
1

SystemVerilog
Basic Concepts

Ahmed Hemani

System Architecture and Methodology Group
Department of Electronic and Computer Systems

School of ICT, KTH

SystemVerilog

Rapidly getting accepted as the next generation HDL for
System Design
Verification and
Synthesis

Improvements over Verilog

Many features of VHDL and C++

Strong in Verification
Assertions
Functional Coverage

2

Goals

Verification remains the central goal

SystemVerilog is a vehicle

Emphasis on verification aspects of SystemVerilog

Some features of SystemVerilog will be not be covered

Emphasis is not on the synthesizable subset

Emphasis is to use the high level/abstract
constructs to make the testbenches more

readable, maintainable and modular

Why not VHDL ?

VHDL Lacks
– Constrained Random Generation

– Functional Coverage

– Assertions

Specman E/Vera
– Used with VHDL and Verilog for Constrained Random

Generation and Functional Coverage

PSL (Property Specification Language)
– Used for Assertions

Learning 1 language (SystemVerilog) is better than
learning 2 languages (Specman E/Vera and PSL)

Fluency in Verilog in addition to VHDL will give a well
rounded competence profile

3

Learning a
new HDL

Data
Data Types

Constants/Literals
Wires/Storage/Variables

Objects/Classes

Action
Operators

Concurrent Statements
Sequential Statements

Iteration/Branching
Time and Event Control

Structure
Design Units: Modules

Hierarchy
Processes

Tasks/Functions
Objects/Classes

Structure of Designs & Testbenches
Packages

Module/Program

Declaration: functions, tasks, data types, data objects
Concurrent Processes

Module Instances // Structural Hierarchy
Continuous Assignments
Always

C
on

cu
rr

en
t B

od
y

Always /Initial// Processes; behavioral hierarchy

Se
qu

en
tia

l
B

od
y

Control Constructs: If Then Else, Case
Iterative Constructs: Repeat, Loop, While
Blocking and Non Blocking Assignments

4

Data Types

2 valued data types

4 valued data types

Resolved 4 valued data types

Scalars

Class is the big new thing in SystemVerilog

Composites
Static

Dynamic

Data Objects & Assignments

Wires

Resolved Wires

Registers

Non Blocking Assignments (<=)

Continuous Assignment

Blocking Assignment (=)

Use Blocking assignment to get the VHDL variable behavior

Use non blocking assignment to get the VHDL signal behavior

5

Basic Data Types

2 valued data type 4 valued data type

bit: 1 bit (packed array)
byte: 8 bit (character)
shortint: 16 bit
int: 32 bit

logic: 1 bit (packed array)

integer: 32 bit
time: 64 bit unsigned

bit [14:0] bus; // unsigned
bit signed [11:0] i,q;

shortint unsigned addrs;
logic [15:0] addrs;

string myName = "John Smith";
byte c = "A"; // assign to c "A"
bit [1:4][7:0] s = "hello" ; // assigns to s "ello"

Packed & Unpacked arrays

Unpacked
Dimension

6

Enumerated Type

Strongly typed set of named values

Very useful for declaring
FSM states

Operational and Test Modes
Instructions
Test Cases

enum {idle, init, reset, state0, state1, state2} fsm_states

typedef enum {idle, init, reset, state0, state1, state2} fsm_state_ty
fsm_state_ty fsm_states

Enumerated Type – Cont.

By default
enumerated type is of type int

The symbolic names get sequential nrs starting from 0

enum {idle, init, reset, state0, state1, state2} fsm_states

idle is 0, init is 1, reset is 2 and so on

In some cases there is a need to assign values different
from the default sequential numbering

7

// Syntax error: c and d are both assigned 8

enum {a=0, b=7, c, d=8} alphabet;

If the first name is not assigned a value, it is given
the initial value of 0.

// a=0, b=7, c=8
enum {a, b=7, c} alphabet;

The values can be set for some of the names and not set for other
names.
A name without a value is automatically assigned an increment of the
value of the previous name.

// c is automatically assigned the increment-value of 8
enum {a=3, b=7, c} alphabet;

A 4 valued enum declaration allows x or z assignments
// Correct: IDLE=0, XX=’x, S1=1, S2=2
enum integer {IDLE, XX=’x, S1=’b01, S2=’b10} state, next;

// Syntax error: IDLE=2’b00, XX=2’bx, S1=??, S2=??
enum integer {IDLE, XX=’x, S1, S2} state, next;

typedef enum { add=10, sub[5], jmp[6:8] } E1;

add 10,
sub0 11, sub1 12, sub2 13, sub3 14, sub4 15

jmp6 16, jmp7 17, and jmp8 18

Name patterns can be easily expressed.

8

typedef enum { red, green, blue, yellow, white, black } Colors;
typedef enum {Mo,Tu,We,Th,Fr,Sa,Su} Week;
Colors col;
Week W
integer a, b, l;

col = green;

col = 1; // Invalid assignment

if (1 == col) // OK. col is auto-cast to integer

a = blue * 3;

col = yellow;

b = col + green

col = Colors’(col+1); // converted to an integer, then added to
// one, then converted back to a Colors type

col = col + 1; col++; col+=2; col = I; // Illegal because they would all be
// assignments of expressions without a cast

col = Colors’(Su); // Legal; puts an out of range value into col

I = col + W; // Legal; col and W are automatically cast to int

first ()
last ()
next ()
prev ()
num ()
name ()

typedef enum {red, green, blue, yellow} Colors;
Colors c = c.first();
forever begin

$display("%s : %d\n", c.name, c);
if(c == c.last()) break;
c = c.next();

end

9

Operators

Unary Reduction Operators

EXNOR all bits of m together (1-bit result)~^m~^

EXOR all bits of m together (1-bit result)^m^

NOR all bits of m together (1-bit result)~|m~|

OR all bits of m together (1-bit result)|m|

NAND all bits of m together (1-bit result)~&m~&

AND all bits of m together (1-bit result)&m&

Bitwise Operators

Bitwise EX NOR of m and nm~^n~^

Bitwise EXOR of m and nm^n^

Bitwise OR of m and nm|n|

Bitwise AND of m and nm&n&

Invert each bit of m~m~

Source/Acknowledgement: On-line Verilog HDL Quick Reference Guide

Operators

Logical Operators

Are both m OR n true?m||n||

Are both m AND n
true?

m&&n&&

Is m not true? !n!

Arithmetic Operators

Modulus of m/nm%n%

Divide m by nm/n/

Multiply m by nm*n*

Negate m (2’s complement)-m-

Subtract n from mm-n-

Add n to mm+n+

10

• The three types of equality (and inequality) operators in SystemVerilog behave
differently when their operands contain unknown values (X or Z).

• The == and != operators result in X if any of their operands contains an X or Z.
• The === and !== check the 4-state explicitly, therefore, X and Z values shall

either match or mismatch, never resulting in X.
• The =?= and !?= operators treat X or Z as wild cards that match any value,

thus, they too never result in X.

A equals b, X and Z values are wild cardsm=?=n=?=

A not equals b, X and Z values are wild cardsm!?=n!?=

Is m not equal to n? (1-bit True/False result)m~^n!==

Wild Eqality Operators

Equality Operators (Compares logic values of 0 and 1)

Is m identical to n? (1-bit True/False results)m^n===

Identity Operators (Compares logic values of 0,1,X and Z)

Is m not equal to n? (1-bit True/False result)m!=n!=

Is m equal to n? (1-bit True/False result)m==n==

Packages

package ComplexPkg;
typedef struct {

float i, r;
} Complex;

function Complex add(Complex a, b);
add.r = a.r + b.r;
add.i = a.i + b.i;

endfunction

function Complex mul(Complex a, b);
mul.r = (a.r * b.r) - (a.i * b.i);
mul.i = (a.r * b.i) + (a.i * b.r);

endfunction
endpackage: ComplexPkg

The package declaration creates a scope that contains declarations
intended to be shared among one or more compilation units, modules,
macromodules, interfaces, or programs.

Items within packages are generally constants, type definitions, tasks, and
functions. Items within packages cannot have hierarchical references.

11

Referencing Data in packages

• One way to use declarations made in a package is to reference them using the
scope resolution operator “::”.

ComplexPkg::Complex cout = ComplexPkg::mul(a, b);

• An alternate method for utilizing package declarations is via the import statement.

• The import statement provides direct visibility of identifiers within packages. It
allows identifiers declared within packages to be visible within the current scope
without a package name qualifier. Two forms of the import statement are provided:
explicit import, and wildcard import. Explicit import allows control over precisely
which symbols are imported:

import ComplexPkg::Complex;
import ComplexPkg::add;

• A wildcard import allows all identifiers declared within a package to be imported:

import ComplexPkg::*;

Modules

Corresponds to VHDL Entity/Architecture

1. Defines Configurability

2. Defines interface

3. A concurrent body
Declarations
Hierarchy – instantiating other modules
Always – sequential bodies (VHDL Processes)
Continuous assignments

12

Two styles of declaring ports

module adder #(parameter InWidth = 8,
parameter OutWidth = 9)
(clk, rstn, a, b, c);

input logic clk;
input logic rstn;
input logic [InWidth-1:0] a;
input logic [InWidth-1:0] b;
output logic [OutWidth-1:0] c;

module adder #(parameter InWidth = 8,
parameter OutWidth = 9)
(input logic clk,
input logic rstn,
input logic [InWidth-1:0] a,
input logic [InWidth-1:0] b,
output logic [OutWidth-1:0] c);

The old Verilog style

The new SystemVerilog style

Instantiation
positional port connections

module alu (
output reg [7:0] alu_out,
output reg zero,
input [7:0] ain, bin,
input [2:0] opcode);

// RTL code for the alu module
endmodule

module accum (
output reg [7:0] dataout,
input [7:0] datain,
input clk, rst_n);

// code for the accumulator
endmodule

module xtend (
output reg [7:0] dout,
input din,
input clk, rst_n);

// code for the sign-extension
endmodule

module alu_accum1 (
output [15:0] dataout,
input [7:0] ain, bin,
input [2:0] opcode,
input clk, rst_n);

wire [7:0] alu_out;

alu U1 (alu_out, ,
ain, bin, opcode);

accum U2 (dataout[7:0],
alu_out, clk, rst_n);

xtend U3 (dataout[15:8],
alu_out[7], clk, rst_n);

endmodule

Instance
name

Module
name

Zero not
connected

13

Instantiation
named port connections

module alu_accum2 (
output [15:0] dataout,
input [7:0] ain, bin,
input [2:0] opcode,
input clk, rst_n);

wire [7:0] alu_out;

alu U1 (.alu_out(alu_out),
.zero(),
.ain(ain),
.bin(bin),
.opcode(opcode));

accum U2 (.dataout(dataout[7:0]),
.datain(alu_out),

.clk(clk),

.rst_n(rst_n));
xtend U3 (.dout(dataout[15:8]),

.din(alu_out[7]),

.clk(clk),

.rst_n(rst_n));
endmodule

Formal

Actual

Instantiation
implicity .name port connections

module alu_accum3 (
output [15:0] dataout,
input [7:0] ain, bin,
input [2:0] opcode,
input clk, rst_n);

wire [7:0] alu_out;

alu U1 (.alu_out, .zero(), .ain, .bin, .opcode);

accum U2 (.dataout(dataout[7:0]), .datain(alu_out),
.clk, .rst_n);

xtend U3 (.dout(dataout[15:8]), .din(alu_out[7]),
.clk, .rst_n);

endmodule

If the actual name and size is the same as formal
.name ≡ .name(name)

Exceptions need to be explicitly named

14

Implicit connections
.* notation

module alu_accum4 (
output [15:0] dataout,
input [7:0] ain, bin,
input [2:0] opcode,
input clk, rst_n);

wire [7:0] alu_out;
alu U1 (.*, .zero());
accum U2 (.*, .dataout(dataout[7:0]), datain(alu_out));
xtend U3 (.*, .dout(dataout[15:8]), .din(alu_out[7]));

endmodule

• .* all ports that are not explicitly connected have a compatible matching data
declaration

• Exceptions need to be explicitly named as is the case for dataout, datain and
din in the example below

• Useful for rapidly building up the testbenches.
• Hint: Copy and paste port declarations as data declarations in testbench.
• Edit exceptions

Parameters

15

Processes
Processes are concurrent statements instantiated in modules
and are very similar to the VHDL processes

Principally a sequential body; but allows some concurrency

Can optionally have sensitivity list of signals that triggers its
execution – just like in VHDL
Edge statement can further qualify the sensitivity

Comes in two flavours:
always – Always active – executed as soon as there is an

event on the sensitivity list
Initial – Is executed only once. Initial does not mean that it is

executed initially. The order of execution between
always and initial is non-deterministic (decided by
the compiler).

Syntax

Process type (Always | Initial) Sensitivity List

Local Variable Declarations

Sequential procedural statements:
If then else, Case, Repeat, Foreach etc.
Functions/Tasks invocations

Concurrent threads
Fork

If then else, Case, Repeat, Foreach etc.
Functions/Tasks invocations

Join

16

Always

Comes in four flavours:

always_comb: To infer combinational logic
Sensitivity list is inferred from signals involved
in the RHS of expressions.

always – the old verilog legacy. Not recommended

always_FF. Clocked synchronous body
posedge clk and negedge reset_n are the
standard signals in the sensitivity list

always_latch: When the intention is to infer latch
Sensitivity list is inferred from signals involved
in the RHS of expressions.

task mytask1 (output int x, input logic y);
...

endtask

task mytask2;
output x;
input y;
int x;
logic y;
...

endtask

Tasks
A SystemVerilog task corresponds to procedure in VHDL

Declaraed in Packages or Modules
A sequential body. Invoked in Processes

Module like interface declaration

17

Functions

function logic [15:0] myfunc1(int x, int y);
myfunc1 = x – y;

endfunction

function logic [15:0] myfunc2;
input int x;
input int y;
myfunc2 = x+y-5;

endfunction

Functions are similar to tasks except that they can return
a value, which can be void

Corresponds to functions in VHDL

Pass by value and reference

byte packet1[1000:1];
int k = crc(packet1); // pass by value/reference: call is the same

Pass by value (Default)
Each argument is copied to the subroutine area

function int crc(byte packet [1000:1]);
for(int j= 1; j <= 1000; j++) begin

crc ^= packet[j];
end
endfunction

Pass by reference
Arguments passed by reference are not copied into the subroutine area,
rather, a reference to the original argument is passed to the subroutine

function int crc(ref byte packet [1000:1]);
for(int j= 1; j <= 1000; j++) begin

crc ^= packet[j];
end

endfunction

Invoking makes no difference

18

Timing Control

#delay;

#delay <data object> = <expression>;
#delay <data object> <= <expression>;

<data object> = #delay <expression>;
<data object> <= #delay <expression>;

@(edge signal or edge signal or ...)

wait (expression)

Control Constructs
If <expression>

statement or statement_group
else

statement or statement_group

case <expression>
case_match1: statement or statement_group
case_match2, case_match3: statement or statement_group
default: statement or statement_group

endcase

Unique if

Priority if

Casez
Casex

Priority case
Unique case

19

Iterative Constructs

module foo;
initial begin

loop1: for (int i = 0; i <= 255; i++)
...
end

initial begin
loop2: for (int i = 15; i >= 0; i--)

...
end

endmodule

jump; break; continue; return

Iterative Constructs – contd.
string words [2] = { "hello", "world" };
int prod [1:8] [1:3];

foreach(words [j])
$display(j , words[j]); // print each index

and value

foreach(prod[k, m])
prod[k][m] = k * m; // initialize

forever statement or statement_group

repeat (number) statement or statement_group

while (expression) statement or statement_group

do statement or statement_group while (expression)

20

Structures

typedef struct {bit [7:0] opcode;
bit [23:0] addr;

} instruction; // named structure type
instruction IR; // define variable

Encapsulates related data objects of different data types

Corresponds to Records in VHDL, and structs in C/C++

Can be hierarchical. Elements can be scalar, records,
arrays, dynamic arrays, queues etc.

Can be recursive. Elements can be records themselves. Trees

Packed Structures

21

Unions
Unions enable different views of a collection of data objects.

For instance we might want to have a structured view of an
ATM cell but also view it as a stream of bit and bytes

Receive bits Process bytes Transmit

Bits view
Bits, Bytes,
Struct views

bytes view

The different views, need not have same size.
Potential type loophole. Tagged Unions are the solutions

typedef struct packed { // default unsigned
bit [3:0] GFC;
bit [7:0] VPI;
bit [11:0] VCI;
bit CLP;
bit [3:0] PT ;
bit [7:0] HEC;
bit [47:0] [7:0] Payload;
bit [2:0] filler;

} s_atmcell;
typedef union packed { // default unsigned

s_atmcell acell;
bit [423:0] bit_slice;
bit [52:0][7:0] byte_slice;

} u_atmcell;

u_atmcell u1;

byte b; bit [3:0] nib;

b = u1.bit_slice[415:408]; //≡ b = u1.byte_slice[51];

nib = u1.bit_slice [423:420]; // ≡ nib = u1.acell.GFC;

22

Tagged Union
In many cases,

We do want to have different views of the bit patterns, but
We do not want to update using one view and read using other views

typedef union tagged {
struct {bit [4:0] reg1, reg2, regd;} Add;
union tagged {

bit [9:0] JmpU;
struct {bit [1:0] cc; bit [9:0] addr;}JmpC;
} Jmp;

Instr;

i1 = (e ? tagged Add '{ e1, 4, ed }; // struct members by position
: tagged Add '{ reg2:e2, regd:3, reg1:19 }); // by name

i1 = tagged Jmp (tagged JmpU 239); /uncond. jmp instr. Sub opcode

// Create a Jump instruction, with "conditional" sub-opcode
i2 = tagged Jmp (tagged JmpC '{ 2, 83 }); // by position
i2 = tagged Jmp (tagged JmpC '{ cc:2, addr:83 }); // by name

Operating on Arrays
// 10 entries of 4 bytes (packed into 32 bits)
bit [3:0] [7:0] joe [1:10];
joe[9] = joe[8] + 1; // 4 byte add
joe[7][3:2] = joe[6][1:0]; // 2 byte copy

bit [3:0] [7:0] j; // j is a packed array
byte k;
k = j[2]; // select a single 8-bit element from j

bit busA [7:0] [31:0] ; // unpacked array of 8 32-bit
vectors
int busB [1:0]; // unpacked array of 2 integers
busB = busA[7:6]; // select a slice from busA

int i = bitvec[j +: k]; // k must be constant.
int a[x:y], b[y:z], e;
a = {b[c -: d], e}; // d must be constant

23

string SA[10], qs[$];
int IA[*], qi[$];

// Find all items greater than 5
qi = IA.find(x) with (x > 5);
// Find indexes of all items equal to 3
qi = IA.find_index with (item == 3);

// Find first item equal to Bob
qs = SA.find_first with (item == "Bob");

// Find last item equal to Henry
qs = SA.find_last(y) with (y == "Henry");

// Find index of last item greater than Z
qi = SA.find_last_index(s) with (s > "Z");

// Find smallest item
qi = IA.min;

// Find string with largest numerical value
qs = SA.max with (item.atoi);

// Find all unique strings elements
qs = SA.unique;

Dynamic Arrays
A dynamic array is one dimension of an unpacked array
whose size can be set or changed at runtime.

data_type array_name [];
bit [3:0] nibble[]; // Dynamic array of 4-bit vectors

integer mem[]; // Dynamic array of integers

new[] sets or changes the size of the array.
size() returns the current size of the array.
delete() clears all the elements yielding an empty array (zero size).

integer addr[]; // Declare the dynamic array.
addr = new[100]; // Create a 100-element array.

...
// Double the array size, preserving previous values.
addr = new[200](addr);
int j = addr.size;
addr = new[addr.size() *4] (addr); // quadruple addr array
addr.delete; // delete the array contents
$display("%d", addr.size); // prints 0

24

Associative Arrays
• When the size of the collection is unknown or the data space is sparse, an associative

array is a better option.
• Associative arrays do not have any storage allocated until it is used, and the index

expression is not restricted to integral expressions, but can be of any type.
• An associative array implements a lookup table of the elements of its declared type. The

data type to be used as an index serves as the lookup key, and imposes an ordering.
• The syntax to declare an associative array is:

data_type array_id [index_type];

where:
— data_type is the data type of the array elements. Can be any type allowed for fixed-size arrays.
— array_id is the name of the array being declared.
— index_type is the data-type to be used as an index, or *.

If * is specified, then the array is indexed by any integral expression of arbitrary size.
An index type restricts the indexing expressions to a particular type.

Examples of associative array declarations are:

integer i_array[*]; // associative array of integer (unspecified index)
bit [20:0] array_b[string]; // associative

Methods: num, delete, exists, first, last, next, prev

Queues
A queue is a variable-size, ordered collection of homogeneous elements. A queue supports
constant time access to all its elements as well as constant time insertion and removal at the
beginning or the end of the queue. Each element in a queue is identified by an ordinal number
that represents its position within the queue, with 0 representing the first, and $ representing
the last. A queue is analogous to a one-dimensional unpacked array that grows and shrinks
automatically. Thus, like arrays, queues can be manipulated using the indexing,
concatenation, slicing operator syntax, and equality operators.

Queues are declared using the same syntax as unpacked arrays, but specifying $ as the
array size. The maximum size of a queue can be limited by specifying its optional right bound
(last index).

byte q1[$]; // A queue of bytes
string names[$] = { "Bob" }; // A queue of strings with one element
integer Q[$] = { 3, 2, 7 }; // An initialized queue of integers
bit q2[$:255]; // A queue whose maximum size is 256 bits

The empty array literal {} is used to denote an empty queue. If an initial value is not provided
in the declaration, the queue variable is initialized to the empty queue.

25

int q[$] = { 2, 4, 8 };
int p[$];
int e, pos;

e = q[0]; // read the first (left-most) item
e = q[$]; // read the last (right-most) item
q[0] = e; // write the first item
p = q; // read and write entire queue (copy)

q = { q, 6 }; // insert ’6’ at the end (append 6)
q = { e, q }; // insert ’e’ at the beginning prepend e)

q = q[1:$]; // delete the first (left-most) item
q = q[0:$-1]; // delete the last (right-most) item
q = q[1:$-1]; // delete the first and last items

q = {}; // clear the queue (delete all items)

q = { q[0:pos-1], e, q[pos,$] }; // insert ’e’ at position pos
q = { q[0:pos], e, q[pos+1,$] }; // insert ’e’ after position pos

Que Methods: size, insert, delete, pop_front, pop_back, push_front, push_back

Que Operators and Methods

Type Casting

26

Literals

Literals

27

Constants

Variables: Scope and LifeTime

