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Abstract

The Shockley-Read-Hall model for generation-recombination of electron-hole pairs in

semiconductors based on a quasistationary approximation for electrons in a trapped

state is generalized to distributed trapped states in the forbidden band and to ki-

netic transport models for electrons and holes. The quasistationary limit is rigorously

justified both for the drift-diffusion and for the kinetic model.
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1Team SIMPAF–INRIA Futurs & Labo. Paul Painlevé UMR 8524, CNRS–Université des Sciences et
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1 Introduction

The Shockley-Read-Hall (SRH-)model was introduced in 1952 [13], [9] to describe the sta-
tistics of recombination and generation of holes and electrons in semiconductors occurring
through the mechanism of trapping.

The transfer of electrons from the valence band to the conduction band is referred to
as the generation of electron-hole pairs (or pair-generation process), since not only a free
electron is created in the conduction band, but also a hole in the valence band which can
contribute to the charge current. The inverse process is termed recombination of electron-
hole pairs. The bandgap between the upper edge of the valence band and the lower edge
of the conduction band is very large in semiconductors, which means that a big amount
of energy is needed for a direct band-to-band generation event. The presence of trap levels
within the forbidden band caused by crystal impurities facilitates this process, since the jump
can be split into two parts, each of them ’cheaper’ in terms of energy. The basic mechanisms
are illustrated in Figure 1: (a) hole emission (an electron jumps from the valence band to
the trapped level), (b) hole capture (an electron moves from an occupied trap to the valence
band, a hole disappears), (c) electron emission (an electron jumps from trapped level to the
conduction band), (d) electron capture (an electron moves from the conduction band to an
unoccupied trap).
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Figure 1: The four basic processes of electron-hole recombination.

Models for this process involve equations for the densities of electrons in the conduction
band, holes in the valence band, and trapped electrons. Basic for the SRH model are the
drift-diffusion assumption for the transport of electrons and holes, the assumption of one trap
level in the forbidden band, and the assumption that the dynamics of the trapped electrons
is quasistationary, which can be motivated by the smallness of the density of trapped states
compared to typical carrier densities. This last assumption leads to the elimination of the
density of trapped electrons from the system and to a nonlinear effective recombination-
generation rate, reminiscent of Michaelis-Menten kinetics in chemistry. This model is an
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important ingredient of simulation models for semiconductor devices (see, e.g., [10], [12]).

In this work, two generalizations of the classical SRH model are considered: Instead of
a single trapped state, a distribution of trapped states across the forbidden band is allowed
and, in a second step, a semiclassical kinetic model including the fermion nature of the
charge carriers is introduced. Although direct band-to-band recombination-generation (see,
e.g., [11]) and impact ionization (e.g., [2], [3]) have been modelled on the kinetic level before,
this is (to the knowledge of the authors) the first attempt to derive a ’kinetic SRH model’.
(We mention also the modelling discussions and numerical simulations in ??.)

For both the drift-diffusion and the kinetic models with self consistent electric fields ex-
istence results and rigorous results concerning the quasistationary limit are proven. For the
drift-diffusion problem, the essential estimate is derived similarly to [6], where the quasi-
neutral limit has been carried out. For the kinetic model Degond’s approach [4] for the
existence of solutions of the Vlasov-Poisson problem is extended. Actually, the existence
theory already provides the uniform estimates necessary for passing to the quasistationary
limit.

In the following section, the drift-diffusion based model is formulated and nondimension-
alized, and the SRH-model is formally derived. Section 3 contains the rigorous justification
of the passage to the quasistationary limit. Section 4 corresponds to Section 2, dealing with
the kinetic model, and in Section 5 existence of global solutions for the kinetic model is
proven and the quasistationary limit is justified.

2 The drift-diffusion Shockley-Read-Hall model

We consider a semiconductor crystal with a forbidden band represented by the energy interval
(Ev, Ec) with the valence band edge Ev and the conduction band edge Ec. The constant (in
space) number density of trap states Ntr is obtained by summing up contributions across
the forbidden band:

Ntr =

∫ Ec

Ev

Mtr(E) dE.

Here Mtr(E) is the energy dependent density of available trapped states. The position
density of occupied traps is given by

ntr(ftr)(x, t) =

∫ Ec

Ev

Mtr(E)ftr(x,E, t) dE,

where ftr(x,E, t) is the fraction of occupied trapped states at position x ∈ Ω, energy E ∈
(Ev, Ec), and time t ≥ 0. Note that 0 ≤ ftr ≤ 1 should hold from a physical point of view.

The evolution of ftr is coupled to those of the density of electrons in the conduction band,
denoted by n(x, t) ≥ 0, and the density of holes in the valence band, denoted by p(x, t) ≥ 0.
Electrons and holes are oppositely charged. The coupling is expressed through the following
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quantities

Sn =
1

τnNtr

[
n0ftr − n(1 − ftr)

]
, Sp =

1

τpNtr

[
p0(1 − ftr) − pftr

]
, (1)

Rn =

∫ Ec

Ev

SnMtr dE, Rp =

∫ Ec

Ev

SpMtr dE. (2)

Indeed, the governing equations are given by

∂tftr = Sp − Sn =
p0

τpNtr

+
n

τnNtr

− ftr

(p0 + p

τpNtr

+
n0 + n

τnNtr

)
, (3)

∂tn = ∇ · Jn + Rn, Jn = µn(UT∇n − n∇V ), (4)

∂tp = −∇ · Jp + Rp, Jp = −µp(UT∇p + p∇V ), (5)

εs∆V = q(n + ntr(ftr) − p − C). (6)

For the current densities Jn, Jp we use the simplest possible model, the drift diffusion
ansatz, with constant mobilities µn, µp, and with thermal voltage UT . Moreover, since the
trapped states have fixed positions, no flux appears in (3).

By Rn and Rp we denote the recombination-generation rates for n and p, respectively.
The rate constants are τn(E), τp(E), n0(E), p0(E), where n0(E)p0(E) = ni

2 with the energy
independent intrinsic density ni.

Integration of (3) yields

∂tntr = Rp − Rn. (7)

By adding equations (4),(5),(7), we obtain the continuity equation

∂t(p − n − ntr) + ∇ · (Jn + Jp) = 0, (8)

with the total charge density p − n − ntr and the total current density Jn + Jp.
In the Poisson equation (6), V (x, t) is the electrostatic potential, εs the permittivity of

the semiconductor material, q the elementary charge, and C = C(x) the given doping profile.
Note that if τn, τp, n0, p0 are independent from E, or if there exists only one trap level Etr

with Mtr(E) = Ntrδ(E−Etr), then Rn = 1
τn

[n0
ntr

Ntr
−n(1− ntr

Ntr
)], Rp = 1

τp
[p0(1− ntr

Ntr
)−p ntr

Ntr
],

and the equations (4), (5) together with (7) are a closed system governing the evolution of
n,p, and ntr.

We now introduce a scaling of n, p, and ftr in order to render the equations (4)-(6)
dimensionless:

Scaling of parameters:

i. Mtr → Ntr

Ec−Ev
Mtr.

ii. τn,p → τ̄ τn,p, where τ̄ is a typical value for τn and τp.

iii. µn,p → µ̄µn,p, where µ̄ is a typical value for µn,p.
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iv. (n0, p0, ni, C) → C̄(n0, p0, ni, C), where C̄ is a typical value of C.

Scaling of unknowns:

v. (n, p) → C̄(n, p).

vi. ntr → Ntrntr.

vii. V → UT V .

viii. ftr → ftr.

Scaling of independent variables:

ix. E → Ev + (Ec − Ev)E.

x. x → √
µ̄UT τ̄ x, where the reference length is a typical diffusion length before recombina-

tion.

xi. t → τ̄ t, where the reference time is a typical carrier life time.

Dimensionless parameters:

xii. λ =
√

εs

qC̄µ̄τ̄
= 1

x̄

√
εsUT

qC̄
is the scaled Debye length.

xiii. ε = Ntr

C̄
is the ratio of the density of traps to the typical doping density, and will be

assumed to be small: ε ≪ 1.

The scaled system reads:

ε∂tftr = Sp(p, ftr) − Sn(n, ftr), Sp =
1

τp

[
p0(1 − ftr) − pftr

]
, Sn =

1

τn

[
n0ftr − n(1 − ftr)

]
,

(9)

∂tn = ∇ · Jn + Rn(n, ftr), Jn = µn(∇n − n∇V ), Rn =

∫ 1

0

SnMtr dE , (10)

∂tp = −∇ · Jp + Rp(p, ftr), Jp = −µp(∇p + p∇V ), Rp =

∫ 1

0

SpMtr dE , (11)

λ2∆V = n + εntr − p − C , ntr(ftr) =

∫ 1

0

ftrMtr dE , (12)

with n0(E)p0(E) = n2
i and

∫ 1

0
MtrdE = 1.
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By letting ε → 0 in (9) formally, we obtain ftr = τnp0+τpn

τn(p+p0)+τp(n+n0)
, and the reduced system

has the following form

∂tn = ∇ · Jn + R(n, p), (13)

∂tp = −∇ · Jp + R(n, p), (14)

R(n, p) = (ni
2 − np)

∫ 1

0

Mtr(E)

τn(E)(p + p0(E)) + τp(E)(n + n0(E))
dE, (15)

λ2∆V = n − p − C. (16)

Note that if τn, τp, n0, p0 are independent from E or if there exists only one trap level, then

we would have the standard Shockley-Read-Hall model, with R = ni
2−np

τn(p+p0)+τp(n+n0)
. Existence

and uniqueness of solutions of the limiting system (13)–(16) under the assumptions (21)–(25)
stated below is a standard result in semiconductor modelling. A proof can be found in, e.g.,
[10].

3 Rigorous derivation of the drift-diffusion Shockley-

Read-Hall model

We consider the system (9)–(12) with the position x varying in a bounded domain Ω ∈ R
3

(all our results are easily extended to the one- and two-dimensional situations), the energy
E ∈ (0, 1), and time t > 0, subject to initial conditions

n(x, 0) = nI(x), p(x, 0) = pI(x), ftr(x,E, 0) = ftr,I(x,E) (17)

and mixed Dirichlet-Neumann boundary conditions

n(x, t) = nD(x, t), p(x, t) = pD(x, t), V (x, t) = VD(x, t) x ∈ ∂ΩD ⊂ ∂Ω (18)

and

∂n

∂ν
(x, t) =

∂p

∂ν
(x, t) =

∂V

∂ν
(x, t) = 0 x ∈ ∂ΩN := ∂Ω \ ∂ΩD, (19)

where ν is the unit outward normal vector along ∂ΩN . We permit the special cases that
either ∂ΩD or ∂ΩN are empty. More precisely, we assume that either ∂ΩD has positive
(d − 1)-dimensional measure, or it is empty. In the second situation (∂ΩD empty) we have
to assume total charge neutrality, i.e.,

∫

Ω

(n + εntr − p − C) dx = 0 , if ∂Ω = ∂ΩN . (20)

The potential is then only determined up to a (physically irrelevant) additive constant.
The following assumptions on the data will be used: For the boundary data

nD, pD ∈ W 1,∞
loc (Ω × R

+
t ), VD ∈ L∞

loc(R
+
t ,W 1,6(Ω)), (21)
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for the initial data

nI , pI ∈ H1(Ω) ∩ L∞(Ω), 0 ≤ ftr,I ≤ 1 , (22)∫
Ω
(nI + εntr(ftr,I) − pI − C) dx = 0 , if ∂Ω = ∂ΩN , (23)

for the doping profile
C ∈ L∞(Ω) , (24)

for the recombination-generation rate constants

n0, p0, τn, τp ∈ L∞((0, 1)) , τn, τp ≥ τmin > 0 . (25)

With these assumptions, a local existence and uniqueness result for the problem (9)–(12),
(17)–(19) for fixed positive ε can be proven by a straightforward extension of the approach in
[5] (see also [10]). In the following, local existence will be assumed, and we shall concentrate
on obtaining bounds which guarantee global existence and which are uniform in ε as ε → 0.
For the sake of simplicity, we consider that the data in (21), (22) and (24) do not depend on
ε; of course, our strategy works dealing with sequences of data bounded in the mentioned
spaces.

The following result is a generalization of [6, Lemma 3.1], where the case of homogeneous
Neumann boundary conditions and vanishing recombination was treated. Our proof uses a
similar approach.

Lemma 3.1. Let the assumptions (21)–(25) be satisfied. Then, the solution of (9)–(12),
(17)–(19) exists for all times and satisfies n, p ∈ L∞

loc((0,∞), L∞(Ω)) ∩ L2
loc((0,∞), H1(Ω)))

uniformly in ε as ε → 0 as well as 0 ≤ ftr ≤ 1.

Proof. Global existence will be a consequence of the following estimates. Introducing the
new variables ñ = n−nD, p̃ = p− pD, C̃ = C − εntr −nD + pD the equations (10)–(12) take
the following form:

∂tñ = ∇ · Jn + Rn − ∂tnD, Jn = µn

[
∇ñ + ∇nD − (ñ + nD)∇V

]
, (26)

∂tp̃ = −∇Jp + Rp − ∂tpD, Jp = −µp

[
∇p̃ + ∇pD + (p̃ + pD)∇V

]
, (27)

λ2∆V = ñ − p̃ − C̃ . (28)

As a consequence of 0 ≤ ftr ≤ 1, C̃ ∈ L∞((0,∞)×Ω) holds. For q ≥ 2 and even, we multiply
(26) by ñq−1/µn, (27) by p̃q−1/µp, and add:

d

dt

∫

Ω

[
ñq

qµn

+
p̃q

qµp

]
dx = −(q − 1)

∫

Ω

ñq−2∇ñ∇n dx − (q − 1)

∫

Ω

p̃q−2∇p̃∇p dx

+ (q − 1)

∫

Ω

[
ñq−2n∇ñ − p̃q−2p∇p̃

]
∇V dx

+

∫

Ω

ñq−1

µn

(Rn − ∂tnD) +

∫

Ω

p̃q−1

µp

(Rp − ∂tpD)

=: I1 + I2 + I3 + I4 + I5.

(29)
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Using the assumptions on nD, pD and |Rn| ≤ C(n + 1), |Rp| ≤ C(p + 1), we estimate

I4 ≤ C

∫

Ω

|ñ|q−1(n + 1) dx ≤ C

(∫

Ω

ñq dx + 1

)
, I5 ≤ C

(∫

Ω

p̃q dx + 1

)
.

The term I3 can be rewritten as follows:

I3 =

∫

Ω

[
ñq−1∇ñ − p̃q−1 ∇p̃]∇V dx

+

∫

Ω

[
ñq−2∇ñ

]
(nD∇V ) dx −

∫

Ω

[
p̃q−2∇p̃

]
(pD∇V ) dx

= − 1

λ2q

∫

Ω

[ñq − p̃q] (ñ − p̃ − C̃) dx

− 1

λ2(q − 1)

∫

Ω

ñq−1 (∇nD∇V + nD(ñ − p̃ − C̃)
)

dx

+
1

λ2(q − 1)

∫

Ω

p̃q−1 (∇pD∇V + pD(ñ − p̃ − C̃)
)

dx.

The second equality uses integration by parts and (28). The first term on the right hand
side is the only term of degree q + 1. It reflects the quadratic nonlinearity of the problem.
Fortunately, it can be written as the sum of a term of degree q and a nonnegative term.
By estimation of the terms of degree q using the assumptions on nD and pD as well as
‖∇V ‖Lq(Ω) ≤ C(‖ñ‖Lq(Ω) + ‖p̃‖Lq(Ω) + ‖C̃‖Lq(Ω)), we obtain

I3 ≤ − 1

λ2q

∫

Ω

[ñq − p̃q] (ñ − p̃) dx + C

(∫

Ω

(ñq + p̃q) dx + 1

)

≤ C

(∫

Ω

(ñq + p̃q) dx + 1

)
.

The integral I1 can be written as

I1 = −
∫

Ω

ñq−2|∇n|2dx +

∫

Ω

ñq−2∇nD∇n dx. (30)

By rewriting the integrand in the second integral as

ñq−2∇nD∇n = ñ
q−2

2 ∇nñ
q−2

2 ∇nD

and applying the Cauchy-Schwarz inequality, we have the following estimate for (30):

I1 ≤ −
∫

Ω

ñq−2|∇n|2dx +

√∫

Ω

ñq−2|∇n|2dx

∫

Ω

ñq−2|∇nD|2dx

≤ −1

2

∫

Ω

ñq−2|∇n|2dx + C‖ñ‖q−2
Lq ≤ −1

2

∫

Ω

ñq−2|∇n|2dx + C

(∫

Ω

ñq dx + 1

)
.
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For I2, the same reasoning (with n and nD replaced by p and pD, respectively) yields an
analogous estimate. Collecting our results, we obtain

d

dt

∫

Ω

[
ñq

qµn

+
p̃q

qµp

]
dx ≤ −1

2

∫

Ω

ñq−2|∇n|2 dx − 1

2

∫

Ω

p̃q−2|∇p|2 dx

+ C

(∫

Ω

(ñq + p̃q) dx + 1

)
.

(31)

Since q ≥ 2 is even, the first two terms on the right hand side are nonpositive and the
Gronwall lemma gives

∫

Ω

(ñq + p̃q)dx ≤ eqCt

(∫

Ω

(ñ(t = 0)q + p̃(t = 0)q)dx + 1

)
.

A uniform-in-q-and-ε estimate for ‖n‖Lq , ‖p‖Lq follows, and the uniform-in-ε bound in
L∞

loc((0,∞), L∞(Ω)) is obtained in the limit q → ∞. The estimate in L2
loc((0,∞), H1(Ω))

is then derived by returning to (31) with q = 2.

Now we are ready for proving the main result of this section.

Theorem 3.2. Let the assumptions of Theorem 3.1 be satisfied. Then, as ε → 0, for every
T > 0, the solution (ftr, n, p, V ) of (9)–(12), (17)–(19) converges with convergence of ftr in
L∞((0, T ) × Ω × (0, 1)) weak*, n and p in L2((0, T ) × Ω), and V in L2((0, T ), H1(Ω)). The
limits of n, p, and V satisfy (13)–(19).

Proof. The L∞-bounds for ftr, n, and p, and the Poisson equation (12) imply ∇V ∈
L2((0, T ) × Ω). From the definition of Jn,Jp (see (4),(5)), it then follows that Jn, Jp ∈
L2((0, T ) × Ω). Then (10) and (11) together with Rn, Rp ∈ L∞((0, T ) × Ω) imply ∂tn, ∂tp ∈
L2((0, T ), H−1(Ω)). The previous result and the Aubin lemma (see, e.g., Simon [14, Corollary
4, p. 85]) gives compactness of n and p in L2((0, T ) × Ω).

We already know from the Poisson equation that ∇V ∈ L∞((0, T ), H1(Ω)). By taking
the time derivative of (12), one obtains

∂t∆V = ∇ · (Jn + Jp) ,

with the consequence that ∂t∇V is bounded in L2((0, T )×Ω). Therefore, the Aubin lemma
can again be applied as above to prove compactness of ∇V in L2((0, T ) × Ω).

These results and the weak compactness of ftr are sufficient for passing to the limit in
the nonlinear terms n∇V , p∇V , nftr, and pftr. Let us also remark that ∂tn and ∂tp are
bounded in L2(0, T ; H−1(Ω)), so that n, p are compact in C0([0, T ]; L2(Ω) − weak). With
this remark the initial data for the limit equation makes sense. By the uniqueness result for
the limiting problem (mentioned at the end of Section 2), the convergence is not restricted
to subsequences.
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4 A kinetic Shockley-Read-Hall model

In this section we replace the drift-diffusion model for electrons and holes by a semiclassical
kinetic transport model. It is governed by the system

∂tfn + vn(k) · ∇xfn +
q

~
∇xV · ∇kfn = Qn(fn) + Qn,r(fn, ftr), (32)

∂tfp + vp(k) · ∇xfp −
q

~
∇xV · ∇kfp = Qp(fp) + Qp,r(fp, ftr), (33)

∂tftr = Sp(fp, ftr) − Sn(fn, ftr), (34)

εs∆xV = q(n + ntr − p − C), (35)

where fi(x, k, t) represents the particle distribution function (with i = n for electrons and
i = p for holes) at time t ≥ 0, at the position x ∈ R

3, and at the wave vector (or generalized
momentum) k ∈ R

3. All functions of k have the periodicity of the reciprocal lattice of the
semiconductor crystal. Equivalently, we shall consider only k ∈ B, where B is the Brillouin
zone, i.e., the set of all k which are closer to the origin than to any other lattice point, with
periodic boundary conditions on ∂B.

The coefficient functions vn(k) and vp(k) denote the electron and hole velocities, respec-
tively, which are related to the electron and hole band diagrams by

vn(k) = ∇kεn(k)/~, vp(k) = −∇kεp(k)/~,

where ~ is the reduced Planck constant. The elementary charge is still denoted by q.
The collision operators Qn and Qp describe the interactions between the particles and the

crystal lattice. They involve several physical phenomena and can be written in the general
form

Qn(fn) =
∫

B
Φ̃n(k, k′)[Mnf

′
n(1 − fn) − M ′

nfn(1 − f ′
n)]dk′, (36)

Qp(fp) =
∫

B
Φ̃p(k, k′)[Mpf

′
p(1 − fp) − M ′

pfp(1 − f ′
p)]dk′, (37)

with the primes denoting evaluation at k′, with the nonnegative, symmetric scattering cross
sections Φ̃n(k, k′) and Φ̃p(k, k′), and with the Maxwellians

Mn(k) = cn exp(−εn(k)/kBT ), Mp(k) = cp exp(−εp(k)/kBT ),

where kBT is the thermal energy of the semiconductor crystal lattice and the constants cn,
cp are chosen such that ∫

B

Mn dk =

∫

B

Mp dk = 1.

The remaining collision operators Qn,r(fn, ftr) and Qp,r(fp, ftr) model the generation and
recombination processes and are given by

Qn,r(fn, ftr) =

∫ Ec

Ev

Ŝn(fn, ftr)Mtr dE , (38)
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with

Ŝn(fn, ftr) =
Φn(k,E)

Ntr

[n0Mnftr(1 − fn) − fn(1 − ftr)] ,

and

Qp,r(fp, ftr) =

∫ Ec

Ev

Ŝp(fp, ftr)Mtr dE , (39)

with

Ŝp(fp, ftr) =
Φp(k,E)

Ntr

[p0Mp(1 − fp)(1 − ftr) − fpftr] ,

and where Φn,p are non negative and Mtr(x,E) is the density of available trapped states as
for the drift diffusion model, except that we allow for a position dependence now. This will be
commented on below. The parameter Ntr is now determined as Ntr = supx∈R3

∫ 1

0
Mtr(x,E)dE.

The right hand side in the equation for the occupancy ftr(x,E, t) of the trapped states
is defined by

Sn(fn, ftr) =

∫

B

Ŝn dk = λn[n0Mn(1 − fn)]ftr − λn[fn](1 − ftr), (40)

with λn[g] =
∫

B
Φng dk, and

Sp(fp, ftr) =

∫

B

Ŝp dk = λp[p0Mp(1 − fp)](1 − ftr) − λp[fp]ftr, (41)

with λp[g] =
∫

B
Φpg dk.

The factors (1 − fn) and (1 − fp) take into account the Pauli exclusion principle, which
therefore manifests itself in the requirement that the values of the distribution function have
to respect the bounds 0 ≤ fn, fp ≤ 1.

The position densities on the right hand side of the Poisson equation (35) are given by

n(x, t) =

∫

B

fndk , p(x, t) =

∫

B

fpdk , ntr(x, t) =

∫ Ec

Ev

ftrMtrdE .

The following scaling, which is strongly related to the one used for the drift-diffusion model,
will render the equations (32)- (35) dimensionless:

Scaling of parameters:

i. Mtr → Ntr

Ev−Ec
Mtr,

ii. (εn, εp) → kBT (εn, εp), with the thermal energy kBT ,

iii. (Φn, Φp) → τ−1
rg (Φn, Φp), where τrg is a typical carrier life time,

iv. (Φ̃n, Φ̃p) → τ−1
coll(Φ̃n, Φ̃p),

v. (n0, p0, C) → C(n0, p0, C), where C is a typical value of |C|,
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vi. (Mn,Mp) → C
−1

(Mn,Mp).

Scaling of independent variables:

vii. x → kBT
√

τrgτcollC
−1/3

~
−1 x,

viii. t → τrgt,

ix. k → C
1/3

k,

x. E → Ev + (Ec − Ev)E,

Scaling of unknowns:

xi. (fn, fp, ftr) → (fn, fp, ftr),

xii. V → UT V , with the thermal voltage UT = kBT/q.

Dimensionless parameters:

xiii. α2 = τcoll

τrg
,

xiv. λ = ~

q
√

τrgτcollC
1/6

√
εs

kBT
,

xv. ε = Ntr

C
, where again we shall study the situation ε ≪ 1.

Finally, the scaled system reads

α2∂tfn + αvn(k) · ∇xfn + α∇xV · ∇kfn = Qn(fn) + α2Qn,r(fn, ftr), (42)

α2∂tfp + αvp(k) · ∇xfp − α∇xV · ∇kfp = Qp(fp) + α2Qp,r(fp, ftr), (43)

ε∂tftr = Sp(fp, ftr) − Sn(fn, ftr), (44)

λ2∆xV = n + εntr − p − C = −ρ, (45)

with vn = ∇kεn, vp = −∇kεp, with Qn and Qp still having the form (36) and, respectively,
(37), with the scaled Maxwellians

Mn(k) = cn exp(−εn(k)) , Mp(k) = cp exp(−εp(k)) , (46)

and with the recombination-generation terms

Qn,r(fn, ftr) =

∫ 1

0

ŜnMtr dE , Qp,r(fp, ftr) =

∫ 1

0

ŜpMtr dE , (47)

with

Ŝn = Φn[n0Mnftr(1 − fn) − fn(1 − ftr)] , Ŝp = Φp[p0Mp(1 − ftr)(1 − fp) − fpftr] . (48)
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The right hand side of (44) still has the form (40), (41). The position densities are given by

n =

∫

B

fn dk , p =

∫

B

fp dk , ntr =

∫ 1

0

ftrMtr dE . (49)

The system (42)–(44) conserves the total charge ρ = p + C − n − εntr. With the definition

Jn = − 1

α

∫

B

vnfn dk , Jp =
1

α

∫

B

vpfp dk ,

of the current densities, the following continuity equation holds formally:

∂tρ + ∇x · (Jn + Jp) = 0 .

Setting formally ε = 0 in (44) we obtain

f tr(fn, fp) =
p0λp[Mp(1 − fp)] + λn[fn]

p0λp[Mp(1 − fp)] + λp[fp] + λn[fn] + n0λn[Mn(1 − fn)]

Substitution f tr into (47) leads to the kinetic Shockley-Read-Hall recombination-generation
operators

Qn,r(fn, fp) = gn[fn, fp](1−fn)−rn[fn, fp]fn , Qp,r(fn, fp) = gp[fn, fp](1−fp)−rp[fn, fp]fp ,
(50)

with

gn =

∫ 1

0

ΦnMnn0

(
p0λp[Mp(1 − fp)] + λn[fn]

)
Mtr

p0λp[Mp(1 − fp)] + λp[fp] + λn[fn] + n0λn[Mn(1 − fn)]
dE ,

rn =

∫ 1

0

Φn

(
λp[fp] + n0λn[Mn(1 − fn)]

)
Mtr

p0λp[Mp(1 − fp)] + λp[fp] + λn[fn] + n0λn[Mn(1 − fn)]
dE ,

gp =

∫ 1

0

ΦpMpp0

(
n0λn[Mn(1 − fn)] + λp[fp]

)
Mtr

p0λp[Mp(1 − fp)] + λp[fp] + λn[fn] + n0λn[Mn(1 − fn)]
dE ,

rp =

∫ 1

0

Φp

(
λn[fn] + p0λp[Mp(1 − fp)]

)
Mtr

p0λp[Mp(1 − fp)] + λp[fp] + λn[fn] + n0λn[Mn(1 − fn)]
dE .

Of course, the limiting model still conserves charge, which is expressed by the identity
∫

B

Qn,r dk =

∫

B

Qp,r dk .

Pairs of electrons and holes are generated or recombine, however, in general not with the
same wave vector. This absence of momentum conservation is reasonable since the process
involves an interaction with the trapped states fixed within the crystal lattice.
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5 Rigorous derivation of the kinetic Shockley-Read-

Hall model

The limit ε → 0 will be carried out rigorously in an initial value problem for the kinetic
model with x ∈ R

3. Concerning the behaviour for |x| → ∞, we shall require the densities to
be in L1 and use the Newtonian potential solution of the Poisson equation, i.e., (45) will be
replaced by

E(x, t) = −∇xV = λ−2

∫

R3

x − y

|x − y|3ρ(y, t) dy. (51)

We define Problem (K) as the system (42)–(44), (51) with (36), (37), (47)–(49), (40), and
(41), subject to the initial conditions

fn(x, k, 0) = fn,I(x, k) , fp(x, k, 0) = fp,I(x, k) , ftr(x,E, 0) = ftr,I(x,E) .

We start by stating our assumptions on the data. For the velocities we assume

vn, vp ∈ W 1,∞
per (B) , (52)

where here and in the following, the subscript per denotes Sobolev spaces of functions of k
satisfying periodic boundary conditions on ∂B. Further we assume that the cross sections
satisfy

Φ̃n, Φ̃p ≥ 0 , Φ̃n, Φ̃p ∈ W 1,∞
per (B × B) , (53)

and
Φn, Φp ≥ 0 , Φn, Φn ∈ W 1,∞

per (B × (0, 1)) . (54)

A finite total number of trapped states is assumed:

Mtr ≥ 0 , Mtr ∈ W 1,∞(R3 × (0, 1)) ∩ W 1,1(R3 × (0, 1)) .

The L1-assumption with respect to x is needed for controlling the total number of generated
particles. For the initial data we assume

0 ≤ fn,I , fp,I ≤ 1 , fn,I , fp,I ∈ W 1,∞
per (R3 × B) ∩ W 1,1

per(R
3 × B) ,

0 ≤ ftr,I ≤ 1 , ftr,I ∈ W 1,∞
per (R3 × (0, 1)) .

(55)

We also assume

n0, p0 ∈ L∞((0, 1)) , C ∈ W 1,∞(R3) ∩ W 1,1(R3) . (56)

Finally, we need an upper bound for the life time of trapped electrons:
∫

B

(Φn min{1, n0Mn} + Φp min{1, p0Mp}) dk ≥ γ > 0 . (57)

The reason for the various differentiability assumptions above is that we shall construct
smooth solutions by an approach along the lines of [11], which goes back to [4].

14



An essential tool are the following potential theory estimates [15]:

‖E‖L∞(R3) ≤ C‖ρ‖1/3

L1(R3)‖ρ‖
2/3

L∞(R3) , (58)

‖∇xE‖L∞(R3) ≤ C
(
1 + ‖ρ‖L1(R3) + ‖ρ‖L∞(R3)

[
1 + log(1 + ‖∇xρ‖L∞(R3))

])
. (59)

We start by rewriting the collision and recombination generation operators as

Qi(fi) = ai[fi](1 − fi) − bi[fi]fi, i = n, p ,

and
Qi,r(fi, ftr) = gi[ftr](1 − fi) − ri[ftr]fi, i = n, p ,

with

ai[fi] =

∫

B

Φ̃iMif
′
i dk′ , bi[fi] =

∫

B

Φ̃iM
′
i(1 − f ′

i) dk′, i = n, p

gn[ftr] =

∫ 1

0

Φnn0MnftrMtr dE , gp[ftr] =

∫ 1

0

Φpp0Mp(1 − ftr)Mtr dE ,

rn[ftr] =

∫ 1

0

Φn(1 − ftr)Mtr dE , rp[ftr] =

∫ 1

0

ΦpftrMtr dE .

In order to construct an approximating sequence (f j
n, f j

p , f j
tr, E j) we begin with

f 0
i (x, k, t) = fi,I(x, k), i = n, p , f 0

tr(x,E, t) = ftr,I(x,E) (60)

The field always satisfies

E j(x, t) =

∫

R3

x − y

|x − y|3ρj(y, t) dy (61)

Let (f j
n, f j

p , f j
tr, E j) be given. Then the fi

j+1 are defined as the solutions of the following
problem:

α2∂tf
j+1
n + αvn(k) · ∇xf

j+1
n − αE j · ∇kf

j+1
n

= (an[f j
n] + α2gn[f j

tr])(1 − f j+1
n ) − (bn[f j

n] + α2rn[f j
tr])f

j+1
n ,

α2∂tf
j+1
p + αvp(k) · ∇xf

j+1
p + αE j · ∇kf

j+1
p

= (ap[f
j
p ] + α2gp[f

j
tr])(1 − f j+1

p ) − (bp[f
j
p ] + α2rp[f

j
tr])f

j+1
p ,

ε∂tf
j+1
tr = (p0λp[Mp(1 − f j

p )] + λn[f j
n])(1 − f j+1

tr ) − (n0λn[Mn(1 − f j
n)] + λp[f

j
p ])f j+1

tr ,

(62)

subject to the initial conditions

f j+1
n (x, k, 0) = fn,I(x, k) , f j+1

p (x, k, 0) = fp,I(x, k) , f j+1
tr (x,E, 0) = ftr,I(x,E) . (63)

For the iterative sequence we state the following lemma, which is very similar to the Propo-
sition 3.1 from [11]:
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Lemma 5.1. Let the assumptions (52)–(56) be satisfied. Then the sequence (f j
n, f j

p , f j
tr, E j),

defined by (60)-(63) satisfies for any time T > 0

a) 0 ≤ fi
j ≤ 1, i = n, p, tr.

b) f j
n and f j

p are uniformly bounded with respect to j → ∞ and ε → 0 in L∞((0, T ), L1(R3×
B).

c) E j is uniformly bounded with respect to j and ε in L∞((0, T ) × R
3).

Proof. The first two equations in (62) are standard linear transport equations, and the
third equation is a linear ODE. Existence and uniqueness for the initial value problems are
therefore standard results.

Note that the ai, bi, gi, ri, and λi in (62) are nonnegative if we assume that a) holds for
j. Then a) for j + 1 is an immediate consequence of the maximum principle.

To estimate the L1-norms of the distributions, we integrate the first equation in (62) and
obtain

‖f j+1
n ‖L1(R3×B) ≤ ‖fn,I‖L1(R3×B) +

∫ t

0

‖an[f j
n]

1

α2
+ gn[f j

tr]‖L1(R3×B)(s) ds . (64)

The boundedness of Φ̃n, Φn, and f j
tr, and the integrability of Mtr imply

‖an[f j
n]‖L1(R3×B) ≤ C‖f j

n‖L1(R3×B) , ‖gn[f j
tr]‖L1(R3×B) ≤ C . (65)

Now this is used in (64). Then an estimate is derived for f j
n by replacing j + 1 by j and

using the Gronwall inequality. Finally, it is easily since that this estimate is passed from j
to j + 1 by (64). An analogous argument for f j

p completes the proof of b).

A uniform-in-ε (L1 ∩ L∞)-bound for the total charge density ρj = nj + εnj
tr − pj − C

follows from b) and from the integrability of Mtr. The statement c) of the lemma is now a
consequence of (58).

For passing to the limit in the nonlinear terms some compactness is needed. Therefore
we prove uniform smoothness of the approximating sequence.

Lemma 5.2. Let the assumptions (52)–(57) be satisfied. Then for any time T > 0:

a) f j
n and f j

p are uniformly bounded with respect to j and ε in L∞((0, T ),W 1,1
per(R

3 × B) ∩
W 1,∞

per (R3 × B)),

b) f j
tr is uniformly bounded with respect to j and ε in L∞((0, T ),W 1,∞(R3 × (0, 1))),

c) E j is uniformly bounded with respect to j and ε in L∞((0, T ),W1,∞(R3)).
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Proof. We start by introducing νj = ∇x,kf
j
n = (νj

x, ν
j
k), πj = ∇x,kf

j
p = (πj

x, π
j
k), φj = ∇xf

j
tr

and by differentiating the last equation in (62) with respect to x:

ε∂tφ
j+1 = (−p0λp[Mpπ

j
x] + λn[νj

x])(1 − f j+1
tr ) − (−n0λn[Mnνj

x] + λp[π
j
x])f

j+1
tr

−(p0λp[Mp(1 − f j
p )] + λn[f j

n] + n0λn[Mn(1 − f j
n)] + λp[f

j
p ])φj+1 .

The coefficient of φj+1 on the right hand side is bounded below by the term appearing in
assumption (57) and, thus, bounded away from zero. The maximum principle implies

sup
(0,t)

‖φj+1‖∞ ≤ C

(
sup
(0,t)

‖νj
x‖∞ + sup

(0,t)

‖πj
x‖∞ + 1

)
,

where here and in the following we use the symbol ‖ · ‖∞ for the L∞-norm on R
3, on R

3 ×B
and on R

3 × (0, 1). The gradient of the first equation in (62) with respect to x and k can be
written as

α2∂tν
j+1 + αvn · ∇xν

j+1 − αE j · ∇kν
j+1 + (an + bn + α2gn + α2rn)νj+1 = Sj

n ,

where it is easily seen that, using our assumptions,

‖Sj
n‖∞ ≤ C

(
1 + ‖νj‖∞ + ‖φj‖∞ + ‖νj+1‖∞(1 + ‖∇xE j‖∞)

)

holds. The analogous treatment of the second equation in (62), the potential theory inequal-
ity (59), and the definition

γj(t) = sup
(0,t)

(‖νj‖∞ + ‖πj‖∞ + ‖φj‖∞)

lead to

γj+1 ≤ C

(
1 +

∫ t

0

(γj + γj+1(1 + log(1 + γj))ds

)

implying boundedness of γj on arbitrary bounded time intervals (as in [4]). This proves c)
and the L∞-part of a). The equation for ∂Ef j+1

tr can be treated as above completing the
proof of b).

By
∫

R3 ntrdx ≤
∫

R3 Mtrdx, it is trivial that the total number of trapped electrons is
bounded. Therefore, the L1-estimates in a) follow the line of [11]) since no coupling with
the equation for the trapped electrons is necessary.

With the previous results, the first two equations in (62) also give uniform bounds for
the time derivatives of f j

n and f j
p . Thus, subsequences converge strongly locally in x and

t. In the same way, the right hand side of the time derivative of the Poisson equation is
bounded in L1 and in L∞, and (58) implies boundedness of the time derivative of the field.
So the field also converges strongly. This and the (obvious) weak convergence of f j

tr are
sufficient for passing to the limit in the quadratic nonlinearities. Note also that we have
enough bounds on time derivative to define the trace at time t = 0. Existence of a global
solution of Problem (K) follows. By the same argument, however, the limit ε → 0 can be
justified, since all estimates are also uniform in ε.
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Theorem 5.3. Let the assumptions (52)–(57) be satisfied. Then Problem (K) has a global
solution (fn, fp, ftr, E) with fn, fp ∈ L∞

loc((0,∞),W 1,∞
per (R3×B)), ftr ∈ L∞

loc((0,∞),W 1,∞(R3×
(0, 1))), E ∈ L∞

loc((0,∞),W 1,∞(R3)). For ε → 0, a subsequence of solutions converges to the
formal limit problem. The convergence of fn and fp is in L∞

loc((0,∞)×R
3 ×B), that of E in

L∞
loc((0,∞) × R

3) and that of ftr in L∞
loc((0,∞) × R

3 × (0, 1)) weak*.

6 Relation between macroscopic and kinetic models

In this section the relation between the two models in Sections 2 and 4 are clarified on a
formal level. The drift-diffusion model of Section 2 can be derived from the kinetic model of
Section 4 by two simplification steps: a macroscopic and a low density limit.

Starting with the macroscopic limit, i.e., the limit when the Knudsen number α tends to
zero in (42), (43), the solutions are expanded in terms of powers of α:

fn = f 0
n + αf 1

n + O(α2) , fp = f 0
p + αf 1

p + O(α2) , (66)

ftr = f 0
tr + O(α) , V = V 0 + O(α) . (67)

The limit of (42), (43) as α → 0 leads to Qn(f 0
n) = Qp(f

0
p ) = 0. With the (frequently used)

simplifying assumption that the cross sections Φ̃n and Φ̃p are strictly positive, the limiting
distributions are of Fermi-Dirac type (see [11]):

f 0
n(x, k, t) =

1

1 + e−µn(x,t)/Mn(k)
, f 0

p (x, k, t) =
1

1 + eµp(x,t)/Mp(k)
,

where the scaled Maxwellians Mn, Mp are given by (46), and the chemical potentials µn and
µp are yet to be specified. Note the one-to-one relations between the chemical potentials and
the macroscopic electron and hole densities:

n(µn) =

∫

B

dk

1 + e−µn/Mn(k)
, p(µp) =

∫

B

dk

1 + eµp/Mp(k)
.

Now (42) is divided by α, and then again the limit α → 0 is carried out (formally):

vn · ∇xf
0
n + ∇xV

0 · ∇kf
0
n = LQn(f 0

n)f 1
n , (68)

where LQn is the linearization of Qn:

LQn(f 0
n)f 1

n =

∫

B

Φ̃n

[
(Mn(1 − f 0

n) + M ′
nf 0

n)f 1′

n − (Mnf
0′

n + M ′
n(1 − f 0′

n ))f 1
n

]
dk′ .

For the following we shall need two facts about the linearized collision operator LQn(f 0
n)

(see, e.g., [1]): It has a one dimensional kernel spanned by f 0
n(1− f 0

n), and its range consists
of functions whose integral with respect to k vanishes. Therefore, for solvability of (68), seen
as an equation for f 1

n, the integral with respect to k of the left hand side has to vanish. This
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is obvious for the second term ∇xV
0 · ∇kf

0
n by the periodicity with respect to k. Since the

first term can be written as

vn · ∇xf
0
n = ∇kεn · ∇x

Mn

Mn + e−µn
= −∇k · ∇x log

(
Mn + e−µn

)
,

it also satisfies the solvability condition. Now (68) is written as

Mne−µn

(Mn + e−µn)2
∇kεn · (∇xV

0 −∇xµn) = LQn(f 0
n)f 1

n . (69)

Note that the factor in parentheses is independent of k. Thus, choosing a solution hn(k, µn)
of

LQn(f 0
n)hn = − Mne−µn

(Mn + e−µn)2
∇kεn , (70)

the solution of (69) can be written as

f 1
n = hn(k, µn) · (∇xV

0 −∇xµn) + µ1
nf

0
n(1 − f 0

n) .

Analogously
f 1

p = hp(k, µp) · (∇xV
0 + ∇xµp) + µ1

pf
0
p (1 − f 0

p ) (71)

is obtained (with µ1
n(x, t) and µ1

p(x, t) not specified, and not needed in the following). Finally,
(42), (43) are divided by α2, integrated with respect to k and the limit α → 0 is carried out:

∂tn + ∇x ·
∫

B

vnf
1
n dk =

∫

B

Qn,r(f
0
n, f 0

tr)dk =

∫ 1

0

Sn(f 0
n, f 0

tr)dE , (72)

∂tp + ∇x ·
∫

B

vpf
1
p dk =

∫

B

Qp,r(f
0
p , f 0

tr)dk =

∫ 1

0

Sp(f
0
p , f 0

tr)dE . (73)

With the formulas for f 1
n and f 1

p , we obtain the drift-diffusion fluxes

∫

B

vnf
1
n dk = Dn(µn)(∇xV

0 −∇xµn) ,

∫

B

vpf
1
p dk = Dp(µp)(∇xV

0 + ∇xµp) ,

with the diffusion matrices

Dn =

∫

B

vn ⊗ hn dk , Dp =

∫

B

vp ⊗ hp dk .

For the recombination-generation terms, we obtain

Sn(f 0
n, f 0

tr) = λn

[
e−µn

1 + e−µn/Mn

]
(n0f

0
tr − eµn(1 − f 0

tr)) ,

Sp(f
0
p , f 0

tr) = λp

[
eµp

1 + eµp/Mp

]
(p0(1 − f 0

tr) − e−µpf 0
tr) .
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Finally, we consider the small densities situation, when µn is large and negative and µp large
and positive. This gives n(µn) ≈ eµn and p(µp) ≈ e−µp . The above recombination-generation
terms can then be approximated by the terms in (9) with 1/τn = λn[Mn] and 1/τp = λp[Mp].

The equation (70) for hn can be approximated by
∫

B

Φ̃n

[
Mnh

′
n − M ′

nhn

]
dk′ = −nMn∇kεn ,

implying hn = nh̃n(k) and, thus, Dn = nD̃n. With this and the analogous approximation
for holes the macroscopic model becomes the drift-diffusion model from Section 2.
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