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Foreword

As the complexity of today’s ASIC and SoC designs continues to
increase, the challenge of verifying these designs intensifies at an even
greater rate. Advances in this discipline have resulted in many sophisticated
tools and approaches that aid engineers in verifying complex designs. How-
ever, the age-old question of when is the verification job done, remains one of
the most difficult questions to answer. And, the process of measuring verifi-
cation progress is poorly understood.

For example, consider automatic random stimulus generators, model-
based test generators, or even general-purpose constraint solvers used by
high-level verification languages (such as e). At issue is knowing which por-
tions of a design are repeatedly exercised from the generated stimulus — and
which portions of the design are not touched at all. Or, more fundamentally,
exactly what functionality has been exercised using these techniques. Histor-
ically, answering these questions (particularly for automatically generated
stimulus) has been problematic. This challenge has led to the development
of various coverage metrics to aid in measuring progress, ranging from code
coverage (used to identify unexercised lines of code) to contemporary func-
tional coverage (used to identify unexercised functionality). Yet, even with
the development of various forms of coverage and new tools that support
coverage measurement, the use of these metrics within the verification flow
tends to be ad-hoc, which is predominately due to the lack of well-defined,
coverage-driven verification methodologies.

Prior to introducing a coverage-driven verification methodology, Func-
tional Verification Coverage Measurement and Analysis establishes a sound
foundation for its readers by reviewing an excellent and comprehensive list of
terms that is common to the language of coverage. Building on this knowl-
edge, the author details various forms of measuring progress that have histor-
ically been applicable to a traditional verification flow, as well as new forms
applicable to a contemporary verification flow.



Functional Verification Coverage Measurement and Analysis is the first
book to introduce a useful taxonomy for coverage metric classification.
Using this taxonomy, the reader clearly understands the process of creating
an effective coverage model. Ultimately, this book presents a coverage-
driven verification methodology that integrates multiple forms of coverage
and strategies to help answer the question when is the verification job done.

Andrew Piziali has created a wonderfully comprehensive textbook on
the language, principles, and methods pertaining to the important area of
Functional Verification Coverage Measurement and Analysis. This book
should be a key reference in every engineer’s library.

Harry Foster
Chief Methodologist
Jasper Design Automation, Inc.

x Functional Verification Coverage Measurement and Analysis



Andy and I disagree on many fronts: on the role of governments, on
which verification language is best, on gun control, on who to work for, on
the best place to live and on the value of tightly integrated tools. But, we
wholeheartedly agree on the value of coverage and the use of coverage as a
primary director of a functional verification process.

Yesterday, I was staring at a map of the Tokyo train and subway sys-
tem. It was filled with unfamiliar symbols and names — yet eerily similar to
maps of other subway systems I am more familiar with. Without a list of
places I wished to see, I could wander for days throughout the city, never
sure that I was visiting the most interesting sites and unable to appreciate the
significance of the sites that I was haphazardly visiting. I was thus armed
with a guide book and recommendations from past visitors. By constantly
checking the names of the stations against the stations on my intended route,
I made sure I was always traveling in the correct direction, using the shortest
path. I was able to make the most of my short stay.

Your next verification project is similar: it feels familiar — yet it is
filled with new features and strange interactions. A verification plan is nec-
essary to identify those features and interactions that are the most important.
The next step, using coverage to measure your progress toward that plan, is
just as crucial. Without it, you may be spending your effort in redundant
activities. You may also not realize that a feature or interaction you thought
was verified was, in fact, left completely unexercised. A verification plan
and coverage metrics are essential tools in ensuring that you make the most
of your verification resources.

This book helps transform the art of verification planning and coverage
measurement into a process. I am sure it will become an important part of
the canons of functional verification.

Janick Bergeron
Scientist
Synopsys
Tokyo, April 2004
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Preface

Functional verification is consuming an ever increasing share of the
effort required to design digital logic devices. At the same time, the cost of
bug escapes1 and crippled feature sets is also rising as missed market win-
dows and escalating mask set costs take their toll. Bug escapes have a num-
ber of causes but one of the most common is uncertainty in knowing when
verification is complete. This book addresses that problem.

There are several good books2 3 on the subject of functional verifica-
tion.4 However, the specific topic of measuring verification progress and
determining when verification is done remains poorly understood. The pur-
pose of this book is to illuminate this subject. The book is organized as fol-
lows.

The introduction chapter is an overview of the general verification
problem and the methods employed to solve it.

Chapter 1,“ The Language of Design Verification,” defines the termi-
nology I use throughout the book, highlighting the nuances of similar terms.

Chapter 2, “Functional Verification,” defines functional verification,
distinguishes it from test and elaborates the functional verification process.

Chapter 3, “Measuring Verification Coverage,” introduces the basics of
coverage measurement and analysis: coverage metrics and coverage spaces.

1 Logic design bugs undetected in pre-silicon verification.
2 Writing Testbenches, Second Edition, Janick Bergeron, Kluwer Academic
Publishers, 2003
3 Assertion-Based Design, Harry D. Foster, Adam C. Krolnik, David J. Lacey,
Kluwer Academic Publishers, 2003
4 “Design verification” and “functional verification” are used interchangeably
throughout this book.



Chapter 4, “Functional Coverage,” delves into coverage derived from
specifications and the steps required to model the design intent derived from
the specifications. Two specific kinds of functional coverage are also investi-
gated: temporal coverage and finite state machine (FSM) coverage.

Chapter 5, “Code Coverage,” explains coverage derived from the
device implementation, the RTL. It addresses the various structural and syn-
tactic RTL metrics and how to interpret reported data.

Chapter 6, “Assertion Coverage,” first answers the question of “Why
would I want to measure coverage of assertions?” and then goes on to
describe how to do so.

Chapter 7, “Coverage-Driven Verification,” integrates all of the previ-
ous chapters to present a methodology for minimizing verification risk and
maximizing the rate at which design bugs are exposed. In this chapter, I
explain stimulus generation, response checking and coverage measurement
using an autonomous verification environment. The interpretation and analy-
sis of coverage measurements and strategies for reaching functional closure
— i.e. 100% coverage — are explained.

Chapter 8, “Improving Coverage Fidelity with Hybrid Models,” intro-
duces the concept of coverage model fidelity and the role it plays in the cov-
erage process. It suggests a means of improving coverage fidelity by inte-
grating coverage measurements from functional, code and assertion coverage
into a heterogeneous coverage model.

The Audience

There are two audiences to which this book addressed. The first is the
student of electrical engineering, majoring in digital logic design and verifi-
cation. The second is the practicing design verification — or hardware
design — engineer.

When I was a student in electrical engineering (1979), no courses in
design verification were offered. There were two reasons for this. The first
was that academia was generally unaware of the magnitude of the verification
challenge faced by logic designers of the most complex designs: mainframes
and supercomputers. Second, no textbooks were available on the subject.
Both of these reasons have now been dispensed with so this book may be
used in an advanced design verification course.

The practicing design verification and design engineer will find this
book useful for becoming familiar with coverage measurement and analysis.

xiv Functional Verification Coverage Measurement and Analysis



It will also serve as a reference for those developing and deploying coverage
models.

Prerequisites

The reader is expected to have a basic understanding of digital logic
design, logic simulation and computer programming.

Acknowledgements

I want to thank my wife Debbie and son Vincent for the solitude they
offered me from our limited family time. My technical reviewers Mark
Strickland, Shmuel Ur, Mike Kantrowitz, Cristian Amitroaie, Mike Pedneau,
Frank Armbruster, Marshall Martin, Avi Ziv Harry Foster, Janick Bergeron,
Shlomi Uziel, Yoav Hollander, Ziv Binyamini and Jon Shiell provided
invaluable guidance and feedback from a variety of perspectives I lack.
Larry Lapides kept my pride in writing ability in check with grammar and
editing corrections. My mentors Tom Kenville and Vern Johnson pointed me
in the direction of “diagnostics development,” later known as design verifica-
tion. The Unix text processing tool suite groff and its siblings — the -ms
macros, gtbl, geqn and gpic — allowed me to write this book using my famil-
iar Vim text editor and decouple typesetting from the composition process, as
it should be. Lastly, one of the most fertile environments for innovation, in
which my first concepts of coverage measurement were conceived, was
enriched by Convex Computer colleagues Russ Donnan and Adam Krolnik.
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Introduction

What is functional verification? I introduce a formal definition for
functional verification in the next chapter, “The Language of Design Verifica-
tion,” and explore it in depth in chapter 2, “Functional Verification.” For
now, let’s just consider it the means by which we discover functional logic
errors in a representation of the design, whether it be a behavioral model, a
register transfer level (RTL) model, a gate level model or a switch level
model. I am going to refer to any such representation as “the device” or “the
device-under-verification” (DUV). Functional verification is not timing veri-
fication or any other back-end validation process.

Logic errors (bugs) are discrepancies between the intended behavior of
the device and its observed behavior. These errors are introduced by the
designer because of an ambiguous specification, misinterpretation of the
specification or a typographical error during model coding. The errors vary
in abstraction level depending upon the cause of the error and the model level
in which they were introduced. For example, an error caused by a specifica-
tion misinterpretation and introduced into a behavioral model may be algo-
rithmic in nature while an error caused by a typo in the RTL may topological.
How do we expose the variety of bugs in the design? By verifying it! The
device may be verified using static, dynamic or hybrid methods. Each class
is described in the following sections.

Static Methods

The static verification methods are model checking, theorem proving
and equivalence checking.

Model checking demonstrates that user-defined properties are never
violated for all possible sequences of inputs.

Theorem proving demonstrates that a theorem is proved — or cannot
be proved — with the assistance of a proof engine.



Equivalence checking, as its name implies, compares two models
against one another to determine whether or not they are logically equivalent.
The models are not necessarily at the same abstraction level: one may be RTL
while the other is gate level. Logical equivalence means two circuits imple-
ment the same Boolean logic function, ignoring latches and registers.

There are two kinds of equivalence checking: combinational and
sequential.1 Combinational equivalence checking uses a priori structural
information found between latches. Sequential equivalence checking detects
and uses structural similarities during state exploration in order to determine
logical equivalence across latch boundaries.

Lastly, I should mention that Boolean satisfiability (SAT) solvers are
being employed more frequently for model checking, theorem proving and
equivalence checking. These solvers find solutions to Boolean formulae used
in these static verification techniques.

Dynamic Methods

A dynamic verification method is characterized by simulating the
device in order to stimulate it, comparing its response to the applied stimuli
against an expected response and recording coverage metrics. By “simulat-
ing the device,” I mean that an executable software model — written in a
hardware description language — is executed along with a verification envi-
ronment. The verification environment presents to the device an abstraction
of its operational environment, although it usually exaggerates stimuli param-
eters in order to stress the device. The verification environment also records
verification progress using a variety of coverage measurements discussed in
this book.

Static versus Dynamic Trade-offs

The trade-off between static and dynamic method is between capacity
and completeness. All static verification methods are hampered by capacity
constraints that limit their application to small functional blocks of a device
At the same time, static methods yield a complete, comprehensive verifica-
tion of the proven property. Together, this leads to the application of static
methods to small, complex logic units such as arbiters and bus controllers.

1 C.A.J. van Eijk, “Sequential Equivalence Checking Based on Structural Sim-
ilarities,” IEEE Trans. CAD of ICS, July 2000.

2 Functional Verification Coverage Measurement and Analysis



Dynamic methods, on the other hand, suffer essentially no capacity
limitations. The simulation rate may slow dramatically running a full model
of the device, but it will not fail. However, dynamic methods cannot yield a
complete verification solution because they do not perform a proof.

There are many functional requirements whose search spaces are
beyond the ability to simulate in a lifetime. This is because exhaustively
exercising even a modest size a device may require an exorbitant number of
simulation vectors. If a device has N inputs and M flip-flops, stimulus
vectors may be required2 to fully exercise it. A modest size device may have
10 inputs and 100 flip-flops (just over three 32-bit registers). This device
would require or vectors to fully exercise. If we were to simu-
late this device at 1,000 vectors per second, it would take 339,540,588,380,
062,907,492,466,172,668,391,072,376,037,725,725,208,993,588,689,808,
600,264,389,893,757,743,339,953,988,988,382,771,724,040,525,133,303,
203,524,078,771,892,395,266,266,335,942,544,299,458,056,845,215,567,
848,460,205,301,551,551,163,124,606,262,994,092,425,972,759,467,835,
103,001,336,336,717,048,865,167,147,297,613,428,902,897,465,679,093,
821,821, 978, 784, 398, 755, 534, 655, 038, 141, 450, 059, 156, 501  years3 to
exhaustively exercise. Functional requirements that must be exhaustively
verified should be proved through formal methods.

Hybrid Methods

Hybrid methods, also known as semi-formal methods, combine static
and dynamic techniques in order to overcome the capacity constraints
imposed by static methods alone while addressing the inherent completeness
limitations of dynamic methods. This is illustrated with two examples.

Suppose we postulate a rare, cycle distant4 device state to be explored
by simulating forward from that state. The validity of this device state may
be proven using a bounded model checker. The full set of device properties
may be proven for this state. If a property is violated, the model checker will
provide a counter example from which we may deduce a corrective
2 I say “may be required” because it depends upon the complexity of the

device. If the device simply latches its N inputs into FIFOs, it would

only require vectors to exhaustively exercise.
3 Approximately years.
4 “Distant” in the sense that it is many, many cycles from the reset state of the
device, perhaps too many cycles to reach in practice.

“Introduction” 3



modification to the state. Once the state is fully specified, the device may be
placed in the state using the simulator’s broadside load capability. Simula-
tion may then start from this point, as if we had simulated to it from reset.

The reverse application of static and dynamic methods may also be
employed. Perhaps we discovered an unforeseen or rare device state while
running an interactive simulation and we are concerned that a device require-
ment, captured as a property, may be violated. At the simulation cycle of
interest, the state of the device and its inputs are captured and specified as the
initial search state to a model checker. The model checker is then directed to
prove the property of concern. If the property is violated, any simulation
sequence that reached this state is a counter-example.

Summary

In this introduction, I surveyed the most common means of function-
ally verifying a design: static methods, dynamic methods and hybrid meth-
ods. In the next chapter, The Language of Coverage, I methodically define
the terminology used throughout the remainder of the book.

4 Functional Verification Coverage Measurement and Analysis



1. The Language of Coverage

Stripped of all of its details‚ design verification is a communication
problem. Ambiguities lead to misinterpretations which lead to design errors.
In order to clearly convey the subject of coverage measurement and analysis
to you‚ the reader‚ we must communicate using a common language. In this
chapter‚ I define the terminology used throughout the rest of the book. It
should be referenced whenever an unfamiliar word or phrase is encountered.

You will find references to the high-level verification language e in this
glossary. I use e to illustrate the implementation of coverage models in this
book. The e language syntax may be referenced in appendix A. You may
find the complete language definition in the “e Language Reference Manual‚”
available at the IEEE 1647 web site‚ http://www.ieee1647.org/.

assertion An expression stating a safety (invariant) or
liveness (eventuality) property.

assertion coverage The fraction of device assertions executed and
passed or failed. Assertion coverage is the sub-
ject of chapter 6.

assertion coverage
density

The number of assertions evaluated per
simulation cycle.

attribute In the context of the device‚ a parameter or
characteristic of an input or output on an
interface. In the context of a coverage model‚ a
parameter or dimension of the model. Attributes
and their application is discussed in chapter 4‚
“Functional Coverage.”



branch coverage A record of executed‚ alternate control flow
paths‚ such as those through an if-then-else
statement or case statement. Branch coverage is
the subject of section 5.2.3.

checker coverage The fraction of verification environment
checkers executed and passed or failed.

code coverage A set of metrics at the behavioral or RTL
abstraction level which define the extent to
which the design has been exercised. Code
coverage is the subject of chapter 5.

code coverage density The number of code coverage metrics executed
or evaluated per simulation cycle. A metric may
be a line‚ statement‚ branch‚ condition‚ event‚ bit
toggle‚ FSM state visited or FSM arc traversed.

condition coverage A record of Boolean expressions and
subexpressions executed‚ usually in the RTL.
Also known as expression coverage. Condition
coverage is discussed in section 5.2.4.

coverage A measure of verification completeness.

coverage analysis The process of reviewing and analyzing
coverage measurements. Coverage analysis is
discussed in section 7.5.

coverage closure Reaching a defined coverage goal.

coverage database A repository of recorded coverage observations.
For code coverage‚ counts of observed metrics
such as statements and expressions may be
recorded. For functional coverage‚ counts of
observed coverage points are recorded.

6 Functional Verification Coverage Measurement and Analysis



coverage density The number of coverage metrics observed per
simulation cycle. See also functional coverage
density‚ code coverage density and assertion
coverage density.

coverage goal That fraction of the aggregate coverage which
must be achieved for a specified design stage‚
such as unit level integration‚ cluster integration
and functional design freeze.

coverage group A related set of attributes‚ grouped together for
implementation purposes at a common
correlation time. In the context of the e
language‚ a struct member defining a set of items
for which data is recorded.

coverage item The implementation level parallel to an attribute.
In the context of the e language‚ a coverage
group member defining an attribute.

coverage measurement The process of recording points within a
coverage space.

coverage metric An attribute to be used as a unit of measure and
recorded‚ which defines a dimension of a
coverage space. The role of coverage metrics is
the subject of chapter 3‚ “Measuring Verification
Coverage.”

coverage model An abstract representation of device behavior
composed of attributes and their relationships.
Coverage model design is discussed in chapter 4‚
“Functional Coverage.”

coverage point A point within a multi-dimensional coverage
model‚ defined by the values of its attributes.

Chapter 1‚ “The Language of Coverage” 7



coverage report A summary of the state of verification progress
— as measured by coverage — capturing all
facets of coverage at multiple abstraction levels.

coverage space A multi-dimension region defined by the
attributes of the coverage space and their values.
Usually synonymous with “coverage model.”
The following diagram illustrates a coverage
space.

The coverage space is discussed in section 3.2.

cross coverage A coverage model whose space is defined by the
full permutation of all values of all attributes.
More precisely known as multi-dimensional
matrix coverage. Cross coverage is discussed in
section 4.3.2‚ “Attribute Relationships.”

data coverage Coverage measurements in the data domain of
the device behavior.

device Device to be verified. Sometimes referred to as
the device-under-verification (DUV).

8 Functional Verification Coverage Measurement and Analysis



DUT Acronym for “device under test;” i.e. the device
to be tested. This is distinguished from DUV
(device under verification) in that a DUV is veri-
fied while a DUT is tested.

DUV Acronym for “device under verification;” i.e. the
device to be verified. This is distinguished from
DUT (device under test) in that a DUT is tested
while a DUV is verified.

A high-level verification language (HLVL)
invented by Yoav Hollander and promoted by
Verisity Design. The BNF of the e language is in
appendix A. The “e Language Reference Man-
ual” may be referenced from
http://www.ieee1647.org/.

event Something which defines a moment in time such
as a statement executing or a value changing. In
the context of the e language‚ a struct member
defining a moment in time. An e event is either
explicitly emitted using the emit action or
implicitly emitted when its associated temporal
expression succeeds.

explicit coverage Coverage whose attributes are explicitly chosen
by the engineer rather than being a characteristic
of the measurement interface.

expression coverage A record of Boolean expressions and subexpres-
sions executed‚ usually in the RTL. Also known
as condition coverage. Expression coverage is
discussed in section 5.2.4‚ “Condition Cover-
age.”

fill To fill a coverage space means to reach the cov-
erage goal of each point within that space.

Chapter 1‚ “The Language of Coverage” 9
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functional coverage Coverage whose metrics are derived from a
functional or design specification. Functional
coverage is the subject of chapter 4.

functional coverage
density

The number of functional coverage points
traversed per simulation cycle. Coverage
density is discussed in section 7.4.4‚
“Maximizing Verification Efficiency.”

grade For a single coverage model‚ the fraction of the
coverage space it defines which has been
observed. Regions of the coverage space or
individual points may be unequally weighted.
For a set of coverage models‚ a weighted
average of the grade of each model.

hit Observing a defined coverage point during a
simulation.

HLVL High-level verification language. A
programming language endowed with semantics
specific to design verification such as data
generation‚ temporal evaluation and coverage
measurement.

hole A defined coverage point which has not yet been
observed in a simulation or a set of such points
sharing a common attribute or semantic.

implicit coverage Coverage whose attributes are implied by
characteristics of the measurement interface
rather than explicitly chosen by the engineer.

input coverage Coverage measured at the primary inputs of a
device.

internal coverage Coverage measured on an internal interface of a
device.

10 Functional Verification Coverage Measurement and Analysis



line coverage The fraction of RTL source lines executed by one
or more simulations. Line coverage is discussed
in section 5.2.1‚ “Line Coverage.”

merge coverage To coalesce the coverage databases from a
number of simulations.

model An abstraction or approximation of a logic
design or its behavior.

output coverage Coverage measured at the primary outputs of a
device.

path coverage The fraction of all control flow paths executed
during one or more simulations. Path coverage
is discussed in section 5.2.3‚ “Branch Coverage.”

sample To record the value of an attribute.

sampling event A point in time at which the value of an attribute
is sampled. Sampling time is discussed in
section 4.3.1‚ “Attribute Identification.”

sequential coverage A composition of data and temporal coverage
wherein specific data patterns applied in specific
sequences are recorded.

statement coverage The fraction of all language statements —
behavioral‚ RTL or verification environment —
executed during one or more simulations. See
section 5.2.2 for an example of statement
coverage.

temporal Related to the time domain behavior of a device
or its verification environment.

Chapter 1, “The Language of Coverage” 11



temporal coverage Measurements in the time domain of the
behavior of the device.

test The verb “test” means executing a series of trials
on the device to determine whether or not its
behavior conforms with its specifications. The
noun “test” refers to either a trial on the device
or to the stimulus applied during a specific trial.
If referring to stimulus‚ it may also perform
response checking against expected results.

toggle coverage A coverage model in which the change in value
of a binary attribute is recorded. Toggle
coverage is discussed in section 5.2.6.

verification The process of demonstrating the intent of a
design is preserved in its implementation.

verification interface An abstraction level at which a verification
process is performed. If dynamic verification
(simulation) is used‚ this is a common interface
at which stimuli are applied‚ behavioral response
is checked and coverage is measured.

verify Demonstrate the intent of a design is preserved
in its implementation.

weight A scaling factor applied to an attribute when
calculating cumulative coverage of a single
coverage model or applied to a coverage model
when totaling cumulative coverage of all
coverage models.

12 Functional Verification Coverage Measurement and Analysis



weighted average The sum of the products of fractional coverage
times weight‚ divided by the sum of their
weights.

where is a particular coverage
measurement‚ is the weight of the
measurement and N is the number of coverage
models.

Chapter 1, “The Language of Coverage” 13
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2. Functional Verification

In this chapter‚ I define functional verification‚ distinguish verification
from testing and outline the functional verification process.

What is functional verification? A definition which has served me well
for many years is the following: Functional verification is demonstrating the
intent of a design is preserved in its implementation. In order to thoroughly
understand functional verification‚ we need to understand this definition. The
following diagram1 is useful for explaining the definition.

1Tony Wilcox, personal whiteboard discussion, 2001.



2.1. Design Intent Diagram

The diagram is composed of three overlapping circles, labeled “Design
Intent,” “Specification” and “Implementation.” All areas in the diagram rep-
resent device behavior. The space defined by the union of all of the regions
(A through G) represents the potential behavioral space of a device. The
region outside the three circles, D, represents unintended, unspecified and
unimplemented behavior. The first circle, “Design Intent”

2 represents the intended behavior of the device, as conceived in the
mind’s eye(s) of the designer(s). The second circle, “Specification”

bounds the intent captured by the device functional specification.
The third circle, “Implementation” captures the design
intent implemented in the RTL.

2 The conventional set operators are used.      for set union‚     for set intersec-
tion‚     for subset‚     for proper subset and – for set exclusion.
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If the three circles were coincident, i.e. region H defined all three cir-
cles, all intended device behavior would be specified and captured in the
device implementation, but no more. However, in reality, this is rarely the
case. Let’s examine the remaining regions to understand why this is so.

Region E is design intent captured in the specification but absent from
the implementation. Region F is unintended behavior which is nonetheless
specified and implemented (!). Region G is implemented, intended behavior
which was not captured in the specification.

Region represents design intent successfully captured by
the specification but only partially implemented. The remaining part of the
specification space, is unintended yet specified behavior. This is
usually results from gratuitous embellishment or feature creep.

Region represents specified behavior successfully captured
in the implementation. The remaining part of the implementation space,

is unspecified yet implemented behavior. This could also be due to
gratuitous embellishment or feature creep. Region represents
intended and implemented behavior.

There are four remaining regions to examine. The first,                       is
unimplemented yet intended behavior. The second, is unspeci-
fied yet intended behavior. The third, is specified yet unimple-
mented behavior. The fourth, is unintended yet implemented
behavior.

The objective of functional verification is to bring the device behavior
represented by each of the three circles — design intent, specification and
implementation — into coincidence. To do so, we need to understand the
meaning of design intent, where it comes from and how it is transformed in
the context of functional verification.

2.2. Functional Verification

A digital logic design begins in the mind’s eye of the system archi-
tect(s). This is the original intent of the design‚ its intended behavior. From
the mind‚ it goes through many iterations of stepwise refinement until the
layout file is ready for delivery to the foundry. Functional verification is an
application of information theory‚ supplying the redundancy and error-cor-
recting codes required to preserve information integrity through the design
cycle. The redundancy is captured in natural (human) language
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specifications.

However‚ there are two problems with this explanation. First of all‚
this “original intent” is incomplete and its genesis is at a high abstraction
level. The concept for a product usually begins with a marketing require-
ments document delivered to engineering. An engineering system architect
invents a product solution for these requirements‚ refining the abstract
requirements document into a functional specification. The design team
derives a design specification from the functional specification as they spec-
ify a particular microarchitectural implementation of the functionality.

The second problem with the explanation is that‚ unlike traditional
applications of information theory‚ where the message should be preserved as
it is transmitted through the communication channel‚ it is intentionally
refined and becomes less abstract with each transformation through the
design process. Another way to look at the design process is that the mes-
sage is incrementally refined‚ clarified and injected into the communication
channel at each stage of design. Next‚ let’s distinguish implementation from
intent.

In this context‚ the implementation is the RTL (Verilog‚ SystemVerilog
or VHDL) realization of the design. It differs from intent in that it is not writ-
ten in a natural language but in a rigorous machine readable language. This
removes both ambiguity and redundancy‚ allowing a logic compiler to trans-
late the code into a gate description‚ usually preserving the semantics of the
RTL. Finally‚ what is meant by “demonstrate” when we write “demonstrate
the intent of a design is preserved in its implementation?”

Verification‚ by its very nature‚ is a comparative process. This was not
apparent to a director of engineering I once worked for. When I insisted his
design team update the design specification for the device my team was veri-
fying‚ he replied: “Andy‚ the ISP is the specification!” (ISP was a late eighties
hardware design language.) That makes one’s job as a verification engineer
quite easy‚ doesn’t it? By definition‚ that design was correct as written
because the intent — captured in an ISP “specification” — and implementa-
tion were claimed to be one and the same. The reality was the system archi-
tect and designers held the design intent in their minds but were unwilling to
reveal it in an up-to-date specification for use by the verification team.

The intent of a design is demonstrated to have been preserved through
static and dynamic methods. We are concerned with dynamic methods in
this book‚ executing the device in simulation in order to observe and compare
its behavior against expected behavior. Now‚ let’s look at the difference
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between testing and verification.

2.3. Testing versus Verification

Many engineers mistakenly use the terms “test” and “verification”
interchangeably. However‚ testing is but one way to verify a design‚ and a
less rigorous and quantitative approach at that. Why is that?

Writing for “Integrated System Design” in 2000‚ Gary Smith wrote:
“The difference between ‘test’ and ‘verification’ is often overlooked ... You
test the device ... to insure that the implementation works. ... Verification ...
checks to see if the hardware or software meets the requirements of the origi-
nal specification.”3 There are subtle‚ but important‚ differences between the
two.

Testing is the application of a series of tests to the DUT4 to determine if
its behavior‚ for each test‚ conforms with its specifications. It is a sampling
process to assess whether or not the device works. A sampling process? Yes.
It is a sampling process because not all aspects of the device are exercised. A
subset of the totality of possible behaviors is put to the test.

A test also refers to the stimulus applied to the device for a particular
simulation and may perform response checking against expected behavior.
Usually‚ the only quantitative measure of progress when testing is the number
of tests written and the number of tests passed although‚ in some instances‚
coverage may also be measured. Hence‚ it is difficult to answer the question
“Have I explored the full design space?”

Verification encompasses a broad spectrum of approaches to discover-
ing functional device flaws. In this book‚ we are concerned with those
approaches which employ coverage to measure verification progress. Let us
examine an effective verification process.

2.4. Functional Verification Process

The functional verification process begins with writing a verification
plan‚ followed by implementing the verification environment‚ device bring-
up and device regression. Each of these steps is discussed in the following
3 Gary Smith‚ “The Dream‚” “Integrated System Design‚” December 2000
4See definitions of test‚ verify‚ DUT and DUV in chapter 1‚ “The Language of
Coverage.”
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The verification plan defines what must be verified and how it will be
verified. It describes the scope of the verification problem for the device and
serves as the functional specification for the verification environment.
Dynamic verification (i.e. simulation-based) is composed of three aspects, as
illustrated below in figure 2-2.

This leads to one of three orthogonal partitions of the verification plan: first,
by verification aspect. The scope of the verification problem is defined by
the coverage section of the verification plan. The stimulus generation section
defines the machinery required to generate the stimuli required by the cover-
age section. The response checking section describes the mechanisms to be
used to compare the response of the device to the expected, specified
response.

The second partitioning of the verification plan is between verification
requirements derived from the device functional specification and those
derived from its design specification. These are sometimes called architec-
ture and implementation verification, as illustrated below in figure 2-3.
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2.4.1. Functional Verification Plan



Architecture verification concerns itself with exposing device behaviors
which deviate from its functional behavioral requirements. For example, if
an add instruction is supposed to set the overflow flag when the addition
results in a carry out in the sum, this is an architectural requirement. Imple-
mentation verification is responsible for detecting deviations from microar-
chitectural requirements specified by the design specification. An example of
an implementation requirement is that a read-after-write register dependency
in an instruction pair must cause the second instruction to read from the reg-
ister bypass rather than the register file.

The third partitioning of the verification plan is between what must be
verified and how it is to be verified. The former draws its requirements from
the device functional and design specifications while the latter captures the
top-level and detailed design of the verification environment itself. What
must be verified is captured in the functional, code and assertion coverage
requirements of the coverage measurement section of the verification plan.
How the device is to be verified is captured in the top- and detailed-design
section of each of the three aspects of the verification plan: coverage mea-
surement, stimulus generation and response checking.

In the following three sections, we examine each of the verification
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The coverage measurement section of the verification plan — some-
times referred to as the coverage plan — should describe the extent of the
verification problem and how it is partitioned, as discussed above. It should
delegate responsibility for measuring verification progress among the kinds
of coverage and their compositions: functional, code, assertion and hybrid.5

The functional coverage section of the coverage plan should include the top-
level and detailed design of each of the coverage models. The code coverage
section should specify metrics to be employed, coverage goals and gating
events for deploying code coverage. For example, you should be nearing full
functional coverage and have stable RTL before turning on code coverage
measurement. The responsibility of assertion coverage in your verification
flow should also be discussed.

Next, we need to consider how stimulus will be generated to achieve
full coverage.
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aspects in more detail.

2.4.1.1. Coverage Measurement

2.4.1.2. Stimulus Generation

The stimulus required to fully exercise the device — that is, to cause it
to exhibit all possible behaviors — is the responsibility of the stimulus gener-
ation aspect of the verification environment. Historically, a hand-written file
of binary vectors, one vector (line) per cycle, served as simulation stimulus.
In time, symbolic representations of vectors such as assembly language
instructions were introduced, along with procedural calls to vector generation
routines. Later, vector generators were developed, beginning with random
test program generators (RTPG)6 and evolving through model-based test gen-
erators (MBTG)7 to the general purpose constraint solvers of current high-

5 These coverage techniques are described in chapters 4, 5 and 6: “Functional
Coverage,”, “Code Coverage” and “Assertion Coverage.” The application of
these coverage techniques is explained in chapter 7, “Coverage-Driven Verifi-
cation” while their composition is the subject of chapter 8, “Improving Cover-
age Fidelity With Hybrid Models.”
6 Reference the seminal paper “Verification of the IBM RISC System/6000 by a
Dynamic Biased Pseudo-Random Test Program Generator” by A. Aharon, A.
Ba-David, B. Dorfman, E. Gofman, M. Leibowitz, V. Schwartzburd, IBM Sys-
tems Journal, Vol. 30, No. 4, 1991.
7 See “Model-Based Test Generation for Processor Design Verification” by Y.



level verification languages (HLVL).8

In this book, I illustrate verification environment implementations
using the HLVL e. As such, the stimulus generation aspect is composed o f
generation constraints and sequences. Generation constraints are statically
declared rules governing data generation. Sequences define a mechanism for
sending coordinated data streams or applying coordinated actions to the
device.

Generation constraints are divided into two sets according to their
source: the functional specification of the device and the verification plan.
The first set of constraints are referred to as functional constraints because
they restrict the generated stimuli to valid stimuli. The second set of con-
straints are known as verification constraints because they further restrict the
generated stimuli to the subset useful for verification. Let’s briefly examine
each constraint set.

Although there are circumstances in which we may want to apply
invalid stimulus to the device, such as verifying error detection logic, in gen-
eral only valid stimuli are useful. Valid stimuli are bounded by both data and
temporal rules. For example, if we are generating instructions which have an
opcode field, its functional constraint is derived from the specification of the
opcode field. This specification should be referenced by the stimulus section
of the verification plan. If we are generating packet requests whose protocol
requires a one cycle delay between grant and the assertion of valid, the verifi-
cation plan should reference this temporal requirement.

In addition to functional constraints, verification constraints are
required to prune the space of all valid stimuli to those which exercise the
device boundary conditions. What are boundary conditions? Depending
upon the abstraction level — specification or implementation — a boundary
condition is either a particular situation described by a specification or a con-
dition for which specific logic has been created. For example, if the specifi-
cation says that when a subtract instruction immediately follows an add
instruction and both reference the same operand, the ADDSUB performance
monitoring flag is set, this condition is a boundary condition. Functional and
verification constraints are discussed further in the context of coverage-driven
verification in chapter 7.
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The response checking section of the verification plan is responsible
for describing how the behavior of the device will be demonstrated to con-
form with its specifications. There are two general strategies employed: a
reference model or distributed data and temporal checks.

The reference model approach requires an implementation of the
device at an abstraction level suitable for functional verification. The
abstraction level is apparent in each of the device specifications: the func-
tional specification and the design specification. The functional specification
typically describes device behavior from a black box9 perspective. The
design specification addresses implementation structure, key signals and tim-
ing details such as pipelining. As such, a reference model should only be
used for architecture verification, not implementation verification. If used for
implementation verification, such a model would result in a second imple-
mentation of the device at nearly the same abstraction level as the device
itself. This would entail substantial implementation and maintenance costs
because the model would have to continually track design specification
changes, which are often quite frequent.

A consideration for choosing to use a reference model is that the refer-
ence model must itself be verified. Will this verification entail its own, recur-
sive process? Although any device error reported by a verification environ-
ment must be narrowed down to either an error in the DUV or an error in the
verification environment, the effort required to verify a complex reference
model may be comparable to verifying the device itself.

Another consideration when using a reference model is that it inher-
ently exhibits implementation artifacts. An implementation artifact is an
unspecified behavior of the model resulting from implementation choices.
This unspecified behavior must not be compared against the device behavior
because it is not a requirement.
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Having designed the machinery required to generate the stimulus
required to reach 100% coverage, how do we know that the device is behav-
ing properly during each of the simulations? This is the subject of the next
section of this chapter, response checking.

2.4.1.3. Response Checking

9 Why aren’t black box and white box verification called opaque and transpar-
ent box verification? After all, black box verification means observing device
behavior from its primary I/Os alone. White box verification means observing
internal signals and structures.



In the context of response checking using a reference model, the exe-
cutable specification is often cited. Executable specification is really an oxy-
moron because a specification should only define device requirements at
some abstraction level. An executable model, on the other hand, must be
defined to a sufficient level of detail to be run by a computing system. The
implementation choices made by the model developer invariably manifest
themselves as behavioral artifacts not required by the device specification. In
other words, the device requirements and model artifacts are indistinguish-
able from one another.

The second response checking strategy, distributed checks, uses data
and temporal monitors to capture device behavior. This behavior is then
compared against expected behavior. One approach used for distributed
checking is the scoreboard.

A scoreboard is a data structure used to store either expected results or
data input to the device. Consider the device and scoreboard illustrated
below in figure 2-4.

The device captures input on the left, transforms it, and writes output on the
right. Consider the case where packets are processed by the device. If
expected results are stored in the scoreboard, each packet is transformed per
the device specification before being written to the scoreboard. Each time a
packet is output by the device, it is compared with the transformed packet in
the scoreboard and that packet is removed from the scoreboard.
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The verification plan is written (at least the first draft) and now it is
time to turn to use it as a design specification. It will serve as the functional
specification for the verification environment. Each of the aspects of the ver-
ification environment — coverage, stimulus and checking — are defined in
the verification plan. The architecture of each should be partly dictated by
reuse.

For the same reasons reusable design IP has become critical for bring-
ing chips to market on time, reusable verification IP has also become impor-
tant. This has two consequences. First, acquire verification components
rather than build them whenever possible. Commercial verification compo-
nents are available for a variety of common hardware interfaces. You may
also find pre-built verification components within your organization. Second,
write reusable verification components whenever you build a verification
environment.

When e is used to implement verification IP, the e Reuse Methodology
(eRM)10 should be followed. “The e Reuse Methodology Developer Manual
... is all about maximizing reusability of verification code written in e. eRM
ensures reusability by delivering the best known methods for designing, cod-
ing, and packaging e code as reusable components.”11

The first application of the verification environment is getting the DUV
to take its first few baby steps. This is known as “bring-up,” the subject of

http://www.verisity.com/.

“e Reuse Methodology Developer Manual,” Verisity Design, © 2002-2004.
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If input data is stored in the scoreboard, each packet read by the device
is also written to the scoreboard. Each time a packet is output by the device,
the associated input packet is read from the scoreboard, transformed accord-
ing to the specification, and compared with the output packet.

Reference models and distributed checks are often employed at the
same time in a heterogeneous fashion. For example, an architectural refer-
ence model may be used for processor instruction set architecture (ISA)
checking but distributed checks used for bus protocol checking.

Once the verification plan is written, it must be implemented. We
address implementing the verification environment in the next section.

2.4.2. Verification Environment Implementation

10

11



The purpose of bring-up is to shake out the blatant, show-stopper bugs
that prevent the device from even running. Although the designer usually
checks out the basic functionality during RTL development, invariably the
first time the verification engineer gets their hands on the block, all hell
breaks loose. In order to ease the transition from the incubation period,
where the designer is writing code, to hatching, the verification engineer pre-
pares a small set of simulations (also known as sims) to demonstrate basic
functionality.

These simulations exercise an extremely narrow path through the
behavioral space of the device. Each must be quite restricted in order to
make it easy to diagnose a failure. Almost anything may fail when the device
is first simulated.12 The process of bringing up a device is composed of mak-
ing an assumption, demonstrating that the assumption is true and then using
the demonstrated assumption to making a more complex assumption.

For example, the first bring-up sim for a processor would simply assert
and de-assert the reset pin. If an instruction is fetched from the reset vector
of the address space, the first step of functionality is demonstrated. For a
packet processing device, the first sim may inject one packet and make sure
the packet is routed and reaches egress successfully. If the packet is output,
transformed as (or if) required, the simulation passes.

If we are using an autonomous verification environment,13 rather than
directed tests, how do we run such basic simulations? In an aspect-oriented
HLVL like e, a constraint file is loaded on top of the environment. This con-
straint file restricts the generated input to a directed sequence of stimuli. In
the case of the processor example above, the constraint file might look like
this:

12 The DV engineer’s motto is “If it has not been verified, it doesn’t work.”
13 An autonomous verification environment is self-directed and composed of
stimulus generation, response checking and coverage measurement aspects. It
is normally implemented using an HLVL because of its inherent verification
semantics.
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the next section.

2.4.3. Device Bring-up



Reset is active low and the field reset_sig is written to the processor reset
pin. reset_sig is constrained to the value one (de-asserted) between
cycles zero to three. It is constrained to zero (asserted) for two cycles, start-
ing on cycle four. For all cycles beyond cycle five, it is again constrained to
one. Finally, sim_length (the number of simulation cycles to run) is con-
strained to seven.

After the device is able to process basic requests, the restrictions
imposed on the verification environment are incrementally loosened. The
variety of stimuli are broadened in both the data domain and the time
domain. The data domain refers to the spectrum and permutation of data val-
ues that may be driven into the device. The time domain refers to the scope
of temporal behavior exhibited on the device inputs by the verification envi-
ronment.

Once the device can run any set of simulations which deliver full cov-
erage, we need to be prepared to repeatedly run new sims as changes are
made to the device up until it is frozen for tape-out. This is the subject of the
next section: regression.
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extend reset_s {
keep all of {

cycle in [0..3] => reset_sig = 1;
cycle in [4..5] => reset_sig = 0;
cycle >= 6 => reset_sig = 1;
sim_length == 7

}
}

2.4.4. Device Regression

Curiously, the name given to re-running a full (or partial) set of simula-
tions in order to find out if its behavior has regressed — i.e. deviated from its
specification — is regression.14 The subject of device regression is interesting
because, with the advent of HLVLs, controversy has developed over its pur-
pose and how to achieve its goals. First, I examine the purpose of running
regressions. Then, I review the classical regression and explain how it differs
from a regression performed using an autonomous verification environment.

14 A French national I once worked for, just learning colloquial English,
always referred to re-running simulations as “non-regression.”



Finally, a recommended regression flow is discussed.

The dictionary definition of regress is “to return to a previous, usually
worse or less developed state.” Hence, the purpose of running regressions is
to detect the (re-)introduction of bugs that lead the device to a “less devel-
oped state.” Some bugs have the characteristic that they are easily reintro-
duced into the design. They need to be caught as soon as they are inserted.
There are two approaches to detecting re-injected bugs: classical regression
and autonomous regression.

The classical regression is performed using a test suite incrementally
constructed over a period of time. The test suite is composed of directed
tests specified by a test plan. Each test verifies a particular feature or func-
tion of the device. The selection criteria for adding a test to the regression
test suite include that it:

15 In Texas we have simulation ranches. In other parts, you might call them
simulation farms.
16 See chapter 7, “Coverage-Driven Verification.”
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verifies fundamental behavior

exercises a lot of the design in very few cycles

has exposed one or more bugs in the past

Contrasted against the classical regression is the autonomous regres-
sion. An autonomous regression is performed by an autonomous verification
environment, characterized by generation, checking and coverage aspects.
Hundreds to thousands of copies of this environment are dispatched to a
regression ranch each evening,15 each differing from the next only in its ini-
tial random generation seed. I use the term “symmetrical simulation” to refer
to a simulation whose inputs are identical to another simulation, with the
exception of its random generation seed. Each regression contributes to the
coverage goals of the design: functional, code and assertion. The bugs that
have been found to date have been exposed by simulating until the coverage
goals are achieved. The associated checkers ensure that device misbehavior
does not go undetected.

Autonomous regression is preferred over classical regression because it
makes use of a self-contained verification environment, dispatches symmetri-



In this chapter I defined functional verification, explained the differ-
ence between verification and test and outlined the functional verification
process. The process is composed of writing a verification, implementing it,
bringing up the DUV and running regressions.

The verification plan must define the scope of the verification problem
— using functional, code and assertion coverage — and specify how the
problem will be solved in the stimulus generation and response checking
aspects.

The verification environment is implemented using pre-built verifica-
tion components wherever possible. When new components are required,
they should be implemented as reusable verification IP, according to eRM
guidelines when e is the implementation language.

Device bring-up is used to get the device simulating and expose any
gross errors. An iterative cycle of “make an assumption, validate the
assumption” is followed, incrementally increasing the complexity of the
applied stimuli until the device is ready for full regression.

The purpose of regression is to detect the reintroduction of bugs into
the design. Regression methodology has progressed from running a directed
regression test suite to dispatching symmetrical autonomous simulations.
The autonomous simulations are coverage-driven by the functional, code and
assertion coverage goals of the verification plan.
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cal simulations and is fully coverage-driven.16

2.5. Summary



3. Measuring Verification Coverage

In order to measure verification progress, we measure verification cov-
erage because verification coverage defines the extent of the verification
problem. In order to measure anything however, we need metrics. In this
chapter I define coverage metrics and a useful taxonomy for their classifica-
tion. Using this taxonomy, I introduce the notion of a coverage space and
define four orthogonal spaces into which various kinds of coverage may be
classified.

3.1. Coverage Metrics

A coverage metric is a parameter of the verification environment or
device useful for assessing verification progress in some dimension. We may
classify a coverage metric according its kind and its source. By kind, I mean
whether or not a metric is implied from the verification interface1 or is
explicitly defined. Hence, a metric kind is either implicit or explicit.

The second classification is the source of a metric, which has a strong
bearing on what verification progress we may infer from its value. I will
consider two sources, each at a different abstraction level: implementation
and specification. An implementation metric is one taken from the device
implementation, for example the RTL. A specification metric is a metric
extracted from one of the device specifications: the functional or design spec-
ification.

These two classifications of coverage metrics define four metrics, as
illustrated in table 3-1 below.

1 See chapter 1, “The Language of Coverage,” for the definition of “Verifica-
tion interface.”



The following four sections explore in greater detail these coverage metric
classifications. The first two describe metric kinds while the second two
describe metric sources.

An implicit coverage metric is inherent in the representation of the
abstraction level from which the metric is taken. For example, at the RTL
abstraction level, hardware description language structures may be implicit
metrics. A Verilog statement is an implicit metric because statements are a
base element of the Verilog language. The subexpressions of a VHDL
Boolean expression in an “if statement may be implicit metrics. The same
metrics may be applied to the verification environment, independent of its
implementation language.

Another abstraction level from which implicit metrics may derived is
the device specification. The implicit metrics of a natural language specifica-
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3.1.1. Implicit Metrics



tion include chapter, paragraph, sentence, table and figure.

3.1.2. Explicit Metrics

An explicit coverage metric is invented, defined or selected by the
engineer. It is usually selected from a natural language specification but it
could also be chosen from an implementation. Explicit metrics are typically
used as components for modeling device behavior.

Examples of explicit metrics from the CPU application domain are:

opcode

register

address

addressing mode

execution mode

Examples from an ethernet application are:

preamble

start frame

source address

destination address

length

CRC

The next two sections describe the two sources of coverage metrics: the
device specifications and its implementation.

3.1.3. Specification Metrics

A specification coverage metric is a metric derived from one of the
device specifications: the functional specification or the design specification.
Since these specifications record the intended behavior of the device, the
metrics extracted from them are parameters or attributes of that behavior. In
effect, these metrics quantify the device behavior, translating its description
from a somewhat ambiguous natural language abstraction to a precise specifi-
cation.
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Some examples of specification metrics are:

instruction opcode

packet header

processing latency

processing throughput

3.1.4. Implementation Metrics

An implementation coverage metric is a metric derived from the imple-
mentation of the device. The device implementation is distinguished from its
specification in that the implementation is much less abstract, less ambiguous
and machine readable. Recall that the design specification describes the
microarchitecture of the device. However, it still leaves many design choices
to the designer writing the RTL. Metrics derived from the implementation are
design choices which are not present in its specification because they are an
implementation choice.

These are a few examples of implementation metrics:

one-hot mux select value

finite state machine state

pipeline latency

pipeline throughput

bandwidth

Having introduced the four types of coverage metrics, let’s turn our attention
to the coverage spaces which are defined from these metrics.

3.2. Coverage Spaces

What do we mean by a “coverage space?” As defined in chapter 1,
“The Language of Coverage,” a coverage space is a multi-dimensional region
defined by its attributes and their values. A coverage space is often referred
to as a coverage model because it captures the behavior of the device at some
abstraction level.2 The kind and source of coverage metric, each having two
2 Simone Santini eloquently defined an abstraction in the May 2003 issue of
“Computer” magazine: “An abstraction ignores the details that distinguish spe-
cific instances and considers only those that unify them as a class.”
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values, define four types of coverage spaces: implicit implementation,
implicit specification, explicit implementation and explicit specification.
Each of these coverage spaces is discussed in the following sections.

3.2.1. Implicit Implementation Coverage Space

The first type of coverage space I will discuss is the implicit implemen-
tation coverage space. An implicit implementation coverage space is com-
posed of metrics inherent in what we are measuring and extracted from the
implementation of the device. The implementation of the device we are con-
cerned with is its RTL abstraction, commonly written in Verilog, System Ver-
ilog, VHDL or a proprietary hardware description language. Each of these
languages is defined by a grammar which specifies the structure of the lan-
guage elements and associates semantic meaning to those constructs.

The RTL implementation of the device may be considered to be
mapped onto the structure of its implementation language. As such, if we
record the language constructs exercised as we simulate the device, we gain
insight into how well the device has been verified.3

Code coverage and structural coverage define implicit implementation
coverage spaces.4

Because code and structural coverage is measured at a low abstraction
level, more detail than is often needed is reported. This leads to the need for
filtering of reported results in order to gain insight into how well the device
has been exercised.

3.2.2. Implicit Specification Coverage Space

An implicit specification coverage space is composed of metrics inher-
ent in the abstraction measured and extracted from one of the device specifi-
cations. The abstraction measured is a natural language, typically English.
The device specifications include the functional specification and the design
specification.

In order for a coverage mechanism to be classified as defining an
implicit specification coverage space, the metrics would have to be inferred
3 I assume here that an orthogonal mechanism is in place to detect device mis-
behavior such as data and temporal checkers.
4 Code coverage is the subject of chapter 5.
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from one or more of the device specifications. The mechanism would have
to parse the natural language, recognize grammatical language structure and
context and extract metrics and their relationships. Metrics could be drawn
from both the syntactic elements of the language or from its semantic mean-
ing (quite challenging!). Potential syntactic metrics include:

chapter

section

paragraph

sentence

sentence flow

word

footnote

while semantic metrics might be:

corner case

boundary condition

special-purpose

finite state machine

arbitrator or arbiter

queue

As of the date this book was written, I am aware of no implementations
of a program which derives implicit specification coverage spaces.

3.2.3. Explicit Implementation Coverage Space

An explicit implementation coverage space is composed of metrics
invented by the engineer and derived from the device implementation. These
metrics should reflect design choices made by the designer, unspecified in the
design specification, which cannot be inferred from RTL using code cover-
age.

For example, the device may have a pipelined bus interface that sup-
ports three outstanding transactions. The coverage space for this interface
must include one-deep (un-pipelined), two-deep and three-deep transactions.
If the bus interface is not specified at this level of detail in the design specifi-
cation, this space is an explicit implementation coverage space because the
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RTL must be examined to ascertain the pipeline parameters.

Another example is a tagged bus interface in which transaction
responses may return out of order (return order differs from the request
order). The coverage space needs to include permutations of in-order and
out-of-order responses.

A third example is a functional coverage model of the device microar-
chitecture (sometimes referred to as the design architecture). This also is a
explicit implementation coverage space. In the next chapter, “Functional
Coverage,” you will learn how to design a functional coverage model.

Since a functional coverage model captures the precise level of detail
required to determine verification progress, no filtering of reported results is
required. If the reported results are found to be more voluminous than neces-
sary, the associated coverage model may be pruned. This is true of both
explicit coverage spaces: implementation and specification.

3.2.4. Explicit Specification Coverage Space

An explicit specification coverage space is composed of metrics
invented by the engineer and derived from one of the device specifications.
By “invented,” I mean each metric is chosen by the DV engineer from a large
population of potential metrics discussed in the device specifications. The
metrics are selected from both the data domain and the time domain. Data
domain metrics are values or ranges representing information processed by
the device. Time domain metrics are values or ranges of parameters of
sequential device behavior. As we’ll see in the next chapter, each metric rep-
resents an orthogonal parameter of the device behavior to be related to others
in one or more models.

A functional coverage model of the device defines an explicit specifica-
tion coverage space. The coverage model may be an input, output, input/out-
put or internal coverage model. The next chapter, “Functional Coverage,”
discusses in detail the design and implementation of functional coverage
models.

The four coverage spaces fit into the coverage metric taxonomy as
illustrated in table 3-2 below.
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Each of the coverage spaces is used to observe device behavior from a differ-
ent perspective. Specification functional coverage indicates what features
and capabilities of the DUV, as documented in its specification, have been
exercised on its input, output and internal interfaces. Implementation func-
tional coverage reports scenarios observed at the register transfer level. Code
and structural coverage offer insight into how extensively the implementation
of the device has been exercised. Implicit specification coverage would tell
us how much of the device specification has been exercised. Unfortunately,
this has not yet been implemented to the best of my knowledge.

3.3. Summary

In this chapter I explained why we use verification coverage as a mea-
sure of verification progress. I introduced the concept of coverage metrics
and classified them into implicit, explicit, implementation and specification
metrics. This classification was used to build a taxonomy of coverage
spaces, regions of behavior defined by metrics. Lastly, each of the kinds of
coverage were placed in this taxonomy.
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4. Functional Coverage

In the previous chapter, “Measuring Verification Coverage,” you
learned how to classify coverage and that functional coverage defines an
explicit implementation or specification coverage space, depending upon the
source of the coverage metrics. If the metrics are derived from the imple-
mentation itself, it defines an explicit implementation coverage space. If the
metrics are derived from one of the device specifications, the functional cov-
erage defines an explicit specification coverage space.

In this chapter, I explore the use of functional coverage to model
device behavior at various verification interfaces. You will learn the process
of top-level design, detailed design and implementation of functional cover-
age models. The specific requirements of temporal coverage measurement
and finite state machine coverage will also be addressed.

4.1. Coverage Modeling

The purpose of measuring functional coverage is to measure verifica-
tion progress from the perspective of the functional requirements of the
device. The functional requirements are imposed on both the inputs and out-
puts of the device — and their interrelationships — by the device specifica-
tions.1 The input requirements dictate the full data and temporal scope of
input stimuli to be processed by the device. The output requirements specify
the complete set of data and temporal responses to be observed. The
input/output requirements specify all stimulus/response permutations which
must be observed to meet black-box device requirements.

Since the full behavior of a device may be defined by these input, out-
put and input/output requirements, a functional coverage space which cap-

1 Functional specification and design (microarchitecture) specification.



tures these requirements is referred to as a coverage model.2 The degree to
which a coverage model captures these requirements is defined to be its
fidelity.

The fidelity of a model determines how closely the model defines the
actual behavioral requirements of the device. This is the abstraction gap
between the coverage model and the device. If we are modeling a control
register having 18 specified values and the coverage model defines all 18 val-
ues, their is no abstraction gap so this is a high fidelity model. However, if a
32-bit address bus defines all values and an associated coverage model
groups those values into 16 ranges, a substantial abstraction gap is intro-
duced. Hence, this would be a lower fidelity model.

In addition to the abstraction gap between the coverage model and the
device, another source of fidelity loss is omitting functional relationships
from the model. If two bits, such as and of the control register
mentioned above, have a dependency such as may only be one if
is one,” yet this dependency is not reflected in an associated coverage model,
that model is of a lower fidelity than a model that captures this relationship.

Before diving into the details of designing a real coverage model, I first
illustrate the whole process from beginning to end with a simple example.

4.2. Coverage Model Example

The following is a brief functional specification of the device. The
“device” to be modeled is a wood burning stove we use to heat our house in
the winter. It has three controls: logs, thermostat and damper. The logs fuel
the stove, which can only burn three to six logs at a time. The thermostat
modulates the air intake to maintain the desired stove temperature, ranging
from 200° to 800° F in 100° increments. The damper either directs the com-
bustion exhaust straight out the stove pipe or through a catalytic converter. It
may be either open or closed.

The rules for operating the stove are:

1. The damper must not be closed unless the stove is at least 400°.

2. The damper must be closed once the stove reaches 700°.

2 Management of the internal state of the device is implied by these I/O
requirements and may be observed using code coverage or an internal func-
tional coverage model.
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3. No more than four logs should be used for a 200° to 400° stove.

4. Five logs are required for 500°.

5. Six logs are required for the stove to reach 700° or hotter.

The semantic description of the wood stove coverage model is: Record
all valid operating conditions of the wood stove defined by logs, thermostat
and damper. The parameters, known as attributes, to be used to design the
model are listed below (table 4-1):

The operating conditions for the stove, defined by its rules, are captured in
the following table (4-2):

The attributes of the model are listed in the first row. All of their possible
values are listed in the second row. The time each value will be recorded, or
sampled, is listed in the third row. The remaining rows define the relation-
ships among the attributes (model structure) and when the groups of
attributes should be recorded (correlation time).
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For example, we must observe three and four logs used to operate the
stove at both 200° and 300°, with the damper open (first correlation time
row). We must also observe three and four logs used to operate the stove at
400°, with the damper open and with the damper closed (second correlation
time row), and so on. The asterisk means all values of the attribute in this
column.

The total number of coverage points in this model is the sum of the
points defined in each of the correlation time rows. The number of points
defined in a correlation time row is the product of the number of attribute val-
ues specified in each of its columns, as illustrated below:

Hence, this model defines a coverage space of 16 points.

Figure 4-1 below illustrates the structure of the wood stove coverage
model. Each attribute occupies a level in the tree. Attribute values label each
arc.

The coverage model is implemented in e as follows. The first line
extends an agent, ap_stove_agent_u, that monitors the wood stove.
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Lines 2 to 7 define a coverage group of three simple items — logs, stat
(thermostat) and damper — and one cross item — logs × stat ×
damper. Each item refers to a field declared below. Line 9 defines the cor-
relation event for the coverage group, wood_stove_e. It is emitted every
15 minutes. Lines 11 to 13 declare the attributes to be sampled: logs,
stat and damper.

1
2
3
4
5
6
7
8
9
10
11
12
13

extend ap_stove_agent_u {
cover wood_stove_e is {

item logs;
item stat;
item damper;
cross logs, stat, damper

};

event wood_stove_e;

logs : uint [3..6];
stat : uint [200..800];
damper : [OPEN, CLOSED];

Lines 15 to 26 restrict the permutations of the attributes to those defined by
the model. The restriction is implemented as the negation of the valid
attribute relationships: using ignore = not (valid conditions).

15
16
17
18
19
20
21
22
23
24
25
26

cover wood_stove_e is also {
item cross logs stat damper
using also ignore = not (

(logs in [3..4] and stat in [200..300]
and damper == OPEN) or

(logs in [3..4] and stat == 400) or
(logs == 5 and stat == 500) or
(logs == 6 and stat == 600) or
(logs == 6 and stat in[700..800]
and damper == CLOSED)

)
};

Finally, the sampling events are defined for logs, stat and damper.
Whenever event wood_loaded_e is emitted, the number of logs in the
stove is captured from the logcnt signal.
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28

30
31
32

event wood_loaded_e;

on wood_loaded_e {
logs = ' top/chamber/logcnt'

};

Whenever thermostat_set_e is emitted, the thermostat temperature set-
ting is copied from top/statpos.

33

35
36
37

event thermostat_set_e;

on thermostat_set_e {
stat = ' top/statpos'

};

And, whenever damper_changed_e is emitted, the damper position is
captured from top/dpos.

38

40
41
42
43
44
45
46
47

event damper_changed_e;

on damper_changed_e {
var d := ' top/dpos' ;
case d {

0: {damper = OPEN};
1: {damper = CLOSED}

}
};

} //extend ap_stove_event_u//

Having de-mystified the overall process of designing and implement-
ing a functional coverage model, in the following sections I explain in detail
the steps required to design and implement a coverage model using a real
world example.

4.3. Top-Level Design

The design process is divided into two phases: top-level design and
detailed design. Top-level design concerns itself with describing the seman-
tics of the model, identifying the attributes and specifying the relationships
among these attributes which characterize the device. Detailed design maps
these attributes and their relationships into the verification environment.
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The semantics of the model is an English description of what is mod-
eled, sometimes called a story. An example for an input coverage model is:
The instruction decoder must decode every opcode, in every addressing mode
with all permutations of operand registers. An output model example is: We
must observe the packet processor write a sequence of packets of the same
priority, where the sequence length varies from one to 255.

Once the semantic description is written, the second step in designing a
coverage model is identifying attributes. But first, what is meant by an
attribute? Referencing chapter one, “The Language of Coverage,” an
attribute is defined as a parameter or dimension of the model. In other
words, an attribute identified from one of the device specifications is a
parameter of the device such as configuration mode, instruction opcode, con-
trol field value or packet length. As we’ll see later in this chapter, an attribute
in a coverage model describes part of its structure. The attribute may define a
dimension of a matrix model or a level in a hierarchical coverage model. The
attributes we are initially concerned with are those extracted from the device
specifications.

4.3.1. Attribute Identification

The second step in designing a coverage model is identifying
attributes, their values and the times they should be sampled. The most
effective way to identify attributes is in a brainstorming session among sev-
eral verification engineers and designers familiar with the device specifica-
tions. If you need to design a coverage model single-handedly, make sure
you are familiar with the specifications before embarking on the endeavor.
You’ll need to visit each section of device requirements and record parame-
ters that may be used to quantify the description of those features. The speci-
fications I reference in the remainder of this chapter are those that define the
intended behavior of processors implementing the ubiquitous IA-32 instruc-
tion set architecture. They are the “IA-32 Intel Architecture Software Devel-
oper’s Manual, Volume 1: Basic Architecture”3 and the “IA-32 Intel Archi-
tecture Software Developer’s Manual, Volume 2: Instruction Set Reference.”4

The IA-32 instruction set architecture, more commonly referred to as
the x86 architecture, has a rich feature set from which attributes may be
3 In November 2003, this manual was available online at http://developer.-
intel.com/design/pentium4/manuals/24547012.pdf.
4 http://developer.intel.com/design/pentium4/manuals/24547112.pdf.
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drawn. They include:

execution mode

instruction opcode

general purpose register

instruction pointer (EIP)

flags register (EFLAGS)

Execution mode defines what subset of the architecture is available to the
running program. Instruction opcode is the primary field of an instruction
which encodes its operation. The general purpose registers (GPR, which are
really not so general) are traditional, fast-access storage elements used for
instruction operands. The instruction pointer register (EIP) specifies the
address offset of the next instruction to be executed. The flags register
(EFLAGS) contains status flags, a control flag and system flags. After the
attributes are selected, the next step is to choose the attribute values to be
recorded.

An attribute value may be a single value or a range of values. The cri-
teria for selecting attribute values depend upon the kind of attribute. If the
attribute is a control field, each of the control values should be enumerated.
If the attribute is a data field, the values to be selected depend upon the nature
of the data and how it is processed by the device. For example, if a data field
is the source operand of a move instruction, the behavior of the instruction is
likely not dependent on the operand value. On the other hand, if it is one of
the source operands of an arithmetic instruction, the value of the operand
strongly influences the instruction behavior. Let’s use the attributes chosen
above to illustrate attribute value selection.

The attribute execution mode is a control field so we specify each of its
possible values: real address mode, protected mode and system management
mode. Although “virtual-8086 mode” is sometimes considered an execution
mode, it is actually a protected mode attribute, so it is excluded it from the
execution mode values.

The attribute instruction opcode is a one- or two-byte encoding of an
instruction operation within the instruction. In addition, part of the opcode
may be encoded in three bits of another instruction field called the ModR/M
byte. is known as the reg/opcode field of ModR/M.5 Here are

5 Throughout this book I use little endian bit notation where bit zero is the
least significant bit of a number.
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several instruction opcode examples from appendix A of the instruction set
reference manual:

The attribute values are 00, 01, 02, ... 0F02, 0F32, ... 80 /2, 80 /3, etc.

The attribute general purpose register specifies one of eight 32-bit reg-
isters, eight 16-bit registers or eight 8-bit registers:

Each 16-bit register is an alias for the lower 16 bits of its corresponding
32-bit register. For example, the AX register is aliased to and BX is
aliased to In total, there are 24 general purpose registers, hence 24
GPR attribute values.

The attribute instruction pointer register (EIP) is a 32-bit register con-
taining an unsigned byte offset in the code segment to the next instruction to
be executed. The only significant boundary condition values of this register
are zero, one, and For completeness, we also sample values
throughout the range 2 to These are the attribute values.
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The attribute flags register (EFLAGS) is composed of a set of status
flags, one control flag, a set of system flags and a set of reserved bits. The
following table documents the EFLAGS register:

Each of these attributes is of a control nature so we define attribute values for
each of their possible values. The reserved bits of EFLAGS are excluded
from the values recorded because their values and behavior are not defined.

The last concern we have with attribute identification is selecting the
sampling time for each attribute. An attribute may be sampled at a variety of
times: each time its value is changed, on every cycle or in conjunction with
another event. How do we decide when and how often it should be sampled?

There are several things to consider when choosing an attribute sam-
pling time. First of all, a value should be sampled no more frequently than it
is updated. A system control register bit, for example, may only be written
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when an associated control register write instruction is executed. If the moni-
tor sampling the register has access to the execute stage of the processor, it
could read the control register bit only when the write instruction is executed.
It may also have direct access to the control register write logic in which case
it could simply watch the register write enable line.

An attribute should also be sampled no more frequently than the fre-
quency at which it interacts with other attributes. This “interaction fre-
quency” is the inverse of the attribute correlation time. Because attributes
interact with others, they create attribute relationships. Attribute correlation
times and attribute relationships are discussed in the next section. A data or
control attribute is usually sampled whenever it is updated. For example, a
register attribute would be sampled when the register is written. A control bit
attribute would be sampled whenever the value of the control bit is altered.

With these considerations in mind, let’s select the sampling times for
the IA-32 attributes.

The execution mode of an IA-32 processor is determined by the value
of the protected mode enable bit of control register zero (CR0.PE), the SMI#
pin and the resume (RSM) instruction. CR0.PE should be sampled whenever
the CR0 register is written or combined with another attribute. The SMI# pin
should be sampled whenever it is asserted. The RSM instruction should be
sampled each time it is executed. Figure 4-2 below illustrates how PE, SMI#
and RSM cause changes to the execution mode.
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An instruction opcode should be sampled whenever an instruction is
completed (i.e. retired). The opcode is not sampled at the time an instruction
is fetched because some instructions are speculatively fetched, but not
executed. Any general purpose register, the instruction pointer (EIP) or the
flags register (EFLAGS) should be sampled whenever it is written. None of
these attributes should be sampled more frequently than the least frequently
sampled attribute with which it is related (as explained in “Attribute Relation-
ships” below.

Now that the attributes, values and sampling times needed to construct
the coverage model have been defined, the next step is identifying the rela-
tionships among the attributes.

4.3.2. Attribute Relationships

Attribute relationships should reflect attribute interactions, dependen-
cies and device behavior specified by combinations of attributes. Each of
these behavioral relationships are reflected in device logic purposefully
designed to meet these requirements or in particular scenarios described in
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the device specifications. Associated with each attribute relationship is a cor-
relation time. The correlation time is a moment two or more attributes partic-
ipate in decision logic of the device. For example, when an IA-32 processor
needs to know if it is executing in virtual-8086 mode, CR0.PE and
EFLAGS.VM are sampled. Therefore, CR0.PE and EFLAGS.VM are corre-
lated when we need to know if we are in virtual-8086 mode.

The structure of the relationship may be of one of three types: matrix,
hierarchical or hybrid. A matrix model considers each attribute to be a
dimension of a matrix, where the number of dimensions is defined by the
number of attributes. The values along each axis are the values of the corre-
sponding attribute. Figure 4-3 below illustrates a two dimensional matrix
model.

The two attributes are labeled “Attribute A” and “Attribute B.”
Attribute A has twelve values, A0 through A11 while attribute B has eight
values, B0 through B7. An attribute pair,  defines a point within this
two dimensional coverage space. This matrix model defines 96 points.

A hierarchical model is structured like an inverted tree with its root at
the top.6 It is a directed graph whose nodes are attribute values and whose

This is a simplification for the sake of discussion. In reality, all IA-32 proces-
sor implementations maintain a virtual-8086 state bit.
6 Why do engineers and computer scientists always draw trees upside down?
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edges indicate a relationship between one attribute value and another. One
attribute is represented at each level in the tree, with the primary controlling
attribute at the root and each successive attribute one level lower. In figure
4-4 below, I illustrate a hierarchical coverage model defined by three
attributes: “Attribute A,” “Attribute B” and “Attribute C.”

Attribute A is the primary controlling attribute and has four values, A0
through A3. Attribute B is a secondary attribute and has three values, B0, B1
and B2. Attribute C is a tertiary attribute having four values, C0 through C3.
In this model, an attribute 3-tuple defines one of the ten points
in the coverage space. For example, is defined by (A2, B0, C2), the path
to this point.

A hybrid model is composed of a blend of matrix and hierarchical
regions, where fully permuted attribute combinations are structured as a
matrix and irregular attribute relationships are structured hierarchically. The
matrix subregions may be leaf nodes of a base hierarchical model or hierar-
chical subregions may occupy nodes within a base matrix model. Figure 4-5
below illustrates a hybrid model of the first type, matrix subregions are leaf
nodes of a base hierarchical model.
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Attributes A, B and C are defined the same as the previous hierarchical
model, having four, three and four values respectively. Attribute D has three
values — D0, D1, and D2 — and attribute E has six values — E0 through
E5. These two attributes define a three by six matrix subregion of the hierar-
chical model. Attributes F and G likewise define a five by four matrix subre-
gion.

This model defines a total of 46 points: 8 leaf nodes
18 points in the attribute D/E matrix and 20 points in the

attribute F/G matrix.

Although the structure of the coverage model should reflect the under-
lying relationships among the attributes from which it is composed, there are
times when the relationships may be modeled using more than one of these
model structures. What are the pros and cons of each structure in terms of
model fidelity and implementation effort?
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The interrelationship between model fidelity and model structure is
determined by how closely the inherent relationships among the attributes of
a model reflect a particular model structure. For example, if the semantic
description of a coverage model specifies that all register pairs of two-
operand instructions are to be recorded, the full permutation of registers is a
matrix. On the other hand, if the description states that the first operand reg-
ister must be observed with second operand registers sequentially one, two
and three greater than the first, as illustrated in table 4-3 below:

it reflects the following hierarchical structure (figure 4-6):

The matrix model requires the least effort to design and implement
because of its symmetry. Each of the interacting attributes is specified, along
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with its corresponding values. Because the matrix model is so easy to build,
engineers often choose it as the path of least resistance even though another
model is more applicable. If the full size of a model, structured as a matrix,
is relatively small (1,000 points or less) and the extraneous coverage points
are not invalid or impossible to reach, the time saved over designing a more
precise hierarchical or hybrid model is worth the loss of fidelity. However, if
the matrix model would be quite large (100,000 or more points) or it would
define many invalid points, a hierarchical or hybrid model should be chosen
instead.

The hierarchical model requires more effort to design because, not
only must the attributes and their values be specified, specific relationships
among attributes must also be defined. These relationships are often quite
irregular and complex, requiring many lines to enumerate. Nonetheless, the
complexity reflected in the hierarchical model is inherent in the attribute rela-
tionships described by the device specification or reflected in the RTL imple-
mentation. Although it may be simplified using a lower fidelity model, it
cannot be avoided. The strength of the hierarchical model is that it can pre-
cisely define attribute relationships, dramatically reducing the size of a cover-
age model and providing deeper insight into observed device behaviors.

The hybrid model requires a design effort comparable to the hierarchi-
cal model. Again, attributes, values and individual relationships must be enu-
merated. However, some regions of a hybrid model are quite regular and are
represented by a matrix structure. The hybrid model usually reflects the most
precise input, output or internal device behavior because of the nature of
designs. They are a blend of symmetric values with a few exceptions tossed
in.

Although implementing these models is discussed later in this chapter,
I should emphasize I am discussing coverage model structure here, not its
implementation structure. A hierarchical or hybrid model may be imple-
mented using an e cross coverage group, so long as the requisite using
ignore and using illegal options are used. Even through the name
“cross coverage group” strongly implies a matrix structure, it is often used to
implement models of all three structures.

Having examined coverage model structures in some depth, let’s turn
to an example of a behavioral relationship. Among the attributes we’ve
selected from the IA-32 architecture, execution mode interacts with the
EFLAGS VM bit because virtual-8086 mode may only be entered from pro-
tected mode. We will capture the attributes, their values, sampling time,
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correlation time and relationships in a table (4-4):

It is composed of four primary rows and three columns.7 The primary rows
are attribute, attribute value, attribute sampling time and attribute correlation
times and relationships. The columns are row title, execution mode values
and VM values. In the attribute row, the name of each attribute that con-
tributes to the coverage model is listed. In the value row, all of the selected
values for each attribute are recorded. In the sampling time row, the time at
which the attribute value should be recorded is listed. In the correlation time
row, the first column to the right of “Correlation Time” lists the correlation
time for the attributes related on that row. The remaining columns to the
right record relationships among the attributes.

This table specifies a coverage model composed of two attributes:
execution mode and VM. The selected values of execution mode are “real
address mode,” “protected mode” and “system management mode.” The val-
ues of VM are 0 and 1. The sampling time of execution mode is a CR0 write.
The sampling time of VM is a write to VM. The two attributes are always
correlated at the same time: whenever CR0 or EFLAGS.VM is written.8 The
7 The rows and columns of the table could be exchanged to make room for
more attributes.
8 It is possible to define a different correlation time for each attribute relation-
ship row.
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two attribute relationships defined by the model define only two points: {pro-
tected mode, 0} and {protected mode, 1}.

This table describes a coverage model composed of only two coverage
points: {execution mode, VM} = {protected, 0} and {protected, 1}. When
each of the values of an attribute contribute to the model as above, we use an
asterisk (“*”) to represent all values:

Returning to specific IA-32 attribute relationships, another model of
interest is one which records the use of a general purpose register as a desti-
nation register for each permutation of the arithmetic flags. (This is its
semantic description.) Although the IA-32 specifications do not explicitly
state that these interact, a discussion with one of the design engineers
revealed that the arithmetic flag logic in our processor is optimized for partic-
ular registers. This model may be described as:
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It has seven attributes (general purpose [destination] register, CF, PF, AF, ZF,
SF, and OF), each sampled whenever its value is changed. The correlation
time row indicates that the attributes are correlated whenever EFLAGS is
written and that all permutations of all of the attribute values define the
model. Therefore, the model has 1,536 coverage points: (24 GPRs) × (2 CF
values) × (2 PF values) × (2 AF values) × (2 ZF values) × (2 SF values) ×
(2 OF values). Since the full permutation of attribute values defines a matrix,
we use a matrix model.

To illustrate a hierarchical model, we will model a subset of the rela-
tionship between instruction opcodes and the arithmetic flags. These
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relationships are documented in table A-1 of the basic architecture manual, a
subset of which is reproduced in table 4-7 below:

where the cell entries in the flag columns have the following meanings:

Our model will reflect all but undefined behavior from this specification.
Since some instructions influence (or are influenced by) flags and others do
not, a hierarchical model must be used. The model is represented by the fol-
lowing table (4-9):
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In this model, the correlation time for all attributes is when the corre-
sponding instruction is completed. Five instructions — ADC, ADD, ARPL,
BOUND and BSWAP — must be observed when each of the six arithmetic
flags have the values zero and one after the instruction completes. The AND
instruction interacts with all of the flags except AF. AAD and AAM are only
to be recorded when the SF, ZF or PF flags are written. BSF and BSR are
only recorded with ZF and BT, BTA, BTC and BTS are only recorded when
CF is written.

Having examined the top-level design of several models, let’s turn to
the second step of coverage model design, detailed design.

4.4. Detailed Design

Detailed design concerns itself with mapping the coverage model
design to the verification environment. In other words, how must the design
be architected so that it may be implemented in e?9 In order to answer the
question, three specific questions must be answered:

1. What must be sampled for the attribute values?
2. Where in the verification environment should we sample?
3. When should the data be sampled and correlated?

The answer to the first question maps verification environment fields and
variables, or device signals and registers, to attributes. The answer to the sec-
ond question determines where in the verification environment data sampling
will be performed. The answer to the third question maps the sampling and
correlation times to specific events in the environment. Each is addressed in

9 The same detailed design process is required if the implementation language
were Verilog, SystemVerilog, VHDL or SystemC.
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the following sections.

4.4.1. What to Sample

The data to be captured for each of the attributes defined during top
level design must be associated with a data source in the environment, either
in the verification environment or in the device under verification. The verifi-
cation interface of the coverage model determines, to a large extent, what
data should be sampled. For example, the attributes of an input coverage
model will be sampled from data injected into the device. The attributes of
output coverage model will be sampled from data captured on device outputs.
Some coverage models may require attributes that may only be captured from
within the DUV or may compose attributes from all three sources. Let’s
address each of these sampling requirements in turn.

Input attributes should be sampled by a monitor that has access to the
primary inputs to the device. The monitor should sample data from input sig-
nals at valid times specified by the device specification. The monitor should
not retrieve its data from a stimulus generator because creating such a depen-
dency would compromise the ability to reuse the monitor for recording cov-
erage at a subsequent integration level. The following figure (4-7) depicts a
monitor sampling data from a device’s primary inputs.
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The block labeled “Coverage” is a distinct aspect from the “Input Monitor”
block because it has a particular responsibility whereas the monitor is more
general-purpose. The coverage block is solely responsible for recording
functional coverage data. The monitor block is a generic data capture facil-
ity, used by both coverage and checking aspects. It is implemented as either
an extension to an eRM agent10 responsible for the device input interface or
as a distinct e unit within the agent. In either case, there is a clean separation
between its implementation and that of the monitor. The coverage aspect
defines e coverage groups, their sampling events and any supporting data
structures and procedural code.

An example of a sampled input attribute is the SMI# pin of an IA-32
processor. This asynchronous signal would be sampled when asserted. Since
it is an active low signal (as indicated by the “#” signal name suffix), it would
be captured when driven to the value zero.

Output attributes should also be sampled by a monitor but, of course,
from the primary outputs of the device. The monitor should sample data at
valid times specified by the device specification. As with device inputs, an
eRM agent should be written for each output interface, containing a monitor
for passive signal sampling. The following figure (4-8) depicts a monitor
sampling data from a device’s primary outputs.

10 An eRM agent is a modular e program component responsible for interfac-
ing to a device or one of its interfaces.
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Example of an output attribute to be sampled is the SMI acknowledge
transaction. This transaction is the response of an IA-32 processor to an
assertion of the SMI# pin. Since the transaction does not map directly to a
device output, the monitor must recognize the transaction protocol on the bus
and when the transaction completes, record it for the coverage model.

Device internal attributes also have an associated monitor, responsible
for capturing internal signal and register values. Unlike the input and output
interfaces of the device, internal signals are not as well specified (if they are
specified at all). Sampling of such internal signals must be coordinated with
the design team in order to minimize volatility.

Because internal signals may be quite volatile and are frequently
unspecified, the use of internal attributes for coverage model design should
be minimized. They impose an additional maintenance burden on the verifi-
cation team, once implemented, because the monitor and coverage must con-
tinually track design changes. One strategy I have seen successfully
employed to address this is defining a set of fixed signals and registers for
verification use. The verification team identifies internal signals and registers
required for coverage measurement and the design team agrees to minimize
their changes. This “verification interface” is treated the same as an external
device interface because it is specified and (nearly) frozen.

The following figure (4-9) depicts a monitor sampling data from the
DUV’s internal signals and registers.
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The second question to be answered during detailed design of a cover-
age model is where in the verification environment should we sample? This
is addressed in the next section.

4.4.2. Where to Sample

A dynamic verification environment is composed of three aspects: cov-
erage measurement, stimulus generation and response checking. In an e
implementation, these aspects are distributed among three e language aspects
of the environment.11 Data sampling for coverage measurement is part of the
coverage measurement aspect of the environment.

The coverage measurement aspect will be implemented in a set of files
that extend existing objects of the verification environment. In an eRM-com-
pliant environment, the agents responsible for monitoring input, output and
internal interfaces are extended. The coverage groups may either be defined
in a subtype of the monitor in an agent or in their own unit.

11 e is an aspect-oriented programming language. This means that a capability
of the environment, whose implementation requires contributions from one or
more unrelated objects, may be implemented in a single file which extends
each of those objects. See http://aosd.net/ for more information on AOP
(March 2004).
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If a coverage group is defined in a monitor subtype, the subtype should
be “has_coverage,” per eRM guidelines. For example:12

extend has_coverage ap_input_agent_u {
cover inst_completed using text =

"Arithmetic Flags and Instructions" is
}

If the coverage group is defined in its own unit, the unit is declared in the
agent. For example:

extend ap_input_agent_u {
coverage : ap_input_cov_u is instance

};

unit ap_input_cov_u {
cover inst_completed using text =

"Arithmetic Flags and Instructions" is ...
}

Typically, if we are measuring output coverage, a monitor on an output
interface of the device will capture data used by a data checker — such as a
scoreboard — as well as by a coverage model. If attributes are required from
device inputs, they should be captured from a monitor on the device inputs.
It may be tempting to place input data capture in the generation aspect of the
environment, but what happens when this aspect is reconfigured or removed
in the verification environment of a subsequent integration of the device?
Input coverage could no longer be measured on that interface.

The third question to be answered during detailed design of a coverage
model is when should the data be sampled and correlated?

4.4.3. When to Sample and Correlate Attributes

During top-level design, we selected a sampling time for each attribute
and a correlation time for each set of related attributes in the coverage model
table. In this section, each sampling and correlation time is refined by defin-
ing it in terms of the verification environment.

12 If the monitor is declared in the agent, the coverage group should be defined
in the “has_coverage” subtype of the monitor unit.
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The first coverage model investigated, “Abbreviated Virtual-8086
Mode Coverage Model,” table 4-4, defines the sampling times “CR0 write”
and “EFLAGS VM write” and the correlation time “CR0 or EFLAGS VM
write.” CR0 is written by the move-to-control-register instruction:
MOV CR0, r32. We define an event, move_to_CR0_e, to be emitted by an
internal monitor whenever a move-to-CR0 instruction completes.

EFLAGS.VM is written by either a task switch or return from a pro-
tected mode interrupt. Detecting either of these conditions from a black box
perspective is rather complex so we again turn to an internal monitor.
Another event, eflags_vm_write_e, is defined to be emitted by an inter-
nal monitor whenever the EFLAGS.VM bit is written.

The full correlation time for this model is defined by the “or” of these
two events: @move_to_CR0_e or @eflags_vm_write_e.13 The
event CR0_or_VM_write_e is defined using this temporal expression:

event CR0_or_VM_write_e is
@move_to_CR0_e or @eflags_vm_write_e

The sampling and correlation times for each of the earlier coverage
models are refined in the same fashion. An observation interface is selected.
A temporal expression is written to define the sampling or correlation time.
Event operands are defined, as needed, to be emitted at constituent moments
of the temporal expression.

Now, let’s turn to the third and final step of coverage model develop-
ment, implementation.

4.5. Model Implementation

If you’ve done a good job of designing a coverage model — top-level
and detailed design — implementing the model should be less than 20% of
the total effort. Why is that? Most of the difficult choices will have been
made, those requiring analysis of the device specifications and ferreting out
the precise intended relationships among device features. The remaining
abstraction refinement of the model will be dictated by the structure of your
verification environment and the semantics of the implementation language.

13 “@event” is an e temporal expression that succeeds whenever event is emitted.
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The verification environment is assumed to be structured into three pri-
mary aspects: coverage measurement, stimulus generation and response
checking. The coverage measurement aspect will slice across a number of
objects which implement the verification environment. The main objects to
be extended will be monitors: input monitors, output monitors and internal
device monitors. Let’s look at the implementation of the GPR/arithmetic
flags coverage model.

In the following implementation, the instruction set architecture (ISA)
state of the CPU is maintained in the unit ISA_state_u and declared in
agent has_coverage ap_input_agent_u.

extend has_coverage ap_input_agent_u {
isa : ISA_state_u is instance

}

An e unit is special kind of struct that must be specified as either an instance
(“is instance”) or a reference. An e struct is like a C++ or Java class in
that it includes data and procedural members, as well as temporal members.
The data members are referred to as fields, two of which we are concerned
with: dest_gpr and eflags. dest_gpr is the destination register of the
last executed instruction. eflags is the current value of the EFLAGS regis-
ter.

unit ISA_state_u {
dest_gpr : gpr_t;
eflags : eflags_s

}

dest_gpr is of type gpr_t, a user-defined enumerated type:

type gpr_t 
EAX, EBX,
AX,   BX,
AH,  BH,
AL,  BL,

]

and eflags is an instance of struct eflags_s:14

14 Since the word “of” is a reserved word in e, I use “vf” instead for all refer-
ences to the overflow flag in this code example.
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SI, DI, BP, SP,

: [
ECX,EDX,
CX,  DX,
CH,  DH,

CL,  DL



struct eflags_s {
cf : bit;
pf : bit;
af : bit;
zf : bit;
sf : bit;
vf : bit

}

The coverage group is defined in the has_coverage subtype of the agent
ap_input_agent_u:

extend has_coverage ap_input_agent_u {
cover eflags_written_e is {
item gpr : gpr_t = isa.dest_gpr;
item cf : bit = isa.eflags.cf;
item pf  : bit = isa.eflags.pf;
item af  : bit = isa.eflags.af;
item zf  : bit = isa.eflags.zf;
item sf  : bit = isa.eflags.sf;
item vf  : bit = isa.eflags.vf;
cross gpr, cf, pf, af, zf, sf, vf

}
} // extend ap_input_agent_u //

The coverage group sampling event is emitted on the rising edge of the
EFLAGS write signal. An e coverage group sampling event defines the corre-
lation time of the attributes defined by its items. The sampling event must be
defined in the base type for reference by a subtype.

extend ap_input_agent_u {
event eflags_written_e
is rise(sig_eflags_write$)

}

sig_eflags_write is the name of a single bit input port bound to the
EFLAGS write signal.15 sig_eflags_write$ is a reference to its value.

15 e ports are preferred over computed names (ex. ‘(sig_eflags_write)’)
because they support modularity and improve performance.
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With the ISA state declared earlier, we now write the code to manage
its values. First, there is the destination general purpose register code:

extend has_coverage ap_input_agent_u {
event gpr_write_e is rise(sig_gpr_w$);

on gpr_write_e {
isa.dest_gpr = sig_dest_gpr$

};

When event gpr_write_e is emitted, sig_dest_gpr$ is assigned to
isa.dest_gpr. Next, we have the arithmetic flags management code.
Each event defining an attribute sampling time is emitted when a flag is writ-
ten.

event cf_write_e is rise(sig_cf_w$);
event pf_write_e is rise(sig_pf_w$);
event af_write_e is rise(sig_af_w$);
event zf_write_e is rise(sig_zf_w$);
event sf_write_e is rise(sig_sf_w$);
event vf_write_e is rise(sig_vf_w$);

Finally, the on-blocks capture each flag value when its corresponding event is
emitted.

on cf_write_e { isa.eflags.cf = sig_cf$ };
on pf_write_e { isa.eflags.pf = sig_pf$ };
on af_write_e { isa.eflags.af = sig_af$ };
on zf_write_e { isa.eflags.zf = sig_zf$ };
on sf_write_e { isa.eflags.sf = sig_sf$ };
on vf_write_e { isa.eflags.vf = sig_vf$ }

} // extend ap_input_agent_u //

The GPR/arithmetic flags models has a matrix structure. How would
we implement a hierarchical coverage model or hybrid model? A hierarchi-
cal coverage model may be implemented in two different ways: using sub-
typed coverage or per-instance coverage.

Subtyped coverage makes use of extending a coverage group under
when subtypes of a base struct. Let’s use the register pairs coverage model,
described earlier, as an example. Its structure is reproduced below for refer-
ence (figure 4-10).
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Using subtyped coverage, this model would be implemented like this. First,
the hosting struct reg_pair is declared in the agent:

extend has_coverage ap_reg_agent_u {
reg_pair : reg_pair_s

};

The hosting struct is defined with a field for each register operand. The cov-
erage group register_pairs is defined in the base struct with the first
register operand reg1. The coverage group correlation event regis–
ter_pairs is also declared.16

struct reg_pair_s {
reg1 : reg_t;
reg2 : reg_t;
cover register_pairs is {
item reg1

};
event register_pairs

};

The register type is an enumerated type.

type reg_t : [R0, R1, R2, R3, R4, R5, R6, R7];

The remaining code populates the coverage group with a reg2 item for each
value of reg1. For example, when reg1 is R0, reg2 is only recorded
16 The code that emits the event is not shown.
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when it has the value R1, R2 or R3. Unique names must be given to each
item because the items share a common coverage group name space.

extend R0’reg1 reg_pair_s {
cover register_pairs is also {
item R0reg2 : reg_t = reg2
using ignore = (reg2 not in [R1..R3])

}
};

extend R1’reg1 reg_pair_s {
cover register_pairs is also {

item R1reg2 : reg_t = reg2
using ignore = (reg2 not in [R2..R4])

}
};

extend R2’reg1 reg_pair_s {
cover register_pairs is also {
item R2reg2 : reg_t = reg2
using ignore = (reg2 not in [R3..R5])

}
};

extend R3’reg1 reg_pair_s {
cover register_pairs is also {
item R3reg2 : reg_t = reg2
using ignore = (reg2 not in [R4..R6]

}
};

extend R4’reg1 reg_pair_s {
cover register_pairs is also {
item R4reg2 : reg_t = reg2
using ignore = (reg2 not in [R5..R7])

}
};
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extend R5’reg1 reg_pair_s {
cover register_pairs is also {
item R5reg2 : reg_t = reg2
using ignore = (reg2 not in [R6,R7,R0])

}
};

extend R6’reg1 reg_pair_s {
cover register_pairs is also {
item R6reg2 : reg_t = reg2
using ignore = (reg2 not in [R7,R0,R1])

}
};

extend R7’reg1 reg_pair_s {
cover register_pairs is also {
item R7reg2 : reg_t = reg2
using ignore = (reg2 not in [R0..R2])

}
}

The same model may be implemented using per-instance coverage as
follows. The register type is defined, as well as the coverage group correla-
tion event, register_pairs.

type reg_t : [R0, Rl, R2, R3, R4, R5, R6, R7];

extend ap_reg_agent_u {
event register_pairs

};

The register fields for operands one and two are declared in the has_cov–
erage subtype of the agent.

extend has_coverage ap_reg_agent_u {
reg1 : reg_t;
reg2 : reg_t;

The coverage group is defined in the agent with the first item, reg1, speci-
fied as per_instance. per_instance allows us to define different
reg2 restrictions for each value of reg1.
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cover register_pairs is {
item reg1 using per_instance

};

cover register_pairs(reg1 == R0) is also {
item reg2 using ignore = (reg2 not in [R1..R3])

};

cover register_pairs(reg1 == R1) is also {
item reg2 using ignore = (reg2 not in [R2..R4])

};

cover register_pairs(reg1 == R2) is also {
item reg2 using ignore = (reg2 not in [R3..R5])

};

cover register_pairs(reg1 == R3) is also {
item reg2 using ignore = (reg2 not in [R4..R6])

};

cover register_pairs(reg1 == R4) is also {
item reg2 using ignore = (reg2 not in [R5..R7])

};

cover register_pairs(reg1 == R5) is also {
item reg2 using ignore = (reg2 not in [R6,R7,R0])

};

cover register_pairs(reg1 == R6) is also {
item reg2 using ignore = (reg2 not in [R7,R0,R1])

};

cover register_pairs(reg1 == R7) is also {
item reg2 using ignore = (reg2 not in [R0..R2])

}

For example, the first instance, (reg1 == R0), specifies that reg2 should
only be recorded when it has the value R1,R2 or R3.

} //extend has_coverage ap_reg_agent_u//
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One advantage of implementing a hierarchical model using per-instance cov-
erage is immediately apparent. It is usually much more compact than sub-
typed coverage. The reason is that the necessary attribute hierarchy may be
constructed of coverage subgroups (“cover register_pairs
(reg1 == R6) is ...”). The subgroup mimics the inheritance hierarchy
of e structs and units. For the same reason, this application of per-instance
also has a drawback. Although the struct/unit hierarchy reflects the object-
oriented design of a verification environment, coverage subgroups are com-
pletely orthogonal to it.

A hybrid model would be implemented using a combination of the
matrix and hierarchical techniques shown above.

Summarizing the model implementation process, the “what,” “where”
and “when” questions addressed by detailed design are realized. Verification
environment fields and device signals are written to capture attributes. eRM
agents are identified to host the coverage groups, either in has_coverage
subtypes or in dedicated units. Sampling and correlation times are imple-
mented as temporal expressions bound to events.

4.6. Related Functional Coverage

In this section I briefly discuss three kinds of functional coverage
deserving further investigation and application. They are finite state machine
(FSM) coverage, temporal coverage and static verification coverage.

4.6.1. Finite State Machine Coverage

Automatic FSM extraction by code coverage programs is a relatively
new capability.17 Early code coverage tools defined pragmas for the designer
to indicate to the code coverage tool an FSM and the structure used to imple-
ment it. Current tools recognize most FSM implementations and record state
and arc coverage.18 However, there are times when you may need or want to
record FSM coverage in a functional coverage model. One situation is where
your code coverage program does not recognize or extract a particular FSM.
Another is when you need to interrelate the behavior of two state machines.
Yet another is the need to record FSM behavior along with other functional
coverage information.
17Circa 1999.
18 See chapter 5, “Code Coverage.”
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In each case, a functional coverage model may be designed whose
attributes include the FSM state variable and controlling next-state equation
terms. The attribute values of the state variable are its defined states. Those
of the next-state equation terms are their specified values. The behavior of
the FSM may reflect any coverage model structure but hierarchical is the most
common. The detailed design and implementation of this model follow the
procedure outlined earlier in the chapter.

4.6.2. Temporal Coverage

The behavior of a DUV, as observed from any verification interface,
usually has both data and temporal components. In other words, the bound-
ary conditions exist in both the data domain and the time domain. The data
domain is most familiar to the verification engineer. It comprises the world
of values observed on buses and latched in registers. The time domain, on
the other hand, is most often relegated to second class status. Moments
define when data should be captured and intervals define how long data is
valid. However, the sequential behavior of the device is given less attention
than it deserves.

Quite often, devices are optimized for frequently repeated operations.
They take advantage of data and time locality to deliver higher performance.
Caches and translation look-aside buffers are good examples. Experience
indicates this optimization logic is often rife with bugs. More so, half of
these kinds of bugs result in no functional misbehavior. Instead, they lead to
performance degradation or excessive power consumption. All this encour-
ages us to verify temporal behavior and that includes recording temporal cov-
erage.

Sequential verification is an area of active research and some internal
tools19 have been developed and employed. However, I am aware of no com-
mercial tools that directly measure temporal coverage, nor offer implementa-
tion facilities for directly specifying temporal coverage models. Therefore,
temporal behavior must be mapped into the data domain. Suppose the
sequential relationship “Z occurs within 5 to 10 cycles after either X or Y
occurs,” written in the e temporal language as:
19 “Piparazzi: A Test Program Generator for Micro-architecture Flow Verifica-
tion” by Allon Adir, Eyal Bin, Ofer Peled and Avi Ziv, IBM Research Lab in
Haifa, Israel, November 2003, Eighth Annual IEEE International Workshop on
High Level Design Validation and Test.
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{(@X or @Y); [4..9]; @Z}

is an important condition to observe as a coverage measurement. If the tem-
poral expression (TE) is associated with an event:

event ev1 is {(@X or @Y); [4..9]; @Z} @clk

commercial tools do report the number of times the event was emitted. How-
ever, the elastic time interval [4..9] is not recorded. The TE may be
instrumented to do so:

t : time;
interval : time;

event ev1 is {
(@X or @Y) exec {t = time};
[4..9] exec {interval = time – t};
@Z

} @clk

and coverage of the field interval recorded. This is one way to map val-
ues from the time domain to the data domain for coverage measurement
using existing commercial tools.

4.6.3. Static Verification Coverage

More often than not, verification teams are employing both static and
dynamic methods in their quest to expose bugs. Coverage-driven verification
requires engineers to define coverage goals and implement a verification
environment to reach them. When the environment includes a formal tool,
such as a model checker, what coverage is provided by that flow? In particu-
lar, what functional coverage is delivered by proven properties?

Each property has an associated semantic description, similar to the
semantic description that leads the functional coverage model design process.
The property descriptions may be compared with those of the developed cov-
erage models. A property whose description is a superset of the description
of a particular coverage model may be determined to have fully traversed the
model, once the property is proven. If the property description is a subset of
a coverage model, analysis is required to quantify what subset of the model
may be considered "observed" when the property is proven. In either case,
the rigorous nature of a proof and the quantitative nature of functional
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coverage are compromised in order to associate one with the other.

Another approach to quantify verification coverage delivered by a
property checker has been used by Averant.20 The properties proven by their
static verification tool, Solidify, may be recorded as coverage points and
reported by Specman, Verisity’s verification automation product. However, it
appears as though each property is represented by a single coverage point,
offering little visibility into the nuances of the property terms. This would be
equivalent to a low fidelity coverage model, unable to distinguish one variant
of a behavior from another in recorded results.

There are many avenues to explore to bridge static verification methods
with coverage measurement techniques. These will lead to the ability to
quantify the functional, code and assertion coverage delivered by each proven
property. Since the purpose of measuring and analyzing coverage is to deter-
mine verification progress and formal methods are a valuable tool for verifi-
cation, we must discover a practical means for assessing the contribution of
proofs on the coverage scales.

4.7. Summary

In this chapter, you learned how to use functional coverage to model
device behavior at various verification interfaces. After an overview of the
model design process, using a simple device as an example, the process of
top-level design, detailed design and implementation of functional coverage
models was described. As part of top-level design, selecting a coverage
model structure that reflects the attribute relationships of the device is impor-
tant choice. The three model structures — matrix, hierarchical and hybrid —
were illustrated. Several coverage model implementations were examined in
order to understand the implication of model structure on implementation.
Lastly, I briefly reviewed three kinds of related functional coverage: FSM
coverage, temporal coverage and static verification coverage.

20 “Averant Announces Significant New Improvements in Solidify 2.6,”
June 10, 2002, DAC 2002 press release, http://www.averant.com/-
release26.htm.
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5. Code Coverage

In this chapter I explain the purpose of code coverage — sometimes
referred to as structural coverage — its various metrics and a suggested use
model.

Code coverage‚ as you’ll recall from chapter 3‚ “Measuring Verifica-
tion Coverage‚” defines an implicit implementation coverage space. An
implicit implementation coverage space is one in which the coverage metrics
are defined by the source we are observing and extracted from the device
implementation. Unlike functional coverage‚ for which the attributes to be
measured must be defined and their organization designed‚ code coverage
attributes are predefined by the RTL and‚ hence‚ by the code coverage pro-
gram.

However‚ an interesting trend in the capabilities of code coverage tools
is apparent. Over time‚ metrics which had to be manually measured using
functional coverage techniques have been integrated into code coverage
tools. For example‚ only recently has finite state machine (FSM) extraction
become widely available. Before then‚ the engineer interested in measuring
FSM coverage had to implement the code by hand by either instrumenting the
RTL or building an external coverage monitor.

Before diving into the various code coverage metrics‚ let’s examine
instance and module coverage.

The implementation of a device in a given HDL includes modules com-
posed of logic, registers, wires and events. These modules are instantiated
one or more times, depending upon the amount of replicated logic. Code
coverage may be measured and reported for the module definitions and for
each instance of module components.

5.1. Instance and Module Coverage



Module level coverage is appropriate for blocks that are replicated in a
symmetric fashion. For example‚ if an operation may be parallelized through
decomposition into a number of data paths‚ generally independent of one
another‚ there is no reason to record coverage on a per-instance basis. When
the metrics discussed below are recorded at the module level‚ the simulation
performance degradation is reduced and disk and memory storage conserved.

Instance level coverage is required when a logic block is replicated‚ but
distinct modes of operation are enabled for each instance. For example‚ a
data encoder may be able to encode using two variants of the same encoding
algorithm. The encoder itself may be duplicated — hard-wired to a configu-
ration — in order to overlap encoding two data blocks‚ each using an alter-
nate algorithm. In this case‚ distinct lines‚ statements‚ expressions and con-
trol paths will be exercised in each configuration. Instance level coverage
must be used to gain the necessary visibility into the module.

Code Coverage Metrics

Code coverage metrics are implicit coverage attributes of the hardware
description language‚ which are measured in the RTL device implementation.
In the following sections‚ I review the most common metrics: line‚ statement‚
branch‚ condition‚ event‚ toggle and FSM coverage.

All code coverage programs provide a means for specifying a hit
threshold. The hit threshold is the minimum number of times a metric must
be observed in order to be counted as covered. This is discussed further in
the use model section 5.3.2‚ “Record Metrics.”

5.2.1.

The line coverage metric reports which lines of the RTL have and have
not been executed. Full line coverage is defined as all non-comment lines
executed a threshold number of times. This threshold is often user-specified.
This is an example of VHDL line coverage:

5.2.

Line Coverage
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Count Source Line

57
57
57
57
57
57
57
57
57
57

architecture arch of pipeline is begin

request_bus_p: process begin

prequest_n <= ’1’;

penable_n <= ’1’;

wait until trst_n’event and trst_n = ’0’;

wait until trst_n’event and trst_n = ’1’;

prequest_n <= ’0’;

wait until clk32’event and clk32 = ’0’

and pgrantin_n = ’0’;

wait until clk32’event and clk32 = ’0’;

penable_n <= ’0’;

wait;

end process;

end arch;

A related coverage metric reported by some tools‚ block coverage‚
defines a sequence of statements with no branches to be a block. (A branch
is introduced by any control flow statement such as an “if” or “while” state-
ment.) If the first statement of the block is executed‚ all of the statements in
the block are executed. Although block coverage offers the same visibility
into RTL execution as line coverage‚ less overhead is introduced during simu-
lation because only one counter is inserted per block.1

5.2.2.

Statement coverage reports which RTL statements have and have not
been executed. This metric is more precise than line coverage because state-
ments may span multiple lines and more than one statement may occupy a
single line. This is an example of Verilog statement coverage:

1 The process of using code coverage is discussed in section 5.3‚ “Use Model.”
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Count Source Line

172
36

always @ (ALUSelA or ReadData1 or PC) begin

if (ALUSelA) begin

MuxA = ReadData1;

end else begin

MuxA = PC;

end

end

136

5.2.3.

The branch coverage metric reports the count of control flow transfers
for if‚ case‚ while‚ repeat‚ forever‚ for and loop statements. A control flow
transfer interrupts the normal sequential execution of statements. Some code
coverage tools refer to branch coverage as arc coverage‚ although this term is
more often applied to FSM coverage‚ described later in this chapter. This is a
typical example of reported branch coverage in VHDL:

Line Source
17

55
56
57
58
59
60
61
62
63
64
65

67
68
69
70

case int_ack_src_acc_reg is

when "00" =>

for i in 0 to fifo_size - 1 loop

if i = c then

update(i) <= ’1’;

load(i)   <= ’1’;

else

update(i) <= ’0’ ;

load(i)   <= ’0’ ;

end if;

end loop;

c_inc <= 1;

when "01" =>

for i in 0 to fifo_size - 1 loop

update (i) <= '1';

if i = c_minus_2 then
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Line Source
71
72
73
74
75
76

99

load(i) <= '1';

else

load(i) <= '0';

end if;

end loop;

c_inc <= -1;

end case;

A related, yet more complete control flow metric is path coverage.
Path coverage reports the number of times every possible path through the
code was executed. For example, an if/else statement followed by a second
if/else statement has four paths:
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1.

2.

3.

4.

if 1 true, if 2 true

if 1 true, if 2 false

if 1 false, if 2 true

if 1 false, if 2 false

Specific to loop constructs, loop coverage reports a count of how often
each loop in the code is executed a specific number of times, usually zero,
one or two times. This is useful for determining how well loops were exer-
cised for their iteration boundary conditions.



5.2.4. Condition Coverage

Condition coverage records the number of times each permutation of
the terms of a Boolean expression cause the complete expression to evaluate
to true or false.2 Consider the expression (A && B) || C || D. This expression
evaluates to true under three conditions:

1.

2.

3.

A && B

C

D

and to false under two conditions:

1.

2.

!A && !C && !D

!B && !C && !D

A stricter form of condition coverage — exclusive condition coverage — is
sometimes available that requires each term to be the controlling term (i.e.
sole reason) for an expression to evaluate true or false. For the example
above, the expression evaluates to true for these five exclusive conditions.
The controlling term is in boldface below:

1.

2.

3.

4.

5.

A && B && !C && !D

!A && B && C && !D

A && !B && C && !D

!A && B && !C && D

A && !B && !C && D

5.2.5. Event Coverage

The event coverage metric records the number of times an event is trig-
gered, occurs or is emitted.3 In Verilog and SystemVerilog, an unnamed event
is triggered when either the value of a wire or register is changed. A named
event may be defined and the event explicitly triggered using the –> operator.

2 Software developers refer to this as modified condition decision coverage
(MCDC).
3 Events are referred to as triggered in Verilog and SystemVerilog; occurred on
a signal in VHDL and emitted in e.
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In VHDL‚ an event occurs on a signal if the value of that signal changes.

5.2.6. Toggle Coverage

Toggle coverage reports the number of times each bit of a register or
wire has toggled its value. For example‚ the toggle coverage reported for the
following register:

reg [10:0] state;

may be reported as:

Some code coverage tools report not only zero-to-one and one-to-zero transi-
tions‚ but also transitions to and from undefined (“X”) and tristate (“Z”).

5.2.7. Finite State Machine Coverage

Modern code coverage tools identify and extract finite state machines
from RTL. There are several FSM metrics of interest to the verification engi-
neer. The most basic is state visitation: how many times was each state of a
state machine entered? Another is arc coverage: how many times did the
FSM transition from one state to each of its neighboring states? Arc coverage
should be reported for the subexpressions of each next state equation as we
saw for condition coverage. A third FSM metric is sequential arc coverage‚
often called transition coverage. Sequential arc coverage identifies state
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visitation sequences of various lengths and records the number of times each
sequence was traversed.

Consider the following FSM composed of five states and nine arcs.
Next to each arc is its next-state equation.

State coverage for this FSM might be reported as follows:

while arc coverage might be reported as:
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Lastly‚ sequential arc coverage — for two-arc transitions beginning at state
S1 — might be reported as:

Before moving to the use model for code coverage‚ I address a way to
improve code coverage fidelity by recognizing that internally observed met-
rics are more valuable if propagated to a checking interface. This is con-
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trolled and observed coverage.

5.2.8. Controlled and Observed Coverage

In the previous sections I discussed the coverage metrics commonly
available from code coverage programs. Each metric was considered within
the context of its associated RTL‚ with no consideration for the effect a
recorded metric had on the running simulation. We may observe the execu-
tion of a statement‚ perhaps an assignment statement. What if the assigned
value never propagates to an observation interface for checking? What if that
statement is only executed one time in all of the regression runs and the value
is never propagated? A potentially erroneous assignment is never checked‚
but recorded as observed. This situation bit me one time during the verifica-
tion of a complex design.

I was responsible for verifying a superscalar‚ 3-issue IA-32 micropro-
cessor. Since I was unable to convince management to invest in the develop-
ment or purchase of an automated generation environment‚ my verification
team had manually written hundreds of assembly language tests to verify the
instruction set architecture (ISA). Nevertheless‚ we employed a coverage-
driven verification methodology4 to achieve 100% coverage on our ISA func-
tional coverage models. Despite employing a rigorous CDV methodology‚ in
first silicon we discovered a bug in one of the branch instructions. I knew we
had measured 100% branch coverage and the self-checking branch tests had
been thoroughly reviewed. How did this bug escape?

Two groups of tests we had developed were the floating point tests and
the branch instruction tests. Unbeknown to us‚ the single occurrence of a
particular branch instruction scenario was coded in one of the floating point
tests. The floating point test‚ not responsible for branch instruction verifica-
tion‚ was insensitive to the misbehavior of the branch instruction. The
branch instruction test suite mistakenly excluded this particular branch sce-
nario. When we functionally graded5 the full test suite‚ there were no
reported branch coverage holes. At the same time‚ all tests — including the
branch tests — passed without error.

The problem was now apparent: we had not restricted the measurement
of branch instruction functional coverage to the branch tests. More generally‚
4 This was 1993.
5 The term “functionally grade” means to measure the functional coverage of a
set of simulations or tests.
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coverage was measured in one set of stimuli but not correlated to response
checking in the same stimuli. Branch coverage controlled test execution but
it was not observed by branch behavior checking code. The lesson for func-
tional coverage is to make sure each functional coverage model has corre-
sponding — and concurrently active — data and temporal checking code.
How do we address the problem when using code coverage?

The code coverage program must provide a means of sensitizing the
recording of code coverage metrics to a defined observation interface‚ gener-
ally a monitor of the verification environment checking aspect. For each
metric — line‚ statement‚ branch‚ condition‚ event‚ toggle and FSM — the
program must be able to trace the effect of the observed metric to a selected
observation point through the RTL hierarchy. As of the publication date of
this book‚ I am only aware of one commercial program that supports this fea-
ture.6 Hopefully‚ in the near future other vendors will incorporate this capa-
bility into their offerings.

Having explored the benefit of correlating control and observation‚
how do we use code coverage? In other words‚ what is the recommended use
model?

5.3. Use Model

Code coverage reports how well the RTL implementation of the device
has been exercised from the perspective of each of the metrics discussed ear-
lier. Since the RTL is quite volatile during the early stages of design‚ our
interest in how well it has been exercised peaks later in the design cycle.7

Let’s walk through each step of the code coverage process: instrumentation‚
metric recording and analysis.

5.3.1. Instrument Code

The first step for using code coverage is to instrument the RTL. Select
the code modules‚ hierarchies or instances you want to observe. Next‚ select
the metrics you want to record. The amount of code instrumented and num-
ber of metrics measured will determine how much your simulation rate is

6 “Synopsys VCS’ Observed Coverage Technology‚” 2002‚
http://www.synopsys.com/products/simulation/obc_wp.pdf (March 2004).
7 See figure 7-5‚ “Code Coverage Use‚” in chapter 7‚ “Coverage-Driven Verifi-
cation.”
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degraded. Restrict these to what is required to meet your coverage goals.

The last instrumentation step depends upon the particular tool you are
using. Some tools require no further action before simulation to begin
recording metrics. Others require an instrumentation/compilation step
wherein they insert code into the RTL which defines counters and increments
them. Consult your code coverage tool documentation for the details on cre-
ating an instrumented‚ ready-to-simulate design database.

5.3.2. Record Metrics

The second step in the application of code coverage is recording met-
rics. The actual recording of metrics is performed by the simulator during
simulation. However‚ the recorded data needs to be organized for subsequent
analysis.

Each of the recorded metrics has an associated threshold or hit count.
The default value is usually one. In high-risk areas of the RTL‚ with perhaps
an unusual amount of complexity‚ you should consider increasing the thresh-
old for the metrics recorded in these areas. This “over-sampling” will miti-
gate the risk of observing a statement‚ subexpression or FSM arc at a time the
device is relatively quiescent.

Each simulation is usually identified by one or more unique identifiers.
If an autonomous verification environment is used‚ the only attribute distin-
guishing one simulation from the next is the random seed. If a test-driven
environment is used‚ a test number or id‚ in addition to a possible random
seed‚ identifies a simulation. For a given snapshot of the RTL‚ code coverage
should be accumulated for all of its simulations. After code coverage has
been measured for an RTL release‚ it must be analyzed.

5.3.3. Analyze Measurements

The third step in using code coverage is analyzing the measurements.
We need to exclude from analysis irrelevant data and focus on the meaning of
recorded metrics.

Before examining how to interpret recorded metrics‚ keep in mind that
code coverage cannot reveal necessary‚ but missing‚ RTL. If RTL required to
implement a device requirement has not been written‚ it can only be identi-
fied by functional or assertion coverage‚ not by code coverage.
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Often‚ you may be overwhelmed with the amount of information pre-
sented by the coverage tool. Data filtering addresses this‚ the topic discussed
in the next section.

5.3.3.1.  Filtering Measurements

When code coverage is first enabled and metrics selected‚ the amount
of reported information may be daunting. The reported results must be fil-
tered to exclude known illegal conditions‚ known unused logic and low-prior-
ity code coverage holes.

Known illegal conditions are “else” clauses of “if” statements and
unused case default statements for conditions that should not happen. The
designer may have logic to handle the expected values zero‚ one and two
from a 2-bit bus. If the bus returns the value three‚ a default case or “else”
clause if often included to report an error through a displayed message. This
logic is not expected to be executed‚ so it should be filtered. A good code
coverage tool allows filtering at the level of most of the metrics: line‚ state-
ment‚ FSM state‚ etc. Some provide pragmas that may be inserted in the RTL
for the designer to tag logic as unused.

Another reason for filtering results is known unused logic. A module
may be used twice in the design‚ but configured differently for each instance.
The configuration often deactivates a subset of the module logic‚ preventing
it from ever being used in a given instance. That logic should be tagged as
unused‚ either in the RTL or using the user interface or configuration file(s) of
the code coverage program.

Unless expected unused (or unexercised) logic is excluded from
reported results‚ the code coverage measurements will be misleadingly low.
Take the time to construct filter files and instrument the RTL with pragmas
before wading through these coverage results.

Finally‚ there may be coverage holes you choose not to fill. These cov-
erage holes correspond to RTL that is rarely exercised or low-risk or both. If
a particular set of metrics are only observed under rare operational conditions
and these conditions are also difficult to reproduce during verification‚ you
may choose to filter them. Also‚ if a coverage hole corresponds to RTL with
little‚ if any‚ complexity‚ you may also choose to spend scarce resources fill-
ing higher risk holes.
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Now, let’s turn to analyzing each of the code coverage metrics.

5.3.3.2.  Line Coverage Analysis

The first metric to be analyzed‚ line coverage‚ indicates which RTL
lines have been executed. A line may contain a partial statement‚ a full state-
ment or multiple statements. If a line contains a partial statement‚ it must be
examined along with the other lines which define it. If a line contains a com-
plete statement but the line is reported as not executed‚ there are a couple of
possible reasons.

One possibility is that the line cannot be executed because the data and
control flow of the code prevent it. Another is that the condition required to
execute the line is rare but it has not yet been created. If an autonomous veri-
fication environment is used‚ the probability of creating this condition may
need to be increased. If a directed tests are driving the environment‚ they
may not contain the necessary stimuli to create the condition.

Returning to the third line/statement relationship‚ multiple statements
may be defined on a single line. If so and the line is reported as not executed‚
the same analysis used for a single statement on a line should be applied to
each statement.

5.3.3.3.  Statement Coverage Analysis

Statement coverage reports which RTL statements have and have not
been executed. For each statement which has not been executed‚ the analysis
described above for statements in lines should be applied.

5.3.3.4.  Branch Coverage Analysis

Branch coverage reports control flow transfers between RTL state-
ments. Let’s consider each type of branch statement in turn.

An if statement has two possible branches: the if (true condition)
branch and an optional else (false condition) branch. If either branch has not
been executed‚ the if conditional expression should be examined to determine
if the expression may‚ in fact‚ assume both true and false values.

The case statement is quite analogous to the if statement‚ except that it
may have more than two branches. If one or more branches are reported as
not executed‚ the case statement expression must be examined to make sure it
may evaluate to each of the case label values.
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The while‚ repeat‚ forever‚ for and loop statements are each character-
ized by a reverse control flow transfer‚ either conditional or unconditional.
The while statement has three branches: one bypassing the body of the loop
when the while condition is false‚ a second sequential transfer from the while
test into the body and a third unconditional branch from the end of the body
back to the conditional expression. If either of the first two branches are
never taken‚ the while condition must be examined to make sure both the first
and subsequent evaluations of the expression may evaluate to true and false.
The third unconditional reverse branch must be observed if the sequential
transfer into the loop body is recorded.

The Verilog/SystemVerilog repeat statement also has three branches so
its statement coverage should analyzed in the same manner as the while state-
ment.

The Verilog/SystemVerilog forever statement is not very interesting
because‚ if the statement itself is encountered‚ both of its branches (sequen-
tial transfer into loop body and reverse transfer to top of body) will always be
executed.

The Verilog/SystemVerilog for statement is essentially a repackaged
while loop in which the initialization assignment and iteration variable incre-
ment are specified in the for expression itself. It should be analyzed just like
the while statement.

The VHDL loop statement is used to construct an unconditional loop‚
while loop or for loop.  These are each analyzed like the corresponding Ver-
ilog loop statements.

5.3.3.5.  Condition Coverage Analysis

Condition coverage records how extensively the terms of expressions
have been evaluated.  Considering the example we used earlier‚ (A && B) ||
C || D‚ it has four Boolean terms: A‚ B‚ C and D. If the coverage program
reports that any of these terms have not been observed evaluating to true or
false‚ the constituent signal and register operands from which it is composed
must be examined to determine why this is the case.

For example‚ a mutually exclusive relationship between A and B
(A = !B) would prevent the term (A && B) from ever being true.  Likewise‚
if C is defined to always be the inverted value of D (C = !D)‚ the two false
conditions will always be observed‚ independent of the values of A‚ B‚ C and
D:
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(!A && !C && !D) = (!A && !C && !(!C)) = (!A && !C && C)
= (!A && 0) = 0

(!B && !C && !D) = (!B && !C && !(!C)) = (!B && !C && C)
= (!B && 0) = 0

5.3.3.6. Event Coverage Analysis

Event coverage reports observed and unobserved moments in time.
That is, if the conditions required to cause an event to be triggered never
occur, the event will not be triggered. For each event which is not observed,
the conditions to be met must be examined and compared against the simula-
tions whose event coverage was measured.

Typically, an event is associated with a signal that has a cone of logic
determining its value. In Verilog and SystemVerilog, if a signal has a static
value throughout the simulation, no associated unnamed event will be trig-
gered. (The same is true of a VHDL event on a signal.) The signal may be
static because it was mistakenly OR-ed with an intended constant signal,
such as a configuration pin. A named event may never be recorded because
the –> operator in a statement was never executed. Examining the corre-
sponding line or statement coverage should shed more light on the cause.

5.3.3.7. Toggle Coverage Analysis

Toggle coverage records transitions between values of bits in registers
and wires. While the toggle coverage of a data register may yield little value‚
toggle coverage of a one-hot mux select bus will tell us whether or not all of
the mux paths have been exercised. Toggle coverage of an address bus or
other‚ control-oriented bus‚ will indicate whether or not basic activity was
observed.

In general‚ toggle coverage serves as a general “liveness” or activity
indicator. It provides a very coarse view of signal activity but associates no
semantic meaning to recorded results.

5.3.3.8.  FSM Coverage Analysis

FSM coverage records visits to states and single and sequential arc
traversals. Assuming an FSM has been optimized to reduce its state count to
a minimum‚ each state must be visited at least once. Likewise‚ each arc must
be traversed at least one time and‚ in addition‚ it must be traversed for each
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controlling term of its next-state equation. This means that full next-state
condition coverage is necessary for full FSM coverage.

The matter of sequential arc coverage — two‚ three or more arc traver-
sal permutations — is more complex. In order to understand the necessary
sequential arc depth and which arc permutations must be observed‚ it is nec-
essary to understand what specified functionality and implemented device
logic is only exercised under particular sequential scenarios. This under-
standing is only acquired through detailed analysis of the functional and
design specifications and the RTL.

If you were to choose to capture FSM behavior using a functional cov-
erage model‚ you would have to invest in the same analysis to design the
model. However‚ you would be relieved of the back-end analysis required of
code coverage FSM extraction.

5.4. Summary

In this chapter I explained that code coverage defines an implicit
implementation coverage space‚ one defined by the RTL language‚ whose
metrics are extracted from the device implementation. The distinction
between module and instance coverage‚ and when to measure each‚ was
explained. Each of the code coverage metrics — line‚ statement‚ branch‚
condition‚ event‚ toggle and FSM coverage — were explained and examples
presented to illustrate their use. I introduced the topic of controlled and
observed coverage‚ correlating the decision to record a coverage metric with
observing its effect at a checking interface. A use model for code coverage
was explained‚ starting with filtering results. Lastly‚ I discussed how to ana-
lyze each of the coverage metrics.
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6. Assertion Coverage

In this chapter I introduce assertions and assertion coverage. I discuss
several ways of classifying assertions‚ the kinds of properties that may be
specified and the various property specification languages. The different
meanings of “assertion coverage” are distinguished from one another.
Finally‚ you will learn how to measure assertion coverage and analyze the
results.

6.1. What Are Assertions?

Of the tools available to the engineer for capturing design intent‚ one
excels at capturing intent late in the design process‚ at one of the lowest
design abstraction levels: the assertion. As described in chapter 2‚ “Func-
tional Verification‚” throughout the design process higher abstraction design
intent is preserved while more detailed‚ lower abstraction design intent is
added. The more detailed design intent is first captured in the design specifi-
cation1 and later‚ if assertions are used‚ in the RTL itself. Once embedded in
the RTL‚ the device behavior is compared to its intended behavior each time
the device is simulated. The assertions may also be formally proved through
static analysis‚ obviating the need to verify the associated logic through simu-
lation. With this understanding of how assertions are used‚ what exactly is an
assertion?

As defined in chapter 1‚ “The Language of Coverage‚” an assertion is
an expression that states a safety or liveness property. Safety or liveness is
the first of three ways I classify an assertion. A safety property is a statement
that something should never happen‚ so called because it states that an unex-
pected event should not happen. One example of a safety property is “No
1 The functional specification defines high-level, black-box device require-
ments while the design specification defines its microarchitecture.



more than one select line of a one-hot select should be asserted at a time.”
Another example is “No more than one bit should change on a gray-code-
encoded control bus per cycle.”

A liveness property is a statement that something should eventually
happen. By “liveness‚” I mean that an expected event must occur — i.e. the
device must eventually exhibit activity. An example of a liveness property is
“Grant must be asserted one to four cycles following the assertion of
request.” Another is “After reset is deasserted‚ eventually an instruction fetch
cycle must be initiated.”

A second way to classify an assertion is by its purpose: checking or
coverage. The purpose of a checking assertion is to capture a requirement
from either the design specification or the designer at the RTL abstraction
level. It is one means of implementing the checking aspect of a verification
environment.2 The checking aspect may also be implemented in an HLVL
verification environment.

The purpose of a coverage assertion is to report the occurrence of an
expected event. It is one of a number of means of implementing a functional
coverage model at the RTL abstraction level.  Another is using an HLVL to
write a low-level coverage aspect.

A third way to classify assertions is whether an assertion is concurrent
or procedural. A concurrent assertion‚ sometimes called a declarative asser-
tion‚ is evaluated whenever an event occurs‚ such as at the rising edge of a
clock. A procedural assertion is evaluated whenever it is executed by an RTL
execution thread. We can visualize the three dimensions of assertion classifi-
cation as in figure 6-1 below:

2 See Figure 2-2‚ “Functional Verification Aspects.”
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The most common assertion languages in use today are the Open Veri-
fication Library (OVL)‚3 OpenVera Assertions (OVA)‚4 Property Specification
Language (PSL)5 and SystemVerilog Assertions (SVA).6 The Open Verifica-
tion Library was invented by Harry Foster and Lionel Bening and later
donated to the Accellera standards organization by Verplex Systems (subse-
quently acquired by Cadence Design Systems). OVL implements declarative
assertions in Verilog as modules instantiated in the design RTL.

For example‚ the assert_one_hot assertion monitors its test expression
at the positive edge of its triggering event or clock. If more than one bit has
the value one when sampled‚ the assertion fails. The syntax of the assertion
is:

assert_one_hot [ #( [severity_level]
[‚ width‚ options] [‚ msg] ) ] <instance_name>
(clk‚ reset_n‚ test_expr );

The bracket-delimited parameters are optional while the parenthesized argu-

3 http://www.verificationlib.org/
4 http://www.open-vera.com/
5 http://www.accellera.org/
6 “SystemVerilog 3.1: Accellera’s Extensions to Verilog‚”
http://www.accellera.org/ and http://www.eda.org/sv/.
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ments are not. This is an example of its use in a Verilog module:

assert_one_hot #(1, 8) ovl23 (clk, reset_n, xsel);

When reset_n is deasserted‚ on each clk the 8-bit select line xsel is ver-
ified to have only one bit asserted.

Open Vera Assertions are derived from the Intel ForSpec temporal lan-
guage. The OVA language is decomposed into five levels. The first is the
bindings level‚ used to define the scope of the assertions. The second is the
units level that defines the assertion name‚ port list and the sampling time.
The third is the directives level‚ used to specify the properties to be moni-
tored or checked. The fourth is the Boolean expressions level and the fifth is
the event expressions level‚ used to define temporal sequences.

The following is a simple OVA assertion that detects an overflow of a
counter implemented in Verilog module counter_13bit.

unit counter_checker (logic clk‚
logic [7:0] counter);

clock negedge (clk) {
event overflow_ev :

(cnt == 8’hff) #1 (cnt == 8’h00);
}
assert overflow23 : forbid(overflow_ev);

endunit

bind module counter_13bit :
counter_checker (clk‚ cnt);

The assertion is implemented in the unit counter_checker using the
OVA assert statement. The assert states that event overflow_ev
may not occur‚ overflow_ev will occur if the value of cnt transitions
from 255 on one clock negative edge to zero on the next. The assertion is
bound to the Verilog module using the bind module statement.

The Property Specification Language was originally developed by IBM
under the name Sugar and later donated to Accellera. Not unlike the OVA
levels‚ PSL is partitioned into four layers: Boolean‚ temporal‚ verification and
modeling. The Boolean layer is used to construct the expressions used by the
other three layers. The name is somewhat of a misnomer because it defines
many other types of expressions. Nonetheless‚ these expressions form the
foundation of the temporal layer. The temporal layer is the core of PSL and
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is used to define properties. These properties may be either Boolean or tem-
poral. The verification layer is used to specify the application of the proper-
ties defined in the temporal layer. For example, a property may designated
either a checking property or a coverage property. The modeling layer is
used to represent the behavior of device inputs for static analysis.

This is an example of a PSL checker assertion that mandates every
request (req) is followed by an acknowledge (ack) on the rising edge of the
next clock (clk1):

assert always (req -> next ack) @(posedge clk1);

Similarly, the following is a PSL coverage assertion that records each time the
sequence is observed
on consecutive clocks:

cover {req; ack; !req; !ack} @(posedge clk1);

SystemVerilog assertions are a composite of OVA and PSL, supporting
both procedural (immediate) and concurrent assertions. The following Sys-
temVerilog assertion states that acknowledge may not be asserted on two
consecutive clocks:

property not_2_acks;

@(negedge clk)

disable iff(reset) not(ack [*2]);

endproperty

assert property(not_2_acks);

Having surveyed the common kinds of assertions, what assertion cov-
erage must be measured? First, the coverage of all checking assertions must
be measured because each is responsible for detecting a property violation.
The property may be a specification requirement or a designer’s intent.
Unless we know the assertion was executed or evaluated, we cannot be cer-
tain the device conforms to the property.

In addition, we must measure coverage of each coverage assertion that
implements RTL-level functional coverage. This RTL-level functional cover-
age is a verification plan requirement. Unless we observe that a coverage
assertion has been executed, we cannot distinguish missing device behavior
from an unevaluated assertion when a coverage hole is reported.
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Concluding this brief introduction to assertions and when their cover-
age must be measured‚ let’s move on to the subject of this chapter: assertion
coverage.

6.2. Measuring Assertion Coverage

The term “assertion coverage” has several meanings in industry today.
Sometimes it is used to refer to the ratio of assertions to RTL lines within the
design. I prefer to describe this as “assertion density” because it refers to the
frequency distribution of assertions throughout the RTL. At other times‚ it is
used to refer to functional coverage implemented using assertions. However‚
it should then be described simply as “functional coverage‚” implemented
using coverage assertions.

In this book‚ “assertion coverage” means recording the fraction of
assertions executed (or evaluated)‚ passed and failed. First‚ I explain the life
cycle of an assertion and then examine several assertion coverage implemen-
tations.

If an assertion is simulated (versus formally proved)‚ it may be in one
of two states‚ idle or evaluating‚ as illustrated below:

When idle‚ the assertion is awaiting its triggering event or expression. Once
triggered‚ it moves to the evaluating state. If the assertion is a simple
Boolean expression such as not (request and grant)‚ the assertion is triggered
with each simulator event evaluation cycle and it immediately either succeeds
or fails. If the assertion is an implication like request implies grant on the
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next cycle or a sequential expression7 such as request‚ then acknowledge‚
then grant‚ the assertion is triggered when the antecedent (request) evaluates
to true.

With this explanation of the assertion FSM‚ how is the behavior of an
assertion recorded? The procedure for measuring assertion coverage varies
for each assertion language and from one simulator to the next. Let’s look at
one in particular: OVL with Verisity Design’s Specman Elite®.

6.3. Open Verification Library Coverage

Specman includes a coverage and assertion interface (CAI) that allows
external coverage data to be displayed and analyzed — along with functional
coverage — from the Specman coverage browser. Analyzing OVL assertion
coverage from Specman is a three-step process.

The first step is instrumenting the Open Verification Library. The OVL
is instrumented by the Verisity code coverage tool SureCov to enable record-
ing the assertions that execute and those that fail during simulation. The
instrumentation is only performed one time. Thereafter, the instrumented
library is used with each design instead of the original library. (A pre-instru-
mented copy of the OVL is distributed with the CAI.) When an assertion fails
during simulation, the DUV error management mechanism of e is notified so
that the verification environment may handle the failure the same as any other
device failure.

The second step is extracting OVL assertion instances from the RTL.
An extraction program reads the design database and writes an interface file
that is used by CAI to record per-instance assertion data. The extraction pro-
gram is run once the RTL is stable and any time thereafter a new assertion
instance is added to the RTL.

The third step is running the environment with the instrumented OVL.
At the end of each simulation, the Specman coverage database (base-
name.ecov) will contain a record of the assertion coverage. The coverage
results may be analyzed using the Specman coverage browser.

Having examined simulation-based assertion coverage measurement,

7 PSL and SystemVerilog make use of Sugar extended regular expressions
(SERE) to describe sequential Boolean expressions.
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what is its static verification counterpart?

6.4. Static Assertion Coverage

In contrast to a simulated assertion‚ if an assertion is formally proved‚
the proof engine of the formal tool will either report it as proven or provide a
counter-example that demonstrates the assertion is not satisfied. The counter-
example is a sequence of inputs — typically from the device reset state —
that lead to a violation of the assertion. These inputs may be used to derive
the necessary vectors to simulate the failing scenario. Although unnecessary
for validating the assertion violation‚ analysis of the sequence of device states
that preceded the violation will shed light on the logic flaw or absence of
logic responsible for it.

What if an assertion is not proven but a substantial fraction of its asso-
ciated functionality has been examined by the proof engine? Is there a way
to determine the coverage offered by the “partial proof” without resorting to
decomposition of the assertion into more limited assertions? Many temporal
assertions are synthesized into finite state machines for either static or
dynamic evaluation. If the proof engine of a static tool calculates the states
visited and arcs traversed while attempting to prove an assertion‚ that fraction
of the total number of states and arcs may be used to infer partial assertion
coverage.

Coverage of fully proven assertions is no more than a matter of main-
taining a database of assertions proven and not proven‚ relative to the current
RTL snapshot. With each new RTL release‚ previously proven assertions are
invalidated so the proofs must be rerun.

6.5. Analyzing Assertion Coverage

The analysis of assertion coverage is dictated by whether or not an
assertion is a checker assertion or coverage assertion. The checker assertion
is inserted to detect the violation of a property or to prove the property is
never violated. The coverage assertion is placed in the RTL to report the
occurrence of an expected event. How do we analyze the record of their acti-
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vations?

6.5.1. Checker Assertions

Checker assertions are responsible for detecting violations of data and
temporal properties. These properties are specified for structural entities‚
interfaces and protocols. Each kind of property is illustrated in 6-3 below:

A structural entity is a building block such as an FSM or FIFO. An interface
is a point at which independent blocks interact through a defined set of sig-
nals. A protocol is a set of rules governing communication between two or
more blocks. Properties are defined for each of these kinds of properties.

Suppose after running all of your regressions‚ a structural assertion
such as “FIFO pkt_fifo must never overflow” has never been executed. This
is likely a concurrent assertion because it should be monitoring the FIFO state
at all times. A concurrent assertion is activated by an associated event. If the
event never occurs‚ the assertion will never be executed. If the event is a
clock edge or level‚ something is mistakenly gating the clock to a static
value. If the condition is checked less frequently‚ for example after each
FIFO write‚ why was the FIFO never written? This could be an input cover-
age hole‚ indicating the stimulus generator is unable to cause the FIFO to be
written. It could also be a logic bug where the device should have written the
FIFO but did not. Each possibility must be considered before it is ruled out.
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Now‚ let’s look at an interface assertion. On the input interface of the
block illustrated above (figure 6-3)‚ the assertion “pkt must remain stable for
two clocks” is defined. We have been running regressions for several days
and have reached our functional and code coverage goals. All but one of our
assertions have been observed: this particular pkt assertion. It is a procedural
assertion‚ executed by the packet bus unit while processing incoming pack-
ets. Why hasn’t it been executed?

There is a preponderance of evidence — so to speak — that packets
are flowing through the device so the bus unit must be receiving packets.
Examining the packet processing code‚ we discover there are now two con-
trol flow paths even though there was only one when the assertion was
inserted. This precludes the assertion from executing except when it is a
type-B packet. (Type-B packets were a late addition to the design.)

The solution is to move the assertion out of the conditional control
flow path so that it is unconditionally executed for each incoming packet‚
independent of its packet type. The lesson to be drawn from this coverage
hole is to place a procedural assertion in a control path so that it is tightly
coupled to the RTL. BIG BOLD LETTERS letters should make it clear
that the assertion is intertwined with the RTL code. Any changes to the asser-
tion or the RTL necessitate careful examination of its associated pair.

What about analysis of protocol assertions? Suppose we have an asser-
tion on the interface labeled “protocol” in figure 6-3 above. The assertion
states “after req is asserted‚ ack must be asserted within 1 to 4 cycles.” This
is a concurrent checker assertion whose coverage indicates it has been evalu-
ated many times. In fact‚ the coverage report indicates it has been evaluated
an order of magnitude more times than the total number of cycles in all of the
regressions.

A quick check confirms that req‚ the event that activates the assertion‚
is supposed to be synchronous with the system clock. Since it is activating
this assertion more frequently than the clock frequency‚ req must glitching.
Sure enough‚ it is. Sometimes unexpected coverage results reveal device
errors. Review those results carefully!

6.5.2. Coverage Assertions

Coverage assertions are the implementation layer of a functional cover-
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age model.8 The model would be implemented using an assertion because it
concerns itself with the RTL abstraction level. For example,the semantic
description9 of a coverage model may be “record all 3-packet permutations of
type-A and type-B packets processed by the bus unit.” After completing the
model design process‚ the resultant English description of the coverage asser-
tion might read “a three packet sequence entering the bus unit may be com-
posed of any combination of type-A and type-B packets.”

If this coverage assertion has not been executed (procedural assertion)
or evaluated (concurrent assertion) during the regression runs‚ the same anal-
ysis required of a checker assertion must be applied. If this is a procedural
assertion‚ the control flow path on which the assertion resides was never tra-
versed because of a logic error‚ assertion error or missing stimulus. If it is a
concurrent assertion‚ the activation event never occurred.

6.6. Summary

In this chapter I introduced assertions and assertion coverage. I dis-
cussed several ways of classifying assertions‚ the kinds of properties that may
be specified and the various property specification languages. The different
meanings of “assertion coverage” were distinguished from one another.
Finally‚ you learned how to measure assertion coverage and analyze the
results.

8 The three layers‚ or steps‚ of functional coverage model development are top-
level design‚ detailed design and implementation. See chapter 4‚ “Functional
Coverage‚” for an in-depth discussion of the functional coverage model devel-
opment process.
9 See section 4.3‚ “Top-Level Design‚” for more information on the semantic
description of a coverage model.
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7. Coverage-Driven Verification

The preceding chapters laid the foundation for the methodology dis-
cussed in this chapter‚ coverage-driven verification (CDV). In this chapter‚ I
introduce coverage-driven verification‚ address common objections to its use
and then discuss stimulus generation‚ response checking‚ coverage measure-
ment and coverage analysis in the context of CDV.

Coverage-driven verification is a verification methodology in which
coverage planning1 precedes the rest of the verification process. Coverage
planning means defining a strategy for measuring verification progress —
employing functional‚ code and assertion coverage — and the tactics that will
be employed to implement it. All of the functional coverage models neces-
sary to describe the device behavioral requirements are designed at the top-
level. (The detailed design and implementation of some models may be post-
poned until more fundamental coverage goals have first been achieved.) The
code coverage metrics to be recorded and analyzed are specified‚ along with
code coverage goals aligned with design milestones. The assertion coverage
strategy is devised‚ addressing both checker assertions and coverage asser-
tions. Goals for full checker assertion coverage are specified for key design
milestones. The partitioning of responsibility for implementing RTL level
functional coverage between the HLVL and coverage assertions is specified.
The full scope of the verification problem and the tool set to be employed by
the verification team to measure each advance are specified before stimulus
generation or checking are implemented.

Contrast this with directed testing‚ where an enumerated list of specific
verification scenarios are first defined and then implemented as tests.
Although both methodologies define corner cases of the device‚ CDV speci-
fies these as broad goals and uses a generation module to stimulate the cases
1 See chapter 2‚ “Functional Verification” and Verification Plans: The Five-Day
Verification Strategy for Modern Hardware Verification Languages by Peet
James‚ Kluwer Academic Publishers‚ 2003.



and those surrounding them. Directed testing chooses a particular instance of
each corner case and derives an enumerated list of variants.

Before delving into the process of coverage-driven verification‚ let’s
address some common objections.

7.1. Objections to Coverage-Driven Verification

I know a lot of engineers and managers who object to using coverage-
driven verification‚ for a variety of reasons. These include a belief their cur-
rent methodology is adequate‚ skepticism about whether it really works‚ tools
which don’t support the process‚ no verification plans‚ immense verification
spaces‚ not enough time for dealing with coverage and no value to coverage
at the start of the project. Let me address each objection in turn.

“Our current methodology is good enough.” This objection is gener-
ally premised on the belief that past success is a reliable indicator of future
success. That is not necessarily true. Consider a new processor design that is
a re-implementation of an existing instruction set architecture (ISA). The
verification flow used to demonstrate ISA compatibility may be reused for the
new processor because‚ by definition‚ the new processor must run the existing
software base. However‚ a new micro-architecture is invented to meet more
stringent performance and power requirements. This micro-architecture will
come with a never-seen-before set of boundary conditions and bugs: a new
verification problem. Unless the new verification problem is described‚
quantified and implemented using a coverage-driven approach‚ the probabil-
ity of taping out the design with latent bugs is high.

“I don’t think CDV really works.” This objection‚ skepticism about the
efficacy of coverage-driven verification‚ has its roots in two aspects of design
culture: the need for measurable results and resistance to change. In my
experience‚ management becomes uncomfortable when code is not being
written or bugs are not being found. The desire to see measurable engineer-
ing results‚ such as verification environment code or RTL‚ rushes many engi-
neering teams through design into implementation far too soon. This leads to
poor implementation choices and unnecessary rework. Management needs to
schedule time for verification environment design‚ which includes writing a
verification plan and the associated coverage plan.

“There aren’t any tools that support the CDV methodology.” This is
being addressed by EDA vendors by automating parts of the verification pro-
cess. For example‚ in 2004 Verisity Design introduced vManager‚ a tool for
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managing the verification process through the use of an executable verifica-
tion plan (“vPlan”).  The vPlan is used to track coverage progress throughout
the design process. Another EDA vendor‚ 0-In Design Automation‚ intro-
duced the Archer verification system in 2004. This tool-set supports cover-
age-driven verification by integrating the measurement and analysis of asser-
tion coverage and structural coverage. As this book goes to press‚ the Sys-
temVerilog draft standard (3.1a draft 5) has introduced e-like language con-
structs to implement functional coverage models. Commercial SystemVer-
ilog simulators will soon support these constructs.

“We don’t write verification plans so how can we employ coverage-
driven verification?” The short answer is: You can’t! The long answer is:
It’s time to start writing verification plans because‚ without a plan‚ you are
skipping a vital step in the verification process. The verification plan outlines
the scope of the verification problem and how the device will be verified. It
also serves as the design specification for the verification environment.
Reread section 2.4.1‚ “Functional Verification Plan‚” to make sure you under-
stand the importance of the verification plan and what it should address.

“The size of our verification space is enormous!”  Engineering teams
today are building incredibly complex devices‚ such as single-chip cellular
phones‚ MPEG players and PDAs. Hence‚ another common objection is that
the combinations of functions to verify is endless! How do I know when I’ve
written enough coverage? The verification space of modern chip designs is‚
indeed‚ enormous. However‚ by applying the techniques you’ve learned in
this book you can pare this space down to a manageable size by structuring it
into functional‚ code and assertion regions. Because the functional coverage
is structured as organized attributes and the code and assertion coverage are
automatically recorded by tools‚ the amount of manual effort required is min-
imized. Coverage hole analysis‚ discussed later in this chapter‚ is facilitated
by advanced tools which address the process.

“We don’t have enough time to verify the design‚ let alone measure and
analyze coverage.” This is like saying you don’t have time to open a map
and plan a route. You have places to go and people to see! Understanding
the scope of the verification problem‚ designing a solution to solve it and
measuring verification progress throughout the design cycle are as important‚
if not more so‚ than the other aspects of functional verification. Verifying a
chip must start with defining what must be verified and planning how to
accomplish it. The verification plan and resultant coverage models and goals
serve as a road map for the verification of the design.
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Another reason to lead with coverage is that designing functional cov-
erage models up front helps to identify the requirements of the stimulus gen-
erator of the environment. Each input coverage model explicits describes the
input scenarios and parameters that the generator must deliver. Another way
of looking at this is that specifying requirements of the stimulus generator is
akin to specifying input coverage models.

“There is no value in coverage planning at the start of the project.”
This engineer will worry about coverage when the project nears completion.
This presents a catch-22 because‚ in order to know when the project is nearly
complete‚ coverage is required. Yet‚ coverage will not even be considered
until the project is almost done. If coverage is not planned before proceeding
with the implementation of stimulus generation and checking‚ no “ruler” will
be available to measure when “the project is almost done.” Perhaps the start
and end of a project are dictated by schedule alone — dates on a calendar —
with no consideration for what fraction of the bugs have been found. This is
a risky approach that will eventually lead to failure because the correctness of
the design is not factored into the tape-out decision.

With the most common objections to adopting coverage-driven verifi-
cation addressed‚ it’s time to examine how stimulus generation‚ response
checking and coverage measurement contribute to and are influenced by
CDV. If you haven’t read the earlier chapters2 in the book on these subjects‚ I
recommend doing so before proceeding.

7.2. Stimulus Generation

What role does stimulus generation play in a coverage-driven verifica-
tion flow? As in other dynamic verification (simulation-based) methodolo-
gies, the primary purpose of stimulus is to exercise the DUV, causing it to
exhibit behavior to be compared against reference behavior. The exhibited
behavior is the result of the device visiting its operating states. However, in a
CDV flow stimulus generation takes a back seat to coverage measurement
because the defined coverage goals — functional, code and assertion —
define the verification space to be visited. The responsibility of the stimulus
generation aspect of the verification environment is to deliver full input cov-
erage, internal coverage and output coverage. The input coverage is defined
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by the functional coverage models while code and assertion coverage mea-
surement report whether or not the HDL is fully exercised.

Although stimulus generation is driven by defined coverage goals
when using CDV‚ CDV does not preclude exploring device behavior outside
of these defined goals. The remaining bugs in any design lurk in unseen
places. These “places” are unforeseen or not-yet-explored operating condi-
tions. The unforeseen scenarios may not be defined in coverage models so
some random exploration of the device behavior is necessary.

I address two types of stimulus generation and their application to CDV
in the following sections: conventional constraint-based generation and cov-
erage-directed generation (CDG). Constraint-based generation defines a con-
straint set for calculating stimulus values and operates in an open loop‚
decoupled from coverage measurements. Coverage-directed generation may
or may not define a constraint set but‚ more importantly‚ it operates in a
closed loop‚ dynamically biasing its constraints based upon recorded cover-
age.

7.2.1. Generation Constraints

Since we are using an HLVL to implement our verification environ-
ment‚ generation constraints are employed to direct stimulus generation. The
generation constraints are composed of two types: functional constraints and
verification constraints. The distinction between them and how each is
employed in a coverage-driven verification methodology is the subject the
following two sections.

7.2.1.1. Functional Constraints

Functional constraints are those derived from the device functional and
design specifications. The device functional specification defines its func-
tional requirements. It answers questions such as:

What capabilities must the device deliver?

What is its feature set?

What is its performance envelope?

The device design specification describes its architecture and high-level
implementation. Questions such as:
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Verification constraints are those derived from the verification plan.
They reduce the full space of valid stimuli to a subset useful for exposing
device errors. This subset is characterized by device input boundary condi-
tions and the data and temporal properties necessary to cause the device to
activate internal boundary conditions and drive output boundary conditions.

Verification constraints in a CDV environment are initially specified in
the verification plan but they are fluid throughout the design cycle. When a
non-uniform distribution of values is selected to stress corner (or edge) con-
ditions, it is usually based upon engineering judgement and intuition. As
regressions proceed and the design is verified, coverage holes become appar-
ent.4 These holes expose coverage points or regions less likely to be visited
than others. In order to balance the probability of visiting these points with
those already observed, the generation weights need to be biased. In the
absence of coverage-directed generation, the subject of the next section, bias-
ing the generation weights is generally a manual process. However, it is pos-
sible to implement generation biasing feedback in a conventional HLVL envi-
ronment.

In the following example, the 16-bit field address is periodically
generated. The initial distribution of values is uniform because the genera-
tion weights (line 10) for the four ranges (0–15, 16–31, 32–47, 48–63) each
have the value one (lines 11–13). During simulation, the list of weights is
regenerated (lines 15–20) to adapt it to the currently recorded coverage.

How many units compose the architecture and how are they
organized?

What communication protocol is employed between units?

Is the design pipelined?

If pipelined, how many pipe stages are there?

are addressed by the design specification.

In a coverage-driven verification flow, the device specifications are
analyzed not only to understand the restrictions on generated input stimuli
but also to determine the requirements for the input functional coverage mod-
els. These requirements determine attributes and their relationships.3

7.2.1.2. Verification Constraints

See “Top-Level Design” in chapter 4, “Functional Coverage.”

See section 7.5.3, “Hole Analysis.”

3

4
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1
2

3
4
5
6
7
8
9

10
11
12
13

14
15
16
17
18
19
20
21
22

type address_t
type weight_t

: uint (bits :6) ;
: uint;

address : address_t;
keep soft address == select {

slot[0] :
slot[l] :
slot[2] :
slot[3] :

};

[ 0..15];
[16..31];
[32..47];
[48..63]

slot[4] : list of weight_t;
keep for each (weight) in slot do {

soft weight == 1
};

next_address() is {
gen slot keeping {
it[0] in ... ;
it[1] in ... ;
it[2] in ... ;
it[3] in ...

};
gen address keeping

}
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The slot elements (generation weights) are biased during simulation to skew
the probability distribution of addresses to those necessary to fill the remain-
ing coverage holes.

7.2.2. Coverage-Directed Generation

An interesting duality and, I would argue, redundancy exists in a state-
of-the-art constrained random verification environment. With respect to
functional input coverage, generation constraints direct the stimulus aspect of
the verification environment to that subset which is both functionally valid
and useful for exposing device errors. At the same time, an input functional
coverage model records what stimuli have been applied to the device, relative
to the full set of desired stimuli. Specifying both the constraints and the
input coverage is, in some sense, redundant.



specifies two buckets for the field address: one in the range zero to 15 and
the other in the range 16 to 31.

In order to eliminate redundant specification of input requirements
such as this and optimize the rate of functional coverage closure, coverage-
directed generation infers the necessary generation constraints from the cov-
erage specification and the remaining holes. At the time this book was writ-
ten, coverage-directed generation is used internally by some companies but is
not a commercially available technology. Let’s look at an example drawn
from my neck of the woods.

In the prairie land of north Texas, it is a challenge to grow healthy trees
in the yard so we monitor rainfall and the soil characteristics. If I were using
e to generate tree groves with proper conditions and I wanted to use cover-
age-directed generation, I might write a program like this.

First, I need some land for the groves (unit sys, field grove) and I
need to specify how many groves I want to generate (num–
ber_of_groves):

For example, in e the constraint:

keep address == select {
1 : [ 0..15];
1 : [16..31]

}

restricts the values generated for field address to be within the range zero
to 31. Half of the time, the generated value will be between zero and 15 and
the other half of the time it will be between 16 and 31. The corresponding
input coverage item:

item address using ranges = {
range([ 0..15]);
range([16..31])

}
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extend sys {
!grove            : grove_s;
number_of_groves : uint;
keep soft number_of_groves in [14..31];

run() is also {
for i from 1 to number_of_groves do {
gen grove keeping { .grove_id == i }

}
}

}

This program will generate between 14 and 31 groves when it starts execut-
ing the “for” loop. The number_of_groves constraint is specified as
soft so that it may be overridden from another constraint file. Each grove
has a unique identifier (grove_id) constrained to its position in the
sequence of generated groves.

What does a grove of trees look like in e?

the number of trees in the grove

a list of tree types

the acidity (or alkalinity) of the soil

the blend of clay and sand in the soil

a unique identify for the grove
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It is a struct containing six fields:

struct grove_s {
number_of_trees
tree[number_of_trees]
soil_pH
soil_consistency
moisture
grove_id

}

: uint;
: list of tree_t;
: uint [0. .14];
: soil_consistency_t;
: moisture_t;
: uint

number_of_trees

tree[]

soil_pH

soil_consistency

grove_id



5 The e struct members are field, constraint, method, event, when, coverage
group, on block and expect.

The tree, soil consistency and moisture types are these enumerated types:

type tree_t

type soil_consistency_t

type moisture_t

:

:

:

[BOISDARC, HACKBERRY,
PEACH, PECAN, WALNUT];
[CLAY, SILT, LOAM,
SANDY];

[BONE_DRY, DRY, DAMP,
WET, SOAKED]

The number of trees generated in each grove is specified by:

extend grove_s {
keep soft number_of_trees in [0..513]

}

The statement extend grove adds struct members to the existing struct
grove_s.5 In this case, I added a constraint to the generated value of num–
ber_of_trees.

Note that we have not yet specified any rules for generating the groves,
trees and soil. The beauty of coverage-directed generation is that we don’t
have to. Instead, only the input coverage goals need to be specified:

extend grove_s {
cover grove_created is {
item soil_pH using ranges = {

range([ 0.. 2], "", UNDEF,  5);
range([ 3.. 5], "", UNDEF, 10);
range([ 6.. 8], "", UNDEF, 15);
range([ 9..11], "", UNDEF, 30);
range([12..14], "", UNDEF, 40)

};
item soil_consistency using ranges = {
range([ CLAY], "", UNDEF, 1);
range([ SILT], "", UNDEF, 2);
range([ LOAM], "", UNDEF, 6);
range([SANDY], "", UNDEF, 1)

};
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item moisture using ranges = {
range([BONE_DRY], "", UNDEF, 2);
range([DRY     ], "", UNDEF, 5);
range([DAMP    ], "", UNDEF, 20);
range([WET     ], "", UNDEF, 5);
range([SOAKED ], "", UNDEF, 2)

};
item number_of_trees using ranges = {

range([0], "", UNDEF, 5);
range([1], "", UNDEF, 5);
range([2..49], "", UNDEF, 10);
range([50..99], "", UNDEF, 50);
range([100..499], "", UNDEF, 15);
range([500],    "", UNDEF, 3);

};
cross soil_pH, soil_consistency, moisture

};

event grove_created;

post_generate() is {
emit grove_created

}
} // extend grove_s //

The coverage group grove_created is added to the struct grove_s. It
defines four simple items — soil_pH, soil_consistency, mois-
ture and number_of_trees — and one cross item: soil_pH ×
soil_consistency × moisture. These items are sampled each time
the event grove_created is emitted. grove_created is emitted by
the method post_generate() after a grove_s is generated.

Each simple item defines a set of buckets and each bucket has a speci-
fied range of values. The fourth parameter of the range() option, the at-
least value, specifies the minimum number of times an item value in this
range must be sampled before the coverage hole is filled. (The second and
third parameters are unused options.) The relative at-least values imply a
distribution of values for the item.
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6 The reader is encouraged to review the leading-edge work of IBM Haifa
Research Labs (http://www.haifa.il.ibm.com/) on coverage-directed genera-
tion. The paper "Coverage Directed Test Generation for Functional Verifica-
tion Using Bayesian Networks," by Shai Fine and Avi Ziv, was published in
the proceedings of the 40th Design Automation Conference, June 2003.

The result of using coverage-directed generation on generated input
values is that the necessary input constraints are inferred rather than specified
by the engineer. In order to apply CDG to other kinds of coverage — such as
internal and output functional coverage, code coverage and assertion cover-
age — correlations must be discovered between applied input stimuli and
coverage holes. At the time this book was written, Bayesian networks are
being successfully applied to construct these correlations.6

Having explored the CDV impact on stimulus generation, how is the
checking aspect of the verification environment influenced?

7.3. Response Checking

What demands are placed upon response checking in a coverage-driven
verification environment? Unlike in a directed test environment, in a CDV
environment data and temporal checking are generalized and broad in scope.
In addition, there is a trade-off between the fidelity of checking and the
fidelity of coverage. Each is discussed in turn.

When using a directed test methodology, each test is usually responsi-
ble for applying stimulus and checking the response of the DUT to the
applied stimulus. With knowledge of the specific applied stimulus, the test
author is able to take shortcuts in the checking section of a test.

For example, years ago my verification team designed tests with
expected results and observed results data sections. The expected results sec-
tion was a sequence of value sets, one per test case. When the test ran, each
of its test cases wrote the device response values into the observed results
section. When the test finished, a component of the runtime environment
compared the expected results to observed results sections to determine
whether or not the test passed.

In a coverage-driven verification environment, the checking aspect run-
time behavior is completely decoupled from stimulus generation. As such, it
must check all of the functional requirements demanded by the device speci-
fication. Both data and temporal checks, on all interfaces, are required.
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These functional requirements are derived from the same attributes and
attribute relationships as the functional coverage models. As a coverage
model is designed — and recorded in the verification plan — the device
behavioral requirements should also be recorded.

The detailed design and implementation of the checking aspect should
also leverage the data and temporal monitors designed for the coverage mod-
els. In figure 7-1 below, the checker and coverage modules share the input
and output monitors.

Each obtains its data and temporal information from the monitors.

Another consideration for checking in a CDV environment is the trade-
off between the fidelity of the checking and coverage components. By
“fidelity,” I am referring to how precisely a component examines or records
its values. For example, the checking module might only examine the pri-
mary outputs of a block7 or it could also examine internal nodes. The latter
case would be a higher fidelity design than the former.
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The trade-off between checking and coverage fidelity is a function of
the observability into the device. If we are using pure black box checking but
want to ensure a particular internal corner case was exercised, white box cov-
erage is required to confirm the corner case was exercised and its result prop-
agated to a primary output. On the other hand, if white box checking is
employed, white box coverage must only confirm the corner case was exer-
cised, not whether is was propagated to a black box checker.

7.4. Coverage Measurement

Coverage measurement and its complement, coverage analysis,8 are the
cornerstones of coverage-driven verification. How do we employ the various
kinds of coverage in a CDV environment? In the preceding chapters I dis-
cussed functional coverage, code coverage and assertion coverage in depth.9

In the following sections, I explain how this coverage should be used within
the context of a CDV methodology.

To establish the context for the application of these coverage tech-
niques, let’s first take a look at the rate at which the RTL is written. The
amount of code written versus time has a curve something like this (figure
7-2:

8 See section 7.5.
9 Functional coverage measurement is discussed in chapter 4; code coverage in
chapter 5 and assertion coverage in chapter 6.
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RTL development starts off slowly as the design specifications are still in
flux, ramps up to a near-linear rate and then tapers off as the implementation
nears completion.

The corresponding change rate of RTL over time is the slope of the pre-
vious curve (figure 7-3):

The volatility of the RTL is a factor in choosing when to employ each of the
coverage types. Now let’s look at each in turn.

7.4.1. Functional Coverage

Functional coverage is used to explicitly specify specification and
implementation metrics to be recorded. In a CDV methodology, functional
coverage drives the rest of the verification process and, as such, must lead the
other activities. Recall from chapters 2 and 4 that functional coverage mod-
els are the product of writing a verification plan. Each model quantifies part
of the device verification space.

Figure 7-4 below illustrates the rate at which functional coverage
should be developed over time:

Chapter 7, “Coverage-Driven Verification” 123



The solid line is implemented functional coverage versus time. For reference
purposes, the suppressed dotted curve is the amount of RTL code written over
time. (This same curve also appears on the following two figures.) The veri-
fication plan defines a set of coverage models of a certain fidelity. These
models should be implemented during the first phase of the design cycle,
labeled Phase 1 above. Once these models are implemented and you are
approaching 100% coverage, you should begin refining the models to
improve their fidelity as illustrated in Phase 2. The fidelity of a coverage
model is improved by adding interacting attributes and increasing the number
of ranges and the size of the ranges of attributes with value ranges. This will
necessarily increase the size of the coverage spaces (i.e. number of coverage
points). However, your autonomous verification environment, deployed
across a large regression ranch, will quickly traverse this new space. New
coverage models may also be designed and implemented in order to capture
newly discovered attribute relationships.

This cycle of refining your coverage models, adding new models and
rerunning regressions until you reach 100% coverage of the new models
should be repeated until the fidelity of the coverage models is satisfactory.

7.4.2. Code Coverage

Code coverage records implicit implementation metrics of the RTL.10

10 Code coverage measurement is discussed in chapter 5.
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In CDV environment, aside from occasional use by designers while they are
writing their RTL blocks and running localized sanity checks, code coverage
should not be widely employed until the RTL begins to stabilize. This is
illustrated in figure 7-5 below.

Your objective in measuring code coverage is to discover implemented func-
tionality which has not yet been exercised by the verification environment.
While the RTL is changing, attempting to reach 100% code coverage is aim-
ing at a moving target. Wait until the design team is finished implementing
before assessing how well your verification environment exercising the RTL.

Some functionality you might measure in a functional coverage model
may already be recorded by a code coverage metric. For instance, the behav-
ior of a finite state machine often implements a function of the device.
Rather than write a functional coverage model for the FSM to record state
visitation and arc traversal, the FSM metric of a code coverage tool should be
employed.

Code coverage also provides a cross-check against functional coverage
models. Once the RTL has stabilized, code coverage of RTL implementing
specific functional requirements should be compared against the correspond-
ing functional coverage. Discrepancies may reveal flaws in a functional cov-
erage model (code coverage but hole in corresponding functional coverage)
or superfluous RTL (code coverage hole but corresponding functional cover-
age).
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Contrasting the application of code coverage and functional coverage,
it should be apparent that the effort required to use code coverage is back-end
loaded while functional coverage is front-end loaded. Depending upon the
number of metrics enabled, a code coverage tool may report an enormous
amount of data that, through analysis, becomes information to be digested
and filtered. On the other hand, no effort is required to start using code cov-
erage. Functional coverage use is front-end loaded because the coverage
models must be designed and implemented before any measurements are
available. However, the reported results require little, if any, filtering because
each model only records necessary functional observations.

7.4.3. Assertion Coverage

Assertion coverage, which records which assertions were executed,
passed and failed, provides detailed insight into how well low-level design
intent was preserved in the RTL.11 In a coverage-driven verification flow,
assertion coverage measurement necessarily lags RTL development because
the assertions are written by the design team, into the RTL. This is illustrated
in figure 7-6 below.

Since assertions check or record behavior at a higher abstraction level than
the RTL implementation itself, they should be written before the associated
RTL. However, assertion coverage should be measured after the associated
11Assertion coverage measurement is discussed in chapter 6.
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RTL is written.

7.4.4. Maximizing Verification Efficiency

In order to reach coverage closure — full functional, code and asser-
tion coverage — as soon as possible for each stage of the design cycle, the
rate at which coverage metrics are observed must be maximized. In this sec-
tion, I explain verification efficiency and how to maximize it using coverage-
driven verification.

Verification efficiency can be defined in a number of different ways.
Since an efficiency is a ratio — numerator over denominator — let’s look at
some candidate terms. Some potential numerators are:

lines executed

statements executed

branches exercised

conditional expressions evaluated

events emitted

assertions evaluated

assertions passed

FSM states visited

FSM arcs traversed

functional coverage points visited

number of bugs found

number of bugs fixed

Each of these are measures of verification progress, assuming the requisite
stimulus generation and response checking are present.

The code coverage metrics lines executed, statements executed,
branches exercised, conditional expressions evaluated and events emitted all
provide visibility at the RTL implementation level. Assertions evaluated and
assertions passed each provide insight into how well design intent, captured
by the design team, has been exercised. Likewise, the FSM metrics states vis-
ited and arcs traversed allow us to see how well the device was exercised, as
seen as a set of concurrent finite state machines. Functional coverage points
visited is a direct measure of the amount of device functionality verified. The
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bug-tracking metric number of bugs found is a clear indication of RTL quality
improvement. However, it does not tell us how many bugs remain, a crucial
indicator of verification progress. Likewise, number of bugs fixed is an
important metric to balance against bug discovery rate but it also does not
hint at remaining bugs.

Since our aim is to maximize the rate at which we achieve functional
closure, candidate denominators of the efficiency equation are typically a
time measure such as simulation cycles or wall clock time. Between the two,
simulation cycles has the advantage as a denominator because the perfor-
mance of a number of factors — such as simulation speed and simulation
platform speed — is removed. The verification engineer has little control
over simulation speed because it is largely determined by the performance of
the simulator and the hardware platform on which it runs. For this reason,
we will discard wall clock time and adopt simulation cycles.

This leaves the numerator terms above, per simulation cycle, as verifi-
cation efficiency measures:

lines executed per simulation cycle

statements executed per simulation cycle

branches exercised per simulation cycle

conditional expressions evaluated per simulation cycle

events emitted per simulation cycle

assertions evaluated per simulation cycle

assertions passed per simulation cycle

FSM states visited per simulation cycle

FSM arcs traversed per simulation cycle

functional coverage points visited per simulation cycle

number of bugs found per simulation cycle

In order to maximize the rate of coverage closure, we need to increase
the value of each of the efficiency measures. Other than “number of bugs
found per simulation cycle,” each of the metrics above is referred to as a cov-
erage density. As defined in chapter 1, “The Language of Coverage,” cover-
age density is the number of coverage metrics observed per simulation cycle.
Increasing the value of an efficiency measure is equivalent to increasing its
coverage density.
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A maximum coverage density would be one in which a unique value of
every independent coverage metric is observed on each simulation cycle. For
example, a different RTL line would be executed each cycle and the same line
would not be executed twice for the same device state. A different branch
path would be executed each cycle. A unique FSM state in each independent
state machine would be visited, and so on. Although such a maximal cover-
age density is not achievable in practice, we can approach it through cover-
age analysis and stimulus feedback. The following sections delve into the
analyses and techniques required to maximize coverage density.

7.5. Coverage Analysis

As you measure verification progress using various coverage metrics,
the measurements must be interpreted. The dissecting, review and interpreta-
tion of coverage measurements is coverage analysis. In this section you will
learn how to analyze and interpret coverage measurements and make changes
to the generation and coverage aspects of your verification environment to
maximize verification efficiency and ensure coverage closure.

As mentioned above, verification efficiency may be maximized by
minimizing observations of redundant metric values. We can approach the
goal of observing unique metric values each simulation cycle by minimizing
redundant logic execution. Applying coverage-directed generation12 is the
most effective way to minimize redundant execution because coverage mea-
surements from the current simulation and past simulations are used to
dynamically adapt generation constraints. In the absence of coverage-
directed generation, an analogous process is employed manually. In the fol-
lowing section, I discuss automated and manual generation feedback. The
following two sections address coverage model feedback and hole analysis.

7.5.1. Generation Feedback

Generation feedback refers to adapting the generation aspect of the
verification environment so that the probability distribution of coverage met-
rics meets the requirements of the verification plan. For example, suppose
the verification plan weighted all coverage points within the set of coverage
models equally. The initial design and implementation of the stimulus gener-
ator would be unlikely to result in such a balanced probability distribution.
12 See section 7.2.2, “Coverage-Directed Generation.”
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Likewise, perhaps the code coverage goals require the device arbitration
module to be executed three times more frequently than the packet collision
detector. Again, the stimulus generator is unlikely to meet this goal straight
out of the chute. Assertion goals are hindered by the same process.

Generation constraints are biased to achieve these goals, either auto-
matically or manually. If coverage-directed generation is employed, current
and past coverage measurements are used by the constraint solver. The gen-
eration constraints are biased to raise the probability of observing the remain-
ing coverage holes. In addition, some coverage goals may require changes or
additions to the temporal generation aspect of the verification environment.
In an e environment, this means sequences may need to be enhanced or
added.

If coverage-directed generation is not used, functional, code and asser-
tion coverage results are periodically reviewed. Input functional coverage
holes are filled through manual biasing of generation constraints. Output and
internal coverage holes need to be traced back to input scenario parameters.
These parameters — data, temporal or both — should be biased to increase
the probability of activating the device logic associated with these coverage
holes.

7.5.2. Coverage Model Feedback

In addition to the generation feedback path discussed above, a second
feedback path in the verification environment is from measured coverage
back to the coverage models. While analyzing your coverage results, you
may find that your coverage models need refinement. Some models were ini-
tially written to ascertain what regions of the complete verification space are
being exercised. They were exploratory. Now, you are ready to choose some
as necessary and discard the others as not relevant. What is the process for
distinguishing between them and making the necessary changes?

As discussed earlier, coverage fidelity plays a large role in exploratory
and production coverage models. An exploratory model is constructed to
map the execution space of the device against its functional and design speci-
fications. It is generally a coarse, low fidelity model, typically structured as a
matrix model. It is not intended to be filled but only to serve as a grid against
which a trace of device execution in its functional domain may be visualized.

A production coverage model, on the other hand, is intended to pre-
cisely quantify the functional requirements of the device and has specific
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coverage goals assigned to it. It may initially be a low fidelity model with a
modest coverage goal of, say, 80%. Later during the design cycle, the cover-
age model is refined to more precisely model the input, output or internal
behavior of the device. It will usually be a larger model, having more cover-
age points, and define a higher coverage goal, perhaps 95 to 100 percent.
This process may be repeated a number of times at intermediate design cycle
stages.

While analyzing the results recorded by an exploratory coverage
model, you may discover device behavior mandated by its specification but
not captured by a production coverage model. This behavior could either be
rolled into an existing production model or the exploratory model could be
modified into a production model. If an existing production model shares
most of the attributes of the exploratory model, the missing attributes should
be added to the model and its relationships extended to include the useful
exploratory region. If no production model is related to the exploratory
model, the exploratory model should be refined into a production model.
This will usually entail transforming it from a matrix model to a hierarchical
or hybrid model and pruning out the regions representing unnecessary behav-
ior.

7.5.3. Hole Analysis

As you review your functional coverage measurements, you will find
coverage holes: required stimuli or device behavior not yet observed. How
do you go about figuring out what these holes have in common in order to
plug them? In this section I present coverage hole analysis techniques first
reported by the IBM Research Laboratory in Haifa, Israel at the 2002 Design
Automation Conference13 and explain how they may be applied to hierarchi-
cal and hybrid coverage models, as well as the matrix models discussed in
the paper.

There are two kinds of coverage holes discovered while analyzing
functional coverage: valid holes and invalid holes. A valid coverage hole
represents an intended observation of an input, output or internal scenario
that has not been observed. On the input, this could be due to a bug in the
13 “Hole Analysis for Functional Coverage Data,” by Oded Lachish, Eitan
Marcus, Shmuel Ur and Avi Ziv, DAC 2002, http://www.research.ibm.com/-
pics/verification/ps/holes_dac02.pdf (March 2004). See also “Defining Cover-
age Views to Improve Functional Coverage Analysis,” Sigal Asaf, Eitan Mar-
cus, Avi Ziv, DAC 2004.
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stimulus generator. On the output or internally, it could be caused by a
device error.

An invalid coverage hole is an unintended functional requirement in
one of the coverage models. It is a bug in a coverage model, perhaps caused
by a misunderstanding of the device specification by the coverage model
designer, wherein an impossible behavior is expected to be seen. An invalid
coverage hole is converted to a restriction on its model, either a restricted set
of values of an attribute or a refinement of the relationship between one or
more attributes.

Coverage hole analysis is greatly facilitated through coverage visual-
ization. Consider the following user interface (figure 7-7) from a stock mar-
ket mapping tool14

Each of the major sectors, such as Financial and Technology, are labeled and
have a white border. The area of the sector is proportional to the size of the
market sector. The smaller rectangles within a sector represent companies
14 http://www.smartmoney.com/marketmap/ (March 2004).
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and the area of each is proportional to its market capitalization. The shade of
gray in a rectangle indicates the performance of the stock of the associated
company (black is down, white is up). (The actual user interface uses a red-
to-green color scale where red means the stock price is down and green
means it is up.)

If a mouse cursor is positioned over a rectangular region, additional
information about the associated company is displayed, as illustrated in fig-
ure 7-8 below.

The text “Intel -1.44%, INTC: last sale ...” is displayed. If the text is selected
with the mouse by clicking it, the illustrated pop-up menu is displayed,
allowing the user to drill further down into the details of interest.

I use this as an excellent example of the use of visualization as a con-
duit to deep understanding and analysis of data.15 Applied to coverage hole
15 For the reader interested in further pursuing data visualization, I highly rec-
ommend these books by Edward R. Tufte: The Visual Display of Quantitative
Information, 2001 and Envisioning Information, 1990, both published by
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analysis, the area could represent an aggregate set of coverage models. The
white border regions become coverage sectors such as instruction issue,
operand types and bus interface. White regions would indicate full coverage
while black would represent zero coverage. Further probing with the mouse
reveals as much detail as necessary for the user to understand coverage holes
and their locality.

In order to determine the commonalities among coverage holes and
classify them, a useful metric is the proximity of one hole to another. Ham-
ming distance is defined as the number of attribute values which differ
between two coverage points. For example, consider two coverage points in
the matrix model composed of attributes execution mode, opcode and regis-
ter. If one hole has the value (real, ADD, AX) and the other (real, ADD,
BX), the Hamming distance between the two holes is one because they differ
in one attribute value: register. If one hole is (protected, JMP, CS) and the
other is (protected, CALL, SS), the Hamming distance between them is two
because they differ in two attribute values.

Coverage holes may be classified three ways: aggregation, partitioning
and projection. Aggregation is the process of coalescing a number of indi-
vidual coverage holes to create a smaller number of larger holes. In the fol-
lowing example, ten individual coverage holes are aggregated into one cover-
age hole region in two steps. Each coverage hole is defined by three
attributes.

Partitioning is another way of classifying similar coverage holes.
However, rather than grouping holes using a quantitative measure like
attribute value, partitioning groups holes according to their semantic

Graphics Press.
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similarity. In the same manner the top level design of a functional coverage
model begins with its semantic description, the author of a model may also
ascribe a meaning to attribute values or value ranges. This enables analysis
of coverage holes to use partitioning to group together holes with common
semantics.

The third way of classifying coverage holes is through the use of pro-
jection. When a coverage hole has one or more attributes, none of whose
attribute values have ever been observed, it is referred to as a projected hole.
The dimension of the projected hole is equal to the number of attributes
whose values have never been observed. The term dimension is derived from
observing that a matrix coverage model composed of N attributes is of order
N. That is, it defines N dimensions. A coverage hole specified by N-1 fixed
attribute values and one wildcard attribute (i.e. none of its values have been
observed), defines a line in the N-dimension space. A hole with two wild-
card attributes defines a plane, and so on. One goal of coverage hole analysis
is to identify high-order projected holes and determine why their wildcard
attributes have not been observed.

When coverage holes are determined to be erroneous holes, as
described earlier, it should be easy to transform the hole specification into a
restriction or constraint on the associated coverage model. For example, sup-
pose I have the matrix coverage model EFLAGS.CF × EFLAGS.PF ×
EFLAGS.TF (carry flag, parity flag, trap flag). The model is designed and
implemented as a cross coverage item in e:

eflags_cf : bit;

eflags_pf : bit;

eflags_tf : bit;

cover eflags_written is {

item eflags_cf;

item eflags_pf;

item eflags_tf;

cross eflags_cf, eflags_pf, eflags_tf

}

Later, I discover the coverage hole (eflags_cf=0, eflags_pf=0,
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eflags_tf=0) is an erroneous hole. If my hole analysis tool identified the
hole using the specification:

cover eflags_written is also {
item cross__eflags_cf__eflags_pf__eflags_tf
using also ignore = (eflags_cf == 0

and eflags_pf == 0
and eflags_tf == 0)

}

I could load the specification with the rest of my verification environment,
turning the erroneous hole into an additional restriction on the coverage
model. The item name cross—eflags_cf—eflags_pf—–
eflags_tf is implied by the original cross item definition, “cross
eflags_cf, eflags_pf, eflags_tf.”

The techniques described in this section for grouping coverage holes
and analyzing them may be applied to hierarchical and structural hybrid16

coverage models as well. If analyzing a hierarchical model, each level of the
hierarchy represents an attribute and each arc a value (or range of values) of
the attribute. The same n-tuple specification used for the matrix model is
employed for the hierarchical model. Likewise, because a structural hybrid
model is composed of matrix and hierarchical regions, it may be represented
and analyzed in the same way.

7.6. Summary

In this chapter I explained coverage-driven verification, the implica-
tions on stimulus generation, checking and coverage measurement and how
to analyze coverage results. You learned that stimulus generation, with its
functional and verification constraints, needs to meet the requirements of the
coverage specification. It must also adapt to recorded coverage as the design
cycle proceeds. Both conventional stimulus generation with manual cover-
age feedback as well as coverage-directed generation were explained.

The checking aspect of the verification environment is completely
decoupled from the coverage aspect. This means that, although the two
16 I qualify “hybrid” with “structural” to distinguish a model having a hybrid
structure from a model composed of heterogeneous metric sources. The latter
hybrid model is described in the next chapter, “Improving Coverage Fidelity
With Hybrid Models.”
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aspects may share the same data sources (data and temporal monitors),
response checking is solely responsible for the comparison process of
dynamic verification. I also discussed the trade-off between coverage fidelity
and checking fidelity.

The concept of verification efficiency was introduced. Various ways of
maximizing verification efficiency were discussion. You learned that cover-
age density must be measured in order to maximize efficiency.

Lastly, I explained how to analyze coverage and, in particular, cover-
age holes. This analysis provides the necessary insight into adjusting the
generation and coverage aspects of your verification environment in order to
meet your verification goals.
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8. Improving Coverage Fidelity With Hybrid Models

In this chapter I explain coverage fidelity, the motivation for employing
high fidelity coverage models and propose one way of constructing them. At
the time this book was written, no commercial tools support specification of
the model described in this chapter. Therefore, I take the liberty to posit an
extension to the e language as an implementation vehicle for illustrating such
a coverage model.

The fidelity of a coverage model is a measure of how closely the model
reflects device behavior. If it is an input functional coverage model, a high
fidelity model captures all possible input scenarios within its space. A low
fidelity model defines a small subset of the input scenarios or groups different
scenarios into the same class, making them indistinguishable from one
another in recorded results.

If the model is a high-fidelity output coverage model, all possible
responses of the device to applied stimuli have corresponding points or
regions within the model. A low fidelity model either defines a subset of
device responses or groups larger classes of responses into common coverage
points or regions.

Whether a coverage model has high fidelity or low fidelity, it usually
captures a subset of the near-infinite permutations of values and sequences in
stimuli and responses. However, the high fidelity model is much more likely
to highlight a bug-exposing scenario than a low fidelity model. How may we
use coverage fidelity to improve the verification process?

The functional errors in a design are inserted throughout the design
cycle. At the same time, functional errors are discovered, diagnosed and
removed (corrected). Some bugs have a large effective “footprint” in the
coverage spaces and others do not. For example, if all virtual-8086 mode
exceptions cause a verification environment checker to fire, indicating a
device error, a coverage model recording exceptions and processor execution



modes requires only one hit in virtual-8086 mode to expose the bug. This
bug has a large footprint.

On the other hand, if a processor device only malfunctions when a
CALL instruction takes a stack segment fault in protected mode, at the same
time an external priority-32 interrupt is asserted, this represents a very small
region in a coverage model. The bug footprint is very small.1

A low fidelity coverage model may not distinguish two related, but dif-
ferent, execution scenarios from one another. One may be processed prop-
erly while the other is not because of a functional bug. Within the other con-
straints the verification engineer operates within, the design and implementa-
tion of a high fidelity model is preferred over a low fidelity model. One solu-
tion to a high fidelity model is the hybrid model.2

In the next section, I walk through the design and implementation of a
hybrid coverage model. In the following section, I discuss the overlap of
functional, code and assertion coverage. Finally, in the last section I touch on
coverage delivered by static verification methods.

8.1. Sample Hybrid Coverage Model

Up until this point in the book, each type of verification coverage has
been presented as orthogonal to the others. However, recalling the discussion
of the taxonomy of coverage in chapter 3, “Measuring Verification Cover-
age,” what if we wanted to more precisely describe device behavior by com-
posing heterogeneous coverage metrics? The metrics would be drawn from
all four kinds of coverage spaces:

Implicit implementation

Implicit specification

Explicit implementation

Explicit specification

The result would be a hybrid coverage model, the subject of this chapter.

For an example, let’s consider a coverage model whose requirement is
to record all permutations of instructions fetched, execution paths through the
instruction decoder, processor execution mode and instruction fetch buffer
1 Perhaps as small as that of the six-legged variety!
2 This hybrid model is distinguished from the structural hybrid model intro-
duced in chapter 4, “Functional Coverage.”
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overflow assertion evaluated. This is the semantic description of the cover-
age model.
The top-level design of the coverage model requires the following attributes,
attribute sources and sampling times:

Attribute
Fetched instruction
Instruction decoder
paths
Processor execu-
tion mode
Instruction fetch
buffer overflow
assertion evaluated
and passed

Source
fetch bus monitor
RTL source code

RTL register

RTL assertion

Sampling Time
instruction fetch
thread execution

instruction decode

evaluation

The fetched instruction may be one of: ADD, AND, CALL, IRET, JMP,
LOAD, MOV, NOP, NOT, OR, RET, STORE, or SUB. It is captured from a
monitor on the output of the instruction generator in the verification environ-
ment each time an instruction is fetched.

The instruction decoder paths are the control flow paths through the
instruction decoder of the DUV. These are recorded by our code coverage
program each time an RTL execution thread executes a path.

The processor execution mode may be real or protected. It is captured
from a single-bit register in the device that is sampled by a monitor in the
verification environment on the first cycle of instruction decode.

The instruction fetch buffer overflow assertion is an OVL assertion
written by the designer. It is evaluated by the simulator and the number of
times it is evaluated, passed and failed is recorded and reported to the verifi-
cation environment.

Since the model definition requires a full permutation of the attributes,
this model is structured as a matrix.

Now, we proceed to the detailed design of the model, in which its
architecture is specified. Recall from chapter 4, the three questions “what?,”
“where?” and “when?” must be answered. What must be sampled for each
attribute? Where should attribute data be sampled from? When should the
attributes be correlated? The answers for this model are summarized in table
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8-1 below.

The implementation strategy somewhat mirrors the detailed design.
Each attribute will be sampled from its defined source at its own sampling
event. Whenever the correlation event is emitted, the most recently sampled
values of the attributes will be recorded in the coverage group.

The implementation of the model begins with extending an existing
coverage unit to add the coverage group instruction_inter–
action_e.3

3 The “_e” suffix is a coding style to indicate the name of an e event. Note that
I’ve extended the e language in the following example in order to illustrate
how a hybrid coverage model might be implemented in e.
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extend coverage_u {
cover instruction_interaction_e is {

• • •

}
}

A coverage group in e is identified by its sampling event: instruction_-
interaction_e. (This is, however, the correlation event of the coverage
model.) instruction_interaction_e is defined later. In this cover-
age group, we will define four simple items and one cross item. Each simple
item will implement an attribute. The cross item will implement the matrix
coverage model itself.

Item instruction is of type instruction_t and is sampled
from the instruction fetch monitor unit sys.instmon.

item instruction : instruction_t =
sys.instmon.instruction;

Item decode_path is an identifier. Each of its values is associated
with a unique path through the instruction decoder. The value is captured
whenever the Boolean field decode_path_traversed has the value
TRUE (and instruction_interaction_e is emitted). decode_–
path_traversed is assigned the value TRUE whenever event decode_–
path_traversed_e is emitted. The event is emitted by the code cover-
age program. The item is tagged as external code coverage data whose
parameters are specified by agent_options.

item decode_path using when =
decode_path_traversed,
external = code_coverage,

agent_options =
"verilog, path is
module = decoder,
instance = top.decode0";

Item exec_mode is of type bit and it samples the value on the port
exec_mode_reg$ when event exec_mode_sampled is emitted.
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item exec_mode : bit = exec_mode_reg$,
using when = exec_mode_sampled,

Item overflow is a counter that is sampled when the Boolean field
ovfl_assertion_exec has the value TRUE. ovfl_assertion_–
exec is assigned the value TRUE whenever event ovfl_assertion_–
exec_e is emitted by the assertion tool (normally a simulator).

item overflow using when =
ovfl_assertion_exec,

external = assertion,
agent_options = "ovl, name =

ibufovf"

The cross coverage item defines a full permutation of all of the values
of instruction, decode_path, exec_mode and overflow. It has
the name cross__instruction__decode_path__exec_–
mode__overflow.

cross instruction, decode_path, exec_mode,
overflow

The full coverage group looks like this:
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extend coverage_u {
cover instruction_interaction_e is {
item instruction : instruction_t =

sys.instmon.instruction;
item decode_path using when =

decode_path_traversed,
external = code_coverage,

agent_options =
"verilog, path is
module = decoder,
instance = top.decode0";

item exec_mode : bit = exec_mode_reg$,
using when = exec_mode_sampled,

item overflow using when =
ovfl_assertion_exec,

external = assertion,
agent_options = "ovl, name =
ibufovf"

cross instruction, decode_path, exec_mode,
overflow

}
} // extend coverage_u //

Now, let’s define the correlation event. The event instruc–
tion_interaction_e is defined as:
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event instruction_interaction_e is {
@decode_path_traversed_e; [2..5];
@ovfl_assertion_exec_e and
@exec_mode_sampled_e

} @clock

It is emitted whenever the temporal expression (TE) following the word “is”
succeeds. The TE succeeds when decode_path_traversed_e is emit-
ted, 3 to 6 clocks elapse and ovfl_assertion_exec_e and
exec_mode_sampled_e are emitted on the same clock.

The events referenced in this TE are defined as:



event decode_path_traversed_e;
event exec_mode_sampled_e is cycle @clock;
event ovfl_assertion_exec_e

The following “on” blocks4 record emitted events as Boolean values in
their associated fields. In a sense, they translate a temporal success into the
Boolean TRUE. Note the fields are reset to FALSE after an instruction inter-
action is captured.

on decode_path_traversed_e {
decode_path_traversed = TRUE

};

on exec_mode_sampled_e {
exec_mode_sampled = TRUE

};

on ovfl_assertion_exec_e {
ovfl_assertion_exec = TRUE

};

on inst_interaction_capt_e {
decode_path_traversed = FALSE;
exec_mode_sampled = FALSE;
ovfl_assertion_exec = FALSE

};

Event inst_interaction_capt_e is emitted on the clock after
instruction_interaction_e is emitted. I also declare the three
Boolean fields here:

4 An “on” block is an e struct member.
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event inst_interaction_capt_e is
{ @instruction_interaction_e; [1] } @clock;

Here, I declare the port exec_mode_reg, referenced above, and
bind it to the RTL path ~/top/exmode.

exec_mode_reg : in simple_port of bit
is instance;

keep bind(exec_mode_reg, external);
keep exec_mode_reg.hdl_path()

== "~/top/exmode"
} // extend coverage_u //

Finally, the type instruction_t is defined:

type instruction_t : [
NOP, EI, DI, ADD, SUB, AND, OR, NOT, MOV,
JMP, CALL, RET, IRET, LOAD, STORE

]

8.2. Coverage Overlap

A verification plan usually employs multiple coverage sources for mea-
suring verification progress. Functional coverage measures the progress
through the functional requirements of the device. Code coverage measures
progress in exercising the implemented RTL. Assertion coverage measures
progress in activating, evaluating and executing assertions. Although each
coverage metric provides a different view into verification progress, they also
report some redundant information. In other words, some of the reported
coverage overlaps from one metric to the other.

What if it were feasible and easy to map one coverage metric to
another and maintain a coherent set of mappings between them? This would
allow the verification engineer to trade off one kind of coverage for another,
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exec_mode_sampled : bool;
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depending upon the performance cost of measuring these coverages. It
would also allow the engineer to prune coverage goals of one metric because
another metric records equivalent coverage. Let’s look at code-to-functional
coverage mapping in particular.

Motivated by another goal — documenting features implemented by
source code — Thomas Eisenbarth and Rainer Koschke describe a procedure
for mapping code coverage to features in a recent paper.5 Features may be
described by functional coverage models in the context of our application,
hardware verification. This approach may be applied to a hardware design, at
the behavioral or RT level, in order to bridge the gap between code coverage
and functional coverage. How so?

Start with an autonomous verification environment whose generation
aspect is endowed with those constraints required to conform to the device
functional specification (functional constraints) and those required to imple-
ment the verification plan (verification constraints). The coverage aspect of
the environment includes the functional coverage models required to define
the device functional verification space. Artificially direct the environment to
sequentially, and mechanically, traverse each coverage model, capturing a
code coverage trace of the RTL for each model. Lastly, organize the recorded
code coverage measurements in a map of the functional coverage models.

The resulting code-to-functional coverage map allows the DV engineer
to optimize simulations for speed by eliminating functional or code coverage
measurement and inferring that coverage from the remaining one. Alterna-
tively, sections of code or functional coverage goals may be excised because
they are captured by equivalent coverage in the other metric. For example, if
RTL instrumented for code coverage substantially degrades simulation speed,
create a map and infer code coverage from functional coverage. (Map
coherency must be maintained as the RTL changes.) The converse scenario is
also plausible.

I believe similar mapping techniques between functional and assertion
coverage and code and assertion coverage are possible. The primary chal-
lenge is identifying complementary coverage measurements at the same
abstraction level and maintaining mapped coverage coherency. The potential
efficiency gains, coupled with complementary, high-fidelity coverage, make
this a ripe area for research and development.
5 “Locating Features in Source Code,” Thomas Eisenbarth and Rainer
Koschke, “IEEE Transactions on Software Engineering,” March 2003, p.
210-224.
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However, until a total coverage management solution — that includes
mapping — is available for commercial use, it remains important to measure
all three kinds of coverage. Each provides a unique perspective into verifica-
tion progress, revealing aspects of device behavior invisible to the others.

8.3. Static Verification Coverage

Static and dynamic verification techniques are both used in the typical
verification flow. Static techniques, such as model checking and hybrid
approaches, are usually used at the block level because they have capacity
constraints that limit them to that unit of RTL. Dynamic techniques such as
simulation are used at the block, subsystem and full chip level. Using a cov-
erage-driven verification methodology, how do we determine the coverage
delivered by static methods?

The following discussion is restricted to model checking because it is
much more widely employed than the other methods such as theorem prov-
ing and symbolic trajectory evaluation. Nonetheless, similar arguments may
be formulated for the others. Any property specification may be described
with a semantic description. For example, the PSL property:

property BranchDecodeRestriction3 =
never {three_operand_ins; branch_inst};

has the semantic description:

“A branch instruction may not be decoded in the cycle immediately fol-
lowing the decode of a 3-operand instruction.”

This description may be associated with one or more functional coverage
models through their own semantic descriptions.6 If analysis of a property
and an associated coverage model reveals that each describes a subset of the
same functionality, a formal proof of the property should be recorded as full
coverage in the coverage model.

Unfortunately, today this requires a completely manual process. The
properties and coverage models must have rigorous semantic descriptions, to
the extent possible using a natural language. These semantic descriptions
must be compared and correlated through manual analysis. Nonetheless,
with widespread adoption of static methods for block level verification, both
6 Recall from chapter 4, “Functional Coverage,” the first step of the top-level
design of a functional coverage model is writing its semantic description.
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white box and black box, unifying measurement of verification progress with
dynamic methods would allow verification teams to pare simulations to those
required to verify functionality not proven by static methods.

8.4. Summary

In order to precisely define device behavior, we may need to define a
coverage model of heterogeneous attributes. Those attributes may be cap-
tured from functional coverage, code coverage and assertion coverage. In
this chapter, I illustrated the design and implementation of a model using all
three attribute sources. EDA vendors are challenged to deliver the means to
define high fidelity, heterogeneous, coverage models. I also discussed the
idea that coverage metrics oftentimes overlap, motivating means for mapping
one type of coverage to another. Finally, the notion of coverage attributed to
static verification methods, such as model checking, was discussed.
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Appendix A: e Language BNF

module :=

statement_list

;

statement_list :=

;

statements :=
statement

| statements ’;’ statement

statements

;

statement :=
| package_statement
| struct_statement
| extend_struct_statement

| type_statement
| extend_type_statement

| routine_statement
| simulator_statement
| unit_statement

| sequence_statement
| method_type_statement

| c_export_statement

;

package_statement :=

package id

;



struct_statement :=

package_or_null struct id like_opt

’{’ struct_member_list ’}’

;

like_opt :=
like id|

;

extend_struct_statement :=

extend struct_type ’{’ struct_member_list ’}’

;

type_statement :=
package_or_null type_def id ’:’ scalar_type

;

extend_type_statement :=

extend id ’:’ ’[’ enum_item_list ’]’

;

routine_statement :=
package_or_null routine id

’(’ parameter_list ’)’ type_opt

routine_name_opt

;

routine_name_opt :=

| is c routine id

;

last_semi_opt : =

| ’;’
;

c_export_statement :=
c export id c_export_opt

;
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c_export_opt :=

| ’.’ id ’(’ ’)’

;

package_or_null :=
| package

;

encap :=

| package

| private

| protected

;

sequence_statement :=
package_or_null sequence id sequence_opt

;

sequence_opt :=
| using seq_name_pair_list

;

seq_name_pair_list :=
seq_name_pair

| seq_name_pair_list ’,’ seq_name_pair

;

seq_name_pair :=

id ’=’ struct_type

;

method_type_statement :=
package_or_null method type id
’(’ parameter_list ’)’ opt_return opt_event

;
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opt_return :=

| ’:’ type_def

;

opt_event :=
| ’@’ event_ref

;

struct member_list :=
struct_members

;

struct_members :=
struct_member

| more_struct_members struct_member

;

struct_member :=
| field_declaration
| method_declaration
| subtype_declaration
| constraint_declaration

| coverage_declaration
| temporal_declaration

| simulator_member

| attribute_construct
| cvl_declaration

;

field_declaration :=
encap id field_type_specifier opt_instance

| encap field_property id field_type_specifier

opt_instance

;
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field_property :=
’!’

| ’%’

| ’!’ ’%’

| ’%’ ’!’

;

field_type_specifier :=

| ’[’ expr ’]’ ’:’ list_type

| ’:’ type_def

;

method_declaration :=

encap method_name ’(’ parameter_list ’)’
type_opt method_specifier action_block

| encap method_name ’(’ parameter_list ’)’

type_opt is empty

| encap method_name ’(’ parameter_list ’)’
type_opt is undefined

| encap method_name ’(’ parameter_list ’)’
type_opt is c routine id

| encap method_name ’(’ parameter_list ’)’
type_opt ’@’ event_ref method_specifier
action_block

| encap method_name ’(’ parameter_list ’)’

type_opt ’@’ event_ref is empty

| encap method_name ’(’ parameter_list ’)’
type_opt ’@’ event_ref is undefined

| encap method_name ’(’ parameter_list ’)’

type_opt method_specifier foreign_opt

dynamic c routine libname_opt

;

method_name :=
method_id

;
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parameter_list :=

| parameters

;

parameters :=
parameter

| parameters ’,’ parameter

;

parameter :=
id

| id ’:’ type_def
| id ’:’ ’*’ type_def

;

type_opt :=

| ’:’ type_def

;

method_specifier :=

member_specifier

| is inline

| is inline only

;

foreign_opt :=
| foreign

;

member_specifier :=
is

| is also
| is first
| is only

;
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libname_opt :=

| id’:’

| id
| id ’:’ id

;

subtype_declaration :=
encap when struct_subtype

’{’ struct_member_list ’}’

;

constraint_declaration :=

keep constraint_spec

;

list_of_constraint_spec_or_null :=

| list_of_constraint_spec last_semi_opt

;

list_of_constraint_spec :=

constraint_spec
| list_of_constraint_spec ’;’ constraint_spec

;

constraint_spec :=

constraint_expr
| gen_before_subtypes ’(’ field_list ’)’
| reset_gen_before_subtypes ’(’ ’)’

;

field_list :=
id

| field_list ’,’ id

;

attribute_construct :=

attribute id id ’=’ attribute_expr

;
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attribute_expr :=
id

;

unit_statement :=

package_or_null unit id like_unit_opt
’{’ struct_member_list ’}’

;

like_unit_opt :=

| like id

;

opt_instance :=

| is instance

;

cvl_declaration :=

cvl_method

| cvl_call
| cvl_callback

;

cvl_method :=
cvl method opt_async method_name
’(’ parameter_list ’)’ opt_event cvl_routine

;

cvl_call :=

cvl call opt_async method_name

’(’ parameter_list ’)’ opt_event cvl_routine

;

cvl_callback :=

cvl callback opt_async method_name
’(’ parameter_list ’)’ opt_event cvl_routine

;
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opt_async :=
| async

;

cvl_routine :=
| is c routine target_struct

;

target_struct :=

id

| id ’.’ id

;

hdl_path :=
’’’ hdl_pathname ’’’

;

simulator_statement :=
simulator_member

| simulator_restricted_member

;

simulator_member :=

verilog simulator id

| vhdl simulator id
| verilog task hdl_path

’(’ vtask_parameter_list ’)’
| verilog function hdl_path

’(’ vfunc_parameters ’)’ v_size_opt
| verilog variable hdl_path options_opt
| verilog code expr

| vhdl code ’{’ verilog_command_list
last_semi_opt ’}’

| vhdl procedure hdl_path options_opt
| vhdl function ’’’ id ’’’ options_opt
| vhdl driver hdl_path options_opt
| vhdl object hdl_path

;
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simulator_restricted_member :=
verilog time verilog_timescale

| vhdl time vhdl_timescale

;

verilog_command_list :=
verilog_command

| verilog_command_list ’;’ verilog_command

;

verilog_command :=

STRING_LITERAL

;

vtask_parameter_list :=
| vtask_parameters

;

vtask_parameters :=
vtask_parameter

vtask_parameters ’,’ vtask_parameter|

;

vtask_parameter :=
id ’:’ expr vtask_parameter_options_opt

;

vtask_parameter_options_opt :=
| ’:’ vtask_io

;

vtask_io :=
in

| id

| inout

;
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vfunc_parameters :=
| vfunc_parameter_list

;

vfunc_parameter_list :=

vfunc_parameter

vfunc_parameter_list ’,’ vfunc_parameter|

;

vfunc_parameter :=

id v_size_opt

;

v_size_opt : =
| ’:’ expr

;

verilog_action :=

force hdl_path ’=’ force_rhs
release hdl_path|

;

force_rhs :=
expr

verilog_literal

;

verilog_timescale :=

NUMERIC_LITERAL id ’/’ NUMERIC_LITERAL id

;

vhdl_timescale :=
NUMERIC_LITERAL id

;

action_block :=
’{’ action_list ’}’

;
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action_list :=

actions

;

actions :=

action
actions ’;’ action|

;

action :=
e_action

;

e_action :=
| var_action
| assign_action

| conditional_action

| iterative_action
| method_call_action
| start_tcm_action
| compute_action
| return_action

| try_action
| check_action

| gen_action

| emit_action
| time_consuming_action

| print_action

| verilog_action
| debug_action
| dut_error_action
| do__seq_action
| action_block

;
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var_action :=

var id type_opt init_opt
var id ":=" expr|

;

init_opt :=
| ’=’ expr

;

conditional_action :=
break

continue

if_action

case_action

|
|

|
;

if_action :=

if expr then_opt action_block else_part_opt

;

then_opt :=
| then

;

else_part_opt : =
| else action_block

| else if_action

;

case_action :=

case ’{’ case_list ’}’
case binary_expr ’{’ case_list ’}’|

;

case_list :=

cases last_semi_opt

;

“Appendix A: e Language BNF” 163



cases :=

case
cases ’;’ case|

;

case :=
expr colon_opt action_block

default|

;

colon_opt :=

| ’:’
;

default :=
default
colon_opt action_block

;

iterative_action :=

repeat do_opt action_block until expr
while expr do_opt action_block
for id from expr up_down binary_expr

step_opt do_opt action_block

for ’{’ action ’;’ expr ’;’ action ’}’
do_opt action_block

for each iterated_type_opt itemname_opt

indexname_opt in expr do_opt action_block
for each iterated_type_opt itemname_opt

indexname_opt in reverse expr

do_opt action_block
for each file itemname_opt matching expr

do_opt action_block
for each line itemname_opt in file expr

do_opt action_block

;
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up_down :=

to

down to|

;

iterated_type_opt :=

struct_type

enumerated_type
|

|
;

itemname_opt : =

| ’(’ id ’)’
;

indexname_opt :=

| using index ’(’ id ’)’

;

do_opt :=
| do

;

step_opt :=

| step expr

;

try_action :=
try
action_block else_try_opt

;

else_try_opt :=
| else action_block

;
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check_action :=

check name_opt that_opt expr opt_block
dut_error_opt

| assert expr else_error_opt

;

name_opt :=

| ’<’ id ’>’

;

that_opt :=

| that

;

dut_error_opt :=
| else dut_error_name ’(’ argument_list ’)’

opt_block

;

dut_error_name :=
dut_error
dut_errorf|

;

else_error_opt :=

| else error ’(’ exprs ’)’

;

method_call_action :=

method_invocation
method_port_invocation|

;

action_opt :=
action_block

with_opt

;
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expr_or_default :=

expr

default|
;

opt_config_param :=
| ’,’ exprs

;

compute_action :=

compute expr

;

return_action :=

return expr_opt

;

assign_action :=
lval_expr assign_operator expr

;
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assign_operator :=
'='

| "+="

| "–="
| "*="

| "/="

| "%="
| "<<="

| ">>="

| "&="

| "^="
| "|="
| "and="

| "or="
| "<="
| "&&="
| "||="

;

gen_action :=
gen reduced_gen_action_item itemname_opt

keeping_opt
gen qualified_id itemname_opt keeping_opt|

;

keeping_opt :=

| keeping ’{’ constraint_list ’}’

;

print_action :=
print exprs options_opt

;

do_seq_action :=

do when_qualified_id itemname_opt keeping_opt

;
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debug_action :=

message ’(’ argument_list ’)’ opt_block
messagef ’(’ argument_list ’)’ opt_block|

;

dut_error_action :=

dut_error ’(’ argument_list ’)’ opt_block

dut_errorf ’(’ argument_list ’)’ opt_block|
;

opt_block :=

| action_block
;

when_qualified_id :=

id

| struct_qualifier when_qualified_id

;

qualified_id : =

path_id

struct_qualifier qualified_id|

;

path_id :=
id

id ’[’ expr ’]’
me
path_id ’.’ id
path_id ’.’ id ’[’ expr ’]’

path_id ’.’ as_a ’(’ type_def ’)’

|
|
|
|

|

;
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reduced_gen_action_item :=

’.’ id
’.’ id ’[’ expr ’]’
reduced_gen_action_item ’.’ id

reduced_gen_action_item ’.’ id ’[’ expr ’]’
reduced_gen_action_item ’.’ as_a ’(’ type_def ’)’

|
|

|
|

;

coverage_declaration :=
cover id opt_cov_field coverage_group_option

;

coverage_group_option :=

options_opt member_specifier

’{’ cover_item_list ’}’
is empty
using also options opt_cover_item_list

|
|

;

cover_item_list :=
| cover_items last_semi_opt

;

opt_cover_item_list :=

| is also ’{’ cover_item_list ’}’

;

cover_items :=
cover_item
cover_items ’;’ cover_item|

;

cover_item :=

item id item_options_opt

item id ’:’ type_def ’=’ expr options_opt

transition id item_options_opt
cross item_name_list item_options_opt

|

|
|

;
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item_name_list :=

id

item_name_list ’,’ id|

;

opt_cov_field :=

| ’(’ expr ’)’

;

item_options_opt :=

|
|

using options
using also options

;

temporal_declaration :=
encap event id event_option
on id opt_defer do_opt action_block
encap expect_declaration

|
|

;

opt_defer :=

 ’$’

;

event_option :=

| is temporal_expr

| is only temporal_expr

;
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expect_declaration :=

expect id
expect temporal_expr dut_error_opt

expect id expect_specifier temporal_expr

dut_error_opt

assume id
assume temporal_expr dut_error_opt

assume id expect_specifier temporal_expr
dut_error_opt

|
|

|
|

|

;

expect_specifier :=
is
is only|

;

emit_action :=
emit event_ref

;

start_tcm_action :=
start method_invocation

start method_port_invocation|

;

time_consuming_action :=

all of action_block

first of action_block
wait

wait until_opt temporal_expr
sync
sync temporal_expr
state machine expr until_state_opt

’{’ transition_list ’}’

|
|

|
|
|
|

;
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until_opt :=

| until

;

until_state_opt :=

| until id
;

transition_list :=

|

last_semi_opt

transitions last_semi_opt

;

transitions :=
transition
transitions ’;’ transition

;

transition :=
id "=>" id action_block
’*’ "=>" id action_block

id action_block

;

event_ref :=
id
field_access
primitive_expr ’$’

;

temporal_expr :=

temporal_inclusive_expression

temporal_expr ’@’ event_ref

;
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temporal_inclusive_expression :=
temporal_or_expression

temporal_inclusive_expression "=>"
temporal_or_expression

;

temporal_or_expression :=

temporal_and_expression
temporal_or_expression or

temporal_and_expression

;

temporal_and_expression :=

temporal_exec_expression

temporal_and_expression and
temporal_exec_expression

;

temporal_exec_expression :=

temporal_sampling_expression

temporal_sampling_expression exec action_block

;

temporal_sampling_expression :=
temporal_eventual_expression
temporal_eventual_expression ’@’ event_ref

;
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temporal_eventual_expression :=

temporal_repeat_expr
eventually temporal_repeat_expr

not temporal_eventual_expression

;

temporal_repeat_expr :=
temporal_unary_expr

’[’ range_expr ’]’ temporal_repeat_opt

’[’ expr ’]’ temporal_repeat_opt
’~’ ’[’ range_expr ’]’ temporal_repeat_opt

;

temporal_primitive :=

cycle

detach ’(’ temporal_expr ’)’

true ’(’ expr ’)’

rise ’(’ expr ’)’

fall ’(’ expr ’)’
change ’(’ expr ’)’
delay ’(’ expr ’)'
’(’ temporal_expr ’)’
’{’ temporal_sequence last_semi_opt ’}’
consume ’(’ ’@’ event_ref ’)’

;

temporal_sequence :=

temporal_expr

temporal_sequence ';' temporal_expr

;

temporal_repeat_opt :=
’*’ temporal_exec_expression

;
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temporal_unary_expr :=

temporal_primitive
’@’ event_ref

fail temporal_unary_expr

;

type_def :=
non_port_type
port_type

;

non_port_type :=
regular_type

list_type

regular_type :=
scalar_type
struct_subtype

;

scalar_type :=
id
enumerated_type
scalar_type scalar_modifier

;

enumerated_type :=

’[’ enum_item_list ’]’

;

scalar_modifier :=

’[’ range_elements ’]’

’(’ scalar_unit ’:’ expr ’)’

’(’ scalar_unit ’:’ ’*’ ’)’

;
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enum_item_list :=

| enum_items

;

enum_items :=
enum_item
enum_items ’,’ enum_item

enum_item :=

id enum_num_opt

;

enum_num_opt :=
’=’ expr

scalar_unit :=

bits
bytes

;

struct_type :=

id

struct_subtype

;

struct_subtype :=
struct_qualifier struct_type

;

struct_qualifier :=
id
id ’’’ id

FALSE ’’’ id

TRUE ’’’ id
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list_type :=
list of type_def

list ’(’ id ’:’ id ’)’ of type_def

port_type :=
io_type simple port of non_port_type

io_type buffer port of non_port_type

io_type event_ref port

serve_client call port of non_port_type

io_type method port of id

;

io_type :=
id
in
inout

;

serve_client :=

id

;

constraint_expr :=
binary_expr

;

select :=

select ’{’ selection_list last_semi_opt ’}’

;

selection_list :=
selection
selection_list ’;’ selection

;
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selection :=
expr ’:’ expr

;

port_binding :=

bind ’(’ expr ’,’ port_bind_target
port_constraint ’)’

;

port_bind_target :=
expr

empty

undefined

;

port_constraint :=
| ’,’ ’{’ constraint_list ’}’

;

lval_expr :=
id

field_access

primitive_expr ’[’ range_element ’]’
hdl_path
bit_extract

bit_concat
primitive_expr ’$’

;
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primitive_expr :=

lval_expr

me
literal
’(’ binary_expr ’)’

new_action
raethod_invocation
method_port_invocation

’[’ range_elements ’]’

cast

select
port_binding

;

new_action :=
new

new struct_type itemname_opt with_opt

;

with_opt :=
with action_block

;

field_access :=
primitive_expr ’.’ when_field_access
’.’ when_field_access
when_field_access_pair

|
|

;

when_field_access :=
id
when_field_access_pair|

;
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when_field_access_pair :=

FALSE ’’’ id

TRUE ’’’ id

when_field_access ’’’ id

|

|

;

bit_extract :=

primitive_expr ’[’ expr_opt ’:’
expr_opt slice_opt ’]’

;

slice_opt :=

| ’:’ scalar_type

;

bit_concat :=

’%’ ’{’ bit_elements ’}’

;

bit_elements :=

expr

bit_elements ’,’ expr|

;

method_port_invocation :=

primitive_expr ’$’ ’(’ argument_list ’)’

;
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method_invocation :=
primitive_expr ’.’ called_method_name

’(’ argument_list ’)’
’.’ called_method_name ’(’ argument_list ’)’

id_or_special_method ’(’ argument_list ’)’

hdl_path ’(’ argument_list ’)’
all_values ’(’ scalar_type ’)’

get_all_units ’(’ struct_type ’)’
primitive_expr ’.’ get_enclosing_unit

’(’ struct_type ’)’

get_enclosing_unit ’(’ struct_type ’)’
primitive_expr ’.’ try_enclosing_unit

’(’ struct_type ’)’

try_enclosing_unit ’(’ struct_type ’)’
primitive_expr ’.’ seq_method

’(’ type_def ’)’ itemname_opt

’.’ seq_method ’(’ type_def ’)’ itemname_opt
seq_method ’(’ type_def ’)’ itemname_opt

;

called_method_name :=
method_name

;

id_or_special_method :=
method_id

;

seq_method : =
in_sequence
in_unit|

;

argument_list :=

| exprs

;
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cast :=

primitive_expr ’.’ as_a ’(’ type_def ’)’
’.’ as_a ’(’ type_def ’)’|

;

range_elements :=

range_element

range_elements ’,’ range_element|

;

range_element :=
expr
range_expr|

;

range_expr : =

expr_opt ".." expr_opt

;

list_elements_or_null :=
list_elements last_semi_opt|

;

list_elements :=
expr

list_elements ';' expr|

;
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unary_expr :=
primitive_expr

now ’@’ event_ref

’{’ list_elements_or_null ’}’

’{’ list_elements_or_null ’}’
’[’ range_element ’]’

’{’ list_elements_or_null ’}’ ’.’ id

’(’ argument_list ’)’
unary_operator unary_expr
primitive_expr unary_post_operator

lval_expr time_unit

literal time_unit
constraint_for_each_expr

text_expansion_exp
"<<" STRING_LITERAL

|

|
|

|

|
|
|
|
|

|
|

;

unary_operator :=
not

’|’
’&’
’^'

nor
nand
nxor
’+’
’-’

’~’
’!’

;

unary_post_operator :=
is empty

is not empty|

;
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binary_expr :=

boolean_imp_expression
boolean_imp_expression ’?’ expr ’:’ expr|

;

boolean_imp_expression :=
logical_OR_expression
boolean_imp_expression "=>"

logical_OR_expression

|

;

logical_OR_expression :=
logical_AND_expression

logical_OR_expression bool_or_operator
logical_AND_expression

|

;

bool_or_operator :=

"||"
| or

;

logical_AND_expression :=
inclusive_OR_expression
logical_AND_expression bool_and_operator
inclusive_OR_expression

|

;

bool_and_operator :=

and

"&&"|

;

inclusive_OR_expression :=
exclusive_OR_expression
inclusive_OR_expression ’|’
exclusive_OR_expression

|

;
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exclusive_OR_expression :=

AND_expression

exclusive_OR_expression exclusive_operator

AND_expression
|

;

exclusive_operator :=
’^’

| nxor

;

AND_expression :=

in_expression

AND_expression ’&’ in_expression|

;

in_expression :=

match_expression
in_expression IN_operator match_expression|

;

IN_operator :=

in
in range_expr
not in

|
|

;

match_expression :=

relational_expression

match_expression match_operator
relational_expression

|

;

match_operator :=
'~'
"!~"|

;
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relational_expression :=

member_expression

| relational_expression neq_operator

relational_rhs

| verilog_literal neq_operator
member_expression

;

relational_rhs :=
member_expression

| verilog_literal

;

neq_operator :=
"==

| "!="
| verilog_operator

;

verilog_operator :=
"==="

| "!=="

;

member_expression :=
equality_expression

| member_expression is a struct_type
| member_expression is a struct_type ’(’ id ’)’
| member_expression is not a struct_type

;

equality_expression :=

soft_expression
| equality—expression eq—operator

soft_expression

;
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soft_expression :=
shift_expression

| soft shift_expression

;

eq_operator :=
"<="

| ">="

| ’<’

| ’>’

;

shift_expression :=

additive_expression
| shift_expression shift_operator

additive_expression

| gen ’(’ gen_item_list ’)’ before
’(’ gen_item_list ’)’

;

shift_operator :=

"<<"
| ">>"

;

additive_expression :=
multiplicative_expression

| additive_expression additive_operator

multiplicative_expression

;

additive_operator :=
’–’

| ’+’
;
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multiplicative_expression :=

unary_expr
| multiplicative_expression

multiplicative_operator unary_expr

;

multiplicative_operator :=
’*’

| ’/’
| ’%’

| within

;

exprs :=
expr

| exprs ’,’ expr

;

expr :=

binary_expr

;

expr_opt :=
| expr

;

opt_index :=

| index ’(’ id ’)’

;
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opt_prev :=

| prev ’(’ id ’)’

;

constraint_for_each_expr :=

for each itemname_opt in gen_item do_opt

’{’ constraint_list ’}’
| for each itemname_opt using opt_index opt_prev

in gen_item do_opt ’{’ constraint_list ’}’

;

gen_item_list :=

gen_item
| gen_item_list ’,’ gen_item

;

gen_item :=
primitive_expr

;

constraint_list :=
| constraints last_semi_opt

;

constraints :=
constraint_expr

| constraints ’;’ constraint_expr

;

verilog_literal :=
BASED_LITERAL

;
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time_unit :=
hr

| min
| sec
| ms

| us
| ns

| ps
| fs

;

text_expansion_exp :=

text begin text_list text end

;

text_list :=
’(’ expr ’)’

| STRING_LITERAL
| text_list ’(’ expr ’)’
| text_list STRING_LITERAL

;

options_opt :=

| using options

;

options :=
option

| options ’,’ option

;

option :=
id

| id ’=’ expr
| when ’=’ expr

| range_option

;
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range_option :=
ranges ’=’ ’{’ cover_ranges last_semi_opt ’}’

;

cover_ranges :=
cover_range

| cover_ranges ’;’ cover_range

;

cover_range :=

range ’(’ ’[’ range_elements ’]’
optional_range_param ’)’

| range ’(’ id optional_range_param ’)’

;

optional_range_param :=

| ’,’ exprs

;

literal :=
STRING_LITERAL

| NUMERIC_LITERAL

| char_literal
| TRUE
| FALSE
| NULL
| UNDEF
| MAX_INT

| MIN_INT

;

id : =
id

;
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