
Journal of Signal Processing Systems 52, 13–34, 2008

* 2007 Springer Science + Business Media, LLC. Manufactured in The United States.

DOI: 10.1007/s11265-007-0070-9

Optimized RTL Code Generation from Coarse-Grain Dataflow

Specification for Fast HW/SW Cosynthesis

HYUNUK JUNG

System LSI Division, CAE Center, Samsung Electronics Co., Ltd., Gyeonggi-Do, South Korea

HOESEOK YANG AND SOONHOI HA

Department of EECS, Seoul National University, Seoul, South Korea

Received: 21 December 2006; Accepted: 20 March 2007

Abstract. This paper presents a new methodology of automatic RTL code generation from coarse-grain

dataflow specification for fast HW/SW cosynthesis. A node in a coarse-grain dataflow specification represents a

functional block such as FIR and DCT and an arc may deliver multiple data samples per block invocation,

which complicates the problem and distinguishes it from behavioral synthesis problem. Given optimized HW

library blocks for dataflow nodes, we aim to generate the RTL codes for the entire hardware system including

glue logics such as buffer and MUX, and the central controller. In the proposed design methodology, a dataflow

graph can be mapped to various hardware structures by changing the resource allocation and schedule

information. It simplifies the management of the area/performance tradeoff in hardware design and widens the

design space of hardware implementation of a dataflow graph. We also support Fractional Rate Dataflow

(FRDF) specification for more efficient hardware implementation. To overcome the additional hardware area

overhead in the synthesized architecture, we propose two techniques reducing buffer overhead. Through

experiments with some real examples, the usefulness of the proposed technique is demonstrated.

Keywords: HW/SW codesign, system level design, dataflow graph (DFG), RTL, VHDL

1. Introduction

System level design methodology gains considerable

research attention as the design complexity and the

time-to-market pressure increase for SoC design. In

system level design, a system level specification is

mapped to an optimal architecture in a systematic

way and the mapping is evaluated before implemen-

tation for fast design space exploration. As a

specification model in this paper, we are concerned

with a coarse-grain dataflow model that is adopted in

many high level design frameworks [1–4], especially

for signal processing and multimedia applications

because of formality and readability.

In a dataflow graph G(V,E) as shown in Fig. 1a, an

atomic node represents a coarse grain functional

block such as FIR filter and DCT, and an arc

represents the flow of data samples between two

end nodes. When a node is invoked, it consumes the

specified number of data samples from each input arc

and produces the specified number of samples to

each output arc. We use a rather restricted dataflow

model, synchronous dataflow (SDF) [5] and its

extension to fractional rate dataflow (FRDF) [6], in

which the number of data samples produced or

consumed on an arc is fixed a priori. If the number,

called a sample rate, may not be unity, the dataflow

graph is called a multi-rate graph. In Fig. 1, node C

can be invoked 4 times after node B is invoked once.

This restricted semantics enables us to verify

important system properties such as memory bound-

edness and termination, and to estimate the system

performance statically.

A coarse grain block has complex properties such as

data sample rates, I/O timings, data types, and its

internal states. This dataflow model is different from

control/data flow graph (CDFG) [7] commonly used in

behavioral synthesis where a node typically represents

a basic operation such as add or multiply that can be

implemented simply using combinational logic.

We define some terminologies. An invocation of

a node is called an instance of the node. A

hardware implementation of a node is defined as

a hardware resource associated with the node. A

hardware component is a physical entity, such as

FPGA or ASIC, that integrates all hardware
resources associated with the mapped nodes.

In the proposed design methodology, a coarse

grain functional block is the mapping unit in

hardware/software partitioning decision. We as-

sume that functional blocks are library blocks

written in C code for software implementation,

synthesizable VHDL code for hardware implemen-

tation, or both. If a function block is given as a

legacy IP block, we may need to add wrapper

logic to make it behave as a dataflow node. After

hardware/software partitioning is performed, the

dataflow graph is partitioned into several graphs

that are mapped to hardware or software compo-

nents. Figure 1b shows an example subgraph

mapped to a hardware component augmented with

the interface blocks at the subgraph boundary.

Figure 2 shows the simplified HW/SW codesign

procedure starting from the dataflow specification.

It is assumed that the performance of a node on

each processing element (PE, processor or hard-

ware IP) is given in a Node-PE database which

also contains the additional information needed for

system design such as consumed area and I/O bit

width. The initial dataflow specification is first

partitioned and scheduled in our design methodol-

ogy. The partitioning and scheduling is performed

by mapping the dataflow nodes to the processing

elements in a selected architecture, based on the

performance and cost information of nodes. After

the partitioning and scheduling is completed for

the selected architecture, SW and HW codes are

automatically generated and cosimulated to verify

the system performance. If it is not satisfied, we

go back to the architecture selection step to choose

other PEs or architectures. It forms the design

space exploration (DSE) loop. In order to acceler-

ate this design loop, it is highly desirable to

automate HW and SW code generation from the

dataflow specification. This automatic code genera-

tion can save time for both coding and debugging.

This paper focuses on the automatic hardware

code generation step, which is highlighted in Fig. 2,

aiming to accelerate the hardware design and

verification. Since the invocation order, or sched-

ule, of dataflow nodes and the required hardware

resources are given from the partitioning stage, the

hardware code generation problem is to allocate

B
1 1 4 1 1 1

A C

D

E

1 1 4 1 B
1 1 4 1 1 1

CRCV1 SND1

Mapped to hardware

a b

B
CCCC

B
CCCC time

hardware
resources B

C

C
C
C

B
C

C
C
C B

CC
CC

B

CC
CC

c d e

Figure 1. a An initial dataflow specification; b partitioned

subgraph mapped to hardware; c fully-sequential, d fully-parallel,

and e hybrid execution of a multi-rate graph.

Architecture Specification

Partitioning/Scheduling

SW
C code generation

HW
VHDL code generation

Dataflow Specification

Satisfied?

Cosimulation

SW subgraph
SW schedule

HW subgraph
HW schedule

VHDL CodeC Code

System Performance

YES
NO

SySystem Prototyping

Node-PE
Performance DB

Figure 2. Proposed system design procedure.

14 Jung et al.

hardware resources from the library, and synthe-

size the interface logic between blocks and the

control codes for appropriate clocking and signal-

ing. We enforce the resulting hardware to preserve

the dataflow semantics to make the design correct
by construction.

A multi-rate dataflow graph is very popular in

multimedia applications. When synthesizing a

hardware component from the multi-rate dataflow

graph, we have additional degree of freedom in the

design space: parallelism. Even though there have

been several works of automatic hardware code

generation from dataflow specification, they do not

consider the degree of parallelism. There are two

different approaches to date: one is fully sequen-

tial approach as shown in Fig. 1c [3, 8] where all

instances of node C are executed sequentially, and

the other is fully parallel execution as shown in

Fig. 1d [9]. However, the proposed technique

explores diverse hardware implementations to

consider the performance/area tradeoff: for exam-

ple a hybrid execution of Fig. 1e is also explored,

which is not considered in the previous approaches.

The hybrid execution is taken into account in [10]

under schedule restriction. But, their focus is

different from ours in that they mainly concern the

core (SDF node) generation only while we are also

considering the efficient control logic generation.

Key contributions in this paper can be summarized

as follows:

1. We automate the integration of HW library blocks

from an algorithm specification in dataflow model.

It enables fast design space exploration by

automating the time-consuming and error-prone

task of interfacing and integrating HW blocks.

We synthesize the glue logics and the central

controller to make the HW operate preserving the

dataflow semantics according to the schedule

information. Therefore, the generated hardware

is correct by construction.
2. By separating the scheduling and HW code

generation, we can implement diverse HW archi-

tectures from the given dataflow specification by

simply changing the schedule and resource sharing

information. It widens the design space of hard-

ware implementation, compared with the previous

approaches based on dataflow specification.

3. Since the major overhead which makes the

efficiency of generated hardware inferior com-

pared to the manually optimized hardware comes

from buffer of SDF arcs, we reduce the buffer size

and the control logic dedicated to buffer control by

proposing shift-buffering and buffer sharing
schemes. Then, the area of optimized hardware is

close to hand-optimized hardware.

Transpose
8x8 DCT1D Transpose

8x8 DCT1D
64 8 864 64 88 64

Figure 3. Dataflow specification of 2D DCT algorithm.

a

b c

8 1-dimensional
DCT blocks

8 1-dimensional
DCT blocks

DCT1D
DCT1D
DCT1D
DCT1D
DCT1D
DCT1D
DCT1D
DCT1D

Transpose
8x8 matrix

DCT1D
DCT1D
DCT1D
DCT1D
DCT1D
DCT1D
DCT1D
DCT1D

Transpose
8x8 matrix64 16bit

inputs

8 16bit signals

DCT
1D

DCT
1D

M
U
X

M
U
X

controller

DCT
1D

ctrlctrl

DCT
1D

ctrlctrl

FIFO with 64 buffers

wr
wr_ok rd

rd_ok

Handshaking control signals

Figure 4. Hardware architecture assumed in a Ptolemy0, b Meyr_s0, and c GRAPE0.

Optimized RTL Code Generation from Coarse-Grain Dataflow 15

In the next section, we overview some related

works with a motivational example. After we explain

how to define a block in Section 3, we describe the

proposed technique in details with examples in

Section 4. In Section 5, hardware implementation

of a fractional rate dataflow specification is

explained for more efficient implementation. Two

buffer reducing techniques are proposed in Section 6,

followed by experimental results in Section 7.

Section 8 concludes the paper with discussion on

the remaining topics in this subject.

2. Previous Work and Motivational Example

In order to achieve fast HW/SW cosynthesis, many

works have been done to automate hardware imple-

mentation from high-level specification in an

HDL(Hardware Description Language) or from

software specification in C/C++. Behavioral level

synthesis from HDLs has a rather long history but

with only a limited success. Recently HW synthesis

from C or C++ has been actively pursued [11–13] in

the realm of ESL (electronic system level) design.

While they mainly concern about implementation of

a hardware block itself, our approach focuses on

implementing the hardware structure in the system

level using the predefined library blocks.

Hardware synthesis from SDL specification [14,

15] has been developed for rapid prototyping. This

approach is similar to ours in that it is developed for

system level design. However, its specification

model and application domain are different from

ours. It uses asynchronously communicating pro-

cesses and mainly targets on telecommunication

systems while ours uses a dataflow model, SDF [5],

targeting for multimedia applications.

Figure 3 shows a dataflow graph of 2D DCT

(discrete cosine transform) algorithm. It is a multi-

rate dataflow graph with relatively high sample rates

of 64 and 8. This algorithm can be mapped to

various hardware implementations. A fully parallel

implementation is taken in [9] by Ptolemy where

eight resources of DCT1D block are created between

two transpose blocks as shown in Fig. 4a. Note that

eight DCT1D resources are activated at the same

time after the transpose block produces 64 samples

at once. And blocks are connected directly without

buffer in-between. This parallel implementation

results in the shortest processing delay but the largest

hardware area, about 243,000 gates using 16 DCT1D
resources in our experimentation.

In Meyr_s approach [8, 16–18], the generated

hardware structure has one-to-one correspondence

to the dataflow graph where a separate hardware

resource is allocated for each node. In Fig. 4b, one

resource of DCT1D block is executed eight times

sequentially to consume and produce 64 samples

while one invocation of DCT1D block is assumed to

consume eight samples at once1. If the DCT1D block

is internally pipelined, eight invocations can also be

pipelined. In this sequential implementation, a FIFO

queue and a MUX are needed to accumulate 64

samples on the input and the output arcs of the

transpose block respectively. But the hardware over-

head is much smaller than that of parallel implemen-

tation. One difficulty of this approach is to generate

numerous control signals whose timings are computed

statically through rigorous graph analysis [17]. It has a

serious restriction that all hardware blocks should

have deterministic and fixed execution cycles for

static timing analysis and controller synthesis.

Another sequential implementation approach is

taken by Ade et al. [3], Dalcolmo et al. [19],

input

DCT
1D

M
U
X

controller

DCT
1D

M
U
X

controller

input DCT
1D

DCT
1D

M
U
X

DCT
1D

M
U
X

M
U
X

a b
Figure 5. Hardware architectures with a one 1D DCT resource and b four resources.

16 Jung et al.

Lauwereins et al. [20] and in GRAPE system. Their

approach is different from Meyr_s in that each

hardware block has its local controller and there is no

need of complicated central controller design (Fig. 4c).

A hardware block detects when it can be invoked by

exchanging the control signals with its neighbor

based on a certain hand-shaking protocol. In this

example, DCT1D block is sequentially invoked eight

times after the transpose block produces 64 samples,

repeatedly exchanging hand-shaking control signals

per invocation. Thus, this asynchronous communi-

cation incurs non-negligible runtime overhead while

it is robust enough to allow non-deterministic block

execution time. The hardware overhead comes from

the FIFO buffers inserted between the blocks and the

local controllers. Distributed control and asynchro-

nous communication of Fig. 4c are not commonly

used in an optimized ASIC design.

Figure 4a and b illustrate two extreme implemen-

tations of parallel and sequential operation. But,

there are other implementation possibilities, some of

which are displayed in Fig. 5. In Fig. 5a, a DCT1D
resource is shared between two DCT1D nodes of Fig. 3.

The DCT1D resource is invoked 16 times, 8 for

column DCT and 8 for row DCT operation. It has the

least amount of area with performance penalty.

When better performance is required, the resources

for column and row DCT are allocated separately

and executed simultaneously in a pipelined fashion

as already shown in Fig. 4b. In case the time

constraint is tighter, more resources can be allocated

as shown in Fig. 5b where two DCT1D resources are

allocated to each DCT1D node. It is not fully-

sequential nor fully-parallel, so it is called a hybrid

implementation. Such resource sharing and hybrid

implementation are also taken into account in the

proposed approach. Thus, the proposed approach

widens the hardware design space considerably

compared with the previous approaches based on

dataflow specification.

J. McAllister et al. [10] considered various imple-

mentations of a multi-dimensional SDF graph includ-

ing hybrid implementation in targeting a reconfigurable

device (e.g. FPGA). They assume asynchronous

communication between nodes with a specific inter-

face logic, called the Control and Communication
Wrapper (CCW).

Table 1 summarizes the comparison between these

approaches. The proposed approach is unique in the

following aspects: First, the scheduling and hardwareT
ab

le
1.

C
o

m
p

ar
is

o
n

am
o

n
g

th
e

ap
p

ro
ac

h
es

o
f

H
W

sy
n

th
es

is
fr

o
m

D
F

G
.

A
p
p
ro

ac
h
es

P
to

le
m

y
M

ey
r_

s
G

R
A

P
E

M
cA

ll
is

te
r_

s
P

ro
p
o

se
d

Im
p

le
m

en
ta

ti
o
n

o
f

m
u

lt
i-

ra
te

sp
ec

ifi
ca

ti
o

n

P
ar

al
le

l
im

p
le

m
en

ta
ti

o
n

S
eq

u
en

ti
al

im
p

le
m

en
ta

ti
o
n

S
eq

u
en

ti
al

im
p

le
m

en
ta

ti
o
n

P
ar

al
le

l/
se

q
u
en

ti
al

/h
y
b
ri

d

im
p

le
m

en
ta

ti
o

n

P
ar

al
le

l/
se

q
u
en

ti
al

/h
y
b
ri

d

im
p

le
m

en
ta

ti
o

n

R
es

o
u
rc

e
al

lo
ca

ti
o
n

M
u
lt

ip
le

-r
es

o
u
rc

e

al
lo

ca
ti

o
n

S
in

g
le

-r
es

o
u

rc
e

al
lo

ca
ti

o
n

S
in

g
le

-r
es

o
u

rc
e

al
lo

ca
ti

o
n

M
u

lt
ip

le
/s

in
g

le
-r

es
o
u

rc
e

al
lo

ca
ti

o
n

M
u

lt
ip

le
/s

in
g

le
/s

h
ar

ed
-r

es
o
u

rc
e

al
lo

ca
ti

o
n

C
o

m
m

u
n
ic

at
io

n
b

et
w

ee
n

b
lo

ck
s

S
y

n
ch

ro
n

o
u

s
S

y
n
ch

ro
n

o
u

s
A

sy
n

ch
ro

n
o

u
s

(F
IF

O
)

A
sy

n
ch

ro
n

o
u

s
(F

IF
O

)
S

y
n

ch
ro

n
o

u
s

B
lo

ck
co

n
tr

o
l

C
en

tr
al

iz
ed

co
n

tr
o

l
C

en
tr

al
iz

ed
co

n
tr

o
l

D
is

tr
ib

u
te

d
co

n
tr

o
l

D
is

tr
ib

u
te

d
co

n
tr

o
l

C
en

tr
al

iz
ed

co
n

tr
o

l

B
lo

ck
ex

ec
u

ti
o

n
ti

m
e

F
ix

ed
F

ix
ed

V
ar

ia
b

le
V

ar
ia

b
le

V
ar

ia
b

le

B
u

ff
er

o
p

ti
m

iz
at

io
n

N
/A

P
o

rt
re

ti
m

in
g

S
ta

ti
c

m
in

im
u

m
N

/A
S

h
if

t
b

u
ff

er
in

g
/b

u
ff

er
sh

ar
in

g

S
u

p
p

o
rt

ed
D

F
G

s
S

D
F

S
D

F
S

D
F

,
C

S
D

F
S

D
F

,
C

S
D

F
,

M
D

S
D

F
S

D
F

,
F

R
D

F

Optimized RTL Code Generation from Coarse-Grain Dataflow 17

synthesis is decoupled. Other approaches assume a

fixed execution schedule of hardware components and

synthesize the control logic to implement the sched-

ule. On the other hand, a user may specify a schedule,

and the hardware is automatically synthesized to

implement the schedule in the proposed framework.

Second, it uses a centralized controller for efficient

implementation, but allowing variable execution

length of hardware components.

Buffer optimization on SDF arcs has been studied

in Meyr_s and GRAPE group. By retiming technique,

Horstmannshoff and Meyr [8] minimized number of

the shimming registers between nodes. The lower

bound of arc buffers was investigated by Ade et al.

[21] in under data-driven execution. Some approaches

support the extensions of SDF: CSDF [22] for

GRAPE and McAllister_s, MDSDF [23] for

Mcallister_s, and FRDF [6] for our approach.

3. Block Types and Control Signals

In the proposed methodology, the complexity of a

block definition is not restricted as long as the block

follows the SDF semantics in which the block is

triggered only when all input ports have enough data

samples. It is important to note that the concept of a

Bdata sample^ in the dataflow model is different

from that of an Bevent^ that usually means the

change of signal level on a wire. The arrival of a new

sample should be notified by the predecessor block

or by the controller based on the block schedule

information. By preserving the SDF semantics in the

generated hardware, we can guarantee the equiva-

lence between the synthesized system and the data-

flow specification in terms of functionality: So the

synthesized hardware is claimed to be correct by
construction.

To preserve the SDF semantics, we insert a buffer

as a glue logic on every arc between two blocks. The

buffer is latched with new output samples from the

source block only after the block completes its

execution. The destination block may read the valid

data samples during the whole execution period.

Thus the block needs no internal buffer to latch the

input signal values. Buffer insertion strategy is also

adopted in Sharp and Mycroft_s [24] work on SAFL

language which specifies hardware behavior in a

higher level abstraction. While they do not assume

dataflow model, they observed that higher level

structuring mechanism needs storage elements not

wires in HW synthesis.

The arc buffers are automatically generated and

managed. The buffer management scheme is closely

related with the types of blocks. We classify

functional blocks into three different types based on

the timing requirement of the internal behavior. The

first type is combinational logic that does not include

any internal register. Since we allow multi-cycle

combinational logic, we compute the execution

latency in terms of global clock cycles and trigger

the output buffer load enable signal after the

execution latency once the block is triggered by

new input samples.

The second type is a sequential logic with a fixed
execution time. Since a sequential logic includes

internal registers, three additional control signals

(start, reset, and clock signals) are provided for the

timing management of the internal registers. The

reset signal is triggered in the initialization phase of

the synthesized hardware. After the start signal is

clk rst

start done

inputs outputs

Figure 6. Input and output ports associated with a block with

variable execution time.

• Start time = 3, End time = 8

• Execution time = End time – Start time + 1 = 6(cycles)

Input valid timing

8 9 103 4 5 6 72

clock

start signal

done signal

output valid timing

counter

execution time

Figure 7. An example timing diagram of the control signals.

18 Jung et al.

enabled, a fixed number of clock signals are counted

to trigger the output buffer load enable signal. In

case the minimum cycle time of a block is larger

than the global clock period, the clock signal is

obtained by down-sampling the global clock.

The third type is a sequential logic with a variable
execution time. Then we need another control signal,

done, to indicate the completion of block execution:

When the done signal is enabled, the output buffer

load enable signal is triggered. Figure 6 shows the

resultant input and output ports associated with this

type of block and Fig. 7 illustrates an example of a

timing diagram for the control signals. Since it is the

most general type, it can be used for general legacy

hardware IP. A third-party IP whose protocol is

known to designer can be abstracted by the wrapper

that translates IP specific protocol to this type. The

interrupt signal or a register value change that denotes

the end of IP execution, for example, can be translated

into the assertion of done signal. In this way, the

proposed framework allows the use of legacy hard-

ware IP blocks as long as there are corresponding

dataflow nodes in the initial specification.

Figure 8a shows a simple example that consists of

all three types of blocks. The block types should be

explicitly specified by the designer. Then the glue

logics between blocks and the central controller are

automatically synthesized, and integrated with the

library blocks to result in the final architecture as

shown in Fig. 8b. The design of controller is

explained in the next section. In Fig. 8c the expected

timing of control signals is drawn. Here, we assume

that execution times of blocks A and B are 30 and 80

time units respectively, while the execution time of

node C is unknown; the timing of done signal for

block C is determined at run-time.

The proposed technique discussed in this section

can be summarized as follows:

1. Two adjacent blocks are communicated with each

other through arc buffers. So the communication

between blocks is managed simply by defining

the timing of the buffer control signals. However,

it implies that we add a buffer between two

combinational logic blocks. Such extra buffer can

be reduced by post-optimization phase in the

proposed methodology, which will be discussed

in Section 6.

2. The start signal is triggered to a sequential logic

only after all input buffers complete latching of

new data samples to satisfy the SDF semantics. If

A B C SND

Type A : combinational logic
Type B : multi-cycle sequential logic with fixed execution time
Type C : multi-cycle sequential logic with variable execution time

start signal

reset

start signal
done signal

RCV start signal(B) start signal(C) done signal(C)

time

RCV

A : 30 B : 80 C : Unknown SND signal

RCV SND

clock

start for B start for C done from C

cb

a

Control signal generation logic

A B C

clock

reset
clocken_a en_b en_c

Figure 8. a An example DFG with various types of blocks, b synthesized hardware structure, and c the expected signal timings.

resource allocation table
Transpose 2
DCT1D 2
resource mapping & schedule information
(instance name, resource number, start, duration)
loop (loop count, start, loop period)
Transpose_0 0 0 1
Loop 8 1 2 {
 DCT1D_0 0 0 2
}
Transpose_1 1 17 1
Loop 8 18 2 {
 DCT1D_1 1 0 2
}

Figure 9. Schedule information for the architecture of Fig. 4(b).

Optimized RTL Code Generation from Coarse-Grain Dataflow 19

a block has multiple input arcs, it may lengthen

the critical path length of a block. Relaxing the

strictness of the SDF semantics for performance

optimization is a future research subject.

3. The data samples on the input buffers remain

valid at all times so that no internal buffering to

latch the input signals is needed inside the block.

4. Proposed Hardware Synthesis Technique

4.1. Schedule Information Structure
for H/W synthesis

The schedule information is obtained from the

partitioning step in the proposed approach. Figure 9

shows an example schedule information for the

architecture of Fig. 4b. The schedule information

consists of two parts. One is resource allocation table

and the other is mapping/schedule information.

Resource allocation table is simply a set of pairs,

{resource type name, number of resources}. There

are two resources of transpose blocks and two of

DCT1D blocks in Fig. 9. Mapping/schedule infor-

mation defines the timing information of each

instance of nodes. It also defines the allocated

resource to the instance. It may be grouped by a

loop to make a hierarchical representation. The

syntax of the schedule information can be concisely

represented by the following Backus Naur form

(BNF) representation.

For example, Btranspose_1 1 17 1^ indicates that

transpose_1 node uses the second resource (resource

number=1) between two transpose resources and its

start timing is 17.

If a designer wants to generate a hardware

structure like Fig. 5a, where two DCT1D blocks

shares one hardware resource of DCT1D, he or she

only has to modify the number of DCT1D resource

to 1 and the mapped resource number of DCT1D_1
instance to 0 as follows.

DCT1D 1

DCT1D_1 0 0 2

It means that only one DCT1D resource is

allocated and all eight instances of DCT1D_1 node

are also mapped to this resource. The time unit used

to specify the start time and execution length is a

clock cycle.

<schedule information> ::=
<allocation table>
<mapping_schedule information>

<allocation table> ::= set of <allocation item>
<allocation item> ::=
<resource type name> <number of resources>

<mapping/schedule information> ::=
set of <mapping_schedule item>

<mapping_schedule item> ::=
<instance mapping_schedule> | < loop mapping_schedule>

<instance mapping_schedule> ::=
<node name> <mapped resource number> <start timing> <execution time>

<loop mapping_schedule> ::=
loop <loop count> <start timing> <loop period>
{ <mapping_schedule information> }

1 (Loop0)

8 (Loop1) 8 (Loop2)

Transpose_0
DCT1D_0

Transpose_1
DCT1D_1

Figure 10. Schedule information as a tree form: Leaf nodes and

internal nodes stand for the nodes and loop iteration numbers

respectively.

20 Jung et al.

The schedule information in Fig. 9 contains two

schedule loops. Since each loop has a local counter,

the start time of the first block in a loop is set to 0.

Loop 8 1 2 {DCT1D_0 0 0 2 } means that all eight

instances of DCT1D_0 node use the first hardware

resource of DCT1D and the resource is executed

eight times consecutively with execution time equal

to two cycles. Note that the repetition period is two

while the loop starts at one. The schedule informa-

tion associated with a DCT1D block of Fig. 5b can

be represented as Loop 4 1 2 {DCT1D_0 0 0 2,

DCT1D_0 1 0 2}. It means that first, third, fifth, and

seventh instances are mapped to the first resource

and the others are to the second resource. The entire

schedule is also regarded as a loop since DFG is

repeatedly executed as an infinite loop.

4.2. Counter-based Controller

The schedule information of Fig. 9 can be organized as

a tree data structure as shown in Fig. 10. Since the

entire schedule is regarded as a loop, Loop0 is used

for top-level control with loop count equal to one and

the others are numbered in sequence. We synthesize

the loop control hardware structure in the same

fashion as the schedule data structure. As shown in

Fig. 11, a loop counter is allocated for each loop and

an iteration number counter is created for nested loops

in order to count the loop iterations. Each loop

counter and iteration number counter are controlled

by their parent counter. The timing diagram in Fig. 12

shows the relationship among the counter values.

Loop1 counter starts when Loop0 counter value

becomes 1. The counter value increases by 1 at every

clock cycle and Loop1 iteration number counter

increases at the end of an iteration of Loop1.

In case a loop contains a block that has varying

execution time, the loop counter is stalled at the end

of scheduled time of the block until it receives the

done signal from the block. Then, the parent loop

should check the done signals of the child loops with

variable execution time recursively. Figure 13 shows

an example in which Loop0 checks the done signals

of Loop1 and Loop2 at their expected end times. If a

done signal is not enabled, the counter waits until it

is enabled.

4.3. Buffer Allocation

In the proposed technique, buffers between dataflow

nodes are automatically allocated and connected to

hardware resources. It should be noted that each port

of dataflow hardware block may consume and

produce multiple data samples at once. Consider a

simple example in Fig. 14a. If we use only one

hardware resource for each node, the schedule may

be AABAB or (3A)(2B) where (3A) means A block

is executed three times consecutively. In case the

schedule is AABAB, the minimum required buffer

size on the arc becomes four. If we use a looped

schedule of (3A)(2B), the minimum required buffer

size is increased to six. The relationship between

scheduling and buffer size has been addressed in

many researches [25] for software code generation.

Buffer size requirement is also a key factor for

hardware code generation. If we use maximum

hardware resources for parallel execution using three

resources for A and two resources for B in the

example of Fig. 14a, the required buffer size should

be six. Figure 14c illustrates buffer allocation and

signal connection between buffers and blocks in this

case. The required buffer size in case of maximum

parallel execution becomes total number of sample

exchange (TNSE) of the arc [25]. Given an dataflow

arc a, we denote the source node and sink node of a
by src(a) and snk(a) respectively. Also, p(a) and c(a)

denote the number of data samples produced onto a
by src(a) and consumed from a by snk(a) respec-

tively. Then,

TNSE að Þ ¼ q src að Þð Þ � p að Þ

¼ q snk að Þð Þ � c að Þ ð1Þ

Loop0 Counter

Loop1 Counter

Loop1 IterNum

Loop2 Counter

Loop2 IterNum

Figure 11. Hierarchical loop control structure.

Loop1_IterNum

Loop1_Counter

timeLoop0_Counter 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 1 2 3 4 5 6 7

0

16 17

Figure 12. Timing diagram of loop control counters.

Optimized RTL Code Generation from Coarse-Grain Dataflow 21

in which q(n) is the repetition count of a node n in an

iteration of a schedule.

Basically, we allocate as many buffers as TNSE

to guarantee safe buffering in all cases. However,

high sample rates may cause huge buffer overhead.

If a dataflow graph is scheduled in a loop fashion,

we can reduce the buffer size utilizing the loop
factor. Consider an example with high sample rates

in Fig. 15. The repetition count of each node and

TNSE of each arc can be calculated easily from the

specified data sample rates. Fractional rate (the

producing rate of node D is 1/5) will be discussed in

the next section. And we assume that the schedule

is A10(B5(CD))E. We define the loop factor of an

arc a, LFa, as the multiplication of loop iteration

numbers of common ancestors of two end nodes.

Figure 15b depicts the tree data structure of Fig. 15a

where the leaf nodes denote SDF nodes and the

internal nodes are labeled by loop iteration numbers

as explained in Fig. 10. LFBC is calculated by

multiplication of 1 and 10, since the common

ancestors of nodes B and C are root node(1) and

the internal node which is labeled by B10^. Then the

required buffer size of arc a, BSa, is computed with

the following equation:

BSa¼ TNSE að Þ=LFaþD að Þ ð2Þ

where D(a) denotes the number of delay elements

(or initial samples) on arc a.

In case delay elements exist on dataflow arcs as in

Fig. 16a, as many buffers as the number of the delay

elements are prepended at the head of the buffer

array. The last buffer is connected to the delay

A B
M
U
X

B
M
U
X

BA

B
A

A

a b c

B
2 3

A

Figure 14. Buffer allocation and signal connection for a simple

example: a a simple SDF specification, b implementation of single

resource allocation case, and c implementation of multiple

resource allocation case.

constant Last_CounterValue : integer := 34;
…
Loop0_counter : process(clock, reset)
begin

if reset = '1' then
 CounterValue <= -1; -- inactive state
 elsif rising_edge(clock) then
 if CounterValue = Last_CounterValue then
 CounterValue <= 0; -- to the next iteration
 elsif CounterValue = 16 and Loop1_done_reg = '0' then
 CounterValue <= CounterValue; -- waiting

elsif CounterValue = 33 and Loop2_done_reg = '0' then
 CounterValue <= CounterValue; -- waiting

else
 CounterValue <= CounterValue + 1; -- advancing
 end if;
 end if;
end process;

Figure 13. VHDL code for counter controller.

22 Jung et al.

buffers to make a ring buffer as shown in Fig. 16b.

While the output signals from the source node are

connected to the empty arc buffers, the input signals

to the sink node are connected starting from the

delay buffers. The remaining data samples after each

loop iteration are moved to the delay buffer area

before starting the next iteration.

In case the size of data sample is large, using a

memory is preferable to arc buffers in terms of

hardware area and cost. So we map the arc buffers to

the memory for large size data samples. In this case,

the address or pointer is transferred for synchroniza-

tion and the real data samples are delivered through

memory using memory access interface as shown in

Fig. 17. To use memory interface, the block writer

should set the memory attribute of ports. This

attribute enables automatic generation of memory

interface logic that connects to the memory or bus.

The block programmer should make memory access

hardware code directly using the provided interface

of which details are explained in [4].

4.4. Control H/W Structure and VHDL Codes

The proposed hardware code generation technique

is to generate the corresponding hardware archi-

tecture from the given schedule/mapping informa-

tion. For example, it automatically generates the

HW architecture of Fig. 4b from the schedule/

mapping information of Fig. 9. We generate an RTL

code that includes instantiated hardware resources

from block library, counter-based controller struc-

ture as presented in Section 4.2, and glue logic such

as MUXes and registers considering resource

sharing.

To support resource sharing, we construct data

structures for MUX control and start signal

management for the shared resources. In order to

control the input MUX of a resource, we store the

information on which nodes and which instances

are mapped to the resource and when each invoca-

BA

Memory

address

Memory Write Interface (MWI)

addr
data
burst
req
ack

Memory Read Interface (MRI)

addr
data
burst
req
ack

MWI MRI

Figure 17. Memory interface generation for large data sample.

Control H/W.

10

A B C D E
1 15 1 1 1/5 10

Repetition counts qA:qB:qC:qD:qE = 1:10:50:50:1

TNSE : aAB=10, aBC =50, aCD=50, aDE=10

A

B

C D

E

1

10

5

Schedule: A10(B5(CD))E

LFAB = 1
LFBC = 10 × 1 = 10
LFCD = 5 × 10 × 1 = 50
LFDE = 1

BSAB = 10/1 = 10
BSBC = 50/10 = 5
BSCD = 50/50 = 1
BSDE = 10/1 = 10

a b

Figure 15. a A Dataflow graph with high sample rates and b its schedule data structure.

BA

B
A

A

a b

A B
2 3

Figure 16. Delay element and buffer connection: a specification

and b implementation.

Optimized RTL Code Generation from Coarse-Grain Dataflow 23

tion starts and ends. Data structures are organized

per each resource by analyzing the given schedule

information. Figure 18 shows the VHDL code

templates generated from these data structures.

MUX is controlled by a range of counter value

since a MUX should hold the valid input signal

during the execution of its target resource. In case

the schedule has a loop, the conditional statement

becomes more complicated considering the loop

iteration number as illustrated in the VHDL code of

Fig. 20. The VHDL code in Fig. 18, however, has a

simple conditional statement using only one counter

value. As shown in Fig. 18, code for the start signal

management is simpler since only start timings of

instances are needed.

We also need to manage the output buffer load
enable signals to store output data samples from the

shared resource. The information on when to latch

the signal and from which resource is directly

obtained from the schedule file. We can determine

when to latch the output signal just by adding the

start timing and its execution time. Figure 19 shows

a simple VHDL code template for output buffer

management.

Figures 20 and 21 show the timings of control

signals and the resultant hardware structure described in

this section for the DCT1D block of Fig. 4b. The control

signals in these figures such as DCT1D_0_output_
0_en and DCT1D_res0_sel are not defined explicitly in

the generated RTL code. They are generated implicitly

-- <input mux code>
<resource input signal name> <=

<input buffer_1 name> when Counter >= <start time_1> and Counter <= <end time_1> else
<input buffer_2 name> when Counter >= <start time_2> and Counter <= <end time_2> else
...
<input buffer_N name>;

-- <start signal code>
<start signal name> <=

'1' when Counter = <instance_1 start time> else
'1' when Counter = <instance_2 start time> else
...
'1' when Counter = <instance_N start time> else
'0';

Figure 18. VHDL code templates for input MUX and start signal management.

-- <output buffer code>
process(clk, rst)
begin

if rst = '1' then
<output buffer signal name> <= (others => '0');

elsif rising_edge(clk) then
if Counter = <latch timing_1> then

<output buffer signal name> <= <resource output signal_1 name>;
elsif Counter = <latch timing_2> then

<output buffer signal name> <= <resource output signal_2 name>;
...
elsif Counter = <latch timing_N> then

<output buffer signal name> <= <resource output signal_N name>;
end if;

end if;
end process;

Figure 19. VHDL code template for output buffer management.

24 Jung et al.

from the RTL code. As illustrated in Fig. 21, all control

signals for MUXes and buffers are determined by the

counter values of the loop controller.

5. Fractional Rate Dataflow Specification

for More Efficient Implementation

Memory efficient code synthesis from synchronous

dataflow models has been an active research subject

to reduce the gap in terms of memory requirements

between the automatically synthesized code and the

manually optimized code of software [25, 26]. These

works, however, minimize the buffer requirements

by optimal scheduling, not by overcoming the

limitations of dataflow semantics. Fractional rate

DCT1D_res0_sel

DCT
1D

M
U
X

Controller Loop0 Counter

Loop1 Counter Loop1 IterNum

Buffer ControllerMUX Controller

DCT1D_res0_input

DCT1D_0_output_0_en

DCT1D_0_output_1_en

Figure 21. The hardware structure of buffers, loop controllers,

and MUXes for the DCT1D block in Fig. 4b.

Loop1_IterNum

Loop1_Counter

timeLoop0_Counter 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 1 2 3 4 5 6 7

0

16 17

DCT1D_res0_input <=
Transpose_0_output_0 when Loop1_IterNum = 0 and Loop1_Counter >= 0 and Loop1_Counter <= 1 else
Transpose_0_output_1 when Loop1_IterNum = 1 and Loop1_Counter >= 0 and Loop1_Counter <= 1 else
…
Transpose_0_output_6 when Loop1_IterNum = 6 and Loop1_Counter >= 0 and Loop1_Counter <= 1 else
Transpose_0_output_7;

DCT1D_0_output_0_en

DCT1D_0_output_1_en

Buffer Control Signals

Looping Control Signals

Buffer latch timings

Input Mux Control VHDL Code

Figure 20. Timing diagram of control signals and VHDL code for input MUX of DCT1D in Fig. 4(b).

1

Add4
1 1 1/4 1

Add4 Ramp Add4

LOOP 4

sinkRamp Add4

LOOP 4

sink

Ramp sink
Add4

phase0
Ramp

Add4
phase1

Ramp
Add4

phase2
Ramp

Add4
phase3

Serial I/O at each phase

The execution of block “Add4”
is divided into 4 phases.

Sequential logic with internal state
: sum & phase

time

b

SinkAdd4 Sink
1 4 1 1

Add4 Add4 sinkAdd4 sink

Ramp sinkRamp Ramp Ramp Add4
time

Parallel I/O

After all inputs are valid! Combinational logic

a

Ramp Ramp

LOOP 4

Ramp Sink

Figure 22. a SDF vs b FRDF implementation of Add4.

Optimized RTL Code Generation from Coarse-Grain Dataflow 25

data flow (FRDF) model is proposed in [6] to

overcome the limitations by allowing fractional

sample rates in the dataflow specification.

Composite data types, such as video frame or

network packet, are used extensively in multime-

dia applications, and become the major consumer

of scarce memory resource. Existent dataflow

models have inherent difficulty of efficiently

expressing the mixture of a composite data type

and its constituents: for example, a video frame

and macroblocks. A video frame is regarded as a

unit of data sample in integer rate dataflow graphs,

and should be broken down into multiple macro-

blocks explicitly consuming extra memory space.

In the FRDF model, a macroblock is regarded as a

fraction of a video frame.

The concept of fractional rate can be used not

only for composite data type but also for atomic

data type such as integer or float. An example is

shown in Fig. 22b, in which the producing rate of

Add4 block is 1/4. This means that Add4 block

produces one data sample per every four invoca-

tions, not 1/4 data sample per invocation. This

concept is useful in hardware code generation since

the synthesized hardware area is sensitive to size of

buffer register.

In Fig. 22a the SDF model forces the proposed

technique to allocate four input buffers for the Add4
block to store output samples from the looped

execution of the Ramp block. In this case, the Add4
block may be implemented to a combinational logic

of 4-input adder. On the other hand, Fig. 22b

represents the equivalent FRDF graph and its hard-

ware implementation. Fractional sample rate 1/4 of

the output port of the Add4 block implies that only

16bit 8x8 Block

FRAME

1/(6×99) 8bit integer

DeQ IZ IDCT

Skip

Mux1

dx dy

1/6 1/(6×99)

1/(6×99)

mode

1/6

CBP

1

SRAM

1

1 1
1

1 1 1 1 1 1

1 1
Saturation

TruncAdd

Mux2 WriteBlock

ReadHalf

a
b

c

d e
f g h

i

j

a

b

DeQ IZ IDCT

Skip

Mux
Motion

Compensation

dx dy

99 1

1

mode

1

CBP

1

SRAM

6

1 1
1

6 1 1 1 1 1
1 6×99

Figure 23. a An FRDF and b an SDF specification of a subset of H.263 decoder algorithm.

A 2 B C D3 1 1 2 1
a b c

Figure 24. A simple example.

26 Jung et al.

one output sample is produced after four invocations

of the Add4 block. In other words, each invocation

consumes one input sample, but every fourth invoca-

tion produces one output sample. This specification

generates a sequential implementation with an adder.

In Meyr_s approach, the Add4 block will be invoked

four times and only one buffer is allocated on the

input arc even if the input sample rate of Add4 is 4. In

fact Meyr_s approach assumes non-strict execution

with serial I/O on a multi-rate port. The FRDF

specification achieves the same implementation as

Meyr_s.

Another example of FRDF specification is shown

in Fig. 23. This figure specifies a subset of H.263

decoder algorithm. It includes Dequantize, IDCT,

and motion compensation logic. In this specification,

array types and user-defined types are used for data

samples and VHDL code generation for their signal

definitions and port mappings are automatically

performed. Since memory access logic for a frame

memory is needed during motion compensation, the

attributes of ports that access frame memory are set

to SRAM. This attribute generates ports for the

memory access and lets the frame data sample be

transferred by only its address or pointer. Note that

fractional rates are specified for frame data and some

parameter data samples such as mode, dx, and dy to

save buffer area.

Originally, the input data sample rate of motion

compensation block is 6�99 for QCIF format as

shown in Fig. 23b since motion compensation block

needs 99 macroblock inputs for one frame output.

Such specification, however, results in large buffer

overhead of 6�99 input buffers for MC block. FRDF

specification as depicted in Fig. 23a can save buffer

area significantly in case of multimedia applications

with high sample rates. The experimental results of

this example are presented in Section 7.

6. Buffer Optimization

As shown in the previous section, FRDF model

allows us to reduce the buffer size significantly

compared with the SDF model. The FRDF model

uses the notion of a fractional sample: for example,

an image frame is decomposed into 99 fractional

samples, macroblocks(16�16) in QCIF(176�144)

format. By specifying in the FRDF model, we could

reduce the number of frame-size buffers in the

synthesized hardware. Nonetheless, Jung and Ha

[27] reports that the automatically synthesized

hardware has about 50% overhead in buffer area

compared with manually optimized design. In this

section, we present how to reduce the buffer

A A B A B

1
2

1
2

1
2

1
2
3

1

2
3

1
2

1
2

1
2

1
2
3

1
2
3

1
2

1
2

1
2

1
2
3

1
2
3

a

b

c
Figure 25. Indexing patterns of arc a of Fig. 24: a traditional

indexing, b read-fixed indexing, c write-fixed indexing.

a b c

D
E
M
U
X

D
E
M
U
X

M
U
X

M
U
X

M
U
X

BA

main controller

D
E
M
U
X

D
E
M
U
X

A

main controller

B

shift enable

M
U
X

M
U
X

M
U
X

B

main controller

A

shift enable

Figure 26. Hardware implementations of Fig. 25.

Optimized RTL Code Generation from Coarse-Grain Dataflow 27

overhead further to make it close to the manually

optimized design.

Buffer size optimization has been an important

research issue in automatic software synthesis from

dataflow specification. Given a dataflow graph and

a predetermined node schedule, both global buffer

minimization [28] and buffer merging technique [29]

analyze the lifetimes of arc buffers to share the

buffers that do not overlap with each other. Recently

shift buffering technique is devised to minimize the

buffer size in case no linear buffering is possible or

modulo addressing is needed to address the buffer

entries [30].

Let_s take a simple example of buffer assign-

ment in Fig. 24. If we assign buffers to each arc as

many as TNSE by Eq. (1) in Section 4.3, the number

of buffers assigned to the whole graph is 6+2+4=12.

Note that this buffer allocation policy supports any

schedule of hardware execution because the buffer is

big enough to keep all the samples generated during

an iteration. If a dataflow graph is scheduled in a

loop fashion, we may reduce the buffer size exploit-

ing the loop factor as explained in Section 4.3. Under

the schedule 3A2(BC2D), the number of buffers is

reduced to 6/1+2/2+4/2=9 by Eq. (2) in Section 4.3.

6.1. Shift Buffering

For arc a in Fig. 24 we can reduce the buffer size if

we consider the execution schedule. In case the

execution schedule of nodes A and B is AABAB, the

maximum number of sample accumulated on the arc

is only four which is less than six that is TNSE of the

arc. Suppose we allocate four buffers on arc a. Then

the buffer indexing pattern becomes complicated as

Fig. 25a illustrates: the second invocation of node B

requires wrapped-around buffer indexing scheme. To

enable this way of indexing, three multiplexers are

attached between node B and the buffer, and two de-

multiplexers between node A and the buffer as

shown in Fig. 26a.

To avoid such complicated indexing, we devise

shift-register based buffering, shortly shift buffering.

It simplifies the control logic of buffer management.

Shift buffering is divided into two categories: read-
fixed indexing and write-fixed indexing.

Read-fixed indexing fixes the read pointer of the

consumer. In our example, consumer node B

always read the data samples from the same buffer

position as shown in Fig. 25b. To manage this

scheme correctly, buffers need to be shifted by

three in this case, after every firing of consumer. It

means that we do not need to attach MUXes to

consumer_s input ports any more.

Figure 26b illustrates the implemented hardware

in the scheme of read-fixed indexing. The read

ports of consumer node B are hard-wired to some

positions of buffer. The last buffer is shifted by three

steps as the shift enable signal is granted. In the

scheme, buffer shift should happen after every firing

of consumer node, and that is why the done signal of

consumer node B is fed to the shift enable port.

Skip
DeQ

IZ
IDCT

Mux1
Saturation

TruncAdd
Mux2

ReadHalf
WriteBlock

100 2000 0
a cycles

100 200
cycles

a
b

c
d

e
f

g
h

ij

b

Figure 28. Life-time analysis of H.263 decoder: a life time of each node, b life time of each arc.

a

01234200000c

00000121100b

00000003142

DDDDCCBABAA

Figure 27. Number of remaining samples in arcs following

schedule AABABCCDDDD.

28 Jung et al.

Shift buffering enables us to minimize the buffer

size without severe hardware area increase. The

minimum buffer size is nothing but the maximum

number of data samples accumulated in the buffer

during an iteration. We name that number as

maximum number of remaining sample, MNRS.

Then the total size of buffer becomes

BS Gð Þ ¼
X

i

MNRS �ið Þð Þ ð3Þ

To reduce the hardware area further, we can

apply above techniques in a mixed way. For

instance, as you see in Fig. 26, we can eliminate

three MUXes by read-fixed indexing or two

DEMUXes by write-fixed indexing. Since the

hardware complexity of MUX is similar to that of

DEMUX, we can get the better result from read-

fixed indexing. So, we apply an appropriate

indexing policy for each arc. Here is the pseudo-

code of a simple algorithm which determines the

buffer size and indexing policy of each arc. The

buffer management is relatively easy when p(i) or

c(i) can be divided by the other. Otherwise, we can

use shift buffering to get benefits in terms of buffer

size and glue logic overhead.

6.2. Buffer Sharing

As you see in Fig. 27, the number of live data

samples does not exceed four always in the schedule,

AABABCCDDDD. Traditional buffer allocation

policy, however, synthesizes at least two times more

than optimal buffer size as in the way explained

a

b

c

d

e

f g

h i

j

a

b

c

d

e

f

g

h

i

j

a b c

Figure 29. Buffer allocation by minimum graph coloring: a data type, 64 array of 16 bits; b data type, 64 arrays of 8 bits; c merged data

types.

Table 2. Experimental results: two-dimensional DCT.

Design type (number of DCT1D resource) Area (gates)

Latency

Throughput (sample/ms)Clock period (ns) Cycles Total (ns)

Manual (1), Fig. 5a 31,431 20 32 640 1,562.5

Auto (1), Fig. 5a 38,265 20 34 680 1,470.6

Auto (2), Fig. 4b 53,252 20 34 680 2,941.2

Auto (4), Fig. 5b 83,130 20 18 360 5,555.6

Ptolemy (16), Fig. 4a 242,944 20 4 80 12,500.0

GRAPE (2), Fig. 4c 79,832 20 52 1,040 2,083.3

1: for all arc i :
2: if p(i) % c(i) = 0 or c(i) % p(i) = 0 then
3: allocate buffers as many as TNSE
4: apply traditional buffer indexing
5: else
6: if p(i) > c(i) then
7: allocate buffers as many as MNRS
8: apply write-fixed indexing
9: else
10: allocate buffers as many as MNRS
11: apply read-fixed indexing
12: end if
13: end if
14: end for

Optimized RTL Code Generation from Coarse-Grain Dataflow 29

above. This is the major factor that makes hardware

much larger.

Buffer sharing technique is to share arc buffers

only when their life times are not overlapped during

an iteration of the schedule. Figure 27 shows the

number of remaining samples in each arc of Fig. 24

following schedule AABABCCDDDD. In Figure,

we can identify that buffers on arc a and arc c do not

overlap in their life times so can be shared. If they

are shared, the required buffer size is reduced to

BS Gð Þ ¼ MNRS bð Þ

þMax MNRS að Þ;MNRS cð Þð Þ

¼ 2þ 4 ¼ 6 ð4Þ

In general, buffer sharing technique reduces buffer

size as the following equation: for all shared buffer

indices j, and all arc indices i in each shared buffer,

BS Gð Þ ¼
X

j

Max
i

MNRS �ji

� �� �� �
ð5Þ

The life times of arcs are analyzed using schedule

information. A life time may not be continuous

sometimes which makes proposed technique differ-

ent from conventional register allocation algorithm

in compiler. The life time of an arc is not the whole

duration from the first writing to the final reading,

but only the active(which means at least 1 or more

tokens exist in it) part of life time based on static

schedule.

We explain the proposed buffer sharing technique

with a complicated example of Fig. 23a in which

each arc except the right-most one is named by an

alphabet. The right-most arc is implemented in

SRAM because it is too bulky to be mapped to a

register array. Note that the arcs that have multiple

readers (arcs a and f) are shared basically. Solid lines

and dashed lines represent 64 arrays of 16 bits and

64 arrays of 8 bits, respectively. Figure 28a illus-

trates the schedule information from which we

obtain the life time of each arc as shown in Fig. 28b.

bit width

array
size

token

Figure 30. Type definition of an arc buffer.

0

50000

100000

150000

200000

250000

300000

0 100 200 300 400 500 600 700 800

1/Throughput (ns/sample)

A
re

a
(g

at
es

)

Ptolemy
GRAPE
Auto
Manual

Figure 31. Area-delay graph of Table 2.

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Latency (ms/frame) (1Frame=99 MBs: QCIF)

A
re

a
(g

at
es

)

Figure 32. Area-delay graph of Table 3.

conservative buffersharing advanced buffer
sharing

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

140000

150000

160000

170000

180000

89034 89034 89034

66816

42240
29952

18749

16224

15125

controller and
glue logic
buffers

library blocks

A
re

a(
ga

te
s)

Figure 33. Experiments of buffer sharing.

30 Jung et al.

The problem of finding the optimal buffer sharing

is converted to minimum graph coloring. First we

consider sharing buffers of the same type only.

Figure 29a shows how the graph is colored by three

colors where six buffers (of 64 arrays of 16 bits) are

reduced three. The buffers of 64 arrays of 8 bits,

however, cannot be reduced further because it is a

complete graph as shown in Fig. 29b.

For further buffer sharing, we compare the buffer

sizes among different data types. We define the arc

type as a tuple <array size, bit width, sample count>

as shown in Fig. 30. For example, the type of arc c in

Fig. 23a is defined as <64, 16, 1>. We can share two

arcs when all of three terms of a buffer is bigger (or

equal) than (or to) the other. Since arc c and arc h are

the case, they are sharable. Figure 29c illustrates the

final buffer sharing. Here all the edge associated to j
is omitted because j is connected to every node. In

summary, six buffers of 64 arrays of 16 bits and four

buffers of 64 arrays of 8 bits are reduced to three

buffers of 64 arrays of 16 bits and one buffer of 64

arrays of 8 bits.

The principle of life time analysis in this buffer

sharing technique is same as register sharing in high-

level synthesis or register allocation in compiler

technique. But we apply the principle in the different

context which is based on the static schedule of SDF

semantic. One difference is that we use the technique

not only to same data types but also to different types

as well. It is beneficial to modern image processing

algorithm like H.264, because they treat blocks of

various sizes such as 4�4, 4�8, 8�8, and so forth.

In general, VHDL is a strong-typed language so that

the sharing of different data types is not simple.

7. Experiments

We use the example of Fig. 3 in the first experiment.

We used Synopsys Design Compiler for synthesis.

The clock period is fixed to 20 ns. As a result, one

execution of DCT1D with propagation delay of 30.2

ns takes two cycles. To evaluate the efficiency of our

approach, we compared the quality of the synthesized

hardware with a manually designed hardware whose

structure is same as Fig. 5a. It includes a DCT1D
resource and a transpose memory of 64�16-bit

registers. The controller and the peripherals such as

MUXes and counters are also included in the

synthesized hardware. The synthesis results of other

approaches in Fig. 4 are also compared in Table 2.

Since GRAPE tool is not available, we manually

implemented the hardware according to the expected

synthesis result. So, we admit that there can be some

differences between the result of Table 2 and the real

GRAPE result. The automatically generated design

takes somewhat larger area than the manual design

due to conservative buffer allocation and control. In

Table 4. Result of synthesizing Fig. 34.

Combinational

logic (gates)

Sequential

logic (gates)

Total

(gates)

Write-fixed 137 214 351

Read-fixed 127 204 331

Conservative

(TNSE)

169 341 510

Table 3. Experimental results: H.263 decoder.

HW implementation

HW area (gates)

Performance: QCIF (ms/frame)Library block Buffers Glue logics Total

1 resource 89,034 66,816 18,749 174,599 2.79

2 resources 149,878 116,480 39,969 306,327 2.21

3 resources 210,722 166,144 60,275 437,141 2.02

6 resources 393,254 315,136 120,251 828,641 1.82

A
3

B
5

Figure 34. An experimental example for shift-register based

buffering.

Optimized RTL Code Generation from Coarse-Grain Dataflow 31

our approach, output buffers are allocated separately

even when resource sharing is performed. This is the

main reason of buffer overuse. Figure 31 displays the

trade-off relation between performance and area

among various hardware implementations. It also

confirms that the proposed technique can explore

diverse hardware implementations by simply chang-

ing the schedule information.

We also experimented with an example of H.263

decoder in Fig. 23. In this experiment, we compare

the automatically generated designs from a dataflow

specification (Fig. 23) varying the number of

resources. We use only one hardware resource for

motion compensation part throughout all experi-

ments, because motion compensation cannot be

parallelized beneficially. We use 1, 2, 3, and 6

resources for other blocks to obtain better perfor-

mance. The VHDL codes for these experiments are

automatically generated by simply changing the

schedule information. In the synthesized hardware,

we assume that the clock period is 20 ns and the

memory access takes three clock cycles.

Table 3 shows that the HW area rapidly increases

as more HW resources are used. The buffer size is

relatively large in this experiment because output

buffer for large user-defined type such as 8�8 matrix

is implemented using hardware registers. This

overhead will be reduced if we use memory type

output buffer as frame memory or apply a buffer

sharing technique. The results of Table 3 are

depicted with an area-delay graph in Fig. 32.

As shown in Tables 2 and 3, we could automat-

ically synthesize various kinds of hardware imple-

mentations by simply modifying the schedule

information file. And the quality of these implemen-

tations is not far from that of manual design so that

architecture optimization after automatic generation

could be easily performed manually.

Figure 33 show how much the buffer size is

reduced by applying the proposed buffer sharing

technique. FBuffer sharing_ stands for applying

buffer sharing only between the same buffer types.

FAdvanced buffer sharing_ denotes the result for

applying buffer sharing to all buffer types. The

buffer size shrinks to about 44% of the original size

by applying the proposed buffer sharing. The glue

logic also decreases because the increased overhead

due to buffer sharing is less than the decreased

control logic associated with the removed buffers.

The last experiment is a toy example of Fig. 34

that demonstrates the usefulness of shift buffering.

Table 4 shows the results of synthesizing this SDF

graph in three different schemes: TNSE scheme,

read-fixed indexing, and write-fixed indexing. To

focus on the effect of control logic and buffer, we

used dummy blocks for A and B. Table 4 clearly

shows the buffer reducing effect. The logic count

includes buffers and buffer control logics as well as

the centralized controller. The result confirms that

the buffer overhead is larger than the centralized

controller overhead. You can see that read-fixed
indexing makes the best result in this example.

8. Conclusion

This paper addresses how to generate RTL code for

various hardware structures from a dataflow specifi-

cation. We proposed a technique to synthesize the

hardware architecture by integrating HW library

blocks and automatically synthesizing the glue logics

and the central controller. By separating the sched-

uling and HW code generation, we can implement

diverse HW architectures from the given dataflow

specification by simply changing the schedule and

resource sharing information. The proposed tech-

nique considers resource sharing and looped sched-

ule to explore wider design space than the previous

approaches. Through FRDF specification, more

efficient hardware could be synthesized in terms of

hardware area. We experimented with two real

examples, 2D DCT algorithm and H.263 decoder,

to demonstrate how the proposed technique truly

builds the working VHDL code, which is verified

with a commercial Synopsys tool. For the buffer

optimization, we presented two techniques, shift

buffering and buffer sharing, to synthesize area

efficient hardware by reducing buffers and control

logics. We applied the proposed techniques to a real-

life example, H.263 decoder subsystem, and

obtained significant buffer reduction up to 44%.

The synthesized hardware is close to manually

optimized one in terms of hardware area. But it is

still worse by 7% due to extra buffers between

32 Jung et al.

combinational hardware blocks in the synthesized

hardware. It remains as a future work to remove the

extra buffers. If we can achieve the similar perfor-

mance as hand-optimized one, we expect that the

proposed hardware synthesis methodology can be

successfully used in real-life design.

Acknowledgements

This work was supported by Brain Korea 21 project,

SystemIC 2010 project funded by Korean MOCIE,

and KOSEF research program (R17-2007-086-

01001-0). This work was also partly sponsored by

ETRI SoC Industry Promotion Center, Human

Resource Development Project for IT SoC Architect.

The ICT and ISRC at Seoul National University and

IDEC provided research facilities for this study.

Note

1. In the original Meyr_s work, each node produces one sample on

each output arc at each invocation. Therefore, eight invocations

are needed to produce eight samples in this example. However,

we assume that DCT1D block has eight different output arcs in

Figure 3 for efficient implementation.

References

1. Synopsis Inc., BCOSSAP User_s Manual: VHDL Code

Generation,^ 700 E. Middlefield Rd., Mountain View, CA

94043, USA.

2. J.T. Buck, S. Ha, E.A. Lee and D.G. Messerschmitt, BPtolemy: A

Framework for Simulating and Prototyping Heterogeneous

Systems,^ Int. J Comput Simulation, Special Issues on Simula-

tion Software Development, vol.4, 1994, pp. 155–182, April.

3. M. Ade, R. Lauwereins and J.A. Peperstraete, BHardware-

software codesign with GRAPE,^ IEEE Int. Workshop on

Rapid System Prototyping, 1995, pp. 40–47, June.

4. The CAP Laboratory Seoul National University, BPeaCE Users_s
Manual v.1.0.1,^ no. 4, July, 2005. http://peace.snu.ac.kr/

research/peace.

5. E.A. Lee and D.G. Messerschmitt, BSynchronous Data Flow,^
Proc. IEEE, vol. 75, no. 9, 1987, pp. 1235–1245, September.

6. H. Oh and S. Ha, BFractional Rate Dataflow Model for

Efficient Code Synthesis,^ J. VLSI Signal Process, vol. 37,

2004, pp. 41–55, May.

7. G. De Micheli, BSynthesis and Optimization of Digital

Circuits,^ McGraw-Hill, 1994.

8. J. Horstmannshoff and H. Meyr, BOptimized System Synthesis

of Complex RT Level Building Blocks from Multirate Data-

flow Graphs,^ Proceedings of the 12th International Sympo-
sium on System Synthesis, 1999, pp. 38–43, Nov.

9. M.C. Williamson and E.A. Lee, BSynthesis of Parallel

Hardware Implementations from Synchronous Dataflow

Graph Specifications,^ in 30th Asilomar Conference on

Signals, Systems, and Computers, Pacific Grove, California,

USA, vol. 2, 1996, pp. 1340–1343, November.

10. J. McAllister, R. Woods, R. Walke and D. Reilly,

BMultidimensional DSP Core Synthesis for FPGA,^ J. VLSI
Signal Process, vol. 43, 2006, pp. 207–221.

11. L. Semeria, K. Sato and G. De Micheli, BSynthesis of

Hardware Models in C with Pointers and Complex Data

Structures,^ IEEE Transactions on VLSI Systems, vol. 9, 2001,

pp. 743–756, December.

12. L. Semeria and G. De Micheli, BResolution, Optimization, and

Encoding of Pointer Variables for the Behavioral Synthesis

from C,^ IEEE Trans Comput.-Aided Des Integr Circuits Syst,

vol. 20, 2001, pp. 213–233, Feb.

13. N. Vanspauwen, E. Barros, S. Cavalcante and C. Valderrama,

BOn the Importance, Problems and Solutions of Pointer

Synthesis,^ 15th Symposium on Integrated Circuits and

Systems Design, 2002, pp. 317–322, September.

14. F. Slomka, M. Dorfel and R. Munzenberger, BGenerating

Mixed Hardware/Software systems from SDL Specifications,^
9th International Symposium on Hardware/Software Code-

sign, 2001, pp. 116–121, April.

15. O. Bringmann, W. Rosenstiel, A. Muth, G. Farber, F. Slomka

and R. Hofmann, BMixed Abstraction Level Hardware Syn-

thesis from SDL for Rapid Prototyping,^ IEEE Int. Workshop

on Rapid System Prototyping, 1999, pp. 114–119, June.

16. P. Zepter, T. Groker and H. Meyr, BDigital receiver design

using VHDL generation from data flow graphs,^ Proceedings

of the 32nd ACM/IEEE conference on Design Automation,

1995, pp. 228–233.

17. J. Horstmannshoff, T. Grotker and H. Meyr, BMapping Multirate

Dataflow to Complex RT Level Hardware Models,^ Proceedings

of IEEE Iternational Conference on Application-Specific Sys-

tems, Architectures and Processors, 1997, pp. 283–292, July.

18. J. Hortmannshoff, T. Grotker, H. Meyr, M. Wloka and K.

Djigande, BDSP System Synthesis: Integration of Reusable

Building Blocks,^ Proceedings of international Conference On

Signal Processing Applications and Technology, 1997

19. J. Dalcolmo, R. Lauwereins, M. Ade, BCode Generation of Data

Dominated DSP Applications for FPGA Targets,^ IEEE Int.

Workshop on Rapid System Prototyping, 1998, pp. 162–167.

20. R. Lauwereins, M. Engels, M. Ade and J.A. Peperstraete,

BGrape-II: A System-Level Prototyping Environment for DSP

Applications,^ IEEE Computer, vol. 28, 1995, pp. 35–43, Feb.

21. M. Ade, R. Lauwereins and J.A. Peperstraete, BData Memory

Minimisation for Synchronous Data Flow Graphs Emulated on

DSP–FPGA Targets,^ Proceedings of the 34th conference on

design automation, Anaheim, CA, 1997, pp. 64–69.

22. G. Bilsen, M. Engels, R. Lauwereins and J. Peperstraete,

BCyclo-Static Dataflow,^ IEEE Trans. Signal Processing, vol.

44, no. 2, 1996, pp. 397–408.

23. P. K. Murthy and E. A. Lee, BMultidimensional Synchronous

Dataflow,^ IEEE Trans. Signal Processing, vol. 50. no. 8,

2002, pp. 2064–2079.

Optimized RTL Code Generation from Coarse-Grain Dataflow 33

http://peace.snu.ac.kr/research/peace
http://peace.snu.ac.kr/research/peace

24. R. Sharp and A. Mycroft, BA Higher-Level Language for

Hardware Synthesis,^ 11th Advanced Research Working

Conference on Correct Hardware Design and Verification

Methods, vol. 2144 of LNCS, 2001.

25. S.S. Bhattacharyya, P.K. Murthy and E.A. Lee, BAPGAN and

RPMC: Complementary Heuristics for Translating DSP Block

Diagrams into Efficient Software Implementations,^ DAES,

vol. 2, no. 1, 1997, pp. 33–60, January.

26. W. Sung and S. Ha, BMemory Efficient Software Synthesis

Using Mixed Coding Style from Dataflow Graph,^ IEEE

Transactions on VLSI Systems, vol. 8, 2000, pp. 522–526,

October.

27. H. Jung and S. Ha, BHardware Synthesis from Coarse

Grained Dataflow Specification for Fast HW/SW

Cosynthesis,^ Proceedings of International Conference on

Hardware/Software Codesign and System Synthesis, Sweden,

2004, pp. 24–29.

28. H. Oh and S. Ha, BEfficient Code Synthesis from Extended

Dataflow Graphs for Multimedia Applications,^ Proceedings
of the 39th Conference on Design Automation, 2002, pp. 275–

280, June.

29. P.K. Murthy and S.S. Bhattacharyya, BBuffer Merging—A

Powerful Technique for Reducing Memory Requirements of

Synchronous Dataflow Specifications,^ ACM Transactions on

Design Automation of Electronic Systems, vol. 9, no. 2, 2004,

pp. 212–237, April.

30. H. Oh, N. Dutt, S. Ha, BShift Buffering Technique for

Automatic Code Synthesis from Synchronous Dataflow

Graphs,^ CODES+ISSS_05, Sept. 19–21 2005, pp. 51–56.

Hyunuk Jung received his B.S. and M.S. degrees in Computer

Engineering and Ph.D. degree in Electrical Engineering and

Computer Science from Seoul National University, Seoul, Korea,

in 1998, 2000, and 2005, respectively. He is currently working

for Samsung Electronics on system design technology. His

research interests include hardware/software codesign, system-

level performance analysis, SoC architecture optimization, and

embedded system software optimization.

Hoeseok Yang received his B.S. degree in Computer Science

and Engineering from Seoul National University, Seoul,

Korea, in 2003, where he is currently working towards a

Ph.D. degree in Electrical Engineering and Computer Science.

His research interests include hardware/software codesign for

multi-processor system-on-chip, memory architecture explo-

ration, and hardware synthesis from formal computation

model.

Soonhoi Ha received his B.S. and M.S. degrees in Electronics

Engineering from Seoul National University, Seoul, Korea, in

1985 and 1987, respectively, and his Ph.D. degree in Electrical

Engineering and Computer Science from the University of

California, Berkeley, in 1992. He was with Hyundai Electron-

ics Industries Corporation from 1993 to 1994 before he joined

as a faculty of the School of Electrical Engineering and Com-

puter Science, Seoul National University, where he is currently a

Professor. He is a program co-chair of CODES+ISSS_ 2006,

ASPDAC_ 2008, and ESTIMedia_ 2005-6. He has been a

member of the technical program committee of several

technical conferences including DATE, CODES+ISSS, and

ASP-DAC. His primary research interests are various aspects

of embedded system design including hardware/software

codesign, design methodologies, and embedded software

design for multi-processor system-on-chip.

34 Jung et al.

	Optimized RTL Code Generation from Coarse-Grain Dataflow Specification for Fast HW/SW Cosynthesis
	Abstract
	Introduction
	Previous Work and Motivational Example
	Block Types and Control Signals
	Proposed Hardware Synthesis Technique
	Schedule Information Structure for H/W synthesis
	Counter-based Controller
	Buffer Allocation
	Control H/W Structure and VHDL Codes

	Fractional Rate Dataflow Specification for More Efficient Implementation
	Buffer Optimization
	Shift Buffering
	Buffer Sharing

	Experiments
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

