName…

save compName…

save compName:modifier…

save subcircuitName:terminalIndex …

■ signalName is generally the netlist name of a node whose voltage you want to save.
If the specified node name is not unique (an instance in the netlist has the same name),
the Spectre circuit simulator saves the node.

■ compName is the netlist name of a component whose signals you want to save.

■ modifier specifies signals you want to save for a particular component. It can have
the following types of values:

❑ A terminal name

Terminal names for components are the names for nodes in component instance
definitions. You can find instance definitions for each component in the component
parameter listings in the Spectre online help (spectre -h). For example, the
following is the instance definition of a microstrip line. The terminal names are t1,
b1, t2, and b2.

Name t1 b1 t2 b2 msline parameter=value…

❑ A terminal index

The terminal index is a number that indicates where a terminal is in the instance
definition. You give the first terminal a terminal index of 1, the second a terminal
index of 2, and so on. In this example, the terminal indexes are 1 for sink and 2 for
src.

Name sink src isource parameter=value...

❑ A name of an operating-point parameter (from the lists of parameters for each
component in the Spectre online help)

❑ The name of a Verilog©-A internal variable
June 2011 276 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
❑ One of the following keywords

■ subcircuitName is the instance name of a subcircuit call. Saving terminal currents
for subcircuit calls is the same as saving terminal currents for other instance statements
except that you must identify individual terminal currents you want to save by the terminal
index.

Note: To save all terminal currents for subcircuit calls, you use a save statement or
specify the subcktprobelvl parameter in an options statement. The
currents=all option of the options statement saves currents only for devices.

Saving Subcircuit Signals

To save a subcircuit,

➤ Give a full path to the subcircuit name. Start with the highest level subcircuit and identify
the signals you want to save at the end of the path. Separate each name with a period.

Examples of the save Statement

The following table shows you examples of save statement syntax. When you specify node
names, the Spectre simulator saves node voltages. Currents are identified by the terminal
node name or the index number.

currents To save all currents of the device

static To save resistive currents of the device

displacement To save capacitive currents of the device

dynamic To save charge or flux of the device

oppoint To save the operating points of the device

probe To measure current of the device with a probe

pwr To save power dissipated on a circuit, subcircuit, or
device

all To save all signals of the device
June 2011 277 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Exception: Currents through probes take the name of the probe.

Saving Individual Currents with Current Probes

A current probe is a component that measures the current passing between two nodes. Its
effect is like placing an amp meter on two points of a circuit. It creates a new branch in the
circuit between the two nodes, forces the voltages on the two nodes to be equal, and then
measures the flow of current.

save Statement Action

save 7 Saves voltage for a node named 7.

save Q4:currents Saves all terminal currents associated with component
Q4.

save Q4:c:static Saves resistive terminal currents associated with
component Q4.

save D8:cap Saves the junction capacitance for component D8.
(Assumes D8 is a diode, and, therefore, cap is an
operating-point parameter.)

save Q5 D9:oppoint Saves all signal information for component Q5 and the
operating-point parameters for component D9.

save Q1:c Saves the collector current for component Q1. (Example
assumes Q1 is a BJT, and, therefore, c is a terminal
name.)

save Q1:1 Same effect as the previous statement. Saves the
collector current for component Q1. Identifies the terminal
with its terminal index instead of its terminal name.

save M2:d:displacement Saves capacitive current associated with the drain
terminal of component M2. (Example assumes M2 is a
MOSFET, so d is a terminal name.)

save Q3:currents M1:all Saves all currents for component Q3 and all signals for
component M1.

save F4.S1.BJT3:oppoint Saves operating-point parameters for device BJT3. BJT3
is in subcircuit S1. Subcircuit S1 is nested within
subcircuit F4.
June 2011 278 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
When to Use Current Probes

Use a probe instead of a save statement under the following circumstances:

■ If you want increased flexibility for giving currents descriptive names

With a current probe, you can name the current anything you want. With a save
statement, the name of the current must have a :name suffix.

■ If you are saving measurements for current-controlled components

■ If you are saving currents for an AC analysis

■ If you are saving measurements for a current that passes between two parts of a circuit
but not through a terminal

The following example inserts a current probe to measure the current flowing between A
and B. Because there is no component between A and B, there is no other way to
measure this current except to insert a current probe that has an identical current to the
one you want to measure.

Example
Name in out iprobe

In the following example, the current probe measures the current between nodes src and in,
names the measured current Iin, and saves Iin to the raw file.

Iin src in iprobe

Name The unique netlist name for the current probe component. The
measured current also receives this name.

in Input node of the probe.

out Output node of the probe.

iprobe Primitive name of the component.

A B

Current probe inserted to
measure current from A to B
June 2011 279 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Note: You can also direct the Spectre simulator to save currents with probes with a save
statement option. For further information, see the description of save statement keywords in
this chapter.

Saving Power

To save power dissipated on a circuit, subcircuit, or device, you use the pwr parameter. Power
is calculated only during DC and transient analyses. The results are saved as a waveform,
representing the instantaneous power dissipated in the circuit, subcircuit, or device.

Formatting the pwr Parameter

The syntax for the pwr parameter is illustrated by the following examples.

To save the power dissipated on a device or instance of a subcircuit, the syntax is

save instance_name:pwr

To save the total power, the syntax is

save :pwr

You can explicitly save particular power variables. For example:

save :pwr x1:pwr x1.x2.m1:pwr

This statement saves three power signals:

■ total power dissipated (:pwr)

■ power dissipated in the x1 subcircuit instance (x1:pwr)

■ power dissipated in the x1.x2.m1 MOSFET

Power Options

The pwr parameter in the options statement can also be used to save power. The following
table shows the five possible settings for the pwr option:

Setting Action

all The total power, the power dissipated in each subcircuit, and the power
dissipated in each device is saved.

subckts The total power and the power dissipated in each subcircuit is saved.
June 2011 280 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
For example:

opts options pwr=total

save x1:pwr

This creates two power signals, :pwr (generated by the options statement) and x1:pwr
(generated by the save statement).

Saving Groups of Signals

To save groups of signals as results, use the save and nestlvl parameters. Specify which
signals you want to save with the save parameter. Use the nestlvl parameter when you
save signals in subcircuits. The nestlvl parameter specifies how many levels deep into the
subcircuit hierarchy you want to save signals.

You can set these parameters as follows:

■ In options statements or set statements

If you set the save and nestlvl parameters with an options or a set statement, the
setting applies to signal data from all analyses that follow that statement in the netlist.

■ In most analysis statements

If you set the save and nestlvl parameters with an analysis statement, the setting
applies to that analysis only. It overrides any previous save or nestlvl settings.

Formatting the save and nestlvl Parameters

The syntax for both the save and nestlvl parameters is illustrated by the following
options statement:

setting1 options save=lvlpub nestlvl=2

devices The total power and the power dissipated in each device is saved.

total The total power dissipated in the circuit is calculated and saved.

none No power variable is calculated or saved. This is the default setting.

Setting Action
June 2011 281 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
The save Parameter Options

The following table shows the possible settings for the save parameter:

Use lvl or all (instead of lvlpub or allpub) to include internal node voltages and
currents through other components that compute current.

Use lvlpub or allpub to exclude signals at internal nodes on devices (the internal collector,
base, emitter on a BJT, the internal drain and source on a FET, etc). lvlpub and allpub
also exclude the currents through inductors, controlled sources, transmission lines,
transformers, etc.

Note: Setting the save parameter value to selected without any save statements in the
netlist is not equivalent to specifying no output. Currently, the Spectre simulator saves all
circuit nodes and branch currents with this combination of settings. This might change in
future releases of the Spectre simulator.

Saving Subcircuit Signals

To save groups of signals for subcircuits, you must adjust two parameter settings:

■ Set the save parameter to either lvl or lvlpub.

■ Set the nestlvl parameter to the number of levels in the hierarchy you want to save.
The default setting for nestlvl is infinity, which saves all levels.

Setting Action

none Does not save any data (currently does save one node chosen at random).

selected Saves only signals specified with save statements. This is the default
setting.

lvlpub Saves all signals that are normally useful up to nestlvl deep in the
subcircuit hierarchy. This option is equivalent to allpub for subcircuits.
Normally useful signals include shared node voltages and currents through
voltage sources and iprobes.

lvl Saves all signals up to nestlvl deep in the subcircuit hierarchy. This
option is relevant for subcircuits.

allpub Saves only signals that are normally useful. Normally useful signals include
shared node voltages and currents through voltage sources and iprobes.

all Saves all signals.
June 2011 282 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Saving Groups of Currents

The currents parameter of the options statement computes and saves terminal currents.
You use it to create settings for currents that apply to all terminals in the netlist.

For two-terminal components, the Spectre simulator saves only the first terminal (entering)
currents. You must use a save statement or use the global redundant_currents
parameter of the options statement to save data for the second terminal of a two-terminal
component. For more information about the save statement, see “Saving Signals for
Individual Nodes and Components” on page 255.

Setting the currents Parameter

The currents parameter has the following options:

Note: Currently, if you set the currents parameter value to nonlinear or all and do
not specify a save parameter value in an options statement, the Spectre simulator saves
circuit nodes as well as the currents you requested. This might change in future releases of
the Spectre simulator.

Examples of the currents Parameter

You use the following syntax for the currents parameter in the options statement. For
more information about the options statement, see the parameter listings in the Spectre
online help (spectre -h).

Setting Action

selected Saves only currents that you specifically request with save statements
or save parameters. Also saves naturally computed “branch” currents
(currents through current probes, voltage sources, and inductors). This
is the default setting.

nonlinear Saves all terminal currents for nonlinear devices, naturally computed
“branch” currents (currents through current probes, voltage sources,
and inductors), and currents you specify with save statements. Can
significantly increase simulation time.

all Saves all terminal currents and currents available from selected
settings to the raw file. Can significantly increase simulation time.
June 2011 283 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
■ The Spectre simulator saves all terminal currents for nonlinear components, currents
specified with the save statement, and routinely computed currents.

opt1 options currents=nonlinear

■ The Spectre simulator saves all terminal currents.

opt2 options currents=all

Setting Multiple Current Probes

Sometimes you might need to set a large number of current probes. This could happen, for
example, if you need to save a number of ACs. (Current probes can find such small signal
currents when they are not normally computed.) You can specify that all currents be
calculated with current probes by placing useprobes=yes in an options statement.

Setting multiple current probes can greatly increase the DC and transient analysis simulation
times. Consequently, this method is typically used only for small circuits and AC analysis.

Important

Adding probes to circuits that are sensitive to numerical noise might affect the
solution. In such cases, an accurate solution might be obtained by reducing
reltol.

Saving Subcircuit Terminal Currents

You use the subcktprobelvl parameter to control the calculation of terminal currents for
subcircuits. Current probes are added to the terminals of each subcircuit, up to
subcktprobelvl deep. You can then save these terminal currents by setting the save
parameter. The nestlvl parameter controls how many levels are returned.

Using Wildcards in the Save Statement

Wildcards provide a way to specify a pattern of a set of names without having to know all the
names themselves. For example, the pattern X1.X2.* can match all node voltages in the
subcircuit X1.X2.

You can use wildcards in Spectre for saving signals selectively and thus reducing runtime,
memory usage, and disk space.

The syntax for using wildcards is:

save {X[:param] [depth=depth][sigtype=node|subckt|dev|all][devtype=devicetype]
[subckt=subname] [exclude=exclude]}
June 2011 284 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
where

X Hierarchical name of a node/device/subcircuit.

param Device operating point parameter or a device or subcircuit
terminal current.

depth Depth of expression matching, i.e. if X:param is a wildcard
expression, depth(X:param)=depth(X)=(number of .
in X)+1.
Default value: infinity. When depth=infinity, Spectre
tries to match signals at all hierarchical level.

sigtype Type of the hierarchical name X in the wildcard expression
X:param.
Default: node

devicetype Type of device for which signals are to be saved.

subname The subcircuit this save statement applies to. Setting this
parameter is equivalent to defining the statement within the
subcircuit declaration. Only one subcircuit name is allowed in a
save statement. To declare more than one subcircuit, put them
into separate save statements using the subckt parameter. You
cannot use wildcards or brackets when using the subckt
parameter to specify the subcircuit name.

exclude Node or element names to be excluded from the save statement.
You can use wildcards and brackets when using the exclude
parameter to specify the node or element names.

Spectre supports the following wildcard pattern matching characters:

* – matches any string including the empty string and the hierarchical delimiter `.'

?– matches any character including `.'

For a wildcard expression X:param, * and ? is supported in the hierarchical name X and not
for param.
June 2011 285 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Caution

Be careful when using wildcards in the save statement since saving too
much data can degrade Spectre performance or cause out-of-memory
problems.

Examples of the Save Statement with Wildcard Patterns

Save Statement with Wildcard Pattern Action

save x* Saves the voltages of all nodes whose name
starts with x, e.g. xout, x10.n1,
x1.x2.x3.n31.

save x*.*1 Saves the voltages of all nodes from level 2 and
above (where 1 is the top level) whose name
starts with x and ends in 1, e.g. x1.n1,
x1.x2.x3.n31.

save * Saves all node voltages from all hierarchical
levels, e.g. xout, x10.n1, x1.x2.x3.n31.

save *:1 sigtype=dev Saves all currents through the first terminal of
the devices.

save x*.*1 depth=5 saves the voltages of all nodes from level 2 to
level 5 whose name starts with x and ends in 1,
e.g. x1.n1, x1.x2.x3.x4.n31 but not
x1.x2.x3.x4.x5.n41

save x*.*1 depth=1 Saves nothing.

save x*.*1 sigtype=subckt Saves all terminal currents of subcircuits from
level 2 and above whose name starts with x and
ends in 1', e.g. x1.x21:2, x1.x2.x31:3

save x*.*1 sigtype=dev Saves all available device information including
the terminal currents and the operating point
parameters for devices from level 2 and above
whose name starts with x and ends in 1, e.g.
x1.x2.m1:1, x1.x2.x3.m31:oppoint.
June 2011 286 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
The print Statement

You can print signal and instance data to an output file by using the print statement. You
can use the print statement for AC, DC, transient, noise, and sweep analyses.

You format the print statement as follows:

save * sigtype=all Saves all node voltages, subcircuit terminal
currents and all available device information
including terminal currents and operating point
parameters.

save *:c devtype=bjt Saves all collector currents.

save x1*:vds devtype=bsim3v3 Saves vds of all bsim3v3 devices whose name
starts with x1.

save I3.I*.M*:oppoint devtype=mos903 Saves the operating point parameters of all
mos903 devices from level 3 and above (where
1 is the top level) whose name matches the
pattern.

save * sigtype=node subckt=osc Saves node voltages for all instances of the
subcircuit osc, but no node voltage is saved
outside these instances including the top level.

save m* sigtype=dev subckt=inv Saves information for all devices m* contained in
the instances of the subcircuit inv.For
example, I1.m1:1 is saved but not I1.v1:p
and mos1:d.

save * exclude=[I1* I2*] Saves voltages for all nodes except the nodes
whose hierarchical path starts with I1 and I2.
For example, net5, I3.out, and I5.I1.osc
are saved, but I1.net5, I2.net9, and I100
are not saved.

save * exclude=[v*] subckt=mem depth=1 Saves voltages for all nodes except the nodes
v* in all the instances of subckt mem. Hierarchy
levels saved are the top level of subcircuit mem
and one level below. For example, if I1.I2 is an
instance of mem, I1.I2.net5,and
I1.I2.I3.net8 are saved, but not I1.I2.v1
and I1.I2.I3.I4.net20.
June 2011 287 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
print item ... [,item] ,name=mytran {to="filename" | addto="filename"}
[precision="%15g"]

where

Use the following syntax to access noise parameters:

<noise_analysis_name>:<parameter_name>

where

parameter_name can be out (output noise), in (input noise), F (noise factor), or NF (noise
figure).

Examples
print im(I(vd1)),im(I(vd2)),im(I(vd3)), name=ac1 to="ac.out"

prints the imaginary parts of the current.

print I(vd), name=dc1 to="dc.out" precision="%15g"

prints the current.

print noise:out, name=noise to="noise.out"

prints the output noise.

item V(node1[, node2]) | I(terminal) | Param | Expression

V(node1[, node2]) Node voltage to be printed.

I(terminal) Terminal current to be printed.

Param Parameter value to be printed.

Expression Expression to be printed.

name Analysis to be printed.

to Name of the output file. This file will overwrite any existing files with
the same name.

addto Name of the file to which output is to be appended.

precision Precision of the numerical values to be printed.
June 2011 288 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
The set Statement

Except for temperature parameters and scaling factors, you use the set statement to modify
any options statement parameters you set at the beginning of the netlist. The new settings
apply to all analyses that follow the set statement in the netlist.

You can change the initial settings for the state of the simulator by placing a set statement
in the netlist. The set statement is similar to the options statement that sets the state of
the simulator, but it is queued with the analysis statements in the order you place them in the
netlist.

You use the set statement to change previous options or set statement specifications.
The modifications apply to all analyses that follow the set statement in the netlist until you
request another parameter modification. The set and options statements have many
identical parameters, but the set statement cannot modify all options statement
parameters. The parameter listings in the Spectre online help tell you which parameters you
can reset with the set statement.

The following example demonstrates the set statement syntax. This example turns off
several annotation parameters.

Quiet set narrate=no error=no info=no

■ Quiet is the unique name you give to the set statement.

■ The keyword set is the primitive name for the set statement.

■ narrate, error, and info are the parameters you are changing.

Note: If you want to change temp or tnom, use the alter statement.

The shell Statement

The shell analysis passes a command to the operating system command interpreter given in
the SHELL environment variable. The command behaves as if it were typed into the
Command Interpreter Window, except that any %X codes in the command are expanded first.

The default action of the shell analysis is to terminate the simulation.

The following is the syntax for the shell statement:

Name shell parameter=value ...
June 2011 289 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
The statistics Statement

The statistics blocks allow you to specify batch-to-batch (process) and per- instance
(mismatch) variations for netlist parameters. These statistically varying netlist parameters can
be referenced by models or instances in the main netlist and can represent IC manufacturing
process variation or component variations for board-level designs. For more information
about the statistics statement, see “Specifying Parameter Distributions Using Statistics
Blocks” on page 208.
June 2011 290 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
9
Specifying Output Options

This chapter discusses the following topics:

■ Signals as Output on page 292

■ Listing Parameter Values as Output on page 292

■ Preparing Output for Viewing on page 294

■ Accessing Output Files on page 296
June 2011 291 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Signals as Output

Signals are quantities that the simulator must determine to solve the network equations
formulated to represent the circuit. The signals must be known before other output data can
be computed.

Signals are mainly the physically meaningful quantities of interest to the user, such as the
voltages on the topological nodes and naturally computed branch currents (such as those for
inductors and voltage sources).

Other examples of signals are the voltages at the internal nodes of components and the
terminal currents computed by using current probes at device or subcircuit terminals.

Note: If there are more than four terminals on a device (such as vbic, hbt, or bta_soi),
the fifth and higher terminals do not return actual currents but return 0.0.

You can save signals and include them as simulation results. Signals you can save include
the following:

■ Voltages at topological nodes

■ All currents

■ Other quantities the Virtuoso® Spectre® circuit simulator computes to determine the
operating point and other analysis data

For more information on saving signals, see “The save Statement” on page 255.

Saving all AHDL Variables

If you want to save all the ahdl variables belonging to all the ahdl instances in the design, set
the saveahdlvars option to all using a Spectre options command. For example:

Saveahdl options saveahdlvars=all

Listing Parameter Values as Output

You can generate lists of component parameter values with the info statement. With this
statement, you can access the values of input, output, and operating-point parameters. These
parameter types are defined as follows:

■ Input parameters

Input parameters are those you specify in the netlist, such as the given length of a
MOSFET or the saturation current of a bipolar resistor.
June 2011 292 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
■ Output parameters

Output parameters are those the simulator computes, such as temperature-dependent
parameters and the effective length of a MOSFET after scaling.

■ Operating-point parameters

Operating-point parameters are those that depend on the operating point.

You can also list the minimum and maximum values for the input, output, and operating-point
parameters, along with the names of the components that have those values.

Specifying the Parameters You Want to Save

You specify parameters you want to save with the info statement what parameter. You can
give this parameter the following settings:

The info statement gives you some additional options. You can use the save parameter of
the info statement to specify groups of signals whose values you want to list. For more
information about save parameter options, consult “Saving Groups of Signals” on page 261.
Finally, you can generate a summary of maximum and minimum parameter values with the
extremes option.

Setting Action

none Lists no parameters.

inst Lists input parameters for instances of all components.

models Lists input parameters for models of all components.

input Lists input parameters for instances and models of all components.

output Lists effective and temperature-dependent parameter values.

all Lists input and output parameter values.

oppoint Lists operating-point parameters.

terminals The output is a node-to-terminal map.

nodes The output is a terminal-to-node map.
June 2011 293 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Specifying the Output Destination

You can choose among several output destination options for the parameters you list with the
info statement. With the info statement where parameter, you can

■ Display the parameters on a screen

■ Send the parameters to a log file, to the raw file, or to a file you create

Examples of the info Statement

You format the info statement as follows:

StatementName info parameter=value…

The following example tells the Spectre simulator to send the maximum and minimum input
parameters for all models to a log file:

Inparams info what=models where=logfile extremes=only

For a complete description of the parameters available with the info statement, consult the
lists of analysis and control statement parameters in the Spectre online he4lp (spectre -h).

Preparing Output for Viewing

In this section, you will learn how to format output data files so you can view them with a
postprocessor.

Output Formats Supported by the Spectre Simulator

You can choose from among nine format settings for output data files or directories. The
default setting is psfbin. In the MMSIM 6.1 and succeeding releases, the Spectre simulator
can create PSF files of unlimited size for all analyses.

Option Format

fsdb Fast Signal Database format. This format is supported for transient
analyses only. This format can be viewed in nWave and Sandwork.

nutascii Nutmeg–ASCII (SPICE3 standard output)

nutbin Nutmeg–binary (SPICE3 standard output)

psfascii Cadence parameter storage format (PSF)–ASCII
June 2011 294 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
For wsfbin, wsfascii, psfbin, and psfascii formats, the Spectre circuit simulator
creates output files with extension .tran in the raw directory. The Spectre simulator overwrites
existing files and directories with the same extension.

For sst2, fsdb, and wdf formats, the Spectre simulator creates output files with extensions
.trn, .fsdb, and .wdf respectively.

PSF XL is a new Cadence waveform format which provides a high compression rate for large
circuit designs. PSF XL is supported by the Virtuoso® Visualization and Analysis tool
(available in the IC 6.1.3 release). RTSF is a PSF extension that can plot extremely large
datasets (where signals have a large number of data points, for example 10 million) within
seconds. RTSF is applicable to the psfbin, psfbinf, and psfxl formats, and is available
with the visualization tool in IC 6.1.2 and later releases. You can enable RTSF by using the
+rtsf option.

If the Spectre simulator cannot open files or create the necessary directories, it stops.

For further information about the Nutmeg format, consult the Nutmeg Users’ Manual
(available from the University of California, Berkeley).

You can use nWave or Sandwork to view outputs in the fsdb and wdf formats. For all other
formats, you can use any waveform viewer in the Cadence IC flow.

psfbin Cadence parameter storage format (PSF)–binary

psfbinf Cadence lowered precision parameter storage format

psfxl Cadence parameter storage XLformat.

sst2 Signal Scan Turbo2 format. This format is supported for transient analyses
only. This format can be viewed in Simvision and the Virtuoso Visualization
and Analysis tool.

tr0ascii TR0 ASCII (HSPICE) format

uwi UltraSim Waveform Interface format. This format is supported for transient
analyses only. For more information, see the Virtuoso UltraSim
Waveform Interface manual.

wdf Waveform Data format. This format is supported for transient analyses only.

wsfascii Cadence waveform storage format (WSF)–ASCII

wsfbin Cadence® waveform storage format (WSF)–binary

Option Format
June 2011 295 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Defining Output File Formats

You can redefine the output file format in two ways:

■ With a spectre command you type from the command line or place in an environment
variable

■ With an options statement you put in the netlist

You use the options statement in the netlist to override an environment default setting, and
you use the spectre command at run time to override any settings in the netlist. The
parameter values you enter are the same for either method.

Example Using the spectre Command

The following example shows you how to set format options with the spectre command.
This statement, which you type at the command line or place in an environment variable,
directs the Spectre simulator to run a simulation on a circuit named circuitfile and format
the results in binary Nutmeg.

spectre -format nutbin circuitfile

The following statement shows you how to specify the uwi format with the spectre command.
This statement directs the Spectre circuit simulator to run the simulation on the circuit named
in.ckt and write the output in the user-defined format saf. The library path is specified as
/hm/mtzakova/libUWI.so.

spectre -format uwi -uwifmt saf -uwilib /hm/mtzakova/libUWI.so in.ckt

The following statement specifies multiple output formats simultaneouly.

spectre -f uwi -uwifmt saf:wdf:fsdb -uwilib /hm/user1/libUWI.so in.ckt

Example Using the options Statement

You set format options with the rawfmt parameter of the options statement as shown in
the following example. This statement, which you place in the netlist, instructs the Spectre
simulator to create an output file in binary Nutmeg. For more information about the options
statement, see the parameter listings in the Spectre online help (spectre -h).

Settings options rawfmt=nutbin

Accessing Output Files

After you run a simulation, you will want access to results of the various analyses you
specified. To access these results, you need to know the names of the files and directories
June 2011 296 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
where the Spectre simulator stores these results. In this section, you will learn how the
Spectre simulator names its output directories and files and how you can change these
naming conventions to fit your needs. The information in this section applies to psf and wsf
formats.

How the Spectre Simulator Creates Names for Output Directories and
Files

When you create a netlist, you give the netlist a filename. When you simulate the circuit, the
Spectre simulator adds the suffix .raw to this filename to create the name of the output
directory for the simulation. For example, results from the simulation of a file named
input.scs are stored in a directory named input.raw.

In the output directory, results from each analysis you specify are stored in separate files. The
root of each filename is the name you gave the analysis in the netlist, and the suffix for each
filename is the type of analysis you specified. For example, if you run the following analysis,
the Spectre simulator stores the results in a file named Sparams.sp:

Sparams sp start=100M stop=100G dec=100

For the sweep and montecarlo analyses, the names of the filenames are a concatenation
of the parent analysis name, the iteration number, and the child analysis name. For example,

sweep1 sweep param=temp values=[-25 50]{
dcOp dc

}

creates sweep1_000_dcOp.dc and sweep1_001_dcOp.dc.

The following example contains a number of analysis statements from a netlist. It shows the
name of the output file the Spectre simulator creates for each analysis. In some cases, the
Spectre simulator creates more than one output file for an analysis. This is because the
June 2011 297 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
analysis statement contains a parameter that specifies that certain output information be sent
to a file.

Results File Description

logFile Log file (identifies output file format)

OpPoint.op Nonlinear device DC operating-point file

OpPoint.dc Node voltages at the operating point

Drift.dc DC sweep

XferVsTemp.xf Transfer function versus temperature

LoopGain.ac AC analysis

XferVsFreq.xf Transfer function versus frequency

StepResponse.tran Transient analysis

StepResponse.op Operating-point information for transient analysis

SineResponse.tran Transient analysis

OpPoint.dc

Drift.dc

XferVsTemp.xf

LoopGain.ac

XferVsFreq.xf

StepResponse.tran

SineResponse.tran

StepResponse.op

OpPoint.op// ANALYSES

// DC operating point
OpPoint dc print=yes oppoint=file readns="ua741.dc" \

write="ua741.dc"
Drift dc start=0 stop=50.0 step=1 param=temp \

nestlvl=0
XferVsTemp xf start=0 stop=50 step=1 probe=Rload \

param=temp freq=1k

// Gain
please1 alter dev=Vfb param=mag value=1 annotate=no
LoopGain ac start=1 stop=10M dec=10 nestlvl=0
please2 alter dev=Vfb param=mag value=0 annotate=no

// XF
XferVsFreq xf start=1 stop=10M dec=10 probe=Rload

// Transient

StepResponse tran stop=250u oppoint=file
please3 alter dev=Vin param=type value=sine
SineResponse tran stop=150u errpreset=moderate \

method=trap
June 2011 298 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Filenames for SPICE Input Files

If you specify analyses with standard SPICE syntax, the name of the output file for the first
instance of each type of analysis is the same as the name shown in the following table:

Note: These names have special significance to the Cadence analog design environment.

If you request multiple unnamed analyses using SPICE syntax, the names are constructed
by appending a sequence integer to the name of the analysis type and further adding the dot
extension that is appropriate for the analysis. For example, multiple AC analyses would
generate this sequence of files: frequencySweep.ac, ac2.ac, ac3.ac, ac4.ac, and so
on.

Specifying Your Own Names for Directories

You might want to specify a name for an output directory that is different from the name of
your netlist. (For example, if you use the same netlist in more than one simulation, you
probably want different names for the output files.) You can specify names in two ways:

■ You can specify your directory name from the command line or in an environment
variable with the spectre command -raw option. For example, if you want your output
directory to be named test.circuit.raw, you start your simulation as follows:

spectre -raw test.circuit inputFilename

■ You can set the rawfile parameter of the options statement. For example, the
following options statement creates an output directory named test.circuit.raw:

Setup options rawfile="test.circuit"

Note: The Spectre simulator has some additional features that help you manage data by
letting you systematically specify or modify filenames. For more information about these
features, see Chapter 13, “Managing Files.”

SPICE Analysis Output Filename

.OP opBegin.dc

.AC frequencySweep.ac

.DC srcSweep.dc

.TRAN timeSweep.tran
June 2011 299 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
June 2011 300 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
10
Running a Simulation

This chapter discusses the following topics:

■ Running Spectre in 64-Bit on page 302

■ Starting Simulations on page 303

■ Checking Simulation Status on page 305

■ Interrupting a Simulation on page 306

■ Recovering from Transient Analysis Terminations on page 306

■ Controlling Command Line Defaults on page 310
June 2011 301 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Running Spectre in 64-Bit

You can run 64-bit software using any of the following two methods:

■ Using the -64 Command Line Option on page 302

■ Using the CDS_AUTO_64BIT Environment Variable on page 302

Important

Before you run 64-bit software, verify that all required patches are installed by
running the System Configuration Checking Tool script, checkSysConf. This
script is in your local installation of Cadence software, at the following location:

your_install_dir/tools/bin/checkSysConf MMSIM7.1

MMSIM7.1 is a parameter expected by the script.

The System Configuration Checking Tool is also available on the Cadence Online
Support system. All required patches must be installed for the 64-bit executables to work
correctly.

Using the -64 Command Line Option

For example, run Spectre using the following command:

your_install_dir/tools/bin/spectre -64 mem.scs

Using the CDS_AUTO_64BIT Environment Variable

Do the following:

1. Set the environment variable CDS_AUTO_64BIT {ALL|NONE|"list"|INCLUDE:
"list"|EXCLUDE:"list"}to select 64-bit executables.

ALL Runs all applications as 64-bit, where available. The list of
applications available is in:
your_install_dir/tools/bin/64bit

NONE Runs all applications as 32-bit.

"list" Runs only the executables included in the list, where available,
as 64-bit. list is a list of case-sensitive executable names
delimited by comma(,), semi-colon(;), or colon(:).

INCLUDE:"list" Runs all applications in the list as 64-bit, where available.
June 2011 302 Product Version 10.1.1

http://sourcelink.cadence.com/docs/files/releases/sys_conf_check/welcome.html

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Examples:

setenv CDS_AUTO_64BIT spectre

setenv CDS_AUTO_64BIT EXCLUDE:"si"

2. Run Spectre using the following command:

your_install_dir/tools/bin/spectre

Starting Simulations

To start a simulation, you type the spectre command at the command line with the following
syntax:

spectre +spice options inputfile

The spectre command starts a simulation of inputfile. The simulation includes any
options you request. For a given simulation, the spectre command options override any
settings in default environment variables or options statement specifications.

The +spice option ensures that Spectre is invoked with the SPICE-compatible parser. In
addition, it also

■ sets tnom and temp to 25C

■ sets parameter inheritance to global rather than the Spectre default of local. This means
that global parameter definitions override local ones.

■ sets flags on all device models to be SPICE compatible.

■ enforces .IC statements and initial conditions on elements for DC and OP analyses. By
default, Spectre only forces initial conditions if the DC analysis force option is set.

The following example starts a simulation of the input file test1.

spectre +spice test1

Specifying Simulation Options

Many simulation runs require more complicated instructions than the previous example.
Virtuoso® Spectre® circuit-simulator-run options can be specified in two ways. Which method
you use depends on the run option.

EXCLUDE:"list" Runs all applications as 64-bit, where available, except the
applications in the list.
June 2011 303 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
■ You specify some Spectre options by typing a minus (-) in front of the option. The (-V)
in the following example specifies that version information be printed for the simulation
of circuit test1.

spectre -V test1

■ You activate some Spectre options by typing a plus (+) before the option. You deactivate
these options by typing a minus (-) before the option. For example, the following
spectre command starts a simulation run for circuit test1. In this simulation, the
Spectre simulator sets checkpoints but does not print error messages:

spectre +checkpoint -error test1

Some Spectre options have abbreviations. You can find these abbreviations in Chapter 2,
“Spectre Command Options,” of the Virtuoso Spectre Circuit Simulator Reference
manual. For example, you can type the previous command as follows:

spectre +cp -error test1

Specific spectre command options are discussed throughout this guide. For a complete list
of options and formats, see Chapter 2, “Spectre Command Options,” of the Spectre Circuit
Simulator Reference manual.

Using License Queuing

You can turn on license queuing by using the lqtimeout command line option:

spectre +lqtimeout time

If a license is not available when you begin a simulation job, the Spectre circuit simulator waits
in queue for a license for the specified time. If you specify the value 0 for this option, the
Spectre circuit simulator waits indefinitely for a license. The lqtimeout option ha s no
default value for the standalone Spectre circuit simulator. If you invoke Spectre through the
Analog Design Environment, the default value for lqtimeout is 900 seconds.

You can use the lqsleep option to specify the interval (in seconds) at which the Spectre
circuit simulator should check for license availability. The default value for lqsleep is 30
seconds.

spectre +lqsleep interval

For more information on any of the above options, see spectre -h.

Suspending and Resuming Licenses

You can direct Spectre to release licenses when suspending a simulation job. This feature is
aimed for users of simulation farms, where the licenses in use by a group of lower priority jobs
June 2011 304 Product Version 10.1.1

../spectreref/chap2.html#firstpage
../spectreref/chap2.html#firstpage
../spectreref/chap2.html#firstpage
http://www.adobe.com
http://www.adobe.com

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
may be needed for a group of higher priority jobs. To enable this feature, simply start Spectre
with the +lsuspend command line option. In the Solaris environment, press ctrl+z to
suspend the Spectre license. All licenses are checked in. To resume simulation, press fg.
These keystrokes may not work if you have changed the default key bindings.

In Virtuoso® Analog Design Environment, the lqtimeout and lqsleep options are
controlled by the following options:

spectre.envOpts lsuspend boolean t

spectre.envOpts licQueueTimeOut string "900"

spectre.envOpts licQueueSleep string "30"

Determining Whether a Simulation Was Successful

When the Spectre simulator finishes a simulation, it sets the shell status variable to one of the
following values:

Checking Simulation Status

If you want to check the status of a simulation during a run, type the following UNIX command:

% kill -USR1 PID

PID is the Spectre process identification number, which you can find by activating the UNIX
ps utility.

The Spectre simulator displays the status information on the screen or sends it to standard
output if it cannot write to the screen. If you check the status from a remote terminal, the
Spectre simulator also writes the status to the SpectreStatus file in the directory from
which the Spectre simulator was called. The Spectre simulator deletes this file at termination
of the run.

Note: You can also give Spectre netlist instructions to display some status information. For
more information, consult the Spectre online help about the sweep and steps options for the
annotate parameter. You can set the annotate parameter for most Spectre analyses.

0 If the Spectre simulator completed the simulation normally

1 If the Spectre simulator stopped any analysis because of an error

2 If the Spectre simulator stopped the simulation early because of a Spectre error
condition

3 If a Spectre simulation was stopped by you or by the operating system
June 2011 305 Product Version 10.1.1

http://www.adobe.com
http://www.adobe.com

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Interrupting a Simulation

If you want to stop the Spectre simulator while a simulation is running, do one of the following:

■ Send an INT signal with your interrupt character.

The interrupt character is usually Control-c. You can get information about the
interrupt character for your system with the UNIX stty utility.

■ Send the INT signal with a kill(1) command.

When you use either of these commands, the Spectre simulator prepares the incomplete
output data file for reading by the postprocessor and then stops the simulation.

Caution

Do not stop the Spectre simulator with a kill -9 command. This command
stops the simulation before the Spectre simulator can prepare the output
files for reading by the postprocessor.

Recovering from Transient Analysis Terminations

If a transient analysis ends before a successful conclusion, you can recover the work that is
completed and restart the analysis. The Spectre simulator needs saved state or checkpoint
files to perform this recovery. State files save the current state of the simulation whereas
checkpoint files save only the circuit operating point and simulation time at the specified point
during the simulation. When re-starting an aborted simulation with a saved state file,
convergence issues, glitches, and potential inaccuracies associated with the checkpoint
mechanism are prevented.

You can change the netlist parameters (global, subcircuit, instance), temperature, simulation
tolerances, and stop time between savestate and restart. You cannot change the topology
and the platform you are running the simulation on.

This section tells you how to create saved state and checkpoint files. It also tells you how to
restart a simulation after a transient analysis termination.

Creating Saved State Files

You can save the current state of the system periodically during a simulation, so that if the
simulation is interrupted, you can re-run the simulation from the last saved point. You can also
use the save state feature to run a simulation up to a point, and then re-run the last portion of
June 2011 306 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
the simulation several times to investigate how the circuit responds to different stimuli. You
can try various accuracy settings for different time periods to get the best performance for
your simulation.

To create a saved state file,

1. Enable save state by typing +savestate as a command line argument to the spectre
command that starts the simulation. Savestate is enabled by default.

2. Specify the time points and file to save the state to:

analysisName tran stop=stoptime [[saveperiod=time] | [savetime=[time1
time2…]] | [saveclock=clock_time]] [savefile=filename.srf]

where

If more than one time point parameter is specified, the Spectre circuit simulator utilizes the
parameters in the order as given in the table above – i.e., saveperiod, savetime, and then
saveclock.

If you specify Spectre

saveperiod=time generates a saved state file at the specified transient
simulation time interval. Only the last generated saved state
file is kept.

savetime=[time1
time2…]

generates a saved state file at each specified time point and
suffixes ascending numbers to the file name
(filename.srf#) where #=0, 1, 2…

saveclock=clock_tim
e

generates a saved state file at the specified real time interval.
Default value is 30 minutes for Spectre. Spectre Turbo mode
and APS do not have any time limit for the saveclock
period.

savefile=filename.s
rf

saves the state to the specified file. Default name is %C.%A.srf
where %C is the input circuit file name and %A is the analysis
name.

savefile=filename saves the state to file filename@time1,
filename@time2 and so on.

Default name is %C.%A.srf_@time1,
%C.%A.srf_@time2... where %C is the input circuit file
name and %A is the analysis name.
June 2011 307 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
By default, the Spectre simulator creates checkpoint files every 30 minutes during a transient
analysis. In the case of Spectre Turbo mode and APS, the saveclock period is set to infinity
due to which, checkpoint files are not created unless saveclock is specifically set to a
smaller value. The Spectre simulator deletes the savestate files when the simulation ends
successfully.

The Spectre simulator attempts to save the state file after QUIT, TERM, INT, or HUP
interrupts. After other interrupt signals, the Spectre simulator might be unable to save the
state file.

Creating checkpoint Files

This section talks about the following ways to create checkpoint files:

■ Automatically, with defaults and options statement settings

■ From the command line during a simulation

■ For specific analyses with netlist instructions

This section also tells you how to restart a simulation after a transient analysis termination.

Reactivating Automatic Recovery for a Single Simulation

If you have deactivated the default setting (by putting the -checkpoint setting in an
environment variable), you can reactivate the default value for a given simulation run with the
following procedure:

➤ Type +checkpoint as a command line argument to the spectre command that starts
the simulation.

Determining How Often the Spectre Simulator Creates Recovery Files

If you want to change how often the Spectre simulator creates checkpoint files for a particular
simulation, or if you want your checkpoint files saved after a successful completion, you
should set the ckptclock parameter of the options statement. For more information about
the options statement, consult the parameter listings in the Spectre online help (spectre
-h).

The following options statement tells the Spectre simulator to create checkpoint files every
3 1/2 minutes for all transient analyses in a simulation. (You indicate parameters for
ckptclock in seconds.)

SetCkptInterval options ckptclock=210
June 2011 308 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Creating Recovery Files from the Command Line

You can create a checkpoint file when a transient analysis is running with a UNIX interrupt
signal from the command line.

➤ To create a checkpoint file from the command line, send a USR2 signal with a UNIX kill
command.

kill -USR2 PID

(You find the necessary process identification number by running the UNIX ps utility.)

The Spectre simulator also attempts to write a checkpoint file after QUIT, TERM, INT, or HUP
interrupts. After other interrupt signals, the Spectre simulator might be unable to write a
checkpoint file.

Setting Recovery File Specifications for a Single Analysis

When you specify a transient analysis, you can also create periodic checkpoint files for that
analysis.

➤ To create periodic checkpoint files for a transient analysis, set the ckptperiod
parameter in the transient analysis statement.

The following example creates a checkpoint every 20 seconds during the transient analysis
SineResponse:

SineResponse tran stop=150u ckptperiod=20

Restarting a Transient Analysis

You can restart a transient analysis from the last saved state file or checkpoint file.

To restart a transient analysis from the last saved state file, do one of the following,

■ Add the +recover=[filename] argument to the spectre command line

■ Add the recover argument to the tran statement as follows:

analysisName tran recover=filename

To restart a transient analysis from the last checkpoint file,

➤ Add the +recover argument to the spectre command line
June 2011 309 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Output Directory after Recovery

A new raw directory is created when recovering a saved state. The raw directory name is the
same as the run directory name with an index number added, such as *.raw# where # is 0, 1,
2,...

For example, if the raw directory in the first run is input.raw, the recovered raw directory is
input.raw0. The next recovered raw directory is named input.raw0 and so on.

Controlling Command Line Defaults

There are many run options you can specify with either the spectre command or the
options statement. The Spectre simulator provides defaults for many of these options, so
you can avoid the inconvenience of specifying many options for each simulation. Spectre
defaults are satisfactory for most situations, but, if you have specialized needs, you can also
set your own defaults. Spectre command line defaults control the following general areas:

■ Messages from the Spectre simulator

■ Destination and format of results

■ Default values for the C preprocessor

■ Default values for percent codes

■ Creating checkpoints and initiating recoveries

■ Screen display

■ Name of the simulator

■ Simulation environment (such as opus, edge, and so on)

Examining the Spectre Simulator Defaults

You can identify the various Spectre defaults by consulting the detailed description of
spectre command options in the Virtuoso Spectre Circuit Simulator Reference
manual.

Setting Your Own Defaults

You can set your own defaults by setting the UNIX environment variables %S_DEFAULTS or
SPECTRE_DEFAULTS. In %S_DEFAULTS, %S is replaced by the name of the simulator, so this
June 2011 310 Product Version 10.1.1

../spectreref/chap2.html#firstpage

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
variable is typically SPECTRE_DEFAULTS. However, the name created by the %S substitution
is different if you move the executable to a file with a different name or if you call the program
with a symbolic or hard link with a different name. Consequently, you can create multiple sets
of defaults, which you identify with different %S substitutions. Initially, the Spectre simulator
looks for defaults settings in %S_DEFAULTS. If this variable does not exist, it looks for default
settings in SPECTRE_DEFAULTS.

To set these environment variables, use the following procedure.

➤ In an appropriate file, such as .cshrc or .login, use the appropriate UNIX command
to create settings for the environment variables %S_DEFAULTS or SPECTRE_DEFAULTS.
Format the new default settings like spectre command line arguments and place them
in quotation marks.

The following example changes the default output format from psfbin to wsfbin. It also
sets an option that is normally deactivated. It sends all messages from the Spectre simulator
to a %C:r.log file.

For csh:

setenv SPECTRE_DEFAULTS " -format wsfbin +log %C:r.log "

For sh or ksh:

SPECTRE_DEFAULTS=" -format wsfbin +log %C:r.log "

EXPORT SPECTRE_DEFAULTS

This second example, a typical use of the SPECTRE_DEFAULTS environment variable, tells
the Spectre simulator to do the following:

■ Write a log file named cktfile.out, where cktfile is the name of the input file
minus any dot extension.

■ Use the parameter soft limits file in the Cadence® software hierarchy.

setenv SPECTRE_DEFAULTS "+log %C:r.out +param /cds/etc/spectre/range.lmts"

You can use the default settings to specify alternative conditions for running the Spectre
simulator. Suppose you create the following environment variables:

setenv SPECTRE_DEFAULTS "+param range.lmts +log %C:r.o -E"

setenv SPECSIM_DEFAULTS "+param corner.lmts =log %C:r.log \
-f psfbin"

If spectre and specsim are both links to the Spectre executable, and you run the
executable as spectre, the Spectre simulator does the following:

■ Reads the file range.lmts for the parameter limits
June 2011 311 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
■ Directs all messages to the screen and to a log file named after the circuit file with .o
appended (see Chapter 13, “Managing Files,” for more information about specifying
filenames)

■ Runs the C preprocessor

Running the executable as specsim causes the Spectre simulator to select a different set
of defaults and to do the following:

■ Read the range limits from the file corner.lmts

■ Direct log messages to a file named after the circuit file with .log appended (the =log
specification suppresses the log output to the screen)

■ Format output files in binary parameter storage format (PSF)

References for Additional Information about Specific Defaults

In some cases, you need to consult other sections of this book before you can set defaults.

■ If you want to set default limits for warning messages about parameter values, consult
Chapter 14, “Identifying Problems and Troubleshooting.”to find information about
installing Cadence defaults or creating your own range limits file if you need to customize
defaults.

■ You can find additional information about percent code defaults in “Description of Spectre
Predefined Percent Codes” on page 317.

Overriding Defaults

You can override defaults in the UNIX environment variables for a given simulation with either
spectre command line arguments or options statement specifications. The spectre
command line arguments also override options statement specifications.
June 2011 312 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
11
Encryption

Encryption allows you to protect your proprietary parameters, subcircuits, models, and
netlists, and release your libraries to your customers without revealing sensitive information.
Your customers can run simulations in the Virtuoso® Spectre® circuit simulator with the
encrypted netlists – the Spectre circuit simulator does not print any data inside the encrypted
blocks. Messages about the encrypted portions of your circuit are suppressed.

You can encrypt netlists that are in the Spectre and Berkeley SPICE formats.

You cannot use encryption if you are using the Spectre Compiled-Model Interface (CMI).

This chapter covers the following topics:

■ “Encrypting a Netlist” on page 314.

■ “Encrypted Information During Simulation” on page 320.
June 2011 313 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Encrypting a Netlist

To encrypt a netlist,

1. Open the netlist you want to encrypt in a text editor.

2. Type PROTect above the data you want to protect. The capital letters indicate the
shortest legal abbreviation, so you achieve the same affect by typing prote or protec for
example.

3. Type UNPROTect after the last line of the data you want to protect. The capital letters
indicate the shortest legal abbreviation, so you achieve the same affect by typing unprote
or unprotec for example.

You must use the protect and unprotect keywords in pairs.

4. Save the netlist.

5. In a terminal window, type

spectre_encrypt [-i input_file] [-o output_file] [-all]

where

The Spectre circuit simulator uses the library to encrypt your netlist.

The protect and unprotect keywords are replaced with pragma statements in the output
netlist. The pragma statements contain important information about encryption such as the
method used, the key name, and the beginning and end of the encrypted block. The Spectre
circuit simulator uses this information while decrypting the netlist. Hence it is important that
you do not modify any pragma statement or the encrypted text between the pragma
statements in the output file.

input_file The path and name of the netlist to be encrypted. If you do not
specify the input file, the netlist from standard input is encrypted.

output_file The path and name of a file to hold the encrypted netlist. The
extension that you use for output_file must be the same extension
used on input_file.
If you do not specify the output file, the encrypted netlist is displayed
as standard output in the terminal window.

-all Encrypts the entire netlist, ignoring of the protect and unprotect
keywords.
June 2011 314 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
What You can Encrypt

You can encrypt signals, netlist and subcircuit parameters, files, devices, and model cards.
You can use multiple pairs of protect, unprotect to encrypt different portions of your
netlist. The content inside the protect, unprotect block is encrypted and the content
outside this block remains the same as the original netlist.

Encrypting a File

You can encrypt a file by adding protect at the beginning and unprotect at the end of the
file.

Encrypting Subcircuits

As described in the following sections, you can encrypt an entire subcircuit, part of a
subcircuit, or multiple subcircuit blocks.

Encrypting an Entire Subcircuit

To encrypt an entire subcircuit, place protect before the subckt and unprotect after the
ends statement. This encrypts the subcircuit name as well as the I/O pins. Since the
interfaces are not readable after encryption, Cadence recommends that you add some
information on how the interface works outside the protected block so that your users can
create Composer symbols for simulation.

All flattened primitive devices expanded from a protected subcircuit are also protected.
June 2011 315 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Example

Encrypting a Subcircuit without Interfaces

To encrypt the contents of a subcircuit leaving its name and I/O pins public, place protect
after subckt and unprotect before ends.

Original Netlist Encrypted Netlist

* subckt name :inv, I/O pins:2

* parameters wi, le

protect

subckt inv out in

parameters wi=1u le=3u

mp1 mid in vd vd pmos w=wi l=le

mn1 mid in 0 0 nmos w=wi l=le

r1 mid out resistor r=2k

model pmos bsim3v3 type=p tnom=27.0
tox=2.9e-09

model nmos bsim3v3 type=n tnom=27.0
tox=2.8e-09

ends

unprotect

* subckt name :inv, I/O pins:2

* parameters wi, le

//pragma protect begin_protected

//pragma protect data_method = RC5

//pragma protect data_keyowner = Cadence
Design Systems.

//pragma protect data_keyname = CDS_KEY

//pragma protect data_block

fajdfejwrADFASDfdhfjadfahd

QERWfdjau77r42jagadfhjkuer

jdfejwrADFASDfdhfjad

jdfejwrADFASDfdhfjad

//pragma protect end_protected

* open latch module

subckt latch q qbar clk d

...

* open latch module

subckt latch q qbar clk d

...
June 2011 316 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Example

Encrypting Portions of a Subcircuit or Multiple Subcircuits

You can use multiple pairs of protect and unprotect in a subcircuit to protect portions of
it. See the example below.

Original Netlist Encrypted Netlist

subckt inv out in

protect

parameters wi=1u le=3u

mp1 mid in vd vd pmos w=wi l=le

mn1 mid in 0 0 nmos w=wi l=le

r1 mid out resistor r=2k

model pmos bsim3v3 type=p tnom=27.0
tox=2.9e-09

model nmos bsim3v3 type=n tnom=27.0
tox=2.8e-09

unprotect

ends

subckt inv out in

//pragma protect begin_protected

//pragma protect data_method = RC5

//pragma protect data_keyowner = Cadence
Design Systems.

//pragma protect data_keyname = CDS_KEY

//pragma protect data_block

fajdfejwrADFASDfdhfjadfahd

QERWfdjau77r42jagadfhjkuer

//pragma protect end_protected

ends

* open latch module

subckt latch q qbar clk d

...

* open latch module

subckt latch q qbar clk d

...
June 2011 317 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide

n
Example

If you have multiple subcircuits in your netlist, you can encrypt them by using multiple pairs of
protect and unprotect as shown in the example above.

Encrypting a Model Card

You can encrypt one or more model cards with a pair of protect and unprotect
keywords. The keywords do not have to be within or outside the model card. Even if you
encrypt only a portion of the model card, the entire model card is protected during simulation.
In case there are no parameters within a protected block, the Spectre circuit simulator
displays a warning message, but still encrypts the model card.

Example 1

Original Netlist Encrypted Netlist

subckt inv out in

parameters wi=1u le=3u

protect

mp1 mid in vd vd pmos w=wi l=le

mn1 mid in 0 0 nmos w=wi l=le

unprotect

r1 mid out resistor r=2k

protect

model pmos bsim3v3 type=p tnom=27.0
tox=2.9e-09

model nmos bsim3v3 type=n tnom=27.0
tox=2.8e-09

unprotect

ends inv

...

subckt inv out

parameters wi=1u le=3u

global vd

//pragma protect begin_protected

//pragma protect data_method = RC5

//pragma protect data_keyowner= Cadence Desig
Systems.

//pragma protect data_keyname = CDS_KEY

//pragma protect data_block

QERWfdjau77r42jagadfhjkuer

//pragma protect end_protected

r1 mid out 2k

//pragma protect begin_protected

etu45j6jgfly5po765t8tnji5j5i76k

// pragma protect end_protected

ends inv

...
June 2011 318 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
In the following example, the encryption keywords are around the model card definition. The
model name and all parameters are encrypted.

Example 2

In the following example, the protect keyword is within the model card definition, leaving a
number of parameters outside the protection block. The model name and parameters outside
the protection block remain public, but the whole model is protected for message and
parameter output during simulation.

Original Netlist Encrypted Netlist

* The 1st model name is pmos, type is p

* The 2nd model name is nmos, type is n

subckt inv out in

paramemters wi=lu le=3u

mp1 mid in vd vd pmos w=wi l-le

mn1 mid in 0 0 nmos w=wi l=le

ends inv

protect

model pmos bsim3v3 type=p tnom=27.0
tox=2.9e-09

model nmos bsim3v3 type=n tnom=27.0
tox=2.8e-09

unprotect

* The 1st model name is pmos, type is p

* The 2nd model name is nmos, type is n

subckt inv out in

paramemters wi=lu le=3u

mp1 mid in vd vd pmos w=wi l-le

mn1 mid in 0 0 nmos w=wi l=le

ends inv

//pragma protect begin_protected

//pragma protect data_method = RC5

//pragma protect data_keyowner = Cadence
Design Systems.

//pragma protect data_keyname = CDS_KEY

//pragma protect data_block

QERWfdjau77r42jagadfhjkuer

//pragma protect end_protected

Original Netlist Encrypted Netlist

model pmos bsim3v3 type=p tnom=27.0
tox=2.9e-09

protect

Nch=2.498E+17 Tox=27.0 tox=2.9e-09
Xj=1.00000E-07

+Lint=9.36e-8 Wint=1.47e-7

+Vth0=.6322 K1=.756 K2=-3.83e-2

+Dvt2=-9.17e-2 Nlx=3.52291E-08

Dwg=-6.0E-09 Dwb=-3.56E-09

+Cit=1.622527E-04 Cdsc=-2.147181E-05

unprotect

model pmos bsim3v3 type=p tnom=27.0
tox=2.9e-09

//pragma protect begin_protected

//pragma protect data_method = RC5

//pragma protect data_keyowner = Cadence
Design Systems.

//pragma protect data_keyname = CDS_KEY

//pragma protect data_block

fajdfejwrADFASDfdhfjadfahd

QERWfdjau77r42jagadfhjkuer

//pragma protect end_protected
June 2011 319 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Encrypting an Include File

If there is an include file in the encrypted portion of your netlist, you must encrypt it separately.

Encrypted Information During Simulation

When you simulate an encrypted netlist, all warnings, error messages, and info statements
about the encrypted portions of your netlist are suppressed. The following sections describe
how the Spectre circuit simulator handles the encrypted portions of your netlist.

Protected Device

A device is encrypted if any of the following conditions are met:

■ It is a primitive and inside a protected block.

■ It is an instance of a subcircuit. The instance is not in a protected block, but the subcircuit
is protected. Here is an example:

X1 in out INV

subckt INV (in out)

protect

mp1 vdd in vdd pmos W=1.0e-6 L=1.0e-6

mn1 out in 0 0 nmos W=1.0e-6 L=1.0e-6

unprotect

ends INV

In the flattened netlist, devices X1/mp1 and X1/mn1 are protected.

■ It is an instance of a subcircuit, and the instance is in a protected block. Whether the
subcircuit is protected or not, all the flattened primitive devices from that hierarchical level
are protected. An example is given below.

protect

X1 in out INV

unprotect

subckt INV (in out)

mp1 vdd in vdd pmos W=1.0e-6 L=1.0e-6

mn1 out in 0 0 nmos W=1.0e-6 L=1.0e-6

ends INV

In the flattened netlist, devices X1/mp1 and X1/mn1 are protected.
June 2011 320 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
For a device meeting any of the above criteria, its name and instance parameters are
protected. The instance parameters of a protected device cannot be modified through an
alter statement, but the protected device can be replaced through an altergroup
statement. Information about a protected device is filtered out in all analyses outputs.

Encrypted devices are not included in the circuit inventory.

Protected Node

A node contained exclusively within a protected block is protected, and its name and value is
not displayed in the output file. If you request an ic file or restart a simulation, protected
nodes are displayed in encrypted format in the ic, checking point, and restart output files.

Protected Global and Netlist Parameters

Global and netlist parameters defined inside a protected block are encrypted. However, you
can alter or sweep a protected parameter. All device instance and model parameters
dependent on the altered parameter are updated even if the device or model is protected.

Protected Subcircuit Parameters

Subcircuit parameters are protected if they appear exclusively within a protected block. All
devices or model cards that refer to encrypted parameters must be in a protected block to
protect the parameter values. If protected parameters are referred to by an unprotected
device or model card, the parameter values are printed in the info statements for this device
or model card.

You can alter or sweep a protected subcircuit parameter. All device instance and model
parameters dependent on the altered parameter are updated even if the device or model is
protected.

Protected Model Parameters

For a model card inside a protected block (where the protect keyword appears before the
model statement), the model card and all model parameters are encrypted. If you place
protect after the model definition and leave some parameters outside a protection block,
only parameters inside the protection block are encrypted. During simulation, all parameters
inside the model card are encrypted since encryption is done on the basis of the model card,
not individual parameters. Warning messages and info statements for all model parameters
and values of a protected model card are suppressed.
June 2011 321 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Even if the model name is protected, you can instantiate primitives using that model. You
cannot alter or sweep protected model parameters, but you can replace a protected model
through an altergroup statement.

Multiple Name Spaces

Names of parameters, subcicuits, models, and devices that appear exclusively within
protected blocks are encrypted. However, identical names appearing outside the protected
blocks are bound to their encrypted counterparts. Hence, Cadence recommends that you
give unique names to the parameters, subcircuits, models, and devices you want to protect.
June 2011 322 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
12
Time-Saving Techniques

In this chapter, you will learn about different methods to reduce simulation time. This chapter
discusses the following topics:

■ Specifying Efficient Starting Points on page 324

■ Reducing the Number of Simulation Runs on page 324

■ Adjusting Speed and Accuracy on page 324

■ Saving Time by Starting Analyses from Previous Solutions on page 324

■ Saving Time by Specifying State Information on page 325

■ Saving Time by Modifying Parameters during a Simulation on page 330

■ Saving Time by Selecting a Continuation Method on page 333
June 2011 323 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Specifying Efficient Starting Points

The Virtuoso® Spectre® circuit simulator arrives at a solution for a simulation by calculating
successively more accurate estimates of the final result. You can increase simulation speed
by providing information that the Spectre simulator uses to increase the accuracy of the initial
solution estimate. There are three ways to provide a good starting point for a simulation:

■ Start analyses from previous solutions

■ Specify initial conditions for components and nodes

■ Specify solution estimates with nodesets

Reducing the Number of Simulation Runs

With the Spectre simulator, you can run many analyses (including analyses of the same type)
in a single simulation. With other SPICE-like simulators, you might require multiple
simulations to complete the same tasks. In a single simulation run, you can run a set of
Spectre analyses; modify the component, temperature, or options parameters; and then
run additional analyses with the new parameters.

Adjusting Speed and Accuracy

You can use the errpreset parameter to increase the speed of transient analyses, but this
speed increase requires some sacrifice of accuracy.

Saving Time by Starting Analyses from Previous
Solutions

A solution for one analysis can be an appropriate starting point for the next analysis. For
example, if a DC analysis precedes a transient analysis, you can use the DC solution as the
first guess for the initial point in the transient analysis solution. There are two Spectre analysis
parameters that let you start analyses from previous solutions. They are available for most
Spectre analyses.

■ The restart parameter

If you set this parameter to restart=no in an analysis statement, the Spectre simulator
uses the DC solution of the previous analysis as an initial guess for the following analysis.

■ The prevoppoint parameter
June 2011 324 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
If you set this parameter to prevoppoint=yes in an analysis statement, the Spectre
simulator does not compute or recompute the operating point. Instead, it uses the
operating point computed by the previous analysis.

Saving Time by Specifying State Information

The Spectre simulator lets you provide state information (the current or last-known status or
condition of a process, transaction, or setting) to the DC and transient analyses. You can
specify two kinds of state information:

■ Initial conditions

The ic statement lets you specify values for the starting point of a transient analysis. The
values you can specify are voltages on nodes and capacitors, and currents on inductors.

■ Nodesets

Nodesets are estimates of the solution you provide for the DC or transient analyses.
Nodesets usually act only as aids in speeding convergence, but if a circuit has more than
one solution, as with a latch, nodesets can bias the solution to the one closest to the
nodeset values.

Setting Initial Conditions for All Transient Analyses

You can specify initial conditions that apply to all transient analyses in a simulation or to a
single transient analysis. The ic statement and the ic parameter described in this section
set initial conditions for all transient analyses in the netlist. In general, you use the ic
parameter of individual components to specify initial conditions for those components, and
you use the ic statement to specify initial conditions for nodes. You can specify initial
conditions for inductors with either method. Specifying cmin for a transient analysis does not
satisfy the condition that a node has a capacitive path to ground.

Note: Do not confuse the ic parameter for individual components with the ic parameter of
the transient analysis. The latter lets you select from among different initial conditions
specifications for a given transient analysis.

Specifying Initial Conditions for Components

You can specify initial conditions in the instance statements of capacitors, inductors, and
windings for magnetic cores. The ic parameter specifies initial voltage values for capacitors
and current values for inductors and windings. In the following example, the initial condition
voltage on capacitor Cap13 is set to two volts:
June 2011 325 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Cap13 11 9 capacitor c=10n ic=2

Specifying Initial Conditions for Nodes

You use the ic statement to specify initial conditions for nodes or initial currents for inductors.
The nodes can be inside a subcircuit or internal nodes to a component.

The following is the format for the ic statement:

ic signalName=value …

The format for specifying signals with the ic statement is similar to that used by the save
statement. This method is described in detail in “Saving Main Circuit Signals” on page 255.
Consult this discussion if you need further clarification about the following example.

ic Voff=0 X3.7=2.5 M1:int_d=3.5 L1:1=1u

This example sets the following initial conditions:

■ The voltage of node Voff is set to 0.

■ Node 7 of subcircuit X3 is set to 2.5 V.

■ The internal drain node of component M1 is set to 3.5 V. (See the following table for more
information about specifying internal nodes.)

■ The current for inductor L1 is set to 1μ.

Specifying initial node voltages requires some additional discussion. The following table tells
you the internal voltages you can specify with different components.

Component Internal Node Specifications

BJT int_c, int_b, int_e

BSIM int_d, int_s

MOSFET int_d, int_s

GaAs MESFET int_d, int_s, int_g

JFET int_d, int_s, int_g, int_b

Winding for Magnetic Core int_Rw

Magnetic Core with Hysteresis flux
June 2011 326 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Supplying Solution Estimates to Increase Speed

You use the nodeset statement to supply estimates of solutions that aid convergence or bias
the simulation towards a given solution. You can use nodesets for all DC and initial transient
analysis solutions in the netlist. The nodeset statement has the following format:

nodeset signalName=value…

Values you can supply with the nodeset statement include voltages on topological nodes,
including internal nodes, and currents through voltage sources, inductors, switches,
transformers, N-ports, and transmission lines.

The format for specifying signals with the nodeset statement is similar to that used by the
save statement. This method is described in detail in “Saving Main Circuit Signals” on
page 255. Consult this discussion if you need further clarification about the following
example.

nodeset Voff=0 X3.7=2.5 M1:int_d=3.5 L1:1=1u

This example sets the following solution estimates:

■ The voltage of node Voff is set to 0.

■ Node 7 of subcircuit X3 is set to 2.5 V.

■ The internal drain node of component M1 is set to 3.5 V. (See the table in the ic
statements section of this chapter for more information about specifying internal nodes.)

■ The current for inductor L1 is set to 1μ.

Specifying State Information for Individual Analyses

You can specify state information for individual analyses in two ways:

■ You can use the ic parameter of the transient analysis to choose which previous
specifications are used.

■ You can create a state file that is read by an individual analysis.
June 2011 327 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Choosing Which Initial Conditions Specifications Are Used for a Transient Analysis

The ic parameter in the transient analysis lets you select among several options for which
initial conditions to use. You can choose the following settings:

Specifying State Information with State Files

You can also specify initial conditions and estimate solutions by creating a state file that is
read by the appropriate analysis. You can create a state file in two ways:

■ You can instruct the Spectre simulator to create a state file in a previous analysis for
future use.

■ You can create a state file manually in a text editor.

Telling the Spectre Simulator to Create a State File

You can instruct the Spectre simulator to create a state file from either the initial point or the
final point in an analysis. To write a state file from the initial point in an analysis, use the write
parameter. To write a state file from the final point, use the writefinal parameter. Each of
the following two examples writes a state file named ua741.dc. The first example writes the
state file from the initial point in the DC sweep, and the second example writes the state file
from the final point in the DC sweep.

Drift dc param=temp start=0 stop=50.0 step=1 readns="ua741.dc" write="ua741.dc"

Drift dc param=temp start=0 stop=50.0 step=1 readns="ua741.dc"
writefinal="ua741.dc"

Parameter Setting Action Taken

dc Initial conditions specifiers are ignored, and the existing DC
solution is used.

node The ic statements are used, and the ic parameter settings on the
capacitors and inductors are ignored.

dev The ic parameter settings on the capacitors and inductors are
used, and the ic statements are ignored.

all Both the ic statements and the ic parameters are used. If
specifications conflict, ic parameters override ic statements.
June 2011 328 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Creating a State File Manually

The syntax for creating a state file in a text editor is simple. Each line contains a signal name
and a signal value. Anything after a pound sign (#) is ignored as a comment. The following is
an example of a simple state file:

State file generated by Spectre from circuit file 'wilson'
during 'stepresponse' at 5:39:38 PM, jan 21, 1992.

1 .588793510612534
2 1.17406247989272
3 14.9900516233357
pwr 15
vcc:p -9.9483766642647e-06

Reading State Files

To read a state file as an initial condition, use the readic transient analysis parameter. To
read a state file as a nodeset, use the readns parameter. This example reads the file
intCond as initial conditions:

DoTran_z12 tran start=0 stop=0.003 \
step=0.00015 maxstep=6e-06 read="intCond"

This second example reads the file soluEst as a nodeset.

DoTran_z12 tran start=0 stop=0.003 \
step=0.00015 maxstep=6e-06 readns="soluEst"

Special Uses for State Files

State files can be useful for the following reasons:

■ You can save state files and use them in later simulations. For example, you can save the
solution at the final point of a transient analysis and then continue the analysis in a later
simulation by using the state file as the starting point for another transient analysis.

■ You can use state files to create automatic updates of initial conditions and nodesets.

The following example demonstrates the usefulness of state files:

altTemp alter param=temp value=0
Drift dc param=temp start=0 stop=50.0 step=1 readns=”ua741.dc0” write=”ua741.dc
XferVsTemp xf param=temp start=0 stop=50 step=1 probe=Rload freq=1kHz \

readns=”ua741.dc0”

The first analysis computes the DC solution at T=0C, saves it to a file called ua741.dc0, and
then sweeps the temperature to T=50C. The transfer function analysis (xf) resets the
temperature to zero. Because of the temperature change, the DC solution must be
recomputed. Without the use of state files, this computation might slow the simulation
because the only available estimate of the DC solution would be that computed at T=50C, the
June 2011 329 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
final point in the DC sweep. However, by using a state file to preserve the initial DC solution
at T=0C, you can enable the Spectre simulator to compute the new DC solution quickly. The
computation is fast because the Spectre simulator can use the DC solution computed at
T=0C to estimate the new solution. You can also make future simulations of this circuit start
quickly by using the state file to estimate the DC solution. Even if you have altered a circuit,
it is usually faster to start the DC analysis from a previous solution than to start from the
beginning.

Saving Time by Modifying Parameters during a
Simulation

The Spectre simulator lets you place specifications in the netlist to modify parameters and
then resimulate. This lets you accomplish tasks with a single Spectre run that might require
multiple runs with another simulator. To change parameter settings during a run, you use the
following Spectre control statements:

■ The alter statement

You use this statement to change the parameters of circuits, subcircuits, and individual
models or components. You also use it to change the following options statement
temperature parameters and scaling factors:

❑ temp

❑ tnom

❑ scale

❑ scalem

You can use the altergroup statement to specify device, model, and netlist parameter
statements that you want to change the values of with analyses.

■ The set statement

Except for temperature parameters and scaling factors, you use the set statement to
modify any options statement parameters you set at the beginning of the netlist. The
new settings apply to all analyses that follow the set statement in the netlist.

The alter and set statements are queued up with analysis statements and are processed
in order.
June 2011 330 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Changing Circuit or Component Parameter Values

You modify parameters for devices, models, circuit, and subcircuit parameters during a
simulation with the alter statement. The modifications apply to all analyses that follow the
alter statement in your netlist until you request another parameter modification.

Changing Parameter Values for Components

To change a parameter value for a component device or model, you specify the device or
model name, the parameter name, and the new parameter value in the alter statement. You
can modify only one parameter with each alter statement, but you can put any number of
alter statements in a netlist. The following example demonstrates alter statement syntax:

SetMag alter dev=Vt1 param=mag value=1

■ SetMag is the unique netlist name for this alter statement. (Like many Spectre
statements, each alter statement must have a unique name.)

■ The keyword alter is the primitive name for the alter statement.

■ dev=Vt1 identifies Vt1 as the netlist name for the component statement you want to
modify. You identify an instance statement with dev and a model statement with mod.
When you use the alter statement to modify a circuit parameter, you leave both dev
and mod unspecified.

■ param=mag identifies mag as the parameter you are modifying. If you omit this
parameter, the Spectre simulator uses the first parameter listed for each component in
the Spectre online help as the default.

■ value=1 identifies 1 as the new value for the mag parameter. If you leave value
unspecified, it is set to the default for the parameter.

Changing Parameter Values for Models

To change a parameter value for model files with the altergroup statement, you list the
device, model, and circuit parameter statements as you do in the main netlist. Within an alter
group, each model is first defaulted and then the model parameters are updated. You cannot
nest alter groups. You cannot change from a model to a model group and vice versa. The
following example demonstrates altergroup statement syntax:

ag1 altergroup {
parameters p1=1
model myres resistor r1=1e3 af=p1
model mybsim bsim3v3 lmax=p1 lmin=3.5e-7

}

June 2011 331 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Further Examples of Changing Component Parameter Values

This example changes the is parameter of a model named SH3 to the value
1e-15:

modify2 alter mod=SH3 param=is value=1e-15

The following examples show how to use the param default in an alter statement. The first
parameter listed for resistors in the Spectre online help (spectre -h) is the default. For
resistors, this is the resistance parameter r.

Consequently, if R1 is a resistor, the following two alter statements are equivalent:

change1 alter dev=R1 param=r value=50

change1 alter dev=R1 value=50

Changing Parameter Values for Circuits

When you change a circuit parameter, you use the same syntax as when you change a device
or model parameter except that you do not enter a dev or a mod parameter.

This example changes the ambient temperature to 0°C:

change2 alter param=temp value=0

The following table describes the circuit parameters you can change with the alter
statement:

Note: If you change temp or tnom using an alter statement, all expressions with temp or
tnom are reevaluated.

Modifying Initial Settings of the State of the Simulator

You can change the initial settings for the state of the simulator by placing a set statement
in the netlist. The set statement is similar to the options statement that sets the state of

Parameter Description

temp Ambient temperature

tnom Default measurement temperature for component parameters

scalem Component model scaling factor

scale Component instance scaling factor
June 2011 332 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
the simulator, but it is queued with the analysis statements in the order you place them in the
netlist.

You use the set statement to change previous options or set statement specifications.
The modifications apply to all analyses that follow the set statement in the netlist until you
request another parameter modification. The set and options statements have many
identical parameters, but the set statement cannot modify all options statement
parameters. The parameter listings in the Spectre online help (spectre -h) tell you which
parameters you can reset with the set statement.

Formatting the set Statement

The following example demonstrates the set statement syntax. This example turns off
several annotation parameters.

Quiet set narrate=no error=no info=no

■ Quiet is the unique name you give to the set statement.

■ The keyword set is the primitive name for the set statement.

■ narrate, error, and info are the parameters you are changing.

Note: If you want to change temp or tnom, use the alter statement.

Saving Time by Selecting a Continuation Method

The Spectre simulator normally starts with an initial estimate and then tries to find the solution
for a circuit using the Newton-Raphson method. If this attempt fails, the Spectre simulator
automatically tries several continuation methods to find a solution and tells you which method
was successful. Continuation methods modify the circuit so that the solution is easy to
compute and then gradually change the circuit back to its original form. Continuation methods
are robust, but they are slower than the Newton-Raphson method.

If you need to modify and resimulate a circuit that was solved with a continuation method, you
probably want to save simulation time by directly selecting the continuation method you know
was previously successful.

You select the continuation method with the homotopy parameter of the set or options
statements. In addition to the default setting, all, five settings are possible for this
parameter: gmin stepping (gmin), source stepping (source), the pseudotransient method
(ptran), and the damped pseudotransient method (dptran). You can also prevent the use
of continuation methods by setting the homotopy parameter to none.
June 2011 333 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
June 2011 334 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
13
Managing Files

This chapter discusses the following topics:

■ About Virtuoso Spectre Filename Specification on page 316

■ Creating Filenames That Help You Manage Data on page 316
June 2011 335 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
About Virtuoso Spectre Filename Specification

Many analysis statements require a filename as a parameter value for the input or output of
data. It is often easier to keep track of output files if these filename parameter values are
related to some other filename, typically the input filename.

The Virtuoso® Spectre® circuit simulator’s filename specification features help you manage
your data by letting you systematically specify or modify filenames. With the Spectre
simulator, you can easily identify data from multiple simulation runs or from single runs
containing repeated similar analyses. You can modify input filenames so that you can easily
identify the output file from a specific simulation or analysis. You can also construct output
filenames in ways that prevent accidental overwriting of data.

Creating Filenames That Help You Manage Data

The Spectre simulator helps you keep track of simulation data by letting you create filenames
that are variants of input filenames. For example, with Spectre, you can

■ Identify simulation data by date, time, process ID, or other defining characteristics in the
results filenames

■ Keep multiple circuits in a single directory without having subsequent simulations
overwrite previous results

To do this, you set environment variables so that output filenames are automatically
different variants of input filenames.

■ Construct filenames at run time

This is convenient if your input data comes from several files. For example, you can use
an include statement to insert several different circuit files into main input files that
each contain analyses. Each circuit file can also be used with several stimulus files. To
prevent confusion, you can create filenames at run time for the stimulus files that
associate them with the appropriate main input files.

In this section, you will learn how to use the various Spectre features for creating filenames.

Creating Filenames by Modifying Input Filenames

The Spectre simulator gives you predefined percent codes you can put in your filenames.
These predefined codes let you construct filenames that add defining characteristics, such as
date or time, to input filenames. You specify predefined percent codes with a percent
character (%) followed by an uppercase letter. The uppercase letter tells the Spectre simulator
June 2011 336 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
how to construct the filename. You can use percent codes in environment variables, in
spectre command parameters, or in your netlist—wherever you need to specify filenames
for simulation results.

For example, %C is the predefined percent code for the name of the input circuit file. If your
circuit file is named opamp1 and you place the following -raw setting for your UNIX
environment variable

setenv SPECTRE_DEFAULTS "-raw %C.raw"

the Spectre simulator sends simulation results to a file named opamp1.raw.

Description of Spectre Predefined Percent Codes

These are the percent code that can help you organize your simulation data:

%A %A is replaced by the name of the current analysis that is running.

If it is specified in a device statement, it is expanded to a blank string because
there is no current analysis.

%C %C is replaced by the input circuit filename, as it is used in the command line. If
the circuit filename is opamp1, the specification %C.raw generates a file named
opamp1.raw.

When the Spectre simulator does not know the name of the input file, as when
the circuit is read from the standard input (from a pipe or from a redirected file),
the Spectre simulator substitutes the name stdin for %C.

%D %D is replaced by the date when the program started. For example, the
specification %D.opamp1 might generate a file named 94-09-19.opamp1.

The date is in year-month-day format. All leading zeros are included. This format
generates filenames that you can sort alphabetically into chronological order.

%H %H is replaced by the host name (network name) of the system on which the
Spectre simulator is running.

%M %M is replaced by the current CMIVersion.

%P %P is replaced by the process ID.

The process ID is a unique integer assigned to the Spectre process by the
operating system.
June 2011 337 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
The predefined percent codes feature does not perform recursive substitutions. For example,
if you have an input file named A%SD.xyz and you create an output file with the percent code
designation %C.raw, the Spectre simulator creates the output file A%SDxyz.raw. The
Spectre simulator does not substitute the simulator name for %S in this case.

Customizing Percent Codes

You can define your own percent codes or redefine existing codes with the +%<X> option of
the spectre command. Names of customized percent codes can be any single uppercase
or lowercase letter. You can define percent codes in two ways:

■ You can define percent codes for a single simulation by typing this option into the
command line with the spectre command at the start of the simulation.

■ You can specify the customized percent code as a default by typing the spectre
command into the SPECTRE_DEFAULTS environment variables.

For example, if you type in the following instruction at the command line

spectre +%E opamp1 test3

%S %S is replaced by the simulator name. For example, the specification %S.opamp1
might generate a file named spectre.opamp1.

If you use a different name or a symbolic link with a different name to access a
copy of the executable program, the new name becomes the program name.

%T %T is replaced by the time when the program started. For example, the
specification %T.opamp1 might generate a file named 14:44:07.opamp1.

Time is in 24-hour format, and all leading zeros are included. This format
generates filenames that sort alphabetically into chronological order.

%V %V is replaced by the simulator version string. For example, the specification
out_%V.raw might generate a file named out_1.0.2.raw.

%I %I is replaced by the installation directory.

%O %I is replaced by the operating platform.

%U %U is replaced by the username.

%% This specifies the % character by itself.

This option lets you use percent characters in filenames. Two percent characters
(%%) in a filename specification produce a single percent character in the
filename, which is not interpreted as a percent code indicator.
June 2011 338 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
the Spectre simulator runs a simulation for circuit test3. During this simulation, the Spectre
simulator substitutes the name opamp1 for any %E it finds in results filename specifications.

You undefine customized percent codes with the -%<X> spectre command option. For
example, if you customize percent codes with the SPECTRE_DEFAULTS environment
variable, you might want to undefine them for a given simulation run. To do this, you include
the -%<X> command line option in the spectre command that starts the simulation.
Undefined percent codes return to predefined values. If an undefined percent code has no
predefined value, it is treated like an empty string.

Enabling the Spectre Simulator to Recognize the Input Names of Piped or Redirected
Files

One practical application for customized percent codes is to enable the Spectre simulator to
recognize the input filenames of piped or redirected files. If the Spectre simulator reads the
circuit from standard input, as it does when it reads from a pipe, the Spectre simulator cannot
determine the name of the original input file. If you want the results filename to be a variant
of the input filename, you can enable the Spectre simulator to recognize the input filename
by redefining the Spectre simulator’s predefined percent codes.

In the following two examples, the circuit file is passed through sed(1). The resulting file,
cktfile, is then piped to the Spectre simulator as input. The first example shows the
problem created if you want the results filename to be a modification of the input filename,
and the second example shows how you can correct this difficulty.

In the first example, the Spectre simulator cannot identify the name cktfile of the file that
is piped to the spectre command. As a default action, it puts the output simulation data in
the directory stdin.raw.

setenv SPECTRE_DEFAULTS "-raw %C.raw"

sed -e 's/\$/\\\$/g' cktfile | spectre

In the second example, redefining the %C percent code causes the Spectre simulator to base
the output filename on the input filename. The spectre command in the environment
variable redefines the normal predefined %C code. The Spectre simulator substitutes the
name cktfile for all %C specifications and puts the output simulation data in the directory
cktfile.raw.

setenv SPECTRE_DEFAULTS "-raw %C.raw"

sed -e 's/\$/\\\$/g' cktfile | spectre +%C cktfile

Note: For more information about Spectre defaults, see “Selecting Limits for Parameter Value
Warning Messages” on page 332 and the Virtuoso Spectre Circuit Simulator Reference
manual.
June 2011 339 Product Version 10.1.1

../spectreref/spectrerefTOC.html#firstpage

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Creating Filenames from Parts of Input Filenames

Colon modifiers (:x) create filenames from parts of input filenames. You can use colon
modifiers with all percent codes except the %% code.

For example, if you apply %C:r.raw to the input filename opamp.ckt

%C is the input filename (opamp.ckt)

:r is the root of the input filename (opamp)

.raw is the new filename extension

The result is the output filename opamp.raw. In this example, (:r) is the colon modifier.

Definitions of Colon Modifiers

The Spectre simulator recognizes the following colon modifiers:

Any character except a modifier after a colon (:) signals the end of modifications. The Spectre
simulator appends both the colon and the character to the filename.

The Spectre simulator applies a chain of colon modifiers in the sequence you specify them.
For example, if you apply %C:e.%C:r:t to the input filename
/circuits/opamp.ckt

%C:e is the extension (ckt) of the input filename

%C:r is the root (opamp.ckt) of the input filename

:t is the tail of the input filename after the last / (opamp)

Modifier Description

:r Signifies the root (base name) of the given path for the file
:e Signifies the extension for the given path of the file

:h Signifies the head of the given path for any portion of the file before the last
/

:t Signifies the tail of the given path for any portion of the file after the last /

:: Signifies the (:) character itself; use two consecutive colons (::) to place a
single colon in an output filename that is not read as a percent code modifier
June 2011 340 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
The result is the output filename ckt.opamp.

Note: If the input filename does not contain a slash and a period, the modifiers :t and :r
return the whole filename, and the modifier :h returns a period.

Examples of Colon Modifier Use

The following table shows the various filenames you can generate from an input filename (%C)
of /users/maxwell/circuits/opamp.ckt:

Colon Modifier Comments Output Filename Result

%C Input filename /users/maxwell/circuits/
opamp.ckt

%C:r Root of the input filename /users/maxwell/circuits/opamp

%C:e Extension of the input
filename

ckt

%C:h Head of the input filename /users/maxwell/circuits

%C:t Tail of the input filename opamp.ckt

%C:: Second colon is appended
to the input filename and
the end of the modification

/users/maxwell/circuits/
opamp.ckt:

%C:h:h The head of %C:h (such a
recursive use of :h might
be useful if you want to
direct your output to a
different directory from that
of the input file)

/users/maxwell

%C:t:r The root of %C:t opamp

%C:r:t The tail of %C:r opamp

/tmp%C:t:r.raw The suffix .raw is
appended to the root of
%C:t, and the full path is
altered to put opamp.raw
in the
/tmp file.

/tmp/opamp.raw
June 2011 341 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
%C:e.%C:r:t Extension of %C followed by
the tail of %C:r

ckt.opamp

Colon Modifier Comments Output Filename Result
June 2011 342 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
14
Identifying Problems and
Troubleshooting

This chapter discusses the following topics:

■ Error Conditions on page 344

■ Spectre Warning Messages on page 346

■ Customizing Error and Warning Messages on page 352

■ Controlling Program-Generated Messages on page 363

■ Correcting Convergence Problems on page 364

■ Correcting Accuracy Problems on page 367
June 2011 343 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Error Conditions

Error conditions terminate a Virtuoso® Spectre® circuit simulator run. If you receive any of the
messages described in this section, you must fix the problem and rerun the simulation.

Invalid Parameter Values That Terminate the Program

If you enter a parameter that causes the Spectre simulator to stop or puts a model in an invalid
region, such as giving z0=0 to a transmission line, the Spectre simulator sends you a
message like this one and exits.

Error from spectre during hierarchy flattening.

tl1: Value of 'z0' should be nonzero.

spectre terminated prematurely due to fatal error.

To run the simulation, you must change the parameter to an acceptable value.

Singular Matrices

If you receive an error message that says a matrix is singular, your netlist contains either a
floating node which is causng the problem or a loop of zero resistance branches, for example,
a loop of voltage sources or inductors. The following procedures might help you find the
problem:

■ Check the options statement in your netlist to ensure that topcheck=yes in at least
one statement. The topology checker normally helps you identify singular matrix
problems, but it cannot do so if it is disabled.

■ If the error message appears only for particular components or circuit parameters or only
for particular voltages or currents, try one of the following procedures:

❑ Set gmin=1e-12 (the default value).

❑ If you are working with simplified semiconductor models, try using more complex
models.

A CMOS (complementary metal oxide semiconductor) inverter whose model parameters
have infinite output impedance in saturation demonstrates the usefulness of these
techniques. When either the N- or P-type device is in the ohmic region, the solution is
unique. However, when both devices are saturated, there is a range of output voltages
that all satisfy Kirchhoff’s Current Law. In this situation, the Newton-Raphson method
forms a linearized circuit that is singular for that iteration.
June 2011 344 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
■ Check ideal transformers, N-ports, or transmission lines for floating nodes or loops of
zero-resistance branches and modify the circuit to eliminate them.

For example, consider this center-tapped transformer:

subckt ct_xfmr (t1 b1 t2 m2 b2)
Tt t1 m1 t2 m2 transformer n1=2
Tb m1 b1 m2 b2 transformer n1=2

end ct_xfmr

If you use this transformer and leave the center-tap terminal (m2) floating, the Spectre
simulator notifies you of a singular matrix. Because both m1 and m2 are floating, the DC
solution is not unique.

If you choose a different topology for the transformer, like the one in the following
example, you can avoid the problem.

subckt ct_xfmr (t1 b1 t2 m2 b2)
Tt t1 b1 t2 m2 transformer n1=2
Tb t1 b1 m2 b2 transformer n1=2

end ct_xfmr

Circuits that contain ideal transformers, N-ports, or transmission lines can have floating
nodes or loops of zero-resistance branches because the topology checker cannot
adequately verify these components. Finding these currents is difficult because all these
components act like ideal transformers at DC. When you look into one port of a

t1

m1

b1

t2

m2

b2

t1

b1

t2

m2

b2
June 2011 345 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
transformer, you can see either a short or an open circuit, depending on what you see
looking out of the other port.

Internal Error Messages

If the Spectre simulator detects an internal error, it displays a message like one of the
following:

Internal error detected by spectre. Please see http://support.cadence.com/wps/mypoc/
cos?uri=deeplinkmin:COSHome for Customer Support contact information.

Error detected in file 'file.c' at line 101.

Internal error detected by spectre. Please see http://support.cadence.com/wps/mypoc/
cos?uri=deeplinkmin:COSHome for Customer Support contact information.

Arithmetic exception.

Cadence can help you find solutions to these problems. If you get one of these messages,
call Cadence Customer Support or contact a Cadence application engineer.

Time Is Not Strictly Increasing

PWL takes a wave parameter that accepts time/value pairs. If the time value does not
increase, the Spectre simulator displays the following message:

Error found in spectre during initial setup.

v10:time is not strictly increasing in waveform.

Check the PWL component to fix this error.

Spectre Warning Messages

Warning messages tell you about conditions that might cause invalid results. Unlike error
messages, warnings do not stop a simulation. When you receive a warning message, you
must decide whether the particular condition creates a problem for your simulation. This
section describes some common Spectre warning messages. It also tells you how to modify
parameters to correct conditions that might produce invalid simulation results.

The Spectre simulator often prints warnings and notices that are eventually determined to be
“uninteresting,” and there is a natural tendency after a while to ignore them. We recommend
that you carefully study them the first few times you simulate a particular circuit and whenever
the simulator gives you unexpected results.
June 2011 346 Product Version 10.1.1

http://support.cadence.com/wps/mypoc/cos?uri=deeplinkmin:COSHome
http://support.cadence.com/wps/mypoc/cos?uri=deeplinkmin:COSHome
http://support.cadence.com/wps/mypoc/cos?uri=deeplinkmin:COSHome
http://support.cadence.com/wps/mypoc/cos?uri=deeplinkmin:COSHome

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
P-N Junction Warning Messages

Almost every semiconductor device includes at least one p-n junction. Normally, these p-n
junctions are biased in a particular operating region. Three types of warning messages are
available for each p-n junction, one for exceeding a maximum current, one for exceeding a
melting current, and one for exceeding a breakdown voltage.

Explosion Region Warnings
Warning from spectre at dc = 191 mA during DC analysis ‘srcSweep'.

mos_mod: The bulk-drain junction current exceeds `imelt'.

The results computed by Spectre are now incorrect because the junction

current model has been linearized.

Or

xram.d3247: The junction is melting (increase imax)

The Spectre simulator provides two parameters, imax and imelt, that limit the current
across a PN junction. These parameters aid convergence and prevent numerical overflow.
The junction characteristics of the device are assumed to be accurately modeled for current
up to imax. If imax is exceeded during iterations, the linear model is substituted until the
current drops below imax or until convergence is achieved. If convergence is achieved with
the current exceeding imax, the results are inaccurate, and Spectre prints a warning similar
to the first one above.

The imelt parameter is used as a limit warning for the junction current. This parameter can
be set to the maximum current rating of the device. By default it is set to the value of imax.
When any component of the junction current exceeds imelt, Spectre issues a warning and
again the results become inaccurate. The junction current is linearized above the value of
imelt to prevent arithmetic exceptions.

Both these parameters have current density counterparts, jmax and jmelt, that you can
specify if you want the absolute current values to depend on the device area. For more
information, see Virtuoso Spectre Circuit Simulator Known Problems and Solutions.

Melting Current Warnings

A separate model parameter, imelt, is used as a limit warning for the junction current. This
parameter can be set to the maximum current rating of the device. When any component of
the junction current exceeds imelt, Spectre issues a warning and the results become
inaccurate. The junction current is linearized above the value of imelt to prevent arithmetic
exception, with the exponential term replaced by a linear equation at imelt.
June 2011 347 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Breakdown Region Warnings

Messages like the following are breakdown region warnings:

D2: Breakdown voltage exceeded.

Q1: The collector-substrate voltage exceeded breakdown voltage.

The warning message identifies the relevant component name (D2 and Q1) and the affected
junction.

The Spectre simulator issues breakdown region warnings only when you specify conditions
for them. For information on setting parameters to identify a breakdown region, see
“Customizing Error and Warning Messages” on page 332.

Missing Diode Would Be Forward-Biased
Warning from spectre at time = 501.778 ns during transient analysis tran_to_1u.

i1.q0: Missing collector-substrate diode would be forward biased.

Notice from spectre at time = 510.1688 ns during transient analysis tran_to_1u.

i1.q0: Missing collector-substrate diode returns to normal bias condition.

Most p-n junctions in semiconductor models include both a resistive (the diode) and a
capacitive (the junction capacitance) model. If the diode reverse saturation current is set to
zero, the resistive part of the junction is turned off, and the Spectre simulator assumes that
the resistive portion of the junction does not exist (but the junction capacitance may still be
present). In this case, if the voltage across the missing diode is larger than 10 * Vt (where Vt
is the thermal voltage), Spectre will issue a warning message telling you that the junction,
which is missing, will be forward biased. A follow-up notice is issued if, and when, the device
returns to a normal bias condition.

Tolerances Might Be Set Too Tight

When you simulate high-voltage or high-current circuits, the default tolerances might be tight
enough to make convergence difficult or impossible. If you get a “Tolerances might be set too
tight” message, try relaxing tolerances by increasing the value of reltol, iabstol, and
vabstol.

Parameter Is Unusually Large or Small

The Spectre simulator checks the parameter values to see if they are within a normal range
of expected values. This check can catch data entry errors or identify situations that can
cause the Spectre simulator to have difficulties simulating the circuit.
June 2011 348 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
The “Parameter is unusually large or small” message issues a notice about a parameter
value. The message looks like one of the following:

NPNbjt: 'rb' has the unusually small value of 1mOhms.

PNPbjt: 'tf' has the unusually large value of 1Gs.

OA1.Q16 of ua741: 'region' has the unusual value of rev.

If you receive such a message, check the parameter. If the unusual parameter value is
correct, you can ignore this message.

The limits settings that generate these warning messages are soft limits, as opposed to hard
limits settings. Hard limits stop a simulation if they are violated. the Spectre simulator has
automatic soft limits on a few parameter values. However, you can override these limits or
specify your own limits for parameters that do not have automatic limits. For more information,
see “Customizing Error and Warning Messages” on page 332.

gmin Is Large Enough to Noticeably Affect the DC Solution
Warning detected by spectre during DC analysis oppoint.

Gmin=1pS is large enough to noticeably affect the DC solution.

By default, the Spectre simulator (and SPICE) adds a very small conductance of 10-12
siemens called gmin across nonlinear devices. This conductance prevents nodes from
floating if the nonlinear devices are turned off. By default, GMIN=1e-12 Siemens. The gmin
parameter usually has a minimal effect on circuit behavior. However, some circuits, such as
charge storage circuits are very sensitive to the small currents that flow through gmin.

You see a message such as the one given above if the current flowing through the gmin
conductors, when treated as an error current, does not meet the gmin criteria. That is, the
message is displayed if the current that enters any node from all attached gmin conductors
is larger than either iabstol or reltol multiplied by the sum of the absolute value of the
individual currents that enter the node.

If your circuit is not sensitive to small leakage currents, you can ignore this message. If your
circuit is sensitive to these currents, reduce the gmin value or set it to zero.

Minimum Timestep Used

If this problem occurs, the analysis continues, and a warning message is displayed at each
time point that does not meet the convergence criteria. In the Spectre simulator, this is very
rare, but it does occur. Occasionally, this needs to be remedied to get the correct solution.

1. Make sure devices have junction and overlap capacitance specified.

2. Increase maxiters, but do not go higher than 200.
June 2011 349 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
3. Change to the gear2 or gear2only method of integration.

4. Reduce other occurrences of the local truncation error cutting the timestep. Increase
lteratio and increase the absolute error tolerances vabstol and iabstol. Do not
go too high with any of these.

5. Combine 2, 3, and 4 and set cmin to prevent instantaneous change at every node in the
circuit.

6. Relax reltol in combination with 5.

Syntax Errors
Warning from spectre in indab_7 during circuit read-in:

na300.scs" 27: `c11': Encountered statement in Spectre format while in Spice
language mode. This will not be supported in a future release.

The Spectre parser is dual mode and accepts both the Spectre native language and
documented Spice2G6. The default for the Spectre simulator is SPICE. If you include a file
written in Spectre native syntax, you must either specify simulator lang=spectre or name
the file with a .scs suffix. After Spectre processes the file, it reverts to the default mode. It is
illegal to include Spectre syntax in the SPICE mode or vice versa.

For the MOS instance line given below:

M1 1 2 0 0 NCH W= 10u L= 2u

Spectre displays the following warning:

m1: Encountered statement in Spectre format while in SPICE language mode. This will
not be supported in a future release.

Since the instance statement is valid in both languages, you can ignore this warning.

Topology Messages
Notice from spectre during topology check.

Only one connection to the following node:

4

No DC path from node `4' to ground, Gmin installed to provide path.

The Spectre topology checker identifies floating nodes and automatically inserts a gmin
resistor (1e12 Ohms) to prevent a non-isolated solution. The Spectre simulator then displays
a message telling you what it did.
June 2011 350 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Model Parameter Values Clamped
Warning from spectre during initial setup.

n: The value of `vj(pb)' at T = 25 C is 50e-03 V, which is too small.

Clamped to 0.1 V.

n: The value of `vj(pb)' at T = 27 C is 41.7617e-03 V, which is too small.

Clamped to 0.1 V.

The Spectre simulator clamps model parameter values to prevent numerical difficulties during
simulation. When clamping is completed, Spectre displays a message indicating that it is
using clamped values. There is no way to disable these clamps.

Invalid Parameter Warnings
Warning from spectre during circuit read-in.

`pchmod': `tox' is not a valid parameter for `bsim4' models.

`pchmod': `nch' is not a valid parameter for `bsim4' models.

This type of warning is issued any time you specify an invalid parameter in a model definition.
The models included with Spectre have predefined model parameters. For more information,
see spectre -h.

Only these predefined parameters can be used within a model definition. The Spectre circuit
simulator issues similar warnings for invalid instance and subcircuit parameters.

Redefine Primitives Messages
Warning from spectre in `q2' during circuit read-in.

"redefPrim.scs" 6: `q2.resistor' redefines the primitive named `resistor

Spectre displays this message if you define a model or subcircuit with the same name as a
built-in primitive device.

The following message tells you that the local definition will override the built-in definition:

model resistor bjt

q1 1 2 3 resistor

q1 is considered a bjt device rather than a resistor.

Initial Condition Messages
Notice from spectre during IC analysis, during transient analysis 'tran1'.
June 2011 351 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Initial condition computed for node 2 is in error by 755.152 uV. To reduce error
in computed initial conditions, decrease `rforce'. However, setting rforce too
small may result in convergence difficulties or in

the matrix becoming singular.

The Spectre simulator sets initial conditions on a node by attaching a voltage source through
a resistor. The default value of this resistor is 1, but you can control the value through the
options parameter rforce. This notice indicates that the initial condition calculated for this
node is about 755uV from the value specified in the netlist. You can lower the value of
rforce to bring the voltage values into agreement in one of the following ways:

■ Through the Analog Options window in the Analog Design Environment.

■ Inserting an options statement in the netlist. An example is given below:

myOptions options rforce=1m

Output Messages
Notice from spectre during transient analysis 'tran1'.

No outputs found. Loosening output filter criterion to 'lvlpub'.

If you set save=selected, the Spectre simulator saves the voltages in the save statement.
If the save statement does not contain any voltage values, Spectre issues the above warning
and changes the save option default to lvlpub. This saves all node voltages.

Log File Messages
Warning from Spectre during generation of log file.

opt1 options warning_limit=number warning_id = [message_type_1 message_type_2]

For example,

opt1 options warning_limit=3 warning_id = [SFE-30 CMI-2151]

IN the statement, 3 is the number of messages allowed for printing in log file for each
message type defined in warning_id.

SFE-30 and CMI-2151 are the user-defined message types for printing in the log file.

Customizing Error and Warning Messages

You can customize the Spectre error and warning messages to some extent to fit the needs
of a simulation. This section tells you about these customization options.
June 2011 352 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Selecting Limits for Parameter Value Warning Messages

You can accept Cadence default soft limits that determine when you receive warning
messages about parameter values, or you can enter your own limits. You can also control
which parameters the Spectre simulator checks. This section gives you instructions for all.

Accepting Cadence Range Limits Defaults

The most convenient option for deciding which warning messages you receive is to accept
Cadence Range Limits Defaults. The Cadence defaults are located in
your_install_dir/tools/spectre/etc/limits/range.lmts, and you can
examine them to see if they meet your needs. You can enter Cadence defaults with the
SPECTRE_DEFAULTS environment variable in your shell initialization file (such as .profile
or .cshrc). The entry in your shell initialization file looks like the following:

setenv SPECTRE_DEFAULTS "+param $HOME/tools/dfII/etc/
spectre/range.lmts"

With this entry in the shell initialization file, the Spectre simulator reads parameter limits from
your_install_dir/tools/spectre/etc/limits/range.lmts.

You can override a SPECTRE_DEFAULTS setting with the param option of the spectre
command. Specifying +param as a command line argument overrides +param in
SPECTRE_DEFAULTS and tells the Spectre simulator to read range limits from the file you
specify. Specifying -param tells the Spectre simulator to ignore the +param given in
SPECTRE_DEFAULTS without giving the Spectre simulator a new location to find range limits.

Note: For more information about Spectre defaults, see the Virtuoso Spectre Circuit
Simulator Reference manual and “Customizing Percent Codes” on page 318.

Creating a Parameter Range Limits File

In some circumstances, you might want to set your own parameter limits for warning
messages. This might be the case, for example, if you are maintaining your own sets of model
libraries. If you want to choose your own parameter limits for warnings, you must use a text
editor to create a parameter range limits file.

A parameter range limits file requires the following syntax. Fields enclosed by single brackets
([]) are optional.

[ComponentKeyword] [model] [LowerLimit <[=]]
[|]Param[|] <[=] UpperLimit]

Observe the following syntax rules for a parameter limits file:
June 2011 353 Product Version 10.1.1

../spectreref/spectrerefTOC.html#firstpage
../spectreref/spectrerefTOC.html#firstpage

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
■ You can specify limits for input, output, or operating-point parameters for either
component instances or models. You can also specify limits for analysis parameters.

■ You must specify the limits for each parameter on a single line.

■ You can specify open bounds using angle brackets (<) or closed bounds using an angle
bracket with an equal sign (<=). If you specify closed bounds, there can be no space
between < and =.

■ You can specify inclusive or exclusive ranges. If you specify exclusive ranges, the upper
limit must be smaller than the lower limit.

The diagram on the following pages shows you the proper formats for range specifications.
June 2011 354 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Examples of Range Limits Specifications

)

]

(

[

()

[)

]

) (

) [

Single boundary

p < 2

p <= 2

1 < p

1 <= p

1 < p < 2

Inclusive boundaries

1 <= p < 2

1 < p <= 2 (

[]
1 <= p <= 2

Exclusive boundaries

2 < p < 1

2 <= p < 1

1 2
June 2011 355 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Examples of Range Limits Specifications (continued)

■ The component keyword must be a Spectre name, not a name used for SPICE
compatibility. For example, use mos3 rather than mos.

■ If you specify more than one parameter limit for a component, you need to specify the
component keyword only once. The Spectre simulator assumes the keyword is
unchanged from the previous parameter unless you specify a new component keyword.

■ If you give a parameter limit more than once, your last instructions override previous
limits.

■ If you mention a parameter but give it no limits, all limits are disabled for that parameter.

■ You can specify limits for integer, real, or enumerated parameters. Enumerated
parameters are those that take only predefined values (such as yes or no and all or
none).

To specify limits on enumerated parameters, use the index of the enumeration in the
limits declaration for that parameter. To find the index of a parameter of component name,
see the parameter listings for the component name in the Spectre online help (spectre
-h) and count the enumerations in the limits declaration starting from zero.

For example, to specify that the BJT operating-point parameter region should not be
rev (reversed), look for the region parameter in the parameter listings for the BJT
component. The region parameter is described as follows:

(

]

]

[

)(

[]

2 < p <= 1

2 <= p <= 1

Single-point boundaries

1 < p < 1

1 <= p <= 1

2 < p <= 2,
2<= p < 2

Invalid boundaries
June 2011 356 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
region=fwd Estimated operating region. Possible values are off, fwd, rev,
or sat.

For this parameter, off has index 0, fwd has index 1, rev has index 2, and sat has
index 3. To specify a limit that notifies you if any BJT is reversed, use either of the
following specifications:

2 < region < 2

or

3 <= region <= 1

■ You must give the keyword model when you place limits on model parameters. If you do
not give the keyword model, the limits are applied to instance parameters.

■ You can indicate upper or lower limits for the absolute value of a parameter with the
vertical line character(|vto|).

For example,

resistor 0.1 < |r| < 1M

specifies that the absolute value of r should be greater than 0.1 ohm and less than 1
megohm. There can be no spaces between the absolute value symbols and the
parameter name.

■ You currently cannot place limits on vector parameters.

■ You can write parameter limits using Spectre native-mode scale factors. For example,
you can write the limit

f <= 1.0e6

as

f <= 1M

Example of a Parameter Range Limits File

This example shows a parameter limits file with correct syntax.

mos3 0.5u <= l <= 100u

0.5u <= w

0 < as <= 1e-8

0 < ad <= 1e

model |vto| <= 3

You can find the parameter names (l, w, as, ad, vto) and component keywords (mos3) in
the parameter listings in the Spectre online help (spectre -h). This example instructs the
Spectre simulator to accept without warnings mos3 components for these conditions:
June 2011 357 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
■ If channel length is more than or equal to 0.5 μm, or less than or equal to 100 μm

■ If channel width is greater than or equal to 0. 5 μm

■ If the area of source diffusion is greater than 0, or less or equal to
1e-8 m2

■ If the area of drain diffusion is greater than 0, or less or equal
to 1e-8 m2

■ If the mos3 model parameter vto (the threshold voltage at zero body bias) has an
absolute value less than or equal to 3

Entering a Parameter Range Limits File

You can enter a parameter range limits file in two ways:

■ Type the +param <filename> option of the spectre command from the command
line or place it in an environment variable. <filename> is the name of the parameter
range limits file. In the following example, limits3 is the range limits file for this
simulation of test.circuit.

spectre +param limits3 test.circuit

■ Read the parameter limits file from within another file by putting an include statement
with a syntax like the following example in your netlist.

include "filename"

filename is the name you give to the range limits file.

You can nest include statements. The only limit on depth is that imposed by the
operating system on the number of files that can be open simultaneously in the Spectre
simulator.

Paths you specify in filenames refer to the directory that contains the current file, not to
the directory in which the Spectre simulator was started. For example, suppose your
directory tree is set up as follows

design1/ckt1
design1/param.lmts
design1/resistor.lmts
design2/ckt2
design2/param.lmts
design2/resistor.lmts

and you run the Spectre simulator in design1 with the following spectre command:

spectre +param ../design2/param.lmts ckt1

If the file design1/param.lmts contains the line

include "resistor.lmts"
June 2011 358 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
the Spectre simulator reads in the design2/resistor.lmts file, but not the
design1/resistor.lmts file.

Requesting Breakdown Region Warnings for Transistors

If you want warning messages about the breakdown regions of transistors, you must set the
appropriate parameters for each component when you identify the component with an
instance or model statement. For most transistors, you set the bvj parameter.

For BJTs, you must set three parameters: bvbe, bvbc, and bvsub. These are breakdown
parameters for the base-emitter, the base-collector, and the substrate junctions.

Diodes are also exceptions because you can set both the bvj and bv parameters. You need
two different parameters for the diode breakdown voltage because of the Zener breakdown
model in the diode. When you use the diode as a Zener diode, it is purposely biased in the
breakdown region, and you do not want to be warned about the Zener breakdown. By
specifying the bv parameter, you tell the Spectre simulator to implement the Zener diode
model at bv.

Telling Spectre to Perform Additional Checks of Parameter Values

You can perform a check analysis at any point in a simulation to be sure that the values of
component parameters are reasonable. You can perform checks on input, output, or
operating-point parameters. The Spectre simulator checks parameter values against
parameter soft limits. To use the check analysis, you must also enter the +param command
line argument with the spectre command to specify a file that contains the soft limits.

The following example illustrates the syntax of the check statement. It tells the Spectre
simulator to check the parameter values for instance statements.

ParamChk check what=inst

■ ParamChk is your unique name for this check statement.

■ The keyword check is the component keyword for the statement.

■ The what parameter tells the Spectre simulator which parameters to check.

The what parameter of the check statement gives you the following options:

Option Action

none Disables parameter checking.
June 2011 359 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Selecting Limits for Operating Region Warnings

The Spectre simulator lets you specify forbidden operating regions for transistors. If a
transistor operates in a forbidden operating region, the Spectre simulator sends you a
warning message. This feature is available for BJTs, MOSFETs, JFETs, and GaAs
MESFETs.

Specifying Forbidden Operating Regions for Transistors

You specify a forbidden operating region in a transistor with the alarm parameter. The alarm
parameter gives you the following options:

For example, to be sure that a group of MOSFETs always operates in the saturation region,
you enter this model statement:

models Checks input parameters for all models only.

inst Checks input parameters for all instances only.

input Checks input parameters for all models and all instances.

output Checks output parameters for all models and all instances.

all Checks input and output parameters for all models and all instances.

oppoint Checks operating-point parameters for all models and all instances.

Option Description

none The default condition with no warnings issued.

off Warns if the transistor is turned off.

triode Warns if the transistor operates in the triode region (available for
MOSFETs).

sat Warns if the transistor operates in the saturation region.

subth Warns if the transistor operates in the subthreshold region (available for
MOSFETs).

fwd Warns if the transistor is forward-biased (available for BJTs).

rev Warns if the transistor is reverse-biased.

Option Action
June 2011 360 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
model mos_example nmos alarm=off alarm=triode
alarm=subth

Each of the three alarm parameters in this example identifies a forbidden operating
condition. Operating the device anywhere except in the saturation region triggers a warning.
The warning looks like the following:

Warning detected by spectre during transient analysis 'timesweep'.
M1: Device operated in the triode region.

Defining BJT Operating Regions

The Spectre simulator provides two parameters, vbefwd and vbcfwd, that let you specify
the boundaries between BJT operating regions. The default value for each parameter is 0.2
volts.

The following table shows you the criteria the Spectre simulator uses to determine BJT
operating regions.

Range Checking on Subcircuit Parameters

You can test the value of subcircuit parameters with the paramtest component. If the
parameters meet your testing criteria, you can print an informational message, print a
warning, or print an error message and terminate the program.

Formatting the paramtest Component

The paramtest component has the following format:

Name paramtest parameter=value…

■ Name is your unique name for this paramtest component.

■ The keyword paramtest is the component keyword for the component.

Region Bias Conditions

off Vbe <= vbefwd and Vbc <= vbcfwd

saturation Vbe > vbefwd and Vbc > vbcfwd

forward Vbe > vbefwd and Vbc <= vbcfwd

reverse Vbe <= vbefwd and Vbc > vbcfwd
June 2011 361 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
■ The parameters specify the tests that are applied to the parameters, the action taken if
parameters satisfy the test conditions, and the text of the message that is printed when
parameters satisfy the test conditions.

Rules and Guidelines to Remember

■ If you specify more than one test, the conditional action is taken if any test passes.

■ If you use the paramtest component without specifying test conditions, the specified
actions are taken, and the message is printed unconditionally. This option is useful for
using the paramtest component with the if statement. The paramtest instruction
can be followed whenever a given if statement option is executed.

The paramtest Options

The following table explains the possible paramtest options.

A paramtest Example

This example uses three consecutive paramtest statements to check the values of four
parameters—l, w, ls, and ld. If a parameter value satisfies a test condition, one of three
different warning messages is printed:

TooShort paramtest warnif=(l < 1um) \
message="Channel length for nmos must be greater than 1u."

TooThin paramtest warnif=(w < 1um) \
message="Channel width for nmos must be greater than 1u."

Parameter Instruction

printif Informational message is printed if test condition is satisfied.

warnif Warning is printed if test condition is satisfied.

errorif Program quits and error message is printed if testing condition is
satisfied.

message Parameter value is the message text.

severity You set this parameter when you use paramtest without a test
condition. It specifies the type of message printed and the action to be
taken, if any. The possible values are debug, status, warning,
error, and fatal. If you specify error, the current analysis quits with
an error message. If you specify fatal, the whole simulation stops.
June 2011 362 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
TooNarrow paramtest warnif=(ls < 1um) warnif=(ld < 1um) \
message="Strip width for nmos must be greater than 1u."

Controlling Program-Generated Messages

The Spectre simulator normally sends error, warning, and informational messages to the
screen. To prevent confusion, the Spectre simulator limits the amount of material it sends to
the screen. You can, however, get a more complete printout of messages if you send the
messages to a log file that you can generate with the spectre command or in a
SPECTRE_DEFAULTS environment variable.

Specifying Log File Options

You can choose from among the following command line options:

Command Line Example

The following entry on the command line runs a simulation for circuit smps.circuit and
sends all messages to a log file named smps.logfile:

spectre =log smps.logfile smps.circuit

Setting Environment Variables

If you specify log file options in a SPECTRE_DEFAULTS environment variable, you might want
to name log files according to some system that helps you keep track of log files from different
simulations. Spectre predefined percent codes are useful for this. The following example uses
the predefined percent code %C to create log filenames based on the input filename. If you
run a simulation for smps.circuit, the Spectre simulator creates a log file named

+log <file> The Spectre simulator sends all messages to a log file as well as
printing to the screen. You specify the name for the file. You can use +l
as an abbreviation of +log.

=log <file> The Spectre simulator sends all messages to a log file but does not print
to the screen. You specify the name for the file. You can use =l as an
abbreviation of =log.

-log The Spectre simulator does not create a log file. You can use -l as an
abbreviation of -log. This is the default option.
June 2011 363 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
smps.circuit.logfile. You place the SPECTRE_DEFAULTS environment variable in the
.cshrc or .profile files.

setenv SPECTRE_DEFAULTS "=log %C.logfile"

For more information about predefined percent codes and the SPECTRE_DEFAULTS
environment variable, see Chapter 13, “Managing Files.”

Suppressing Messages

There are also spectre command options that let you print or suppress error, warning, or
informational messages:

As a default, the Spectre simulator prints all these messages.

Correcting Convergence Problems

In this section, you will learn about procedures that can help you if a simulation does not
converge.

Correcting DC Convergence Problems

If you have DC convergence problems, these suggestions might help you. Simple solutions
generally precede more radical or complex measures in the list.

■ Evaluate and resolve any warning or error messages.

■ Check for circuit connection errors. Check to see that the polarity and value are correct
for independent sources. Check to see if the polarity and multiplier are correct for
controlled sources.

+error Prints error messages

-error Does not print error messages

+warning Prints warning messages

-warning Does not print warning messages

+info Prints informational messages

-info Does not print informational messages
June 2011 364 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
■ Try all of the homotopy methods (gmin, source, ptran, and dptran). These are tried
by default.

■ Check for an incorrect estimated operating region. The default estimated operating
region in the Spectre simulator is on in the forward region for all devices. If there are a
reasonable number of devices that are really off, set them off in the schematic. For a
large number of devices, this might not be practical.

■ Check for extremely high gain circuits with nonlinearities and feedback. The convergence
criteria are applied to all nodes in the circuit. The output of the gain block meets
Kirchhoff’s Current Law and delta (reltol*V) about 1 part in 103 by default. Because of the
gain, the input must move by this value divided by the gain. If the gain is high (for
example, 108), the input must move less than 1 part in 1011. This is an extremely small
motion from iteration to iteration that might not be achievable. If the gain is even higher,
the numerical resolution of the machine might be approached. About 15 digits of
resolution is available in a 64-bit floating-point number. In this case, the gain needs to be
reduced.

Note: In this case, one node (the output) controls convergence, and all the other nodes
are more accurate than the convergence criteria by itself would predict. This is typical for
most circuits.

■ Enable the topology checker (set topcheck=full on the options statement) and pay
attention to any warnings.

■ Increase maxiters for the DC analysis.

■ If you have convergence problems during a DC sweep, reduce the step size.

■ Check for unusual parameter values using the parameter range checker (add +param
param-limits-file to the spectre command line arguments) and pay attention
to any warnings.

Print out the minimum and maximum parameter values by placing an info statement in
the netlist. Make sure that the values for the instance, model, output, temperature-
dependent, and (if possible) operating-point parameters are reasonable.

■ Avoid using very small floating resistors, particularly small parasitic resistors in
semiconductors. Use voltage sources or iprobes to measure currents instead. Small
floating resistors connected to high impedance nodes can cause convergence
difficulties. rbm in the bipolar model is especially troublesome.

■ If the minr model parameter is set, make certain it is set to 1 mOhm or larger.

■ Use realistic device models. Make sure that all component parameters are reasonable,
particularly nonlinear device model parameters.

■ Increase the value of gmin with the options statement.
June 2011 365 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
■ Loosen tolerances, particularly absolute tolerances such as iabstol (on the options
statement).

■ Simplify the nonlinear component models. Try to avoid regions in the model that might
cause convergence problems.

■ When you have a solution, write it to a nodeset file using the write parameter. When
you run the simulation again, read the solution back in using the readns parameter in
the dc statement.

■ If this is not the first analysis, the solution from the previous analysis might be an
inadequate solution estimate because it differs too much from the solution for the current
analysis. If this is so, set restart=yes.

■ If you have an estimate of the solution, use nodeset statements or a nodeset file to set
as many nodes as possible.

■ If using nodesets or initial conditions causes convergence difficulties, try increasing
rforce with the options statement.

■ If you are simulating a bipolar analog circuit, make sure the region parameters on all
transistors and diodes are set correctly.

■ If the analysis fails at an extreme temperature but succeeds at room temperature, try
adding a DC analysis that sweeps temperature. Start at room temperature, sweep to the
extreme temperature, and write the last solution to a nodeset file.

■ Use numeric pivoting in the sparse matrix factorization. Set pivotdc=yes with the
options statement. Sometimes you must also increase the pivot threshold to between
0.1 to 0.5 by resetting the pivrel parameter with the options statement.

■ Divide the circuit into pieces and simulate them individually. Make sure that results for a
part alone are close to results for that part combined with the rest of the circuit. Use the
results to create nodesets for the whole circuit.

■ Try replacing the DC analysis with a transient analysis. Modify all the independent
sources to start at zero and ramp to the independent source DC values. Run the transient
analysis well beyond the time when all the sources have reached their final values. Write
the final point to a nodeset file.

You can make this transient analysis more efficient with one of the following procedures:

❑ Set the integration method to backward-Euler (method=euler).

❑ Loosen the local truncation error criteria by increasing lteratio to 50 or more.

Occasionally, an oscillator in the circuit causes the transient analysis to terminate or work
very slowly.
June 2011 366 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Correcting Transient Analysis Convergence Problems

You can use two approaches to eliminate transient analysis convergence problems. The first
strategy is to reduce the effect of discontinuities in nonlinear capacitors. The second method
is to eliminate discontinuous jumps in the solution. Try the following suggestions if you have
difficulty with transient analysis convergence:

■ Use a complete set of parasitic capacitors on nonlinear devices to avoid jumps in the
solution waveforms. Specify nonzero source and drain areas on MOS models.

■ Use the cmin parameter to install a small capacitor from every node in the circuit to
ground. This usually eliminates any jumps in the solution.

■ If you can identify a nonlinear capacitance that might have a discontinuity, simplify the
nonlinear capacitor model. If you cannot actually simplify the model, modifying it might
help convergence.

■ As a last resort, relax the tolerance values for the lteratio or reltol parameters and
widen transitions in the stimulus waveforms.

Correcting Accuracy Problems

If you need greater accuracy from a Spectre simulation, the most common solution is to
tighten the reltol parameter of the options or set statements. In addition, be sure that
the absolute tolerance parameters, vabstol and iabstol, are set to appropriate values. If
tightening reltol does not help or if it greatly slows the simulation, try the additional
suggestions in the following sections.

Suggestions for Improving DC Analysis Accuracy

■ Be sure there are no errors in the circuit. Use the computed DC solution and the
operating point to debug the circuit. Check the topology, the component parameters, the
models, and the power supplies.

■ Be sure you are using appropriate models and that the model parameters are consistent
and correct.

■ If the circuit might have more than one solution, use nodeset statements to influence
the Spectre simulator to compute the solution you want.

■ Be sure that gmin is not influencing the solution. If possible, set gmin to 0 (in an
options or set statement).
June 2011 367 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Suggestions for Improving Transient Analysis Accuracy

■ Verify that the circuit biased up properly. If it did not, there might be a problem in the
topology, the models, or the power supplies.

■ Be sure you are using appropriate models and that the model parameters are consistent
and correct. Check the operating point of each device.

■ Set the transient analysis parameter errpreset to conservative.

■ If there is a charge conservation problem, use only charge-conserving models if you are
not already doing so. Then tighten reltol to increase accuracy. (With the Spectre
simulator, only customer-installed models might not be charge conserving.)

■ Be sure that gmin is not influencing the solution. If possible, set gmin to 0 (in an
options or set statement).

■ If a solution exhibits point-to-point ringing, set the integration method in the transient
analysis to Gear’s second-order backward-difference formula (method=gear2only).

■ If a low-loss resonator exhibits too much loss, set the integration method in the transient
analysis to the trapezoidal rule (method=traponly).

■ If the initial conditions used by the Spectre simulator are not the same as the ones you
specified, decrease the rforce parameter in the options or set statements until the
initial conditions are correct.

■ If the Spectre simulator does not accurately follow the turn-on transient of an oscillator,
set the maxstep parameter of the transient analysis to one-tenth the size of the expected
period of oscillation or less.
June 2011 368 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
A
Example Circuits

This appendix contains example netlists for testing the BSIM3v3 standard model.

■ Notes on the BSIM3v3 Model on page 370

■ Spectre Syntax on page 370

■ SPICE BSIM 3v3 Model on page 370

■ Spectre BSIM 3v3 Model on page 371

■ Ring Oscillator Spectre Deck for Inverter Ring with No Fanouts (inverter_ring.sp) on
page 371

■ Ring Oscillator Spectre Deck for Two-Input NAND Ring with No Fanouts (nand2_ring.sp)
on page 373

■ Ring Oscillator Spectre Deck for Three-Input NAND Ring with No Fanouts
(nand3_ring.sp) on page 374

■ Ring Oscillator Spectre Deck for Two-Input NOR Ring with No Fanouts (nor2_ring.sp) on
page 376

■ Ring Oscillator Spectre Deck for Three-Input NOR Ring with No Fanouts (nor3_ring.sp)
on page 377

■ Opamp Circuit (opamp.cir) on page 379

■ Opamp Circuit 2 (opamp1.cir) on page 379

■ Original Open-Loop Opamp (openloop.sp) on page 379

■ Modified Open-Loop Opamp (openloop1.sp) on page 380

■ Example Model Directory (q35d4h5.modsp) on page 380
June 2011 369 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Notes on the BSIM3v3 Model

The Virtuoso® Spectre® circuit simulator supports the standard BSIM 3v3 MOS model (both
BSIM 3v3.1 and BSIM 3v3.2) as published by the University of California at Berkeley. Further
information about this model can be obtained by using Spectre’s online help by typing
spectre -h bsim3v3 at the command line or by consulting the BSIM3 home page at

www-device.eecs.berkeley.edu/~bsim3/index.html

Spectre does not add proprietary parameters to its implementation of the standard model.

Spectre Syntax

Notes explaining Spectre syntax are included as comments throughout the example netlists.

The Spectre circuit simulator reads Spice2G6 input along with its own native format. The
model card can therefore be specified in either format. Below is an example of each. Note that
the valid parameter list does not change, only the primitive name, level designation, and
version/type parameters.

Beginning with the 4.4.3 release, the Spectre simulator is compatible with SPICE input
language beyond documented SPICE2G6. Contact your local Cadence representative for
more details.

SPICE BSIM 3v3 Model
*model = bsim3v3
*Berkeley Spice Compatibility
*Lmin= .35 Lmax= 20 Wmin= .6 Wmax= 20
.model N1 NMOS
+Level=11
+Tnom=27.0
+Nch=2.498E+17 Tox=9E-09 Xj=1.00000E-07
+Lint=9.36e-8 Wint=1.47e-7
+Vth0=.6322 K1=.756 K2=-3.83e-2 K3=-2.612
+Dvt0=2.812 Dvt1=0.462 Dvt2=-9.17e-2
+Nlx=3.52291E-08 W0= 1.163e-6 K3b= 2.233
+Vsat=86301.58 Ua=6.47e-9 Ub=4.23e-18 Uc=-4.706281E-11
+Rdsw=650 U0=388.3203 wr=1
+A0=.3496967 Ags=.1
+B0=0.546 B1= 1
+Dwg=-6.0E-09 Dwb=-3.56E-09 Prwb=-.213
+Keta=-3.605872E-02 A1=2.778747E-02 A2=.9
+Voff=-6.735529E-02 NFactor=1.139926 Cit=1.622527E-04
+Cdsc=-2.147181E-05 Cdscb= 0
+Dvt0w=0 Dvt1w=0 Dvt2w=0
+Cdscd=0 Prwg=0
+Eta0=1.0281729E-02 Etab=-5.042203E-03
+Dsub=.31871233
June 2011 370 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
+Pclm=1.114846 Pdiblc1=2.45357E-03 Pdiblc2=6.406289E-03
+Drout=.31871233 Pscbe1=5000000 Pscbe2=5E-09 Pdiblcb=-.234
+Pvag=0 delta=0.01
+Wl=0 Ww=-1.420242E-09 Wwl = 0
+Wln=0 Wwn=.2613948 Ll=1.300902E-10
+Lw=0 Lwl=0 Lln=.316394 Lwn=0
+kt1=-.3 kt2=-.051
+At=22400
+Ute=-1.48
+Ua1=3.31E-10 Ub1=2.61E-19 Uc1=-3.42e-10
+Kt1l=0 Prt=764.3

Spectre BSIM 3v3 Model
*Berkeley Spice Compatibility
*Lmin= .35 Lmax= 20 Wmin= .6 Wmax= 20
simulator lang=spectre
model nch bsim3v3
+version=3.1
+type=n
+tnom=27.0
+nch=2.498E+17 tox=9E-09 xj=1.00000E-07
+lint=9.36e-8 wint=1.47e-7
+vth0=.6322 k1=.756 k2=-3.83e-2 k3=-2.612
+dvt0=2.812 dvt1=0.462 dvt2=-9.17e-2
+nlx=3.52291E-08 w0= 1.163e-6 k3b= 2.233
+vsat=86301.58 ua=6.47e-9 ub=4.23e-18 uc=-4.706281e-11
+rdsw=650 u0=388.3203 wr=1
+a0=.3496967 ags=.1
+b0=0.546 b1= 1
+dwg=-6.0e-09 dwb=-3.56e-09 prwb=-.213
+keta=-3.605872e-02 a1=2.778747e-02 a2=.9
+voff=-6.735529e-02 nfactor=1.139926 cit=1.622527e-04
+cdsc=-2.147181e-05 cdscb= 0
+dvt0w=0 dvt1w=0 dvt2w=0
+cdscd=0 prwg=0
+eta0=1.0281729e-02 etab=-5.042203e-03
+dsub=.31871233
+pclm=1.114846 pdiblc1=2.45357e-03 pdiblc2=6.406289e-03
+drout=.31871233 pscbe1=5000000 pscbe2=5e-09 pdiblcb=-.234
+pvag=0 delta=0.01
+wl=0 ww=-1.420242e-09 wwl = 0
+wln=0 wwn=.2613948 ll=1.300902e-10
+lw=0 lwl=0 lln=.316394 lwn=0
+kt1=-.3 kt2=-.051
+at=22400
+ute=-1.48
+ua1=3.31e-10 ub1=2.61e-19 uc1=-3.42e-10
+kt1l=0 prt=764.3

Ring Oscillator Spectre Deck for Inverter Ring with No
Fanouts (inverter_ring.sp)

This example uses Spectre syntax.
June 2011 371 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
// Ring oscillator Spectre deck for INVERTER ring with no fanouts.
simulator lang=spectre
global 0 gnd vdd vss

aliasGnd (gnd 0) vsource type=dc dc=0

// Spectre options to be used
SetOption1 options iabstol=1.00n audit=full temp=25

MyAcct1 info what=inst extremes=yes
MyAcct2 info what=models extremes=yes
MyAcct3 info what=input extremes=yes
MyAcct5 info what=terminals extremes=yes
MyAcct6 info what=oppoint extremes=yes

// Next section is the subckt for inv
subckt inv (nq a)
m1 (nq a vdd vdd) p l=0.35u w=2.60u ad=1.90p pd=6.66u as=1.90p ps=6.66u
m2 (vss a nq vss) n l=0.35u w=1.10u ad=0.80p pd=3.66u as=0.80p ps=3.66u

// Interconnect Caps for inv
c0 (a vdd) capacitor c=1.0824323e-15
c1 (a nq) capacitor c=3.0044e-16
c2 (nq vss) capacitor c=5.00186e-16
c3 (nq vdd) capacitor c=6.913993e-16
c4 (a vss) capacitor c=8.5372566e-16
ends

// Begin top level circuit definition
xinv1 (1 90) inv
xinv2 (2 1) inv
xinv3 (3 2) inv
xinv4 (4 3) inv
xinv5 (5 4) inv
xinv6 (6 5) inv
xinv7 (7 6) inv
xinv8 (8 7) inv
xinv9 (9 8) inv
xinv10 (10 9) inv
xinv11 (11 10) inv
xinv12 (12 11) inv
xinv13 (13 12) inv
xinv14 (14 13) inv
xinv15 (15 14) inv
xinv16 (16 15) inv
xinv17 (90 16) inv

// Next couple of lines sets variables for vdd and vss.
parameters vdd_S1=3.3
parameters vss_S1=0.0
vdd_I1 (vdd gnd) vsource dc=vdd_S1
vss_I1 (vss gnd) vsource dc=vss_S1

// Set initial conditions:
ic 2=0 4=0 6=0 8=0 10=0

// Next line makes the call to the model
// NOTE: The user may utilize the '.lib' syntax with Spectre's +spp
// command line option if they are using Spectre 4.43 or greater.
// There is also a Spectre native syntax for equivalent
// functionality. It is shown in q35d4h5.modsp.

include "q35d4h5.modsp" section=tt
June 2011 372 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
// Analysis Statement
tempOption options temp=25
typ_tran tran step=0.010n stop=35n

alter_ss altergroup {
include "q35d4h5.modsp" section=ss
parameters vdd_S1=3.0
}

alterTempTo100 alter param=temp value=100
ss_tran tran step=0.010n stop=35n

alter_ff altergroup {
include "q35d4h5.modsp" section=ff
parameters vdd_S1=3.3
}

alterTempTo0 alter param=temp value=0
ff_tran tran step=0.010n stop=35n

Ring Oscillator Spectre Deck for Two-Input NAND Ring
with No Fanouts (nand2_ring.sp)

This example uses Spectre syntax.

// Ring oscillator Spectre deck for 2-Input NAND ring with no fanouts.
simulator lang=spectre
global 0 gnd vdd vss

aliasGnd (gnd 0) vsource type=dc dc=0

// Spectre options to be used
SetOption1 options iabstol=1.00n audit=full

MyAcct1 info what=inst extremes=yes
MyAcct2 info what=models extremes=yes
MyAcct3 info what=input extremes=yes
MyAcct5 info what=terminals extremes=yes
MyAcct6 info what=oppoint extremes=yes

// Next section is the subckt for na2 ******
subckt na2 (nq a)
m1 (nq a vdd vdd) p l=0.35u w=2.70u ad=1.03p pd=3.46u as=1.98p ps=6.86u
m2 (nq vdd vdd vdd) p l=0.35u w=2.70u ad=1.03p pd=3.46u as=1.98p ps=6.86u
m3 (vss a 6 vss) n l=0.35u w=1.70u ad=1.25p pd=4.86u as=0.18p ps=1.91u
m4 (nq vdd 6 vss) n l=0.35u w=1.70u ad=1.25p pd=4.86u as=0.18p ps=1.91u
c0 (a vdd) capacitor c=1.0512057e-15
c1 (a nq) capacitor c=7.308e-17
c2 (vdd vss) capacitor c=6.12359e-16
c3 (nq vss) capacitor c=5.175377e-16
c4 (nq vdd) capacitor c=1.1668172e-15
c5 (a vss) capacitor c=9.530671e-16
ends

// Begin top-level circuit definition
xna21 (1 90) na2
xna22 (2 1) na2
xna23 (3 2) na2
xna24 (4 3) na2
xna25 (5 4) na2
June 2011 373 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
xna26 (6 5) na2
xna27 (7 6) na2
xna28 (8 7) na2
xna29 (9 8) na2
xna210 (10 9) na2
xna211 (11 10) na2
xna212 (12 11) na2
xna213 (13 12) na2
xna214 (14 13) na2
xna215 (15 14) na2
xna216 (16 15) na2
xna217 (90 16) na2

// Next couple of lines sets variables for vdd and vss.
parameters vdd_S1=3.3
parameters vss_S1=0.0
vdd_I1 (vdd gnd) vsource dc=vdd_S1
vss_I1 (vss gnd) vsource dc=vss_S1

// Next line initializes nodes within ring
ic 2=0 4=0 6=0 8=0 10=0

include "q35d4h5.modsp" section=tt

// Next line defines transient steps and total simulation time

tempOption options temp=25
tt_tran tran step=0.010n stop=35n

alter_ss altergroup {
include "q35d4h5.modsp" section=ss
parameters vdd_S1=3.0
}

alterTempTo100 alter param=temp value=100
ss_tran tran step=0.010n stop=35n

alter_ff altergroup {
include "q35d4h5.modsp" section=ss
parameters vdd_S1=3.3
}

alterTempTo0 alter param=temp value=0
ff_tran tran step=0.010n stop=35n

Ring Oscillator Spectre Deck for Three-Input NAND Ring
with No Fanouts (nand3_ring.sp)

This example uses Spectre syntax.

// Ring oscillator Spectre deck for 3-Input NAND ring with no fanouts.
simulator lang=spectre
global 0 gnd vdd vss

aliasGnd (gnd 0) vsource type=dc dc=0

// Simulator options to use
SetOption1 options iabstol=1.00n audit=full

MyAcct1 info what=inst extremes=yes
MyAcct2 info what=models extremes=yes
June 2011 374 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
MyAcct3 info what=input extremes=yes
MyAcct5 info what=terminals extremes=yes
MyAcct6 info what=oppoint extremes=yes

// Next section is the subckt for na3p1
subckt na3p1 (nq a)
m1 (nq a vdd vdd) p l=0.35u w=2.90u ad=1.10p pd=3.66u as=2.12p ps=7.26u
m2 (nq vdd vdd vdd) p l=0.35u w=2.90u ad=1.10p pd=3.66u as=1.10p ps=3.66u
m3 (nq vdd vdd vdd) p l=0.35u w=2.90u ad=2.12p pd=7.26u as=1.10p ps=3.66u
m4 (vss a 7 vss) n l=0.35u w=2.40u ad=1.75p pd=6.26u as=0.25p ps=2.61u
m5 (7 vdd 8 vss) n l=0.35u w=2.40u ad=0.25p pd=2.61u as=0.25p ps=2.61u
m6 (nq vdd 8 vss) n l=0.35u w=2.40u ad=1.75p pd=6.26u as=0.25p ps=2.61u
c0 (8 vdd) capacitor c=1.341e-17
c1 (vdd vss) capacitor c=9.9445302e-16
c2 (nq vss) capacitor c=6.287e-16
c3 (nq vdd) capacitor c=2.0719818e-15
c4 (a vss) capacitor c=5.3760487e-16
c5 (a vdd) capacitor c=1.2446956e-15
c6 (a nq) capacitor c=7.308e-17
c7 (7 vdd) capacitor c=2.0115e-17
ends

// Begin top level circuit definition
xna3p11 (1 90) na3p1
xna3p12 (2 1) na3p1
xna3p13 (3 2) na3p1
xna3p14 (4 3) na3p1
xna3p15 (5 4) na3p1
xna3p16 (6 5) na3p1
xna3p17 (7 6) na3p1
xna3p18 (8 7) na3p1
xna3p19 (9 8) na3p1
xna3p110 (10 9) na3p1
xna3p111 (11 10) na3p1
xna3p112 (12 11) na3p1
xna3p113 (13 12) na3p1
xna3p114 (14 13) na3p1
xna3p115 (15 14) na3p1
xna3p116 (16 15) na3p1
xna3p117 (90 16) na3p1

// Next couple of lines sets variables for vdd and vss.
parameters vdd_S1=3.3
parameters vss_S1=0.0
vdd_I1 (vdd gnd) vsource dc=vdd_S1
vss_I1 (vss gnd) vsource dc=vss_S1

// Next line initializes nodes within ring
ic 2=0 4=0 6=0 8=0 10=0

include "q35d4h5.modsp" section=tt

// Transient analysis card
tempOption options temp=25
typ_tran tran step=0.010n stop=35n

alter_ss altergroup {
include "q35d4h5.modsp" section=ss
parameters vdd_S1=3.0
}

June 2011 375 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
alterTempTo100 alter param=temp value=100
ss_tran tran step=0.010n stop=35n

myAlter2 altergroup {
include "q35d4h5.modsp" section=ff
parameters vdd_S1=3.3
}

alterTempTo0 alter param=temp value=0
ff_tran tran step=0.010n stop=35n

Ring Oscillator Spectre Deck for Two-Input NOR Ring with
No Fanouts (nor2_ring.sp)

This example uses Spectre syntax.

// Ring oscillator Spectre deck for 2-Input NOR ring with no fanouts.
simulator lang=spectre
global 0 gnd vdd vss

aliasGnd (gnd 0) vsource type=dc dc=0

// Spectre options
SetOption1 options iabstol=1.00n audit=full

MyAcct1 info what=inst extremes=yes
MyAcct2 info what=models extremes=yes
MyAcct3 info what=input extremes=yes
MyAcct5 info what=terminals extremes=yes
MyAcct6 info what=oppoint extremes=yes

// Next section is the subckt for no2
subckt no2 (nq a)
m1 (vdd a 6 vdd) p l=0.35u w=4.80u ad=3.50p pd=11.06u as=0.50p ps=5.01u
m2 (nq vss 6 vdd) p l=0.35u w=4.80u ad=3.50p pd=11.06u as=0.50p ps=5.01u
m3 (vss a nq vss) n l=0.35u w=1.20u ad=0.88p pd=3.86u as=0.46p ps=1.96u
m4 (vss vss nq vss) n l=0.35u w=1.20u ad=0.88p pd=3.86u as=0.46p ps=1.96u
c0 (a vdd) capacitor c=6.3676066e-16
c1 (a nq) capacitor c=5.3592e-17
c2 (vdd vss) capacitor c=5.39538e-16
c3 (nq vss) capacitor c=8.780327e-16
c4 (nq vdd) capacitor c=5.577428e-16
c5 (a vss) capacitor c=1.1100392e-15
ends

// begin top level circuit definition
xno21 (1 90) no2
xno22 (2 1) no2
xno23 (3 2) no2
xno24 (4 3) no2
xno25 (5 4) no2
xno26 (6 5) no2
xno27 (7 6) no2
xno28 (8 7) no2
xno29 (9 8) no2
xno210 (10 9) no2
xno211 (11 10) no2
xno212 (12 11) no2
xno213 (13 12) no2
xno214 (14 13) no2
June 2011 376 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
xno215 (15 14) no2
xno216 (16 15) no2
xno217 (90 16) no2

// Next couple of lines sets variables for vdd and vss.
parameters vdd_S1=3.3
parameters vss_S1=0.0
vdd_I1 (vdd gnd) vsource dc=vdd_S1
vss_I1 (vss gnd) vsource dc=vss_S1

// Next line initializes nodes within ring.
ic 2=0 4=0 6=0 8=0 10=0

include "q35d4h5.modsp" section=tt

// Analysis

tempOption options temp=25
tt_tran tran step=0.010n stop=35n

ss_alter altergroup {
include "q35d4h5.modsp" section=ss
parameters vdd_S1=3.0
}

alterTempTo100 alter param=temp value=100
ss_tran tran step=0.010n stop=35n

ff_alter altergroup {
include "q35d4h5.modsp" section=ff
parameters vdd_S1=3.3
}

alterTempTo0 alter param=temp value=0
ff_tran tran step=0.010n stop=35n

Ring Oscillator Spectre Deck for Three-Input NOR Ring
with No Fanouts (nor3_ring.sp)

This example uses Spectre syntax.

// Ring oscillator spectre deck for 3-Input NOR ring with no fanouts.
simulator lang=spectre
global 0 gnd vdd vss
aliasGnd (gnd 0) vsource type=dc dc=0

// Spectre options
SetOption1 options iabstol=1.00n audit=full rforce=1 temp=25

MyAcct1 info what=inst extremes=yes
MyAcct2 info what=models extremes=yes
MyAcct3 info what=input extremes=yes
MyAcct5 info what=terminals extremes=yes
MyAcct6 info what=oppoint extremes=yes

// Next section is the subckt for no3
subckt no3 (nq a)
m1 (vdd a 7 vdd) p l=0.35u w=3.60u ad=2.63p pd=8.66u as=0.38p ps=3.81u
m2 (7 vss 8 vdd) p l=0.35u w=3.60u ad=0.38p pd=3.81u as=0.38p ps=3.81u
m3 (nq vss 8 vdd) p l=0.35u w=3.60u ad=1.37p pd=4.36u as=0.38p ps=3.81u
m4 (nq vss 9 vdd) p l=0.35u w=3.60u ad=1.37p pd=4.36u as=0.38p ps=3.81u
m5 (9 vss 10 vdd) p l=0.35u w=3.60u ad=0.38p pd=3.81u as=0.38p ps=3.81u
m6 (vdd a 10 vdd) p l=0.35u w=3.60u ad=2.63p pd=8.66u as=0.38p ps=3.81u
June 2011 377 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
m7 (vss a nq vss) n l=0.35u w=1.40u ad=1.02p pd=4.26u as=0.53p ps=2.16u
m8 (vss vss nq vss) n l=0.35u w=1.40u ad=0.53p pd=2.16u as=0.53p ps=2.16u
m9 (vss vss nq vss) n l=0.35u w=1.40u ad=0.53p pd=2.16u as=1.02p ps=4.26u
c1 (9 nq) capacitor c=3.7995e-17
c2 (vdd vss) capacitor c=1.3996057e-15
c3 (nq vss) capacitor c=3.1546797e-15
c4 (nq vdd) capacitor c=5.5551875e-16
c5 (a vss) capacitor c=1.2907233e-15
c6 (a vdd) capacitor c=2.1779808e-15
c7 (10 nq) capacitor c=2.0115e-17
c8 (a nq) capacitor c=5.233362e-16
ends

// Begin top-level circuit definition
xno31 (1 90) no3
xno32 (2 1) no3
xno33 (3 2) no3
xno34 (4 3) no3
xno35 (5 4) no3
xno36 (6 5) no3
xno37 (7 6) no3
xno38 (8 7) no3
xno39 (9 8) no3
xno310 (10 9) no3
xno311 (11 10) no3
xno312 (12 11) no3
xno313 (13 12) no3
xno314 (14 13) no3
xno315 (15 14) no3
xno316 (16 15) no3
xno317 (90 16) no3

// Next couple of lines sets variables for vdd and vss.
parameters vdd_S1=3.3
parameters vss_S1=0.0
vdd_I1 (vdd gnd) vsource dc=vdd_S1
vss_I1 (vss gnd) vsource dc=vss_S1

// Next line initializes nodes within ring
ic 2=0 4=0 6=0 8=0 10=0

include "q35d4h5.modsp" section=tt

// Analysis
tempOption options temp=25
typ_tran tran step=0.010n stop=35n

alter_ss altergroup {
include "q35d4h5.modsp" section=ss
parameters vdd_S1=3.0
}

alterTempTo100 alter param=temp value=100
ss_tran tran step=0.010n stop=35n

alter_ff altergroup {
include "q35d4h5.modsp" section=ff
parameters vdd_S1=3.3
}

alterTempTo0 alter param=temp value=0
ff_tran tran step=0.010n stop=35n
June 2011 378 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Opamp Circuit (opamp.cir)

This example uses Spectre’s SPICE syntax.

.subckt opamp 1 2 6 8 9
m1 4 2 3 3 nch w=43u l=10u ad=0.3n as=0.3n pd=50u ps=50u
m2 5 1 3 3 nch w=43u l=10u ad=0.3n as=0.3n pd=50u ps=50u
m3 4 4 8 8 pch w=10u l=10u ad=0.3n as=0.3n pd=20u ps=20u
m4 5 4 8 8 pch w=10u l=10u ad=0.3n as=0.3n pd=20u ps=20u
m5 3 7 9 9 nch w=38u l=10u ad=0.3n as=0.3n pd=40u ps=40u
m6 6 5 8 8 pch w=344u l=10u ad=1.3n as=1.3n pd=350u ps=350u
m7 6 7 9 9 nch w=652u l=10u ad=2.3n as=2.3n pd=660u ps=660u
m8 7 7 9 9 nch w=38u l=10u ad=0.3n as=0.3n pd=40u ps=40u
cc 5 6 4.4p
ibias 8 7 8.8u
.ends opamp

Opamp Circuit 2 (opamp1.cir)

This example uses Spectre’s SPICE syntax.

.subckt opamp 1 2 6 8 9
m1 4 2 3 3 nch w=20u l=0.5u ad=0.3n as=0.3n pd=50u ps=50u
m2 5 1 3 3 nch w=20u l=0.5u ad=0.3n as=0.3n pd=50u ps=50u
m3 4 4 8 8 pch w=20u l=0.5u ad=0.3n as=0.3n pd=20u ps=20u
m4 5 4 8 8 pch w=20u l=0.5u ad=0.3n as=0.3n pd=20u ps=20u
m5 3 7 9 9 nch w=20u l=0.5u ad=0.3n as=0.3n pd=40u ps=40u
m6 6 5 8 8 pch w=20u l=0.5u ad=1.3n as=1.3n pd=350u ps=350u
m7 6 7 9 9 nch w=20u l=0.5u ad=2.3n as=2.3n pd=660u ps=660u
m8 7 7 9 9 nch w=20u l=0.5u ad=0.3n as=0.3n pd=40u ps=40u
cc 5 6 4.4p
ibias 8 7 8.8u
.ends opamp

Original Open-Loop Opamp (openloop.sp)
* Allen & Holmberg, p. 438 - Original Open Loop OpAmp Configuration
vinp 1 0 dc 0 ac 1.0
vdd 4 0 dc 5.0
vss 0 5 dc 5.0
vinm 2 0 dc 0
cl 3 0 20p
x1 1 2 3 4 5 opamp
** Bring in opamp subcircuit
include "opamp.cir"
** Bring in models here
.model nch bsim3v3
.model pch bsim3v3 type=p
.op
simulator lang = spectre
tf (3 0) xf save=lvlpub nestlvl=1 start=1 stop=1K dec=20
simulator lang = spice
.dc vinp -0.005 0.005 100u
.print dc v(3)
June 2011 379 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
.ac dec 10 1 10MEG

.print ac vdb(3) vp(3

.end

Modified Open-Loop Opamp (openloop1.sp)
* Allen & Holmberg, p. 438 - Modified Open Loop OpAmp Configuration
vinp 1 0 dc 0 ac 1.0
vdd 4 0 dc 5.0
vss 0 5 dc 5.0
vinm 2 0 dc 0
cl 3 0 20p
x1 1 2 3 4 5 opamp
** Bring in opamp subcircuit
include "opamp1.cir"
** Bring in models here
.model nch bsim3v3
.model pch bsim3v3 type=p
.op
simulator lang = spectre
tf (3 0) xf save=lvlpub nestlvl=1 start=1 stop=1K dec=20
simulator lang = spice
.dc vinp -0.10 0.10 10u
.print dc v(3)
.ac dec 10 1 10MEG
.print ac vdb(3) vp(3)
.end

Example Model Directory (q35d4h5.modsp)
//example model directory
simulator lang = spectre

library mosmodels
section tt
model n bsim3v3 tox=1.194e-08
model p bsim3v3 type=p tox=7.4e-09
endsection

section ss
model n bsim3v3 tox=1.242e-08
model p bsim3v3 type=p tox=7.724e-09
endsection

section ff
model n bsim3v3 tox=1.1544e-08
model p bsim3v3 type=p tox=7.148e-09
endsection
endlibrary
June 2011 380 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
B
Using Compiled-Model Interface

The ® Spectre® circuit simulator supports dynamic loading of device models. This feature
allows you to dynamically load device primitives (stored in shared objects) at run time. This
is useful for developing and distributing models.

Installing Compiled-Model Interface (CMI)

CMI is now shipped with Spectre. The installation is done as a manual step after the Spectre
product installation.

To install CMI, run the cmiExtract script located in the following directory:
your_install_dir/tools/spectre/bin

You must have a valid Spectre CMI license to run this script. You are prompted to specify a
directory in which the CMI hierarchy is to be installed, with the default being
your_install_dir/tools/.

Once the extraction script is complete, the CMI hierarchy can be found in the directory
spectrecmi in the specified location. The README files are in the spectrecmi directory and
the CMI manual, cmiprint.pdf, is in spectrecmi/doc/. See the CMI manual,
Compiled-Model Interface Reference for information on how to proceed.

Configuration File

The Spectre circuit simulator can be configured to load a specific set of shared objects based
on the content of a set of configuration files. The default CMI configuration file is shown below.

; The default search path is
; your_install_dir/tools/spectre/lib/cmi/%M
; This file is automatically generated.
; Any changes made to it will not be saved.

load libnortel.so
load libphilips.so
load libsiemens.so
load libstmodels.so
June 2011 381 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
The CMI file allows legal UNIX file paths and Spectre predefined percent codes. For more
information on predefined percent codes, see “Description of Spectre Predefined Percent
Codes” on page 317.

Configuration File Format

The following commands can be used in the configuration file:

The following examples show the syntax for these commands.

To specify a search path:
setpath path [path2 ...path N]

Example 1:

setpath $HOME/cds/4.4.6/tools.%O/spectre/lib/cmi/%M

Example 2:

setpath ($HOME/myLib/cmi/%M $HOME/cds/4.4.6/tools.%O/spectre/lib/cmi/%M)

where %O is expanded to the platform name.

To prepend a path:
prepend path [path 2 ... path N]

Example 1:

prepend $HOME/myLib/cmi/%M

Example 2:

prepend ($HOME/myLib/cmi/%M $HOME/cds/4.4.6/tools.%O/spectre/lib/cmi/%M)

Command Action

setpath Specifies the search path.

prepend Adds a path before the current search path.

append Adds a path after the current search path.

load Adds a shared object to the list of shared objects to load.

unload Removes a shared object from the list of shared objects to load.
June 2011 382 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
To append a path:
append path [path2 ... path N]

Example 1:

append $HOME/myLib/cmi/%M

Example 2:

append ($HOME/myLib/cmi/%M $HOME/expLib/cmi/%M)

The default search path is the path to the directory that contains Spectre shared objects:
$CDS_ROOT/tools/spectre/lib/cmi/CMIVersion.

To load a shared object:
load [path/] soname.ext

Example 1:

load libnortel.so

Example 2:

load $HOME/myLib/cmi/%M/libmydevice.so

To unload a shared object:
unload [path/] soname.ext.version

Example 1:

unload libsiemens.so.1

Example 2:

unload $HOME/myLib/cmi/%M/libmydevice.so

The name of the shared object file includes an extension and can also have a version number.
The path to the shared object is optional. If you do not specify the path, the Spectre simulator
uses the search path from the current configuration file.

A line that begins with a semicolon is a comment and is ignored. Empty lines are allowed and
are ignored.

Precedence for the CMI Configuration File

The Spectre simulator reads configuration files in the following order:

■ The default Cadence CMI configuration file
June 2011 383 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
■ The configuration file specified by the value of the $CMI_CONFIG environment variable

■ The file $HOME/.cmiconfig, if it exists

■ The CMI configuration file specified in the -cmiconfig argument

Each configuration file modifies the previous configuration.

Configuration File Example

This section contains examples that show how configuration files can be used to customize
the list of shared objects that the Spectre circuit simulator loads at run time. The default
configuration file includes libnortel.so, libstmodels.so, libphilips.so, and
libsiemens.so.

If you need only the ST models, you can create a configuration file called site_cmi_config
that loads only libstmodels.so by unloading the other three shared objects:

;default search path is $CDS_ROOT/tools/spectre/lib/cmi/%M
;only libstmodels for this site
;this file is called site_cmi_config
unload libnortel.so

unload libphilips.so
unload libsiemens.so

Cadence default

$CMI_CONFIG

~/.cmiconfig

-cmiconfig

This default includes all components for backward
compatibility.

The user can specify site-specific CMI configuration through
this environment variable.

The device developer can use this file for customizing the CMI
configuration.

The user can use this command line argument to customize
the CMI configuration.
June 2011 384 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
When the environment variable $CMI_CONFIG is set to site_cmi_config, only
libstmodels.so is loaded.

A model developer can create a file $HOME/myLib/libmybjt.so consisting of the BJT
model under development. To check the results of the BJT under development in
libmybjt.so with the BJT503 models in libphilips.so, the developer can create a CMI
configuration file in the home directory as follows:

;this is $HOME/.cmiconfig file

;I want to include libphilips.so released by Cadence so that
;I can check my BJT with BJT503.

load libphilips.so

;I also want to include my BJT model from libmybjt.so
append $HOME/myLib
load libmybjt.so

CMI Versioning

The version format for CMI is major.minor. The value of major is increased when there
are major changes that require CMI developers to recompile their components.

Type spectre -cmiversion to display the current CMI version.

The Spectre circuit simulator checks for CMI version compatibility for each shared object as
well as for each primitive. This ensures that

■ A shared object is compiled with the latest version of CMI

■ The source code for each device primitive is up to date

Note: A primitive can be installed only once. Different versions of the same primitive cannot
be used.
June 2011 385 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
June 2011 386 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
C
Netlist Compiled Functions (NCF)

The Spectre circuit simulator now allows a netlist expression to call functions that are loaded
from a Dynamic Link Library (DLL).With this functionality, you can create your own functions
in C or C++, for example, taking advantage of the features of these languages and
overcoming the restrictions of the netlist user-defined function.

Loading a Plug-in

A plug-in can be loaded using either the -plugin command-line option or the
CDS_MMSIM_PLUGINS environment variable. Both approaches allow the use of embedded
environment variables, % modifiers and tilde expansion. A list of plug-ins can be provided
using CDS_MMSIM_PLUGINS. Elements of the list are separated by whitespace or
semicolons.

% spectre -plugin ~/plugins/%O/libmyplugin_sh.so mytest.scs +log %C:r.out

or
% setenv CDS_MMSIM_PLUGINS "~/plugins/%O/libmyplugin_sh.so"

% spectre mytest.scs +log %C:r.out

Commonly used % modifiers are

■ %I: MMSIM installation hierarchy

■ %O: Platform specified, equivalent to the result of cds_plat

■ %B: A 32-bit executable replaces this with an empty string. A 64-bit executable expands
this to the string 64bit.

Using a NCF in a Spectre Netlist

A NCF is called in a Spectre netlist just like any builtin mathematical function or user-defined
function is called. There is no special syntax required to use a NCF once its plug-in has been
June 2011 387 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
successfully loaded by Spectre. In the following example, safe_sqrt(x) is a simple NCF
that evaluates the following code

if (x < 0.0)
return 0.0;

else
return sqrt(x);

In the Spectre netlist, this is called as follows

parameters w=1u y=safe_sqrt(w)

It could also be called on any instance or model parameter expression. There are some
restrictions on the use of NCF functions.

■ A NCF cannot be used in a behavioral source if an argument to the NCF is non-constant,
i.e. a reference to a node voltage, device current, etc.

r1 1 0 resistor r=add(1.0, 2.0)*1k // Used correctly

b1 1 0 bsource i=v(1)/(add(1.0, 2.0)*1k) // Used correctly

b1 1 0 bsource i=add(v(1), 0)/1k // Error, cannot compute d(i)/d(v(1))

■ A NCF cannot be used in a post-processing statement, such as a save, .PRINT, .PROBE
or .MEASURE.

Creating a Plug-in

You must include the ncf.h file to provide declarations of all functions and variables used in
the plug-in.

The plug-in must contain the ncfinstall function, which must include a call to the
ncfSetDefaultVersion version. This function informs the application the version of the
NCF interface that the following NCF functions support. If the call to this function fails, the
application prints an error message, and ignores all subsequent NCF calls from this plug-in.

A sample plug-in is given below.

#include <math.h>

#include "plugins/ncf.h"

double

foo(ncfHandle_t handle, int argc, double argv[])

{

/* return result; */

}

void
June 2011 388 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
ncfInstall(void)

{

ncfHandle_t func = 0L;

if (ncfSetDefaultVersion(NCF_VERSION_1) == ncfFalse)

return;

/* Create and register the function "foo" */

func = ncfCreateFunction("foo");

ncfRegisterFunction(func);

}

Assuming that MMSIM_INSTALL is the root of the MMSIM installation, the path to the ncf.h
file is

${MMSIM_INSTALL}/tools/mmsim/include/plugins

When adding this path to the compile line using the -I option, you can add the path to the
mmsim/include directory, rather the path to the plug-ins directory, as follows:

% gcc -fPIC -I${MMSIM_INSTALL}/tools/mmsim/include -o myplugin.o -c myplugin.c

No Cadence libraries need to be linked to the final plug-in DLL, however it is normally
necessary to link in the math library. To create the plug-in, all object files should be compiles
with the appropriate PIC option and then linked together into the DLL. The following example
uses gcc to create the shared library.
% gcc -shared -o libmyplugin_sh.so myplugin.o -lm

% cp libmyplugin_sh.so ~/plugins/`cds_plat`

Installing a NCF

To create a NCF, you must first call the function ncfCreateFunction. The only argument
is the name of the NCF as it will be called from the netlist. The return value is a handle to the
NCF object, a ncfHandle_t. If the call to ncfCreateFunction fails, a value of 0L is
returned. You must then register the NCF with the application by calling
ncfRegisterFunction. The only argument passed to this function is the previously
created handle.

ncfHandle_t func = ncfCreateFunction("foo");

ncfRegisterFunction(func);

In the above example, the NCF foo is created and registered with the application. By default
the NCF has the following attributes.

■ It takes one scalar real argument which has pass-by-value semantics.
June 2011 389 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
■ Its return value is a real scalar.

■ The name of the function as called from the netlist is foo.

■ Since the developer has not provided a compiled function, the application searches the
plug-in for an exported symbol with the name foo, and assumes that symbol is the
function to be executed when the NCF is called.

Modifing the Default Behavior of a NCF

While the default behavior of the NCF can be sufficient, this may not be the case. For
example, the NCF may take more than one argument, the name of the compiled function is
different than the name of the NCF, or the compiled function is not exported from the plug-in.
The following functions can be used to modify the default bahavior of the NCF.

ncfSetNumArgs(ncfHandle_t, int, int)

This function takes three arguments. The first is a handle to the NCF being modified. The next
two are the minimum and maximum number of arguments, respectively.

ncfSetNumArgs(func, 2, 2);

ncfSetNumArgs(func, 2, 10);

In the first example above, the NCF func accepts two arguments. If the call to this NCF from
the netlist has a different number of arguments, the parser will error out immediately. In the
second example, the NCF can have any number of arguments from a minimum of two to a
maximum of ten.

ncfSetDLLFunctionV1(ncfHandle_t, ncfFunctionV1Ptr_t)

If the you do not specify a compiled function for a particular NCF, the application searches the
plug-in for a function with the same name as the NCF. If such a symbol does not exist or it
exists but does not have global scope (in C this would indicate that it has static linkage), then
an error message is printed and the application exits.

The function ncfSetDLLFunctionV1 can be used to specify the compiled function to be
called when an NCF is evaluated. The V1 suffix indicates that the function conforms to the
NCF_VERSION_1 interface. The first argument is a handle to the NCF being modified. The
second argument is a pointer to the actual compiled function. For the NCF_VERSION_1
interface, the compiled function takes three arguments. The first is a handle to the function
registered NCF, the second is the number of arguments in the netlist call, and the third is an
June 2011 390 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
array of double values. Each value corresponds to a value from the netlist call. The signature
of the compiled function is

double (*ncfFunctionV1Ptr_t)(ncfHandle_t handle, int argc, double argv[]);

A simple example of the use of ncfSetDLLFunctionV1 is as follows

#include <math.h>
#include "plugins/ncf.h"

/* A simple function to add two arguments. */
static
double add(ncfHandle_t handle, int argc, double argv[])
{

return argv[0] + argv[1];
}

void
ncfInstall(void)
{

ncfHandle_t func = 0L;
if (ncfSetDefaultVersion(NCF_VERSION_1) == ncfFalse)

return;

func = ncfCreateFunction("add");
ncfSetNumArgs(func, 2, 2);

/* The call to ncfSetDLLFunctionV1 is required since 'add'
 * is defined above to have static linkage, hence it cannot be
 * seen by the application loading the plugin. */
ncfSetDLLFunctionV1(func, &add);

ncfRegisterFunction(func);

return;
}

Attaching Arbitrary Data to a NCF

You may wish to attach extra data to a NCF. This data can be attached during the creation of
the NCF and then retrieved during function evaluation, using the provided ncfHandle_t
argument. This feature is normally used to allow multiple NCFs to share a common
forimplementation or to provide a interposer type functionality.

ncfSetData(ncfHandle_t, ncfData_t)

ncfData_t ncfGetData(ncfHandle_t)

These functions set and get data on a previously created NCF. In the following example, two
NCF, add and sub, are registered with the application, but they share a common compiled
function implementation, add_or_sub. The compiled function uses the ncfGetData
function to get the data associated with the supplied ncfHandle_t. If the data is +1, the
supplied arguments are added: if the data is -1, the supplied arguments are subtracted. When
June 2011 391 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
the NCF’s are being created, you use the ncfSetData function to set data on each
ncfHandle_t.

#include <math.h>
#include "plugins/ncf.h"

static
double add_or_sub(ncfHandle_t handle, int argc, double argv[])
{

ncfData_t data = ncfGetData(handle);
if (data == +1)

return argv[0] + argv[1];
else if (data == -1)

return argv[0] - argv[1];
else

return 0.0;

}

void
ncfInstall(void)
{

ncfHandle_t func = 0L;
if (ncfSetDefaultVersion(NCF_VERSION_1) == ncfFalse)

return;

func = ncfCreateFunction("add");
ncfSetNumArgs(func, 2, 2);
ncfSetDLLFunctionV1(func, &add_or_sub);
ncfSetData(func, +1);
ncfRegisterFunction(func);

func = ncfCreateFunction("sub");
ncfSetNumArgs(func, 2, 2);
ncfSetDLLFunctionV1(func, &add_or_sub);
ncfSetData(func, -1);
ncfRegisterFunction(func);
}

June 2011 392 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Index
Symbols
:: colon modifier 340
[] in vectors 88
//, in Spectre syntax 61
\, in Spectre syntax 61
% codes 310

predefined 336
%% predefined percent code 338

Numerics
64-bit Spectre 48

A
%A predefined percent code 337
absolute error tolerance 180
abstol parameter 82, 180
AC analysis 175
AC analysis, brief description of 166
accuracy

correcting problems 367
improving 27
user control of tolerances 27

AHDL variables, saving 292
AHDL, definition 29
alarm parameter 360, 361
algebraic functions 96
all

as homotopy parameter option 333
as info statement parameter 266, 293
as pwr option 280
as save parameter option 282

allglobal (relative error parameter) 179,
181

alllocal (relative error parameter) 179, 181
allpub, as save parameter option 282
alter statement 72, 244, 332

changing parameter values with
example 242, 331
formatting 242, 331
use with circuit parameters 244, 332

example of use in netlist 127

altergroup statement
changing parameter values with 243,

331
using 72

Analog Artist
case sensitivity of scale factors 92
use of with Spectre 29

Analog Waveform Display (AWD)
using 50

analog workbench design system, use of
with Spectre 38

analogmodel
other

description 75
analogmodel(Using analogmodel for Model

Passing) 75
analyses

AC 175
basic rules 70
brief description of types 166
DC 173
example of analysis statement 47
formatting 69, 70
fourier 194
handling of prerequisite 70
Monte Carlo, performing 210
no default analysis 70
order performed 70
parameter sweep examples 209
parameter value defaults 169
rules for naming 70
sens 190
setting probes 169
specifying 47, 68, 168
statistical 210
subcircuits composed of

calling 173
formatting example 172

analysis order, netlist example of effective
use 170

analysis statement 68
examples 47, 70
formatting 69

annotate parameter
in Spectre analyses 305

append path 383
June 2011 393 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
assert statement 245
examples 251

associated reference direction 60
automated testing 28
automatic model selection 122

examples in netlist 130
AWD (Analog Waveform Display)

using 50

B
backslash (\), in Spectre syntax 61
backward Euler integration method 181
behavioral expressions 98
benchmark suite, MCNC 28
binning 120

auto model selection 122
by conditional instantiation 124
conditional instances 123
rules 126

BJT operating regions, determining 361
blowup parameter 83
breakdown region warnings

example of messages 348
requesting for transistors 359

BSIM 3v3, brief description 26
BSOURCE

examples 102
parameters

101
built-in constants 104
bvbc parameter, and breakdown region

warnings 359
bvbe parameter, and breakdown region

warnings 359
bvj parameter, and breakdown region

warnings 359
bvsub parameter, and breakdown region

warnings 359

C
%C predefined percent code 337
C preprocessor (CPP)

defaults 310
using the include statement with 79

Cadence Customer Support,
contacting 29, 346

Cadence parameter storage format

(PSF) 295, 312
Cadence range limits defaults 353
Cadence Signal Scan output format 295
Cadence waveform storage format

(WSF) 295
center parameter 208
check statement

controlling checks on parameter
values 253, 359

example 254, 359
formatting 254, 359
what parameter 254, 359, 360

checking simulation status 305
checklimit statement 254

examples 259
syntax 255

checkpoint files
automatic creation after interrupts 309
creating from the command line 309
specifications for a single analysis 309

+checkpoint, spectre command option 308
checks on parameter values, controlling the

number of 359
choosing output file formats 294
circuit parameters 92, 93
ckptperiod parameter, in transient

analysis 309
closed loop gain, in netlist example of

measuring 170
CMI (compiled model interface),

description 29
CMI versioning 385
colon modifiers

: (colon character) 340
chaining 340
:e (extension) 340
examples 341
formatting 341
:h (head) 340
of input filenames 340
:r (root) 340
:t (tail) 340

colons (:), in Spectre syntax 61
comments, formatting for 61
compatible parameter 274
compiled model interface (CMI),

description 29
components

naming 46, 62
rules for names 62
specifying initial conditions for 260, 325
June 2011 394 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
Composer-to-Spectre direct simulation
environment 29

conditional if statements
example of use in netlist 130
formatting example 123

conditional instantiation 124
changing the condition 125
specifying 123

configuration file
default 381
example 384
format 382
precedence 383

connections, inherited 84
constants, built-in, table of 104
continuation methods 333
control statements 71, 72

definition 46
formatting 71
paramset 275
statistics 290
use of in instance statement 46

controls, specifying 71
conventions, typographic and syntax 23
convergence problems 364

backward Euler integration method to
correct 366

correcting with current probes 365
correcting with DC sweeps 366
dividing the circuit into parts to

correct 366
floating resistors causing 365
gmin parameter, increasing 365
loosening iabstol parameter to

correct 366
loosening truncation error criteria to

correct 366
lteratio parameter 366
maxiters parameter 365
nodesets to correct 366
nonlinear component models,

simplifying 366
numeric pivoting in the sparse matrix

factorization 366
options statement settings to

prevent 365, 366
oscillators causing 366
pivotdc parameter, settings to

correct 366
pivrel parameter, resetting to

correct 366

realistic device models needed 365
reduced in Spectre 28
region parameter settings in bipolar

analog circuits causing 366
region parameters of transistors and

diodes 366
replacing DC analysis with transient

analysis to correct 366
restarts to correct 366
rforce parameter, increasing with

nodesets 366
step size 365
system messages helpful 364
temperature sweeps to correct 366
topcheck parameter enabling 365
transient analysis 367
unusual parameter values, checking

for 365
corners, example 129
correlation coefficients 220
correlation statements 219
CPP (C preprocessor)

defaults 310
using the include statement with 79

.cshrc file
and environment defaults 311
Cadence range limits 353

current probes
correcting convergence problems

with 365
probe statement 279
saving individual currents with 278
setting multiple 284
setting with the save statement 280
when to use 279

currents parameter
example 283
formatting 283
not used in subcircuit calls 277
options statement 283

customer service, contacting 29, 346
customizing

error and warning messages 352
percent codes 338

D
%D predefined percent code 337
damped pseudotransient method 333
data compression 184
June 2011 395 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
dataDir command line option 50
DC analysis 173

brief description of 166
correcting accuracy problems 367
maxiters parameter, and convergence

problems 365
oppoint parameter 206
transfer curves 206

DC convergence problems, correcting 364
dec parameter 209
defaults

analyses 70
analysis parameters 169
C preprocessor (CPP) 310
Cadence range limits for warnings 353
+checkpoint spectre command

option 308
command line 310
controlling destination and format of

Spectre results 310
controlling system-generated

messages 310
creating checkpoints and initiating

recovery 310
measurement units of parameters 133
name of the simulator 310
overriding in UNIX environment

variables 312
percent codes 310
screen display 310
setting for environment with

SPECTRE_DEFAULTS 353
simulation environment 310
spectre command 310

changing 310
examining 310

defining a library 82
Design Framework II, use of with

Spectre 38
Designer’s Guide to SPICE and Spectre 22
dev parameter 177, 207
devices

as pwr option 281
diagnosis mode, use of 29
differential amplifier, example of input

file 126
direction, associated reference 60
directory names

generating 297
specifying your own 299

displaying a waveform with awd 51

double slash (//), in Spectre syntax 61
dptran, as homotopy parameter option 333
Dracula, use of with Spectre 39

E
:e colon modifier 340
electrical current in Amperes 83
electrical potential in Volts 83
encrypt

file 315
how to 314
model card 318
overview 313
Spectre netlist 313
subcircuit 315
syntax 314

enumerations, setting parameter limits
with 89

environment variables, changing defaults
in 311

environments in which Spectre can be
used 38

equal sign (=), in Spectre syntax 61
error conditions (terminate simulation)

internal errors 346
invalid parameter values 344
singular Jacobian or matrix 344

error messages 28
caused by invalid parameters in

subcircuit calls 112
customizing 352
specifying conditions for in subcircuit

calls 112
error options of spectre command 364
error tolerances

abstol parameter (error tolerance
parameter) 180

errpreset parameter 179
relref (error tolerance parameter) 180

errpreset parameter 179, 180
escaping special characters 64
estimating solutions with the nodeset

statement 262, 327
euler (integration method parameter) 181
example in netlist

conditional if statement 130
parameterized inline subcircuit 130
paramtest statement 130
specifying N-ports 138
June 2011 396 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
exit codes, Spectre 305
explosion region warnings 347
expressions 94

as model parameters 78
in subcircuit parameters 110

extending statements beyond a single line,
formatting for 61

F
field separators (input language syntax) 61
file formats, defining output 296
filenames

creating by modifying input filenames
(percent codes) 336

creating from parts of input filenames
(colon modifiers) 340

generation 297
files

state, reading 264, 329
firstrun parameter, Monte Carlo analysis

using 214
floating resistors, and convergence

problems 365
forbidden operating regions for transistors,

specifying 360
formatting

alarm parameter 361
analyses, composed of subcircuits 172
analysis parameters 168
analysis statements 69
check statement 254, 359
colon modifiers 341
comment lines 61
conditional if statement 123
control statements 71
currents parameter 283
customized percent codes 338
ic statement 261, 326
identical components in parallel 68, 80
identical subcircuits in parallel 68
include statements 79
info statement 267, 294
instance statements 65
line extension 61
model statements 73
models for multiple components 66
nestlvl parameter 281
nodeset statement 262, 327
options statement 272

parameter range limits file 353
parameter sweeps 205, 209
paramtest specification 361
probe statement 279
pwr parameter 280
rules for names 62
save parameter 280, 281
save statement 276
scaling parameter values 91
scaling physical dimensions 133
sens command 191
set statement 289, 333
S-parameter files 139
specifying parameter values 92
spectre command 303
starting a simulation 303
state files 264, 329

write parameter 263, 328
writefinal parameter 263, 328

subcircuit calls 110
subcircuit definitions 107

fourier
component

synopsis 195
model

definition 195
Fourier analysis

improvements in 26
fourier analysis 194
freq parameter 207
functions

algebraic 96
hyperbolic 96
trigonometric 96

functions, user-defined 105

G
GaAs traveling wave amplifier, sample input

file 108
gauss parameter 217
Gaussian distribution 217
gear2 (integration method parameter) 179,

181
gear2only (integration method

parameter) 179, 181
gmin parameter

increasing value with convergence
problems 365

resetting to correct error conditions 344
June 2011 397 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
setting to correct accuracy
problems 367, 368

warning about size of 349
gmin stepping 333
gmin, as homotopy parameter option 333
ground, definition of 61

H
:h colon modifier 340
%H predefined percent code 337
hard limit, definition 89
homotopy parameter 333
huge parameter 82
hyperbolic functions 96

I
I 83
iabstol parameter 273

convergence problems and 366
setting to correct accuracy

problems 367
ic parameter, in transient analyses 260,

325
ic statement

example 261, 326
formatting 261, 326
specifying initial conditions 260, 325

if statements 123
imelt 347
include

digital vector files 78
VCD and EVCD files 79
Verilog-A modules 78

include statement 78
examples 80
formatting 79
rules for using 79
syntax 78

include statements
examples

of use in netlist 127
individual components, specifying 45, 65
info (+/-), spectre command option 364
info statement 265, 292

choosing the output destination 267,
294

example 267, 294

formatting 267, 294
options 266, 293

informational messages, specifying
conditions for in subcircuit calls 112

infotime 183
inheritance 84
inherited connections 84
initial conditions, specifying 260, 325

examples 260, 261, 325, 326
individual analyses 263, 328
transient analyses 260, 325

initial settings of the state of the simulator,
modifying 244, 332

inline model statements, inside of inline
subcircuits 117

inline subcircuits
containing inline model statements 117
modeling parasitics 113
parameterized models 116
probing 114
process modeling 118
using 112

input data, reading from multiple files 78
input files, examples

differential amplifier 126
GaAs traveling wave amplifier 108
process file 130
two port test circuit 138
uA741 operational amplifier 170

input parameters, listing 265, 292
input, as info statement parameter 266,

293
inst, as info statement parameter 266, 293
instance correlation statement 220
instance scaling factor, changing with alter

statement 244, 332
instance statements 65

annotated example 45
control statements 46
examples 66
formatting 65
model statements 46
parameter values 46
rules for using 67
use of in example 45

INT signal 306
interrupting a simulation 306
introductory netlist, how to use 42
invalid parameter values 344
iprobes, and convergence problems 365
June 2011 398 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
K
keywords

for save statement 277
Spectre 62

kill command, UNIX
kill -9, warning about use of 306
kill(1), as interrupt method 306
-USR1 option example 305
-USR2 option example 309

Kirchhoff’s Current Law (KCL) 27, 61, 181
Kirchhoff’s Flow Law (KFL) 27, 61, 181

L
lang=spectre command 92
lang=spice command 92
language modes 61
library definition 82
library reference 81
library statements, using 81
license queuing 304
limits, selecting for operating region

warnings 360
lin parameter 208
line extension, formatting 61
listing parameter values 265, 292
lnorm parameter 217
load shared object 383
local truncation error 180
-log 363
+log 363
=log 363
log files, specifying options 363
log normal distribution 217
log parameter 209
login file, and environment defaults 311
loop gain, example of measuring in

netlist 127
lteratio parameter 179, 180

convergence problems and 366
lvl, as save parameter option 282
lvlpub, as save parameter option 282

M
m factor 67
%M predefined percend code 337

magnetic flux in Webers 83
magnetomotive force in Amperes 83
main circuit signals, saving. See save

statement 276
master names 46

definition 45
model statements 47

maxdelta parameter 82
maximum and minimum parameter values,

listing 265, 293
maxiters parameter 365
maxstep parameter 179, 182

setting to correct accuracy
problems 368

MCNC benchmark suite 28
measuring

differential signals, example in
netlist 127

loop gain, example in netlist 127, 170
output resistance, netlist example

discussed 170
power supply rejection, netlist example

discussed 170
melting current warnings 347
message control

specifying the destination of 363
suppressing 364

method parameter 179
euler setting 181
gear2 setting 181
gear2only setting 181
setting to correct accuracy

problems 368
trap setting 181
trapgear2 (integration method

parameter) 181
traponly setting 181

minimum timestep used, fixing
warning 349

mismatch block 215
mismatch correlation statement 220
missing diode would be forward-biased

(warning message) 348
MMF 83
mod parameter 207
mode parameter 177
model

definition
(fourier) 195

model binning rules 126
model scaling factor, changing with alter
June 2011 399 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
statement 244, 332
model statement 46

examples 47, 74
formatting 73
inline 117
using 73

modeling
identical components in parallel 68, 80
identical subcircuits in parallel 68
multidisciplinary 82
N-ports 138
parasitics, in inline subcircuits 113
process, using inline subcircuits 118

models
as info statement parameter 266, 293
charge conservation of 26
formatting for multiple components 66
selecting automatically 122
use of expressions in 78

Monte Carlo analysis
brief description of 168
characterization 220
examples 214
modeling 220
parameters, table of 211
performing 210
specifying statistics 219
specifying the first iteration number 214

MOS models, advantages of Spectre
version 26

MOS0 model, brief description 26
multidisciplinary modeling 82
multiple analyses, example in netlist 127
multiple components, creating models

for 73
multiplication factor 67

N
n terminals (formatting in analysis

statements) 69
names, rules for

components 62
nodes 62
old netlists 64

nestlvl parameter 281
netlist

conventions 60
definition 44
elements of 44

introduction to 44
Spectre example 44

netlist parameters, predefined 106
netlist statements 60

use of in example 45
newlink keywords 277
newlink save statement 276
Newton-Raphson iteration 333, 344
node capacitance table

printing 268
nodes

as info statement parameter 266, 293
definition of 61
naming 62
rules for names 62
specifying initial conditions with 261,

326
nodeset statement 262, 327
nodesets 260, 325

convergence problems and 366
specifying for individual analyses 263,

328
node-to-terminal map 266, 293
noise analysis, brief description of 166
none

as homotopy parameter option 333
as info statement parameter 266, 293
as pwr option 281
as save parameter option 282

nonlinear component models, and
convergence problems 366

notifications, responding to 48
nport component, and S-parameter

files 140
nport statement, example in netlist 138
N-ports

example 138
modeling 138

numerical error, improved control of 26
numruns parameter, Monte Carlo

analysis 211
nutascii (output format) 294
nutbin (output format) 294
Nutmeg format 294

O
online help 29
open loop gain, in netlist example of

measuring 170
June 2011 400 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
operating regions
determining for BJTs 361
selecting limits for warnings about 360
specifying forbidden regions for

transistors 360
operating-point parameters

listing 265, 293
saving with save statement 276

operational amplifier, example of
characterization in one simulation
run 170

oppoint
as DC analysis parameter 206
as info statement parameter 266, 293

options statement
ckptclock option example 308
correcting convergence problems 366
defining output file formats 296
example 273
formatting 272
generating output directory names 299
overriding environment defaults 312
parameters

compatible 274
iabstol 273
rawfile 299
rawfmt 296
reltol 273
tempeffects 274
topcheck 344, 365
vabstol 273

resetting options 333
setting tolerances with 273

order of analyses, netlist example of
effective use 170

other
description

(analogmodel) 75
Using analogmodel for Model

Passing 75
output

as info statement parameter 266, 293
data, controlling the amount of

outputstart parameter 182
skipping 182
strobing 182

directory names
how Spectre generates 297
specifying your own 299

file format options 294, 296
filenames, how Spectre generates 297

parameters, listing 265, 293
viewing 50

output resistance, netlist example of
measurement discussed 170

outputstart parameter 183
overriding defaults 312

P
%P predefined percent code 337
p terminals (formatting in analysis

statements) 69
param parameter 207
param_file 177
param_file parameter 177
param_name parameter 177
param_step parameter 177
param_vec parameter 177
+param, spectre command option 353
parameter checking, stopping 254, 359
parameter range checker

convergence problems 365
parameter range limits file

creating 353
absolute value specifications 357
exclusive boundaries in 354
inclusive boundaries in 354
model specifications 357

entering 358
example 357

parameter storage format (PSF) 295
formatting output files 312

parameter sweeps
dev parameter 207, 208, 275
examples

linear sweep 209
logarithmic sweep 209
sweeping temperature 209
with vector of values 209

formatting 209
freq parameter 207, 208, 275
mod parameter 207, 208, 275
param parameter 207, 208, 275
setting sweep limits 208
specifying 205
temp parameter 207
with vector of values 209

parameter values
changing for components 242, 331
changing for models 243, 331
June 2011 401 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
checking 254, 360
all parameter values 254, 360
in instance statements 254, 360
in model statements 254, 360
in subcircuit calls 111
operating-point parameters 254,

360
stopping 254, 359

controlling the number of checks
on 359

example of altering in netlist 127
general rules for specifying 92
in instance statements 46
invalid 344
listing 265, 292
permissible types 88
scaling 91
testing 361
vector 88
with arithmetic operators 94
with Boolean operators 94
with built-in constants 104
with user-defined functions 105

parameterized inline subcircuits
example of use in netlist 130

parameterized models, using inline
subcircuits 116

parameters 92
circuit 92, 93
Monte Carlo analysis, table of 211
predefined netlist 106
subcircuit 92, 93

parameters statement 92
paramset 207
paramset statement 275
paramset statement, using 208, 275
paramtest statement

checking subcircuit parameter values
with 111

checking values of subcircuit
parameters 361

errorif option 362
example 362
example of use in netlist 130
formatting 361
message option 362
printif option 362
severity option 362
warnif option 362

parasitic elements
in parallel with device terminals 115

in series with device terminals 115
parasitics, modeling in inline

subcircuits 113
parentheses (()), in Spectre syntax 61
percent codes 310

customizing 338
example 338
formatting 338
removing customized settings 339

predefined 336
%% 338
%A 337
%C 337
%D 337
%H 337
%M 337
%P 337
%S 338
substitution in 338
%T 338
%V 338

redirected files 339
use with piped files 339

percent parameter, Monte Carlo
analysis 216, 218

physical dimensions of components,
scaling 133

PID (process identification number) 305
piecewise linear (PWL) vector values,

reading 81
piped files, and percent codes 339
P-N junction warnings 347

breakdown region 348
explosion region 347
missing diode would be forward-

biased 348
pointlocal (relative error parameter) 181
power in Watts 83
power supply rejection, netlist example of

measurement discussed 170
power, saving 280
predefined netlist parameters 106
predefined percent code

% character 338
CMIVersion 337
date 337
described 336
host name (network name) 337
input circuit file name 337
process ID 337
program starting time 338
June 2011 402 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
simulator name 338
substitution in 338
version string 338

predefined quantities 83
prepend path 382
previous solutions, starting analyses

from 324
prevoppoint parameter, in analyses 324
printout to screen, example 48
probe statement 279
probes, setting in analyses 169
process block 215
process corners, example 129
process file, sample input file 130
process identification number (PID) 305
process modeling, using inline

subcircuits 118
process parameter correlation

statement 219
profile file, and Cadence range limits 353
ps utility, UNIX 305
pseudotransient method 333
PSF (parameter storage format) 295

formatting output files 312
psfascii (output format) 294
psfbin (output format) 295
psfxl (output format) 295
ptran, as homotopy parameter option 333
punctuation characters, in Spectre

syntax 61
PWL, definition 81
Pwr 83
pwr 277, 280
pwr parameter 280

Q
quantity statement 82

abstol parameter 82
blowup parameter 83
example 84
huge parameter 82
maxdelta parameter 82
predefined quantities 83

R
:r colon modifier 340
range checking for subcircuit

parameters 361
reading state files 264, 329
recovering from transient analysis

terminations
automatic recovery, customizing 308
restarting a transient analysis 309
setting recovery (checkpoint) file

specifications for a single
analysis 309

redirected files, and percent codes 339
reducing simulation time with previous

solutions 324
reference direction, associated 60
reference to a library 81
relative error tolerance 180
relref parameter 179, 180

allglobal setting 181
alllocal setting 181
pointlocal setting 181
sigglobal setting 181

reltol parameter 179, 180, 273
setting to correct accuracy

problems 367
reserved words, Spectre 62
restart parameter, in analyses 324
results

controlling destination and format
of 310

displaying 50
Results Browser 51
RF capabilities 30
rforce parameter

and convergence problems 366
setting to correct accuracy

problems 368
run terminations. See terminations of

Spectre 305
running a simulation, introductory

example 48

S
%S predefined percent code 338
%S_DEFAULTS 310
sample input file

differential amplifier 126
GaAs traveling wave amplifier 108
process file 130
two port test circuit 138
uA741 operational amplifier 170
June 2011 403 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
save parameter
example 280, 281
formatting 281
options 282
setting with an analysis statement 281
setting with the options statement 281

save statement 275
examples 277
formatting 276
keywords 277
operating-point parameters of individual

components, saving 276
saving signals

by keywords 277
by terminal index 276
by terminal name 276
of individual components 276
of individual nodes 276
of individual subcircuits 277

voltages of individual nodes,
saving 276

saveahdlvars 292
saving

all ahdl variables 292
currents for AC analysis 279
groups of currents

with the currents parameter 283
with the save and nestlvl

parameters 281
groups of signals

in main circuits with the save
parameter 281

in subcircuits 282
in subcircuits with the nestlvl

parameter 281
individual currents

with current probes 278
with the save statement 276

individual signals of subcircuits 277
main circuit signals. See save

statement 276
measurements for current-controlled

components 279
parameter values 265, 292
signals from subcircuit calls 277

saving power 280
scale factors 91
scale parameter

devices scaled by 133
how affected by default units of

components 134

in alter statement 244, 332
scalefactor parameter 134
scalem parameter

devices scaled by 133
how affected by default units of

component 134
in alter statement 244, 332

scaling
parameter values

in Spectre 91
in SPICE 91

physical dimensions of
components 133

schematic 42
screen printout, example 48
second-order Gear integration method 181
selected, as save parameter option 282
sens analysis 190
sens command

example 192
formatting 191

sensitivity analysis 190
set statement, to modify options statement

settings 333
setting tolerances

with the quantity statement 82
shell initialization file, and Cadence range

limits 353
shell status variable 305
sigglobal (relative error parameter) 179,

181
Signal Scan output format 295
signals, defined 292
simulation

checking status 305
following the progress of 48
improved accuracy 27
interrupting 306
introductory Spectre run 48
sample narration of progress 50
specifying options 303
starting 303
termination. See terminations of

Spectre 305
viewing output 50

simulation language, use of in example
netlist 45

singular Jacobian or matrix (error
message) 344

skipping data points
skipcount parameter 183
June 2011 404 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
skipstart parameter 183
skipstop parameter 184

skipping time points
example 184
explanation 182

soft limits
definition 89
use of 29

source stepping 333
source, as homotopy parameter option 333
span parameter 208
S-parameter analysis (sp), brief description

of 166
S-parameter file format translator 147
S-parameter files

creating manually 139
db-deg 139
db-rad 139
formatting 139
generated by Spectre 139
mag-deg 139
mag-rad 139
reading

example of nport statement 140
format of nport statement 140

real-imag 139
special characters, escaping 64
specify search path 382
specifying

analyses 47
control statements 72
individual components 45
models for multiple components 46
percent codes 338

Spectre
64-bit 48
accuracy improvements 26
annotated netlist example 44
capacity improvements 26
case sensitivity 61
customer service 29
differences from SPICE 25, 42, 60,

241, 370
environments 38
exit codes 305
improvements 26
introduction to netlists 44
keywords 62
model improvements 29
netlist, elements of 44
reliability improvements 28

RF capabilities 30
run terminations 305
schematic example 42
speed improvements 27
syntax 61
tutorial 41
usability features 29

spectre
parasitic reduction 36

spectre command
+checkpoint option in transient analysis

recovery 308
defaults

changing 310
examining 310

error options 364
info options 364
introduction to 48
options

-format 296
-raw 299

specifying simulation options 303
starting a simulation 303
using to override environment

defaults 312
using to specify output directory

names 299
using to specify output file format 296
warning options 364

Spectre Netlist Language, syntax rules 61
SPECTRE_DEFAULTS environment

variable 310, 353
overriding with param option of spectre

command 353
SpectreRF

description of 30
SpectreStatus file 305
SPICE

differences from Spectre 25, 42, 60,
241, 370

input language
case sensitivity 61
case sensitivity of scale factors 92

sptr command 147
sst2 output format 295
start parameter 208
starting

a simulation 303
analyses from previous solutions 324

state files
analysis efficiency with, netlist example
June 2011 405 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
discussed 170
and writefinal parameter 263, 328
creating manually 264, 329
reading 264, 329
special uses for 264, 329
using to specify initial conditions and

estimate solutions 263, 328
write parameter 263, 328

state information, specifying
initial conditions 260, 325
nodesets 260, 325

state of the simulator, modifying initial
settings 244, 332

statements
analysis 68

formatting 69, 70
control 71
instance 65
library 81
model 73

examples 74
formatting 73

netlist 60
paramset 275
save 275
statistics 290
Using analogmodel for Model

Passing 75
statistical analysis, performing 210
statistics blocks 210

multiple, Monte Carlo analysis 219
specifying parameter distributions 215

statistics statement 290
status, checking simulation 305
step parameter 182, 208
step size for DC sweep, and convergence

problems 365
stop parameter 208
stopping a simulation 306
string parameters, specifying 135
strobing 182

example 184
skipstart parameter 183
skipstop parameter 183
strobedelay parameter 183
strobeperiod parameter 183

stty utility, UNIX 306
sub parameter 177, 207
subcircuit calls

checking for invalid parameter values
in 111

example 110
formatting 110
names unrestricted 111
saving signals 277

subcircuit parameters 92
subcircuits

calling 106, 110
composed of analyses

calling 173
example 172
formatting 172

defining 106
example 108
formatting 107

expressions within 110
inline 112
multiplication factor in 68
parameters 93
range checking for parameter

values 361
saving groups of signals 282
saving individual signals 277

subckts
as pwr option 280

suppressing messages 364
sweep limits, setting 208
sweeping parameters. See parameter

sweeps 205
synopsis

(fourier) 195
syntax conventions 61
system-generated messages,

controlling 310

T
:t colon modifier 340
%T predefined percent code 338
tdr analysis, brief description of 166
Temp 83
temp parameter 106, 207

in alter statement 244, 332
tempeffects parameter 274
temperature

changing with alter statement 244, 332
in Celsius 83

terminal index
subcircuit calls 277
use in save statement 276

terminal name, use in save statement 276
June 2011 406 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
terminals, as info statement
parameter 266, 293

terminal-to-node map 266, 293
terminations of Spectre

because of a Spectre error
condition 305

by the operating system 305
manual 306
normal 305
recovering from transient analysis 306
with an error in an analysis 305

testing values of subcircuit parameters 361
time not increasing, error message 346
time-domain reflectometer (tdr) analysis,

brief description of 166
time-step adjustment 182
time-step control algorithm, advantages

of 27
timestep used, minimum 349
title card 45
title line 45
tnom parameter 106

in alter statement 244, 332
tolerance warnings 348
tolerances, setting, with the options

statement 273
total

as pwr option 281
tran analysis, brief description of 166
transfer curves 206
transfer function analysis (xf), brief

description of 166
transient analysis

accuracy 181
brief description of 166
ckptperiod parameter example 309
convergence problems 367
correcting accuracy problems 368
error tolerances. See error

tolerances 180
ic parameter 260, 325
improving convergence 182
integration method 181
read parameter for state files 264, 329
readns parameter for state files 264,

329
restarting 309
specifying initial conditions in 260, 325
speed 181
terminations, recovering from 306

transistors

requesting breakdown region warnings
for 359

specifying forbidden operating regions
for 360

trap (integration method parameter) 181
trapezoidal rule integration method 181
traponly (integration method

parameter) 179, 181
trigonometric functions 96
truncate statement 219
truncation factor 218
tutorial for using Spectre 41
two-port test circuit, sample input file 138
typographical conventions 23

U
U 83
uA741 operational amplifier, sample input

file 170
unif parameter 218
uniform distribution 218
unitless 83
UNIX commands, and environment

defaults 311
unload shared object 383
unusual parameter size warnings 348
usability features 29
user-defined functions 105
Using analogmodel for Model Passing

other 75

V
V 83
%V predefined percent code 338
vabstol parameter 273

setting to correct accuracy
problems 367

values parameter 209
vbcfwd parameter, and determining

operating regions for BJTs 361
vbefwd parameter, and determining

operating regions for BJTs 361
vector parameter values 88
vector values, piecewice linear 81
viewing output 50
June 2011 407 Product Version 10.1.1

Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide
W
warning messages 28

about size of gmin 349
caused by invalid parameters in

subcircuit calls 112
customizing 352
generating about transistor operating

regions 360
options of spectre command 364
parameter is unusually large or

small 348
P-N junction warnings 347
requesting breakdown region warnings

for transistors 359
responding to 48
selecting limits

operating region warnings 360
parameter values 352

specifying conditions for in subcircuit
calls 112

tolerances might be set too tight 348
warnings

melting current 347
waveform display 51
waveform storage format (WSF) 295
Wb 83
what parameter, of check statement 254,

359
write parameter, and creating state

files 263, 328
writefinal parameter, and creating state

files 263, 328
WSF (waveform storage format) 295
wsfascii (output format) 295
wsfbin (output format) 295

X
xf analysis, brief description of 166

Z
ZCCVS

parameters
instance 101
June 2011 408 Product Version 10.1.1

	Contents
	Preface
	Licensing
	License Checkout Order
	Lock Feature Licenses
	Using License Queuing
	Suspending and Resuming Licenses

	Related Documents for Spectre
	Third Party Tools
	Typographic and Syntax Conventions
	References

	Introducing the Virtuoso Spectre Circuit Simulator
	Improvements over SPICE
	Improved Capacity
	Improved Accuracy
	Improved Speed
	Improved Reliability
	Improved Models
	Spectre Usability Features and Customer Service

	Analog HDL
	RF Capabilities
	Periodic Analysis
	Quasi-Periodic Analysis
	Envelope Analysis
	Harmonic Balance Steady State Analysis (HB)

	High Performance Simulation
	Starting turbo or APS Simulations
	Specifying Multi-Threading Options
	Using the cktpreset=sampled option
	Parasitic Reduction
	Additional Notes
	APS Distributed Mode

	Environments

	Getting Started with the Virtuoso Spectre Circuit Simulator
	Using the Example and Displaying Results
	Sample Schematic
	Sample Netlist
	Elements of a Spectre Netlist

	Instructions for a Spectre Simulation Run
	Following Simulation Progress
	Screen Printout

	Viewing Your Output
	Starting WaveScan
	Plotting Signals
	Changing the Trace Color
	Learning More about ViVA

	SPICE Compatibility
	Support for SPICE Netlists

	Spectre Netlists
	Netlist Statements
	Netlist Conventions
	Basic Syntax Rules
	Spectre Language Modes
	Creating Component and Node Names
	Escaping Special Characters in Names
	Duplicate Specification of Parameters

	Instance Statements
	Formatting the Instance Statement
	Examples of Instance Statements
	Basic Instance Statement Rules
	Identical Components or Subcircuits in Parallel

	Analysis Statements
	Basic Formatting of Analysis Statements
	Examples of Analysis Statements
	Basic Analysis Rules

	Control Statements
	Formatting the Control Statement
	Examples of Control Statements

	Model Statements
	Formatting the model Statement
	Creating a Model Alias
	Creating an alias for a Subcircuit
	Examples of model Statements
	Using analogmodel for Model Passing (analogmodel)
	Basic model Statement Rules

	Input Data from Multiple Files
	Syntax for Including Files
	Formatting the include Statement
	Rules for Using the include Statement
	Example of include Statement Use
	Reading Piecewise Linear (PWL) Vector Values from a File
	Using Library Statements

	Multidisciplinary Modeling
	Setting Tolerances with the quantity Statement

	Inherited Connections

	Parameter Specification and Modeling Features
	Instance (Component or Analysis) Parameters
	Types of Parameter Values
	Parameter Dimension
	Parameter Ranges
	Help on Parameters
	Scaling Numerical Literals

	Parameters Statement
	Circuit and Subcircuit Parameters
	Parameter Declaration
	Parameter Inheritance
	Parameter Referencing
	Altering/Sweeping Parameters

	Expressions
	Behavioral Expressions
	Built-in Constants
	User-Defined Functions
	Predefined Netlist Parameters

	Subcircuits
	Formatting Subcircuit Definitions
	A Subcircuit Definition Example
	Subcircuit Example
	Rules to Remember
	Calling Subcircuits
	Modifying Subcircuit Parameter Values
	Checking for Invalid Parameter Values

	Inline Subcircuits
	Modeling Parasitics
	Parameterized Models
	Inline Subcircuits Containing Only Inline model Statements
	Process Modeling Using Inline Subcircuits

	Binning
	Auto Model Selection
	Conditional Instances

	Scaling Physical Dimensions of Components and Device Model Technology
	Multi-Technology Simulation

	Modeling for Signal Integrity
	N-Port Modeling
	N-Port Example
	Creating an S-Parameter File Automatically
	Creating an S, Y, or Z-Parameter File Manually
	Reading the S, Y or Z-Parameter File
	Improving the Modeling Capability of the N-Port
	S-Parameter File Format Translator
	Standard Scattering Parameter Modeling and Mixed-Mode Scattering Parameter Modeling

	Transmission Line Modeling
	Constant RLGC Matrices
	Frequency-Dependent RLGC Data
	2-D Field Solver Geometry and Material Information
	S-Parameter Data
	TLINE Parameters

	Input/Output Buffer Modeling Using IBIS
	IBIS Translator Model
	Example of an IBIS Component Subcircuit

	Analyses
	Types of Analyses
	Analysis Parameters
	Probes in Analyses
	Multiple Analyses
	Multiple Analyses in a Subcircuit
	Example

	DC Analysis
	Selecting a Continuation Method

	AC Analysis
	Transient Analysis
	Sweeping Parameters During Transient Analysis
	Balancing Accuracy and Speed
	The errpreset Parameter
	Setting the Integration Method
	Improving Transient Analysis Convergence
	Controlling the Amount of Output Data
	Calculating Transient Noise
	Performing Small-Signal Analyses during a Transient Analysis

	Pole Zero Analysis
	Syntax
	Example 1
	Example 2
	Example 3
	Example 4
	Output Log File

	Other Analyses (sens, fourier, dcmatch, and stb)
	Sensitivity Analysis
	Fourier Analysis
	DC Match Analysis
	Stability Analysis

	Advanced Analyses (sweep and montecarlo)
	Sweep Analysis
	Monte Carlo Analysis

	Spectre Reliability Analysis
	Reliability Simulation Block
	Reliability Control Statements Reference
	accuracy (*relxpert: accuracy)
	age (*relxpert: age)
	agelevel_only (*relxpert: agelevel_only)
	degsort (*relxpert: degsort)
	deltad (*relxpert: deltad)
	idmethod (*relxpert: idmethod)
	igatemethod (*relxpert: igatemethod)
	isubmethod (*relxpert: isubmethod)
	maskdev (*relxpert: maskdev)
	minage (*relxpert: minage)
	opmethod (*relxpert: opmethod)
	relx_tran (*relxpert: relx_tran)
	report_model_param (*relxpert: report_model_param)
	uri_lib (*relxpert: uri_lib)
	User-Defined Reliability Models

	Control Statements
	The alter and altergroup Statements
	Changing Parameter Values for Components
	Changing Parameter Values for Models
	Further Examples of Changing Component Parameter Values
	Changing Parameter Values for Circuits

	The assert Statement
	Examples of assert Statement

	The check Statement
	The checklimit Statement
	Format of Violations in the .violations File
	Examples of checklimit Statement

	The ic and nodeset Statements
	Setting Initial Conditions for All Transient Analyses
	Supplying Solution Estimates to Increase Speed
	Specifying State Information for Individual Analyses

	The info Statement
	Specifying the Parameters You Want to Save
	Specifying the Output Destination
	Examples of the info Statement
	Printing the Node Capacitance Table

	The options Statement
	options Statement Format
	options Statement Example
	Setting Tolerances
	Additional options Statement Settings You Might Need to Adjust
	Simulation Config file Support

	The paramset Statement
	The save Statement
	Saving Signals for Individual Nodes and Components
	Saving Groups of Signals
	Using Wildcards in the Save Statement

	The print Statement
	Examples

	The set Statement
	The shell Statement
	The statistics Statement

	Specifying Output Options
	Signals as Output
	Saving all AHDL Variables

	Listing Parameter Values as Output
	Specifying the Parameters You Want to Save
	Specifying the Output Destination
	Examples of the info Statement

	Preparing Output for Viewing
	Output Formats Supported by the Spectre Simulator
	Defining Output File Formats

	Accessing Output Files
	How the Spectre Simulator Creates Names for Output Directories and Files
	Filenames for SPICE Input Files
	Specifying Your Own Names for Directories

	Running a Simulation
	Running Spectre in 64-Bit
	Starting Simulations
	Specifying Simulation Options
	Using License Queuing
	Suspending and Resuming Licenses
	Determining Whether a Simulation Was Successful

	Checking Simulation Status
	Interrupting a Simulation
	Recovering from Transient Analysis Terminations
	Creating Saved State Files
	Creating checkpoint Files
	Creating Recovery Files from the Command Line
	Setting Recovery File Specifications for a Single Analysis
	Restarting a Transient Analysis
	Output Directory after Recovery

	Controlling Command Line Defaults
	Examining the Spectre Simulator Defaults
	Setting Your Own Defaults
	References for Additional Information about Specific Defaults
	Overriding Defaults

	Encryption
	Encrypting a Netlist
	What You can Encrypt

	Encrypted Information During Simulation
	Protected Device
	Protected Node
	Protected Global and Netlist Parameters
	Protected Subcircuit Parameters
	Protected Model Parameters
	Multiple Name Spaces

	Time-Saving Techniques
	Specifying Efficient Starting Points
	Reducing the Number of Simulation Runs
	Adjusting Speed and Accuracy
	Saving Time by Starting Analyses from Previous Solutions
	Saving Time by Specifying State Information
	Setting Initial Conditions for All Transient Analyses
	Supplying Solution Estimates to Increase Speed
	Specifying State Information for Individual Analyses

	Saving Time by Modifying Parameters during a Simulation
	Changing Circuit or Component Parameter Values
	Modifying Initial Settings of the State of the Simulator

	Saving Time by Selecting a Continuation Method

	Managing Files
	About Virtuoso Spectre Filename Specification
	Creating Filenames That Help You Manage Data
	Creating Filenames by Modifying Input Filenames
	Description of Spectre Predefined Percent Codes
	Customizing Percent Codes
	Creating Filenames from Parts of Input Filenames

	Identifying Problems and Troubleshooting
	Error Conditions
	Invalid Parameter Values That Terminate the Program
	Singular Matrices
	Internal Error Messages
	Time Is Not Strictly Increasing

	Spectre Warning Messages
	P-N Junction Warning Messages
	Tolerances Might Be Set Too Tight
	Parameter Is Unusually Large or Small
	gmin Is Large Enough to Noticeably Affect the DC Solution
	Minimum Timestep Used
	Syntax Errors
	Topology Messages
	Model Parameter Values Clamped
	Invalid Parameter Warnings
	Redefine Primitives Messages
	Initial Condition Messages
	Output Messages
	Log File Messages

	Customizing Error and Warning Messages
	Selecting Limits for Parameter Value Warning Messages
	Selecting Limits for Operating Region Warnings
	Range Checking on Subcircuit Parameters
	Formatting the paramtest Component

	Controlling Program-Generated Messages
	Specifying Log File Options

	Correcting Convergence Problems
	Correcting DC Convergence Problems
	Correcting Transient Analysis Convergence Problems

	Correcting Accuracy Problems
	Suggestions for Improving DC Analysis Accuracy
	Suggestions for Improving Transient Analysis Accuracy

	Example Circuits
	Notes on the BSIM3v3 Model
	Spectre Syntax
	SPICE BSIM 3v3 Model
	Spectre BSIM 3v3 Model
	Ring Oscillator Spectre Deck for Inverter Ring with No Fanouts (inverter_ring.sp)
	Ring Oscillator Spectre Deck for Two-Input NAND Ring with No Fanouts (nand2_ring.sp)
	Ring Oscillator Spectre Deck for Three-Input NAND Ring with No Fanouts (nand3_ring.sp)
	Ring Oscillator Spectre Deck for Two-Input NOR Ring with No Fanouts (nor2_ring.sp)
	Ring Oscillator Spectre Deck for Three-Input NOR Ring with No Fanouts (nor3_ring.sp)
	Opamp Circuit (opamp.cir)
	Opamp Circuit 2 (opamp1.cir)
	Original Open-Loop Opamp (openloop.sp)
	Modified Open-Loop Opamp (openloop1.sp)
	Example Model Directory (q35d4h5.modsp)

	Using Compiled-Model Interface
	Installing Compiled-Model Interface (CMI)
	Configuration File
	Configuration File Format
	Precedence for the CMI Configuration File
	Configuration File Example
	CMI Versioning

	Netlist Compiled Functions (NCF)
	Loading a Plug-in
	Using a NCF in a Spectre Netlist
	Creating a Plug-in
	Installing a NCF
	Modifing the Default Behavior of a NCF
	ncfSetNumArgs(ncfHandle_t, int, int)
	ncfSetDLLFunctionV1(ncfHandle_t, ncfFunctionV1Ptr_t)

	Attaching Arbitrary Data to a NCF

	Index

