

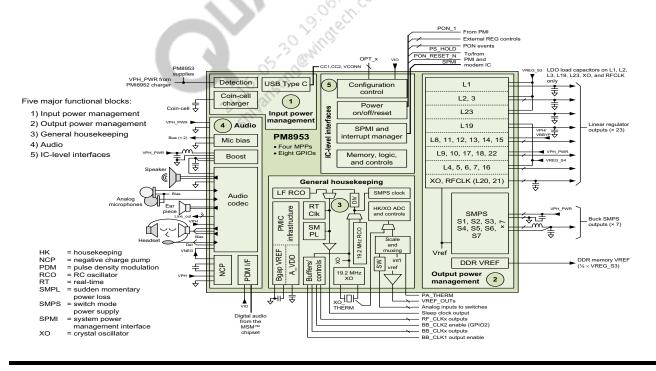
Qualcomm Technologies, Inc.

80-P2536-1 Rev. B

## **Device description**

The PM8953 0.18 µm HVCMOS device is available in 187-pin fan-out wafer nanoscale package (187 FOWNSP) that includes ground pins for improved electrical ground, mechanical stability, and thermal continuity.

The PM8953 device (Figure 1-1) plus its companion PMI8952 (80-NT391-x) device, integrates all wireless handset power management, general housekeeping (HK), and user interface support functions into two IC solutions.


Since the PM8953 includes diverse functions, its operation is easily understood by considering major functional blocks individually. Therefore, the PM8953 document set is organized by the following device functionality:

- Input power management
- Output power management
- General HK
- Audio
- IC interfaces
- Configurable pins: either multipurpose pins (MPPs) or general-purpose input/output (GPIOs) that can be configured to function within some of the other categories

#### Key features (see Section 1.2 for details)

- Complete output power management with seven SMPS bucks and 23 LDOs optimized for the MSM8953 power grid
- Integrated high-performance codec with 5 V boost for class D amplifier
- Complete clock tree solution with 19.2 MHz XO, buffered RFCLK, BBCLK, and sleep CLK
- Integrated USB type-C support
- SPMI communication for interfacing with MSM8953

## PM8953 high-level block diagram and 187 FOWNSP package drawing



#### Confidential and Proprietary – Qualcomm Technologies, Inc.

NO PUBLIC DISCLOSURE PERMITTED: Please report postings of this document on public servers or websites to: DocCtrlAgent@qualcomm.com.

Restricted Distribution: Not to be distributed to anyone who is not an employee of either Qualcomm Technologies, Inc. or its affiliated companies without the express approval of Qualcomm Configuration Management.

Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of Qualcomm Technologies, Inc.

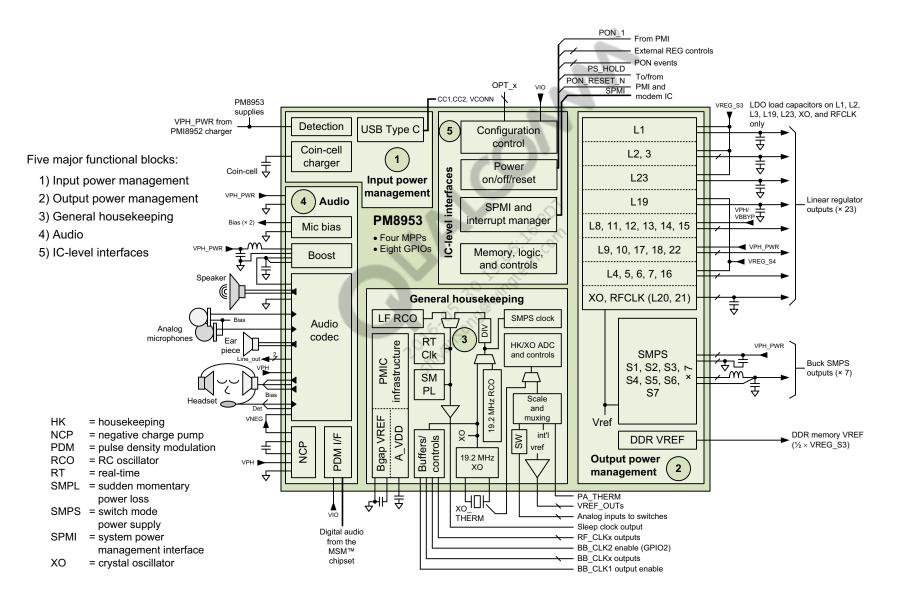
Qualcomm and MSM are products of Qualcomm Technologies, Inc. Qualcomm. Other Qualcomm products referenced herein are products of Qualcomm Technologies, Inc. or its subsidiaries.

© 2015–2016 Qualcomm Technologies, Inc. All rights reserved.

# Contents

| Introduction                               |                                                                                  |
|--------------------------------------------|----------------------------------------------------------------------------------|
| Pin definitions                            |                                                                                  |
| Electrical specifications                  |                                                                                  |
| Mechanical information                     |                                                                                  |
| Carrier, storage, and handling information |                                                                                  |
| PCB mounting guidelines                    |                                                                                  |
| Part reliability                           |                                                                                  |
| Revision history                           |                                                                                  |
|                                            | Pin definitions         Electrical specifications         Mechanical information |

# **1** Introduction


### **Document updates**

See the Revision history for details on the changes included in this revision.

٢

2016-05-20 19:06:16 pDT 2016-05-20 19:06:16 pDT

# 1.1 Functional block diagram



### Figure 1-1 PM8953 functional block diagram and example application

# 1.2 PM8953 features

**NOTE** Some hardware features integrated within the PM8953 must be enabled through the IC software. See the latest version of the applicable software release notes to identify the enabled PMIC features.

### Table 1-1 PM8953 features

|                                                      | PM8953 capability                                                                                                                                                                       |  |  |  |  |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| nput power management                                |                                                                                                                                                                                         |  |  |  |  |
| Coin cell or capacitor backup                        | Keep-alive power source; orchestrated charging                                                                                                                                          |  |  |  |  |
| VPH_PWR detector                                     | Validates the primary VPH_PWR input voltage                                                                                                                                             |  |  |  |  |
| JSB type C support                                   | <ul> <li>Support for CC1 and CC2 pins to detect default, medium, and high current modes</li> <li>Dual role ports</li> <li>VCONN for USB 3.0 super speed cable support</li> </ul>        |  |  |  |  |
| Output voltage regulation                            |                                                                                                                                                                                         |  |  |  |  |
| Switched-mode power supplies (SMPS)                  | Seven, one rated for 4 A, one for 3 A, two for 3.75 A, and three for 2 A                                                                                                                |  |  |  |  |
| _ow-dropout linear regulators                        | 23 total, eight different design types: one 1200 mA NMOS, four 600 mA NMOS, four 600 mA PMOS, one 450 mA PMOS, three 300 mA PMOS, four 150 mA PMOS, four 50 mA PMOS, and two for clocks |  |  |  |  |
| Pseudo-capless LDO designs                           | 12 of 23 LDOs                                                                                                                                                                           |  |  |  |  |
| _P DDR memory support                                | Voltage reference source                                                                                                                                                                |  |  |  |  |
| General HK                                           |                                                                                                                                                                                         |  |  |  |  |
| On-chip ADC                                          | Shared HK and XO support                                                                                                                                                                |  |  |  |  |
| Analog multiplexing for ADC<br>HK inputs<br>XO input | <ul> <li>Many internal nodes and external inputs, including configurable MPPs</li> <li>Dedicated pins for XO_THERM and PA_THERM</li> </ul>                                              |  |  |  |  |
| Overtemperature protection                           | Multistage smart thermal control                                                                                                                                                        |  |  |  |  |
| 19.2 MHz oscillator support                          | XO (with on-chip ADC)                                                                                                                                                                   |  |  |  |  |
| XO controller and XO outputs                         | Five sets: three low-noise outputs (RF) and two low-power outputs (BB)                                                                                                                  |  |  |  |  |
| Special purpose clock outputs                        | <ul> <li>Sleep clock; 19.2, 9.6, 4.8, 2.4, and 1.2 MHz, including low-power mode</li> <li>2.4 MHz for MP3; two high-speed GPIOs for fast clocks</li> </ul>                              |  |  |  |  |
| Real-time clock                                      | RTC clock circuits and alarms                                                                                                                                                           |  |  |  |  |
| C infrastructure circuits                            | Band-gap voltage reference and LDO for analog circuits                                                                                                                                  |  |  |  |  |
| C-level interfaces                                   |                                                                                                                                                                                         |  |  |  |  |
| Primary status and control                           | Two-line SPMI                                                                                                                                                                           |  |  |  |  |
| nterrupt managers                                    | Supported by SPMI                                                                                                                                                                       |  |  |  |  |
| Optional hardware configurations                     | OPT bits select hardware configuration                                                                                                                                                  |  |  |  |  |
| Power sequencing                                     | Power on and power off                                                                                                                                                                  |  |  |  |  |

L

### Table 1-1 PM8953 features (cont.)

| Feature                          | PM8953 capability                                                                                                                                                                   |  |  |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Audio codec                      |                                                                                                                                                                                     |  |  |
| Audio inputs                     | <ul> <li>Two single-ended and one differential (microphone) input</li> <li>Integrated IEC ESD protection on microphone 2 input</li> <li>Two ADCs</li> </ul>                         |  |  |
| Multi-button headset control     | <ul><li>Up to five buttons of MBHC headset support</li><li>One input for headset jack detection</li></ul>                                                                           |  |  |
| Audio outputs                    | <ul> <li>Five outputs: EAR, HPHL + HPHR, line out, and Class-D speaker driver</li> <li>Three DACs</li> <li>Overcurrent protection (OCP) on HPH, EAR, and speaker outputs</li> </ul> |  |  |
| Multiple audio I/O sample rates  | Supports 8, 16, 32, and 48 kHz sample rates                                                                                                                                         |  |  |
| Audio-specific power supplies    | <ul> <li>+5 V boost SMPS for high-power audio</li> <li>Negative charge pump for HPH negative supply</li> <li>Microphone bias outputs (×2)</li> </ul>                                |  |  |
| Configurable I/Os                |                                                                                                                                                                                     |  |  |
| MPPs                             | Four; configurable as digital in/out; analog multiplexer inputs; current sinks; VREF buffer outputs; MPP_1 and MPP_3 are fixed for VDD_PX_BIAS and VREF_DAC respectively.           |  |  |
| GPIO pins                        | Eight; configurable as digital inputs or outputs; all are faster than MPPs                                                                                                          |  |  |
| Fabrication technology and packa | age                                                                                                                                                                                 |  |  |
| Fab                              | 0.18 µm HV CMOS                                                                                                                                                                     |  |  |
| Size                             | 5.78 × 5.78 × 0.65 mm                                                                                                                                                               |  |  |
| Pin count and package type       | 187 FOWNSP                                                                                                                                                                          |  |  |

# 2 Pin definitions

The PM8953 is available in the 187 FOWNSP. Its bottom surface is equivalent to a 187 FOWNSP that includes several ground pins for electrical grounding, mechanical strength, and thermal continuity. See Chapter 4 for package details.

Figure 2-1 shows a high-level view of the pin assignments for the PM8953.

2016-05-20 19:06:16 PDT 2016-05-20 19:06:16 PDT

| 1<br>GND_XO_IS<br>O    | <b>2</b><br>XTAL_<br>19M_IN                 | <b>3</b><br>XTAL_<br>19M_OUT | <b>4</b><br>VREG_XO                         | 5<br>VREG_RFC<br>LK   | 6<br>VREG_L9                        |                        | 7<br>VREG_L7                        | 8<br>VREF_LPD<br>DR                 | 9<br>VREG_L1          | <b>10</b><br>GND_S4           | 11<br>VSW_S4             | <b>12</b><br>VDD_S4  | <b>13</b><br>VDD_S4          |
|------------------------|---------------------------------------------|------------------------------|---------------------------------------------|-----------------------|-------------------------------------|------------------------|-------------------------------------|-------------------------------------|-----------------------|-------------------------------|--------------------------|----------------------|------------------------------|
| 14<br>VCOIN            | 15<br>GND_XO_IS<br>O                        | <b>16</b><br>GND_XO          | 17<br>GND_RFCL<br>K                         | <b>18</b><br>VREG_L18 | <b>19</b><br>BB_CLK2                | <b>20</b><br>VREG_L22  | <b>21</b><br>VDD_L4_5_<br>6_7_16_19 | <b>22</b><br>VREG_L6                | <b>23</b><br>VREG_L19 | <b>24</b><br>GND_S4           | <b>25</b><br>VSW_S4      | <b>26</b><br>VDD_S4  | <b>27</b><br>PON_RESE<br>T_N |
| <b>28</b><br>VREG_L12  | <b>29</b><br>VDD_L8_11<br>_12_13_14_<br>_15 | <b>30</b><br>VREG_L8         | 31<br>VDD_XO_R<br>FCLK                      | <b>32</b><br>BB_CLK1  | <b>33</b><br>VDD_L9_10<br>_17_18_22 | <b>34</b><br>VREG_L17  |                                     | <b>35</b><br>VDD_L4_5_<br>6_7_16_19 | <b>36</b><br>VDD_L1   | 37<br>SPMI_DATA               | <b>38</b><br>VREG_S4     | <b>39</b><br>GND_S1  | <b>40</b><br>GND_S1          |
| <b>41</b><br>RF_CLK1   | <b>42</b><br>VREG_L11                       | <b>43</b><br>RF_CLK2         | <b>44</b><br>VDD_L8_11<br>_12_13_14_<br>_15 | <b>45</b><br>VREG_L14 | <b>46</b><br>RF_CLK3                | <b>47</b><br>VREG_L10  | <b>48</b><br>VREG_L16               | <b>49</b><br>VREG_L5                | <b>50</b><br>VREG_L4  | 51<br>SPMI_CLK                | 52<br>PS_HOLD            | <b>53</b><br>VSW_S1  | <b>54</b><br>VSW_S1          |
|                        | <b>55</b><br>BB_CLK1_E<br>N                 |                              | <b>56</b><br>VREG_L13                       | 57<br>REF_BYP         | <b>58</b><br>VREG_L15               | 59<br>VPH_PWR          |                                     | 60<br>AVDD_BYP                      | 61<br>DVDD_BYP        | <b>62</b><br>VREG_S1          | 63<br>KPD_PWR_<br>N      | <b>64</b><br>VDD_S1  | <b>65</b><br>VDD_S1          |
| 66<br>LINEOUT_M        | 67<br>LINEOUT_P                             | 68<br>HPH_L                  | 69<br>MIC_BIAS1                             | 70<br>GND_REF         | <b>71</b><br>GND                    | 72<br>GND_XOAD<br>C    | 73<br>XO_THERM                      | 74<br>PA_THERM                      | <b>75</b><br>VREG_S2  | 76<br>RESIN_N                 | 77<br>PON_1              | <b>78</b><br>GND_S2  | <b>79</b><br>GND_S2          |
| 80<br>VNEG_HPH         | 81<br>VDD_HPH                               | 82<br>HPH_REF                | 83<br>MIC_BIAS2                             | 84<br>GND_CFILT       | <b>85</b><br>GND                    | <b>86</b><br>GND       | <b>87</b><br>GND                    | 88<br>GND                           | 89<br>SLEEP_CLK<br>1  | <b>90</b><br>GPIO_6           | 2,                       | <b>91</b><br>VSW_S2  | <b>92</b><br>VSW_S2          |
| <b>93</b><br>EARO_P    | <b>94</b><br>Earo_m                         | 95<br>HPH_R                  | 96<br>MIC1_IN_P                             | 97<br>MIC1_IN_M       | 98<br>GND                           | 99<br>GND              | <b>100</b><br>GND                   | <b>101</b><br>CC2                   | <b>102</b><br>GND     | <b>103</b><br>VREG_S7         | <b>104</b><br>GPIO_5     | 105<br>VDD_S2        | 106<br>VDD_S2                |
| 107<br>VDD_SPKR<br>_PA |                                             | 108<br>MIC2_IN               | 109<br>HS_DET                               | <b>110</b><br>MPP_3   | <b>111</b><br>OPT_1                 | <b>112</b><br>MPP_1    | 113<br>VCONN                        | <b>114</b><br>CC1                   | <b>115</b><br>VREG_S5 | <b>116</b><br>VREF_NEG<br>_S5 | <b>117</b><br>GPIO_4     | <b>118</b><br>GND_S7 | <b>119</b><br>GND_S7         |
| 120<br>SPKR_DRV<br>_P  | <b>121</b><br>SPKR_DRV<br>_M                |                              | <b>122</b><br>MIC3_IN                       | <b>123</b><br>OPT_2   | <b>124</b><br>CBL_PWR_<br>N         | <b>125</b><br>MPP_2    |                                     | <b>126</b><br>VDD_L23               | <b>127</b><br>VREG_S6 | <b>128</b><br>VREF_NEG<br>_S6 | <b>129</b><br>GPIO_8     | <b>130</b><br>VSW_S7 | <b>131</b><br>VSW_S7         |
| 132<br>GND_SPKR<br>_PA | 133<br>CP_VNEG                              | 134<br>PDM_RX0_<br>DRE       | <b>135</b><br>PDM_RX0                       | 136<br>PDM_SYNC       | <b>137</b><br>VREG_S3               | <b>138</b><br>VREG_L23 | <b>139</b><br>VDD_L2_3              | <b>140</b><br>VREG_L2               | <b>141</b><br>GPIO_2  | <b>142</b><br>GPIO_3          | <b>143</b><br>GPIO_7     | <b>144</b><br>VDD_S7 | <b>145</b><br>VDD_S7         |
| <b>146</b><br>CP_C1_M  | <b>147</b><br>GND_CP                        | 148<br>PDM_RX1_<br>DRE       | <b>149</b><br>PDM_TX                        | <b>150</b><br>PDM_CLK | <b>151</b><br>MPP_4                 | <b>152</b><br>GPIO_1   | <b>153</b><br>VREG_L3               | <b>154</b><br>VDD_S6                | <b>155</b><br>VSW_S6  | <b>156</b><br>GND_S6          | <b>157</b><br>VDD_S5     | <b>158</b><br>VSW_S5 | <b>159</b><br>GND_S5         |
| <b>160</b><br>CP_C1_P  | <b>161</b><br>VDD_CP                        | <b>162</b><br>BOOST_SN<br>S  | 163<br>VDD_AUDIO<br>_IO                     | 164<br>PDM_RX2        | <b>165</b><br>VDD_S3                | <b>166</b><br>VSW_S3   | <b>167</b><br>GND_S3                | <b>168</b><br>VDD_S6                | <b>169</b><br>VSW_S6  | <b>170</b><br>GND_S6          | <b>171</b><br>VDD_S5     | <b>172</b><br>VSW_S5 | <b>173</b><br>GND_S5         |
| 174<br>GND_BOOS<br>T   | <b>175</b><br>GND_BOOS<br>T                 | 176<br>VSW_BOOS<br>T         | <b>177</b><br>VREG_BOO<br>ST                | <b>178</b><br>PDM_RX1 | <b>179</b><br>VDD_S3                | <b>180</b><br>VSW_S3   | <b>181</b><br>GND_S3                | <b>182</b><br>VDD_S6                | <b>183</b><br>VSW_S6  | <b>184</b><br>GND_S6          | <b>185</b><br>VDD_S5     | <b>186</b><br>VSW_S5 | <b>187</b><br>GND_S5         |
|                        | Audio                                       | Configurab<br>IOs            |                                             | o not<br>nnect        | General<br>housekeeping             | gGro                   | und                                 | IC-level<br>interfaces              | Input p<br>manage     |                               | utput power<br>anagement | Powe                 | r                            |

# 2.1 I/O parameter definitions

| Table 2-1 | I/O description (pad type) parameters |
|-----------|---------------------------------------|
|-----------|---------------------------------------|

| Symbol          | Description                                                                                                                                                                 |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pad attribute   |                                                                                                                                                                             |
| AI              | Analog input (does not include pad circuitry)                                                                                                                               |
| AO              | Analog output (does not include pad circuitry)                                                                                                                              |
| В               | Bidirectional digital with CMOS input                                                                                                                                       |
| DI              | Digital input (CMOS)                                                                                                                                                        |
| DO              | Digital output (CMOS)                                                                                                                                                       |
| GND             | Ground                                                                                                                                                                      |
| PI              | Power input; a pin that handles 10 mA or more of current flow into the device                                                                                               |
| PO              | Power output; a pin that handles 10 mA or more of current flow out of the device                                                                                            |
| Z               | High-impedance (high-Z) output                                                                                                                                              |
| Pad-voltage gro | upings for baseband circuits                                                                                                                                                |
| dVdd            | Internally generated 1.8 V supply voltage for some power-on circuits                                                                                                        |
| aVdd            | Internally generated 1.8 V supply voltage for some analog circuits                                                                                                          |
| V_PAD           | Supply for modem IC interfaces; connected internally to VREG_L5                                                                                                             |
| V_XBB           | Supply for XO low-power (BB) output buffers; connected internally to VREG_L7                                                                                                |
| V_XRF           | Supply for XO low-noise (RF) output buffers; connected internally to VREG_RFCLK                                                                                             |
| V_G1            | <ul> <li>Selectable supply for GPIOs capable of high-speed clock outputs (GPIO_1 and GPIO_2); options include:</li> <li>0 = 1 = 3 = VREG_L5</li> <li>2 = VREG_S3</li> </ul> |
| V_G2            | <ul> <li>Selectable supply for all other GPIO circuits; options include:</li> <li>0 = 1 = VPH_PWR</li> <li>2 = VREG_S3</li> <li>3 = VREG_L5</li> </ul>                      |
| V_M             | <ul> <li>Selectable supply for MPP circuits; options include:</li> <li>0 = 1 = VPH_PWR</li> <li>2 = VREG_S3</li> <li>3 = VREG_L5</li> </ul>                                 |
| GPIO pin config | urations                                                                                                                                                                    |
| GPIO pins, when | configured as inputs, have configurable pull settings                                                                                                                       |
| NP              | No internal pull enabled                                                                                                                                                    |
| PU              | Internal pull-up enabled                                                                                                                                                    |
| PD              | Internal pull-down enabled                                                                                                                                                  |
| GPIO pins, when | configured as outputs, have configurable drive strengths                                                                                                                    |
| Н               | High: ~ TBD mA at 1.8 V; ~ TBD mA at 2.6 V                                                                                                                                  |

| Symbol | Description                                  |
|--------|----------------------------------------------|
| М      | Medium: ~ TBD mA at 1.8 V; ~ TBD mA at 2.6 V |
| L      | Low: ~ TBD mA at 1.8 V; ~ TBD mA at 2.6 V    |

Table 2-1 I/O description (pad type) parameters (cont.)

# 2.2 Pin assignments

## 2.2.1 Pin descriptions

Descriptions of bottom pins are presented in the following tables, organized by functional group:

Table 2-2: Input power management functions

Table 2-3: Output power management functions

Table 2-4: General HK functions

Table 2-5: Audio

Table 2-6: IC-level interface functions

Table 2-7: Configurable input/output functions - GPIO and MPPs

Table 2-8: Pin descriptions – DC power supply voltages

Table 2-9: Pin descriptions – grounds

| Table 2-2 | Input power | management functions |
|-----------|-------------|----------------------|
|-----------|-------------|----------------------|

| Pad #    | Pad name and/or function | Pad name<br>or alternate function | Pad type | Functional description                                                                                     |
|----------|--------------------------|-----------------------------------|----------|------------------------------------------------------------------------------------------------------------|
| 59       | VPH_PWR                  | _                                 | PI       | Primary phone power                                                                                        |
| 14       | VCOIN                    | _                                 | AI, AO   | Coin cell battery or backup battery; the last remaining available source to maintain xVdd backed registers |
| 113      | VCONN                    | -                                 | AI       | Power input pin (5 V, 210 mA from VBUS) to drive active cables during the DFP mode.                        |
|          |                          |                                   |          | An internal mux connects VCONN power to<br>either CC1 or CC2 based on the cable<br>orientation.            |
| 101, 114 | CC1, CC2                 | -                                 | AI, AO   | USB type C connector configuration channel                                                                 |

| Pad #            | Pad name and/or function | Pad type <sup>1</sup> | Functional description               |
|------------------|--------------------------|-----------------------|--------------------------------------|
| SMPS circuits    |                          |                       |                                      |
| 64, 65           | VDD_S1                   | PI                    | Buck converter S1 supply voltage     |
| 53, 54           | VSW_S1                   | PO                    | Buck converter S1 switching node     |
| 62               | VREG_S1                  | AI                    | Buck converter S1 sense point        |
| 39, 40           | GND_S1                   | GND                   | Buck converter S1 ground             |
| 105, 106         | VDD_S2                   | PI                    | Buck converter S2 supply voltage     |
| 91, 92           | VSW_S2                   | PO                    | Buck converter S2 switching node     |
| 75               | VREG_S2                  | AI                    | Buck converter S2 sense point        |
| 78, 79           | GND_S2                   | GND                   | Buck converter S2 ground             |
| 165, 179         | VDD_S3                   | PI                    | Buck converter S3 supply voltage     |
| 166, 180         | VSW_S3                   | PO                    | Buck converter S3 switching node     |
| 137              | VREG_S3                  | AI                    | Buck converter S3 sense point        |
| 167, 181         | GND_S3                   | GND                   | Buck converter S3 ground             |
| 12, 13, 26       | VDD_S4                   | PI g                  | Buck converter S4 supply voltage     |
| 11, 25           | VSW_S4                   | PO                    | Buck converter S4 switching node     |
| 38               | VREG_S4                  | A                     | Buck converter S4 sense point        |
| 10, 24           | GND_S4                   | GND                   | Buck converter S4 ground             |
| 157, 171, 185    | VDD_S5                   | SOL BI                | Buck converter S5 supply voltage     |
| 158, 172, 186    | VSW_S5                   | PO                    | Buck converter S5 switching node     |
| 115              | VREG_S5                  | AI                    | Buck converter S5 sense point        |
| 116              | VREF_NEG_S5              | AI                    | Buck converter S5 negative reference |
| 159, 173, 187    | GND_S5                   | GND                   | Buck converter S5 ground             |
| 154, 168, 182    | VDD_S6                   | PI                    | Buck converter S6 supply voltage     |
| 155, 169, 183    | VSW_S6                   | PO                    | Buck converter S6 switching node     |
| 128              | VREF_NEG_S6              | PI                    | Buck converter S6 negative reference |
| 127              | VREG_S6                  | AI                    | Buck converter S6 sense point        |
| 156, 170, 184    | GND_S6                   | GND                   | Buck converter S6 ground             |
| 144, 145         | VDD_S7                   | PI                    | Buck converter S7 supply voltage     |
| 130, 131         | VSW_S7                   | PO                    | Buck converter S7 switching node     |
| 103              | VREG_S7                  | AI                    | Buck converter S7 sense point        |
| 118, 119         | GND_S7                   | GND                   | Buck converter S7 ground             |
| Low dropout (LDC | )) linear regulators     |                       |                                      |
| 126              | VDD_L23                  | PI                    | LDO 23 supply voltage                |
| 138              | VREG_L23                 | PO                    | LDO 23 output                        |
| 36               | VDD_L1                   | PI                    | LDO 1 supply voltage                 |

 Table 2-3
 Output power management functions

| Pad #  | Pad name<br>and/or function | Pad type <sup>1</sup> | Functional description                            |
|--------|-----------------------------|-----------------------|---------------------------------------------------|
| 9      | VREG_L1                     | PO                    | LDO 1 output                                      |
| 139    | VDD L2_3                    | PI                    | LDO 2 and 3 supply voltages                       |
| 140    | VREG_L2                     | PO                    | LDO 2 output                                      |
| 153    | VREG_L3                     | PO                    | LDO 3 output                                      |
| 21, 35 | VDD_L4_5_6_7_16_19          | PI                    | LDO 4, 5, 6, 7, 16, and 19 supply voltages        |
| 50     | VREG_L4                     | PO                    | LDO 4 output                                      |
| 49     | VREG_L5                     | PO                    | LDO 5 output                                      |
| 22     | VREG_L6                     | PO                    | LDO 6 output                                      |
| 7      | VREG_L7                     | PO                    | LDO 7 output                                      |
| 48     | VREG_L16                    | PO                    | LDO 16 output                                     |
| 23     | VREG_L19                    | PO                    | LDO 19 output                                     |
| 29, 44 | VDD_L8_11_12_13_14_15       | PI                    | LDO 8, 11, 12, 13, 14, and 15 supply voltages     |
| 30     | VREG_L8                     | PO                    | LDO 8 output                                      |
| 42     | VREG_L11                    | PO                    | LDO 11 output                                     |
| 28     | VREG_L12                    | PO                    | LDO 12 output                                     |
| 56     | VREG_L13                    | PO                    | LDO 13 output                                     |
| 45     | VREG_L14                    | PO                    | LDO 14 output                                     |
| 58     | VREG_L15                    | PO                    | LDO 15 output                                     |
| 33     | VDD_L9_10_17_18_22          | PI                    | LDO 9, 10, 13, 14, 15, 18, and 22 supply voltages |
| 6      | VREG_L9                     | PO                    | LDO 9 output                                      |
| 47     | VREG_L10                    | PO                    | LDO 10 output                                     |
| 34     | VREG_L17                    | PO                    | LDO 7 output                                      |
| 18     | VREG_L18                    | PO                    | LDO 18 output                                     |
| 20     | VREG_L22                    | PO                    | LDO 22 output                                     |
| 31     | VDD_XO_RFCLK                | PI                    | XO and RFCLK LDO supply voltages                  |
| 5      | VREG_RFCLK                  | PO                    | LDO for RF CLK outputs (L21)                      |
| 4      | VREG_XO                     | PO                    | LDO for XO circuits (L20)                         |
| 8      | VREF_LPDDR                  | AO                    | LPDDR memory reference                            |

| Table 2-3 | Output power management functions ( | cont.) |
|-----------|-------------------------------------|--------|
|-----------|-------------------------------------|--------|

1. See Table 2-1 for parameter and acronym definitions.

| Pad #                                     | Pad name<br>and/or function | Pad name or<br>alternate<br>function | Pad type <sup>3</sup> | Functional description                                                                                                                                                  |  |  |  |
|-------------------------------------------|-----------------------------|--------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Analog multiplexer and HK/XO ADC circuits |                             |                                      |                       |                                                                                                                                                                         |  |  |  |
| 73                                        | XO_THERM                    | -                                    | AI                    | ADC input – XO thermistor divider                                                                                                                                       |  |  |  |
| 74                                        | PA_THERM                    | _                                    | AI                    | AMUX input – PA thermistor divider                                                                                                                                      |  |  |  |
| 72                                        | GND_XOADC                   | -                                    | GND                   | HK/XO ADC reference ground                                                                                                                                              |  |  |  |
| 19.2 MHz                                  | crystal oscillator (X       | O) circuits and I                    | buffered outpu        | uts                                                                                                                                                                     |  |  |  |
| 2                                         | XTAL_19M_IN                 | _                                    | AI                    | 19.2 MHz crystal (XTAL) connection (in)                                                                                                                                 |  |  |  |
| 3                                         | XTAL_19M_OUT                | -                                    | AO                    | 19.2 MHz crystal connection (out)                                                                                                                                       |  |  |  |
| 16                                        | GND_XO                      | -                                    | GND                   | XTAL circuit ground                                                                                                                                                     |  |  |  |
| 1, 15                                     | GND_XO_ISO                  | -                                    | GND                   | XO clock circuit ground for shielding; use single via directly to main ground plane; do not share with any other ground pads                                            |  |  |  |
| 41                                        | RF_CLK1                     | *                                    | DO                    | Buffered RF (low-noise) XO clock 1                                                                                                                                      |  |  |  |
| 43                                        | RF_CLK2                     | - 0                                  | DO                    | Buffered RF (low-noise) XO clock 2                                                                                                                                      |  |  |  |
| 46                                        | RF_CLK3                     |                                      | DO 6                  | Buffered RF (low-noise) XO clock 3                                                                                                                                      |  |  |  |
| 17                                        | GND_RFCLK                   |                                      | GND                   | RF output buffers ground                                                                                                                                                |  |  |  |
| 32                                        | BB_CLK1                     |                                      | DOUD                  | Buffered baseband (low-power) XO clock 1<br>(to the modem IC's CXO input)                                                                                               |  |  |  |
| 19                                        | BB_CLK2                     | 6                                    | JON DO                | Buffered baseband (low-power) XO clock 2                                                                                                                                |  |  |  |
| 55                                        | BB_CLK1_EN                  | C. P                                 | DI                    | BB_CLK1 enable (from the modem IC)                                                                                                                                      |  |  |  |
| Sleep clo                                 | ck                          | GN -                                 |                       | 1                                                                                                                                                                       |  |  |  |
| 89                                        | SLEEP_CLK1                  | _                                    | DO                    | 32 kHz sleep clock to the modem IC                                                                                                                                      |  |  |  |
| PMIC infr                                 | astructure circuits         | I                                    |                       | 1                                                                                                                                                                       |  |  |  |
| 60                                        | AVDD_BYP                    | _                                    | AO                    | Bypass capacitor for LDO that supplies internal<br>analog circuits; do not load externally                                                                              |  |  |  |
| 61                                        | DVDD_BYP                    | _                                    | AO                    | Bypass capacitor for LDO that supplies internal digital circuits; do not load externally                                                                                |  |  |  |
| 57                                        | REF_BYP                     | -                                    | AO                    | Bandgap reference bypass capacitor (0.1 $\mu\text{F})$                                                                                                                  |  |  |  |
| 70                                        | GND_REF                     | _                                    | GND                   | Bandgap reference ground; use single via directly to<br>main ground plane at either capacitor pad or PMIC<br>pad (not both); do not share with any other ground<br>pads |  |  |  |
| GPIO ass                                  | ignments for general I      | HK functions <sup>1</sup>            |                       |                                                                                                                                                                         |  |  |  |
| MPP assi                                  | gnments for general H       | K functions 2                        |                       |                                                                                                                                                                         |  |  |  |

## Table 2-4General HK functions

 GPIOs can be used for other general HK functions not listed here. To assign a GPIO to a particular function, identify the application's requirements and map each GPIO to its function—carefully avoiding assignment conflicts. Table 2-7 lists all the GPIOs.

- MPPs can be used for other general HK functions not listed here. To assign an MPP to a particular function, identify the application's requirements and map each MPP to its function—carefully avoiding assignment conflicts. Table 2-7 lists all the MPPs.
- 3. See Table 2-1 for parameter and acronym definitions.

### Table 2-5 Audio

| Pad #     | Pad name and/or function                            | Pad name or<br>alternate<br>function | Pad type <sup>1</sup> | Functional description                   |  |  |  |  |  |
|-----------|-----------------------------------------------------|--------------------------------------|-----------------------|------------------------------------------|--|--|--|--|--|
| Codec – a | Codec – analog audio outputs and related interfaces |                                      |                       |                                          |  |  |  |  |  |
| 93        | EARO_P                                              | -                                    | AO                    | Earpiece output, plus (+)                |  |  |  |  |  |
| 94        | EARO_M                                              | -                                    | AO                    | Earpiece output, minus (-)               |  |  |  |  |  |
| 81        | VDD_HPH                                             | -                                    | PI                    | Headphone positive supply                |  |  |  |  |  |
| 68        | HPH_L                                               | -                                    | AO                    | Headphone output, left channel           |  |  |  |  |  |
| 95        | HPH_R                                               | -                                    | AO                    | Headphone output, right channel          |  |  |  |  |  |
| 82        | HPH_REF                                             | -                                    | AI                    | Headphone ground reference               |  |  |  |  |  |
| 80        | VNEG_HPH                                            | - 4                                  | PI                    | Headphone negative supply                |  |  |  |  |  |
| 109       | HS_DET                                              | -                                    | AI                    | Headset detection                        |  |  |  |  |  |
| 107       | VDD_SPKR_PA                                         |                                      | PI (                  | Class-D speaker power amplifier supply   |  |  |  |  |  |
| 120       | SPKR_DRV_P                                          |                                      | AO                    | Class-D speaker driver output, plus (+)  |  |  |  |  |  |
| 121       | SPKR_DRV_M                                          | -                                    | O AO                  | Class-D speaker driver output, minus (-) |  |  |  |  |  |
| 132       | GND_SPKR_PA                                         | SE a                                 | GND                   | Class-D speaker power amplifier ground   |  |  |  |  |  |
| 67        | LINEOUT_P                                           | 6                                    | SON AO                | Audio line output, differential plus     |  |  |  |  |  |
| 66        | LINEOUT_M                                           | <del>2</del> ),12                    | AO                    | Audio line output, differential minus    |  |  |  |  |  |
| Codec – a | nalog audio inputs                                  | and related inte                     | rfaces                |                                          |  |  |  |  |  |
| 96        | MIC1_IN_P                                           | -                                    | AI                    | Microphone input 1, plus                 |  |  |  |  |  |
| 97        | MIC1_IN_M                                           | -                                    | AI                    | Microphone input 1, minus                |  |  |  |  |  |
| 108       | MIC2_IN                                             | -                                    | AI                    | Microphone input 2                       |  |  |  |  |  |
| 122       | MIC3_IN                                             | -                                    | AI                    | Microphone input 3                       |  |  |  |  |  |
| 69        | MIC_BIAS1                                           | -                                    | AO                    | Microphone bias 1                        |  |  |  |  |  |
| 83        | MIC_BIAS2                                           | -                                    | AO                    | Microphone bias 2                        |  |  |  |  |  |
| 84        | GND_CFILT                                           | -                                    | GND                   | Microphone bias filter ground            |  |  |  |  |  |
| Codec su  | pport – analog                                      |                                      |                       |                                          |  |  |  |  |  |
| 176       | VSW_BOOST                                           | -                                    | PO                    | Audio boost converter switching node     |  |  |  |  |  |
| 177       | VREG_BOOST                                          | -                                    | PI                    | Audio boost converter regulation node    |  |  |  |  |  |
| 162       | BOOST_SNS                                           | -                                    | AI                    | Audio boost converter sense point        |  |  |  |  |  |
| 174, 175  | GND_BOOST                                           | _                                    | GND                   | Audio boost converter ground             |  |  |  |  |  |
| 161       | VDD_CP                                              | -                                    | PI                    | Charge pump power supply                 |  |  |  |  |  |
| 133       | CP_VNEG                                             | -                                    | AO                    | Charge pump negative output              |  |  |  |  |  |
| 160       | CP_C1_P                                             | _                                    | AO                    | Charge pump fly capacitor terminal 1     |  |  |  |  |  |

| Pad #    | Pad name and/or function | Pad name or<br>alternate<br>function | Pad type <sup>1</sup> | Functional description                  |
|----------|--------------------------|--------------------------------------|-----------------------|-----------------------------------------|
| 146      | CP_C1_M                  | -                                    | AO                    | Charge pump fly capacitor terminal 2    |
| 147      | GND_CP                   | -                                    | GND                   | Charge pump ground                      |
| Codec su | pport – digital          | L                                    |                       | -                                       |
| 163      | VDD_AUDIO_IO             | -                                    | PI                    | Audio digital I/O power supply          |
| 150      | PDM_CLK                  | _                                    | DI                    | PDM clock signal and codec master clock |
| 136      | PDM_SYNC                 | -                                    | DI                    | PDM synchronization signal              |
| 149      | PDM_TX                   | _                                    | DO                    | PDM transmit data channel               |
| 135      | PDM_RX0                  | _                                    | DI                    | PDM receive data channel 0              |
| 178      | PDM_RX1                  | -                                    | DI                    | PDM receive data channel 1              |
| 164      | PDM_RX2                  | _                                    | DI                    | PDM receive data channel 2              |
| 134      | PDM_RX0_DRE              | -                                    | DI                    | RX0 DRE data channel                    |
| 148      | PDM_RX1_DRE              | -                                    | DI                    | RX1 DRE data channel                    |

### Table 2-5 Audio (cont.)

## Table 2-6 IC-level interface functions

| Table 2-6 | IC-level interfac           | e functions                          | finitions.            | 10°                                                                                                                  |
|-----------|-----------------------------|--------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------|
| Pad #     | Pad name<br>and/or function | Pad name or<br>alternate<br>function | Pad type <sup>3</sup> | Functional description                                                                                               |
| Hardware  | e configuration conti       | rols                                 |                       |                                                                                                                      |
| 123       | OPT_2                       | - 3/11                               | DI                    | Option configuration control bit 2; set to VDD,<br>GND, or Hi-Z; defines internal PMIC characteristics               |
| 111       | OPT_1                       | -                                    | DI                    | Option configuration control bit 1; set to VDD,<br>GND, or Hi-Z; defines internal PMIC characteristics               |
| Power on  | /off/reset                  | +                                    | Ļ                     | -                                                                                                                    |
| 27        | PON_RESET_N                 | _                                    | DO                    | Power-on reset control to modem IC                                                                                   |
|           |                             |                                      |                       | <ul> <li>HIGH: modem IC released from reset after<br/>successful PMIC power on</li> </ul>                            |
|           |                             |                                      |                       | <ul> <li>LOW: modem IC is reset when PMIC is reset or<br/>during shutdown</li> </ul>                                 |
| 77        | PON_1                       | -                                    | DI                    | LOW to HIGH from PMI initiates power on                                                                              |
| 52        | PS_HOLD                     | -                                    | DI                    | Power-supply hold control input – keeps<br>PMIC on when HIGH, or initiate a reset or power<br>down when asserted LOW |
| 76        | RESIN_N                     | -                                    | DI                    | PMIC reset input; initiates stage 2 or stage 3 reset if held LOW                                                     |
| 124       | CBL_PWR_N                   | -                                    | DI                    | Cable power-on; internal pull-up to dVdd; initiates power on when grounded                                           |

| Pad #    | Pad name and/or function                 | Pad name or<br>alternate<br>function | Pad type <sup>3</sup> | Functional description                                                                                                                                                                                                    |  |  |  |
|----------|------------------------------------------|--------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Hardware | configuration contr                      | rols                                 |                       |                                                                                                                                                                                                                           |  |  |  |
| 63       | KPD_PWR_N                                | _                                    | DI                    | <ul> <li>Internal pull-up to dVdd; keep C_load &lt; 10 pF. Dual function:</li> <li>Keypad power on; initiates power on when grounded</li> <li>Can be configured as stage 2 or stage 3 reset if held LOW longer</li> </ul> |  |  |  |
| System p | System power management interface (SPMI) |                                      |                       |                                                                                                                                                                                                                           |  |  |  |
| 51       | SPMI_CLK                                 | _                                    | DI                    | SPMI clock                                                                                                                                                                                                                |  |  |  |

| Table 2-6 | IC-level interfa | ace functions (cont.) |
|-----------|------------------|-----------------------|
|-----------|------------------|-----------------------|

| System power management interface (SPMI) |                                                     |                    |                |            |  |  |  |  |
|------------------------------------------|-----------------------------------------------------|--------------------|----------------|------------|--|--|--|--|
| 51                                       | SPMI_CLK                                            | -                  | DI             | SPMI clock |  |  |  |  |
| 37                                       | SPMI_DATA                                           | -                  | DI, DO         | SPMI data  |  |  |  |  |
| GPIO ass                                 | GPIO assignments for IC-level interface functions 1 |                    |                |            |  |  |  |  |
| MPP assi                                 | gnments for IC-level ir                             | nterface functions | ; <sup>2</sup> |            |  |  |  |  |

 GPIOs are used for other user interface functions not listed here; those details will be included in future revisions of this document. To assign a GPIO a particular function, identify the application's requirements and map each GPIO to its function – carefully avoiding assignment conflicts. Table 2-7 lists all the GPIOs.

 MPPs are used for other user interface functions not listed here; those details will be included in future revisions of this document. To assign an MPP a particular function, identify the application's requirements and map each MPP to its function – carefully avoiding assignment conflicts. Table 2-7 lists all the MPPs.

3. See Table 2-1 for parameter and acronym definitions.

### Table 2-7 Configurable input/output functions – GPIO and MPPs

| Pad #    | Pad name       | Configurable function | Pad<br>type <sup>1</sup> | Functional description                                         |  |  |  |
|----------|----------------|-----------------------|--------------------------|----------------------------------------------------------------|--|--|--|
| MPP fund | tions          |                       |                          |                                                                |  |  |  |
| 112      | MPP_1          |                       | AO-Z                     | Configurable MPP                                               |  |  |  |
|          |                | VREF_PX_BIAS          | AO                       | Reference for the modem IC digital pads $^{2}$                 |  |  |  |
| 125      | MPP_2          |                       | AI                       | Configurable MPP                                               |  |  |  |
|          |                | PA_THERM2             | AI                       | PA temperature sense to AMUX                                   |  |  |  |
| 110      | MPP_3          |                       | AO-Z                     | Configurable MPP                                               |  |  |  |
|          |                | VREF_DAC              | AO                       | Reference for the modem IC DAC                                 |  |  |  |
| 151      | MPP_4          |                       | AI                       | Configurable MPP                                               |  |  |  |
|          |                | QUIET_THERM           | AI                       | Input for the QUIET_THERM input skin<br>temperature thermistor |  |  |  |
|          |                | WLED_PWM_CTRL         | DO                       | PWM control for the external WLED driver                       |  |  |  |
|          |                | HR_LED_SINK           | AI                       | Home-row LED current sink                                      |  |  |  |
| GPIO fun | GPIO functions |                       |                          |                                                                |  |  |  |
| 152      | GPIO_1         |                       | DI-PD                    | Configurable GPIO (GPIOC)                                      |  |  |  |
|          |                | AUDIO_MCLK            | DO                       | 9.6 MHz audio master clock                                     |  |  |  |
|          |                | DIV_CLK2              | DO                       | Divided clock output 2                                         |  |  |  |

I

L

| Pad #    | Pad name            | Configurable function | Pad<br>type <sup>1</sup> | Functional description                                                                                               |
|----------|---------------------|-----------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------|
| MPP func | tions               |                       |                          |                                                                                                                      |
| 141      | GPIO_2              |                       | DI-PD                    | Configurable GPIO (GPIOC)                                                                                            |
|          |                     | NFC_CLK_REQ           | DI                       | NFC clock request                                                                                                    |
| 142      | GPIO_3              |                       | DI-PD                    | Configurable GPIO                                                                                                    |
|          |                     | BATT_UICC_ALM         | DI, DO                   | Battery UICC alarm (BUA)                                                                                             |
| 117      | GPIO_4 <sup>2</sup> |                       | DI-PD                    | Configurable GPIO                                                                                                    |
|          |                     | FORCE_BYPASS          | DO                       | External boost/bypass SMPS: bypass                                                                                   |
| 104      | GPIO_5              |                       | DI-PD                    | Configurable GPIO                                                                                                    |
|          |                     | BATT_ALM_IN           | DI                       | Battery alarm input                                                                                                  |
| 90       | GPIO_6              |                       | DI-PD                    | Configurable GPIO                                                                                                    |
|          |                     | WLAN_SAD              | DO                       | WLAN switched antenna diversity enable                                                                               |
| 143      | GPIO_7              |                       | DI-PD                    | Configurable GPIO                                                                                                    |
|          |                     | VBUS_MON              | AI                       | VBUS monitor signal from type C connector                                                                            |
| 129      | GPIO_8              |                       | Hi-Z                     | Configurable GPIO                                                                                                    |
|          |                     | VCONN_EN/USB_HS_ID    | DO                       | Disables and enables external regulator source<br>for VCONN and also serves as the USB_ID pin<br>control for PMI8952 |

| Table 2-7 | Configurable input/output functions – GPIO and MPPs (cor | nt.) |
|-----------|----------------------------------------------------------|------|
|-----------|----------------------------------------------------------|------|

1. See Table 2-1 for parameter and acronym definitions.

2. MPP\_1 and GPIO\_4 are part of the default power-on sequence.

- **NOTE** All MPPs default to their high-Z state at power up and must be configured after power up for their intended purposes. All GPIOs default to  $10 \,\mu$ A pull-down at power up and must be configured after power up for their intended purposes.
- **NOTE** Configure unused MPPs as 0 mA current sinks (high-Z) and unused GPIOs as digital inputs with their internal pull-downs enabled.
- **NOTE** Only even MPPs can be configured as current sinks and only odd MPPs can be configured as analog outputs.

## Table 2-8 Pin descriptions – DC power supply voltages

| Pad #                                                                                                                                                                                                              | Pad name | Functional description |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------|--|--|--|--|--|--|
| Audio                                                                                                                                                                                                              | Audio    |                        |  |  |  |  |  |  |
| See Table 2-5.<br>Includes VDD_AUDIO_IO, VDD_CP, VDD_HPH, VDD_SPKR_PA, and VNEG_HPH.                                                                                                                               |          |                        |  |  |  |  |  |  |
| Output power management                                                                                                                                                                                            |          |                        |  |  |  |  |  |  |
| See Table 2-3.                                                                                                                                                                                                     |          |                        |  |  |  |  |  |  |
| LDO supplies include VDD_L23, VDD_L1, VDD_L2_3, VDD_L4_5_6_7_16_19, VDD_L8_11_12_13_14_15, VDD_L9_10_17_18_22, and VDD_XO_RFCLK; SMPS supplies include VDD_S1, VDD_S2, VDD_S3, VDD_S4, VDD_S5, VDD_S6, and VDD_S7. |          |                        |  |  |  |  |  |  |

### Table 2-9 Pin descriptions – grounds

| Pad #                                                                                   | Pad name            | Functional description                  |  |  |  |
|-----------------------------------------------------------------------------------------|---------------------|-----------------------------------------|--|--|--|
| General purpose (common) ground pins                                                    |                     |                                         |  |  |  |
| 71, 85, 86, 87, 88, 98, 99, 100, 102                                                    | GND                 | Ground for nonspecialized circuits      |  |  |  |
| Audio                                                                                   |                     |                                         |  |  |  |
| See Table 2-5.<br>Includes GND_BOOST, GND_CFILT, GND_CF                                 | P, and GND_SPKR_PA. |                                         |  |  |  |
| Output power management                                                                 | 0.0° dr.            |                                         |  |  |  |
| See Table 2-3.<br>Includes GND_S1, GND_S2, GND_S3, GND_<br>VREF_NEG_S5 and VREF_NEG_S6. | S4, GND_S5, GND_S6, | and GND_S7; and negative reference pins |  |  |  |
| General HK                                                                              |                     |                                         |  |  |  |
| See Table 2-4.<br>Includes GND_REF, GND_RFCLK, GND_XO,                                  | GND_XOADC, and GNE  | D_XO_ISO.                               |  |  |  |

# 3 Electrical specifications

# 3.1 Absolute maximum ratings

Operating the PM8953 device under conditions beyond its absolute maximum ratings (Table 3-1) may damage the device. Absolute maximum ratings are limiting values to be considered individually when all other parameters are within their specified operating ranges. Functional operation and specification compliance under any absolute maximum condition, or after exposure to any of these conditions, is not guaranteed or implied. Exposure may affect device reliability.

|                                           | Min                                       | Мах  | Units                 |   |  |  |  |
|-------------------------------------------|-------------------------------------------|------|-----------------------|---|--|--|--|
| Power supply voltages                     |                                           |      |                       |   |  |  |  |
| VDD_xx                                    | PMIC supply voltages not listed elsewhere |      |                       |   |  |  |  |
| <ul> <li>Steady state</li> </ul>          |                                           | -0.5 | 6.0                   | V |  |  |  |
| <ul> <li>Transient (&lt;10 ms)</li> </ul> | 1 <sup>2</sup> die                        | -0.5 | 7.0                   | V |  |  |  |
| VPH_PWR                                   | Handset supply voltage                    | -0.5 | 6.0                   | V |  |  |  |
| VCONN, CC1, CC2                           | 6-0 ang                                   | -0.3 | 6.0                   | V |  |  |  |
| GPIO7, GPIO8                              | VPH_PWR+0.5V                              |      |                       |   |  |  |  |
| Signal pins                               | SUL                                       |      |                       |   |  |  |  |
| V_IN                                      | Voltage on any nonsupply pin <sup>1</sup> | -0.5 | V <sub>XX</sub> + 0.5 | V |  |  |  |

| Table 3-1 | Absolute    | maximum | ratings |
|-----------|-------------|---------|---------|
|           | / 100010100 |         |         |

1. V<sub>XX</sub> is the supply voltage associated with the input or output pin to which the test voltage is applied.

# 3.2 Operating conditions

Operating conditions include parameters that are under the control of the user: power-supply voltage and ambient temperature (Table 3-2). The PM8953 device meets all performance specifications listed in Section 3.3 through Section 3.11 when used within the operating conditions, unless otherwise noted in those sections (provided the absolute maximum ratings have never been exceeded).

## Table 3-2 Operating conditions

|                       | Parameter                                       | Min  | Тур | Max                   | Units |  |  |  |  |
|-----------------------|-------------------------------------------------|------|-----|-----------------------|-------|--|--|--|--|
| Power supply voltages |                                                 |      |     |                       |       |  |  |  |  |
| VDD_AUD_IO            | Pad voltage for digital I/Os to and from the IC | 1.75 | -   | 1.85                  | V     |  |  |  |  |
| VCOIN <sup>1</sup>    | Coin cell voltage                               | 2.0  | 3.0 | 3.25                  | V     |  |  |  |  |
| VDD_xx <sup>2</sup>   |                                                 | 3.0  | 3.6 | TBD                   | V     |  |  |  |  |
| VPH_PWR               | Handset supply voltage                          | 3.0  | 3.6 | TBD                   | V     |  |  |  |  |
| VCONN                 |                                                 | 3.7  | -   | 6                     | V     |  |  |  |  |
| CC1, CC2              | á l                                             | 0    | -   | 5.5                   | V     |  |  |  |  |
| Signal pins           |                                                 |      |     | 1                     |       |  |  |  |  |
| V_IN                  | Voltage on any nonsupply pin <sup>3</sup>       | 0    | -   | V <sub>XX</sub> + 0.5 | V     |  |  |  |  |
| Thermal conditions    | s 19 her                                        |      |     | I                     | I     |  |  |  |  |
| T <sub>A</sub>        | Ambient temperature                             | -30  | +25 | 85                    | °C    |  |  |  |  |
| TJ                    | Junction temperature                            | -30  | +25 | 125                   | °C    |  |  |  |  |

1. A minimum 2.0 V coin cell voltage guarantees stable and reliable logic operation.

2. The lowest battery and VDD voltage where parametric performance is guaranteed is 3.0 V. However, the UVLO comparators and other circuits must work properly below this voltage to the UVLO threshold.

3.  $V_{XX}$  is the supply voltage associated with the input or output pin to which the test voltage is applied.

# 3.3 DC power consumption

This section specifies DC power-supply currents for the various IC operating modes (Table 3-3). Typical currents are based on IC operation at room temperature (+25°C) using default parameter settings.

| Table 3-3 DC power-supply current | Table 3-3 | DC power-supply currents |
|-----------------------------------|-----------|--------------------------|
|-----------------------------------|-----------|--------------------------|

| Parameter |                                          | Parameter Comments |   | Тур | Мах | Units |  |
|-----------|------------------------------------------|--------------------|---|-----|-----|-------|--|
| I_BAT1    | Supply current, active mode <sup>1</sup> | _                  | - | TBD | TBD | mA    |  |
| I_BAT2    | Supply current, sleep mode <sup>2</sup>  | -                  | _ | TBD | TBD | μA    |  |
| I_BAT3    | Supply current, off mode <sup>3</sup>    | -                  | _ | TBD | TBD | μA    |  |

- 1. I\_BAT1 is the total supply current from the main battery with the PMIC on, 19.2 MHz XO on, BB\_CLK1, and RF\_CLK3 on but not loaded, and these voltage regulators on but not loaded, with these voltage settings: VREG\_S1 = 1.225 V, VREG\_S2 = 1.225 V, VREG\_S3 = 1.2875 V, VREG\_S4 = 2.05 V, VREG\_S5 = 1.225 V, VREG\_S6 = 1.225 V, VREG\_L2 = 1.2 V, VREG\_L3 = 1.225 V, VREG\_L5 = 1.80 V, VREG\_L6 = 1.80 V, VREG\_L7 = 1.80 V, VREG\_L8 = 2.90 V, VREG\_L11 = 2.95 V, VREG\_L12 = 2.95 V, VREG\_L13 = 3.075 V, VREG\_L17 = LCD TC Ctrl, VREG\_XO = 1.80 V, VREG\_RFCLK = 1.80 V, MPP\_1 = 1.25 V (analog out), and VREF\_LPDDR = 0.5 × (VREG\_S3).
- I\_BAT2 is the total supply current from the main battery with the PMIC on, 19.2 MHz XO on, SLEEP\_CLK on, the voltage regulators forced into their low-power modes, not loaded, with these voltage settings: VREG\_S2 = 0.5 V, VREG\_S3 = 1.2625 V, VREG\_L2 = 1.2 V, VREG\_L3 = 0.65 V, VREG\_S4 = 1.9 V, VREG\_L5 = 1.80 V, and MPP\_1 = ON. All CLK\_EN signals are low, VREF\_LPDDR is on, and the master band gap (MBG) is in its low-power mode.
- 3. I\_BAT3 is the total supply current from the main battery with the PMIC off and an on-chip oscillator on. This only applies from -30 to 60°C.

# 3.4 Digital logic characteristics

PM8953 digital I/O characteristics, such as voltage levels, current levels, and capacitance, are specified in Table 3-4.

| Table 3-4 D | Digital I/O | characteristics |
|-------------|-------------|-----------------|
|-------------|-------------|-----------------|

| Parameter          |                                        | Comments 1                                     | Min                    | Тур | Мах                    | Units |
|--------------------|----------------------------------------|------------------------------------------------|------------------------|-----|------------------------|-------|
| $V_{\text{IH}}$    | High-level input voltage               | 5. 2 <sup>th</sup>                             | 0.65 × V <sub>IO</sub> | _   | V <sub>IO</sub> + 0.3  | V     |
| V <sub>IL</sub>    | Low-level input voltage                | 30 110                                         | -0.3                   | _   | 0.35 × V <sub>IO</sub> | V     |
| V <sub>SHYS</sub>  | Schmitt hysteresis voltage             | S AN                                           | 15                     | -   | _                      | mV    |
| ۱ <sub>L</sub>     | Input leakage current <sup>2</sup>     | $V_{IO}$ = maximum, $V_{IN}$ = 0 V to $V_{IO}$ | _                      | _   | ±0.20                  | μA    |
| V <sub>OH</sub>    | High-level output voltage              | I <sub>out</sub> = I <sub>OH</sub>             | V <sub>IO</sub> - 0.45 | _   | V <sub>IO</sub>        | V     |
| V <sub>OL</sub>    | Low-level output voltage               | I <sub>out</sub> = I <sub>OL</sub>             | 0                      | _   | 0.45                   | V     |
| I <sub>OH</sub>    | High-level output current <sup>3</sup> | V <sub>out</sub> = V <sub>OH</sub>             | 3                      | -   | _                      | mA    |
| I <sub>OL</sub>    | Low-level output current <sup>3</sup>  | $V_{out} = V_{OL}$                             | -                      | _   | -3                     | mA    |
| I <sub>ОН_ХО</sub> | High-level output current <sup>3</sup> | XO digital clock outputs only                  | 6                      | _   | _                      | mA    |
| I <sub>OL_XO</sub> | Low-level output current <sup>3</sup>  | XO digital clock outputs only                  | _                      | -   | -6                     | mA    |
| C <sub>IN</sub>    | Input capacitance 4                    | -                                              | -                      | _   | 5                      | pF    |

1. V<sub>IO</sub> is the supply voltage for the MSM/PMIC interface (most PMIC digital I/Os).

2. MPP and GPIO pins comply with the input leakage specification only when configured as a digital input or set to the tri-state mode.

3. Output current specifications apply to all digital outputs unless specified otherwise, and are superseded by specifications for specific pins (such as MPP and GPIO pins).

4. Input capacitance is guaranteed by design but is not 100% tested.

# 3.5 Input power management

## 3.5.1 Coin cell charging

Coin cell charging is enabled through software control and powered from VBAT. The on-chip charger is implemented using a programmable voltage source and a programmable series resistor. The modem IC reads the coin cell voltage through the PMIC's analog multiplexer to monitor charging. Coin cell charging performance is specified in Table 3-5.

| Table 3-5 | Coin cell charging performance specifications |
|-----------|-----------------------------------------------|
|-----------|-----------------------------------------------|

| Parameter                             | Comments                                           | Min  | Тур  | Max  | Units |
|---------------------------------------|----------------------------------------------------|------|------|------|-------|
| Target regulator voltage <sup>1</sup> | V <sub>IN</sub> > 3.3 V, I <sub>CHG</sub> = 100 μA | 2.50 | 3.10 | 3.20 | V     |
| Target series resistance <sup>2</sup> | -                                                  | 800  | -    | 2100 | Ω     |
| Coin cell charger voltage error       | I <sub>CHG</sub> = 0 μA                            | -    | -    | ±5   | %     |
| Coin cell charger resistor error      |                                                    | -    | -    | ±20  | %     |
| Dropout voltage <sup>3</sup>          | I <sub>CHG</sub> = 2 mA                            | -    | _    | 200  | mV    |
| Ground current, charger enabled       | PMIC = off; VCOIN = open                           |      |      |      |       |
| VBAT = 3.6 V, T = 27°C                | 1° 011                                             | -    | 4.5  | -    | μA    |
| VBAT = 2.5–5.5 V                      |                                                    | -    | -    | 8    | μA    |

1. Valid regulator voltage settings are 2.5, 3.0, 3.1, and 3.2 V.

2. Valid series resistor settings are 800, 1200, 1700, and 2100  $\Omega.$ 

Set the input voltage (VBAT) to 3.5 V. Note the charger output voltage; call this value V<sub>0</sub>. Decrease the input voltage until the regulated output voltage (V<sub>1</sub>) drops 100 mV (V<sub>1</sub> = V<sub>0</sub> - 0.1 V). The voltage drop across the regulator under this condition is the dropout voltage (V<sub>dropout</sub> = VBAT - V<sub>1</sub>).

## 3.5.2 Type-C interface

PM8953 has integrated Type-C interface support and works with the PMI8952 charger to provide multiple Type-C features, including mode configuration, channel configuration, current advertisement, and active cable support. The Type-C FSM interface is based on status of GPIO\_7, GPIO\_8, and VCONN. The Type-C interface performance is specified in Table 3-6.

## Table 3-6 Electrical characteristics

| Symbol                    | Parameter                                                               | Conditions                                                                                                  | Min               | Тур | Max  | Units |
|---------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------|-----|------|-------|
| DC operating cha          | aracteristics                                                           |                                                                                                             |                   | •   |      | L     |
|                           | °C, VUSBIN = +5.0 V, +<br>noted. All voltages are r                     |                                                                                                             |                   |     |      |       |
| USB Type-C inter          | rface and detection                                                     |                                                                                                             |                   |     |      |       |
| DFP_I_SRC_<br>STDUSB      | Standard USB current source                                             | In downstream<br>facing port (DFP)<br>mode                                                                  | facing port (DFP) |     | 96   | μA    |
| Rd                        | Rd pull-down resistor to ground                                         | In upstream facing port (UFP) mode                                                                          | 4.59              | 5.1 | 5.61 | kΩ    |
| Ra                        | Ra pull-down resistor to ground                                         | Powered cable attached                                                                                      | 800               | -   | 1200 | kΩ    |
| VCLAMP                    | CC UFP mode clamping threshold                                          | Power off,<br>Vbatt < VUVLO or<br>battery missing                                                           | 0.70              | 1.1 | 1.32 | V     |
| VCC_SINK                  | Voltage on CC pins<br>when device is in<br>sink role<br>(initially UFP) | vRa detected                                                                                                | 0.025             | -   | 0.15 | V     |
|                           |                                                                         | vRd-connect<br>detected                                                                                     | 0.25              | _   | 2.04 | V     |
|                           |                                                                         | vRd-USB detected                                                                                            | 0.25              | -   | 0.61 | V     |
|                           |                                                                         | vRd-1.5 detected                                                                                            | 0.7               | -   | 1.16 | V     |
|                           |                                                                         | vRd-3.0 detected                                                                                            | 1.31              | -   | 2.04 | V     |
| VCC_SOURCE_<br>DefaultUSB | Voltage on CC pins<br>when device is in<br>sink role (initially         | vRa (powered<br>cable/adapter)<br>detected                                                                  | 0                 | -   | 0.15 | V     |
|                           | UFP) and advertising default                                            | vRd (sink) detected                                                                                         | 0.25              | -   | 1.6  | V     |
|                           | USB current                                                             | No connect<br>(vOPEN)                                                                                       | 1.65              | -   | _    | V     |
| tCC_Debounce              | The time a port<br>waits before it can<br>determine it is<br>attached   | Transitioning<br>between the<br>Attached.Wait state<br>and the<br>Attached.SRC or<br>Attached.SNK<br>states | 100               | -   | 200  | ms    |

| Symbol               | Parameter                                                                                                                                               | Conditions                                                                                                  | Min  | Тур | Max  | Units |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------|-----|------|-------|
| tPD_Debounce         | The time a port<br>waits before it can<br>determine it is<br>either detached or<br>there has been a<br>change in the<br>Type-C current<br>advertisement | Transitioning<br>between the<br>Attached.Wait state<br>and the<br>Attached.SRC or<br>Attached.SNK<br>states | 10   | _   | 20   | ms    |
| VCONN                | VCONN voltage<br>range                                                                                                                                  | VCONN enabled                                                                                               | 4.75 | -   | 5.25 | V     |
| ILIM_VCONN           | VCONN current<br>limit                                                                                                                                  | VCONN enabled<br>and powered from<br>4.75 V–5.5 V<br>supply with a<br>maximum output<br>power ≥ 1.0 W       | 210  | 325 | -    | mA    |
| tVCONN_ON            | Maximum time<br>from when PMI<br>supplies Vbus in<br>the Attached.SRC<br>state to when<br>Vconn reaches 5 V                                             | DFP mode, Vbus ≥<br>5 V, VCONN<br>powering on                                                               | _    | _   | 2    | ms    |
| <sup>t</sup> vbus_on | Maximum time<br>from entering the<br>Attached.SRC<br>state until Vbus<br>reaches 5 V                                                                    | DFP mode, charger<br>boost enabled                                                                          | -    | 275 | _    | ms    |

20 Shings

#### Table 3-6 Electrical characteristics

#### 3.6 Output power management

Output power management circuits include:

- Band-gap voltage reference circuit
- Seven SMPS circuits
- 23 LDO linear regulators
- Voltage switches

The PM8953 device provides all the regulated voltages needed for most wireless handset applications. Independent regulated power sources are required for various electronic functions to avoid signal corruption between diverse circuits, to support power-management sequencing, and to meet different voltage-level requirements.

The PM8953 device provides a total of 30 programmable voltage regulators, with all outputs derived from a common band-gap reference circuit. Each regulator has a low-power mode setting for power savings.

Table 3-7 lists a high-level summary of all regulators and their intended uses.

I

## Table 3-7 PM8953 regulators and their intended uses

| Function         | Circuit type | Default voltage (V) <sup>1</sup>                                                                | Specified range<br>(V) <sup>2</sup><br>(MSM8953) | Programmable range<br>(V) | Rated<br>current (mA) | Default on | Expected use (MSM8953)                                                        |
|------------------|--------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------|-----------------------|------------|-------------------------------------------------------------------------------|
| S1               | SMPS         | 0.87                                                                                            | 0.4–1.14                                         | 0.32–2.04                 | 3000                  | N          | MSM modem                                                                     |
| S2               | SMPS         | 0.87                                                                                            | 0.4–1.14                                         | 0.32–2.04                 | 4000                  | Y          | MSM core and graphics                                                         |
| S3               | SMPS         | 1.225                                                                                           | 1.2–1.25                                         | 0.32–2.04                 | 2000                  | Y          | LPDDR2 and LPDDR3, MIPI CSI, an<br>DSI. Low-voltage LDOs<br>(1, 2, 3, and 23) |
| S4               | SMPS         | 2.04                                                                                            | 1.2–1.25                                         | 0.32–2.04                 | 2000                  | Y          | High-voltage LDOs<br>(4, 5, 6, 7, 16, 19 RFCLK, and XO)                       |
| S5               | SMPS         | 0.87                                                                                            | 0.4–1.14                                         | 0.350–1.355               | 3750                  | Y          | MSM applications processor                                                    |
| S6               | SMPS         | 0.87                                                                                            | 0.4–1.14                                         | 0.350-1.355               | 3750                  | Y          | MSM applications processor                                                    |
| S7               | SMPS         | 0.915                                                                                           | 0.900-1.350V                                     | 0.375–1.5625              | 2000                  | Y          | MSM VDD memory rail (VDDMX)                                                   |
| L1               | NMOS LDO     | 1.000                                                                                           | 1.000                                            | 0.375–1.5375              | 600                   | N          | RFICs                                                                         |
| L2               | NMOS LDO     | 1.100                                                                                           | 1.100                                            | 0.375–1.5375              | 1200                  | Y          | Camera: digital                                                               |
| L3               | NMOS LDO     | 0.925                                                                                           | 0.925                                            | 0.375–1.5375              | 600                   | Y          | MSM DSI PLL and USB                                                           |
| L4               | PMOS LDO     | 1.800                                                                                           | 1.800                                            | 1.750–3.3375              | 450                   | N          | RFICs and GPS eLNA                                                            |
| L5 <sup>3</sup>  | PMOS LDO     | 1.800                                                                                           | 1.800                                            | 1.750–3.3375              | 600                   | Y          | Most digital I/Os, MSM pad groups 3 and 7, LPDDR, and eMMC                    |
| L6               | PMOS LDO     | 1.800                                                                                           | 1.800                                            | 1.750–3.3375              | 300                   | N          | MSM QFPROM, camera, touchscreen, display, and sensors                         |
| L7               | PMOS LDO     | 1.800                                                                                           | 1.800                                            | 1.750–3.3375              | 300                   | Y          | MSM analog, USB and PLLs, WCN XO, and PM baseband clock driver                |
| L8               | PMOS LDO     | 2.900                                                                                           | 2.900                                            | 1.750–3.3375              | 600                   | Y          | eMMC                                                                          |
| L9               | PMOS LDO     | V <sub>out</sub> = 3.3 V for<br>VBAT > 3.575 V; V <sub>out</sub> =<br>3 V for VBAT < 3.575<br>V | 3.000–3.300                                      | 1.750–3.3375              | 600                   | N          | WCN                                                                           |
| L10              | PMOS LDO     | 3.0                                                                                             | 3.0                                              | 1.750–3.3375              | 150                   | N          | Sensors and touchscreen                                                       |
| L11 <sup>4</sup> | PMOS LDO     | 2.950                                                                                           | 2.950                                            | 1.750–3.3375              | 800                   | Y          | Micro SD                                                                      |

| Function         | Circuit type  | Default voltage (V) <sup>1</sup> | Specified range<br>(V) <sup>2</sup><br>(MSM8953) | Programmable range<br>(V) | Rated<br>current (mA) | Default on | Expected use (MSM8953)                      |
|------------------|---------------|----------------------------------|--------------------------------------------------|---------------------------|-----------------------|------------|---------------------------------------------|
| L12 <sup>3</sup> | PMOS LDO      | 2.950                            | 1.800/2.950                                      | 1.750–3.3375              | 50                    | Y          | MSM pad group 2                             |
| L13              | PMOS LDO      | 3.125                            | 3.125                                            | 1.750–3.3375              | 150                   | Y          | MSM USB and PMIC and external codec audio   |
| L14 <sup>4</sup> | PMOS LDO      | 1.800                            | 1.800/3                                          | 1.750–3.3375              | 50                    | N          | MSM pad group 5, dual-voltage UIM1, and NFC |
| L15 <sup>4</sup> | PMOS LDO      | 1.800                            | 1.800/3                                          | 1.750–3.3375              | 50                    | N          | MSM pad group 6 and dual-voltage<br>UIM2    |
| L16              | PMOS LDO      | 1.800                            | 1.800                                            | 1.750–3.3375              | 5                     | N          | PMIC HKADC                                  |
| L17              | PMOS LDO      | 2.850                            | 2.850                                            | 1.750-3.3375              | 300                   | N          | Camera and display                          |
| L18              | PMOS LDO      | 2.700                            | 2.700                                            | 1.750-3.3375              | 150                   | N          | QTI RF front-end                            |
| L19              | NMOS LDO      | 1.350                            | 1.350                                            | 0.375–1.5375              | 600                   | Ν          | MSM analog, WCN, and WGR                    |
| L20              | Low-noise LDO | 1.74                             | 1.74                                             | 1.74–3.3375               | 5                     | Y          | PMIC XO circuits                            |
| L21              | Low-noise LDO | 1.74                             | 1.74                                             | 1.74–3.3375               | 5                     | Y          | PMIC RF clock buffers                       |
| L22              | PMOS LDO      | 2.800                            | 2.800                                            | 1.750-3.3375              | 150                   | N          | Camera: analog                              |
| L23              | NMOS LDO      | 1.15                             | 1.15                                             | 0.375–1.5375              | 600                   | N          | Camera: digital                             |

Table 3-7 PM8953 regulators and their intended uses (cont.)

1. All regulators have default voltage settings, whether or not they default on; the voltage and state depends upon the programmable boot sequencer (PBS) configuration.

2. The specified voltage range is the programmed range for which performance is guaranteed to meet all specifications.

For usage outside this range, submit a case to QTI for approval. **NOTE:** LDO-rated current specifications are only valid while maintaining their specified headroom.

3. L5 powers internal circuits and limited to 1.8 V operation; its programmed voltage should not be changed, and it should not be turned off.

4. L11, L14, and L15, as well as all PMOS LDOs have OCP.

## **3.6.1 Reference circuit**

All PMIC regulator circuits, and some other internal circuits, are driven by a common, on-chip voltage reference circuit. An on-chip series resistor supplements an off-chip 0.1  $\mu$ F bypass capacitor at the REF\_BYP pin to create a low-pass function that filters the reference voltage distributed throughout the device.

**NOTE** Do not load the REF\_BYP pin. Use an odd MPP configured as an analog output if the reference voltage is needed off-chip.

Applicable voltage reference performance specifications are given in Table 3-8.

 Table 3-8
 Voltage reference performance specifications

| Parameter                                 | Comments                                                | Min | Тур   | Max | Units |
|-------------------------------------------|---------------------------------------------------------|-----|-------|-----|-------|
| Nominal internal VREF                     | At the REF_BYP pin                                      | _   | 1.250 | _   | V     |
| Output voltage deviations                 |                                                         |     |       |     |       |
| <ul> <li>Normal operation,</li> </ul>     | <ul> <li>Over temperature only, -20 to 120°C</li> </ul> | -   | -     | TBD | %     |
| temperature only                          | <ul> <li>All operating conditions</li> </ul>            | _   | _     | TBD | %     |
| <ul> <li>Normal operation, all</li> </ul> | <ul> <li>All operating conditions</li> </ul>            | _   | _     | TBD | %     |
| <ul> <li>Sleep mode, all</li> </ul>       |                                                         |     |       |     |       |

## 3.6.2 SMPS S1-S4,S7

The PM8953 device includes five SMPS circuits; the corresponding output is VREG\_S1 to VREG\_S4 and VREG\_S7. It supports PWM, HCPFM, retention mode (low quiescent current), PFM modes, and the automatic transition between PWM and PFM modes, depending on the load current. Pertinent performance specifications are given in Table 3-9.

| Table 3-9 | HF-SMPS | performance specifications |
|-----------|---------|----------------------------|
|-----------|---------|----------------------------|

| Parameter                                                              | Comments <sup>1, 2</sup>          | Min  | Тур | Мах  | Units |
|------------------------------------------------------------------------|-----------------------------------|------|-----|------|-------|
| Output voltage ranges                                                  | Programmable range                | 0.32 |     | 2.04 | V     |
| Rated load current (I_rated) <sup>3</sup> <ul> <li>PWM mode</li> </ul> | Continuous current delivery       |      |     |      |       |
| □ S1                                                                   |                                   | 3000 | _   | _    | mA    |
| □ S2                                                                   |                                   | 4000 | -   | _    | mA    |
| □ \$3                                                                  |                                   | 2000 | -   | -    | mA    |
| □ \$4                                                                  |                                   | 2000 | -   | -    | mA    |
| □ S7                                                                   |                                   | 2000 | -   | -    | mA    |
| PFM mode (all)                                                         |                                   | 200  | -   | -    | mA    |
| <ul> <li>Retention mode</li> </ul>                                     |                                   | TBD  | -   | -    |       |
| Over current limit                                                     | VREG pin shorted; set value = lim | TBD  | TBD | TBD  | mA    |

| Parameter                                                                  | Comments <sup>1, 2</sup>                                                         | Min              | Тур     | Max | Units  |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------|---------|-----|--------|
| Overall DC voltage output error                                            | Over voltage, temperature, and process variations, plus load and line regulation |                  |         |     |        |
| PWM mode                                                                   | V <sub>out</sub> ≥ 0.8 V, I_rated/2                                              | -2               | -       | 2   | %      |
|                                                                            | ■ 0.32 ≤ V <sub>out</sub> < 0.8 V, I_rated/2                                     | -16              | -       | 16  | mV     |
| <ul> <li>PFM and retention mode</li> </ul>                                 | ■ $V_{out} \ge 0.8 \text{ V}, \text{ I_rated/2}$                                 | -2               | -       | 4   | %      |
|                                                                            | ■ $0.32 \le V_{out} < 0.8 \text{ V}, 100 \text{mA}$                              | o <sup>-16</sup> | _       | 40  | mV     |
| Enable settling time                                                       | Enable to 1% of final value; no load                                             | -                | _       | 500 | μs     |
| Enable overshoot                                                           | Slow start, no load                                                              |                  |         |     |        |
| ■ V <sub>out</sub> < 1.0 V                                                 |                                                                                  | _                | _       | 70  | mV     |
| Voltage step settling time per LSB                                         | To within 1% of the final value                                                  | -                | _       | TBD | μs     |
| Load transient response (auto and PWM)                                     | 400 mA load step, from 10 mA to I_rated range in > 1µs steps                     | -50              | _       | +70 | mV     |
| Response to mode transitions <ul> <li>PWM-to-PFM and vice versa</li> </ul> | TBD mA load                                                                      | -50              | _       | +70 | mV     |
| Output ripple voltage                                                      | Tested at the switching frequency                                                |                  |         |     |        |
| PWM pulse-skipping mode                                                    | <ul> <li>40 mA load; 20 MHz<br/>measurement bandwidth</li> </ul>                 | _                | 20      | 40  | mVpp   |
| PWM nonpulse-skipping mode                                                 | <ul> <li>I_rated; 20 MHz measurement<br/>bandwidth</li> </ul>                    | -                | 10      | 20  | mVpp   |
| PFM mode                                                                   | <ul> <li>50 or 100 mA load; 20 MHz<br/>measurement bandwidth</li> </ul>          | -                | -       | 50  | mVpp   |
| <ul> <li>High-current PFM</li> </ul>                                       | <ul> <li>50 or 100 mA load; 20 MHz</li> </ul>                                    | _                | _       | 70  | mVpp   |
| <ul> <li>Retention mode</li> </ul>                                         | measurement bandwidth                                                            | -                | 55      | -   | mVpp   |
| Load regulation                                                            | $V_{in} \ge V_{out} + 1 V;$<br>I_load = 0.01 × I_rated to I_rated                | _                | -       | TBD | %      |
| Line regulation                                                            | V <sub>in</sub> = 3.2–4.2 V; I_load = 100 mA                                     | -                | -       | TBD | %/V    |
| Power-supply ripple rejection                                              | PSRR                                                                             |                  |         |     |        |
| ■ 50 Hz–1 kHz                                                              |                                                                                  | TBD              | -       | -   | dB     |
| 1 kHz–100 kHz                                                              |                                                                                  | TBD              | -       | _   | dB     |
| 100 kHz–1 MHz                                                              |                                                                                  | TBD              | -       | -   | dB     |
| Output noise                                                               | -                                                                                |                  |         |     |        |
| ■ F < 5 kHz                                                                |                                                                                  | -                | TBD     | _   | dBm/Hz |
| ■ F = 5 kHz–10 kHz                                                         |                                                                                  | -                | TBD     | -   | dBm/Hz |
| ■ F = 10 kHz-500 kHz                                                       |                                                                                  | -                | TBD     | _   | dBm/Hz |
| ■ F = 500 kHz-1 MHz                                                        |                                                                                  | -                | TBD     | -   | dBm/Hz |
| ■ F > 1 MHz                                                                |                                                                                  | -                | TBD     | _   | dBm/Hz |
| Ground current                                                             | No load                                                                          |                  |         |     |        |
| <ul> <li>PWM mode</li> <li>DEM mode (auto)</li> </ul>                      |                                                                                  | -                | 550     | _   | μΑ     |
| <ul><li>PFM mode (auto)</li><li>Retention mode</li></ul>                   |                                                                                  | _                | 50<br>1 | _   | μΑ     |
| Retention mode                                                             |                                                                                  | _                | 1       | _   | μA     |

| Table 3-9 HF-SMPS performance specifications (co | ont. | ) |
|--------------------------------------------------|------|---|
|--------------------------------------------------|------|---|

- 1. All specifications apply over the device's operating conditions, load current range, and capacitor ESR range, unless noted otherwise.
- 2. Voltage error, efficiency, and output ripple voltage characteristics may degrade if the rated output current is exceeded.
- 3. The rated load current is the current the regulator can deliver and still maintain regulation. The minimum specification guarantees that the regulators can deliver at least these currents before losing regulation.

<TBD>

-2019:06:16 PDT 19:06:16 PDT 19:06:16:000 SHIVANSON

Figure 3-1 VREG\_S3 efficiency plot (PWM, PFM, and auto mode)

## 3.6.3 SMPS S5 and S6

The PM8953 device includes two multiphase SMPS circuits that are combined to supply the MSM application processors; their corresponding output pins are VREG\_S5 and VREG\_S6. PWM, PFM, and pulse-skipping modes are supported. New features introduced in these SMPS are autonomous phase control (APC) and autonomous mode control (AMC).

- APC: During multiphase operation, the phase count is autonomously managed by the hardware to select the appropriate number of phases for optimal efficiency based upon the load current.
- AMC: The hardware manages the selection of PWM or PFM mode based upon the load current.

Table 3-10 lists pertinent target performance specifications.

 Table 3-10
 FT-SMPS performance specifications

| Parameter                                      | Comments 1, 2, 3                                                                                                                                   | Min   | Тур  | Мах                                                                                                                                | Units |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|------------------------------------------------------------------------------------------------------------------------------------|-------|
| General characteristics                        | CY                                                                                                                                                 |       |      |                                                                                                                                    |       |
| Output voltage range                           | ■ LV range                                                                                                                                         | 0.350 | _    | 1.350                                                                                                                              | V     |
|                                                | MV range                                                                                                                                           | 0.700 |      |                                                                                                                                    | V     |
| CMC NPM or AMC NPM (any n                      | umber of phases)                                                                                                                                   | I     |      |                                                                                                                                    |       |
| Rated load current                             | I_rated per phase                                                                                                                                  |       |      |                                                                                                                                    |       |
|                                                | <ul> <li>Single phase</li> </ul>                                                                                                                   | 3.75  | -    | -                                                                                                                                  | А     |
|                                                | <ul> <li>Multiphase</li> </ul>                                                                                                                     | 7.5   | -    | 1.350         2.200         -         -         2         16         15         20         +25         0.80         2.3         90 | А     |
| DC output voltage accuracy                     | Including MBG, make tolerance, line and load regulation, and temperature (-30 to 125°C)                                                            |       |      | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                             |       |
|                                                | <ul> <li>VREG ≥ 0.8</li> </ul>                                                                                                                     | -2    | —    | 2                                                                                                                                  | %     |
|                                                | <ul> <li>VREG &lt; 0.8</li> </ul>                                                                                                                  | -16   | _    | 1.350<br>2.200<br>-<br>-<br>-<br>2<br>16<br>15<br>20<br>+25<br>0.80<br>2.3<br>90                                                   | mV    |
| Ripple voltage                                 | Measured across C <sub>OUT</sub> where sense lines are tapped                                                                                      | _     | 7    | 15                                                                                                                                 | mVpp  |
| Line transient response                        | GSM burst induced line transient is<br>represented by: Rbat = 350 m $\Omega$ ,<br>Istep = 2 A with 10 µs slew, and<br>VPH_PWR capacitance = 100 µF | _     | -    | 20                                                                                                                                 | mVpp  |
| CMC NPM or AMC NPM (multip                     | phase)                                                                                                                                             |       |      |                                                                                                                                    |       |
| Phase current mismatch                         | Relative to the ideal balanced current                                                                                                             | -25   | _    | +25                                                                                                                                | %     |
| Ground current                                 |                                                                                                                                                    | I     |      |                                                                                                                                    |       |
| Ground current<br>CMC NPM                      | No load, single phase                                                                                                                              | -     | 0.55 | 0.80                                                                                                                               | mA    |
| Ground current per phase<br>CMC NPM or AMC NPM | No load, multiphase                                                                                                                                | -     | 1.9  | 2.3                                                                                                                                | mA    |
| Ground current<br>CMC LPM                      | No load, single or multiphase (sleep configuration commanded LPM)                                                                                  | -     | 55   | 90                                                                                                                                 | μA    |
| Ground current per phase<br>AMC LPM            | No load, single or multiphase                                                                                                                      | -     | 80   | 110                                                                                                                                | μA    |

| Parameter                                 | Comments 1, 2, 3                                                                                                                  | Min       | Тур | Мах     | Units   |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------|-----|---------|---------|
| CMC NPM or AMC load transie               | nt (any number of phases)                                                                                                         |           |     |         | I       |
| Response to load transient                | 2 A load step per phase                                                                                                           | -50       | -   | 80      | mV      |
| (undershoot/overshoot)                    | Transient step ~100 ns, 1 V output <sup>4</sup>                                                                                   |           |     |         |         |
| CMC LPM or AMC LPM, CPC, o                | or APC (any number of phases)                                                                                                     |           |     | I       |         |
| DC output voltage accuracy                | Including MBG, make tolerance, line and<br>load regulation, and temperature<br>(-30 to 125°C)<br>■ VSET ≥ 0.8 V<br>■ VSET < 0.8 V | -2<br>-16 |     | 4<br>32 | %<br>mV |
| Ripple voltage                            | Measured across C <sub>OUT</sub> where sense lines are tapped                                                                     |           |     |         |         |
|                                           | <ul> <li>Single phase</li> </ul>                                                                                                  | _         | 25  | 40      | mVpp    |
|                                           | <ul> <li>Multiphase</li> </ul>                                                                                                    | -         | 20  | 35      | mVpp    |
| CMC LPM (any number of phas               | ses)                                                                                                                              |           |     | I       |         |
| Rated load current                        |                                                                                                                                   | -         | 0.8 | -       | Α       |
| Transition specifications                 |                                                                                                                                   |           |     | 1       | l       |
| Phase-adding warm up time                 | NPM CPC change in phase count                                                                                                     | _         | 25  | -       | μs      |
| Phase current settling time               | Time to achieve the phase-current match<br>(steady state loading, all active phases in<br>CCM, and change in the phase count)     | -         | _   | 200     | μs      |
| Other general characteristics             | 5-0 ang                                                                                                                           |           |     |         |         |
| Enable settling time                      | V <sub>OUT</sub> slewing to within 1% of the final value                                                                          | _         | 200 | _       | μs      |
| Voltage stepper<br>(undershoot/overshoot) | 1 LSB step slewing                                                                                                                | -5        | -   | 5       | mV      |
| Peak output impedance                     | 1 kHz–1 MHz                                                                                                                       | _         | -   | 40      | mΩ      |
| Discharge impedance                       | _                                                                                                                                 | _         | 32  | _       | Ω       |

### Table 3-10 FT-SMPS performance specifications (cont.)

1. General specifications apply overall operating conditions of supply, temperature, process, and component variances, except where noted otherwise.

2. Default components are assumed (470 nH, 2 × 22 μF per phase) along with deployed configurations for the MSM8953 chipset.

3. Where parametric performance is influenced by external components, baseline components are assumed. Values listed are the component's specified values, not the derated values. Derating must be accounted for to ensure robustness. The initial assumption is 50% derating on capacitors pending further assessment of specific component selections (an approximate allowance for temperature, tolerance, and voltage derating).

4. + 100 mV maximum overshoot for  $V_{OUT}$  < 0.7 V.

TBD

## Figure 3-2 VREG\_S5 and VREG\_S6 efficiency plot (auto mode)

## 3.6.4 Linear regulators

Eight designs are used to implement the 23 LDO linear regulators within the PMIC:

- NMOS rated for 1200 and 600 mA (N1200 and N600)
- PMOS rated for 600, 450, 300, 150, and 50 mA (P600, P450, P300, P150, and P50)
- Low-noise PMOS for on-chip clock circuits (VREG\_L16 for HKADC circuits, VREG\_L20 for XO circuits, and L21 for RF CLK buffers)

JANN CONT

- $\square$  Each design has a maximum no-load ground current of 80  $\mu$ A.
- □ Since these LDOs are not used off-chip, their other performance specifications are not published.

All other LDO performance specifications are presented in Table 3-11.

II.

| I | Table 3-11 | LDO performance specifications | ; |
|---|------------|--------------------------------|---|
|---|------------|--------------------------------|---|

| Parameter                                         | Comments <sup>1</sup>                      | Min   | Тур | Мах    | Units  |
|---------------------------------------------------|--------------------------------------------|-------|-----|--------|--------|
| Output voltage (programmable range)               |                                            |       |     |        |        |
| <ul> <li>All NMOS</li> </ul>                      | <ul> <li>12.5 mV steps</li> </ul>          | 0.375 | _   | 1.5375 | V      |
| <ul> <li>All PMOS</li> </ul>                      | ■ 12.5 V steps                             | 1.75  | -   | 3.3375 | V      |
| Rated load current (I_rated), normal <sup>2</sup> | Continuous current delivery                |       |     |        |        |
| N1200                                             |                                            | -     | _   | 1200   | mA     |
| N600                                              | 6                                          | -     | —   | 600    | mA     |
| P600                                              |                                            | -     | -   | 600    | mA     |
| ■ P450                                            |                                            | _     | -   | 450    | mA     |
| P300                                              |                                            | -     | -   | 300    | mA     |
| ■ P150                                            |                                            | -     | _   | 150    | mA     |
| ■ P50                                             |                                            | _     | -   | 50     |        |
| Rated load current, LPM <sup>2</sup>              | Continuous current delivery                |       |     |        |        |
| <ul> <li>N1200</li> </ul>                         |                                            | -     | -   | 100    | mA     |
| ■ P50                                             |                                            | -     | -   | 5      | mA     |
| <ul> <li>All others</li> </ul>                    |                                            | -     | -   | 10     | mA     |
| Maximum pass FET power dissipation                | - 6                                        | -     | -   | 600    | mW     |
| Overall DC voltage output error                   | Over-voltage, temperature, and             |       |     |        |        |
| <ul> <li>Normal mode</li> </ul>                   | process variations plus load and line      |       |     |        |        |
| At default voltage                                | regulation                                 | -2    | -   | 2      | %      |
| At nondefault voltages                            | E 3 Contin                                 | -3    | -   | 3      | %      |
| Low-power mode                                    | C. NO.                                     |       |     |        |        |
| At default voltage                                |                                            | -4    | -   | 4      | %      |
| At nondefault voltages                            |                                            | -5    | -   | 5      | %      |
| Temperature coefficient                           | ~ <u>-</u>                                 | -100  | _   | 100    | ppm/°C |
| Transient settling time <sup>3</sup>              | To within 1% of the final value            | 20    | 100 | 200    | μs     |
| Load transient overshoot/undershoot <sup>3</sup>  |                                            |       |     |        |        |
| <ul> <li>N1200</li> </ul>                         | 0.25 × I_rated to 0.75 × I_rated load step | -4    | -   | 4      | %      |
| N600                                              | 0.01 × I_rated to I_rated load step        | -3    | -   | 3      | %      |
| <ul> <li>All PMOS LDOs</li> </ul>                 | 0.10 × I_rated to 0.90 × I_rated load step | -70   | -   | 100    | mV     |
| Dropout voltage <sup>4, 5</sup>                   | Load at I-rated                            |       |     |        |        |
| <ul> <li>N1200, normal mode</li> </ul>            |                                            | -     | -   | 120    | mV     |
| <ul> <li>N1200, LPM</li> </ul>                    |                                            | -     | -   | 15     | mV     |
| <ul> <li>N600, normal mode</li> </ul>             |                                            | -     | -   | 120    | mV     |
| N600, LPM                                         |                                            | -     | -   | 15     | mV     |
| <ul> <li>All PMOS LDOs, both modes</li> </ul>     |                                            | _     | _   | 300    | mV     |

| Table 3-11 | LDO performance | specifications (cont.) |
|------------|-----------------|------------------------|
|------------|-----------------|------------------------|

| Parameter                          | Comments <sup>1</sup>                | Min | Тур  | Max  | Units |
|------------------------------------|--------------------------------------|-----|------|------|-------|
| NMOS power-supply ripple rejection | PSRR                                 |     |      |      |       |
| <ul> <li>Normal mode</li> </ul>    |                                      |     |      |      |       |
| □ 50 Hz–1 kHz                      |                                      | 60  | 70   | _    | dB    |
| □ 1 kHz–10 kHz                     |                                      | _   | 60   | _    | dB    |
| □ 10 kHz–100 kHz                   |                                      | _   | TBD  | _    | dB    |
| 100 kHz–1 MHz                      |                                      |     |      |      |       |
| – N1200                            | 6                                    | _   | TBD  | -    | dB    |
| – N600                             |                                      | -   | TBD  | -    | dB    |
| <ul> <li>Low-power mode</li> </ul> |                                      |     |      |      |       |
| □ 50 Hz–1 kHz                      |                                      | -   | 50   | -    | dB    |
| □ 1 kHz–100 kHz                    |                                      | -   | 40   | -    | dB    |
| PMOS power-supply ripple rejection | Normal mode                          |     |      |      |       |
| ■ 50 Hz–1 kHz                      |                                      | 43  | _    | _    | dB    |
| 1 kHz–10 kHz                       |                                      | 35  | _    | _    | dB    |
| 10 kHz–100 kHz                     |                                      | 13  | _    | _    | dB    |
| 100 kHz–1 MHz                      | 5                                    | 13  | _    | _    | dB    |
| Soft current limit during startup  | Normal mode; current above I_rated   |     |      |      |       |
| NMOS LDOs                          |                                      | -   | _    | 100  | mA    |
| PMOS LDOs                          | 19:06: 1. con                        | -   | -    | 150  | mA    |
| Bypass mode on-resistance          | 2016-05-30 winder                    |     |      |      |       |
| <ul> <li>N1200</li> </ul>          | S CN                                 | _   | TBD  | TBD  | mΩ    |
| ■ N600                             | 6-0 6119                             | -   | -    | TBD  | Ω     |
| ■ P600                             | OT AL                                | -   | 0.56 | 0.84 | Ω     |
| P450                               | 1111                                 | -   | 0.75 | 1.12 | Ω     |
| ■ P300                             | 2                                    | -   | 1.10 | 1.66 | Ω     |
| ■ P150                             |                                      | -   | 2.20 | 2.40 | Ω     |
| ■ P50                              |                                      | -   | 6.60 | 10   | Ω     |
| Ground current with load           | Percentage of load current           | -   | -    | 0.5  | %     |
| Ground current, no load            | Measured at the battery. I and Q may |     |      |      |       |
| <ul> <li>Normal mode</li> </ul>    | be much higher if LDO is operated in |     |      |      |       |
| □ N1200                            | dropout condition.                   | -   | TBD  | TBD  | μA    |
| □ N600                             |                                      | _   | TBD  | TBD  | μA    |
| All PMOS LDOs                      |                                      | -   | TBD  | TBD  | μA    |
| <ul> <li>Low-power mode</li> </ul> |                                      |     |      |      |       |
| □ N1200                            |                                      | -   | TBD  | TBD  | μA    |
| □ N300                             |                                      | -   | TBD  | TBD  | μA    |
| All PMOS LDOs                      |                                      | _   | TBD  | TBD  | μA    |

| Table 3-11 | LDO | performance | specifications | (cont.) |
|------------|-----|-------------|----------------|---------|
|------------|-----|-------------|----------------|---------|

| Parameter                         | Comments <sup>1</sup> | Min   | Тур  | Max  | Units |
|-----------------------------------|-----------------------|-------|------|------|-------|
| Ground current, bypass mode       | _                     |       |      |      |       |
| <ul> <li>All NMOS LDOs</li> </ul> |                       | _     | TBD  | TBD  | μA    |
| <ul> <li>All PMOS LDOs</li> </ul> |                       | -     | -    | 1    | μΑ    |
| OCP threshold                     |                       |       |      |      |       |
| ■ P50                             | _                     |       |      |      |       |
| ■ P150                            |                       | 163.3 | 245  | 411  | mA    |
| ■ P300                            | 6                     | 309   | 477  | 641  | mA    |
| ■ P450                            |                       | 583   | 747  | 993  | mA    |
| ■ P600                            |                       | TBD   | TBD  | TBD  | TBD   |
|                                   |                       | 885.2 | 1277 | 1732 | mA    |

1. All specifications apply over the device's operating conditions, load current range, and capacitor ESR range, unless noted otherwise.

2. Rated current is the current at which all specifications are met. Higher currents are allowed during normal operation, but more headroom is needed to maintain performance. The low-power mode's current rating should not be exceeded; if so, switch to the normal mode.

3. The stated transient response performance is achieved regardless of the transitory mode— turning the regulator on and off, changing load conditions, changing input voltage, or reprogramming the output voltage setting.

- 4. LDO voltage dropout measurement:
  - -Program the LDO for its desired operating voltage (V\_set\_d).
  - -Measure the output voltage; call this value V\_set\_m.
  - -Adjust the load so that the LDO delivers its rated output current (I\_rated).
  - -Adjust the input voltage until V\_in = V\_set\_m + 0.5 V.
  - -Decrease  $V_{in}$  until  $V_{out}$  drops 100 mV (until  $V_{out}$  = V\_set\_m 0.1 V); call the resulting input value V\_in\_do, and call this output value V\_out\_do.
  - -The voltage drop across the regulator under this condition is the dropout voltage (V\_do = V\_in\_do V\_out\_do).
  - -The LDO can be in bypass mode where the output could potentially be lower than its input voltage. The input voltage to the LDO should be greater than 1 V when in bypass mode.
- 5. The dropout voltage is specified at the full rated current of the LDO. The voltage headroom required to maintain the LDO in regulation depends on the load current of the LDO. The current that an LDO can provide needs to be de-rated based on the headroom. For example, the 600 mA PMOS LDO has a dropout voltage of 300 mV. When headroom is 150 mV, the PMOS LDO can provide 600 × (150/300) = 300 mA current without going out of regulation.

## 3.6.5 Internal voltage-regulator connections

Some regulator supply voltages are connected internally to power other PMIC circuits. These circuits do not operate properly unless their supplies are correct; this requires:

- Certain regulator supply voltages must be delivered at the correct values.
- Corresponding regulator sources must be enabled and set to the proper voltages.

Table 3-12 summarizes these requirements.

| Regulator  | Default | Usage                                               | Comments                      |
|------------|---------|-----------------------------------------------------|-------------------------------|
| VREG_S3    | 1.225 V | MPPs, GPIOs, and VREF_LPDDR                         | Also loaded externally        |
| VREG_L5    | 1.800 V | PON, SLEEP_CLK, SPMI, Digital I/Os, MPPs, and GPIOs | Also loaded externally        |
| VREG_L7    | 1.800 V | Baseband clock drivers                              | Also loaded externally        |
| VREG_L13   | 3.075 V | Microphone bias                                     | Also loaded externally        |
| VREG_L16   | 1.800 V | AMUX and HKADC circuits                             | Plus thermistor circuits only |
| VREG_XO    | 1.800 V | XO circuits                                         | Do not load externally        |
| VREG_RFCLK | 1.800 V | RF clock output buffers                             | Do not load externally        |

# 3.7 General HK

The PMIC includes circuits that support handset-level HK functions—various tasks that must be performed to keep the handset in order. Integration of these functions reduces the external parts count and the associated size and cost. HK functions include an analog switch matrix, multiplexers, and voltage scaling; an HK/XO ADC circuit; system clock circuits; a real-time clock for time and alarm functions; and overtemperature protection.

#### 3.7.1 Analog multiplexer and scaling circuits

A set of analog switches, analog multiplexers, and voltage-scaling circuits select and condition a single analog signal for routing to the on-chip HK/XO ADC. The multiplexer and scaling functions are summarized in Table 3-13.

| Ch # | Description                        | Typical input range (V) 3 | Scaling | Typical output range (V) |
|------|------------------------------------|---------------------------|---------|--------------------------|
| 0–3  | -                                  | _                         | _       | _                        |
| 4    | -                                  | -                         | -       | _                        |
| 5    | VCOIN pin                          | 2.0–3.25                  | 1/3     | 0.67–1.08                |
| 6    | -                                  | -                         | -       | _                        |
| 7    | VPH_PWR pin                        | 2.5–TBD                   | 1/3     | 0.83–1.50                |
| 8    | Die temperature monitor            | 0.4–0.9                   | 1       | 0.4–0.9                  |
| 9    | 0.625 V reference voltage          | 0.625                     | 1       | 0.625                    |
| 10   | 1.25 V reference voltage           | 1.25                      | 1       | 1.25                     |
| 11   | -                                  | -                         | -       | _                        |
| 12   | Buffered 0.625 V reference voltage | 0.63                      | 1       | 0.63                     |
| 13   | -                                  | -                         | -       | _                        |

 Table 3-13
 Analog multiplexer and scaling functions

| Ch #               | Description                   | Typical input range (V) 3                    | Scaling    | Typical output range (V) |
|--------------------|-------------------------------|----------------------------------------------|------------|--------------------------|
| 14–15 <sup>1</sup> | GND_REF and VDD_ADC           | Direct connections to ADC<br>for calibration | -          | -                        |
| 16–19              | MPP_01-MPP_04 pins            | 0–1.7                                        | 1          | 0–1.7                    |
| 20–31              | -                             | -                                            | -          | _                        |
| 32–35              | MPP_01-MPP_04 pins            | 0.3–TBD                                      | 1/3        | 0–1.7                    |
| 36–49              | -                             | -                                            | <u>ه</u> – | -                        |
| 50                 | XO_THERM pin direct           | 0.1–(VL16 - 0.05)                            | 1          | 0.1–(VL16 - 0.05)        |
| 51–53              | -                             | -                                            | -          | _                        |
| 54                 | PA_THERM pin                  | 0.1–(VL8 - 0.05)                             | 1          | 0.1–(VL8 - 0.05)         |
| 55-59              | -                             |                                              | _          | -                        |
| 60                 | XO_THERM through AMUX         | 0.1–(VL16 - 0.05)                            | 1          | 0.1–(VL16 - 0.05)        |
| 61–62              | -                             |                                              | -          | -                        |
| 63                 | Module power off <sup>2</sup> |                                              | -          | -                        |

| Table 3-13 | Analog multiplexer and scaling functions (c | ont.) |
|------------|---------------------------------------------|-------|
|------------|---------------------------------------------|-------|

1. Channels 14 and 15 are for ADC calibration purposes; these signals do not connect to the AMUX input, but rather connect to the ADC input directly.

2. Channel ID 255 should be selected when the analog multiplexer is not being used; this prevents the scalers from loading the inputs.

**NOTE** Gain and offset errors are different through each analog multiplexer channel. Each path should be calibrated individually over its valid gain and offset settings for best accuracy.

Performance specifications pertaining to the analog multiplexer and its associated circuits are listed in Table 3-14.

#### Table 3-14 Analog multiplexer performance specifications

| Parameter                                      | Comments <sup>1</sup>                 | Min   | Тур | Мах         | Units |
|------------------------------------------------|---------------------------------------|-------|-----|-------------|-------|
| Supply voltage (VL16)                          | Connected internally to VREG_L16      | -     | 1.8 | -           | V     |
| Output voltage range                           | _                                     |       |     |             |       |
| Full specification compliance                  |                                       | 0.10  | _   | VL16 - 0.10 | V     |
| <ul> <li>Degraded accuracy at edges</li> </ul> |                                       | 0.05  | -   | VL16 - 0.05 | V     |
| Input referred offset errors                   | _                                     |       |     |             |       |
| <ul> <li>Channels with × 1 scaling</li> </ul>  |                                       | -2.0  | _   | 2.0         | mV    |
| <ul> <li>Channels with 1/3 scaling</li> </ul>  |                                       | -1.5  | _   | 1.5         | mV    |
| <ul> <li>Channels with 1/6 scaling</li> </ul>  |                                       | -3.0  | -   | 3.0         | mV    |
| Gain errors, including scaling                 | Excludes VREG_L16 output error        |       |     |             |       |
| <ul> <li>Channels with × 1 scaling</li> </ul>  |                                       | -0.20 | _   | 0.20        | %     |
| <ul> <li>Channels with 1/3 scaling</li> </ul>  |                                       | -0.15 | -   | 0.15        | %     |
| <ul> <li>Channels with 1/6 scaling</li> </ul>  |                                       | -0.30 | -   | 0.30        | %     |
| Integrated nonlinearity (INL)                  | Input referred to account for scaling | -3    | _   | 3           | mV    |

| Table 3-14 | Analog multiplexer performance specifications (cont.) |
|------------|-------------------------------------------------------|
|------------|-------------------------------------------------------|

| Parameter                                     | Comments <sup>1</sup>                 | Min | Тур | Max | Units                |
|-----------------------------------------------|---------------------------------------|-----|-----|-----|----------------------|
| Input resistance                              | Input referred to account for scaling |     |     |     |                      |
| <ul> <li>Channels with × 1 scaling</li> </ul> |                                       | 10  | _   | _   | MΩ                   |
| <ul> <li>Channels with 1/3 scaling</li> </ul> |                                       | 1   | _   | _   | MΩ                   |
| <ul> <li>Channels with 1/6 scaling</li> </ul> |                                       | 0.5 | -   | -   | MΩ                   |
| Channel-to-channel isolation                  | 1 V AC input at 1 kHz                 | 50  | -   | -   | dB                   |
| Output settling time <sup>2</sup>             | C <sub>load</sub> = 28 pF             | 6   | -   | 25  | μs                   |
| Output noise level                            | f = 1 kHz                             | -   | -   | 2   | µV/Hz <sup>1/2</sup> |

1. Multiplexer offset error, gain error, and INL are measured, as shown in Figure 3-3. Supporting comments include: - The nonlinearity curve is exaggerated for illustrative purposes.

- Input and output voltages must stay within the ranges stated in Table 3-13; voltages beyond these ranges result in nonlinearity and are beyond the specification.

- The offset is determined by measuring the slope of the endpoint line (m) and calculating its Y-intercept value (b): Offset =  $b = y_1 - m \times x_1$ 

- The gain error is calculated from the ideal response and the endpoint line as the ratio of their two slopes (in percentage): Gain\_error = [(slope of endpoint line)/(slope of ideal response) - 1] × 100%.

- NL is the worst-case deviation from the endpoint line. The endpoint line removes the gain and offset errors to isolate nonlinearity:

 $INL(min) = min[V_{out}(actual at V_x input) - V_{out}(endpoint line at V_x input)]$ 

INL(max) = max[V<sub>out</sub>(actual at V<sub>x</sub> input) - V<sub>out</sub>(endpoint line at V<sub>x</sub> input)]

 The AMUX output and a typical load is modeled in Figure 3-4. After S1 closes, the voltage across C2 settles within the specified settling time.

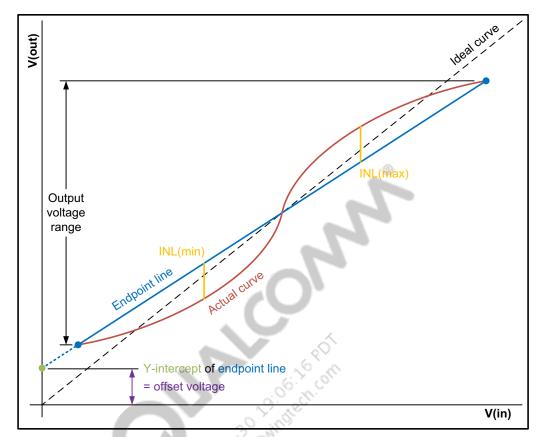



Figure 3-3 Multiplexer offset and gain errors

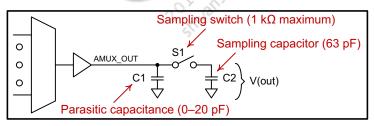



Figure 3-4 Analog multiplexer load condition for settling time specification

#### Table 3-15 AMUX input to ADC output end-to-end accuracy

| AMUX      |                             |        | Typical input range |               | Typical output range |         |           |            |            |                                                              | AMUX input to ADC output, end-to-end accuracy corresponding to min or max input V, $WCS(\%)^{1, 3}$ |            |            |            | Recommended calibration                           |
|-----------|-----------------------------|--------|---------------------|---------------|----------------------|---------|-----------|------------|------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------|------------|------------|---------------------------------------------------|
| Channel # | Function                    | Min    | Max                 | Auto<br>scale | Min                  | Мах     | Without c | alibration | Internal o | alibration                                                   | Without o                                                                                           | alibration | Internal c | alibration | method <sup>4</sup>                               |
|           |                             | (V)    | (V)                 |               | (V)                  | (V)     | At min V  | At max V   | At min V   | At max V                                                     | At min V                                                                                            | At max V   | At min V   | At max V   |                                                   |
| 5         | VCOIN pin                   | TBD    | TBD                 | TBD           | TBD                  | TBD     | TBD       | TBD        | TBD        | TBD                                                          | TBD                                                                                                 | TBD        | TBD        | TBD        | Absolute                                          |
| 7         | VPH_PWR pin                 | TBD    | TBD                 | TBD           | TBD                  | TBD     | TBD       | TBD        | TBD        | TBD                                                          | TBD                                                                                                 | TBD        | TBD        | TBD        | Absolute                                          |
| 8         | Die-temp monitor            | TBD    | TBD                 | TBD           | TBD                  | TBD     | TBD       | TBD        | TBD        | TBD                                                          | TBD                                                                                                 | TBD        | TBD        | TBD        | Absolute                                          |
| 9         | 0.625 V reference           | TBD    | TBD                 | TBD           | TBD                  | TBD     | TBD       | TBD        | TBD        | TBD                                                          | TBD                                                                                                 | TBD        | TBD        | TBD        | Absolute, part of calibration                     |
| 10        | 1.25 V reference            | TBD    | TBD                 | TBD           | TBD                  | TBD     | TBD       | TBD        | TBD        | TBD                                                          | TBD                                                                                                 | TBD        | TBD        | TBD        | Absolute, part of calibration                     |
| 12        | Buffered 0.625<br>reference | TBD    | TBD                 | TBD           | TBD                  | TBD     | TBD       | TBD        | TBD        | TBD                                                          | TBD                                                                                                 | TBD        | TBD        | TBD        | Absolute, part of calibration                     |
| 14, 15    | ADC GND and VDD             | Direct | connectio           | ons to AD     | C for calil          | oration | -         |            | - ,        | -</td <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> | -                                                                                                   | -          | -          | -          | -                                                 |
| 16–19     | MPP_01-MPP_04               | TBD    | TBD                 | TBD           | TBD                  | TBD     | TBD       | TBD        | TBD        | TBD                                                          | TBD                                                                                                 | TBD        | TBD        | TBD        | Absolute or ratiometric depending on application  |
| 32–35     | MPP_01-MPP_04               | TBD    | TBD                 | TBD           | TBD                  | TBD     | TBD       | TBD        | ТВД        | TBD                                                          | TBD                                                                                                 | TBD        | TBD        | TBD        | Absolute or ratiometric, depending on application |
| 50        | XO_THERM direct             | TBD    | TBD                 | TBD           | TBD                  | TBD     | TBD       | TBD        | TBD        | TBD                                                          | TBD                                                                                                 | TBD        | TBD        | TBD        | Ratiometric                                       |
| 54        | PA_THERM                    | TBD    | TBD                 | TBD           | TBD                  | TBD     | TBD       | TBD        | TBD        | TBD                                                          | TBD                                                                                                 | TBD        | TBD        | TBD        | Ratiometric                                       |
| 60        | XO_THERM through<br>AMUX    | TBD    | TBD                 | TBD           | TBD                  | TBD     | TBD       | TBD        | TBD        | TBD                                                          | TBD                                                                                                 | TBD        | TBD        | TBD        | Ratiometric                                       |
| 255       | Module power off            | -      | -                   | -             | -                    | -       | - (       | S -        | -          | -                                                            | -                                                                                                   | -          | -          | -          | -                                                 |

1. The minimum and maximum accuracy values correspond to the minimum and maximum input voltage to the AMUX channel.

2. Accuracy is based on the root sum square (RSS) of the individual errors.

3. Accuracy is based on the worst-case straight sum (WCS) of all errors.

4. Absolute uses 0.625 V and 1.25 V MBG voltage reference as calibration points. Ratiometric uses the GND\_XO and VREF\_XO\_THM as the calibration points.

## 3.7.2 HK/XO ADC circuit

The analog-to-digital converter (ADC) circuit is shared by the HK and 19.2 MHz XO functions. A 2:1 analog multiplexer selects which source is applied to the ADC:

- The HK source: the analog multiplexer output discussed in Section 3.7.1
  - or
- The XO source: the thermistor network output that estimates the 19.2 MHz crystal temperature

 Table 3-16 lists HK/XO ADC performance specifications.

| Parameter              | Comments                         | Min | Тур | Мах | Units |
|------------------------|----------------------------------|-----|-----|-----|-------|
| Supply voltage         | Connected internally to VREG_L16 | -   | 1.8 | -   | V     |
| Resolution             |                                  | -   | -   | 15  | bits  |
| Analog-input bandwidth |                                  | -   | 100 | -   | kHz   |
| Sample rate            | XO/8                             | -   | 2.4 | -   | MHz   |
| Offset error           | Relative to full-scale           | -1  | -   | 1   | %     |
| Gain error             | Relative to full-scale           | -1  | -   | 1   | %     |
| INL                    | 15-bit output                    | -8  | -   | 8   | LSB   |
| DNL                    | 15-bit output                    | -4  | -   | 4   | LSB   |

Table 3-16 HK/XO ADC performance specifications

#### 3.7.3 System clocks

The PMIC includes several clock circuits whose outputs are used for general HK functions and elsewhere within the handset system. These circuits include a 19.2 MHz XO with multiple controllers and buffers, an MP3 clock output, an RC oscillator, and sleep-clock outputs. Performance specifications for these functions are described in Section 3.7.3.1 to Section 3.7.3.5.

#### 3.7.3.1 19.2 MHz XO circuits

An external crystal is supplemented by on-chip circuits to generate the desired 19.2 MHz reference signal. Using an external thermistor network, the on-chip ADC, and advanced temperature compensation software, the PMIC eliminates the large and expensive VCTCXO module required by previous generation chipsets. The XO circuits initialize and maintain valid pulse waveforms and measure time intervals for higher-level handset functions. Multiple controllers manage the XO warm-up and signal buffering and generate the desired clock outputs (all derived from one source):

- The low-noise RF outputs RF\_CLK1, RF\_CLK2, and RF\_CLK3 are enabled internally.
- The low-power baseband output BB\_CLK1 is enabled by a dedicated control pin BB\_CLK1\_EN; this output is used as the MSM clock signal.
- The low-power baseband output BB\_CLK2 is enabled internally or can be enabled via a properly configured GPIO\_2.

Since the different controllers and outputs are independent, circuits other than those needed for the WAN can operate even while the modem IC is asleep and its RF circuits are powered down.

The XTAL\_19M\_IN and XTAL\_19M\_OUT pins are incapable of driving a load; the oscillator is significantly disrupted if either pin is externally loaded.

As described in Section 3.7.3.4, an RC oscillator drives some clock circuits until the XO source is established.

Table 3-17 lists the 19.2 MHz XO circuit and related performance specifications.

 Table 3-17
 XO controller, buffer, and circuit performance specifications

| Parameter                                 | Comments                          | Min | Тур  | Max | Units |  |  |
|-------------------------------------------|-----------------------------------|-----|------|-----|-------|--|--|
| XO circuits                               |                                   |     |      |     | L     |  |  |
| Operating frequency                       | Set by the external crystal       | -   | 19.2 | -   | MHz   |  |  |
| Startup time                              | -                                 |     |      |     |       |  |  |
| <ul> <li>Normal</li> </ul>                |                                   | -   | -    | 10  | ms    |  |  |
| Supply voltage = VREG_XO<br>(VREG_L20)    | Input buffer and core XO circuits | -   | 1.80 | -   | V     |  |  |
| Low-noise RF clock outputs:               | RF_CLKx                           |     |      |     | 1     |  |  |
| Voltage swing                             | - 6. <sup>5</sup> .0 <sup>6</sup> | _   | 1.74 | _   | Vpp   |  |  |
| Duty cycle                                |                                   | 48  | 50   | 52  | %     |  |  |
| Buffer output impedance                   | Contraction of the second         |     |      |     |       |  |  |
| <ul> <li>At 1 × drive strength</li> </ul> | Star Cart                         | 39  | 50   | 65  | Ω     |  |  |
| <ul> <li>At 2 × drive strength</li> </ul> | 6-0 ong                           | 30  | 40   | 50  | Ω     |  |  |
| <ul> <li>At 3 × drive strength</li> </ul> | 2016-00-0019                      | 24  | 30   | 38  | Ω     |  |  |
| <ul> <li>At 4 × drive strength</li> </ul> | 2016-05-30 Caning et              | 15  | 50   | 30  | Ω     |  |  |
| Phase noise, normal-power mod             | e –                               |     |      |     |       |  |  |
| <ul> <li>At 10 Hz</li> </ul>              |                                   | -   | -    | TBD | dBc/H |  |  |
| <ul> <li>At 100 Hz</li> </ul>             |                                   | -   | -    | TBD | dBc/H |  |  |
| <ul> <li>At 1 kHz</li> </ul>              |                                   | -   | -    | TBD | dBc/H |  |  |
| <ul> <li>At 10 kHz</li> </ul>             |                                   | _   | -    | TBD | dBc/H |  |  |
| <ul> <li>At 100 kHz</li> </ul>            |                                   | _   | -    | TBD | dBc/H |  |  |
| <ul> <li>At 1 MHz</li> </ul>              |                                   | -   | -    | TBD | dBc/H |  |  |
| Output buffer supply                      | VREG_RFCLK (VREG_L21)             | _   | 1.74 | _   | V     |  |  |
| Power-supply current                      | VREG_RFCLK (VREG_L21)             |     |      |     |       |  |  |
| <ul> <li>One RF clock</li> </ul>          |                                   | -   | TBD  | _   | mA    |  |  |
| Two RF clocks                             |                                   | -   | TBD  | _   | mA    |  |  |

| Parameter                                             | Comments                            | Min            | Тур  | Max        | Units  |
|-------------------------------------------------------|-------------------------------------|----------------|------|------------|--------|
| Low-power baseband clock ou                           | itputs: BB_CLKx                     |                |      | ·          |        |
| Output levels                                         | _                                   |                |      |            |        |
| <ul> <li>Logic high (V<sub>OH</sub>)</li> </ul>       |                                     | 0.65 × Vdd     | _    | _          | V      |
| <ul> <li>Logic low (V<sub>OL</sub>)</li> </ul>        |                                     | _              | -    | 0.35 × Vdd | V      |
| Output duty cycle                                     | -                                   | 44             | 50   | 56         | %      |
| USB jitter                                            | Specified values are                | ٨              |      |            |        |
| ■ 0.5–2 MHz                                           | peak-to-peak period jitter          | -              | -    | TBD        | ps     |
| ■ > 2 MHz                                             |                                     |                | -    | TBD        | ps     |
| Equivalent phase noise 1, 2                           | - 0                                 | and the second |      |            |        |
| 100 Hz–1 kHz                                          |                                     | _              | _    | TBD        | dBc/Hz |
| ■ 1–10 kHz                                            |                                     | _              | _    | TBD        | dBc/Hz |
| ■ 10–100 kHz                                          |                                     | -              | _    | TBD        | dBc/Hz |
| ■ > 100 kHz                                           |                                     | -              | -    | TBD        | dBc/Hz |
| Buffer output impedance                               | Current drive capabilities meet     |                |      |            |        |
| <ul> <li>At 1 × drive strength</li> </ul>             | the output levels specified in this | 39             | 50   | 65         | Ω      |
| <ul> <li>At 2 × drive strength</li> </ul>             | table                               | 30             | 40   | 50         | Ω      |
| <ul> <li>At 3 × drive strength</li> </ul>             | 6. <sup>2</sup> con                 | 24             | 30   | 38         | Ω      |
| <ul> <li>At 4 × drive strength</li> </ul>             | 9                                   | 15             | 30   | 30         | Ω      |
| Output buffer supply voltage                          | VREG_L7                             | 1.782          | 1.80 | 1.818      | V      |
| Power-supply current                                  | VREG_L7                             | -              | 0.98 | 1.0        | mA     |
| Divided down XO clock output                          | s: DIV_CLKx                         |                |      |            |        |
| Buffer output impedance                               | 2 8 -                               |                |      |            |        |
| <ul> <li>At low GPIO drive strength</li> </ul>        | 5                                   | 30             | 42   | 76         | Ω      |
| <ul> <li>At medium GPIO drive<br/>strength</li> </ul> |                                     | 21             | 30   | 55         | Ω      |
| <ul> <li>At high GPIO drive strength</li> </ul>       |                                     | 17             | 22   | 45         | Ω      |
| Phase noise                                           | _                                   |                |      |            |        |
| <ul> <li>At 100 Hz</li> </ul>                         |                                     | -              | TBD  | -          | dBc/Hz |
| <ul> <li>At 1 kHz</li> </ul>                          |                                     | -              | TBD  | -          | dBc/Hz |
| <ul> <li>At 10 kHz</li> </ul>                         |                                     | -              | TBD  | -          | dBc/Hz |
| <ul> <li>At 100 kHz</li> </ul>                        |                                     | -              | TBD  | -          | dBc/H  |
| <ul> <li>At 250 kHz</li> </ul>                        |                                     | -              | TBD  | _          | dBc/Hz |
| <ul> <li>At 500 kHz</li> </ul>                        |                                     | -              | TBD  | _          | dBc/H  |

| Table 3-17 | XO controller, buffer | , and circuit performanc | e specifications (cont.) |
|------------|-----------------------|--------------------------|--------------------------|
|------------|-----------------------|--------------------------|--------------------------|

1. 20 pF load capacitor.

2. Phase noise and jitter specifications include all aggressor module loading use cases (not only the baseline specifications).

#### 3.7.3.2 19.2 MHz XO crystal requirements

Crystal performance is critical to a wireless product's overall performance. Guidance is available within the *19.2 MHz Modem Crystal Qualification Requirements and Approved Suppliers* document (80-V9690-19). This document includes:

- Data needed from crystal suppliers to demonstrate compliance
- Approved suppliers for different crystal configurations
- Description of various schematic options

#### 3.7.3.3 MP3 clock

GPIO\_1 can be configured as a 9.6 MHz clock output to support MP3 in low-power mode. This clock is a divided-down version of the 19.2 MHz XO signal. Output characteristics (voltage levels, drive strength, and so on) are defined in Section 3.4.

| Table 3-18 | MP3 clock performance specifications |  |
|------------|--------------------------------------|--|
|            |                                      |  |

| Parameter                                  | Comments  | Min   | Тур | Мах   | Units  |
|--------------------------------------------|-----------|-------|-----|-------|--------|
| Operating frequency                        |           | -     | 9.6 | -     | MHz    |
| Output voltage swing                       | ±1%       | 1.782 | 1.8 | 1.818 | V      |
| GPIOC output driver impedance              |           |       |     |       |        |
| <ul> <li>Low strength driver</li> </ul>    | 2º Letter | 70    | 100 | 130   | Ω      |
| <ul> <li>Medium strength driver</li> </ul> | 30 1119   | 45    | 60  | 75    | Ω      |
| <ul> <li>High strength driver</li> </ul>   | ST SOM    | 25    | 36  | 47    | Ω      |
| Phase noise                                | 67.00 -   |       |     |       |        |
| <ul> <li>At 100 Hz</li> </ul>              | . All     | -     | -   | -85   | dBc/Hz |
| <ul> <li>At 1 kHz</li> </ul>               | Il.       | -     | -   | -95   | dBc/Hz |
| <ul> <li>At 10 kHz</li> </ul>              |           | -     | -   | -100  | dBc/Hz |
| <ul> <li>At 100 kHz</li> </ul>             |           | -     | -   | -105  | dBc/Hz |
| <ul> <li>At 250 kHz</li> </ul>             |           | -     | -   | -105  | dBc/Hz |
| <ul> <li>At 500 kHz</li> </ul>             |           | -     | -   | -105  | dBc/Hz |
| <ul> <li>At 1 MHz</li> </ul>               |           | -     | -   | -105  | dBc/Hz |

#### 3.7.3.4 RC oscillator

The PMIC includes an on-chip RC oscillator that is used during startup and as a backup to other oscillators. Pertinent performance specifications are listed in Table 3-19.

#### Table 3-19 RC oscillator performance specifications

| Parameter                                | Comments | Min   | Тур | Мах  | Units |
|------------------------------------------|----------|-------|-----|------|-------|
| Frequency (trimmed 25°C)                 | _        | 17    | 19  | 21   | MHz   |
| Frequency accuracy (trimmed 25°C)        | _        | -10.5 | _   | 10.5 | %     |
| Frequency (trimmed, overall)             | -        | 16    | 19  | 22   | MHz   |
| Frequency accuracy<br>(trimmed, overall) | _        | -16   | _   | 16   | %     |

| Parameter               | Comments                                                                                                                        | Min | Тур | Мах | Units  |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|--------|
| Temperature coefficient | _                                                                                                                               | -   | 300 | -   | ppm/°C |
| Duty cycle              | _                                                                                                                               | 30  | 50  | 70  | %      |
| Current                 | Current includes 50 $\mu$ A from the 19.2 MHz RC oscillator + 25 $\mu$ A load current from the dVdd digital clock driver loads. | Ι   | TBD | -   | μA     |

| Table 3-19 | RC oscillator | performance s | pecifications ( | (cont.) |  |
|------------|---------------|---------------|-----------------|---------|--|
|------------|---------------|---------------|-----------------|---------|--|

#### 3.7.3.5 Sleep clock

The sleep clock is generated in one of three ways:

- Using the calibrated low-frequency RC oscillator, periodically uses the 19.2 MHz XO signal for calibration, achieving accuracy suitable for the real-time clock without an external crystal
- Using the 19.2 MHz XO circuit and dividing its output by 586 to create a 32.7645 kHz signal; this signal is used as the startup sleep clock
- Using the on-chip 19.2 MHz RC oscillator instead of the XO signal; this results in a much less
  accurate and less stable 32.7645 kHz signal that is used for backup only—it is never used in
  normal modes

The PMIC sleep-clock output is routed to the modem IC via SLEEP\_CLK. It is also available for other applications using properly configured GPIOs.

Related specifications presented elsewhere include:

- 19.2 MHz XO circuits (Section 3.7.3.1)
- 19.2 MHz RC oscillator (Section 3.7.3.4)
- Output characteristics (voltage levels, drive strength, and so on.), as defined in Section 3.4.

 Table 3-20
 Sleep clock jitter specification

| Parameter             | Comments                                                         | Min | Тур | Мах | Unit    |
|-----------------------|------------------------------------------------------------------|-----|-----|-----|---------|
| Cycle-to-cycle jitter | 32 kHz XO source<br>(as defined in JEDEC)                        | -   | _   | 250 | ns peak |
| Period jitter         | Same as cycle-to-cycle jitter                                    | -   | -   | 350 | ns peak |
| Period jitter (RMS    | 19.2 MHz XO/586                                                  | -   | -   | 10  | ns RMS  |
| Frequency drift       | Shift in frequency in any 2.5 s window at a constant temperature | _   | _   | 2   | ppm     |

## 3.7.4 Real-time clock

#### Table 3-21 RTC performance specifications

| Parameter                                | Comments                                             | Min    | Тур  | Мах | Units |
|------------------------------------------|------------------------------------------------------|--------|------|-----|-------|
| Tuning resolution                        | With known calibrated source                         | -      | 3.05 | -   | ppm   |
| Tuning range                             | -                                                    | -192   | -    | 192 | ppm   |
| Accuracy (phone off)                     |                                                      |        |      |     |       |
| <ul> <li>XO/586 as RTC source</li> </ul> | Phone on                                             |        | _    | TBD | ppm   |
| <ul> <li>CalRC as RTC source</li> </ul>  | <ul> <li>Phone off, valid battery present</li> </ul> | ()<br> | -    | TBD | ppm   |
| <ul> <li>CalRC as RTC source</li> </ul>  | <ul> <li>Phone off, coin cell present</li> </ul>     |        | TBD  | TBD | ppm   |

#### 3.7.5 Overtemperature protection (smart thermal control)

The PMIC includes overtemperature protection in stages, depending on the level of urgency as the die temperature rises:

- Stage 0: these are normal operating conditions (less than 105°C).
- Stage 1: 110 to 130°C; an interrupt is sent to the modem IC without shutting down any PMIC circuits.
- Stage 2: 130 to 150°C; an interrupt is sent to the modem IC, and unnecessary high-current circuits are shut down.
- Stage 3: greater than 150°C; an interrupt is sent to the modem IC, and the PMIC is completely shut down.

Temperature hysteresis is incorporated so that the die temperature must cool significantly before the device can be powered on again. If any start signals are present while at Stage 3, they are ignored until Stage 0 is reached. When the device cools enough to reach Stage 0 and a start signal is present, the PMIC powers up immediately.

# 3.8 Audio codec

**NOTE** All audio codec performance data are collected above PMIC Vbatt of 3.7 V, unless otherwise specified.

#### 3.8.1 Audio codec inputs and Tx processing

All Tx performance parameters are measured with a 1.02 kHz sine wave input signal, capless differential or single-ended inputs, Fs = 48 kHz, 24-bit data, and MCLK = 9.6 MHz or 12.288 MHz.

II.

| Parameter                          | Test conditions                                                | Min  | Тур   | Max   | Units |
|------------------------------------|----------------------------------------------------------------|------|-------|-------|-------|
| Microphone amplifier ga            | in = 0 dB (minimum gain)                                       |      | l     | ļ     | ł     |
| Input referred noise               | Analog input = -200 dBV, A-weighted,<br>bandwidth 20 Hz–20 kHz | -    | 19.0  | 24.5  | µVrms |
| Signal-to-noise ratio <sup>2</sup> | Analog input = 0 dBV, A-weighted, bandwidth 20 Hz–20 kHz       | 92.0 | 94.0  | -     | dB    |
| THD + N ratio                      | f = 1.02 kHz; bandwidth 20 Hz–20 kHz                           | ٢    |       |       |       |
|                                    | <ul> <li>Analog input = 0 dBV</li> </ul>                       | -    | -85.0 | -80.0 | dB    |
|                                    | Analog input = -1 dBV                                          | -    | -85.0 | -79.0 | dB    |
|                                    | <ul> <li>Analog input = -60 dBV, A-weighted</li> </ul>         | -    | -35.0 | -32.0 | dB    |
| Microphone amplifier ga            | in = 6 dB                                                      |      |       |       |       |
| Input referred noise               | Analog input = -200 dBV, A-weighted, bandwidth 20 Hz–20 kHz    | -    | 10.2  | 13.0  | μVrms |
| Signal-to-noise ratio <sup>2</sup> | Analog input = -6 dBV, A-weighted,<br>bandwidth 20 Hz–20 kHz   | 91.0 | 94.0  | -     | dB    |
| THD + N                            | f = 1.02 kHz; bandwidth 20 Hz–20 kHz                           |      |       |       |       |
|                                    | <ul> <li>Analog input = -6 dBV</li> </ul>                      | -    | -84.0 | -79.0 | dB    |
|                                    | <ul> <li>Analog input = -7 dBV</li> </ul>                      | -    | -85.0 | -78.0 | dB    |
|                                    | <ul> <li>Analog input = -66 dBV, A-weighted</li> </ul>         | _    | -34.0 | -30.0 | dB    |
| Microphone amplifier ga            | in = 12 dB                                                     |      | L     | 1     | 1     |
| Input referred noise               | Analog input = -200 dBV, A-weighted,<br>bandwidth 20 Hz–20 kHz | _    | 5.6   | 7.0   | μVrms |
| Signal-to-noise ratio <sup>2</sup> | Analog input = -12 dBV, A-weighted,<br>bandwidth 20 Hz–20 kHz  | 94.5 | 96.0  | -     | dB    |
| THD + N                            | f = 1.02 kHz; bandwidth 20 Hz–20 kHz                           |      |       |       |       |
|                                    | Analog input = -12 dBV                                         | -    | -84.0 | -78.0 | dB    |
|                                    | Analog input = -13 dBV                                         | -    | -84.0 | -78.0 | dB    |
|                                    | <ul> <li>Analog input = -72 dBV, A-weighted</li> </ul>         | _    | -33.0 | -30.0 | dB    |
| Microphone amplifier ga            | in = 18 dB                                                     |      | I     |       |       |
| Input referred noise               | Analog input = -200 dBV, A-weighted,<br>bandwidth 20 Hz–20 kHz | -    | 3.4   | 5.3   | μVrms |
| Signal-to-noise ratio <sup>2</sup> | Analog input = -18 dBV, A-weighted,<br>bandwidth 20 Hz–20 kHz  | 87.0 | 91.0  | -     | dB    |
| THD + N                            | f = 1.02 kHz; bandwidth 20 Hz–20 kHz                           |      |       |       |       |
|                                    | Analog input = -18 dBV                                         | -    | -84.5 | -78.0 | dB    |
|                                    | Analog input = -19 dBV                                         | _    | -84.0 | -78.0 | dB    |
|                                    | <ul> <li>Analog input = -78 dBV, A-weighted</li> </ul>         | -    | -31.0 | -28.0 | dB    |
| Microphone amplifier ga            | in = 21 dB                                                     |      | 1     | 1     | 1     |
| Input referred noise               | Analog input = -200 dBV, A-weighted,<br>bandwidth 20 Hz–20 kHz | -    | 3.0   | 4.2   | μVrms |
| Signal-to-noise ratio <sup>2</sup> | Analog input = -21 dBV, A-weighted,<br>bandwidth 20 Hz–20 kHz  | 86.0 | 89.0  | -     | dB    |

| Table 3-22 | Analog micro | phone input  | performance <sup>1</sup> |
|------------|--------------|--------------|--------------------------|
|            | /            | pinono input | p 0 0                    |

| Parameter                          | Test conditions                                                                                                                                             | Min   | Тур      | Max   | Units |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|-------|-------|
| THD + N                            | f = 1.02 kHz; bandwidth 20 Hz–20 kHz                                                                                                                        |       |          |       |       |
|                                    | <ul> <li>Analog input = -21 dBV</li> </ul>                                                                                                                  | _     | -84.0    | -78.0 | dB    |
|                                    | <ul> <li>Analog input = -22 dBV</li> </ul>                                                                                                                  | -     | -84.0    | -78.0 | dB    |
|                                    | <ul> <li>Analog input = -81 dBV A-weighted</li> </ul>                                                                                                       | -     | -29.5    | -25.0 | dB    |
| Microphone amplifier gain          | = 24 dB (maximum gain)                                                                                                                                      |       | L        | 1     | I     |
| Input referred noise               | Analog input = -200 dBV, A-weighted,<br>bandwidth 20 Hz–20 kHz                                                                                              | 0     | 2.7      | 3.8   | μVrm  |
| Signal-to-noise ratio <sup>2</sup> | Analog input = -24 dBV, A-weighted,<br>bandwidth 20 Hz–20 kHz                                                                                               | 84.0  | 87.0     | -     | dB    |
| THD + N                            | f = 1.02 kHz; bandwidth 20 Hz–20 kHz                                                                                                                        |       |          |       |       |
|                                    | Analog input = -24 dBV                                                                                                                                      | _     | -82.0    | -78.0 | dB    |
|                                    | Analog input = -25 dBV                                                                                                                                      | _     | -82.0    | -78.0 | dB    |
|                                    | <ul> <li>Analog input = -84 dBV A-weighted</li> </ul>                                                                                                       | -     | -28.0    | -23.0 | dB    |
| Frequency response (end-           | to-end) <sup>3</sup>                                                                                                                                        |       | L        | 1     |       |
| Frequency response                 | Digital gain = 0 dB; analog gain = 0 dB;<br>Analog input = -20 dBV                                                                                          |       |          |       |       |
|                                    | Passband: 20 Hz to 0.4 × Fs                                                                                                                                 | -0.05 | 0        | 0.05  | dB    |
|                                    | <ul> <li>Transition band 1 at 0.4375 × Fs</li> </ul>                                                                                                        | -1.5  | _        | 0.5   | dB    |
|                                    | Transition band 2 at 0.499 × Fs                                                                                                                             | _     | _        | -25.0 | dB    |
|                                    | Stop-band at 0.5625 × Fs                                                                                                                                    | _     | _        | -80.0 | dB    |
| General requirements               | 05 196                                                                                                                                                      |       | <u> </u> |       |       |
| Absolute gain error                | Analog input = 0 dBV, 1.02 kHz                                                                                                                              | -0.5  | 0        | 0.5   | dB    |
| Full-scale input voltage           | 1 kHz input; input signal level required to get<br>0 dBFS digital output                                                                                    | -0.5  | 0        | 0.5   | dBV   |
| Power supply rejection             | 100 mVpp sine wave imposed on PMIC<br>VPH_PWR input; analog input = 0 Vrms,<br>terminated with 0 $\Omega$<br>Terminate inputs with 0 $\Omega$ ; gain = 0 dB |       |          |       |       |
|                                    | ■ 0 < f < 1 kHz                                                                                                                                             | 75.0  | 86.0     | -     | dB    |
|                                    | ■ 1< f < 5 kHz                                                                                                                                              | 75.0  | 82.0     | -     | dB    |
|                                    | ■ 5 < f < 20 kHz                                                                                                                                            | 60.0  | 70.0     | -     | dB    |
| Inter-modulation distortion (IMD2) | Analog input = 12993 Hz and 14993 Hz<br>equal amplitude tones at -6 dBV; wideband<br>(WB) audio                                                             | 65.0  | 85.0     | -     | dB    |
|                                    | Analog input = 41 Hz and 7993 Hz equal amplitude tones at -6 dBV, WB voice                                                                                  | 50.0  | 90.0     | -     | dB    |
|                                    | Analog input = 498 Hz and 2020 Hz equal<br>amplitude tones at -6 dBV sine wave,<br>Fs = 8 kHz narrowband (NB) voice                                         | 60.0  | 90.0     | _     | dB    |
| Input impedance                    | Input disabled                                                                                                                                              | 3.0   | -        | -     | MΩ    |
|                                    |                                                                                                                                                             |       |          |       | 1     |

| Table 3-22 | Analog microphone input performance | <sup>1</sup> (cont.) |
|------------|-------------------------------------|----------------------|
|------------|-------------------------------------|----------------------|

| Parameter                                 | Test conditions                                                                                                                                                                                           | Min            | Тур            | Max | Units          |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|-----|----------------|
| $Rx \rightarrow Tx crosstalk$ attenuation | Tx path measurement with -5 dBFS Rx path signal; f = 1 kHz, separate Tx and Rx grounds                                                                                                                    |                |                |     |                |
|                                           | <ul> <li>Rx = EAR</li> <li>Rx = HPH</li> <li>Rx = SPKR</li> </ul>                                                                                                                                         | 80<br>80<br>80 | 97<br>97<br>97 |     | dB<br>dB<br>dB |
| Inter-channel isolation                   | One input terminated with 1 k $\Omega$ and the other<br>input gets 1, 10, or 20 kHz at -5 dBFS; 0 dB<br>gain mode; measure the digital output of the<br>terminated channel; separate Tx and Rx<br>grounds | Ø              |                |     |                |
|                                           | ■ 1 kHz                                                                                                                                                                                                   | 90             | 100            | _   | dB             |
|                                           | 10 kHz                                                                                                                                                                                                    | 80             | 90             | -   | dB             |
|                                           | ■ 20 kHz                                                                                                                                                                                                  | 70             | 80             | -   | dB             |

| Table 3-22 | Analog microphone input performance | <sup>1</sup> (cont.) |
|------------|-------------------------------------|----------------------|
|------------|-------------------------------------|----------------------|

1. The performance numbers are similar for the MIC1 differential input.

2. The ratio of the output level with the input signal of mentioned dBV and 1.02 kHz sine wave applied to the output level with inputs = -200 dBV, bandwidth 20 Hz–20 kHz.

3. Decimators are in the MSM device's digital codec.

#### 3.8.2 Audio codec outputs and Rx processing

Unless otherwise stated:

- All Rx performance parameters are measured with a 1.02 kHz sine wave input signal, MCLK = 9.6 MHz or 12.288 MHz.
- Receive noise is measured with no dither added to the input signal.
- SNR is calculated as follows:
  - □ 20 log (full-scale output voltage)/receive noise.

#### Table 3-23 Ear output performance, 32 Ω load unless specified

| Parameter                          | Test conditions                                                                                                     | Min   | Тур   | Max   | Units |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|
| Ear: 8/16 kHz, 16 bits             | 5                                                                                                                   | I     |       | I     |       |
| Receive noise <sup>1</sup>         | A-weighted; input = -999 dBFS, 6 dB gain mode,<br>bandwidth 20 Hz–20 kHz                                            | _     | 7.0   | 16.0  | μVrms |
|                                    | A-weighted; input = -999 dBFS, 1.5 dB gain mode,<br>bandwidth 20 Hz–20 kHz                                          | _     | 5.0   | 12.0  | μVrms |
| Signal-to-noise ratio <sup>2</sup> | Ratio of full-scale output to output noise level,<br>VDD_SPKR_PA = 3.7 V, 6 dB gain mode, bandwidth<br>20 Hz–20 kHz | 100.0 | 106.0 | _     | dB    |
| THD + N                            | Band limited from 20 Hz–20 kHz,<br>VDD_SPKR_PA = 3.7 V, 6 dB gain                                                   |       |       |       |       |
|                                    | PCMI = 0 dBFS                                                                                                       | _     | -60.0 | -     | dB    |
|                                    | PCMI = -1 dBFS                                                                                                      | _     | -80.0 | -70.0 | dB    |
|                                    | <ul> <li>PCMI = -60 dBFS (A-weighted)</li> </ul>                                                                    | _     | -34.0 | -30.0 | dB    |

| Parameter                                   | Test conditions                                                                                                     | Min   | Тур   | Max   | Units |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|
| Ear: 48 kHz; 24 bits                        |                                                                                                                     | 1     | 1     | 1     |       |
| Receive noise <sup>1</sup>                  | A-weighted; input = -999 dBFS, 6 dB gain mode,<br>bandwidth 20 Hz–20 kHz                                            | _     | 7.0   | 12.0  | μVrms |
|                                             | A-weighted; input = -999 dBFS, 1.5 dB gain mode,<br>bandwidth 20 Hz–20 kHz                                          | _     | 5.0   | 12.0  | μVrms |
| Signal-to-noise ratio <sup>2</sup>          | Ratio of full-scale output to output noise level,<br>VDD_SPKR_PA = 3.7 V, 6 dB gain mode, bandwidth<br>20 Hz–20 kHz | 100.0 | 106.0 | _     | dB    |
| THD + N                                     | Band limited from 20 Hz–20 kHz,<br>VDD_SPKR_PA = 3.7 V, 6 dB gain                                                   |       |       |       |       |
|                                             | PCMI = 0 dBFS                                                                                                       | _     | -84.0 | -75.0 | dB    |
|                                             | PCMI = -1 dBFS                                                                                                      | -     | -91.0 | -86.0 | dB    |
|                                             | <ul> <li>PCMI = -60 dBFS (A-weighted)</li> </ul>                                                                    | _     | -50.0 | -45.0 | dB    |
| Other characteristics                       |                                                                                                                     |       |       |       |       |
| Full-scale output voltage                   | f = 1.02 kHz, 6 dB gain mode                                                                                        | -0.5  | -     | 0.5   | Vrms  |
|                                             | f = 1.02 kHz, 1.5 dB gain mode                                                                                      | -0.5  | -     | 0.5   | Vrms  |
| Output power <sup>3</sup>                   | f = 1.02 kHz, 0 dBFS input, 6 dB gain mode, 32 $\Omega$                                                             | 115.0 | 126.0 | _     | mW    |
|                                             | f = 1.02 kHz, -1.5 dBFS input, 6 dB gain mode, 16 $\Omega$                                                          | 235.0 | 243.0 | _     | mW    |
|                                             | f = 1.02 kHz, -3.5 dBFS input, 6 dB gain mode, 10.67 $\Omega$                                                       | 310.0 | 320.0 | -     | mW    |
| Output load                                 | Supported output load                                                                                               | 10.0  | 32.0  | _     | Ω     |
| Output capacitance                          | Total capacitance between EARO_P and EARO_M, including PCB capacitance and EMI                                      | _     | _     | 500   | pF    |
| $Tx \rightarrow Rx crosstalk$ attenuation   | Rx path measurement with -5 dBFS Tx path signal;<br>f = 1 kHz, separate Tx and Rx grounds                           | 90.0  | 100.0 | -     | dB    |
| Power supply rejection                      | 100 mVpp sine wave imposed on power supply<br>VDD_SPKR_PA; PCMI = -999 dBFS, 6 dB gain<br>mode                      |       |       |       |       |
|                                             | ■ 0 < f < 1 kHz                                                                                                     | 70.0  | 90.0  | _     | dB    |
|                                             | ■ 1 kHz < f < 5 kHz                                                                                                 | 60.0  | 82.0  | _     | dB    |
|                                             | ■ 5 kHz < f < 20 kHz                                                                                                | 50.0  | 78.0  | -     | dB    |
| Disabled output<br>impedance                | Measured externally with amplifier disabled                                                                         | 1.0   | -     | -     | MΩ    |
| Output common mode voltage                  | Measured externally with amplifier disabled                                                                         | 1.50  | 1.60  | -     | V     |
| Output DC offset                            | Input = -999 dBFS measured between differential<br>output                                                           | 0     | 0.2   | 3.0   | mV    |
| Turn on/off<br>click-and-pop (CnP)<br>level | A-weighted                                                                                                          | _     | 0.5   | 2.0   | uVpp  |

| Table 3-23 Ear output performance, 32 12 load unless specified (cont.) | Table 3-23 | Ear output performance, 32 Ω load unless specified (cont.) |
|------------------------------------------------------------------------|------------|------------------------------------------------------------|
|------------------------------------------------------------------------|------------|------------------------------------------------------------|

1. Receive noise is measured with no dither added to the input signal.

2. SNR is calculated as follows:

Typical = 20 log (full-scale output voltage (typ))/receive noise (typ)

Min = 20 log (full-scale output voltage (min))/receive noise (max)

×.

3. For lower loads, the input signal needs to be backed off to avoid clipping. OCP can trigger if not appropriately set. The OCP limit is set to 280 mA for these tests.

| Table 3-24 | HPH output performance, | 16 $\Omega$ load unless specified, DRE On |
|------------|-------------------------|-------------------------------------------|
|------------|-------------------------|-------------------------------------------|

| Parameter                                           | Test conditions                                                                              | Min   | Тур   | Max   | Units |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------|-------|-------|-------|-------|
| HPH: 8 kHz, 16 bits                                 | 1                                                                                            | 1     | I     | 1     | L     |
| Receive noise (0 dB gain mode) <sup>1</sup>         | A-weighted; input = -999 dBFS,<br>VDD_CP = 1.95 V, bandwidth 20 Hz–20 kHz                    | -     | 1.5   | 2.9   | μVrms |
| Signal-to-noise ratio (0 dB gain mode) <sup>2</sup> | Ratio of full-scale output to output noise level,<br>VDD_CP = 1.95 V, bandwidth 20 Hz–20 kHz | 110.0 | 116.4 | -     | dB    |
| THD + N                                             | Band limited from 20 Hz–20 kHz,<br>VDD_CP = 1.95 V                                           |       |       |       |       |
|                                                     | PCMI = 0 dBFS                                                                                | -     | _     | -     | dB    |
|                                                     | PCMI = -1 dBFS                                                                               | -     | -80.0 | -70.0 | dB    |
|                                                     | <ul> <li>PCMI = -60 dBFS (A-weighted)</li> </ul>                                             | -     | -54.0 | -50.0 | dB    |
| HPH: 48 kHz, 16 bits                                |                                                                                              |       |       |       |       |
| Receive noise (0 dB gain mode) <sup>1</sup>         | A-weighted; input = -999 dBFS,<br>VDD_CP = 1.95 V, bandwidth 20 Hz–20 kHz                    | _     | 1.5   | 2.9   | μVrms |
| Signal-to-noise ratio (0 dB gain mode) <sup>2</sup> | Ratio of full-scale output to output noise level,<br>VDD_CP = 1.95 V, bandwidth 20 Hz–20 kHz | 110.0 | 116.4 | -     | dB    |
| THD + N                                             | Band limited from 20 Hz–20 kHz,<br>VDD_CP = 1.95 V                                           |       |       |       |       |
|                                                     | PCMI = 0 dBFS                                                                                | -     | -     | -     | dB    |
|                                                     | PCMI = -1 dBFS                                                                               | -     | -89.0 | -76.0 | dB    |
|                                                     | PCMI = -60 dBFS (A-weighted)                                                                 | -     | -54.0 | -50.0 | dB    |
| HPH: 48 kHz, 24 bits                                | - Shile                                                                                      |       |       |       | -     |
| Receive noise (0 dB gain mode) <sup>1</sup>         | A-weighted; input = -999 dBFS,<br>VDD_CP = 1.95 V, bandwidth 20 Hz–20 kHz                    | _     | 1.5   | 2.9   | µVrms |
| Signal-to-noise ratio (0 dB gain mode) <sup>2</sup> | Ratio of full-scale output to output noise level,<br>VDD_CP = 1.95 V, bandwidth 20 Hz–20 kHz | 110.0 | 116.4 | -     | dB    |
| THD + N                                             | Band limited from 20 Hz–20 kHz,<br>VDD_CP = 1.95 V                                           |       |       |       |       |
|                                                     | PCMI = 0 dBFS                                                                                | -     | -82.0 | -70.0 | dB    |
|                                                     | PCMI = -1 dBFS                                                                               | -     | -90.0 | -85.0 | dB    |
|                                                     | PCMI = -60 dBFS (A-weighted)                                                                 | -     | -55.0 | -49.0 | dB    |
| HPH: 96 kHz, 24 bits                                |                                                                                              | _     |       | _     | _     |
| Receive noise (0 dB gain mode) <sup>1</sup>         | A-weighted; input = -999 dBFS,<br>VDD_CP = 1.95 V, bandwidth 20 Hz–20 kHz                    | _     | 1.5   | 2.9   | μVrms |
| Signal-to-noise ratio (0 dB gain mode) <sup>2</sup> | Ratio of full-scale output to output noise level,<br>VDD_CP = 1.95 V, bandwidth 20 Hz–20 kHz | 110.0 | 116.4 | -     | dB    |
| THD + N                                             | Band limited from 20 Hz–20 kHz,<br>VDD_CP = 1.95 V                                           |       |       |       |       |
|                                                     | PCMI = 0 dBFS                                                                                | -     | _     | -     | dB    |
|                                                     | PCMI = -1 dBFS                                                                               | -     | -90.0 | -80.0 | dB    |
|                                                     | <ul> <li>PCMI = -60 dBFS (A-weighted)</li> </ul>                                             | -     | -55.0 | -50.0 | dB    |

| Parameter                                           | Test conditions                                                                                | Min   | Тур   | Max   | Units |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------|-------|-------|-------|-------|
| HPH: 192 kHz, 24 bits                               |                                                                                                |       |       |       |       |
| Receive noise (0 dB gain mode) <sup>1</sup>         | A-weighted; input = -999 dBFS,<br>VDD_CP = 1.95 V, bandwidth 20 Hz–20 kHz                      | -     | 1.5   | 2.9   | μVrms |
| Signal-to-noise ratio (0 dB gain mode) <sup>2</sup> | B Ratio of full-scale output to output noise level,<br>VDD_CP = 1.95 V, bandwidth 20 Hz–20 kHz |       | 116.4 | -     | dB    |
| THD + N                                             | Band limited from 20 Hz–20 kHz,<br>VDD_CP = 1.95 V                                             | 0     |       |       |       |
|                                                     | PCMI = 0 dBFS                                                                                  |       | -     | -     | dB    |
|                                                     | PCMI = -1 dBFS                                                                                 | -     | -90.0 | -80.0 | dB    |
|                                                     | PCMI = -60 dBFS (A-weighted)                                                                   | -     | -55.0 | -50.0 | dB    |
| HPH: 48 kHz, 16 bits, 32 Ω                          | 2 load                                                                                         |       |       |       |       |
| Receive noise (0 dB gain mode) <sup>1</sup>         | A-weighted; input = -999 dBFS,<br>VDD_CP = 1.95 V, bandwidth 20 Hz–20 kHz                      | -     | 1.5   | 2.9   | μVrms |
| Signal-to-noise ratio (0 dB gain mode) <sup>2</sup> | Ratio of full-scale output to output noise level,<br>VDD_CP = 1.95 V, bandwidth 20 Hz–20 kHz   | 110.0 | 116.4 | -     | dB    |
| THD + N                                             | Band limited from 20 Hz–20 kHz,<br>VDD_CP = 1.95 V                                             |       |       |       |       |
|                                                     | PCMI = 0 dBFS                                                                                  | -     | -85.0 | -60.0 | dB    |
|                                                     | PCMI = -1 dBFS                                                                                 | -     | -87.0 | -82.0 | dB    |
|                                                     | PCMI = -60 dBFS (A-weighted)                                                                   | -     | -55.0 | -50.0 | dB    |
| HPH: 48 kHz, 24 bits, 32 Ω                          | 2 load                                                                                         |       |       |       |       |
| Receive noise (0 dB gain mode) <sup>1</sup>         | A-weighted; input = -999 dBFS,<br>VDD_CP = 1.95 V, bandwidth 20 Hz–20 kHz                      | _     | 1.5   | 2.9   | μVrms |
| Signal-to-noise ratio (0 dB gain mode) <sup>2</sup> | Ratio of full-scale output to output noise level,<br>VDD_CP = 1.95 V, bandwidth 20 Hz–20 kHz   | 110.0 | 116.4 | -     | dB    |
| THD + N                                             | Band limited from 20 Hz–20 kHz,<br>VDD_CP = 1.95 V                                             |       |       |       |       |
|                                                     | PCMI = 0 dBFS                                                                                  | -     | -89.0 | -87.0 | dB    |
|                                                     | PCMI = -1 dBFS                                                                                 | -     | -90.0 | -85.0 | dB    |
|                                                     | PCMI = -60 dBFS (A-weighted)                                                                   | -     | -56.0 | -49.0 | dB    |
| HPH: 96 kHz, 24 bits, 32 Ω                          | ) load                                                                                         |       |       |       |       |
| Receive noise (0 dB gain mode) <sup>1</sup>         | A-weighted; input = -999 dBFS,<br>VDD_CP = 1.95 V, bandwidth 20 Hz–20 kHz                      | _     | 1.5   | 2.9   | μVrms |
| Signal-to-noise ratio (0 dB gain mode) <sup>2</sup> | Ratio of full-scale output to output noise level,<br>VDD_CP = 1.95 V, bandwidth 20 Hz–20 kHz   | 110.0 | 116.4 | -     | dB    |
| THD + N                                             | Band limited from 20 Hz–20 kHz,<br>VDD_CP = 1.95 V                                             |       |       |       |       |
|                                                     | PCMI = 0 dBFS                                                                                  | -     | -     | -     | dB    |
|                                                     | PCMI = -1 dBFS                                                                                 | -     | -90.0 | -     | dB    |
|                                                     | <ul> <li>PCMI = -60 dBFS (A-weighted)</li> </ul>                                               | -     | -54.0 | -50.0 | dB    |

#### Table 3-24 HPH output performance, 16 Ω load unless specified, DRE On (cont.)

| Parameter                                                      | Test conditions                                                                                | Min   | Тур      | Max   | Units      |
|----------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------|----------|-------|------------|
| HPH: 192 kHz, 24 bits, 32                                      | Ω load                                                                                         |       | <u> </u> | 4     | - <u>I</u> |
| Receive noise (0 dB gain mode) <sup>1</sup>                    | A-weighted; input = -999 dBFS,<br>VDD_CP = 1.95 V, bandwidth 20 Hz–20 kHz                      | -     | 1.5      | 2.9   | μVrms      |
| Signal-to-noise ratio (0 dB gain mode) <sup>2</sup>            | Ratio of full-scale output to output noise level,<br>VDD_CP = 1.95 V, bandwidth 20 Hz–20 kHz   | 110.0 | 116.4    | -     | dB         |
| THD + N                                                        | Band limited from 20 Hz–20 kHz,<br>VDD_CP = 1.95 V                                             | ۲     |          |       |            |
|                                                                | <ul> <li>PCMI = 0 dBFS</li> </ul>                                                              |       | _        | _     | dB         |
|                                                                | PCMI = -1 dBFS                                                                                 | -     | -90.0    | -     | dB         |
|                                                                | <ul> <li>PCMI = -60 dBFS (A-weighted)</li> </ul>                                               | -     | -55.0    | -50.0 | dB         |
| Other characteristics                                          | N                                                                                              |       |          |       |            |
| Full-scale output voltage                                      | f = 1.02 kHz, 0 dB FS; 16 Ω or 32 Ω load; VDD_CP = 1.95 V                                      | 0.90  | 1.0      | -     | Vrms       |
| Output power                                                   | f = 1.02 kHz, 0 dB FS, 16 Ω load;<br>VDD_CP = 1.95 V, 0 dB gain mode                           | 54.0  | 62.0     | -     | mW         |
|                                                                | f = 1.02 kHz, 0 dB FS, 32 Ω load;<br>VDD_CP = 1.95 V, 0 dB gain mode                           | -     | 30.0     | -     | mW         |
| Output load                                                    | ut load Supported output load                                                                  |       | 16.0     | -     | Ω          |
| Output capacitance                                             | Total capacitance on HPH output<br>(single-ended), including PCB capacitance and<br>EMI        |       | _        | 1000  | pF         |
| Tx-to-Rx crosstalk attenuation                                 | Rx path measurement with -5 dBV Tx path signal; f = 1 kHz, separate Tx and Rx grounds          | 90.0  | 100.0    | -     | dB         |
| Inter-channel isolation<br>(separate GND for<br>HPH_L & HPH_R) | Measured channel output = -999 dBFS,<br>second DAC channel output = -5 dBFS,<br>f = 1 kHz      | 90.0  | 97.0     | _     | dB         |
| Interchannel gain error                                        | Delta between left and right channels,<br>input = 1 kHz at -20 dBFS                            | -     | 0        | 0.30  | dB         |
| Interchannel phase error                                       | Delta between left and right channels,<br>input = 1 kHz at -20 dBFS                            | -     | -        | 0.50  | deg        |
| Power supply rejection                                         | 100 mVpp sine wave imposed on VPH_PWR;<br>PCMI = -999 dBFS                                     |       |          |       |            |
|                                                                | ■ 0 < f < 1 kHz                                                                                | -     | -102.0   | -99.0 | dB         |
|                                                                | ■ 1 kHz < f < 5 kHz                                                                            | -     | -90.0    | -85.0 | dB         |
|                                                                | ■ 5 kHz < f < 20 kHz                                                                           | _     | -75.0    | -72.0 | dB         |
| Inter-modulation distortion (IMD2)                             | Digital input = 12993 Hz and 14993 Hz equal amplitude tones at -6 dBFs, WB audio               | 82.0  | 89.0     | -     | dB         |
|                                                                | Digital input = 41 Hz and 7993 Hz equal amplitude tones at -6 dBFs, WB voice                   | 80.0  | 84.0     | -     | dB         |
|                                                                | Analog input = 498 Hz and 2020 Hz equal<br>amplitude tones at -6 dBFS, Fs = 8 kHz, NB<br>voice | 85.0  | 100.0    | -     | dB         |
| Disabled output<br>impedance                                   | Measured externally, with amplifier disabled                                                   | _     |          | -     | MΩ         |

| Table 3-24 | HPH output performan | nce, 16 $\Omega$ load unless specified | l, DRE On (d | cont.) |
|------------|----------------------|----------------------------------------|--------------|--------|
|------------|----------------------|----------------------------------------|--------------|--------|

| Parameter        | Test conditions                            | Min | Тур  | Мах  | Units |
|------------------|--------------------------------------------|-----|------|------|-------|
| Output DC offset | Input = -999 dBFS                          | -   | -    | -    | mV    |
| Turn on/off      | <ul> <li>A-weighted, 5 ms, 16 Ω</li> </ul> | -   | 0.15 | 0.43 | mVpp  |
| CnP level        | <ul> <li>32 Ω</li> </ul>                   | -   | -    | -    | mVpp  |
|                  | <ul> <li>10 kΩ</li> </ul>                  | -   | _    | -    | mVpp  |

| Table 3-24 | HPH output performance. | 16 Ω load unless specified | . DRE On (cont.) |
|------------|-------------------------|----------------------------|------------------|
|            |                         |                            | ,                |

1. Receive noise is measured with no dither added to the input signal.

2. SNR is calculated as follows:

Typical = 20 log (full-scale output voltage (typical))/receive noise (typical)

Min = 20 log (full-scale output voltage (minimum))/receive noise (maximum)

# Table 3-25 Mono speaker driver outputs performance, 8 $\Omega$ load and + 12 dB gain unless otherwise specified

| Parameter                           | Test conditions 1                                                                                                        | Min  | Тур   | Мах   | Units    |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------|-------|-------|----------|
| SPKR_DRV; 48 k                      | Hz, 24 bits                                                                                                              |      | I     |       |          |
| Receive noise <sup>2</sup>          | A-weighted; input = -999 dBFS,<br>VDD_SPKR_PA = 5 V, bandwidth 20 Hz–20 kHz                                              | -    | 50.0  | 75.0  | μVrms    |
| THD + N                             | P <sub>out</sub> = 1.5 W, 1 kHz, VDD_SPKR_PA = 5.5 V                                                                     | _    | -85.0 | -80.0 | dB       |
|                                     | P <sub>out</sub> = 1.2 W, 1 kHz, VDD_SPKR_PA = 5 V                                                                       | _    | -86.0 | _     | dB       |
|                                     | P <sub>out</sub> = 1 W, 1 kHz, VDD_SPKR_PA = 4.2 V                                                                       | _    | -34.0 | -20.0 | dB       |
|                                     | P <sub>out</sub> = 700 mW, 1 kHz, VDD_SPKR_PA = 3.8 V                                                                    | _    | -76.0 | -40.0 | dB       |
|                                     | P <sub>out</sub> = 500 mW 1 kHz, VDD_SPKR_PA = 3.7 V                                                                     | -    | -78.0 | -     | dB       |
| Other characteri                    | stics                                                                                                                    |      | I     |       |          |
| Level translation                   | f = 1 kHz<br>Input = -1.5 dBFS, VDD_SPKR_PA = 5.5 V                                                                      | 9.0  | 10.0  | 12.0  | dBV      |
| Output power<br>(P <sub>out</sub> ) | f = 1 kHz<br>■ Vdd = 3.7 V THD + N ≤ 1%; 15 μH + 8 Ω + 15 μH<br>■ Vdd = 3.7 V THD + N ≤ 1%; 15 μH + 4 Ω + 15 μH          | 670  | 690   | _     | mW<br>mW |
|                                     | <ul> <li>Vdd = 3.8 V THD + N ≤ 1%; 15 μH + 8 Ω + 15 μH</li> <li>Vdd = 4.2 V THD + N ≤ 1%; 15 μH + 8 Ω + 15 μH</li> </ul> | 900  | 1100  | -     | mW<br>mW |
|                                     | <ul> <li>Vdd = 5 V THD+N ≤ 1%; 15 μH + 4 Ω + 15 μH</li> <li>Vdd = 5.5 V THD+N ≤ 1%; 15 μH + 8 Ω + 15 μH</li> </ul>       | 700  | 790   | -     | mW<br>mW |
|                                     |                                                                                                                          | 929  | 956   | -     | mW       |
|                                     |                                                                                                                          | 1200 | 1500  | _     | mW       |
|                                     |                                                                                                                          | 1500 | 2000  | _     | mW       |
| Power supply rejection              | 200 mVpp sine wave imposed on PMIC_VBATT;<br>digital input = -999 dBFS <sup>3</sup>                                      |      |       |       |          |
|                                     | ■ f = 217 Hz                                                                                                             | 60.0 | 79.0  | _     | dB       |
|                                     | ■ f = 1 kHz                                                                                                              | 60.0 | 79.0  | -     | dB       |
|                                     | ■ f = 10 kHz                                                                                                             | 40.0 | 50.0  | -     | dB       |
|                                     | ■ f = 20 kHz                                                                                                             | 40.0 | 50.0  | -     | dB       |

| Parameter                 | Test conditions <sup>1</sup>                                       | Min  | Тур  | Max  | Units |
|---------------------------|--------------------------------------------------------------------|------|------|------|-------|
| Output DC offset          | Speaker driver enabled, input = -999 dBFs                          | -3.0 | -    | 3.0  | mV    |
| Efficiency                | Vdd = 3.7 V                                                        |      |      |      |       |
|                           | P <sub>out</sub> = 500 mW; 15 μH + 8 Ω + 15 μH                     | 85.0 | 90.0 | -    | %     |
|                           | <ul> <li>P<sub>out</sub> = 1 W; 15 μH + 4 Ω + 15 μH</li> </ul>     | 78.0 | 85.0 | -    | %     |
|                           | Vdd = 5 V <sup>4</sup>                                             | ٩    |      |      |       |
|                           | P <sub>out</sub> = 1 W, 15 μH + 8 Ω + 15 μH                        | 73.0 | 81.0 | -    | %     |
|                           | <ul> <li>P<sub>out</sub> = 2 W, 15 μH + 4 Ω + 15 μH</li> </ul>     | 60.0 | 72.0 | -    | %     |
| Shutdown current          | Amplifier disabled                                                 | -    | 2.0  | 16.0 | μA    |
| Turn on time              |                                                                    | _    | 0.2  | 10   | ms    |
| CnP level                 | No signal, turn on/off, mute/unmute, A-weighted                    | -    | 0.6  | 10   | mVpp  |
| Disabled output impedance | Amplifier off                                                      | 25   | -    | -    | kΩ    |
| VDD/GND<br>inductance     | Vdd = 5.5 V, input = 0 dBFS square wave,<br>20 Hz–20 kHz, 40 hours | -    | _    | 0.5  | nH    |

| Table 3-25          | Mono speaker driver outputs performance, 8 $\Omega$ load and + 12 dB gain unless otherwise |
|---------------------|--------------------------------------------------------------------------------------------|
| <b>specified</b> (c | cont.)                                                                                     |

1. OCP limit is 1.5 A for 8  $\Omega$  speaker; 2 A for 4 ohm speaker.

2. Receive noise is measured with no dither added to the input signal.

3. With 200 mVpp sine wave imposed on VSW\_BOOST and digital input = -999 dBFS, PSRR is higher than 90 dB typical for all test cases.

4. Minimum efficiency for use cases when VPH\_PWR > 4.5 V.

|             | 16-050119                                                                         |
|-------------|-----------------------------------------------------------------------------------|
| Table 3-26  | Mono differential line output performance, 10 kO load and 1000 pF max capacitance |
| unless othe | erwise specified                                                                  |

| Parameter                          | Test conditions                                    | Min   | Тур   | Max   | Units |
|------------------------------------|----------------------------------------------------|-------|-------|-------|-------|
| LINE_OUT: 8 kHz, 16 bi             | ts                                                 |       | I     |       |       |
| Receive noise <sup>1</sup>         | A-weighted; input = -999 dBFS                      | -     | 5.5   | 8.0   | μVrms |
| Signal-to-noise ratio <sup>2</sup> | Ratio of full-scale output to output noise level   | 100.0 | 105.0 | -     | dB    |
| THD + N                            | Band limited from 20 Hz–20 kHz,<br>VDD_CP = 1.95 V |       |       |       |       |
|                                    | PCMI = 0 dBFS                                      | _     | -60.0 | -40.0 | dB    |
|                                    | PCMI = -1 dBFS                                     | _     | -79.0 | -70.0 | dB    |
|                                    | <ul> <li>PCMI = -60 dBFS (A-weighted)</li> </ul>   | -     | -39.0 | -36.0 | dB    |
| LINE_OUT: 48 kHz, 16 b             | pits                                               |       |       |       |       |
| Receive noise <sup>1</sup>         | A-weighted; input = -999 dBFS                      | -     | 5.5   | 8.0   | μVrms |
| Signal-to-noise ratio <sup>2</sup> | Ratio of full-scale output to output noise level   | 100.0 | 105.0 | -     | dB    |

| Parameter                          | Test conditions                                                                              | Min   | Тур   | Max   | Units |
|------------------------------------|----------------------------------------------------------------------------------------------|-------|-------|-------|-------|
| THD + N                            | Band limited from 20 Hz–20 kHz,<br>VDD_CP = 1.95 V                                           |       |       |       |       |
|                                    | PCMI = 0 dBFS                                                                                | _     | -60.0 | -40.0 | dB    |
|                                    | PCMI = -1 dBFS                                                                               | -     | -80.0 | -70.0 | dB    |
|                                    | <ul> <li>PCMI = -60 dBFS (A-weighted)</li> </ul>                                             | -     | -39.0 | -36.0 | dB    |
| LINE_OUT: 48 kHz, 24 bi            | ts                                                                                           | ٢     |       |       |       |
| Receive noise <sup>1</sup>         | A-weighted; input = -999 dBFS                                                                |       | 5.5   | 8.0   | μVrms |
| Signal-to-noise ratio <sup>2</sup> | Ratio of full-scale output to output noise level,<br>VDD_CP = 1.95 V, bandwidth 20 Hz–20 kHz | 101.0 | 105.0 | -     | dB    |
| THD + N                            | Band limited from 20 Hz–20 kHz,<br>VDD_CP = 1.95 V                                           |       |       |       |       |
|                                    | PCMI = 0 dBFS                                                                                | -     | -60.0 | -40.0 | dB    |
|                                    | PCMI = -1 dBFS                                                                               | -     | -81.0 | -70.0 | dB    |
|                                    | <ul> <li>PCMI = -60 dBFS (A-weighted)</li> </ul>                                             | -     | -45.0 | -42.0 | dB    |
| Other characteristics              |                                                                                              |       |       |       |       |
| Full-scale output voltage          | f = 1.02 kHz, 0 dBFS                                                                         | 0.90  | 1.0   | -     | Vrms  |
| Output load                        | Measured between LO_P and LO_M                                                               | 1 K   | 10 K  | -     | Ω     |
| Tx-to-Rx crosstalk<br>attenuation  | Rx path measurement with -5 dBFS Tx path signal. f = 1 kHz                                   | 90.0  | 100.0 | -     | dB    |
| Power supply rejection             | 100 mVpp sine wave imposed on VPH_PWR;<br>PCMI = -999 dBFS                                   |       |       |       |       |
|                                    | ■ 0 < f < 1 kHz                                                                              | 61.0  | 72.0  | -     | dB    |
|                                    | 1 kHz < f < 5 kHz                                                                            | 61.0  | 72.0  | -     | dB    |
|                                    | ■ 5 kHz < f < 20 kHz                                                                         | 60.0  | 70.0  | -     | dB    |
| Disabled output<br>impedance       | Measured externally, with the amplifier disabled                                             | 37.5  | -     | -     | kΩ    |
| Output common mode voltage         | PCMI = -999 dBFS                                                                             | 1.52  | 1.6   | 1.68  | V     |
| Turn on/off CnP level              | A-weighted, 10 kΩ                                                                            | _     | 0.75  | 3.0   | mVpp  |

# Table 3-26 Mono differential line output performance, 10 kO load and 1000 pF max capacitance unless otherwise specified (cont.)

1. Receive noise is measured with no dither added to the input signal.

2. SNR is calculated as follows:

Typical = 20 log (full-scale output voltage (typical))/receive noise (typical) Min = 20 log (full-scale output voltage (minimum))/receive noise (maximum)

#### 3.8.3 Support circuits

#### Table 3-27 Microphone bias specifications

| Parameter               | Test conditions      | Min | Тур | Мах | Units |
|-------------------------|----------------------|-----|-----|-----|-------|
| Output voltage          | 3 mA microphone load | 1.6 | _   | 2.9 | V     |
| Output voltage accuracy | -                    |     | 2.0 | 3.0 | %     |

| Parameter                | Test conditions                                                                                                             | Min  | Тур  | Max | Units |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------|------|------|-----|-------|
| Output current           | Two microphone loads of 1–1.5 mA each                                                                                       | 2.0  | 3.0  | _   | mA    |
| Output noise             | 0.1 μF bypass                                                                                                               | _    | 3.6  | -   | μVrms |
| Power supply rejection   | 100 mVpp applied to PMIC Vbatt input;<br>microphone bias source current = 1.5 mA;<br>internal input M pin connected to bias |      |      |     |       |
|                          | <ul> <li>At 20 Hz</li> </ul>                                                                                                | 53.0 | 89.0 | -   | dB    |
|                          | At 200 Hz–1 kHz                                                                                                             | 73.0 | 92.0 | _   | dB    |
|                          | At 5 Hz                                                                                                                     | 60.0 | 78.0 | _   | dB    |
|                          | At 10 kHz                                                                                                                   | 50.0 | 67.0 | -   | dB    |
|                          | <ul> <li>At 20 kHz</li> </ul>                                                                                               | 38.0 | 72.0 | -   | dB    |
| ntermicrophone isolation | DC current = 50 $\mu$ A, 2.2 k $\Omega$ bias resistor                                                                       |      |      |     |       |
|                          | ■ 20–200 Hz                                                                                                                 | 70.0 | 79.0 | _   | dB    |
|                          | 200 Hz–1 kHz                                                                                                                | 67.0 | 70.0 | _   | dB    |
|                          | ■ 1–5 kHz                                                                                                                   | 67.0 | 70.0 | _   | dB    |
|                          | ■ 5–10 kHz                                                                                                                  | 60.0 | 65.0 | _   | dB    |
|                          | ■ 10–20 kHz                                                                                                                 | 54.0 | 62.0 | -   | dB    |
|                          | ■ 20–80 kHz                                                                                                                 | 32.0 | 60.0 | -   | dB    |
| Output capacitor value   | External bypass mode                                                                                                        | 0.08 | 0.1  | 0.5 | μF    |
|                          | No external bypass mode                                                                                                     | _    | -    | 270 | pF    |
| able 3-28 Boost spe      | cifications 1                                                                                                               |      |      | 1   | 1     |
| Parameter                | Test conditions                                                                                                             | Min  | Typ  | Max | Units |

| Table 3-27 | Microphone bias | specifications | (cont.) |
|------------|-----------------|----------------|---------|
|------------|-----------------|----------------|---------|

#### Table 3-28 Boost specifications <sup>1</sup>

| Parameter                      | Test conditions                                                                          | Min  | Тур  | Мах  | Units  |
|--------------------------------|------------------------------------------------------------------------------------------|------|------|------|--------|
| Boost efficiency               | 3.7 V input, 2.2 μH inductor,<br>600 mA load                                             | 84.0 | 90.0 | -    | %      |
|                                | 3.7 V input, 2.2 μH inductor,<br>900 mA load                                             | 80.0 | 83.0 | -    | %      |
| Absolute voltage accuracy      | 5.5 V                                                                                    | -3.0 | _    | 3.0  | %      |
| Temperature coefficient        | 600 mA load current                                                                      | -100 | _    | 100  | ppm/°C |
| Overshoot                      | Regulator turn on/off, load off, voltage step                                            | -    | _    | 9.0  | %      |
| Voltage dip due to transient   | 6-600 mA current step                                                                    | -    | _    | 500  | mV     |
| Voltage spike due to transient | 600-6 mA current step                                                                    | -    | _    | 500  | mV     |
| Settling time                  | 600 mA load current                                                                      | -    | _    | 200  | μs     |
| Load regulation                | $V_{in} < V_{out} + 1 V$ with load from<br>I <sub>rated</sub> /100 to I <sub>rated</sub> | -    | 2.0  | 3.0  | %      |
| Line regulation                | 600 mA load current                                                                      | -    | _    | 2.0  | %/V    |
| Zero-load idle current         | 0 mA load current, Vbat = 3.7 V                                                          | -    | 0.5  | -    | mA     |
| Boost output ripple            | 600 mA load, 20 μF capacitor,<br>1.6 MHz clock rate                                      | -    | _    | 80.0 | mV     |

I

#### Table 3-28 Boost specifications <sup>1</sup> (cont.)

|   | Parameter           | Test conditions | Min | Тур | Мах | Units |
|---|---------------------|-----------------|-----|-----|-----|-------|
| B | oost output voltage | 8 Ω             | 4.0 | 5.0 | 5.5 | V     |
|   |                     | 4 Ω             | 4.0 | 5.0 | 5.0 | V     |

1. The boost specifications are valid for both 8  $\Omega$  and 4  $\Omega$  speaker loads.

# 3.9 IC-level interfaces

The IC-level interfaces include power-on circuits, the SPMI, interrupt managers, and miscellaneous digital I/O functions like level translators, detectors, and controllers. Parameters associated with these IC-level interface functions are specified in Section 3.9.1 to Section 3.9.4. GPIO and MPP functions are also considered part of the IC-level interface functional block, but they are specified in their own sections (Section 3.10 and Section 3.11, respectively).

#### **3.9.1** Power-on circuits and the power sequences

Dedicated circuits continuously monitor several events that might trigger a power-on sequence. If any of these events occur, the PMIC circuits are powered on, the handset's available power sources are determined, the correct source is enabled, and the modem IC is taken out of reset. The PM8953 device complements the PMI8952 device to meet the system's power management needs. Power sequencing details are shared between the two ICs, so this topic is addressed in the *PM8952/PM8956 and PMI8952 Power Management ICs Design Guidelines/Training Slides* (80-NT390-5), including:

- Power-on circuit block diagrams and descriptions
- Pin assignment descriptions and schematic details showing PMIC interconnections
- Types of triggers and turn on and off trigger events
- Power sequencing and detailed descriptions

The regulators that are included during the initial power-on sequence are determined by the hardware configuration controls (OPT[2:1]), as defined in Section 3.9.2. Example sequences are shown in Figure 3-5 followed by pertinent timing characteristics in Table 3-29.

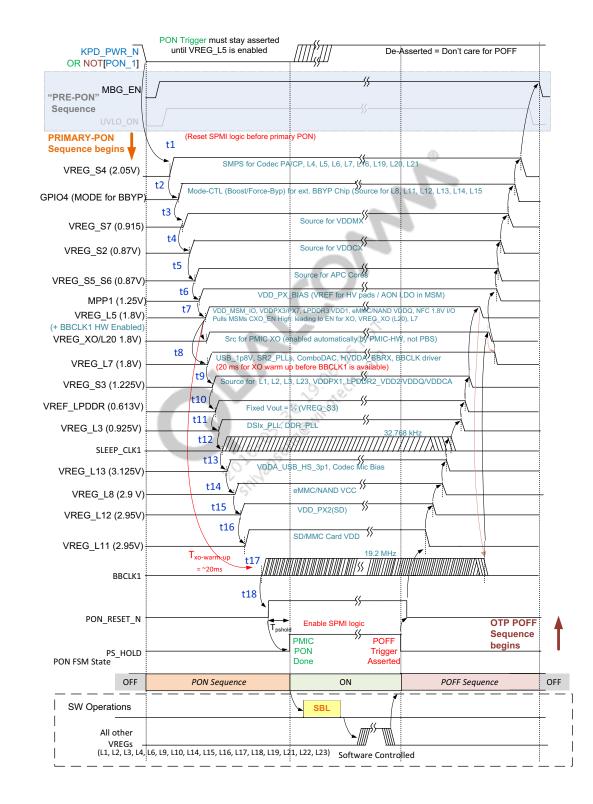



Figure 3-5 PM8953 power-on sequence

| Parameter                                     | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Min | Typ <sup>2</sup> | Мах | Units |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------|-----|-------|
| t(settle) <sup>3</sup>                        | Regulator settling time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -   | -                | 300 | μs    |
| t(xo)                                         | XO warm-up time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _   | 15               | 18  | ms    |
| t(ps_hold) <sup>4, 5</sup><br>Default timeout | PS_HOLD timeout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _   | _                | 240 | ms    |
| t(off)                                        | Time between regulator disable signals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | 256              | 600 |       |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 250              | 000 | μs    |
| KPDPWR_N initiated                            | power-on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -   |                  |     |       |
| KPDPWR_N                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0   | 0                | 0   | ms    |
| VREG_S4 (t1)                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -   | 60               | -   | ms    |
| GPIO4 (t2)                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -   | 0.3              | -   | ms    |
| VREG_S7 (t3)                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -   | 0.07             | -   | ms    |
| VREG_S2 (t4)                                  | (Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _   | 0.3              | -   | ms    |
| VREG_S5 (t5)                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _   | 0.3              | _   | ms    |
| MPP_1 (t6)                                    | 100 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _   | 0.04             | _   | ms    |
| VREG_L5,<br>BBLCK1_EN (t7)                    | - 06.4n.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -   | 0.3              | _   | ms    |
| VREG_XO                                       | 5 1 11 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _   | _                | -   | ms    |
| VREG_L7 (t8)                                  | Contraction of the second seco | _   | 0.1              | -   | ms    |
| VREG_S3 (t9)                                  | 6.0 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -   | 0.16             | -   | ms    |
| VREF_LPDDR (t10)                              | 201, 301 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _   | 0.255            | -   | ms    |
| VREG_L3 (t11)                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -   | 5                | -   | ms    |
| SLEEP_CLK1 (t12)                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _   | 0.15             | _   | ms    |
| VREG_L13 (t13)                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _   | 0.25             | _   | ms    |
| VREG_L8 (t14)                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _   | 0.3              | _   | ms    |
| VREG_L12 (t15)                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _   | 0.12             | _   | ms    |
| VREG_L11 (t16)                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _   | 0.3              | -   | ms    |
| BBLCK (t17)                                   | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _   | 16               | _   | ms    |
| PON_RESET_N (t18)                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _   | 0.2              | -   | ms    |

#### Table 3-29 Power-on timing specifications

1. Timing is derived from the divided-down XO clock source (32.7645 kHz typical); otherwise, its tolerance depends on the RC clock tolerance.

2. These timings are applicable for the KPDPWR\_N initiated PON delay post SBL. Usually these times are higher for the first KPDPWR\_N-initiated PON delay.

- Each regulator settles to within its stated regulator accuracy within the stated regulator settling time. The specified values require the recommended load capacitors. If extra capacitance is used, the settling times can be significantly longer for both t(settle) and t(reg).
- 4. PS\_HOLD timeout is 1 s during the power-on sequence if the power-on trigger reason is PON\_1 and the PON\_OPTION\_BITS register WIPWR\_DEBOUNCE\_DLY field is set. PS\_HOLD timeout is 200 ms during the power-on sequence for other power-on trigger reasons. PS\_HOLD timeout is 200 ms for the warm reset sequence.
- 5. PS\_HOLD timeout is the time after which the PMIC turns off, if PS\_HOLD is not yet driven high enough by the MSM/APQ device.

The I/Os to and from the power-on circuits are basic digital control signals that must meet the voltage-level requirements stated in Section 3.4. The KPD\_PWR\_N and CBL\_PWR\_N inputs are pulled up to an internal voltage (dVdd). Additional power-on-circuit performance specifications are listed in Table 3-29. More complete definitions for time intervals included in the table are provided in the *PM8953 and PMI8952 Power Management ICs Design Guidelines/Training Slides* (80-P2536).

# 3.9.2 OPT[2:1] hardwired controls

Two pins (OPT\_2 and OPT\_1) must be hardwired to ground or VDD or be left open (high-impedance state or Hi-Z); this yields nine possible combinations. Table 3-30 lists the parameters that OPT[2:1] pins use.

Table 3-30 Hardware configuration options

| Option pin | Parameter | Configuration                |
|------------|-----------|------------------------------|
| OPT_1      |           |                              |
| ■ GND      |           | <ul> <li>Reserved</li> </ul> |
| ■ Hi-Z     |           | <ul> <li>Reserved</li> </ul> |
| VDD        | 10 A      | <ul> <li>Reserved</li> </ul> |
| OPT_2      |           |                              |
| ■ GND      |           | <ul> <li>Reserved</li> </ul> |
| ■ Hi-Z     | 191 x 201 | <ul> <li>Reserved</li> </ul> |
| VDD        | 30 wing   | <ul> <li>Reserved</li> </ul> |

Each chipset that uses the PM8953 device must set the OPT pins correctly for its particular application;  $OPT_1 = Hi-Z$  and  $OPT_2 = Hi-Z$  for MSM8953 chipset.

#### 3.9.3 SPMI and the interrupt managers

The SPMI is a bidirectional, two-line digital interface that meets the voltage and current level requirements stated in Section 3.4.

PMIC interrupt managers support the chipset modem and its processors, and communicate with the modem IC via SPMI. Since the interrupt managers are entirely embedded functions, additional performance specifications are not required.

# 3.9.4 Undervoltage (UVLO) lockout

The handset supply voltage (VDD) is monitored continuously by a circuit that automatically turns off the device at severely low VDD conditions. UVLO events do not generate interrupts. They are reported to the modem IC via the PON\_RESET\_N signal. UVLO-related voltage and timing specifications are listed in Table 3-31.

| Table 3-31 | UVLO | performance specifications |
|------------|------|----------------------------|
|            |      |                            |

| Parameter                              | Comments                           | Min   | Тур   | Max   | Units |
|----------------------------------------|------------------------------------|-------|-------|-------|-------|
| Rising threshold voltage <sup>1</sup>  | Programmable value, in 50 mV steps | 1.675 | 2.825 | 3.225 | V     |
| Hysteresis <sup>1</sup>                | 175 mV setting                     | 125   | 175   | 225   | mV    |
|                                        | 300 mV setting                     | 250   | 300   | 350   | mV    |
| Falling threshold voltage <sup>2</sup> | 175 mV hysteresis setting          | 1.500 | 2.650 | 3050  | V     |
|                                        | 300 mV hysteresis setting          | 1.375 | 2.525 | 2.925 | V     |
|                                        | 425 mV hysteresis setting          | 1.200 | 2.400 | 2.800 | V     |
| UVLO detection interval                | - ( )                              | -     | 1     | -     | μs    |

1. The hardware default UVLO rising threshold is 2.725 V, and the hysteresis is 175 mV. For handset applications, the UVLO rising threshold and hysteresis are reconfigured in SBL to 2.825 V rising and 425 mV, respectively.

2. The UVLO rising threshold is programmable. UVLO falling threshold = UVLO rising threshold - UVLO hysteresis.

# 3.10 GPIO specifications

The eight GPIO ports are digital I/Os that can be programmed for a variety of configurations (Table 3-32). Performance specifications for the different configurations are included in Section 3.4.

**NOTE** Unused GPIO pins should be configured as inputs with 10  $\mu$ A pull-down.

| Configuration type | Configuration description                                                                                                                                |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input              | No pull-up                                                                                                                                               |
|                    | <ul> <li>Pull-up (1.5, 30, or 31.5 μA)</li> </ul>                                                                                                        |
|                    | ■ Pull-down (10 µA)                                                                                                                                      |
|                    | ■ Keeper                                                                                                                                                 |
| Output             | Open-drain or CMOS                                                                                                                                       |
|                    | <ul> <li>Inverted or non-inverted</li> </ul>                                                                                                             |
|                    | <ul> <li>Programmable drive current; see Table 3-33 for options</li> </ul>                                                                               |
| Input/output pair  | Requires two GPIOs; input and output stages can use different power supplies, thereby implementing a level translator (see Table 2-1 for supply options) |

 Table 3-32
 Programmable GPIO configurations

GPIOs default to a digital input with 10  $\mu$ A of pull-down at power on. Before they can be used for their desired purposes, they need to be configured for use.

GPIOs are designed to run at a 4 MHz rate to support high-speed applications. The supported rate depends on the load capacitance and IR drop requirements. If the application specifies load capacitance, then the maximum rate is determined by the IR drop. If the application does not require a specific IR drop, then the maximum rate can be increased by increasing the supply voltage and adjusting the drive strength according to the actual load capacitance.

- GPIO1 is GPIOC-capable where DIV\_CLK can be used as general purpose clock output.
- GPIO2, when configured properly, can be used as a pin-controlled BBCLK2 enable.
- GPIO6, when configured properly, can be used for switched antenna diversity for WLAN.
- GPIO5, when configured properly, can be used as BAT\_ALARM\_IN for BUA application.
- GPIO7, is used for scaled USB VBUS sense to support the USB type C function. Always use a 910 kΩ resistor to connect to the VBUS line.
- GPIO8 controls the external VCONN switch and USB\_ID pin of PMI8952 to enable the USB\_OTG mode for supporting USB Type C function. For right configuration, refer to the MSM8953 + PMI8952 + PM8953 Preliminary Reference Schematic (80-P2472-41).

# 3.11 Multipurpose pin (MPP) specifications

The PM8953 device includes four MPPs that can be configured for any of the functions specified within Table 3-33. All MPPs are Hi-Z at power on. During power on, PBS programs MPP\_1 as an analog output that is used as a reference for modem IC 3 V I/Os.

| Table 3-33 | MPP performance | specifications |
|------------|-----------------|----------------|
|------------|-----------------|----------------|

| Parameter                 | er Comments                                                            |            | Тур  | Мах        | Units |
|---------------------------|------------------------------------------------------------------------|------------|------|------------|-------|
| MPP configured as digital | input <sup>1</sup>                                                     |            |      |            |       |
| Logic high input voltage  | ~ -                                                                    | 0.65 × V_M | -    | -          | V     |
| Logic low input voltage   | -                                                                      | -          | _    | 0.35 × V_M | V     |
| MPP configured as digital | output <sup>1</sup>                                                    |            |      |            |       |
| Logic high output voltage | I <sub>out</sub> = I <sub>OH</sub>                                     | V_M - 0.45 | _    | V_M        | V     |
| Logic low output voltage  | $I_{out} = I_{OL}$                                                     | 0          | _    | 0.45       | V     |
| MPP configured as analog  | g input (analog multiplexer input)                                     | _          |      | -          |       |
| Input current             | -                                                                      | -          | -    | 100        | nA    |
| Input capacitance         | -                                                                      | -          | -    | 10         | pF    |
| MPP configured as analog  | g output (buffered VREF output)                                        |            |      |            |       |
| Output voltage error      | -50–50 μA                                                              | -          | _    | 30         | mV    |
| Temperature variation     | Due to buffer only; does not include<br>VREF variation (see Table 3-8) | -0.03      | -    | 0.03       | %     |
| Load capacitance          | -                                                                      | -          | _    | 25         | pF    |
| Power-supply current      | -                                                                      | -          | 0.17 | 0.20       | mA    |
| MPPs configured as curre  | ent drivers (even MPPs only)                                           |            |      |            |       |
| Power supply voltage      | _                                                                      | _          | VDD  | _          | V     |

| Parameter               | Comments                                                                  | Min | Тур | Max  | Units |
|-------------------------|---------------------------------------------------------------------------|-----|-----|------|-------|
| Output current          | Programmable in 5 mA increments                                           | 5   | -   | 40   | mA    |
| Output current accuracy | Any programmed current value                                              | -20 | -   | 20   | %     |
| Dropout voltage         | V_IN - V_OUT with I_OUT within the accuracy limits of its current setting | -   | -   | 1000 | mV    |
| Leakage current         | Driver disabled                                                           | -   | 105 | 115  | nA    |

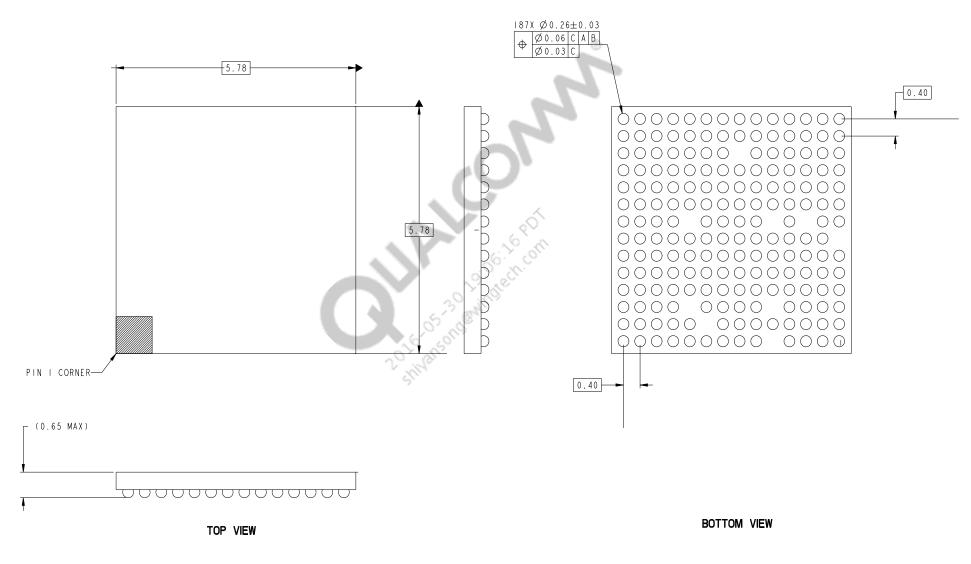
#### Table 3-33 MPP performance specifications (cont.)

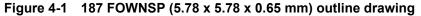
1. Input and output stages can use different power supplies, thereby implementing a level translator (See Table 2-1 for supply options). Other specifications are included in Section 3.4.

NOTE Only odd MPPs (for example, MPP\_1 and MPP\_3) can be configured as analog outputs. Only even MPPs (for example, MPP\_2 and MPP\_4) have current sink capability.

80-P2536-1 Rev. B

# 4.1 Device physical dimensions


The PM8953 is available in the 187 FOWNSP that includes dedicated ground pins for improved grounding, mechanical strength, and thermal continuity. The 187 FOWNSP has a 5.78 mm by 5.78 mm body, with a maximum height of 0.65 mm. Pin 1 is located by an indicator mark on the top of the package, and by the ball pattern when viewed from below. A simplified version of the 187 FOWNSP outline drawing is shown in Figure 4-1.


NOTE Click the following link to download the 187 FOWNSP outline drawing (NT90-P1513-1) from the Qualcomm<sup>®</sup> CreatePoint website. The first link is to the BGA pin list reference document; the second link is to the outline drawing.

https://createpoint.qti.qualcomm.com/chipcenter/download/title/0901003981bb721d https://createpoint.qti.qualcomm.com/chipcenter/download/title/0901003981bb721e After successfully logging in, the document is downloaded.

**NOTE** Make this package drawing a favorite to be notified of any change.

For more details on using CreatePoint, refer to the *Qualcomm CreatePoint User Guide* (80-NC193-2).





**NOTE** This is a simplified outline drawing. Click the following link to download the complete, up-to-date package outline drawing. The first link is to the BGA pin list reference document; the second link is to the outline drawing.

https://createpoint.qti.qualcomm.com/chipcenter/download/title/0901003981bb721d https://createpoint.qti.qualcomm.com/chipcenter/download/title/0901003981bb721e

# 4.2 Part marking

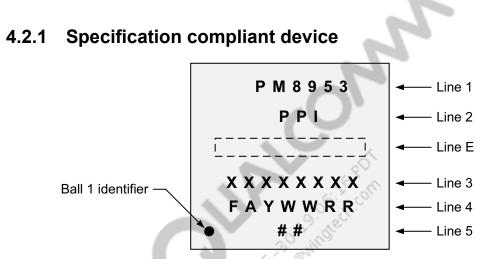



Figure 4-2 PM8953 device marking (top view – not to scale)

| Table 4-1 | PM8953 Power | Management IC dev | rice marking line definitions |
|-----------|--------------|-------------------|-------------------------------|
|-----------|--------------|-------------------|-------------------------------|

| Line | Marking         | Description                                    |  |  |  |
|------|-----------------|------------------------------------------------|--|--|--|
| 1    | PM8953          | Qualcomm Technologies, Inc. (QTI) product name |  |  |  |
| 2    | PPI             | P = product configuration code (see Table 4-2) |  |  |  |
|      |                 | PI = program ID code (see Table 4-2)           |  |  |  |
| E    | Blank or random | Additional content as necessary                |  |  |  |
| 3    | XXXXXXXXX       | XXXXXXXX = traceability information            |  |  |  |
| 4    | FAYWWRR         | F = wafer fab source of supply code            |  |  |  |
|      |                 | ■ F = E for MagnaChip                          |  |  |  |
|      |                 | ■ F = P for SMIC                               |  |  |  |
|      |                 | A = assembly (ball drop) code                  |  |  |  |
|      |                 | A = Z for Nanium, Portugal                     |  |  |  |
|      |                 | A = M for STATS ChipPAC, Singapore             |  |  |  |
|      |                 | Y = single-digit year                          |  |  |  |
|      |                 | WW = work week (based on calendar year)        |  |  |  |
|      |                 | RR = product revision (see Table 4-2)          |  |  |  |
| 5    | • ##            | • = Dot identifying pin 1                      |  |  |  |
|      |                 | ## = two-digit wafer number                    |  |  |  |
|      |                 |                                                |  |  |  |

# 4.3 Device ordering information

# 4.3.1 Specification compliant devices

This device can be ordered using the identification code shown in Figure 4-3 and explained below.

| Device ID code       | AAA-AAAA        | — P            | — CCC             | DDDD            | — EE                | — RR             | — S            | — ВВ            |
|----------------------|-----------------|----------------|-------------------|-----------------|---------------------|------------------|----------------|-----------------|
| Symbol<br>definition | Product<br>name | Config<br>code | Number<br>of pins | Package<br>type | Shipping<br>package | Product revision | Source<br>code | Feature<br>code |
| Example ►            | PM-8953         | — 0            | — 187             | FOWNSP          | — TR                | — 00             | — 0            | — vv            |

#### Figure 4-3 Device identification code

Device ordering information details for all samples available to date are summarized in Table 4-2.

#### Table 4-2 Device identification code/ordering information details

| PMIC variant      | P value | RR value | HW ID # | S value <sup>1</sup> | PI value <sup>2</sup> |
|-------------------|---------|----------|---------|----------------------|-----------------------|
| ES/CS sample type |         |          | ~       |                      |                       |
| PM8953 ES         | 0       | 00       | v1.0    | 0                    | VV                    |

1. S is the source configuration code that identifies all the qualified die fabrication source combinations available at the time a particular sample type were shipped. S values are defined in Table 4-3.

2. *PI* is the program ID code that identifies an IC's specific OTP programming that distinguishes it from other versions or variants.

#### Table 4-3 Source configuration code

| PMIC   | S value | F value                   |
|--------|---------|---------------------------|
| PM8953 | S = 0   | P = SMIC or E = MagnaChip |

# 4.4 Device moisture-sensitivity level

Surface mount packages are susceptible to damage induced by absorbed moisture and high temperature. A package's moisture-sensitivity level (Table 4-4) indicates its ability to withstand exposure after it is removed from its shipment bag, while on the factory floor awaiting PCB installation. A low MSL rating is better than a high rating; a low MSL device can be exposed on the factory floor longer than a high MSL device.

| MSL | Out-of-bag floor life                                                                                | Comments                     |
|-----|------------------------------------------------------------------------------------------------------|------------------------------|
| 1   | Unlimited                                                                                            | ≤ 30°C/85% RH; PM8953 rating |
| 2   | 1 year                                                                                               | ≤ 30°C/60% RH                |
| 2a  | 4 weeks                                                                                              | ≤ 30°C/60% RH                |
| 3   | 168 hours                                                                                            | ≤ 30°C/60% RH                |
| 4   | 72 hours                                                                                             | ≤ 30°C/60% RH                |
| 5   | 48 hours                                                                                             | ≤ 30°C/60% RH                |
| 5a  | 24 hours                                                                                             | ≤ 30°C/60% RH                |
| 6   | Mandatory bake before use; after bake, must be reflowed within the time limit specified on the label | ≤ 30°C/60% RH                |

Table 4-4 MSL ratings summary

QTI follows the latest IPC/JEDEC J-STD-020 standard revision for moisture-sensitivity qualification. *The PM895x device are classified as MSL1; the qualification temperature was*  $250^{\circ}C + 0^{\circ}/-5^{\circ}C$ . This qualification temperature ( $250^{\circ}C + 0^{\circ}/-5^{\circ}C$ ) should not be confused with the peak temperature within the recommended solder reflow profile (see Section 6.2.3 for further discussion).

# 4.5 Thermal characteristics

Rather than provide thermal resistance values  $\theta_{JC}$  and  $\theta_{JA}$ , validated thermal package models are provided through the Qualcomm CreatePoint website. A thermal model for each device is provided within the *Power\_Thermal* subfolder for each chipset family. Designers can extract thermal resistance values by conducting their own thermal simulations.

**NOTE** Click the link below to download the PM8953 187 FOWNSP thermal package model from the Qualcomm CreatePoint website.

Icepak model (HS11-P2536-5HW)

https://createpoint.qti.qualcomm.com/search/contentdocument/download/090100398 1c1b29e

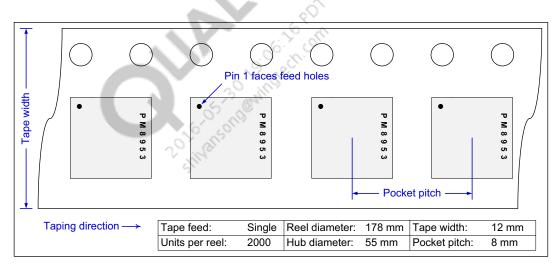
FLOTHERM model (HS11-P2536-6HW)

https://createpoint.qti.qualcomm.com/search/contentdocument/download/090100398 1c1b1de

After you log in successfully, the document is downloaded (assuming you have permission to view it).

**NOTE** Make this document a favorite to be notified of any changes.

For more details on using CreatePoint, refer to the *Qualcomm CreatePoint User Guide* (80-NC193-2).


**Constanting** 2016-05-20 Outring 2016-05-20 2016-05-20 2016-05-20 2016-05-20 2000-05-20 2000-05-20 2000-05-20 2000-05-20 2000-05-20 2000-05-20 2000-05-20 2000-05-20 2000-05-20 2000-05-20 2000-05-20 2000-05-20 2000-05-20 2000-05-20 2000-05-20 2000-05-20 2000-05-20 2000-05-20 2000-05-20 2000-05-20 2000-05-20 2000-05-20 2000-05-20 2000-05-20 2000-05-20 2000-05-20 2000-05-20 2000-05-20 2000-05-20 2000-05-20 2000-05-20 2000-05-20 2000-05-20 2000-05-20 2000-05-20 2000-05-200-05-20 2000-05-

# **5** Carrier, storage, and handling information

# 5.1 Carrier

#### 5.1.1 Tape and reel information

All QTI carrier tape systems conform to EIA-481 standards. A simplified sketch of the PM8953 device's tape carrier is shown in Figure 5-1, including the proper part orientation, maximum number of devices per reel, and key dimensions.



#### Figure 5-1 Carrier tape drawing with part orientation

Tape-handling recommendations are shown in Figure 5-2.

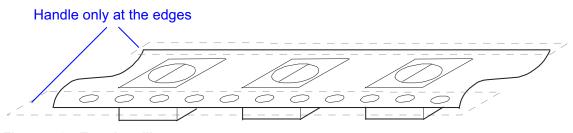



Figure 5-2 Tape handling

# 5.2 Storage

#### 5.2.1 Bagged storage conditions

PM8953 device delivered in tape and reel carriers must be stored in sealed, moisture barrier, antistatic bags. Refer to the *IC Packing Methods and Materials Specification* (80-VK055-1) for the expected shelf life.

#### 5.2.2 Out-of-bag duration

The out-of-bag duration is the time a device can be on the factory floor before being installed onto a PCB. It is defined by the device MSL rating, as described in Section 4.4.

# 5.3 Handling

Tape handling was described in Section 5.1.1. Other (IC-specific) handling guidelines are presented below.

#### 5.3.1 Baking

Wafer-level packages such as the 187 FOWNSP should not be baked.

#### 5.3.2 Electrostatic discharge

Electrostatic discharge (ESD) occurs naturally in laboratory and factory environments. An established high-voltage potential is always at risk of discharging to a lower potential. If this discharge path is through a semiconductor device, destructive damage may result.

ESD countermeasures and handling methods must be developed and used to control the factory environment at each manufacturing site.

QTI products must be handled according to the ESD Association standard: ANSI/ESD S20.20-1999, *Protection of Electrical and Electronic Parts, Assemblies, and Equipment*.

See Section 7.1 for the PM8953 device's ESD ratings.

# 5.4 Barcode label and packing for shipment

Refer to the *IC Packing Methods and Materials Specification* (80-VK055-1) for all packing-related information, including barcode-label details.

# 6 PCB mounting guidelines

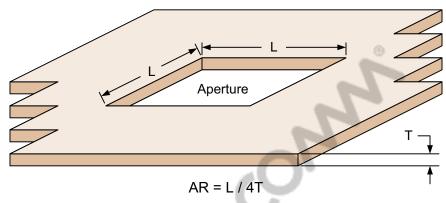
# 6.1 RoHS compliance

The PM8953 device is lead-free and RoHS-compliant. Its SnAgCu solder balls use a SAC405 composition. QTI defines its lead-free (or Pb-free) semiconductor products as having a maximum lead concentration of 1000 ppm (0.1% by weight) in raw (homogeneous) materials and end products. QTI package environmental programs, RoHS compliance details, and tables defining pertinent characteristics of all QTI IC products are described in the *IC Package Environmental Roadmap* (80-VA832-1).

# 6.2 SMT parameters

This section describes QTI board-level characterization process parameters. It is included to assist customers with their SMT process development; it is not intended to be a specification for their SMT processes.

#### 6.2.1 Land pad and stencil design


The land-pattern and stencil recommendations presented in this section are based on QTI internal characterizations for lead-free solder pastes on an eight-layer PCB, built primarily to the specifications described in JEDEC JESD22-B111.

QTI recommends characterizing the land patterns according to each customer's processes, materials, equipment, stencil design, and reflow profile prior to PCB production. Optimizing the solder stencil pattern design and print process is critical to ensure print uniformity, decrease voiding, and increase board-level reliability.

General land-pattern guidelines:

- Non-solder-mask-defined (NSMD) pads provide the best reliability.
- Keep the solder-able area consistent for each pad, especially when mixing via-in-pad and non-via-in-pad in the same array.
- Avoid large solder mask openings over ground planes.
- Traces for external routing are recommended to be less than or equal to half the pad diameter to ensure consistent solder-joint shapes.

One key parameter that should be evaluated is the ratio of aperture area to sidewall area, known as the area ratio (AR). QTI recommends square apertures for optimal solder-paste release. In this case, a simple equation can be used relating the side length of the aperture to the stencil thickness (as shown and explained in Figure 6-1). Larger area ratios enable better transfer of solder paste to the PCB, minimize defects, and ensure a more stable printing process. Interaperture spacing should be at least as thick as the stencil; otherwise, paste deposits may bridge.



#### Figure 6-1 Stencil printing aperture AR

Guidelines for an acceptable relationship between L and T are listed below, and are shown in Figure 6-2:

- R = L/4T > 0.65: best
- $0.60 \le R \le 0.65$ : acceptable
- R < 0.60: not acceptable

| Stencil           |      | Stencil thickness, T (µm) |      |      |      |                    |                   |      |
|-------------------|------|---------------------------|------|------|------|--------------------|-------------------|------|
| Apertur<br>L (μm) | e 75 | 80                        | 85   | 90   | 95   | 100                | 105               | 110  |
|                   | 0.70 | 0.00                      | 0.00 | 0.50 | 0.55 | 0.50               | 0.50              | 0.40 |
| 210               |      |                           |      |      |      |                    | 0.50              |      |
| 220               | 0.73 | 0.69                      | 0.65 | 0.61 | 0.58 | 0.55               | 0.52              | 0.50 |
| 230               | 0.77 | 0.72                      | 0.68 | 0.64 | 0.61 | 0.58               | 0.55              | 0.52 |
| 240               | 0.80 | 0.75                      | 0.71 | 0.67 | 0.63 | 0.6 <mark>0</mark> | 0.57              | 0.55 |
| 250               | 0.83 | 0.78                      | 0.74 | 0.69 | 0.66 | 0.63               | 06 <mark>0</mark> | 0.57 |
| 260               | 0.87 | 0.81                      | 0.76 | 0.72 | 0.68 | 0.65               | 0.62              | 0.59 |

Figure 6-2 Acceptable solder-paste geometries

QTI provides an example PCB land pattern and stencil design for the 163 FOWNSP package.

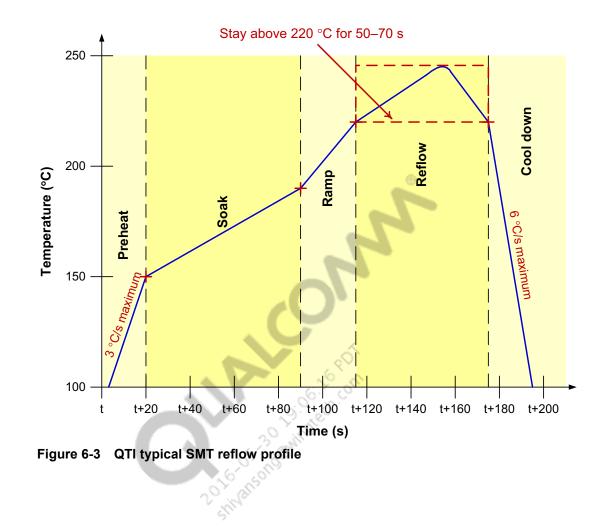
**NOTE** Click the link below to download the 163 FOWNSP land/stencil drawing (LS90-NG134-1) from the Qualcomm CreatePoint website.

https://createpoint.qti.qualcomm.com/search/contentdocument/stream/0901003981d1 1c45

After successfully logging on, the document is downloaded.

Make this document a favorite to be notified of any changes. Subscribe to the daisychain interconnect drawing to be notified of any changes.

For more details on using CreatePoint, refer to the *Qualcomm CreatePoint User Guide* (80-NC193-2).


#### 6.2.2 Reflow profile

Reflow profile conditions typically used by QTI for lead-free systems are listed in Table 6-1, and are shown in Figure 6-3.

Table 6-1 QTI typical SMT reflow profile conditions (for reference only)

| Profile stage              | Description                                              | Temperature range      | Condition     |
|----------------------------|----------------------------------------------------------|------------------------|---------------|
| Preheat                    | Initial ramp                                             | < 150°C                | 3°C/s maximum |
| Soak                       | Soak Flux activation                                     |                        | 60–75 s       |
| Ramp                       | Ramp Transition to liquidus (solder-paste melting point) |                        | < 30 s        |
| Reflow Time above liquidus |                                                          | 220–245°C <sup>1</sup> | 50–70 s       |
| Cool down                  | Cool rate: ramp-to-ambient                               | < 220°C                | 6°C/s maximum |

 During the reflow process, the recommended peak temperature is 245°C (minimum). This temperature should not be confused with the peak temperature reached during MSL testing, as described in Section 6.2.3.



#### 6.2.3 SMT peak package-body temperature

This document states a peak package-body temperature in three other places within this document, and without explanation, they may appear to conflict. The three places are listed below, along with an explanation of the stated value and its meaning within that section's context.

1. Section 4.4: Device moisture-sensitivity level

PM8953 device is classified as MSL1 at 250°C. The temperature (250°C) included in this designation is the lower limit of the range stated for moisture resistance testing during the device qualification process, as explained in #2 below.

2. Section 7.1: Reliability qualifications summary

One of the tests conducted for device qualification is the moisture resistance test. QTI follows J-STD-020-C, and hits a peak reflow temperature that falls within the range of  $260^{\circ}C + 0/-5^{\circ}C$  (255–260°C).

3. Section 6.2.2: Reflow profile

During a production board's reflow process, the temperature seen by the package must be controlled. The temperature must be high enough to melt the solder and provide reliable connections. However, it must not go so high that the device might be damaged. The recommended peak temperature during production assembly is 245°C. This is comfortably above the solder melting point (220°C), yet well below the proven temperature reached during qualification (250°C or more).

## 6.2.4 SMT process verification

QTI recommends verification of the SMT process prior to high-volume board assembly, including:

- In-line solder-paste deposition monitoring
- Reflow-profile measurement and verification
- Visual and x-ray inspection after soldering to confirm adequate alignment, solder voids, solder-ball shape, and solder bridging
- Cross-section inspection of solder joints for wetting, solder-ball shape, and voiding

# 6.3 Daisy-chain components

Daisy-chain packages use the same processes and materials as actual products; they are recommended for SMT characterization and board-level reliability testing. In fact, all SMT process recommendations discussed above can be performed using daisy-chain components.

Daisy-chain PCB routing recommendations are available for download.

**NOTE** Click the link below to download the 163 FOWNSP daisy-chain interconnect drawing (DS90-P1514-1) from the Qualcomm CreatePoint website.

After successfully logging on, the document is downloaded.

This link will be included in future revisions of this document.

**NOTE** Make this document a favorite to be notified of any changes. Subscribe to the daisy-chain interconnect drawing to be notified of any changes.

For more details on using CreatePoint, refer to the *Qualcomm CreatePoint User Guide* (80-NC193-2).

# 6.4 Board-level reliability

QTI conducts characterization tests to assess the device's board-level reliability, including the following physical tests on evaluation boards:

- Drop shock (JESD22-B111)
- Temperature cycling (JESD22-A104)
- Cyclic bend testing optional (JESD22-B113)

Board-level reliability data is available for download.

**NOTE** Click the link below to download the 187 FOWNSP board-level reliability data (BR80-TBD) from the Qualcomm CreatePoint website.

After successfully logging on, the document is downloaded.

This link will be included in future revisions of this document.

**NOTE** Make this document a favorite to be notified of any changes. Subscribe to the daisy-chain interconnect drawing to be notified of any changes.

For more details on using CreatePoint, refer to the *Qualcomm CreatePoint User Guide* (80-NC193-2).

# 7 Part reliability

# 7.1 Reliability qualifications summary

This content will be available in a future revision of this document.

# 7.2 Qualification sample description

| Device name:       | PM8953                      |
|--------------------|-----------------------------|
| Package type:      | 187 FOWNSP                  |
| Package body size: | 5.78 mm × 5.78 mm × 0.65 mm |
| Lead count:        | 187                         |
| Lead composition:  | SAC405                      |
| Fab process:       | 0.18 μm HV CMOS             |
| Fab sites:         | SMIC and MagnaChip          |
| Assembly sites:    | STATS ChipPAC, Singapore    |
|                    | Nanium, Portugal            |
| Solder ball pitch: | 0.4 mm                      |

#### **Device characteristics**

# 8 Revision history

|          |              | (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Revision | Date         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| А        | October 2015 | Initial release                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| В        | March 2016   | <ul> <li>Table 1-1, PM8953 features: Updated the value for SMPS</li> <li>Table 2-7, Configurable input/output functions – GPIO and MPPs:         <ul> <li>Updated the value of Pad # and Configurable function for GPIO functions</li> <li>Deleted sleep clock details under GPIO functions</li> </ul> </li> <li>Added the following chapters:         <ul> <li>Chapter 3, Electrical specifications</li> <li>Chapter 5, Carrier, storage, and handling information</li> <li>Chapter 6, PCB mounting guidelines</li> <li>Chapter 7, Part reliability</li> </ul> </li> <li>Chapter 4, Mechanical information: Added the following sections:         <ul> <li>Section 4.2, Part marking</li> <li>Section 4.4, Device moisture-sensitivity level</li> <li>Section 4.5, Thermal characteristics</li> </ul> </li> </ul> |

For additional information or to submit technical questions go to https://createpoint.qti.qualcomm.com

Document release date: March 23, 2016

Constant and the second and the seco

Qualcomm and MSM are trademarks of Qualcomm Incorporated, registered in the United States and other countries. Other product and brand names may be trademarks or registered trademarks of their respective owners. Other product and brand names may be trademarks or registered trademarks or solution of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

Qualcomm Technologies, Inc. 5775 Morehouse Drive San Diego, CA 92121 U.S.A.